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Numéro. d’ordre: D. U : 2773
E D S P I C : 782

Université Blaise Pascal - Clermont II
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I am grateful for the help of Raphaël Rouveure and Patrice Faure, the door to

their offices was always open whenever I ran into a trouble spot or had a question
about my research or writing.

The Institut Pascal members accepted me amongst them. I thank them for
their welcome and for their cheerful mood. Regretfully, I will not be able to
thank all the old and new friends who supported me, one by one. The list would
be endless. As a gesture, however, I shall thank Mira, Sahar, Rana, Fatima,
Rabih, Ange and Houda, my colleagues and friends, for their friendship and, most
importantly, for the greatest moments of snacks and cups of tea and coffee we
shared.

Last, for obvious reasons, I thank my family members Amal, Mohamad, Hanaa,
Hani, Hiba and my husband Ali for their love and support that made possible this
achievement.

This work has been sponsored by the French government research program
”Investissements d’avenir” through the IMobS3 Laboratory of Excellence (ANR-
10-LABX-16-01), by the European Union through the Regional Competitiveness
and Employment program 2007-2013 (ERDF-Auvergne region) and by the Au-
vergne region.

Clermont-Ferrand, Fevrier 11, 2017.



ii

Abstract
The main goal of this PhD work is to develop 3D mapping methods of large scale
environment by combining panoramic radar and cameras. Unlike existing sensor
fusion methods, such as SLAM (simultaneous localization and mapping), we want
to build a RGB-D sensor which directly provides depth measurement enhanced
with texture and color information.

After modeling the geometry of the radar/camera system, we propose a novel
calibration method using points correspondences. To obtain these points corre-
spondences, we designed special targets allowing accurate point detection by both
the radar and the camera. The proposed approach has been developed to be
implemented by non-expert operators and in unconstrained environment.

Secondly, a 3D reconstruction method is elaborated based on radar data and
image point correspondences. A theoretical analysis is done to study the influence
of the uncertainty zone of each sensor on the reconstruction method. This theoret-
ical study, together with the experimental results, show that the proposed method
outperforms the conventional stereoscopic triangulation for large scale outdoor
scenes.

Finally, we propose an efficient strategy for automatic data matching. This
strategy uses two calibrated cameras. Taking into account the heterogeneity of
cameras and radar data, the developed algorithm starts by segmenting the radar
data into polygonal regions. The calibration process allows the restriction of the
search by defining a region of interest in the pair of images. A similarity criterion
based on both cross correlation and epipolar constraint is applied in order to
validate or reject region pairs. While the similarity test is not met, the image
regions are re-segmented iteratively into polygonal regions, generating thereby a
shortlist of candidate matches. This process promotes the matching of large regions
first which allows obtaining maps with locally dense patches.

The proposed methods were tested on both synthetic and real experimental
data. The results are encouraging and prove the feasibility of radar and vision
sensor fusion for the 3D mapping of large scale urban environment.
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Résumé
L’objectif de cette thèse est de développer des méthodes permettant la cartogra-
phie d’un environnement tridimensionnel de grande dimension en combinant radar
panoramique MMW et caméras optiques. Contrairement aux méthodes existantes
de fusion de données multi-capteurs, telles que le SLAM, nous souhaitons réaliser
un capteur de type RGB-D fournissant directement des mesures de profondeur
enrichies par l’apparence (couleur, texture...).

Après avoir modélisé géométriquement le système radar/caméra, nous pro-
posons une méthode de calibrage originale utilisant des correspondances de points.
Pour obtenir ces correspondances, des cibles permettant une mesure ponctuelle
aussi bien par le radar que la caméra ont été conçues. L’approche proposée a été
élaborée pour pouvoir être mise en oeuvre dans un environnement libre et par un
opérateur non expert.

Deuxièmement, une méthode de reconstruction de points tridimensionnels sur
la base de correspondances de points radar et image a été développée. Nous mon-
trons par une analyse théorique des incertitudes combinées des deux capteurs et
par des résultats expérimentaux, que la méthode proposée est plus précise que la
triangulation stéréoscopique classique pour des points éloignés comme on en trouve
dans le cas de cartographie d’environnements extérieurs.

Enfin, nous proposons une stratégie efficace de mise en correspondance automa-
tique des données caméra et radar. Cette stratégie utilise deux caméras calibrées.
Prenant en compte l’hétérogénéité des données radar et caméras, l’algorithme
développé commence par segmenter les données radar en régions polygonales.
Grâce au calibrage, l’enveloppe de chaque région est projetée dans deux images afin
de définir des régions d’intérêt plus restreintes. Ces régions sont alors segmentées à
leur tour en régions polygonales générant ainsi une liste restreinte d’appariement
candidats. Un critère basé sur l’inter corrélation et la contrainte épipolaire est
appliqué pour valider ou rejeter des paires de régions. Tant que ce critère n’est
pas vérifié, les régions sont, elles même, subdivisées par segmentation. Ce proces-
sus, favorise l’appariement de régions de grande dimension en premier. L’objectif
de cette approche est d’obtenir une cartographie sous forme de patchs localement
denses.

Les méthodes proposées, ont été testées aussi bien sur des données de synthèse
que sur des données expérimentales réelles. Les résultats sont encourageants et
montrent, à notre sens, la faisabilité de l’utilisation de ces deux capteurs pour la
cartographie d’environnements extérieurs de grande échelle.
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Introduction

“

I
f I have seen further, it is by standing on the shoulders of giants.”

Albert Einstein

1 Context, related work and motivation
The 3D perception of an unknown environment, and typically an outdoor environ-
ment, has been widely exploited in recent research works. It has been a challenging
aspect for applications in multiple fields such as autonomous navigation, localiza-
tion and mapping, disaster control, agriculture and many others.

The sensors acquisition generally introduces a lack of 3D information regarding
the scene. The restitution of this information using 2D acquisitions is therefore
essential for a complete perception of the scene. An obvious example of this
principle in nature is the vision system of human being (and for most types of
animals) that uses multiple processes to reconstruct a detected scene.

The evolution in computer science technologies, the decreasing price of sensor
devices and the increasing number of applications referring to the 3D representa-
tion of the entourage has pushed forward research in the field of 3D cartography of
the environments. Existing methods in the literature are based on vision sensor,
range sensor or a combination of both.

In [49], Kordelas et al. presented a survey of full 3D models reconstruction.
In this survey, the existing methods are gathered into laser range and multi-view
image based methods.
Furthermore, outdoor 3D reconstruction is a challenging aspect because of many
limitations due to the large scale unshaped features, bad illumination and weather
conditions. Authors in [63] provided a comprehensive and detailed overview of ur-
ban reconstruction. In this survey, the acquisition sensors for a 3D reconstruction
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algorithm are studied. The focus is put on the Lidar (LIght Detection And Rang-
ing) sensors and terrestrial and aerial imagery. Also, examples of the combination
of these two data types are presented.
According to this survey, the challenges confronting the 3D reconstruction are the
full automation, the quality of the results, the acquisition difficulties such as bad
weather conditions and occlusions.

Airborne RADAR (RAdio Detection And Ranging), like SAR (Synthetic Aper-
ture) systems are able to modulate a scene, such as a city over a large range of
aspect angles. For instance, in [6], single radar is used to reconstruct a sparse
3D model. In [66], the authors used a full-resolution 3D ground-penetrating radar
(GPR) surveying in order to define the true three-dimensional form of sedimentary
rocks over Southwest of Miami.
The aerial photogrammetry covers large areas of the city but lack details in relief
and texture of the buildings. On the other hand, the terrestrial reconstruction is
more sufficient for detailed, limited number of building reconstruction.

In the survey presented in [91], the authors considered 3D modeling of buildings
and divided the existing methods into 3 categories: rule based (e.g. [62]), image
based and point based algorithms. Generally, laser scanners are used for the
point based methods. The comparason of the three categories from their study, is
summarized in table 1.1.

Table 1.1: Methods comparison

Input Output Issues Cost
Image
based/
Single-
view
methods

Single image Textured 3D
model

Complexity, sensitive
to noise, interactive

Low

Image
based/
Multi-view
methods

Multiple images Textured and
complete 3D
model

Registration, accuracy
for large scale

Low

Rule based
methods

Image, rules and
models

Rules depending
model

Interactive, not suit-
able to general cases

Low

Point
based
methods

Point cloud Detailed 3D
model

Mass of data process-
ing, registration, sen-
sitive to noise

High

According to this survey, the remaining issues in architectural 3D modeling
are:
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• Data deficiency, preventing complete and realistic building modeling.

• Interactive aspect of some methods, so that their efficiency depends on the
operators. In fact, urban scene can be either represented by a simple polyhe-
dral model where the algorithm can be automatic or, an interactive process
is used for a more detailed representation.

• Massive data processing, which is time consuming and requires a reprocess-
ing and registration steps.

• The scene understanding, which is a challenging step that is still being in-
vestigated.

In [35], the authors pointed out that a fully automatic detailed urban mod-
eling is still an issue. Since automatic scene understanding is a hard task, the
contribution of a human operator is needed for complex scenes.

For these reasons, the proposal of a simple, robust and fast algorithm dedicated
to complete such an objective, presents a major interest for several applications.

1.1 Vision based 3D mapping
Regarding the low cost and high spatial resolution of vision sensors, a huge num-
ber of vision based approaches for 3D reconstruction have been proposed. Some
examples can be found in [29], [69] and [76].

In [80], the authors first studied the state of the art and cited that vision
based 3D reconstruction algorithms can be divided into four classes: voxel based
methods, surface evolution based methods, feature point growing based methods,
and depth-map merging based methods.

According to the authors, only the depth-map merging methods are sufficient
for large scale applications.
Therefore, the authors proposed a depth-map merging based multi-view stereo
(MVS) method for large-scale scenes reconstruction. The method consists of a
patch based stereo matching following a depth-map refinement process over mul-
tiple views.
The method uses high resolution images and computes a depth map for each stereo
pair. Then the depth maps are merged in order to refine the resulting dense point
clouds. The process is therefore heavy and costly in terms of memory.

In [28], the authors presented a multiple-direction plane-sweep stereo method
for 3D reconstruction of urban scenes.
After analyzing the stereo precision, they proposed a variable baseline/focal lens
strategy in order to maintain a constant depth resolution. The depth measure-
ments are then improved by segmenting the scene into piecewise-planar and non-
planar regions, a process which is aided by learned planar surface appearance.
The final 3D model is obtained by fusing the depth measurements and by using a
multi-layer height map model.
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In the ideal case, a total reconstruction of the environment allows to model
all the points in the scene. For example, a voluminous object in the scene should
be entirely reconstructed like it is in our brain, and not just a planar facade of
it. However, it is possible to reconstruct only the objects observed by the camera,
that is to say, objects located in the field of view and without undergoing occluded
objects.

Methods for 3D scene reconstruction from an image sequence can be grouped
in two classes: structure-from-motion that uses the camera movement (SFM [47])
and dense stereo.
In the last years, many works ([27, 46, 96]) tended to fill the gap between the
two approaches in order to propose methods which may handle very large scale
outdoor scenes. Results seem to be of good quality though it recommends a large
amount of input data and heavy algorithms which make it not quite suitable for
real time processing. It is also known that camera-based methods for large scene
reconstruction generally suffer from scale factor drift and loop closure problems.

Pixel based methods are well suited for dense 3D reconstruction of the environ-
ment. However, the visual information provided by the vision sensor is not fully
exploited in these methods. It needs costly treatments to achieve a connected
3D surface with texture and color information. Besides, vision sensors present
common drawbacks due to the influence of image quality, adverse illumination
and weather conditions. For this reason, tapping into active sensors has become
essential.

1.2 Range based mapping
Recent research works are focusing mainly on sensors that provide distance infor-
mation, in order to avoid the reconstruction from 2D data.
For example, in [11], the authors have first displayed the difficulties and sources
of error of 3D mapping and localization using laser scans. Then, they presented a
network-based global relaxation method for SLAM (simultaneous localization and
mapping), using a technique of matching laser scans globally consistent.

The radar is an active sensor that allows the localization of obstacle by trans-
mitting electromagnetic waves and observing the returned echo.
The need to locate and avoid obstacles was the first motivation to exploit this
active sensor. Its main application was for surveillance, collision avoidance and
missile guidance for military purpose in the Second World War.

Nowadays, radar operates in several applications such as driving assistance,
safety and obstacle detection, earth observation, speed control and monitoring of
weather conditions.

Grimes et al., [33, 32], investigated on automotive radar and covered the basic
parameters of radar, like target discrimination and modulation techniques. The
authors discussed some possible configurations and potential applications of the
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radar for vehicles.
Even though the radar is modestly used in particular for the 3D reconstruction,

it presents several advantages for outdoor applications. The capability of the radar
sensor to work in difficult atmospheric conditions and its decreasing cost made it
well suited for extended outdoor robotic applications.

For example, authors in [74] used radar sensor for SLAM algorithm applica-
tions in agriculture. The radar is highly independent of illumination and weather
conditions and several targets can be detected by the same beam thanks to the
physical property of the transmitted wave.
Indeed, unlike vision sensors, the radar acquisitions are not influenced by the pres-
ence of particles in the air or by a dazzling light source. In addition, Frequency
Modulated Continuous Wave (FMCW) radars operate a continuous scanning of
the environment covering the integrity of the beam-width of the antenna.
This property allows probing a large area of the environment in each acquisition
and providing rich information about the entire range of view.

An example of panoramic radar is shown in fig. 1.1. The acquisitions are
filtered in order to reduce the presence of noisy detection: an obstacle is confirmed
if its intensity value is above a noise level.

Figure 1.1: Example of radar panoramic. The cross indicates the radar
position.

However, the radar fails to recognize elevation, shape, texture, and size of a
target. In this regard, combination of sensors is an obvious solution to overcome
the limitations of single sensor systems.
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1.3 Sensors fusion
The goal of sensor fusion is to take benefit of the advantages of each sensor while
compensating their individual limitations. Multi-sensory fusion have been recently
a point of interest in widespread applications and researches especially, for 3D
mapping applications [38, 68, 34].

Three levels of data fusion can be performed: the low level fusion combines the
raw data of each sensor. The mid-level fusion combines the features extracted from
the raw data of the sensors. The high level fusion is the combination of separated
hypothesis derived from the processing of each data, of the sensors, apart.

In our case the low-level or cooperative fusion is intended, were the fusion of
two different data leads to new data which is the 3D reconstruction of the scene.

The scan of a surface by the lidar, provides a 3D point cloud. Usually, a vision
sensor providing the color information of each point is integrated.

An example of this fusion can be found in [31], an approach to mobile robot
localization in urban environments is proposed. A sensor fusion, corresponding to
a camera and a range scanner, is done on an extended Kalman filter framework.
Their focus is on the integration of the modeling and the localization aspects. The
range scanner and the camera are used in order to build a detailed 3D model.
Then a simplified 3D model is used for the localization step.

Abuhadrous et al., in [2], have developed an approach to model urban sites.
They proposed a hybrid method that combines a laser range scanner, an inertial
unit and odometer. Also a classification of the resulting points cloud is done.

In [84], the authors combined data from 3D Lidar and images to create geo-
metric 3D models of the world.
The directive wave of the lidar allows the acquisition of only one obstacle (point),
when the echo is received. It provides a large number of 3D points from a narrow
field of view, which requires data registration and processing algorithms.

Also, one of the lidar weaknesses versus the radar is that the data acquired by
the lidar is somehow affected by the external illumination and weather conditions
(like water and dust particles and also the extreme sunlight).

A review on the use of mobile lidar in several applications and on the advan-
tages and challenges of the lidar for city reconstruction have been summarized in
[89]. According to this study, the large amount of data collected by the lidar can
be ”difficult to work with, on standard computing platforms and software” and
”requires a substantial amount of data storage”. The quality of the resulting point
cloud was also discussed and a RMSE (root-mean-square error) was recorded of
3.5cm vertically × 2.5cm planimetric for a range of 35m→ 45m.

Authors in [9], recently, combined six cameras and one 2D laser for urban 3D
reconstruction.
In [99], the authors used three 2D laser range scanners and six line cameras,
mounted on a measurement vehicle, to generate textured model of urban environ-
ment. The range data are first exploited to generate a geometric model of urban
features. Then, the images are used to map texture on the geometric model. Com-
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paring terrestrial and aerial 3D modeling techniques, the authors pointed out that
”details of urban objects are found to be of importance, as user viewpoints are
involved on the ground, not in the air”.
Other examples of laser and vision fusion, can be found in [14] and [21].

However, the alignment of the large amount of data requires heavy processing
algorithms that can be memory and time consuming. Also, the resulting points
cloud models generally have an unstructured representation and cannot be directly
represented as connected surfaces.

Structured light scanners are also used. SLAM applications with Kinect are
numerous [83, 78]. Yet, the performances for outdoor applications are generally
limited due to the small depth range and sensitivity to the outdoor natural light.

This is also found in [73]. The authors studied the influence of several param-
eters (illumination condition, the distance to the objects and the surface of the
object) on the performance of 3D sensors. The study included five sensors using
structured light and time of flight (ToF) techniques.
According to this study, the structured light sensors are accurate for small range
(3.5m), but not for far ranges. They concluded that, for most of the sensors, the
distance of the object has the biggest influence.
Even though the error of the ToF sensors increases with distance, they have a
lower noise level at far distances than the structured light sensors such as kinect.
Also, since these sensors are very sensitive for direct sunlight, they are not reliable
for outdoor use. The author also found that the error of ToF sensors increases for
highly reflective surfaces, where structured light sensors are more robust.

Therefore, despite the large number of studies on outdoor 3D reconstruction,
there are still many challenges looking for more contributions. These limitations
are cited hereafter.

• Real time reconstruction is a requirement for some applications such
as autonomous navigation and localization of obstacles. But for most ex-
isting algorithms this is a challenging aspect because of the big amount of
data typically in large scale environment and the heavy processing of these
collected data that should be done.

• Automation of the reconstruction process is an important task because
human interaction is often incapable to treat a large amount of data.
A compromised solution is to simplify the user task as much as possible in
such a way that a non-expert user can easily operate.

