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Latent models have been widely used in diverse elds such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using nonparametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar nonparametric latent models: hidden Markov models and mixture models. I have rst studied the concentration of the posterior distribution in nonparametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in e cient estimation of the mixture parameter in semiparametric mixture models.
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RÉSUMÉ

Résumé

Les modèles latents sont très utilisés en pratique, comme en génomique, économétrie, reconnaissance de parole, étude de population... Comme la modélisation paramétrique des lois d'émission, c'est-à-dire les lois d'une observation sachant l'état latent, peut conduire à de mauvais résultats en pratique, un récent intérêt pour les modèles latents non paramétriques est apparu dans les applications. Or ces modèles ont peu été étudiés en théorie. Dans cette thèse je me suis intéressée aux propriétés asymptotiques des estimateurs (dans le cas fréquentiste) et de la loi a posteriori (dans le cadre Bayésien) dans deux modèles latents particuliers : les modèles de Markov cachés et les modèles de mélange. J'ai tout d'abord étudié la concentration de la loi a posteriori dans les modèles non paramétriques de Markov cachés. Plus précisément, j'ai étudié la consistance puis la vitesse de concentration de la loi a posteriori. En n je me suis intéressée à l'estimation e cace du paramètre de mélange dans les modèles semi-paramétriques de mélange.

Mots-clés:

Statistiques non et semi-paramétriques, statistiques Bayésiennes, statistiques asymptotiques, modèle de Markov caché, modèle de mélange Markov models (HMMs) and mixture models. Both models are latent models, in other words, the observations are driven by some hidden random variables. In mixture models the latent variables are independent and identically distributed while they are dependent in HMMs. Latent models are very popular in practice. Recently, there has been a increased use of nonparametric versions of latent models. Yet, in this framework theoretical guarantees for estimators or for the posterior distribution in the Bayesian framework are not well understood. In this thesis I have contributed to better understand the theoretical behaviour of both point estimators and posterior distributions in these models. In Section 1.2, I present the type of properties I have been studying. In Section 1.3, I recall the results, that were known at the beginning of my PhD, about nonparametric HMMs and semiparametric mixture models. I nish the introduction with Section 1.4, which gives an overview of the results I have obtained and perspectives.

HMMs and Mixture Models

First of all, let us introduce some notations.

Some General Notations for Statistical Models

A statistical model is a triple (Y n , B n , P n ) where (Y n , B n ) is a measurable space and P n = {P θ n , θ ∈ Θ} is a set of distributions on (Y n , B n ) parametrised by θ. The integer n represents the number of observations. In this thesis we are interested in asymptotic properties, that is the study of what happens when n tends to in nity. We consider P θ +∞ a probability distribution on Y N that will be denoted P θ := P θ +∞ in the following, then P θ n is the n-marginal of P θ and Y n is the set where the observations (Y 1 , . . . , Y n ) live in: (Y 1 , . . . , Y n ) ∈ Y n . When Θ is nite dimensional we say that the model is parametric otherwise we say that the model is nonparametric. Throughout the thesis, we assume that the model is dominated, that is the distributions P θ n are absolutely continuous with respect to a unique measure λ n . We denote p θ n the density functions of P θ n with respect to λ n :

P θ n = p θ n λ n .
We say that the model is well-speci ed when the observations Y 1 , . . . , Y n are assumed to be distributed from a true distribution P θ * n which belongs to the considered family of distributions, θ * ∈ Θ. An aim is then to obtain some information about θ * from the observations. For instance, we may want to estimate θ * or a functional of θ * . This inference is done with the help of an estimator θn , i.e. a measurable function of the observations: θn = θn (Y 1 , . . . , Y n ).

In Bayesian statistics, the set of parameters Θ is endowed with a sigma-eld and a probability 1.1 HMMS AND MIXTURE MODELS 3 distribution Π on Θ is given, it is called the prior distribution. The prior distribution may re ect what is already known on the parameters. The prior distribution may also be "neutral" that is not giving any information on the parameters, we call such prior distribution noninformative prior distributions. One may also choose the prior because of its tractability. The choice of the prior a ects the inference, so that this choice has to be done with care, particularly in the nonparametric setting.

From the prior and the observations Y 1 , . . . , Y n , we can de ne the posterior distribution Π(•|Y 1 , . . . , Y n ) which is a distribution on the set of parameters Θ. The posterior distribution is the distribution of the parameters given the observations, by the Bayes' rule:

Π(θ ∈ A|Y 1 , . . . , Y n ) = A p θ n (Y 1 , . . . , Y n )Π(dθ) Θ p θ n (Y 1 , . . . , Y n )Π(dθ)
.

The posterior distribution represents the knowledge on the parameters we have learnt thanks to the observations. When the prior distribution is absolutely continuous with respect to a measure ν, that is Π = πν, the posterior admits a density with respect to ν. We denote it π(•|Y 1 , . . . , Y n ) and

π(θ|Y 1 , . . . , Y n ) = p θ n (Y 1 , . . . , Y n )π(θ) Θ p θ n (Y 1 , . . . , Y n )π(θ)ν(dθ)
.

From the posterior distribution, we can build frequentist estimators for instance the maximum a posteriori (MAP) estimator

θ M AP ∈ arg max θ∈Θ π(θ|Y 1 . . . Y n )
or the posterior mean

θ P M = Θ π(θ|Y 1 , . . . Y n )ν(dθ),
if they exist. Note that the posterior distribution potentially gives more information than an estimator, since given the observations, it gives a distribution on the parameter set and not only a value for the parameter.

The posterior distribution may not have an explicit expression, then statisticians may choose prior distributions for which the posterior is easier to compute or an approximation of the posterior distribution may be computed with MCMC for instance. A class of prior distributions leading to analytically computable posterior distributions is the class of conjugate prior distributions. A prior distribution is said to be conjugate for some likelihoods p θ when the posterior distribution and the prior distribution belong to the same class of distributions. For instance, the Gaussian prior is conjugate for the likelihood p θ n (y 1 , . . . , y n ) = n i=1 1/ √ n exp(-(y i -θ) 2 /2) with parameter θ ∈ Θ = R. Indeed when π µ,σ (θ) = 1/ √ n exp(-(θ -µ) 2 /(2σ 2 )), then the posterior

CHAPTER 1: INTRODUCTION distribution is the Gaussian distribution N µ 1 + nσ 2 + 1 σ 2 /n + 1 1 n n i=1 Y i , 1 1/σ 2 + n . (1.1)
An important class of conjugate prior distributions for independent observations are the Dirichlet distributions. The Dirichlet distribution is a generalization of the beta distribution in higher dimension. The Dirichlet distribution with parameter (α 1 , . . . , α j ), j ∈ N * , is a distribution absolutely continuous with respect to the Lebesgue measure on the (j -1)-dimensional simplex

∆ j = {x ∈ R j + : j i=1 x i = 1}
with density function:

Γ( k i=1 α i ) k i=1 Γ(α i ) x α 1 -1 1 . . . x α j-1 -1 j-1 (1 - i<j x i ) α j -1 , x ∈ ∆ j .
The Dirichlet distribution with parameter (α 1 , α 2 ) is the beta distribution with parameter (α 1 , α 2 ).

The Dirichlet distribution is conjugate for the likelihood of the type product of a categorical distributions. In other words, if Y n = {1, . . . , k} n , Θ = ∆ k , p θ n (y 1 , . . . , y n ) = θ y 1 . . . θ yn and the prior is a Dirichlet distribution of parameter (α 1 , . . . , α k ) then by the Bayes' rule:

π(θ|Y 1 , . . . , Y n ) = θ y 1 . . . θ yn θ α 1 -1 1 . . . θ α k -1 k ∆ k θ y 1 . . . θ yn θ α 1 -1 1 . . . θ α k -1 k dθ ,
so that the posterior distribution is a Dirichlet distribution of parameter (α 1 + |{i : Y i = 1}|, . . . , α k + |{i : Y i = k}|).

In Bayesian nonparametric models, we need probability distributions on in nite dimensional sets. A popular distribution used in this framework is the Dirichlet process which is a generalization of the Dirichlet distribution.

De nition 1.1 (Dirichlet process). Let α > 0, and let G be a probability distribution on some set Γ. The Dirichlet process DP (αG) is a process on probability measures M(Γ) on Γ such that for all realization P ∈ M(Γ) of the process, for all nite partition (Γ 1 , . . . , Γ r ) of Γ, (P (Γ 1 ), . . . , P (Γ r )) is distributed as Dir (αG(Γ 1 ), . . . , αG(Γ r )) .

The Dirichlet process is popular because it is conjugate when Θ = M(Γ), P θ n = ⊗ n i=1 θ, i.e. in the i.i.d. case with distribution θ. Yet a drawback of Dirichlet processes is that it puts all its mass on discrete distributions. Thus statisticians often use Dirichlet process mixture of some kernel as prior on density functions. For instance in the case where the parameter θ = f is a density function, we can choose that under the prior distribution, f = K σ (• -m)P (dm, dσ) where P is distributed as a Dirichlet process DP (αG) and K σ (• -m) is a kernel with window σ centered at m, e.g. the Gaussian kernel where K σ (y -m) = 1 √ 2πσ 2 exp(-(y -m) 2 /(2σ 2 )).

More properties about the Dirichlet Process are given in Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF] for instance. Of course, Dirichlet process mixtures of kernels are not the only possible prior distributions. For instance, Gaussian processes are another type of popular nonparametric prior distributions, see Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF] and van der Vaart and van Zanten [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on gaussian process priors[END_REF] for instance and references therein. For more information on Bayesian statistics, see Robert [START_REF] Robert | The Bayesian Choice, second[END_REF] or Gelman et al. [START_REF] Gelman | Bayesian data analysis[END_REF] for example and on nonparametric Bayesian statistics see Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF] for instance.

I have considered two models during my PhD which are mixture models and hidden Markov models (HMMs). I now de ne both models and compare them.

HMMs and Mixture Models: De nitions and Examples

During my PhD, I have been interested in latent models. In these models, a sequence of latent variables is hidden and the statistician only observes a noisy version of it. An important class of such models is when the latent variables live in a nite set, say {1, . . . , k}. In this case, the latent variables are often used to model populations the observations come from. In the case of mixture models the latent variables are i.i.d. while in hidden Markov models, the latent variables form a Markov chain. We now de ne these models formally. More information can be found in the following books and the references therein, MacDonald and Zucchini [START_REF] Macdonald | Hidden Markov and other models for discretevalued time series[END_REF], MacDonald and Zucchini [START_REF]Hidden Markov models for time series: an introduction using R[END_REF] and Cappé et al. [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] on HMMs, Lee et al. [START_REF] Lee | Bayesian inference on nite mixtures of distributions[END_REF] on mixture models.

De nition 1.2 (Mixture model). Let (X , A) and (Y, B) be two measurable spaces where X is nite.

Let µ be a distribution on X and (F x ) x∈X be a family of distributions on Y. If X is distributed as µ and given X = x, Y is distributed from F x then Y is distributed from a mixture model. In other words, Y is distributed from x∈X µ(x)F x (•). We call the distributions F x , the emission distributions.

A commonly used mixture model is the mixture of Gaussian distributions. In this case, the emission distributions F x are assumed to be Gaussian distributions.

A DAG representation of a mixture model is given in Figure 1.1.

In such a mixture model, statisticians cannot observe the hidden variables X 1 , . . . X n i.i.d. from µ but observe the observations Y 1 , . . . , Y n . Now imagine that the hidden variables X 1 , . . . , X n are not i.i.d. any more but are distributed from a Markov chain. Then we obtain a hidden Markov model. Here is a formal de nition of a hidden Markov model.

De nition 1.3 (Hidden Markov model). Let (X , A) and (Y, B) be two measurable sets, Q a transition matrix on X × X , µ a probability distribution on X and (F x ) x∈X a family of probability distribution on Y. Assume (X t ) t∈N is a Markov chain with transition matrix Q and initial distri- bution µ, so that

X 1 X 2 ... i.i.d. X n Y 1 Y 2 Y n µ µ µ f X 1 f X 2 f Xn
X 1 ∼ µ, X t+1 |X 1 , . . . X t ∼ x∈X Q Xt,x δ x .
(1.2)

Assume that given the Markov chain (X t ) t∈N , the observations Y t are independent and for all s ∈ N,

Y s is distributed from F Xs .
Then the sequence (X t , Y t ) t∈N is a hidden Markov chain.

When for all x ∈ X , F x is absolutely continuous with respect to some measure λ with density f x , the likelihood associated to this model is

p θ n (Y 1 , . . . , Y n ) = (x 1 ,...,xn)∈X n µ x 1 Q x 1 ,x 2 . . . Q x n-1 ,xn f x 1 (Y 1 ) . . . f xn (Y n ),
where θ = (µ, Q, f ), f = (f x ) x∈X .

A DAG representation of a HMM is given in Figure 1.2. Mixture models and HMMs are very popular models. They are used in many elds of application such as speech recognition, image processing, genetics, ecology, econometrics or climate, to cite a few. Their popularity is due to their great exibility, together with the existence of e cient algorithms, both for the Bayesian and frequentist methods.

µ X 1 Q X 1 ,• X 2 Q X 2 ,• ... Q X t-1 ,• X t Q Xt,• ... Q X n-1 ,• X n Y 1 Y 2 Y t Y n f X 1 f X 2 f Xt f Xn
In the following, we consider a particular case of these models that we describe now. We only consider mixture models and HMMs where the number of states for the latent variables is -
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nite and known. In other words, we assume that there exists k ∈ N, that we know, such that X = {1, . . . , k}. These particular models are often used to cluster the observations into groups associated to the same latent variable. While we constraint the latent variables to live in anite state space, we do not assume that the emission distributions have a speci c parametric form. So that we consider nonparametric latent models with nite state space. Chapters 2 and 3 deal with nonparametric HMMs with nite state space. Chapter 4 deals with mixture models with nite state space where the emission distributions are a product of three distributions (for identi ability purpose, see Section 1.3.1). The latter mixture model is represented in Figure 1.3. The reason for considering a nonparametric model for the emission distributions, is that they allow for much more robust inference. In Yau et al. [START_REF] Yau | Bayesian non-parametric hidden Markov models with applications in genomics[END_REF] for example, a nonparametric HMM with nite state space is used to model genetic data. More precisely the index t corresponds to a locus in the DNA. For each locus, the authors want to know if the fragment of DNA has been deleted twice (X t = 1), once (X t = 2), if nothing has happened (X t = 3), if it has been replicated once (X t = 4) or twice (X t = 5). This variation of the number of replicates of the fragment of the DNA is called genomic copy number variation and is represented in Figure 1.4. The data consist of intensity measurements obtained after some experience on the studied DNA. The authors model the data with a HMM where the hidden states correspond to the state of deletion or duplication and the observations Y t are the intensity of measures. The HMM is then associated with k = 5

X 1 ... i.i.d. X n Y 1,1 Y 1,2 Y 1,3 Y n,1 Y n,2 Y n,3 µ µ f X 1 ,1 f X 1 ,2 f X 1 ,3 f Xn,1 f Xn,2 f Xn,3
states. The authors consider a location HMM, i.e.

Y t = m Xt + t ,
with m 1 , . . . , m 5 ∈ R, t i.i.d.

∼ G and G some unknown distribution. The authors use a Bayesian nonparametric approach and model the density of the noise ( t ) using a DP mixture of Gaussian distributions.

Two questions then arise.

• Is this model identi able?

• Does the Bayesian approach lead to consistency? The identi ability issue has been solved by Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF] and Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF]. In this thesis we study the asymptotic behaviour of the posterior distribution for such models. More generally, we are interested in the asymptotic properties of the posterior distribution and estimators in nonparametric HMMs and semiparametric mixture models. In Section 1.2, we present the asymptotic guarantees we examine in Chapters 2, 3 and 4.

Asymptotic Theoretical Guarantees

Before studying the asymptotic behaviour of the posterior distribution or of estimators, it is important to understand when and why the model is identi able. Identi ability is the injectivity of the functional θ → P θ : basically, it states that from the true distribution of the observations you can recover the parameters. Of course it is a very important notion in the context of the estimation of θ.

For example:

• the i.i.d. Gaussian experiment, that is Y i i.i.d.

∼ N (µ, σ) =: P µ,σ is identi able. Indeed µ = E P µ,σ (X) and σ = V ar P µ,σ) (X).

• In general, a nonparametric mixture model, with Y i i.i.d.

∼

k j=1 µ j f j (•)λ, is not identi able unless some extra constraint is imposed on f j , j ≤ k. Indeed let μ = (µ 1 /2, µ 1 /2 + µ 2 , µ 3 , . . . , µ k ), f2 = 1/(µ 1 /2 + µ 2 ) (µ 1 /2f 1 + µ 2 f 2 ) and fj = f j for j ∈ {1, 3, . . . , k}, then j µ j f j λ = j μj fj λ. Similarly one can choose many other parameters (μ, f ) leading to the same distribution.

• Interestingly, if for all j, f j can be written as f j = 3 c=1 f j,c , and under the restriction that for all j ≤ k, µ j > 0 and f j,c λ are linearly independent for all c ∈ {1, 2, 3}, then the model is identi able (up to the labelling of the hidden states). This is the model represented in Figure 1.3 More identi ability results in latent models can be found in Section 1.3.1.

Identi ability often is a prerequisite before studying more involved guarantees. Indeed, in statistics, you cannot have access to the probability P θ but to observations Y 1 , . . . , Y n which are distributed from P θ and an objective is to obtain information about the unknown P θ from the observations. For instance, we may want to know from which parameter the observations come from, i.e. to estimate θ or predict the next observations (prediction). When the goal is to estimate θ then identi ability is a required property. Then we need to control that what we have built with the observations, namely an estimator or the posterior distribution, gives a " good" approximation of what we wanted to recover, where the adjective " good" has to be de ned. It may be de ned in an asymptotic way that is by regarding what is happening when the number of observations n increases or nonasymptotically, that is when the number of observations is xed. I'm going to emphasise asymptotic guarantees since the results I have obtained during my PhD are asymptotic.

To study the asymptotic properties of the method of inference, we take a frequentist point of view, i.e. we assume that the observations come from a true distribution P θ * . We investigate three types of asymptotic guarantees:

• consistency results,

• rates of convergence,

• limit distributions.

In Section 1.2.1, we describe the tools used to study the asymptotic behaviour of the posterior distribution. Intuitively, when the number of observations, distributed from a true distribution P θ * , increases, the posterior should concentrate around the true parameter θ * , i.e. the posterior distribution should converge to a Dirach measure δ θ * at θ * . This is represented in Figure 1.5 by the plain arrow, over which there is a question mark. This is not the same as the problem of approximation of the posterior distribution for a given n by algorithms as Markov Chain Monte Carlo (MCMC), represented by the dotted line. The latter is not treated in this thesis.

Posterior consistency and posterior concentration rates are introduced in Section 1.2.1 and are studied in the framework of nonparametric HMMs in Chapters 2 and 3. In Section 1.2.2, the 

Posterior Consistency and Posterior Concentration Rates

In this section, we give results on the asymptotic behaviour of the posterior distribution taking a frequentist point of view, i.e. assuming that the observations come from a true distribution P θ * .

The interest of studying posterior consistency and posterior concentration rates is that it sheds light on the impact of the prior distribution on the posterior distribution. This is particularly important in nonparametric models where the prior cannot be fully subjectively assessed and is di cult to apprehend, given the complexity of the parameter space. We then study the behaviour of the posterior distribution Π(•|Y 1 , . . . Y n ) when the number of observations n increases.

De nitions

The rst guarantee we may look for is posterior consistency which corresponds to answering the question: "when the observation comes from a true parameter θ * , does the posterior distribution concentrate its mass around the true parameter θ * when the number of observations increases?".

De nition 1.4 (posterior consistency). We say that the posterior distribution is consistent at θ * with respect to a pseudo-metric d on Θ if Π ({θ : d(θ, θ * ) > } | Y 1 , . . . , Y n ) → 0, P θ * -a.s., for all > 0. This notion is illustrated in Figure 1.6, with i.i.d. observations from N (θ, 1) with the true pa-1.2 ASYMPTOTIC THEORETICAL GUARANTEES 11 rameter θ * = 0, and a Gaussian prior Π = N (5, 5) on the parameter θ ∈ Θ := R. In Figure 1.6, the posterior seems to concentrate around the true value 0. Posterior consistency is a minimal requirement, even in the Bayesian subjective point of view. Indeed if two posterior distributions are consistent everywhere then they will nally agree (merge weakly) as explained in Diaconis and Freedman [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF].

To better understand the behaviour of the posterior, we may be interested at which rate the concentration occurs.

De nition 1.5 (posterior concentration rates). We say that the posterior distribution concentrates at rate n → 0 at θ * , with respect to a pseudo-metric d on Θ if there exists a constant M > 0 such that

Π ({θ : d(θ, θ * ) > M n } | Y 1 , . . . Y n ) → 0, in P θ * -probability.
Posterior concentration rates are illustrated in Figure 1.7 where the framework is the same as the one of illustration 1.6. Yet in this illustration we try to know if the posterior concentrates at rate n = log(n)/

√

n and then at rate n = log(n)/n at 0. We then take a ball around 0 of radius n , and we verify if the posterior mass of this ball tends to one in P θ * probability. In this case, it can be proved that the posterior concentrates at rate M n / √ n at 0 for all sequence M n increasing CHAPTER 1: INTRODUCTION to +∞ (and this is typically true in the parametric setting) and is not at a rate tending faster to zero.

Studying posterior concentration rates can give an idea of optimality of the behaviour of the posterior distribution. Indeed if the posterior concentrates at a minimax rate in the frequentist sense, then the behaviour of the posterior distribution has an optimal asymptotic behaviour. This enables us to compare two prior distributions through their associated posterior concentration rates. It also helps in comparing the Bayesian answer with frequentist estimators. Note that when the posterior concentrates at some rate, then we can build an estimator from the posterior distribution which converges to the true parameter at the same rate (see Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]).

The frequentist minimax rate often depends on the regularity of the true distribution (for instance n -β/(2β+1) in density estimation for a true distribution β-Hölder and the L 1 -norm). If the prior distribution does not depend on the regularity parameter and the posterior distribution concentrates at the minimax rate for any regularity, so that it learns the regularity parameter from the observations; then we say that the posterior distribution concentrates at adaptive minimax rates.

Another interest of studying posterior concentration rate is that it sheds light on how some aspects of the prior distribution in uence the behaviour of the posterior distribution. This is particularly important since it is not possible to assess a prior distribution on an in nite dimensional space purely on subjective considerations.

(a ). Moreover from Doob's theorem, we cannot know at which θ * the posterior distribution is consistent. Finally, in the nonparametric setting, the null-set of parameters at which the posterior distribution is not consistent may be topologically huge (see Freedman [START_REF] Freedman | On the asymptotic behavior of Bayes estimates in the discrete case. II[END_REF]).

) n = log(n)/ √ n, n = 10 (b) n = log(n)/ √ n, n = 30 (c) n = log(n)/ √ n, n = 50 (d) n = log(n)/ √ n, n = 70 (e) n = log(n)/n, n = 10 (f) n = log(n)/n, n = 30 (g) n = log(n)/n, n = 50 (h) n = log(n)/n, n = 70
These limitations underline the usefulness of a method to obtain posterior consistency at particular true parameters θ * . A general method to prove consistency and which also leads to posterior concentrations rates when it is re ned is presented now. It comes from Schwartz [START_REF] Schwartz | On Bayes procedures[END_REF], Barron To prove posterior consistency or concentration rates, one has to look at probabilities of this type:

Π({θ : d(θ, θ * ) ≥ δ n }|Y 1 , . . . , Y n ) = d(θ,θ * )≥δn p θ n (Y 1 , . . . , Y n )π(dθ) Θ p θ n (Y 1 , . . . , Y n )π(dθ) = d(θ,θ * )≥δn p θ n (Y 1 , . . . , Y n )/p θ * n (Y 1 , . . . , Y n )π(dθ) Θ exp(log(p θ n (Y 1 , . . . , Y n )) -log(p θ * n (Y 1 , . . . , Y n )))π(dθ) := N n D n
and prove it is small in some sense. To control this quantity, it is common to (A0.1) use some test Φ n to test θ * against θ : d(θ, θ * ) ≥ δ n , with small errors E θ * (Φ n ) and

sup θ: d(θ,θ * )≥δn E θ (1 -Φ n )
, and (A0.2) prove that the prior puts not too small probability in some neighbourhood of the true parameter θ * (the neighbourhood is usually formed in terms of a neighbourhood of the log-likelihood associated to the true parameter). This assumption enables to obtain lower bounds for the denominator D n .

Then, under assumptions of type (A0.1) and (A0.2),

E θ * [Π({θ : d(θ, θ * ) ≥ δ n |Y 1 , . . . Y n )] ≤ E θ * (Φ n ) + E θ * [(1 -Φ n )Π({θ : d(θ, θ * ) ≥ δ n |Y 1 , . . . Y n )] ≤ E θ * (Φ n ) + E θ * (1 -Φ n ) N n D n is small because • E θ * (Φ n
) is controlled by an assumption of type (A0.1),
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• D n is lower bounded with probability tending to 1 using an assumption of type (A0.2) and

• E θ * ((1-Φ n )N n ) = d(θ,θ * )≥δn E θ ((1-Φ n ))π(dθ)
is small using an assumption of type (A0.1).

The needed tests of Assumption (A0.1) may not exist if the set Θ of parameters is too big (e.g.

considering the set of density of functions for Θ and the

L 1 -norm d(•, •) = • -• L 1 ) then
Assumption (A0.1) can be replaced by (A0.3) the existence of a sequence of sets Θ n ⊂ Θ (often more and more complex) such that, we can build some tests to distinguish θ * against θ ∈ Θ n : d(θ, θ * ) ≥ δ n and such that the prior mass of Θ n is decreasing fast enough .

The existence of the needed tests is often implied thanks to an assumption on the complexity of the sets Θ n . This may be measured with covering numbers for instance. The δ-covering number N (δ, S, d) of a set S with respect to a pseudo-metric d, for δ > 0 is the minimum number of d-balls of radius δ needed to cover the set A. Then Assumption (A0.3) can be interpreted as "the prior has to penalize enough too complex sets".

We make precise these statements in the case of posterior consistency with respect to the L 1norm in the framework of density estimation with real i.i.d. observations. Then Θ is a set of density functions on R and p θ n (y 1 , . . . , y n ) = n i=1 θ(y i ). The needed test (A0.3) can be built using Hoe ding's inequality (see Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF]). Here the neighbourhood of Assumption (A0.2) is expressed via the Kullback-Leibler divergence, namely

B KL (θ * , ) = θ ∈ Θ : log θ * (y) θ(y) θ * (y)λ(dy) .
Theorem 1.1 (Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF]). Assume that (B0.1) for all δ > 0, there exists Θ n ⊂ Θ and β > 0,

Π(Θ c n ) ≤ exp(-βn), n N (δ/2, Θ n , • -• L 1 (λ) ) exp(-nδ 2 /2) < +∞, (B0.2) for all > 0, Π(B KL (θ * , )) > 0.
Then the posterior is consistent at θ * with respect to the L 1 -norm.

A general result on posterior consistency is given in Barron [Bar88]. We state here one of its results which holds in a general setting, not necessarily in the i.i.d. case nor for density estimation.

Theorem 1.2 (Barron [START_REF] Barron | The exponential convergence of posterior probabilities with implications for bayes estimators of density functions[END_REF]). Assume that (C0.1) for all > 0, there exists

Θ n ⊂ Θ, S n ⊂ Y n and positive constants β 1 , β 2 , C 1 and C 2 such that Π(Θ c n ) ≤ C 1 exp(-β 1 n) CHAPTER 1: INTRODUCTION and P θ * ((Y 1 , . . . , Y n ) ∈ S n i.o.) = 0, sup θ∈Θn: d(θ,θ * )> P θ ((Y 1 , . . . , Y n ) ∈ S c n ) ≤ C 2 exp(-nβ 2 ) (C0.2) for all > 0, Π θ * ∃N, ∀n ≥ N, Θ p θ n (Y 1 , . . . , Y n ) p θ * n (Y 1 , . . . , Y n ) π(dθ) > exp(-n ) = 1.
Then the posterior is consistent at θ * with respect to d.

Note that in the setting of Theorem 1.1, Assumption (C0.1) is implied by (B0.1) and Assumption (C0.2) is implied by (B0.2). For more information on posterior consistency see Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], Rousseau [START_REF] Rousseau | On the frequentist properties of Bayesian nonparametric methods[END_REF] and references therein.

To obtain posterior concentration rates, the neighbourhoods of Assumption (A0.2) considered in Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] and Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] are of the form

B 2 n (θ * , ) = θ : E θ * log p θ * n (Y 1 , . . . , Y n ) p θ n (Y 1 , . . . , Y n ) ≤ n , V ar θ * log p θ * n (Y 1 , . . . , Y n ) p θ n (Y 1 , . . . , Y n ) ≤ n .
(1.

3)

The next theorem holds in a general setting, not necessarily in the i.i.d. case nor for density estimation.

Theorem 1.3 (Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF]). Let n be a positive sequence tending to 0 such that 1/(n 2 n ) = O(1). Assume that there exists positive constants

C 0 , C 1 , C 2 , C 3 , K 0 , K 1 , K 2 , K 3 , M such that C 3 -C 1 -C 2 > -1
and for all n, (D0.1) there exists Θ n ⊂ Θ and a test function φ n such that

E θ * (Φ n ) = o(1), E θ (1 -Φ n ) ≤ K 1 exp(-C 1 n 2 n ), ∀θ ∈ Θ n ∩ {θ : d(θ, θ * ) ≥ M n }, Π(Θ n ) ≤ K 2 exp(-C 2 n 2 n ), (D0.2) Π B 2 n (θ * , n ) ≥ K 3 exp(-C 3 n 2 n ).
Then the posterior distribution concentrates at rate n at θ * with respect to d.

More results and references on posterior consistency and posterior concentration rates can be found in Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF] and Rousseau [START_REF] Rousseau | On the frequentist properties of Bayesian nonparametric methods[END_REF].
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Limit Distributions in the Frequentist and Bayesian Framework. Asymptotic E ciency

Here I give some tools which are useful to understand Chapter 4. In the latter chapter, we study limit distributions in the frequentist and the Bayesian frameworks. So that, here, we present some results on asymptotic distributions for both frequentist and Bayesian cases.

Once you have obtained a posterior concentration rate or a rate of convergence in the frequentist case, you may zoom in (i.e. do a change of scale) and be interested in limit distributions. Formally,

• in the frequentist case, with an estimator θ n and rate ρ n , you can be interested in the

asymptotic distribution of ρ -1 n ( θ n -θ * ),
• in the Bayesian case, you may be interested in the asymptotic distribution of the posterior distribution for the rescaled parameter:

ρ -1 n (θ -θ * ).
The rate of convergence of an estimator is lower bounded by the minimax rate. Similarly, the asymptotic distribution is also bounded in some sense. We rst give a 'bound' for the asymptotic distribution in the well-known parametric case and then in the semiparametric case. In both sections, we only consider the i.i.d. setting.

Obtaining limit distribution is useful to build con dence intervals. In the frequentist case, if

ρ -1 n ( θ -θ) tends in distribution to F independent of θ, then [ θ -ρ n q 1-α/2 , θ -ρ n q α/2
] gives an α-asymptotic con dence interval, where q t is a t-quantile of F . In the Bayesian setting, obtaining the asymptotic posterior distribution of ρ -1 n (θ -θ * ) can help in proving that α-credible regions C α , i.e. regions such that Π(C α |Y 1 , . . . , Y n ) ≥ 1 -α are also α-asymptotic con dence intervals.

We use the models of Examples 1 and 2, de ned in the following, to illustrate the notions all along Section 1.2.2. These models are studied in Chapter 4. Namely, we are going to use mixture models, where the emission distribution consists of a product of three distributions on [0, 1] as illustrated in Figure 1.3, so that the observations

Y t = (Y t,1 , Y t,2 , Y t,3 ), t ≤ n live in [0, 1] 3 .
Example 1 (De nition). For the rst model, no more restrictions are given on the emission distributions (the model is nonparametric). The emission distribution are ⊗ 3 c=1 f j,c λ, where f j,c are in F, the set of density functions on [0, 1]. The parameters of the model are f = (f j,c ) 1≤j≤k,1≤c≤3 ∈ F 3k and µ ∈ ∆ k determining the distribution of the latent variables. More precisely, given the latent state X t , the three components of the corresponding observation Y t,1 , Y t,2 and Y t,3 are independent with Y t,c distributed from f Xt,c λ. Then the distribution of one observation is

g µ,f (y)λ(dy) = k j=1 µ j 3 c=1 f j,c (y c )λ(dy c ).
Example 2 (De nition). The second model is a parametric model where the emission distributions are piecewise constant functions with respect to a partition 

I M = (I m ) m≤M of [0, 1]. More
where f M = (f j,c;M ) j≤k,1≤c≤3 , f j,c;M = M m=1 (ω j,c,m;M /|I m |)1 Im , j ≤ k, 1 ≤ c ≤ 3. 1.2.2.1
The Well Known Parametric Case with i.i.d. Observations

The research of limit distributions is well understood in the parametric case. In this section, we introduce some of the well known results of asymptotic e ciency in parametric models for i.i.d. observations. For more details, see van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. We rst give some restrictions on the limit distribution. We then introduce the notion of frequentist regular e cient estimator which reaches the distribution bound. We present assumptions such that the maximum likelihood is regular e cient. We end this section with an asymptotic distribution for the posterior distribution.

As we present results in the parametric framework, we assume that the parameter space Θ is a subset of R d , d ∈ N * . In particular, the best (in some sense, see Theorem 1.5) limit distribution of √ n( θn -θ * ) is the Gaussian distribution with variance the inverse of the Fisher information. We de ne the Fisher information, which depends on the model and the true parameter θ * , in the following. This reveals a real limitation in the task of estimation.

To de ne the Fisher information, we need some regularity of the model. This regularity is called di erentiability in quadratic mean:

De nition 1.6 (Di erentiability in quadratic mean and Fisher information). A model (p θ λ) θ∈Θ is said to be di erentiable in quadratic mean at θ if there exists

˙ θ ∈ (L 1 (p θ λ)) d such that √ p θ+h - √ p θ -(1/2)h T ˙ θ √ p θ 2 λ = o( h 2 ).
(1.4)

In this case, ˙ θ p θ λ = 0, ˙ θ is in L 2 (p θ λ)) d
and the Fisher information is de ned as

J θ = ˙ θ ˙ T θ p θ λ.
Di erentiability in quadratic mean is often proved using the following proposition:

Proposition 1.4 (Lemma 7.6 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]).

If • θ → p θ (y) is C 1 for all y,
• θ → J θ = ṗθ ṗT θ /p θ λ is de ned and continuous at θ (with ṗθ = ∂p θ /∂θ), then (p θ λ) θ∈Θ is di erentiable in quadratic mean at θ and ˙ θ = ṗθ /p θ .

Example 2 (Di erentiability in quadratic mean). We introduce the set ∆ s = {u ∈ R s-1 + : s-1 i=1 u i ≤ 1} which is in bijection with ∆ s (we use the same notation for elements in both sets, making the bijection implicit). So that we consider the parameter set

Θ M = ∆ k × (∆ M ) 3k .
Then the model (g µ,ω;M λ) (µ,ω)∈Θ is di erentiable in quadratic mean at every (µ, ω) ∈ Θ with ˙ µ,ω (y 1 , y 2 , y 3 ) = ( ˙ µ (y 1 , y 2 , y 3 ), ˙ ω (y 1 , y 2 , y 3 )) ∈ R k-1+3k(M -1) de ned as:

˙ µ;i (y 1 , y 2 , y 3 ) = 3 c=1 f i,c;M (y c ) -3 c=1 f k,c;M (y c ) g µ,ω;M (y 1 , y 2 , y 3 ) , if i < k, ˙ ω;i (y 1 , y 2 , y 3 ) = µ j 1 Im (yc)
|Im| -

1 I M (yc) |I M | c =c f j,c ;M (y c ) g µ,ω;M (y 1 , y 2 , y 3 ) , if i = j3(M -1) +(c -1)(M -1) + m.
We now recall some of the the limitations inherent to any estimation procedure. First, the Cramér-Rao bound says that the variance of unbiased estimators of ψ(θ), under regularity conditions, is lower-bounded by

ψ (θ)J -1 θ ψ (θ).
In particular, the variance of an unbiased estimator of θ is lower-bounded by the inverse of the Fisher information J -1 θ . The following restriction holds for any regular estimator of ψ(θ), that is for any estimator

ψ n = ψ n (Y 1 , . . . , Y n ) such that for all h, √ n ψ n -ψ(θ + h/ √ n)
has a limit distribution L θ , under P θ+h/ √ n , which does not depend on h:

Theorem 1.5 (Convolution Theorem, Theorem 8.8 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Let (p θ n λ) θ∈Θ be a model di erentiable in quadratic mean at θ with invertible Fisher information J θ . Let ψ n be a regular estimator of ψ(θ) with limit distribution L θ and ψ di erentiable at θ, then there exists a probability distribution Q θ such that L θ is equal to the product convolution of the Gaussian distribution N (0, ψθ

J -1 θ ψT θ ) and Q θ .
Hence, the distribution of a regular estimator of θ around the truth cannot be more concentrated than the Gaussian distribution with variance the inverse information again. In this sense, the best asymptotic distribution is N (0, ψθ J -1 θ ψT θ ). Regular e cient estimators are estimators achieving this lower bound. They are considered as the best asymptotic estimators. We say that a sequence of estimators ψ n of ψ(θ) is regular e cient when it is regular and under P θ ,

√ n ψ n -ψ(θ) (1.5)
converges in distribution to a Gaussian distribution N (0, ψθ J -1 θ ψT θ ). Note that a sequence of estimators ψ n of ψ(θ) is regular e cient if and only if

√ n( ψ n -ψ(θ)) = 1 √ n n i=1 ψθ J -1 θ ˙ θ (Y i ) + o P θ (1),
where o P θ (1) is a sequence tending to 0 in P θ -probability.

For more information on e ciency, see van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. Besides, we may wonder if there exist estimators which achieve this bound. In the following, we present a type of estimator which often is regular e cient.

The renowned maximum likelihood estimator (m.l.e.) is de ned as

θ n ∈ arg max θ∈Θ θ n (Y 1 , . . . , Y n ),
where θ n (Y 1 , . . . , Y n ) = log(p θ n (Y 1 . . . , Y n )) is the log-likelihood. As we only consider i.i.d. observations, θ n (Y 1 , . . . , Y n ) = n i=1 log(p θ (Y i ))
. The m.l.e. is often (under regularity and identi ability assumptions) a regular e cient estimator. Before giving assumptions leading to asymptotic e ciency of the m.l.e., we give some assumptions under which the m.l.e. is consistent.

Proposition 1.6 (Consistency of the m.l.e., application of Theorem 5.7 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Let Θ be a compact subset of R d . Assume that • for all y, θ → p θ (y) is continuous,

• there exists a function h ∈ L 1 (p θ * λ) such that sup θ∈Θ |log(p θ )| ≤ h,
• the model is identi able at θ * i.e. p θ = p θ * implies θ = θ * then the m.l.e. is consistent at θ * : θ -θ * tends to zero in p θ * -probability.

We now apply Proposition 1.6 to the maximum likelihood estimator in the following model.

Example 2 (Consistency of the m.l.e.). To apply Proposition 1.6, we need some identi ability result. We assume that the true parameter satis es that the µ * i are positive for all i ≤ k, and that for all c ∈ {1, 2, 3}, f * 1,c;M λ, . . . , f * k,c;M λ are linearly independent distributions. Then, using Theorem 8 of Allman et al. [START_REF] Allman | Identi ability of parameters in latent structure models with many observed variables[END_REF] (reproduced in Theorem 1.3.1), the equality g µ,ω;M = g µ * ,ω * ;M implies that there exists a permutation σ ∈ S k such that for all

1 ≤ i ≤ k, µ i = µ * σ(i) , ω i,c,m = ω * σ(i),c,m .
It means that the identi ability assumption holds up to label switching. To avoid multiple maxima, we constrain the set of parameters in order that only one labelling (one permutation) is possible. Namely, we assume that the true parameter satis es

µ * 1 < µ * 2 < • • • < µ * k and we consider ΘM = {(µ, ω) ∈ Θ M : µ 1 ≤ µ 2 • • • ≤ µ k }.
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The constraint we have assumed on the true parameter is not necessary but just ease the calculations (if this assumption does not hold then another constraint, as

µ * 2 < µ * 1 < µ * 3 < • • • or ω * 1,c,1 < ω * 2,c,1 , • • • , will work).
Then all the assumptions of Proposition 1.6 hold and the maximum likelihood computed on the set ΘM is then consistent.

Considering the whole space Θ and the computing the m.l.e. on this space:

( µ M , ω M ) ∈ arg max (µ,ω)∈Θ θ n (Y 1 , . . . , Y n ),
we then obtain that there exists a sequence (σ n ) n of permutations in S k such that

(σ n ( µ M ), σ n ( ω M )) -(µ * , ω * )
tends to zero in P (µ * ,ω * ) -probability.

Here are some assumptions implying that the m.l.e. is regular e cient.

Proposition 1.7 (Regular e ciency of the m.l.e., Theorem 7.6 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Let

(p θ λ) θ∈Θ be a model which is di erentiable in quadratic mean at θ * ∈ • Θ where the Fisher informa- tion J θ * is invertible. Assume there exists ˙ ∈ L 2 (P θ * ) such that for all θ 1 , θ 2 in a neighbourhood of θ * |log(p θ 1 (y)) -log(p θ 2 (y))| ≤ ˙ (y) θ 1 -θ 2 .
(1.6)

If the m.l.e. θ n is consistent at θ * then √ n θ n -θ * = J -1 θ * √ n n i=1 ˙ θ * (Y i ) + o P θ * (1),
where o P θ * (1) represents a sequence tending to zero in P θ * -probability. So that, θ n is regular ecient.

Let us apply this proposition to the model of Example 2.

Example 2 (E ciency of the m.l.e.). Consider here

θ * = (µ * , ω * ) ∈ • Θ M . Assumption (1.6) is veri ed since θ → log(p θ ) is C 1
with all the components of ˙ θ * bounded by some constant depending on the true parameter and the partition. The invertibility of the Fisher information is proved in Chapter 4. We have already proved the consistency of the m.l.e. so that, we then obtain its regular e ciency (up to label switching).

