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ii RESUME

Résumeé

Les modéles latents sont trés utilisés en pratique, comme en génomique, économétrie, reconnais-
sance de parole, étude de population... Comme la modélisation paramétrique des lois d’émission,
c’est-a-dire les lois d’une observation sachant I’état latent, peut conduire a de mauvais résultats
en pratique, un récent intérét pour les modéles latents non paramétriques est apparu dans les ap-
plications. Or ces modeles ont peu été étudiés en théorie. Dans cette thése je me suis intéressée
aux propriétés asymptotiques des estimateurs (dans le cas fréquentiste) et de la loi a posteriori
(dans le cadre Bayésien) dans deux modéles latents particuliers : les modéles de Markov cachés
et les modéles de mélange. J’ai tout d’abord étudié la concentration de la loi a posteriori dans les
modéles non paramétriques de Markov cachés. Plus précisément, j’ai étudié la consistance puis
la vitesse de concentration de la loi a posteriori. Enfin je me suis intéressée a I’estimation efficace

du parametre de mélange dans les modéles semi-paramétriques de mélange.

Mots-clés:

Statistiques non et semi-paramétriques, statistiques Bayésiennes, statistiques asymptotiques, mod-

éle de Markov caché, modele de mélange



Nonparametric Mixture Models and
Hidden Markov Models: Asymptotic
Behaviour of the Posterior

Distribution and Efficiency



iv ABSTRACT

Abstract

Latent models have been widely used in diverse fields such as speech recognition, genomics,
econometrics. Because parametric modeling of emission distributions, that is the distributions
of an observation given the latent state, may lead to poor results in practice, in particular for
clustering purposes, recent interest in using nonparametric latent models appeared in applica-
tions. Yet little thoughts have been given to theory in this framework. During my PhD I have
been interested in the asymptotic behaviour of estimators (in the frequentist case) and the pos-
terior distribution (in the Bayesian case) in two particuliar nonparametric latent models: hidden
Markov models and mixture models. I have first studied the concentration of the posterior dis-
tribution in nonparametric hidden Markov models. More precisely, I have considered posterior
consistency and posterior concentration rates. Finally, I have been interested in efficient estima-

tion of the mixture parameter in semiparametric mixture models.

Keywords:

Non and semiparametric statistics, Bayesian statistics, asymptotic statistics, hidden Markov model,

mixture model
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2 CHAPTER 1: INTRODUCTION

This introduction does not aim at being exhaustive. Here, I want to introduce the notions and
objects which are important in my thesis along with the motivations of the research I have ac-
complished during my PhD. In Section 1.1, I present the models I have studied namely hidden
Markov models (HMMs) and mixture models. Both models are latent models, in other words, the
observations are driven by some hidden random variables. In mixture models the latent variables
are independent and identically distributed while they are dependent in HMMs. Latent models
are very popular in practice. Recently, there has been a increased use of nonparametric versions
of latent models. Yet, in this framework theoretical guarantees for estimators or for the posterior
distribution in the Bayesian framework are not well understood. In this thesis I have contributed
to better understand the theoretical behaviour of both point estimators and posterior distribu-
tions in these models. In Section 1.2, I present the type of properties I have been studying. In
Section 1.3, I recall the results, that were known at the beginning of my PhD, about nonparamet-
ric HMMs and semiparametric mixture models. I finish the introduction with Section 1.4, which

gives an overview of the results I have obtained and perspectives.

1.1 HMMs and Mixture Models

First of all, let us introduce some notations.

1.1.1 Some General Notations for Statistical Models

A statistical model is a triple (Y™, B, P,,) where (Y™, B,,) is a measurable space and P,, =
{P? 6 € O} is a set of distributions on (", B3,,) parametrised by . The integer n represents the
number of observations. In this thesis we are interested in asymptotic properties, that is the study
of what happens when n tends to infinity. We consider Pfioo a probability distribution on JN that
will be denoted PY := PY__ in the following, then P is the n-marginal of PY and J™ is the set
where the observations (Y1, ..., Y,) livein: (Y1,...,Y,) € V™. When O is finite dimensional we
say that the model is parametric otherwise we say that the model is nonparametric. Throughout
the thesis, we assume that the model is dominated, that is the distributions Pg are absolutely
continuous with respect to a unique measure \,,. We denote pf the density functions of P? with
respect to Ay, :
Pg = o\,

We say that the model is well-specified when the observations Y7, ...,Y,, are assumed to be
distributed from a true distribution P?" which belongs to the considered family of distributions,
0* € ©. An aim is then to obtain some information about 6* from the observations. For instance,
we may want to estimate 6* or a functional of §*. This inference is done with the help of an

estimator én, i.e. a measurable function of the observations: én = én(Yl, e Yn).

In Bayesian statistics, the set of parameters © is endowed with a sigma-field and a probability
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distribution II on © is given, it is called the prior distribution. The prior distribution may reflect
what is already known on the parameters. The prior distribution may also be “neutral” that is
not giving any information on the parameters, we call such prior distribution noninformative
prior distributions. One may also choose the prior because of its tractability. The choice of
the prior affects the inference, so that this choice has to be done with care, particularly in the

nonparametric setting.

From the prior and the observations Y1, . . . , Y, we can define the posterior distribution IT(-|Y7, . . .

which is a distribution on the set of parameters ©. The posterior distribution is the distribution

of the parameters given the observations, by the Bayes’ rule:

4P, Y)TI(d)
T b (Y, Ya)TI(d6)

(0 € A|Y1,...,Y,)

The posterior distribution represents the knowledge on the parameters we have learnt thanks to
the observations. When the prior distribution is absolutely continuous with respect to a measure
v, that is Il = 7v, the posterior admits a density with respect to v. We denote it 7(-|Y1,...,Y})

and
_ . Y)m(9)
f@ pZ(Yla s 7Yn)77(9)1/(d9) '

From the posterior distribution, we can build frequentist estimators for instance the maximum a

T(O)Y1,...,Y,)

posteriori (MAP) estimator
gMAp € argmaxm(0|Y;...Y),)
0cO

or the posterior mean

%M:/wwmwjmmwx
S]

if they exist. Note that the posterior distribution potentially gives more information than an
estimator, since given the observations, it gives a distribution on the parameter set and not only

a value for the parameter.

The posterior distribution may not have an explicit expression, then statisticians may choose
prior distributions for which the posterior is easier to compute or an approximation of the poste-
rior distribution may be computed with MCMC for instance. A class of prior distributions leading
to analytically computable posterior distributions is the class of conjugate prior distributions. A
prior distribution is said to be conjugate for some likelihoods p? when the posterior distribution
and the prior distribution belong to the same class of distributions. For instance, the Gaussian
prior is conjugate for the likelihood p (y1,...,yn) = [Ii"y (1/v/nexp(—(y; — 0)?/2)) with
parameter § € © = R. Indeed when 7, »(0) = 1/\/nexp(—(0 — u)?/(20?)), then the posterior
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distribution is the Gaussian distribution
n

1 11 1
— Y,, ——— | . 1.1
N<1+n02+02/n+1nz; Z’1/02—i-n> (L.1)

i=

An important class of conjugate prior distributions for independent observations are the Dirichlet
distributions. The Dirichlet distribution is a generalization of the beta distribution in higher
dimension. The Dirichlet distribution with parameter (a1, ...,®;),j € N¥, is a distribution
absolutely continuous with respect to the Lebesgue measure on the (j — 1)-dimensional simplex
Aj={x e Ri : Z:l x; = 1} with density function:

INODY -
(kZz:I aZ)-r(ln_l”'x?i_ll 1(1 _in)ajfl’x c Aj-
[Tizy T(e) i<j

The Dirichlet distribution with parameter (o, a2 ) is the beta distribution with parameter (o, as).
The Dirichlet distribution is conjugate for the likelihood of the type product of a categorical dis-

tributions. In other words, if ¥, = {1,...,k}", © = Ak, o2 (y1,...,Yn) = 0y, - .. 0y, and the

prior is a Dirichlet distribution of parameter (o, . .., oy ) then by the Bayes’ rule:

a;—1 ap—1
By ... 0,071 60

T fa Oy 0,006

7(0|Y1,...,Y,)

so that the posterior distribution is a Dirichlet distribution of parameter (a7 + [{i : Y; =
1H, ooy ap +{i: Y =k}).

In Bayesian nonparametric models, we need probability distributions on infinite dimensional
sets. A popular distribution used in this framework is the Dirichlet process which is a general-

ization of the Dirichlet distribution.

Definition 1.1 (Dirichlet process). Let o > 0, and let G be a probability distribution on some set
I". The Dirichlet process DP(aG) is a process on probability measures M(I') on I such that for all
realization P € M(T') of the process, for all finite partition (I'y,...,T;) of T,

(P(T1),...,P('})) isdistributed as Dir (aG(T'1),...,aG(T})).

The Dirichlet process is popular because it is conjugate when © = M(T'), PY = ®"_,6, i.e. in
the i.i.d. case with distribution 6. Yet a drawback of Dirichlet processes is that it puts all its mass
on discrete distributions. Thus statisticians often use Dirichlet process mixture of some kernel
as prior on density functions. For instance in the case where the parameter § = f is a density
function, we can choose that under the prior distribution, f = [ K, (- —m)P(dm,do) where P
is distributed as a Dirichlet process DP(aG) and K, (- —m) is a kernel with window o centered
at m, e.g. the Gaussian kernel where K, (y —m) = 1v2n02 exp(—(y — m)?/(202)).
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More properties about the Dirichlet Process are given in Ghosh and R.V. Ramamoorthi [GR03]
for instance. Of course, Dirichlet process mixtures of kernels are not the only possible prior
distributions. For instance, Gaussian processes are another type of popular nonparametric prior
distributions, see Ghosh and RV. Ramamoorthi [GR03] and van der Vaart and van Zanten [VZ08]
for instance and references therein. For more information on Bayesian statistics, see Robert
[Rob01] or Gelman et al. [GCSR14] for example and on nonparametric Bayesian statistics see
Ghosh and R.V. Ramamoorthi [GR03] for instance.

I have considered two models during my PhD which are mixture models and hidden Markov

models (HMMs). I now define both models and compare them.

1.1.2 HMMs and Mixture Models: Definitions and Examples

During my PhD, I have been interested in latent models. In these models, a sequence of latent
variables is hidden and the statistician only observes a noisy version of it. An important class of
such models is when the latent variables live in a finite set, say {1, ..., k}. In this case, the latent
variables are often used to model populations the observations come from. In the case of mixture
models the latent variables are i.i.d. while in hidden Markov models, the latent variables form
a Markov chain. We now define these models formally. More information can be found in the
following books and the references therein, MacDonald and Zucchini [MZ97], MacDonald and
Zucchini [MZ09] and Cappé et al. [CMR05] on HMMs, Lee et al. [LMMR09] on mixture models.

Definition 1.2 (Mixture model). Let (X, A) and (Y, B) be two measurable spaces where X is finite.
Let pu be a distribution on X' and (F).cx be a family of distributions on Y. If X is distributed as
w and given X = x, Y is distributed from F, then Y is distributed from a mixture model. In
other words, Y is distributed from ) ji(x)Fy(-). We call the distributions F,, the emission

distributions.

A commonly used mixture model is the mixture of Gaussian distributions. In this case, the emis-

sion distributions F}, are assumed to be Gaussian distributions.
A DAG representation of a mixture model is given in Figure 1.1.

In such a mixture model, statisticians cannot observe the hidden variables X1, ... X, iid. from

1 but observe the observations Y7,...,Y,.

Now imagine that the hidden variables X1, ..., X, are not i.i.d. any more but are distributed
from a Markov chain. Then we obtain a hidden Markov model. Here is a formal definition of a
hidden Markov model.

Definition 1.3 (Hidden Markov model). Let (X, .A) and (), B) be two measurable sets, () a tran-
sition matrix on X x X, p a probability distribution on X and (Fy)zex a family of probability

distribution on ). Assume (X¢)ien is a Markov chain with transition matrix () and initial distri-
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Figure 1.1 — Visualization of a mixture model.
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Assume that given the Markov chain (X;)icn, the observations Y; are independent and forall s € N,

Y is distributed from Fx,.

Then the sequence (X¢,Y?)ien is a hidden Markov chain.

When for all x € X, F;, is absolutely continuous with respect to some measure A with density f,

the likelihood associated to this model is

pfl(yla s >Y7L> =

2.

(1500 ) EX™

where 0 = (1, Q, f), f = (fe)zex-

A DAG representation of a HMM is given in Figure 1.2.

QXt—l,-

Ix.

)

My le,wz s anfhrnfm (YI) s fﬂcn (Yn

T
Ixn
5

QXtv'

Figure 1.2 — Visualization of a HMM.

Mixture models and HMMs are very popular models. They are used in many fields of application

such as speech recognition, image processing, genetics, ecology, econometrics or climate, to cite

a few. Their popularity is due to their great flexibility, together with the existence of efficient

algorithms, both for the Bayesian and frequentist methods.

In the following, we consider a particular case of these models that we describe now. We only

consider mixture models and HMMs where the number of states for the latent variables is fi-
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nite and known. In other words, we assume that there exists £k € N, that we know, such that
X ={1,...,k}. These particular models are often used to cluster the observations into groups
associated to the same latent variable. While we constraint the latent variables to live in a fi-
nite state space, we do not assume that the emission distributions have a specific parametric
form. So that we consider nonparametric latent models with finite state space. Chapters 2 and 3
deal with nonparametric HMMs with finite state space. Chapter 4 deals with mixture models
with finite state space where the emission distributions are a product of three distributions (for

identifiability purpose, see Section 1.3.1). The latter mixture model is represented in Figure 1.3.

iid.

Figure 1.3 — Visualization of the multivariate mixture model.

The reason for considering a nonparametric model for the emission distributions, is that they
allow for much more robust inference. In Yau et al. [YPRH11] for example, a nonparametric HMM
with finite state space is used to model genetic data. More precisely the index ¢ corresponds to
a locus in the DNA. For each locus, the authors want to know if the fragment of DNA has been
deleted twice (X; = 1), once (X = 2), if nothing has happened (X; = 3), if it has been replicated
once (X; = 4) or twice (X; = 5). This variation of the number of replicates of the fragment of the
DNA is called genomic copy number variation and is represented in Figure 1.4. The data consist of
intensity measurements obtained after some experience on the studied DNA. The authors model
the data with a HMM where the hidden states correspond to the state of deletion or duplication
and the observations Y; are the intensity of measures. The HMM is then associated with k = 5

states. The authors consider a location HMM, i.e.
}/;f = th + €t,

with my,...,ms € R, ¢, '~ G and G some unknown distribution. The authors use a Bayesian
nonparametric approach and model the density of the noise (¢;) using a DP mixture of Gaussian

distributions.

Two questions then arise.
« Is this model identifiable?

« Does the Bayesian approach lead to consistency?
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Deletion B
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Figure 1.4 — Representation of genomic copy number variation, from nttp: //readingroom.mindspec.org/

?page_id=8221

The identifiability issue has been solved by Gassiat and Rousseau [GR16] and Gassiat et al.
[GCR15]. In this thesis we study the asymptotic behaviour of the posterior distribution for such
models. More generally, we are interested in the asymptotic properties of the posterior distribu-
tion and estimators in nonparametric HMMs and semiparametric mixture models. In Section 1.2,

we present the asymptotic guarantees we examine in Chapters 2, 3 and 4.

1.2 Asymptotic Theoretical Guarantees

Before studying the asymptotic behaviour of the posterior distribution or of estimators, it is im-
portant to understand when and why the model is identifiable. Identifiability is the injectivity
of the functional # — P?: basically, it states that from the true distribution of the observations
you can recover the parameters. Of course it is a very important notion in the context of the

estimation of 6.

For example:

« the iid. Gaussian experiment, that is Y; N (u,0) =: P is identifiable. Indeed

p=Epuo(X)and o = \/Varpu. (X).
Lid.

« In general, a nonparametric mixture model, with ¥; '~ Z§:1 15 £5(-)A, is not identifiable

unless some extra constraint is imposed on f;, j < k. Indeed let i = (u1/2,p1/2 +


http://readingroom.mindspec.org/?page_id=8221
http://readingroom.mindspec.org/?page_id=8221
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M2, 13, - - '7/*’“6)5 fz = 1/(”1/2 + /’LQ) (u1/2f1 + MQfQ) and fj = f] fOI'j € {1737 sy k}:
then >y fiA = >_; fi;j fjA. Similarly one can choose many other parameters (f, f)

leading to the same distribution.

« Interestingly, if for all j, f; can be written as f; = ngl [j.c» and under the restriction that
forall j <k, u; > 0 and f; .\ are linearly independent for all ¢ € {1, 2, 3}, then the model
is identifiable (up to the labelling of the hidden states). This is the model represented in
Figure 1.3

More identifiability results in latent models can be found in Section 1.3.1.

Identifiability often is a prerequisite before studying more involved guarantees. Indeed, in statis-
tics, you cannot have access to the probability P? but to observations Y7, ..., Y, which are
distributed from P? and an objective is to obtain information about the unknown P? from the
observations. For instance, we may want to know from which parameter the observations come
from, i.e. to estimate # or predict the next observations (prediction). When the goal is to esti-
mate 6 then identifiability is a required property. Then we need to control that what we have
built with the observations, namely an estimator or the posterior distribution, gives a “ good”
approximation of what we wanted to recover, where the adjective “ good” has to be defined. It
may be defined in an asymptotic way that is by regarding what is happening when the number
of observations n increases or nonasymptotically, that is when the number of observations is
fixed. ’'m going to emphasise asymptotic guarantees since the results I have obtained during my

PhD are asymptotic.

To study the asymptotic properties of the method of inference, we take a frequentist point of
view, i.e. we assume that the observations come from a true distribution P?". We investigate

three types of asymptotic guarantees:

« consistency results,
« rates of convergence,

« limit distributions.

In Section 1.2.1, we describe the tools used to study the asymptotic behaviour of the posterior
distribution. Intuitively, when the number of observations, distributed from a true distribution
PY | increases, the posterior should concentrate around the true parameter 6%, i.e. the posterior
distribution should converge to a Dirach measure dg« at 6*. This is represented in Figure 1.5 by
the plain arrow, over which there is a question mark. This is not the same as the problem of
approximation of the posterior distribution for a given n by algorithms as Markov Chain Monte

Carlo (MCMC), represented by the dotted line. The latter is not treated in this thesis.

Posterior consistency and posterior concentration rates are introduced in Section 1.2.1 and are

studied in the framework of nonparametric HMMs in Chapters 2 and 3. In Section 1.2.2, the



10 CHAPTER 1: INTRODUCTION

[ The prior: 11 j

The observations:
Yi,...,Y, ~ P?

—

Approximation The posterior W ?
of the posterior | . distribution: - O~
distribution e.g. J
I-|vs,..., Y, —
with MCMCs S 2 e
. J

Figure 1.5 — Study of the asymptotic behaviour of the posterior distribution

notion of limit distribution linked to asymptotic efficiency is developed in the frequentist and
Bayesian settings. This property is studied in the case of semiparametric mixture models in
Chapter 4.

1.2.1 Posterior Consistency and Posterior Concentration Rates

In this section, we give results on the asymptotic behaviour of the posterior distribution taking a
frequentist point of view, i.e. assuming that the observations come from a true distribution P?".
The interest of studying posterior consistency and posterior concentration rates is that it sheds
light on the impact of the prior distribution on the posterior distribution. This is particularly
important in nonparametric models where the prior cannot be fully subjectively assessed and is
difficult to apprehend, given the complexity of the parameter space. We then study the behaviour

of the posterior distribution II(-|Y7, ...Y;) when the number of observations n increases.

1.2.1.1 Definitions

The first guarantee we may look for is posterior consistency which corresponds to answering the
question: “when the observation comes from a true parameter 6*, does the posterior distribution

concentrate its mass around the true parameter 6* when the number of observations increases?”.

Definition 1.4 (posterior consistency). We say that the posterior distribution is consistent at 0*

with respect to a pseudo-metric d on © if

IM({0: d6,6") > e} |Yi,...,Y,) =0, P’ —as., foralle>0.

This notion is illustrated in Figure 1.6, with i.i.d. observations from A (6, 1) with the true pa-
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rameter 0* = 0, and a Gaussian prior II = N(5,5) on the parameter § € © := R. In Figure 1.6,

the posterior seems to concentrate around the true value 0.

a5 Y, ~ N(©,1), o'=0
iid.,i<n
3
Prior Prior
25~ distribution: distribution: Posterior
6 ~ IT = N(5,5) 0 ~ I1=N(5,5) density
? 4 n=1
150
1
o5
........................... o
E -6 -4 -2 0 2 4 6
(a) Prior byn=1
4 4
;- N, o'=0 Y, - NGO, 0'=0
iid.,i<n iid.,i<n
3 3-
Prior Prior
distribution: Posterior distribution: Posterior
6 ~ IT = N(5,5) density 6 ~ IT = N(5,5) density
2" 2
n=3 n=10
0 . orois [ TR /£ 35 B CSRS s S S
-6 -4 -2 o 2 4 6 -6 -4 -2 0 2 4 6
)n=3 d)n =10

Figure 1.6 — Representation of the posterior density when n increases for one set of Gaussian
iid. observations and with a Gaussian prior-Illustration of posterior consistency

Posterior consistency is a minimal requirement, even in the Bayesian subjective point of view. In-
deed if two posterior distributions are consistent everywhere then they will finally agree (merge

weakly) as explained in Diaconis and Freedman [DF86].

To better understand the behaviour of the posterior, we may be interested at which rate the

concentration occurs.

Definition 1.5 (posterior concentration rates). We say that the posterior distribution concentrates
at rate €, — 0 at 0%, with respect to a pseudo-metric d on © if there exists a constant M > 0 such
that

II({60: d(6,0") > Me,} | Y1,...Y,) =0, in P -probability.

Posterior concentration rates are illustrated in Figure 1.7 where the framework is the same as the
one of illustration 1.6. Yet in this illustration we try to know if the posterior concentrates at rate
€n = log(n)//n and then at rate €, = log(n)/n at 0. We then take a ball around 0 of radius €,
and we verify if the posterior mass of this ball tends to one in P?" probability. In this case, it can

be proved that the posterior concentrates at rate M,/ /n at 0 for all sequence M,, increasing
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to +00 (and this is typically true in the parametric setting) and is not at a rate tending faster to

Z€ro.

Studying posterior concentration rates can give an idea of optimality of the behaviour of the
posterior distribution. Indeed if the posterior concentrates at a minimax rate in the frequentist
sense, then the behaviour of the posterior distribution has an optimal asymptotic behaviour. This
enables us to compare two prior distributions through their associated posterior concentration
rates. It also helps in comparing the Bayesian answer with frequentist estimators. Note that
when the posterior concentrates at some rate, then we can build an estimator from the posterior
distribution which converges to the true parameter at the same rate (see Ghosal et al. [GGV00]).
The frequentist minimax rate often depends on the regularity of the true distribution (for instance
n~B/(28+1) in density estimation for a true distribution -Hélder and the L'-norm). If the prior
distribution does not depend on the regularity parameter and the posterior distribution concen-
trates at the minimax rate for any regularity, so that it learns the regularity parameter from the

observations; then we say that the posterior distribution concentrates at adaptive minimax rates.

Another interest of studying posterior concentration rate is that it sheds light on how some as-
pects of the prior distribution influence the behaviour of the posterior distribution. This is par-
ticularly important since it is not possible to assess a prior distribution on an infinite dimensional

space purely on subjective considerations.
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(a) €, = log(n)/+/n,n =10

n=10,
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=0.10414

B(Og,)

(e) €n = log(n)/n,n = 10

tration rates

n=30,
=log(n) n
=0.62097,

THB(O.E IY,.Y,)
=1

B(Os,) 2

1

(b) €, = log(n)/+/n, n = 30

n=30,
€= log(n) n’
=0.11337,

(B IV, .Y,)
=0.99767

B(O:,)

() en = log(n)/n,n = 30

n=50,
=log(n) n
=0.55324,

THB(O.E IY,.Y,)
=1

B(Os,) 2

1

(c) €n = log(n)//n,n =50

n=50,
€= log(n) n’
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(d) €n =log(n)/+/n,n =170

n=70,
€= log(n) n’
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(B IV, Y,)
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B(O:,)

(h) €, = log(n)/n,n =70

Figure 1.7 — Representation of the posterior mass of a ball B(0, €,,) when n increases for two decreasing rate €, —Illustration of posterior concen-
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1.2.1.2 Technique of Proof and What is Already Known

When the observations are i.i.d. Doob’s theorem ensures that the posterior distribution II(-|Y7,

.., Y} is consistent at IT-almost every 6*. Yet behind this positive result, different limitations
exist. First such theorem may fail with non-iid. observations (see Choi and Ramamoorthi
[CR08]). Moreover from Doob’s theorem, we cannot know at which 6* the posterior distribu-
tion is consistent. Finally, in the nonparametric setting, the null-set of parameters at which the

posterior distribution is not consistent may be topologically huge (see Freedman [Fre65]).

These limitations underline the usefulness of a method to obtain posterior consistency at partic-
ular true parameters §*. A general method to prove consistency and which also leads to posterior
concentrations rates when it is refined is presented now. It comes from Schwartz [Sch65], Barron
[Bar88], Barron et al. [BSW99], Ghosal et al. [GGV00], Shen and Wasserman [SW01] or Ghosal
and van der Vaart [GV07a] to cite but a few.

To prove posterior consistency or concentration rates, one has to look at probabilities of this

type:

fd(e 0%)>6 ph(Y1, ..., Y,)w(d6)
11 ede’e* 2571 Y,...,Yn: ? =n
(5 0.0 > )V, ¥y) = R
Jao0y55, Pa(Vts- - Vo) /6 (Vi Yo ) m(dO) N,

" Jo exp(log(pl(Yr, - -, Yn)) — log(pl (Y, ..., Yn)))w(d8) ~ D,

and prove it is small in some sense. To control this quantity, it is common to

(A0.1) use some test ®,, to test 0* against 6 : d(6,0*) > §,, with small errors E?" (®,,) and
SUDg: 4(0,0%)>6,, E/(1— &®y,),

and

(A0.2) prove that the prior puts not too small probability in some neighbourhood of the true
parameter 6* (the neighbourhood is usually formed in terms of a neighbourhood of the
log-likelihood associated to the true parameter). This assumption enables to obtain lower

bounds for the denominator D,,.
Then, under assumptions of type (A0.1) and (A0.2),

E? [T1({0 : d(6,6%) > 6,|Y1,...Yy)]
<E (@) + B [(1— @u)II({0: d(0,0%) > 6u|V1,...Y0)]
<E” (@) +E” [(1 - %)ﬁ"]

is small because

« E?(®,) is controlled by an assumption of type (A0.1),
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« D, is lower bounded with probability tending to 1 using an assumption of type (A0.2) and
« E((1-®,)N,) = fd(@ 0%)>6n E?((1—®,,))7(d) is small using an assumption of type (A0.1).

The needed tests of Assumption (A0.1) may not exist if the set © of parameters is too big (e.g.
considering the set of density of functions for © and the L'-norm d(-,-) = |- — -||z1) then

Assumption (A0.1) can be replaced by

(A0.3) the existence of a sequence of sets ©,, C O (often more and more complex) such that, we
can build some tests to distinguish §* against 6 € ©,, : d(0,60*) > 6, and such that the

prior mass of ©,, is decreasing fast enough .

The existence of the needed tests is often implied thanks to an assumption on the complexity of
the sets ©,,. This may be measured with covering numbers for instance. The J-covering number
N(6,S,d) of a set S with respect to a pseudo-metric d, for § > 0 is the minimum number of
d-balls of radius ¢ needed to cover the set A. Then Assumption (A0.3) can be interpreted as “the

prior has to penalize enough too complex sets”.

We make precise these statements in the case of posterior consistency with respect to the L!-
norm in the framework of density estimation with real i.i.d. observations. Then © is a set of
density functions on R and p% (y1,...,y,) = [T;-, 0(yi). The needed test (A0.3) can be built
using Hoeffding’s inequality (see Ghosh and R.V. Ramamoorthi [GR03]). Here the neighbourhood
of Assumption (A0.2) is expressed via the Kullback-Leibler divergence, namely

B0, = {oe 0 [1o( G ) o},

Theorem 1.1 (Ghosh and RV. Ramamoorthi [GR03]). Assume that

(B0.1) foralld > 0, there exists ©, C © and 3 > 0,

H(@%) < exp(—ﬁn), ZN(5/27 @na H - '||L1(>\)) exp(—n52/2) < +00,

(B0.2) foralle > 0,I1(Bgr(6%¢€)) > 0.
Then the posterior is consistent at 0* with respect to the L*-norm.

A general result on posterior consistency is given in Barron [Bar88]. We state here one of its re-

sults which holds in a general setting, not necessarily in the i.i.d. case nor for density estimation.

Theorem 1.2 (Barron [Bar88]). Assume that

(C0.1) for all € > 0, there exists ©, C O, S, C V" and positive constants 31, B2, C1 and Cy such
that
[1(©7,) < Cyexp(—pin)



16 CHAPTER 1: INTRODUCTION

and

PY((Y1,...,Yy) € S,i0) =0, sup  PY((Y1,...,Y,) € S%) < Cyexp(—nfs)
0€B,: d(0,0%)>¢

(Co.2) foralle > 0,

Py (Y1, ..., Yn)

? (EIN, Vn >N, [ fpitt i
oy (Y1,...,Yy)

m(df) > exp(—ne)> = 1.

Then the posterior is consistent at 0* with respect to d.

Note that in the setting of Theorem 1.1, Assumption (C0.1) is implied by (B0.1) and Assump-
tion (C0.2) is implied by (B0.2). For more information on posterior consistency see Ghosh and

RV. Ramamoorthi [GR03], Rousseau [Roul5] and references therein.

To obtain posterior concentration rates, the neighbourhoods of Assumption (A0.2) considered in
Ghosal et al. [GGV00] and Ghosal and van der Vaart [GV07a] are of the form

. O (Yi,....Y) . Py (Y1, Yn)

2 e pn(l,—,n < o (1 Pp \ 1Ly ---»1n) < )

B;, (6, ¢€) {9 og DI (Y, Vo) < ne, Var’ | log PO (Y1,...,Yy) (‘ne
1.3)

The next theorem holds in a general setting, not necessarily in the i.i.d. case nor for density

estimation.

Theorem 1.3 (Ghosal and van der Vaart [GV07a]). Let €, be a positive sequence tending to 0 such
that1/(ne2) = O(1). Assume that there exists positive constants Co, C1, Ca, C3, Ko, K1, K3, K3,
M such that Cs — C7 — Cy > —1 and for alln,

(D0.1) there exists ©,, C © and a test function ¢y, such that

E” (®,,) = o(1),
E?(1 — ®,) < Ky exp(—=Cine2), Y0 € ©, N {0 : d(6,6%) > Me,},
11(6,) < Ky exp(—Cane,),

(Do.2) 11 (B%(G*, ) > Ks exp(—Csne?).
Then the posterior distribution concentrates at rate €,, at 0* with respect to d.

More results and references on posterior consistency and posterior concentration rates can be
found in Ghosh and R.V. Ramamoorthi [GR03] and Rousseau [Roul5].
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1.2.2 Limit Distributions in the Frequentist and Bayesian Framework. Asymp-

totic Efficiency

Here I give some tools which are useful to understand Chapter 4. In the latter chapter, we study
limit distributions in the frequentist and the Bayesian frameworks. So that, here, we present

some results on asymptotic distributions for both frequentist and Bayesian cases.

Once you have obtained a posterior concentration rate or a rate of convergence in the frequentist

case, you may zoom in (i.e. do a change of scale) and be interested in limit distributions. Formally,

« in the frequentist case, with an estimator §n and rate p,, you can be interested in the

asymptotic distribution of p;, 1(§n —6%),

« in the Bayesian case, you may be interested in the asymptotic distribution of the posterior

distribution for the rescaled parameter: p,, 1 (6 — 6%).

The rate of convergence of an estimator is lower bounded by the minimax rate. Similarly, the
asymptotic distribution is also bounded in some sense. We first give a ‘bound’ for the asymptotic
distribution in the well-known parametric case and then in the semiparametric case. In both

sections, we only consider the i.i.d. setting.

Obtaining limit distribution is useful to build confidence intervals. In the frequentist case, if
p;l(g— 0) tends in distribution to F' independent of 6, then [é\— Pnd1—a/2; o— Pnda/2) gives an
a-asymptotic confidence interval, where ¢, is a t-quantile of F'. In the Bayesian setting, obtaining
the asymptotic posterior distribution of p,,* (8 — #*) can help in proving that a-credible regions

Cl, i.e. regions such that IT1(C,, Y7, ..., Y,) > 1 — « are also a-asymptotic confidence intervals.

We use the models of Examples 1 and 2, defined in the following, to illustrate the notions all
along Section 1.2.2. These models are studied in Chapter 4. Namely, we are going to use mixture
models, where the emission distribution consists of a product of three distributions on [0, 1] as
illustrated in Figure 1.3, so that the observations Y; = (Y1, Y:2,Y;3), t < nlivein [0, 1]3.

Example 1 (Definition). For the first model, no more restrictions are given on the emission distri-
butions (the model is nonparametric). The emission distribution are ®§:1 fj e\ where f; . are in
F, the set of density functions on [0, 1]. The parameters of the model are f = (fije)i<j<k,i<e<s €
F3% and p € Ay determining the distribution of the latent variables. More precisely, given the
latent state Xy, the three components of the corresponding observation Y; 1, Y; 2 and Y; 3 are

independent with Y; . distributed from fx, .A. Then the distribution of one observation is

k 3
Iut(Y)A(dy) = Z Hj H Fie(ye) M (dye).
j=1 =1

Example 2 (Definition). The second model is a parametric model where the emission distribu-

tions are piecewise constant functions with respect to a partition Zp; = (I, )m<as of [0, 1]. More
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precisely, the parameters of this model are the parameter i € Ay, determining the distribution
of the latent variables, and wy; € (Aj)3* which parametrizes the emission distributions. The

distribution of one observation is
k 3
gu,w;M(y))‘(dy) = Z s H fj,c;M(yc))\(dyc)>
j=1 =1

where far = (fj.ein)j<ki<e<ss Frant = Somey Wjemint /[ Im)11,,.5 < k1 < c < 3.

1.2.2.1 The Well Known Parametric Case with i.i.d. Observations

The research of limit distributions is well understood in the parametric case. In this section,
we introduce some of the well known results of asymptotic efficiency in parametric models for
ii.d. observations. For more details, see van der Vaart [Vaa98]. We first give some restrictions
on the limit distribution. We then introduce the notion of frequentist regular efficient estimator
which reaches the distribution bound. We present assumptions such that the maximum likeli-
hood is regular efficient. We end this section with an asymptotic distribution for the posterior

distribution.

As we present results in the parametric framework, we assume that the parameter space © is a
subset of R, d € N*. In particular, the best (in some sense, see Theorem 1.5) limit distribution
of \/ﬁ(én — 0*) is the Gaussian distribution with variance the inverse of the Fisher information.
We define the Fisher information, which depends on the model and the true parameter 6%, in the

following. This reveals a real limitation in the task of estimation.

To define the Fisher information, we need some regularity of the model. This regularity is called

differentiability in quadratic mean:

Definition 1.6 (Differentiability in quadratic mean and Fisher information). A model (pg\)sco
is said to be differentiable in quadratic mean at 0 if there exists {g € (L' (pg)\))® such that

. 2
[ (Vo= Vi = /2T i) 3 = ol |hl), (1.4
In this case, [ £opp) = 0, £g is in L?(pp)))? and the Fisher information is defined as
J9 = /éeégpg/\.

Differentiability in quadratic mean is often proved using the following proposition:

Proposition 1.4 (Lemma 7.6 in van der Vaart [Vaa98]). If

e 0+ \/po(y) isCt forally,
el Jyg= fpgp'g/pg/\ is defined and continuous at 0 (with pg = Opg/00),
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then (poN)geo is differentiable in quadratic mean at 0 and (g = pg/pg.

Example 2 (Differentiability in quadratic mean). We introduce theset A, = {u € Ry " : Sl <

1} which is in bijection with A (we use the same notation for elements in both sets, making the
bijection implicit). So that we consider the parameter set O, = A, x (A,,)3".
Then the model (g;,w;:M M) (0)co is differentiable in quadratic mean at every (u,w) € © with

é,u,,w(yla Y2,Y3) = (éu(y1,y2,yg),éw(yl,yg,yg)) € RE—1+3k(M~1) defined as:

3 3
chl fzyc;M(yc) - Hc:1 fk,c;M(yc)
gu,w;M(ylv Y2, y3)
1 m( c) 1; (yC)
. ( I|[my| - %M\ ) HC/7AC fj,c’;M(yc’)
Coii (Y1, Y2, Y3) = Iy
G M (Y1, Y2, Y3)

éu;i(ylay27y3) = ; ifi < ka

. ifi=j3(M —1)

+(c—1)(M —1) +m.

We now recall some of the the limitations inherent to any estimation procedure. First, the
Cramér-Rao bound says that the variance of unbiased estimators of ¢/(6), under regularity con-

ditions, is lower-bounded by
W'(0)y 1 (0).

In particular, the variance of an unbiased estimator of 6 is lower-bounded by the inverse of the

Fisher information .J 0 L

The following restriction holds for any regular estimator of ¢/(#), that is for any estimator 1Zn =

%Zn(Yh ..., Y,) such that for all h,

VI (B = (0 + h/v/))

has a limit distribution Ly, under Py}, s, which does not depend on h:

Theorem 1.5 (Convolution Theorem, Theorem 8.8 in van der Vaart [Vaa98]). Let (p?\)gco be
a model differentiable in quadratic mean at 0 with invertible Fisher information Jg. Let Jn be a
regular estimator of 1(0) with limit distribution Ly and 1 differentiable at 0,

then there exists a probability distribution Qg such that Ly is equal to the product convolution of
the Gaussian distribution N'(0, 1g.J; "7 ) and Qy.

Hence, the distribution of a regular estimator of f around the truth cannot be more concentrated
than the Gaussian distribution with variance the inverse information again. In this sense, the
best asymptotic distribution is N/(0, Py Jy 11/Jg)

Regular efficient estimators are estimators achieving this lower bound. They are considered
as the best asymptotic estimators. We say that a sequence of estimators @n of 1(6) is regular

efficient when it is regular and under P?,

Vi (G = 0(0)) (15)
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converges in distribution to a Gaussian distribution N (0, ¢9J9_ 11/13) Note that a sequence of
estimators 1y, of 1(0) is regular efficient if and only if

Vi — 0(6)) = ;ﬁ S oy M a(Yi) + opa(1),
=1

where 0po (1) is a sequence tending to 0 in P?-probability.

For more information on efficiency, see van der Vaart [Vaa98]. Besides, we may wonder if there
exist estimators which achieve this bound. In the following, we present a type of estimator which

often is regular efficient.

The renowned maximum likelihood estimator (m.l.e.) is defined as

~

0, € argmax /(% (vy,...,Y,),

0cO
where 0 (Y1,...,Y,) = log(p?(Y1...,Yy,)) is the log-likelihood. As we only consider i.i.d.
observations, 9 (Y1,...,Y,) = 1 log(p’(V;)). The mle. is often (under regularity and
identifiability assumptions) a regular efficient estimator. Before giving assumptions leading to

asymptotic efficiency of the m.lLe., we give some assumptions under which the m.l.e. is consistent.

Proposition 1.6 (Consistency of the m.l.e., application of Theorem 5.7 in van der Vaart [Vaa98]).
Let © be a compact subset of R?. Assume that

e forally, 0 — p’(y) is continuous,
» there exists a function h € Ly (p?" \) such that supgce|log(p?)| < h,
o the model is identifiable at 0* i.e. p = p?" implies § = 6*

then the m.Le. is consistent at 0*: || — 0*|| tends to zero in p®" -probability.

We now apply Proposition 1.6 to the maximum likelihood estimator in the following model.

Example 2 (Consistency of the m.l.e.). To apply Proposition 1.6, we need some identifiability
result. We assume that the true parameter satisfies that the p; are positive for all ¢ < k, and
that for all ¢ € {1,2,3}, f1*7 o M f,:.‘y e uA are linearly independent distributions. Then,
using Theorem 8 of Allman et al. [AMR09] (reproduced in Theorem 1.3.1), the equality g, .;nr =

9+ w+; M implies that there exists a permutation o € S, such that forall 1 <i < k, p; = He (i)

Wicm = w;(i),c,m. It means that the identifiability assumption holds up to label switching.