• Quality of the results is also an important constraint to be respected for
instance for applications such as industrial control and movie production.
Although, the poor results quality is a price to pay for automatic and real
time reconstruction. Also the reconstruction of large scale scenes is in prac-
tice a snag for many sensors having a scope limitation.
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• Outdoor conditions, in practice, are often considered as a strong con-
straint affecting the quality of acquisitions and thus can introduce limita-
tions of results quality. Many occlusions may occur in urban scenes like
vegetation in front of buildings.
Also, the lighting conditions, e.g., low light, saturation and shadows, are
unmanageable for such environment and can affect the quality of the data
in particular for image acquisition.
Another limitations such as many reflections and false alarms, are intro-
duced by the material of the objects been detected by range sensors. The
uncertainty of some sensors also increases with distance (e.g. vision based
triangulation).

In this work we are interested by the combination of panoramic millimeter
wave (MMW) radar and a camera.

Our goal is to prove the feasibility of fusion of the data provided by a camera
and a radar sensor. According to the state of the art, this type of fusion is under-
rated for 3D reconstruction of outdoor environment.

This type of fusion is a natural solution for many living species such as dol-
phins. The camera provides rich visual information about the environment but
the extraction of sufficient information out of these rich data may require complex
processing. On the other side, the radar performs acquisition in a selective man-
ner, were only significant echoes reflected by an obstacle are considered.
This characteristic enables straightforward feature extraction but lack the ability
to extract the real world features such as color texture and shapes of the obstacles.
Therefore, the advantages and disadvantages of these two sensors are thus highly
complementary.

Recently, this combination has been the subject of many studies so far reported
in the literature, for on-road obstacle detection and vehicle tracking: in [8], camera
and radar were integrated with an inertial sensor to perform road obstacle detection
and classification.
Other works on radar-vision fusion for obstacle detection can be found in the
literature ([75, 40, 88] and [10]). It generates each second a panoramic image,
where detected targets are localized in 2D polar coordinates with a maximum
range of 100m.

In multi-sensors systems, each sensor performs measurements in its own co-
ordinate system. Thus, one needs to transform these measurements into a global
coordinate system. Generally, a calibration step enables to compute this transfor-
mation in order to make the reconstruction simpler.

Another crucial step is the matching process which is essential for the recon-
struction algorithm; it is the association of common features pairs from the vision
and radar data.

In the next two sections a brief introduction on the calibration and the feature
matching of a multi-sensory system is presented.



2. Calibration of multi-sensory system 9

2 Calibration of multi-sensory system
The calibration of a multi-sensory system is typically needed to estimate first the
inherent parameters of each sensor and determine the rotation and the translation
relating the frames of the sensor.

In the related works, there are very few published works dealing with the cal-
ibration of a camera/radar system and the method is not explicitly described.
Approaching techniques can be found if we extend the search to all range sen-
sor/camera systems.
Sugimoto et al. [85] used the reflection intensity from MMW radar and image
sequences to achieve a radar-vision spatial calibration. This method is hard to
implement, because all the points should be positioned exactly on the radar plane.
Our goal is to simplify this tricky and important step, which is crucial for the
matching process and the reconstruction accuracy.
A method for the calibration of a camera and a 2D laser-rangefinder is presented
in [100]. The authors describe a geometric method using two intersecting cali-
bration boards, in order to facilitate the features extraction. The equation of the
intersection line between the two boards is determined in the image frame. Then
method is set in order to extract the corresponding intersection point from the
laser-finder.
The system of sensors is moved and rotated in order to acquire multiple simul-
taneous acquisitions of the boards. Finally, an objective function is derived and
the parameters are estimated by the particle swarm optimization. In fact, the
extrinsic parameters are the rotation and the translation between the image plan
and the laser-plan.

In [88], a method for camera/radar alignment is presented for on-road obstacle
detection applications. The method consists also in computing a 3 × 3 transfor-
mation matrix mapping 2D radar points to image pixels using linear least square
algorithm and a minimum of four points correspondences.

In all these methods, a homography matrix is computed. This transformation
relates the image plan to the radar plan. But the detection of targets placed
exactly on the radar plan is a complex task; only co-planar points in the radar
horizontal plan should be considered. Therefore, we seek for a feasible procedure
in practice.

3 Feature extraction and matching of hetero-
geneous data

Multisensory image matching has been widely studied in the literature.

In [58], the authors addressed the problem of automated detection of lane
boundaries using optical and radar imaging sensors mounted on an auto-mobile.
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They proposed a Bayesian multi-sensory image fusion method in order to obtain
a simultaneous detection of the boundaries.

Authors in [4] developed a hybrid solution for collision avoidance, based on a
Kalman filter, whose measurements include data from radar and a vision system.

In [5], the authors designed a sensor fusion algorithm for advanced driver assis-
tance Systems. To meet this end, they combined camera and radar information to
perform fusion and multi-target tracking using Extended Kalman Filters (EKF).

A processing chain to create or update cartographic database of buildings is
addressed in [70] and [71]. They used SVM (support vector machines) fusion of
high-resolution synthetic aperture radar and optical images.

In [48], FMCW and color video were fused to perform SLAM in an outdoor
environment.

A semi-automatic approach for the registration of airborne and terrestrial laser
scanning data has been proposed in [15]. The corners and boundary segments of
the building are extracted from airborne and terrestrial laser scanning and then
matched automatically through an iterative process. The boundary extraction
from terrestrial data is done using a new Density of Projected Points (DoPP)
method. In this method they use the 3D point cloud provided by the lidar to
extract boundaries similarities. But this 3D information is missing in our case.

Feature extraction and matching of satellite pairs of radar and camera images,
are done in [54]. In this work, both radar and camera images represent similar
views (aerial views) of the scene. Hence appearance similarity could be used for
the matching process.
The performed fusion in the related works is generally a high level fusion with
application to object detection and obstacle avoidance. For this type of fusion,
each sensor is performing the same task (e.g., obstacle detection). The goal of
this fusion is then to reduce the effects of uncertain and wrong data, but no data
matching is needed.

In a multi-sensor system, where the data are inherently different, classical
matching techniques such as SIFT (Scale-Invariant Feature Transform), correla-
tion or RANSAC (RANdom SAmple Consensus) matching do not often provide
satisfying results. More sophisticated versions or a good combination of these
methods may, however, lead to better results. In [44], a robust matching criterion
is derived by aligning the locations of gradient maxima for a multimodality image
registration algorithm. An iterative method of gradient intensity maximization is
used.
The initial values of the iterative method are the maxima location of the gradient
in the image. The algorithm uses an implicit similarity measure that is invariant
to intensity dissimilarities.

Other examples of multisensory registration can be found in [53, 52, 94, 17]
and [42]. In [101], another survey of matching techniques is presented. In this
survey, the matching techniques were classified into two categories: feature-based
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and area-based algorithms.
In the area-based methods (e.g. correlation) there is no feature detection

step, and they search immediately for similarities between windows of the images.
This can simplify the process of matching, but area-based techniques may not
perform reliable matching for heterogeneous multi-sensor images since similarities
descriptors they used cannot be detected in this type of images. Also, they are
less accurate for reconstruction and localization applications.

Feature-based methods consist of finding and extracting the common charac-
teristics between the images. These methods seem to work better with multi-modal
data, which represent fewer common characteristics.

4 Objectives and contributions
In this work we are interested in the combination of panoramic millimeter wave
radar and a camera, in order to achieve the 3D reconstruction of large scale outdoor
environments. Our goal is to build a 3D sensor, easy to use by a non-expert
operator and able to provide a simple elevation map of an outdoor scene (this
can be urban or semi urban environment), as illustrated in fig.1. The challenge is
to take full advantage of the context of data fusion exploiting appropriately the
complementary of optical and radar sensors: we rely on the fact that the distance
of an object in 3D space to the system is given by the radar measurements having
a constant range error with increasing distance while its altitude and size can
readily be extracted from the image of the camera. Note that only the portion of
the scene that is commonly detected by both sensors (i.e., common field of view)
is considered and no a priori assumptions about the environment are needed.

Figure 1.2: An illustration of the elevation map generation, by exploiting
radar and vision complementarity.

In order to achieve the 3D reconstruction, preliminary steps must be carried
on as shown in fig. 1.3.
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(a) Data acquisition

(b) System calibration

(c) Features extraction
and matching

Figure 1.3: In order to achieve the 3D reconstruction, three preliminary steps
must be carried on: simultaneous data acquisition by the sensors, extraction
and matching of features from the camera image and the radar panoramic
and the estimation of the transformation between the sensors frames.

The data acquisition should be done simultaneously by each of the sensors
having an overlapping field of view. The acquisitions are synchronized using GPS
(Global Positioning System) data. Then, the estimation of the transformation
between the sensors frames and the extraction and matching of features from the
camera image and the radar panoramic are to be done. Our main contributions
in this work are as follow:

Sensor calibration algorithm

• First, a geometrical model of the sensors is provided, corresponding to a low
level fusion of these sensors. This is an essential step in order to describe
the system and to control its parameters. This step was the bases for the
proposed geometrical methods.
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• The calibration consists in determining the transformation mapping targets
coordinates from one sensor frame to another. Two calibration methods are
presented, based on two different geometrical constraints. Both methods
present advantages and disadvantages related to the implementation com-
plexity and to the convergence of the algorithm.

• The influence of several parameters on the calibration method such as the
noise level and base line width between the sensors, are studied using sim-
ulated data. This step is turned to be very useful for the experimental
implementation.

Calibration pattern design The setup of the calibration step using both
methods is described. Since the calibration methods are based on point feature
correspondences, we designed a physical target which provides accurate point mea-
surements in both camera and radar images. Two types of targets are described:
Tetrahedral and spherical target. The tetrahedral form is composed of three in-
tersecting, diamond-shaped, metallic plates. And a spherical target composed of
layered concentric shells, having different refractive indexes. It enables to detect
the target center with a sub-pixelic accuracy. This made it suitable for the radar
and the camera acquisitions in this experiment.

3D reconstruction method A geometric method of 3D reconstruction is
proposed: Based on the geometric model of the sensors 3D coordinates of matched
points are computed by an original triangulation technique. Moreover, it is shown
that for large depth points, our reconstruction method outperforms the classical
stereo triangulation making the proposed approach more suitable for large scale
environment mapping.

Automatic matching of radar and image features The features extrac-
tion and matching between the data provided by these two sensors is an essential
and challenging process.
Reconstructed scene using point cloud based methods generally have an unstruc-
tured representation and cannot be directly represented as connected surfaces. In
contrast, in the proposed matching algorithm, we seek to match large dimensions
of surfaces (patches in the image with target or set of targets in the radar image).

This task generally has a high computational cost due to the big number of
candidate match and the explosion of the combination possibilities. Usually, a
prediction/verification process such as RANSAC (RANdom SAmple Consensus)
is used. The problem is even more complex for heterogeneous data as it is the case
in our system. We propose an efficient strategy which consists in segmenting both
radar and camera images into polygonal regions. The search starts by selecting
regions from radar data because these data are naturally filtered (no data for the
sky or large ground surfaces of shadows for example). The use of calibration data
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enables to restrict the search to very small region of interest on the camera images.
Finally the use of a second camera as a last verification step permits to recover the
elevation of the target. Note that the second camera is not used for triangulation
but only for a visual checking of the radar to camera matches. It has no role in
the 3d coordinate computation. Indeed, we only use the method proposed for that
purpose in the previous chapter.

Experimental validation The validation of the proposed algorithms is car-
ried out by both simulation and real experiments. The final results prove the
feasibility of such a fusion of hybrid sensors for the goal of building a 3D sensor
which provides an elevation map, enhanced by the texture and color information.
This work is considered as the bases for additional work on this type of fusion for
real time 3D reconstruction.

This work led to two communications ([23] and [22]), in two international
conferences and a journal article published in the Sensors journal [65].

5 Manuscript overview and organization
The organization of the manuscript proceeds as follows:

• In chapter 2, the geometrical model of each of the camera and the radar are
detailed. Then the general model of the sensors system is deduced providing
a better understanding of the relation between the camera and the radar.

• The calibration of the system is represented in chapter 3. The calibration
of each sensor is explained. The targets used for the calibration are also
described. Two calibration methods are proposed and then compared. The
first method is constrained by the measured distances between the targets.
This is called the inter-distance constraint.
Afterward, in order to relax the inter-distance constraint, the scene is cap-
tured by the sensors from multiple points of view. The methods are evalu-
ated by simulations and real experiments.

• In chapter 4, the theoretical principle of the geometry based method for
computing the 3D coordinates of a 3D point is presented.
A theoretical study of the uncertainty zone of the reconstruction method
is detailed. Then the effect of several parameters such the depth of the
targets and the base line between the sensors, is studied. The method is
also evaluated by simulation and real experiments. The matching of the
2D data is not addressed at this stage and the 2D data are supposed to be
matched.

• In chapter 5, the automation of the matching process supposed to be done
manually at the previous stage, is addressed.
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The automatic matching algorithm is detailed step by step and a first exam-
ple is presented. Afterward, the algorithm is tested on several urban scenes
and 3D models of this scene are shown.

• Finally, in chapter 6, a general conclusion on the presented work is drawn
and the potential future enhancements of the system are listed.
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Geometric modeling of the
sensors

“

I
f I had an hour to solve a problem and my life depended on the solution, I
would spend the first 55 minutes determining the proper question to ask,

for once I know the proper question, I could solve the problem in less than five
minutes.”

Albert Einstein

This chapter covers the elaboration of a geometric modeling
of the camera/radar system. A reminder of the models of each
sensor are first detailed separately in sections 1 and 2. After-
wards, this reminder will be helpful for the elaboration of the
model of the entire system in section 3. This model is a start
up for the calibration and reconstruction methods presented in
Chapters 3 and 4.

1 The model of the camera
1.1 A little history
Since antiquity, this principle was used for paintings and image production. The
first optical lenses were manufactured under the Assyrian Empire and predate -
700: it was polished crystals. Euclid in the third century BC is the author of
a geometrical optics theory who sees appear the notion of light beam. Alhazen
has made significant contributions to this principle in his work Kitab al-Manazir
(Book of Optics).
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1.2 Perspective projection
A full perspective model is used to model the camera. This model is also known as
pinhole model. The word perspective is derived from the Latin word ”prospectus”,
it means ”allows to see far”. It is a method that allows transferring the distance
illusion into a plan.

The pinhole principle is used for the geometrical modeling of the camera. A
3D scene is projected onto the image plan through a single center of projection;
the light rays reflected by the scene, pass through the optical center, then it collide
to the image plan. The image plan is placed virtually in front of the optical center
in order to simplify the representation of the image.
The camera is a passive sensor since it uses external energy in order to capture
the surrounding scene: the light rays are reflected by the scene and then captured
by the embedded detector in the sensor.

The camera frame is defined as follows: the optical center is the origin of the
system and the x, y plan is parallel to the image plan. The z axis is normal to the
image plan and pointing forward to the scene as shown in Fig. 2.1. The camera
performs a perspective projection of 3D points in a scene, into its image plan. The
projection is composed of three transformations:

• A 3D transformation (rotation and translation) mapping a 3D point Mw

from the world frame to camera frame.

• A central projection transforming the 3D point into a 2D point in the image
plane Ic.

• One last transformation which translates the image frame origin to the top
left corner and converts the metric coordinates into pixels.

The model is illustrated in Fig.2.1.
The intrinsic parameters corresponding to the last two transformations are

inherent characteristics of the lens and the retina of the camera. On the other
hand, extrinsic parameters correspond to the second transformation. It represents
the pose of the camera in the world coordinate system.

1.2.1 Intrinsic parameters

Let us consider a 3D point Mc(Xc, Yc, Zc)T in the camera coordinate system. The
distance f between the projection center and the image plan is the focal lens. A
trigonometric relationship (similar triangles) can be observed in Fig. 2.2: x = f Xc

Zc

and y = f Yc
Zc

, relating the coordinates of a 3D point Mc in the camera frame to its
projection m(x, y, 1)T into the image plan.
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Figure 2.1: An illustration of the geometric model of the camera: the trans-
formation mapping a 3D pointMw from the world frame to a 2D pixel p(u, v)T
in the image frame.

Figure 2.2: The trigonometric relationship between the 3D coordinates of
Mc(Xc, Yc, Zc)T and the pixel coordinates p(u, v)T .

This relationship is expressed in matrix form as follows:

Zc

xy
1

 =

f 0 0 0
0 f 0 0
0 0 1 0



Xc

Yc
Zc
1

 (2.1)

In matrix form, the homogeneous coordinates are used in order to linearize the
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equations of the perspective projection; we note M̃ the homogeneous coordinate
vector [X,Y, Z, 1]T .

Coming back to the pinhole model, the 3D point Mc became M̃c(Xc, Yc, Zc, 1)T .
Finally, m is converted from metric to pixel coordinates p(u, v)T by multiplying
by a skew parameter s assuming that the two directions of the image sensors are
not perfectly orthogonal. Then, a translation of the image origin to the top left
corner of the image is performed.
The intrinsic parameters of the camera are summarized as follows:

• The vertical and horizontal dimensions of a pixel of the optical photo-sensible
sensor are denoted dx and dy so fx = f/dx and fy = f/dy.

• The principal point pc(u0, v0) is the intersection of the optical axis with the
image plan.

• The skew parameter s is expressed with respect to the skew angle between x
and y axis. With recent devices, this parameter is very negligible in practice.

So the projection of a 3D point M̃c into p̃ in the image plane Ic, using the intrinsic
parameters matrix K, is written as follows:

wp̃ = [K|0]M̃c (2.2)

With K is the camera matrix which encapsulates the intrinsic parameters. The
w = Zc is a scale factor representing the depth of M̃c relative to the camera. A
more general model is written as follows:

w uw v
w

 =

fx s u0 |0
0 fy v0 |0
0 0 1 |0



Xc

Yc
Zc
1

 (2.3)

For more accuracy, a more complete model which takes into account the skew
angle between image axes and optical distortion can be used. The optical distortion
corresponds to a visible deformation in the image and is clearly noticed in the case
of straight lines at the edges of the image: straight lines are deformed into curves.
The optical distortion occurs when using a wide angle lens referring to a small
focal length.We are not detailing the correction of distortion but more details can
be found on geometrical modeling of cameras in [24] and [41].