In the Bayesian framework, an interesting result related to e ciency is the Bernstein von Mises (BvM) Theorem. This theorem gives the asymptotic distribution of the posterior distribution if correctly zoomed in. When the posterior is consistent, it tends to the Dirach mass at the true parameter (see Figure 1.6). So that if we want to see a shape around the true parameter, we need to zoom in. That is why we change the parametrization. Instead of studying the posterior distribution for θ, we study the posterior distribution for the new parameter s = √ n(θ -θ n ), doing as if we were focusing on the m.l.e. θ n and zooming in with a scale √ n. We can then write the posterior distribution for s as,

Π s (s ∈ S|Y 1 , . . . Y n ) = (1/ √ n)S+ θn n i=1 p θ (Y i )Π(dθ) Θ n i=1 p θ (Y i )Π(dθ)
, if the observations are i.i.d. from p θ . Then, under some assumptions, the posterior for the new parameter s tends to a centered Gaussian distribution with covariance the inverse of the Fisher information:

Theorem 1.8 (BvM, Theorem 10.1 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Let Θ be a compact subset of R d and (p θ λ) θ∈Θ a model di erentiable in quadratic mean at θ * with an invertible Fisher information

J θ * . Assume that • for all y, θ → p θ (y) is continuous, • the model is identi able at θ * , i.e. p θ = p θ * implies θ = θ * ,
• the prior Π is absolutely continuous with respect to the Lebesgue measure, with density π continuous and positive at θ * ,

• θ n is a regular e cient estimator .

Then

sup A⊂R d |Π s (A|Y 1 , . . . , Y n ) -N (0, J θ * )(A)|
tends to zero in P θ * -probability.

Example 2 (BvM). Given our previous results for this model, as soon as the prior Π M , de ned on Θ M is absolutely continuous with respect to the Lebesgue measure with a density continuous and positive at θ * , we obtain a BvM theorem for the associated posterior.

The Semiparametric Case with i.i.d. Observations

Here, we de ne a semiparametric model as a model (P θ ) θ∈Θ where the parameter θ can be decomposed into two components θ = (µ, η): one of interest µ (often living in a nite-dimensional set) and one nuisance parameter η (often living in a non-nite dimensional set). As in Section 1.2.2.1, we only consider models where the observations are i.i.d.. Here are some examples of semiparametric models.

Example 1 (Semiparametric model). where the parameter of interest is µ (the weights of the mixture) and the emission distributions f 1 , . . . , f k are nuisance parameters is a semiparametric model.

A similar example consists in estimating the transition matrix Q in HMMs (Figure 1.2) without being interested in the emission distributions.

In the following we introduce the tools to obtain limitations in the estimation task in the semiparametric case. Note that in the semiparametric case, it is less easy than in the parametric case to build estimators reaching the distribution bound. Similarly, it is more di cult to obtain results on the posterior distribution.

In semiparametric models, we can obtain limitations in the estimation task by considering linear submodels. Indeed, the estimation task is easier in submodels than in the whole model, when less information is available on the nuisance parameter. By considering a family of linear submodels {P t u , t ∈ R} u∈U , passing through θ, we can build a family of score functions called a tangent set at θ and denoted Ṗ.

De nition 1.7 (Tangent set). Let a family, indexed by u in some set U , of linear submodels {P t u , t ∈ R} u∈U , where for each submodel associated to u ∈ U , P 0 u = P θ and {P t u , t ∈ R} is di erentiable in quadratic mean at 0 with score function g u . Then the tangent set associated with this family at θ

is {g u , u ∈ U }.
In the parametric case with a model

{P θ , θ ∈ Θ ⊂ R d } di erentiable in quadratic mean at θ with score ˙ θ , the maximal tangent set is {u T ˙ θ , u ∈ R d }.
Example 2 (Tangent set). From the previous remark, the maximal tangent set at θ is

{u T ˙ µ,ω , u ∈ R k-1+3k(M -1) } = {v T ˙ µ + w T ˙ ω , v ∈ R k-1 , w ∈ R 3k(M -1) }.
Example 1 (Tangent set). We consider the following submodel,

M i,c h = P µ,f t : f t j,c = f j,c if (j, c ) = (i, c), f t i,c = f t i,c;h := f i k(t) 2(1 + exp(-2th)) -1 , t ∈ R , with h ∈ L 2 (f i λ) and hf i λ = 0, k(t) = ( f i,c (y)/(2(1 + exp(-2tg(y))))dy) -1 , 1 ≤ i ≤ k
and 1 ≤ c ≤ 3. These submodels can be seen as linear submodels where the nonparametric emission distributions are varying while the parametric component µ is xed. Using Proposition 1.4, we obtain that this submodel is di erentiable in quadratic mean at 0 with score

h(y c )µ i 3 c =1 f i,c (y c ) g µ,f (y) .
Then Ṗf , the set spanned by the previous scores, is the tangent set associated with the family of submodels

{P µ, f t h , t ∈ R} h=(h j,c ), h j,c ∈L 2 (f i,c λ), h j,c f j,c λ=0
at θ. Considering the submodel {P (µ+tv,f ) , t ∈ R} v∈R k , j v j =0 and using again Proposition 1.4, CHAPTER 1: INTRODUCTION we obtain the following tangent set Ṗµ = {v T ˙ µ , v ∈ R k , j v j = 0}, where

( ˙ µ ) i = 3 c=1 f i,c (y c ) g µ,f (y 1 , y 2 , y 3 )
.

Finally, we obtain the tangent set

Ṗ = {v T ˙ µ + s, v ∈ R k , j v j = 0, s ∈ Ṗf },
for the family of submodels

{P µ+tv, f t h , t ∈ R} v∈R k , j v j =0, h=(h j,c ), h j,c ∈L 2 (f i,c λ), h j,c f j,c λ=0 .
Using Cramér-Rao bound, the variance of an estimator of ψ(P θ ), with ψ : P → R, should be lower-bounded by the supremum of (∂ψ(P t )/∂t(0)) 2 /J θ over the considered submodels. Indeed, the estimation of ψ(P θ ) should not be easier when the nuisance parameter is not known than in any submodel. Note that one can choose the family of submodels. If the family is not rich enough (in particular if it does not include submodels for which the estimation is the most di cult) then the supremum bound may not be attainable.

To formalize this idea, we introduce a notion of smoothness of ψ with respect to the tangent set Ṗ:

De nition 1.8 (E cient in uence function). A map ψ : P → R is said di erentiable at P θ with respect to the tangent set Ṗ if there exists a measurable function ψ such that for all s ∈ Ṗ and submodel P t with score s at 0, then

Ψ(P t ) -Ψ(P 0 ) t → ψsdP θ .
The function ψ is called e cient in uence function.

In the semiparametric case, considering submodels (P (µ,η)+(tv,e(t) ) t∈R , the tangent set Ṗ is typically constituted of functions of the form v T ˙ µ + s where ˙ µ is the score function associated to the parametric model where µ is varying while the nuisance parameter is xed and s is in Ṗη some subset of L 2 (dP θ ), a tangent set associated to submodels where µ is xed while the nuisance parameter is varying. This case is veri ed in models of Examples 1 and 2. In this case the in uence function associated to the estimation of µ (so that ψ(P µ,η ) = µ) is

ψ = J-1 ˜ , (1.7)
where ˜ , called the e cient score function, is the orthogonal projection in L 2 (P θ ) of ˙ µ on the orthogonal (in L 2 (P θ )) of Ṗη and when J = ˜ ˜ T dP θ , the e cient information matrix, is 1.2 ASYMPTOTIC THEORETICAL GUARANTEES invertible. Indeed, in this case,

Ψ(P t ) -Ψ(P 0 ) t = Ψ(P (µ,η)+(tu,e(t)) ) -Ψ(P (µ,η) ) t = u with u = u T ˙ µ + s, J-1 ˜ L 2 (P θ ) = u T ˙ µ + s, ψ L 2 (P θ ) .
When the problem admits some in uence function ψ, then the supremum of the lower bounds of the variance given by Cramér-Rao is

sup u∈U ∂ψ(P t u ) ∂t (0) I -1 u ∂ψ(P t u ) ∂t (0) = sup g∈ Ṗ ( ψgdP θ ) 2 g 2 dP θ = ψ2 dP θ ,
using Cauchy-Schwarz inequality. Then the variance of the e cient in uence function,

Ĩ := ψ2 dP θ
is considered as the best asymptotic variance to estimate ψ(θ). When Equation (1.7) holds, then Ĩ = J-1 .

More formally, we can obtain a convolution theorem in semiparametric models which says that in some sense the best attainable distribution is again the Gaussian distribution with covariance Ĩ.

Theorem 1.9 (Theorem 25.20 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Let (P θ ) θ∈Θ be some model and Ṗ an associated tangent set which is a convex cone. Let ψ : P → R be di erentiable with respect to Ṗ at θ with in uence function ψ. Let ψ n be a regular sequence of estimators of ψ(θ) with limit distribution L θ , then there exists a probability distribution Q θ such that L θ is equal to the product convolution of the Gaussian distribution N (0, Ĩ) and Q θ .

We say that an estimator ψ n is asymptotically e cient with respect to some tangent set when it is regular and under

P θ √ n ψ n -ψ(P θ )
tends in distribution to a Gaussian distribution N (0, Ĩ). As in the parametric setting, this is equivalent to saying that:

√ n ψ n -ψ(P θ ) = 1 √ n n i=1 ψ(Y i ) + o P θ * (1).
Building estimators which are asymptotically e cient is more di cult in the semiparametric case than in the parametric case. In particular, there exists settings where such estimators do not and Hjort [START_REF] Blasi | The Bernstein-von Mises theorem in semiparametric competing risks models[END_REF] and Bontemps [START_REF] Bontemps | Bernstein-von Mises theorems for Gaussian regression with increasing number of regressors[END_REF] to cite a few. While Shen [START_REF] Shen | Asymptotic normality of semiparametric and nonparametric posterior distributions[END_REF], Castillo [START_REF] Castillo | A semiparametric Bernstein-von Mises theorem for Gaussian process priors[END_REF],

Bickel and Kleijn [START_REF] Bickel | The semiparametric Bernstein-von Mises theorem[END_REF], Rivoirard and Rousseau [START_REF] Rivoirard | Bernstein-von Mises theorem for linear functionals of the density[END_REF] and Castillo and Rousseau [START_REF] Castillo | A Bernstein-von Mises theorem for smooth functionals in semiparametric models[END_REF] give assumptions leading to semiparametric BvM in general settings.

Theoretical Guarantees in Nonparametric HMMs and Semiparametric Mixture Models

We have presented some theoretical properties which may be studied in nonparametric and semiparametric settings in the previous section. In this section, we recall some results which have been obtained in the speci c context of nonparametric HMMs and semiparametric mixture models.

Identi ability for Nonparametric Latent Models

Identi ability in general latent models is far from being automatic, as we have already pointed out in Section 1.2. Particularly, identi ability in nonparametric latent models is still an active research area.

Concerning the two particular latent models we consider in this thesis, recent results ensure their identi ability up to label switching.

De nition 1.9 (Label switching). With X = {1, . . . , k} the state space, a relabelling of this state space through a permutation σ ∈ S k does not change the model. The permutation of the labels of the hidden states is called label switching.

For instance, in the case of HMMs, for all σ ∈ S k , if σ(µ

) i = µ σ(i) , σ(Q) i,j = Q σ(i),σ(j) , σ(F ) i = F σ(i)
for al 1 ≤ i, j ≤ k, then the model associated to the HMM with initial distribution σ(µ), transition matrix σ(Q) and emission distributions σ(F ) i , i ≤ k is the same as the model associated to the HMM with initial distribution µ, transition matrix Q and emission distributions

F i , i ≤ k, i.e. P (σ(µ),σ(Q),σ(F )) n = P (µ,Q,F ) n
, for all n.

The mixture model represented in Figure 1.3 is identi able up to label switching using Theorem
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Theorem 1.10 (Allman et al. [START_REF] Allman | Identi ability of parameters in latent structure models with many observed variables[END_REF]). For a mixture model with distribution P µ,(P i,c ) = k i=1 µ i C c=1 P i,c where C and k are known.

If C ≥ 3, µ * i > 0 for all i ≤ k and the distributions P 1,c , . . . , P k,c are linearly independent for all c ≤ C, then the model is identi able up to label switching, i.e. if P µ,(P i,c ) = P μ,( Pi,c ) then there exists a permutation σ ∈ S k such that µ i = μσ(i) and

P i,c = Pσ(i),c for all i ≤ k, c ≤ C.
Using the same type of constraint, that is when the emission distributions are a product of distributions, Bonhomme et al. [START_REF]Non-parametric estimation of nite mixtures from repeated measurements[END_REF] obtain an identi ability result even when k is not known.

Note that other types of assumptions on mixture models are considered to obtain identi ability.

For instance, identi ability results are obtained when the emission distribution are translated version of one symmetric distribution as in Bordes et al. [START_REF] Bordes | Semiparametric estimation of a twocomponent mixture model[END_REF] and Hunter et al. [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF].

Other results are obtained in the case of k = 2 where an emission distribution belongs in a parametric family and the other is in a non-nite dimensional set with diverse constraint as in Bordes et al. [START_REF] Bordes | Semiparametric estimation of a twocomponent mixture model where one component is known[END_REF] or Hohmann and Holzmann [START_REF] Hohmann | Semiparametric location mixtures with distinct components[END_REF] to cite a few. Using this result, Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] have proved identi ability up to label switching of nonparametric HMMs with nite state space, i.e. for the model represented in Figure 1.2 under very general assumptions.

Theorem 1.11 (Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF]). Let k be a known integer. Assume the transition matrix Q has full rank with stationary distribution µ and the emission distributions F 1 , . . . , F k are linearly independent. As soon as C ≥ 3,

if P μ, Q, F C = P µ,Q,F C
, with μ a stationary distribution associated to Q, then there exists a permutation

σ ∈ S k such that μi = µ σ(i) , Qi,j = Q σ(i),σ(j) , Fi = F σ(i) for al 1 ≤ i, j ≤ k.
In the context of HMMs, Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF] have proved identi ability up to label switching of HMMs with translated emission distributions. Moreover Alexandrovich et al.

[AHL16] have obtained identi ability of HMMs in the case where the number k of states is unknown.

Asymptotic results in Nonparametric HMMs

Results on identi ability in nonparametric HMMs are very recent, so few theoretical guarantees have been studied in nonparametric HMMs.

In Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF], a nonparametric HMM with translated emission distributions has been considered, following the model considered in Yau et al. [START_REF] Yau | Bayesian non-parametric hidden Markov models with applications in genomics[END_REF]. The authors propose a consistent estimator of k along with √ n convergent, asymptotic normal estimators of the transition matrix and the translation parameters. They also propose an estimator of the marginal stationary density of an observation and deduce a minimax adaptive estimate of the translated density function in the case where max j µ * j > 1/2.

CHAPTER 1: INTRODUCTION

For the model presented in Figure 1.2 and that I study in Chapters 2 and 3, De Castro et al.

[DGLar] propose a frequentist penalized least squares estimator for the emission distributions which converges to the truth at an adaptive rate.

Consistency of estimators of the smoothing distribution, that is the distribution of a hidden state given the observations, is studied in De Castro et al. [START_REF] Castro | Consistent estimation of the ltering and marginal smoothing distributions in nonparametric hidden Markov models[END_REF].

Bayesian HMMs where the emission distributions are parametrised with a parameter living in a nite dimensional set but the number k of possible latent states is not known is studied in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF] and van Havre et al. [START_REF] Van Havre | Over tting hidden markov models with an unknown number of states[END_REF]. In particular, a test of type (A0.3)

to obtain posterior concentration rates in HMMs is developed in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF].

We use these tests in Chapters 2 and 3.

Asymptotic Behaviours in Semiparametric Mixture Models

Mixture models are often used to estimate density functions. In particular, results on the quality of approximation of density functions with mixture models can be found in the Bayesian literature as in Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF], Scricciolo [START_REF] Scricciolo | Adaptive Bayesian density estimation in L p -metrics with Pitman-Yor or normalized inverse-Gaussian process kernel mixtures[END_REF] to cite but a few.

In the following we focus on results concerning the estimation of some parameter in semiparametric mixture models. Such results are very recent. Indeed identi ability in such a framework has been proved only very recently under two settings, as discussed in Section 1.3.1.

• In the rst setting considered in the literature the observations are univariate. Bordes and

Vandekerkhove [START_REF] Bordes | Semiparametric two-component mixture model with a known component: an asymptotically normal estimator[END_REF] study this framework in the particular case where

Y ∼ µg(•) + (1 -µ)f (• -m)
with unknown µ ∈ (0, 1), unknown m = 0, unknown symmetric density function f and known density function g. The authors give the asymptotic distribution of their estimators of µ, m and the cumulative cumulative distribution function associated with f . Xiang et al. [START_REF] Xiang | Minimum pro le Hellinger distance estimation for a semiparametric mixture model[END_REF] also consider this setting but with

Y ∼ µg(•, ξ) + (1 -µ)f (• -m)
with unknown µ ∈ (0, 1), unknown m = 0, unknown ξ ∈ R, unknown symmetric density function f and known parametric family of density functions (g(•, ξ)) ξ . The authors prove the asymptotic normality of their estimator of µ, m and ξ. See for instance Hu et al. [START_REF] Hu | Maximum likelihood estimation of the mixture of logconcave densities[END_REF], Ma and Yao [START_REF] Ma | Flexible estimation of a semiparametric two-component mixture model with one parametric component[END_REF] and references therein for other asymptotic results in semiparametric univariate mixture models.

• In the second setting, the emission distributions are a product of more than three distributions so that the observations are multidimensional. This is the setting we consider Note that the behaviour of the posterior distribution is studied in Rousseau and Mengersen [START_REF] Rousseau | Asymptotic behaviour of the posterior distribution in over tted mixture models[END_REF], in the case of mixture model where the emission distributions live in a nite dimensional set but k is not known.

My Contributions

During my PhD, I have worked on three projects. All of them were aimed at understanding the asymptotic behaviour of the posterior distribution and estimators in the framework of nonparametric nite state space HMMs and multivariate nite mixtures. In this work "nonparametric" means that the emission distributions are not constrained to live in a nite-dimensional setting, but I will always assume that I know the number k of possible states taken by the latent variable. 

I
Π = Π Q ⊗ Π (k)
f which is a product of a probability distribution Π Q on transition matrices and a probability distribution Π (k) f on the k emission distributions. By the Bayes' rule, we can formally write the posterior distribution as

Π(θ ∈ A|Y 1 , . . . , Y n ) = A p θ n (Y 1 , . . . , Y n )Π(dθ) Θ p θ n (Y 1 , . . . , Y n )Π(dθ)
,

where p θ n (y 1 , . . . , y n ) = 1≤i 1 ,...,in≤k µ i 1 Q i 1 ,i 2 . . . Q i n-1 ,in f i 1 (y 1 ) . . . f in (y n ) is the likelihood.
Posterior Consistency for the Marginal Distribution P θ l of l Consecutive Observations

In this setting, I have studied posterior consistency for di erent topologies on di erent objects.

First I was interested in knowing if the posterior distribution concentrates around parameters θ such that the corresponding distribution P θ l of l stationary consecutive observations is close to the true one P θ * l . It is interesting to know if the posterior concentrates with respect to this object in a prediction perspective. Indeed under this consistency, the density of the observations is consistently estimated. This study should also help in the perspective of estimating Q and f . Indeed if l ≥ 3, P θ l identi es θ (see Theorem 1.11). We develop consistency for the estimation of θ in the following section.

We compare the distributions (P θ l ) θ thanks to two topologies. We use the topology T w associated to the weak convergence on distributions. We also consider the strongest topology T l associated to the L 1 -norm and which corresponds to the pseudo-distance D l on Θ:

D l (θ, θ) = p θ l -p θ l L 1 (λ ⊗l ) .
To obtain a general consistency theorem, we used Barron [START_REF] Barron | The exponential convergence of posterior probabilities with implications for bayes estimators of density functions[END_REF], see Theorem 1.2. We have clari ed the assumptions of Theorem 1.2 in the case of HMMs. The existence of the sets Θ n and S n of Assumption (C0.1) was proved using the tests built in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF], which are based on a generalisation of Hoe ding's inequality to dependent data by Rio [START_REF] Rio | Inégalités de Hoe ding pour les fonctions lipschitziennes de suites dépendantes[END_REF]. The main question was to develop an explicit set of parameters associated to log-likelihoods close to the true one, to explicit Assumption (C0.2). This is done in Lemma 2.2.

Then, we have obtained that if Π Q puts enough mass in the neighbourhood of Q * (see Assump-
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Identi ability up to label switching due to Gassiat et al.

[GCR15] θ P θ (X t = •|Y 1 , . . . , Y n ) = 1≤i 1 ...i t-1 ≤k 1≤i t+1 ...in≤k i t =• µ i 1 Q i 1 ,i 2 . . . Q i n-1 ,in f i 1 (Y 1 ) . . .f in (Y n ) 1≤i 1 ...in≤k µ i 1 Q i 1 ,i 2 . . . Q i n-1 ,in f i 1 (Y 1 ) . . .f in (Y n ) p θ l (•, . . . , •) = 1≤i 1 ...i l ≤k µ i 1 Q i 1 ,i 2 . . . Q i l-1 ,i l f i 1 (•) . . . f i l (•) ? Smoothing distribution
Figure 1.8 -Illustration of the issue to obtain information on θ and the smoothing distribution from p θ l tion (A1.1a)) and Π f puts enough mass in the neighbourhood of f * (see Assumptions (A1.1b), (A1.1c) and (A1.1d) ) then the posterior distribution is consistent at θ * = (Q * , f * ) with respect to T w , see Theorem 2.1. We have also proved that if moreover Π f does not put too much mass on too big sets (see Assumption (A1.2)) then the posterior distribution is consistent at

θ * = (Q * , f * )
with respect to T l , see Theorem 2.1.

The two previous topologies T w and T l are the easiest types of topology to prove posterior consistency results. Indeed, the topologies concerned the distributions P θ l for which it is easier to build tests as (C0.1). Yet one may be interested in other quantities than the distribution of the observations, like the parameter θ by itself or smoothing distributions (the distribution of a hidden state given the observations) for instance. So that we wanted to understand what it means on Q and f or on

P (Q,f ) (X t = •|Y 1 , . . . , Y n ) when p (Q,f ) l is close to p (Q * ,f * ) l in L 1 , see Figure 1.8 for an illustration.
Posterior Consistency for the Parameters Q and f If we are interested in estimating the parameter θ itself (and not P θ l ), i.e. the transition matrix Q and the emission density functions f j , j ≤ k, it is useful to obtain posterior consistency for the topology T Q,f which is the product topology of the sup norm on transition matrices and the weak topology (associated to a distance d weak on the emission distributions up to label switching). Thus, we want to know if the posterior distribution concentrates around parameters (Q, f ) where Q -σ(Q * ) and max 1≤j≤k d weak (F j , σ(F * ) j ) are small.

Obtaining posterior consistency with respect to T Q,f from posterior consistency with respect to CHAPTER 1: INTRODUCTION T w or T l is linked to identi ability (see Section 1.3.1). Then, understanding the inverse of θ ∈ Θ → p θ l (1.8) can help. Of course, we cannot hope to recover exactly (Q, f ) in generality but only the parameter up to label switching (as for the identi ability). Indeed, imagine that the prior is compatible with label switching, that is

Π(U ) = Π(σU ), ∀U ⊂ Θ, ∀σ ∈ S k , σU = {((Q σ(i),σ(j) ) i,j , (f σ(1) , . . . , f σ(k) )) ∈ Θ : (Q, f ) ∈ U }.
Then the posterior mass of a set U of parameters is also equal to the posterior mass of the parameters in U for which the label of the hidden states have been switched with a permutation σ, formally

Π(U |Y 1 , . . . , Y n ) = U p θ n (Y 1 , . . . Y n )Π(dθ) Θ p θ n (Y 1 , . . . Y n )Π(dθ) = U p σθ n (Y 1 , . . . Y n )Π(dσθ) Θ p θ n (Y 1 , . . . Y n )Π(dθ) = Π(σU |Y 1 , . . . , Y n ),
for all permutations σ ∈ S k . Then, the best behaviour of the posterior concerning consistency, would be that the posterior concentrates around the set {θ * } S k = ∪ σ∈S k σ{θ * } composed of the permutations of the true parameters. If the prior distribution is more general, when the number of observation increases, the prior should be 'forgotten' and we should ask the concentration of the posterior distribution at the same set {θ * } S k .

In Theorem 2.3, we obtain that posterior consistency for D l (with l ≥ 3) along with identi ability for the true parameter implies posterior consistency with respect to T Q,f . The transfer of the property of posterior consistency from one topology to another is done thanks to continuity arguments of the inverse of (A.1).

Posterior Consistency for the Smoothing Distribution

Finite state space HMMs are often used to cluster the observations given the hidden states. In this context, smoothing distribution that is the distribution of a hidden state given the observations

P θ (X t = •|Y 1 , . . . , Y n )
are important quantities. More precisely, we consider the distribution of a nite sequence of consecutive hidden states given the observations, that is a m-joint smoothing distribution:

P θ ((X 1 , . . . , X m ) = (•, . . . , •)|Y 1 , . . . , Y n ), m ∈ N xed , n ≥ m.
In Chapter 2, we also study posterior consistency with respect to the m-joint smoothing distribution, i.e., we want to know if the posterior distribution concentrates around parameters for
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which the associated m-joint smoothing distribution is close to the true one (up to label switching). This type of consistency should lead to a posterior distribution which clusters well the observations with respect to their hidden states.

In Theorem 2.8, we prove that identi ability of the model for the true parameter, posterior consistency for the D l pseudo-metric and posterior consistency for T Q,f leads to a posterior which concentrates around parameters θ for which the associated m-joint smoothing distribution are close to the true smoothing distribution in the particular context of discrete observations.

Note that consistency for the estimation of smoothing distributions have been studied in De Castro et al. [START_REF] Castro | Consistent estimation of the ltering and marginal smoothing distributions in nonparametric hidden Markov models[END_REF] in the frequentist point of view. In De Castro et al. [START_REF] Castro | Consistent estimation of the ltering and marginal smoothing distributions in nonparametric hidden Markov models[END_REF], the total variation distance between two smoothing distribution associated with two parameters θ and θ is controlled with the Frobenius norm Q -Q F B and the L 1 -norms fj -f j L 1 . This enables to prove that consistency for the transition matrix and the emission distribution with respect to L 1 implies consistency for the smoothing distributions. To deduce a Bayesian result, a Bayesian control of fj -f j L 1 is needed. As far as I know, such a control only exists in the case of discrete observations thanks to Chapter 2. Indeed in this case, weak topology on distributions and L 1 topology are the same and Theorem 2.1 can be used. Then we obtain Bayesian consistency for the smoothing distribution in the same framework I obtained results previously, see Theorem 2.8.

Applications to Di erent Prior Distributions and Settings

In Section 2.3, I propose concrete frameworks and prior distributions leading to posterior consistency for the di erent topologies introduced before. We consider:

• continuous observations, with emission distribution i.i.d. as a mixture of Gaussian distributions under the prior distribution, in Section 2.3.1,

• continuous observations, with translated emission distribution f j = g(• -m j ) and g distributed as a mixture of Gaussian distributions under the prior distribution, in Section 2.3.2,

• discrete observations, with emission distribution i.i.d. as a Dirichlet process under the prior distribution, in Section 2.3.3.

Limitation

• The assumption on the support of the prior on the transition matrices Π Q , which is assumed to obtain posterior consistency with respect to D l , requires to know a lower bound on the components of the transition matrix. This assumption enables to control the mixing properties of the HMMs, to ensure the existence of some tests, namely the one built in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF]. In Chapter 3 (on posterior concentration rates), I don't need this assumption but I make a stronger assumption on f * and Π f .

CHAPTER 1: INTRODUCTION Perspectives

• As noticed before, we still do not know assumptions under which the posterior is consistent for the L 1 -norm on the emission distributions (up to label switching, of course). It would be interesting to nd some, rst because it would ensure a good estimation of the emission distributions.

It would also ensure a good clustering of the observations using De Castro et al. [START_REF] Castro | Consistent estimation of the ltering and marginal smoothing distributions in nonparametric hidden Markov models[END_REF].

• Another perspective is to study posterior consistency when the number k of possible states of the Markov chain is unknown. This setting has been studied in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF] For the same setting, I have also studied posterior concentration rates, that is at which rate the posterior concentrates. This contribution is detailed in Chapter 3, and is also available on arXiv:

Vernet [Ver15a].
Concerning the concentration rates, I have only used the topology associated to the pseudometric D l (θ, θ) = p θ l -p θ l L 1 . I recall that this topology is interesting for the estimation of the density of the observations, and then for prediction. It is also a rst step to obtain posterior concentration rates with respect to the L 1 -norm on the emission distributions.

Posterior Concentration Rates with respect to D l My aim was to obtain explicit and applicable assumptions on Π Q , Π f , Q * and f * leading to rates. To do so, I have used Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] (see Theorem 1.3) and I have clari ed their assumptions in the HMM case. Posterior concentration rates are more di cult to obtain than posterior consistency. Indeed, to clarify Assumption (D0.2), we need to control the neighbourhood described in (1.3), which requires a better understanding of the likelihood around the true parameter. I have developed new controls of this "neighbourhood" helped by results on parametric HMMs like Douc and Matias [DM01] and Douc et al. [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF], see Lemma 3.2 and 3.3.

It asked me much work to obtain assumptions which are satis ed by usual prior distributions.

The existence of the set Θ n and the test φ n was again proved using the test built in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF].

Finally, I have obtained a general theorem (Theorem 3.1) which relates the concentration rate with respect to D l to the prior (Π Q , Π [k) f ) and the true parameter (Q * , f * ). The resultant rate has the following form n /q n where n depends on the "nonparametric setting", namely Π (k) f and f * while q n depends on Π Q . So that the rate n is deteriorated by q n , that is by the freedom
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given to Π Q concerning the mixing of the Markov chain associated to Q.

Application to Di erent Prior Distributions and Settings

This theorem is applied in several frameworks and leads to minimax rates up to log(n), in different settings, see Section 3.4. Particularly, minimax rates are obtained in the case of discrete observations with emission distributions i.i.d. from a Dirichlet process under the prior distribution. More precisely, we obtain rates equal to 1/ √ n up to log(n). See Section 3.4.1.

Moreover adaptive concentration rates are reached in the case of continuous observations, emission density functions i.i.d. from a Dirichlet process mixture of Gaussian distributions under the prior distribution, and Hölder-type classes of functions. More precisely we obtain rates equal to n -β/(2β+1) up to log(n) when the emission density functions are in a β-Hölder class of functions in Section 3.4.2.

In the two previous settings, we obtain minimax rates providing that

Π Q penalizes enough the border of ∆ k k . More generally, if Π (k) 
f = Π ⊗k f with Π f leading to minimax posterior concentration rates with respect to the L 1 -norm on densities in the case of density estimation with i.i.d. observations, then the posterior distribution should concentrate at a minimax rate (in HMM) providing that Π Q penalizes enough the border of ∆ k k . Note that, when adaptive, the obtained rates for a class of functions and

Π (k) f = Π ⊗k
f is the same as in the i.i.d. case for the L 1 -norm on densities with the same class and prior Π f . So that, in our examples, the dependency generated by HMMs on observations does not deteriorate rates compared to the i.i.d. setting. The same remark is done in De Castro et al. [DGLar] and Bonhomme et al. [START_REF] Bonhomme | Estimating multivariate latent-structure models[END_REF] where rates of convergence for frequentist estimators are studied. This contribution concerns concentration rates. Yet, if a posterior distribution concentrates at a rate decreasing to zero with respect to D l , then it is consistent with respect to D l . Thus posterior consistency for the topology T Q,f (useful for the estimation of θ) is also implied by the assumptions leading to a posterior concentration rate decreasing to zero with respect to D l , using Theorem 2.3 of Chapter 2.

Perspectives

• The assumption on Π Q , concerning the penalization of transition matrices too close to the border of ∆ k k , is much weaker than the one we assume to prove posterior consistency. Yet it is still strong and such prior distributions are not used in practice. It would be interesting to know if this assumption is necessary or not.

• A perspective of this work is the transfer of the rate with respect to D l to a rate with respect to the L 1 -norm on the emission distributions. This transfer is even more di cult in the case of rates than in the case of consistency. Indeed, the transfer of consistency from one topology to another is linked to continuity while the transfer of rate from one topology to another is related to modulus of continuity. Then this problem may be solved thanks to a better understanding of the inverse of the function θ → p θ l again. This transfer has been recently done in other settings, as in De Castro et al. [DGLar] for the L 2 -norm. These works might be good approaches for the resolution of this perspective. It is also available on arXiv: Gassiat et al. [START_REF] Gassiat | E cient semiparametric estimation and model selection for multidimensional mixtures[END_REF].

Contribution 3: E cient Semiparametric Estimation and Model

Our goal is to study asymptotic e ciency for a component of the parameter, namely the transition matrix in the case of HMMs or the mixture parameter in the case of mixture models.

For the time being, we only have results in the case of mixture models and not for HMMs. Indeed, the likelihood and score functions are easier to handle in mixture models than in HMMs.

We now present the setting used in Chapter 4. Again the hidden states X t live in a nite states space {1, . . . , k} where k is known. These states are i.i.d. from some distribution k i=1 µ i δ i . Moreover the observations Y t , t ∈ N, live in [0, 1] 3 . Given a hidden state X t , the three components Y t,1 , Y t,2 and Y t,3 of the observation Y t are independent with respective distribution f Xt,1 dλ, f Xt,2 dλ and f Xt,3 dλ. This model can be visualized in Figure 1.3. We have seen in Section 1.3.1, that this model is identi able up to label switching under general assumptions.

Asymptotic E ciency

To obtain regular e cient estimators, we use approximation models. Namely we project the emission distributions on the set of histograms associated to a xed partition I M of [0, 1] we then consider the models of Example 2 in Section 1.2.2. Thus, the parameters of this model are the parameter µ ∈ ∆ k , determining the distribution of the latent variables, and ω M ∈ (∆ M ) 3k which parametrizes the emission distributions. The distribution of one observation is

g µ,ω;M (y)λ(dy) = k j=1 µ j 3 c=1 f j,c;M (y c )λ(dy c ), where f M = (f j,c;M ) j≤k,1≤c≤3 , f j,c;M = M m=1 (ω j,c,m;M /|I m |)1 Im , j ≤ k, 1 ≤ c ≤ 3.
Following Section 1.2.2.1, a maximum likelihood estimator ( θ M , ω M ), associated to the approximation model is, up to label switching, asymptotically normal around (θ * , ω * ), where ω * i,j,m = Im f * j,c dλ. Moreover θ is regular and asymptotically Gaussian around θ * , yet as asymptotic variance the inverse of the Fisher information associated to the approximated model, which may be di erent from the inverse of the e cient Fisher information for the complete semiparametric model. Yet by re ning the partition slowly enough when the number of observations increases, we obtain an estimator θ Mn regular e cient of θ * , see Theorem 4.5.

More precisely, we rst obtain that when the partition is re ned the Fisher information, associated to the approximated model, increases; see 4.2. Moreover, when the partition is re ned such that the sets have a size tending to zero, then the Fisher information of the approximated models is tending to the e cient Fisher information for the semiparametric model; see 4.3. Finally, we prove the existence of a re nement M n of the partition such that the associated sequence of m.l.e. θ Mn is regular e cient in the semiparametric model; see Theorem 4.5.

Similarly, if we have a family of prior distributions (Π M ) M , one for each model associated with a partition I M , which are absolutely continuous with respect to the Lebesgue measure and positive on their de ning sets; then by re ning the partition slowly enough, we obtain a Bernstein von Mises type theorem. That is there exists a re nement L n of the partition such that the associated sequence of posterior distributions Π Ln (|Y 1 , . . . , Y n ) veri es a Bernstein von Mises theorem; see Theorem 4.5.

Model Selection

The two previous results are existence results but are not constructive, namely they don't give clue on the choice of the re nement M n . Moreover, in Section 4.3.1, we state that if the re nement M n is done too quickly in the case of m.l.e., then the sequence of m.l.e. θ Mn is tending almost surely to the uniform weight and thus is not even consistent. So that the choice of the partition has a real impact on the estimation.

Then we propose a procedure to select the re nement of a collection of partitions based on cross validation. In Theorem 4.8, we obtain an oracle inequality for the risk of the selected estimator, but as if we had less (a n << n) observations than we actually have (n). This choice could lead to too conservative selections. We think that this conservatism does not change the good asymptotic properties of the estimator.

Finally, we apply our selection criterion in simulations. We were there surprised to see that even in a nite horizon setting (when n is xed), our 'conservative' procedure is doing well. See Section 4.4.

Perspectives

• We would like to obtain a rate on the re nement (on M n ) which ensures asymptotic e ciency.

• We would also like to generalize the last results in the case of HMMs. This issue is far from • Finally, in the Bayesian setting, it would be interesting to know if in the two latent models studied in this thesis (HMMs and mixture models), there exists a prior distribution leading to a posterior distribution with optimal concentration simultaneously for both the parameter describing the latent model (transition matrix or mixture parameter) and for the emission distributions.

Summary

The results I have obtained during my PhD on nonparametric HMMs and semiparametric multidimensional mixture models with nite state space is summarized in the following tabular: f 1 , . . . , f k smoothing distribution (when the obser-

P (X t = •|Y 1 , . . . , Y n ) vations are discrete) blaaaaaaabla blablalbablablablablablablablablaablbablabl in nonparametric HMMs blablablabla in semiparametric mixture models
The checked cells correspond to problems I have studied and for which I have obtained results.

Brackets are used to precise some restrictions. As far as I know, the results of the second and third columns are the rst results on the asymptotic behaviour of the posterior distribution in nonparametric HMMs with nite state space. Similarly, the result corresponding to the check cell in the fourth column is the only result we are aware on asymptotic e ciency for semiparametric mixture models with three independent observation per latent variable. The empty cells correspond to open problems I would be happy to work on.

CHAPTER 2

POSTERIOR CONSISTENCY IN NONPARAMETRIC HIDDEN MARKOV MODELS WITH FINITE STATE SPACE

In this chapter we study posterior consistency for di erent topologies on the parameters for hidden Markov models with nite state space. We rst obtain weak and strong posterior consistency for the marginal density function of nitely many consecutive observations. We deduce posterior consistency for the di erent components of the parameter. We also obtain posterior consistency for marginal smoothing distributions in the discrete case. We nally apply our results to independent emission distributions, translated emission distributions and discrete HMMs, under various types of prior distributions.

Introduction

Hidden Markov models (HMMs) have been widely used in diverse elds such as speech recognition, genomics or econometrics since their introduction in Baum and Petrie [START_REF] Baum | Statistical inference for probabilistic functions of nite state Markov chains[END_REF]. is about translated emission distributions.

In this chapter, we obtain posterior consistency results for Bayesian procedures in nite state space nonparametric HMMs. To our knowledge, this is the rst result on posterior consistency in such models. In Section 2.2.2, we prove posterior consistency in terms of the weak topology and the L 1 -norm on marginal densities of consecutive observations. Our main result is obtained under assumptions on the emission densities and on the prior which are very similar to the ones in the i.i. Particularly in Section 2.3.3 the discrete case is thoroughly studied with a Dirichlet process prior.

Su cient and almost necessary assumptions to apply Theorem 2.1 are given in Proposition 2.9.

Moreover in this framework, posterior consistency of the marginal smoothing distributions, used in segmentation or classi cation, is derived in Theorem 2.8.

All proofs are given in Appendices 2.4 and 2.5.

Settings and Main Theorem

Notations

We now precise the model and give some notations. Recall that nite state space HMMs are stochastic processes (X t , Y t ) t∈N such that (X t ) t∈N is a Markov chain taking values in a nite set, and conditionally on (X t ) t∈N , the random variables Y t , t ∈ N, are independent. The distribution of Y t depending only on X t is called the emission distribution. The number k of hidden states is known, so that the state space of the Markov chain is set to {1, . . . , k}. Throughout Chapter 2, for any integer n, an n-uple

(x 1 , . . . , x n ) is denoted x 1:n . Let ∆ k = {(x 1 , . . . , x k ) : x i ≥ 0, i = 1, . . . , k; k i=1 x i = 1} denote the (k -1)-dimensional simplex. Let Q denote the k × k transition matrix
of the Markov chain, so that identifying Q as the k-uple of transition distributions (the lines of the matrix), we write Q ∈ ∆ k k . We denote µ ∈ ∆ k the initial probability measure, that is the distribution of X 1 . For q ≥ 0, we also de ne

∆ k (q) = {Q ∈ ∆ k k : min i,j≤k Q i,j ≥ q}, so that ∆ k (0) = ∆ k k .
We now recall some properties of Markov chains with transition matrix in ∆ k (q). Note that q needs to be less than 1 k for ∆ k (q) to be nonempty. Then for all

Q in ∆ k (q), max i,j Q i,j ≤ 1 -(k -1)q. Also, if Q ∈ ∆ k (q),
then for any i ∈ {1, . . . , k} and A ⊂ {1, . . . , k}, j∈A Q i,j ≥ kqu(A), with u the uniform probability on {1, . . . , k}.

Besides if Q ∈ ∆ k (q) with µ X X X X Y Y Y Y f X f X f X f X Figure 2.1 -The model.
q > 0, the chain is irreducible, positive recurrent and admits a unique stationary probability measure denoted

µ Q for which q ≤ µ Q (i) ≤ 1 -(k -1)q, 1 ≤ i ≤ k.
We assume that the observation space is R d endowed with its Borel sigma eld. Let F be the set of probability density functions with respect to a reference measure λ on R d . F k is the set of possible emission densities, that is for

f = (f 1 , . . . , f k ) ∈ F k , the distribution of Y t conditionally to X t = i will be f i λ, i = 1, . . . , k. See Figure 2.1 for a visualization of the model. Let Θ = {θ = (Q, f ) : Q ∈ ∆ k k , f ∈ F k } and Θ(q) = {θ = (Q, f ) : Q ∈ ∆ k (q), f ∈ F k }.
Then P θ (resp. P θ,µ ) denotes the probability distribution of (X t , Y t ) t∈N under θ and initial probability measure µ θ := µ Q (respectively µ). Let p θ l (p θ,µ l resp.) denote the probability density of Y 1 , . . . , Y l with respect to λ ⊗l under P θ (resp. P θ,µ ). and P θ l (P θ,µ l resp.) the marginal distribution of Y 1 , . . . , Y l under P θ (resp. P θ,µ ). So for any θ ∈ Θ, initial probability measure µ, and measurable set A of {1, . . . , k} l × (R d ) l :

P θ,µ ((X 1:l , Y 1:l ) ∈ A) = k x 1 ,...,x l =1 1 (x 1 ,...,x l ,y 1 ,...,y l )∈A µ x 1 Q x 1 ,x 2 . . . Q x l-1 ,x l f x 1 (y 1 ) . . . f x l (y l )λ(dy 1 ) . . . λ(dy l ), p θ,µ l (y 1 , . . . , y l ) = k x 1 ,...,x l =1 µ x 1 Q x 1 ,x 2 . . . Q x l-1 ,x l f x 1 (y 1 ) . . . f x l (y l ),
and P θ,µ l = p θ,µ l λ ⊗l . We denote by δ µ ⊗ π the prior on ∆ k × Θ, where µ ∈ ∆ k is an initial probability measure.