To avoid multiple maxima, we constrain the set of parameters in order that only one labelling
(one permutation) is possible. Namely, we assume that the true parameter satisfies uj < pu3 <

-+ < py, and we consider

On = {(1,w) € Onr s py < pig--- < g}
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The constraint we have assumed on the true parameter is not necessary but just ease the cal-
culations (if this assumption does not hold then another constraint, as pu3 < pj < p3 < ---
or wi.; < wj.q, -, will work). Then all the assumptions of Proposition 1.6 hold and the

maximum likelihood computed on the set O is then consistent.

Considering the whole space O and the computing the m.l.e. on this space:

(s, D) € argmax £(Va, ..., Vy),
(hw)€O

we then obtain that there exists a sequence (0, ), of permutations in Sy such that

[(on(fing), on(@nr)) — (1%, ") ||
tends to zero in P(*"*")-probability.

Here are some assumptions implying that the m.lLe. is regular efficient.

Proposition 1.7 (Regular efficiency of the m.le., Theorem 7.6 in van der Vaart [Vaa98]). Let
(p°XN)oco be a model which is differentiable in quadratic mean at 0* € (2) where the Fisher informa-
tion Jy- is invertible. Assume there exists { € Ly(P?") such that for all 01, 05 in a neighbourhood
of 0*

[log(p” () — log(p™(y))| < £(y) |61 — ba]l. (1.6)

If the m.Le. 0, is consistent at 0* then

1 n
Vi (B, - 0) = {jﬁ S g (Y3) + opae (1),
=1

where 0 po+ (1) represents a sequence tending to zero in P?" -probability. So that, é\n is regular effi-

cient.

Let us apply this proposition to the model of Example 2.

Example 2 (Efficiency of the m.Le.). Consider here 6* = (p*,w*) € éM. Assumption (1.6)
is verified since § — log(p”) is C* with all the components of ¢y bounded by some constant
depending on the true parameter and the partition. The invertibility of the Fisher information
is proved in Chapter 4. We have already proved the consistency of the m.Le. so that, we then

obtain its regular efficiency (up to label switching).

In the Bayesian framework, an interesting result related to efficiency is the Bernstein von Mises
(BvM) Theorem. This theorem gives the asymptotic distribution of the posterior distribution if
correctly zoomed in. When the posterior is consistent, it tends to the Dirach mass at the true

parameter (see Figure 1.6). So that if we want to see a shape around the true parameter, we
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need to zoom in. That is why we change the parametrization. Instead of studying the posterior
distribution for #, we study the posterior distribution for the new parameter s = /n(0 — gn)
doing as if we were focusing on the m.l.e. 6,, and zooming in with a scale /n. We can then write

the posterior distribution for s as,

Joyymsia, Tliza o (Yo)I1(d6)

IIs(s € S|Y1,...Yy) = Jo I, PP (YOII(dG)

if the observations are i.i.d. from p?. Then, under some assumptions, the posterior for the new
parameter s tends to a centered Gaussian distribution with covariance the inverse of the Fisher

information:

Theorem 1.8 (BvM, Theorem 10.1 in van der Vaart [Vaa98]). Let © be a compact subset of R?
and (pg\)gco a model differentiable in quadratic mean at 0* with an invertible Fisher information

Jo=. Assume that

e forally, 0 — p’(y) is continuous,
o the model is identifiable at 0, i.e. p? = p?" implies = 6%,

e the prior 11 is absolutely continuous with respect to the Lebesgue measure, with density m

continuous and positive at " ,

~

e 0, is a regular efficient estimator .

Then
sup |[IIs(A|Y1,...,Y,) — N(0, Jyg=)(A)]
ACRd

tends to zero in PY" -probability.

Example 2 (BvM). Given our previous results for this model, as soon as the prior I1,;, defined
on O is absolutely continuous with respect to the Lebesgue measure with a density continuous

and positive at 0%, we obtain a BvM theorem for the associated posterior.

1.2.2.2 The Semiparametric Case with i.i.d. Observations

Here, we define a semiparametric model as a model (P?)gce where the parameter # can be de-
composed into two components § = (u, 77): one of interest 4 (often living in a finite-dimensional
set) and one nuisance parameter 7 (often living in a non-finite dimensional set). As in Sec-
tion 1.2.2.1, we only consider models where the observations are i.i.d.. Here are some examples

of semiparametric models.

Example 1 (Semiparametric model). where the parameter of interest is 1+ (the weights of the
mixture) and the emission distributions f1, ..., fi are nuisance parameters is a semiparametric

model.
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A similar example consists in estimating the transition matrix () in HMMs (Figure 1.2) without

being interested in the emission distributions.

In the following we introduce the tools to obtain limitations in the estimation task in the semi-
parametric case. Note that in the semiparametric case, it is less easy than in the parametric case
to build estimators reaching the distribution bound. Similarly, it is more difficult to obtain results

on the posterior distribution.

In semiparametric models, we can obtain limitations in the estimation task by considering linear
submodels. Indeed, the estimation task is easier in submodels than in the whole model, when less
information is available on the nuisance parameter. By considering a family of linear submodels
{P! t € R}yep, passing through 6, we can build a family of score functions called a tangent set
at 6 and denoted P.

Definition 1.7 (Tangent set). Let a family, indexed by u in some set U, of linear submodels { P}, t €
R} e, where for each submodel associated tow € U, P? = PY and { P!, t € R} is differentiable

in quadratic mean at 0 with score function g,,. Then the tangent set associated with this family at 6

is {gu,u € U}.

In the parametric case with a model {P?, 0 € © C R?} differentiable in quadratic mean at ¢

with score /g, the maximal tangent set is {u” /g, u € R?}.

Example 2 (Tangent set). From the previous remark, the maximal tangent set at 6 is
{uTl, p,u € RETIEBRM=Dr — 077 0pTh, 0 € RFL o € R3FM =Dy,
Example 1 (Tangent set). We consider the following submodel,
My ={ Puge i flo = Fie i G, ¢) # (i),
fo= Flan = Fi () (201 + exp(-2th)) !, t € R},

with i € Lo(fiX) and [ hfix = 0, k(t) = ([ fic(y)/(2(1 + exp(—2tg(y))))dy) ', 1 < i < k
and 1 < ¢ < 3. These submodels can be seen as linear submodels where the nonparametric emis-
sion distributions are varying while the parametric component p is fixed. Using Proposition 1.4,

we obtain that this submodel is differentiable in quadratic mean at 0 with score

h(yC):uZ Hz’/zl fi,c’ (yc’)
I (Y) '

Then 75f, the set spanned by the previous scores, is the tangent set associated with the family of

submodels
£t
{P“’fhvt € R}h=(hj,c), Bj e €L2(fi.cA), [ hjef.er=0

at f. Considering the submodel { P(#+t0:/) ¢ ¢ R}yers, 5. v;=0 and using again Proposition 1.4,
’ J
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we obtain the following tangent set P, = {UTéM, v € RF, >_;vj = 0}, where

)N, ngl fi,c(yc)
()i = G, (W1, Y2,93)

Finally, we obtain the tangent set

75:{va#+5, veRF, Zvjzo,seﬁf},
J

for the family of submodels
to, ft
{PrHv t € RY, g, 52, 05=0, h=(hs,c)s hyc€L2 (fieN), [ hyefseA=0"

Using Cramér-Rao bound, the variance of an estimator of ¢)(P?), with ¢ : P + R, should be
lower-bounded by the supremum of (9 (P;)/9t(0))?/ Jg over the considered submodels. Indeed,
the estimation of 1)(P?) should not be easier when the nuisance parameter is not known than in
any submodel. Note that one can choose the family of submodels. If the family is not rich enough
(in particular if it does not include submodels for which the estimation is the most difficult) then

the supremum bound may not be attainable.

To formalize this idea, we introduce a notion of smoothness of 1/ with respect to the tangent set

28

Definition 1.8 (Efficient influence function). A map ) : P — R is said differentiable at P with
respect to the tangent set P if there exists a measurable function 1 such that for all s € P and
submodel Pt with score s at 0, then

YPYUE) [

The function 1) is called efficient influence function.

In the semiparametric case, considering submodels (P#M+(tv.e(t)), o the tangent set Pis typ-
ically constituted of functions of the form UTEM + s where éﬂ is the score function associated
to the parametric model where p is varying while the nuisance parameter is fixed and s is in
7% some subset of L?(dP?), a tangent set associated to submodels where y is fixed while the
nuisance parameter is varying. This case is verified in models of Examples 1 and 2. In this case

the influence function associated to the estimation of y (so that ) (P*") = pu) is
v=J, (1.7)

where /, called the efficient score function, is the orthogonal projection in L?(P?) of ¢ . on the
orthogonal (in L?(P?)) of 757, and when J = J (0TdP?, the efficient information matrix, is
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invertible. Indeed, in this case,

U(PHY —w(PY)  w(Prmt+tue®))y _ g(ph)
= =U
t t

with
_ T, 7—1 ) _ T, 7
u = (U £M+S’J £>L2(PG) = <U €N+87¢>L2(P0)'

When the problem admits some influence function 1, then the supremum of the lower bounds

of the variance given by Cramér-Rao is

OY(PY) o -1 OU(PY) o ([PgdPY)? oy
sup O) 1.7 —; (0)—316171; T g2ap —/de,

using Cauchy-Schwarz inequality. Then the variance of the efficient influence function,
I:= / Y2dP?

is considered as the best asymptotic variance to estimate 1)(6). When Equation (1.7) holds, then
I=J"
More formally, we can obtain a convolution theorem in semiparametric models which says that

in some sense the best attainable distribution is again the Gaussian distribution with covariance

I

Theorem 1.9 (Theorem 25.20 in van der Vaart [Vaa98]). Let (P?)gce be some model and P an
associated tangent set which is a convex cone. Let1) : P +— R be differentiable with respect to P at 6
with influence function . Let z/p\n be a regular sequence of estimators of 1)(6) with limit distribution
Ly,

then there exists a probability distribution Qg such that Ly is equal to the product convolution of
the Gaussian distribution N'(0, I) and Qy.

We say that an estimator 121\71 is asymptotically efficient with respect to some tangent set when it

is regular and under P?
Vit (= 0(P")

tends in distribution to a Gaussian distribution A(0, ). As in the parametric setting, this is

equivalent to saying that:
Vit (0= (P = = 32 5(%) + ope- (1)
[t g

Building estimators which are asymptotically efficient is more difficult in the semiparametric

case than in the parametric case. In particular, there exists settings where such estimators do not
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exist, see Ritov and Bickel [RB90]. In Chapter 4, we are interesting in building such estimators

in the mixture model represented in Figure 1.3.

More results on efficiency in semiparametric models can be found in van der Vaart [Vaa02], Bickel
et al. [BKRW98] or Bickel et al. [BKRWO05] for instance.

Semiparametric BvMs are a current active field of research. BvM have been obtained in par-
ticular models in Kim and Lee [KL04], Kim [Kim06], Boucheron and Gassiat [BG09], De Blasi
and Hjort [DH09] and Bontemps [Bon11] to cite a few. While Shen [She02], Castillo [Cas12a],
Bickel and Kleijn [BK12b], Rivoirard and Rousseau [RR12a] and Castillo and Rousseau [CR15]

give assumptions leading to semiparametric BvM in general settings.

1.3 Theoretical Guarantees in Nonparametric HMMs and Semi-

parametric Mixture Models

We have presented some theoretical properties which may be studied in nonparametric and semi-
parametric settings in the previous section. In this section, we recall some results which have
been obtained in the specific context of nonparametric HMMs and semiparametric mixture mod-

els.

1.3.1 Identifiability for Nonparametric Latent Models

Identifiability in general latent models is far from being automatic, as we have already pointed
out in Section 1.2. Particularly, identifiability in nonparametric latent models is still an active

research area.

Concerning the two particular latent models we consider in this thesis, recent results ensure their

identifiability up to label switching.

Definition 1.9 (Label switching). With X = {1, ..., k} the state space, a relabelling of this state
space through a permutation o € Sj, does not change the model. The permutation of the labels of
the hidden states is called label switching.

For instance, in the case of HMMs, for all 0 € S, if o(u)i = tou), 0(Q)ij = Qo(i)o()
o(F)i = Fy) forall <i,j <k, then the model associated to the HMM with initial distribution
o (), transition matrix o (@) and emission distributions o (F');, ¢ < k is the same as the model
associated to the HMM with initial distribution p, transition matrix () and emission distributions
F; i <k ie.

Plo.e@)o(F)) — pQ.F) - for all n.

The mixture model represented in Figure 1.3 is identifiable up to label switching using Theorem
8 in Allman et al. [AMR09] which says the following.
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Theorem 1.10 (Allman et al. [AMRO09]). For a mixture model with distribution P*(Fi.c) = Zl-czl Lbi HCC:1 P,

where C and k are known.

IfC > 3, 7 > 0 for alli < k and the distributions Py ., ..., P}, . are linearly independent for all
¢ < C, then the model is identifiable up to label switching,

ie. ijfpm(Pi,c) — Pi(Pic) then there exists a permutation o € Sy, such that j; = fi(; and
P.= 15(,(14)7C foralli <k,c<C.

Using the same type of constraint, that is when the emission distributions are a product of dis-
tributions, Bonhomme et al. [BJR16b] obtain an identifiability result even when k is not known.
Note that other types of assumptions on mixture models are considered to obtain identifiability.
For instance, identifiability results are obtained when the emission distribution are translated
version of one symmetric distribution as in Bordes et al. [BMV06] and Hunter et al. [HWHO07].
Other results are obtained in the case of kK = 2 where an emission distribution belongs in a para-
metric family and the other is in a non-finite dimensional set with diverse constraint as in Bordes
et al. [BDV06] or Hohmann and Holzmann [HH13] to cite a few.

Using this result, Gassiat et al. [GCR15] have proved identifiability up to label switching of non-
parametric HMMs with finite state space, i.e. for the model represented in Figure 1.2 under very

general assumptions.

Theorem 1.11 (Gassiat et al. [GCR15]). Let k be a known integer. Assume the transition matrix ()
has full rank with stationary distribution . and the emission distributions F1, ..., F}, are linearly

indepeflqlent. As soon as C > 3,
1,Q,F F
ing’Q’ _ Pg,Q,

0 € Sy such that i, = Eogiy Qz] = Qo (i),0(j)s F; = Foy forall <i,j <k.

, with [4 a stationary distribution associated to Q then there exists a permutation

In the context of HMMs, Gassiat and Rousseau [GR16] have proved identifiability up to la-
bel switching of HMMs with translated emission distributions. Moreover Alexandrovich et al.
[AHL16] have obtained identifiability of HMMs in the case where the number £ of states is un-

known.

1.3.2 Asymptotic results in Nonparametric HMMs

Results on identifiability in nonparametric HMMs are very recent, so few theoretical guarantees

have been studied in nonparametric HMMs.

In Gassiat and Rousseau [GR16], a nonparametric HMM with translated emission distributions
has been considered, following the model considered in Yau et al. [YPRH11]. The authors pro-
pose a consistent estimator of k along with y/n convergent, asymptotic normal estimators of the
transition matrix and the translation parameters. They also propose an estimator of the marginal
stationary density of an observation and deduce a minimax adaptive estimate of the translated

density function in the case where max; uj > 1 /2.
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For the model presented in Figure 1.2 and that I study in Chapters 2 and 3, De Castro et al.
[DGLar] propose a frequentist penalized least squares estimator for the emission distributions

which converges to the truth at an adaptive rate.

Consistency of estimators of the smoothing distribution, that is the distribution of a hidden state

given the observations, is studied in De Castro et al. [DGC15].

Bayesian HMMs where the emission distributions are parametrised with a parameter living in
a finite dimensional set but the number k& of possible latent states is not known is studied in
Gassiat and Rousseau [GR14] and van Havre et al. [HRWM16]. In particular, a test of type (A0.3)
to obtain posterior concentration rates in HMMs is developed in Gassiat and Rousseau [GR14].

We use these tests in Chapters 2 and 3.

1.3.3 Asymptotic Behaviours in Semiparametric Mixture Models

Mixture models are often used to estimate density functions. In particular, results on the qual-
ity of approximation of density functions with mixture models can be found in the Bayesian

literature as in Kruijer et al. [KRV10], Scricciolo [Scr14] to cite but a few.

In the following we focus on results concerning the estimation of some parameter in semipara-
metric mixture models. Such results are very recent. Indeed identifiability in such a framework

has been proved only very recently under two settings, as discussed in Section 1.3.1.

« In the first setting considered in the literature the observations are univariate. Bordes and

Vandekerkhove [BV10] study this framework in the particular case where

Yo~ pg(s) + (1= p)f(- —m)

with unknown p € (0, 1), unknown m # 0, unknown symmetric density function f and
known density function g. The authors give the asymptotic distribution of their estimators
of u, m and the cumulative cumulative distribution function associated with f. Xiang et
al. [XYW14] also consider this setting but with

Y ~pg(H8) + (1 —p)f(- —m)

with unknown p € (0, 1), unknown m # 0, unknown { € R, unknown symmetric den-
sity function f and known parametric family of density functions (g(-,£))¢. The authors
prove the asymptotic normality of their estimator of u, m and £. See for instance Hu et
al. [HWY16], Ma and Yao [MY15] and references therein for other asymptotic results in

semiparametric univariate mixture models.

« In the second setting, the emission distributions are a product of more than three distri-

butions so that the observations are multidimensional. This is the setting we consider
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in Chapter 4. Previously, up to my knowledge, only Bonhomme et al. [BJR16b; BJR16a]

studied asymptotics in this setting. In the case where

k
YeR, Y~ > wifi(), filynyan- - m) = g;(w)g(w2) - g;(w)
=1

with unknown density function g; on R, unknown ;1 € Ay and unknown £ € N, Bon-
homme et al. [BJR16b] obtain an asymptotic normal estimator of the mixture parameter i,
which is based on a constructive identification of the parameters from the mixing distri-
bution. Bonhomme et al. [BJR16a] present a constructive identification of the parameters
from a mixture model where emission distributions are a product of at least three distri-
butions or from a HMM. From this result, they propose estimators, built on simultaneous
diagonalization of matrices, whose the parametric component is consistent and asymptot-

ically normal.

Note that the behaviour of the posterior distribution is studied in Rousseau and Mengersen
[RM11], in the case of mixture model where the emission distributions live in a finite dimen-

sional set but £ is not known.

1.4 My Contributions

During my PhD, I have worked on three projects. All of them were aimed at understanding the
asymptotic behaviour of the posterior distribution and estimators in the framework of nonpara-
metric finite state space HMMs and multivariate finite mixtures. In this work “nonparametric”
means that the emission distributions are not constrained to live in a finite-dimensional setting,

but I will always assume that I know the number & of possible states taken by the latent variable.

I have first been interested in understanding when the posterior distribution is consistent in fi-
nite state space nonparametric HHMs, see Chapter 2. Then I have been interested in posterior
concentration rates in the same model, see Chapter 3. The last question I have worked on con-
cerns the estimation of only a part of the components of the parameter namely the parameters
that give the distribution of the latent variables. This semiparametric problem is studied in Chap-
ter 4. T have studied this problem in nonparametric finite mixture models with i.i.d. observations.
This is a first step for studying the analogue question in HMMs. This last work, contrary to the
two previous ones, is a joint work with my two PhD supervisors Elisabeth Gassiat and Judith

Rousseau.

In the following, I present my contributions in words. For more (mathematical) details, see the

associated chapters.
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1.4.1 Contribution 1: Posterior Consistency in Nonparametric HMMs with Fi-
nite State Space, Chapter 2, Vernet [Ver15b]

My first contribution deals with posterior consistency in nonparametric HMMs with finite state
space. This contribution is detailed in Chapter 2 which also corresponds to the paper Vernet
[Ver15b] published in E]JS.

I quickly recall here the setting. The model is parametrized by 6§ = (Q, f) where @ is the
transition matrix and f the vector of emission distributions, see Figure 1.2 for a visualization
of the model. We use a prior distribution II = Ilg ® chk) which is a product of a probability
)

distribution Il on transition matrices and a probability distribution H;k on the k emission

distributions. By the Bayes’ rule, we can formally write the posterior distribution as

APl (Y1, ..., Y,)II(d)
0 e AlYy,...,Y,) = ,
( R ) Jo 0 (Y1, ..., Y,)II(d0)

where Y (y1,...,yn) = doi<iy.in<k Mir Qivsia -+ Qi1 in fir (Y1) - - - fir, (Yn) s the likelihood.

Posterior Consistency for the Marginal Distribution Ple of [ Consecutive Observations

In this setting, I have studied posterior consistency for different topologies on different objects.
First I was interested in knowing if the posterior distribution concentrates around parameters
0 such that the corresponding distribution Ple of [ stationary consecutive observations is close
to the true one Ple*. It is interesting to know if the posterior concentrates with respect to this
object in a prediction perspective. Indeed under this consistency, the density of the observations
is consistently estimated. This study should also help in the perspective of estimating ) and f.
Indeed if [ > 3, Ple identifies  (see Theorem 1.11). We develop consistency for the estimation of

0 in the following section.

We compare the distributions (Pl@)g thanks to two topologies. We use the topology 7, associated
to the weak convergence on distributions. We also consider the strongest topology 7; associated

to the L;-norm and which corresponds to the pseudo-distance D; on O:
7] o _ .0
Dy(0,0) = |lp] — pi l1 ey

To obtain a general consistency theorem, we used Barron [Bar88], see Theorem 1.2. We have
clarified the assumptions of Theorem 1.2 in the case of HMMs. The existence of the sets O,, and
Sy, of Assumption (C0.1) was proved using the tests built in Gassiat and Rousseau [GR14], which
are based on a generalisation of Hoeffding’s inequality to dependent data by Rio [Rio00]. The
main question was to develop an explicit set of parameters associated to log-likelihoods close to

the true one, to explicit Assumption (C0.2). This is done in Lemma 2.2.

Then, we have obtained that if 1 puts enough mass in the neighbourhood of Q* (see Assump-
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Identifiability up to label switching
due to Gassiat et al. [GCR15]

QL—>ple('7"'7‘): Z NilQi17i2'"Qil—l,izfil(')"'fiz(‘)

1<iy...i;<k

D HiaQinsia -+ Qi fir (Y1) - fin (Vi)

1<iy...i¢—1<k
1<ipyq...in<k
PY(X; = |v1,...,Y,) = =
> 1 Qs - Qi i fir (V1) - iy (V)

Smoothing distribution ;77 ¢

Figure 1.8 — Illustration of the issue to obtain information on # and the smoothing distribution
from ple

tion (A1.1a)) and Iy puts enough mass in the neighbourhood of f* (see Assumptions (A1.1b), (Al.1c)
and (A1.1d) ) then the posterior distribution is consistent at 6* = (Q*, f*) with respect to Ty,
see Theorem 2.1. We have also proved that if moreover II; does not put too much mass on too
big sets (see Assumption (A1.2)) then the posterior distribution is consistent at 6* = (Q*, f*)

with respect to 7;, see Theorem 2.1.

The two previous topologies T,, and 7T; are the easiest types of topology to prove posterior con-
sistency results. Indeed, the topologies concerned the distributions Ple for which it is easier to
build tests as (C0.1). Yet one may be interested in other quantities than the distribution of the ob-
servations, like the parameter 6 by itself or smoothing distributions (the distribution of a hidden
state given the observations) for instance. So that we wanted to understand what it means on @)
and f or on P(@/) (X, = -|Y1,...,Y,) when pl(Q’f) is close to pl(Q*’f*) in L', see Figure 1.8 for

an illustration.

Posterior Consistency for the Parameters () and f

If we are interested in estimating the parameter 6 itself (and not Ple), i.e. the transition matrix
@ and the emission density functions fj, j < k, it is useful to obtain posterior consistency
for the topology 7, ¢ which is the product topology of the sup norm on transition matrices
and the weak topology (associated to a distance dyeax 0n the emission distributions up to label
switching). Thus, we want to know if the posterior distribution concentrates around parameters

(Q, f) where ||Q — o(Q*)|| and maxi <<, dweak (F}j, o (F*);) are small.

Obtaining posterior consistency with respect to 7¢ ¢ from posterior consistency with respect to
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Tw or T; is linked to identifiability (see Section 1.3.1). Then, understanding the inverse of
0ecO—p! (1.8)

can help. Of course, we cannot hope to recover exactly (@, f) in generality but only the param-
eter up to label switching (as for the identifiability). Indeed, imagine that the prior is compatible
with label switching, that is

II(U) =1I(cU), YU CO, VoeS,
oU = {((Qu(i),0(j))i» (fo1)s s fow))) €O 1 (Q, f) € U}

Then the posterior mass of a set U of parameters is also equal to the posterior mass of the pa-
rameters in U for which the label of the hidden states have been switched with a permutation o,

formally

(Y, Y)TI(dE)  fy pSP (VA Ya)TI(dob)

HUYL, ... Yn) = Jo oY1, .. Y )I(df) — [P0 (Y1,. .. Yu)II(d6)

=(cU|Y1,...,Y,),

for all permutations o € Si. Then, the best behaviour of the posterior concerning consistency,
would be that the posterior concentrates around the set {6*}s, = Uy,cs,0{0"} composed of the
permutations of the true parameters. If the prior distribution is more general, when the number
of observation increases, the prior should be ‘forgotten’ and we should ask the concentration of

the posterior distribution at the same set {6*}s, .

In Theorem 2.3, we obtain that posterior consistency for D; (with [ > 3) along with identifiability
for the true parameter implies posterior consistency with respect to 7¢ r. The transfer of the
property of posterior consistency from one topology to another is done thanks to continuity

arguments of the inverse of (A.1).

Posterior Consistency for the Smoothing Distribution

Finite state space HMMs are often used to cluster the observations given the hidden states. In this

context, smoothing distribution that is the distribution of a hidden state given the observations
PY(X, = |V1,....Yy)

are important quantities. More precisely, we consider the distribution of a finite sequence of

consecutive hidden states given the observations, that is a m-joint smoothing distribution:
PU(X1,...,Xn)=(...,)|Y1,...,Ys), meNfixed,n>m.

In Chapter 2, we also study posterior consistency with respect to the m-joint smoothing distri-

bution, i.e., we want to know if the posterior distribution concentrates around parameters for
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which the associated m-joint smoothing distribution is close to the true one (up to label switch-
ing). This type of consistency should lead to a posterior distribution which clusters well the

observations with respect to their hidden states.

In Theorem 2.8, we prove that identifiability of the model for the true parameter, posterior con-
sistency for the D; pseudo-metric and posterior consistency for 7 ; leads to a posterior which
concentrates around parameters 6 for which the associated m-joint smoothing distribution are

close to the true smoothing distribution in the particular context of discrete observations.

Note that consistency for the estimation of smoothing distributions have been studied in De
Castro et al. [DGC15] in the frequentist point of view. In De Castro et al. [DGC15], the total
variation distance between two smoothing distribution associated with two parameters 0 and 0
is controlled with the Frobenius norm ||Q — Q|| and the L'-norms || f; — £;|| 1. This enables
to prove that consistency for the transition matrix and the emission distribution with respect to
L' implies consistency for the smoothing distributions. To deduce a Bayesian result, a Bayesian
control of || f; — f;|| 11 is needed. As far as I know, such a control only exists in the case of discrete
observations thanks to Chapter 2. Indeed in this case, weak topology on distributions and L
topology are the same and Theorem 2.1 can be used. Then we obtain Bayesian consistency for

the smoothing distribution in the same framework I obtained results previously, see Theorem 2.8.

Applications to Different Prior Distributions and Settings

In Section 2.3, I propose concrete frameworks and prior distributions leading to posterior con-

sistency for the different topologies introduced before. We consider:

« continuous observations, with emission distribution i.i.d. as a mixture of Gaussian distri-

butions under the prior distribution, in Section 2.3.1,

« continuous observations, with translated emission distribution f; = g(- —m;) and g dis-

tributed as a mixture of Gaussian distributions under the prior distribution, in Section 2.3.2,

« discrete observations, with emission distribution i.i.d. as a Dirichlet process under the prior

distribution, in Section 2.3.3.

Limitation

e The assumption on the support of the prior on the transition matrices ILp, which is assumed
to obtain posterior consistency with respect to Dj, requires to know a lower bound on the com-
ponents of the transition matrix. This assumption enables to control the mixing properties of
the HMMs, to ensure the existence of some tests, namely the one built in Gassiat and Rousseau
[GR14]. In Chapter 3 (on posterior concentration rates), I don’t need this assumption but I make

a stronger assumption on f* and IIy.
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Perspectives

e As noticed before, we still do not know assumptions under which the posterior is consistent for
the Li-norm on the emission distributions (up to label switching, of course). It would be inter-
esting to find some, first because it would ensure a good estimation of the emission distributions.

It would also ensure a good clustering of the observations using De Castro et al. [DGC15].

e Another perspective is to study posterior consistency when the number £ of possible states of
the Markov chain is unknown. This setting has been studied in Gassiat and Rousseau [GR14] and
van Havre et al. [HRWM16] but mostly when the emission distributions are parametrised by a
finite dimensional parameter. Mixing the techniques of Gassiat and Rousseau [GR14], van Havre
et al. [HRWM16] and Chapter 2 should be conclusive.

1.4.2 Contribution 2: Posterior Concentration Rates for Nonparametric HMMs
with Finite State Space, Chapter 3, Vernet [Ver15a]

For the same setting, I have also studied posterior concentration rates, that is at which rate the
posterior concentrates. This contribution is detailed in Chapter 3, and is also available on arXiv:
Vernet [Ver15a].

Concerning the concentration rates, I have only used the topology associated to the pseudo-
metric D;(0,0) = ||p! — pY||z,. I recall that this topology is interesting for the estimation of
the density of the observations, and then for prediction. It is also a first step to obtain posterior

concentration rates with respect to the L!-norm on the emission distributions.

Posterior Concentration Rates with respect to D,

My aim was to obtain explicit and applicable assumptions on Ilg, II;, @* and f* leading to
rates. To do so, I have used Ghosal and van der Vaart [GV07a] (see Theorem 1.3) and I have
clarified their assumptions in the HMM case. Posterior concentration rates are more difficult to
obtain than posterior consistency. Indeed, to clarify Assumption (D0.2), we need to control the
neighbourhood described in (1.3), which requires a better understanding of the likelihood around
the true parameter. I have developed new controls of this "neighbourhood" helped by results on
parametric HMMs like Douc and Matias [DMO01] and Douc et al. [DMR04], see Lemma 3.2 and 3.3.
It asked me much work to obtain assumptions which are satisfied by usual prior distributions.
The existence of the set ©,, and the test ¢,, was again proved using the test built in Gassiat and
Rousseau [GR14].

Finally, I have obtained a general theorem (Theorem 3.1) which relates the concentration rate
with respect to D; to the prior (Ilg, Hgf)) and the true parameter (Q*, f*). The resultant rate
)

has the following form ¢, / q, where €, depends on the “nonparametric setting”, namely ngk

and f* while q,, depends on Ilg. So that the rate €, is deteriorated by ¢ , that is by the freedom
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given to Il concerning the mixing of the Markov chain associated to ().

Application to Different Prior Distributions and Settings

This theorem is applied in several frameworks and leads to minimax rates up to log(n), in dif-

ferent settings, see Section 3.4.

Particularly, minimax rates are obtained in the case of discrete observations with emission dis-
tributions i.i.d. from a Dirichlet process under the prior distribution. More precisely, we obtain

rates equal to 1/y/n up to log(n). See Section 3.4.1.

Moreover adaptive concentration rates are reached in the case of continuous observations, emis-
sion density functions i.i.d. from a Dirichlet process mixture of Gaussian distributions under the
prior distribution, and Hoélder-type classes of functions. More precisely we obtain rates equal to
n~B/(28+1) up to log(n) when the emission density functions are in a 3-Hélder class of functions
in Section 3.4.2.

In the two previous settings, we obtain minimax rates providing that Il penalizes enough the

border of Ai. More generally, if chk)

= H?‘?k with Iy leading to minimax posterior concentra-
tion rates with respect to the Li-norm on densities in the case of density estimation with i.i.d.
observations, then the posterior distribution should concentrate at a minimax rate (in HMM)

providing that 11 penalizes enough the border of A]lz.

Note that, when adaptive, the obtained rates for a class of functions and chk) = H;‘?k is the
same as in the ii.d. case for the Li-norm on densities with the same class and prior II;. So
that, in our examples, the dependency generated by HMMs on observations does not deteriorate
rates compared to the i.i.d. setting. The same remark is done in De Castro et al. [DGLar] and

Bonhomme et al. [BJR16a] where rates of convergence for frequentist estimators are studied.

This contribution concerns concentration rates. Yet, if a posterior distribution concentrates at
a rate decreasing to zero with respect to Dy, then it is consistent with respect to D;. Thus pos-
terior consistency for the topology 7Tg s (useful for the estimation of ) is also implied by the
assumptions leading to a posterior concentration rate decreasing to zero with respect to D, us-

ing Theorem 2.3 of Chapter 2.

Perspectives

e The assumption on Il, concerning the penalization of transition matrices too close to the
border of Aﬁ, is much weaker than the one we assume to prove posterior consistency. Yet it is
still strong and such prior distributions are not used in practice. It would be interesting to know

if this assumption is necessary or not.

o A perspective of this work is the transfer of the rate with respect to D; to a rate with respect

to the L1-norm on the emission distributions. This transfer is even more difficult in the case of
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rates than in the case of consistency. Indeed, the transfer of consistency from one topology to
another is linked to continuity while the transfer of rate from one topology to another is related
to modulus of continuity. Then this problem may be solved thanks to a better understanding of
the inverse of the function 6 ple again. This transfer has been recently done in other settings,
as in De Castro et al. [DGLar] for the Lo-norm. These works might be good approaches for the

resolution of this perspective.

1.4.3 Contribution 3: Efficient Semiparametric Estimation and Model Selec-
tion for Multidimensional Mixtures (joint work with E. Gassiat and J.
Rousseau), Chapter 4, Gassiat et al. [GRV16]

My last contribution concerns a semiparametric problem. It is a collaborative work with my two
thesis supervisors Elisabeth Gassiat (Paris-Sud University) and Judith Rousseau (CEREMADE).
It is also available on arXiv: Gassiat et al. [GRV16].

Our goal is to study asymptotic efficiency for a component of the parameter, namely the transi-

tion matrix in the case of HMMs or the mixture parameter in the case of mixture models.

For the time being, we only have results in the case of mixture models and not for HMMs. Indeed,

the likelihood and score functions are easier to handle in mixture models than in HMMs.

We now present the setting used in Chapter 4. Again the hidden states X; live in a finite states
space {1,...,k} where k is known. These states are i.id. from some distribution S°%_ ;6.
Moreover the observations Y;, ¢t € N, live in [0, 1]3. Given a hidden state X;, the three com-
ponents Y; 1, Y2 and Y; 3 of the observation Y; are independent with respective distribution
fx,1dA, fx,2d\ and fx, 3d\. This model can be visualized in Figure 1.3. We have seen in

Section 1.3.1, that this model is identifiable up to label switching under general assumptions.

Asymptotic Efficiency

To obtain regular efficient estimators, we use approximation models. Namely we project the
emission distributions on the set of histograms associated to a fixed partition Zy; of [0, 1] we
then consider the models of Example 2 in Section 1.2.2. Thus, the parameters of this model are
the parameter 1 € Ay, determining the distribution of the latent variables, and wys € (Ayr)3F

which parametrizes the emission distributions. The distribution of one observation is
k 3
It AAY) =ty [ [ Frieons (we) Mdye),
j=1 =1

where f); = (fj,c;M)jSk,lgcgfis fj,c;M = zr]\r{:l(wj,c,m;M/‘ImD]lfm’j <k1<c<3

Following Section 1.2.2.1, a maximum likelihood estimator (§M, War), associated to the approx-

* —

imation model is, up to label switching, asymptotically normal around (¢*, w*), where w; jm =
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S 1, [7.cdA. Moreover 0is regular and asymptotically Gaussian around 6%, yet as asymptotic vari-
ance the inverse of the Fisher information associated to the approximated model, which may be
different from the inverse of the efficient Fisher information for the complete semiparametric
model. Yet by refining the partition slowly enough when the number of observations increases,

we obtain an estimator é\Mn regular efficient of 6, see Theorem 4.5.

More precisely, we first obtain that when the partition is refined the Fisher information, associ-
ated to the approximated model, increases; see 4.2. Moreover, when the partition is refined such
that the sets have a size tending to zero, then the Fisher information of the approximated mod-
els is tending to the efficient Fisher information for the semiparametric model; see 4.3. Finally,
we prove the existence of a refinement M, of the partition such that the associated sequence of

m.le. 0y, is regular efficient in the semiparametric model; see Theorem 4.5.

Similarly, if we have a family of prior distributions (II5s) as, one for each model associated with a
partition Zjs, which are absolutely continuous with respect to the Lebesgue measure and positive
on their defining sets; then by refining the partition slowly enough, we obtain a Bernstein von
Mises type theorem. That is there exists a refinement L,, of the partition such that the associated
sequence of posterior distributions II7, (|Y1,. .., Y,,) verifies a Bernstein von Mises theorem; see
Theorem 4.5.

Model Selection

The two previous results are existence results but are not constructive, namely they don’t give
clue on the choice of the refinement M,,. Moreover, in Section 4.3.1, we state that if the refinement
M, is done too quickly in the case of m.Le., then the sequence of m.l.e. gMn is tending almost
surely to the uniform weight and thus is not even consistent. So that the choice of the partition

has a real impact on the estimation.

Then we propose a procedure to select the refinement of a collection of partitions based on cross
validation. In Theorem 4.8, we obtain an oracle inequality for the risk of the selected estimator,
but as if we had less (a, << n) observations than we actually have (n). This choice could
lead to too conservative selections. We think that this conservatism does not change the good

asymptotic properties of the estimator.

Finally, we apply our selection criterion in simulations. We were there surprised to see that
even in a finite horizon setting (when n is fixed), our ‘conservative’ procedure is doing well. See

Section 4.4.

Perspectives

e We would like to obtain a rate on the refinement (on M,,) which ensures asymptotic efficiency.

e We would also like to generalize the last results in the case of HMMs. This issue is far from
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being obvious using the results obtained in Chapter 4. Indeed even in parametric HMMs, the
asymptotic properties of the m.l.e. are not immediate, see DoMa01, Douc et al. [DMR04], Douc
et al. [DMOH11] and references in Cappé et al. [CMRO05] for instance.

e Finally, in the Bayesian setting, it would be interesting to know if in the two latent models
studied in this thesis (HMMs and mixture models), there exists a prior distribution leading to a
posterior distribution with optimal concentration simultaneously for both the parameter describ-

ing the latent model (transition matrix or mixture parameter) and for the emission distributions.

1.4.4 Summary

The results I have obtained during my PhD on nonparametric HMMs and semiparametric mul-

tidimensional mixture models with finite state space is summarized in the following tabular:

posterior consistency, | posterior concentra- | asymptotic

estimation of Chapter 2 tion rates, efficiency,
the Chapter 3 Chapter 4
density p{ v v

parameter describing
the distribution v v
of the latent states p or )

emission density v (in weak
functions topology)
f17 SERE) fk’

smoothing distribution || v (when the obser-
P(X;=-Y1,...,Y,) || vations are discrete)

in nonparametric HMMs in semiparametric
mixture models
The checked cells correspond to problems I have studied and for which I have obtained results.
Brackets are used to precise some restrictions. As far as I know, the results of the second and
third columns are the first results on the asymptotic behaviour of the posterior distribution in
nonparametric HMMs with finite state space. Similarly, the result corresponding to the check
cell in the fourth column is the only result we are aware on asymptotic efficiency for semipara-
metric mixture models with three independent observation per latent variable. The empty cells

correspond to open problems I would be happy to work on.



CHAPTER 2

LPOSTERIOR CONSISTENCY IN NONPARAMETRIC HIDDEN
MARKOV MODELS WITH FINITE STATE SPACE

In this chapter we study posterior consistency for different topologies on the parame-
ters for hidden Markov models with finite state space. We first obtain weak and strong
posterior consistency for the marginal density function of finitely many consecutive
observations. We deduce posterior consistency for the different components of the pa-
rameter. We also obtain posterior consistency for marginal smoothing distributions in
the discrete case. We finally apply our results to independent emission distributions,
translated emission distributions and discrete HMMs, under various types of prior dis-

tributions.
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2.1 Introduction

Hidden Markov models (HMMs) have been widely used in diverse fields such as speech recogni-
tion, genomics or econometrics since their introduction in Baum and Petrie [BP66]. The books
MacDonald and Zucchini [MZ97], MacDonald and Zucchini [MZ09], and Cappé et al. [CMRO05]
provide several examples of applications of HMMs and give a recent (for the latter) state of the art
in the statistical analysis of HMMs. Finite state space HMMs are stochastic processes (X3, Y3 )ien
such that (X¢)sen is a Markov chain taking values in a finite set, and conditionally to (X¢)sen,
the random variables Y;, ¢ € N, are independent, the distribution of Y; depending only on X;.
The conditional distributions of Y; given X;, for all possible values of X;, are called emission
distributions. The name “hidden Markov model” comes from the fact that the observations are
the Y}’s only, one cannot access to the states (X} ); of the Markov chain. Finite state space HMMs
can be used to model heterogeneous variables coming from different populations, the states of
the (hidden) Markov chain defining the population the observed variable comes from. HMMs are
very popular dynamical models especially because of their computational tractability since there
exist efficient algorithms to compute the likelihood and to recover the posterior distribution of

the hidden states given the observations.