1.2.2 Extrinsic parameters

The 3D points are Ipso Facto expressed in the world reference frame. These
points need to be expressed in the camera frame before being projected into the
image plane. A 3D transformation (rotation R and translation t) relates these two
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frames and maps any point M̃w(Xw, Yw, Zw, 1)T in the world frame Rworld to a
point M̃c(Xc, Yc, Zc, 1)T in the camera frame Rcamera such as:

M̃c = AM̃w (2.4)

Where A is the matrix of extrinsic parameters, composed of the rotation and
the translation. It is written in homogeneous coordinates in order to transform it
into a square reversible matrix:

A =
[
R t
0 1

]
=


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

 (2.5)

The rotation matrix R is a 3 × 3 matrix which determines the orientation of the
camera in the world frame. The translation vector t represents the position of the
center of the camera in x, y and z directions.

Finally, an image of a scene is provided by the final transformation mapping
3D to 2D point by the combination of the frame changing transformation and the
3D-2D projection as follows:

wp̃ = [K|0]AM̃w (2.6)

The product T = KA is called the projection matrix.

2 The model of the radar
The radar was founded originally, at the beginning of the twentieth century, for
surveillance and missile guidance for military applications in the Second World
War. The first sensor was introduced by Christian Hulsmeyer and called ”Tele-
mobiloskop”. Updates of the sensor were carried out by Nicolas Tesla and Robert
Waston-Walt in 1917 and 1935, in order to detect and localize an obstacle.

Radars allow the location of objects in space by transmitting electromagnetic
energy, and observing the returned echo.
The principle of the radar can be summarized as follow: A modulator embedded
in the radar generates a signal which is then emitted by the antenna. The propa-
gation of the electromagnetic waves is determined by the antenna aperture. It is
then backscattered by the objects in the scene in the entire space.
Since single antenna is used for the emission and for the reception of the electro-
magnetic wave, a duplexer is used in order to switch the antenna of the transmit
mode to the reception mode.
The received echo signal is then processed and the distance of a detected target is
computed.

The radar in use in this work, performs acquisitions over 360◦ per second
thanks to its rotating antenna. It generates each second a panoramic image, where
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detected targets are localized in 2D polar coordinates. Therefore, the radar per-
forms a circular projection, of a detected 3D target, on the horizontal plane passing
through the center of the antenna’s first lobe. So, the real depth and azimuth of
a detected target is provided without any altitude information.
The projected point is denoted mr(α, r) where α and r are the real azimuth angle
and depth of a target in the 3D space as illustrated in Fig. 2.3.

Figure 2.3: An illustration of the geometric model of the radar: the radar
provides the polar coordinates and the amplitude of the reflected signal by
the 3D target.

In the radar domain, two major families can be used to estimate the position
of an object: pulse radars and continuous radars.

2.1 Pulse radar
Basically, pulse radars transmit a high powered short pulse, after which the receiver
is switched on in order to receive the echoes [81, 7]. The presence of one or several
echoes indicates the presence of one or several targets. The received wave is an
attenuated and delayed version of the emitted wave. It has already crossed two
times the radar/target distance r in the speed of light in vacuum c. The range ri
of a target i (with i = 1 → n and n is the number of targets present in the field
of view of the radar) is estimated through the measurement of the delay time τi
between pulse transmission and pulse reception, with:

ri = cτi
2 (2.7)

Where c is the light velocity. The time delay τi is expressed in second. Pulse radar
transmits pulse of duration τd. During this transmission duration, the receiver is
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switched off for protection purposes, and the radar cannot detect any target: the
transmission duration τd defines a blind zone from range zero to range δr = cτd/2.

The radar resolution The distance δr introduced by the transmission time
of the pulse radar, defines also the range resolution, i.e. the ability of the radar to
distinguish two close targets as explained in Fig. 2.4.
For autonomous robots applications requiring accurate radar-target distance mea-
surements over short distances, a large value of δr can lead to unacceptable con-
figuration. Thus, a major problem with pulse radars is to be able to concentrate
over short time duration:

• In order to achieve a high range resolution,

• In order to obtain a very high peak power signal,

• In order to have a reliable signal reception.

For that reason, frequency modulated continuous wave radars provide competitive
solutions for distance measurement in short range applications.

The angular resolution δα is defined as the minimum angular separation for
which two equal point targets can be resolved when located at the same range.
This angular resolution is determined by the aperture of the antenna beam. A
rough estimation of the antenna half power beam-width (expressed in radians) is
given by the ratio of the wavelength λ to the antenna size d [64]:

δα = λ

d
(2.8)

Figure 2.4: An illustration of the radar resolution.

2.2 Frequency Modulated Continuous Wave (FMCW)
radar

In this manuscript we are particularly interested by the FMCW radar. This radar
type is known and used for several decades [81, 60]. These radars emit and receive
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simultaneously and continuously, unlike pulse radar which emit pulses and then
listen to the echoes of the target.
The used radar in our experiments is called K2Pi and has been developed by Irstea
Institute.

FMCW radar is well-adapted to short and medium range distance applications,
because it eliminates the blind zone near the radar. Due to the coupling between
transmitting and receiving stages, the transmitted power and thus the maximum
range are limited with FMCW radar. But it is not a constraint in our application
considering the envisaged radar-target distances (<< 1km).
Moreover, the relative simplicity of FMCW architectures can help to develop small-
sized systems, compatible with lightweight radars.

2.2.1 The transmission and receiving of the signal

In FMCW radars, the oscillator generates a signal of linearly increasing frequency
∆f over a period tm. This signal is transmitted into the air via the antenna. At the
receiver stage, a part of the transmitted signal is mixed with the signals received
from all the targets present in the field of view of the radar. The signal which
appears at the output of the mixer is filtered and amplified in order to isolate the
beat signal sb.

Let us consider n targets located at distances r1→n from the radar, with radial
velocities vr1→n. The transmitted signal is linearly modulated over a period tm =
1/fm with a sawtooth function, with a sweep frequency ∆f centered around f0
(see Fig. 2.5). In that case, the beat signal sb can be written as in [61]:

sb(t) = k
n∑
i=1

atari cos(2π (2∆ffm
ri
c

+ 2f0
vri
c

)︸ ︷︷ ︸
fbi

t+ Φi) (2.9)

Where at is the amplitude of transmitted signal, ari and Φi are respectively the
amplitude and a phase term of the signal received from target i, and k is a mixer
coefficient. As it can be seen in the equation (2.9), the beat signal sb is the sum
of frequency components fbi, (plus a phase term Φi), each of them corresponding
to a particular target i:

fbi = 2∆ffm
ri
c︸ ︷︷ ︸

fr

+ 2f0
vri
c︸ ︷︷ ︸

fd

(2.10)

The first term fr of (2.10) only depends on the range ri, and the second term fd
is the Doppler shift induced by the radial velocity vri. If vri = 0, one can see that
fbi is proportional to the radar-target distance ri.
Fig 2.5 is a geometrical illustration of the time-frequency evolution of the transmit-
ted and received signals with a sawtooth modulation: the received signal highlights
a time delay τi corresponding to the radar-target distance ri, and a vertical shift
due to the Doppler frequency fd introduced by vri.
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Figure 2.5: Frequency vs. time function with a sawtooth modulation. When
considering a target located at range ri with a radial velocity vri, the received
signal highlights a time delay τi corresponding to the radar-target distance
ri, and a vertical shift due to the frequency Doppler fd introduced by vri.

2.2.2 The radar equation

From the equation (2.9), we see that the amplitudes of the frequency components
of the beat signal are proportional to the terms (at, ari). Thus, considering that
at is constant, the amplitudes of the frequency components are proportional to the
amplitudes ari of the received signals.
The radar equation is an efficient tool to study the parameters that affect ari.
The radar equation gives a relationship between the expected received power Pri
from a target, its radar cross section (RCS) σi, its range ri, and intrinsic radar
characteristics. The simple form of the radar equation is given by:

Pri = PtG
2λ2σi

(4π)3r4
i

(2.11)

with Pt is the transmitted power, λ the wavelength and G is the antenna gain
(monostatic case, i.e. the same antenna is used for transition and reception). Pt,
G and λ are constant for a given radar, so ari only depends on σi and ri:

ari ∝
√
σi
r2
i

(2.12)

2.2.3 The radar cross section

The RCS σi, expressed in square meter (m2), is a measure of the degree of visibility
of the target to the radar i.e. how a target re-radiates the energy of the incident
radar signal. σi depends on radar characteristics (wavelength, polarization) and on
intrinsic parameters of the target: size, surface roughness, nature of constituting
materials. It also depends on the orientation of the target to the radar. In the
case of spatially extended targets such as ground, the term σ0 is introduced: it
is the normalized radar cross-section (the average RCS per unit of surface), also
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called back-scatter coefficient.
The higher the intensity, the larger the cross section or reflectivity of the obstacle
encountered.
Indeed, electronics range compensation (high pass filter) is applied by the radar
electronics in order to eliminate the effect of the distance on the amplitude of the
radar signal. The term r−2

i in (2.12) is compensated, and the amplitude received
from a target becomes proportional to the square root of its radar cross section
σi, independently of the distance ri.

2.2.4 The azimuth estimation and resolution

The antenna direction of propagation (α) is defined in a radar-fixed reference frame
and is measured by the antenna encoder.
The antenna is rotated 360◦ with a narrow beam-width, scanning a panoramic
angle of view.
In the azimuth dimension, the interval δα between two radar spectra is determined
by the antenna rotation velocity ω (360◦/s) and the modulation frequency fm
(360Hz):

δα = ω

fm
= 1◦ (2.13)

We obtain an interval of 1◦ between the successive radar spectra. In order to
improve this angular precision, we can:

• Reduce the rotation velocity of the antenna, but it will take more time to
obtain one panoramic radar image;

• Increase the modulation frequency, but in that case the bandwidth of the
beat signal is modified, and it is necessary to adapt the reception electronic
and the data acquisition card.

If both solutions are not acceptable, a Gaussian interpolation approach can be
done. Therefore, the maximum of the Gaussian interpolation provides an estimate
of the real azimuth position of the target.

According to [64], we obtain an angular resolution of 4.5◦ in the azimuth plan
with the characteristics of the K2Pi radar (i.e. λ = 1.25cm and d = 15.8cm).

It could be interesting to use an antenna with a smaller beam-width (i.e. a
better angular resolution), particularly when considering the deformations intro-
duced by the polar to Cartesian transformation. From [64], it comes that a better
angular resolution can be obtained with (i) a decrease of the wavelength λ, and/or
(ii) an increase of the dimension d of the antenna. But due to external criteria
(bandwidth limitations, maximum size of the antenna, etc.), neither the wave-
length λ nor the dimension d can be modified, so another solution has to be found.
With K2Pi radar, we consider that the detection of a target with scanning radar
can be seen as the convolution of the target with the antenna beam. Such an ap-
proach is used in the astronomy domain, where stars light is deformed (convolved)
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by the geometry of the optical lenses. The distortion introduced by the imaging
instrument (telescope, radar, etc.) can be expressed as:

g = f ? h+ n (2.14)

Where g is the acquired image, f the real image (expected to be recovered), n an
additive noise and h the Point Spread Function (PSF) of the imaging system. The
PSF describes the response of the imaging system to a point target, i.e. how the
signal from a point target is spread by the imaging system.
The Richardson-Lucy algorithm is a well-known Bayesian-based method for the
deconvolution of images convolved with a known PSF. Well adapted to the local-
ization of point sources, it is commonly used in astronomy domain (it is known to
be used for the Hubble Space Telescope). It has also been used for the deconvo-
lution of radar images [20, 95]. This algorithm has been applied to Impala radar
data.

2.2.5 The range estimation and resolution

The radar-target distance measurement is based on the FMCW principle [82]. The
expression of the beat frequency fb in (2.10) indicates that fb depends simulta-
neously on distance r and radial velocity vr. We obtain one equation with two
unknowns (r and vr): a sawtooth modulation highlights a range-velocity ambigu-
ity. It means that the radar spectra are shifted up or down depending on the sign
and the amplitude of vr. Without a priori knowledge on r or vr, the measurement
of fb allows an ambiguous calculation of r and vr.

With the assumption of static environment (i.e. no moving elements in the
environment), a sawtooth modulation can be used to take into account the Doppler
shift introduced by the movement of the radar (i.e. the movement of the vehicle).
In that case, it is necessary to use a proprioceptive sensor to measure the velocity
of the vehicle.
When considering a static environment, vr only depends on the vehicle velocity v
and on the angle α between the direction of the vehicle and the target.
Finally fd can be expressed as:

fd = 2f0
c
v cos(α)︸ ︷︷ ︸

vr

, (2.15)

with the measurement of the radar velocity v and of the antenna pointing direction
α, the Doppler shift fd is computed with (2.15), and the radar spectra can be
shifted back in order to recover the correct radar-targets distance. The distance r
is derived from (2.10) with fd = 0:

r = cfb
2∆ffm

(2.16)
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In the case of a FMCW radar, the range resolution δr can be estimated from
(2.16), by substituting the beat frequency fb with the frequency resolution δf

δr = δf
c

(2∆ffm) , (2.17)

with a classical Fast Fourier Transform FFT frequency analysis, the frequency
resolution δf is determined by the observation time, i.e. the modulation period
tm when considering FMCW radar

δf = 1
tm

= fm (2.18)

Substituting (2.18) in (2.17), we obtain the well-known relationship between the
signal bandwidth and the range resolution

δr = c

2∆f (2.19)

δr defines the distance resolving power, i.e. the ability of the radar to separate
(to see as distinct) two targets fairly close together. From (2.19), one can see
that δr only depends on the sweep frequency ∆f , so an improvement of the range
resolution is obtained with an increase of the sweep frequency.

After this reminder of the camera and the radar measurements and models, the
geometrical modeling of the camera/radar system, is detailed in the next section.
The system is formed by a camera and radar rigidly linked.

3 The model of the camera/radar system
The modeling of the real sensors system consists of finding the 3D motion which
enables to express both radar and camera data in the same coordinate system.

The world reference is replaced by the radar frame in the equation (2.20)
mapping a 3D point Mr(Xr, Yr, Zr)T from the radar frame to the camera frame
as follows:

M̃c = AM̃r (2.20)
The camera frame and center are denoted Rcamera and Oc(xOc , yOc , zOc). Similarly
Rradar and Or(xOr , yOr , zOr ) are the radar’s frame and center respectively. The
sensors system is illustrated in Fig.2.6. A 3D target is projected into a pixel in the
image plan and into a 2D point mr(α, r) (the polar coordinates) in the radar plan.
The Cartesian coordinates of a 3D target are related to its spherical coordinates
by the following relationship: 

Xr = rcos(φ)cos(α)
Yr = rcos(φ)sin(α)

Zr = rsin(φ)
(2.21)

Where φ and α are the elevation angle and the azimuth of the target.
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Figure 2.6: Sensors system geometry: Rcamera and Rradar are the camera
and radar frames respectively. Polar coordinates mr(α, r) of the target are
provided by the radar data but not the elevation angle. The Light ray L
and the projected point p in the image Ic are shown together with the hori-
zontal radar plane. R and t define: the transformation mapping a 3D point
Mr(Xr, Yr, Zr)T from the radar frame to a 2D pixel p(u, v)T in the image
frame.





3

Calibration

“

D
o not worry about your difficulties in Mathematics. I can assure you mine
are still greater.”

Albert Einstein

The calibration of a sensor is typically needed to estimate
its inherent parameters values. The calibration of the camera
consists in computing the values of the parameters related to its
model and it is presented in section 1. The radar should also be
calibrated in order to take into account the influence of several
factors on the measurements. Among these factors are the purity
of the transmitted signal affected by the electronic components,
and the non-linearity of the modulation law. This process is
detailed in section 2.

The calibration of the system involving data from each sen-
sor, is a condition for the establishment of the 3D reconstruction
as will be seen in the next chapter. This is called the extrinsic
calibration. In our approach the intrinsic and extrinsic parame-
ters are computed separately in order to reduce the number and
the heterogeneity of the parameters to calculate.
The related works to the camera and radar calibration are de-
tailed in section 3. Then two calibration methods are proposed
based on two geometric constraints. Both calibration methods are
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based on point feature correspondences. Thus, we need to design
physical targets which provide accurate point measurements in
both camera and radar images. These targets are described in
details in this chapter. Both methods present pros and cons and
are compared in the section 5. The experimental implementation
of the two calibration methods is detailed in the section 6.1.

1 Camera calibration
The camera calibration consists in finding the intrinsic parameters that describe
its geometric properties: the focal length f , the principal point pc(u0, v0) and the
skew factors s. Therefore, the camera matrix K is computed, having five degrees
of freedom:

K =

fx s u0 |0
0 fy v0 |0
0 0 1 |0

 (3.1)

We used the camera calibration toolbox of Matlab by [12] which is an implemen-
tation of Zhang’s calibration method [97]. This method is easy to implement since
it only requires a planar pattern such as a chess board printed with a laser printer.
This pattern is then moved freely and several images are taken from different an-
gles of view. About 12 images of a checker board are acquired from different angles
for our camera calibration. The grid corners are then extracted automatically. An
example is shown in fig 3.1.