We assume that π is a product of probability measures on

Θ, π = π Q ⊗ π f such that π Q is a probability distribution on ∆ k
k and π f is a probability distribution on F k . We assume throughout Chapter 2 that the observations are distributed from P θ * so that their distribution is a stationary HMM. We are interested in posterior consistency, that is to prove that with P θ * -probability one, for all neighbourhood U of θ * :

lim n→+∞ π(U |Y 1:n ) = 1.
The choice of a topology on the parameters arises here. For any distance or pseudometric D, we denote N (δ, A, D) the δ-covering number of the set A with respect to D, that is the minimum number N of elements a 1 , . . . , a N such that for all a ∈ A, there exists n ≤ N such that

D(a, a n ) ≤ δ. For k × k matrices M , we use M = max 1≤i,j≤k |M i,j |.
For probability distributions P 1 and P 2 , let p 1 and p 2 be their respective densities with respect to some dominated measure ν. We use the L 1 -norm:

p 1 -p 2 L 1 (ν) = |p 1 -p 2 |dν
and the Kullback-Leibler divergence:

KL(P 1 , P 2 ) = p 1 log( p 1 p 2 )dν if P 1 << P 2 , +∞ otherwise.
We also denote KL(p 1 , p 2 ) for KL(p 1 ν, p 2 ν). On F k we use the distance d(•, •) de ned for all g = (g 1 , . . . , g k ), g = ( g1 , . . . , gk ) by

d(g, g) = max 1≤j≤k g j -gj L 1 (λ) .
On Θ(q), we use the following pseudometric for l ≥ 3, l ∈ N,

D l (θ, θ ) = |p θ l (y 1 , . . . , y l ) -p θ l (y 1 , . . . , y l )|λ(dy 1 ) . . . λ(dy l ) = p θ l -p θ l L 1 (λ ⊗l ) .
Then a D l -neighbourhood of θ is a set which contains a set {θ : D l (θ, θ ) < ε} for some ε > 0. We also use the weak topology on marginal distributions (P θ l ) θ . We recall that in any neighbourhood of P θ l in the weak topology on probability measures there is a subset which is a union of sets of the form

P : h j dP -h j p θ l dλ ⊗l < ε j , j = 1, . . . , N ,
where for all 1 ≤ j ≤ N , ε j > 0 and h j is in the set C b ((R d ) l ) of all bounded continuous functions from (R d ) l to R. We prove posterior consistency in this general nonparametric context using this weak topology on marginal distributions (P θ l ) θ and the D l -pseudometric in Section 2.2.2. We study the posterior consistency for the transition matrix and the emission distributions separately in Section 2.2.3.

Finally the sign is used for inequalities up to a multiplicative constant possibly depending on xed parameters.

Main Theorem

In this section, we state our general theorem on posterior consistency for nonparametric hidden Markov models in the weak topology on marginal distributions (P θ l ) θ and the D l -topology. Fix l ≥ 3. We consider the following assumptions:

(A1.0) For all 1 ≤ i ≤ k, f * i (y)|log(f * i (y))|λ(dy) < +∞,
(A1.1) for all ε > 0 small enough there exists a set Θ ε ⊂ Θ(q) such that π(Θ ε ) > 0 and for all

θ = (Q, f ) ∈ Θ ε , (A1.1a) Q -Q * < ε, (A1.1b) max 1≤i≤k f * i (y) max 1≤j≤k log( f * j (y) f j (y) )λ(dy) < ε, (A1.1c) for all y ∈ R d such that k i=1 f * i (y) > 0, k j=1 f j (y) > 0, (A1.1d) sup y: k i=1 f * i (y)>0 max 1≤j≤k f j (y) < +∞, (A1.
2) for all n > 0, for all δ > 0, there exists a set F n ⊂ F k and a real number r 1 > 0 such that

π f (F n ) c
e -nr 1 and such that

n>0 N δ 36l , F n , d(•, •) exp - nδ 2 k 2 q 2 32l < +∞.
Theorem 2.1. Let q > 0. Assume that the support of π Q is included in ∆ k (q) and that for all

1 ≤ i ≤ k, µ i ≥ q.
a) If Assumptions (A1.0) and (A1.1) holds then, for all weak neighbourhood U of P θ * l ,

P θ * lim n→∞ π(U |Y 1:n ) = 1 = 1.
b) Moreover if Assumptions (A1.0), (A1.1) and (A1.2) hold then, for all ε > 0,

P θ * lim n→∞ π( {θ : D l (θ, θ * ) < ε} |Y 1:n ) = 1 = 1.
Remark 2.2.1. We assume everywhere in Chapter 2 that the support of π Q is included in ∆ k (q). It means the results of this chapter can only be applied to priors π Q on transition matrices which vanish close to the border of ∆ k k . This assumption is satis ed by a product of truncated Dirichlet distribution, i.e. if the lines Q i,• of Q are independently distributed from a law proportional to:

Q α 1 -1 i,1 . . . Q α k -1 i,k 1 {q≤Qi,j≤1, ∀1≤j≤k} dQ i,1 . . . dQ i,k
where α 1 , . . . , α k > 0.

The restriction on ∆ k (q) comes from the test built in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF]. On this set, HMMs are geometrically ergodic. It is a common assumption in the literature see Douc and They are also able to obtain a less restrictive assumption on the support of the prior on transition matrices. In return they assume a more restrictive assumption on the log-likelihood, compare Equations (2.11) and (2.13) with their Assumption C1.

In the case of density estimation with i.i.d. observations, it is usual to control the Kullback-Leibler Lemma 2.2. Let θ * be in Θ(q). If (A1.1) holds then, for all 0 < ε < 1, there exists N ∈ N such that for all n ≥ N and for all θ ∈ Θ ε :

1 n KL(P θ * n , P θ,µ n ) ≤ 3 q ε.

Consistency of Each Component of the Parameter

In this Section we look at the consequences of Theorem 2.1 on posterior consistency for the transition matrix and the emission distributions separately. Estimating consistently the components of the parameter is of great importance. First one may want to know the proportion of each population or the probability of moving from one population to another, i.e. the transition matrix. Secondly, these components are important to recover the smoothing distribution, i.e. the distribution of a hidden state given the observations, and then to cluster the observations, see this implication yet it is not su cient. We obtain posterior consistency for the components of the parameter thanks to the result of identi ability of Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] and as usually by proving the continuity of the functional ((p θ l ) θ , L 1 ) → (Θ, the topology T described in the following)

p θ l → θ .
We use a product topology on the set of parameters. In particular we study consistency in the topology associated with the sup norm on transition matrices • and the weak topology on probability measures for the emission distributions up to label switching. To deal with label switching, we need the following de nitions. Let S k denote the symmetric group on {1, . . . , k}.

Let σ be a permutation in S k , for all matrices Q ∈ ∆ k k , we denote σQ the following matrix: for all 1 ≤ i, j ≤ k,

(σQ) i,j = Q σ(i),σ(j) . If (X t , Y t ) t∈N is distributed from P (Q,f ) and Xt = σ -1 (X t ), for σ ∈ S k , then ( Xt , Y t ) t∈N is
distributed from P (σQ,(f σ(1) ,...,f σ(k) )) , i.e the labels of the Markov chain have been switched but (Y t ) t∈N has the same distribution. Then, in generality, from the distribution of the observations one can at most recover the parameter up to label switching. Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] proved that it is possible by knowing the joint distribution of at least three consecutive observations. In Theorem 2.3, whose proof is given in Appendix 2.4, we prove that under the assumption of identi ability, posterior consistency in the D l topology implies that the posterior concentrates around (Q * , f * ) up to label switching, i.e. around {σQ * , (f * σ(1) , . . . , f * σ(k) )} σ∈S k . In other words we obtain posterior consistency considering neighbourhoods of the form

∃σ ∈ S k ; σQ ∈ U Q * , f σ(i) ∈ U f * i , i = 1 . . . k where U Q * is a neighbourhood of Q * and for all 1 ≤ i ≤ k, U f * i is a weak neighbourhood of f * i λ.
That is to say we consider the product topology T of the sup norm topology on transition matrices and of the weak topology on the emission distributions up to label switching.

Theorem 2.3. Let θ * = (Q * , f * ) ∈ Θ such that f * 1 λ, . . . , f * k λ are linearly independent and Q * has full rank.
If the posterior is consistent for the D l pseudo-metric with l ≥ 3, i.e. if for all ε > 0,

P θ * lim n→∞ π( {θ : D l (θ, θ * ) < ε} |Y 1:n ) = 1 = 1.
then the posterior is consistent for the topology T , i.e. for all weak neighbourhood

U f * i of f * i λ, for all 1 ≤ i ≤ k and for all neighbourhood U Q * of Q * , P θ * lim n→+∞ π ∃σ ∈ S k ; σQ ∈ U Q * , f σ(i) λ ∈ U f * i , 1 ≤ i ≤ k Y 1:n = 1 = 1. (2.1)
Remark 2.2.2. In particular, Equation (2.1) implies that for all ε > 0

P θ *   lim n→+∞ π   σ∈S k {Q : Q -σQ * < ε} Y 1:n   = 1   = 1.
It means that under the assumptions of Theorem 2.3, the posterior concentrates around {σQ * , σ ∈ S k }. Equation (2.1) also implies that for all N ∈ N, for all h i ∈ C b (R d ) and for all ε i > 0,

P θ * lim n→+∞ π σ∈S k f : h i f j dλ -h i f * σ(j) dλ < ε i , for all 1 ≤ i, j ≤ k Y 1:n = 1 = 1.
This last result allows to consistently recover smooth functionals of the emission distributions (f * j ) j such as K f * j dλ where K is compact. We obtain stronger results in Sections 2.3.2 and 2.3.3.

The uncertainty due to label switching can be removed if there is only one possible permutation σ associated to a parameter θ as in Proposition 2.4, proved in Appendix 2.4. This Proposition 2.4 may be useful if one knows some characteristics of the hidden states which order them. The function H, in Proposition 2.4, enables to order the hidden states and then to get rid of label switching.

Proposition 2.4. Let θ * ∈ Θ such that f * 1 λ, . . . , f * k λ are linearly independent and Q * has full rank. Let H : Θ, T 1 → R k be a continuous function, where T 1 is the product topology of the sup norm topology on transition matrices and of the weak topology on the emission distributions.

Assume that for all permutation σ ∈ S k and for all θ = (Q, f ) ∈ Θ,

H i ((σQ, f σ(1) , . . . , f σ(k) )) = H σ(i) (θ),
(2.2)

H 1 (θ * ) < • • • < H k (θ * ), (2.3) π θ : H 1 (θ) < • • • < H k (θ) = 1. (2.4)
If the posterior is consistent for the topology T , i.e. for all weak neighbourhood

U f * i of f * i λ, for all 1 ≤ i ≤ k and for all neighbourhood U Q * of Q * , P θ * lim n→+∞ π ∃σ ∈ S k ; σQ ∈ U Q * , f σ(i) λ ∈ U f * i , 1 ≤ i ≤ k Y 1:n = 1 = 1 (2.1) then for all weak neighbourhood U f * i of f * i λ, for all 1 ≤ i ≤ k and for all neighbourhood U Q * of Q * , P θ * lim n→+∞ π Q ∈ U Q * , f i λ ∈ U f * i , 1 ≤ i ≤ k Y 1:n = 1 = 1.
Here we give some examples of possible functions H:

H i (θ) = Q i,i or H i (θ) = φf i dλ, (2.5)
where φ is bounded and continuous. Even if in practice, one would often like to use H i (θ) = yf i (y)λ(dy), Proposition 2.4 does not allow it. Indeed, in this case H is not continuous. Yet taking a continuous truncated version of the identity for φ in Equation (2.5) may help.

Examples of Priors on f

In this section we apply Theorems 2.1 and 2.3 for di erent types of priors and emission models.

In Section 2.3.1 we deal with emission distributions which are independent mixtures of Gaussian distributions. Translated emission distributions are studied in Section 2.3.2. Finally we consider the discrete case with Dirichlet process priors in Section 2.3.3. Assumptions (A1.1b) and (A1.2) are purposely designed to resemble the types of assumptions found in density estimation for i.i.d. observations. This allows us to use existing results on consistency in the case of i.i.d. observations. This is done in Sections 2.3.1 and 2.3.2 with a prior based on a usual prior on densities, which is a mixture of Gaussian distributions such as in Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF]. Two ways of using a prior on densities are considered. In Section 2.3.1, the emission distributions are independently distributed under a usual prior on densities. In Section 2.3.2, the emission distributions are designed from a unique density, distributed from a usual prior, which is translated. Contrariwise in the discrete case we develop a new method to deal with the Dirichlet process prior in Section 2.3.3.

Independent Mixtures of Gaussian Distributions

We consider the well known location-scale mixture of Gaussian distributions as prior model for each f i , namely each density under the prior is written as

g(y) = R×(0,+∞) φ σ (y -z)dP (z, σ) =: φ * P, (2.6)
where φ σ is the Gaussian density with mean zero and variance σ 2 , and P is a probability measure on R × (0, +∞). In this part, λ is the Lebesgue measure on R. Let π P be a probability measure on the set of probability measures on R × (0, +∞). Denote π g the distribution of g expressed as (2.6) when P ∼ π P . Then we consider the prior distribution on f = (f 1 , . . . , f k ) de ned by

π f = π ⊗k g .
We need the following assumptions to apply Theorem 2.1 and 2.3:

(B1.1)

π P P : 1 σ dP (z, σ) < ∞ = 1, (B1.
2) for all 1 ≤ j ≤ k, f * j is positive, continuous on R and bounded by M < ∞,

(B1.3) for all 1 ≤ i ≤ k, 1 ≤ j ≤ k, R f * i (y) log f * j (y) ψ j (y) λ(dy) < ∞ where ψ j (y) = inf t∈[y-1,y+1] f * j (t), (B1.4) for all 1 ≤ i ≤ k, there exists η > 0 such that R |y| 2(1+η) f * i (y)λ(dy) < ∞,
(B1.5) for all β > 0, κ > 0, there exist a real number β 0 > 0, two increasing and positive sequences a n and u n tending to +∞, and a sequence l n decreasing to 0 such that

π P P : P ((-a n , a n ] × (l n , u n ]) < 1 -κ ≤ exp(-nβ 0 ), with a n l n ≤ nβ, log u n l n ≤ nβ.
Proposition 2.5. Let q > 0. Assume that the support of π Q is included in ∆ k (q) and that for all 1 ≤ i ≤ k, µ i ≥ q. Assume that Q * is in the support of π Q and that the weak support of π P contains all probability measures that are compactly supported.

Then • (B1.1), (B1.2), (B1.3), (B1.4) imply (A1.1)

• and (B1.5) implies (A1.2).

In particular in the case where π P is the Dirichlet process DP (αG 0 ) with base measure αG 0 , where G 0 is a probability measure on R × (0, +∞) and α > 0, Assumption (B1.1) holds as soon as

R×(0,+∞) 1 σ G 0 (dz, dσ) < +∞.
(2.7)

Indeed,

1 σ P (dz, dσ)π P (dP ) = [σ,+∞) 1 t 2 λ(dt)P (dz, dσ)π P (dP ) = 1 σ G 0 (dz, dσ).
Moreover using Remark 3.1 of Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF], Assumption (B1.5) easily holds as soon as for all β > 0, there exist a real number β 0 > 0, two increasing and positive sequences a n and u n tending to +∞ and a sequence l n decreasing to 0 such that

G 0 ((-a n , a n ] × (l n , u n ]) c ) ≤ exp(-nβ 0 ), a n l n ≤ nβ, log u n l n ≤ nβ.
(2.8)

Translated Emission Distributions

In this section we consider the special case of translated emission distributions, that is to say for

all 1 ≤ j ≤ k, f j (•) = g(• -m j ),
where g is a density function on R with respect to λ and for all 1 ≤ j ≤ k, m j is in R. In this part, λ is still the Lebesgue measure on R and d = 1. This model has been in particular considered by Yau et al. [START_REF] Yau | Bayesian non-parametric hidden Markov models with applications in genomics[END_REF] for the analysis of genomic copy number variation. First a corollary of Theorem 2.3 is given. Then the particular case of location-scale mixture of Gaussian distributions on g is studied.

Let

Ξ = {ξ = (Q, m, g), Q ∈ ∆ k k , m ∈ R k , m 1 = 0 < m 2 < • • • < m k , g ∈ F} and Ξ(q) = {ξ = (Q, m, g) ∈ Ξ, Q ∈ ∆ k (q)}. To ξ = (Q, m, g) ∈ Ξ, we associate θ = (Q, (g(• -m 1 ), . . . , g(• -m k ))) ∈ Θ.
We then denote P ξ for P θ . We assume that π f is a product of probability measures,

π f = π m ⊗ π g ,
where π g is a probability measure on F and π m is a probability measure on R k . Note that under Ξ, the model is completely identi able, see Theorem 2.1 of Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF]. The uncertainty due to label switching is resolved here. In Corollary 2.6, additionally to posterior consistency for the transition matrices, we obtain posterior consistency for the parameters of translation m j and for the weak convergence on the translated probability measure gλ. Under a stronger assumption, we get posterior consistency for the L 1 -topology on the translated density distribution.

Fix l ≥ 3. The following assumption replaces (A1.2) in the context of translated emission distributions:

(C1.2) for all n > 0, for all δ > 0, there exists a set

F n ⊂ R k × F and a real number r 1 > 0 such that π f (F n ) c e -nr 1 and n>0 N δ 36l , F n , d(•, •) exp - nδ 2 k 2 q 2 32l < +∞. Corollary 2.6. Let ξ * = (Q * , m * , g * ) be in Ξ(q) such that m * 1 = 0 < m * 2 < • • • < m * k and Q * has full rank.
If the posterior is consistent for the D l pseudometric with l ≥ 3, i.e. if for all ε > 0,

P ξ * lim n→∞ π( {ξ : D l (ξ, ξ * ) < ε} |Y 1:n ) = 1 = 1.
Then, for all ε > 0,

P ξ * lim n→+∞ π({Q : Q -Q * < ε} Y 1:n ) = 1 = 1, P ξ * lim n→+∞ π( m : ∀1 ≤ j ≤ k, |m j -m * j | < ε Y 1:n ) = 1 = 1,
and for all N ∈ N, for all

h i ∈ C b (R d ), for all ε i > 0, 1 ≤ i ≤ N, P ξ * lim n→+∞ π g : h i gdλ -h i g * dλ < ε i Y 1:n = 1 = 1.
If moreover max 1≤j≤k µ * j > 1/2 and g * is uniformly continuous; then, for all ε > 0,

P ξ * lim n→+∞ π g : g -g * L 1 (λ) < ε |Y 1:n = 1 = 1.
The proof of Corollary 2.6, in Appendix 2.5, relies on the identi ability result of Gassiat and

Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF] and Theorem 2.3.

In the same way as in Section 2.3.1, we propose to apply Theorem 2.1 and Corollary 2.6 to a prior based on location-scale mixtures of Gaussian distributions. In this part, we study a particular prior on the translated emission density g which is the location-scale mixture of Gaussian distributions. Then g is a sample drawn from π g if

g(y) = R×(0,+∞) φ σ (y -z)dP (z, σ)
where P is a sample drawn from π P and π P is a probability measure on probability measures on R × (0, +∞). The following assumption help in proving (C1.2):

(D1.6) for all β > 0, κ > 0, there exist a real number β 0 > 0, three increasing sequences of positive numbers m n , a n and u n tending to +∞, and a sequence l n decreasing to 0 such that

π P P : P ((-a n , a n ] × (l n , u n ]) < 1 -κ ≤ exp(-nβ 0 ), π m ([-m n , m n ] k ) c ≤ exp(-nβ 0 ), a n l n ≤ nβ, log u n l n ≤ nβ, log m n l n ≤ nβ.
Proposition 2.7. Let q > 0 and ξ * in Ξ(q). Assume that the support of π Q is included in ∆ k (q) and that for all

1 ≤ i ≤ k, µ i ≥ q. Assume that Q * is in the support of π Q , that m * is in the
support of π m and that the weak support of π P contains all probability measures that are compactly supported.

If (B1.1) is veri ed and (B1.2), (B1.3) and (B1.4) are veri ed with 

f j (•) = g(• -m j ), 1 ≤ j ≤ k then (A1.

Independent Discrete Emission Distributions

Discrete emission distributions, i.e. when the support of λ is included in N, have been successfully used, for instance in genomics in Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF].

Note that for discrete emission distributions, weak and l 1 topologies are the same so that weak posterior consistency implies l 1 posterior consistency. Thus Assumption (A1.2) becomes unnecessary in Theorems 2.1 and 2.3. Moreover posterior consistency for the emission distributions in the weak topology in Theorem 2.3 implies posterior consistency for the emission distributions in l 1 .

In the discrete case, we prove in Theorem 2.8 that posterior consistency for the marginal distribution of nitely many observations, for the transition matrix and for the emission distributions in l 1 together with the restriction of the prior π Q on ∆ k (q) imply posterior consistency for the marginal smoothing:

Theorem 2.8. Let q > 0. Assume that the support of π Q is included in ∆ k (q) and that for all

1 ≤ i ≤ k, µ i ≥ q. If f * 1 λ, .
. . , f * k λ are linearly independent, Q * has full rank, and (A1.0) and (A1.1) hold; then, for all nite integer m,

lim n→+∞ π θ : ∃σ ∈ S k , max 1≤a j ≤k, 1≤j≤m |P θ (X i = σ(a i ), ∀ 1 ≤ i ≤ m |Y 1:n ) -P θ * (X i = a i , ∀ 1 ≤ i ≤ m | Y 1:n )| < ε Y 1:n = 1 in P θ * -probability.
The proof of Theorem 2.8 is given in Appendix 2.4.

In the following we apply Theorems 2.1, 2.3 and 2.8 to a speci c prior on the set of probability measures on N in the case of a HMM with discrete emission distributions. We consider a Dirichlet process DP (αG 0 ) with α a positive number and G 0 some probability measure on N. We then consider a prior probability measure on Θ de ned by

π = π Q ⊗ DP (αG 0 ) ⊗k .
In Proposition 2.9, we give su cient and almost necessary conditions to obtain (A1.1). Proposition 2.9 is proved in Appendix 2.4.

Proposition 2.9. Let q > 0. Assume that the support of the prior

π Q is included in ∆ k (q), that Q * is in the support of π Q and that for all 1 ≤ i ≤ k, µ i ≥ q. If 54 CHAPTER 2: POSTERIOR CONSISTENCY IN NONPARAMETRIC HMMS (E1.1) for all 1 ≤ i ≤ k, l∈N f * i (l) G 0 (l) < +∞ then (A1.1) holds. Moreover if (T1.1) for all 1 ≤ i ≤ k, l∈N f * i (l)(-log f * i (l)) < +∞ then (A1.1b) implies (E1.1).
Remark 2.3.1. Therefore (E1.1) is not only su cient to prove (A1.1b) but up to the weak Assumption (T1.1) it is also necessary. Assumption (E1.1) relies on the mutual control of the tails of the base measure G 0 and the true emission distributions f * j . Proposition 2.9 suggests choosing a heavy tailed probability measure G 0 with G 0 (l) > 0, for all l ∈ N.

Remark 2.3.2. We deduce from Proposition 2.9 that

g * : N → (0, 1) such that l∈N g * (l) = 1, l∈N g * (l)(-log(g * (l)) < +∞ and l∈N g * (l) G 0 (l) < +∞ (2.9)
is a subset of the Kullback-Leibler support of the Dirichlet process DP (αG 0 ).

Proofs of Key Results

Proof of Lemma 2.2

For all θ, θ * ∈ ∆ k (q) the Kullback-Leibler divergence between p θ * n and p θ n is by de nition equal to

1 n E p θ * n log k i 1 ,...,in=1 µ * i 1 Q * i 1 ,i 2 . . . Q * i n-1 ,in f * i 1 (Y 1 ) . . . f * in (Y n ) k j 1 ,...,jn=1 µ j 1 Q j 1 ,j 2 . . . Q j n-1 ,jn f j 1 (Y 1 ) . . . f jn (Y n )
.

Multiplying and dividing each term of the sum in the numerator by

µ i 1 Q i 1 ,i 2 . . . Q i n-1 ,in f i 1 (Y 1 ) . . . f in (Y n ),
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we obtain

1 n E p θ * n         log         k i 1 ,••,in = 1 µ * i 1 Q * i 1 ,i 2 ••Q * i n-1 ,in f * i 1 (Y 1 )••f * in (Yn) µ i 1 Q i 1 ,i 2 ••Q i n-1 ,in f i 1 (Y 1 )••f in (Yn) µ i 1 Q i 1 ,i 2 • •Q i n-1 ,in f i 1 (Y 1 )• •f in (Yn) k j 1 ,...,jn=1 µj 1 Qj 1 ,j 2 . . . Qj n-1 ,jn fj 1 (Y1) . . . fj n (Yn)                 ≤ 1 n E p θ * n log max 1≤i 1 ,...,in≤k µ * i 1 Q * i 1 ,i 2 . . . Q * i n-1 ,in f * i 1 (Y1) . . . f * in (Yn) µi 1 Qi 1 ,i 2 . . . Qi n-1 ,in fi 1 (Y1) . . . fi n (Yn)
by bounding the quotient in each term of the sum of the numerator by its maximum. Since the maximum of a product of positive factors is bounded by the product of the maxima,

1 n KL(p θ * n , p θ,µ n ) ≤ 1 n E p θ * n log max 1≤i 0 ≤k µ * i 0 µ i 0 max 1≤i,j≤k Q * i,j Q i,j n-1 max 1≤i 1 ≤k f * i 1 (Y 1 ) f i 1 (Y 1 ) . . . max 1≤in≤k f * in (Y n ) f in (Y n ) ≤ 1 nq max 1≤i 0 ≤k µ i 0 -µ * i 0 + n -1 nq max 1≤i,j≤k Q i,j -Q * i,j + max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy).
The last inequality comes from the following inequalities

E p θ * n log max 1≤is≤k f * is (Y s ) f is (Y s ) = k j 1 ,...,jn=1 µ * j 1 Q * j 1 ,j 2 . . . Q * j n-1 ,jn f * js (y) log max 1≤is≤k f * is (y) f is (y) λ(dy) 1≤t =s≤n f * jt (y)λ(dy) ≤ max 1≤j 1 ≤k f * j 1 (y) max 1≤i 1 ≤k log f * i 1 (y) f i 1 (y) λ(dy), log max 1≤i 0 ≤k µ * i 0 µ i 0 ≤ 1 q max 1≤i 0 ≤k µ i 0 -µ * i 0 ,
and

log max 1≤i,j≤k Q * i,j Q i,j ≤ 1 q max 1≤i,j≤k Q i,j -Q * i,j because min 1≤i,j≤k (µ i , µ * i , Q i,j , Q * i,j ) ≥ q.
Then for all ε > 0, for n large enough, for all θ ∈ Θ ε ,

1 n KL(p θ * n , p θ,µ n ) ≤ 3 q ε.
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Proof of Theorem 2.1

This proof relies on Theorem 5 of Barron [START_REF] Barron | The exponential convergence of posterior probabilities with implications for bayes estimators of density functions[END_REF]. We do not assume (A1.2) in the rst part of the proof. First we prove that for all a > 0,

P θ * Θ p θ n (Y 1 , . . . , Y n )π(dθ) p θ * n (Y 1 , . . . , Y n ) ≤ exp(-an) i.o. = 0 (2.10)
that is to say

p θ * n (y 1 , . . . , y n )λ(dy 1 ) . . . λ(dy n ) and Θ p θ n (y 1 , . . . , y n )λ(dy 1 ) . . . λ(dy n )π(dθ)
merge with probability one.

Let ε > 0. Note that Assumption (A1.1a) implies that Q * ∈ ∆ k (q). Then by Lemma 2.2, there exists a real ε > 0 such that for n large enough, for all θ ∈ Θ ε,

1 n KL(p θ * n , p θ,µ n ) < ε.
(2.11) Assumptions (A1.0), (A1.1b) and (A1.1d) imply that

k i=1 f * i (y) log   k j=1 f j (y)   λ(dy) < +∞.
(2.12) Indeed

f * i (y) log   k j=1 f j (y)   λ(dy) ≤ {y: f i (y)<1} f * i (y)(-log(f i (y)))λ(dy) + {y: f i (y)≥1} f * i (y) log(k max 1≤j≤k f j (y))λ(dy)
and

{y: f i (y)≥1} f * i (y) log(k max 1≤j≤k f j (y))λ(dy)
is nite under (A1.1d) and

{y: f i (y)<1} f * i (y)(-log(f i (y)))λ(dy)
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is nite under (A1.0), (A1.1b) and (A1.1d) since

f * i (y) max 1≤j≤k log f * j (y) f j (y) λ(dy) ≥ f * i (y) log(f * i (y))λ(dy) + {y: f i (y)<1} f * i (y)(-log(f i (y)))λ(dy) + {y: f i (y)≥1} f * i (y)(-log(f i (y)))λ(dy).
Moreover by Proposition 1 of Douc et al. [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF], if θ ∈ Θ(q) and if (A1.1c), (A1.1d) and (2.12) hold,

1 n log p θ * n (Y 1:n ) p θ,µ n (Y 1:n )
converges P θ * -almost surely and in L 1 (P θ * ). Let L(θ) denote this limit:

lim n→∞ 1 n log p θ * n (Y 1:n ) p θ,µ n (Y 1:n ) =: L(θ), P θ * -a.s. and in L 1 (P θ * ).
Then using Equation (2.11), for all θ ∈ Θ ε,

L(θ) ≤ ε. (2.13)
So that for all ε > 0, there exists ε such that

π θ : L(θ) < ε ≥ π(Θ ε) > 0.
By Lemma 10 of Barron [Bar88], for all a > 0, (2.10) is veri ed.

We now have to build the tests described in Theorem 5 in Barron [Bar88], to obtain posterior consistency rst for the weak topology and secondly for the D l -pseudometric. In the case of the weak topology, we follow the ideas of Section 4.4.1 in Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF].

Using page 142 of Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], it is su cient to consider

U = P : hdP -hp θ * l dλ ⊗l < ε, , for all ε > 0 and 0 ≤ h ≤ 1 in the set C b ((R d ) l ).
Choosing α and γ as in page 128 of Ghosh and

R.V. Ramamoorthi [GR03], if S n =    y 1 , . . . , y n : l n n/l-1 j=0 h(y jl+1 , . . . , y jl+l ) > α + γ 2    , then P θ * (S n ) = P θ *    n/l-1 j=0 h(y jl+1 , . . . , y jl+l ) -hp θ * l dλ ⊗l > n l γ -α 2    ≤ exp - n(γ -α) 2 (min i,j Q * i,j ) 2 2l(2 -k min i,j Q * i,j ) 2 (2.14)
and for all θ ∈ Θ(q) such that hdP θ -hp θ * l dλ ⊗l ≥ ε, Using Theorem 5 of Barron [Bar88] and combining Equations (2.14) and (2.15),

P θ ((S n ) c ) ≤ P θ    n/l-1 j=0 -h(y jl+1 , . . . , y jl+l ) + hp θ l dλ ⊗l ≥ n l γ -α 2    ≤ exp - n(γ -α) 2 (min i,j Q i,j ) 2 2l(2 -k min i,j Q i,j ) 2 ≤ exp - n(γ -α) 2 q 2 2l , ( 2 
P θ * π θ : hdP θ -hp θ * l dλ ⊗l < ε c Y 1:n ≥ e -nr , i.o. = 0
which implies that for all weak neighbourhood U of P θ * l ,

P θ * (π(U c |Y 1:n ) ≥ exp(-nr) i.o. ) = 0, so that P θ * lim n→∞ π(U |Y 1:n ) = 1 = 1.
We now assume (A1.2) and obtain consistency for the D l -pseudometric. Let ε > 0 and let

U = θ : D l (θ, θ * ) < 2ε kq ⊃ θ : D l (θ, θ * ) < ε 2 -k min 1≤i,j≤k Q i,j k min 1≤i,j≤k Q i,j , be a D l -neighbourhood of θ * . Let B c n = ∆ k (q) × F n , so that π(B n ) = π f (F n c
) exp(-nr 1 ).

(2.16)

In the proof of Theorem 4 of Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF], it is proved that for all n large enough,
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there exists a test ψ n such that

E θ * (ψ n ) ≤ N ε 12 , ∆ k (q) × F n , D l exp - nε 2 8l k 2 (min i,j Q * i,j ) 2 (2 -k min i,j Q * i,j ) 2 ≤ N ε 12 , ∆ k (q) × F n , D l exp - nε 2 k 2 q 2 32l
(2.17)

sup θ∈U c ∩B c n P θ,µ (1 -ψ n ) ≤ exp - nε 2 32l .
(2.18)

Note that for all θ, θ in Θ(q),

D l (θ, θ) ≤ 1≤i≤k |µ θ i -µ θ i | + k(l -1) Q -Q + l max 1≤j≤k f j -fj L 1 (λ) .
The function Q → µ Q is continuous on the compact ∆ k (q) and thus is uniformly continuous:

there exists α > 0 such that for all θ, θ in Θ(q) such that

Q -Q < α then 1≤i≤k |µ θ i -µ θ i | < ε 36 . This implies that N ε 12 , ∆ k (q) × F n , D l ≤ N min ε 36k(l -1) , α , ∆ k (q), • N ε 36l , F n , d(•, •) ≤ max 36k(l -1) ε , 1 α k(k-1) N ε 36l , F n , d(•, •) .
(2.19)

Then combining Equations (2.16), (2.17), (2.18), (2.19) and using Theorem 5 of Barron [Bar88],

there exists r > 0 such that

P θ * π (U c |Y 1:n ) ≥ exp(-nr) i.o. = 0.
(2.20)

And Equation (2.20) implies that for all ε > 0,

P θ * lim n→∞ π( {θ : D l (θ, θ * ) < ε} | Y 1:n ) = 1 = 1.

Proof of Theorem 2.3

It is su cient to show that for all weak neighbourhood U f * of f * λ and neighbourhood

U Q * of Q * , there exists a D 3 -neighbourhood U θ * of θ * such that U θ * ⊂ ∃σ ∈ S k ; σQ ∈ U Q * , f σ(i) ∈ U f * i , i = 1 . . . k .
(2.21) Following Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF], it is equivalent to show that for all sequences θ n in Θ(q) such that D 3 (θ n , θ * ) → 0, there exists a subsequence, that we denote again θ n , of θ n and θ ∈ Θ such that Q n -Q → 0, f n i λ tends to fi λ in the weak topology on probability measures for all i ≤ k and p

(Q * ,f * ) 3 = p ( Q, f ) 3 . Let θ n in Θ(q) such that D 3 (θ n , θ * ) → 0. As ∆ k (q) is
a compact set, there exists a subsequence of Q n that we denote again Q n which tends to Q ∈ ∆ k (q). Writing µ n the (sub)sequence of the stationary distribution associated to Q n , then µ n → μ where μ is the stationary distribution associated to Q. Moreover, using the reverse triangle inequality,

D 3 (θ n , θ * ) = p θn 3 -p θ * since 1≤i 1 ,i 2 ,i 3 ≤k µ n i 1 Q n i 1 ,i 2 Q n i 2 ,i 3 -μi 1 Qi 1 ,i 2 Qi 2 ,i 3 tends to zero, lim n 1≤i 1 ,i 2 ,i 3 ≤k μi 1 Qi 1 ,i 2 Qi 2 ,i 3 f n i 1 (y 1 )f n i 2 (y 2 )f n i 3 (y 3 )- µ * i 1 Q * i 1 ,i 2 Q * i 2 ,i 3 f * i 1 (y 1 )f * i 2 (y 2 )f * i 3 (y 3 ) λ(dy 1 )λ(dy 2 )λ(dy 3 ) = 0.
(2.22) Let F n 1 , . . . , F n k be the probability distribution with respective densities f n 1 , . . . , f n k with respect to λ. Since

i 1 ,i 2 ,i 3 μi 1 Qi 1 ,i 2 Qi 2 ,i 3 F n i 1 ⊗ F n i 2 ⊗ F n i 3
converges in total variation, it is tight and for all 1 ≤ i ≤ k, (F n i ) n is tight. By Prohorov's theorem, for all 1 ≤ i ≤ k there exists a subsequence denoted F n i of F n i which weakly converges to Fi . This in turns implies that

i 1 ,i 2 ,i 3 μi 1 Qi 1 ,i 2 Qi 2 ,i 3 F n i 1 ⊗ F n i 2 ⊗ F n i 3
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weakly converges to

i 1 ,i 2 ,i 3 μi 1 Qi 1 ,i 2 Qi 2 ,i 3 Fi 1 ⊗ Fi 2 ⊗ Fi 3 ,
which combined with (2.22), leads to

i 1 ,i 2 ,i 3 μi 1 Qi 1 ,i 2 Qi 2 ,i 3 Fi 1 ⊗ Fi 2 ⊗ Fi 3 = i 1 ,i 2 ,i 3 µ * i 1 Q * i 1 ,i 2 Q * i 2 ,i 3 f * i 1 λ ⊗ f * i 2 λ ⊗ f * i 3 λ.
By Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF], Q = Q * , so μ = µ * and Fi = f * i λ up to a label switching, that is there exists a permutation σ ∈ S k such that σ Q = Q * and Fσ(i) = f * i λ so that Equation (2.21) holds. In other words we have proved the continuity of the functional

({p θ l , θ ∈ Θ I }, L 1 ) → (Θ I /R σ , T ) p θ l → θ
where Θ I = {θ ∈ Θ : Q has full rank , f 1 dλ . . . f k dλ are linearly independent} and R σ is the equivalence relation on Θ such that θR σ θ if there exists σ ∈ S k such that for all 1 ≤ i, j ≤ k, Q i,j = Qσ(i),σ(j) and f i = fσ(i) ; using that

p θ l , θ ∈ Θ I , L 1 ---→ p θ l , θ ∈ Θ I , weak topology ---→ compact Θ I /R σ , T p θ l continuous ---→ p θ l ---→ θ . continuous, bijective

Proof of Proposition 2.4

To prove Proposition 2.4, using Equation (2.4), it is su cient to prove that for all ε > 0, there exists η > 0 such that

θ ∈ Θ : H 1 (θ) < • • • < H k (θ), ∃σ ∈ S k , σQ -Q * < η, max 1≤i≤k d w (f σ(i) , f * i ) < η ⊂ θ : H 1 (θ) < • • • < H k (θ), Q -Q * < ε, max 1≤i≤k d w (f i , f * i ) < ε (2.23)
where d w metricizes the weak topology on F. Using Equation (2.3),

δ := min 1≤i≤k-1 |H i+1 (θ * ) -H i (θ * )| > 0 (2.24)
and by continuity of H for all ε > 0, there exists η 1 > 0 such that for all

θ ∈ θ ∈ Θ : H 1 (θ) < • • • H k (θ), ∃σ ∈ S k , σQ -Q * < η 1 , d w (f σ(i) , f * i ) < η 1 , for all 1 ≤ i ≤ k, |H i (θ) -H i (θ * )| < δ/2.
For such θ, using Equation (2.2), we obtain for all

σ ∈ S k , |H i ((σQ, f σ(1) , . . . , f σ(k) )) -H σ(i) (θ * )| < δ/2
so that using Equations (2.3), (2.24) and that

H 1 (θ) < • • • < H k (θ)
, the permutation σ is equal to the identity permutation. Thus Equation (2.23) holds with η = min(η 1 , ε).

Proof of Theorem 2.8

To prove Theorem 2.8 we need the following lemma:

Lemma 2.10. Let ε > 0, for all 0 < ε 1 < 1, N > 0, 1 ≤ j < N and c > 0 such that

0 < ε 1 k N c(c -ε 1 ) < ε 3 and 2(1 -q) N +1-j q + (1 -q) N +1-j < ε 3 . If p θ * N (Y 1:N ) > c (2.25)
then for all n > N ,

θ ∈ Θ(q) : p θ * N -p θ N l 1 < ε 1 , ∃σ ∈ S k , max 1≤i≤k |µ θ σ(i) -µ * i | < ε 1 , σQ -Q * < ε 1 , max 1≤i≤k f σ(i) -f * i l 1 < ε 1 ⊂ θ ∈ Θ(q) : ∃σ ∈ S k , max 1≤l≤k P θ * (X j = l | Y 1:n ) -P θ (X j = σ(l) | Y 1:n ) < ε .
Proof of Lemma 2.10. Let θ ∈ Θ(q) such that

p θ * N -p θ N l 1 < ε 1
and there exists σ ∈ S k such that

max 1≤i≤k |µ θ σ(i) -µ * i | < ε 1 , σQ -Q * < ε 1 , max 1≤i≤k f σ(i) -f * i l 1 < ε 1 . (2.26) To bound |P θ * (X j = l | Y 1:n ) -P θ (X j = l | Y 1:n )|, we now prove that it is su cient to bound |P θ * (X j = l | Y 1:N ) -P θ (X j = σ(l) | Y 1:N )|
with N < n a well chosen xed integer thanks to
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the exponential forgetting of the HMM. Let 1 ≤ a ≤ k,

|P θ * (X j = l | Y 1:n ) -P θ (X j = σ(l) | Y 1:n )| ≤ A l θ * + |P θ * (X j = l | Y 1:N ) -P θ (X j = σ(l) | Y 1:N )| + A σ(l) θ , (2.27) 
where for θ ∈ {θ, θ * } and for all 1 ≤ l ≤ k, 

P θ(X N +1 = b|X j = m, Y j:N ) -P θ(X N +1 = b|X j = ω, Y j:N ) ≤ (1 -q) N +1-j ≤ (1 -q) N +1-j P θ(X N +1 = b|X j = ω, Y j:N ) q
so that for θ ∈ {θ, θ * } and for all 1 ≤ l ≤ k

A l θ ≤
2(1 -q) N +1-j q + (1 -q) N +1-j .