Frequentist asymptotic properties of estimators of HMMs parameters have been studied since the
1990s. Consistency and asymptotic normality of the maximum likelihood estimator have been
established in the parametric case, see Douc and Matias [DMO01], Douc et al. [DMR04], and refer-
ences in Cappé et al. [CMRO5], see also Douc et al. [DMOH11] for the most general consistency
result up to now. As to Bayesian asymptotic results, there are only very few and recent results,
see de Gunst and Shcherbakova [GS08] when the number of hidden states is known, Gassiat
and Rousseau [GR14] when the number of hidden states is unknown. All these results concern

parametric HMMs.

Nonparametric HMMs in the sense that the form of the emission distribution is not specified
have only very recently been considered, since identifiability remained an open problem until
Gassiat and Rousseau [GR16] and Gassiat et al. [GCR15], who prove a general identifiability re-
sult. Because parametric modelling of emission distributions may lead to poor results in practice,
in particular for clustering purposes, recent interest in using nonparametric HMMs appeared in
applications, see Yau et al. [YPRH11], Gassiat et al. [GCR15] and references therein. Theoretical
results for estimation procedures in nonparametric HMMs have also been obtained only very
recently: Dumont and Le Corff [DL14] concerns regression models with hidden (Markovian) re-
gressors and unknown regression functions in Gaussian noise, and Gassiat and Rousseau [GR16]

is about translated emission distributions.

In this chapter, we obtain posterior consistency results for Bayesian procedures in finite state
space nonparametric HMMs. To our knowledge, this is the first result on posterior consistency
in such models. In Section 2.2.2, we prove posterior consistency in terms of the weak topology

and the L;-norm on marginal densities of consecutive observations. Our main result is obtained
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under assumptions on the emission densities and on the prior which are very similar to the
ones in the ii.d. case, see Theorem 2.1. This result relies on a new control of the Kullback-
Leibler divergence for HMMs, see Lemma 2.2. Yet estimating the distribution of consecutive
observations is not the main objective of a practitioner. Classifying the observations according
to their corresponding hidden states or estimating the parameters of the model often are the
questions of interest, see for instance Yau et al. [YPRH11], Whiting et al. [WLMO03] and Couvreur
and Couvreur [CCO00]. In Section 2.2.3 we build upon the recent identifiability result to deduce
from Theorem 2.1 posterior consistency for each component of the parameters. We obtain in
general posterior consistency for the transition matrix of the Markov chain and for the emission
probability distribution in the weak topology, see Theorem 2.3. Stronger results are established
in particular cases, see Corollary 2.6 and Theorem 2.8. Finally, some examples of priors that fulfill

the assumptions of Theorems 2.1 and 2.3 are studied in Section 2.3.

Particularly in Section 2.3.3 the discrete case is thoroughly studied with a Dirichlet process prior.
Sufficient and almost necessary assumptions to apply Theorem 2.1 are given in Proposition 2.9.
Moreover in this framework, posterior consistency of the marginal smoothing distributions, used

in segmentation or classification, is derived in Theorem 2.8.

All proofs are given in Appendices 2.4 and 2.5.

2.2 Settings and Main Theorem

2.2.1 Notations

We now precise the model and give some notations. Recall that finite state space HMMs are
stochastic processes (X¢, Y7 )ren such that (X} )¢ is a Markov chain taking values in a finite set,
and conditionally on (X} );en, the random variables Y}, t € N, are independent. The distribution
of Y; depending only on X} is called the emission distribution. The number % of hidden states is
known, so that the state space of the Markov chain is set to {1, ..., k}. Throughout Chapter 2,

for any integer n, an n-uple (z1,...,x,) is denoted z1.y,.

Let Ay = {(x1,...,2) 12, >0, i =1,...,k; Zle x; = 1} denote the (k — 1)-dimensional
simplex. Let () denote the k X k transition matrix of the Markov chain, so that identifying ()
as the k-uple of transition distributions (the lines of the matrix), we write ) € A],z. We denote

i € Ay the initial probability measure, that is the distribution of X;. For q > 0, we also define
AF(q) ={Q € A} : min Q;; > q},
4,J<k

so that A¥(0) = Aﬁ. We now recall some properties of Markov chains with transition matrix in
A*(q). Note that ¢ needs to be less than + for A*(q) to be nonempty. Then for all Q) in A¥(qg),
max; ; Q;; < 1—(k—1)q. Also,if @ € A¥(g), thenforanyi € {1,...,k}and A C {1,...,k},
> jea Qij > kqu(A), with u the uniform probability on {1,...,k}. Besides if Q € A*(g) with
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Figure 2.1 — The model.

q > 0, the chain is irreducible, positive recurrent and admits a unique stationary probability
measure denoted < for which ¢ < ,uQ(i) <1l-(k—-1)g,1<i<k

We assume that the observation space is R? endowed with its Borel sigma field. Let F be the set
of probability density functions with respect to a reference measure A on R%. F* is the set of
possible emission densities, that is for f = (f1,..., fx) € F*, the distribution of ¥; conditionally

to Xy =i willbe f;\,i =1,..., k. See Figure 2.1 for a visualization of the model.

Let
O={0=(Q,f) : Qe A}, feF"}

and

O(q) ={0=(Q.f) : Qe A¥(q),f e FF}.

Then P? (resp. P?#) denotes the probability distribution of (X}, Y;);cn under 6 and initial prob-
ability measure ¢ := u@ (respectively ). Let ple (pf’“ resp.) denote the probability density of
Yi,.... Y with respect to A& under P?
(resp. P%#). and Ple (Ple’“ resp.) the marginal distribution of Y7, . ..,Y; under P? (resp. P%#). So
for any @ € ©, initial probability measure y, and measurable set A of {1,... k}' x (R%)":

PO (X 14, Y1q) € A)
k
= / Z ]l(:cl,...,:cl,yl,...,yl)eA /‘I’JSIQCULIZ s lefl,xz

T1,...,x;=1

for (1) - foy (w) M dyr) - . A(du),

k
07
b u(ylv"wyl) = Z lU%lQCUhIZ“'Qxlflyxlle(yl)"'fxl(yl)7

x1,...,x1=1
O.p _ , 0.py®i
and P = p, A,

We denote by §, ® 7 the prior on A, x O, where € Ay is an initial probability measure.
We assume that 7 is a product of probability measures on ©, 7 = mg ® 7y such that mg is a

probability distribution on Alg and 7y is a probability distribution on F k

We assume throughout Chapter 2 that the observations are distributed from P?" so that their
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distribution is a stationary HMM. We are interested in posterior consistency, that is to prove that

with P?* -probability one, for all neighbourhood U of #*:

lim 7(U|Y1n) = 1.

n—-+o0o

The choice of a topology on the parameters arises here. For any distance or pseudometric D,
we denote N (0, A, D) the J-covering number of the set A with respect to D, that is the mini-

mum number N of elements a1, ...,ay such that for all a € A, there exists n < N such that
D(a,ay) < 6.

For k x k matrices M, we use

| M| = lggéklMiﬂ

For probability distributions P; and P, let p; and py be their respective densities with respect

to some dominated measure v. We use the Li-norm:

Ip1 — P2l 2, (v) = /|p1 — pa|dv
and the Kullback-Leibler divergence:

2 log(%)du if P << Ps,

KL(P,Py) =
(1, Po) {+oo otherwise.

We also denote K L(py, p2) for K L(piv, pov). On F* we use the distance d(-, -) defined for all
9=1(91,---,9k), 9= (g1,--.,gk) by

d(9,9) = max llg; = Gjllz. -

On @(g), we use the following pseudometric for [l > 3,1 € N,

Dy(6,6") = / ! - = o s ) A dyn) - Ad) = 1] — B, -

Then a D;-neighbourhood of 6 is a set which contains a set {6/ : D;(6,0") < e} for some
€ > 0. We also use the weak topology on marginal distributions (Ple)g. We recall that in any
neighbourhood of Plo in the weak topology on probability measures there is a subset which is a

union of sets of the form

{P : ’/hjdp—/hjpled/\@

where forall 1 < j < N, ¢; > 0 and h; is in the set Cy((R?)") of all bounded continuous

functions from (R%) to R. We prove posterior consistency in this general nonparametric context

<Ej,j:1,...,N},
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using this weak topology on marginal distributions (]Dle)g and the D;-pseudometric in Section
2.2.2. We study the posterior consistency for the transition matrix and the emission distributions

separately in Section 2.2.3.

Finally the sign < is used for inequalities up to a multiplicative constant possibly depending on

fixed parameters.

2.2.2 Main Theorem

In this section, we state our general theorem on posterior consistency for nonparametric hidden
Markov models in the weak topology on marginal distributions (F’le)g and the D;-topology. Fix

[ > 3. We consider the following assumptions:

(A1.0) Foralll <i <k, [ fF(y)llog(f#(y)) A\ dy) < +oc,

(A1.1) for all € > 0 small enough there exists a set ©. C ©(g) such that 7(6.) > 0 and for all
0=(Q,f) €O.,

(Alla) [|Q — Q[ <e,

(A1.1b fiw)

)
) maxi<i<k [ f7(y) maxi<j<p log(Frr)Mdy) <e,
(Allc) forall y € R? such that Y7 £7(y) > 0, 320, fi(y) >0,
(A1.1d) Supy:Z:ic:1 £7(y)>0 maxi<;<k f](y) < 400,
(A1.2) forallm > 0, for all § > 0, there exists a set F,, C F* and a real number r; > 0 such that
77 ((Fn)¢) S e ™ and such that

N(2 Fud kg
nz>0 @a ny (7) exXp | — 321 < +00.

Theorem 2.1. Let ¢ > 0. Assume that the support of m¢ is included in Ak(g) and that for all
1<i<k p=>q

a) If Assumptions (A1.0) and (A1.1) holds then, for all weak neighbourhood U of P,
pY (Ji%w(U\len) - 1) = 1.
b) Moreover if Assumptions (A1.0), (A1.1) and (A1.2) hold then, for alle > 0,
0" (1 . * _ —
P (nlggow( (0 Dy(6,0%) <} |Yim) = 1) —1.

Remark 2.2.1. We assume everywhere in Chapter 2 that the support of 7 is included in AF (9).

It means the results of this chapter can only be applied to priors 7 on transition matrices which
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vanish close to the border of A],z. This assumption is satisfied by a product of truncated Dirichlet

distribution, i.e. if the lines @); . of () are independently distributed from a law proportional to:

a;—1 ap—1
Qz’,i Qu’i ﬂ{ggQiﬂjgl,wg]‘gk}in,l'--invk

where aq,...,a > 0.

The restriction on A* (q) comes from the test built in Gassiat and Rousseau [GR14]. On this
set, HMMs are geometrically ergodic. It is a common assumption in the literature see Douc and
Matias [DMO01], Douc et al. [DMRO04], or Douc et al. [DMOH11] for instance. Besides Gassiat and
Rousseau [GR14] explain the difficulty which appears when the Markov chain does not mix well.
They are also able to obtain a less restrictive assumption on the support of the prior on transition
matrices. In return they assume a more restrictive assumption on the log-likelihood, compare
Equations (2.11) and (2.13) with their Assumption C1.

In the case of density estimation with i.i.d. observations, it is usual to control the Kullback-Leibler
support of the prior to show weak posterior consistency and to control, in addition, a metric
entropy to obtain strong consistency, see Chapter 4 of Ghosh and RV. Ramamoorthi [GR03].
Assumptions (A1.1) and (A1.2) are similar in spirit. Assumptions (A1.0) and (A1.1) replace the
assumption on the true density function being in the Kullback-Leibler support of the prior in
the i.i.d. case. (Al.1a) ensures that the transition matrices of ©. are in a ball of radius € around
the true transition matrix. Under (A1.1b) the emission densities are in an ¢ Kullback-Leibler ball
around the true one. (A1.0), (A1.1b), (Al.1c) and (A1.1d) are assumptions under which the log-
likelihood converges P?-a.s. and in L;(P?"). (A1.2) is very similar to the assumptions of the
metric entropy of Theorem 4.4.4 in Ghosh and RV. Ramamoorthi [GR03].

In Appendix 2.4, the proof of Theorem 2.1 relies on the method of Barron [Bar88]. It consists of
controlling Kullback-Leibler neighbourhoods and building tests. The construction of tests is quite
straightforward thanks to Rio’s inequality [Rio00] which generalizes Hoeffding’s inequality. To
prove a), we use the usual strategy presented in Section 4.4.1 in Ghosh and RV. Ramamoorthi
[GRO3] together with Rio’s inequality [Rio00] and Gassiat and Rousseau [GR14]. To prove b), we
use the tests of Gassiat and Rousseau [GR14]. To control the Kullback-Leibler neighbourhoods,

we use the following lemma whose proof is given in Appendix 2.4.

Lemma 2.2. Let 0* be in ©(q). If (A1.1) holds then, for all0 < € < 1, there exists N € N such
that for alln > N and for all 0 € O.:

1 .
~ KL, P") <
n

|
™
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2.2.3 Consistency of Each Component of the Parameter

In this Section we look at the consequences of Theorem 2.1 on posterior consistency for the
transition matrix and the emission distributions separately. Estimating consistently the compo-
nents of the parameter is of great importance. First one may want to know the proportion of
each population or the probability of moving from one population to another, i.e. the transition
matrix. Secondly, these components are important to recover the smoothing distribution, i.e. the
distribution of a hidden state given the observations, and then to cluster the observations, see
Cappé et al. [CMRO05] and Theorem 2.8.

In practice, estimating the marginal density of [ consecutive observations is not the first purpose.
Yet estimating the parameters and the hidden states is often the goal. For instance, Whiting et
al. [WLMO03] give an algorithm to estimate the stationary probability measure of the Markov
chain derived from the transition matrix. While Yau et al. [YPRH11] and Couvreur and Couvreur

[CCO00] are interested in estimating the hidden states.

The consistency for each component of the parameter, i.e. the transition matrix and the emis-
sion distributions, does not directly result from consistency of the marginal distribution of the
observations, see Dumont and Le Corff [DL14]. Identifiability seems to be necessary to obtain
this implication yet it is not sufficient. We obtain posterior consistency for the components of
the parameter thanks to the result of identifiability of Gassiat et al. [GCR15] and as usually by
proving the continuity of the functional
((p))g, L1) — (O, the topology T described in the following)
{ ple — 0

We use a product topology on the set of parameters. In particular we study consistency in the
topology associated with the sup norm on transition matrices ||-|| and the weak topology on
probability measures for the emission distributions up to label switching. To deal with label
switching, we need the following definitions. Let Sy denote the symmetric group on {1, ..., k}.
Let o be a permutation in Sk, for all matrices () € AF we denote o (@ the following matrix: for
alll <4,j <k,

(0Q)ij = Qu(i)o(h)-

If (X4, Y})ten is distributed from P@.Jf) and X, = o 1(Xy), for 0 € S, then (X’t,Y})teN is
distributed from P (fo1):f, °<’“))), i.e the labels of the Markov chain have been switched but
(Y;)ten has the same distribution. Then, in generality, from the distribution of the observations
one can at most recover the parameter up to label switching. Gassiat et al. [GCR15] proved that

it is possible by knowing the joint distribution of at least three consecutive observations.

In Theorem 2.3, whose proof is given in Appendix 2.4, we prove that under the assumption of
identifiability, posterior consistency in the D; topology implies that the posterior concentrates

around (Q*, f*) up to label switching, i.e. around {cQ*, (f:(l), A f;(k))}gesk. In other words
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we obtain posterior consistency considering neighbourhoods of the form
{HU € Si; 0Q € Ug~, fg(l-) € Ufi*7i = 1k}

where Ug- is a neighbourhood of @* and for all 1 < i < k, Uy is a weak neighbourhood of
[ A. That is to say we consider the product topology 7 of the sup norm topology on transition

matrices and of the weak topology on the emission distributions up to label switching.

Theorem 2.3. Let 0* = (Q*, f*) € O such that i\, ..., fi\ are linearly independent and Q*
has full rank.

If the posterior is consistent for the Dy pseudo-metric withl > 3, i.e. if for alle > 0,

pY (hm 7({0: Dy(0,0%) < e} |Yiin) = 1) ~1

n—o0

then the posterior is consistent for the topology T, i.e. for all weak neighbourhood Uy+ of f A, for
all1 < i < k and for all neighbourhood Ug~ of Q*,
Vo) =1) =1 @)

Pe*( lim 7T<{E|O’ € Sy; 0Q € Ug+, fa(i))‘ € Ufi*’ 1< < /{7}

n—-+00

Remark 2.2.2. In particular, Equation (2.1) implies that for all € > 0

P [ lim = U {Q:|Q — Q|| <€} ‘len =1|=1

n—-+o00
€Sk

It means that under the assumptions of Theorem 2.3, the posterior concentrates around {cQ*, o €
Sy }. Equation (2.1) also implies that for all N € N, for all h; € C(R?) and for all €; > 0,

Pm(ﬂinoo”( U {s: }/hifjd)\—/hif:(j)d)\} <ei,

€S

for all 1 gi,jgk}'YM) :1) — 1

This last result allows to consistently recover smooth functionals of the emission distributions
(f;); such as Jx f7dX\ where K is compact. We obtain stronger results in Sections 2.3.2 and
2.3.3.

The uncertainty due to label switching can be removed if there is only one possible permutation
o associated to a parameter € as in Proposition 2.4, proved in Appendix 2.4. This Proposition 2.4
may be useful if one knows some characteristics of the hidden states which order them. The
function H, in Proposition 2.4, enables to order the hidden states and then to get rid of label

switching.
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Proposition 2.4. Let 0* € © such that f{\,..., fi\ are linearly independent and QQ* has full
rank. Let H : (@, ’7'1) — R* be a continuous function, where Ty is the product topology of the
sup norm topology on transition matrices and of the weak topology on the emission distributions.

Assume that for all permutation o € Sy, and forall0 = (Q, f) € ©,

Hi((O-Qafa(l))"wfa(k))) = Ha(z)(0)¢ (2.2)
Hy(0%) < --- < Hi(67), (2.3)
Tr({e L H(0) < < Hk(H)}> ~ 1. (2.4)

If the posterior is consistent for the topology T, i.e. for all weak neighbourhood U+ of f A, for all
1 <4 < k and for all neighbourhood Ug+ of Q*,
Vi) =1) =1 @)

then for all weak neighbourhood U= of fA, for all1 < i < k and for all neighbourhood U+ of

*
2

n—-+o00

PG*( lim w<{aa € Sp; 0Q € Ug+, fopyA € Upr, 1 < i <k}

W( lim W({QGUQ*, fix € Uys, 1931@}‘1@”) :1):1.

n—-+o0o

Here we give some examples of possible functions H:

Hi0) = Qi o Hi(0) = [ 6fidn (25)

where ¢ is bounded and continuous. Even if in practice, one would often like to use H;(0) =
[ yfi(y)A(dy), Proposition 2.4 does not allow it. Indeed, in this case H is not continuous. Yet

taking a continuous truncated version of the identity for ¢ in Equation (2.5) may help.

2.3 Examples of Priors on f

In this section we apply Theorems 2.1 and 2.3 for different types of priors and emission models.
In Section 2.3.1 we deal with emission distributions which are independent mixtures of Gaussian
distributions. Translated emission distributions are studied in Section 2.3.2. Finally we consider

the discrete case with Dirichlet process priors in Section 2.3.3.

Assumptions (A1.1b) and (A1.2) are purposely designed to resemble the types of assumptions
found in density estimation for ii.d. observations. This allows us to use existing results on
consistency in the case of i.i.d. observations. This is done in Sections 2.3.1 and 2.3.2 with a prior
based on a usual prior on densities, which is a mixture of Gaussian distributions such as in Tokdar
[Tok06]. Two ways of using a prior on densities are considered. In Section 2.3.1, the emission

distributions are independently distributed under a usual prior on densities. In Section 2.3.2,



2.3 EXAMPLES OF PRIORS ON F 49

the emission distributions are designed from a unique density, distributed from a usual prior,
which is translated. Contrariwise in the discrete case we develop a new method to deal with the

Dirichlet process prior in Section 2.3.3.

2.3.1 Independent Mixtures of Gaussian Distributions

We consider the well known location-scale mixture of Gaussian distributions as prior model for

each f;, namely each density under the prior is written as
g(y) = / ¢o(y — 2)dP(z,0) =: ¢ x P, (2.6)
Rx (0,400)

where ¢, is the Gaussian density with mean zero and variance o', and P is a probability measure
on R x (0,400). In this part, A is the Lebesgue measure on R. Let 7p be a probability measure
on the set of probability measures on R x (0, 400). Denote 7, the distribution of g expressed
as (2.6) when P ~ mp. Then we consider the prior distribution on f = (fi,..., fx) defined by
Ty = W?k . We need the following assumptions to apply Theorem 2.1 and 2.3:

o (P ; /idP(z,a) < oo> _1,

(B1.2) foralll < j <k, fji" is positive, continuous on R and bounded by M < oo,

(B1.1)

(B1.3) forall1 <<k, 1<j <k,

/R f(y)1og (f;jj EZ;) Ady) < o

where wj (y) = infzﬁe[y—l,y—i—l] f; (t)’

(B1.4) forall 1 < ¢ < K, there exists 7 > 0 such that
[P ) < oo,
R

(B1.5) for all 5 > 0, Kk > 0, there exist a real number 3y > 0, two increasing and positive

sequences a,, and u,, tending to +o00, and a sequence /,, decreasing to 0 such that

Tp <P : P((—an, an) X (In,up]) <1— /@) < exp(—nfo),

with 2 <nB,  log <7"> < ng.
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Proposition 2.5. Let ¢ > 0. Assume that the support of m¢ is included in Ak(g) and that for
all1 <i <k, u; > q. Assume that Q is in the support of 7 and that the weak support of mp

contains all probability measures that are compactly supported.

Then

e (B1.1), (B1.2), (B1.3), (B1.4) imply (A1.1)

e and (B1.5) implies (A1.2).

In particular in the case where 7p is the Dirichlet process DP(aGy) with base measure aG),
where Gy is a probability measure on R x (0, +00) and @ > 0, Assumption (B1.1) holds as soon

as

1
/ —Go(dz,do) < +o0. (2.7)
Rx(0,400) T

Indeed,

/ / %P(dz,da)wP(dP): / / /[a,m) %A(dt)P(dz,da)WP(dP)
:/iGo(dz,da).

Moreover using Remark 3.1 of Tokdar [Tok06], Assumption (B1.5) easily holds as soon as for
all B > 0, there exist a real number Sy > 0, two increasing and positive sequences a,, and u,

tending to +00 and a sequence [,, decreasing to 0 such that

2.8
%sw,l%cﬂgw. %)

2.3.2 Translated Emission Distributions

In this section we consider the special case of translated emission distributions, that is to say for
alll <j <Kk,

fi() = g(- —mj),
where g is a density function on R with respect to A and forall 1 < j < k, m; isin R. In
this part, A is still the Lebesgue measure on R and d = 1. This model has been in particular
considered by Yau et al. [YPRH11] for the analysis of genomic copy number variation. First a

corollary of Theorem 2.3 is given. Then the particular case of location-scale mixture of Gaussian

distributions on g is studied.

Let
E={{=(Qm,9),Q AL, meR"  m =0<my < <my,g€F}
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and

(1]

(Q) = {‘5 = (Q?m7g) €E,Q¢€ Ak(g)}

To & = (Q,m, g) € =, we associate § = (Q, (g(- — mq),...,g(- — mg))) € ©. We then denote

IP¢ for PY. We assume that t is a product of probability measures,
Tf = Tm & Mg,

where 7, is a probability measure on F and 7, is a probability measure on R¥. Note that under
=, the model is completely identifiable, see Theorem 2.1 of Gassiat and Rousseau [GR16]. The
uncertainty due to label switching is resolved here. In Corollary 2.6, additionally to posterior
consistency for the transition matrices, we obtain posterior consistency for the parameters of
translation m; and for the weak convergence on the translated probability measure g\. Under a
stronger assumption, we get posterior consistency for the L;-topology on the translated density

distribution.

Fix [ > 3. The following assumption replaces (A1.2) in the context of translated emission distri-

butions:

(C1.2) foralln > 0, for all § > 0, there exists a set F;,, C R¥ x F and a real number 7; > 0 such
that 7 ((F,)¢) < e " and

V(2 Fud no kg
2N (g dls) Jexp | =g | < oo

Corollary 2.6. Let {* = (Q*,m*, g*) be in Z(q) such thatm] = 0 < m3 < --- < mj, and Q*
has full rank.

If the posterior is consistent for the D; pseudometric withl > 3, i.e. if foralle > 0,
pE’ <1Lm 7({€: Di(E,€) < &} [Yim) = 1) ~ 1.
Then, foralle > 0,

P lim r({Q: Q- QI <2} | Yim) = 1) = 1,

n—-+o0o

]P’f*< lim w({m:V1<j <k, ]mj—m;]<£}|Y1;n):1):l,

n—-+00

and for all N € N, for all h; € Cy(R?), foralle; >0, 1 <i <N,

Pﬁ*( lim W({g: ‘/higdk—/hig*dk‘ <5¢} ‘ Y1n> = 1) =1.
n—-+4oo
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If moreover maxi<j<k p; > 1/2 and g* is uniformly continuous; then, for alle > 0,
P< (ngglmﬂ ({g:1lg= 9"y <efl¥in) = 1) =1

The proof of Corollary 2.6, in Appendix 2.5, relies on the identifiability result of Gassiat and
Rousseau [GR16] and Theorem 2.3.

In the same way as in Section 2.3.1, we propose to apply Theorem 2.1 and Corollary 2.6 to a
prior based on location-scale mixtures of Gaussian distributions. In this part, we study a partic-
ular prior on the translated emission density g which is the location-scale mixture of Gaussian

distributions. Then g is a sample drawn from 7, if

g@w=AMwmﬂ%@—szMa>

where P is a sample drawn from 7p and 7p is a probability measure on probability measures on

R X (0, 400). The following assumption help in proving (C1.2):

(D1.6) for all B > 0, kK > 0, there exist a real number By > 0, three increasing sequences of
positive numbers m,,, a,, and u,, tending to +o00, and a sequence [,, decreasing to 0 such

that
TP (P i P((—an,an] X (In,up]) <1-— /<;> < exp(—nfp),

o () < cn(ni),

In<ng,  log (“") <nB, log (’7) <np.

l’fL n

Proposition 2.7. Let ¢ > 0 and £* in Z(q). Assume that the support of 7 is included in A¥(q)
and that for all 1 < i < k, u; > q. Assume that Q* is in the support of mg, that m* is in the
support of m, and that the weak support of mp contains all probability measures that are compactly
supported.

If (B1.1) is werified and (B1.2), (B13) and (B1.4) are wverified with f;(-)
g(- —my), 1 < j < k then (A1.1) holds.

Moreover (D1.6) implies (C1.2).

The proof of Proposition 2.7 is very similar to that of Proposition 2.5 and is given in Appendix
2.5.

Corollary 2.6 and Proposition 2.7 are less general than Theorem 2.3 and Proposition 2.5 respec-
tively. In Corollary 2.6 and Proposition 2.7, it is assumed that the true emission distributions are
translated versions of a unique density ¢g*. In practice, we expect priors on translated emission

distributions not to be as robust as priors for which the emission distributions are i.i.d. such as
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priors of Section 2.3.1. Particularly if the true emission distributions have different tails, priors

on translated emission distributions may lead to poor estimations.

2.3.3 Independent Discrete Emission Distributions

Discrete emission distributions, i.e. when the support of A is included in N, have been successfully

used, for instance in genomics in Gassiat et al. [GCR15].

Note that for discrete emission distributions, weak and [; topologies are the same so that weak
posterior consistency implies /; posterior consistency. Thus Assumption (A1.2) becomes unnec-
essary in Theorems 2.1 and 2.3. Moreover posterior consistency for the emission distributions in
the weak topology in Theorem 2.3 implies posterior consistency for the emission distributions

in ll.

In the discrete case, we prove in Theorem 2.8 that posterior consistency for the marginal distri-
bution of finitely many observations, for the transition matrix and for the emission distributions
in /1 together with the restriction of the prior g on AF(q) imply posterior consistency for the

marginal smoothing:

Theorem 2.8. Let ¢ > 0. Assume that the support of m¢ is included in Ak(g) and that for all
1<i <k, pu >q Iffif\ ..., fi) are linearly independent, Q* has full rank, and (A1.0) and
(A1.1) hold; then, for all finite integer m,

lim 7r<{9 :Jo € S, max |PY(X; = 0(a;), V1 <i<m|Yin)
n——+oo 1<a; <k, 1<j<m

—P"(X;=a;, Y1 <i<m|Yin)| < e}’}qn> =1 in P -probability.

The proof of Theorem 2.8 is given in Appendix 2.4.

In the following we apply Theorems 2.1, 2.3 and 2.8 to a specific prior on the set of probability
measures on N in the case of a HMM with discrete emission distributions. We consider a Dirichlet
process DP(aGy) with « a positive number and G some probability measure on N. We then

consider a prior probability measure on © defined by

T =mg ® DP(aGo)®*.

In Proposition 2.9, we give sufficient and almost necessary conditions to obtain (A1.1). Proposi-

tion 2.9 is proved in Appendix 2.4.

Proposition 2.9. Let ¢ > 0. Assume that the support of the prior g is included in Ak(g), that
Q" is in the support of mg and that forall1 <i <k, pu; > q.

If
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fr (@)
Go(l)

(EL1) foralll <i <k, » < +o0
leN

then (A1.1) holds.

Moreover if
(TL1) forall1 <i <k, Y f7(1)(—log ff (1)) < 400
leN
then (A1.1b) implies (E1.1).
Remark 2.3.1. Therefore (E1.1) is not only sufficient to prove (A1.1b) but up to the weak As-
sumption (T1.1) it is also necessary. Assumption (E1.1) relies on the mutual control of the tails of

the base measure G and the true emission distributions f'. Proposition 2.9 suggests choosing

a heavy tailed probability measure Gy with G(l) > 0, forall € N.

Remark 2.3.2. We deduce from Proposition 2.9 that

{g* :N — (0,1) such that Zg*(l) =1,

leN 2.9)

S0 (- loslg"(1) < o0 and Y- 210 < m}

leN leN

is a subset of the Kullback-Leibler support of the Dirichlet process DP(aGy).
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2.4 Proofs of Key Results

Proof of Lemma 2.2

For all §, 6* € A¥(q) the Kullback-Leibler divergence between p? and p? is by definition equal

k * * * * %
L <log ( S M Q- QL (YD) S (Ya) ))
~E,o . |
" ’ zjl""’jnzl Mlejl’jQ e anflvjnfjl (Yi) st fjn (YTL)

to

Multiplying and dividing each term of the sum in the numerator by

fiy Qiy iy - -+ Qi _y i fin (Y1) - fi, (Ya),
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we obtain

ko Qb in @l in P (YD (V)
ZullQll iy an . 7'7Lfl1 (Y1)- fzn(Yn>'u11Q11 ig " an 1, znle (Y1)- f’Ln(Yn)

i1 in =1

1
EEPZ* log
> lulejl,jz~~~an71,jnfj1(Y1)---fjn(Yn)

1 Wiy Qi ig - Q5 an JH (Y1) o £ (Ya)
< 7Epg* lOg max
no-n 1<it,ensin <k fiy Qiy yig -+ - Qip_1,in fin (Yl).on(Yn)

by bounding the quotient in each term of the sum of the numerator by its maximum. Since the

maximum of a product of positive factors is bounded by the product of the maxima,

1 .
*KL(pﬁ ,PoH)

—1
Hiy Qii\" fiy (V1) fi: (Ya)
< —E o+ | log| max — [ max max ... max —t——
n Pu 1<io<k i, \1<i.j<k Qi ; 1<iai<k fi, (Y1) 1<in<k fi, (Yn)
1 ~1 o
= niqlgai(k‘mo il +- ng 1252k @i — Qi

+ max /f]*(y) max log Jiw) A(dy).

1<5<k 1<i<k fi(y)

The last inequality comes from the following inequalities

[ (Ys)
5 (tos (s, 57))

k
* * s y
- Z'ulejhjz Jn mn/fs loglga§k< Z (y) > H/f]t dy)

J1yejn=1 1<t7és<n
fi ()

< *
< max, / £, (y) mas log f“(y)wy),

1
log | max < =~ max ¥
1<io<k ,ulo = g 1<io<k o = 11
and
log [ max < 1 max ‘Q Q; ‘
1<i,j<k Q” = qi<ig<k i~ Qi

because miny <; j<k (wi, 1, Qij, QF ;) = ¢

Then for all € > 0, for n large enough, for all § € O,

7KL(pn 7pn7u) <

\@\w
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Proof of Theorem 2.1

This proof relies on Theorem 5 of Barron [Bar88]. We do not assume (A1.2) in the first part of
the proof. First we prove that for all a > 0,

" ( Jo B (Vi Ya)m(d6)

< — io. | = 2.10
S AR an)“’) (2.10)

that is to say
P (s yn)A(dy) - Aldyn)

and

/@ P )M (dun) - A(dyn)(dO)

merge with probability one.

Let £ > 0. Note that Assumption (Al.1a) implies that Q* € A* (¢)- Then by Lemma 2.2, there

exists a real £ > 0 such that for n large enough, for all § € B¢,
]. *
KLY o) <. (2.11)
n

Assumptions (A1.0), (A1.1b) and (A1.1d) imply that

k k
> / fi(y) [log (Z fj(y)) A(dy) < +o00. (2.12)
i—1 =1

Indeed
k
/ 71 Jlog | S 5 | | M)
j=1
< | fi)(=log(fi(y))A(dy) + [ f;(y)log(k max f;(y))A(dy)
{y: fi(y)<1} {y: fi(y)>1} SIS
and

/{y: fily)>1} Ji () log(k 1o fi(W)A(dy)

is finite under (A1.1d) and

/ 17 () (~ log(fi(1)))A(dy)
{y: fi(y)<1}
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is finite under (A1.0), (A1.1b) and (A1.1d) since

fi () . .
/ fily lrgfgklog ( f](y)> Ady) > / [ () log(fi(y))Mdy)

7 (9)(— log(f(y)) A(dy) + / F () om( i)\ ).
{y: fily)<1}

Moreover by Proposition 1 of Douc et al. [DMR04], if § € ©(g) and if (Al.1c), (A1.1d) and (2.12)
hold,

L(9) <e. (2.13)
So that for all € > 0, there exists € such that
m(0:L(9) <e) > m(O:) >0.

By Lemma 10 of Barron [Bar88], for all a > 0, (2.10) is verified.

We now have to build the tests described in Theorem 5 in Barron [Bar88], to obtain posterior
consistency first for the weak topology and secondly for the D;-pseudometric. In the case of
the weak topology, we follow the ideas of Section 4.4.1 in Ghosh and RV. Ramamoorthi [GR03].
Using page 142 of Ghosh and R.V. Ramamoorthi [GRO03], it is sufficient to consider

_{p : /hdp—/hp?*dA®l<g,},

foralle > 0and 0 < h < 1 in the set Cy((R9)"). Choosing o and 7y as in page 128 of Ghosh and
RV. Ramamoorthi [GR03], if

-1
n/ Fy

«
st =Ly Ly Wit yss) > 2L L
Al Z y]l+1 y]l—i—l) B
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then

n/l—1
* n * * n —
Pe (S ) = Pe Z <h(yjl+1,...,yjl+l) — /hple d)\®l) > 77 9
=0
[t — a2 (ming 7,
=P\ T 212~ kming Q)2

(2.14)

and for all 6 € ©(q) such that [ hdP? — [ hp{"d\®! > ¢,

n/l—1

n —
PP((sm°) < P? Z <_h(yjl+17 e Yji) F /hpzed/\@)l) > 77 5
=0

n(y — a)?(ming ; Qi ;)° n(y —a)’q?
< - : : < - 2.15
< exp ( 2@ — kming; Q2 ) =P 57 ;o (215

using the upper bound from the proof of Theorem 4 of Gassiat and Rousseau [GR14] based on
Corollary 1 of Rio [Rio00].

Using Theorem 5 of Barron [Bar88] and combining Equations (2.14) and (2.15),

P <7r<{9 : /hdp9 —/hple*d)\@’l < s}c ' YM> > e i.o.> —0

which implies that for all weak neighbourhood U of P/,
P (n(U°|Y1n) > exp(—nr) io. ) =0,

so that
pY (ILm 7(U|Yim) = 1) ~1.

We now assume (A1.2) and obtain consistency for the D;-pseudometric. Let € > 0 and let

2
U= {9 . Dy(0,60%) < 5} 5 {e . Dy(0,60%) < e

2 — kminj<; j<k Qi
kq ’

kming<; j<k Qij

be a D;-neighbourhood of 6*. Let

BTCL :Ak(q) X ‘Fnu

so that
m(By) = mp(Fnf) S exp(—nry). (2.16)

In the proof of Theorem 4 of Gassiat and Rousseau [GR14], it is proved that for all n large enough,
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there exists a test v/, such that

. € ne?  k?(min; ; QF .)?
EY (1,) < N (—, AF D - o T
(w ) = (12) (g) x F, ’ l) €xp ( Y/ (2 . kmil’liJ Q;kj)Q
’ (2.17)
< N (=, Ak(q) x Fo, D ne'kg”
<N (3850 x P Dr) exp | -5
0.1 n€2
sup PYP(1—4y,) <exp|——]. (2.18)
9cUcNBE 321

Note that for all 8, 6 in ©(q),

3 0 0 A 3
Du,0) < 3 Il =il + K= DIQ = Qll + L a1 = il

The function Q — u@ is continuous on the compact A¥(q) and thus is uniformly continuous:

there exists v > 0 such that for all , § in ©(q) such that |Q — Q|| < « then Zlgz‘gk;’“? — ,u?] <
3g- This implies that

N (55, A%(g) x Fo, 1)
. 3 k £
< (min (g ) A @) N (5 Fndt))

¢ (o (B0 2)) Gy )

Then combining Equations (2.16), (2.17), (2.18), (2.19) and using Theorem 5 of Barron [Bar88],
there exists 7 > 0 such that

PY" <7r (U°|Y1:n) > exp(—nr) i.o. ) =0. (2.20)

And Equation (2.20) implies that for all € > 0,

PY" (nm 7({0: Dy(0,0%) < e} | Vi) = 1) ~1.

n—o0

Proof of Theorem 2.3

It is sufficient to show that for all weak neighbourhood Uy« of f*\ and neighbourhood Ug« of
Q*, there exists a D3-neighbourhood Uy« of 8* such that

Up+ C {E|O‘ € Sk; 0@ € Ug-, fg(i) € Ufi*’ 1= 1k‘} (2.21)
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Following Gassiat et al. [GCR15], it is equivalent to show that for all sequences §" in ©(q) such
that D3(6", 6*) — 0, there exists a subsequence, that we denote again 6, of 6™ and § € © such
that |Q™ — Q|| — 0, f{*A tends to fi)\ in the weak topology on probability measures for all i < k

and p@1") — @D

Let 6™ in ©(q) such that D3(6",0*) — 0. As A¥(q) is a compact set, there exists a subsequence
of Q™ that we denote again Q™ which tends to Q € AF (q). Writing ™ the (sub)sequence of
the stationary distribution associated to Q),, then u"™ — i where i is the stationary distribution

associated to (). Moreover, using the reverse triangle inequality,

Ds(0",0%) = [p§" — 1§ |1, o)
/‘ le 11,22 Z,zs z1(y1)fi2(y2) g(y3)_

1<iy,12,i3<k

17, Qi @iy i (1) i (92) 5 (9) | A(dyn) M) M(dys)
2 = Z ‘,u“ i1,i2 zz is — Hiy Q11,22Q12713‘ +

1<41,i2,i3<k

/‘ /jiléil,izQig,i:; 4 (1) Z;(yz)fli(ys)—

1<iy,i2,i3<k

11, Qi 12 Qi 5 () 1 (02) 7, (99)| A(dy)A(dy2)M g,

; n On n 70 - 0O -
since D <y, iy in<k [ Qs iy @y iy — Hir @iy ia Qi i | tends to zero,

i [ ST Qu s Qo ) £ ) 1 )~

1<41,i2,i3<k (2.22)
1, Qi iy Qi iy s (1) i (92) £ (3) | M)A (dy2) Mdys) = 0.