Figure 3.1: Example of an image of the checker board used for the calibration
(to the left) and the corners extraction in Matlab (to the right)

2 Radar calibration
The radar measurements are in fact affected by several parameters such as the
modulation law and the purity of the transmitted signal. Therefore, a calibration
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step is required to take into account the influence of these parameters.
The expression of the beat frequency and of the range resolution of the radar,
explained in chapter 2, section (2.2.2), are theoretical relationships; they assume
a perfect linear modulation of the transmitted signal. Two major factors influ-
ence the resolution with which the beat frequency fb, and hence range r, can be
measured with FMCW radars:
• The spectral purity of the transmitted signal,

• And the non-linearity of the modulation law.
To ensure the transmission of a radar signal as pure as possible, the choice of elec-
tronic components quality must be promoted. During the design and development
phases, the radar developers should take care to the form of the modulation law.
The effect of non-linear transmitted signal is illustrated in Fig. 3.2. When con-
sidering a theoretical linear modulation, the resulting beat frequency is constant
for the whole modulation period (Fig. 3.2 (a), dotted lines). If the modulation
law is non-linear (Fig. 3.2(a), solid lines), the resulting beat frequency will not
be constant for the whole modulation period, with the introduction of spurious
frequencies (Fig. 3.2(b)).

Figure 3.2: The effect of un-linearized transmitted signal considering a single
target. (a) Frequency vs. time of transmitted (blue) and received (red)
signals. Dotted lines: linear frequency modulation; solid lines: non-linear
frequency modulation. (b) Frequency vs. time of beat signal. With a linear
frequency modulation, the beat frequency highlights a constant value during
the modulation period (dotted line). The non-linear modulation leads to a
non-constant value of the beat frequency during the modulation period (solid
line), and the introduction of spurious frequencies.

Methods for linearizing FMCW radar signal can be classified into two cate-
gories: open-loop and closed-loop methods. Closed-loop methods act continually
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during the radar signal transmission in order to ensure a continuous frequency
lock. They offer higher linearity performances, but they also induce higher costs.
They are particularly well-adapted to applications which require a wide bandwidth
[3, 43]. Considering the necessary sweep frequency for our robotics applications
and the use of a stable oscillator, we have selected an open-loop approach. In an
open-loop arrangement, the modulation law is fixed, assuming a stable behavior
of the oscillator over the time.
In Fig. 3.3(a) is presented the theoretical linear frequency variation which is ex-
pected. Fig. 3.3(b) is the relationship between the output frequency and the
tuning signal of a given microwave oscillator. Also known as the tuning character-
istic, this curve is a characteristic of the oscillator and varies from one oscillator
to another. If a linear tuning signal is applied, we typically obtain a non-linear
variation of the output frequency. And Fig. 3.3(c) is the non-linear tuning signal
which must be applied in order to obtain a linear frequency modulation of the
radar signal.

Figure 3.3: Principle of the open-loop linearization method. (a) Expected
frequency vs. time linear function. (b) The relationship between the output
frequency and the tuning signal is specific to the oscillator, and varies from
one oscillator to another. Typically, microwave oscillator highlights non-
linear behavior. (c) The non-linear tuning signal vs. time function is used
in order to obtain a linear frequency modulation of the radar signal: at time
ti, the tuning signal si is applied in order to transmit the frequency fi.

2.1 The radar calibration setup
The tuning characteristic is obtained with the use of laboratory equipment (Agilent
E4408B spectrum an analyser). But this manual step by step measurement is not
sufficient to obtain a correct linear frequency modulation of the transmitted signal,
because the dynamic behaviors of the oscillator and of its driver are not taken
into account. For that reason, we have developed an approach which is based on
the measurement of the non-linearities of the beat frequency over the modulation
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period. In this approach (see Fig. 3.4), a radar measurement is realized using a
canonical target.

A time-frequency analysis of the measured beat signal is achieved in order to
evaluate the variations of the beat frequency over the modulation period. The
deviations ei of the beat frequency are used to gradually modify the modulation
law:

• A small value σsi of the tuning signal, proportional to the deviation ei, is
added or subtracted to the modulation law depending on the sign of the
deviation.

• The modified modulation law is applied in order to achieve a new time−frequency
analysis,

• And the process is iterated until the overall deviation is below a desired
threshold.

Figure 3.4: Principle of frequency linearisation based on time-frequency anal-
ysis of the beat signal.

A continuous-time Short-Time Fourier Transform (STFT ) can be used as a
time-frequency analysis to determine the non-linearities of the beat frequency fb.
STFT is a Fourier-related transform used to determine the sinusoidal frequency
and phase content of local sections of a signal as it changes over time.

This frequency linearisation procedure has been applied to K2Pi radar.
In order to evaluate the quality of the linearisation, a distance calibration has been
realized. A canonical target is positioned in front of the radar, at a range between
5m and 100m.
For each reflector position, a radar signal is measured, a radar spectrum is com-
puted and the value of the beat frequency is extracted from the spectra (position
of the maximum of the peak that can be observed in the radar spectra). The
obtained result is presented in Fig. 3.5.

The beat frequency vs. distance function highlights a linear behavior, with a
coefficient of determination of 0.99.
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(a)

(b)

Figure 3.5: Beat frequency vs. distance function measured with PELICAN
radar. A canonical target (Luneberg reflector) has been placed in front of
the radar, at a range between 5m and 100m. For each position, the radar-
reflector distance r and the corresponding beat frequency fb have been mea-
sured (blue squares). The linear regression (red line) highlights a coefficient
of determination of 0.99.

3 Camera/radar System calibration

3.1 Related works

To the best of our knowledge, there are very few published works dealing with the
calibration of a camera/radar system. Approaching techniques can be found if we
extend the search to all range sensor/camera systems.
The closest work for camera/radar system calibration is the work of Sugimoto et
al. [85]. Radar’s acquisitions are considered to be co-planar, since it performs a
planar projection on its horizontal plane. Therefore, the transformation between
image and radar planes, can be represented by a homography matrix, H, as seen
in Fig. 3.6.
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Figure 3.6: Modeling of the radar and camera system (image from [85])

In order to detect corresponding features, a canonical target is being contin-
uously moved up and down by a mechanical system, it should be simultaneously
acquired by the radar and the camera (Fig. 3.7). Then, pairs of matches (4 pairs
at least and 46 are used in the experimental validation) corresponding to the ex-
act intersection of the target with the horizontal plane of the radar, are extracted.
Noting (X,Y, Z)T the coordinates of the target in the radar frame and (u, v)T its
projection on the image, these pairs are related as follows:

w ·

uv
1

 = K ·A ·


X
Y
Z
1

 (3.2)

For Z = 0 (horizontal plane), the equation 3.2 becomes:

w

uv
1

 = H

XY
1

 (3.3)

Where H is the homography matrix:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (3.4)

Due to sampling frequency, it is difficult to ensure that the targets are viewed at
the exact moment when they cross the horizontal plane. Thus, the exact positions
are determined from the maximum of the intensity reflected by the target using
bi-linear interpolation of the measurement samples along the vertical trajectory of
each target. In spite of its theoretical simplicity, this method is hard to implement.
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Figure 3.7: A mechanical system is carried out in order to move the target
then the data are processed in order to find the corresponding acquisitions
(image from [85])

Note that, in the related works, a homography matrix is computed. This
transformation relates the image plan to the radar plan. But the detection of
targets placed exactly on the radar plan is a complex task; only co-planar points
in the radar horizontal plan should be considered. Therefore, we seek for a feasible
procedure in practice.

3.2 Proposed method
Our goal is to determine the rotation and the translation relating the frames of the
camera and the radar. The proposed approach should reach accuracy performances
needed for outdoor cartography purpose. At the same time, the method should be
easy to implement in practice.

Let’s consider a 3D target detected by both the camera and the radar. Its
coordinates in the radar frame is Mr(Xr, Yr, Zr)T . Its polar coordinates are noted
mr(r, α) and its image projection is p(u, v) as illustrated in Fig. 3.8.

First, Mr belongs to a sphere C centered on the radar’s center of the antenna
lobe, Or(0, 0, 0), and having radius r equal to the distance measured by the radar.
The equation of the sphere in the radar frame is written as follows:

X2
r + Y 2

r + Z2
r = r2 (3.5)

The second constraint, is that Mr belongs to a vertical plan πα parallel to the
Z axis of the radar frame at an azimuth angle α of the target as shown in Fig.
3.8. The normal to the plane πα, is noted ~n = (sin(α),− cos(α), 0). Since πα is a
vertical plane passing by Or, it has the following equation:

Xr sin(α)− Yr cos(α) = 0 (3.6)

Finally, M̃r is lying on the light ray L passing through the corresponding pixel
p in the image and the optical center. So Mr should verify the following equation
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Figure 3.8: The illustration of the detection of a 3D point Mr by both camera
and radar simultaneously.

of L which is the transformation mapping M̃r to p̃, by the combination of the
frame changing transformation matrix A and the 3D-2D projection matrix K.
The equation is written as follows:

wp̃ = [K|0]AM̃r (3.7)

M̃r can therefore be written in function of p̃, w and A:

M̃r = A−1
[
K−1wp̃

1

]

=
[
RT −RT t
0 1

] [
wJ
1

]

=
[
RTwJ −RT t

0 1

]
(3.8)

Where J = (x, y, f)T and w are the unknown scale factor, proportional to the
depth of the 3D point, in the camera frame. According to (3.8), X, Y and Z are
expressed in terms of unknowns A and w:

Xr = A−1
11 wJ1 +A−1

12 wJ2 +A−1
13 wJ3 +A−1

14
Yr = A−1

21 wJ1 +A−1
22 wJ2 +A−1

23 wJ3 +A−1
24

Zr = A−1
31 wJ1 +A−1

32 wJ2 +A−1
33 wJ3 +A−1

34

(3.9)

Therefore, for each camera/radar correspondence, the following system of two
equations is derived, where Xr, Yr and Zr are expressed in terms of the unknown
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parameters (w, R and t).

(S1)
{
X2
r + Y 2

r + Z2
r − r2 = 0

Xrtan(α)− Yr = 0

The geometrical interpretation of these equations is that the point is con-
strained to belong to the disk centered on the radar center at an azimuth α. The
camera/radar calibration parameters can then be determined by solving the system
of equations (S1) obtained from all the camera-radar point correspondences.

However, the system is non-linear and in real case, it is influenced by measure-
ment noise and erroneous measurements. So the equations are not exactly equal
to zero and the solution that best minimizes the error is to be estimated by an
optimization procedure.

An optimization method such as non-linear least square is applied. The Levenberg-
Marquardt algorithm is chosen because of its popularity in several applications.
Although it is not the best algorithm in terms of convergence speed [86], the damp-
ing strategy used for this algorithm is effective for a good convergence from a wide
range of initial estimates [55, 39]. Therefore, the algorithm is suited for offline ap-
plication such as the calibration in our case. A brief introduction to this algorithm
is presented in the appendix (C) of the annex.

For Np matches, where Np is the number of 3D points used for the calibration,
the system (S1) is obtained, with i = 1→ Np and ε is the residuals:

(S1)
{
X2
ri + Y 2

ri + Z2
ri − r2

i = εi1
Xri tan(αi)− Yri = εi2

The equations are expressed with respect to a parameter vector
pv = [γx, γy, γz, tx, ty, tz, w1→Np ] containing the Euler angles of the rotation, the
translation components and the scale factor wi associated to the 3D point. The
cost function to be optimized is:

F (pv) = (
Np∑
i=1

(X2
i + Y 2

i + Z2
i − r2

i )2 +
Np∑
i=1

(Xi tan(αi)− Yi)2) (3.10)

The estimated parameters are then:

p̂v = argmin F (pv)

The dimension of the parameter vector is N = Np + 6Nc. Nc is the number of
cameras observing the point, (in our case Nc = 1).
In addition to the non-linearity of the problem, one can note that there is a coupling
between the scale factors w and the other parameters. This coupling usually
deteriorates the convergence performance and can create additional local minima.
Hence, we need to uncouple the parameters or to add more geometric constraints.
Two solutions were proposed in the following subsections.
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3.2.1 Inter-distance constraint

If we assume that we can measure the distance between each pair of the 3D points,
we will show that the computation of some parameters can be uncoupled. This
additional constraint can be easily introduced in practice since it only requires
the measurement of the distances between 3D points, which is not as complex as
measuring three dimensional coordinates of points in a given frame.
In order to calculate the scale factor w separately, we proposed to use the Al-Kashi
theorem [45]. This theorem is known as the “law of cosines” that generalizes the
Pythagorean theorem of an unspecified triangle. The later, applied to the triangle
formed by two 3D points m1, m2 in the camera frame, with the optical center Oc
as illustrated in Fig. 3.9, gives the following equation:

d2
1 + d2

2 − 2L12 = d2
12 (3.11)

Where
L12 = d1d2 cos(θ12) (3.12)

Figure 3.9: The trigonometric relationship between two 3D points in the cam-
era frame, m1 and m2 is illustrated. d12 is the Euclidean distance measured
between m1 and m2, and d1, d2 are their distance relative to Oc.

For Np matches, di is the distance of the point relative to Oc, with i = 1→ Np,
and it is related to the scale factor wi by the formula:

di = wi
cos(βi) (3.12)

Where βi is the angle formed between the principle point pc and pixel pi. Thus,
cos(βi) can be computed as follows:

cos(βi) = pT
c (KKT )−1pi√

(pT
c (KKT )−1pc)(pT

i (KKT )−1pi)
(3.12)

Noting dij , the known distance between points mi and mj , with j = 1 →
Np and θij , the angle between two rays lining up the 3D points with Oc. θij is
calculated according to (3.2.1) in this manner:

θij = arccos( pT
i (KKT )−1pj√

(pT
i (KKT )−1pi)(pT

j (KKT )−1pj)
) (3.12)
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The inter-distance constraint provides therefore a system of equations in terms
of wi and εi,j are the residuals:

(S2)
{
d2
i + d2

j − 2Lij − d2
ij = εij

For Np ≥ 4, an over-constrained system is obtained and all the w1→Np factors can
be recovered using a non-linear least square optimization since founding an initial
guess of the distances is trivial in practice. Note that a linear solution can also be
adapted from a geometrically similar problem in [72]. The cost function is defined
as follows:

F1(pv1) = (
Np∑
i=1

Np∑
j=1

(d2
i + d2

j − 2Lij − d2
ij)2) (3.12)

With pv1 = [wi=1→Np ] the first parameter vector containing the unknown scale
factors. The w1→Np are then estimated as:

p̂v1 = argmin F1(pv1)

Once the w1→Np are computed, the system (S1) can now be optimized. The cost
function to be optimized is the sum of squared residuals:

F2(pv2) = (
Np∑
i=1

(X2
ri + Y 2

ri + Z2
ri − r2

i )2 +
Np∑
i=1

(Xri tan(αi)− Yri)2) (3.12)

With pv2 = [γx, γy, γz, tx, ty, tz]. The estimated parameters are then:

p̂v2 = argmin F2(pv2)

An alternate solution consists in optimizing all the residuals (S1) and (S2) as
a unique cost function. In this case, the problem has the same parameter vector,
pv having dimension N = Np + 6Nc.
The number of equations is (Np + C2

Np
) where C2

Np
is the Np − combination of a

pair of 3D targets. The number of equation is higher than (Np + 6) for Np > 4.
For instance, with 6 3D points, we have 15 inter-distances so we obtain a system
(S2) of 15 equations.

For further simplification of the implementation process, we tend to relax the
a priori inter-distance constraint. In this context, new geometrical constraints
which do not require additional measurements should be considered in order to
add more equations to the system. The second calibration constraint is detailed
in the next section.
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3.2.2 Pose constraint

In order to find new geometrical constraints which do not require additional mea-
surements, we propose to move the system of sensors, while keeping the captured
scene fixed as illustrated in Fig. 3.10. This allows for multiple acquisitions of the
scene from different points of view which better constraints the pose of the sensors.

Figure 3.10: The displacement of the system around a fixed scene, gives more
geometric equations. An illustration of this process is shown. The matrix Ak
is the transformation between one position and another.

Accordingly, changing the point of view of the system leads to additional trans-
formation matrix Ak, corresponding to a displacement k of the sensors.

A 3D point M̃rki
in radar frame at the kth position, is then expressed in

function of unknowns A1, Ak and wi as follows:

M̃rki
= A−1

k ·A
−1
1 (wi ·K−1 · pi) (3.11)

Where pi is the corresponding pixel. Thus Xki
, Yki

and Zki
, can be written as

follows: 
Xrki

= A−1
k11
Xrk−1i

+A−1
k12
Yrk−1i

+A−1
k13
Zrk−1i

+A−1
k14

Yrki
= A−1

k21
Xrk−1i

+A−1
k22
Yrk−1i

+A−1
k23
Zrk−1i

+A−1
k24

Zrki
= A−1

k31
Xrk−1i

+A−1
k32
Yrk−1i

+A−1
k33
Zrk−1i

+A−1
k34

(3.11)

Then the following system (S3) is obtained for each point i and for each position
k:

(S3)
{

X2
rki

+ Y 2
rki

+ Z2
rki
− r2

ki
= εi1

Xrki
sin(αki

)− Yrki
cos(αki

) = εi2

Using this constraint, the number of parameters is raised but also the number of
equations. The dimension of the parameter vector is N = Np + 6k. In order to
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resolve the system, the number of parameters should be smaller than the number
of equations: Np + 6k < Npk. Therefore: Np >

6k
k−1 .

The resulting cost function is then optimized using the levenberg-marquardt
least square optimization algorithm with the following cost function:

F (pv) = (
Np∑
i=1

(X2
ri + Y 2

ri + Z2
ri − r2

i )2 +
Np∑
i=1

(Xri tan(αi)− Yri)2) (3.11)

And the estimated parameters vector is:

p̂v = argmin F (pv)

Both calibration methods are based on point feature correspondences. Thus,
we need to design physical targets that provide accurate point measurements in
both camera and radar images. These targets are described in details in the next
section.

4 Target design and detection
Since the radar and the camera acquisitions are inherently different, the feature
extraction is processed differently from the 2D image and from the panoramic. Two
types of targets (Diamond and spherical targets) are described. The detection of
these targets from both data, are detailed hereafter.

4.1 Radar detection
The variations of amplitude of the reflected signal are introduced by the nature
and orientation of each target. Thus, the targets characteristics should allow a
uniform reflection of the electromagnetic wave emitted by the radar regardless of
their position relative to the latter.