(2.28) Moreover, using (2.25) and (2.26), for all

1 ≤ i, j ≤ k, Y 1:N ∈ N N , µ θ σ(i) ≥ µ * i -ε 1 , Q σ(i),σ(j) ≥ Q * i,j -ε 1 , f σ(a i ) (Y i ) ≥ f * a i (Y i ) -ε 1 and p θ N (Y 1:N ) ≤ p θ * N (Y 1:N )(1 + ε 1 /c),
we obtain

P θ * (X j = l | Y 1:N ) -P θ (X j = σ(l) | Y 1:N ) = a 1:j-1 ,a j+1:N µ * a 1 Q * a 1 ,a 2 • • Q * a j-1 ,l Q * l,a j+1 • • Q * a N -1 ,a N f * a 1 (Y 1 ) • •f * l (Y j ) • •f * a N (Y N ) p θ * N (Y 1:N ) - a 1:j-1 ,a j+1:N µ θ σ(a 1 ) Q σ(a 1 ),σ(a 2 ) . . . Q σ(a N -1 ),σ(a N ) f σ(a 1 ) (Y 1 ) . . . f σ(a N ) (Y N ) p θ N (Y 1:N )
where a j = l as in the following,

≤ (1 + ε 1 /c) a 1:j-1 ,a j+1:N µ * a 1 . . . f * a N (Y N ) - a 1:j-1 ,a j+1:N µ θ σ(a 1 ) . . . f σ(a N ) (Y N ) (1 + ε 1 /c)p θ * N (Y 1:N ) ≤ (1 + ε 1 /c) a 1:j-1 ,a j+1:N µ * a 1 . . . f * a N (Y N ) - a 1:j-1 ,a j+1:N (µ * a 1 -ε 1 ) . . . (f * a N (Y N ) -ε 1 ) c + ε 1 .
Expanding the product in the second sum, the numerator becomes a sum where each term is bounded by (ε 1 /c)p θ * N (Y 1:N ). Indeed the rst term is equal to

a 1:j-1 ,a j+1:N µ * a 1 . . . f * a N (Y N ) = p θ * N (Y 1:N )
which gives (ε 1 /c)p θ * N (Y 1:N ) when subtracted to the rst sum. The other terms are a product of a positive power of ε 1 and µ * i , Q * i,j or f * a i (Y i ) which are all bounded by 1. Thus they are bounded by ε 1 ≤ (ε 1 /c)p θ * N (Y 1:N ). Moreover there are k N terms so that

P θ * (X j = l | Y 1:N ) -P θ (X j = σ(l) | Y 1:N ) ≤ ε 1 k N c(c + ε 1 )
.

Similarly P θ (X j = σ(l) | Y 1:N ) -P θ * (X j = l | Y 1:N ) ≤ ε 1 k N c(c -ε 1 ) so that P θ * (X j = l | Y 1:N ) -P θ (X j = σ(l) | Y 1:N ) ≤ ε 1 k N c(c -ε 1 )
.

(2.29)

Combining Equations (2.27), (2.28) and (2.29), we obtain

|P θ * (X j = l | Y 1:n ) -P θ (X j = σ(l) | Y 1:n )| ≤ 2 2(1 -q) N +1-j q + (1 -q) N +1-j + ε 1 k N c(c -ε 1 ) < ε.
We prove Theorem 2.8 for m = 1, one may easily generalizes the proof. Let β > 0, j > 0 and
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ε > 0, we x N and c > 0 such that

2(1 -q) N +1-j q + (1 -q) N +1-j < ε 3 and P θ * p θ * N (Y 1:N ) > c > 1 -β (2.30)
then we choose ε 1 such that

0 < ε 1 2 2N k N c(c -ε 1 ) < ε 3 . (2.31)
Posterior consistency for the marginal distribution in l 1 and for all components of the parameter i.e. Theorems 2.1 and 2.3 imply that there exists M such that P θ * -a.s., for all n ≥ M ,

π {θ : D N (θ, θ * ) < ε 1 } Y 1:n > √ 1 -β + 1 2 (2.32)
and

π {θ : ∃σ ∈ S k , max 1≤i≤k |µ σ(i) -µ * i | < ε 1 , σQ -Q * < ε 1 , max 1≤i≤k f σ(i) -f * i l 1 } < ε 1 Y 1:n > √ 1 -β + 1 2 .
(2.33)

Using Lemma 2.10 and combining (2.30), (2.31), (2.32) and (2.33), we obtain for all n ≥ max(N, M ),

E θ * π θ : ∃σ ∈ S k , max 1≤l≤k P θ * (X j = l|Y 1:n ) -P θ (X j = σ(l)|Y 1:n ) < ε |Y 1:n ≥ E θ * 1 p θ * N (Y 1:N )>c π θ : ∃σ, max 1≤l≤k P θ * (X j = l|Y 1:n ) -P θ (X j = σ(l)|Y 1:n ) < ε Y 1:n ≥ 1 -β.
Then

E θ * π θ : ∃σ ∈ S k , max 1≤l≤k P θ * (X j = l|Y 1:n ) -P θ (X j = σ(l)|Y 1:n ) < ε |Y 1:n
tends to 1, which concludes the proof of Theorem 2.8.

Proof of Proposition 2.9

As under DP (αG 0 ) ⊗k , f i (l) is distributed from Beta(αG 0 (l), α m =l G 0 (m)),

F k +∞ l=1 f * i (l) max 1≤j≤k (-log(f j (l))) (DP (αG 0 )) ⊗k (df ) ≤ +∞ l=1 f * i (l) 1≤j≤k F k (-log(f j (l))) (DP (αG 0 )) ⊗k (df ) ≤ +∞ l=1 f * i (l) Γ(α) Γ(αG 0 (l))Γ α m =l G 0 (m) 1 0 -log(x)x αG 0 (l)-1 (1 -x) α m =l G 0 (m)-1 λ(dx). (2.34)
On [1/2, 1], -log(x)x αG 0 (l)-1 ≤ 2 log(2), so that there exists a constant C 1 which does not depend on l such that

1 1/2 -log(x)x αG 0 (l)-1 (1 -x) α m =l G 0 (m)-1 λ(dx) ≤ C 1 .
(2.35)

On [0, 1/2], (1-x) α m =l G 0 (m)
)-1 ≤ 2, so that there exists a constant C 2 which does not depend on l such that

1/2 0 -log(x)x αG 0 (l)-1 (1 -x) α m =l G 0 (m)-1 λ(dx) ≤ C 2 (αG 0 (l)) 2 .
(2.36)

Moreover for all 0 < δ < 1,

1 δ ≤ Γ(δ) = Γ(δ + 1) δ ≤ 2 δ .
(2.37) By combining Equations (2.34), (2.35), (2.36) and (2.37), for all 1 ≤ i ≤ k,

F k +∞ l=1 f * i (l) max 1≤j≤k (-log(f j (l))) (DP (αG 0 )) ⊗k (df ) +∞ l=1 f * i (l) αG 0 (l)
so that using Assumption (E1.1),

DP (αG 0 ) ⊗k f 1 , . . . , f k : ∀1 ≤ i ≤ k, +∞ l=1 f * i (l) max 1≤j≤k (-log(f j (l))) < +∞ = 1.
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Note that for all ε > 0,

f 1 , . . . , f k : ∀1 ≤ i ≤ k, +∞ l=1 f * i (l) max 1≤j≤k (-log(f j (l))) < +∞ ⊂ N ∈N f 1 , . . . , f k : ∀1 ≤ i ≤ k, +∞ l=N f * i (l) max 1≤j≤k (-log(f j (l))) < ε ,
thus arguing by contradiction, for all ε > 0, there exists L ε such that

DP (αG 0 ) ⊗k f 1 , . . . , f k : ∀1 ≤ i ≤ k, l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) < ε > 0.
Using the tail free property of the Dirichlet process, for all 1 ≤ j ≤ k,

l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) < ε and f j (1) l≤Lε f j (l) , . . . , f j (L ε ) l≤Lε f j (l)
(2.38) are independent given l>Lε f j (l) and (2.38) given l>Lε f j (l) has a Dirichlet distribution with parameter (αG 0 (1), . . . , αG 0 (L ε )). Then for all ε > 0, there exists L ε such that for all δ ∈ (0, 1),

DP (αG 0 ) ⊗k f 1 , . . . , f k : ∀1 ≤ i ≤ k, l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) < ε 2 , ∀l ≤ L ε , |f j (l) -f * j (l)| ≤ cδ > 0 (2.39) where c = min 1≤i≤k min l≤Lε,f * i (l)>0 f * i (l). For all f 1 , . . . , f k such that for all 1 ≤ i, j ≤ k, l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) < ε 2 68 CHAPTER 2: POSTERIOR CONSISTENCY IN NONPARAMETRIC HMMS and for all l ≤ L ε , |f j (l) -f * j (l)| ≤ cδ, l∈N f * i (l) max 1≤j≤k log f * j (l) f j (l) = l≤Lε f * i (l) max 1≤j≤k log f * j (l) f j (l) + l>Lε f * i (l) max 1≤j≤k log(f * j (l)) + l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) ≤ δ 1 -δ + 0 + ε 2 ≤ ε (2.40)
for δ small enough. For such a δ denote

Θ ε = {Q : Q -Q * ≤ ε} × {f 1 , . . . , f k : l>Lε f * i (l) max 1≤j≤k (-log(f j (l))) < ε 2 , ∀l ≤ L ε , |f j (l) -f * j (l)| ≤ cδ, ∀1 ≤ i, j ≤ k}
Using Equation (2.40), (A1.1b) holds. Furthermore (A1.1d) is obviously checked. Under Assumption (E1.1), G 0 (l) > 0 when k i=1 f * i (l) > 0 so that (A1.1c) holds. Using the assumption that Q * is in the support of π Q , (A1.1a) is checked. Then using Equation (2.39), (A1.1) holds and the rst part of Proposition 2.9 follows.

We now prove the second part of Proposition 2.9. We rst give a representation of a discrete Dirichlet process with independent Gamma distributed random variables.

Lemma 2.11 (Ferguson [Fer74]). Let (Z l ) l∈N be independent random variables such that for all l ∈ N, Z l ∼ Γ(αG 0 (l), 1), then L l=1 Z l converges almost surely and its limit has a gamma distribution Γ(α, 1). Moreover denote

f : N → [0, 1] i → f (i) = Z i /( +∞ l=1 Z l )
, then f is distributed from a Dirichlet process DP (αG 0 ).

We assume (A1.1b) i.e. for all ε > 0,

DP (αG 0 ) ⊗k f ∈ F k , ∀i ∈ {1, . . . , k} l∈N f * i (l) max 1≤j≤k log f * j (l) f j (l) < ε > 0. Let ε > 0, de ne F ε as the set of f = (f 1 , . . . , f k ) ∈ F k such that for all 1 ≤ i ≤ k, for all f ∈ F ε , l∈N f * i (l) log f * i (l) f i (l) < ε.
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Then DP (αG 0 ) ⊗k (F ε ) > 0.

Since l f * i (l)(-log f * i (l)) converges, then l f * i (l)(-log f i (l)) converges. Using Lemma 2.11, we can write f i with independent gamma distributed random variables (Z l ) l∈N :

f i (l) = Z l j∈N Z j ,
where Z l ∼ Γ(αG 0 (l), 1).

Then l∈N f * i (l)(-log(Z l )) converges since j∈N Z j is nite al- most surely. Since DP (αG 0 ) ⊗k (F ε ) > 0, for all 1 ≤ i ≤ k with positive probability, l∈N f * i (l)(-log(Z l ))
converges. Using the Kolmogorov 0-1 law and the Three-Series Theorem (see Section 9.7.3 in

Dudley [Dud02]), l∈N f * i (l)(-log(Z l )) converges almost surely and l∈N P(|f * i (l)(-log(Z l ))| > 1) < +∞, (2.41) l∈N E f * i (l)(-log(Z l ))1 |f * i (l)(-log(Z l ))|≤1 < +∞, (2.42) 
l∈N var f * i (l)(-log(Z l ))1 |f * i (l)(-log(Z l ))|≤1 < +∞.
(2.43) Equation (2.41) implies that

+∞ > l∈N P(|f * i (l)(-log(Z l ))| > 1) ≥ l∈N 1 Γ(αG 0 (l)) exp(-1/f * i (l)) 0 x αG 0 (l)-1 e -x dx ≥ l∈N 1 αG 0 (l)Γ(αG 0 (l)) exp -exp -1 f * i (l) - αG 0 (l) f * i (l) l∈N exp - αG 0 (l) f * i (l)
using Equation (2.37). Then 

lim l→∞ f * i (l) G 0 (l) = 0. ( 2 
+∞ > l E f * i (l)(-log(Z l ))1 |f * i (l)(-log(Z l ))|≤1 ≥ l 1 exp(-1/f * i (l)) 1 Γ(αG 0 (l)) f * i (l)(-log(x))x αG 0 (l)-1 e -x dx + exp(1/f * i (l)) 1 1 Γ(αG 0 (l)) f * i (l)(-log(x))x αG 0 (l)-1 e -x dx ≥ l e -1 f * i (l) Γ(αG 0 (l)) 1 exp(-1/f * i (l)) (-log(x))x αG 0 (l)-1 dx - 1 Γ(αG 0 (l)) exp(1/f * i (l)) 1 e -x dx -α + l e -1 f * i (l) α 2 G 2 0 (l)Γ(αG 0 (l)) 1 -exp - αG 0 (l) f * i (l) - αG 0 (l) f * i (l) exp - αG 0 (l) f * i (l) -α + l f * i (l) G 0 (l)
using Equation (2.37) and that

lim l→∞ exp - αG 0 (l) f * i (l) + αG 0 (l) f * i (l) exp - αG 0 (l) f * i (l) = 0
using Equation (2.44). Then

l∈N f * i (l) G 0 (l) < +∞.

Other Proofs

Proof of Proposition 2.5

The proof uses many ideas of Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF].

We now prove that Assumptions (B1.1), (B1.2), (B1.3) and (B1.4) imply (A1.1). A reproduction of the proof of Theorem 3.2. and Lemma 3.1 of Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF] shows that Assumptions (B1.2), (B1.3) and (B1.4) imply that for all ε > 0, for all 1 ≤ j ≤ k there exists a weak neighbourhood V j of a compactly supported probability measure Pj such that for all f j = φ * P j ,

P j ∈ V j , R f * i (y) max 1≤j≤k log f * j (y) f j (y) λ(dy) < ε. (2.45) Let 0 < σ < σ and ζ > 0 be such that for all 1 ≤ j ≤ k Pj ([-ζ, ζ] × [σ, σ]) = 1.
Let δ = σ/2. For all 1 ≤ j ≤ k de ne

U j = P : R×(0,+∞) hdP - R×(0,+∞) hd Pj < ε ,
where h : R × (0, +∞) → [0, 1] is a piecewise a ne continuous function such that h(z, σ) = 1

for all z ∈ [-ζ, ζ] and σ ∈ [σ, σ] and h(z, σ) = 0 for all z ∈ [-ζ -δ, ζ +δ] c and σ ∈ [σ-δ, σ+δ] c .
For all ε > 0, de ne

Θ ε = {Q : Q -Q * < ε} × (V 1 ∩ U 1 ) × • • • × (V k ∩ U k ).
Then for all (Q, φ * P 1 , . . . , φ * P k ) ∈ Θ ε , (A1.1b) is true according to Equation (2.45). In addition, for all y ∈ R,

f j (y) ≥ [-ζ-δ,ζ+δ]×[σ-δ,σ+δ]
φ σ (y -z)P j (dz, dσ)

≥ 1 σ + δ φ σ-δ max(|y -ζ -δ|, |y + ζ + δ|) (1 -ε)
which implies (A1.1c). Moreover using assumption (B1.1), Π P -a.s. there exists C > 0 such that for all 1 ≤ j ≤ k, f j (y) ≤ 1 σ P j (dz, dσ) ≤ C so that (A1.1d) holds. As Θ ε is a product of neighbourhoods of elements in the support of their respective prior, π(Θ ε ) > 0, so (A1.1) is checked. Now we prove that Assumption (B1.5) implies Assumption (A1.2). Let δ > 0. For all a, l, u, κ > 0, such that l < u denote F κ a,l,u = {φ * P : P ((-a, a] × (l, u]) > 1 -κ}. Using Section 4 of Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF], there exist b 0 , b 1 , b 2 only depending on κ such that

log(N (3κ, (F κ a,l,u ) k , d)) ≤ k log(N (3κ, F κ a,l,u , • L 1 (λ) )) ≤ kb 0 b 1 a l + b 2 log u l + 1 . (2.46) Choosing κ = δ 3 * 36l and β < δ 2 kq 2 32lb 0 (b 1 +b 2 )
, Assumption (B1.5) implies that Assumption (A1.2) holds.

Proof of Corollary 2.6

To prove the rst part of Corollary 2.6, we use Theorem 2.

3 because m * 1 < • • • < m * k implies the linear independence of g * (• -m * 1 )λ, . . . , g * (• -m * k )λ.
Then it is su cient to prove that for all ε > 0, there exists η > 0 such that

θ : ∃σ ∈ S k , max 1≤i≤k d w g(• -m σ(i) ), g * (• -m * i ) < η, σQ -Q * < η ⊂ θ : d w (g, g * ) < ε, max 1≤j≤k |m j -m * j | < ε, Q -Q * < ε , (2.47) 
where d w metricizes the weak topology on F. Let ξ n be a sequence of Θ(q) such that for all n there exists σ n ∈ S k such that for all

1 ≤ i ≤ k, d w g n (• -m n σn(i) ), g * (• -m * i ) → 0 and σ n Q n -Q * → 0.
As there exists a nite number of permutation in S k , there exists a subsequence, that we denote again ξ n , of ξ n such that there exists a permutation σ not depending on n such that for all n and for all

1 ≤ i ≤ k, d w g n (• -m n σ(i) ), g * (• -m * i ) → 0 and σQ n -Q * → 0.
Particularly g n (•)λ weakly tends to g * (• -m * σ -1 (1) )λ. As weak convergence implies pointwise convergence of the characteristic functions and for all t ∈ R, )

for all t such that e ity g * (y)λ(dy) = 0. As any characteristic function is uniformly continuous and equal to 1 at 0, there exists α > 0 such that e ity g * (y -m * σ -1 (1) )dλ(y) = 0 for all |t| < α. Thus for all 1 ≤ j ≤ k,

lim n→∞ m n σ(j) = m * j -m * σ -1 (1) . Since 0 = m * 1 < m * 2 < • • • < m * k and 0 = m n 1 < m n 2 < • • • < m n k
then the permutation σ is equal to the identity permutation. Then Equation (2.47) holds and this implies the rst part of Corollary 2.6. In fact we have proved the continuity of

({p ξ l , ξ ∈ Ξ(q), rank(Q) = k}, L 1 ) → (∆ k (0), ) × (R, ||) k × (F, d w ) p ξ l → ξ .
(2.48)

If moreover max 1≤j≤k µ * j > 1 2 and g * is uniformly continuous, if

lim n→∞ D 3 (ξ n , ξ * ) = 0 then lim n→∞ D 1 (ξ n , ξ * ) = 0
and by continuity of the functional de ned in (2.48),

lim n→∞ max 1≤j≤k |µ n j -µ * j | = 0 and lim n→∞ max 1≤j≤k |m n j -m * j | = 0 so that lim n→∞ max 1≤j≤k g * (• -m n j ) -g * (• -m * j ) L 1 (λ) = 0
since g * is uniformly continuous. Using the following inequality proved in the proof of Corollary

1 in Gassiat and Rousseau [GR16] D 1 (ξ n , ξ * ) L 1 ≥ 2 max 1≤j≤k µ * j -1 g n -g * L 1 (λ) -max 1≤j≤k |µ n j -µ * i | -max 1≤j≤k g * (• -m n j ) -g * (• -m * j ) L 1 (λ)
we obtain that lim n→∞ g n -g * L 1 (λ) = 0 which implies the last part of Corollary 2.6.

Proof of Proposition 2.7

As in the proof of Proposition 2.5, many ideas come from Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF]. We rst prove (A1.1) assuming that (B1.1), (B1.2), (B1.3) and (B1.4) are veri ed with

f j (•) = g(• -m j ), 1 ≤ j ≤ k.
With the same ideas of the proof of Theorem 3.2 in Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF], for all ε > 0 there exists a probability measure P on R × (0, +∞) such that there exists 0 < σ < σ and a > 0 satisfying (2.49)

P ((-a, a] × (σ, σ]) = 1 and g * (y -m * i ) max
Using assumption (B1.4) and Equation (2.49), we x C such that

|y|>C g * (y -m * i ) max 1≤j≤k log φ * P (y -m * j ) φ * P (y -m j ) λ(dy) ≤ ε 3 . Let G δ = [-a -δ, a + δ] × [σ -δ, σ + δ], with δ chosen in (0, min( σ 2 , a 2 )].
Let h : R × (0, +∞) → [0, 1] be a piecewise a ne continuous function such that h(z, σ) = 1 on G and h(z, σ) = 0 on

G c δ . Let c = inf σ -δ ≤ σ ≤ σ + δ, |y| ≤ C, |θ| ≤ a + max j |m * j | + δ φ σ (y -θ) .
By Arzelà-Ascoli theorem there exists y 1 , . . . , y I such that for all y ∈ [-C, C] and 1 ≤ j ≤ k,

there exists 1 ≤ i ≤ I such that sup (z,σ)∈G δ φ σ y -m * j -z -φ σ y i -m * j -z < cδ. Let V δ = P : h(z, σ)φ σ (y i -m * j -z)dP (z, σ)- h(z, σ)φ σ (y i -m * j -z)d P (z, σ) < cδ . For all P ∈ V δ , for all m j ∈ [m * j -cσδ √ 2 √ π , m * j + cσδ √ 2 √ π ] and for all 1 ≤ j ≤ k, we get h(z, σ)φ σ (y -m * j -z)dP (z, σ) h(z, σ)φ σ (y -m j -z)d P (z, σ) -1 ≤ 4δ thus |y|≤C g * (y -m * i ) max 1≤j≤k log φ * P (y -m * j ) φ * P (y -m * j ) λ(dy) ≤ |y|≤C g * (y -m * i ) max 1≤j≤k log h(z, σ)φ σ (y -m * j -z)d P (z, σ) h(z, σ)φ σ (y -m * j -z)dP (z, σ) λ(dy) ≤ 4δ 1 -4δ .
Then for δ small enough, for all g = φ * P such that P ∈ V δ ∩ {P :

P (G) > σ σ } = Ṽδ , for all m j ∈ [m * j -cσδ √ 2 √ π , m * j + cσδ √ 2 √ π ] = M δ j and for all 1 ≤ i ≤ k, max 1≤i≤k g * (y -m * i ) max 1≤j≤k log g * (y -m * j ) g(y -m j ) dy < ε, (2.50) moreover, g(y -m i ) ≥ G φ σ (y -m i -z)P (dz, dσ) ≥ σ σ φ σ (max(|y -m i -a|, |y -m i + a|))P (G) ≥ σ σ φ σ (max(|y -m i -a|, |y -m i + a|)) σ σ > 0.
(2.51) Assumption (B1.1) ensures that (A1.1d) holds. Finally for all ε > 0, there exists δ > 0 such that (A1.1) holds with

Θ ε = {Q : Q -Q * < min(ε, q/2)} × M δ 1 × • • • × M δ k × Ṽδ using Equations (2.

50) and (2.51).

We now prove (C1.2) thanks to Assumption (D1.6). Let

F a,l,u,m = [-m, m] k × F a,l,u ,
where F a,l,u = F 2 a,l,u is de ned in the proof of Proposition 2.5. Note that for all (m, φ * P ), ( m, φ * P ) ∈ F a,l,u,m , for all

1 ≤ i ≤ k, φ * P (• -m i ) -φ * P (• -mi ) L 1 (λ) ≤ φ * P (• -m i ) -φ * P (• -mi ) L 1 (λ) + φ * P (•) -φ * P (•) L 1 (λ) .
The second term is dealt with in the proof of Proposition 2.5. As to the rst part,

φ * P (• -m i ) -φ * P (• -mi ) L 1 (λ) ≤ 1 l 2 π |m i -mi |
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then for all κ > 0, a, l, u, m > 0 such that l < u,

N (3κ, F a,l,u,m , d) ≤ 2m lκ + 1 k N (2κ, F a,l,u , • L 1 (λ) ).
For all κ > 0, let

F κ a,l,u,m = [-m, m] k × F κ a,l,u .
Following the ideas of Lemmas 4.1 and 4.2 in Tokdar [START_REF] Tokdar | Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression[END_REF], there exist c 0 , c 1 , c 2 , c 3 only depending on κ such that

log N (κ, F κ a,l,u,m ), d ≤ c 0 c 1 k log m l + c 2 a l + c 3 log u l + 1 ,
so that (D1.6) implies (C1.2) with suitable choices of κ and β.

CHAPTER 3

NONPARAMETRIC HIDDEN MARKOV MODELS WITH FINITE STATE SPACE: POSTERIOR CONCENTRATION RATES

The use of nonparametric hidden Markov models with nite state space is ourishing in practice while few theoretical guarantees are known in this framework. Here, we study asymptotic guarantees for these models in the Bayesian framework. We obtain posterior concentration rates with respect to the L 1 -norm on joint marginal densities of consecutive observations in a general theorem. We apply this theorem to two cases and obtain minimax concentration rates up to logarithmic factor. We consider discrete observations with emission distributions distributed from a Dirichlet process and continuous observations with emission distributions distributed from Dirichlet process mixtures of Gaussian distributions.

Introduction

Hidden Markov models (HMMs) are stochastic processes much used in practice in elds as diverse as genomics, speech recognition, econometrics or climate. A hidden Markov chain is a sequence (X t , Y t ) t∈N where the sequence (X t ) t∈N is a nonobserved Markov chain and the sequence of observations (Y t ) t∈N is a noisy version of the chain (X t ) t∈N . In this chapter we consider the case where the state space of the underlying Markov chain is nite. In this situation, HMMs are often employed to classify dependent data with respect to the hidden states X t , t ∈ N.

Their popularity is due to their tractability. Since their introduction in Baum and Petrie [BP66],

many algorithms have been developed to infer these models. The books Cappé et al. [START_REF] Cappé | Inference in Hidden Markov Models[END_REF],

MacDonald and Zucchini [START_REF] Macdonald | Hidden Markov and other models for discretevalued time series[END_REF] and MacDonald and Zucchini [START_REF]Hidden Markov models for time series: an introduction using R[END_REF] give an overview of this family of models.

Parametric HMMs su er from a lack of robustness so that nonparametric HMMs are used more and more in applications. Indeed two constraints weaken parametric HMMs: the necessary assumption of a bound on the number of states of the Markov chain and the limitations of the parametric modeling of emission distributions (the distributions of an observation Y t given the hidden states X t ). To deal with these issues, HMMs with an in nite countable number of states for the Markov chain are applied in Beal and Krishnamurthy [START_REF] Beal | Gene expression time course clustering with countably in nite hidden Markov models[END_REF] to gene expression time course clustering, Jochmann [START_REF] Jochmann | Modeling US in ation dynamics: a Bayesian nonparametric approach[END_REF] to U.S. in ation dynamics and in Fox et al. [START_REF] Fox | Sharing features among dynamical systems with beta processes[END_REF] to segmentation of visual motion capture data. To handle speaker diarization, Fox et al. [START_REF] Fox | A sticky HDP-HMM with application to speaker diarization[END_REF] proposes a model where the number of states of the Markov chain is not bounded and the emission distributions are not restricted to live in a parametric family. HMMs, where the number of states is known but the emission distributions set is not assumed to be parametric, are used in In the Bayesian nonparametric setting, asymptotic analysis typically takes the following two forms: posterior consistency and posterior concentration rates. The posterior is said to be consistent at a parameter θ * if it concentrates its mass around θ * , when the observations come from θ * and the number of observations increases. Posterior consistency is related to the merging of posterior distributions associated to two prior distributions, see Diaconis and Freedman [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF].

In a nonparametric setup, where it is not feasible to construct a fully subjective prior (on an innite dimensional space), it is a minimal requirement, see Ghosh and R.V. Ramamoorthi [START_REF] Ghosh | Bayesian Nonparametrics[END_REF].

To go further on, one can study the rate at which this concentration occurs, see Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF]. Obtaining a minimax posterior concentration rates is a criterion of optimality. In particular, minimax concentration rates lead to minimax Bayesian estimators Ghosal et al.

[GGV00] and to minimax size of credible regions Ho mann et al. [START_REF] Ho Mann | On adaptive posterior concentration rates[END_REF]. The concentration rate analysis also allows a better understanding of the impact of the prior, see Rousseau [START_REF] Rousseau | On the frequentist properties of Bayesian nonparametric methods[END_REF] for a discussion.

In Bayesian HMMs where the number of states of the Markov chain is known, Vernet [Ver15b] provides assumptions leading to posterior consistency for the L 1 -norm of the marginal density of consecutive observations. Here, we pursue the study of the asymptotic behavior of the posterior distribution in this framework and with the same topology. Namely, we study posterior concentration rates for nonparametric HMMs with respect to the L 1 -norm of the marginal joint density of consecutive observations. We rst give a general theorem relating the posterior concentration rate to the prior and the true model (Theorem 3.1). Then we apply the theorem to di erent setups, where we obtain minimax rates (Section 3.4). To the best of our knowledge, these are the rst results on posterior concentration rates in nonparametric HMMs.

Let us mention the few other asymptotic results we know in the framework of nonparametric HMMs. In the nonparametric frequentist framework with a nite and known number of states, De Castro et al. [DGLar] o ers an oracle inequality for a penalized least-squares estimator of the emission distributions. In the framework of HMMs with an unknown number of states and emission distributions living in a nite-dimensional set, posterior concentration rates are studied in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF]. Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF] proposes asymptotics for the particular case of translated HMMs with nite state space. Finally, convergence with respect to smoothing distributions is studied in De Castro et al. [START_REF] Castro | Consistent estimation of the ltering and marginal smoothing distributions in nonparametric hidden Markov models[END_REF].

Chapter 3 is organized as follows. In Section 3.2, we precise the studied model and the notations.

In Section 3.3, we state general assumptions under which the posterior concentration rate is derived (Theorem 3.1). We have chosen to de ne a set of assumptions as close as possible to those typically obtained in density estimation for i.i.d. models, see Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. The proof of this theorem is given in Section 3.3.2. All the other proofs are postponed to the appendices.

Then the model is completely described by the parameters µ and θ = (Q, f ) where µ ∈ ∆ k and

θ = (Q, f ) ∈ ∆ k k × F k =: Θ. The model can be visualized in Figure 3.1. µ X X X X Y Y Y Y f X f X f X f X Figure 3
.1 -The model Let P µ,θ be the probability distribution of the process (X t , Y t ) t∈N under (µ, θ). Then for any l ∈ N, θ ∈ Θ, initial probability µ, and measurable set A of {1, . . . , k} l × (R d ) l , note that:

P µ,θ ((X 1:l , Y 1:l ) ∈ A) = k x 1 ,...,x l =1 1 (x 1 ,...,x l ,y 1 ,...,y l )∈A µ x 1 Q x 1 ,x 2 . . . Q x l-1 ,x l f x 1 (y 1 ) . . . f x l (y l )λ(dy 1 ) . . . λ(dy l ).
Note that when Q is in ∆ k k (q), with q positive, there exists a unique stationary initial distribution µ Q associated with Q. When µ is not speci ed, the stationary distribution associated with the transition matrix Q is considered in the place of µ. In other words, we de ne P (Q,f ) := P µ Q ,(Q,f ) .

The joint distribution of l consecutive observations ((Y 1 , . . . Y l ) for instance) under the stationary process associated with θ is denoted P θ l . Let p θ l denote the density of P θ l with respect to λ ⊗l . Then,

p θ l (y 1 , . . . , y l ) = k x 1 ,...,x l =1 µ Q x 1 Q x 1 ,x 2 . . . Q x l-1 ,x l f x 1 (y 1 ) . . . f x l (y l ), λ ⊗l a.s..
The log-likelihood for a sequence of observations Y 1:l under a parameter θ is denoted

L θ l := log p θ l (Y 1 , . . . , Y l ) .
The dependency of L θ l with Y 1:l is implicit and can be deduced from the context. Working in the Bayesian framework, we put a prior Π on the set of parameters Θ. We choose a product probability measure

Π = Π Q ⊗ Π (k) f where Π Q is a probability distribution on ∆ k k and Π (k)
f is a probability distribution on F k . To a realization θ from Π, we implicitly associate a stationary initial distribution µ Q . In other words, we generalize Π to a distribution Π on ∆ k × Θ such that under Π and conditionally on θ = (Q, f ), µ = µ Q . Then using the Bayes' theorem, the posterior is expressed by

Π(θ ∈ A|Y 1:n ) = A p θ n (Y 1:n )Π(dθ) Θ p θ n (Y 1:n )Π(dθ)
.

We are interested in the asymptotic behaviour of the posterior that is to say when the number n of observations Y 1:n tends to in nity. For this purpose, we take a frequentist point of view, assuming that the observations come from the true parameters µ * and θ * = (Q * , f * ). We suppose that the true initial distribution µ * is stationary. We also assume that there exists q * > 0 such that

Q * ∈ ∆ k k (q * ). (3.1)
Vernet [Ver15b] shows posterior consistency at θ * under general assumptions. In this chapter, we consider posterior concentration rates at θ * . Recall that the posterior is said to concentrate at rate n , a sequence decreasing to 0, for the loss D(•, •) if there exists a constant M > 0 such that

Π(θ : D(θ, θ * ) ≥ M n |Y 1:n ) = o P θ * (1),
where Z = o P θ * (1) means that Z converges in probability to 0. We choose to study the concentration of the posterior from the density estimation point of view. We compare two parameters θ and θ by computing the L 1 -distance between the joint densities p θ l and p θ l . For two distributions P 1 and P 2 , let p 1 and p 2 be their respective densities with respect to a dominated measure ν. The L 1 -metric is de ned by

p 1 -p 2 L 1 (ν) = |p 1 -p 2 |ν and let KL(p 1 , p 2 ) = p 1 log p 1 p 2 ν
be the Kullback-Leibler divergence between p 1 and p 2 . For an integer l ≥ 1, we use the pseudodistance D l on Θ de ned by

D l (θ, θ) = p θ l -p θ l L 1 (λ ⊗l ) .
We study the posterior rate of concentration with respect to this pseudo-distance D l . On F k , we

use the distance d(•, •) such that for all (f, f ) ∈ (F k ) 2 d(f, f ) = max 1≤i≤k f i -fi L 1 (λ) ,
on R d , d ≥ 2, we use the supremum norm • . For a positive real , a pseudo distance D de ned on a set A, let N ( , A, D) be the covering number that is to say the minimum number of balls of radius (in the pseudo-distance D) needed to cover A. Throughout Chapter 3 the notation means less or equal up to a multiplicative constant which is not important in the context.
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3.3 General Theorem

Assumptions and Main Theorem

In this section, we state the general Theorem 3.1 which gives posterior concentration rates with respect to the D l pseudo-metric. As in Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] for instance, we propose a set of conditions which relates the rate n /q n to the prior and the true model. We apply this theorem to the case of discrete observations in Section 3.4.1 and to the case of continuous observations in Section 3.4.2 where minimax rates are achieved. Now, we enumerate the assumptions of Theorem 3.1. Assumptions (A2) and (B2) concern the prior on the emission distributions Π (k)

f and the vector of the true emission distributions f * . Assumptions (C2) and (D2) involve the prior on transition matrices Π Q and the true transition matrix Q * .

For two given sequences n > 0 and ˜ n tending to 0, such that ˜ n ≤ n for all n, we introduce the sequence u n of positive numbers such that

(i) u n = 1, for all n ∈ N; if ˜ n n -s , for some s < 1/2, (ii) u n = (log(n)) 3/2 , for all n ∈ N; otherwise. (3.2)
We consider the following assumptions (A2) there exist a positive constant C f and a sequence B n of subsets of F k such that

Π (k) f (B n ) exp(-C f n˜ 2 n )
and such that for all f ∈ B n ,

f * i (y) log 2 f * j (y) f j (y) λ(dy) ≤ ˜ 2 n u n , for all 1 ≤ i, j ≤ k, (A2.1)
there exist a set S ⊂ Y and functions f1 , . . . fk , which may depend on f , satisfying

S |f * j (y) -f j (y)| 2 f * j (y) λ(dy) ≤ ˜ 2 n u n , for all 1 ≤ j ≤ k, (A2.2) S c fj (y)λ(dy) ≤ ˜ 2 n , for all 1 ≤ j ≤ k, (A2.3) S c f * j (y)λ(dy) ≤ ˜ 2 n u n , for all 1 ≤ j ≤ k, (A2.4) S f * i (y) max 1≤j≤k log fj (y) f j (y) λ(dy) ≤ ˜ 2 n , for all 1 ≤ i ≤ k, (A2.5) S |f * j (y) -fj (y)| 2 fj (y) λ(dy) ≤ ˜ 2 n .
for all 1 ≤ j ≤ k, (A2.6) (B2) there exist positive constants C and C and a sequence (F n ) n≥1 of subsets of F k such that

Π (k) f (F c n ) = o(exp(-Cn˜ 2 n ))
and

N n 12 , F n , d exp C n 2 n , (C2) there exists a positive constant C Q such that C Q + C f + 2C K < C with C K = 4 + log 2/q * + 10 4 k 2 /q * 5 , Π Q Q : Q -Q * ≤ ˜ n √ u n exp(-C Q n˜ 2 n ), ( 
D2) there exists a sequence q n of (0, 1/k] such that

Π Q ∆ k k ( q n ) c = o(exp(-Cn˜ 2 n )).
Under the above assumptions, we prove that the posterior distribution concentrates at the rate n /q n . Theorem 3.1. Let n ≥ ˜ n > 0 be two sequences tending to 0 such that n˜ 2 n → +∞. Assume (A2), (B2), (C2) and (D2).

Then, for all l ∈ N, there exists a positive constant M such that

Π θ : D l (θ, θ * ) ≥ M n q n Y 1:n = o P θ * (1).
We now discuss Assumptions (A2) to (D2). We have purposely considered assumptions which are as similar as possible to those considered in the set up of density estimation with i.i. 

E θ * (L θ * n -L θ n ) and V ar θ * (L θ * n -L θ n ) is obtained by controlling f * i (y) log f * i (y) f i (y) λ(dy) and f * i (y) log 2 f * i (y) f i (y) λ(dy).
Here

E θ * (L θ * n -L θ n ) n˜ 2 n and V ar θ * (L θ * n -L θ n ) n˜ 2 n log n if f and f * satisfy Assumptions (A2.1)-(A2.6) and Q-Q * ≤ ˜ n / √ u n .
The unintuitive part of (A2) comes from the introduction of fj as an approximation of f * j , which may be di erent from f j in (A2.3), (A2.5) and (A2.6). Indeed, whithout the introduction of ( fj,1≤j≤k , S), the HMM structure of the likelihood would lead to a crude upper bound of For Π (k) f = (Π f ) ⊗k , and many families of individual prior models Π f on the f j 's, the rate obtained by bounding max j KL(f * j , f j ) in the i.i.d. set up will be the same as in our setup. For instance, if Y = [0, 1] and f * is bounded from below and above, a control of

E θ * (L θ * n -L θ n ) of the form n f * i (y) max j log f * j (y) f j (y) λ(
f j -f * j 2 ∞ ≤ ˜ 2 n or f j -f * j 2 2 ≤ ˜ 2
n and f j > c imply (A2.1)-(A2.6). This kind of controls have been derived under (hierarchical) Gaussian process priors or log linear priors as in van der Vaart and van Zanten Assumption (C2) is checked as soon as Π Q admits a positive density with respect to the Lebesgue measure which is continuous at Q * and ˜ n ≥ log(n)/n. The rate n is often equal to ˜ n up to log n, the use of these two di erent rates is usual and allows more exibility. Then the rate n is only determined by the nonparametric part of the model, i.e. Π (k) f and f * , as described above. Following the previous explanation, when Π Q , Π (k) f , f * and Q * are xed, n is speci ed by Assumption (A2) and (B2). This rate n is deteriorated via q n which is set through Assumption (D2). The larger ˜ n is, that is to say the more di cult the estimation of the nonparametric part

(f * with Π (k)
f ) is, the more stringent Assumption (D2) is. To avoid too small q n which leads to deteriorated posterior convergence rate n /q n , one may choose a prior Π Q which is supported on ∆ k k (q) for some 0 < q ≤ q * . More examples of distribution Π Q are given in Section 3.4. In the following section, we give the proof of Theorem 3.1.

Proof of Theorem 3.1

To obtain posterior concentration rates in the framework of HMMs with nite state space, we use the technique of proof of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF]. The key tools of this technique are a control of the prior mass on log-likelihood neighbourhoods of θ * and the existence of certain tests. We use the tests built in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF]. The main di culty of the proof arises from the control of log-likelihood neighbourhoods. These neighbourhoods are controlled thanks to Lemmas 3.2 and 3.3. The proof of these lemmas are based on re nements of results of In Lemma 3.2, we control KL(p θ * n , p θ n ). Its proof is given in Section 3.5.1.

Lemma 3.2. Let 0 < ˜ n be small enough. Assume that θ = (Q, f ) ∈ Θ, is such that Assumptions (A2.1)-(A2.6) hold with u n = 1 for all n ∈ N and

Q -Q * ≤ ˜ n . (3.3) 
Then there exists N > 0 such that for all n ≥ N ,

E θ * (L θ * n -L θ n ) = KL(p θ * n , p θ n ) ≤ C K n˜ 2 n ,
where C K is de ned in Assumption (C2).

As can be seen in the proof, Assumption (A2.1) can be replaced in Lemma 3.2 by the following weaker assumption:

S c f * i (y) max 1≤j≤k log f * j (y) f j (y) λ(dy) ≤ 2˜ 2 n , for all 1 ≤ i ≤ k, (3.4)
which is implied by Assumptions (A2.1) and (A2.4). Note, however, that Assumption (A2.1) is used in the control of the variance

V ar θ * (L θ * n -L θ n ) in Lemma 3.3. Lemma 3.3 gives a control of V ar θ * (L θ * n -L θ n ). It is proved in Appendix 3.5.2.
Lemma 3.3. Let 0 < n be small enough and u n be de ned by Equation (3.2) Assume that θ = (Q, f ) ∈ Θ, is such that Assumptions (A2.1), (A2.2) and (A2.4) hold and

Q -Q * ≤ ˜ n √ u n . (3.5)
Then there exists a positive constant C KL 2 such that for all α ∈ (0, 1) and n ∈ N

V ar θ * (L θ * n -L θ n ) = E θ * log p θ * (Y 1:n ) p θ (Y 1:n ) -E θ * log p θ * (Y 1:n ) p θ (Y 1:n ) 2 ≤ C KL 2 n α ˜ n √ u n 2-α
.