Let FV',...,F] be the probability distribution with respective densities [,
., fi with respect to \. Since

Z /J/llQu,Zngg,zg i1 ®Fn ®Fn

11,02,13

converges in total variation, it is tight and for all 1 < i < k, (F*), is tight. By Prohorov’s
theorem, forall 1 < ¢ < k there exists a subsequence denoted F* of F}* which weakly converges

to F}. This in turns implies that

Z /J/llQll,ZQng,zg i1 ®Fn ®Fn

11,02,13
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weakly converges to
Z iy Qi io Qi is iy ® Fyy ® Fy,
11,12,13
which combined with (2.22), leads to
Z iy Qimé Qiz,ispil ® Fiz ® Fis
11,12,13
= > QL Qi AN [N i

11,12,13

By Gassiat et al. [GCR15], Q = Q*, so ji = pu* and F; = f7 ) up to a label switching, that is there
exists a permutation o € Sy, such that Q) = Q* and Fg(i) = f7* X so that Equation (2.21) holds.

In other words we have proved the continuity of the functional
({rf, 0 € ©1},L1) = (O1/Rs,T)
ple — 0

where ©; = {0 € © : Q has full rank , f1d\... fyd\ are linearly independent} and R, is the
equivalence relation on © such that GRaé if there exists 0 € Sy such that forall 1 < 4,5 < k,

Qij = Qa(i),a(j) and f; = fa(i); using that

compact

—~
({pf,e e @,},Ll) SN ({pf,e co,l, mmkgy ) — (@I/Rg, T) |
0 continuous 9
Dy R D] b 0

A

continuous, bijective

Proof of Proposition 2.4

To prove Proposition 2.4, using Equation (2.4), it is sufficient to prove that for all ¢ > 0, there
exists > 0 such that

(2.23)
{0 mo) < <m0 1Q- Q1 <2 s dutho 1) <
where d,, metricizes the weak topology on F. Using Equation (2.3),
d:= min |H;11(0") — H;(6%)] >0 (2.24)

1<i<k—1
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and by continuity of H for all € > 0, there exists 71 > 0 such that for all
0e{0€0: Hi(0) < Hy(0), 30 € Sy, loQ — Q"I <, dw(fos), f7) <m},

foralll < i <k,
o €Sy,

H;(0) — H;(6*)| < &/2. For such 6, using Equation (2.2), we obtain for all

| Hi((0Q; fo(1)s -+ for) — Ho@) (07)] < 6/2

so that using Equations (2.3), (2.24) and that H;(0) < --- < H(0), the permutation o is equal
to the identity permutation. Thus Equation (2.23) holds with = min(7y, €).

Proof of Theorem 2.8

To prove Theorem 2.8 we need the following lemma:

Lemma 2.10. Lete > 0, forall0 <e; <1, N > 0,1 < j < N and c > 0 such that

e1kN € 2(1 — q)N+1=J €
o< —mm < = d = - < —.
C(C — 51) 3 an g_'_ (1 _g)Nﬁ’lfj 3
If
P (Yin) > ¢ (2.25)

then for allm > N,

{06 0 5165~ sl < =1, 30 € S s ] <
loQ=Q'll < &1, oy~ il <1}
C {9 € @(g) :do e Sy, lrglagxk ‘pe*(Xj =1|Y1n) —PG(X]- =o(l) | Yl:n)| < 6}.
Proof of Lemma 2.10. Let § € ©(q) such that
I — o1l < e
and there exists o € Sy such that

0
max [ig(p) — 5| <ev, loQ = Q7 < &1, max [lfoq) — filln <. (2.26)

To bound |P?" (X; = 1| Y1.,) — PY(X; = 1| Y1.,)|, we now prove that it is sufficient to bound
PP (X; =1|Y.n)— P%(Xj = o(l) | Yi.n)| with N < n a well chosen fixed integer thanks to
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the exponential forgetting of the HMM. Let 1 < a < k,

|P7 (X = 1| Yim) = PY(X; = 0(1) | Yin)|

Al 0% (v o pfiy. 420 (2.27)
< Age +|P (XJ_HYl:N) P(XJ—U(Z)|Y1:N)|+ 9

where for 0 € {0,0*} and forall 1 <[ <k,

PPVin, X;=0) 33 PP(Yivi1m [ Xni1=b)P?(Xn11=bX;=1,Y;.n)
s 1<b<k

0 Z PG(YLN,X]' :m) Z PH(YN+1;n|XN+1 = b)Pe(X]\H_l :b|Xj =m, Y—J';N)

1<m<k 1<b<k

Pe(Yl N, —l) Z Pé(YN+1:7L |XN+1 :b)Pé(XN+1 :b‘XJ :a>Yj3N)

1<b<k
> P(Yin, Xj=m) Y. PO(Ynira|Xnp1=b)P(Xni1=b|X;=0a,Yn)|

1<m<k 1<b<lk

Using Corollary 1 of Douc et al. [DMR04], i.e. the exponential forgetting of the HMM, we obtain
for all (b,w,m) € {1,...,k}3,

PQ(XN-FI = b|X] = mv}/j:N) - PG(XN—FI = b|Xj = w’Y}:N)

0 _ _
< (1— gVt < (1 gVt L (X1 =B =w, Vjiy)
- N q

so that for § € {#,0*} and forall 1 <1 <k

(1 )N—i—l J

S o g (2:28)

Moreover, using (2.25) and (2.26), forall 1 <i,57 < k,Y1.xy € NV,
Bowy 2 =€t Qo(iol) 2 Qi — €15 fatan(Yi) = fr,(Y)) —e1  and

PR (Yin) < i (Viw) (1 + e1/e),
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we obtain

P7(X;=1]Yin) = P'(X; = o(l) | Yi.n)
>ty Qiray Qi 1@ sy, Qun_yan far Y1) - fF () - i (Yw)

a1:5—1,454+1:N

p?\; (YI:N)
Z Mg(al)Qa(al),a(ag) e QU(aN_l),U(aN)fa(a1)<Yl) s fU(aN)(YN)
. a1:5—1,054+1:N
P& (Yi.n)
where a; = [ as in the following,
A+efe) X ph - fa, (W)= X Wy foan (YN)
< a1:5—1,054+1:N a1:5—-1,054+1:N
- (1 +e1/0)pf (Yion)
(Itei/e) X pg - foy(Yn)— 20 (kg —e1) .- (fay (Ynv) —€1)
< a1:5—1,054+1:N a1:5—1,054+1:N
o c+el

Expanding the product in the second sum, the numerator becomes a sum where each term is

bounded by (£1/¢)p%; (Y1.n). Indeed the first term is equal to

> wy - fa () = i (Vi)

Q1:5—1,0541:N

which gives (£1/¢)p%; (Y1.n) when subtracted to the first sum. The other terms are a product of
a positive power of €1 and i, Q7 ; or fg, (Y;) which are all bounded by 1. Thus they are bounded
by g1 < (e1/¢)p% (Y1.n). Moreover there are k™ terms so that

* kN
PO (X = 1| Yin) — PU(X; = o) | Viy) < — 2
(Xj=1|Y1N) (Xj=0o() | 1.N)_C(c+81)
Similarly
P/(X; =o(l)| Yiy) — P (X, = 1| V5 )<i
] = 1I:N = 1I:N) > 0(6—81)
so that
0* 2] ElkN
|PY(X;=1|Y1n) = PY(X; = o) | Yin)| € ———- (2.29)
clc—e1)

Combining Equations (2.27), (2.28) and (2.29), we obtain

PV (X; = 1] Vi) — P, = 0(0) | Yin)
<92 2(1 — )N 1k
T g+ (ANt ele—e)

< €. O

We prove Theorem 2.8 for m = 1, one may easily generalizes the proof. Let 3 > 0, 7 > 0 and
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e > 0, we fix N and ¢ > 0 such that

2(1— q)NH_j € 0% 1 _9*
T =g < gadl (b (Vin) > ¢) > V15 (2.30)
then we choose £ such that
8122NkN c
0< —m < = 2.31
clc—e1) 3 (2.31)

Posterior consistency for the marginal distribution in /; and for all components of the parameter
i.e. Theorems 2.1 and 2.3 imply that there exists M such that P -as., foralln > M,

1-— 1
ﬂ({@:ADN(&G*)<51}}YLH)>—L——é§j;f (2.32)
and
w6+ 30 € St sl — il < o - @'l < 21, .
2.33
. VI—B+1
s oy = i} <o | ¥i ) > 2P

Using Lemma 2.10 and combining (2.30), (2.31), (2.32) and (2.33), we obtain for all n > max(N, M),

<5NY@9>
< E}pflm))

0* . 0% v _ pb .
E GGeaaeﬁﬁgﬁpg&_umM PY(X; = o()| Vi)

6*
> B (ﬂp?\; (Yi.n)>c

. 0. _pO(X. = .
7T({9.30352%§JF’()Q = U[Y1) — P(X; = o(1)|Yin)

>1-8.

Then
0% . 0% . _ pb -
E (7‘[‘({9 :do € Sk, 112[&2% PY(X; =1l|Y1.n) — P'(X; = a(l)|Y1:n)‘ < 5}\Y1;n>>

tends to 1, which concludes the proof of Theorem 2.8.
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Proof of Proposition 2.9

As under DP(aG)®*, f;(1) is distributed from Beta(aGy (1), o > mz1 Go(m)),

/fk Z max (—log(f;(1))) (DP(QGO))®k(df)

< Z FE@ 3 | (~log(f(1) (DP(aGo))**(d)
=1 1<j<k

-3 Ji) Te) / " tog(a)ze6a0-1(1 — )" 2 " N ). @239)
=1 T(aGo()T (a > Go(m))

On [1/2,1], —log(z)z*FoW=1 < 2log(2), so that there exists a constant C; which does not
depend on ! such that

1
/ —log(z)z®CoW=1(1 — z)*Xma Go(m)=1 \ (42} < €. (2.35)
1/2

On|[0,1/2], (1—z)* 2mz1G0m)=1 < 9 o that there exists a constant C which does not depend
on [ such that

1/2
/ —log(z)z®GoW=1(1 — 2)* Lma Go(m) =1\ (4g) < LQ (2.36)
0 (aGo(1))
Moreover forall 0 < § < 1,
T 1 2
<T(8) = (5; ) < - (237)

ua SR

By combining Equations (2.34), (2.35), (2.36) and (2.37), for all 1 < < k,

/]__k Z max (—log(f;(1))) (DP(aGO))®k(df)

1< <k

< =)

so that using Assumption (E1.1),
®k .
(DP(aGO)) (fl,...,fk V1 <1<k,

1.

(1%
8
=
:

"
|
&
R
.
N
+
8
N——
I
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Note that for all € > 0,

1<j<k

+0o0
{fl,...,fk VI<i<h, Zf:a) max (— log(f5(1))) < +oo}

U {fl,..., D V1 <i <k, Zf max( log(f;(1))) < 6},

NeN =N

thus arguing by contradiction, for all € > 0, there exists L. such that
Rk .
(DP(OLG())) <f17"'afk : V1 <i <k,

> £ (1) max —10g(fg()))<s) >0,

1<5<k
I>L,

Using the tail free property of the Dirichlet process, forall 1 < 5 <k,

A max (~log(f;(1)) <&

I>Le

( £() fi(Le) ) (238)

and

2acr, i) Yacr, £50)

are independent given ) ;. ; f;(/) and (2.38) given } ;. ; _ f;(l) has a Dirichlet distribution with
parameter («Go(1),...,aGo(Le)). Thenforalle > 0, there exists L. such that forall § € (0, 1),

| ™

1<5<k
I>Le (2.39)

Vi< Le, |50) - f{(0)] < cé) >0

(DP(aGO))®k <f1, cey Ji o VI < <k, Z @) max (—log(f(1))) <

where ¢ = minj<;<, miny<y,_ r+(1)>0 ).

Forall fi,..., fr such thatforall 1 <4,j <k,

S7 (1) max (~log(f;(1))) <

1< <k
I>L.

DN ™
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and for all I < L, [ f;(1) — f7(1)| < cd,

S0 s (7)

leN

*

=Zﬁu«w429+2

fi (1) max log(f; (1))

I<L. I>L. 1<k (2.40)
+ > fi(0) max (—log(f;(1)
I>L¢
< L +0 + <e
—1-94

for ¢ small enough. For such a ¢ denote

0:={Q : IQ-Q e} x {fi,--esfi : Y fi maX —log(f;(1))) <

I>L.
VI < Le, [f5(1) = f7 (D] < cd, V1 <4, j < k}

<
27

Using Equation (2.40), (A1.1b) holds. Furthermore (A1.1d) is obviously checked. Under Assump-
tion (E1.1), Go(l) > 0 when Zle f#(1) > 0 so that (Al.1c) holds. Using the assumption that
Q™ is in the support of 7(), (Al.1a) is checked. Then using Equation (2.39), (A1.1) holds and the
first part of Proposition 2.9 follows.

We now prove the second part of Proposition 2.9. We first give a representation of a discrete

Dirichlet process with independent Gamma distributed random variables.

Lemma 2.11 (Ferguson [Fer74]). Let (Z;);en be independent random variables such that for all
l €N,
Z; ~T'(aGo(1),1),

then Zlel 7 converges almost surely and its limit has a gamma distribution I'(«, 1).

f‘{ N —[0,1]
i =) =2/ z)

then f is distributed from a Dirichlet process D P(aG)).

Moreover denote

We assume (A1.1b) i.e. for all € > 0,

P(aG)®* ({f e FEvie{1,... k} Zf max log ; ) < 5}) > 0.

leN
Let ¢ > 0, define F. as the set of f = (f1,..., fx) € F* such that forall 1 < i < k, for all

fer,
o (8 <

leN
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Then DP(aGo)®*(F.) > 0.
Since ), f7(1)(—log f; (1)) converges, then ) , f*(1)(— log f;(l)) converges. Using Lemma 2.11,

we can write f; with independent gamma distributed random variables (Z;);cn:

Z
ZjeN Zj,

where Z; ~ I'(aGo(l),1). Then >,y f7'(1)(—1log(Z;)) converges since ;. Z; is finite al-
most surely. Since DP(aGo)®*(F.) > 0, forall 1 < i < k with positive probability,

fill) =

> F () (=log(Z))

leN

converges. Using the Kolmogorov 0-1 law and the Three-Series Theorem (see Section 9.7.3 in
Dudley [Dud02]), >, fi(1)(—10g(Z;)) converges almost surely and

D P(I£(1)(—log(2))] > 1) < 4o, (2.41)
leN
D R D= 108(Z)) 42 1)~ tog( ) <1) < 00, (2.42)
JeN
> var (£ (D(=108(Z0)) L 1) tog(z)i<1) < 0. (2.43)
JeN

Equation (2.41) implies that

o0 > ) P(Iff()(~log(Z)| > 1)

leN

=0. (2.44)
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Moreover Equation (2.42) implies that

+00 > > E(fF (1)(—108(Z0) 12 (1)~ 10g(2))1<1)
l

! 1
-1 x IEaGU(l)—le—mdx
> Zl: </9Xp(_1/fi*(l)) (aGO(Z))fZ ( )( Og( ))

exp(1/f; (1)) 1 aGo()—1 —z
- Sy O oga)a e
e L fH() _ aGo(l)—1
Z< [(aGo(1)) /exp(—l/fz‘(l))( gl o

l
1 RO
B <aGo<Z>>/ ‘ “”)

e ()
< a+za2G2 T(aGo(l))

(o2

using Equation (2.37) and that

hm exp (

l—00

aGy(1) aGy
)+

)

using Equation (2.44). Then

(1)
G <

leN
2.5 Other Proofs

Proof of Proposition 2.5

The proof uses many ideas of Tokdar [Tok06].

We now prove that Assumptions (B1.1), (B1.2), (B1.3) and (B1.4) imply (A1.1). A reproduction
of the proof of Theorem 3.2. and Lemma 3.1 of Tokdar [Tok06] shows that Assumptions (B1.2),
(B1.3) and (B1.4) imply that for all e > 0, for all 1 < j < k there exists a weak neighbourhood
Vj; of a compactly supported probability measure ]5j such that for all f; = ¢ x P;, P; €V},

. fi(y)
/R Ji(y) max log ( ij (y)> Ady) <e. (2.45)
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Let0 < o < gand ( > 0 be suchthatforalll < j <k
Bi([=¢. ¢ x [g.a]) = 1.

Letd = ¢/2. Forall 1 < j < k define

Uj=3P: / th/ hdP;| < ey,
Rx(0,+00) Rx (0,+00)

where h : R x (0,400) — [0, 1] is a piecewise affine continuous function such that h(z,0) =1
forallz € [-(,(]and o € [g,0]and h(z,0) = Oforall z € [-(—6,(+0]°and o € [c—6,T+0]".
For all € > 0, define

O:.={Q : [|Q-Q"||<e}x (VinUy) x - x (Vi NUy).

Then for all (Q, ¢* P, ...,¢*Py) € O, (Al.1b) is true according to Equation (2.45). In addition,
forall y € R,

fi) > / 6oy — ) Pi(dz, do)
[—¢—6,(+d]x[c—8,6+9]

1

> m ¢Q_5(max(|y—C—(ﬂ,|y—}—(—|—5|)) (1 _5)

which implies (A1.1c). Moreover using assumption (B1.1), Il p-a.s. there exists C' > 0 such that
foralll <j <k,

fily) < /in(dz,da) <C

so that (A1.1d) holds. As O is a product of neighbourhoods of elements in the support of their
respective prior, 7(©.) > 0, so (A1.1) is checked.

Now we prove that Assumption (B1.5) implies Assumption (A1.2). Let > 0. Foralla,l,u, x > 0,
such that | < udenote 7, , = {¢* P : P((—a,a] x (I,u]) > 1 — r}. Using Section 4 of Tokdar
[Tok06], there exist by, b1, b2 only depending on « such that

IOg(N(?’KV? (*FK )kad)) < klOg(N(s’%’]:cT,l,u? HHLl()\)))

a,lu
< kbg (bl% + by log (%) 4 1) _ (2.46)

52kq?

305 (b1 553) Assumption (B1.5) implies that Assumption (A1.2)

Choosing k = ﬁ and 3 <
holds.
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Proof of Corollary 2.6

To prove the first part of Corollary 2.6, we use Theorem 2.3 because mj < --- < mj implies the
linear independence of g*(- — m})A, ..., g*(- — mj)A. Then it is sufficient to prove that for all

€ > 0, there exists 7 > 0 such that

{0730 € S mx dulot = moy)og” (= m)) <, 0@ - @71 <}
== (2.47)

C {9 D dy(g,9%) <e, 121?§Xk|mj -mj| <e, |Q -Q|| < 5} ,

where d,, metricizes the weak topology on F. Let " be a sequence of ©(g) such that for all n
there exists 0, € S such thatforall1 <7 <k,

du (9" (- =l ). 9" (- —m3)) = Oand 0,Q" — Q7| — 0.

As there exists a finite number of permutation in Sy, there exists a subsequence, that we denote
again £™, of £" such that there exists a permutation o not depending on n such that for all n and
foralll < <k,

duw (9" (- — myi), 9" (- — m;)) — 0and |[cQ" — Q*[| — 0.

Particularly g"(-)\ weakly tends to g*(- — m’ _, (1)))\. As weak convergence implies pointwise

convergence of the characteristic functions and for all ¢ € R,
/ €™ (y —mp ) A(dy) = €00 / g (y)A(dy)

then

itm™

it(m*—m*
o) = e ( J o

lim e 1<1>)
n—oo

for all ¢ such that [ e®g*(y)A(dy) # 0. As any characteristic function is uniformly continuous
and equal to 1 at 0, there exists a > 0 such that [ e g*(y — m2_1(1))d)\(y) # 0 for all |t| < o
Thus forall 1 < j <k,

im m™ . =mf—m*_{, ...
S MG () = My = Mg—1(1)

Since

O=mj<mi<---<mjand0=m] <my <---<my

then the permutation ¢ is equal to the identity permutation. Then Equation (2.47) holds and this
implies the first part of Corollary 2.6. In fact we have proved the continuity of

{ ({8f. € € Zla)orank(Q) = ). L) — (MO x R I x (Fodw)

%
3
Py =&



2.5 OTHER PROOFS 73

If moreover max;<j<y p; > % and g* is uniformly continuous, if
lim D3(£",&") =0
n—oo

then
lim D(¢",£") =0
n—oo

and by continuity of the functional defined in (2.48),

lim max |uj — pi[ =0

n—00 1<j<k

and
lim max [m} —m;| =0
n—00 1<j<k

so that

Jim max [lg"(- = mf) = g (- =m0y =0

since ¢g* is uniformly continuous. Using the following inequality proved in the proof of Corollary

1 in Gassiat and Rousseau [GR16]

D" ey > (2 w15 = 1) 0" = 5"

— el — il = poax llg”( = mi) = g"C =)l

we obtain that lim,, ||g" — ¢*(|,(») = 0 which implies the last part of Corollary 2.6.

Proof of Proposition 2.7

As in the proof of Proposition 2.5, many ideas come from Tokdar [Tok06]. We first prove (A1.1)
assuming that (B1.1), (B1.2), (B1.3) and (B1.4) are verified with f;(-) = g(- —m;), 1 < j < k.
With the same ideas of the proof of Theorem 3.2 in Tokdar [Tok06], for all € > 0 there exists a
probability measure P on R x (0, +00) such that there exists 0 < ¢ < & and a > 0 satisfying

P((-a,a] x (g,0]) =1

and

g'(y —mj) e
*(y —m?) max log ————\(dy) < =,
[ 510 mi) o S ) < 5

using Assumptions (B1.2), (B1.3) and (B1.4).

Let G = [—a, a]x[g, 7]. Using the proof of Lemma 3.1 in Tokdar [Tok06] for all C' > max <j<x|mj |+
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a+ o, forall m; € [m}

ly|>C V808 P(y — m])
+|m; + 2a
< / 9" (y — m;) max — <|y\]|> AMdy) < 0.
ly|>C 1<j<k 2 a

Using assumption (B1.4) and Equation (2.49), we fix C such that

—a,m} + al, and for all P such that P(G) > 2,

(2.49)

/ g"(y —m;) max log w)\(dy) <<

e VIS o Ply—m) Y =

Let G5 = [—a—0,a+0] x [0 — 6,5 + ], with § chosen in (0, min(3, §)]. Let h : R x (0, +00) —
[0, 1] be a piecewise affine continuous function such that A(z,0) = 1 on G and h(z,0) = 0 on
G§. Let

c= inf o (y—0).
g—6<o<a+6,

lyl < C,
0] < a+ max;|m}|+ 6
By Arzela-Ascoli theorem there exists y1,...,yr such that forally € [-C,C]and 1 < j < k,
there exists 1 < ¢ < [ such that

sup ‘qbo( —m; —z) gbo( m’;—z)‘<0(5.
(2,0)€G5s

Let
Vo={ P | [ 10160t = m - 2Pz 0)-
/h(z,o)cbg(yi —mj — 2)dP(z, 0)‘ < 05}.

For all P € Vj, for all m; € [m} — Cg\éff,m; + f\f] and for all 1 < j < k, we get

fh o(y — mJ — z)dlf(z,a)

[ h(z,0)ps(y — m; — 2)dP(z,0)

-1 <49




2.5 OTHER PROOFS 75

thus

¢ Py —m})
*(y —m}) max log ————\(d
/|y|<cg (y )1§j§k 8 5w Ply —m) (dy)

* * fh(zva)%(y—mj —Z)dP(z,a)
: /y|scg ) e O T, 0)60 (g — 5 — )P (,0) )
< 46
—1-45

Then for 0 small enough, for all g = ¢ * P such that P € Vs N {P : P(G) > £} = Vs, for all

m;j € [m] — ng;r\/i,m;f + Cg\é/%/i] = Mf and forall 1 <i <k,
max/ *(y —m]) max lo M dy < € (2.50)
i ) ST GRS gy —my) )Y T '
moreover,
gly —m;) > /G%(y —m; — 2)P(dz,do)
> %qﬁo(maxﬂy—mi —al,|ly —m; +al))P(G) (2.51)
pd
> 2, (max(|y — m; — al,Jy = m; +al))Z > 0.

Assumption (B1.1) ensures that (A1.1d) holds. Finally for all € > 0, there exists § > 0 such that
(A1.1) holds with ©. = {Q : |Q — Q*|| < min(e, g¢/2)} x M} x -+ x M} x V; using Equations
(2.50) and (2.51).

We now prove (C1.2) thanks to Assumption (D1.6). Let
]:a,l,u,m = [—m7 m]k X Jra,l,ua

where F, ., = F2,, is defined in the proof of Proposition 2.5. Note that for all (m, ¢ P), (1, ¢*

P)e Falum, foralll <i <k,

I % P(- —mi) — ¢ % P(- —1m4)ll 1, )
< g P(- = mi) — ¢ x P(- — i) ||, o) + 6% P() = 6% P()l L, (v

The second term is dealt with in the proof of Proposition 2.5. As to the first part,

- 1 /2 -
¢+ P(- —m;) — ¢ * P(- _mi)HLl()\) < l\/;\mz — m;|
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then for all k > 0, a,l,u, m > 0 such that [ < u,

k
2m
N(gl‘/iy./—"a,l,mm, d) < (l:‘ﬂ? + 1) N(Ql{),fa,l,ua ||||L1()\))
For all k > 0, let
:,l,u,m = [_m7 m]k X f(f,l,u'

Following the ideas of Lemmas 4.1 and 4.2 in Tokdar [Tok06], there exist cg, c1, c2, c3 only de-

pending on & such that

log (N (5, Py ) ) < co (erklog 7+ o+ eslog 7 1),

so that (D1.6) implies (C1.2) with suitable choices of x and (.



CHAPTER 3

LN ONPARAMETRIC HIDDEN MARKOV MODELS WITH FINITE
STATE SPACE: POSTERIOR CONCENTRATION RATES

The use of nonparametric hidden Markov models with finite state space is flourishing
in practice while few theoretical guarantees are known in this framework. Here, we
study asymptotic guarantees for these models in the Bayesian framework. We obtain
posterior concentration rates with respect to the Li-norm on joint marginal densities
of consecutive observations in a general theorem. We apply this theorem to two cases
and obtain minimax concentration rates up to logarithmic factor. We consider dis-
crete observations with emission distributions distributed from a Dirichlet process and
continuous observations with emission distributions distributed from Dirichlet process

mixtures of Gaussian distributions.
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3.1 Introduction

Hidden Markov models (HMMs) are stochastic processes much used in practice in fields as di-
verse as genomics, speech recognition, econometrics or climate. A hidden Markov chain is a
sequence (X, Y;)ien where the sequence (X;);en is a nonobserved Markov chain and the se-
quence of observations (Y}):cn is a noisy version of the chain (X)scn. In this chapter we con-
sider the case where the state space of the underlying Markov chain is finite. In this situation,
HMMs are often employed to classify dependent data with respect to the hidden states X;, t € N.
Their popularity is due to their tractability. Since their introduction in Baum and Petrie [BP66],
many algorithms have been developed to infer these models. The books Cappé et al. [CMRO05],
MacDonald and Zucchini [MZ97] and MacDonald and Zucchini [MZ09] give an overview of this

family of models.

Parametric HMMs suffer from a lack of robustness so that nonparametric HMMs are used more
and more in applications. Indeed two constraints weaken parametric HMMs: the necessary as-
sumption of a bound on the number of states of the Markov chain and the limitations of the
parametric modeling of emission distributions (the distributions of an observation Y; given the
hidden states X;). To deal with these issues, HMMs with an infinite countable number of states
for the Markov chain are applied in Beal and Krishnamurthy [BK12a] to gene expression time
course clustering, Jochmann [Joc15] to U.S. inflation dynamics and in Fox et al. [FJ]SW09] to
segmentation of visual motion capture data. To handle speaker diarization, Fox et al. [FSJW11]
proposes a model where the number of states of the Markov chain is not bounded and the emis-
sion distributions are not restricted to live in a parametric family. HMMs, where the number of
states is known but the emission distributions set is not assumed to be parametric, are used in
Langrock et al. [LKSD15] for whales dive modeling, Yau et al. [YPRH11] for genetic copy num-
ber variants, Whiting et al. [WLMO03] for climate state identification, Lefévre [Lef03] for speech
recognition, Gassiat et al. [GCR15] for gene expression identification, see also the references
herein. This last framework, namely HMMs where the number of states of the Markov chain is
known and emission distributions may live in infinite-dimensional sets is the one we consider in

this chapter.

The use of nonparametric HMMs is flourishing in practice while few theoretical properties are
known. Many theoretical results exist for parametric HMMs particularly for the maximum like-
lihood estimator, see Cappé et al. [CMRO05] and references herein for instance, see also de Gunst
and Shcherbakova [GS08] for a Bernstein von Mises property of the posterior. In the nonparamet-
ric framework, there exist few theoretical guarantees of the asymptotic behavior of estimators
or posterior since identifiability for general HMMs with finite state space was still an issue until
recently. General identifiability is proved in Gassiat et al. [GCR15] when the number of states of
the Markov chain is known and in Alexandrovich et al. [AHL16] when this number is unknown.
Gassiat et al. [GCR15] prove that under mild assumptions, the knowledge of the marginal joint

density of at least three consecutive observations (Y3, Y;y1, Yiy2) gives the parameters of the
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HMM up to label switching (i.e. the transition matrix of the Markov chain and the emission dis-
tributions). Here, we are interested in obtaining asymptotics in the Bayesian framework for the

marginal joint density of consecutive observations.

In the Bayesian nonparametric setting, asymptotic analysis typically takes the following two
forms: posterior consistency and posterior concentration rates. The posterior is said to be con-
sistent at a parameter 6* if it concentrates its mass around 6*, when the observations come from
0* and the number of observations increases. Posterior consistency is related to the merging of
posterior distributions associated to two prior distributions, see Diaconis and Freedman [DF86].
In a nonparametric setup, where it is not feasible to construct a fully subjective prior (on an in-
finite dimensional space), it is a minimal requirement, see Ghosh and RV. Ramamoorthi [GR03].
To go further on, one can study the rate at which this concentration occurs, see Ghosal and van
der Vaart [GV07a]. Obtaining a minimax posterior concentration rates is a criterion of optimal-
ity. In particular, minimax concentration rates lead to minimax Bayesian estimators Ghosal et al.
[GGV00] and to minimax size of credible regions Hoffmann et al. [HRS+15]. The concentration
rate analysis also allows a better understanding of the impact of the prior, see Rousseau [Rou15]

for a discussion.

In Bayesian HMMs where the number of states of the Markov chain is known, Vernet [Ver15b]
provides assumptions leading to posterior consistency for the L;-norm of the marginal density
of consecutive observations. Here, we pursue the study of the asymptotic behavior of the pos-
terior distribution in this framework and with the same topology. Namely, we study posterior
concentration rates for nonparametric HMMs with respect to the L;-norm of the marginal joint
density of consecutive observations. We first give a general theorem relating the posterior con-
centration rate to the prior and the true model (Theorem 3.1). Then we apply the theorem to
different setups, where we obtain minimax rates (Section 3.4). To the best of our knowledge,

these are the first results on posterior concentration rates in nonparametric HMMs.

Let us mention the few other asymptotic results we know in the framework of nonparametric
HMMs. In the nonparametric frequentist framework with a finite and known number of states,
De Castro et al. [DGLar] offers an oracle inequality for a penalized least-squares estimator of
the emission distributions. In the framework of HMMs with an unknown number of states and
emission distributions living in a finite-dimensional set, posterior concentration rates are studied
in Gassiat and Rousseau [GR14]. Gassiat and Rousseau [GR16] proposes asymptotics for the
particular case of translated HMMs with finite state space. Finally, convergence with respect to
smoothing distributions is studied in De Castro et al. [DGC15].

Chapter 3 is organized as follows. In Section 3.2, we precise the studied model and the notations.
In Section 3.3, we state general assumptions under which the posterior concentration rate is
derived (Theorem 3.1). We have chosen to define a set of assumptions as close as possible to those
typically obtained in density estimation for i.i.d. models, see Ghosal et al. [GGV00]. The proof
of this theorem is given in Section 3.3.2. All the other proofs are postponed to the appendices.
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Theorem 3.1 is applied in Section 3.4 in two cases. In Section 3.4.1, the observations are assumed
to be discrete and the prior on emission distributions is based on a Dirichlet process. We obtain
a minimax rate which is 1/y/n up to a power of logn in Corollary 3.5. In Section 3.4.2, the
observations are assumed to be continuous and the emission distributions follow independently
Dirichlet process mixtures of Gaussian distribution. Minimax rates of concentration are obtained

for Holder-type functional classes, see Corollary 3.7.

3.2 Bayesian Hidden Markov Models and Notations

We consider observations coming from homogeneous hidden Markov models with finite state
space. Hidden Markov chains are discrete time stochastic processes (X, Y;):en satisfying the
following properties. The sequence (X;):cn is a Markov chain. Conditionally on the hidden
chain (X}):en, the observations Y; are independent with Y; only depending on X;. The states
(Xt)ten are latent, they are called the hidden states. The statistician observes the sequence
(Y:)t<n where n is an integer. Throughout Chapter 3, for any integer n, an n-uple (yi,...,Yn)

is denoted y1.,.

We first introduce the notations concerning the Markov chain (X} )¢cn. For allt € N, X, belongs
to{1,...,k}, where k is assumed to be known in this chapter. A transition matrix () and an initial

probability distribution p describe the distribution of the underlying Markov chain

X~ Z pidi,  Xe|(Xem1 =1) ~ Z Qi0j,

1<i<k 1<j<k

where 0; denotes the Dirac measure at 7. The set of all initial probability distributions is the k —1-
simplex A, = {z € [0,1]% : 3, ,, @i = 1}. We denote A¥ the set of all transition matrices
such that each row of the matrix is an element of Ay. In the following we need Ay (q) = {p €
Ay p; > g Vit and Af(q) = {Q € A} : Qij > q Vi, j}, for ¢ € (0,1). When Q is in Af(q),
with ¢ € (0, 1), then the uniform mixing coefficients, defined in Rio [Rio00], associated to the
corresponding Markov chain are bounded by ¢(m) < (1 — ¢)™, moreover the corresponding

Markov chain is irreducible and positive recurrent.

The observations Y; are assumed to live in R? which is endowed with its Borel sigma field. The
distribution of Y; is assumed to be absolutely continuous with respect to some measure \ on R%.

Conditionally on (X})sen, Y is distributed from a distribution fx, A depending on the state X;:
Yi|(Xs)sen ~ Yi| Xi ~ fx, A

The distributions f;A, 1 < ¢ < k are called the emission distributions. The set of probability
density functions with respect to X is denoted F. The vector f = (fi1,..., fx) € F¥ is formed

with the £ emission density functions.
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Then the model is completely described by the parameters ;. and 6 = (Q, f) where u € A* and
0 =(Q, f) € AF x F* =: ©. The model can be visualized in Figure 3.1.

B~_Q _Q Q@ _Q Q
() =)= - —(B)— - — (%
X, Xt

AA A A

QMO ) )

Figure 3.1 — The model

Let P9 be the probability distribution of the process (X;, Y;)ien under (i, 6). Then for any
[ € N, 6 € O, initial probability y, and measurable set A of {1,..., k;}l X (Rd)l, note that:

k
P'u’e((Xlzl»YI:l) S A) = / Z ]l(:cl,...,xl,yl,...,yl)EA :U’SC1Q$17$2 s Qxlfl,xl

T1,...,x;=1

for (1) - fa (y)A(dyn) - - - Mdya).

Note that when @) is in A],j (), with ¢ positive, there exists a unique stationary initial distribution
1@ associated with Q. When p is not specified, the stationary distribution associated with the
transition matrix () is considered in the place of y. In other words, we define P@Q.f) .= pr(@Q.)),
The joint distribution of [ consecutive observations ((Y7, . . . ¥}) for instance) under the stationary
process associated with 6 is denoted Ple. Let pl@ denote the density of Ple with respect to A\®'.
Then,

k
ple(ylu"'ayl) = Z MngCL‘L:L‘Q "'Qxl_l,xlfx‘1(yl)"'fl’l(yl)a )‘®l a.s..

T1,...,x;=1

The log-likelihood for a sequence of observations Y7.; under a parameter 6 is denoted
L} :=log (p{(W1,...,V)).

The dependency of L? with Y7, is implicit and can be deduced from the context.

Working in the Bayesian framework, we put a prior 1I on the set of parameters ©. We choose
a product probability measure II = IIg ® chk) where Il is a probability distribution on A}
and H;k) is a probability distribution on F*. To a realization 6 from II, we implicitly associate a
stationary initial distribution % In other words, we generalize IT to a distribution MonAyxO

such that under IT and conditionally on 6 = (Q, f), u = u®. Then using the Bayes’ theorem,
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the posterior is expressed by

_ JaPh (Vi) 1I(d0)
Jo P8(Yiin)T1(d)”

T1(0 € A|Yi.)

We are interested in the asymptotic behaviour of the posterior that is to say when the number n of
observations Y., tends to infinity. For this purpose, we take a frequentist point of view, assuming
that the observations come from the true parameters p* and 0* = (Q*, f*). We suppose that the

true initial distribution x* is stationary. We also assume that there exists ¢* > 0 such that
Q" € A(q). (3.1)

Vernet [Ver15b] shows posterior consistency at §* under general assumptions. In this chapter,
we consider posterior concentration rates at 8*. Recall that the posterior is said to concentrate
at rate ¢, a sequence decreasing to 0, for the loss D(, -) if there exists a constant M > 0 such
that

II(0 : D(6,0%) > Mep|Yim) = ope- (1),

where Z = 0p¢+ (1) means that Z converges in probability to 0. We choose to study the concen-
tration of the posterior from the density estimation point of view. We compare two parameters
and 0 by computing the L-distance between the joint densities pl@ and pf. For two distributions
P and P, let p; and p2 be their respective densities with respect to a dominated measure v. The

Ly -metric is defined by
Ip1 — p2llr, () = /Ipl —palv

KL(pi,p2) = /p1 log (pl> v
D2

be the Kullback-Leibler divergence between p; and ps. For an integer [ > 1, we use the pseudo-
distance D; on © defined by

and let

Dy(0,0) = ||p} _ple||L1(>\®l)'

We study the posterior rate of concentration with respect to this pseudo-distance D;. On F*, we
use the distance d(-, -) such that for all (f, f) € (F*)?

d - L f
(f f) lfgfgc”fz filly vy
onR% d > 2, we use the supremum norm ||-||. For a positive real ¢, a pseudo distance D defined
on a set A, let N (e, A, D) be the covering number that is to say the minimum number of balls
of radius € (in the pseudo-distance D) needed to cover A. Throughout Chapter 3 the notation <

means less or equal up to a multiplicative constant which is not important in the context.
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3.3 General Theorem

3.3.1 Assumptions and Main Theorem

In this section, we state the general Theorem 3.1 which gives posterior concentration rates with
respect to the D; pseudo-metric. As in Ghosal et al. [GGV00] for instance, we propose a set of
conditions which relates the rate ¢,/ g, to the prior and the true model. We apply this theorem
to the case of discrete observations in Section 3.4.1 and to the case of continuous observations in
Section 3.4.2 where minimax rates are achieved. Now, we enumerate the assumptions of Theorem
3.1. Assumptions (A2) and (B2) concern the prior on the emission distributions chk) and the
vector of the true emission distributions f*. Assumptions (C2) and (D2) involve the prior on

transition matrices Il and the true transition matrix Q*.

For two given sequences €, > 0 and €, tending to 0, such that €, < ¢, for all n, we introduce

the sequence u,, of positive numbers such that

(i) u, =1,foralln € N;if €, 2 n™°, for some s < 1/2,

~

(3.2)
(i) un = (log(n))®?, for all n € N; otherwise.
We consider the following assumptions
(A2) there exist a positive constant C'y and a sequence B,, of subsets of F * such that
Y (B,) 2 exp(~Cyné2)
and such that for all f € B,,,
fi () &
£ (y)log? <J> AMdy) < = foralll <i,j <k, (A2.1)
[ soest (G ) e = 3
there exist a set S C ) and functions fi, ... fi, which may depend on f, satisfying
* _ f. 2 =2
/ ; (y)* Ji)l Ady) < forall 1 < j < k, (A2.2)
/ f] &2 foralll < j <k, (A2.3)
&
/ Ii (y)A(dy) < — foralll <j <k, (A2.4)

/Sfl*(y) 1111?<Xk log (;j 8;) AMdy) <&, foralll <i <k, (A2.5)
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* _f 2
s fi(y)

(B2) there exist positive constants C' and C’ and a sequence (F;,),>1 of subsets of ¥ such that
M (F2) = olexp(~Cné2))

and

N (%,Fn,d> < exp (C'ne%) ,

(C2) there exists a positive constant Cg such that Cgp + C'r + 2Cxg < C with Cx = 4 +
p Q Q f K
log (2/q*) + 104k2/q*5,

My ({@: Q-0 < ﬁ}) > exp(—Coné?),

(D2) there exists a sequence g of (0,1/k] such that
Mo ((Ak(g,))7) = olexp(~Cné2).