4.1.1 Diamond shape target

In order to have a uniform and high reflection of the emitted electromagnetic
waves, special targets are chosen. The targets are formed by three intersecting,
diamond-shaped, metallic plates. These metallic targets have a high reflectivity
characteristic and a small cross section. The wave is reflected from the center of
the target as explained in Fig. 3.11. Thus the center that will be extracted from
the radar panoramic corresponds to the real center of the metallic target.
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Figure 3.11: The illustration of the electromagnetic wave reflection (repre-
sented by the red arrow). The wave is reflected at the center of the target.

First, the target centers are selected, in the radar panoramic. Then a Gaussian
estimation of the target response is performed. An example of radar image in polar
coordinates obtained with a point target is presented in the Fig. 3.12. The green
point indicates the maximum amplitude of the peak, and the coordinates of this
maximum are an estimate of the position of the point target: azimuth 177.95◦,
distance 14.09m.

(a) (b)

Figure 3.12: Example of polar image of a point target. (a) The point tar-
get is a metallic tetrahedral. (b) Radar image of the point target in polar
coordinates (azimuth, distance). The green point indicates the maximum
amplitude, i.e. the estimated position of the target.

But this discrete position of the maximum amplitude does not correspond
exactly to the maximum amplitude of the beat signal due to the azimuth and
distance (frequency) precision.

In the azimuth dimension, in order to improve the azimuth resolution, two
solutions are possible:
• Reduce the rotation velocity of the antenna, but it will take more time to

obtain one panoramic radar image;

• Increase the modulation frequency, but in that case the bandwidth of the
beat signal is modified, and it is necessary to adapt the reception electronic
and the data acquisition card.
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If both solutions are not acceptable, an interpolation approach can be done.
This solution is presented in Fig. 3.13. The red discrete sequence in Fig. 3.13, cor-
responds to the points of the red curve in Fig. 3.12. The green curve is a Gaussian
interpolation of the discrete points. The maximum of the Gaussian interpolation
provides an estimate of the real azimuth position of the target: 177.76◦.

Figure 3.13: Example of Gaussian interpolation over the azimuth dimension.
The red points are data provided by radar. The green curve is the Gaussian
interpolation.

In the range dimension, the interval δr between two successive samples of a
radar spectrum is determined by the resolution δf of the spectral analysis. In
order to increase the resolution we use an interpolation approach. This solution is
presented in Fig. 3.14. The blue discrete sequence in Fig. 3.14, corresponds to the
points of the blue curve in Fig. 3.12. The green curve is a Gaussian interpolation
of the discrete points. The maximum of the Gaussian interpolation provides an
estimate of the real distance of the target: 14.00m.

Figure 3.14: Example of Gaussian interpolation over the distance (frequency)
dimension. The blue points are data provided by radar. The green curve is
the Gaussian interpolation.

The position of the target, is then detected and their polar coordinates are
computed, as seen in Fig. 3.15.
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Figure 3.15: The center extraction of the radar target: a zoom in to the
extracted target center. The elevation of the target response is represented
by color grid.

4.1.2 Spherical target

One Luneburg lens is also used as seen in Fig. 3.16. The luneburg lens was
proposed by RudolfLuneburg in his book [57].

Figure 3.16: Example of a Luneburg lens target.

It is composed of layered concentric shells, having different refractive indexes.
The index of refraction decreases gradually out from its center (varying from n = 1
at the surface to n = 2 at the center) as illustrated in Fig. 3.17 (a).

Hence, an incident electromagnetic wave is focused at a point at the opposite
rear surface of the lens; The incident rays passing through the layers of different
refractive indexes, are bend towards the focal point. A metal reflector is placed
around the focal point. Thus, the rays are reflected into the same path toward the
radar antenna as illustrated in the Fig. 3.17 (b).

Therefore, the Luneburg lens is highly reflective and operates similarly from
different orientations. The distance measured by the radar corresponds to the
distance to its rear center.
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Figure 3.17: The shell layers are illustrated (a). An illustration of the wave
reflection technique by the Luneburg lens with blue shading proportional to
the refractive index (b).

4.2 Image detection
4.2.1 Diamond shaped target

The metallic plates are also painted with contrasting colors in order to simplify the
visual detection of the centers in the image. The external corners of the targets
are selected and joined forming two intersecting diagonals. This technique is the
same used for the classical camera calibration using a chessboard. It consists of the
estimation of straight lines corresponding to the edges in the image. This is done
by linear regression. Then, the intersections of these straight lines are located.
Thus, it enables to detect the targets centers with a sub-pixelic accuracy.
The centers extraction process from the images, is illustrated in Fig. 3.18.

(a) (b) (c)

Figure 3.18: Center extraction of targets in the camera image. (a), (b) and
(c) are three examples.

4.2.2 Spherical target

In the case of spherical target, the radar detected point corresponds to the focal
point of the sphere. The advantage with a spherical target is in the fact that its
projection on the camera image corresponds to a circle independently from the
angle of view. Thus detecting the centroid of the target consists in computing
the center of the circle detected in the image. This detection is based on image
contour segmentation followed by circle detection using Hough transform as seen
in Fig. 3.19. It is recommended to paint the target to enhance the contrast with
the background. However, since the two sensors are not necessarily aligned at the
same axis, the detection of the focal point in the image is somehow biased. This
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biased estimation could propagate to influence the results of the calibration. Thus
the diamond shaped targets are more suitable for our calibration process.

Figure 3.19: The detection of the center of the luneburg lens in the image.
The circle corresponding to the spherical lens is first detected (red circle).
Then the centroid of the detected circle is located (red cross).

5 Methods analysis

In order to study the effect of several parameters on the accuracy of the proposed
methods, experiments using synthetic data were carried out. Both calibration
methods were tested and the simulations results were compared.

5.1 The setup of the simulations

Sets of 3D points were randomly generated following a random distribution within
a random work space in front of the camera-radar system as illustrated in Fig.
3.20.
The generated 3D data should comply the visibility constraint: the 3D points are
re-projected into the image using the camera matrix. Also, the simulated points
are positioned so that it meets the radar detection conditions (between 3.9m and
100m for the distance).
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Figure 3.20: An example of the simulated 3D scene and of the sensors system.
The simulated 3D points comply with the visibility constraint of the camera
and the radar.

The pixel and the polar coordinates corresponding to a 3D point were computed
using the pinhole model of the camera and the geometric model of the radar
sensor. Thus a projection of the 3D points cloud on both radar and image plans
is performed. The camera matrix used for the simulations is:

K =

1000 0 320
0 1000 240
0 0 1

 (3.10)

First the calibration algorithms are tested with exact data input in order to
validate the system of equations. The obtained errors are around 10−6m on trans-
lation and 10−12rad on rotation. Yet, according to the simulations, it can be
noticed that singular configurations such as aligned or co-planar targets can cause
a divergence of the algorithm. We want to avoid these cases in the experimental
process.

Afterwards, the simulations were extended emulating realistic cases in order to
test the efficiency and the accuracy of the methods with respect to several param-
eters such as the number of matches and the noise level for both methods and the
number of poses for the second calibration method. Therefore synthetic data are
disrupted by a random noise δβ. It corresponds to a Gaussian form of distributed
values between −δβ and +δβ. These values are added on the 2D data provided
by the sensors, representing their uncertainty regions.
The initial guess of the parameters used for the simulations is choose to be fairly
close to the solution. A fixed value proportional to the mean value of each pa-
rameter is added or subtracted to the correct parameters: for the translation, the



5. Methods analysis 51

initial parameters are t0 = t+ ∆t, with ∆t = ±10cm. ∆α = ±0.1rad is added to
the rotation angles and ∆w = ±2m is added to the scale factor w.

Then, the error of the calibration results are computed. The translation error
is defined as the mean of the difference between the coordinates of the estimated
and the ground-truth translation vectors. And the rotation error is the solid angle
between the two rotations. These errors are computed for 6 iteration for each level
of the varying parameters (e.g. the noise level).

5.2 The noise level
For the first step, we want to test the sensitivity of the calibration methods with
respect to the noise level. Therefore, linearly increasing noise level is applied to
the input data. The noise level starts from level1 corresponding to ±0.5 pixels,
±0.5◦ on azimuth angle, ±2cm on distance and ±0.5cm on inter-distance. Up to
level25 corresponding to ±5 pixels, ±5◦ on azimuth angle, ±50cm on distance and
±5cm on inter-distance. The number of matches used for the calibration process
is 10. Errors graphs are shown in Fig.3.21 (a) and (b), corresponding to the first
and second calibration methods respectively.

It is noticed that the effects of the increasing noise on the data increases the
errors of the calibration results.The graph of the translation error of the first
calibration method globally shows a better result compared to the graph of the
translation error of the second method. The opposite case is deduced for the
rotation error graphs of the first and second methods: the second method presents
a better result for the rotation, compared to the graph of the first method.

These results can be interpreted as follows: The first method is constrained by
the known inter-distance. Thus the inter-distance allows a better constraining of
the scale factor and thus the translation and the distances.

On the other hand, the pose constraint is based on multi-poses triangulation.
This approach generally suffers from the well-known scale factor drift phenomenon
which appears in large scene reconstruction using SFM methods. Since we con-
strain the system pose using the projection of 2D data from different angles of
view. Thus, this constraint exploits the geometry of the scene which constrains
better the orientation of the sensors.

5.3 The number of matched 2D points
Secondly, we want to study the performance of the calibration methods with re-
spect to an increasing number of matches. We added a fixed noise level corre-
sponding to ±2 pixels, ±2◦ on azimuth angle, ±2cm on distance and ±0.5cm
on inter-distance. Note that the inter-distance error intervenes only for the first
calibration method.

The number of matches used for the calibration process is increased by steps
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of 1, from 5 to 30 points, in order to analyze the convergence of the algorithms.
Each 2D point match introduces supplementary equations.

(a) First calibration method

(b) Second calibration method

Figure 3.21: (a) and (b) represent the calibration error with respect to the
noise level, of the first and second methods respectively. Left: translation er-
ror in meter. Right: rotation error in radian. The graphs show the mean and
the standard deviation of the error upon 6 iterations with 10 used matches.

The results shown in Fig. 3.22 (a) and (b), correspond to the first and second
calibration methods respectively.
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(a) First calibration method

(b) Second calibration method

Figure 3.22: (a) and (b) represent the calibration errors with respect to
the number of points, of the first and second methods respectively. Left
column: translation error in meter. Right column: rotation error in radian.
The graphs show the mean and the standard deviation of the error upon 6
iterations. The number of matches is increased by step of 1 from 5 to 30.

It is noticeable that the errors decrease starting from 6 matches for both cali-
bration methods, and then it remains nearly stable. This is due to the non-linear
problem that converges more precisely to the correct solution when the noisy sys-
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tem of equations is over-determined.
According to the resulting graphs, the first calibration method presents better

results for the translation while the performance of the second method is better
for the estimation of the rotation. Similarly to the study of the noise level, the
same interpretation is valid for this parameter.

5.4 The number of poses of the camera/radar system
An important parameter that interferes on the performance of the second calibra-
tion method is the number of poses of the camera/radar system. In order to study
the influence of this parameter on the final results of the calibration, we gradually
increased the number of poses from 2 of up to 7 poses.

Also, a fixed noise level is added to the 2D data corresponding to ±2 pixels,
±2◦ on azimuth angle, ±2cm on distance. 10 matched points are used for this
simulation.

Figure 3.23: The calibration error using the pose constraint, with respect to
the pose number, is presented. Left: translation error in meter. Right: rota-
tion error in radian. The graphs show the mean and the standard deviation
of error upon 6 iterations with 10 matches used.

By studying the general shape of the error curves in Fig. 3.23, one can notice
that the error on the calibration results is the highest for 2 poses. Then the error
decreases starting from 3 poses and remains nearly constant for the translation
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and rotation.
This shows that acquisitions starting from 3 poses must be done in order to have
a good result. For more than 3 poses, the calibration method has the same per-
formance with respect to the number of poses.

In the next section, the calibration setup of the system using both methods
with real data is presented and the results are shown.

6 Experimental validation with real data
6.1 calibration setup
The setup of the calibration of the camera and radar using the proposed methods
is detailed in this section. First, the radar and the camera were mounted in a fixed
configuration on the top of a vehicle, in front of the scene. Their installation is
depicted in Fig. 3.24.

Figure 3.24: The radar and camera system is presented. (To the right) a
zoom in on the sensors system is presented (the radar to the right and the
camera to the left).

The radar is called K2Pi and has been developed by Irstea Institute. The optic
sensor used for this experiment is uEye by IDS (Imaging Development Systems).
Camera and radar’s characteristics are listed in table 5.1. A GPS mounted on the
vehicle has been used for the synchronization of the data acquisition carried out
by these two sensors.

We placed eight targets in front of the sensors system. The targets used are the
7 diamond shaped metallic targets and one luneburg lens described in the section
3.4. The depth of the targets are chosen between 6m and 17m. Two different ran-
dom configurations of the 8 targets are acquired for both calibration constrained
respectively. In the context of our application, the calibration step can be done
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Table 3.1: Camera and radar characteristics

Camera characteristics
Sensor technology CMOS

Sensor size 4.512× 2.880mm
Pixel size 0.006mm

Resolution (h× v) 752× 480
Focal distance 8mm
Viewing angle 43× 25◦

Radar characteristics
Carrier frequency 24GHz

Antenna gain 20dB
Range 3− 100m

Angular resolution 4◦
Distance resolution 1m
Distance precision 0.02m

Viewing angle 360× 20◦

offline since the sensors are rigidly fixed during the acquisitions. Hence, we can
afford to initialize the calibration parameters vector by measuring approximately
the transformation between the two sensors. This allows having a good initial-
ization of the parameters and therefore a good convergence of the optimization
algorithm.

6.1.1 Setup for Inter-distance method validation

For the inter-distance constraint-based method, only one image and the corre-
sponding panoramic are needed. The inter-distances between the targets centers
are measured precisely. The used images are shown in Fig. 3.25. The targets
centers are extracted, as explained previously in section (4), from the camera and
the radar 2D data and an example of features pairs is shown in Fig. 3.26.

6.1.2 Setup for pose constraint method validation

The calibration using the pose constraint requires multiple acquisitions from differ-
ent poses of the sensors system. The 4 images and the 4 corresponding panoramics,
used for the computation of the transformation matrix, are shown in Fig. 3.27.
A ground truth 3D points cloud corresponding to the target position was created,
using accurate structure from motion technique. The ground truth creation is
explained in the next section.
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(a) The camera image of
the targets

(b) The acquisition of
the same scene by the
radar

Figure 3.25: The calibration setup using the inter-distance constraint. (a)
Camera image of the eight canonical targets: one Luneburg lens and seven
tetrahedral corners. (b) Radar panoramic and a zoom in on the 8 canonical
targets. Radar position is notified by the red cross.

Figure 3.26: An image and a panoramic of targets. The targets are numbered
from 1 to 8. The white crosses indicate the centers of the targets. Example
of manually extracted matches between the image and the panoramic are
shown.

6.1.3 Creating ground truth data

In order to create the ground truth set of points, Structure from Motion technique
[87] is used. A camera is moved around the scene acquiring multiple images from
different points of view. These images are used in order to create a complete 3D
model of the scene. The SFM algorithm can be summarized as follows:
1. We have m images of n 3D points
2. Pixels correspondences among the m images are found
3. A measurement matrix is derived from these correspondences
4. The SV D decomposition is then applied to the measurement matrix searching
for the camera pose and the 3D point cloud. Finally, the results are refined using
a bundle adjustment technique.

8 images are used in our case. Examples of the images are shown in Fig.3.28
(a) (b) and (c). The resulting 3D point cloud is shown in Fig.3.28 (d).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Top line: Camera images of the eight canonical targets. Middle
line: Radar images with eight canonical targets. Radar position is notified
by the red cross.

The scene is reconstructed also in the radar frame using our reconstruction
method which will be detailed in the next chapter. The 3D reconstructed form us-
ing both methods are then registered using ICP (Iterative Closest Point) algorithm.
The resulting 3D points cloud is used for the computation of a back-projection er-
ror providing therefore a measure of the quality of the calibration results.

6.2 Results analysis
Two experiments were carried out using the two calibration constrained.

In the absence of a ground truth of the radar to camera transformation matrix,
the back-projection errors can provide a measure of the quality of the calibration
results. A back-projection error is the distance between a pattern key point de-
tected in a calibration image, and a corresponding world point projected into the
same image.

The ground truth 3D points cloud is re-projected into the image in order to
compute this error. The 3D points cloud are shown in fig 3.29 (a) and (b) for the
first and second calibration methods respectively.
It is then re-projected using the calibration results, into the image frame of the
camera mounted on the vehicle.

The mean of the re-projection errors of the 3D points is equal to 0.6029 pixels
and 0.2807 pixels for the inter-distance and pose based calibration respectively. It
is noticed that the second method represents a better precision of the re-projection
error. This relatively small error is comparable to standard results of camera cali-
bration and it provides an overall good impression on the results, for our applica-



7. Conclusion 59

(a) (b)

(c) (d)

Figure 3.28: The SFM data and results. (a), (b) and (c) are examples of the
images of the scene from different points of view used for the elaboration of
the point cloud. (d) The resulting 3D point cloud.

tion context. Thus the transformation matrices can be used for the reconstruction
method.

7 Conclusion
In this chapter, we addressed the geometrical calibration of the camera/radar sys-
tem. This step is crucial in the reconstruction processing sequence. The difficulty
of this step is due to the inherent dissimilarity of the data provided by the sensors.
Thus, the choice of the features extracted from both radar and camera data is
crucial.

Therefore, in order to provide the algorithms with point correspondences, two
types of targets allowing accurate detection in both sensors, were designed.

We described simple calibration methods, using two different constraints: the
inter-distance and the pose constraint. From these geometrical constraints, addi-
tional equations are derived and then the system of non-linear equations is solved
using the Levenberg-Marquardt algorithm which is relatively simple to implement
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(a)

(b)

Figure 3.29: The 3D reconstructed point cloud used for the computation of
the back-projection error of the calibration. A side and top view of the points
clouds are shown.

and converges rapidly .
The performance of the methods with respect to the number of targets (features

pairs) and to the noise level has been studied. Also the number of poses of the
system is increased progressively in order to study the performance of the second
calibration method with respect to this parameter.