We now give the proof of Theorem 3.1.

Proof of Theorem 3.1. This proof follows the lines of the proof of Theorem 1 of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] with two variants. These di erences come from the tests (see Equations (3.6) and (3.7)) and the control of the Kullback-Leibler neighbourhoods (Equation (3.10)).

Using the tests built in the proof of Theorem 4 in Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF], for all M > 0,

there exists ψ n ∈ [0, 1] such that E θ * (ψ n ) ≤ N n 12 , ∆ k k ( q n ) × F n , D l exp -n 2 n q * 2 k 4 M 2 128l (3.6) and sup θ∈∆ k k ( q n )×Fn D l (θ,θ * )≥M n/q n E θ (1 -ψ n ) ≤ exp - n 2 n k 2 M 2 128l . (3.7) Since D l (θ, θ) ≤ 1≤i≤k |µ Q i -µ Q i | + k(l -1) max 1≤i,j≤k |Q i,j -Qi,j | + ld(f, f ),
we obtain

N n 12 , ∆ k k ( q n ) × F n , D l ≤ 24lk(k -1) n k(l-1) N n 24l , F n , d (3.8) 
which leads to

E θ * (ψ n ) exp(-n 2 n (M 2 C -C )) (3.9)
for some constant C, using Assumption (B2). We replace Equation (8.4) of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] by Equation (3.9). Equation (8.5) of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] is replaced by Equation (3.7).

Let α n be a sequence tending to 0, to be speci ed later. We de ne

B n (θ * ) := θ : KL(p θ * n , p θ n ) ≤ C K n˜ 2 n , V ar θ * (L θ * n -L θ n ) ≤ C KL 2 n α n ˜ n √ u n 2-αn (3.10)
in the place of B n (θ * , ¯ n , 2) in the notation of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF], setting ¯ n = √ C K ˜ n . Using Assumptions (A2) and (C2), and Lemmas 3.2 and 3.3

Π (B n (θ * )) exp(-(C Q + C f )n˜ 2 n ) exp(-Cn˜ 2 n ).
By choosing

(i) α n = 1/ log(n), for all n ∈ N; if ˜ n n -s for some s < 1/2, (ii) α n = log(log(n))/ log(n), for all n ∈ N; otherwise,
and following the lines of the proof of Lemma 10 of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF],

P θ * D n < Π(B n (θ * )) exp(-2C K n˜ 2 n ) = O n(˜ n / √ u n ) 2-αn α n (n˜ 2 n ) 2 = o(1), (3.11) with D n = Bn(θ * ) p θ n (Y 1:n )/p θ * n (Y 1:n )Π(dθ).
Following the lines of the proof of Theorem 1 of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] with the above modi cations, we obtain,

E θ * Π θ ∈ ∆ k k ( q n ) × F n : D l (θ, θ * ) ≥ M n q n Y 1:n = o(1) (3.12)
for M large enough.

This concludes the proof since

E θ * Π((∆ k k ( q n ) × F n ) c |Y 1:n ) = o(1)
using Equation (3.11) and Lemma 1 of Ghosal and van der Vaart [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] with

Π((∆ k k ( q n ) × F n ) c ) = o(exp(-2n¯ 2 n )Π (B n (θ * ))
as soon as C > 2C K + C Q + C f (using Assumptions (B2) and (D2)).

Applications of the main theorem to di erent models and prior distributions

In this section, we apply Theorem 3.1 to di erent priors and di erent classes of emission density functions. In all examples treated in Section 3.4, the prior on emission distributions is chosen to be a product of a distribution Π f on F:

Π (k) f = (Π f ) ⊗k .
(3.13)
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However, Theorem 3.1 can also be applied to other priors such as priors restricted to translated emission density functions, the translation HMM is described in Equation (3.15).

In Section 3.4.1, we consider discrete observations, i.e. Y = N. We assume that the prior Π f on each emission distributions is a Dirichlet process. We compute the rate n obtained with this prior when the true emission distributions have an exponential decay. In Section 3.4.2, the observations are assumed to live in R and the emission distributions are supposed to be absolutely continuous with respect to the Lebesgue measure. We consider a Dirichlet process mixture of Gaussian distributions as a prior Π f on each emission density functions. We compute the rate n obtained with this prior when the emission density functions belong to functional classes of β-Hölder types.

We always assume that (Q2.0) Π Q is absolutely continuous with respect to the Lebesgue measure on

∆ k k with density π Q , π Q (Q * ) > 0 and π Q (Q) = π q (Q 1,• ) . . . π q (Q k,• ), for all Q ∈ ∆ k
k and where Q i,• denotes the i-th row of Q.

In Sections 3.4.1 and 3.4.2, we consider three di erent priors Π Q on transition matrices which corresponds to three di erent decays of π Q near the boundary of ∆ k k :

(Q2.1) exponential tail:

π q (u 1 , . . . , u k ) exp(-α 1 /u 1 ) . . . exp(-α k /u k ),
for all u ∈ ∆ k , for some positive constants α i , 1 ≤ i ≤ k, (Q2.2) exponential of exponential tail:

π q (u 1 , . . . , u k ) exp(-β 1 exp(u -α 1 1 )) . . . exp(-β k exp(u -α k k )),
for all u ∈ ∆ k , for some positive constants α i and

β i , 1 ≤ i ≤ k, (Q2.3) truncated distribution: Π Q (∆ k k (q)) = 1,
for some positive q.

Note that Assumption (Q2.3) implies Assumption (Q2.2) which implies (Q2.1). In Gassiat and

Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF], together with priors of type (Q2.1), more general priors are also considered, since they assume

π q (u 1 , . . . , u k ) u α 1 -1 1 . . . u α k -1 k ,
for all u ∈ ∆ k , for some positive constants α i , 1 ≤ i ≤ k. Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF] show that q n , in Assumption (D2) and Theorem 3.1, is equal to a power of 1/n when the emission distributions belong to a parametric family. We do not consider this type of priors since they lead to deteriorated rates n /q n . Under (Q2.1), Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF] obtain q n equal to a power of 1/(log n) when the emission distributions belong to a parametric family. We obtain the same rate q n in the case of discrete observations and emission distributions with exponential decay (more generally, it would be the case as soon as n = n -1/2 log(n) t for some positive t).

However, in the case of emission distributions absolutely continuous with respect to Lebesgue measure (Section 3.4.2), Assumption (D2) leads to a rate q n at least polynomial in 1/n with priors satisfying (Q2.1). While priors verifying (Q2.2) or (Q2.3) lead to a rate q n equal to a power of 1/ log n as soon as n is a power of n; and thus do not deteriorate the posterior concentration rate (up to log(n)). Note that Assumptions (Q2.0) and (Q2.3) are compatible if and only if q ≤ q * . Thus, the use of a prior verifying (Q2.3) requires a knowledge of a lower bound q * of min 1≤i,j≤k Q * i,j . In Vernet [Ver15b], posterior consistency is derived under Assumption (Q2.3) while weaker conditions on f * and Π (k) f (see Assumptions (A0), (A1) and (A2) in Vernet [Ver15b]) compared to (A2), (B2) and (C2). Here, we manage to obtain posterior concentration rates under Assumptions (Q2.1) and (Q2.2) which are weaker than Assumption (Q2.3) because stronger conditions on Π (k) f and f * are assumed.

Discrete Observations

In this section, we apply Theorem 3.1 to the case of discrete observations so that λ is the count measure on N. HMMs with discrete observations are used in di erent applications, as in Borchers et al. [START_REF] Borchers | Using hidden Markov models to deal with availability bias on line transect surveys[END_REF] for animal abundance estimation, in Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] for gene expression identi cation, or in Linderman et al. [START_REF] Linderman | A nonparametric Bayesian approach to uncovering rat hippocampal population codes during spatial navigation[END_REF] for neural representation of spatial navigation, to cite a few.

In the framework of discrete distribution estimation with i.i.d. observations, Han et al. [START_REF] Han | Minimax estimation of discrete distributions under 1 loss[END_REF] have proved that no rates can be obtained with the L 1 loss without constraint on the considered distributions. Moreover, they obtain a minimax rate proportional to 1/ log n over the set {f ∈

F : i∈N -f (i) log(f (i)) ≤ C}.
Rates of convergence are more widely studied in the case of the L 2 norm, for instance with monotony constraint in Jankowski and Wellner [START_REF] Jankowski | Estimation of a discrete monotone distribution[END_REF], with logconcave constraint in Balabdaoui et al. [START_REF] Balabdaoui | Asymptotics of the discrete log-concave maximum likelihood estimator and related applications[END_REF], with convex constraint in Durot et al. [START_REF] Durot | Least-squares estimation of a convex discrete distribution[END_REF] and with envelope constraint in Boucheron and Gassiat [START_REF] Boucheron | A Bernstein-von Mises theorem for discrete probability distributions[END_REF].

In the nonparametric Bayesian framework, the Dirichlet process is a very popular prior. Here, we consider a Dirichlet process DP (G) on the emission distributions, with G some nite positive measure on N: [START_REF] Canale | Bayesian kernel mixtures for counts[END_REF] propose other priors for discrete observations based on discretization of continuous mixtures of kernels and gives an overview of the priors used in the case of discrete

Π f = DP (G).

Canale and Dunson
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observations.

We rst verify Assumptions (A2), (B2) and (C2). As it can be seen from the proof (see Lemma 3.14 in Appendix 3.5.3), we need a heavy tail condition on G:

(P2) there exists positive constants a ≤ A and α ≥ 2 such that for all 1 ≤ j ≤ k and for all

l ∈ N al -α ≤ G(l) ≤ Al -α .
Here, we consider the following class of discrete distributions which is based on an envelope constraint:

D(m, c, K) = f ∈ F : f (l) ≤ d exp(-cl m ), l≤N -log(f (l)) l N K ,
for all N large enough , (3.14)

where c, K and m are positive constants. We also consider the following assumption linking the tails of the true emission distributions:

(I.2) there exists δ > 0 such that for all N large enough and all

1 ≤ i, j ≤ k, l≥N f * i (l) log 2 f * j (l) exp(-N m (c -δ)).
Under these assumptions, we obtain the following rates ˜ n and n :

Theorem 3.4. Assume there exist positive constants c, K and m such that for all 1 ≤ j ≤ k, f * j ∈ D(m, c, K) and that Assumptions (Q2.0), (I.2) and (P2) hold. Then Assumptions (A2), (B2) and (C2) hold with

˜ n = 1 √ n (log n) t 0 and n = 1 √ n (log n) t ,
where t > 4t 0 and t 0 ≥ max(1/m + 1, K/m)/2.

Theorem 3.4 leads to the following posterior concentration rates ( n /q n ) which are minimax (up to log n):

Corollary 3.5. Assume there exist positive constants c, K and m such that for all 1 ≤ j ≤ k, f * j ∈ D(m, c, K) and that Assumptions (Q2.0), (I.2) and (P2) hold. Moreover suppose that Π Q satis es • (Q2.1), then the posterior concentrates with rate 1 √ n (log n) t+2t 0 ; • (Q2.2), then the posterior concentrates with rate 1 √ n (log n) t ; • (Q2.3), then the posterior concentrates with rate 1 √ n (log n) t ; with t > 4t 0 and t 0 ≥ 1/2 max(1/m + 1, K/m).

Dirichlet Process Mixtures of Gaussian Distributions-Adaptivity to Hölder Function Classes

Dirichlet process mixtures of Gaussian distributions are commonly used to model densities on R or R d . In particular, there exist e cient algorithms to sample from the posterior distribution in the i.i.d. framework. In the translation HMM: We assume that the reference measure λ is the Lebesgue measure on R. We also assume that the prior on F k is a product of Dirichlet process mixture of Gaussian distributions:

Y t = m Xt + t , ( 3 
Y t |X t = j ∼ f j , f j = φ σ (• -µ)dP j (µ), P j i.i.d. ∼ DP (G), for all 1 ≤ j ≤ k, σ ∼ π σ λ,
where φ σ is the Gaussian density function with variance σ 2 and mean zero, DP (G) is the Dirichlet process with nite positive base measure G and π σ is a distribution on R.

We de ne the same functional classes as in Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF]:

P(β, ḡ, γ) := f ∈ F : log f is locally β-Hölder with derivatives g m = (log f ) (m) and |g β (y) -g β (x)| ≤ r!ḡ(y)|y -x| β-β , as soon as |x -y| ≤ γ (3.16)
where β > 0, ḡ is a polynomial function, γ > 0 and β is the largest integer smaller than β.

We also consider the following tail conditions:

(T2.1) there exist positive constants M 0 , τ 0 , γ 0 such that for all 1 ≤ i ≤ k and all y ∈ R

f * i (y) ≤ M 0 exp(-τ 0 |y| γ 0 ),

APPLICATIONS OF THE MAIN THEOREM TO DIFFERENT MODELS AND PRIOR DISTRIBUTIONS 93

(T2.2) for all 1 ≤ i, j ≤ k there exist constants T i,j , M i,j , τ i,j , γ i,j < γ 0 such that

f * i (y) ≤ f * j (y)M i,j exp(τ i,j |y| γ i,j ), |y| ≥ T i,j , (T2.3) for all 1 ≤ i ≤ k, f * i is positive and there exist c i > 0, y m i < y M i such that f * i is nonde- creasing on (-∞, y m i ), nonincreasing on (y M i , +∞) and f * i (y) ≥ c i for y ∈ (y m i , y M i ).
Assumptions (T2.1) and (T2.3) are the same tail assumptions as those used in Kruijer et al.

[KRV10]. The new Assumption (T2.2) links the tail of each emission distributions.

We now describe the assumptions concerning the prior on the emission distributions:

(G2.1) G([-y, y] c ) exp(-C 1 y a 1
) for all su ciently large y > 0, for some positive constant a 1 , (S2.1) Π σ (σ ≤ x) exp(-C 2 x -a 2 ) for all su ciently small x > 0, for some positive constant

a 2 , (S2.2) Π σ (σ > x)
x -a 3 for all su ciently large x > 0, for some positive constant a 3 , (S2.3) there exists a 6 ≤ 1 such that

Π σ (x ≤ σ ≤ x(1 + s)) x -a 4 s a 5 exp(-C 3 x -a 6 )
for all s ∈ (0, 1), su ciently small x > 0, for some positive constants a 4 , a 5 and a 6 .

The gamma and Gaussian distributions satisfy Assumption (G2.1). The inverse gamma distribution veri es (S2.1), (S2.2) and (S2.3).

Theorem 3.6. Assume that there exist β, ḡ and γ such that for all 1 ≤ j ≤ k, f * j ∈ P(β, ḡ, γ) and Assumptions (Q2.0), (T2.1)-(T2.3), (G2.1) and (S2.1)-(S2.3) hold.

Then Assumptions (A2), (B2) and (C2) hold with

˜ n = n -β 2β+1 log(n) t 0 and n = n -β 2β+1 log(n) t ,
(3.17)

where t > t 0 ≥ (2 + 2/γ 0 + 1/β)/(1/β + 2).
The proof of Theorem 3.6 is given in Appendix 3.5.4. Using Theorem 3.1 and 3.6, we directly deduce posterior rate of convergence under the Assumptions of Theorem 3.6 and the di erent types of priors Π Q .

Corollary 3.7. Assume that there exist β, ḡ and γ such that for all 1 ≤ j ≤ k, f * j ∈ P(β, ḡ, γ) and that Assumptions (Q2.0), (T2.1)-(T2.3), (G2.1) and (S2.1)-(S2.3) hold. Moreover suppose that Π Q satis es • (Q2.1), then the posterior concentrates with rate n • (Q2.2), then the posterior concentrates with rate n -β 2β+1 (log n) t+1/(max 1≤i≤k α i ) ; • (Q2.3), then the posterior concentrates with rate n

-β 2β+1 (log n) t ; with t > (2 + 2/γ 0 + 1/β)/(1/β + 2).
The minimax rate, with respect to D l in the HMM framework for emission density functions belonging to functional classes of β-Hölder type, is larger than n -β/(2β+1) . Indeed with a hidden Markov chain

(X t , Y t ) distributed from a parameter θ = (Q, f ) such that Q i,j = 1/k and f i = f 1
for all 1 ≤ i, j ≤ k, the observations (Y t ) are i.i.d. from f 1 λ. Thus, priors satisfying (Q2.0), (T2.1)-(T2.3), (G2.1), (S2.1)-(S2.3) and (Q2.2) lead to minimax rates (up to log n). As these priors do not depend on the regularity of the functional class considered, they ensure adaptive Bayesian density estimation in the framework of HMMs. First denote = ˜ n . Using Assumptions (3.1) and (3.3), there exists q > 0 such that for all 1 ≤ i, j ≤ k, Q * i,j ≥ q and Q i,j ≥ q, more precisely, q can be chosen equal to q * /2 as soon as n is large enough. Let q θ,Y 1:t-1 t be the conditional density function of Y t given Y 1:t-1 with respect to λ:

Proofs

q θ,Y 1:t-1 t = k i=1 f i (•)Q θ,Y 1:t-1 t,i , where Q µ,θ,Y 1:t-1 t,i = P θ (X t = i|Y 1:t-1 , X 1 ∼ µ) , where t ≥ 1, 1 ≤ i ≤ k, µ ∈ ∆ k . When µ is not speci ed (Q θ,Y 1:t-1 t,i
), the stationary initial probability distribution is considered:

Q θ,Y 1:t-1 t,i = Q µ Q ,θ,Y 1:t-1 t,i . Note that, when µ ∈ ∆ k (q), θ ∈ ∆ k k (q) × F k , Q µ, θ,Y 1:t-1 t,i = k j=1 Q µ, θ,Y 1:t-2 t-1,j Q j,i f j (Y t-1 ) k ι=1 Q µ, θ,Y 1:t-2 t-1,ι f ι (Y t-1 ) ≥ q, (3.18) 3.5 PROOFS 95 for all 1 ≤ i ≤ k, t ≥ 1. KL(p θ * n , p θ n ) = E θ * n t=1 q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y) λ(dy) = E θ * n t=1 S q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y)
λ(dy)

+ E θ * n t=1 S c q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y)
λ(dy) .

(3.19)

Using Equation (3.18), for all 1 ≤ r ≤ k,

q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y) = k i=1 f * i (y)Q θ * ,Y 1:t-1 t,i k i=1 f i (y)Q θ,Y 1:t-1 t,i ≤ k max 1≤j≤k f * j (y) qf r (y) ≤ max 1≤j≤k kf * j (y) qf j (y) (3.20)
then Assumptions (3.4) and (A2.4) lead to

E θ * S c q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y) λ(dy) ≤ log 1 q + 2 2 . (3.21)
We now control the expectation of the third line of Equation (3.19)

E θ * n t=1 S q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) q θ,Y 1:t-1 t (y) λ(dy) ≤ E θ * n t=1 S q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) k i=1 fi (y)Q θ,Y 1:t-1 t,i λ(dy) + E θ * n t=1 S q θ * ,Y 1:t-1 t (y) log k i=1 fi (y)Q θ,Y 1:t-1 t,i q θ,Y 1:t-1 t (y)
λ(dy) .

(3.22)

We control the expectation of the third line of Equation (3.22), using

k i=1 fi (y)Q θ,Y 1:t-1 t,i q θ,Y 1:t-1 t (y) = k i=1 fi (y)Q θ,Y 1:t-1 t,i k i=1 f i (y)Q θ,Y 1:t-1 t,i ≤ max 1≤i≤k fi (y) f i (y)
;

by Lemma 3.8, and Assumption (A2.5), to obtain

E θ * S q θ * ,Y 1:t-1 t (y) log k i=1 fi (y)Q θ,Y 1:t-1 t,i q θ,Y 1:t-1 t (y) λ(dy) ≤ 2 . (3.23)
We bound the expectation of the second line of Equation (3.22), using the inequality recalled at the top of page 1234 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF],

E θ * S q θ * ,Y 1:t-1 t (y) log q θ * ,Y 1:t-1 t (y) k i=1 fi (y)Q θ,Y 1:t-1 t,i λ(dy) ≤ E θ *    S q θ * ,Y 1:t-1 t (y) -k i=1 fi (y)Q θ,Y 1:t-1 t,i 2 k i=1 fi (y)Q θ,Y 1:t-1 t,i λ(dy)    + E θ * S c k i=1 fi (y)Q θ,Y 1:t-1 t,i -q θ * ,Y 1:t-1 t
(y)λ(dy) .

(3.24)

The expectation of the second line of Equation (3.24) is controlled as follows

E θ *    S q θ * ,Y 1:t-1 t (y) -k i=1 fi (y)Q θ,Y 1:t-1 t,i 2 k i=1 fi (y)Q θ,Y 1:t-1 t,i λ(dy)    ≤ 2E θ *    k max 1≤i≤k Q θ * ,Y 1:t-1 t,i -Q θ,Y 1:t-1 t,i 2 q    + 2E θ *    S max 1≤i≤k f * i (y) -fi (y) 2 q fi (y) λ(dy)    ≤ 16k(1 + 2k) q 4 + 1 2 q 2 + 16kρ 2(t-1) q ,
(3.25)

where ρ = (1 -kq)/(1 -(k -1)q) ≤ 1 -q, using Lemma 3.10 and then Assumption (A2.6) and Lemma 3.10. The expectation of the third line of Equation (3.24) is controlled thanks to Assumption (A2.3): 

E θ * S c k i=1 fi (y)Q θ,Y 1:t-1 t,i -q θ * ,Y 1:t-1 t (y)λ(dy) ≤ E θ * S c k i=1 fi (y)Q θ,Y 1:t-1 t,i λ(dy) ≤ max 1≤i≤k S c fi (y)λ(dy) ≤ 2 . ( 3 
i , b i , c i , d i ≥ 0, 1 ≤ i ≤ k, 1≤i≤k a i b i 1≤j≤k c j d j = 1≤i≤k a i /c i * b i /d i * c i d i 1≤j≤k c j d j ≤ max 1≤i≤k a i c i max 1≤j≤k b j d j .
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3.5.2.1 Proof of Lemma 3.3

First denote = ˜ n / √ u n . Using Assumptions (3.1) and (3.5), there exists q > 0 such that for all 1 ≤ i, j ≤ k, Q * i,j ≥ q and Q i,j ≥ q, more precisely, q can be chosen equal to q * /2 as soon as n is large enough. Let V ar be the variance of L θ * n -L θ n :

V ar := E θ * log p θ * n (Y 1:n ) p θ n (Y 1:n ) -E θ * log p θ * n (Y 1:n ) p θ n (Y 1:n ) 2 .
Denoting Z t = log P θ * (Yt|Y 1:t-1 ) P θ (Yt|Y 1:t-1 ) , then

V ar = E θ *   n t=1 Z t -E θ * n t=1 Z t 2   .
We want to bound V ar by Cn (2-α)/2 , for any α > 0. In this purpose, we split the sum in two parts:

V ar ≤ 2 E θ *   n t=1 Z t -E θ * (Z t |Y 1:t-1 ) 2   =S 1 +2 E θ *   n t=1 E θ * (Z t |Y 1:t-1 ) -E θ * (Z t ) 2   =S 2 , (3.27)
S 1 is the expectation of the square of a sum of martingale increments, for which the covariances are zero so that only n terms remain. S 2 is further controlled using the exponential forgetting of Markov chain. First, we control S 1 :

S 1 = n t=1 E θ * Z t -E θ * (Z t |Y 1:t-1 ) 2 + 2 1≤r<t≤n E θ * Z r -E θ * (Z r |Y 1:r-1 ) E θ * Z t -E θ * (Z t |Y 1:t-1 )|Y 1:t-1 ≤ n t=1 E θ * Z 2 t (3.28)
using that

E θ * (E θ * (Z t |Y 1:t-1 ) 2 ) = E θ * E θ * (E θ * (Z t |Y 1:t-1 ) 2 |Y 1:t-1 ≤ E θ * (Z 2 t ).
As to S 2 :

S 2 = n t=1 E θ * E θ * (Z t |Y 1:t-1 ) -E θ * (Z t ) 2 + 2 1≤r<t≤n E θ * E θ * (Z r |Y 1:r-1 ) -E θ * (Z r ) E θ * E θ * (Z t |Y 1:t-1 ) -E θ * (Z t )|Y 1:r-1 ≤ n t=1 E θ * (Z 2 t ) + 2 1≤r<t≤n E θ * (Z 2 r ) E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 , (3.29)
using that

E θ * (E θ * (Z t |Y 1:t-1 ) 2 ) ≤ E θ * (Z 2 t ). (3.30)
and Cauchy-Schwarz inequality to bound the second term.

Combining (3.27), (3.28) et (3.29), we obtain

V ar ≤ 4 n t=1 E θ * Z 2 t + 4 1≤r<t≤n E θ * (Z 2 r ) E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 . (3.31)
Then using Lemmas 3.9 and 3.11,

V ar ≤ 4 16 q(1 -ρ 2 ) + Cn 2 + 16ρ -5α 4 2 + 10 q α/2 1≤r<t≤n 16ρ 2(r-1) q 2 + C 2 1-α/4 ρ α 4 (t-r) . (3.32) Since, 1≤r<t≤n 16ρ 2(r-1) q 2 + C 2 1-α/4 ρ α 4 (t-r) ≤ 2 ρ α/4 1 -ρ α/4 16 q 2 (1 -ρ) + n C 2-α/2 (3.33)
therefore there exists a constant C KL 2 > 0 only depending on k and q * (= 2q) such that

V ar ≤ C KL 2 n α ˜ n √ u n 2-α . 
(3.34)
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* ∈ ∆ k k (q) × F k E θ * (Z 2 t ) ≤ 16ρ 2(t-1) q 2 + 2 max 1≤i≤k f * i (y) max 1≤j≤k log 2 f * j (y) f j (y) λ(dy) + 32 Q -Q * 2 q 4 (1 -ρ) 2 + 32 q 4 (1 -ρ) 2 min   1≤i≤k |f * i (y) -f i (y)| 2 f * i (y) , q 2 k 2 1≤j≤k f * j (y)   λ(dy), (3.35)
with Z t = log P θ * (Yt|Y 1:t-1 )

P θ (Yt|Y 1:t-1 )
and ρ = 1-kq 1-(k-1)q ≤ 1 -q. If moreover Assumptions (A2.1), (A2.4), (A2.6) and (3.5) hold, then

E θ * (Z 2 t ) ≤ 16ρ 2(t-1) q 2 + C ˜ 2 n u n (3.36)
where C ≤ 33(1 + 2k)/q 6 . Proof of Lemma 3.9.

Let Q µ,θ,Y 1:t-1 t,i = P θ (X t = i|Y 1:t-1 , X 1 ∼ µ) , where t ≥ 1, 1 ≤ i ≤ k,
µ ∈ ∆ k and when µ is not speci ed, the stationary initial probability distribution is considered.

Then the conditional density function of Y t given Y 1:t-1 with respect to λ is:

k i=1 f i (•)Q θ,Y 1:t-1 t,i ; so that E θ * Z 2 t = E θ *   log k i=1 f * i (Y t )Q θ * ,Y 1:t-1 t,i k j=1 f j (Y t )Q θ,Y 1:t-1 t,j 2   ≤ 2E θ * max 1≤j≤k log 2 f * j (Y t ) f j (Y t ) + 2 q 2 E θ *     k j=1 |Q θ * ,Y 1:t-1 t,j -Q θ,Y 1:t-1 t,j |   2   (3.37)
using Equation (3.18) and Lemma 3.8.

Combining Equation (3.37) and Lemma 3.10 (Equation (3.39)), we obtain Equation (3.35). Moreover, using Assumption (A2.1), Lemma 3.10. For all θ, θ * ∈ ∆ k k (q) × F k and µ, µ * ∈ ∆ k (q),

E θ * max 1≤j≤k log 2 f * j (Y t ) f j (Y t ) ≤ 2 . (3.38)
E θ *     k j=1 |Q θ * ,Y 1:t-1 t,j -Q θ,Y 1:t-1 t,j |   2   ≤ 8ρ 2(t-1) + 16 Q -Q * 2 q 2 (1 -ρ) 2 + 16 q 2 (1 -ρ) 2 min   1≤i≤k |f * i (y) -f i (y)| 2 f * i (y) , q 2 k 2 1≤j≤k f * j (y)   λ(dy),
(3.39)

with ρ = 1-kq 1-(k-1)q ≤ 1 -q.
If moreover Assumptions (A2.1), (A2.4), (A2.6) and (3.5) hold, then

E θ *     k j=1 |Q θ * ,Y 1:t-1 t,j -Q θ,Y 1:t-1 t,j |   2   ≤ 8ρ 2(t-1) + C ˜ 2 n u n (3.40)
where C ≤ 16(1 + 2k)/q 4 . Proof of Lemma 3.10. We rst control k i=1 |Q

θ * ,Y 1:t-1 t,i -Q µ * ,θ,Y 1:t-1 t,i
|. For this purpose, we are going to use a modi ed version of Proposition 1 of Douc and Matias [START_REF] Douc | Asymptotics of the maximum likelihood estimator for general hidden Markov models[END_REF]. By Proposition 1 of Douc and Matias [START_REF] Douc | Asymptotics of the maximum likelihood estimator for general hidden Markov models[END_REF] and for all θ, θ * in ∆ k k (q) × F k we can control the L 1 -norm between two conditional probabilities of the state t when the initial probabilities are equal. 

k i=1 |Q θ * ,Y 1:t-1 t,i -Q µ * ,θ,Y 1:t-1 t,i | ≤ k j=1 Q (Q θ * ,Y 1 2,• ,Q,f ),Y 2:t-1 t-1,j -Q (Q θ * ,Y 1 2,• ,Q * ,f * ),Y 2:t-1 t-1,j + 1 2 1 -kq 1 -(k -1)q t-1 * k u=1 k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ µ * ) v - k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ * µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ * µ * ) v (3.41) 3.5 PROOFS 101 with A Y,θ i,j 1≤i,j≤k = (Q j,i f j (Y )) 1≤i,j≤k . And k u=1 k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ µ * ) v - k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ * µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ * µ * ) v = k u=1 k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ * µ * -A Y 1 ,θ µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ * µ * ) v - k w=1 k i=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) i,w (A Y 1 ,θ * µ * -A Y 1 ,θ µ * ) w k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ * µ * ) v k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ µ * ) v ≤ 2 k u=1 min k j=1 (A Y t-1 ,θ . . . A Y 2 ,θ ) j,u (A Y 1 ,θ * µ * -A Y 1 ,θ µ * ) u k v=1 (A Y t-1 ,θ . . . A Y 2 ,θ A Y 1 ,θ * µ * ) v , 1 ≤ 2 min max 1≤u≤k k i=1 µ * i |Q i,u f i (Y 1 ) -Q * i,u f * i (Y 1 )| k i=1 µ * i Q * i,u f * i (Y 1 ) , k ≤ 2 Q -Q * q + min (1 -(k -1)q) q k i=1 |f * i (Y 1 ) -f i (Y 1 )|µ * i k j=1 f * j (Y 1 )µ *
k i=1 |Q θ * ,Y 1:t-1 t,i -Q µ * ,θ,Y 1:t-1 t,i | ≤ k j=1 Q (Q θ * ,Y 1 2,• ,Q,f ),Y 2:t-1 t-1,j -Q (Q θ * ,Y 1 2,• ,Q * ,f * ),Y 2:t-1 t-1,j + 1 -kq 1 -(k -1)q t-1 * Q -Q * q + min (1 -(k -1)q) q k i=1 |f * i (Y 1 ) -f i (Y 1 )|µ * i k j=1 f * j (Y 1 )µ * j , k . (3.43)
By repeating the arguments of Equation (3.42), we show that

k i=1 |Q (Q θ * ,Y 1:t-2 t-1 ,Q * ,f * ),Y 1:t-1 2,i -Q (Q θ * ,Y 1:t-2 t-1 ,Q,f ),Y 1:t-1 2,i | = k i=1 k i=1 A Y t-1 ,θ * j,i Q θ * ,Y 1:t-2 t-1,i k i,u=1 A Y t-1 ,θ * u,i Q θ * ,Y 1:t-2 t-1,i - k i=1 A Y t-1 ,θ j,i Q θ * ,Y 1:t-2 t-1,i k i,u=1 A Y t-1 ,θ u,i Q θ * ,Y 1:t-2 t-1,i ≤ 2 Q -Q * q + min (1 -(k -1)q) q k i=1 |f * i (Y t-1 ) -f i (Y t-1 )|Q θ * ,Y 1:t-2 t-1,i k j=1 f * j (Y t-1 )Q θ * ,Y 1:t-2 t-1,j , k . 
By induction on (3.43),

k i=1 |Q θ * ,Y 1:t-1 t,i -Q µ * ,θ,Y 1:t-1 t,i | ≤ 2 Q -Q * q + min (1 -(k -1)q) q k i=1 |f * i (Y t-1 ) -f i (Y t-1 )|Q θ * ,Y 1:t-2 t-1,i k j=1 f * j (Y t-1 )Q θ * ,Y 1:t-2 t-1,j , k + t u=3 1 -kq 1 -(k -1)q u-1 Q -Q * q + min (1 -(k -1)q) q i |f * i (Y t-u+1 ) -f i (Y t-u+1 )|Q θ * ,Y 1:t-u t-u+1,i j f * j (Y t-u+1 )Q θ * ,Y 1:t-u t-u+1,j , k . 
(3.44)

Using Corollary 1 of Douc et al. [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF], we can control the 1 -norm between two conditional probabilities of the state t for the same parameter θ but di erent initial probabilities: for all

θ ∈ ∆ k k (q) × F k , µ, μ ∈ ∆ k and for all y 1:l-1 ∈ {y : ∃i, f * i (y) > 0} l-1 k i=1 Q µ,θ,y 1:l-1 i,l -Q μ,θ,y 1:l-1 i,l ≤ 2ρ l-1 . (3.45) 
Combining Equations (3.44) and (3.45), we obtain

k i=1 |Q µ * ,θ * ,Y 1:t-1 t,i -Q µ,θ,Y 1:t-1 t,i | ≤ 2 Q -Q * q + min 1 q k i=1 |f * i (Y t-1 ) -f i (Y t-1 )|Q θ * ,Y 1:t-2 t-1,i k j=1 f * j (Y t-1 )Q θ * ,Y 1:t-2 t-1,j , k + 2 t u=3 1 -kq 1 -(k -1)q u-1 Q -Q * q + min 1 q i |f * i (Y t-u+1 ) -f i (Y t-u+1 )|Q θ * ,Y 1:t-u t-u+1,i j f * j (Y t-u+1 )Q θ * ,Y 1:t-u t-u+1,j , k =∆ t-u+1 + 4      1 -kq 1 -(k -1)q =ρ      t-1 ≤ 2 ρ t-1 u=1 ρ u ∆ t-u + 4ρ t-1 .
(3.46)

3.5 PROOFS 103 Then k i=1 |Q µ * ,θ * ,Y 1:t-1 t,i -Q µ,θ,Y 1:t-1 t,i | 2 ≤ 8 ρ 2 t-1 u=1 ρ u t-1 u=1 ρ u ∆ 2 t-u + 8ρ 2(t-1) , (3.47) 
using Cauchy-Schwarz inequality. Moreover, using Lemma 3.8,

E θ * (∆ 2 t-u ) ≤ 2 Q -Q * 2 q 2 + 2 q 2 E θ *   min   i |f * i (Y t-u ) -f i (Y t-u )|Q θ * ,Y 1:t-u-1 t-u,i j f * j (Y t-u )Q θ * ,Y 1:t-u-1 t-u,j 2 , (qk) 2     ≤ 2 Q -Q * 2 q 2 + 2 q 2 E   1≤ι≤k Q θ * ,Y 1:t-u-1 t-u,ι f ι (y) min   i |f * i (y) -f i (y)|Q θ * ,Y 1:t-u-1 t-u,i j f * j (y)Q θ * ,Y 1:t-u-1 t-u,j 2 , (qk) 2   λ(dy)   ≤ 2 Q -Q * 2 q 2 + 2 q 2 min   1≤i≤k |f * i (y) -f i (y)| 2 f * i (y) , q 2 k 2 1≤j≤k f * j (y)   λ(dy). (3.48) 
Combining Equations (3.47) and (3.48), we obtain Equation (3.39) which implies Equation (3.40)

under Assumptions (A2.1), (A2.4), (A2.6) and (3.5). This concludes the proof of Lemma 3.10.

3.5.2.3 Lemma 3.11: Control of E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2
In the following lemma we show that

E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )|
2 geometrically decreases to 0 when t tends to +∞, using the exponential forgetting of the Markov chain.

Lemma 3.11. For all θ, θ * ∈ ∆ k k (q) × F k and α ∈ (0, 2),

E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 ≤ 8E θ * (Z 2 t ) 2-α 2 ρ -5α 2 ρ α 2 (t-r) 2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + 10 q α , (3.49) 
where Z t = log P θ * (Yt|Y 1:t-1 ) P θ (Yt|Y 1:t-1 ) . If moreover Assumption (A2.1) holds then

E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 ≤ 8E θ * (Z 2 t ) 2-α 2 ρ -5α 2 ρ α 2 (t-r) 2 ˜ n √ u n + 10 q α . (3.50)
Proof of Lemma 3.11. Denote

L t = (X t , Y t , Q θ,Y 1:t-1 t,• , Q θ * ,Y 1:t-1 t,•
) for all t ∈ N, then (L t ) t∈N is the extended Markov chain with transition kernel Π θ more precisely described in Douc and Matias [START_REF] Douc | Asymptotics of the maximum likelihood estimator for general hidden Markov models[END_REF] at page 384. Let

h :      {1, . . . , k} × {y : ∃1 ≤ j ≤ k, f * j (y) > 0} × {µ ∈ ∆ k : µ i > q ∀i} 2 -→ R l = (x, y, µ, µ * ) -→ h(l) = log k i=1 µ * i f * i (y) k i=1 µ i f i (y) then h(L t ) = Z t = log p θ * (Y t |Y 1:t-1 ) p θ (Y t |Y 1:t-1 )
and for all r ≤ t and 0 < α < 2,

E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 = E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2-α |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| α ≤ 2 2-α E θ * max(E θ * (|Z t |), E θ * (|Z t ||Y 1:r-1 )) 2-α |E θ * (h(L t )|Y 1:r-1 ) -E θ * (h(L t ))| α . (3.51) 
The following term is geometrically decreasing, using Lemma 3.12

|E θ * (h(L t )|Y 1:r-1 ) -E θ * (h(L t ))| ≤ h(l t )Π t-r θ (l r , dl t ) -h(l t )Π t-r
θ ( lr , dl t ) P θ (dl r |Y 1:r-1 )P θ (d lr ).

(3.52) More precisely, using Equation (3.52) and Lemma 3.12 with m = t-r+1 2 and u = t -r, we obtain

|E θ * (h(L t )|Y 1:r-1 ) -E θ * (h(L t ))| ≤ ρ t-r 2 -5 2 2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + 10 q .
(3.53) Therefore using Equations (3.51) and (3.53),

E θ * |E θ * (Z t |Y 1:r-1 ) -E θ * (Z t )| 2 ≤ 2 2-α E θ * max(E θ * ( |Z t |), E θ * (|Z t ||Y 1:r-1 )) 2-α ρ -5α 2 ρ α 2 (t-r) 2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + 10 q α (3.54)

PROOFS 105

By convexity of the square function and concavity of x → x 2-α 2 , with 0 < α < 2,

E θ * max(E θ * (|Z t |), E θ * (|Z t ||Y 1:r-1 )) 2-α ≤ E θ * max(E θ * (Z 2 t ) 1/2 , E θ * (Z 2 t |Y 1:r-1 ) 1/2 ) 2-α ≤ E θ * (Z 2 t ) 2-α 2 + E θ * (E θ * (Z 2 t |Y 1:r-1 ) 2-α 2 ) ≤ 2E θ * (Z 2 t ) 2-α 2 .
(3.55)

Combining Equations (3.54) and (3.55), we get Equation (3.49). Besides, using Assumption (A2.1)

and Cauchy-Schwarz inequality ,

max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) ≤ (3.56)
so that Equation (3.50) holds.

Lemma 3.12 is an improved version of Proposition 2 of Douc and Matias [START_REF] Douc | Asymptotics of the maximum likelihood estimator for general hidden Markov models[END_REF].

Lemma 3.12. For all integers u > 0, m < u, for all z, z ∈ {1, . . . , k} × {y :

∃1 ≤ j ≤ k, f * j (y) > 0} × {µ ∈ ∆ k : µ i > q ∀i} × {µ ∈ ∆ k : µ i > q ∀i} and for all θ, θ * ∈ ∆ k k (q) × F k , h(l)Π u θ (z, dl) -h(l)Π u θ (z, dl) ≤ 4 q ρ u-1 + 4 q ρ m + 2ρ m-2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + log 1 q (3.57)
where Π θ is the transition kernel of the extended Markov chain

L t = (X t , Y t , Q θ,Y 1:t-1 t,• , Q θ * ,Y 1:t-1 t,•
) and

h :      {1, . . . , k} × {y : ∃1 ≤ j ≤ k, f * j (y) > 0} × {µ ∈ ∆ k : µ i > q ∀i} 2 -→ R l = (x, y, µ, µ * ) -→ h(l) = log k i=1 µ * i f * i (y) k i=1 µ i f i (y)
.