Under the above assumptions, we prove that the posterior distribution concentrates at the rate

€n/q,

Theorem 3.1. Lete, > &, > 0 be two sequences tending to 0 such thatné? — +oo. Assume (A2),
(B2), (C2) and (D2).

Then, for alll € N, there exists a positive constant M such that

q

=n

I (0:Dl(9,9*) > Mo

Yi:n) = Opo* (1)

We now discuss Assumptions (A2) to (D2). We have purposely considered assumptions which are
as similar as possible to those considered in the set up of density estimation with i.i.d. observa-
tions see Ghosal et al. [GGV00]. In particular Assumption (B2) is the typical entropy assumption
on a sieve which captures most of the prior mass (see Assumptions (2.2) and (2.3) of Ghosal et al.
[GGV00]). Assumption (A2) is slightly more involved than the Kullback-Leibler condition (2.4)
of Ghosal et al. [GGV00] in the case of i.i.d. observations.

This paragraph explains the differences between Assumption (A2) and condition (2.4) of Ghosal
et al. [GGV00] and can be omitted at first reading. Following Ghosal and van der Vaart [GV07a],
posterior rates of convergence are obtained by controlling “Kullback-Leibler" neighbourhoods
and constructing some tests. Under (A2) and condition (2.4) of Ghosal et al. [GGV00], the Kullback-
Leibler neighbourhoods are controlled. Recall that in Ghosal et al. [GGV00], the control of
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B (LY — L8) and Var? (LY — L?) is obtained by controlling
fiy
W) A(dy).

/ fi*(y)log(‘g((j))>k(dy) wd [ f:<y)1og2( i

Here EY" (L9 — 19) <né? and Var? (LY — L9) < né2 logn if f and f* satisfy Assumptions
(A2.1)-(A2.6) and || Q—Q*|| < €,/+/tn. The unintuitive part of (A2) comes from the introduction
of fj as an approximation of f7, which may be different from f; in (A2.3), (A2.5) and (A2.6).
Indeed, whithout the introduction of ( ij1§ <k S), the HMM structure of the likelihood would
lead to a crude upper bound of EY" (19" — L) of the form

n [ 470 maxlog (fij ((‘;’)) ) A(dy),

see Equations (3.19) and (3.20) in the proof of Lemma 3.2. Since ¢ may be different from j we

would loose the local quadratic approximation of the Kullback-Leibler divergence and we would
only obtain né, instead of né2 as an upper bound of E?" (LY — L?). The details of the control
of the Kullback-Leibler divergence are given in Appendix 3.5.1.

Not withstanding the technical aspects discussed above, Assumptions (A2.1)-(A2.6) are verified
using techniques similar to those used in the case of density estimation with i.i.d. observations

to control

/ fi*(y)log<£((§)>>A(dy) md [ fi*<y>1og2(

For chk) =(II f)®k, and many families of individual prior models II; on the f;’s, the rate ob-

fi(y)
fi(y)

) A(dy).

tained by bounding max; K L( T fj) in the iid. set up will be the same as in our setup. For
instance, if Y = [0,1] and f* is bounded from below and above, a control of || f; — fj*HgO <&
or || fj — fj*H% < & and fj > cimply (A2.1)-(A2.6). This kind of controls have been derived un-
der (hierarchical) Gaussian process priors or log linear priors as in van der Vaart and van Zanten
[VZ09], Arbel et al. [AGR13] and Rivoirard and Rousseau [RR12b]. Condition (A2) becomes more
involved when ) is not compact. This case is treated under nonparametric Gaussian mixtures in

Section 3.4.2 and in the case where )V = N in Section 3.4.1.

Assumption (C2) is checked as soon as II admits a positive density with respect to the Lebesgue
measure which is continuous at Q* and €, > \/log(n)/n. The rate ¢, is often equal to &, up to
log n, the use of these two different rates is usual and allows more flexibility. Then the rate ¢, is

only determined by the nonparametric part of the model, i.e. H;k) and f*, as described above.

Following the previous explanation, when Il), Hgfk), f* and Q* are fixed, ¢, is specified by
Assumption (A2) and (B2). This rate €y, is deteriorated via ¢ which is set through Assumption
(D2). The larger €, is, that is to say the more difficult the estimation of the nonparametric part

(f* with chk)) is, the more stringent Assumption (D2) is. To avoid too small q, which leads to
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deteriorated posterior convergence rate €,/ q,,, one may choose a prior Il which is supported

on A],j(g) for some 0 < ¢ < ¢*. More examples of distribution Il are given in Section 3.4.

In the following section, we give the proof of Theorem 3.1.

3.3.2 Proof of Theorem 3.1

To obtain posterior concentration rates in the framework of HMMs with finite state space, we use
the technique of proof of Ghosal and van der Vaart [GV07a]. The key tools of this technique are
a control of the prior mass on log-likelihood neighbourhoods of 6* and the existence of certain
tests. We use the tests built in Gassiat and Rousseau [GR14]. The main difficulty of the proof
arises from the control of log-likelihood neighbourhoods. These neighbourhoods are controlled
thanks to Lemmas 3.2 and 3.3. The proof of these lemmas are based on refinements of results of
Douc and Matias [DM01] and Douc et al. [DMR04].

In Lemma 3.2, we control KL(pf: , pfl) Its proof is given in Section 3.5.1.

Lemma 3.2. Let 0 < €, be small enough. Assume that 0 = (Q, f) € O, is such that Assumptions
(A2.1)~(A2.6) hold with u,, = 1 foralln € N and

1Q — Q|| < én. (3.3)
Then there exists N > 0 such that for alln > N,
E” (L, - Ly) = KL(p), .p)) < Cgnéy,
where Ck is defined in Assumption (C2).

As can be seen in the proof, Assumption (A2.1) can be replaced in Lemma 3.2 by the following

weaker assumption:

(f*(y)
i (y)

which is implied by Assumptions (A2.1) and (A2.4). Note, however, that Assumption (A2.1) is

) Mdy) <28, forall1 <i <k, (3.4)

used in the control of the variance Var? (L9" — LY) in Lemma 3.3.

Lemma 3.3 gives a control of Var? (L — L?). It is proved in Appendix 3.5.2.

Lemma 3.3. Let 0 < €, be small enough and w,, be defined by Equation (3.2) Assume that § =
(Q, f) € O, is such that Assumptions (A2.1), (A2.2) and (A2.4) hold and

Q- Q| < (3.5)

\/7
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Then there exists a positive constant C'g 12 such that for alla € (0,1) andn € N
0* 9* 2
p (}/171) 0* < p <Y1n>>>
log———— —E" |log ——+—"
< 8 pe()/l:n) 8 p9<Y1:n>
n( & ¢
< - = :
< it (=)

We now give the proof of Theorem 3.1.

Var’ (LY — L) =EY

Proof of Theorem 3.1. This proof follows the lines of the proof of Theorem 1 of Ghosal and van
der Vaart [GV07a] with two variants. These differences come from the tests (see Equations (3.6)
and (3.7)) and the control of the Kullback-Leibler neighbourhoods (Equation (3.10)).

Using the tests built in the proof of Theorem 4 in Gassiat and Rousseau [GR14], for all M > 0,
there exists ¢, € [0, 1] such that

2 %2747 72
o €n Ak —ne€nq k*M
< — - .
E” (6,) < N (2, Af(g,) x Fu. D) exp( i 3.9)
and .
k=M
sup E’(1 - ¢,) < exp (—m"> (3.7)
Ak (g, )xFn 1281
Dl(eve*)ZMﬂl/gn
Since
j Q_ @ _ 0O, 7
Di(9,0) < Z i = |+ k(= 1) max Qs — Qugl +1d(f, f),
1<i<k
we obtain
. 241k(k — 1)\ Y e,
o < (22 7/ L .
N(127Ak(gn)><]:naDl>_ ( €n N(24l7fn7d> (38)
which leads to
E” (1n) S exp(-ne2(M2C - ")) (39)

for some constant C, using Assumption (B2). We replace Equation (8.4) of Ghosal and van der
Vaart [GV07a] by Equation (3.9). Equation (8.5) of Ghosal and van der Vaart [GV07a] is replaced
by Equation (3.7).

Let o, be a sequence tending to 0, to be specified later. We define
B, (0%)

* ! * * C mn gTL 270&”
= {9 KLY, p%) < Cxné?, Var? (LY — 1Y) < 1;75 <un) } (3.10)
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in the place of B, (0*, €,,2) in the notation of Ghosal and van der Vaart [GV07a], setting €, =
vV Ck€y. Using Assumptions (A2) and (C2), and Lemmas 3.2 and 3.3

I1(B,, (6%)) Z exp(—(Cq + Cy)nés) 2 exp(—Cnéy,).

By choosing

(i) an, =1/log(n), foralln € N;if €, 2 n~° for some s < 1/2,

~

(i) oy, = log(log(n))/log(n), for all n € N; otherwise,

and following the lines of the proof of Lemma 10 of Ghosal and van der Vaart [GV07a],

n(€ Up )2~
P” (D, < TI(B,,(6")) exp(—2Ckné2)) = O ( (En//in) ) =o(1), (3.11)

an(néz)?

with D,, = an(e*) P8 (Y1) /D% (Y1.0)T1(d6). Following the lines of the proof of Theorem 1 of

n

Ghosal and van der Vaart [GV07a] with the above modifications, we obtain,

=N

EY (H (9 € Af(q,) X Fn: Di(6,6%) > M;”\Ym» =o(1) (3.12)

for M large enough.

This concludes the proof since
E” (M((Af(g,) % Fo) Vi) = 0(1)
using Equation (3.11) and Lemma 1 of Ghosal and van der Vaart [GV07a] with
II((A%(g,) * Fn)®) = o(exp(—2ne, 1L (By (67))

as soon as C > 2Ck + Cg + Cy (using Assumptions (B2) and (D2)). O

3.4 Applications of the main theorem to different models and

prior distributions

In this section, we apply Theorem 3.1 to different priors and different classes of emission density
functions. In all examples treated in Section 3.4, the prior on emission distributions is chosen to
be a product of a distribution II; on F:

i = (1my)®*, (3.13)
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However, Theorem 3.1 can also be applied to other priors such as priors restricted to translated

emission density functions, the translation HMM is described in Equation (3.15).

In Section 3.4.1, we consider discrete observations, i.e. )V = N. We assume that the prior II;
on each emission distributions is a Dirichlet process. We compute the rate ¢, obtained with
this prior when the true emission distributions have an exponential decay. In Section 3.4.2, the
observations are assumed to live in R and the emission distributions are supposed to be absolutely
continuous with respect to the Lebesgue measure. We consider a Dirichlet process mixture of
Gaussian distributions as a prior Iy on each emission density functions. We compute the rate
€, obtained with this prior when the emission density functions belong to functional classes of
[B-Holder types.

We always assume that

(Q2.0) Il is absolutely continuous with respect to the Lebesgue measure on Ai with density ¢,
To(Q*) > 0and 7o (Q) = my(Q1.) ... T4(Qy.), for all Q € A¥ and where Q;. denotes
the i-th row of Q).

In Sections 3.4.1 and 3.4.2, we consider three different priors Il on transition matrices which

corresponds to three different decays of 7 near the boundary of Aﬁ:

(Q2.1) exponential tail:

mg(ut, ..., ur) Sexp(—aq/ui)...exp(—ag/ug),
for all u € Ay, for some positive constants o, 1 < i < K,

(Q2.2) exponential of exponential tail:

mg(ut,. .., ur) S exp(—pF1exp(u; ™)) ... exp(—Lk exp(ulza’“)),
for all u € Ay, for some positive constants «; and 5;, 1 < i < k,

(Q2.3) truncated distribution:
Mo(Ak(g) = 1,

for some positive q.

Note that Assumption (Q2.3) implies Assumption (Q2.2) which implies (Q2.1). In Gassiat and
Rousseau [GR14], together with priors of type (Q2.1), more general priors are also considered,
since they assume

ar1—1 ap—1
Ta(ur, .. ug) Suf' ™ u

for all u € Ay, for some positive constants «;, 1 < i < k. Gassiat and Rousseau [GR14] show

that q, in Assumption (D2) and Theorem 3.1, is equal to a power of 1/n when the emission
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distributions belong to a parametric family. We do not consider this type of priors since they
lead to deteriorated rates €,/ q,. Under (0Q2.1), Gassiat and Rousseau [GR14] obtain q, equal to
a power of 1/(logn) when the emission distributions belong to a parametric family. We obtain
the same rate ¢ in the case of discrete observations and emission distributions with exponential

1/210g(n)t for some positive t).

decay (more generally, it would be the case as soon as ¢, = n~
However, in the case of emission distributions absolutely continuous with respect to Lebesgue
measure (Section 3.4.2), Assumption (D2) leads to a rate ¢ at least polynomial in 1 /n with pri-
ors satisfying (Q2.1). While priors verifying (Q2.2) or (Q2.3) lead to a rate ¢ equal to a power
of 1/logn as soon as €, is a power of n; and thus do not deteriorate the posterior concentra-
tion rate (up to log(n)). Note that Assumptions (Q2.0) and (Q2.3) are compatible if and only if

q < ¢*. Thus, the use of a prior verifying (Q2.3) requires a knowledge of a lower bound ¢* of
ming<; j< Q;"j.

In Vernet [Ver15b], posterior consistency is derived under Assumption (Q2.3) while weaker con-
ditions on f* and H;k) (see Assumptions (A0), (A1) and (A2) in Vernet [Ver15b]) compared to
(A2), (B2) and (C2). Here, we manage to obtain posterior concentration rates under Assumptions
(Q2.1) and (Q2.2) which are weaker than Assumption (Q2.3) because stronger conditions on H;k)

and f* are assumed.

3.4.1 Discrete Observations

In this section, we apply Theorem 3.1 to the case of discrete observations so that X is the count
measure on N. HMMs with discrete observations are used in different applications, as in Borchers
et al. [BZH+13] for animal abundance estimation, in Gassiat et al. [GCR15] for gene expression
identification, or in Linderman et al. [LJWC14] for neural representation of spatial navigation, to

cite a few.

In the framework of discrete distribution estimation with i.i.d. observations, Han et al. [HJW14]
have proved that no rates can be obtained with the L; loss without constraint on the considered
distributions. Moreover, they obtain a minimax rate proportional to 1/logn over the set {f €
F Y ien —f(@)log(f(i)) < C}. Rates of convergence are more widely studied in the case of
the L9 norm, for instance with monotony constraint in Jankowski and Wellner [JW09], with log-
concave constraint in Balabdaoui et al. [BJRP13], with convex constraint in Durot et al. [DHKR13]

and with envelope constraint in Boucheron and Gassiat [BG09].

In the nonparametric Bayesian framework, the Dirichlet process is a very popular prior. Here, we
consider a Dirichlet process DP(G) on the emission distributions, with G' some finite positive
measure on N:

II; = DP(G).

Canale and Dunson [CD11] propose other priors for discrete observations based on discretization

of continuous mixtures of kernels and gives an overview of the priors used in the case of discrete
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observations.

We first verify Assumptions (A2), (B2) and (C2). As it can be seen from the proof (see Lemma
3.14 in Appendix 3.5.3), we need a heavy tail condition on G:

(P2) there exists positive constants a < A and « > 2 such that for all 1 < 57 < k and for all
leN
al™* < G(l) < Al™“.

Here, we consider the following class of discrete distributions which is based on an envelope

constraint:

D(m,c, K) = {f € F: f(l) <dexp(—d™), Y —ml(f(z)) < NE,
I<N

for all N large enough}, (3.14)

where ¢, K and m are positive constants. We also consider the following assumption linking the

tails of the true emission distributions:

(L2) there exists § > 0 such that for all N large enough and all 1 <3, j <k,

Zf )log® (f5(1)) < exp(=N"™(c—9)).

I>N

Under these assumptions, we obtain the following rates €, and ¢,:

Theorem 3.4. Assume there exist positive constants ¢, K and m such that forall 1 < j < k,
f; € D(m, ¢, K) and that Assumptions (Q2.0), (1.2) and (P2) hold.

Then Assumptions (A2), (B2) and (C2) hold with

€n = and ¢, = —(logn)’,

S

jﬁaogmto

where t > 4ty and typ > max(1/m + 1, K/m)/2.

Theorem 3.4 leads to the following posterior concentration rates (€, / gn) which are minimax (up

to log n):

Corollary 3.5. Assume there exist positive constants ¢, K and m such that forall1 < j < k,
f;-‘ € D(m,c, K) and that Assumptions (02.0), (1.2) and (P2) hold. Moreover suppose that Il

satisfies

)t+2t0;

e (02.1), then the posterior concentrates with rate (log n

-

e (Q2.2), then the posterior concentrates with rate (log n)t;

-
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* (02.3), then the posterior concentrates with rate ﬁ(log n)t;

witht > 4ty and tg > 1/2max(1/m + 1, K/m).

3.4.2 Dirichlet Process Mixtures of Gaussian Distributions—Adaptivity to Holder
Function Classes

Dirichlet process mixtures of Gaussian distributions are commonly used to model densities on R
or R?. In particular, there exist efficient algorithms to sample from the posterior distribution in

the i.i.d. framework. In the translation HMM:
Y; = mx, + ¢, (3.15)

where €; i g\, m; € Rand X, is a Markov chain with translation matrix (); Yau et al. [YPRH11]
use a Dirichlet process mixtures of Gaussian distributions on g. In the context of i.i.d. observa-
tions posterior concentration rates have been derived with such prior models in Ghosal and van
der Vaart [GV07b], Kruijer et al. [KRV10] and Shen et al. [STG13]. In the framework of HMMs, we

propose to apply Theorem 3.1 when Il is a Dirichlet process mixture of Gaussian distributions.

We assume that the reference measure A is the Lebesgue measure on R. We also assume that the

prior on F* is a product of Dirichlet process mixture of Gaussian distributions:

lXe=in Gy = [ ool = P,
P, DP(G), forall 1<j <k, o~ A,

where ¢, is the Gaussian density function with variance 02 and mean zero, D P(G) is the Dirich-

let process with finite positive base measure GG and 7, is a distribution on R.

We define the same functional classes as in Kruijer et al. [KRV10]:
P(B,g,7) = {f € F : log f is locally 3-Holder with derivatives g™ = (log f)™
and [g)(y) — 912} (2)] < Plgly)ly — al*~ ), as soomas |z —y| <4} (.16

where § > 0, g is a polynomial function, v > 0 and | 3] is the largest integer smaller than f.

We also consider the following tail conditions:

(T2.1) there exist positive constants My, 19, 7o such that forall1 <i < kandally € R

[ (y) < My exp(—1oly[™°),
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(T2.2) forall 1 <14, j < k there exist constants T ;, M; ;, 7; j, Vi,j < Yo such that
fi(y) < f7 ()M, jexp(rijly["7), |yl > Tiy,

(T2.3) forall 1 < i < k, f is positive and there exist ¢; > 0, /" < ylM such that f;" is nonde-

creasing on (—o0, y), nonincreasing on (yM, +o00) and f7(y) > ¢; fory € (y™, yM).

Assumptions (T2.1) and (T2.3) are the same tail assumptions as those used in Kruijer et al.

[KRV10]. The new Assumption (T2.2) links the tail of each emission distributions.
We now describe the assumptions concerning the prior on the emission distributions:
(G2.1) G([~vy,y]°) < exp(—C1y™) for all sufficiently large y > 0, for some positive constant a;,

(S2.1) 11, (0 < z) < exp(—Cax™?2) for all sufficiently small x > 0, for some positive constant

az,

(S2.2) I, (0 > x) < 279 for all sufficiently large = > 0, for some positive constant ag,

(S2.3) there exists ag < 1 such that
Iy (r <o <z(l+s)) 2z *“s® exp(—Cszx™ )
for all s € (0, 1), sufficiently small x > 0, for some positive constants a4, as and ag.

The gamma and Gaussian distributions satisfy Assumption (G2.1). The inverse gamma distribu-
tion verifies (S2.1), (S2.2) and (S2.3).

Theorem 3.6. Assume that there exist 3, g and «y such that for all 1 < j < 'k, f; € P(8,9,7)
and Assumptions (02.0), (T2.1)—(T2.3), (G2.1) and (52.1)—(52.3) hold.
Then Assumptions (A2), (B2) and (C2) hold with

8 B
&n =n 2911 log(n)"® and €, =n 251 log(n), (3.17)
wheret >t > (2+2/v + 1/8)/(1/8 +2).

The proof of Theorem 3.6 is given in Appendix 3.5.4. Using Theorem 3.1 and 3.6, we directly
deduce posterior rate of convergence under the Assumptions of Theorem 3.6 and the different

types of priors Ilg.

Corollary 3.7. Assume that there exist 3, g and 7y such that forall1 < j < k, f} € P(B,g,7)

and that Assumptions (Q2.0), (12.1)=(12.3), (G2.1) and (52.1)—(52.3) hold. Moreover suppose that
I1g satisfies

—B+1
e (02.1), then the posterior concentrates with rate n?5+1 (logn)3t;
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__B
¢ (Q2.2), then the posterior concentrates with raten 25+1 (log n)tﬂ/(ma"lﬁiﬁk i),

__B
* (02.3), then the posterior concentrates with raten” 2+1 (log n)t;

witht > (2+2/7 + 1/8)/(1/8 + 2).

The minimax rate, with respect to D; in the HMM framework for emission density functions
belonging to functional classes of 5-Holder type, is larger than n~?/(26+1) Indeed with a hidden
Markov chain (X, Y;) distributed from a parameter § = (Q, f) suchthat Q; ; = 1/kand f; = f1
forall 1 < 4,5 < k, the observations (Y;) are i.i.d. from fjA. Thus, priors satisfying (Q2.0),
(T2.1)-(T2.3), (G2.1), (S2.1)—(S2.3) and (Q2.2) lead to minimax rates (up to log n). As these priors
do not depend on the regularity of the functional class considered, they ensure adaptive Bayesian

density estimation in the framework of HMMs.
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3.5 Proofs

3.5.1 Proof of Lemma 3.2 : control of the Kullback Leibler divergence between
0* and 0

First denote ¢ = ¢€,. Using Assumptions (3.1) and (3.3), there exists ¢ > 0 such that for all
1<4,j <k Q; > ¢gand Q;; > ¢, more precisely, ¢ can be chosen equal to ¢ */2 as soon as n
is large enough. Let qte Y11 e the conditional density function of Y; given Y7, with respect
to \:

9Y1t1 9Y1t1
E fi(+) :

where Q“’H’Y” V= PY(X; = i|Yi1, X1 ~ p), wheret > 1,1 < i <k, u € Ag. When p is
not specified (Qg Vit '), the stationary initial probability distribution is considered:

0,Y1:—1 _ Ap9,0,Y1.4— 1
t,z t,1

Note that, when 1 € Ag(q), 0 c Af(q) x FF,

9Y1t 2
j QL Qjifi(Yi1
Z%Q,mel _ Z] 1%t It J( ) > q, (3.18)

k ,9,Y =
ZLZI ? 1L1t 2fL(Y;5—1)
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foralll <<k, t>1.
KL(p} ,})
0" Y1:t—1
0*.Y: (y)
(Z/ L1 () log ( TV ) > A(dy))
0% Y1:e—1 (3.19)
* 0* Y
—E9 (Z/ Yltl lOg( GYIt 1()>)\(dy)>
()
0*,Y1:4—1
0%, Y1.— (v)
(Z/C e 10g< TV 1(y)>)\(dy)>.
Using Equation (3.18), forall 1 < r <k,
o ) TSR kmaxigic ()
01— = 9 Y =
Qt e l(y) Zz 1fl(y) et ng(:g) (320)
kf*
< max fj (y)
1<5<k qf(y)
then Assumptions (3.4) and (A2.4) lead to
0%, Y141
* * 1
E? (/ g " (y) log (M) A(dy)> < <10g +2> = (3.21)
‘ q () 4
We now control the expectation of the third line of Equation (3.19)
0" Y1:t—1
0" Y14 1 (y)
> y)log | 75 > A(dy)>
( / ( Y11 (y)
0" Y1:t—1
0" Y14 1 4y (y) >
> log R A(aly)> (3.22)
( / <Z L fily)@
9 Y1 -1
* 0*Y1.4— Zz f’L( )
E° (Z/ g; " (y) log ( e ) A(cly)> :
=175 % (Z/)
We control the expectation of the third line of Equation (3.22), using
0 Y t— 6 Y t— r
S QR DL e )
0,Y1:+—1 B 9Y1t 1 1H<1?<Xk f(y)’
4 (y) Zz 1fz(y) ==
by Lemma 3.8, and Assumption (A2.5), to obtain
0 Y1 t—1
EY (/ g " (y) log <ZZ 19f;5t)1 ) )\(dy)) < €2 (3.23)
s @ " (y)
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We bound the expectation of the second line of Equation (3.22), using the inequality recalled at

the top of page 1234 of Kruijer et al. [KRV10],

0*,Y1:t—1
]Ee* te*aylztfl lO qt (y) >>\ d >
(/Sq ) g(z i | M

0*. Y111 0 Yl it—1 2
o (@) - S o )
<E /S ST Ady) (3.24)

o ([ (Sro) _quwy)>.

The expectation of the second line of Equation (3.24) is controlled as follows

0*.Yi ay 2
o (@ - S Rl )
E / gylt - A(dy)
S Zz lfl( )
2 - 2
([ Fmaxicie (QF1 - @F1) * (# ) - Fiw)
< 2F? + 2E° max - A(dy)
q s 1<i<k qfi(y)
16k(1 + 2k 2 16kp2(t—1)
< ((4+)+1> R
q q q
(3.25)

where p = (1 — kq)/(1 — (k — 1)q) < 1 — ¢, using Lemma 3.10 and then Assumption (A2.6)
and Lemma 3.10. The expectation of the third line of Equation (3.24) is controlled thanks to

Assumption (A2.3):

E” ( / C (Z fiy)Ql) ‘) —qf*’ylit‘l(y)x(dy)>
k
<E” ( |3 Rl A >) (326

We conclude the proof by combining Equations (3.19), (3.21), (3.22), (3.23), (3.24), (3.25) and (3.26).
O

Lemma 3.8. Foralla;, b;,c;,d; > 0,1 <i<k,

Di<ick @ibi X oicicp aifcix bi/d; * cid; a; bj
== = == < max — max —-

Zlg]gk’ C]d] Zlg]gk’ C]d] 1<’L<k’ C74 1<]<k3 d
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3.5.2 Proof of Lemma 3.3 with technical lemmas: control of Var? (LY — L%)
3.5.2.1 Proof of Lemma 3.3

First denote € = €, /,/uy,. Using Assumptions (3.1) and (3.5), there exists ¢ > 0 such that for all
1<i4,5 <k, Q;‘,j >q and Q; ; > ¢, more precisely, q can be chosen equal to g*/Q as soon as n

; : 0* _ 10
is large enough. Let Var be the variance of L;, — L;, :

9*
Denoting Z; = log (%), then

Var :=E”

n n 2
Var = EY (Zl Z; —EY (Zl Zt>>
t— t—

We want to bound Var by Cne(?>=®/2_ for any o > 0. In this purpose, we split the sum in two

parts:

n n

2 2
Var < 2E” (Z(zt—Eﬁztmt_l))) +2E” (z(Ee*(ztmt_n—E@*(Zt))) ,

t=1 t=1

=5 =59
(3.27)

S is the expectation of the square of a sum of martingale increments, for which the covariances
are zero so that only n terms remain. S, is further controlled using the exponential forgetting of

Markov chain. First, we control S7:

n

S1=3Y E” ((Zt _E” (Zt|Y1:t1))2>

t=1

+ 2 Z E? <(ZT _EY” (ZT|Y1:,_1)) £ (Zt _EY (Zt|Y1:t1)|Y1:tl)> (3.28)

1<r<t<n
n
<> B (Z))
t=1
using that

E” (B” (Z]Yia-1)%) = B [E” [(B” (Z)|Yi41)*Yia ]| <B”(2D).
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As to Ss:

ZEG (( E” (ZY141) —E” (Zt))2>

+2 > E” (Ee* (Zr|Yir—1) —BY (Z,)) BT (E‘”(Zt\Yl:t_l)—E“(Zt)mm_l))

1<r<t<n
n
SSTET@) 2 Y BT (22) B (B (ZiYieo) - B (Z)),
t=1 1<r<t<n
(3.29)
using that
BT (B (Zi|Y1:-1)%) <E”(Z}). (3.30)

and Cauchy-Schwarz inequality to bound the second term.

Combining (3.27), (3.28) et (3.29), we obtain

Var <4 B (Z}) +4 > \/EH*(Zz) \/IE:@* (IO (Ze|Y1.r—1) — EO(Z)[2).  (3.31)

t=1 1<r<t<n

Then using Lemmas 3.9 and 3.11,

) 10 a/2
Var <4 —|—C’ne>—|—16p Ey <26—|— )
<Q(1 —p?) q
1—a/4
16 2(r—1) B o
> (/)2 + Cé? p1t=1) . (332)
1<r<t<n g
Since,

1-a/4
1 2(r—1) 5 o a/4 B
> (6’)2+Ce2> pit=m) <9 P a/4< -~ 116 +n062‘0‘/2) (3.33)
1<r<t<n 4 L=p (1= p)

therefore there exists a constant C' ;> > 0 only depending on k and ¢*(= 2¢) such that

~ 2—a
n €
Var < = n ) 3.34
ar s CKL2 o <\/’LTn> ( )
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3.5.2.2 Lemma 3.9: Control of EY (ZE)

Lemma 3.9. Forall0,0* € Af(q) x F*

E”(Z})

16p20=1) i fi(y)
< 7 ;
=T +2 max / fi(y) 1glf<xklog 7 A(dy)

32 |Q — Q| 32 / : 1f ) = i) 5,0 .
+ + min ! * ,q k f (y) )\(dy)v
*(1-p2 ¢ (1-p)? g;k Fi @) - gék !
(3.35)
. O (Y| Y1 1—k
with Z; = log (%) and p = qu)q <1l-—gq.
If moreover Assumptions (A2.1), (A2.4), (A2.6) and (3.5) hold, then
. 16,21 &2
B (7)< O oo (3.36)
q Unp,

where C' < 33(1 + 2k)/¢°
Proof of Lemma 3.9. Let Q”’g Y1t = PY(X; = i|Y14 1, X1 ~ p), wheret > 1,1 < i <k,

i € Ay and when p is not specified, the stationary initial probability distribution is considered.

Then the conditional density function of Y; given Y7.;_; with respect to ) is:

D RO

so that

Z’L 1f*( ) 9 REEE 1)2

E” (Z) =E” <1og
S () ”

< 2R [ max 10g2 fJ*O/%) + EEQ* Z’QG Y11 Y1 t— 1’
- 1<j<k fj(Y;) QQ 1]
(3.37)

using Equation (3.18) and Lemma 3.8.

Combining Equation (3.37) and Lemma 3.10 (Equation (3.39)), we obtain Equation (3.35). More-

over, using Assumption (A2.1),

. (Y3
E? (fgjagxk log? (?JE}{;)) < €2 (3.38)
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Finally, combining Equations (3.37), (3.38) and Lemma 3.10 (Equation (3.40)), we obtain Equation

(3.36).

Lemma 3.10. Forall ,0* € Af(q) x F* and pi, pu* € Ay(q),

2
* 6*,Y; Y.,
EG Z’Qt,] Lit—1 1:t 1‘

_y, 16]Q — Q|
< g 2t-1) , O — &7
< 8p + 2= P2

£ (y) = fi(y)]? .
/mm ( ;*( )( ) D [ W) | Ady),
1<i<k i \Y 1<j<k
. 1- kq

If moreover Assumptlons (A2.1), (A2.4), (A2.6) and (3.5) hold, then

2
~2
E Z’QG Yii—1 Ylt 1‘ §8p2(t_1)+0/6—n

t:] un

where C' < 16(1 + 2k) /q*

O]

(3.39)

(3.40)

Proof of Lemma 3.10. We first control 5% I\Qe i1 QZ;’Q’Y“* |. For this purpose, we are
going to use a modified version of Proposition 1 of Douc and Matias [DMO01]. By Proposition 1
of Douc and Matias [DMO01] and for all §, * in Ak( ) x F¥ we can control the L1-norm between

two conditional probabilities of the state ¢ when the initial probabilities are equal.

Z|Q9 Y- Sy M ,0,Y1:1— 1

Q)" 1.Quf) Yaun Q) ™1.Q% ) Va1
t—1, _Qt 1,j

1 1 —kq =1
ko0

AM?T

,]:

<A‘/t LAY (A O), TR AV AT (AN

B )u
AYt vl AY20 AYLO %) Zﬁzl(AYz—l,@ o AY20 AYLOT

Jv

(3.41)
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Y.,0
with (A i >1<z’j<k = (Qj,z‘fj(Y))1gi,jgk' And
i 2]7 (Ayt 10 AY2’9)]',U(AY1’0,U«*)U - ng (AYt 1,0 AYZ’G)j,U(Ayl’G*M*)u
u—1 Z (Ayf*ﬂ CAY20 AYLO ) Zuzl(AYf*h@ oo AY2O AYLOT ey

(AYt 17 o o AYQ’O)]’U‘(AYLO*M* _ AYLO/J*)H
Sk (AYi-10 | AY20 AL ),
Zw:l Zle(AYt_l’e - AYQﬂ)i,w(AYl’e*'u* o AYl,eM*)w
Zgzl (Am*l’e LU AY2,0 AY1,0F M*)v
Z?:l(AYt_l’e - AYZ’G)]’,“(AYLGM*)U
25:1 (AYt—lya . AYQ,@AYLQN*)U
1(AYt o AYQﬁ)j,u(AYl’O*M* _ AYl,Glu*)u
szl(AYt_l’e c  AY2O AYLOT )

( S Qi fi (V1) — QL fF (Y1) )
X Jk

(3.42)

Jj=

)

1<usk S QLS (Y1)
, <”Q_Q” -+ min ((1 — (k- 1)) ijﬁfi‘(Yl) — fi(Y1)|i ’ k)) 7
q q ijl f;(Yl)/‘;

using Lemma 3.8. Combining Equations (3.41) and (3.42),

Z’QG Y11 # ,0,Y1:0— 1‘
=1

k 1— kq t—1

J:1 1

(u@—@*umn ()
7 q S Fr(Y)u ,

9 Y1 0 Y1

7Qf Yo

Q% ), Y1
t l,j _Qt 1,]

By repeating the arguments of Equation (3.42), we show that

0%, Y1:4—2 0%, Y1:4_2

Q* f*), Y11 Q) Y11
Z’QQZt ' QQ zt ' ‘

k Y , 0*,Y1.4— k Yi—1,0 ~A0%,Y1.4—

Z Zz 1 A o t—l; e B > Aj,ti ' t—l,% e
Y 0* ~0* Y14 k Yi—1,0 A0%,Y1:4—
= z u=1 ufz a t—l; o Zi,u:l Aufl ' t—l,; -

k 0*)Y7.¢—

1Q — Q% (A= (k=1)q) > [ (Vi) = fi(Yi1) Qi

=2 -+ min k * 0*,Y1.4—2 k )
q q 23:1 fj (Yt—l)Qt—l,j

By induction on (3.43),
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Z’Q9 Yii—1 QZZﬁ,YLtil‘

“(”Q‘Wmn(“‘(’“‘”q) Zfﬂ‘fi*(”—ﬂ—fzm—nrczf*fr-ik))

" 0 Vi
1 q Sh L F (Vi)
1— kq u—1
’ Z (1 Q)

0" Vit

Q- Q | @) Dol fF Yius1) — iVt )|Qp i1
+ min 0" Yigu ok :

Zj fj (nfU+1)Qt—7u—F1,j

(3.44)

Using Corollary 1 of Douc et al. [DMR04], we can control the ¢;-norm between two conditional
probabilities of the state ¢ for the same parameter ¢ but different initial probabilities: for all
0 € Af(q) x F*, p,ji € Ay and forall yy,—1 € {y : 3i, fF(y) > 0!

0, 0,y1:0— -1
Z‘ Ho05Y1:1-1 ,:il Y1:—1 SQP ) (3.45)

Combining Equations (3.44) and (3.45), we obtain

Z‘Qu 0 Yig—1 u,GYlt 1‘

2(|¢2—@*|+ . (1 S (i) — A IQ) k))
_ D Y U

(HQ Q' <1 Sl Fca) = FiViws) Q)b ))
+ min . ke (3.46)

* 9*7Y: —u
4 205 f7 YVimus1) Q41
:At7u+l
t—1
1—kq

4 - =

Al S gy

—_——

=p
=

ZP At u+4,0t 1

u=1
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Then

t—1

2 t—1
Z 8 Z _
< |QN 0% Y141 QfOYu 1|> < 2( pu> <§ :puA?_u> +8,02(t 1)’ (3.47)
u=1

using Cauchy-Schwarz inequality. Moreover, using Lemma 3.8,

BT (AR
« e o 0 Yi—u—1\ 2
<O 200 (L, (menu>.mnxyzuz )7@@2
¢ X 8 (Ve @y il
o=@
7

* _F 0% Yirt—u—1 2
+—E/Z@k“<MnGM@ﬂ@%K ) )

1<i<k Zj ff(y) g

HQ Q H2 /mm Z Lf7( y}‘( ,q2k2 Z f A(dy).

1<i<k 1<j<k
(3.48)

Combining Equations (3.47) and (3.48), we obtain Equation (3.39) which implies Equation (3.40)
under Assumptions (A2.1), (A2.4), (A2.6) and (3.5). This concludes the proof of Lemma 3.10.

O]

3.5.2.3 Lemma 3.11: Control of E?" (|[E?" (Z;|Y1,,—1) — E?" (Z,)]?)

In the following lemma we show that E?* ((\Ee* (Zy|Y1.p_1) — E? (Zt)|)2> geometrically de-

creases to 0 when ¢ tends to 4-00, using the exponential forgetting of the Markov chain.
Lemma 3.11. Forall 0,60* € Af(q) x F* and a € (0,2),

E” (|E” (Ze[Yig—1) — E” (Z)])

o

SSEG*(ZE)QE _sz(t ") <2 max /f]*(y) max

log
1<j<k 1<i<k

£ ) 10" (649
fz(y)‘A(dyH >

(Yt\Yu 1

where Z; = log ( POV Ya 1) ) If moreover Assumption (A2.1) holds then

* * * * — OL € 10 «
E” (B (Zi]Yir 1) — B (Z)?) < SE” (22) 3" p~ % p5 (") <26%+q> . (3.50)
n _—
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Proof of Lemma 3.11. Denote
Lt (Xh)/%’ 9Y1t 1’ij:Y1:t71)

forallt € N, then (L;)¢c is the extended Markov chain with transition kernel ITy more precisely
described in Douc and Matias [DM01] at page 384. Let
{1k x{y: 31 <j <k, fi(y) >0} x x{p€ Dy >qVi}? — R

l= (3}7:'-/7”7:“'*) — h(l) log <W>

then 6*( | )
P’ (Y| Y141 )

h(L) =72, =log | ———r—"—-

(Le) = 2 =log (pe(n|Y1:t_1)

and forallr <tand 0 < o < 2,

E” (B (ZeY1r—1) — E” (Z))
=E" (IE” (Z|Y1-1) — BV (Z) P EY (Ze|Y1.—1) — BV (Z)|%)

< 22 ((max(E” (1), B (|Zul[¥ir—1)) B (h(L) Vi) —E” ((L)I").
(3.51)

The following term is geometrically decreasing, using Lemma 3.12

[E” (A(Le)[Y1ir—1) — E” (A(Ly))|

// / (1¢) Ht "Iy, dly) — /h(lt)ﬂfg_r([r,dlt)

More precisely, using Equation (3.52) and Lemma 3.12 with m = L%J and u =t —r, we

- 3.52
PO(dl,|Y1.p—1)P?(dl,). (52

obtain

59 s 1),

0* _ o t_?r_g max * max
B (Vi) ~ B (L) < '5 (2 s [ 150 o

1<j<k 1<i<k

(3.53)
Therefore using Equations (3.51) and (3.53),

E” (B (Zi|Yia—1) — B” (Z0))
< 227og?” (maX(Ee*((‘ZtDaEG*OZtHYl:T 1))) a> (3.54)

_ba an_ . * f 10 *
A (2 [ 50 o )
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By convexity of the square function and concavity of z — 1‘2_7&, with 0 < ar < 2,
B (max(®” (12, (121>

< B <max<uz9*<zf>l/2, E” <Zf|ml>1/2>2‘a) (3.55)

2—a

<E (7)) + BV (B (Z2|Yi1) )
< 2B%" (72)%5".