The simulations showed that the performance of the calibration is in fact influ-
enced by the added noise but the method is suitable for a relatively realistic noise
level.

The results of the simulation step of the two methods of calibration are com-
pared. Indeed, both methods present advantages and disadvantages: The first
method, using the inter-distance constraint uses very few input data (only one
acquisition is required). And its parameter vector included fewer unknowns to be
estimated. Also this method presented better results for the translation vector
estimation. Yet, the a priori assumption of known inter-distances can be an ad-
ditional source of implementation complexity and of error.
Taking this into consideration, we proposed a second method based on the pose
constraint which does not require known inter-distances. Since the ease of im-
plementation is related to the degree of automation, we can consider that the
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second method is easier to implement. In addition, the estimation of the rotation
parameters is better using this method as showed the simulations. However, the
number of unknown parameters is increased. Also, a minimum of 3 acquisitions,
from different points of view, are required.

Finally we presented the experimental setup of the calibration process and the
resulting transformation parameters for both calibration methods.

In order to assess the results, a ground truth of the points cloud is obtained
using SFM method. The ground truth is then used to compute the re-projection
error of the calibration methods. The relatively small error compared to the cam-
era calibration, provides an overall good impression on the results.
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3D Reconstruction

“

T
he true sign of intelligence is not knowledge but imagination.”

Albert Einstein

This chapter introduces the 3D reconstruction using the cam-
era/radar system. We describe a geometrical method to compute
the 3D coordinates of a point by using its image and radar mea-
surements. Firstly, this concept and the motivation behind it are
briefly introduced. At this stage, we made the assumption that
a target is represented by a 3D point and that the camera/radar
system is calibrated using one of the methods presented in the
previous chapter. In order to focus on the geometrical aspect of
the reconstruction, the radar to image point correspondences are
supposed to be established. The automatic generation of such
correspondences is addressed in the next chapter. Moreover, a
theoretical study of the reconstruction error is presented. Bas-
ing on uncertainty zone propagation, we show that this method
outperforms classical stereo triangulation for large scale scenes.
The influence of several parameters on reconstruction error is
also studied and the method was tested on both synthetic and
real data.
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1 Introduction
The acquisition of a 3D scene by a sensor generally introduces a loss of information
about the scene. Because of the geometrical projection performed by the sensors,
a part of the 3D information is lost. This is true for both radar and camera mea-
surements. The principle of 3D reconstruction of a scene is then, the compensation
of missing data from 2D acquisitions taken from different points of view.

3D reconstruction of large scale environment is a challenging topic. In spite
of the works already done for the 3D reconstruction of large scale and exterior
scenes, this topic is still facing many challenges for fully automatic and real time
sufficient and robust modeling results, without assumptions or a priori knowledge
on the environment. For this reasons, the proposal of a simple, robust and fast
algorithm dedicated to complete such an objective, is needed.

The theory behind the 3D reconstruction method is described in the next
section. We are interested here in the reconstruction of a matched point from a
geometric point of view and we are not interpreting the whole scene at this stage.

2 The algorithm
In order to recover the third dimension using 2D acquisitions of the camera and
the radar, we proceed as follows: a 3D point Mc in the camera frame, detected
by both the camera and the radar, verifies two geometric primitives in the camera
and the radar frames.

First, a light ray L is reflected from the 3D point to the camera passing through
its optical center. Thus, the 3D point belongs to the light ray L verifying the
following equation:

wp̃ = [K|0]M̃c

were w is the unknown parameter, and by inverting this equation, one can write:

M̃c =
[
K−1wp̃

1

]
=

[
wJ
1

]
(4.-1)

Where

J = K−1p̃ =
[
J1 J2 J3

]T
(4.-1)

Second, the radar provides the distance information r of the detected 3D point.
Thus, this point is belonging to the sphere C, centered on radar’s antenna origin
and having the radius r. The equation of the sphere in the camera frame is written
as follows:

(C) (Xc − xOr )2 + (Yc − yOr )2 + (Zc − zOr )2 = r2 (4.-1)
Or(xOr , yOr , zOr ) and r are the radar frame origin and center and radius respec-
tively.
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Therefore, the coordinates of the 3D point are obtained by estimating the
intersection point between the sphere C and the light ray L. This geometry is
explained in Fig. 4.2.

Figure 4.1: The 3D reconstructed point Mc is the intersection of light ray L
and the sphere C at α. mr is the projected 2D point on the horizontal radar
plan

.

Our method consists of three steps:

• First the scale factor w is to be determined; From equation (2), Xc, Yc and
Zc can be written as a function of w:

Xc = wJ1
Yc = wJ2
Zc = wJ3

Replacing Xc, Yc and Zc in equation (2) thereby, leads to a quadratic equa-
tion in w:

w2(J2
1 + J2

2 + J2
3 )− 2w(J1xOr + J2yOr + J3zOr )

+(x2
Or

+ y2
Or

+ z2
Or
− r2) = 0 (4.-2)

Since we are working in large scale environment, the targets are usually
further compared to the baseline (the distance between the radar and cam-
era frames). Therefore, the camera is always located inside the sphere C,
so theoretically, two solutions for the quadratic equation (4.-2), exist, w
and w′. These two solutions yield to two 3D points M̃c(Xc, Yc, Zc, 1)T and
M̃ ′c(X ′c, Y ′c , Z ′c, 1)T , in the camera frame.
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• Secondly, the obtained 3D points are expressed in the camera frame. Thus,
a coordinate transformation should be applied in order to compute their
coordinates in the radar frame, since the radar frame is the world frame. To
do this, we use the following equation:

M̃c = AM̃r

Where A is a transformation matrix. By inverting A, one can write the two
solutions in the radar frame as follows:

M̃r = A−1M̃c and M̃ ′r = A−1M̃ ′c (4.-3)

• Finally, the correct 3D point should be selected. In order to do this, the
azimuth angles α and α′ of these resulting points are computed. Moreover,
the radar provides the azimuth angle of the detected point αcorrect. Thereby,
the correct solution is selected by comparing the computed azimuth angles
and the one measured by the radar.

Figure 4.2: The azimuth angles α and α′ of the two points Mr and M ′
r are

illustrated.

3 Uncertainty analysis
The proposed reconstruction method is studied with regard to several parameters
that could influence its performance. Also, a comparison with the classic stereo
reconstruction method is performed.

3.1 Uncertainty zones of the sensors
In the ideal case, the 2D data provided by the sensors (the pixel and the polar
coordinates) corresponds exactly to the projection of a 3D point into a planar
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surface. However, in real experiments, these 2D data are disrupted by an error.
The principal sources of error are the uncertainty on the acquisitions which is
inherent to sensor limitations and the erroneous measurements due to errors on
feature extraction for instance.

3.1.1 The camera error

The first source of error is related to the spatial sampling of the retina. To simplify
the problem, each pixel corresponds to a photosensitive cell with a specified size.
Due to the central projection, all the light rays, inside a cone centered on the
optical center and whose diameter equals the size of one pixel on image plan, fall
into the same image pixel. Thus, by inverting the light ray direction, the dimension
of uncertainty zone of an image point increases with the depth.
Secondly, image data are extracted using image processing algorithms which return
the coordinates of one image point after processing the pixels from a relatively
important region of interest. Depending on the nature of the image processing and
its performances in variable conditions (such as illumination, angle of view,...), an
additional error is introduced on image data.

Thus the uncertainty corresponding to the camera can be represented by a
cone centered on its origin, in the direction of the target.

3.1.2 The radar error

The errors on the data of the radar are the uncertainty on the distance information
and on the azimuth angle.

These errors are constant with respect to the distance:
The target distance is obtained with the measurement of the frequency difference
between the transmitted signal and the received signal. This beat frequency is
small for short distances, and larger for longer distances. The distance resolution
is equivalent to a frequency resolution: this frequency resolution is independent of
the distance, and only depends on the frequency measurements performance of the
data acquisition and signal processing system. The precision of the radar distance
measurement is ∆r = 0.02m.

In polar coordinates system, the angular occupation of a target is independent
of its distance. The angular precision of the radar is ∆α = 0.5◦.
Also called B-Scope, the polar image allows plotting the power received from the
targets without distortion.
However, a polar to Cartesian transformation introduces distortion, resulting in
a larger spatial occupation as the distance of the target increases. But for our
reconstruction method, the polar to Cartesian transformation is not considered
since the polar coordinates of the target are considered: we consider that the
target is located on a sphere (C).

Examples of polar images of a point target (Luneburg lens) located at range
10m and 60m are presented in Fig. 4.3 (a) and (c) respectively. Each column
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of the figures corresponds to a single radar spectrum (i.e. one antenna pointing
direction). It can be seen that the echoes from the point target are similar, and are
independent of the range (the azimuth and distance scales are identical for ease of
images comparison).
The target highlights different spatial occupancies in Cartesian coordinates due to
range and antenna beam-width: the half power spatial occupancy over the X-axis
is 0.64m at range 10m (b); and 3.7m at range 60m (d).

(a) (b)

(c) (d)

Figure 4.3: Example of polar to Cartesian transformation. A point target
(Luneburg lens) is located successively at range 10m and 60m. The corre-
sponding images in polar coordinates are presented in (a) and (c). The point
target has the same angular occupancy independent of the range. The target
highlights different spatial occupancy in Cartesian coordinates due to range
and antenna beam-width: the half power spatial occupancy over the X-axis
is 0.64m at range 10m (b); and 3.7m at range 60m (d).

3.1.3 Intersection of the uncertainty zones

In the ideal case, the reconstruction is done by determining the intersection be-
tween a straight line and a sphere as illustrated in the Fig. 4.4(a). However,
by introducing the uncertainty of each sensor to the geometric model, we obtain
an uncertainty zone defined by the intersection of the cone corresponding to the
camera, with the inter-spheres region corresponding to the radar as illustrated in
Fig. 4.4(b).
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The intersection zone between the sphere and the cone can be approximated by
an ellipse because, the sphere surface can be locally approximated by a plan. So
the error corresponds to a truncated oblique cone, as illustrated in Fig. 4.4(c).
This region has a volume:
v = π/3(abbaseellipse + (abbaseellipse)(a′b′topellipse) + a′b′topellipse)height.
Where a, b and a′, b′ correspond to the major and minor axes of the base ellipse
and top ellipse respectively. The height of the truncated cone is equal to the dif-
ference between the maximum and minimum distance in the uncertainty zone and
is a constant equal to ∆r = 0.02m as seen in section (4.3.1.2).
The uncertainty zone are then examined in the study of the effects of the dis-
tance of the target and of the base-line between the sensors, on the reconstruction
results.

(a) (b)

(c)

Figure 4.4: The intersection of the uncertainty regions of each sensor: (a)
The ideal case of the geometric reconstruction, (b) Introducing uncertainty
regions of each sensor to the geometric model. (c) Zoom in on the intersection
region.

3.1.4 The setup of the simulations

Experiments with synthetic data were carried-out in order to represent the uncer-
tainty zone of each sensor.
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The synthetic data are generated as 3D point clouds, in the radar coordinate
frame. Then we proceed to the computation of the pixels and polar coordinates,
corresponding to the acquisition of these 3D points by the two sensors.
These 2D data are obtained by re-projecting the 3D points cloud on the image
plan and on the panoramic of the radar. This is done using a predefined camera
matrix and a transformation matrix. Therefore, the generated 3D data comply
the visibility constraint.
Also, simulated points are positioned to meet the radar detection conditions (be-
tween 3.9m and 100m for the distance).
A random noise was added to image and radar data in order to simulate measure-
ment errors. It corresponds to a Gaussian distributed values between −δβ and
+δβ.
These values are added on the 2D data provided by the sensors. Reconstructed
points are then compared to the simulated 3D points.

The setup of the simulations is detailed as follows:

• Base line for the stereo cameras and the camera/radar system: 40cm

• Image noise level: ∆p = ±2 pixels,

• Radar data noise level: ∆r = ±2cm and ∆α = ±2◦

• The error corresponds to the Euclidian distance between the computed 3D
coordinates and the simulated ones.

• The error is computed for 50 3D points for each level and over 6 iterations.

3.2 Effect of the distance
The first parameter is the distance to the target that can affect the reconstruction
results. For example, large scale scenes are a challenging work-space for an active
sensor like the Kinect. This is due to several limitations as explained in [1]: limited
field of view, short range (maximum range 4.5m), and infra-red saturation in direct
sunlight.

In the case of binocular stereo reconstruction, the stereo error increases with
respect to the distance of the target because of the intersection of the uncertainty
zone of each camera is larger for far targets as illustrated in Fig. 4.5.

In [30], the authors presented an analysis of stereo precision for large scale
urban environment. They showed that the computed depth error δz is influenced
by the error of the correspondences δd and by the geometry of the camera (the
baseline b and focal length f) as follows:

δz = z2

bf
δd (4.-3)
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(a) (b)

Figure 4.5: An illustration of the variation of the depth error zone with
respect to the distance of the target. The intersection of the uncertainty
regions of stereo cameras is presented (red region). (a) In the case of near
target, the error zone is small. (b) In the case of far targets the error zone is
larger and can be infinite.

In order to reduce the corresponding error, the image resolution should be in-
creased. But the complexity of the algorithm and the cost of the equipment are
then increased as well. Therefore, the authors proposed a variable base-line/focal
lens system, with respect to the distance of the scene. f can be increased either
by narrowing the field of view (zoom), or by increasing the resolution of the image
sensor. For large scale applications we need a large field of view thus narrowing
the field of view is not a good option. Another factor is to extend the base line.
But by increasing the baseline ”the depth where the fields of view begin to overlap
also increases and the near range is lost”.

Having this in mind, the effect of the distance of the target on the results of our
method is studied. It is noticed that the uncertainty zone of each sensor changes
differently with respect to the distance: The uncertainty region of the camera
increases with respect to an increasing distance of the target while the uncertainty
region of the radar is constant with respect to the distance as explained previously.
This is illustrated in Fig. 4.6. As it can be seen the error zone is larger for bigger
distance because of the uncertainty zone of the camera. But unlike the classic
stereo, the case of infinite error cannot occurred.

A test was carried out using simulated data. The mean distance of the 3D
points is increased from 3m up to 101m, and the mean error is computed for both
stereo and the proposed method. The Fig. 4.7 shows a comparison of the evolu-
tion of the reconstruction error obtained with binocular stereo and camera/radar
system.
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Figure 4.6: An illustration of the intersection of the uncertainty region cor-
responding to the camera and to the radar with respect to two different
distances. As it can be seen the error zone is larger for bigger distance be-
cause of the uncertainty zone of the camera. But the case of infinite error
cannot occur.

Figure 4.7: Reconstruction error with respect to the increasing mean dis-
tances of 3D points. With a noise level corresponding to ±2 p, ±2◦ on α
and ±2cm on r. The error is in meter. Mean and standard deviation of the
error, over 50 reconstructed points, are shown.

As we can see, the graph shows a rising errors level caused by the camera
rising uncertainty zone. At shallow distances (< 15m), the performance of the
stereo method is quite accurate (the error is < 2cm). Then it begins to increase
considerably with respect to the increasing distances of the 3D points. However, in
the same conditions, the error of our reconstruction method increases very slightly
compared to the stereo error. According to the shape of the two curves, the error
of the stereo rises considerably with respect to the distance, while the proposed
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method shows a linear evolution of the error with a small slope (and even, a locally
quasi constant error). For example at a mean distance equal to 99m, the stereo
mean error is equal to 39cm while the error of our reconstruction method is equal
to 3.6cm.

3.3 Base-line effect
Another factor affecting the results of a general reconstruction model is the base-
line between the sensors. This is the case of the stereo reconstruction as explained
in the previous section. Indeed, in vision based approaches, distant targets require
a larger base-line in order to reduce the error zone of the 3D reconstruction as il-
lustrated in Fig.4.8. Only, having further afield points of view, leads to a decreased
common area between the two acquisitions, thereby affecting the complexity of the
image registration algorithms and discard shallow distance.

(a) (b)

Figure 4.8: An illustration of the base-line effect on the intersection zone
of the uncertainty regions of stereo cameras is presented. (a) In the case
of small base-line between the cameras, the error zone is large and can be
infinite in some cases. (b) In the case of large base-line, the error zone is
smaller.

Having this in mind, the base-line effect on the results is the second parameter
to be considered. The geometric constraint of the base-line on the reconstruction
result is shown in Fig. 4.9: in the presence of noise, for two different base-line width,
the intersections of the uncertainty regions of each sensor are similar (Fig. 4.9 (a)
and (b)).
However, a very slight raise is observed when the base-line width is greater than
the distance of the target. In this case the camera is placed out of the sphere
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(C) as illustrated in Fig. 4.9 (c). But this is not considered as an issue for large-
scale scenes and can be ignored since the camera is closer to the radar than the
surrounding targets.

(a) (b)

(c)

Figure 4.9: The effect of the base-line is illustrated. The intersection of the
uncertainty regions of each sensor projection is also shown. (a). (b) and (c)
show three different base-line width.

This influence of this parameter on the reconstruction method is also studied
using simulated measurement noise. The input data are this time disrupted with
a fixed noise level corresponding to ±2 pixels, ±2◦ and ±2cm. Furthermore, the
base-line width is increased from 1cm, up to 2m. The resulting graphs shows the
error mean and standard deviation over 50 reconstructed points for each value of
the parameter. The errors are relative to the distance of the 3D points in order
to evaluate only the influence of the measurement noise. The graphs are shown in
Fig. 4.10. The errors are relative to the distances of the 3D point cloud in order
to evaluate only the influence of the measurement noise.
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Figure 4.10: Reconstruction error of the stereo and the radar/vision methods
with respect to the base-line width starting from 1cm up to 2m. The noise
level corresponds to ±2 p, ±2◦ on α and ±2cm on r. The error is relative to
the distance of the 3D points (r). The mean and standard deviation over 50
reconstructed points are shown.