Proof of Lemma 3.12. We improve the result of Proposition 2 of Douc and Matias [DM01] by de ning h on

Z = {1, . . . , k} × {y : ∃1 ≤ j ≤ k, f * j (y) > 0} × {µ ∈ ∆ k : µ i > q ∀i} × {µ ∈ ∆ k : µ i > q ∀i} and using that if z ∈ Z then Π θ * (z, Z) = 1. Then we obtain lip(h, x, y) = 1 q (3.58) since for all (x, y, µ, µ * ), (x, y, μ, μ * ) ∈ Z |h(x, y, µ, µ * ) -h(x, y, μ, μ * )| = log k i=1 µ * i f * i (y) k i=1 µ i f i (y) -log k i=1 μ * i f * i (y) k i=1 μi f i (y) = log k i=1 µ * i f * i (y) k i=1 μ * i f * i (y) -log k i=1 µ i f i (y) k i=1 μi f i (y) ≤ max 1≤i≤k log µ * i μ * i + max 1≤i≤k log µ i μi ≤ 1 q k i=1 |µ * i -μ * i | + k i=1 |µ i -μi | using . Moreover k(h, x, y) = log 1 q + max 1≤i≤k log f * i (y) f i (y) (3.59) because, using Lemma 3.8, |h(x, y, µ, µ * )| = log k i=1 µ * i f * i (y) k i=1 µ i f i (y) ≤ max 1≤i≤k log µ * i f * i (y) µ i f i (y) ≤ max 1≤i≤k log µ * i µ i + max 1≤i≤k log f * i (y) f i (y) ≤ log 1 q + max 1≤i≤k log f * i (y) f i (y) .
Moreover instead of using Proposition 1 of Douc and Matias [START_REF] Douc | Asymptotics of the maximum likelihood estimator for general hidden Markov models[END_REF] we use Corollary 1 of Douc et al. [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF] so that for all θ ∈ ∆ k k (q)×F k , µ, μ ∈ ∆ k (q) and for all y 1:l-1 ∈ {y : ∃i,

f * i (y) > 0} l-1 k i=1 Q µ,θ,y 1:l-1 i,l -Q μ,θ,y 1:l-1 i,l ≤ 2ρ l-1 .
(3.60)

Then, let z = (x, y, µ, µ * ) ∈ Z and z = (x, ỹ, μ, μ * ) ∈ Z using the proof of Proposition 1 of Douc and Matias [DM01]:

3.5 PROOFS 107 | h(l)Π u (z, dl) -h(l)Π u (z, dl)| ≤ h(l)Π u ((x, y, µ, µ * ), dl) -h(l)Π u ((x, ỹ, μ, μ * ), dl) =A + h(l)Π u (x, ỹ, μ, μ * ), dl) -h(l)Π u ((x, ỹ, μ, μ * ), dl) =B (3.61)
where

|A| ≤ k x 2:u+1 =1 lip(h, x u+1 , y u+1 ) k i=1 |Q Q µ,θ,y 1 ,θ,y 2:u u,i -Q Q μ,θ,ỹ 1 ,θ,y 2:u u,i | + k i=1 |Q Q µ * ,θ * ,y 1 ,θ * ,y 2:u u,i -Q Q μ * ,θ * ,ỹ 1 ,θ * ,y 2:u u,i | Q * x,x 2 . . . Q * xu,x u+1 f * x 2 (y 2 ) . . . f * x u+1 (y u+1 )λ(dy 2 ) . . . λ(dy u+1 ) (3.62)
and for any 1 ≤ m ≤ u,

|B| ≤ k x 2:u+1 =1 lip(h, x u+1 , y u+1 ) k i=1 |Q Q μ,θ,ỹ,y 2:u-m u+1-m ,θ,y u-m+1:u m+1,i -Q ν,θ,y u-m+1:u m+1,i | + k i=1 |Q Q μ,θ * ,ỹ,y 2:u-m u+1-m ,θ * ,y u-m+1:u m+1,i -Q ν * ,θ * ,y u-m+1:u m+1,i | Q * x,x 2 -Q * x,x 2 Q * x 2 ,x 3 . . . Q * xu,x u+1 f * x 2 (y 2 ) . . . f * x u+1 (y u+1 )λ(dy 2:u+1 ) + k x m:u+1 =1 k(h, x u+1 , y u+1 ) |Q * m-1 x,xm -Q * m-1 x,xm |Q * xm,x m+1 . . . Q * xu,x u+1 f * xm (y m ) . . . f * x u+1 (y u+1 )λ(dy 2:u+1 ). (3.63) 
Combining Equations (3.58), (3.60) and (3.62),

|A| ≤ 4 q ρ u-1 (3.64)
and using Equations (3.58), (3.59), (3.60) and (3.63) 

|B| ≤ 4 q ρ m + 2ρ m-2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + log 1 q (3.
h(l)Π u (z, dl) -h(l)Π u (z, dl) ≤ 4 q ρ u-1 + 4 q ρ m + 2ρ m-2 max 1≤j≤k f * j (y) max 1≤i≤k log f * i (y) f i (y) λ(dy) + log 1 q .
(3.66)

Proof of Theorem 3.4 (discrete observations)

Assumption (B2) will be checked using Proposition 2 of Shen et al.

[STG13] that we recall here.

Lemma 3.13. [Proposition 2 of Shen et al. [START_REF] Shen | Adaptive Bayesian multivariate density estimation with Dirichlet mixtures[END_REF]] Let H be a positive integer, z and be positive, denote

H H,z, = f = +∞ h=1 π h δ z h : h>H π h < , z h ∈ [0, z], h ≤ H k . Then (DP (G)) ⊗k H c H,z, ≤ kH G(N) G((z, +∞)) + k eG(N) H log 1 H (3.67) N (4 , H H,z, , d) (z + 1) kH -kH . (3.68) 
We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. We rst prove Assumption (A2) with fj = f j , for all 1 ≤ j ≤ k using Lemma 3.14 with

= ˜ 2 n /u n , L = L n = -log ˜ 2 n /(u n log log n) /(c -δ) 1/m and S L = {1, . . . , L}. Using that f * i ∈ D(m, c, K) for all 1 ≤ i ≤ k and Assumption (P2), we get l>Ln f * i (l) (G(l)) 2 l>Ln exp(-cl m )l 2α l>Ln exp(-(c -δ)l m )l m-1 ∞ Ln exp(-(c -δ)x m )x m-1 λ(dx) exp(-(c -δ)L m n ) ˜ 2 n
which proves Equation (3.76). Equation (3.77) is proved similarly. Equation (3.75) follows using Assumption (I.2). Then, we can apply Lemma 3.14 so that 

DP (G) ⊗k f : ∀1 ≤ i, j ≤ k +∞ l=1 f * i (l) log 2 f * j (l) f j (l) ≤ ˜ 2 n u n , Ln l=1 f * j (l) -f j (l) 2 f * j (l) ≤ ˜ 2 n u n , l>Ln f j (l) ≤ ˜ 2 n u n , Ln l=1 f * j (l) -f j (l) 2 f j (l) ≤ ˜ 2 n u n k j=1 ˜ 2 n 4u n (Ln-1+G(N))/2 f * j (l * ) Ln-2 1 3 Ln Ln l=1 G(l)f * j (l) G(l) .
(-log (˜ n )) max(1/m+1,K/m) n˜ 2 n .
Then we choose

˜ n = 1 √ n (log n) t 0 with 2t 0 > max(1/m + 1, K/m
) and Assumption (A2) holds.

Using Assumption (Q2.0), for ˜ n small enough,

Π Q Q : Q -Q * ≤ ˜ n √ u n ≥ π(Q * ) 2 λ Q : Q -Q * ≤ ˜ n √ u n ˜ n √ u n k(k-1)
(3.72) so that Assumption (C2) holds.

Using Lemma 3.13 with z = exp((log n)

2t 0 +t/2 ), H = (n 2 n )/((log n) 2t 0 +t ) and n = (log n) t / √ n, Π(F c n ) (log n) t-2t 0 exp -(α -1)(log n) 2t 0 +t/2 + exp -(t -2t 0 -1)(log n) t-2t 0 (log log n) 2 = o(exp(-C (log n) 2t 0 )) = o(exp(-C n˜ 2 n )), (3.73) if t > 4t 0 . Moreover log N n 12 , F n , D l (log n) 3t/2 + (log n) t-2t 0 +1 n 2 n (3.74)
so that Assumption (B2) holds. This concludes the proof of Theorem 3.4.

Lemma 3.14. Let S L be a subset of {1, . . . , L}. If

max 1≤i,j≤k S c L f * i (l) log 2 (f * j (l)) ≤ 8 (3.75) 110 CHAPTER 3: POSTERIOR CONCENT. RATES IN NONPARAMETRIC HMMS and max 1≤i≤k S c L f * i (l) (G(l)) 2 ≤ 384 log 2 (2)k(G(N)) 2 , (3.76) 
and if there exists δ > 0 such that

max 1≤i≤k l∈S c L f * i (l) ≤ 1+δ , (3.77) 
then, for all l * ∈ S L and all > 0 small enough,

P G := DP (G) ⊗k f : ∀1 ≤ i, j ≤ k +∞ l=1 f * i (l) log 2 f * j (l) f j (l) ≤ , l∈S L f * j (l) -f j (l) 2 f * j (l) ≤ , l∈S c L f j (l) ≤ , l∈S L f * j (l) -f j (l) 2 f j (l) ≤ k j=1 4 L-1+G(N) 1 3 L f * j (l * ) L-2   l∈S L G(l)f * j (l) G(l)   .
Proof of Lemma 3.14. Note that if for all l ∈ S L and for all 1 ≤ j ≤ k,

1 - 4 f * j (l) ≤ f j (l) ≤ 1 + 4 f * j (l)
then for all l ∈ S L ,

log 2 f * j (l) f j (l) ≤ 2 , |f * j (l) -f j (l)| 2 f * j (l) 2 ≤ 4 and |f * j (l) -f j (l)| 2 f j (l) 2 ≤ so that l∈S L f * i (l) log 2 f * j (l) f j (l) ≤ 2 , l∈S L f * j (l) -f j (l) 2 f * j (l) ≤ and l∈S L f * j (l) -f j (l) 2 f j (l) ≤ .
Moreover using Assumptions (3.75) and (3.77) if for all 1 ≤ i, j ≤ k,

l∈S c L f * i (l) log 2 (f j (l)) ≤ 8 , then l∈S c L f * i (l) log 2 f * j (l) f j (l) ≤ 2 l∈S c L f * i (l) log 2 (f * j (l)) + 2 l∈S c L f * i (l) log 2 (f j (l)) ≤ 2 .
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Combining the two last remarks, we obtain

P G ≥ k j=1 DP (G) f j : 1 - 4 f * j (l) ≤ f j (l) ≤ 1 + 4 f * j (l), ∀l ∈ S L , l∈S c L f * i (l) log 2 (f j (l)) ≤ 8 , ∀1 ≤ i ≤ k, and 
l∈S c L f j (l) ≤ ≥ k j=1 DP (G) f j : exp   - 16 max 1≤i≤k l∈S c L f * i (l)   ≤ m∈S c L f j (m) ≤ , l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) ≤ 32 , ∀1 ≤ i ≤ k and 1 - 4 f * j (l) m∈S L f j (m) ≤ f j (l) m∈S L f j (m) ≤ 1 + 4 f * j (l) m∈S L f j (m) , ∀l ∈ S L indeed if exp   - 16 max 1≤i≤k l∈S c L f * i (l)   ≤ m∈S c L f j (m)
and

l∈S c L f * i (l) log 2 f (l) m∈S c L f (m) ≤ 32 , ∀1 ≤ i ≤ k then l∈S c L f * i (l) log 2 (f j (l)) ≤ 2 l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) + 2 l∈S c L f * i (l) log 2   m∈S c L f j (m)   ≤ 8 .
Using the tail free property of the Dirichlet process,

(f j (l)/ m∈S c L f j (m)) l∈S c L , m∈S c L f j (m)
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and (f j (1)/ m∈S L f j (m), . . . , f j (L)/ m∈S L f j (m)) are independent. So that we obtain

P G ≥ exp -16 max 1≤i≤k l∈S c L f * i (l) Γ(G(N)) Γ(G(S L ))Γ(G(S c L )) a G(S c L )-1 (1 -a) G(S L )-1 Dir(G| S L ) x : 1 - 4 f * j (l) 1 -a ≤ x l ≤ 1 + 4 f * j (l) 1 -a , ∀l ∈ S L D(a) λ(da) DP (G| S c L ) l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) < 32 , ∀1 ≤ i ≤ k .
(3.78)

We rst control the integral of Equation (3.78). Note that if

x ∈ V SL := x ∈ ∆ |S L | : x l ∈ V l , ∀l ∈ S L \ {l * }
where for all l ∈ S L \ {l * }

V l := x l : 1 - 16 f * j (l * ) f * j (l) 1 -a ≤ x l ≤ 1 + 16 f * j (l * ) f * j (l) 1 -a and if a ∈ V A :=    l∈S L f * j (l) - 16 f * j (l * ) ≤ 1 -a ≤ l∈S L f * j (l) + 16 f * j (l * )    (3.79) then for all l ∈ S L , 1 - 4 f * j (l) 1 -a ≤ x l ≤ 1 + 4 f * j (l) 1 -a , (3.80) 
where

x l * = 1 -l∈S L ,l =l * x l . So that D(a) ≥ Γ(G(S L )) m∈S L Γ(G(m)) 1 V A (a) V SL   1 - m∈S L \{l * } x m   G(l * )-1 l∈S L \{l * } x G(l)-1 l λ(dx) (3.81) 
where 

  1 - m∈S L \{l * } x m   G(l * )-1 ≥ f * j (l * ) 1 -a G(l * )-1 min (1/2) G(l * )-1 , (3/2) G(l * )-1 (3.82) 3.5 PROOFS 113 and V l x G(l)-1 l λ(dx l ) ≥ f * j (l) 1 -a G(l) f * j (l * ) 4 min (1/2) G(l)-1 , (3/2) G(l)-1 , (3.83 
1 V A (a) Γ(G(S L )) m∈S L Γ(G(m)) 2 3 L 1 2 G(N) 4 (L-1)/2 1 1 -a G(S L )-1 f * j (l * ) L-2 l∈S L f * j (l) G(l) .
So that

exp -16 max 1≤i≤k l∈S c L f * i (l) Γ(G(N)) Γ(G(S L ))Γ(G(S c L )) a G(S c L )-1 (1 -a) G(S L )-1 D(a)λ(da) ≥ Γ(G(N)) G(S c L )Γ(G(S c L )) l∈S L Γ(G(l)) 4 (L-1)/2 2 3 L 1 2 G(N) f * j (l * ) L-2 l∈S L f * j (l) G(l)      min   m∈S c L f * j (m) + 16 f * j (l * ),     G(S c L ) -   max   exp   -/ 16 max 1≤i≤k l∈S c L f * i (l)   , m∈S c L f * j (m) - 16 f * j (l * )     G(S c L )    4 L-1+G(N) 1 3 L f * j (l * ) L-2 l∈S L G(l)f * j (l) G(l) .
(3.84)

using that for all 0 < a < 1,

1 a ≤ Γ(a) ≤ 2 a . (3.85) 
and that under Assumption (3.77), for small enough exp -

-δ/2 4 ≥ exp   - 16 max 1≤i≤k l∈S c L f * i (l)   ≥ 0 ≥ m∈S c L f * j (m) - 16 f * j (l * ).
We now control the last term of Equation (3.78). Using Markov's inequality,

DP (G| S c L )   l∈S c l f * i (l) log 2 f j (l) m∈S c L f j (m) < 32 , ∀1 ≤ i ≤ k   ≥ 1 -DP (G| S c L )   k i=1 l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) > 32   ≥ 1 - E θ * k i=1 l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) 32 .
(3.86)

As f j (l)/ m∈S c L f j (m) is distributed from β G(l), G(S c L \ {l}) , E θ * log 2 f j (l) m∈S c L f j (m) = Γ(G(S c L )) Γ(G(l))Γ(G(S c L \ {l})) 1/2 0 log 2 (x)x G(l)-1 (1 -x) G(S c L \{l})-1 λ(dx) I 1 + 1 1/2 log 2 (x)x G(l)-1 (1 -x) G(S c L \{l})-1 λ(dx) I 2 , (3.87) 
with

I 1 ≤ 2 1/2 0 log 2 (x)x G(l)-1 λ(dx) = 4 log 2 (2)(1/2) G(l) G(l) 3 G(l) 2 2 + G(l) log 2 + 1 log 2 2 ≤ 12 log 2 (2)(G(N)) 2 G(l) 3 , (3.88) 
and

I 2 ≤ 2 log 2 (2) 1 1/2 (1 -x) G(S c L \{l})-1 λ(dx) ≤ 2 log 2 (2) G(S c L \ {l}) . (3.89)
Combining Equations (3.85) (3.87), (3.88) and (3.89), we obtain

E θ *   l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m)   ≤ 24G(N) 2 log 2 (2) l∈S c L f * i (l) (G(l)) 2 .
(3.90) Then using Assumption (3.76) and Equations (3.86) and (3.90) Lemma 3.15. Assume that there exist β, L and γ such that for all 1 ≤ j ≤ k, f * j ∈ P(β, L, γ) and Assumptions (T2.1)-(T2.3) hold. Let σ be a positive real small enough.

DP (G| S c L ) l∈S c L f * i (l) log 2 f j (l) m∈S c L f j (m) < 16k , ∀1 ≤ i ≤ k ≥ 1/2 (3.91)
Then for all 1 ≤ j ≤ k, there exists a discrete measure m j =

N j i=1 µ i j δ z i j supported on {x : f * j (x) ≥ K j σ 2β+H 1 } with H 1 > 2β, K j a constant
small enough and N j = O(σ -1 |log σ| 2/γ 0 ) such that Assumptions (A2.1)-(A2.6) hold with f j = φ σ * m j for all 1 ≤ j ≤ k and σ 2β ≤ ˜ 2 n /u n . Assumptions (A2.1)-(A2.6) also hold with f j = φ σ * mj , for all σ ∈ [σ, σ + σ δ H 1 +2 ] and for all mj = +∞ i=1 μi j δ zi j such that μ1:N j j ∈ B(µ j , σ δ H 1 +2 ) and zi j ∈ B(z i j , σ δ H 1 +2 ), for all 1 ≤ i ≤ N j , where δ ≥ 1 + β/H 1 .

Proof of Lemma 3.15. The proof of Lemma 3.15 is based on Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF]. First notice that f * j ∈ P(β, ḡ, γ) implies that for all integer m ≤ β, |g m j |, where g m j = (log f j ) (m) , is bounded by a polynomial. Then Assumption (T2.1) implies that Assumption (C2) of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF] holds and stronglier implies that there exists δ > 0 such that for all 1 ≤ i, j, ι ≤ k and all integer m ≤ β,

|g m j (x)| (2β+δ)/m f * i (x)λ(dx) < ∞, |ḡ(x)| 2+δ/β f * i (x)λ(dx) < ∞, |g m j (x)| (2β+δ)/m f * i (x) log f * ι (x)λ(dx) < ∞, |ḡ(x)| 2+δ/β f * i (x) log f * ι (x)λ(dx) < ∞.
(3.92)

Let σ > 0, we consider

S = k j=1 A j σ ∩ E j σ ,
where

A j σ = x : |l j m (x)| ≤ Bσ -m |log(σ)| -m/2 , ∀1 ≤ m ≤ β , |ḡ(x)| ≤ Bσ -β |log(σ)| -β/2
and

E j σ = x : f * j (x) ≥ σ H 1 .
Using Assumptions 3.16, (T2.1), (T2.3) and Lemma 2 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF], there exists k density functions h j β such that for all 1 ≤ j ≤ k and all x ∈ S,

h j β * φ σ (x) = f * j (x) 1 + O(R j (x)σ β ) + O((1 + R j (x))σ H ) (3.93)
where R j is de ned as in Equation ( 16) page 1232 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF] and H is as large as we want. Using Assumptions 3.16, (T2.1) and (T2.3), the proof of Lemma 2 of Kruijer et al.

[KRV10] is easily generalizable in this context so that

S c h j β * φ σ (y)λ(dy) σ 2β . (3.94) 
The generalization can be proved using Equation As at page 1251 in Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF], we denote

hβ j = 1 x:h β j (x)≥σ H 2 h β j x:h β j (x)≥σ H 2 h β j dλ
and using Lemma 12 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF], for all 1 ≤ j ≤ k, there exist k discrete distribu-

tions m j = N j i=1 µ i j δ z i j supported in {x : f * j (x) ≥ K j σ 2β+H 1 } for H 1 > 2β, a constant K j small enough and with N j = O(σ -1 |log σ| 2/γ 0 ) such that hβ j * φ σ -m j * φ σ ∞ ≤ σ -1 e -C|log σ| 2/γ 0 , hβ j * φ σ -m j * φ σ 1 ≤ σ -1 e -C |log σ| 2/γ 0 (3.95)
for any C , C large enough.

It is now su cient to prove that Assumptions (A2.1) to (A2.6) hold with

4/(2-α) n = O(σ 2β ), f j = mj * φ σ and fj = h β j * φ σ for all σ ∈ [σ, σ + σ δ H 1 +2
] and all discrete distributions mj =

N j i=1 μi j δ zi j such that μj ∈ B(µ j , σ δ H 1 +2 )∩∆ N j and zj ∈ B(z j , σ δ H 1 +2
) where δ ≥ 1+β/H 1 .
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By Lemma 2 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF],

f j -m j * φ σ 1 σ H 1 +1+β , f j -m j * φ σ ∞ σ H 1 +β , (3.96) 
• Proof of (A2.1). We cut the integral as in the following,

f * i (y) log 2 f * j (y) f j (y) λ(dy) ≤ S f * i (y) log 2 f * j (y) fj (y) λ(dy) + 2 S c f * i (y) log 2 f * j (y) fj (y) λ(dy) + 2 f * i (y) log 2 fj (y) f j (y) λ(dy).
(3.97)

The last integral can be controlled by O(σ 2β ) as in the proof of Lemma 4 of Kruijer et al.

[KRV10].

Using Equation (3.93) we control the rst integral of the bound of Equation (3.97):

S f * i (y) log 2 f * j (y) fj (y) λ(dy) ≤ S f * i (y) |f * j (y) -fj (y)| 2 min( fj (y), f * j (y)) λ(dy) σ 2β
as soon as H is large enough, using Equation (3.93).

Using that f * j fj φ σ * f * j 1 (see Remark 1 and the bottom of page 1252 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF]), we control the second integral in the bound of Equation (3.97),

S c f * i (y) log 2 f * j (y) fj (y) λ(dy) S c f * i (y)λ(dy) + S c f * i (y) log 2 f * j (y) λ(dy)
which is bounded by O(σ 2β ) following the proof of (A2.4).

• Proof of (A2.2). We cut the integral into three parts:

S |f * i (y) -f i (y)| 2 f * i (y) λ(dy) S |f * i (y) -h i β * φ σ (y)| 2 f * i (y)
λ(dy)

I 1 + S |h i β * φ σ (y) -hi β * φ σ (y)| 2 f * i (y)
λ(dy) We now control I 2 using the bound

I 2 + S | hi β * φ σ (y) -f i (y)| 2 f * i (y) λ (dy) 
h i β * φ σ (y) hi β * φ σ (y) -1 = O(σ 2β
), for all y ∈ S of page 1252 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF] and Equation (3.93). Then

I 2 = S |h i β * φ σ (y) -hi β * φ σ (y)| h i β * φ σ (y) 2 h i β * φ σ (y) h i β * φ σ (y) f * i (y) λ(dy) ≤ S (O(σ 2β )) 2 h i β * φ σ (y) 2 λ(dy) σ 2β ,
(3.99) using Equation (3.93). As to I 3 , using Equations (3.95) and (3.96), it is upper-bounded by

2 hβ i * φ σ -m i * φ σ ∞ hβ i * φ σ -m i * φ σ 1 σ H 1 +2 f i -m i * φ σ ∞ f i -m i * φ σ 1 σ H 1 σ 2β (3.100)
when 2 > γ 0 , such a γ 0 can always be chosen (see the rst line of page 1253 of Kruijer et al. [START_REF] Kruijer | Adaptive Bayesian density estimation with location-scale mixtures[END_REF]).

• Proof of (A2.3). Assumption (A2.3) is proved in Equation (3.94).

• Proof of (A2.4). It is su cient to bound

(E i σ ) c f * j (y)λ(dy)
and

(A i σ ) c
f * j (y)λ(dy).

Using Assumption (T2.2), for all 0 < δ < 1

(E i σ ) c f * j (y)λ(dy) ≤ {y:f * j (y)<σ H 1 M j,i exp(τ j,i |y| γ j,i )} f * j (y)λ(dy) ≤ {y:f * j (y)<σ H 1 M j,i exp(τ j,i |y| γ j,i )} (f * j (y)) 1/δ (f * j (y)) 1-1/δ λ(dy) ≤ σ H 1 /δ (M j,i ) 1/δ exp(τ j,i |y| γ j,i /δ)(f * j (y)) 1-1/δ λ(dy) σ 2β
(3.101)

as soon as H 1 > 2β, using Assumption (T2.1). Moreover using (3.92) and Markov inequal- 

f j (y) λ(dy) ≤ S f * i (y) max 1≤j≤k | fj (y) -f j (y)| f j (y) λ(dy) ≤ S f * i (y) max 1≤j≤k fj -f j ∞ σ H 2 -fj -f j ∞ λ(dy) σ 2β

Introduction

We consider in this chapter multidimensional mixture models that describe the probability distribution of a random vector Y with at least three coordinates. The model is a probability mixture of k populations such that, given the population, the coordinates of the random vector are independently distributed. We call emission distributions the conditional distributions of the coordinates and θ the parameter that contains the probability weights of each population. It has been known

for some time that such a model is identi able. An algebraic result by Kruskal Kruskal [Kru77] in 1977 (see also Rhodes Chapter 4 focusses on the semiparametric estimation of the population weights when nothing is known about the emission distributions. This is a semiparametric model, where the nite dimensional parameter of interest is θ and the in nite dimensional nuisance parameters are the emission distributions.

We are in particular interested in constructing optimal procedures for the estimation of θ. Optimal may be understood as e cient, in Le Cam's theory point of view which is about asymptotic distribution and asymptotic (quadratic) loss. See [LY00], Bickel et al. [START_REF] Bickel | E cient and adaptive estimation for semiparametric models[END_REF], van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], van der Vaart [START_REF] Van Der | Semiparametric statistics[END_REF]. The rst question is: is the parametric rate attainable in the semiparametric setting? We know here, for instance using spectral estimates, that the parametric rate is indeed attainable. Then, the loss due to the nuisance parameter may be seen in the e cient Fisher information and e cient estimators are asymptotically equivalent to the empirical process on e cient in uence functions. The next question is thus: how can we construct asymptotically e cient estimators? In the parametric setting, maximum likelihood estimators (m.l.e. 's) do the job, but the semiparametric situation is more di cult, because one has to deal with the unknown nuisance parameter, see Theorems in chapter 24 of van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] where it is necessary to control various bias/approximation terms. The results of Chapter 4 are twofold: rst we obtain asymptotically e cient semiparametric estimators using a likelihood strategy, then we propose a data driven method to perform the strategy in a nite horizon with an oracle inequality as theoretical guarantee.

Let us describe our ideas. For the multidimensional mixture model we consider, we will take advantage of the fact that, for some nite approximations of the nuisance parameter, the model is still valid for the observation process. This may be seen as a no bias situation. Indeed, when approximating the emission densities by step functions, the density of the observation is the multinomial distribution of the indicator function of the sets in the partition. Hence, this is a common and fairly crude modelling of densities by histograms. The no bias property of this modelling implies that, for each of these nite dimensional models, the parameter of interest, i.e. the weights of the mixture, may be e ciently estimated within the nite dimensional model.

Then, under weak assumptions, and using the fact that one can approximate any density on [0, 1] by such histograms based on partitions with radius (i.e. the size of the largest bin) going to zero, it is possible to prove that asymptotically e cient semiparametric estimators may be built using the sequence of m.l.es in a growing (with sample size) sequence of approximation models. In the same way, using Bayesian posteriors in the growing sequence of approximation models, one gets a Bernstein-Von Mises result. One of the important implications of the Bernstein von Mises property is that credible regions, such as highest posterior density regions or credible ellipses are also con dence regions. In the particular case of the semiparametric mixtures, this is of great interest, since the construction of a con dence region is not necessarily trivial. This is our rst main result which is stated in Theorem 4.5: by considering partitions re ned slowly enough when the number of observations increases, we can derive e cient estimation procedures for the parameter of interest θ and in the Bayesian approach for a marginal posterior distribution on θ which satis es the renown Bernstein von Mises property.

We still need however in practice to choose a good partition, for a nite sample size. with nuisance parameters) models, however the theory remains quite limited in cases where the estimation strategy is strongly nonlinear as encountered here.

In our context, the natural risk for θ is the quadratic risk, which can not be written as some risk of the distribution of the observations, which is the basic stone in the theory of model selection based on risk estimation. To propose speci c procedures, one has thus to nd some way to estimate the risk of the estimator in each approximation model, and then select the model with the smallest estimated risk. We propose to use a cross-validation method similar to the one proposed in Brookhart and van der Laan [START_REF] Brookhart | A semiparametric model selection criterion with applications to the marginal structural model[END_REF]. To get theoretical results on such a strategy, the usual basic tool is to write the cross-validation criterion as a function of the empirical distribution which is not possible in our semiparametric setting. We thus divide the sample in nonoverlapping blocks of size a n (n being the the sample size) to de ne the cross validation criterion. This enables us to prove our second main result: Theorem 4.8 which states an oracle inequality on the quadratic risk associated with a sample of size a n observations, and which also leads to criterion to select a n . Simulations indicate moreover that the approach behaves well in practice.

In Section 4.2, we rst describe the model, set the notations and our basic assumptions. We recall the semiparametric tools in Section 4.2.2, where we de ne the score functions and the e cient information matrices. Using the fact that spectral estimators are smooth functions of the empirical distribution of the observations, we obtain that, for large enough approximation model, the e cient Fisher information matrix is full rank, see Proposition 4.1. Intuition says that with better approximation spaces, more is known about all parameters of the distribution, in particular about θ. We prove in Proposition 4.2 that indeed the e cient Fisher information matrix increases when the partition is re ned. We are nally able to prove our main general result in Section 4.2.3.

In Lemma 4.3, we rst prove that semiparametric score functions and semiparametric e cient Fisher information matrix are the limits of the parametric ones obtained in the approximation parametric models. Thus, the fact that the semiparametric e cient Fisher information matrix is full rank is a consequence of previous results and stated in Proposition 4.4. In Theorem 4.5, we prove that it is possible to let the approximation parametric models grow with the sample size so that the sequence of maximum likelihood estimators are asymptotically e cient in the semiparametric model and so that a semiparametric Bernstein -von Mises Theorem holds. In Section 4.3, we rst discuss in Section 4. 

g θ,f (y) = k j=1 θ j 3 c=1 f j,c (y c ), k j=1 θ j = 1, θ j ≥ 0, ∀j (4.1)
Here, k is the number of populations, θ j is the probability to belong to population j for j ≤ k and we set θ = (θ 1 , . . . , θ k-1 ). For each j = 1, . . . , k, f j,c , c = 1, 2, 3, is the density of the c-th coordinate of the observation, given the observation coming from population j and we set f = ((f j,c ) 1≤c≤3 ) 1≤j≤k . We denote by P the true (unknown) distribution of the sequence (Y n ) n≥1 , such that P = P ⊗N θ ,f , dP θ ,f (y) = g θ ,f (y)dy, for some θ ∈ Θ and f ∈ F 3k , where Θ is the set of possible parameters θ and F the set of probability densities on [0, 1].

We approximate the densities by step functions on some partitions of [0, 1]. We assume that we have a collection of partitions I M , M ∈ M, M ⊂ N, so that for each M ∈ M, I M = (I m ) 1≤m≤M is a partition of [0, 1] by borelian sets. It is clear that I m changes when M changes. For each M ∈ M, we now consider the model of possible densities

g θ,ω;M (y) = k j=1 θ j 3 c=1 M m=1 ω j,c,m |I m | 1l Im (y c ) . (4.2)
Here, ω = (((ω j,c,m ) 1≤m≤M -1 ) 1≤c≤3 ) 1≤j≤k , and for each j = 1, . . . , k, each c = 1, 2, 3, each m = 1, . . . , M -1, ω j,c,m ≥ 0, M -1 m=1 ω j,c,m ≤ 1, and we denote ω j,c,M = 1 -M -1 m=1 ω j,c,m . Thus, ω j,c,m may be thought of as

ω j,c,m = 1 0 f j,c 1l Im (u)du.
We denote Ω M the set of possible parameters ω when using model (4.2) with the partition I M .

Let n (θ, ω; M ) be the log-likelihood using model (4.2), that is

n (θ, ω; M ) = n i=1 log g θ,ω;M (Y i ).
It appears as the model of population mixture of multinomial distributions for the observations

U i := ((1l Im (Y i,c
)) 1≤m≤M ) 1≤c≤3 , for which the true (unknown) parameter is given by

θ = θ , ω = ω M :=   1 0 f j,c 1l Im (u)du 1≤m≤M -1 1≤c≤3   1≤j≤k .
We denote, for each M ∈ M, ( θ M , ω M ) the m.l.e., that is a maximizer of n (θ, ω; M ) over

Θ × Ω M .
Let Π M denote a prior distribution, that is a probability distribution on the parameter space

Θ × Ω M . The posterior distribution Π M (•|Y 1 , . . . , Y n ) is de ned as follows. For any borelian subset A of Θ × Ω M , Π M (A|Y 1 , . . . , Y n ) = A n i=1 g θ,ω;M (Y i )dΠ M (θ, ω) Θ×Ω M n i=1 g θ,ω;M (Y i )dΠ M (θ, ω) .
The rst requirement to get consistency of estimators or posterior distributions is the identi ability of the model. We use the following assumption.

(A3.1) • For all j = 1, . . . , k, θ j > 0.

• For all c = 1, 2, 3, the measures f 1,c dy, . . . , f k,c dy are linearly independent.

It is proved in Theorem 8 of Allman et al. [START_REF] Allman | Identi ability of parameters in latent structure models with many observed variables[END_REF] that under (A3.1) identi ability holds up to label switching, that is, if S k is the set of permutations of {1, . . . , k},

∀θ ∈ Θ, ∀f ∈ F 3k , g θ,f = g θ ,f =⇒ ∃σ ∈ S k such that σ θ = θ , σ f = f ,
where σ θ ∈ Θ, σ f ∈ F 3k and σ θ j = θ σ(j) , σ f j,c = f σ(j),c , for all c ∈ {1, 2, 3}, j ∈ {1, , . . . , k}.

We need that identi ability holds for model (4.2) also. It is straightforward that this is the case if the partition is re ned enough. For any partition M , any ω = (ω m ) 1≤m≤M -1 such that ω m ≥ 0, m = 1, . . . , M , with ω m = 1 -M -1 m=1 ω m , denote f ω the step function given by

f ω (y) = M m=1 ω m |I m | 1l Im (y). (4.3)
Introduce the following assumption on the sequence of partitions I M , M ∈ M. , c = 1, 2, 3, j = 1, . . . , k.

We give a formal proof of this fact in Section 4.6.1. Thus, using again the identi ability result in Allman et al. [START_REF] Allman | Identi ability of parameters in latent structure models with many observed variables[END_REF], under (A3.1) and (A3.2), for M large enough,

∀θ ∈ Θ, ∀ω ∈ Ω M , g θ,ω;M = g θ ,ω M ;M =⇒ ∃σ ∈ S k such that σ θ = θ , σ ω = ω * M ,
where σ ω ∈ Ω M and σ ω j,c,m = ω σ(j),c,m;M , for all m ∈ {1, . . . , M }, c ∈ {1, 2, 3}, j ∈ {1, . . . , k}.

E cient In uence Functions and Information

We now study the estimation of θ in model (4.1) and (4.2) from the semiparametric point of view, following Le-Cam's theory. We start with model (4.2) which is easier to analyze since it is a parametric model. For any M , g θ,ω;M (y) is a polynomial function of the parameter (θ, ω) and the model is di erentiable in quadratic mean. Denote by S M = (S θ,M , S ω,M ) the score function for parameter (θ, ω) at point (θ , ω M ) in model (4.2). We have for j = 1, . . . , k -1

S θ,M j = 3 c=1 f ω j,c;M -3 c=1 f ω k,c;M g θ ,ω M ;M (4.4)
and for j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . , M -1

S ω,M j,c,m = θ j 1l Im (yc) |Im| - 1l I M (yc) |I M | c =c f ω j,c ;M g θ ,ω M ;M (4.5)
Denote by J M the Fisher information, that is the variance of S M (Y ):

J M = E S M (Y )S M (Y ) T

Model Selection

In Theorem 4.5, we prove the existence of some increasing partition leading to e ciency. In this section, we propose a method to choose a partition when the number of observations n is xed.

Reasons to Do Model Selection

We rst explain why the choice of the model is important. We have seen in Proposition 4.2 that for a sequence of increasing partitions, the e cient matrix is nondecreasing. This suggests to choose the coarsest partition and thus M n increasing as fast as possible. ) up to label switching, when M tends to in nity.

Proposition 4.6 is proved in Section 4.6.4.

Using Proposition 4.6, we can deduce a constraint (leading to an upper bound in some cases), depending on the considered sequence of partitions (I M ) M ∈M , on sequences M n leading to e ciency. We believe that this constraint is very conservative and leads to very conservative bounds. Corollary 4.7 below is proved in Section 4.6.5.

Corollary 4.7. Suppose Assumption (A3.3), if θ Mn tends to θ * in probability, and θ * is di erent from (1/k, . . . , 1/k), then there exists N > 0 and a constant C > 0 such that for all n ≥ N ,

n 2 max m≤Mn |I m | 2 M n ≥ C.
Moreover, in the particular case where there exists 0 < C 1 ≤ C 2 such that for all n ∈ N and

1 ≤ m ≤ M n , C 1 M n ≤ |I m | ≤ C 2 M n (4.13)
then there exists a constant C > 0 such that,

M n ≤ Cn 2 .
Note that Assumption (4.13) holds as soon as the partition is regular, so that in the two following cases:

• 

Criterion for Model Selection

In this section, we propose a criterion to choose the partition when n is xed. This criterion can be used to choose the size M of a family of partitions but also to choose between two families of partition. With a dataset, we can compute the m.l.e. (with the EM algorithm) when using model (4.2) with partition I, or we can get an estimator of θ using its posterior distribution (the posterior mean or the posterior median for instance). We thus shall index all our estimators by I. Note that the results of this section are valid for any family of estimators ( θI ) and not only for the m.l.e.

Proposition 4.6 and Corollary 4.7 show the necessity to choose an appropriate partition among a collection of partitions I M , M ∈ M. To choose the partition we need a criterion. Since the aim is to get e cient estimators, we choose the quadratic risk as the criterion to minimize. We thus want to minimize over all possible partitions

R n (I) = E θI (Y 1:n ) -θ 2 S k , (4.14) 
where Y 1:n = (Y i ) i≤n and for all θ, θ ∈ Θ,

θ -θ S k = min σ∈S k σ θ -θ 2 = o θ - o θ 2 , (4.15) 
with o θ = σ θ for a permutation σ ∈ S k which orders the components of σ θ, i.e. such that σ θ 1 ≤ . . . ≤ σ θ k . As usual, this criterion cannot be computed in practice (since we do not know θ * ). To do this on data we need for each partition I some estimator C(I) of R n (I).

We want to emphasize here that the choice of the criterion for this problem is not easy. Indeed, the quadratic risk R n (I) cannot be written as the expectation of an excess loss expressed thanks to a , where Θ I = Θ, we see that the approximation error is always zero in our model (and not decreasing as often).

For these reasons, we cannot apply the usual methods and we use instead a variant of usual cross validation technique. the maximum likelihood estimator based on any nite sample size is not unbiased, the following naive estimator of the risk is not appropriate:

C CV 1 (I) = 1 2b n bn b=1 θI (Y B b ) -θI (Y B -b ) 2 S k .
Indeed, using Proposition 4. To address the bad behaviour of C CV 1 (I), we use an idea of Brookhart and van der Laan [START_REF] Brookhart | A semiparametric model selection criterion with applications to the marginal structural model[END_REF].

Choose a ( xed) base partition I 0 (for which the criterion may also be computed) which is believed to be (almost) unbiased. And set

C CV (I) = 1 b n bn b=1 θI (Y B b ) -θI 0 (Y B -b ) 2 S k .
• a n = n 1/3 , b n = n/a n , leading to the criterion C V,1 CV and the choice of P noted P V,1 n ∈ arg min P ≤Pn C V,1 CV (I 2 P ),

• a n = n 2/3 /2 , b n = n/a n , leading to the criterion C V,2 CV and the choice of P noted P V,2 n ∈ arg min P ≤Pn C V,2 CV (I 2 P ),

• a n = n/10 , b n = n/a n , leading to the criterion C V,3 CV and the choice of P noted P V,3 n ∈ arg min P ≤Pn C V,3 CV (I 2 P ) .

Note that for criteria

• C j,1 CV , j ∈ {D, V }, a n is proportional to n 1/3 up to a logarithm term, • C j,2 CV , j ∈ {D, V }, a n is proportional to n 2/3 , • C j,3 CV , j ∈ {D, V }, a n is proportional to n.
We know explain how we choose I 0 . We do not know any unbiased estimate of θ, which would match the Assumption (A3.5.2). Particularly the m.l.e. θ M is unbiased asymptotically but biased with nite n. We propose to choose a m.l.e. θ M 0 with a small M 0 with the idea that when M is small the asymptotic is attained more quickly. Yet, M 0 should not be taken too small neither since otherwise the model would not be identi able. We propose to choose the smallest M 0 = 2 P 0 such that M 0 ≥ k + 2 (equivalently P 0 ≥ log(k + 2)/ log(2)). This lower bound ensures that generically on I 0 the model (4.2) is identi able.

In the simulation part, we work in the repeated setting, that is f * j,1 = f * j,2 = f * j,3 and we assume that we know it, i.e. when we search for the m.l.e. in the model (4.2) associated to M ∈ M, we only search for θ ∈ ∆ k , ω ∈ ∆ k M (and not ω ∈ ∆ 3k M ) assuming that ω j,1,m = ω j,2,m = ω j,3,m = ω j,m . We rst use three di erent true parameters for the simulations, in easy situations. In the three cases, k = 2 and the other parameters are given in Table 4.1. So that, we work with P 0 = 2 and M 0 = 2 2 = 4. is being constant or decreasing, with small increasing values of P , then increasing a lot when P increases, and nally stabilizing to the value θ n -o θ * , which is a consequence of Proposition 4.6. Typically, the variance is constant or decreasing for small increasing values of P , sometimes it then increases, before decreasing to zero (which also is a consequence of Proposition 4.6) when P gets large. Then, the risk, which is the sum of the squared bias and the variance, is usually constant or decreasing for small increasing values of P and then increasing to θ n -o θ * 2 when P gets large. Now we have an idea of the behaviour of the risk R n (I 2 P ), we can check the behaviour of the di erent criteria C CV and C CV 1 . Figure 4.3 gives an idea of the pattern of some criteria for one sequence of observations Y 1:n , distributed from two di erent true parameters, with respect to P . We do not show all the criteria since they all look alike. Moreover the purpose of gure 4.3 is to illustrate the 'bad' behaviour of C CV 1 compared to C CV and not comparing the six criteria (which would anyway be impossible with one sequence of observations Y 1:n ). Note that we do not compare the values but the behaviour. Indeed, the criteria are used to choose the best P by taking the minimum of the criterion so that the values are not important by themselves.