Combining Equations (3.54) and (3.55), we get Equation (3.49). Besides, using Assumption (A2.1)

and Cauchy-Schwarz inequality ,

% fi )
* <
11??<Xk/f] (v) 121%h log fily) Aldy) < € (3.56)
so that Equation (3.50) holds.
O

Lemma 3.12 is an improved version of Proposition 2 of Douc and Matias [DMO01].

Lemma 3.12. Forallintegersu > 0,m < wu, forallz,z € {1,...,k} x{y: 31 < j <k, f/(y) >
0} x {p € Ag:py > q Vit x {u € Ay : p; > q Vi} and for all §,6* € A (q) x F*,

’/h(l)ﬂg(z,dl) - /h(l)Hg(é,dl))
4

(3.57)

4
< Zu-l Zom a9 m—2 * 1
=47 +gp e 1<%k Jiw) 1<ick [

sl es ()

. . . Vi * Vi
where Iy is the transition kernel of the extended Markov chain L; = (X3, Y%, f reet f He

and
{1k x {y: <G <k fily) >0} x {p€Dg:py >qVi? — R

l= (xayvunu’ ) — h(l) o log ( Zi‘c:l wifi(y) ) .

h:
Proof of Lemma 3.12. We improve the result of Proposition 2 of Douc and Matias [DM01] by
defining i on
Z={1,.. k}x{y: I <j <k fj(y) >0} x{pe€Ap:pi>qVi} x{pe€Ay:p>qVi}
and using that if z € Z then IIy-(z, Z) = 1. Then we obtain

lip(h, z,y) = (3.58)

Q| =
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since for all (z,y, p, u*), (z,y, i, 1*) € Z
k * Lx k
log (Zikl i fi (y)) ~log (Zz 115 3 (y))‘
>t Hifi(y) S fifi(y)

log (M ) log (z mfi(y)> ‘
S B 17 () i fafily)

|h($,yvﬂalﬁ*) - h(w,y,ﬁ,ﬁ*ﬂ =

< max |log (lﬁ:) ‘ + max |(log (%’)'
1<i<k L ISiSk 125
1 k

< 5 (Z‘Mz Mz’+Z’Mz Mz)
= =1

using . Moreover

I

log (zi-;l uzfﬂy)) |
Soiy 1 fiy)
(v)

lg(iff(i))’ . ))\
i Y

1
log( Z>‘+ max log<
i 1<i<k fi(y)
f*(y)> ’
log < ! .
fi(y)
Moreover instead of using Proposition 1 of Douc and Matias [DM01] we use Corollary 1 of Douc
etal. [DMRO04] so that forall 6 € A (q) x F¥, u, fi € Ag(g) andforallyi,—1 € {y : Ji, f7(y) >

}ll

because, using Lemma 3.8,

\h(z,y, p, )| =

IN

max
1<i<k

max
1<i<k

IN

1
< log + max
q 1<i<k

Z‘szyu 1 u9,y1z 1 <90, (3.60)

Then, let z = (z,y,u,pu*) € Z and Z = (2,9, 1, 1*) € Z using the proof of Proposition 1 of
Douc and Matias [DMO01]:
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| / BT (2, dI) — / BT (2, di)|
<| [ HOm oty ) [ RO, )

(3.61)

+ ’/h(l)H“(x,g},ﬁ, "), dl) —/h(l)H“((fi‘ Y i, ﬂ*),dl)’

where

Al <

Z /llp h xu+17yu+1)

T2:u+1=1
d Qilqe’yaeyylu Ql 8.9 ’ 7y2 u ] *yy’e*ny:u Qu ’ *7~’ yY2:u (362)
Z‘Qu,z _Quz ’+Z‘Q _Quz ’
=1

Qzo - Qg zuir fao (V2) - fry o, Wur1)A(dy2) - . A(dYut1)

and for any 1 < m < u,

k J,Y2:
. Zfly f.u7m79’yu_m+l:u 1,0, Yu—m+1:u
|B| < Z lip(h, Zut1; Yut1) Z’Qerl i — Q1

z2: u+1*1

u9 Y20 — m g

u+l—m Yu—m+1iu V0% Yu—mt1:u
+ § :’Qm—i-l i - Qm+1,i

(3.63)
|Q.’E T2 T .’EQ ‘sz,xg Q;u,xu+1 f:g <y2) s f:u+1 (yu—kl)A(dyQ:u—kl)
+ Z / (P Tus1, Yur1)
Tmiut+1= 1
* 1 sm—1 * * * *
‘Q ;T,L:cm - Q g,bxm ’me,xm+1 s Qa:u,xu+1 f:cm (ym) s fxu_H (yu+1))‘(dy22u+1)'
Combining Equations (3.58), (3.60) and (3.62),
4
Al < —p*! (3.64)
q

and using Equations (3.58), (3.59), (3.60) and (3.63)

4
Bl < Zpm 9 m—2 *
1Bl =< gp e (@?éi/fﬂ ) 1252

log ’;((;/)) ) A(dy) + log (;) > (3.65)

therefore using Equations (3.61), (3.64) and (3.65) we obtain
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(3.66)

4
u—1 m m—2 *
+-p" 42 ;
p qp p ( max / fj (y) 112%

v (1)

3.5.3 Proof of Theorem 3.4 (discrete observations)

Assumption (B2) will be checked using Proposition 2 of Shen et al. [STG13] that we recall here.

Lemma 3.13. [Proposition 2 of Shen et al. [STG13]] Let H be a positive integer, Z and € be positive,

denote
+00 k
Huze= {f = Zﬂ-hézh : Z T < €2y €10,2],h < H } .
h=1 h>H
Then "
kH _ eG(N) 1
Rk c < _
(DP(Q)) (HHZE) < 7G(N) G((z,+00)) + k ( 7 log €> (3.67)
N(4e, Hpze,d) S (24 1) RE, (3.68)

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. We first prove Assumption (A2) with f] = fj, forall 1 < j < k using
Lemma 3.14 with € = & /u,, L = L, = (—log (€3/(unloglogn)) /(c — (5))1/m and S; =
{1,...,L}. Using that f € D(m,c, K) for all 1 <1 < k and Assumption (P2), we get

I>Ly (G(l [>Ly,

Z fﬂ;;Z < Z exp(—c™)** < Z exp(—(c — §)I™)m—1
I>Ln
S /OO exp(—(c — §)2™)a™ ' A(dx) < exp(—(c — O)L}') S &

which proves Equation (3.76). Equation (3.77) is proved similarly. Equation (3.75) follows using
Assumption (I.2). Then, we can apply Lemma 3.14 so that

—+00 * ~
=1

fi()
? 2
Ln (fj‘(l) - fj(l)> &2 2 L <f]’.‘(l) - fj(l)) 2
= RO < “"’z;:n £i() < un; 70 < uﬂ) (3.69)
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Moreover using that f € D(m, ¢, K) for all 1 < ¢ < k and Equation (P2), we obtain

tog [T G(1) 2 ~ L loa(L.). .70)
Ly, Ly

log (H f;‘(l)G(”) 2> G()log fi(l) 2 —Li. (3.71)
=1 =1

Combining Equations (3.69) with [* = argmax, (min; ;< f; (1)), (3.70) and (3.71), Assumption
(A2) of Theorem 3.1 is true if

(_ log (gn))max(l/m+l,K/m) S ngi

Then we choose

1
€, = NG (logn)'o

with 2¢tg > max(1/m + 1, K/m) and Assumption (A2) holds.

Using Assumption (Q2.0), for €, small enough,

o ({0:10-@< o)) > X ({es1e- e < }})z(%)k(’c_l)

(3.72)

so that Assumption (C2) holds.
Using Lemma 3.13 with z = exp((log n)?°0%%/2), H = (ne2)/((logn)?*0*t) and ¢, = (logn)/\/n,

I(F7)
< (logn)i=2% exp <—(a —1)(log n)2t0+t/2) + exp (—(t — 2tg — 1)(log n)' "0 (loglog n)?)

— ofexp(—C"(logn)*")) = ofexp(~C'né2)),

(3.73)
if £ > 4ty. Moreover
log (N <%,fn, Dz)) < (logn)3? + (logn)! =20+ < ne? (3.74)
so that Assumption (B2) holds. This concludes the proof of Theorem 3.4.
O
Lemma 3.14. Let Sy, be a subset of {1,...,L}. If
123};ka )log?(f5 (1)) < g (3.75)
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and

f* €
f??i‘kz = 384102 Q)R (GN)2 (376)

and if there exists 6 > 0 such that

max »  fi(1) <€ (3.77)

then, for all l* € Sy, and all ¢ > 0 small enough,

Pg = DP(G)®k<f V1<i,j<k ffi*(l)logQ <‘;fj((ll))) <e,
(£ -0 )
>R

lesSt,

(50 -50)
l;: f] Zs: fﬂ = 6>
11 G(l)f;‘(l)G(”] )
leSy,

zj]i[l ( (/%) o <§)Lf;<z*>L_2

Proof of Lemma 3.14. Note thatifforall/ € Sy andforall 1 < j <k,

<1 - Z) Fr) < f0) < (1 + \/D U

then foralll € Sy,

(0 = fOF

L (FON e 15O - HOR _« 6
log (fj(l)> < 2 —f]*(l)Z < 1 and —fj(l)2 <
so that
50 - 50| £ - K[
*(1) log? f;(l) € A € an A €
2 fie (fj(l)> SEI D T R Dl T

then
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Combining the two last remarks, we obtain

Zf )log® ( )gg,ws@'Sk, and ij<l)§e)>

less less

k
> H (DP(G) (f] . exp (\/16max1<i<k Zzesz f;(”) < ZC fj(m) <e,

Z f@) log? (Zf](l])c()> < 3%7 Vl<i<kand
mesS§ JJ m

lese

(1-v3) gg)m) : Effj;lj)<m> <(+3) g]z)(mYWGSL))

meSy, meSy, meSt,

exp (\/16 maxi<;< ZZES; fz‘*(l)) < m;g fi(m)

> fi(1) log? <ZJ;(l)f(m)> < 37 Vi<i<k

lese

indeed if

and

then

> £ (D) 1og? (

lesSy

<2 3" (1) log? (Z“> +2 57 (1) log? ( > fim ) <

less mesg Ji(m less mess

Using the tail free property of the Dirichlet process, (f;(1)/ Zmesg fi(m))iess ., Zmesg fi(m)
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and (f;(1)/ > es, fi(m), ..., fi(L)/ >, es, fi(m)) are independent. So that we obtain

‘ ['(G(N)) G(Se)—1 G(Sp)—1
PGz/ . aG51) (1_a)(L)
exp (_\/16"‘&*1<i<1:21552 f?(l)) TGS (SL>)

G
Dir(G\sL)<x : (1 - i) f;_(l; <z < <1+ \/9 fjl) )A(da)

P(Gls;) (Zfz ) log? <ij(l)

leSy

€
— < < .
<32,V1_z_k)

(3.78)

We first control the integral of Equation (3.78). Note that if

v eVsy={z¢ A, |2 m €V, Ve S\ {rr}}

where forall I € Sp, \ {I*}
[€ iy FiU
< (1+ Efj (l )) 1]_

(- ) 24 )
and if
aE V= {Z HO \Ffj St-a<} 0 \/Eff(l*)} (3.79)

leSy, leSt,

thenforalll € Sy,

(1 — €> A <z < <1+ 6) f;(l), (3.80)
4)1—a

where z» =1 -3¢ 121+ T1- So that

G-
I'(G(SL)) B . REGETVN
D(a) > Mocs, F(G(m>)]1vA(a) /VSL (1 > } m) I =" Adw)

meS\{I* lesp\{i*}
(3.81)
where

G-t w1y G(F)—1
(1 3 xm) ><J;3£la)) min((1/2)G<l*)—1,(3/2)G(l*>—1) (3.82)

meSp\{I*}
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and

/szG(l)_lk(d:vz) > (ﬁ_(li)(;(l) f;(l*)\/imin ((1/2) L (3/2)¢0- 1) (3.83)

using Equation (3.80). Then combining Equations (3.81), (3.82) and (3.83); D(a) is bounded from
below by

o s G) () O ()T e e

leSy
So that
¢ I'(G(N)) 26551 G- DA (da
/eXp <_\/16max1<i<1:21552 fl.*(z)> F(G(SL))F(G(SE)) ( ) D( ))\(d )
(G(N)) e\(E-1/2 (2 L 1 o e
G ) [lies, T(GD) (4> (3) (2) f5 ) lg[ij(l)

G(SE)

IIllIl Z fi(m \/Ef;(l*),e)>
mesSyt

- (max (exp (\/€/<161r2?<§l§ fi*(l))) = \/7f ))
R <\/E)L1+G(N) <:1,))L TG R || RelOTAURS

leSy,
(3.84)
using that for all 0 < a < 1,
1 2
—<T(a) <= (3.85)
a a’

and that under Assumption (3.77), for € small enough

ex —6_6/2 >exp | — ‘ >0> fi(m) — £ (1)
b )= 6 maxicick D es; f7() |~ 7 1675
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We now control the last term of Equation (3.78). Using Markov’s inequality,

2 fi(0) € .
Hels) (lzescf e (Emf(m)><32\ﬂ<k)
2 fi(0) €
>1— DP(G|s:) (E E fr(1) log (Zmengj(m)>>32) (3.86)

1=11eS¢

(1
<Z 1 Dless f; (1) log? <Zmej;i(};(m))>

€
32

As f;(1)/ ZmeSg fj(m) is distributed from 8(G(1), G(S¢ \ {I})).

0" 1002 fi(1)
8 llg <Zmesgfj(m)>]

_ I'(G(S7)) 1/2 002 (21200111 _ 2GSy (g
T T(GO)T(G(SE\ {1})) (/0 log”() (1-x) A(da)

>1-

- (3.87)
I
1
- / log? ()20 (1 — ) MDA () )
1/2
Iz
with
1/2 B 410g%(2)(1/2)%0 rq)* G | 1
2 G)-1 _ g
L < 2/0 log*(x)x A(dz) G(1) ( 2 + log 2 + log22> (3.88)
1210g%(2)(G(N))? |
- G(1)? ’
and
1
) S5\ 1) -1 _2log*(2)
I < 2log*(2) /1 /2(1 x) Aldz) < G(Ss \{1})’ 59

Combining Equations (3.85) (3.87), (3.88) and (3.89), we obtain

* * f(l) f:(l)
E? (Z fi (1) log2 (M)) < 24G(N)210g2(2) IZ (G(l))T (3.90)

lese mes 1 ese

Then using Assumption (3.76) and Equations (3.86) and (3.90)

fi )
P(G|s¢) < > £ (D) log? (W) < @ V1 <i< k) >1/2 (3.91)

lesS§
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Lemma 3.14 follows combining Equations (3.78), (3.84) and (3.91). O

3.5.4 Proof of Theorem 3.6 (Dirichlet process mixtures of Gaussian distribu-

tions)

Proof of Theorem 3.6 . Let o, = &,/(log(1/&,)), & = n~?/(F+(logn)?. Following the com-
putations of the proof of Theorem 4 of Shen et al. [STG13] and using Assumption (52.3), Lemma
3.15 ensures that Assumption (A2) holds with ¢y > (2+2/v9+1)/(1/8 +2). Using Assumption
(Q2.0), Assumption (C2) holds. Using Theorem 5 of Shen et al. [STG13], Assumptions (G2.1),
(S2.1) and (S2.2); Assumption (B2) holds with ¢, = n~5/(28+1)(log(n))t, t > to. This concludes
the proof of Theorem 3.6. O

The following lemma is a generalization of Lemma 4 of Kruijer et al. [KRV10] in the HMM con-
text. In other words, we give a set of density functions ( f;)1< ;< satisfying Assumptions (A2.1)-
(A2.6) in Lemma 3.15.

Lemma 3.15. Assume that there exist 3, L and y such that for all1 < j < k, f} € P(B,L,~)
and Assumptions (T2.1)—(T2.3) hold. Let o be a positive real small enough.

Then foralll < j < k, there exists a discrete measurem; = vazjl uéézj supportedon{z : f(x) >
K;o® 1} with Hy > 28, K a constant small enough and N; = O(c~t|log o|>/70) such that
Assumptions (A2.1)~(A2.6) hold with f; = ¢o x m; foralll < j < k and 02 < & Ju,.
Assumptions (A2.1)—(A2.6) also hold with f; = ¢5 % mj;, forallG € [o,0 + 05/H1+2] and for all
;=S ,&éégj_ such thatﬂjl.:Nj € B(pj, 0% M+2) and z} € B(z, o¥H1t2) foralll <i < Nj,
where d' > 1+ 3/ H;.

Proof of Lemma 3.15. The proof of Lemma 3.15 is based on Kruijer et al. [KRV10]. First notice that
fi e P(B, g,~y) implies that for all integer m < f3, 95"
by a polynomial. Then Assumption (T2.1) implies that Assumption (C2) of Kruijer et al. [KRV10]

, where g]" = (log £)™), is bounded

holds and stronglier implies that there exists § > 0 such that forall 1 < ¢, j,¢ < k and all integer
m < f3,

/ g7 ()| CHH9/m £ ()M (de) < oo,
/ G()[2H8 £ (2)A (dx) < o,
[l @249 52 @) o 17 (@) (do) < o,

[t 2 2 a10g g2 () < o

(3.92)
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Let o > 0, we consider

k
S =) (4 nE)
7j=1

where
a5 ={a s (@) < Bo™log()] /2,91 < m < (8], [g(x)| < Boflog(o)] /2
and

={z: fi(x)> oy

Using Assumptions 3.16, (T2.1), (T2.3) and Lemma 2 of Kruijer et al. [KRV10], there exists k
density functions hg such thatforalll < j < kandallz € S,

Wy 6o (@) = £ () (1+ OB (2)0")) + O((1 + R ()" (3.93)

where R’ is defined as in Equation (16) page 1232 of Kruijer et al. [KRV10] and H is as large
as we want. Using Assumptions 3.16, (T2.1) and (T2.3), the proof of Lemma 2 of Kruijer et al.
[KRV10] is easily generalizable in this context so that

[ s on)ray) 5 0* (3.94)

The generalization can be proved using Equation (3.92) and by replacing Equation (56) of Kruijer
et al. [KRV10] by Equation (3.101).

As at page 1251 in Kruijer et al. [KRV10], we denote

1

B
8 :p:h]ﬁ. (x)>cH2 hj

J B
fx:hfe (x)>cH2 hj dA

and using Lemma 12 of Kruijer et al. [KRV10], for all 1 < j < k, there exist &k discrete distribu-
tions m; = 25\21 %5251 supported in {z : f}(z) > K;o?+H1} for Hy > 28, a constant K
small enough and with N; = O(c~![log #|%/7°) such that

Hﬁjﬁ *Qba — m; * Qba”oo < O_—1€—C|loga|2/'m’

i , (3.95)
RS % ¢y —mj * Gt < o7 e @ Jlog 7270

for any C’, C large enough.

It is now sufficient to prove that Assumptions (A2.1) to (A2.6) hold with 64/ (2=a) _ = O(c?! )s
fj = m; * ¢5 and fj = hf * ¢z forall & € [o,0 + o H1+2] and all discrete distributions m; =
Zﬁvzjl /1;52;_ such that ji; € B(Mj,U‘S/Hl”)ﬂAN]. and 7; € B(zj, 0% H1+2) where &' > 1+ 3/ H;.
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By Lemma 2 of Kruijer et al. [KRV10],

1 —mj* dolly S oHE I f = my x ol S 0P, (3.96)

~

« Proof of (A2.1). We cut the integral as in the following,

[ W Zf*;’ /fz Zf*y))wy)

o [ ()
(y)
+2/f ) log? ‘Z;)\(dy).

. fi(y)log A(dy) (3.97)

The last integral can be controlled by O(c??) as in the proof of Lemma 4 of Kruijer et al.
[KRV10].

Using Equation (3.93) we control the first integral of the bound of Equation (3.97):

£ () 115 (v) = Fi()P?
*(y) log? ===\ (d y R Ady) < 0%
[ F et 2B < [ g 2 iy @) S

as soon as H is large enough, using Equation (3.93).

Using that [ < fj < o % I3 < 1 (see Remark 1 and the bottom of page 1252 of Kruijer
et al. [KRV10]), we control the second integral in the bound of Equation (3.97),

22 J?"(y)

. fi)lo ) Ady) < . fi(y)A(dy) + . fE W) log® (f5(y)) Aldy)

J\y
which is bounded by O(c??) following the proof of (A2.4).

« Proof of (A2.2). We cut the integral into three parts:

£ (y) — fiy)I?
/ fi(y) M)

[ y) hiy *aﬁa / |hfy * ¢o(y) — bo(y)|?
/ A(dy)
fi( )

/Ihﬁ*% — fily)

Using Equation (3.93),
I <o, (3.98)
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We now control I using the bound

his * o ()

- —1
hy * ¢ (y)

= O(c?), forally € S

of page 1252 of Kruijer et al. [KRV10] and Equation (3.93). Then

N R R RE X LA NN TR )
Iz - ~/S < hZB * ¢U(y) > ? (Z)U(y) fz* (y) )\(dy) (399)

< /S (O(0®))? by % 6o (1) 2 Mdy) S 0%,

using Equation (3.93). As to I3, using Equations (3.95) and (3.96), it is upper-bounded by

17 % do — mi * Golloo | * G —mix Pl | fi = mi* dollocll fi — mi* dolli _ o5
2 7 +2 7 So
ot ot

(3.100)

when 2 > ~p, such a 7p can always be chosen (see the first line of page 1253 of Kruijer et
al. [KRV10]).

Proof of (A2.3). Assumption (A2.3) is proved in Equation (3.94).

Proof of (A2.4). It is sufficient to bound

Jlr

o

[ (w)A(dy)
and
/  FW)Ady).
(A%)e

Using Assumption (T2.2), forall 0 < § < 1

/ P dy)
(EL)e

< fi () (dy)

. J
/{yiff (y)<o™1 M ; exp(rj,qly|"7%)}

F Mo (f5 () YoM (dy)

(3.101)
<

/{y:f;‘ (y) <1 M ; exp(75,:|y|"74)}

< gh/o /(Mj,i)1/5 exp(ly[ 4 /0)(f ()P Mdy) < o

as soon as Hy > 20, using Assumption (T2.1). Moreover using (3.92) and Markov inequal-
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ity, as in the proof of Lemma 2 of Kruijer et al. [KRV10],
/(A_ : £ w)A(dy) S . (3.102)

« Proof of (A2.5). Using the same argument as in the bottom of the page 1252 of Kruijer et
al. [KRV10], Equations (3.95) and (3.96),

. fiy)
/S fi () jpax. log ( 7 (y)> A(dy)

. i) = f;(v)]
< /S £ ) gfngA(dy) (3.103)

?k 1fi — filloo
< /Sf; W) 28 T T -

Mdy) < 028

~

« Proof of (A2.6). Using that fj?“ < f] (see Assumption (C3) of Kruijer et al. [KRV10]) Equa-
tion (3.98) implies (A2.6).
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CHAPTER 4

LEFFICIEN T SEMIPARAMETRIC ESTIMATION AND MODEL
SELECTION FOR MULTIDIMENSIONAL MIXTURES

This is a joint work with E. Gassiat and J. Rousseau.

In this chapter, we consider nonparametric multidimensional finite mixture mod-
els and we are interested in the semiparametric estimation of the population weights.
Here, the i.i.d. observations are assumed to have at least three components which are
independent given the population. We approximate the semiparametric model by pro-
jecting the conditional distributions on step functions associated to some partition. Our
first main result is that if we refine the partition slowly enough, the associated sequence
of maximum likelihood estimators of the weights is asymptotically efficient, and the
posterior distribution of the weights, when using a Bayesian procedure, satisfies a semi-
parametric Bernstein von Mises theorem. We then propose a cross-validation like pro-
cedure to select the partition in a finite horizon. Our second main result is that the
proposed procedure satisfies an oracle inequality. Numerical experiments on simulated

data illustrate our theoretical results.
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4.1 Introduction

We consider in this chapter multidimensional mixture models that describe the probability distri-
bution of a random vector Y with at least three coordinates. The model is a probability mixture of
k populations such that, given the population, the coordinates of the random vector are indepen-
dently distributed. We call emission distributions the conditional distributions of the coordinates
and 6 the parameter that contains the probability weights of each population. It has been known
for some time that such a model is identifiable. An algebraic result by Kruskal Kruskal [Kru77]
in 1977 (see also Rhodes [Rho10]) proved it when the coordinates of Y take finitely many val-
ues. Kruskal’s result was recently used by Allman et al. [AMRO09] to obtain identifiability under
almost no assumption on the possible emission distributions: only the fact that, for each coor-
dinate, the k£ emission distributions are linearly independent. Spectral methods were proposed
by Anandkumar et al. [AGH+14], which allowed Bonhomme et al. [BJR16a] to derive estimators
of the emission densities having the minimax rate of convergence when the smoothness of the
emission densities is known. Moreover, Bonhomme et al. [BJR16a] proposes an estimation proce-
dure in the case of repeated measurements (where the emission distributions of each coordinate

given a population are the same).

Chapter 4 focusses on the semiparametric estimation of the population weights when nothing
is known about the emission distributions. This is a semiparametric model, where the finite
dimensional parameter of interest is # and the infinite dimensional nuisance parameters are the

emission distributions.

We are in particular interested in constructing optimal procedures for the estimation of 6. Opti-
mal may be understood as efficient, in Le Cam’s theory point of view which is about asymptotic
distribution and asymptotic (quadratic) loss. See [LY00], Bickel et al. [BKRW98], van der Vaart
[Vaa98], van der Vaart [Vaa02]. The first question is: is the parametric rate attainable in the semi-
parametric setting? We know here, for instance using spectral estimates, that the parametric rate
is indeed attainable. Then, the loss due to the nuisance parameter may be seen in the efficient
Fisher information and efficient estimators are asymptotically equivalent to the empirical process
on efficient influence functions. The next question is thus: how can we construct asymptotically
efficient estimators? In the parametric setting, maximum likelihood estimators (m.l.e’s) do the
job, but the semiparametric situation is more difficult, because one has to deal with the unknown
nuisance parameter, see Theorems in chapter 24 of van der Vaart [Vaa98] where it is necessary

to control various bias/approximation terms.

From a Bayesian perspective, the issue is the validity of the Bernstein-Von Mises property of the
marginal posterior distribution of the parameter of interet f. In other words: is the marginal
posterior distribution of 8 asymptotically Gaussian? Is it asymptotically centered around an
efficient estimator? Is the asymptotic variance of the posterior distribution the inverse of the

efficient Fisher information matrix? Semiparametric Bernstein-Von Mises theorems have been
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the subject of recent research, see Shen [She02], Boucheron and Gassiat [BG09], Rivoirard and
Rousseau [RR12a], Castillo [Cas12a], Castillo [Cas12b], Bickel and Kleijn [BK12b], De Blasi and
Hjort [DH09] and Rivoirard and Rousseau [RR12a].

The results of Chapter 4 are twofold: first we obtain asymptotically efficient semiparametric
estimators using a likelihood strategy, then we propose a data driven method to perform the

strategy in a finite horizon with an oracle inequality as theoretical guarantee.

Let us describe our ideas. For the multidimensional mixture model we consider, we will take
advantage of the fact that, for some finite approximations of the nuisance parameter, the model
is still valid for the observation process. This may be seen as a no bias situation. Indeed, when
approximating the emission densities by step functions, the density of the observation is the
multinomial distribution of the indicator function of the sets in the partition. Hence, this is a
common and fairly crude modelling of densities by histograms. The no bias property of this
modelling implies that, for each of these finite dimensional models, the parameter of interest,
i.e. the weights of the mixture, may be efficiently estimated within the finite dimensional model.
Then, under weak assumptions, and using the fact that one can approximate any density on [0, 1]
by such histograms based on partitions with radius (i.e. the size of the largest bin) going to zero,
it is possible to prove that asymptotically efficient semiparametric estimators may be built using
the sequence of m.lLes in a growing (with sample size) sequence of approximation models. In
the same way, using Bayesian posteriors in the growing sequence of approximation models, one
gets a Bernstein-Von Mises result. One of the important implications of the Bernstein von Mises
property is that credible regions, such as highest posterior density regions or credible ellipses
are also confidence regions. In the particular case of the semiparametric mixtures, this is of great
interest, since the construction of a confidence region is not necessarily trivial. This is our first
main result which is stated in Theorem 4.5: by considering partitions refined slowly enough
when the number of observations increases, we can derive efficient estimation procedures for
the parameter of interest § and in the Bayesian approach for a marginal posterior distribution on

0 which satisfies the renown Bernstein von Mises property.

We still need however in practice to choose a good partition, for a finite sample size. This can
be viewed as a model selection problem. There is now a huge literature on model selection, both
in the frequentist and in the Bayesian literature. Roughly speaking the methods can be split into
two categories: penalized likelihood types of approaches, which include in particular AIC, BIC,
MDL and marginal likelihood (Bayesian) criteria or approaches which consist in estimating the
risk of the estimator in each model using for instance bootstrap or cross validation methods. In
all these cases theory and practice are nowadays well grounded, see for instance Hansen and
Yu [HY01], Robert [Rob01], Barbe and Bertail [BB95], Massart [Mas07], Baudry et al. [BMM12],
Arlot and Celisse [AC10], Claeskens and Hjort [CH08], Ando [And10]. Most of the existing

results above cover parametric or nonparametric models. Penalized likelihoods in particular
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target models wich are best in terms of Kullback-Leibler divergences typically and therefore
aim at estimating the whole nonparametric parameter. Risk estimation via bootstrap or cross
- validation methods are more naturally defined in semiparametric (or more generally setups
with nuisance parameters) models, however the theory remains quite limited in cases where the

estimation strategy is strongly nonlinear as encountered here.

In our context, the natural risk for 8 is the quadratic risk, which can not be written as some risk
of the distribution of the observations, which is the basic stone in the theory of model selection
based on risk estimation. To propose specific procedures, one has thus to find some way to esti-
mate the risk of the estimator in each approximation model, and then select the model with the
smallest estimated risk. We propose to use a cross-validation method similar to the one proposed
in Brookhart and van der Laan [BL06]. To get theoretical results on such a strategy, the usual
basic tool is to write the cross-validation criterion as a function of the empirical distribution
which is not possible in our semiparametric setting. We thus divide the sample in nonoverlap-
ping blocks of size a,, (n being the the sample size) to define the cross validation criterion. This
enables us to prove our second main result: Theorem 4.8 which states an oracle inequality on the
quadratic risk associated with a sample of size a,, observations, and which also leads to criterion

to select a,,. Simulations indicate moreover that the approach behaves well in practice.

In Section 4.2, we first describe the model, set the notations and our basic assumptions. We
recall the semiparametric tools in Section 4.2.2, where we define the score functions and the
efficient information matrices. Using the fact that spectral estimators are smooth functions of the
empirical distribution of the observations, we obtain that, for large enough approximation model,
the efficient Fisher information matrix is full rank, see Proposition 4.1. Intuition says that with
better approximation spaces, more is known about all parameters of the distribution, in particular
about 6. We prove in Proposition 4.2 that indeed the efficient Fisher information matrix increases
when the partition is refined. We are finally able to prove our main general result in Section 4.2.3.
In Lemma 4.3, we first prove that semiparametric score functions and semiparametric efficient
Fisher information matrix are the limits of the parametric ones obtained in the approximation
parametric models. Thus, the fact that the semiparametric efficient Fisher information matrix
is full rank is a consequence of previous results and stated in Proposition 4.4. In Theorem 4.5,
we prove that it is possible to let the approximation parametric models grow with the sample
size so that the sequence of maximum likelihood estimators are asymptotically efficient in the
semiparametric model and so that a semiparametric Bernstein - von Mises Theorem holds. In
Section 4.3, we first discuss in Section 4.3.1 the reasons to perform model selection and the fact
that choosing a too large approximation space does not work, see Proposition 4.6 and Corollary
4.7. Then we propose in Section 4.3.2 our cross-validation criterion, for which we prove an
oracle inequality in Theorem 4.8 and Proposition 4.9. Results of simulations are described in
Section 4.4, we investigate several choices of the number and length of blocks for performing

cross validation, and investigate practically also V-fold strategies. We discuss possible extensions,
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open questions and further work in Section 4.5. Finally Section 4.6 is dedicated to proofs of

intermediate propositions and lemmas.

4.2 Asymptotic Efficiency

4.2.1 Model and Notations

Let (Y5,)n>1 be a sequence of independent and identically distributed randoms variables taking
values in [0, 1]3. We assume the possible marginal distribution of an observation Y, n > 1
is a population mixture of % distributions such that, given the population, the coordinates are
independent and have some density with respect to the Lebesgue measure on [0, 1]. The possible

densities of Y,, n > 1, are, if y = (y1,¥2,y3) € [0,1]>

k 3

k
90.£(y Zegﬂfj,c ye), Y. 0;=1, 0;>0,Vj (4.1)
c=1 j:l

Here, k is the number of populations, ¢; is the probability to belong to population j for j < &
and we set § = (01,...,0,_1). Foreach j = 1,...,k, fjc, ¢ = 1,2,3, is the density of the
c-th coordinate of the observation, given the observation coming from population j and we set
f = ((fje)i<e<s)i<j<k.- We denote by P* the true (unknown) distribution of the sequence
(Y3)n>1, such that P* = Pgeilﬁf*, dPy« ¢+ (y) = go~ ¢+ (y)dy, for some §* € O and f* € F3k,
where O is the set of possible parameters 6 and F the set of probability densities on [0, 1].

We approximate the densities by step functions on some partitions of [0, 1]. We assume that
we have a collection of partitions Zp;, M € M, M C N, so that for each M € M, Ty, =
(Im)1<m<n is a partition of [0, 1] by borelian sets. It is clear that I, changes when M changes.

For each M € M, we now consider the model of possible densities

k 3
wa
90,00 (Y H <Z ﬁmrﬂlm (yc)> : (4.2)
j=1 =1 "
Here, w = (((wj,e;m)1<m<M— 1)1<c<3)1<]‘<k, and foreach j = 1,...,k, each c = 1,2, 3, each
m=1,...,.M —1,wjecm >0, Zm 1 Wjem < 1, and we denote wj . = 1 — Zi\r/{:_fwj,c,m'

Thus, wj ., may be thought of as

1
wj’c’m:/o fj,c]ljm(u)du

We denote €2 the set of possible parameters w when using model (4.2) with the partition Zy,.



126 CHAPTER 4: EFFICIENCY IN SEMIPARAMETRIC MIXTURE MODELS

Let ¢,,(6,w; M) be the log-likelihood using model (4.2), that is
En(ea wj M) = Z 10g g@,w;M(YVi)'
i=1

It appears as the model of population mixture of multinomial distributions for the observations

Ui :== ((11,,(Yi,c))1<m<M )1<e<3, for which the true (unknown) parameter is given by

1
0=0" w=wy = </ f;cﬂjm(u)du)
o 7 1<m<M-—1

We denote, for each M & M, (§M,@M) the m.Le., that is a maximizer of ¢, (6,w; M) over
O x QM

1<e<3/ 1<j<k

Let IIj; denote a prior distribution, that is a probability distribution on the parameter space
© x Q. The posterior distribution ITy/(+|Y1,...,Y,,) is defined as follows. For any borelian
subset A of © x Qyy,

Iy (A]Y; Y,) = Ja Tl 96,00 (Y)dITag (6, w)
o f@xQM [T 96w (Yi)dI s (6, w)

The first requirement to get consistency of estimators or posterior distributions is the identifia-

bility of the model. We use the following assumption.

(A3.1) eForallj=1,....k 607 >0.
e Forall ¢ = 1,2, 3, the measures f{ dy, ..., f .dy are linearly independent.

It is proved in Theorem 8 of Allman et al. [AMR09] that under (A3.1) identifiability holds up to
label switching, that is, if Sy, is the set of permutations of {1, ..., k},

Vo € ©, Vf € F3F, go.f = gox £+ = Jo € Sy such that 70 = 0%, 7 f = f*,

where 70 € ©,7f € F3* and 70, = Oo(j)> * fic = fo(j),er foralle € {1,2,3}, 5 € {1,,..., k}.
We need that identifiability holds for model (4.2) also. It is straightforward that this is the case if
the partition is refined enough. For any partition M, any w = (wp,)1<m<n—1 such that w,, >0,

m=1,...,M,withw,, =1— Z%;ll W, denote f, the step function given by

M
foly) =D 17, (). (4.3)

Introduce the following assumption on the sequence of partitions Zy;, M € M.
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(A3.2) e For all M, the sets I, in Z); are intervals with nonempty interior.

e As M tends to infinity, maxj<,,<r | I, | tends to 0.

Assumption (A3.2) is used to get that all functions f%*-,c-,M tend to f7. Lebesgue almost every-
where. To extend the results when the coordinates y. may be multivariate, the first point of
(A3.2) has to be replaced by:

e There exists a > 0 such that for all M, for all I,,, in Zj, there exists an open ball I such that
I, C I and |I;,,| > a|I|. Here |I] is the Lebesgue measure of the set /.

Then, if (A3.1) and (A3.2) hold, for M large enough, we have that for all ¢ = 1, 2, 3, the measures

for QY5 - fup Ay are linearly independent, where

1
WS ens = </ fjfc;MH[m(u)du> ,c=1,23 j=1,...,k.
0 1<m<M-1

We give a formal proof of this fact in Section 4.6.1. Thus, using again the identifiability result in
Allman et al. [AMR09], under (A3.1) and (A3.2), for M large enough,

VO € O, Yw € Qyy, 99.w;M = 99* wh;;M = dJo € S, such that 70 = 9*, Tw = w}‘w,

where “w € Qu and “wjem = Wo(j),emms for allm € {1,..., M}, c € {1,2,3},j €

{1,....k}.

4.2.2 Efficient Influence Functions and Information

We now study the estimation of 8 in model (4.1) and (4.2) from the semiparametric point of view,
following Le-Cam’s theory. We start with model (4.2) which is easier to analyze since it is a
parametric model. For any M, gg ,.n(y) is a polynomial function of the parameter (0, w) and
the model is differentiable in quadratic mean. Denote by Sy, = (S5 5. 5% 5s) the score function

for parameter (0, w) at point (6*,w},) in model (4.2). We have for j =1,..., k-1

3 3
HC:1 fw;yc;M - HC:1 fw;,c;]\/f

Syu). = (4.4)
( G’M)] 96* W, ;M
andforj=1,...,k,c=1,23,m=1,...,M —1
* ﬂlm(yc) _ 1y (?k))
S* _ ej ( [1m] |];IM\ HC/7AC f‘“;,c';M
(S500) o = (4.5)

g@*,w}‘W;M

Denote by Jy the Fisher information, that is the variance of S},(Y):

Iy =E* [S3,(Y) Sy (V)]
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Here, E* denotes expectation under P*, and S%,(Y)7 is the transpose vector of S5, (Y).

When considering the question of efficient estimation of ¢ in the presence of a nuisance parame-
ter, the relevant mathematical objects are the efficient influence function and the efficient Fisher
information. Let us recall well known facts, see van der Vaart [Vaa98] or van der Vaart [Vaa02]
for details. The efficient score function is the projection of the score function with respect to
parameter 6 on the orthogonal subspace of the closure of the linear subspace spanned by the
tangent set with respect to the nuisance parameter (that is the set of scores in parametric models
regarding the nuisance parameter). The efficient Fisher information is the variance matrix of
the efficient score function. For parametric models, direct computation gives the result. If we

partition the Fisher information .Jj; according to the parameters 6 and w, that is
[Inloo =E* [S5ar(Y)S5r()T] [ndlww =B [S5 0 (Y)Sh (V)T

[Inlow =B (S5 (YV)SE )] [l = [T

we get that, in model (4.2), if we denote @Z) w the efficient score function for the estimation of 6,

nr = Shar = [Inlow([Int)ww) ™ Shoars

and the efficient Fisher information J. it

v = [Inloo — [Tnlow((I)eww) ™ I -

To discuss efficiency of estimators, invertibility of the efficient Fisher information is needed.
Spectral methods have been proposed recently to get estimators in model (4.2), see Anandkumar
et al. [AGH+14]. It is possible to obtain upper bounds of their local maximum quadratic risk with
rate n~'/2, which as a consequence excludes the possibility that the efficient Fisher information

be singular. This is stated in Proposition 4.1 below and proved in Section 4.6.1.