The case of base-line width greater than point distance is also simulated using
our reconstruction method. The base-line is increased up to 17m and the resulting
graph is shown in Fig. 4.11.

Figure 4.11: The reconstruction error of the radar/vision method with re-
spect to the base-line width starting from 1m up to 17m. The error is relative
to the distance of the 3D points (r). The mean and standard deviation over
50 reconstructed points are shown.
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The resulting graphs show nearly stable error level (≈ 0.04) for the radar/camera
reconstruction method. However, the graph of the classic stereo error is at the high-
est level for small base-lines width, then decreases and remains nearly stable with
respect to the increasing base-line width (the error is equal to 0.04 corresponding
to a base-line width of 2m).

The shape of the graph of the second simulation is also nearly stable for a
base-line width smaller than 11m. Starting from 11m, we can see a slight increase
of the error level with respect to the increasing base-line width which corresponds
to the case studied in Fig. 4.9 (c) where the base-line width is larger than the
points distances.

According to this study on the base-line parameter, we can consider from the
above results that our reconstruction method does not require a constrained base-
line width, unlike the vision based methods where the base-line width has a strong
effect on the results especially for large-scale scenes.

3.4 The noise level

Finally, in order to study the accuracy of the reconstruction method, linearly in-
creasing noise level is applied to the input data starting from level 1 corresponding
to ±0.2 pixels, ±0.2◦ on azimuth angle and ±2cm on distance, up to level 25
corresponding to ±5 pixels, ±5◦ on azimuth angle and ±50cm on distance. The
errors are relative to the distances of the 3D point cloud in order to evaluate only
the influence of the measurement noise. The noise levels are detailed in the table
4.1 The error graphs are shown in Fig. 4.12.

The graphs show the mean and standard deviation of the error upon 50 re-
constructed points for each level. Both methods results in a raising error graph
with respect to the increasing noise level. But, it can be noticed that the stereo
method is more influenced by the measurement noise than the proposed method.
For example, for the 25th level corresponding to ±5 pixels, ±5◦ on azimuth angle
and ±50cm on the distance, the error level is about 0.01 for the stereo method
and 0.0024 for our method. Basing on the methods comparison in the literature
presented in the state of the art study, we can consider that this is a quite good
result for a large scale application.
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Figure 4.12: The mean and standard deviation of the reconstruction error,
over 50 reconstructed points, with respect to the noise level is shown. The
error is relative to the points distances r. The red graph corresponds to
the classic stereo method and the blue graph corresponds to the proposed
reconstruction method.

Table 4.1: The noise levels

Level Pixel noise Azimuth angle noise distance noise
1 −0.21 0.19◦ 0.029m
2 −0.32 0.4◦ 0.035m
3 0.5 0.68◦ 0.051m
4 0.67 0.86◦ 0.057m
5 0.73 1◦ −0.079m
6 1.1 −1.13◦ 0.092m
7 −1.22 −1.44◦ 0.11m
8 1.3 1.46◦ −0.12m
9 1.49 1.65◦ 0.14m

10 1.51 1.95◦ 0.17m
11 −1.65 2.31◦ 0.18m
12 −1.87 2.52◦ 0.19m
13 1.97 2.72◦ 0.22m
14 2.3 2.82◦ −0.23m
15 −2.6 3.04◦ −0.24m
16 2.77 −3.08◦ 0.25m
17 2.93 3.23◦ 0.29m
18 3.06 3.46◦ −0.32m
19 3.28 3.57◦ 0.34m
20 3.4 −3.87◦ 0.39m
21 −3.5 −4.33◦ −0.41m
22 4.01 −4.41◦ 0.47m
23 −4.5 4.57◦ 0.49m
24 ±4.7 ±4.70◦ ± − 0.50m
25 ±4.91 ±4.89◦ ±0.51m
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4 Reconstruction method evaluation using real
data

4.1 Experiment setup
In order to validate the theory of the proposed method for 3D reconstruction,
experiments on real data were carried out. The radar and the camera are mounted
on the top of a measurement vehicle as explained in the calibration setup section
in the previous chapter. 8 targets were placed at different heights and depths.
The 3D coordinates are obtained in the radar frame. An image and a panoramic
of the 8 targets are acquired simultaneously. Then, the reconstructed 3D point
cloud are compared to a ground truth point cloud. The ground truth set of points
is created using the SFM technique as already detailed in section 3.6.1.1 of the
previous chapter. Multiple images of the 8 targets from different points of view
were acquired. We chose 8 images in order to create a complete 3D model of the
scene.

Since the resulting 3D point clouds and the ground truth data are not expressed
in the same frame, they are registered using ICP algorithm.

4.2 Results analysis
The Fig. 4.13 represents the reconstruction results of the scene with 8 targets.
The computed RMSE (root mean square error) is about 0.058m representing the
mean of the euclidean distances between the measured points and the ground
truth points and a standard deviation of 0.024m, on X,Y and Z. Note that the
error accumulation due to reconstruction by SFM and to the registration by ICP
is considered in the real experiment contrarily to the case of simulations. Taking
into account the accumulation of errors due to ground truth estimation using SFM
and to ICP registration, we can consider that the resulting error is small for a large
scale application (mean depth of the targets equal to 12m) and it meets the results
of the simulations.

4.3 Example of reconstruction of real urban scenes
Finally, in order to address realistic urban scenes, the same vehicle equipped with
the system of sensors is moved in an urban environment and the acquisitions by
the radar and the camera are done simultaneously. The camera/radar system is
calibrated using the second calibration method. The goal of the experiments is
to validate the geometrical reconstruction method using real data and to show an
example of the intended reconstruction results. The segmentation and matching of
the data provided by the sensors, are done interactively at this stage. Polygons are
extracted from the images covering the regions of interest and then their vertices
are matched by pairs. The matched points are then reconstructed and the polygons
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Figure 4.13: To the top left: Camera image of the eight canonical targets.
Top right: Radar image of the same scene. Bottom: The reconstruction
results from both, our reconstruction method (red star points) and the stereo
head method as a ground truth (squared blue points). The radar and camera
positions are notified by the letter R and C.

are plotted using the Delaunay triangulation [18] algorithm as shown in Fig. 4.14.
Fig. 4.15 show the results of the first reconstructed urban scene using our system.
Finally texture mapping is done in order to enhance the representation of the
reconstructed map. Note that one of the interests of this sensors is shown in the
example in Fig. 4.15 as the radar provides no information about the elevation of
the bridge, this later is detected as a barrier. The elevation and vertical occupation
of the bridge are extracted from the image of the camera. Therefore, this ambiguity
is eliminated after the reconstruction process. A second example is a sub-urban
scene. The extraction of regions from the camera and the radar is shown in Fig.
4.16. Fig. 4.17 shows the results of the reconstructed model of the sub-urban
scene.
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(a) (b)

(c) (d)

Figure 4.14: The extraction and matching of polygonal regions from the
image and from the radar panoramic. (a) Camera image of the an urban
scene. (b) Part of the radar image of the same scene. (c)Segmented Image
(polygons are shonw in red). (d) The segmented radar image.

5 Conclusion
A new algorithm for 3D reconstruction is proposed. The goal is to recover the 3D
coordinates of a target detected by both camera and radar.

At this stage, we focus only on the geometrical aspects. As a conclusion to
the geometric part, the feasibility of using a sensors system combining radar and
camera for 3D reconstruction of large scale outdoor scenes is proved.

To our knowledge, this type of fusion was not used before for 3D reconstruction
of outdoor scenes. Although, the radar and the vision combination, were already
found in the literature, for object detection applications.

We have shown that the proposed method gives more accurate results than
classical stereo for large scale scenes. Both simulations and experimental results,
showed a quite accurate behavior of the method in the presence of noise. The
influence of several parameters (such as the distance of the 3D point, the base-line
between the sensors ...), was also studied.
The analysis of the simulations showed that the longitudinal error is limited to the
uncertainty zone of the radar, which is constant with respect to the distance of
the target. While the lateral and vertical errors depend on the uncertainty zone of
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(a) (b)

(c) (d)

Figure 4.15: Results of 3D reconstructed urban scene using the camera/radar
system, and the second calibration method. The results are enhanced with
texture mapping. (a) Results of the reconstruction using delaunay triangula-
tion. (b) Enhanced results with texture. (c) Another view of the 3D results.
(d) Another view of the 3D results.

the cameras which confronts a slight raise with respect to an increasing distance
of the target.

Nevertheless, the base-line effect on the results is negligible. That is to say that
the intersection of the uncertainty zones of each sensor don’t occur a singular case
were the error is too large or infinite as it may occur in the case of stereo vision.
This property makes the method well suited for large scale scene reconstruction.

At this stage, the matching of two 2D points from the camera and the radar
acquisitions, is not addressed and supposed to be done manually. Therefore, in
the next chapter, we will address the automation of the features extraction and
matching process.
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(a) (b)

(c) (d)

Figure 4.16: The extraction and matching of polygonal regions from the
image and from the radar panoramic. (a) Camera image of the an urban
scene. (b) Part of the radar image of the same scene. (c) Segmented camera
image. (d) Segmented radar image.
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(a) (b)

(c)
(d)

Figure 4.17: Resulting 3D reconstructed model of urban scene using the
camera/radar system, and the second calibration method. The results are
enhanced with texture mapping. (a) Results of the reconstruction using
delaunay triangulation. (b) Enhanced results with texture. (c) Another
view of the 3D results. (d) Another view of the 3D results.
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Automatic matching of image
features & radar targets

“

A clever person solves a problem. A wise person avoids it.”

Albert Einstein

In this chapter, we address the automation of feature
extraction and matching process. This step is essential in the
3D reconstruction process: The elevation of the target in the
image cannot be depicted using only the results of the calibration
step. Unlike the methods using homogeneous sensor data, the
matching method cannot rely on the appearance similarity since
the data are heterogeneous from several aspects.

Thus, we have first to define which kind of features is relevant
to be extracted from each sensors raw data. Then we will design
a strategy and an algorithm for the data association problem.
Generally, this means to establish geometrical constraints which
have to be satisfied by the feature pairs. Moreover, we have to
define an efficient and robust strategy to face the problem of ex-
plosion of the number of correspondence combinations. Thus,
the algorithm should detect positive matches and reject the neg-
ative ones by taking into account measurement uncertainties.
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Considering all these aspects of the problem we propose to ex-
tract the radar and image features by segmenting the data into
polygonal regions. The region matching is then carried out ex-
ploiting the system calibration parameters. A second camera is
used in the final verification step.

1 Introduction and related works
The features extraction and matching from the data provided by the radar and
the vision sensors is an essential yet difficult process since the data are inherently
different. The sensors system is heterogeneous from several aspects:

• The acquisition by the radar and the camera uses different wave natures and
length. This will lead to different reflections toward the sensors. Hence, in
the same scene, different types of targets may be acquired by each sensor:
unlike the camera, the radar may detect occluded targets while missing the
detection of the ground and the sky.

• The radar panoramic is a 2D depth map. The shapes of the targets in the
panoramic are very similar to an aerial view of the scene. Because of the
geometric projection of the 3D data on the radar horizontal plan, multiple
3D points having similar polar coordinates are fused and thus form a unique
region in the radar image. Instead, the camera image is a frontal view-point
acquisition of the scene. This leads to two acquisitions from different points
of view of the same scene.
These two acquisitions can be seen as projections (on the image plan for the
camera and on the horizontal plan for the radar). But they are not similar:
The camera projection is central while the radar projection is orthographic.

• The information provided by the two sensors are also heterogeneous. The
radar provides the information of depth, azimuth and the cross section area
(cf. chapter 1) of a detected target.
In contrast, the vision image contains information about the forms the rel-
ative heights, the colors and textures of the targets.

These heterogeneous properties make this step more challenging. Thus a reliable
method is needed.

First, classic image registration techniques are to be exploited. These tech-
niques have been developed in order to match features from two images of the
same scene, taken from different sensors or points of view. The increasing number
of applications requiring data matching motivated the development of a wide range
of matching techniques.
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A survey of classical and most used methods is presented in [19]. Fonseca L. et al,
also presented a comparative study of some image registration methods in [26].

Among the matching and registration techniques one can find:

• The Cross Correlation (the work of Zhao F. et al in [98] is an example), which
provides a measure of similarity between two image windows. However, the
correlation-based algorithms are not usually used to register images taken
from different types of sensors.

• The Mutual information method has been used in [77] and [92]. It measures
statistical dependence between two random variables. Applied to images
registration, the mutual Information of image intensity values is maximum
if images are geometrically aligned.

• The Moment invariant criteria were used as similarity measures in the match-
ing of radar to optical images in [90]. Other matching using this technique
could be found in [25] and [79]. Moments are used as features to provide a
description of the characteristics of the image shape and different types of
geometrical features of the image.

• The feature control points. In these methods, descriptors of extracted con-
trol points are used to test the similarities between these points. Control
points may be corners, points of locally maximum curvature on contour lines,
centers of regions. Other features can be also used such as closed boundaries
and edges. An example of the features control points is the SIFT algorithm
in [56].

• Frequency based method using Fourrier Transform [16]. It is used to repre-
sent the image in the frequency domain in order to have different types of
information to match. This representation can be invariant to translation,
rotation, and scale. However, the problem of Fourrier transformations is that
it is a global transformation of the image, it doesn’t provide a localization
of the information.

• Wavelet transform was used in [93] and [13]. It is a spatial transformation
that decomposes the image into sub images based on local frequency content.

In a heterogeneous sensor system, where the data are even more diverse, these
techniques do not provide often satisfying results or are even irrelevant. Fig. 5.1
shows an example of the images acquired by the radar and the camera. The goal
is then to find which kind of features may offer significant similarities between the
data sets.
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Figure 5.1: Example of regions matching between the camera image (right)
and the radar panoramic (left): the black bounding box in the visual image
should match the black bounding box in the radar panoramic. It can be
seen visually that the regions in both images have common orientations of
straight edges.

Obviously no correlation between the images can be found. Regional features
are advantageous, because they contain richer information than individual pixels.
Thus, a larger amount of information can be incorporated easily into the 3D model
without passing through the point cloud processing.

Since the radar only detects physical obstacles in the scene, a good strategy is
to start the search based on the radar detection.
Indeed, physical obstacles detected by the radar are to be incorporated to the map
while a large number of image features may correspond to some visual artifacts
such us shadows or reflections and should be discarded.
Moreover, large parts of the data which are not relevant to the cartography task,
such as sky or flat ground, are not detected by the radar.
This immediately discards most of corresponding image regions without any spe-
cific processing.

The strategy consists in extracting the convex hulls of the regions in the radar
image as features in order to find their corresponding regions in the camera images
in a following step of the matching process.

A geometrical consistency test is carried out in order to validate actual matches
and to reject false positives. Unfortunately, the knowledge of calibration param-
eters is not sufficient to remove the projection ambiguity inherent to the system,
and thus to retrieve the elevation of the target.

The retained solution is the introduction of a second pair of image of the same
scene which will serve to validate efficiently the candidate matches. As we will see,
the obtained rig is not used here as in a classical structure from motion framework
which generally requires the implementation of time consuming RANSAC like
algorithms, but as a fast validation or rejection tool of the camera/radar possible
region matching.
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An overview of the algorithm is presented in section 2, then each step is de-
tailed. The radar target detection is shown in the subsection 2.2. The ROI ex-
traction and refinement from the camera images are detailed in subsection 2.3.1.
The decision making step is explained in the subsection 2.4. Finally, experimental
results obtained with real data are presented and discussed in Section 3 and finally
a conclusion is drawn in section 4.

2 Matching algorithm

2.1 Algorithm overview
The aim of the matching algorithm is to extract and match corresponding features
from the camera and the radar images by testing the similarity between extracted
regions from both data.
The electromagnetic waves are reflected by physical obstacles in the scene. Thus
the radar image only contains significant physical obstacles which are relevant to
the mapping task.
Therefore, the main idea of the algorithm is to extract regions composed of these
physical targets from the radar panoramic, then to associate a region (or multiple
regions) in the camera image.

First, the radar image is segmented into regions defining the significant targets.
Then, the convex hulls of the regions are composed and chosen as features in the
radar image.

The convex hull is then projected onto each image thanks to the calibration
parameters. This enables to define a region of interest in each image. A candidate
radar-to-image match is obtained.
The mapping of the convex hulls of the extracted target, into the camera images
provides lateral positions and widths of the ROI which generally can be approxi-
mated as vertical image stripes.
To be validated as a correct match, the left and right image ROIs should satisfy
a criteria which combines both appearance similarity and epipolar geometry. If
this criteria is not satisfied, the ROIs should be segmented into subregions. A
segmentation test is also defined in order to determine whether the region could
be segmented or not. For example, if the region is too small to be segmented the
result of the segmentation test is false. Therefore the region could not be seg-
mented and the region is discarded.
The verification process is repeated iteratively for each pair of subregions until
the criteria is validated or the match is discarded. If a match is validated, the
corresponding 3D pacth is reconstructed by applying the reconstruction method
on the point pairs formed from the contours of the camera image region and the
convex hull of the radar image region. The algorithm is illustrated in Fig. 5.2.
The steps of the algorithm are detailed in the following subsections.
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Figure 5.2: An overview of the algorithm is illustrated: A radar target is ex-
tracted from the panoramic image, then mapped into the camera images. R1
and R2 are the ROIs extracted from the first and second images respectively.
A similarity test if carried out: if the test is true the region is validated to be
the match of the radar target. Else, the region should be segmented. If the
segmentation test is false the region could not be segmented and it is then
discarded. Otherwise, the segmentation results in multiple sub-regions to be
processed in the next iterations.
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2.2 Radar image segmentation

The reflected signals from targets are in fact represented in gray level in the radar
panoramic. The shade of the target color indicates the amplitude of the reflected
signal: the higher is the amplitude, the darker is the shade of gray.
The amplitude of the reflected signal depends on many factors, such as the inherent
nature of the target, the orientation and the position of the target with respect to
the horizontal plane of the radar.