Simu. k p * f * 1,1 dλ = f * 1,2 dλ = f * 1,3 dλ f * 2,1 dλ = f * 2,2 dλ = f * 2,3 dλ 1 2 (0.3, 0.7) N (4/5, 0.07 2 ) truncated to [0, 1] N (1/3, 0.1 2 ) truncated to [0, 1] 2 2 (0.2, 0.8) U((0, 1)) N (2/3, 0.05 2 ) truncated to [0, 1] 3 2 (0.3, 0.7) β(1, 2) β(5, 3) Table 4.1 -
Besides, we know that the criterion C CV is biased by a constant depending on I 0 . As theoretically explained in Section 4.3 and as a consequence of Proposition 4.6, we can see that the criteria C CV 1 are tending to 0 when P increases while it is not the case for the criteria C CV . Looking at Figure 4.3, the behaviour of C CV seems to be correct, we precise this impression with table 4.2.

Finally we compare the six criteria C j,c CV , j ∈ {D, V }, c ∈ {1, 2, 3}, by estimating the squared risk of the associated estimator θ 2 P j,c n , presented in Table 4.2. Di erent sizes n of samples and di erent true parameters are used to simulate the data. We can compare the six squared risk to min P ≤Pn R n (2 P ) and R n (2 P 0 ). The di erent risks are estimated by Monte Carlo by repeating 100 times the estimation. The di erences of performance between the di erent criteria are not obvious. Besides, the performances of all the criteria are satisfactory, compared to min P ≤Pn R n (2 P ). Yet, we suggest not to use criterion C V,1 CV because it is longer than the others, particularly when n is large (because of large b n ). Furthermore, there is a little advantage to criteria C D,1 CV and C V,2 CV . These results con rm that by using M 0 small, the criterion behaves correctly. Moreover, the fact that the choice of I n corresponds to a risk associated with a n < n observations does not seem to be a conservative choice even in a nite horizon (i.e. when n is xed). We were expecting this behaviour asymptotically but not in a nite horizon.

Discussion

Finite mixture models all have the property that, when the approximation space for the emission distributions is that of step functions (histograms), then the model stays true for observation process. Thus there is no approximation bias regarding the parameter that describes the probability distribution of the latent variables. Extension of the results we obtain in this chapter should be possible to other nonparametric nite mixture models. This should also be the case for nonparametric hidden Markov models with translated emission distributions studied in Gassiat and Rousseau [START_REF]Nonparametric nite translation hidden Markov models and extensions[END_REF] 

y) Lebesgue a.e. so that we obtain k j=1 α j f j,c (y) = 0 Lebesgue a.e., contradicting Assumption (A3.1). Fix now M large enough so that the measures f ω 1,c;M dy, . . . , f ω k,c;M dy are linearly independent.

Then, one may use the spectral method described in Anandkumar et al. [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] to get estimators θ sp and ω M ;sp of the parameters θ and ω M from a sample of the multinomial distribution associated to density g θ,ω;M . The estimator uses eigenvalues and eigenvectors computed from the empirical estimator of the multinomial distribution. But in a neighbourhood of θ and ω M , this is a continuously derivative procedure, and since on this neighbourhood, classical deviation probabilities on empirical means hold uniformy, we get easily that for any vector V ∈ R k , there exists K > 0 such that for all c > 0, for large enough n (the size of the sample):

sup θ-θ ≤ c √ n E θ √ n θ sp -θ, V 2 ≤ K.
Now, the multinomial model is di erentiable in quadratic mean, and following the proof of Theorem 4 in Gassiat et al. [START_REF] Gassiat | Revisiting the van Trees inequality in the spirit of Hajek and Le Cam[END_REF] one gets that, if

V T JM V = 0, then lim c→+∞ lim n→+∞ sup θ-θ ≤ c √ n E θ √ n θ sp -θ, V 2 = +∞.
Thus for all V ∈ R k , V T JM V = 0, so that JM is not singular. 

|I M,0 | = (1 -b)|I M |, |I M,1 | = b|I M |, ω (M +1) j,c,M = (1 -α j,c )ω (M ) j,c,M , ω (M +1) j,c,M +1 = α j,c ω (M ) j,c,M .
Then, we may write

g θ,ω;M (y) = k j=1 θ j 3 c=1 M m=1 ω (M ) j,c,m |I m | 1l Im (yc) and g θ,ω;M +1 (y) = k j=1 θ j 3 c=1 M -1 m=1 ω (M +1) j,c,m |I m | 1l Im (yc)      ω (M +1) j,c,M |I M,0 |   1l I M,0 (yc)   ω (M +1) j,c,M +1 |I M,1 |   1l I M,1 (yc)    = k j=1 θ j 3 c=1 M m=1 ω (M ) j,c,m |I m | 1l Im (yc) α j,c b 1l I M,1 (yc) 1 -α j,c 1 -b 1l I M,0 (yc) 
.

Thus, when y c / ∈ I M for c = 1, 2, 3, g θ,ω;M +1 (y) = g θ,ω;M (y) and computations have to take care of y's such that for some c, y c ∈ I M . If we parametrize the model with partition I M +1 using the parameter θ, (ω (M ) j,c,m ), (α j,c ) we get the same e cient Fisher information for θ as when parametrizing with θ, (ω (M +1) j,c,m ) . De ne the function D as the di erence between the gradient of log g θ,ω;M +1 and that of log g θ,ω;M (y) with respect to the parameter θ, (ω (M ) j,c,m ), (α j,c ) : D(y) := ∇ log g θ,ω;M +1 (y) -∇ log g θ,ω;M (y), in particular the last coordinates of ∇ log g θ,ω;M (y) corresponding to the derivatives with respect to (α j,c ) are zero. Let us denote K (M +1) the Fisher information obtained for this new parametrization, that is

K (M +1) = E [(∇ log g θ,ω;M +1 (Y ))(∇ log g θ,ω;M +1 (Y )) T ]. Easy but tedious computations give E [(∇ log g θ,ω;M (Y ))(D(Y )) T ] =     0 • • • 0 . . . . . . . . . 0 • • • 0     , so that K (M +1) = J M 0 0 0 + ∆ where ∆ = E [D(Y )D(Y ) T
] is positive semi-de nite. As said before, JM+1 is obtained from K (M +1) using the similar formula as from J M +1 . Then usual algebra gives that JM+1 ≥ JM since ∆ is positive semi-de nite.

Proof of Lemma 4.3

Proof. Notice rst that under (A3.3), g θ ,f * /g θ ,ω M ,M is positively lower and upper bounded, so that the set of functions which are in L 2 (g θ ,f * dy) is the same as the set of functions which are in L 2 (g θ ,ω M ,M dy). Also, any step function which is constant over I m 1 ×I m 2 ×I m 3 , m 1 , m 2 , m 3 = 1, . . . , M , has the same hilbertian product with g θ ,f * and with g θ ,ω M ,M . Thus, if for any M , A M is the orthogonal projection in L 2 (g θ ,f * dy) onto ṖM , the set of step functions spanned by the functions S ω,M j,c,m , j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . , M -1, then for all j = 1, . . . , k -1,

( ψM ) j = S θ,M j -A M S θ,M j , so that ( ψ) j -( ψM ) j = (S θ ) j -S θ,M j -A M (S θ ) j -S θ,M j + (A M -A) (S θ ) j . (4.18) Notice that using (A3.3), ṖM ⊂ Ṗ (4.19) so that A M A = A M . We then obtain ( ψ) j -( ψM ) j L 2 (g θ ,f dy) ≤ (S θ ) j -S θ,M j L 2 (g θ ,f dy) + (A M A -A) (S θ ) j L 2 (g θ ,f dy) .
Using Assumption (A3.2) and Corollary 1.7 in Chapter 3 of Stein and Shakarchi [SS05], we have that as M tends to in nity, S θ,M j converges to (S θ ) j Lebesgue a.e. Both functions are uniformly upper bounded by the nite constant 1/θ j using Assumption (A.1), so that S θ,M j converges to (S θ ) j in L 2 (g θ ,f (y)dy) as M tends to +∞ and (S θ ) j -S θ,M j L 2 (g θ ,f dy) converges to 0 as M tends to +∞. Using the same argument, for any function S ∈ Ṗ there exists a sequence of functions S M ∈ ṖM that converges to S in L 2 (g θ ,f dy). Let (S M ) M be the sequence of functions converging to A (S θ ) j in L 2 (g θ ,f dy). Since for all M , S M ∈ ṖM , we have that

A M A (S θ ) j -A (S θ ) j L 2 (g θ ,f dy) ≤ S M -A (S θ ) j L 2 (g θ ,f dy)
so that also (A M A -A) (S θ ) j L 2 (g θ ,f dy) converges to 0 as M tends to +∞. We thus obtain that ( ψ) j converges to ( ψM ) j in L 2 (g θ ,f dy). As a consequence, JM converges to J as M tends to +∞. • θ j = #A * j /n is the proportion of observations associated to A * j (then the θ j are almost equal to 1/k),

• for all c ∈ {1, 2, 3} and for all l ≤ M , 

ω j,c,l =      1/#A * j if l -n(c -1) ∈ A * j (i.e. Y l-n(c-1) ∈ I l is associated to the hidden state j), 0 if l -n(c -1) ∈ {1, . . . n} \ A * j (i.e. Y l-n(c-1) ∈ I l is not associated to j), 0 otherwise (i 
S M = (θ, ω) : θ j = #A * j /n, ω j,c,l = 1 l-n(c-1)∈A * j /#A * j , (J 1 , J 2 ) partition of {1, . . . , k}, #J 2 = n -k n/k =: r (A * j ) j≤k partition of {1, . . . , n}, #A * j 1 = n/k =: q, for j 1 ∈ J 1 , #A * j 2 = n/k + 1 =: q + 1, for j 2 ∈ J 2 ,
and n = kq + r, 0 ≤ r ≤ k -1.

Proof. Since the set of parameters is compact and the likelihood is a continuous function of the parameters then the maximum is attained.

If (θ, ω) maximises the likelihood n (•, •; M ), (P1) then, for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ k such that ω j,c,i+n(c-1) > 0 for all c ∈ {1, 2, 3}. Indeed, if there exists 1 ≤ i ≤ n such that for all 1 ≤ j ≤ k, ω j,c,i+n(c-1) = 0 for some

c ∈ {1, 2, 3}, then n (θ, ω; M ) = n i=1 log   k j=1 θ j 3 c=1 ω j,c,i+n(c-1)   + n i=1 log (1/(|I i ||I i+n ||I i+2n |)) constant = -∞.
(P2) and if there exists j, c, i such that ω j,c,i+n(c-1) = 0 and θ j > 0 then ω j,d,i+n(d-1) = 0 for all d.

Indeed otherwise you can give the weight ω j,d,i+n(d-1) , to one of the other ω j,d,s+n(d-1)

for which ω j,e,s+n(e-1) > 0, for all e = d (which exist otherwise take θ j = 0 which would increase the likelihood) and this increases the likelihood.

(P3) and if θ j > 0, then ω j,c,l = 0 if l -n(c -1) / ∈ {1, . . . , n}. Indeed, in this case, there is no observation in I l so that ω j,c,l does not appear in the likelihood and we conclude similarly as the previous point.

Combining all the previous remarks, we know that the maximum can only be attained (and is at least once) in one of the following sets, indexed by J ⊂ {1, . . . , k} which determines the zeros of θ and A j ⊂ {1, . . . , n}, j ≤ k, which determine the zeros of ω:

S J,A 1 ,...,A k ={θ ∈ ∆ k : θ j > 0, j ∈ J, θ j = 0, j ∈ J c } × j≤k (ω j,1,• , ω j,2,• , ω j,3,• ) ∈ (∆ M ) 3 : if j ∈ J, ω j,c,i+n(c-1) > 0 using (P2) using (P3) , if i ∈ A j , c ∈ {1, 2, 3} and ω j,c,l = 0, if l ∈ {1, . . . , M } \ {i + n(c -1), i ∈ A j } .
Note that we do not assume that (A j ) j∈J is a partition of {1, . . . , n}.

We x J ⊂ {1, . . . , k} and A j ⊂ {1, . . . , n}, j ∈ J. Now we search for parameters ( θ, ω) in S J,A 1 ,...,A k which maximize the likelihood. They are zeros of the derivative of

(θ, ω, λ, µ) → n (θ, ω; M ) + λ   k j=1 θ j -1   + 3 c=1 µ j,c i ω j,c,i -1 , (4.20) 
with respect to nonzero components (θ j , ω j,c,i+n(c-1) , λ and µ j,c , for j ∈ J, i ∈ A j , 1 ≤ c ≤ 3).

Annulling the partial derivatives give where J(i) = {s ∈ J : i ∈ A s }.
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Multiplying Equation (4.22) by ωj,c,i+n(c-1) and then summing the result over i ∈ A j and using Equation (4.24), we obtain that µ j,c does not depend on c. Then using Equations (4.22) for c = 1, c = 2 and c = 3, we obtain θj ωj,1,i ωj,2,i+n = θj ωj,1,i ωj,3,i+2n = θj ωj,2,i+n ωj,3,i+2n , so that ωj,1,i = ωj,2,i+n = ωj,3,i+2n . For each S J,A 1 ,...,A k =: S, we have obtained the zeros of the derivative of the log-likelihood, that we now denote ( S θ, S ω), to emphasize the dependence with the considered set S. We now want to know which of these zeros ( S θ, S ω) are local maxima thanks to the second partial derivatives.

We consider sets S J,A 1 ,...,A k for which there exists i ≤ n such that there exist j and l are in J(i)

and j = i. We consider a second partial derivative of

˜ n (θ, ω; M ) = n i=1 log   k j=1 θ j (ω j,1,i ) 3  
that is the log-likelihood (up to an additive constant) associated to the model where for all 1 ≤ m ≤ k, 1 ≤ s ≤ n, ω m,1,s = ω m,2,s+n = ω m,3,s+2n . Assume without loss of generality that θ l ≥ θ j , then (using that θ k = 1 -m<k θ m and ω j,1,n = 1 -s<n ω j,1,s ),

∂ 2 ˜ n ∂ ω2 j,1,i ( S θ, S ω; M ) = C   6 S θj m∈J(i)\{j} S θm -3 S θ2 j   ≥ C 6 S θj S θl -3 S θ2 j > 0,
where C > 0. This implies that for all sets S J,A 1 ,...,A k := S where there exists i ≤ n such that #J(i) > 1, every zeros ( S θ, S ω) is not a local maximum. So that the only possible local maxima of n (θ, ω; M ) are the zeros ( S J,A 1 ,...,A k θ, S J,A 1 ,...,A k ω) where #J(i) = 1 for all i ≤ n, i.e. when (A j ) j∈J forms a partition of {1, . . . , n}.

So we now only consider sets A j , j ∈ J which form a partition of {1, . . . , n} and ωj,c,i+n(c-1) = 1 i∈A j /(n θj ) for i ∈ A j , using Equation (4.27). As i∈A j ωj,1,i = 1, we then obtain that θj = #A j /n = 1/(nω j,1,i ), for all i ∈ A j . So that we now only have to choose the best partition (A j ) j∈J of {1, . . . , n} and J. Let N j = #A j , we know that j N j = n and the log-likelihood at the local maximum ( S θ, S ω) associated to S J,A 1 ,...,A k =: S is

n ( S θ, S ω; M ) = s∈J N s log(N -2 s ) + constant.
So that we want to minimize And, when k divides n, the minimum of (4.29) is attained at N s = n/k. Otherwise, when k does not divide n, consider only two indices s 1 , s 2 in {1, . . . , k} and assume that N s , s / ∈ {s 1 , s 2 } are xed such that N s 1 +N s 2 = S N is also xed. Then we want to minimise -N s 1 log(N s 1 )-(S N -N s 1 ) log(S N -N s 1 ). Studying the function x ∈ (0, S N ) → -x log(S N )-(S N -x) log(S N -x), we obtain that the minimum is attained when N s 1 and N s 2 = S N -N s 1 are the closest of N S /2.

Then in both cases, the m.l.e. is attained at every (θ, ω) ∈ S M .

Proof of Corollary 4.7

Suppose that for all N > 0 and all C > 0, there exists n ≥ N such that

n 2 max m≤Mn |I m | 2 M n ≤ C.

PROOFS 151

So that there exists a subsequence (φ(n)) n∈N of (n) n∈N such that

(φ(n)) 2 max m≤M φ(n) |I m | 2 M φ(n) -→ n→∞ 0. (4.30)
Set > 0, by Proposition 4.6, there exists N 1 > 0 such that for all n ≥ N 1 , 

P θ Mn (Y 1:φ(n) ) -(1/k, . . . , 1/k) ≤ ≥ P ∃ 1 ≤ i 1 , i 2 ≤ φ(n), 1 ≤ c, d ≤ 3, m ≤ M φ(n) : Y i 1 ,c ∈ I m , Y i 2 ,d ∈ I m c ≥ 1 - φ(n) i 1 =1 φ(n) i 2 =1 M φ(n) m=1 P (Y i 1 ,c ∈ I m , Y i 2 ,d ∈ I m ) ≥ 1 -(φ(n)) 2 M φ(n) max sup g, (sup g) 2 max m≤M φ(n) |I m | 2 . ( 4 
(C(m) -R(m)) -(C(m ) -R(m )) ≤ A(m) + B(m ), then for all m ∈ M such that C( m) ≤ inf m∈M C(m) + ρ, ρ > 0, R( m) -B( m) ≤ inf m∈M {R(m) + A(m)} + ρ.
We are going to use this lemma with R(I) = R an (I), C(I) = C CV (I) and

A(I) = B(I) = n R(I) + δ n .
Using Hoe ding's inequality,

P ({-B(I) ≤ C CV (I) -R an (I) ≤ A(I)} c ) ≤ 2 exp -2b n A(I) 2 , since θ I (Y B b ) -θ I 0 (Y B -b ) 2 ≤ 1, for all b.
We introduce the sets

S I = {-B(I) ≤ C CV (I) -R an (I) ≤ A(I)} (4.32)
for all I ∈ M n . Using Lemma 4.11, on the set ∩ I∈Mn S I , Equation (4.17) holds and using Equation (4.32), we obtain

P (∩ I∈Mn S I ) ≥ 1 -2m n exp -2b n n inf I∈Mn R an (I) + δ n 2 .
4.6.7 Proof of Proposition 4.9

Using Theorem 4.8,

E a n R an ( I n ) ≤ a n 1 + n 1 -n inf I∈Mn R an (I) + 2δ n 1 -n + 2a n m n exp -2b n n inf I∈Mn R an (I) + δ n 2
we can conclude by taking n = δ n = 1/(log(n)a n ).
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Contributions

Durant ma thèse, j'ai travaillé sur trois projets permettant de mieux comprendre certaines propriétés théoriques d'estimateurs ou de la loi a posteriori dans le cadre des modèles présentées dans la partie précédente. Je me suis tout d'abord intéressée au problème de consistance de la loi a posteriori dans les modèles de Markov cachés, voir le Chapitre 2. J'ai ensuite étudié la vitesse de concentration de la loi a posteriori dans ces mêmes modèles, voir le Chapitre 3. Pour nir, j'ai considéré un problème d'estimation semi-paramétrique dans les modèles de mélange. Ce dernier projet de recherche s'est fait en collaboration avec mes deux directrices de thèse Elisabeth Gassiat et Judith Rousseau.

CONTRIBUTIONS

Dans la suite, je présente mes contributions de manière informelle, pour plus de détails (mathématiques), voir les chapitres concernés. , où p µ,θ n (y 1 , . . . , y n ) = 1≤i 1 ,...,in≤k µ i 1 Q i 1 ,i 2 . . . Q i n-1 ,in f i 1 (y 1 ) . . . f in (y n ) est la vraisemblance. La loi a posteriori remplace le rôle de l'estimateur dans le cadre fréquentiste. Elle permet de donner une idée du paramètre duquel proviennent les observations. Remarquez que contrairement à un estimateur fréquentiste usuel, la loi a posteriori est une loi de probabilité sur l'ensemble des paramètres.

Dans la suite, je m'intéresse aux garanties théoriques qu'on peut obtenir sur la loi a posteriori. lié à l'identi abilité du modèle puisqu'on cherche à comprendre l'inverse de θ ∈ Θ → p θ l (A.1) si elle existe. L'existence de l'inverse est assurée par l'identi abilité. Or Gassiat et al. [START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] ont montré qu'en supposant que k est connu, que Q est une matrice de rang plein et que les lois d'émission f 1 λ, . . . , f k λ sont linéairement indépendantes ; si la loi de 3 observations p θ 3 λ ⊗3 est égale à p θ 3 λ ⊗3 alors il existe une permutation des états σ ∈ S k telle que Q i,j = Qσ(i),σ(j) et f i dλ = f σ(i) dλ pour tout 1 ≤ i, j ≤ k. On peut donc retrouver les paramètres à permutation des états près à partir de la loi jointe de 3 observations successives. Ainsi le modèle est identiable à permutation des états près. Et on ne peut pas espérer retrouver exactement (Q, f ) en toute généralité mais seulement à permutation des états cachés près, puisque les lois jointes de Dans le Chapitre 2, on étudie aussi la consistance a posteriori par rapport à la loi de lissage mjointe, i.e., on veut savoir si la loi a posteriori se concentre autour des paramètres pour lesquels la loi de lissage m-jointe associée est proche de la vraie (à permutation près). Ce type de consistance mène à des lois a posteriori qui permettent de bien classer les observations suivant l'état caché correspondant.

J'ai montré que, dans le cas particulier où les observations sont discrètes, sous les hypothèses d'identi abilité en θ * , si la loi a posteriori est consistante en θ * par rapport à D l alors la loi a posteriori concentre sa masse en les paramètres θ pour lesquels la loi de lissage m-jointe associée est proche de la vraie à permutation près.

On notera que l'estimation des lois de lissage a été étudiée ultérieurement dans De Castro et al. Cette contribution concerne les vitesses de concentration. Or, si la loi a posteriori se concentre à une certaine vitesse tendant vers 0 par rapport à D l alors la loi a posteriori est aussi consistante. On peut alors utiliser les résultats du Chapitre 2 et montrer que la loi a posteriori est alors aussi consistante pour la topologie T Q,f (utile dans le cadre de l'estimation de θ) sous condition d'identi abilité du vrai paramètre.

Perspectives au Chapitre 3

• L'hypothèse faite sur Π Q , concernant la pénalisation des matrices de transition qui sont trop proches de la frontière de ∆ k k , est plus faible que celle supposée pour obtenir la consistance de la loi a posteriori. Malgré tout, cette hypothèse est encore forte et n'est pas véri ée par les lois utilisées en pratique. Il serait intéressant de savoir à quel point cette hypothèse est nécessaire.

• Une perspective à ce travail est l'obtention d'une vitesse de concentration par rapport à la norme L 1 sur les lois d'émission à partir de la vitesse par rapport à D l . Ce transfert est plus On a cherché à étudier l'e cacité asymptotique pour une composante du paramètre, à savoir le paramètre de mélange dans les méthodes de mélange.

On remarquera que ce paramètre remplace la matrice de transition dans le cadre des HMMs.Cette étude est donc aussi une première étape pour comprendre l'estimation semi-paramétrique des matrices de transition dans les HMMs. • En n, dans le cadre Bayésien, on peut se demander s'il existe une loi a priori qui mène à une loi a posteriori ayant des propriétés optimales de concentration à la fois sur le paramètre décrivant le modèle latent (avec un résultat de type BvM) et sur les lois d'émission (en vitesse). 

X n Y 1,1 Y 1,2 Y 1,3 Y n,1 Y n,2 Y n,3 µ µ f X 1 ,1 f X 1 ,2 f X 1 ,3 f Xn,1 f Xn,2 f Xn,3
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 14 Figure 1.4 -Representation of genomic copy number variation, from http://readingroom.mindspec.org/ ?page_id=8221

  Figure 1.5 -Study of the asymptotic behaviour of the posterior distribution

  Figure 1.6 -Representation of the posterior density when n increases for one set of Gaussian i.i.d. observations and with a Gaussian prior-Illustration of posterior consistency
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 17 Figure 1.7 -Representation of the posterior mass of a ball B(0, n ) when n increases for two decreasing rate n -Illustration of posterior concentration rates

  CHAPTER 1: INTRODUCTION precisely, the parameters of this model are the parameter µ ∈ ∆ k , determining the distribution of the latent variables, and ω M ∈ (∆ M ) 3k which parametrizes the emission distributions. The distribution of one observation is g µ,ω;M (y)λ(dy) = c;M (y c )λ(dy c ),

  CHAPTER 1: INTRODUCTION being obvious using the results obtained in Chapter 4. Indeed even in parametric HMMs, the asymptotic properties of the m.l.e. are not immediate, see DoMa01, Douc et al. [DMR04], Douc et al. [DMOH11] and references in Cappé et al. [CMR05] for instance.

  can be used to model heterogeneous variables coming from di erent populations, the states of the (hidden) Markov chain de ning the population the observed variable comes from. HMMs are very popular dynamical models especially because of their computational tractability since there exist e cient algorithms to compute the likelihood and to recover the posterior distribution of the hidden states given the observations. Frequentist asymptotic properties of estimators of HMMs parameters have been studied since the 1990s. Consistency and asymptotic normality of the maximum likelihood estimator have been established in the parametric case, see Douc and Matias [DM01], Douc et al. [DMR04], and references in Cappé et al. [CMR05], see also Douc et al. [DMOH11] for the most general consistency result up to now. As to Bayesian asymptotic results, there are only very few and recent results, see de Gunst and Shcherbakova [GS08] when the number of hidden states is known, Gassiat and Rousseau [GR14] when the number of hidden states is unknown. All these results concern parametric HMMs. Nonparametric HMMs in the sense that the form of the emission distribution is not speci ed have only very recently been considered, since identi ability remained an open problem until Gassiat and Rousseau [GR16] and Gassiat et al. [GCR15], who prove a general identi ability result. Because parametric modelling of emission distributions may lead to poor results in practice, in particular for clustering purposes, recent interest in using nonparametric HMMs appeared in applications, see Yau et al. [YPRH11], Gassiat et al. [GCR15] and references therein. Theoretical results for estimation procedures in nonparametric HMMs have also been obtained only very recently: Dumont and Le Cor [DL14] concerns regression models with hidden (Markovian) regressors and unknown regression functions in Gaussian noise, and Gassiat and Rousseau [GR16]

  Matias [DM01], Douc et al. [DMR04], or Douc et al. [DMOH11] for instance. Besides Gassiat and Rousseau [GR14] explain the di culty which appears when the Markov chain does not mix well.

  support of the prior to show weak posterior consistency and to control, in addition, a metric entropy to obtain strong consistency, see Chapter 4 of Ghosh and R.V. Ramamoorthi[START_REF] Ghosh | Bayesian Nonparametrics[END_REF]. Assumptions (A1.1) and (A1.2) are similar in spirit. Assumptions (A1.0) and (A1.1) replace the assumption on the true density function being in the Kullback-Leibler support of the prior in the i.i.d. case. (A1.1a) ensures that the transition matrices of Θ ε are in a ball of radius ε around the true transition matrix. Under (A1.1b) the emission densities are in an ε Kullback-Leibler ball around the true one. (A1.0), (A1.1b), (A1.1c) and (A1.1d) are assumptions under which the loglikelihood converges P θ * -a.s. and in L 1 (P θ * ). (A1.2) is very similar to the assumptions of the metric entropy of Theorem 4.4.4 in Ghosh and R.V. Ramamoorthi [GR03]. In Appendix 2.4, the proof of Theorem 2.1 relies on the method of Barron [Bar88]. It consists of controlling Kullback-Leibler neighbourhoods and building tests. The construction of tests is quite straightforward thanks to Rio's inequality [Rio00] which generalizes Hoe ding's inequality. To prove a), we use the usual strategy presented in Section 4.4.1 in Ghosh and R.V. Ramamoorthi [GR03] together with Rio's inequality [Rio00] and Gassiat and Rousseau [GR14]. To prove b), we use the tests of Gassiat and Rousseau [GR14]. To control the Kullback-Leibler neighbourhoods, we use the following lemma whose proof is given in Appendix 2.4.

  .15) using the upper bound from the proof of Theorem 4 of Gassiat and Rousseau [GR14] based on Corollary 1 of Rio [Rio00].

P

  θ (Y1:N , Xj = l) 1≤b≤k P θ (YN+1:n |XN+1 = b)P θ (XN+1 = b|Xj = l, Yj:N ) 1≤m≤k P θ (Y1:N , Xj = m) 1≤b≤k P θ (YN+1:n|XN+1 = b)P θ (XN+1 = b|Xj = m, Yj:N ) -P θ (Y1:N , Xj = l) 1≤b≤k P θ (YN+1:n |XN+1 = b)P θ (XN+1 = b|Xj = a, Yj:N ) 1≤m≤k P θ (Y1:N , Xj = m) 1≤b≤k P θ (YN+1:n|XN+1 = b)P θ (XN+1 = b|Xj = a, Yj:N ) . Using Corollary 1 of Douc et al. [DMR04], i.e. the exponential forgetting of the HMM, we obtain for all (b, ω, m) ∈ {1, . . . , k} 3 ,

e

  ity g n (y -m n σ(j) )λ(dy) = e itm n σ(j) e ity g n (y)λ(dy)

  B1.2), (B1.3) and (B1.4). Let G = [-a, a]×[σ, σ]. Using the proof of Lemma 3.1 in Tokdar [Tok06] for all C > max 1≤j≤k |m * j |+ 74 CHAPTER 2: POSTERIOR CONSISTENCY IN NONPARAMETRIC HMMS a + σ, for all m j ∈ [m * j -a, m * j + a], and for all P such that P (G) > σ σ , |y|>C g * (y -m * i ) max 1≤j≤k log φ * P (y -m * j ) φ * P (y -m j ) λ(dy) ≤ |y|>C g * (y -m i ) max

[

  VZ09], Arbel et al.[START_REF] Arbel | Bayesian optimal adaptive estimation using a sieve prior[END_REF] and Rivoirard and Rousseau[START_REF]Posterior concentration rates for in nite dimensional exponential families[END_REF]. Condition (A2) becomes more involved when Y is not compact. This case is treated under nonparametric Gaussian mixtures in Section 3.4.2 and in the case where Y = N in Section 3.4.1.

  Douc and Matias [DM01] and Douc et al. [DMR04].

  .15) where t i.i.d. ∼ gλ, m j ∈ R and X t is a Markov chain with translation matrix Q; Yau et al. [YPRH11] use a Dirichlet process mixtures of Gaussian distributions on g. In the context of i.i.d. observations posterior concentration rates have been derived with such prior models in Ghosal and van der Vaart [GV07b], Kruijer et al. [KRV10] and Shen et al. [STG13]. In the framework of HMMs, we propose to apply Theorem 3.1 when Π f is a Dirichlet process mixture of Gaussian distributions.

  3.5.1 Proof of Lemma 3.2 : control of the Kullback Leibler divergence between θ * and θ

Finally, combining

  Equations (3.37), (3.38) and Lemma 3.10 (Equation (3.40)), we obtain Equation (3.36).

  8. Combining Equations (3.41) and (3.42),

  65) therefore using Equations (3.61), (3.64) and (3.65) we obtain 108 CHAPTER 3: POSTERIOR CONCENT. RATES IN NONPARAMETRIC HMMS

  f * i ∈ D(m, c, K) for all 1 ≤ i ≤ k and Equation (P2), we obtain log Ln l=1 G(l) -L n log(L n ), 3.69) with l * = argmax l (min 1≤j≤k f * j (l)), (3.70) and (3.71), Assumption (A2) of Theorem 3.1 is true if

  ) using Equation (3.80). Then combining Equations (3.81), (3.82) and (3.83); D(a) is bounded from below by

  14 follows combining Equations (3.78), (3.84) and (3.91).3.5.4 Proof of Theorem 3.6 (Dirichlet process mixtures of Gaussian distributions)Proof of Theorem 3.6 . Letσ n = ˜ n /(log(1/˜ n )), ˜ n = n -β/(2β+1) (log n) t 0 .Following the computations of the proof of Theorem 4 of Shen et al. [STG13] and using Assumption (S2.3), Lemma 3.15 ensures that Assumption (A2) holds with t 0 ≥ (2 + 2/γ 0 + 1)/(1/β + 2). Using Assumption (Q2.0), Assumption (C2) holds. Using Theorem 5 of Shen et al. [STG13], Assumptions (G2.1), (S2.1) and (S2.2); Assumption (B2) holds with n = n -β/(2β+1) (log(n)) t , t > t 0 . This concludes the proof of Theorem 3.6. The following lemma is a generalization of Lemma 4 of Kruijer et al. [KRV10] in the HMM context. In other words, we give a set of density functions (f j ) 1≤j≤k satisfying Assumptions (A2.1)-(A2.6) in Lemma 3.15.

  (3.92) and by replacing Equation (56) of Kruijer et al. [KRV10] by Equation (3.101).

I 3

 3 Using Equation (3.93), I 1 σ 2β . (3.98) CHAPTER 3: POSTERIOR CONCENT. RATES IN NONPARAMETRIC HMMS

  in the proof of Lemma 2 of Kruijer et al. [KRV10], (A i σ ) c f * j (y)λ(dy) σ 2β . (3.102) • Proof of (A2.5). Using the same argument as in the bottom of the page 1252 of Kruijer et al. [KRV10], Equations (3.95) and (3.96),

•

  Proof of (A2.6). Using that f * j fj (see Assumption (C3) of Kruijer et al. [KRV10]) Equation (3.98) implies (A2.6).

  [START_REF] Rhodes | A concise proof of kruskal's theorem on tensor decomposition[END_REF]) proved it when the coordinates of Y take nitely many values. Kruskal's result was recently used by Allman et al.[START_REF] Allman | Identi ability of parameters in latent structure models with many observed variables[END_REF] to obtain identi ability under almost no assumption on the possible emission distributions: only the fact that, for each coordinate, the k emission distributions are linearly independent. Spectral methods were proposed by Anandkumar et al.[START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], which allowed Bonhomme et al.[START_REF] Bonhomme | Estimating multivariate latent-structure models[END_REF] to derive estimators of the emission densities having the minimax rate of convergence when the smoothness of the emission densities is known. Moreover, Bonhomme et al.[START_REF] Bonhomme | Estimating multivariate latent-structure models[END_REF] proposes an estimation procedure in the case of repeated measurements (where the emission distributions of each coordinate given a population are the same).

From a

  Bayesian perspective, the issue is the validity of the Bernstein-Von Mises property of the marginal posterior distribution of the parameter of interet θ. In other words: is the marginal posterior distribution of θ asymptotically Gaussian? Is it asymptotically centered around an e cient estimator? Is the asymptotic variance of the posterior distribution the inverse of the e cient Fisher information matrix? Semiparametric Bernstein-Von Mises theorems have been 4.1 INTRODUCTION 123 the subject of recent research, see Shen [She02], Boucheron and Gassiat [BG09], Rivoirard and Rousseau [RR12a], Castillo [Cas12a], Castillo [Cas12b], Bickel and Kleijn [BK12b], De Blasi and Hjort [DH09] and Rivoirard and Rousseau [RR12a].

•

  2) • For all M , the sets I m in I M are intervals with nonempty interior.• As M tends to in nity, max 1≤m≤M |I m | tends to 0. Assumption (A3.2) is used to get that all functions f ω j,c;M tend to f j,c Lebesgue almost everywhere. To extend the results when the coordinates y c may be multivariate, the rst point of (A3.2) has to be replaced by: There exists a > 0 such that for all M , for all I m in I M , there exists an open ball I such thatI m ⊂ I and |I m | ≥ a|I|.Here |I| is the Lebesgue measure of the set I.Then, if (A3.1) and (A3.2) hold, for M large enough, we have that for all c = 1, 2, 3, the measures f ω 1,c;M dy, . . . , f ω k,c;M dy are linearly independent, where ω j,c;M := 1 0 f j,c;M 1l Im (u)du 1≤m≤M -1

  for the uniform partition, when M = N and for all M ∈ M I m = [(m -1)/M, m/M ) for all m < M , I M = [(M -1)/M, 1], • or for the dyadic regular partitions, when M = {2 p , p ∈ N * } and for all M ∈ M I m = [(m -1)/M, m/M ) for all m < M , I M = [(M -1)/M, 1], which form an embedded sequence of partition.

  contrast function, i.e. in the form E E γ( θ(Y 1:n ), Y ) -γ(θ * , Y )|Y 1:n , where γ : Θ × Y → [0, +∞). Yet, the last framework is the framework of most theoretical results in model selection, see Arlot and Celisse [AC10] or Massart [Mas07] for instance. Moreover the quadratic risk has not a usual behaviour. Indeed if we decompose it as an approximation error plus an estimation error as explained in Arlot and Celisse [AC10]:

  Consider a partition of {1, • • • , n} in the form (B b , B -b , b ≤ b n ), in other words the partition is made of 2 × b n subsets of {1, • • • , n}. By de nition B b 1 ∩ B -b 2 = ∅ for all b 1 , b 2 ≤ b n . Because

  6, C CV 1 (I) is tending to 0 when max m |I m | tends to 0. So that minimizing this criterion leads to choosing a partition I n ∈ arg min I C CV 1 (I) which has a large number of sets and so θ In (Y 1:n ) may be close to (1/k, . . . , 1/k) and then may not even be consistent. This can be seen when decomposing the risk R n (I) as: R n (I) = V ar o θI (Y 1:n ) variance + E θI (Y 1:n ) -θ expectation of C CV 1 (I) in the case where the sizes of B b , B -b , b ≤ b n , are all equal, E [C CV 1 (I)] = V ar o θI (Y B b ) suggests that C CV 1 (I) does not estimate the bias of Equation (4.16). As an illustration, see Figure 4.2 where the trends of R n (I), V ar o θ I (Y 1:n ) and E θ I (Y 1:n ) -θ

  Values of the true parameters for simulation 1 to 3 The di erent emission distributions are represented in Figure 4.1.

Figure 4 .

 4 Figure 4.2 gives a taste of the trend of the risk R n (I 2 P ), along with the variance V ar * o θ 2 P (Y 1:n )and the squared biasE * θ 2 P (Y 1:n ) -θ * 2 S kde ned in Equation (4.16) when P increases. We illustrates these trends thanks to di erent true parameters and numbers of observations n. The

  or for general nonparametric nite state space hidden Markov models studied in De Castro et al. [DGLar], Vernet [Ver15b] and De Castro et al. [DGC15]. Here, the parameter describing the probability distribution of the latent variable is the transition matrix of the hidden Markov chain. However, semiparametric asymptotic theory for dependent observations is much more involved, see McNeney and Wellner [MW00] for the ground principles. It seems di cult to identify the score functions and the e cient Fisher information matrices for hidden Markov models even in the parametric approximation model, so that to get results such as Theorem 4.5 could be quite challenging.

  (a) Simulation 1, n = 100 (b) Simulation 3, n = 50 (c) Simulation 2, n = 50 (d) Simulation 3, n = 100 (e) Simulation 2, n = 500 (f) Simulation 3, n = 500
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 42 Figure 4.2 -Patterns of the risk (with black squares), the squared bias (with blue dots) and variance (with magenta triangles) with respect to P = log(M )/ log(2) for simulations 1, 2 and 3 and di erent values of n.

4.6. 2

 2 Proof of Proposition 4.2 We prove the proposition when M 1 = M , M 2 = M + 1, I M = {I 1 , . . . , I M } and I M +1 = {I 1 , . . . , I M,0 , I M,1 } with I M = I M,0 ∪ I M,1 , which is su cient by induction. We denote (ω (M ) j,c,m ) j,c,1≤m≤M the parameter ω in the model with partition I M and (ω (M +1) j,c,m ) j,c,1≤m≤M +1 the parameter ω in the model with partition I M +1 . De ne b ∈ (0, 1), α j,c ∈ (0, 1), j = 1, . . . , k,

  Proposition 4.6 is easily implied by Lemma 4.10 which formalizes the following. When the sequence of observations Y 1 , . . . , Y n and n are xed, then almost surely there exists a su ciently ne partition I M such that there exists at most one component of an observation in each set I m , m ≤ M . Then we can reorder the sets I m so that Y i,c ∈ I i+n(c-1) , for all c ∈ {1, 2, 3} and i ≤ n. In this case, the likelihood n (•, •; M ) is maximised at each parameter (θ, ω) belonging to the set S M ⊂ ∆ k × (∆ M ) 3k that we explain now (and formalise in Lemma 4.10). Each element of S M corresponds to one clustering of the observations in k sets (represented by the (A * j ) j≤k in Lemma 4.10) of size as equal as possible. For each clustering, for all j ≤ k,

  Equation (4.21) by θj and summing the result over j ∈ J and using Equation (4.23), we obtain λ = -n. Moreover by multiplying Equation (4.22) by ωj,c,i+n(c-1) , and then summing the result over i ∈ A j and nally subtracting (4.21) multiplied by θj to the result (ie making i∈A j ωj,c,i+n(c-1) (4.22) -θj (4.21)), we get 0 = -µ j,c -n θj . (4.26) Then using again Equations (4.22), (4.25) and (4.26), we getω2 j,c,i+n(c-1) = n s∈J(i) θs ω3 s,1,i , ∀j ∈ J(i), ∀c ∈ {1, 2, 3},so that ωj,c,i+n(c-1) does not depend on j ∈ J(i) and ωj,c,i+n(c-1) = 1 i∈A j /

s∈JN

  s log(N s ) under the constraint s∈J N s = n (4.28) over J ⊂ {1, . . . k} and N j ∈ N, j ∈ J. This minimization is equivalent to the minimization of s≤k N s log(N s ) under the constraint s≤k N s = n (4.29) over N j ∈ N, j ≤ k (since then the problem (4.29) is less constrained than for the minimization of (4.28) when J is xed).
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 2 Figure A.2 -Visualisation d'un modèle de mélange.