Proposition 4.1. Assume (A3.1) and (A3.2). Then, for large enough M, Jur is nonsingular.

In the context of mixture models, all asymptotic results are given up to label switching. We
define here formally what we mean by ‘up to label switching’ for frequentist efficiency results

with Equation (4.7) and Bayesian efficiency results with Equation (4.9).

Then, if (A3.1) and (A3.2) hold, for large enough M .Jys is nonsingular, and an estimator g is

asymptotically a regular efficient estimator of 6* if and only if

1 n
T o)~ M N~ oy X I
Vn (9 0 ) = ; war (Y;) + ops(1), up to label switching, (4.6)
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which formally means that there exists a sequence (o, ), of Sk such that

1 n
v (") = %;&M (i) + op+(1). (4.7)

To get an asymptotically regular efficient estimator, one may for instance apply a one step im-
provement (see Section 5.7 in van der Vaart [Vaa98]) of a preliminary spectral estimator, described
in Anandkumar et al. [AGH+14]. Also, using the trick given in van der Vaart [Vaa98] p. 63 to
get consistency of the maximum likelihood estimator (m.lLe.), one sees also that the m.l.e. 9, M 1S

asymptotically a regular efficient estimator of ™.

In the Bayesian context, Bernstein-von Mises Theorem holds for large enough M if the prior has
a positive density in the neighbourhood of (6*,w},), see Theorem 10.1 in van der Vaart [Vaa98].
That is, if || - |7y denotes the total variation distance, with IIj/ y the marginal distribution on

the parameter 6,

= op+(1), up to label switching, (4.8)
TV

J!
HM79(-|Y'1,...,Yn) _./\/’<9; ;\j)

where 0 verifies Equation (4.6),

which formally means that

sup
ACO

7.1
HM79(E|U €S,: 90 ¢c A‘Yl,...,Yn) N <‘7n0; M) (A) _

where (0,) and § satisfie Equation (4.7).

A naive heuristic idea is that, when using the U;’s as summaries of the Y;’s, one has less informa-
tion, but more and more if the partition Z); is refined. Thus, efficient Fisher information should

grow when partitions Zj; are refined. The following proposition is proved in Section 4.6.2.

Proposition 4.2. LetZ);, be a coarser partition than Zyy,, that is such that for any I € Ly, , there
exists A C Iy, such that I = Upeal’. Then

jMQ > le

in which®“>" denotes the partial order between symmetric matrices.

Thus, it is of interest to let the partitions grow so that one reaches the largest efficient Fisher

information.

Let us now come back to model (4.1). Let, for j = 1,...,k, ¢ = 1,2,3, H; . be the subset of
functions h in L( *.dy) such that [ hf* .dy = 0. Then the tangent set for f at point (6*,f*) is
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the subspace P of L?(gg+ ¢+ (y)dy) spanned by the functions

h(ye) [T—y 11 (yer)
—

9o+ £ (Y)

)hEHj,C7j:]-J"'7k7 C:1,2,3,

and the efficient score function 1/; for the estimation of # in the semiparametric model (4.1) is
given,forj=1,...,k—1,by
3 3
7 Hc:l f]*,c - Hc:l fl:,c

Vi = (S;)j - A(Sg)jv (S;)j = o £+ ) (4.10)

with A the orthogonal projection onto the closure of P in L?(gg+ £+(y)dy). Then, the efficient
Fisher information .J is the variance matrix of 1/;
If J is nonsingular, an estimator 0 is asymptotically a regular efficient estimator of 8* if and only
if
_—
vn (5— 9*) = — Z ¥ (Y;) + op+(1), up to label switching (4.11)
i=1

n

and a Bayesian method using a nonparametric prior II satisfies a semiparametric Bernstein-von

Mises Theorem if, with [Ty the marginal distribution on the parameter 6,

= op«(1), up to label switching (4.12)
TV

~J!
Iy (-|Y1,...,Yn) = N (9; n)

fora satisfying (4.11).

4.2.3 General Result

When the sequence of models is a good approximation of model (4.1) by model (4.2), we expect
that efficient score functions in (4.2) are good approximations of efficient score functions in (4.1)
so that asymptotically efficient estimators in model (4.2) become efficient estimators in model
(4.1). This is what Theorem 4.5 below states. The approximation assumption we shall use is the

following.

(A3.3) There exists § > 0 such that for all y in [0, 1], 6 < gg« ¢+ (y) < 1/6, and

lim x o* - — go* £* =0.
M—+o00 ng »UJJW:M 9o £ ”OO
Note that when (A3.2) is satisfied, (A3.3) holds true as soon as the functions fj*c, j=1,...k,
¢ = 1,2, 3, are positive continuous functions.

We first obtain:

Lemma 4.3. Under Assumptions (A3.1), (A3.2) and (A3.3), the sequence of score functions (Var)nr
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converges in L*(gg« ¢+dy) to the score function ¢, and the sequence of efficient Fisher informations

(jM)M converges to the efficient Fisher information matrix J.

Lemma 4.3 is proved in Section 4.6.3.
To get that .J is invertible, it is enough that subsequences of approximation spaces are embedded.

Introduce the following assumption.
(A3.4) There exists a sequence (M),),>1 such that for all p, Zyy, is a coarser partition than Zy, ;.
The proof of the following proposition is straightforward using Lemma 4.3, Proposition 4.1 and

Proposition 4.2.

Proposition 4.4. Under Assumptions (A3.1), (A3.2), (A3.3) and (A3.4), J is nonsingular.

We are now ready to state Theorem 4.5.

Theorem 4.5. Under Assumptions (A3.1), (A3.2), (A3.3) and (A3.4), there exists a sequence M,
tending to infinity sufficiently slowly such that the m.Le. §Mn is asymptotically a regular efficient

estimator of 0* and satisfies
S I -
vn (9Mn -0 ) = 7 Z ) + op«(1), up to label switching.

Under the same assumptions and if for all M, the prior I1); has a positive density in the neighbour-
hood of (6*,w?y,), then there exists a sequence L,, tending to infinity sufficiently slowly such that
moreover
j 1
Hr,0(1Y1,...,Yn) — 0" + 727711 = op« (1), up to label switching.
TV

Proof. If O is the m.Le. when using model (4.2) with partition Zj; one has
M _1 - 7
T Gy~ 07) = Iy Vi) + Ro(M
\f( M= ”¢=1wM( ) + Rn (M)

where for each M, (R,,(M)),,>1 is a sequence of random vectors converging to 0 in P*-probability
as m tends to infinity. But then, there exists a sequence M,, tending to infinity sufficiently slowly
so that, as n tends to infinity, R,,(M,,) tends to 0 in P*-probability. Now,

7—1 n =~

. -1 " J
M N D) = LS gy M T
\/ﬁz M \/ﬁ;

—J! A}i L .
NG Z¢ ﬁZan $) (Y5)

= i=1

3

-1

- W (Yi) + op+ (1)
ﬁE ’
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since, by Lemma 4.3, B*|| = 320 (dar,, — ) (Y3) I” = [[9ar, — 91175
-1

(gor £+ (¥)dy) tends to O as

n tends to infinity and (.Jyz,)~! converges to (.J) ! as n tends to infinity, so that the first part
of the theorem is proved.
On the Bayesian side, for all M, there exists a sequence V,,(M ) of random vectors converging

to 0 in P*-probability as n tends to infinity such that

sup
ACO

o, Jt
My 0(30 € Sy : UeeA\Yl,...,Y)—/\/< MO ?j)‘:mM).

Arguing as previously, there exists a sequence L,, tending to infinity sufficiently slowly so that,
as n tends to infinity, both V,(L,,) and R,,(Ly,) tend to 0 in P*-probability. Using the fact that

the total variation distance is invariant through one-to-one transformations we get

S -
HN < n,MHM; T]\;[> (9* + 721/] )
~ n TV
= HN (\/’FL (On,kfé\M - 6*) — J_Tj ZIL (}/Z) : j]\—41> . N (O’ j*l)

=1 TV
o~ ~7]‘ n ~ ~ ~
- ||J\/ (jmﬁ (70— 0*) = LS ) Id) =N (0 T )
i=1 TV
71/2 On, M7 « J 1T -
< WA RV (T = 07) = S= S G ()]s 1) = N (03 1d)
=1 TV

n HN(O,Id) N (0; JMj—l)

o

But for vectors in m € R¥~! and symmetric positive (k — 1) x (k — 1) matrices ¥ we have
IV (m, Id) = N (0; Id) || 7y < [[m]

and

I (0.1d) = N (0 D)l gy < B (Y2012~ U] > logldet(s)])
=P (U2 = 572U = logldet(¥)]
where U ~ N (0, Id). Thus the last part of the theorem follows from the triangular inequality

and the fact that using Lemma 4.3, as n tends to infinity, Jz, J~! tends to Id and V},(L,) and
R, (L) tend to 0 in P*-probability. O
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4.3 Model Selection

In Theorem 4.5, we prove the existence of some increasing partition leading to efficiency. In this

section, we propose a method to choose a partition when the number of observations n is fixed.

4.3.1 Reasons to Do Model Selection

We first explain why the choice of the model is important. We have seen in Proposition 4.2 that
for a sequence of increasing partitions, the efficient matrix is nondecreasing. This suggests to
choose the coarsest partition and thus M, increasing as fast as possible. Yet, one needs to pay
attention to the bias in a finite horizon (i.e. when the number of observations n is fixed). Note
that in this model, we don’t know any unbiased estimator of 6. Besides, typically the bias of
an estimator of # may increase when M increases. This prevents us to choose a sequence M,

tending to +o00 too quickly (see Corollary 4.7).

We now illustrate this issue using the m.l.e. If the m.l.e. is unbiased asymptotically, it is biased
for a finite sample. In Proposition 4.6, we give the limit of the m.l.e. when the number n of

observations is fixed but M tends to infinity.

Proposition 4.6. For almost all observations Y1, ..., Yy, 1 (Y1,...,Y,) tends to

r::n—\l;\_n/kJ k—r

up to label switching, when M tends to infinity.

Proposition 4.6 is proved in Section 4.6.4.

Using Proposition 4.6, we can deduce a constraint (leading to an upper bound in some cases),
depending on the considered sequence of partitions (Zys)arem, on sequences M, leading to
efficiency. We believe that this constraint is very conservative and leads to very conservative

bounds. Corollary 4.7 below is proved in Section 4.6.5.

Corollary 4.7. Suppose Assumption (A3.3), ifé\Mn tends to 0* in probability, and 0 is different
from (1/k,...,1/k),
then there exists N > 0 and a constant C > 0 such that for alln > N,

2
n? < max Im\) M, > C.
m<Mp,

Moreover, in the particular case where there exists 0 < C7 < Cy such that for alln € N and

1<m< M,
Cy Cy
— < |, < —= 4.13
Mn_|m|_Mn (4.13)
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then there exists a constant C > 0 such that,

M, < Cn®.

Note that Assumption (4.13) holds as soon as the partition is regular, so that in the two following

cases:

« for the uniform partition, when M = N and forall M € M I,,, = [(m — 1)/M,m/M)
forallm < M, Iny = [(M —1)/M,1],

« or for the dyadic regular partitions, when M = {2P,p € N*} and for all M € M I,,, =
[(m —1)/M,m/M) for all m < M, In; = [(M — 1)/M, 1], which form an embedded

sequence of partition.

4.3.2 Criterion for Model Selection

In this section, we propose a criterion to choose the partition when n is fixed. This criterion can
be used to choose the size M of a family of partitions but also to choose between two families of
partition. With a dataset, we can compute the m.l.e. (with the EM algorithm) when using model
(4.2) with partition Z, or we can get an estimator of € using its posterior distribution (the poste-
rior mean or the posterior median for instance). We thus shall index all our estimators by Z. Note

that the results of this section are valid for any family of estimators (éz) and not only for the m.l.e.

Proposition 4.6 and Corollary 4.7 show the necessity to choose an appropriate partition among a
collection of partitions Zy;, M € M. To choose the partition we need a criterion. Since the aim
is to get efficient estimators, we choose the quadratic risk as the criterion to minimize. We thus

want to minimize over all possible partitions
Ro(Z) = E* [ 102(Y1en) = 013 ] (419
where Y7., = (Yi)i<n, and for all 6, 0eo,
16~ flls, = min|°6 8l = |0 — Gl (415)

with °0 = 76 for a permutation o € Sy which orders the components of ?6, i.e. such that
701 < ... < 70k. Asusual, this criterion cannot be computed in practice (since we do not know
6*). To do this on data we need for each partition Z some estimator C'(Z) of R, (Z).

We want to emphasize here that the choice of the criterion for this problem is not easy. Indeed, the
quadratic risk R,,(Z) cannot be written as the expectation of an excess loss expressed thanks to a

contrast function, i.e. in the form E* {E* {7(9(Y1;n), Y) —~(6%, Y)]len} } ,wherey: ©x)Y —

[0, +00). Yet, the last framework is the framework of most theoretical results in model selection,



4.3 MODEL SELECTION 135

see Arlot and Celisse [AC10] or Massart [Mas07] for instance. Moreover the quadratic risk has
not a usual behaviour. Indeed if we decompose it as an approximation error plus an estimation

error as explained in Arlot and Celisse [AC10]:

. _ p*||2 o _ px)2 —
Rn(I)—elenafIHQ 0%, + Bu(Z) 6)1€IgZH9 0*||s,, where ©7 = ©,

TV TV
approximation error estimation error

we see that the approximation error is always zero in our model (and not decreasing as often).
For these reasons, we cannot apply the usual methods and we use instead a variant of usual cross

validation technique.

Consider a partition of {1,--- ,n} in the form (By, B_p, b < b,,), in other words the partition is
made of 2 x b, subsets of {1, -+ ,n}. By definition By, N B_p, = () for all by, by < b,. Because
the maximum likelihood estimator based on any finite sample size is not unbiased, the following

naive estimator of the risk is not appropriate:

b
1 & .

Covi(Z) = 2 E 162(Ys,) — 0z(Y5_,) |3, -
" p=1

Indeed, using Proposition 4.6, Coy1(Z) is tending to 0 when max,, |I,,| tends to 0. So that
minimizing this criterion leads to choosing a partition 7, € arg ming Ccy1(Z) which has a
large number of sets and so gfn (Y1.,) may be close to (1/k, ..., 1/k) and then may not even be

consistent. This can be seen when decomposing the risk R,,(Z) as:

2

Ry(I) =Var~ [Oéz(Ym)} + ’ E* [51(Y1;n)] — 0 s (4.16)
p—— ~

and computing the expectation of Ccy1(Z) in the case where the sizes of By, B_, b < by, are
all equal,
E* [Covi(T)] = Var™ [82(Vi,)|

suggests that Coy1(Z) does not estimate the bias of Equation (4.16). As an illustration, see Figure
4.2 where the trends of Ry (Z), Var* [Oéf(ym)} and ] E* [éf(nn)} _ ¢
plotted.

2
respectively are
Sk

To address the bad behaviour of Coy1(Z), we use an idea of Brookhart and van der Laan [BL06].
Choose a (fixed) base partition Zy (for which the criterion may also be computed) which is be-

lieved to be (almost) unbiased. And set

b
1 & _
Cov(T) = - > 162(YB,) — 02,(Ys_,)|3,-
™ =1
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Equivalently, we could choose any unbiased estimator 0 instead of using an estimator 07, of the
considered family of estimator. Figure 4.3 gives an idea of the behaviour of Coy and Coy using
the m.le.. It shows in particular that in our simulation study Ccy follows the same behaviour

as R,,(Z), contrarywise to Ccy/1. More details are provided in Section 4.4.

We now provide some theoretical results on the behaviour of the minimizer of Ccoy (+) over a
finite family of candidate partitions M,, compared to the minimizer of R,, (-) over the same

family.
Let m,, = #.M,, be number of candidate partitions.

To do so we consider the following set of assumptions:
(A3.5) (A3.5.1) By, B_p, b < b, are disjoint sets of equal size
#By = #B_, =a,, forallb<b,
(A3.5.2) éIo,b,Q is not biased i.e. E* [51071)72] = 0%,

we obtain the following oracle inequality.

Theorem 4.8. Suppose Assumption (A3.5). For any sequences 0 < €,,0, < 1, with probability

greater than
2
1 — 2m, exp <—2bn (en inf R, (Z)+ 6n> ),
ZeMy

we have

: (4.17)
where fn € argminge vy, Cov ().

As a consequence of Theorem 4.8, the following Proposition holds. Recall that n = 2b,a,.
Proposition 4.9. Assume (A3.5). Ifb, > n?*/3log?(n), a,, < n'/?/(log?(n)), and m,, < Can®,
for some C, > 0 and o > 0, then

E* [anRan (fn)] < _inf a,Re,(T)+o(1),

where 1, € arg mingc . Cov(T).

Note that for each Z, R,,, (Z) is of order of magnitude 1/a,, so that the remaining term is indeed

small regarding the main term. Note also that this is an exact oracle inequality (with constant 1).

In Theorem 4.8 and Proposition 4.9, 7, is built with n observations while the risk is associated
with a,, < n observations. This leads to a conservative choice of fn, i.e. we may choose a se-

quence Zn (optimal with a,, observations) increasing more slowly than the optimal one (with n
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observation). We think however that this conservative choice should not change the good be-
haviour of 521 since Theorem 4.5 implies that any sequence of partitions which grows slowly
enough to infinity leads to an efficient estimator. Hence, once the sequence M, growing to infin-
ity is chosen, then any other sequence growing to infinity more slowly also leads to an efficient

estimator.

In Proposition 4.9 and Theorem 4.8, the reference point estimate 67,(Y5_,) is assumed to be
unbiased. This is a strong assumption, which is not exactly satisfied in our simulation study.
To consider a reasonable approximation of it, fz,(Y5_,) is chosen as the m.Le. associated to a
partition with a small number of bins. The heuristic behind this choice is that the maximum
likelihood is asymptotically unbiased and a small number of bins implies a smaller number of
parameters to estimate, so that the asymptotic regime is attained faster. Our simulations confirm

this heuristic, see Section 4.4.

4.4 Simulations

In this section, we illustrate the results obtained in Sections 4.3.1 and 4.3.2 with simulations.
We compare six criteria for the model selection based on Ccy with different choices of size of
training and testing sets. We choose the regular embedded dyadic partitions, i.e. when M =
{2P,p € N*} and forall M € M, I, = [(m — 1)/M,m/M) for all m < M, Ipy = [(M —
1)/M, 1]. Following Corollary 4.7, when n is fixed, we only consider M = 2F < M, = n?
(ie. P < P, := |3/2log(n)]). In this part, we only consider m.l.e. estimators with ordered

components and approximated thanks to the EM algorithm.

For n fixed, the choice of the model, through P, is done thanks to the criterion Cy with two
types of choice for (By), (B_p). First, we use the framework under which we were able to prove
something, i.e. Assumption (A3.5.1) where all the training and testing sets are disjoints. We use

different sizes a,, and b,,:

« b, = [n*3log(n)/(20)] and a, = |[n/(2b,)] (Assumption of Proposition 4.9, up to

log(n)), leading to the criterion Cg"/l and the choice of P noted P € argminp<p, C’g"} (Zyr),

e b, = [n'/3], a, = |n/(2b,)], leading to the criterion C’g{f and the choice of P noted
ﬁnD’2 S arg mlnPSPn Cg"/?(IQP),

« ap = |n/10], b, = [n/(2a,)], leading to the criterion C’g"/g and the choice of P noted

We also consider the famous V-fold, where the dataset is cut into b,, disjoint sets Bb of size a,,,
leading to training sets B, = B, and testing sets B_, = {1,...n} \ B). We also use different

sizes a,, and b,:
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. a, = |n'?],b, = |n/an], leading to the criterion C'g’& and the choice of P noted Py €
. Vil
argminp.p, Criyy (Zor),

.« a, = |n*?3/2], b, = |n/a,], leading to the criterion C’g"% and the choice of P noted

5V,2 : 2
PY? € arg minp.p, Cg’V(IQP),

« ap = |n/10], b, = |n/ay], leading to the criterion C’g‘?} and the choice of P noted

BY? € arg minp.p, C'g’é-(IQP) .
Note that for criteria

. Cé%,, j € {D,V}, a, is proportional to n'/3 up to a logarithm term,
Ci2. e {D,V}, a,i ional to n?/3
* LovsJ , V', ap 1s proportional to n*/°,

. Cél?/,j € {D,V}, ay, is proportional to n.

We know explain how we choose Zy. We do not know any unbiased estimate of 6, which would
match the Assumption (A3.5.2). Particularly the m.le. 0 is unbiased asymptotically but biased
with finite n. We propose to choose a m.lL.e. 5M0 with a small My with the idea that when M is
small the asymptotic is attained more quickly. Yet, Mj should not be taken too small neither since
otherwise the model would not be identifiable. We propose to choose the smallest My = 270
such that My > k + 2 (equivalently Py > log(k + 2)/log(2)). This lower bound ensures that
generically on Zj the model (4.2) is identifiable.

In the simulation part, we work in the repeated setting, thatis f;; = f7, = f;; and we assume
that we know it, i.e. when we search for the m.l.e. in the model (4.2) associated to M € M, we
only search for § € Ay, w € AIJCVI (and not w € A?’\f}) assuming that w; 1, = Wj2,m = Wj3,m =
wjm. We first use three different true parameters for the simulations, in easy situations. In the
three cases, k = 2 and the other parameters are given in Table 4.1. So that, we work with Py = 2

and M(] = 22 =4.

Simu. || k | p* | fiadX = fiadA = figd) | f310) = f55d) = f55d) |
1 2 | (0.3,0.7) | N(4/5,0.07%) truncated to [0, 1] | N(1/3,0.1?) truncated to [0, 1]

2 2 | (0.2,0.8) | U((0,1)) N(2/3,0.05?) truncated to [0, 1]
3 2 1(0.3,0.7) | B(1,2) 3(5,3)

Table 4.1 — Values of the true parameters for simulation 1 to 3

The different emission distributions are represented in Figure 4.1.

Figure 4.2 gives a taste of the trend of the risk R,,(Z,r ), along with the variance Var* |:0/0\2P (len)}

E* [5213 (Ylm)} o

illustrates these trends thanks to different true parameters and numbers of observations n. The

2
and the squared bias ‘ s defined in Equation (4.16) when P increases. We
k
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N

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3

Figure 4.1 — Representation of the true emission distributions for simulations 1, 2 and 3.

different risks, bias and variances are estimated by Monte Carlo by repeating 1000 times the esti-
mation of § with the m.l.e. (approximated with the EM algorithm). A typical behaviour of the bias
is being constant or decreasing, with small increasing values of P, then increasing a lot when P
increases, and finally stabilizing to the value ||@,, — °6*||, which is a consequence of Proposition
4.6. Typically, the variance is constant or decreasing for small increasing values of P, sometimes
it then increases, before decreasing to zero (which also is a consequence of Proposition 4.6) when
P gets large. Then, the risk, which is the sum of the squared bias and the variance, is usually
constant or decreasing for small increasing values of P and then increasing to ||§,, — °0*||* when

P gets large.

Now we have an idea of the behaviour of the risk R,,(Zyr ), we can check the behaviour of the
different criteria Coy and Coyg. Figure 4.3 gives an idea of the pattern of some criteria for one
sequence of observations Y7.,, distributed from two different true parameters, with respect to
P. We do not show all the criteria since they all look alike. Moreover the purpose of figure
4.3 is to illustrate the ‘bad’ behaviour of Ccy1 compared to Coy and not comparing the six
criteria (which would anyway be impossible with one sequence of observations Y7.,). Note that
we do not compare the values but the behaviour. Indeed, the criteria are used to choose the best

P by taking the minimum of the criterion so that the values are not important by themselves.
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Besides, we know that the criterion C'cy is biased by a constant depending on Zy. As theoretically
explained in Section 4.3 and as a consequence of Proposition 4.6, we can see that the criteria Coyq
are tending to 0 when P increases while it is not the case for the criteria C'cy. Looking at Figure

4.3, the behaviour of Coy seems to be correct, we precise this impression with table 4.2.

Finally we compare the six criteria C’éf/ j € {D,V}, c € {1,2,3}, by estimating the squared
risk of the associated estimator 52 e presented in Table 4.2. Different sizes n of samples and
different true parameters are used to simulate the data. We can compare the six squared risk
to /minp<p, R,(2F) and \/W. The different risks are estimated by Monte Carlo by

repeating 100 times the estimation. The differences of performance between the different cri-

teria are not obvious. Besides, the performances of all the criteria are satisfactory, compared to

Vminp<p, R, (2F). Yet, we suggest not to use criterion C’g& because it is longer than the oth-
ers, particularly when n is large (because of large b,,). Furthermore, there is a little advantage to
criteria Cg"/l and C’(‘J/‘%

These results confirm that by using M small, the criterion behaves correctly. Moreover, the fact
that the choice of fn corresponds to a risk associated with a,, < n observations does not seem
to be a conservative choice even in a finite horizon (i.e. when n is fixed). We were expecting this

behaviour asymptotically but not in a finite horizon.

4.5 Discussion

Finite mixture models all have the property that, when the approximation space for the emission
distributions is that of step functions (histograms), then the model stays true for observation pro-
cess. Thus there is no approximation bias regarding the parameter that describes the probability
distribution of the latent variables. Extension of the results we obtain in this chapter should be
possible to other nonparametric finite mixture models. This should also be the case for non-
parametric hidden Markov models with translated emission distributions studied in Gassiat and
Rousseau [GR16] or for general nonparametric finite state space hidden Markov models studied
in De Castro et al. [DGLar], Vernet [Ver15b] and De Castro et al. [DGC15]. Here, the parameter
describing the probability distribution of the latent variable is the transition matrix of the hidden
Markov chain. However, semiparametric asymptotic theory for dependent observations is much
more involved, see McNeney and Wellner [MW00] for the ground principles. It seems difficult
to identify the score functions and the efficient Fisher information matrices for hidden Markov
models even in the parametric approximation model, so that to get results such as Theorem 4.5

could be quite challenging.
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Figure 4.2 — Patterns of the risk (with black squares), the squared bias (with blue dots) and vari-
ance (with magenta triangles) with respect to P = log(M)/log(2) for simulations
1, 2 and 3 and different values of n.
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Simulation 1 1 1 1 1 2 2 2 3 3 3
n 50 | 100 | 500 | 1000 | 2000 |50 | 100 | 500 |50 | 100 | 500
V/minp<p, R, (2F) 0.062 | 0.043 | 0.020 | 0.014 | 0.010 || 0.058 | 0.046 | 0.020 || 0.096 | 0.078 | 0.036
R,(2P) 0.063 | 0.046 | 0.021 | 0.015 | 0.010 || 0.067 | 0.046 | 0.022 || 0.10 | 0.082 | 0.042
\/IE* _|y§2ﬁ5,1(ylzn)—9*\|2' 0.069 | 0.047 | 0.019 | 0.014 | 0.011 || 0.075 | 0.056 | 0.019 || 0.12 | 0.087 | 0.037
\/IE* _||§2ﬁ5,2(ym)—0*||2_ 0.073 | 0.046 | 0.022 | 0.015 | 0.010 || 0.065 | 0.056 | 0.025 || 0.10 | 0.087 | 0.046
\/IE* '||§2ﬁ5,3(yl;n)—9*||2' 0.086 | 0.047 | 0.021 | 0.014 | 0.010 || 0.087 | 0.056 | 0.026 || 0.11 | 0.087 | 0.041
\/IE* _|y§2ﬁx,1(ym)—9*u2_ 0.091 | 0.046 | 0.021 | 0.013 | 0.009 || 0.104 | 0.055 | 0.022 || 0.11 | 0.087 | 0.053
\/IE* _||§2ﬁx,2(ym)f0*\|2_ 0.069 | 0.046 | 0.019 | 0.013 | 0.010 || 0.070 | 0.049 | 0.022 || 0.12 | 0.084 | 0.036
\/E* _|yé\2ﬁx,3(ylzn)—9*u2_ 0.103 | 0.046 | 0.019 | 0.014 | 0.009 || 0.10 | 0.049 | 0.022 || 0.14 | 0.083 | 0.035

Table 4.2 — Comparison of the squared risk of estimators associated to different criteria

NOISSNDOS1d v

157
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4.6 Proofs

4.6.1 Proof of Proposition 4.1

Let us first prove that for large enough M, the measures f,r  dy,..., fur  dy are linearly
independent. Indeed, if it is not the case, there exists a subsequence M, tending to infinity as p

tends to infinity and a sequence (a(p))pzl in the unit ball of R¥ such that for all p > 1,

k
(p) —
Z aj fwj*',e;Mp (y) =0
j=1
Lebesgue ae. Let a = (ay, ..., ) be a limit point of (a(P)),>; in the unit ball of R¥. Us-

ing Assumption (A.2) and Corollary 1.7 in Chapter 3 of Stein and Shakarchi [SS05], we have
that as p tends to infinity, fw;’c;Mp (y) converges to fr.(y) Lebesgue a.e. so that we obtain
Z§:1 @; f7.(y) = 0 Lebesgue a.e., contradicting Assumption (A3.1).

Fix now M large enough so that the measures wa,C;M dy,..., wa,C;M dy are linearly independent.
Then, one may use the spectral method described in Anandkumar et al. [AGH+14] to get esti-
mators gsp and Wy, of the parameters 6 and w)y, from a sample of the multinomial distribution
associated to density gg ..as. The estimator uses eigenvalues and eigenvectors computed from
the empirical estimator of the multinomial distribution. But in a neighbourhood of 6* and w},,
this is a continuously derivative procedure, and since on this neighbourhood, classical deviation
probabilities on empirical means hold uniformy, we get easily that for any vector V' € R¥, there

exists K > 0 such that for all ¢ > 0, for large enough n (the size of the sample):

sup K K\/ﬁ@;p —0, v>)2] < K.

lo—6+l< %

Now, the multinomial model is differentiable in quadratic mean, and following the proof of The-
orem 4 in Gassiat et al. [GPS13] one gets that, if VT J\V =0, then

~

2
lim  lim sup EY [(\/ﬁwsp — H,V)) ] = +o0.

Thus forall V € R*, VT .J,V # 0, so that Jas is not singular.

4.6.2 Proof of Proposition 4.2

We prove the proposition when My = M, My = M + 1, Zy; = {[1,...,Ip} and Iy =
{I,.... Dm0, Inva } with Ing = Inpo U Ipg, which is sufficient by induction. We denote
(M+

(w](-f‘fzn)j,C’lgmgM the parameter w in the model with partition Z; and (wj’c?ml))j,c,lngMH

the parameter w in the model with partition Zy/41. Define b € (0,1), aj . € (0,1),5=1,...,k,
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c=1,2,3 so that

M+1 M M+1 M
Inrol = (1= b)[Tul, [aral = blInrl, wiv i = (1= o)™, W = a0

Then, we may write

and

e, M Yie,M+1

M—1 (w(M+1)>ﬂIm(QC) LMD Urpp o (ve) (M+1) \ Yara (¥e)

k 3
96,w;M+1 (Y) = ZGJ H

M (M) 17,,, (ye) W ) /1 — s\ Maro(80)
- SoII () (™ ()™

Thus, when y. ¢ In for ¢ = 1,2,3, ggw:m+1(Y) = 991 (y) and computations have to take

[ a0l [ Iaral

care of y’s such that for some ¢, y. € Ij;. If we parametrize the model with partition Zjs1 using
the parameter <0, (w(M)

o) (oajﬁ)) we get the same efficient Fisher information for 6 as when

parametrizing with (9 ; (wj(',]‘f,;l)

)) Define the function D as the difference between the gradient

of 1og gg .:pr+1 and that of log gg .17 (y) with respect to the parameter <0, (wj(ﬂfzn), (aj,c)>:

D(y) := V10g go.w:ni+1(y) — V1og gg.wnr (y),

in particular the last coordinates of V log gy ..0(y) corresponding to the derivatives with re-

M+1)

spect to () are zero. Let us denote K ( the Fisher information obtained for this new

parametrization, that is KM+ = E*[(Vlog gg.w.ar+1(Y))(V10g gow:nr+1(Y))T]. Easy but

tedious computations give
E*[(Vieg gowns(Y)) (DY) =] ¢+ 1|,

so that

gy _ (S 00y
0 0

where A = E*[D(Y)D(Y)T] is positive semi-definite. As said before, .Jy/ 1 is obtained from
KM+ using the similar formula as from Jj;1. Then usual algebra gives that J M+1 = J M

since A is positive semi-definite.
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4.6.3 Proof of Lemma 4.3

Proof. Notice first that under (A3.3), gg~ ¢+ /go* o+ M is positively lower and upper bounded, so

7“’};{7
that the set of functions which are in L?(gg+ ¢+ dy) is the same as the set of functions which are in
L? (96+ w3, mdy). Also, any step function which is constant over Iy, X Iy, X Iy, mi1, ma, m3 =
1,..., M, has the same hilbertian product with gg« ¢~ and with 9o* w*, M- Thus, if forany M, Ay
is the orthogonal projection in L?(gg+ ¢+dy) onto Py, the set of step functions spanned by the

functions (S;M> i=1,...ke=1,23m=1,...,M—1 thenforallj = 1,... k—1,

R .
]’C’m

(Ym); = (Sg,M)j — Ay (Sg,M)j7

so that

(@) = () = (55); — (Star), — Bar [(S3); = (S5a) ] + (Bar = ) (59);. (419)

Notice that using (A3.3),
Py CP (4.19)

so that Aj;A = A ;. We then obtain

| @) - @)

< |[(58); = (S5.ar)

+ anra - 8y (s5),

L2(ggx g+ dy) j’ L2(gg gxdy) L2(ggx gxdy)

Using Assumption (A3.2) and Corollary 1.7 in Chapter 3 of Stein and Shakarchi [SS05], we have
that as M tends to infinity, (Sg M) converges to (Sj )j Lebesgue a.e. Both functions are uni-
B

formly upper bounded by the finite constant 1/6% using Assumption (A.1), so that (Sg M) '

converges to (Sg)j in L?(gg+ ¢+ (y)dy) as M tends to +0o and H(Sg)j - (Sg M)
B

L2(ggx g+ dy)
converges to 0 as M tends to +00. Using the same argument, for any function S € P there

exists a sequence of functions Sy; € Py that converges to S in L?(gg« g+dy). Let (Spr)as be
the sequence of functions converging to A (Sg)j in L?(gg+ g+dy). Since for all M, Sy; € Py,

we have that

|4ar (4 (5),] - A 89,

<)

L2(ggx gxdy L2(gg» gxdy)

converges to 0 as M tends to +0o. We thus obtain
L2(ggx gxdy)

that (1)) ; converges to (¢57); in L?(gg+ £+ dy). As a consequence, Jy converges to .J as M tends
to +o0. t

so that also H (ApA —A) (Sg)j‘
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4.6.4 Proof of Proposition 4.6

Proposition 4.6 is easily implied by Lemma 4.10 which formalizes the following. When the se-
quence of observations Y7, ..., Y, and n are fixed, then almost surely there exists a sufficiently
fine partition Z); such that there exists at most one component of an observation in each set
I, m < M. Then we can reorder the sets I, so that Y; . € I;},(c—1), forall c € {1,2,3} and
i < n. In this case, the likelihood ¢,,(-, -; M) is maximised at each parameter (0, w) belonging to
the set Spr C A, x (Any)3 that we explain now (and formalise in Lemma 4.10). Each element
of Spr corresponds to one clustering of the observations in k sets (represented by the (A});<k
in Lemma 4.10) of size as equal as possible. For each clustering, for all j < £,

e 0j = #A7 /n is the proportion of observations associated to A} (then the 0; are almost equal
to 1/k),

o forall c € {1,2,3} and for all I < M,

1/#A; ifl —n(c—1) € Aj (ie. Yi_p(c—1) € I; is associated to the hidden state j),
wWiel =19 0 ifl —n(c—1) € {1,...n}\ 4] (ie Yi_y(—1) € I; is not associated to j),

0 otherwise (i.e. there is no observation in I;).

Lemma 4.10. LetY1,...,Y),, be fixed observations, as soon as foralli < nandc € {1,2,3},Y; . €
it n(c—1) then the likelihood {y,(-, -; M) is maximised at (Oar,nr) if and only if (Oar, oar) € Sy

where

Sy = {(G,w) 10 = #A;/n, Wiel = ]ll,n(c,l)eA;/#A;,
(J1,J2) partition of {1,...,k}, #Jo =n—k|n/k| =:r
(A7) <k partition of {1,...,n},
#A5 = |n/k| =:q, for j1 € Ty, #45, = [n/k] +1=1q+1, forja € Jo},

andn =kq+nr, 0<r<k-—1.

Proof. Since the set of parameters is compact and the likelihood is a continuous function of the

parameters then the maximum is attained.

If (A, w) maximises the likelihood ¢,, (-, -; M),

(P1) then, for all 1 < ¢ < n, there exists 1 < j < k such that wj i —1) > 0 for all
ce{1,2,3}.
Indeed, if there exists 1 < ¢ < n such thatforall 1 < j <k, wj;yn(c—1) = 0 for some
c €{1,2,3}, then

n k 3 n

fn(e,w; M) = Zlog Z 9]' ij,c,i—i-n(c—l) +Zlog (1/(’Ii||li+n‘|li+2n|)) = =0
1=1 j=1 c=1 i=1

constant
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(P2) and if there exists j, ¢, such that w; . ;1 n(—1) = 0 and 8; > 0 then w; 4 ;4,(3—1) = 0 for
all d.
Indeed otherwise you can give the weight w; g ;4 n(4—1), to one of the other w; g ¢4 (4-1)
for which w; ¢ sy n(e—1) > 0, for all e # d (which exist otherwise take 6; = 0 which would
increase the likelihood) and this increases the likelihood.

(P3) andif §; > 0, thenw;.; = 0ifl —n(c—1) ¢ {1,...,n}.
Indeed, in this case, there is no observation in I; so that w; .; does not appear in the like-

lihood and we conclude similarly as the previous point.

Combining all the previous remarks, we know that the maximum can only be attained (and is at
least once) in one of the following sets, indexed by J C {1,..., k} which determines the zeros
ofand A; C {1,...,n}, j <k, which determine the zeros of w:

Siay,..a, ={0€A,:0;>0,j€J,0;=0, jecJ
X H {(wj,17.,wj,27.,wj,3,.) S (AM)3 :
i<k

ifjeJ, Wjcitne—1) >0 ,ifie€A; ce{l,2,3}

+ using (P2) + using (P3)

andw; ey =0, ifl€{l,..., MI\{i+n(c—1), i€ Aj}}.

Note that we do not assume that (A;);e is a partition of {1,...,n}.

We fix J C {1,...,k}and A; C {1,...,n}, j € J. Now we search for parameters (6, @) in

S Ay,.... A, Which maximize the likelihood. They are zeros of the derivative of

k 3
(0, w, A\, 1) = £ (0,w; M) + X Zﬁj -1+ Z“J?C (Z Wiei — 1) , (4.20)
c=1 i

Jj=1

with respect to nonzero components (0, w; . iyn(c—1), A and pijc, forj € J, i € A5, 1 <c < 3).

Annulling the partial derivatives give

1,iW5,2,i+nWj,3,i+2 4
E I o L e [ e el = —), VjeJ (4.21)
=y ZSE](i sts,l,iws,Q,i+nws,3,i+2n
0j 1ase @ ditnia—1)
D se (i) Os0s,1,i0s,2,i4nWs 3,i+2n
6, =1, (4.23)
jeJ

> @jeitn(e-1) = 1, Vied, ce{l,2,3}, (424)
i€A,

= —lbjcs Vied, ieAj, ce{l,2,3} (4.22)

where J(i) = {se J: iec As}.



4.6 PROOFS 149

Multiplying Equation (4.22) by @; .. i 1 n(c—1) and then summing the result over i € A; and using
Equation (4.24), we obtain that j1; . does not depend on c. Then using Equations (4.22) for ¢ = 1,

¢ = 2 and ¢ = 3, we obtain
0;0;j1,i05,2,i4+n = 0j0;1,:053,i+2n = 0j0;52,i1nW;3,i+2n.

so that

Wil = Wj2itn = W) 3it+n- (4.25)

Furthermore, multiplying Equation (4.21) by ; and summing the result over j € .J and using
Equation (4.23), we obtain A = —n. Moreover by multiplying Equation (4.22) by @; ¢ i 4n(c—1)>
and then summing the result over i € A; and finally subtracting (4.21) multiplied by ; to the

result (ie making ZieAJ— W) citn(e—1)(4.22) — 0;(4.21)), we get
0= —pj.— nbj. (4.26)
Then using again Equations (4.22), (4.25) and (4.26), we get
@2 iineny =1 Y 0031, Vi€ (i), Vee{1,2,3},
s€J(7)

so that @; ¢ ;1 n(c—1) does not depend on j € J(i) and

a}j,c,i—l—n(c—l) = ]liGAj/ n Z 9_5 , Vje€ J(Z) (4.27)
seJ (i)

Foreach Sy 4,,.. 4, =: S, we have obtained the zeros of the derivative of the log-likelihood, that
we now denote (50,5@), to emphasize the dependence with the considered set S. We now want

to know which of these zeros (°6,°@) are local maxima thanks to the second partial derivatives.

We consider sets Sy 4, ... 4, for which there exists ¢ < n such that there exist j and [ are in J (%)

and j # i. We consider a second partial derivative of
_ n k
On(0,@; M) = log [ > 60;(@;1.4)°
i=1 j=1

that is the log-likelihood (up to an additive constant) associated to the model where for all 1 <
m <k 1<s<n wnis=Wn2stn = Wmn3st+om. Assume without loss of generality that
6; > 0;, then (using that 0, =1 -, O andwj1, =1—> _, wj1s)
82[ Sp S Sp Sp Sp2 Sp. Sp Sp2
&DQ_"'( 050 M)=C 6%, > Om —3°05 | >C (6°0,°0,—3°0%) >0,
aila meJ()\{5}
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where C' > 0. This implies that for all sets Sj 4,,.. 4, := S where there exists ¢ < n such that

#.J(i) > 1, every zeros (°0,°@) is not a local maximum. So that the only possible local maxima

(A;)jes forms a partition of {1,...,n}.

So we now only consider sets Aj, j € J which form a partition of {1,...,n} and 0; ;i ne—1) =
Lica,/(nd;) for i € Aj, using Equation (4.27). As Zz‘eAj @j1; = 1, we then obtain that §; =
#A;/n = 1/(nw;1,), foralli € A;. So that we now only have to choose the best partition
(Aj)jes of {1,...,n} and J. Let N; = #A;, we know that >, N; = n and the log-likelihood

at the local maximum (°0,%@) associated to Sja,...A, = Sis

0,(%0,5w; Z Nslog(Ng “) + constant.
seJ

So that we want to minimize

Z Njlog(N;) under the constraint Z Ny=n (4.28)
seJ seJ

over J C {1,...k}and N; € N, j € J. This minimization is equivalent to the minimization of

Z Nglog(N;) under the constraint Z Ny=n (4.29)

s<k s<k

over N; € N, j < k (since then the problem (4.29) is less constrained than for the minimization
of (4.28) when J is fixed).

And, when k divides n, the minimum of (4.29) is attained at Ny = n/k. Otherwise, when k does
not divide n, consider only two indices s1, sz in {1,. .., k} and assume that Ny, s ¢ {s1, s2} are
fixed such that Ns1 + N,, = Sy is also fixed. Then we want to minimise — N, log(Ns, ) — (Sny —
Ng,)log(Sn — N, ). Studying the function x € (0, Sy) — —zlog(Sn) — (Sy —x) log(Sny — ),
we obtain that the minimum is attained when Ny, and Ny, = Sy — Nj, are the closest of Ng/2.
Then in both cases, the m.Le. is attained at every (6, w) € Syy.

O]

4.6.5 Proof of Corollary 4.7

Suppose that for all N > 0 and all C' > 0, there exists n > N such that

2
n? < max \Im\> M, <C.
m<Mp,
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So that there exists a subsequence (¢(n)),en of (n)nen such that

2
(¢(n))2( max \Im|> Mgy — 0. (4.30)

m<Mgn) n—»00
Set € > 0, by Proposition 4.6, there exists N1 > 0 such that for all n > Ny,
P (‘eMn(lecb(n)) —(1/k,..., 1/]4;)‘ < e)

>P({31<iiz<d(n), 1 <c,d <3, m< Mypy: Yige € I, Yiga € Im }°)

B(n) Mg(n)

é(n)
>1-Y 3 > P(Yic€InYia€In)

i1=1i2=1 m=1
2
>1— (¢(n))2M¢(n) max (supg, (supg)Z) ( max |Im|> . (4.31)

MM ()

Using Equations (4.30) and (4.31) and Assumption (A3.3), then é\Mn (Y1.4(n)) tends in probability
to (1/k,...,1/k) which contradicts the convergence in law of 5Mn to 6*. This concludes the
proof.

4.6.6 Proof of Theorem 4.8

We first recall Lemma 2.1 in Arlot [Arl14]:

Lemma 4.11 (Sylvain Arlot). Let A, B,C, R : M — R. If for allm,m’ € M,
(C(m) = R(m)) — (C(m') = R(m')) < A(m) + B(m),
then for allm € M such that C'(m) < inf,,epr C(m) + p, p > 0,

R(m) — B(m) < inf {R(m)+A(m)} + p.

We are going to use this lemma with R(Z) = R,,,(Z), C(Z) = Ccv(Z) and

Using Hoeftding’s inequality,
P({~B(Z) < Cov(T) — Ra,(T) < AT)}) < 2exp (~2 AT)?) |
since ||§I(YBb) - 510 (Yg_,)|I* <1, for all b. We introduce the sets

Sz ={-B(Z) < Ccv(I) — Rq,(I) < A(T)} (4.32)
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for all Z € M,,. Using Lemma 4.11, on the set Nzc, Sz, Equation (4.17) holds and using
Equation (4.32), we obtain

2
P(HIEMnSI) >1-2m,exp <_2bn <€n Ig/l&n Ran (I) + 5n) ) .

4.6.7 Proof of Proposition 4.9

Using Theorem 4.8,

146 | 25, . ?
<ap inf R,, (Z)+ + 2a,mpexp | —2by, | €, _inf R, (Z) + 0p
1— €, ZeM, 1—¢, IeM,

we can conclude by taking €, = §,, = 1/(log(n)ay).



APPENDIX A

RESUME LONG

1.1 Introduction

Dans cette thése nous considérons deux modeéles latents, c’est-a-dire des modéles ou une ob-
servation dépend d’un état caché (ou latent). Dans ces deux modeles sachant les états cachés
(Xt)ten, les observations (Y;):cny sont indépendantes avec Y; qui ne dépend que de X; via la loi
d’émission F'x,. Ainsi les observations sont une version bruitée des états cachés. Dans le premier
modele étudié, les modéles de Markov cachés, les états cachés X;, t € N forment une chaine de
Markov alors que dans le second cas, les modéles de mélange, les états cachés X;, ¢ € N sont
i.i.d.. On pourra trouver une représentation de ces modéles dits de Markov cachés et de mélange
dans les Figures A.1 et A.2 respectivement. Le terme modéle de Markov caché pourra étre abrégé

grice a son acronyme anglais HMM.

Qthlf Qth QXn—l,'

T

Figure A.1 - Visualisation d'un HMM.

Ces deux modeles sont tres utilisés en pratique, par exemple en génomique, reconnaissance de
parole, économétrie, climatologie, étude de populations. Récemment, un intérét croissant a été
donné aux modéles de mélange et de Markov cachés non paramétriques en pratique. En effet,
leurs homologues paramétriques souffrent de problemes de robustesse. La généralisation de ces

modeéles, dans le cas ou le nombre d’état pris par les états cachés est fini, s’est faite de deux fagons
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1 1 J
iid.

OO

Ix Ixs Ixn

Figure A.2 - Visualisation d’un modéle de mélange.

« en n’imposant plus de borne sur le nombre d’états pris par les états latents,

« en ne supposant plus que les lois des observations sachant les états cachés (soit les lois
d’émission) étaient paramétrisées de fagon paramétrique (i.e. avec un paramétre vivant

dans un espace de dimension finie).

Dans cette thése nous ne considérons que le deuxiéme cas, c’est-a-dire les modeles de mélange et
de Markov caché ou le nombre d’états possible pour X; est fini et connu mais les lois d’émission

ne sont pas contraintes a vivre dans un espace de dimension finie.

L’utilisation de ces modéles non paramétriques induit de nombreuses questions théoriques sans
réponses. Dans cette thése nous nous attachons a obtenir des garanties théoriques sur des esti-

mateurs ou la loi a posteriori dans ces modéles.

Le Chapitre 1 propose une introduction plus poussée (en anglais) aux problémes étudiés, on
y trouvera notamment la description des modéles considérés, une description des propriétés
asymptotiques analysées dans cette thése, et enfin la version anglaise des contributions apportées

par cette thése. Voici mes contributions en francais.

1.2 Contributions

Durant ma theése, j’ai travaillé sur trois projets permettant de mieux comprendre certaines pro-
priétés théoriques d’estimateurs ou de la loi a posteriori dans le cadre des modéles présentées
dans la partie précédente. Je me suis tout d’abord intéressée au probléme de consistance de la loi
a posteriori dans les modeles de Markov cachés, voir le Chapitre 2. J’ai ensuite étudié la vitesse
de concentration de la loi a posteriori dans ces mémes modeles, voir le Chapitre 3. Pour finir, j’ai
considéré un probléme d’estimation semi-paramétrique dans les modéles de mélange. Ce dernier
projet de recherche s’est fait en collaboration avec mes deux directrices de these Elisabeth Gassiat

et Judith Rousseau.
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Dans la suite, je présente mes contributions de maniére informelle, pour plus de détails (mathé-

matiques), voir les chapitres concernés.

1.2.1 Contribution 1 : Consistance de la loi a posteriori dans les modéeles de
Markov cachés non paramétriques a espace d’états finis, Chapitre 2, Ver-
net [Ver15b]

Ma premiere contribution concerne la consistance de la loi a posteriori dans les modeles de
Markov cachés non paramétriques a espace d’états finis. Ce sujet est développé dans le Chapitre 2

qui correspond aussi a l’article Vernet [Ver15b] publié dans EJS.

Je précise ici le cadre de cette contribution. On se place dans le cas ou la chaine de Markov
(cachée) (X¢)ien prend ses valeurs dans un espace d’état fini {1, ..., k} et on connait le nombre
d’états k . Quant aux observations Y;, ¢ € N, on suppose qu’elles vivent dans R?. Le modéle est
paramétré par et @ = (Q, f) ot u est la loi initiale de la chaine de Markov, ) est la matrice de
transition, enfin f = (fi,..., fx) est le vecteur constitué des k densités d’émission par rapport
a une mesure . u et () décrivent le comportement de la chaine de Markov X; sous-jacente et f

décrit la loi des observations sachant (X} ):cn. Donc
X, e{l,...,k}, Y,eR?

k k
X1~ Z,Uidiy Xep| X, oo X~ X | Xy ~ ZQXt,i(Si
=1 i=1

Y1,.... Y, ... [(Xi)ien sont indépendantes,  YVi|(X¢)ren ~ Yi[ Xy ~ fx,()dA,

ou §, est la mesure de Dirac en x. Ce modele est représenté dans la Figure A.1.

On se place ici dans le cadre Bayésien, on a donc besoin d’une loi sur 'espace © des parametres
(la loi a priori). On utilise IT = I1g ® chk) qui est un produit d’une loi de probabilité Il sur les
)

matrices de transition et une loi de probabilité Hifk sur les k£ densités d’émission et d,, pour la loi
a priori sur la loi initiale avec . une loi initiale donnée. Par la loi de Bayes, on peut formellement

écrire la loi a posteriori comme suit :

_ Japh (M, Ya)TI(d6)
Jo PO (Y1, ..., Yo)TI(d6)

(0 € AlYy,...,Y,)

)

\ ,0 .
oupy” (Y1, -+ Yn) = D1<iy.in<k His Qiria - - - Qin_y,in fir (Y1) - - - fi,, (yn) estlavraisemblance.
La loi a posteriori remplace le role de I'estimateur dans le cadre fréquentiste. Elle permet de don-
ner une idée du parametre duquel proviennent les observations. Remarquez que contrairement

a un estimateur fréquentiste usuel, la loi a posteriori est une loi de probabilité sur I’ensemble des

parametres.

Dans la suite, je m’intéresse aux garanties théoriques qu’on peut obtenir sur la loi a posteriori.



156 CHAPTER A: RESUME LONG

En particulier, je m’intéresse au comportement asymptotique de cette loi, c’est-a-dire lorsque le
nombre d’observations tend vers I'infini. Dans ce but, je prends un point de vue fréquentiste en
supposant que les observations proviennent d’un vrai parametre 8*. Dans ce cas, il parait naturel
que la loi a posteriori concentre sa masse sur le vrai paramétre 8*. On appelle ce comportement
la consistance de la loi a posteriori. Formellement, on dit que la loi a posteriori est consistante

en 0" par rapport a la pseudo-métrique d lorsque,
I({0: d6,0") > e} |Y1,...,Y,) =0, P’ —a.s., pourtoute > 0.

La consistance est une exigence minimale sur la loi a posteriori. L’étude de la consistance de la loi
a posteriori dans le cadre des HMMs a espace d’état fini est I'objet de ma premiére contribution.
En particulier j’ai étudié cette garantie en considérant différentes pseudo-métriques d, c’est-a-

dire différentes topologies sur différents objets.

Consistance de la loi a posteriori pour I’estimation de la loi marginale jointe Ple de |

observations consécutives

J’ai tout d’abord cherché a savoir si la loi a posteriori concentrait sa masse autour des parameétres
0 tels que les lois P?, de [ observations stationnaires consécutives associées (c’est-a-dire la loi
de Y7, Y5, ..., Y] sous une loi stationnaire associée a 6), étaient proches de Pﬁ*. Cette étude est
intéressante dans le cadre de la prédiction. En effet, si la loi a posteriori est consistante pour
cet objet Pf alors la loi des observations peut étre estimée de facon consistante. Cette étude se

révélera aussi utile dans le cadre de I'estimation de () et f, voir la partie suivante.

Deux topologies sont utilisées pour comparer les lois (P/)g. On considére la topologie Ty, as-
sociée a la convergence en loi ainsi que la topologie plus fine 7; associé a la norme Lq, qui

correspond a l'utilisation de la pseudo-métrique D; sur O:

Dl(é),é) = ||p19 *pleHLl(,\@l)?

ou pla est la densité associée a Pla par rapport a A%/,

Pour obtenir un théoréme général portant sur la consistance de la loi a posteriori pour les deux
topologies précédentes, j’ai utilisé la "méthode usuelle", plus précisément Barron [Bar88]. Cette
méthode consiste a montrer que la loi a priori met suffisamment de poids dans le voisinage de
Kullback du vrai parametre et a prouver 'existence de certains tests (qui est souvent démontrée
par le fait que la loi a priori ne met pas trop de poids sur des espaces trop grands, i.e. pénalise

suffisamment les espaces complexes). Voir le Théoréme 1.11 pour plus de précisions.

J ai explicité les hypothéses provenant de Barron [Bar88] dans le cadre des HMMs. L’existence des
tests était déja démontrée dans Gassiat and Rousseau [GR14], elle s’appuie sur une généralisation

de l'inégalité d’Hoeffding pour des données dépendantes par Rio [Rio00]. Il me restait donc a
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Identifiabilité & permutation prés
par Gassiat et al. [GCR15]

o- PG )= D Qi Qi () fi()

1<iy...i;<k

D HiaQinia -+ Qv fir (Y1) - fin (Vi)

1<iy...it—1<k
1<ipyq.in<k

PU(X; = |Y1,...,Y,) = e
> 1 Qs - Qi i fir (V1) - i (V)

Loi de lissage ;1 7 <k

L

Figure A.3 - Obtenir de 'information sur  ou les lois de lissage a partir de pl@

expliciter un ensemble de parametres pour lequel la divergence de Kullback associée au vrai

paramétre était petite. Ceci est fait dans le Lemme 2.2.

Ainsi, j’ai obtenu que si Il met du poids dans tous les voisinages de Q* (voir I’hypothése (A1.1a))
et que II; met du poids dans certains voisinages de f* (voir les hypotheses (A1.1b), (Al.1c)
et (A1.1d) pour avoir la description exacte de ces voisinages) alors la loi a posteriori est con-
sistante en 0* = (Q*, f*) par rapport a 7, voir le Théoréme 2.1. J’ai aussi obtenu que si de
plus II ne met pas trop de poids sur des espaces trop gros (voir I'hypothese (A1.2)) alors la loi a

posteriori est consistante en 0* = (Q*, f*) par rapport a 7;, voir le Théoréme 2.1.

Les deux topologies précédentes 7, et 7; concernaient la loi jointe marginale de [ observations.
Or on pourrait étre intéressée par d’autres quantités comme le parameétre § en lui-méme ou les

lois de lissage (i.e. la loi d’un état caché sachant les observations) par exemple. Ainsi j’ai cherché

a comprendre ce que ca signifie sur Q et f ou sur P(@/)(X; = .|Y},...,Y,) lorsque pl(Q’f)
est proche de pl(Q*’f ") en norme L', voir la Figure A.3 pour une illustration. Ce probléme n’est

a priori pas facile car il est lié au probleme d’identifiabilité des HMMs (i.e. de I'injectivité de
0 — pla) qui est loin d’étre un probléme facile dans les HMMs. On parle de la résolution de ce

probléme dans les deux parties suivantes.

Consistance de I’a posteriori pour 'estimation de () et f

Dans cette partie, on s’intéresse au probléme de I’estimation du parametre € en lui-méme, c’est-a-
dire de la matrice de transition () et des densités d’émission f;, 7 < k. Ainsi, on cherche a savoir
si la loi a posteriori concentre sa masse autour des paramétres (@, f) tels que @ est proche de
Q* et f est proche de f*.

Obtenir ce type de consistance a partir de la consistance sur la loi des observations est intimement
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lié a I'identifiabilité du modéle puisqu’on cherche a comprendre I'inverse de
0ecO—p! (A.1)

si elle existe. L’existence de 'inverse est assurée par I'identifiabilité. Or Gassiat et al. [GCR15]
ont montré qu’en supposant que k est connu, que () est une matrice de rang plein et que les
lois d’émission f1 ], ..., fiA sont linéairement indépendantes ; si la loi de 3 observations p§/\®3
est égale a pg)\@’g alors il existe une permutation des états o € Sy, telle que Q; ; = Qg(i)ﬂ(j) et
fid\ = f5(;)d pour tout 1 < 4,5 < k. On peut donc retrouver les paramétres a permutation
des états pres a partir de la loi jointe de 3 observations successives. Ainsi le modéle est identi-
fiable & permutation des états prés. Et on ne peut pas espérer retrouver exactement (Q, f) en
toute généralité mais seulement a permutation des états cachés pres, puisque les lois jointes de
! observations, associées a des parameétres provenant d’'une permutation des états cachés, sont
les mémes. Il en est de méme pour la consistance. En effet, supposons que la loi a priori soit

compatible avec la permutation des états cachés, c’est-a-dire

I(U) =1I(cU), YU CO, VYoeS,
oU = {<(Qa(i),a(j)>i7j7 (f0(1)7 SRR fa(k))) €0: (Q7 f) € U}7
ou Sy, est 'ensemble des permutations sur {1, ..., k}. Alors la masse a posteriori d’un ensemble

U de parametres est aussi égale a la masse a posteriori des parametres dans U pour lesquels les

états cachés ont subi une permutation o. Formellement,

_ Jy b0, Y)INde) [ 05 (Ya, .. Vo) TI(do)
C Jo P (Y1, . Y)I(dO) T [oph(Ya, ... Yy)II(dO)

I(U|Y1,...,Yn) =1I(aoU|Y1,...,Ys),
pour toute permutation o € S. Ainsi, le meilleur comportement de la loi a posteriori concernant
la consistance serait que la loi a posteriori concentre sa masse en {6* } s, = Uycs,0{0*}. Silaloi
a priori est plus générale, lorsque le nombre d’observations augmente, la loi a priori devrait étre
"oubliée” et on devrait demander la concentration de la loi a posteriori autour du méme ensemble
{0 }s,-

On cherche alors a étudier la consistance par rapport a la topologie T¢ ¢ qui est le produit de
la topologie associée a la norme sup sur les matrices de transition et la topologie associée a la
convergence en loi (associée a une distance dy.ax) sur les lois d’émission le tout & permutation des
état cachés pres. J’ai obtenu que la consistance de la loi a posteriori par rapport a D; (avec [ > 3)
en 0* plus les hypothéses d’identifiabilité en le paramétre 6* implique que la loi a posteriori
est consistante par rapport a 7 s. Voir le Théoréme 2.3. Le transfert de la consistance d’une

topologie a une autre a été obtenue grace a des arguments de continuité.
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Consistance de la loi a posteriori pour les lois de lissage

Les modeéles de Markov cachés a espace d’états finis sont souvent utilisés pour classer les obser-
vations suivant les états cachés qui leur correspondent. Dans ce but, on peut chercher a estimer

les lois de lissage c’est-a-dire les lois d’un état caché sachant les observations
0
P (X =Y1,..., ).

Mieux, on peut s’intéresser a la loi d’'un ensemble fini d’états cachés consécutifs sachant les

observations, c’est-a-dire la loi de lissage m-jointe :
P(Xy,....Xn)=(,...,)|Y1,...,Y), meNfixed,n > m.

Dans le Chapitre 2, on étudie aussi la consistance a posteriori par rapport a la loi de lissage m-
jointe, i.e., on veut savoir si la loi a posteriori se concentre autour des parameétres pour lesquels la
loi de lissage m-jointe associée est proche de la vraie (& permutation prés). Ce type de consistance
méne a des lois a posteriori qui permettent de bien classer les observations suivant 1’état caché

correspondant.

J’ai montré que, dans le cas particulier ou les observations sont discretes, sous les hypothéses
d’identifiabilité en 6%, si la loi a posteriori est consistante en 6* par rapport a D; alors la loi a
posteriori concentre sa masse en les parametres € pour lesquels la loi de lissage m-jointe associée

est proche de la vraie a permutation preés.

On notera que l'estimation des lois de lissage a été étudiée ultérieurement dans De Castro et al.
[DGC15] d’un point de vue fréquentiste. Dans De Castro et al. [DGC15], la distance en variation
totale entre deux lois de lissage associées a deux parametres 0 et 0 est controlée par la norme de
Frobenius ||Q — Q||rp et lanorme L' : ||f; — f;||;1,j < k. Ceci permet de montrer qu’a partir
d’un estimateur consistant de la matrice de transition et des estimateurs consistants, par rapport
alanorme L' des lois densités d’émission, on peut construire un estimateur consistant des lois
de lissage. Pour en déduire un résultat Bayésien, on aurait besoin d’un contréle Bayésien de
| f; = fill 1. A ma connaissance, un tel contréle n’existe que dans le cas d’observations discrétes
étudié dans le Chapitre 2. En effet dans ce cas, la topologie associée a la convergence en loi est
la méme que celle associée a la norme L; et les Théorémes 2.1 et 2.3 nous donnent un controle
Bayésien de || f; — fj[|11. On peut alors en déduire un résultat de consistance sur les lois de

lissage. On obtient alors un résultat dans le méme cadre que le Théoréme 2.8.

Application a différents modéles et lois a priori

Dans la Partie 2.3, je propose des modéles et lois a priori concrets pour lesquels la loi a poste-
riori associée est consistante par rapport aux différentes topologies décrites précédemment. Je

consideére :
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+ des observations continues, avec des lois d’émission i.i.d. selon un mélange de Gaussiennes

sous la loi a priori, voir la Partie 2.3.1,

« des observations continues, avec des lois d’émission translatées f; = g(- — m;) et g est

distribuée selon un mélange de Gaussiennes sous la loi a priori, voir la Partie 2.3.2,

« des observations discrétes, avec des lois d’émission i.i.d. selon un processus de Dirichlet,

voir la Partie 2.3.3.

Limitation des résultats du Chapitre 2

e Une des hypotheses, portant sur le support de Ilg, utilisée pour obtenir la consistance par
rapport a Dy, nécessite de connaitre une minoration des éléments de la vraie matrice de transi-
tion. Cette hypothése permet de controler les propriétés de mélange des HMMs, pour s’assurer
de Pexistence de certains tests (ceux construits dans Gassiat and Rousseau [GR14]). Dans le
Chapitre 3 (sur les vitesses de concentration), cette hypothése n’est pas faite, mais des hypothéses

plus fortes sur f* et I sont utilisées pour obtenir une vitesse.

Perspectives du Chapitre 2

¢ A ma connaissance, on ne connait pas d’ensemble d’hypotheéses qui implique la consistance de
la loi a posteriori par rapport a la norme L sur les lois d’émission. Cette perspective est intéres-
sante car elle permettrait d’assurer un bon classement des observations en utilisant De Castro et

al. [DGC15], en plus d’assurer plus finement une estimation consistance des lois d’émission.

e Un autre projet serait d’étudier la consistance de la loi a posteriori lorsque le nombre d’états k
n’est pas connu ni borné et que les lois d’émission vivent dans un espace de dimension infinie.
Ce cadre a été étudié par Gassiat and Rousseau [GR14] et van Havre et al. [HRWM16] lorsque
les lois d’émission sont paramétrées de facon paramétrique. Mélanger les techniques de preuve
de Gassiat and Rousseau [GR14], van Havre et al. [HRWM16] et le Chapitre 2 devrait mener a

des résultats positifs.

1.2.2 Contribution 2 : Vitesse de concentration de la loi a posteriori dans les
modéles de Markov cachés non paramétriques a espace d’état fini, Chapitre 3,
Vernet [Ver15a]

Ce projet a été mené dans le méme cadre que le projet précédent. On a voulu pousser 1'étude
précédente afin de comprendre a quelle vitesse la loi a posteriori se concentrait. Cette contribu-

tion est détaillée dans le Chapitre 3, elle est aussi disponible sur arXiv : Vernet [Ver15a].

Le projet, évoqué dans la Partie 1.2.1 précédente, concernait I’étude de la consistance de la loi a

posteriori. On voulait déterminer des hypothéses sous lesquelles la loi a posteriori se concentrait
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autour du vrai parametre lorsque le nombre d’observations tendait vers I'infini. Dans ce projet,
on s’intéresse a la vitesse a laquelle la loi a posteriori se concentre. Formellement on dit que la
loi a posteriori se concentre avec une vitesse €, — 0 en 0%, par rapport a une pseudo-métrique

d sur O s’il existe une constante M > 0 telle que

II({0: d(6,0") > Me,} | Y1,...Y,) = 0, in P’ -probability.

Les résultats de vitesse permettent de comparer des lois a priori. C’est un critére d’optimalité.
On dira que la loi a posteriori se concentre a une vitesse minimax lorsque la loi a posteriori se
concentre avec la meilleure vitesse possible. L’étude de la vitesse de concentration permet aussi

de mieux comprendre le role joué par la loi a priori.

Tout comme I’étude de la consistance, ’analyse de la vitesse de concentration nécessite de choisir
une pseudo-métrique. Dans ce projet, j’ai utilisé D;(0,0) = ||pf — pf” L, Je rappelle ici que la
topologie induite par D; est intéressante dans le but d’estimer la loi des observations et donc
aussi dans un but de prédiction. C’est aussi une premiere étape pour obtenir une vitesse de

concentration par rapport a une métrique sur les lois d’émission.

Vitesse de concentration par rapport a D,

Mon but était d’obtenir des hypothéses explicites et réalisables sur Ilg, IT¢, @* et f* impliquant
Pobtention de vitesse. Dans ce but, j’ai utilisé Ghosal and van der Vaart [GV07a], qui donne
un théoréme général permettant d’obtenir des vitesses de concentration (voir le Théoréme 1.3)
et j’ai explicité ses hypothéses dans le cas des HMMs. Les vitesses de concentration sont plus
difficiles a obtenir que la consistance de ’a posteriori. En effet, 'obtention de vitesse demande
un contrdle plus fin du voisinage de type Kullback autour du vrai parametre. Cela demande
donc une meilleure compréhension de la vraisemblance autour du vrai parameétre. J’ai construit
de nouveaux contrdles des ces "voisinages" aidés par des résultats sur les HMMs paramétriques
comme Douc and Matias [DMO01] et Douc et al. [DMR04], voir les Lemmes 3.2 et 3.3. Obtenir des

hypotheses satisfaites par des lois a priori usuelles m’a demandé beaucoup de travail.

Pour finir, j’ai obtenu un théoréme général (Théoréme 3.1) qui associe la vitesse de concentration
par rapport a D; a la loi a priori (I, chk)) et au vrai parametre (Q*, f*). La vitesse atteinte a la
forme suivante €,/ q,, ou €, dépend du coté “non paramétrique” du modéle, a savoir chk) et f*
quant au taux ¢ il dépend de Ig. Ainsi le taux €, est détérioré par g , c’est-a-dire par la liberté

donnée a Il en ce qui concerne les propriétés de mélange de la chaine de Markov associée a Q.

Application a différents modéles et lois a priori

J’ai appliqué le théoreme général dont je parle dans la partie précédente a différents cadres. 1l
aboutit & des vitesses minimax a une puissance de log(n) preés, dans différents modeles et pour

différentes lois a priori, voir la Partie 3.4.
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En particulier, des vitesses minimax (a une puissance de log(n) prés) sont obtenues dans le cas
d’observations discrétes avec des lois d’émission (qui sont donc des lois de probabilité sur N) i.i.d.
selon un processus de Dirichlet sous la loi a priori. Plus précisément, une vitesse 1/+/n a une

puissance de log(n) prés a été obtenue. Voir la Partie 3.4.1.

De plus des vitesses de concentration adaptatives (c’est-a-dire minimax pour différents sous en-
sembles de paramétres, la loi a posteriori s’adapte alors a la régularité des données) sont at-
teintes dans le cas d’observations continues et des densités d’émission i.i.d. selon un mélange de
Gaussienne par Processus de Dirichlet sous la loi a priori. Ainsi une vitesse proportionnelle a
n~B/(2B+1) 3 une puissance de log(n) prés, est obtenue lorsque les densités d’émission apparti-

ennent a une classe de fonctions de type S-Holder dans la Partie 3.4.2.

Dans les deux cas précédents, on a obtenu des vitesses minimax (a une puissance de log(n) prés)
pour peu que Il pénalise suffisamment (i.e. ne mette pas beaucoup de poids dans) le voisinage
de la frontiére de Af := {Q € [0, 1]**F . Z§:1 Qi = 1,V1 <i < k}, 'ensemble des matrices
)

de transition. De maniere générale, si H;k = T1%*, avec II # qui induit une concentration min-
imax de la loi a posteriori par rapport a la norme L; sur les densités dans le cas de I'estimation
de densité avec des observations i.i.d., on s’attend alors a ce que la la loi a posteriori se concen-
tre a une vitesse minimax dans le cadre des HMMs pour peu que Il pénalise suffisamment le

voisinage de la frontiére de A’,z.

On peut remarquer que les vitesses minimax obtenues pour une classe de densités d’émission et
chk) = H;‘?k sont les mémes que dans le cadre de I'estimation de densité avec des observations
iid., par rapport a la norme L; et la méme classe de densités. Ainsi dans nos exemples, la
dépendance générée par les HMMs sur les observations ne détériore pas la vitesse minimax,
comparé au cadre i.i.d.. La méme remarque est faite dans De Castro et al. [DGLar] et Bonhomme

et al. [BJR16a] ou des vitesses d’estimateurs fréquentistes sont considérées.

Cette contribution concerne les vitesses de concentration. Or, si la loi a posteriori se concentre
a une certaine vitesse tendant vers O par rapport a D; alors la loi a posteriori est aussi consis-
tante. On peut alors utiliser les résultats du Chapitre 2 et montrer que la loi a posteriori est alors
aussi consistante pour la topologie 7, s (utile dans le cadre de I'estimation de ¢) sous condition

d’identifiabilité du vrai parametre.

Perspectives au Chapitre 3

e L’hypothese faite sur Ilg, concernant la pénalisation des matrices de transition qui sont trop
proches de la frontiére de A¥, est plus faible que celle supposée pour obtenir la consistance de
la loi a posteriori. Malgré tout, cette hypothése est encore forte et n’est pas vérifiée par les lois

utilisées en pratique. Il serait intéressant de savoir a quel point cette hypotheése est nécessaire.

e Une perspective a ce travail est I'obtention d’une vitesse de concentration par rapport a la

norme L sur les lois d’émission a partir de la vitesse par rapport a D;. Ce transfert est plus
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difficile dans le cas de la vitesse de concentration que dans le cas de la consistance. En effet il
demande une compréhension plus fine (que la continuité) de I'inverse (& permutation preés) de
0 — ple. Un transfert similaire a été fait dans De Castro et al. [DGLar] en considérant la norme

Ly et non L. Cet article semble étre une bonne base de travail pour ce probléme.

1.2.3 Contribution 3: Estimation semi-paramétrique efficace et sélection de
modéle pour les modéles de mélange multidimensionnels (travail en col-
laboration avec E. Gassiat et J. Rousseau), Chapitre 4, Gassiat et al. [GRV16]

Ma derniére contribution concerne un probléme semi-paramétrique. C’est un travail en col-
laboration avec mes deux directrices de thése Elisabeth Gassiat (Paris-Sud University) et Judith
Rousseau (CEREMADE). Les détails de ce projet sont rédigés dans le Chapitre 4 et sont aussi
disponibles sur arXiv : Gassiat et al. [GRV16].

On a cherché a étudier l'efficacité asymptotique pour une composante du parametre, a savoir le

parameétre de mélange dans les méthodes de mélange.

On remarquera que ce parametre remplace la matrice de transition dans le cadre des HMMs.Cette
étude est donc aussi une premiére étape pour comprendre ’estimation semi-paramétrique des

matrices de transition dans les HMMs.

On précise ici le cadre des résultats obtenus dans le Chapitre 4. Comme précédemment les états
cachés X, vivent dans un espace d’état fini {1,...,k} ol k est connu. Mais ici ces états sont
iid. selon une loi Z§:1 i6;. De plus, les observations Y;, ¢t € N vivent dans [0, 1]3. Sachant
les états cachés (X;)ien, les observations sont toujours indépendantes avec Y; qui ne dépend
que de X;. Mais de plus sachant X;, les trois composantes Y; 1, Y; o et Y; 3 de I'observation Y;
sont indépendantes avec pour lois respectives fx, 1d\, fx, 2d\ et fx, 3d\. Ce modeéle peut étre
visualisé Figure A.4. On remarquera que ce modéle est identifiable a permutation des états cachés

prés sous des hypothéses naturelles (voir la Partie 1.3.1 pour plus de précisions).

iid.

fxi

Figure A.4 - Visualisation du modéle de mélange multidimensionnel.
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Efficacité asymptotique

Pour obtenir des estimateurs réguliers efficaces, on utilise des modéles d’approximation. A savoir,
on projette orthogonalement dans L? les densités d’émission sur ’'ensemble des histogrammes
associés a une partition quelconque Zy; = {Iy,..., I} de [0,1]. On obtient alors un modéle
paramétrique et les parametres de ce modéle sont le paramétre ;1 € Ay, qui détermine la loi des
états cachés, et wyr € (Anr)3F qui paramétre les lois d’émission. La loi d’une observation est

alors

k 3
Gueot AAY) =Y [ Firesnr (we) Mdye),
j=1 =1

N M .
ot far = (fjem)j<ki<e<ss fieam = 2omey (Wiemn /| Im)r,, j < k,1 < ¢ < 3. Enfin,
on considére une famille de partitions Zy;, M € N, indexée par le nombre d’éléments dans la

partition, associée a une famille de modéles d’approximation.

Dans ces modeles d’approximation, on peut déterminer un maximum de vraisemblance (67, 0r)
qui, a permutation pres, est asymptotiquement normal (pour le modéle d’approximation) en

(0%, w*), ou W im = J 1, J7cdA. Ainsi é\M est régulier et est asymptotiquement Gaussien au-
tour de 6%, mais a pour variance asymptotique l'inverse de I'information de Fisher associée au
modéle d’approximation, qui peut étre différent de I'information de Fisher efficace pour le mod-
ele semi-paramétrique complet. Or, en raffinant la partition suffisamment doucement lorsque le
nombre d’observations augmente, on obtient un estimateur 9, M, régulier efficace (pour le modele

complet) de 6%, voir le Théoréme 4.5.

Plus précisément, on obtient tout d’abord que lorsque la partition est raffinée, I'information de
Fisher, associé au modéle d’approximation, augmente ; voir la Proposition 4.2. De plus, lorsque la
partition est raffinée telle que le sup de la taille des ensembles des partitions tend vers zéro, alors
Iinformation de Fisher associée aux modéles d’approximation tend vers I'information de Fisher
efficace associée au modele semi-paramétrique complet ; voir le Lemme 4.3. Pour finir, on prouve
Pexistence d’un raffinement M,, de ’ensemble des partitions tel que la suite associée de maximum
de vraisemblance ), est réguliere efficace dans le modéle semi-paramétrique complet; voir le

Théoréme 4.5.

On applique la méme méthode dans le cadre Bayésien. C’est-a-dire, si on a une famille de lois
a priori (IIps) sz, une loi pour chaque modéle associé a une partition Zys, qui sont absolument
continues par rapport a la mesure de Lebesgue et qui ont une densité continue et positive sur
leur ensemble de définition ; alors en raffinant la partition suffisamment lentement, on peut
obtenir un théoréme de type Bernstein von Mises. Plus formellement, il existe un raffinement
L,, de I'ensemble des partitions tel que la suite de lois a posteriori Iz, (|Y1,...,Y,) vérifie un

théoréme de Bernstein von Mises ; voir le Théoréme 4.5.
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Sélection de modéle

Les deux résultats précédents sont des résultats d’existence mais ne sont pas constructifs. C’est-
a-dire qu’ils ne donnent pas d’indice sur a quel point le raffinement M, doit se faire lentement.
Dans la Partie 4.3.1, on obtient que sile raffinement M,, est fait trop vite dans le cas de I'estimateur
du maximum de vraisemblance, alors la suite d’estimateurs du maximum de vraisemblance 9, M,,

tend presque siirement vers le poids uniforme et n’est donc méme pas consistante.

On propose une procédure pour sélectionner le raffinement d’une famille de partitions s’appuyant
sur la validation croisée. Dans le Théoréme 4.8, on expose une inégalité oracle pour le risque de
Pestimateur sélectionné, associé a a,, (<< n) observations alors que l'on utilise n observations
pour sélectionner le modeéle. Ce choix de raffinement pourrait mener a une sélection trop conser-
vatrice. Nous pensons que ce conservatisme ne devrait pas modifier les qualités asymptotiques

de 'estimateur sélectionné.

Enfin, on applique notre critére de sélection a des simulations. Nous avons été surprises par
le fait que notre procédure "conservatrice" avait de bonnes propriétés méme a horizon fini (i.e.

lorsque n est fixé). Voir la Partie 4.4.

Perspectives du Chapitre 4

e Nous aimerions obtenir une vitesse de raffinement explicite (sur M,,) qui assure une efficacité
asymptotique.

o Il serait aussi intéressant de généraliser les résultats de cette derniére contribution au cas des
HMMs. La généralisation des résultats du Chapitre 4 au cas des HMMs semble loin d’étre évi-
dente. En effet, les propriétés du maximum de vraisemblance et la détermination de I'information
de Fisher dans les HMMs paramétriques ne sont pas immédiates, voir Douc and Matias [DM01],
Douc et al. [DMRO04], Douc et al. [DMOH11] et les références dans Cappé et al. [CMRO5] par

exemple.

¢ Enfin, dans le cadre Bayésien, on peut se demander s’il existe une loi a priori qui mene a une loi
a posteriori ayant des propriétés optimales de concentration a la fois sur le paramétre décrivant

le modéle latent (avec un résultat de type BvM) et sur les lois d’émission (en vitesse).

1.3 Résumé de mes contributions

Les résultats que j’ai obtenus durant ma thése sur les modéles de Markov cachés non paramétriques
et les modeles semi-paramétriques de mélange multidimensionnels a espace d’états fini sont ré-

sumés dans le Tableau 1.3.
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Consistance de la vitesse de efficacité
estimation loi a posteriori, concentration, | asymptotique,
Chapitre 2 Chapitre 3 Chapitre 4
de la densité ple v v
du parametre décrivant la loi v v
du modeéle latent p ou @
des densités d’émission v (en
fireo o [ topologie faible)

des lois de lissage
P(Xt = |}/17aYn)

v" (quand les obser-

vations sont discretes)

dans les HMMs non paramétriques

dans les modéles
de mélange semi-

paramétriques

Les cases avec le signe v' correspondent a des problemes que j’ai étudiés et pour lesquels j’ai

obtenu des résultats positifs. Les parenthéses permettent de préciser une restriction aux résultats.

A ma connaissance, les résultats correspondant aux deuxieme et troisieme colonnes sont les

premiers résultats obtenus sur le comportement asymptotique de la loi a posteriori dans le cadre

des modéles de Markov caché a espace d’état fini. De méme, les résultats correspondant a la

quatriéme colonne, sont a ma connaissance les premiers résultats sur lefficacité asymptotique

obtenus dans le cadre des modéles de mélange semi-paramétriques multidimensionnels.
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