  (•)dλ, où δ x est la mesure de Dirac en x. Ce modèle est représenté dans la Figure A.1.On se place ici dans le cadre Bayésien, on a donc besoin d'une loi sur l'espace Θ des paramètres (la loi a priori). On utiliseΠ = Π Q ⊗ Π (k)f qui est un produit d'une loi de probabilité Π Q sur les matrices de transition et une loi de probabilité Π (k) f sur les k densités d'émission et δ µ pour la loi a priori sur la loi initiale avec µ une loi initiale donnée. Par la loi de Bayes, on peut formellement écrire la loi a posteriori comme suit :Π(θ ∈ A|Y 1 , . . . , Y n ) = A p µ,θ n (Y 1 , . . . , Y n )Π(dθ) Θ p µ,θ n (Y 1 , . . . , Y n )Π(dθ)

l

  observations, associées à des paramètres provenant d'une permutation des états cachés, sont les mêmes. Il en est de même pour la consistance. En e et, supposons que la loi a priori soit compatible avec la permutation des états cachés, c'est-à-direΠ(U ) = Π(σU ), ∀U ⊂ Θ, ∀σ ∈ S k , σU = {((Q σ(i),σ(j) ) i,j , (f σ(1) , . . . , f σ(k) )) ∈ Θ : (Q, f ) ∈ U },où S k est l'ensemble des permutations sur {1, . . . , k}. Alors la masse a posteriori d'un ensemble U de paramètres est aussi égale à la masse a posteriori des paramètres dans U pour lesquels les états cachés ont subi une permutation σ. Formellement,Π(U |Y 1 , . . . , Y n ) = U p θ n (Y 1 , . . . Y n )Π(dθ) Θ p θ n (Y 1 , . . . Y n )Π(dθ) = U p σθ n (Y 1 , . . . Y n )Π(dσθ) Θ p θ n (Y 1 , . . . Y n )Π(dθ) = Π(σU |Y 1 , . . . , Y n ),pour toute permutation σ ∈ S k . Ainsi, le meilleur comportement de la loi a posteriori concernant la consistance serait que la loi a posteriori concentre sa masse en {θ * } S k = ∪ σ∈S k σ{θ * }. Si la loi a priori est plus générale, lorsque le nombre d'observations augmente, la loi a priori devrait être "oubliée" et on devrait demander la concentration de la loi a posteriori autour du même ensemble{θ * } S k .On cherche alors à étudier la consistance par rapport à la topologie T Q,f qui est le produit de la topologie associée à la norme sup sur les matrices de transition et la topologie associée à la convergence en loi (associée à une distance d weak ) sur les lois d'émission le tout à permutation des état cachés près. J'ai obtenu que la consistance de la loi a posteriori par rapport à D l (avec l ≥ 3) en θ * plus les hypothèses d'identi abilité en le paramètre θ * implique que la loi a posteriori est consistante par rapport à T Q,f . Voir le Théorème 2.3. Le transfert de la consistance d'une topologie à une autre a été obtenue grâce à des arguments de continuité. 1.2 CONTRIBUTIONS 159 Consistance de la loi a posteriori pour les lois de lissage Les modèles de Markov cachés à espace d'états nis sont souvent utilisés pour classer les observations suivant les états cachés qui leur correspondent. Dans ce but, on peut chercher à estimer les lois de lissage c'est-à-dire les lois d'un état caché sachant les observations P θ (X t = •|Y 1 , . . . , Y n ). Mieux, on peut s'intéresser à la loi d'un ensemble ni d'états cachés consécutifs sachant les observations, c'est-à-dire la loi de lissage m-jointe : P θ ((X 1 , . . . , X m ) = (•, . . . , •)|Y 1 , . . . , Y n ), m ∈ N xed , n ≥ m.

[

  DGC15] d'un point de vue fréquentiste. Dans De Castro et al. [DGC15], la distance en variation totale entre deux lois de lissage associées à deux paramètres θ et θ est contrôlée par la norme de Frobenius Q -Q F B et la norme L 1 : fj -f j L 1 , j ≤ k. Ceci permet de montrer qu'à partir d'un estimateur consistant de la matrice de transition et des estimateurs consistants, par rapport à la norme L 1 des lois densités d'émission, on peut construire un estimateur consistant des lois de lissage. Pour en déduire un résultat Bayésien, on aurait besoin d'un contrôle Bayésien de fj -f j L 1 . À ma connaissance, un tel contrôle n'existe que dans le cas d'observations discrètes étudié dans le Chapitre 2. En e et dans ce cas, la topologie associée à la convergence en loi est la même que celle associée à la norme L 1 et les Théorèmes 2.1 et 2.3 nous donnent un contrôle Bayésien de fj -f j L 1 . On peut alors en déduire un résultat de consistance sur les lois de lissage. On obtient alors un résultat dans le même cadre que le Théorème 2.8. Application à di érents modèles et lois a priori Dans la Partie 2.3, je propose des modèles et lois a priori concrets pour lesquels la loi a posteriori associée est consistante par rapport aux di érentes topologies décrites précédemment. Je considère : CHAPTER A: RÉSUMÉ LONG En particulier, des vitesses minimax (à une puissance de log(n) près) sont obtenues dans le cas d'observations discrètes avec des lois d'émission (qui sont donc des lois de probabilité sur N) i.i.d. selon un processus de Dirichlet sous la loi a priori. Plus précisément, une vitesse 1/ √ n à une puissance de log(n) près a été obtenue. Voir la Partie 3.4.1. De plus des vitesses de concentration adaptatives (c'est-à-dire minimax pour di érents sous ensembles de paramètres, la loi a posteriori s'adapte alors à la régularité des données) sont atteintes dans le cas d'observations continues et des densités d'émission i.i.d. selon un mélange de Gaussienne par Processus de Dirichlet sous la loi a priori. Ainsi une vitesse proportionnelle à n -β/(2β+1) , à une puissance de log(n) près, est obtenue lorsque les densités d'émission appartiennent à une classe de fonctions de type β-Hölder dans la Partie 3.4.2.Dans les deux cas précédents, on a obtenu des vitesses minimax (à une puissance de log(n) près) pour peu que Π Q pénalise su samment (i.e. ne mette pas beaucoup de poids dans) le voisinage de la frontière de∆ k k := {Q ∈ [0, 1] k×k : k j=1 Q i,j = 1, ∀1 ≤ i ≤ k},l'ensemble des matrices de transition. De manière générale, si Π (k) f = Π ⊗k f , avec Π f qui induit une concentration minimax de la loi a posteriori par rapport à la norme L 1 sur les densités dans le cas de l'estimation de densité avec des observations i.i.d., on s'attend alors à ce que la la loi a posteriori se concentre à une vitesse minimax dans le cadre des HMMs pour peu que Π Q pénalise su samment le voisinage de la frontière de ∆ k k . On peut remarquer que les vitesses minimax obtenues pour une classe de densités d'émission et Π (k) f = Π ⊗k f sont les mêmes que dans le cadre de l'estimation de densité avec des observations i.i.d., par rapport à la norme L 1 et la même classe de densités. Ainsi dans nos exemples, la dépendance générée par les HMMs sur les observations ne détériore pas la vitesse minimax, comparé au cadre i.i.d.. La même remarque est faite dans De Castro et al. [DGLar] et Bonhomme et al. [BJR16a] où des vitesses d'estimateurs fréquentistes sont considérées.

  le cas de la vitesse de concentration que dans le cas de la consistance. En e et il demande une compréhension plus ne (que la continuité) de l'inverse (à permutation près) de θ → p θ l . Un transfert similaire a été fait dans De Castro et al. [DGLar] en considérant la norme L 2 et non L 1 . Cet article semble être une bonne base de travail pour ce problème. 1.2.3 Contribution 3: Estimation semi-paramétrique e cace et sélection de modèle pour les modèles de mélange multidimensionnels (travail en collaboration avec E. Gassiat et J. Rousseau), Chapitre 4, Gassiat et al. [GRV16] Ma dernière contribution concerne un problème semi-paramétrique. C'est un travail en collaboration avec mes deux directrices de thèse Elisabeth Gassiat (Paris-Sud University) et Judith Rousseau (CEREMADE). Les détails de ce projet sont rédigés dans le Chapitre 4 et sont aussi disponibles sur arXiv : Gassiat et al. [GRV16].

Figure A. 4 -••

 4 Figure A.4 -Visualisation du modèle de mélange multidimensionnel.

  Les résultats que j'ai obtenus durant ma thèse sur les modèles de Markov cachés non paramétriques et les modèles semi-paramétriques de mélange multidimensionnels à espace d'états ni sont résumés dans le Tableau 1.3. la loi du modèle latent µ ou Q des densités d'émission (en f 1 , . . . , f k topologie faible) des lois de lissage (quand les obser-P (X t = •|Y 1 , . . . , Y n ) vations sont discrètes) blblaaaaaaabla blablalbablablablablaablablablaablbablbl dans les HMMs non paramétriques blablablablabla dans les modèles de mélange semiparamétriques Les cases avec le signe correspondent à des problèmes que j'ai étudiés et pour lesquels j'ai obtenu des résultats positifs. Les parenthèses permettent de préciser une restriction aux résultats. À ma connaissance, les résultats correspondant aux deuxième et troisième colonnes sont les premiers résultats obtenus sur le comportement asymptotique de la loi a posteriori dans le cadre des modèles de Markov caché à espace d'état ni. De même, les résultats correspondant à la quatrième colonne, sont à ma connaissance les premiers résultats sur l'e cacité asymptotique obtenus dans le cadre des modèles de mélange semi-paramétriques multidimensionnels. Titre : Modèles de mélange et de Markov caché non paramétriques : propriétés asymptotiques de la loi a posteriori et e cacité Mots-clés : Statistiques non et semi-paramétriques, statistiques Bayésiennes, statistiques asymptotiques, modèle de Markov caché, modèle de mélange Résumé : Les modèles latents sont très utilisés en pratique, comme en génomique, économétrie, reconnaissance de parole, étude de population... Comme la modélisation paramétrique des lois d'émission, c'est-à-dire les lois d'une observation sachant l'état latent, peut conduire à de mauvais résultats en pratique, un récent intérêt pour les modèles latents non paramétriques est apparu dans les applications. Or ces modèles ont peu été étudiés en théorie. Dans cette thèse je me suis intéressée aux propriétés asymptotiques des estimateurs (dans le cas fréquentiste) et de la loi a posteriori (dans le cadre Bayésien) dans deux modèles latents particuliers : les modèles de Markov cachés et les modèles de mélange. J'ai tout d'abord étudié la concentration de la loi a posteriori dans les modèles non paramétriques de Markov cachés. Plus précisément, j'ai étudié la consistance puis la vitesse de concentration de la loi a posteriori. En n je me suis intéressée à l'estimation ecace du paramètre de mélange dans les modèles semi-paramétriques de mélange. Title : Nonparametric Mixture Models and Hidden Markov Models: Asymptotic Behaviour of the Posterior Distribution and E ciency Keywords : Non and semiparametric statistics, Bayesian statistics, asymptotic statistics, hidden Markov model, mixture model Abstract : Latent models have been widely used in diverse elds such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using nonparametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar nonparametric latent models: hidden Markov models and mixture models. I have rst studied the concentration of the posterior distribution in nonparametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in e cient estimation of the mixture parameter in semiparametric mixture models. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

  and van Havre et al. [HRWM16] but mostly when the emission distributions are parametrised by a nite dimensional parameter. Mixing the techniques of Gassiat and Rousseau [GR14], van Havre et al. [HRWM16] and Chapter 2 should be conclusive.

1.4.2 Contribution 2: Posterior Concentration Rates for Nonparametric HMMs with Finite State Space, Chapter 3, Vernet [Ver15a]

  Selection for Multidimensional Mixtures (joint work with E. Gassiat and J. Rousseau), Chapter 4, Gassiat et al.[START_REF] Gassiat | E cient semiparametric estimation and model selection for multidimensional mixtures[END_REF] 

My last contribution concerns a semiparametric problem. It is a collaborative work with my two thesis supervisors Elisabeth Gassiat (Paris-Sud University) and Judith Rousseau (CEREMADE).

  The books MacDonald and Zucchini[START_REF] Macdonald | Hidden Markov and other models for discretevalued time series[END_REF], MacDonald and Zucchini[START_REF]Hidden Markov models for time series: an introduction using R[END_REF], and Cappé et al.[START_REF] Cappé | Inference in Hidden Markov Models[END_REF] provide several examples of applications of HMMs and give a recent (for the latter) state of the art in the statistical analysis of HMMs. Finite state space HMMs are stochastic processes (X t , Y t ) t∈N such that (X t ) t∈N is a Markov chain taking values in a nite set, and conditionally to (X t ) t∈N , the random variables Y t , t ∈ N, are independent, the distribution of Y t depending only on X t .The conditional distributions of Y t given X t , for all possible values of X t , are called emission distributions. The name "hidden Markov model" comes from the fact that the observations are the Y

t 's only, one cannot access to the states (X t ) t of the Markov chain. Finite state space HMMs

  d. case, see Theorem 2.1. This result relies on a new control of the Kullback-Leibler divergence for HMMs, see Lemma 2.2. Yet estimating the distribution of consecutive observations is not the main objective of a practitioner. Classifying the observations according to their corresponding hidden states or estimating the parameters of the model often are the questions of interest, see for instance Yau et al. [YPRH11], Whiting et al. [WLM03] and Couvreur and Couvreur [CC00]. In Section 2.2.3 we build upon the recent identi ability result to deduce from Theorem 2.1 posterior consistency for each component of the parameters. We obtain in general posterior consistency for the transition matrix of the Markov chain and for the emission probability distribution in the weak topology, see Theorem 2.3. Stronger results are established in particular cases, see Corollary 2.6 and Theorem 2.8. Finally, some examples of priors that ful ll the assumptions of Theorems 2.1 and 2.3 are studied in Section 2.3.

  Cappé et al.[START_REF] Cappé | Inference in Hidden Markov Models[END_REF] and Theorem 2.8.In practice, estimating the marginal density of l consecutive observations is not the rst purpose.Yet estimating the parameters and the hidden states is often the goal. For instance,Whiting et 

al.

[START_REF] Whiting | Modelling persistence in annual australian point rainfall[END_REF] 

give an algorithm to estimate the stationary probability measure of the Markov chain derived from the transition matrix. While Yau et al.

[START_REF] Yau | Bayesian non-parametric hidden Markov models with applications in genomics[END_REF] 

and Couvreur and Couvreur

[START_REF] Couvreur | Wavelet-based non-parametric hmm's: theory and applications[END_REF] 

are interested in estimating the hidden states.

The consistency for each component of the parameter, i.e. the transition matrix and the emission distributions, does not directly result from consistency of the marginal distribution of the observations, see Dumont and Le Cor

[START_REF] Dumont | Nonparametric regression on hidden phi-mixing variables: identi ability and consistency of a pseudo-likelihood based estimation procedure[END_REF]

. Identi ability seems to be necessary to obtain

  HMM up to label switching (i.e. the transition matrix of the Markov chain and the emission distributions). Here, we are interested in obtaining asymptotics in the Bayesian framework for the marginal joint density of consecutive observations.

	3.1 INTRODUCTION	79
	The use of nonparametric HMMs is ourishing in practice while few theoretical properties are	
	known. Many theoretical results exist for parametric HMMs particularly for the maximum like-	
	lihood estimator, see Cappé et al. [CMR05] and references herein for instance, see also de Gunst	
	and Shcherbakova [GS08] for a Bernstein von Mises property of the posterior. In the nonparamet-	
	ric framework, there exist few theoretical guarantees of the asymptotic behavior of estimators	
	or posterior since identi ability for general HMMs with nite state space was still an issue until	
	recently. General identi ability is proved in Gassiat et al. [GCR15] when the number of states of	

Langrock et al.

[START_REF] Langrock | Nonparametric inference in hidden Markov models using p-splines[END_REF] 

for whales dive modeling, Yau et al.

[START_REF] Yau | Bayesian non-parametric hidden Markov models with applications in genomics[END_REF] 

for genetic copy number variants, Whiting et al.

[START_REF] Whiting | Modelling persistence in annual australian point rainfall[END_REF] 

for climate state identi cation, Lefèvre

[START_REF] Lefèvre | Non-parametric probability estimation for HMM-based automatic speech recognition[END_REF] 

for speech recognition, Gassiat et al.

[START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] 

for gene expression identi cation, see also the references herein. This last framework, namely HMMs where the number of states of the Markov chain is known and emission distributions may live in in nite-dimensional sets is the one we consider in this chapter.

the Markov chain is known and in Alexandrovich et al.

[START_REF] Alexandrovich | Nonparametric identi cation and maximum likelihood estimation for hidden Markov models[END_REF] 

when this number is unknown.

Gassiat et al.

[START_REF] Gassiat | Inference in nite state space non parametric hidden Markov models and applications[END_REF] 

prove that under mild assumptions, the knowledge of the marginal joint density of at least three consecutive observations (Y t , Y t+1 , Y t+2 ) gives the parameters of the

  The details of the control of the Kullback-Leibler divergence are given in Appendix 3.5.1.

	Not withstanding the technical aspects discussed above, Assumptions (A2.1)-(A2.6) are veri ed
	using techniques similar to those used in the case of density estimation with i.i.d. observations
	to control					
	f * i (y) log	f * i (y) f i (y)	λ(dy)	and	f * i (y) log 2 f * i (y) f i (y)	λ(dy).

dy), see Equations (3.19) and (3.20) in the proof of Lemma 3.2. Since i may be di erent from j we would loose the local quadratic approximation of the Kullback-Leibler divergence and we would only obtain n˜ n instead of n˜ 2 n as an upper bound of E θ * (L θ * n -L θ n ).

  This can be viewed as a model selection problem. There is now a huge literature on model selection, both in the frequentist and in the Bayesian literature. Roughly speaking the methods can be split into two categories: penalized likelihood types of approaches, which include in particular AIC, BIC, MDL and marginal likelihood (Bayesian) criteria or approaches which consist in estimating the risk of the estimator in each model using for instance bootstrap or cross validation methods. In all these cases theory and practice are nowadays well grounded, see for instance Hansen and Yu [HY01], Robert [Rob01], Barbe and Bertail [BB95], Massart [Mas07], Baudry et al. [BMM12], Arlot and Celisse [AC10], Claeskens and Hjort [CH08], Ando [And10]. Most of the existing results above cover parametric or nonparametric models. Penalized likelihoods in particular target models wich are best in terms of Kullback-Leibler divergences typically and therefore aim at estimating the whole nonparametric parameter. Risk estimation via bootstrap or cross -validation methods are more naturally de ned in semiparametric (or more generally setups

  Let (Y n ) n≥1 be a sequence of independent and identically distributed randoms variables taking values in [0, 1] 3 . We assume the possible marginal distribution of an observation Y n , n ≥ 1 is a population mixture of k distributions such that, given the population, the coordinates are independent and have some density with respect to the Lebesgue measure on [0, 1]. The possible densities of Y n , n ≥ 1, are, if y = (y 1 , y 2 , y 3 ) ∈ [0, 1] 3 :

	4.2 ASYMPTOTIC EFFICIENCY	125
	open questions and further work in Section 4.5. Finally Section 4.6 is dedicated to proofs of
	intermediate propositions and lemmas.	
	4.2 Asymptotic E ciency	
	4.2.1 Model and Notations	
	3.1 the reasons to perform model selection and the fact	
	that choosing a too large approximation space does not work, see Proposition 4.6 and Corollary	
	4.7. Then we propose in Section 4.3.2 our cross-validation criterion, for which we prove an	
	oracle inequality in Theorem 4.8 and Proposition 4.9. Results of simulations are described in	
	Section 4.4, we investigate several choices of the number and length of blocks for performing	
	cross validation, and investigate practically also V-fold strategies. We discuss possible extensions,	

  Yet, one needs to pay attention to the bias in a nite horizon (i.e. when the number of observations n is xed). Note that in this model, we don't know any unbiased estimator of θ. Besides, typically the bias of an estimator of θ may increase when M increases. This prevents us to choose a sequence M n tending to +∞ too quickly (see Corollary 4.7).We now illustrate this issue using the m.l.e. If the m.l.e. is unbiased asymptotically, it is biased for a nite sample. In Proposition 4.6, we give the limit of the m.l.e. when the number n of observations is xed but M tends to in nity. Proposition 4.6. For almost all observations Y 1 , . . . , Y n , θM (Y 1 , . . . , Y n ) tends to

	θ n = ( n/k /n, . . . , n/k /n	, n/k /n, . . . , n/k /n
	r:=n-k n/k	k-r

  Let us rst prove that for large enough M , the measures f ω 1,c;M dy, . . . , f ω k,c;M dy are linearly independent. Indeed, if it is not the case, there exists a subsequence M p tending to in nity as p tends to in nity and a sequence (α (p) ) p≥1 in the unit ball of R k such that for all p ≥ 1, Lebesgue a.e. Let α = (α 1 , . . . , α k ) be a limit point of (α (p) ) p≥1 in the unit ball of R k . Using Assumption (A.2) and Corollary 1.7 in Chapter 3 of Stein and Shakarchi [SS05], we have that as p tends to in nity, f ω j,c;Mp (y) converges to f j,c

	Simulation		1	1	1	1	1	2	2	2	3	3	3
	n 4.6 Proofs		50	100	500	1000 2000	50	100	500	50	100	500
	0.062 0.043 0.020 0.014 0.010 0.058 0.046 0.020 0.096 0.078 0.036 0.063 0.046 0.021 0.015 0.010 0.067 0.046 0.022 0.10 0.082 0.042 4.6.1 Proof of Proposition 4.1 min P ≤Pn R n (2 P ) R n (2 P 0 )
	E	θ	2 P D,1 n	(Y 1:n ) -θ 2	0.069 0.047 0.019 0.014 0.011 0.075 0.056 0.019 0.12	0.087 0.037
	E	θ	2 P D,2 n	(Y 1:n ) -θ 2	0.073 0.046 0.022 0.015 0.010 0.065 0.056 0.025 0.10	0.087 0.046
	E	θ	2 P D,3 n	(Y 1:n ) -θ 2	0.086 0.047 0.021 0.014 0.010 0.087 0.056 0.026 0.11 k α (p) j f ω j,c;Mp (y) = 0	0.087 0.041
	E	θ	2 P V,1 n (Y 1:n ) -θ	0.091 0.046 0.021 0.013 0.009 0.104 0.055 0.022 0.11 j=1	0.087 0.053
	E	θ	2 P V,2 n (Y 1:n ) -θ	0.069 0.046 0.019 0.013 0.010 0.070 0.049 0.022 0.12	0.084 0.036
	E	θ	2 P V,3 n (Y 1:n ) -θ	0.103 0.046 0.019 0.014 0.009 0.10	0.049 0.022 0.14	0.083 0.035
					Table 4.2 -Comparison of the squared risk of estimators associated to di erent criteria

  1.2.1 Contribution 1 : Consistance de la loi a posteriori dans les modèles de Markov cachés non paramétriques à espace d'états nis, Chapitre 2, Vernet [Ver15b]Ma première contribution concerne la consistance de la loi a posteriori dans les modèles de Markov cachés non paramétriques à espace d'états nis. Ce sujet est développé dans le Chapitre 2 qui correspond aussi à l'article Vernet [Ver15b] publié dans EJS. Je précise ici le cadre de cette contribution. On se place dans le cas où la chaîne de Markov (cachée) (X t ) t∈N prend ses valeurs dans un espace d'état ni {1, . . . , k} et on connaît le nombre d'états k . Quant aux observations Y t , t ∈ N, on suppose qu'elles vivent dans R d . Le modèle est paramétré par µ et θ = (Q, f ) où µ est la loi initiale de la chaîne de Markov, Q est la matrice de transition, en n f = (f 1 , . . . , f k ) est le vecteur constitué des k densités d'émission par rapport à une mesure λ. µ et Q décrivent le comportement de la chaîne de Markov X t sous-jacente et f décrit la loi des observations sachant (X t ) t∈N . Donc X t ∈ {1, . . . , k}, Y t ∈ R d Xt,i δ i Y 1 , . . . , Y s , . . . |(X t ) t∈N sont indépendantes, Y t |(X t ) t∈N ∼ Y t |X t ∼ f Xt

	X 1 ∼

k i=1 µ i δ i , X t+1 |X 1 , . . . , X t ∼ X t+1 |X t ∼ k i=1 Q

  On précise ici le cadre des résultats obtenus dans le Chapitre 4. Comme précédemment les états cachés X t vivent dans un espace d'état ni {1, . . . , k} où k est connu. Mais ici ces états sont i.i.d. selon une loi k i=1 µ i δ i . De plus, les observations Y t , t ∈ N vivent dans [0, 1] 3 . Sachant les états cachés (X t ) t∈N , les observations sont toujours indépendantes avec Y t qui ne dépend que de X t . Mais de plus sachant X t , les trois composantes Y t,1 , Y t,2 et Y t,3 de l'observation Y t sont indépendantes avec pour lois respectives f Xt,1 dλ, f Xt,2 dλ et f Xt,3 dλ. Ce modèle peut être visualisé Figure A.4. On remarquera que ce modèle est identi able à permutation des états cachés près sous des hypothèses naturelles (voir la Partie 1.3.1 pour plus de précisions).

	X 1	...

i.i.d.

L 1 (λ ⊗3 ) = 1≤i 1 ,i 2 ,i 3 ≤k µ n i 1 Q n i 1 ,i 2 Q n i 2 ,i 3 f n i 1 (y 1 )f n i 2 (y 2 )f n i 3 (y 3 )µ * i 1 Q * i 1 ,i 2 Q * i 2 ,i 3 f * i 1 (y 1 )f * i 2 (y 2 )f * i 3 (y 3 ) λ(dy 1 )λ(dy 2 )λ(dy 3 ) ≥ -1≤i 1 ,i 2 ,i 3 ≤k µ n i 1 Q n i 1 ,i 2 Q n i 2 ,i 3 -μi 1 Qi 1 ,i 2 Qi 2 ,i 3 + 1≤i 1 ,i 2 ,i 3 ≤k μi 1 Qi 1 ,i 2 Qi 2 ,i 3 f n i 1 (y 1 )f n i 2 (y 2 )f n i 3 (y 3 )µ * i 1 Q * i 1 ,i 2 Q * i 2 ,i 3 f * i 1 (y 1 )f * i 2 (y 2 )f * i 3 (y 3) λ(dy 1 )λ(dy 2 )λ(dy 3 ),

2β+1 (log n) 3t ;
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CHAPTER 3: POSTERIOR CONCENT. RATES IN NONPARAMETRIC HMMS Theorem 3.1 is applied in Section 3.4 in two cases. In Section 3.4.1, the observations are assumed to be discrete and the prior on emission distributions is based on a Dirichlet process. We obtain a minimax rate which is 1/ √ n up to a power of log n in Corollary 3.5. In Section 3.4.2, the observations are assumed to be continuous and the emission distributions follow independently Dirichlet process mixtures of Gaussian distribution. Minimax rates of concentration are obtained for Hölder-type functional classes, see Corollary 3.7.

Bayesian Hidden Markov Models and Notations

We consider observations coming from homogeneous hidden Markov models with nite state space. Hidden Markov chains are discrete time stochastic processes (X t , Y t ) t∈N satisfying the following properties. The sequence (X t ) t∈N is a Markov chain. Conditionally on the hidden chain (X t ) t∈N , the observations Y t are independent with Y t only depending on X t . The states (X t ) t∈N are latent, they are called the hidden states. The statistician observes the sequence (Y t ) t≤n where n is an integer. Throughout Chapter 3, for any integer n, an n-uple (y 1 , . . . , y n ) is denoted y 1:n .

We rst introduce the notations concerning the Markov chain (X t ) t∈N . For all t ∈ N, X t belongs to {1, . . . , k}, where k is assumed to be known in this chapter. A transition matrix Q and an initial probability distribution µ describe the distribution of the underlying Markov chain

where δ i denotes the Dirac measure at i. The set of all initial probability distributions is the k -1simplex ∆ k = {x ∈ [0, 1] k : 1≤i≤k x i = 1}. We denote ∆ k k the set of all transition matrices such that each row of the matrix is an element of ∆ k . In the following we need ∆ k (q) = {µ ∈ ∆ k : µ i ≥ q ∀i} and ∆ k k (q) = {Q ∈ ∆ k k : Q i,j ≥ q ∀i, j} , for q ∈ (0, 1). When Q is in ∆ k k (q), with q ∈ (0, 1), then the uniform mixing coe cients, de ned in Rio [START_REF] Rio | Inégalités de Hoe ding pour les fonctions lipschitziennes de suites dépendantes[END_REF], associated to the corresponding Markov chain are bounded by φ(m) ≤ (1 -q) m , moreover the corresponding Markov chain is irreducible and positive recurrent.

The observations Y t are assumed to live in R d which is endowed with its Borel sigma eld. The distribution of Y t is assumed to be absolutely continuous with respect to some measure λ on R d .

Conditionally on (X t ) t∈N , Y t is distributed from a distribution f Xt λ depending on the state X t :

The distributions f i λ, 1 ≤ i ≤ k are called the emission distributions. The set of probability density functions with respect to λ is denoted F. The vector f = (f 1 , . . . , f k ) ∈ F k is formed with the k emission density functions.

BAYESIAN HIDDEN MARKOV MODELS AND NOTATIONS

CHAPTER 4 EFFICIENT SEMIPARAMETRIC ESTIMATION AND MODEL SELECTION FOR MULTIDIMENSIONAL MIXTURES

This is a joint work with E. Gassiat and J. Rousseau.

In this chapter, we consider nonparametric multidimensional nite mixture models and we are interested in the semiparametric estimation of the population weights.

Here, the i.i.d. observations are assumed to have at least three components which are independent given the population. We approximate the semiparametric model by projecting the conditional distributions on step functions associated to some partition. Our rst main result is that if we re ne the partition slowly enough, the associated sequence of maximum likelihood estimators of the weights is asymptotically e cient, and the posterior distribution of the weights, when using a Bayesian procedure, satis es a semiparametric Bernstein von Mises theorem. We then propose a cross-validation like procedure to select the partition in a nite horizon. Our second main result is that the proposed procedure satis es an oracle inequality. Numerical experiments on simulated data illustrate our theoretical results.

CHAPTER 4: EFFICIENCY IN SEMIPARAMETRIC MIXTURE MODELS

Here, E denotes expectation under P , and S M (Y ) T is the transpose vector of S M (Y ).

When considering the question of e cient estimation of θ in the presence of a nuisance parameter, the relevant mathematical objects are the e cient in uence function and the e cient Fisher information. Let us recall well known facts, see van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] or van der Vaart [START_REF] Van Der | Semiparametric statistics[END_REF] for details. The e cient score function is the projection of the score function with respect to parameter θ on the orthogonal subspace of the closure of the linear subspace spanned by the tangent set with respect to the nuisance parameter (that is the set of scores in parametric models regarding the nuisance parameter). The e cient Fisher information is the variance matrix of the e cient score function. For parametric models, direct computation gives the result. If we partition the Fisher information J M according to the parameters θ and ω, that is

we get that, in model (4.2), if we denote ψM the e cient score function for the estimation of θ,

and the e cient Fisher information JM is

To discuss e ciency of estimators, invertibility of the e cient Fisher information is needed. 

To get an asymptotically regular e cient estimator, one may for instance apply a one step improvement (see Section 5.7 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]) of a preliminary spectral estimator, described in Anandkumar et al. [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. Also, using the trick given in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] p. 63 to get consistency of the maximum likelihood estimator (m.l.e.), one sees also that the m.l.e. θ M is asymptotically a regular e cient estimator of θ .

In the Bayesian context, Bernstein-von Mises Theorem holds for large enough M if the prior has a positive density in the neighbourhood of (θ , ω M ), see Theorem 10.1 in van der Vaart [START_REF] Van Der | Asymptotic statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF].

That is, if • T V denotes the total variation distance, with Π M,θ the marginal distribution on the parameter θ,

where θ veri es Equation (4.6), which formally means that

where (σ n ) and θ satis e Equation (4.7).

A naive heuristic idea is that, when using the U i 's as summaries of the Y i 's, one has less information, but more and more if the partition I M is re ned. Thus, e cient Fisher information should grow when partitions I M are re ned. The following proposition is proved in Section 4.6.2.

Proposition 4.2. Let I M 1 be a coarser partition than I M 2 , that is such that for any

in which" ≥" denotes the partial order between symmetric matrices.

Thus, it is of interest to let the partitions grow so that one reaches the largest e cient Fisher information.

Let us now come back to model (4.1). Let, for j = 1, . . . , k, c = 1, 2, 3, H j,c be the subset of functions h in L 2 (f j,c dy) such that hf j,c dy = 0. Then the tangent set for

and the e cient score function ψ for the estimation of θ in the semiparametric model (4.1) is given, for j = 1, . . . , k -1, by

with A the orthogonal projection onto the closure of Ṗ in L 2 (g θ ,f (y)dy). Then, the e cient Fisher information J is the variance matrix of ψ.

If J is nonsingular, an estimator θ is asymptotically a regular e cient estimator of θ if and only

and a Bayesian method using a nonparametric prior Π satis es a semiparametric Bernstein-von Mises Theorem if, with Π θ the marginal distribution on the parameter θ,

= o P (1), up to label switching (4.12) for a θ satisfying (4.11).

General Result

When the sequence of models is a good approximation of model (4.1) by model (4.2), we expect that e cient score functions in (4.2) are good approximations of e cient score functions in (4.1) so that asymptotically e cient estimators in model (4.2) become e cient estimators in model (4.1). This is what Theorem 4.5 below states. The approximation assumption we shall use is the following.

(A3.3) There exists δ > 0 such that for all y in [0, 1] 3 , δ ≤ g θ ,f (y) ≤ 1/δ, and

Note that when (A3.2) is satis ed, (A3.3) holds true as soon as the functions f j,c , j = 1, . . . , k, c = 1, 2, 3, are positive continuous functions. We rst obtain: Lemma 4.3 is proved in Section 4.6.3.

To get that J is invertible, it is enough that subsequences of approximation spaces are embedded.

Introduce the following assumption.

(A3.4) There exists a sequence (M p ) p≥1 such that for all p, I Mp is a coarser partition than I M p+1 .

The proof of the following proposition is straightforward using Lemma 4.3, Proposition 4.1 and Proposition 4.2.

Proposition 4.4. Under Assumptions (A3.1), (A3.2), (A3.3) and (A3.4), J is nonsingular.

We are now ready to state Theorem 4.5.

Theorem 4.5. Under Assumptions (A3.1), (A3.2), (A3.3) and (A3.4), there exists a sequence M n tending to in nity su ciently slowly such that the m.l.e. θ Mn is asymptotically a regular e cient estimator of θ and satis es

ψ (Y i ) + o P (1), up to label switching.

Under the same assumptions and if for all M , the prior Π M has a positive density in the neighbourhood of (θ , ω M ), then there exists a sequence L n tending to in nity su ciently slowly such that moreover

= o P (1), up to label switching.

Proof. If θ M is the m.l.e. when using model (4.2) with partition I M one has

where for each M , (R n (M )) n≥1 is a sequence of random vectors converging to 0 in P -probability as n tends to in nity. But then, there exists a sequence M n tending to in nity su ciently slowly so that, as n tends to in nity, R n (M n ) tends to 0 in P -probability. Now,

y)dy) tends to 0 as n tends to in nity and ( JMn ) -1 converges to ( J) -1 as n tends to in nity, so that the rst part of the theorem is proved.

On the Bayesian side, for all M , there exists a sequence V n (M ) of random vectors converging to 0 in P -probability as n tends to in nity such that

Arguing as previously, there exists a sequence L n tending to in nity su ciently slowly so that, as n tends to in nity, both V n (L n ) and R n (L n ) tend to 0 in P -probability. Using the fact that the total variation distance is invariant through one-to-one transformations we get

.

But for vectors in m ∈ R k-1 and symmetric positive (k -1) × (k -1) matrices Σ we have

where U ∼ N (0, Id). Thus the last part of the theorem follows from the triangular inequality and the fact that using Lemma 4.3, as n tends to in nity, JLn J-1 tends to Id and V n (L n ) and R n (L n ) tend to 0 in P -probability.
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Equivalently, we could choose any unbiased estimator θ instead of using an estimator θ I 0 of the considered family of estimator. Let m n = #M n be number of candidate partitions.

To do so we consider the following set of assumptions:

we obtain the following oracle inequality.

Theorem 4.8. Suppose Assumption (A3.5). For any sequences 0 < n , δ n < 1, with probability greater than

we have

where I n ∈ arg min I∈Mn C CV (I).

As a consequence of Theorem 4.8, the following Proposition holds. Recall that n = 2b n a n .

Proposition 4.9. Assume (A3.5). If b n n 2/3 log 2 (n), a n n 1/3 /(log 2 (n)), and m n ≤ C α n α , for some C α > 0 and α ≥ 0, then

where I n ∈ arg min I∈Mn C CV (I).

Note that for each I, R an (I) is of order of magnitude 1/a n so that the remaining term is indeed small regarding the main term. Note also that this is an exact oracle inequality (with constant 1).

In Theorem 4.8 and Proposition 4.9, I n is built with n observations while the risk is associated with a n < n observations. This leads to a conservative choice of I n , i.e. we may choose a sequence I n (optimal with a n observations) increasing more slowly than the optimal one (with n 4.4 SIMULATIONS 137 observation). We think however that this conservative choice should not change the good behaviour of θ In , since Theorem 4.5 implies that any sequence of partitions which grows slowly enough to in nity leads to an e cient estimator. Hence, once the sequence M n growing to in nity is chosen, then any other sequence growing to in nity more slowly also leads to an e cient estimator.

In Proposition 4.9 and Theorem 4.8, the reference point estimate θI 0 (Y B -b ) is assumed to be unbiased. This is a strong assumption, which is not exactly satis ed in our simulation study.

To consider a reasonable approximation of it, θI 0 (Y B -b ) is chosen as the m.l.e. associated to a partition with a small number of bins. The heuristic behind this choice is that the maximum likelihood is asymptotically unbiased and a small number of bins implies a smaller number of parameters to estimate, so that the asymptotic regime is attained faster. Our simulations con rm this heuristic, see Section 4.4.

Simulations

In this section, we illustrate the results obtained in Sections 4. 

La consistance est une exigence minimale sur la loi a posteriori. L'étude de la consistance de la loi a posteriori dans le cadre des HMMs à espace d'état ni est l'objet de ma première contribution.

En particulier j'ai étudié cette garantie en considérant di érentes pseudo-métriques d, c'est-àdire di érentes topologies sur di érents objets.

Consistance de la loi a posteriori pour l'estimation de la loi marginale jointe P θ l de l observations consécutives J'ai tout d'abord cherché à savoir si la loi a posteriori concentrait sa masse autour des paramètres θ tels que les lois P θ l , de l observations stationnaires consécutives associées (c'est-à-dire la loi de Y 1 , Y 2 , . . . , Y l sous une loi stationnaire associée à θ), étaient proches de P θ * l . Cette étude est intéressante dans le cadre de la prédiction. En e et, si la loi a posteriori est consistante pour cet objet P θ l alors la loi des observations peut être estimée de façon consistante. Cette étude se révélera aussi utile dans le cadre de l'estimation de Q et f , voir la partie suivante.

Deux topologies sont utilisées pour comparer les lois (P θ l ) θ . On considère la topologie T w associée à la convergence en loi ainsi que la topologie plus ne T l associé à la norme L 1 , qui correspond à l'utilisation de la pseudo-métrique D l sur Θ:

où p θ l est la densité associée à P θ l par rapport à λ ⊗l . Pour obtenir un théorème général portant sur la consistance de la loi a posteriori pour les deux topologies précédentes, j'ai utilisé la "méthode usuelle", plus précisément Barron [START_REF] Barron | The exponential convergence of posterior probabilities with implications for bayes estimators of density functions[END_REF]. Cette méthode consiste à montrer que la loi a priori met su samment de poids dans le voisinage de Kullback du vrai paramètre et à prouver l'existence de certains tests (qui est souvent démontrée par le fait que la loi a priori ne met pas trop de poids sur des espaces trop grands, i.e. pénalise su samment les espaces complexes). Voir le Théorème 1.11 pour plus de précisions. J'ai explicité les hypothèses provenant de Barron [Bar88] dans le cadre des HMMs. L'existence des tests était déjà démontrée dans Gassiat and Rousseau [START_REF] Gassiat | About the posterior distribution in hidden Markov models with unknown number of states[END_REF], elle s'appuie sur une généralisation de l'inégalité d'Hoe ding pour des données dépendantes par Rio [START_REF] Rio | Inégalités de Hoe ding pour les fonctions lipschitziennes de suites dépendantes[END_REF]. Il me restait donc à
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Identi abilité à permutation près par Gassiat et al. Les deux topologies précédentes T w et T l concernaient la loi jointe marginale de l observations.

Or on pourrait être intéressée par d'autres quantités comme le paramètre θ en lui-même ou les lois de lissage (i.e. la loi d'un état caché sachant les observations) par exemple. Ainsi j'ai cherché à comprendre ce que ça signi e sur Q et f ou sur Consistance de l'a posteriori pour l'estimation de Q et f Dans cette partie, on s'intéresse au problème de l'estimation du paramètre θ en lui-même, c'est-àdire de la matrice de transition Q et des densités d'émission f j , j ≤ k. Ainsi, on cherche à savoir si la loi a posteriori concentre sa masse autour des paramètres (Q, f ) tels que Q est proche de

Obtenir ce type de consistance à partir de la consistance sur la loi des observations est intimement 

Les résultats de vitesse permettent de comparer des lois a priori. C'est un critère d'optimalité.

On dira que la loi a posteriori se concentre à une vitesse minimax lorsque la loi a posteriori se concentre avec la meilleure vitesse possible. L'étude de la vitesse de concentration permet aussi de mieux comprendre le rôle joué par la loi a priori.

Tout comme l'étude de la consistance, l'analyse de la vitesse de concentration nécessite de choisir une pseudo-métrique. Dans ce projet, j'ai utilisé D l (θ, θ) = p θ l -p θ l L 1 . Je rappelle ici que la topologie induite par D l est intéressante dans le but d'estimer la loi des observations et donc aussi dans un but de prédiction. C'est aussi une première étape pour obtenir une vitesse de concentration par rapport à une métrique sur les lois d'émission. f ) et au vrai paramètre (Q * , f * ). La vitesse atteinte a la forme suivante n /q n où n dépend du côté "non paramétrique" du modèle, à savoir Π (k) f et f * quant au taux q n il dépend de Π Q . Ainsi le taux n est détérioré par q n , c'est-à-dire par la liberté donnée à Π Q en ce qui concerne les propriétés de mélange de la chaîne de Markov associée à Q.

Application à di érents modèles et lois a priori J'ai appliqué le théorème général dont je parle dans la partie précédente à di érents cadres. Il aboutit à des vitesses minimax à une puissance de log(n) près, dans di érents modèles et pour di érentes lois a priori, voir la Partie 3.4.