In real semi-urban scenes, vehicles, buildings, poles and trees are the most
relevant targets in the panoramic. We are interested in extracting these targets
automatically. Since the most reflective targets correspond to darker regions, the
radar panoramic can than be processed as a gray level image. Therefore, we can
extract the targets by performing a segmentation of the gray level image.

In our case, since we are interested by extracting big targets such as buildings,
a binarization of this image can readily extract the regions of interest in less time.
Also, the radar provides acquisition that are affected by noise due especially to
multi-reflections of the emitted signals.
A binarization step is efficient in reducing the noise and detecting the majority of
the significant targets.

Second, a morphological Matlab function (majority) is applied on the seg-
mented image in order to smooth the edges of the regions and delete the remaining
isolated pixels: The process consists on setting a pixel in the image according to the
majority of the surrounding pixels (five or more pixels in its 3-by-3 neighborhood).

Afterward, the edges of the detected regions are extracted since we seek to
match whole patch of pixels. The convex hull and centroid of each region are also
detected. The Fig. 5.3 illustrates the process of extraction of radar targets. In fact
we tend to match patch of pixels, thus the bounding box of the region is sought.
It represents the smallest convex polygon that can contain the region.

This allows to process only particular points of the regions edges, which simpli-
fies and speeds up the process. But the convex-hull could be a bad representation
of the region in case of special curves and forms.
Since we are interested in the part of the panoramic including the field of view of
the camera, we are processing only this part of the panoramic. This restriction is
made possible thanks to the calibration parameters.



92 5. Automatic matching of image features & radar targets

(a)Original radar panoramic (b)Binarization of the image

(c)Morphological majority (d)Edge extraction

(e)Convex hull of the regions (f)Final outlines

Figure 5.3: The extraction process of radar obstacles is shown: (a) Original
radar map with overlaid the field of view (FOV) of the left and right camera.
The red cross indicates the radar position. (b) Binary image (c) morpholog-
ical majority, by smoothing the edges. (d) Edges of the detected regions are
found and shown in different colors. (e) detection of the convex hull of each
regions. (f) The final outlines detection of each segmented obstacle in the
radar image.

A compromise consideration of the convex hull or the edges of a region is done:
the convex hull of a region is considered only if the ratio of the region area over
the convex hull area is higher than a threshold.
This ratio specifying the proportion of the pixels in the convex hull that are also
in the region. We fixed a threshold equal to 0.7 this is to say that 70% of the
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extracted region is in the convex hull. This is shown in Fig. 5.4.

Figure 5.4: A zoom in on the convex hull of a target vs its edge.

2.3 Registration in the camera images
2.3.1 Camera image ROI selection

The target extracted from the radar panoramic is then mapped into the images.
The projection of the targets extremities is suitable in order to define a region of
interest.

The mapping from the radar plane to the image frame is possible using the
transformation matrix computed in the calibration process.

A rectangular region of interest (ROI) is then extracted in the images. The
ROI direction in the image is defined by the projection of two 3D points, at two
different elevations, corresponding to the radar target.
In our case, we can consider the ROI as a vertical strip between two projected
lines in the image having a height equal to that of the image.

Therefore, the width of the ROI corresponds to the width of the projected
target and to its lateral position. The idea is that this image portion includes the
radar-detected target, but we do not know exactly its vertical position within the
ROI.

Thus, the extracted target is matched with only one ROI in the image. This
is to say that for a radar target we have only one combination and thus a linear
complexity with the number of features, unlike algorithms such as RANSAC, were
multiple combinations are to be tested and validated. This property is advanta-
geous for time and memory saving.

To this point, any subregion belonging to the vertical image stripe would be
matched to the selected target. The next step consists on finding the sub-region
that corresponds vertically to the targeted object.
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An example of the re-projection of the radar target and the ROI detection in
the image is shown in Fig. 5.5.

Figure 5.5: The segmentation of the radar image at the left. The target we
are searching for is marked in red in the middle image. The rectangular ROI
extracted from the projection of this target is shown on the right image.

2.3.2 Refinement of the ROI

The extracted ROIs from the images are first re-scaled horizontally so it corre-
sponds to the same width.

Then a cross correlation is performed in order to find the ROIs that corresponds
the best.
This step allows the extraction of the ROI four corners. The correlation performed
is a normalized cross correlation. The principle of the cross correlation is explained
in the section A of the annex.
As said before, the ROIs are considered vertical in the image, because one can
always set the cameras and the radar so that their vertical axes seems nearly
parallel.

A rectangular bounding box template is extracted, corresponding to the regions
and the correlation is performed on these two bounding boxes. The first template
bounding box is overlaid on the location of the maximum correlation coefficient in
the second image. An example of the correlation results is shown in Fig. 5.6.

Figure 5.6: The red rectangle on the right image and its correlation (position
of the corresponding rectangle) in the left image are shown.
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2.3.3 Similarity test

After the extraction of the ROI, we look for a constraint that enables to recover
the actual elevation of the actual target. An image region corresponding to a radar
target should be seen by both cameras as a subregion inside the projected ROIs.
Moreover, characteristic points (such as contours) from these image subregions
should satisfy two criteria: (a) a cross correlation score must be bigger than a
specified threshold; (b) a distance to corresponding epipolar lines under a specified
threshold.

Proceeding in this way, only image subregions located at the actual elevation
should satisfy both criteria. Moreover, this strategy promotes the matching of the
largest image region first. The aim is to obtain locally dense representation of
the scene targets, contrarily to sparse representation obtained with interest point
methods.

Therefore, the first step is to study whether an extremity pixel of the region
extracted from the image corresponds to a physical obstacle in the urban scene.
In this case, the pixel must correspond to the epipolar line corresponding to the
matching pixel in the second image.
A 3D point m is projected onto the left image frame in pl and onto the right image
frame in pr. The epipolar geometry describes the relationship between these two
pixels: the cameras optical centers Ocl and Ocr form a plan with pr, pl and m.
This plan intersect the image plans in two straight lines called Epipoles, to which
pr and pl should belong. This is illustrated in Fig. 7.1.

Figure 5.7: The epipolar geometrie: two acquisitions from two cameras of
the same 3D point.

This said, the epipolar lines corresponding to the extremities of the region in
the reference image, are drawn on the second image as shown in Fig. 5.8.

Afterward, a deviation error is computed between the extremity pixels in the
second image and the epipolar lines, and vice versa. If the pixels are close enough
to the epipolar lines, the extracted region corresponds to a physical target.
Suppose q1 and q2 two points corresponding to an epipolar line, the distance d
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Figure 5.8: The epipolar lines in the left image corresponding to the corners
pixels in the right image.

from an extremity pixel pe to the epipolar line wan be computed as follows.

d = |(q2 − q1)× (pe − q1)|
|(q2 − q1)| (5.0)

The × operator denotes the cross product between the two vectors. The aver-
age deviation error is computed and then compared to a fixed threshold.

ε1 = d̄ (5.0)

At the very end of the process, a global consistency of the 3D model is done.
The depth of the extremity of the image region should be consistent with that
given by the radar.
This is done by computing the approximate distance of the 3D points correspond-
ing to the extremities of the image regions.
The distances of the 3D points are computed as follows:

rstereo =
√
X2
s + Y 2

s + Z2
s . (5.0)

Where (Xs, Ys, Zs) are the coordinates of the 3D points. The depth of each 3D
point (rstereo) is compared to the depth of the outline of the obstacle ri with
i = 1→ numberofpointsintheradaroutline.

ε2 =
√

(rstereo − ri)2 (5.0)

The error is then equal to the mean of the computed deviations ε̄2. This error is
also compared to a threshold. The threshold closed to be relative to the distance
of the target since the error of the stereo triangulation is ascending with respect
to the distance.

2.3.4 Segmentation of the ROI

First a segmentation test is performed for each region. This is in order to decide
whether the region being tested contains enough information to be segmented or
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no. It is a test of heterogeneity of the region.
So, the number of sub-regions resulting from the segmentation step should be
greater than one in order to proceed to the following layer of the algorithm.
In order to assimilate this case, a tree data structure is used. The root of the tree
are the extracted ROI and the nodes are the sub-regions to be processed later.

The segmentation of the extracted ROI can be done using different criteria such
as color, texture and also the content of the image (object based segmentation).
In our case, after testing several segmentation algorithms already implemented
with matlab, We choose to segment the ROI into sub-regions, using the SRM
algorithm(Statistical Region Merging) algorithm by Nock R. et al in [67].

The algorithm consists on starting from pixels of image I as an elementary
region and then merge regions following a specific order. The goal is to merge
the given pixels of an image into a smaller groups of pixels following a merging
criteria. A statistical test is used in order to have a local merging decision of the
regions. This local decisions are the predicted segmentation of the image I and
should then preserve global properties of the image.
The theoretical principle of the algorithm is briefly explained in the section D of
the appendix.

This method is advantageous with respect to other segmentation algorithms
due to its simplicity, computational efficiency, and the fact that it does not suffer
from under-merging error but a small over-merging error. The segmentation step
provides a list of pixels of each region as well as its edge.
The parameter of the segmentation Q is chosen to be variable since it is hard to
find a compromised value of Q being consistent with various types of scenes. Fig.
5.9 shows two segmentation results with two values of Q. A higher value of Q
yields to a more detailed segmentation.

(a) The original image (b) SRM with Q = 5. (c) SRM with Q = 10

Figure 5.9: An example of the SRM segmentation of the camera image: (a)
original image. (b) segmentation results with Q = 5. (c) segmentation results
with Q = 10.

The parameter Q is set to be inversely proportional to the region size. This
said, the bigger is Q, the smaller the region is, yielding to a higher level of seg-
mentation.
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Very small sub-regions are discarded immediately in this step; A threshold on their
size is set in order to keep only significant sub-regions.

The convex hulls of the segmented regions and their extremities are found. It
is the smallest convex polygon that can contain the region. The right, left, top and
bottom extremities are extracted in the convex hull of the right image region (Fig.
5.10). The Bounding box of each sub-region is also extracted, it is the smallest
rectangle containing the region.

(a) (b)

Figure 5.10: The extraction of the convex hull extremities: (a) The segmen-
tation of the image using SRM. (b) The extraction of the segmented region
extremities. The stars indicates The extremities of the convex-hull of the
region. The squares indicates the extremities of the rectangular bounding
box containing the region.

2.4 Decision
The decision for each sub-region is taken, as a result of the processing sequence.
The tree traversal is applied in depth-first order so each branch of a root is explored
as deep as possible before moving to the next branch. The tree is updated after
each iteration depending on the decision of the algorithm for the current sub-region
labeled with a status. These status are detailed here after:

• Validation of a sub-region: a sub-region is conserved if the similarity
test is true. This means that, first, the computed Error is smaller than
the threshold.In this case, the status of this node is labeled ”valid” and the
sub-region is saved. The algorithm carries on for the next iterations.
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• Segmentation of a sub-region: In the other case, if the similarity con-
straint is not satisfied, the sub-region is to be segmented. First, the sub-
region should contain significant information. Thus, the homogeneity and
the size of the region is studied in order to carry on to the segmentation.
The status is then set to ”segmentation” and the segmentation is performed.
The tree is updated and the resulting sub-regions are stored in the tree as
new branches with the label ”wait”. These sub-regions are explored in the
following iterations with the same processing sequence.

• deletion of a sub-region: Otherwise, a sub-region is discarded if it does
not verify any of the depth or segmentation tests. This means that the pro-
jection of the 3D points corresponding to the sub-region are not consistent
with the target position on the 2D map and that the region does not contain
significant sub-regions to be extracted.
The status of the current node is then set to ”discard” and the sub-region
is deleted.

The algorithm carries on for the next branch of the tree until all nodes are
labeled with either ”valid” or ”discard” as seen in Fig. 5.11. If all sub-
regions are discarded, this means that the radar target could not be seen in
the camera image. The most likely reason is that it has been occluded by
another targets.

Figure 5.11: Three examples of decision tree. Left: The sub-regions resulting
from the segmentation step are stored in the tree as new branches and labeled
”wait”. Middle: At the end of the algorithm all sub-regions are labeled
either ”valid” or ”discard”. Right: The segmentation is done for a sub-
region yielding to a two layer tree. The sub-regions are all discarded in this
example, this means that the radar target could be occluded so it is not been
seen in the camera image.

An example of the decision tree is shown in Fig. 5.12. The valid sub-region
in this example, corresponds to the wall which is the extracted obstacle in the
rectangular ROI. The discarded sub-regions corresponds to the sky and the ground
in the rectangular ROI.
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Figure 5.12: Example of the decision tree of the algorithm: the valid sub-
region corresponds to the region of the wall so it is matched to the radar
targets.

2.5 3D reconstruction
The features pairs which were validated using the matching algorithm are recon-
structed in order to create the 3D model of the scene. The reconstruction method
presented in the previous chapter is used.

The valid sub-regions in the camera image and the convex-hull of the target in
the radar image are the extracted features.

To do this, the points of the convex-hull of the radar region are re-projected
into the image similarly to the re-projection step explained in section 2.3.1.

First we simplify the outline of the regions in the camera image by choosing
the extremities pixels. These pixels are considered as the most significant of the
outline.

Secondly, since the number of radar points and of the pixels is not equals,
the edge points are sampled. To do this, the Euclidean distances between the
re-projected points and the pixels are computed.
Therefore, to each pixel corresponds a radar point having the smallest Euclidean
distance.

Finally, these pairs of camera radar points are reconstructed using the geomet-
ric method explained in the previous chapter. The obtained 3D points represent
the 3D shape of the target.

In order to map the texture and colors from the image to the 3D model, a
triangulation of the resulting 3D points is performed. The number of triangles can
be adjusted; a higher number of triangles can give more detailed texture.
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Then, the same number of triangles is generated in the bounding box of the image
regions.

The colors of the vertices of the triangles are mapped into the 3D mesh. Finally,
an interpolation of the vertices colors is done for each triangle. An example is
shown in Fig.5.26.

Figure 5.13: Example of the 3D reconstruction of the matched regions is
presented. The texture and color informations are mapped into the 3D model.

3 Results
The proposed matching algorithm is performed to detect and match targets from
radar and camera images. Urban and sub-urban scenes are considered. The simi-
larity criterion proposed for the algorithm needs a pair of images of the same scene.
In the adopted strategy a second camera is added to the system. The two cameras
are calibrated and the motion between them is fixed.

An alternative solution (illustrated by an experimental example at the end of
this section) is to consider two images of the same scene but acquired at different
times. Thus, this method does not require the addition of a second camera.
In this case, the motion between the two images is computed basing on few interest
point pairs (The use of an external sensor such as GPS or inertial station could
also be considered). Examples of 3D reconstructed models of urban and sub-urban
scenes are presented hereafter.

3.1 Setup of the acquisitions
The radar and the cameras were mounted in a fixed configuration on the top of
a vehicle as shown in Fig. 5.14. For the current stage, the radar antenna rotates
360◦ while the camera is fixed.

The radar is called K2Pi and has been developed by Irstea Institute. The
optic sensors used are color cameras of type Grasshopper3 by PointGrey (Imaging
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Development Systems) and Ace by Basler.
The cameras characteristics are listed in table 5.1.

Figure 5.14: The Radar K2Pi and the stereo cameras.

Table 5.1: Cameras and radar characteristics

Right Camera characteristics
Sensor technology CMOS

Sensor format 1/1.2”
Interface USB 3.0
Pixel size 5.86µm

Resolution in pixel (h× v) 1920× 1200
Focal distance 6mm
Viewing angle 63× 45◦

Chroma Mono
Left Camera characteristics

Sensor technology CMOS
Sensor size 6.14× 4.92mm
Interface USB 3.0
Pixel size 4.8µm

Resolution in pixel (h× v) 1280× 1024
Focal distance 6mm
Viewing angle 40× 25◦

Chroma Color
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A GPS mounted on the vehicle has been used for the synchronization of the
data acquisition carried out by these two sensors.
Considering the studies of the baseline effect presented in the previous chapter,
a large stereo base-line was chosen B = 83cm. Indeed, the simulations presented
in the previous chapter section 4.3 shows that error of the stereo triangulation is
smaller for larger base-line and it increases in respect to an increasing distance.
This is true in our case since we operate for large scale scenes. Therefore, the large
base-line is used to offset this increasing error.
The radar is in the middle between the right and the left cameras. The base-line
between the radar and the right camera is about 40cm.

In order to simplify the process, we are processing only a part of the panoramic
including the cameras viewing field. This latter is represented by two arrows for
each camera.
The segmentation parameter Q is variable in respect to the layer of the decision
tree. The value of Q for the first iteration is chosen to be small in order to have
the larges sub-regions in the ROI. This value is fixed Q1 = 0.5. Then the value of
Q is multiplied by 10 for the next layer of the tree. This is in order to have more
detailed segmentation of the sub-regions.

Three examples of urban and sub-urban scenes reconstruction are presented
and the resulting 3D models are shown hereafter. The 3D reconstruction of the
final model is done using our reconstruction method. Thus the matched features
resulting of the matching algorithm are reconstructed then the texture and color
information are added to the final model. The color camera image is used in order
to map texture to the 3D model.

3.1.1 The data processing and reconstruction of the final 3D model

First example The first scene presents a highly textured building containing
different colors. The radar panoramic is first processed in order to extract the
outlines of the targets in the radar panoramic.

The outlines are the edges or the convex-hulls of the segmented regions de-
pending on the shape of each region as explained previously. Only the targets
falling into the cameras field of view are considered.
Also, since distant targets represent a bigger probability of occlusion, the targets
depths are limited to 35m.
The outlines detection of the radar targets are shown in Fig. 5.15. The outlines
and centers of the obtained targets are shown in magenta.
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Figure 5.15: To the left, part of the radar panoramic and to the right, the
segmentation of the radar image.

In this example, we consider the nearest radar target which corresponds to the
building. The ROI regions are defined in the right and left images. Then the SRM
segmentation is then applied to the ROI. The value of the segmentation parameter
is Q = 0.5 in the first iteration of the algorithm so the segmentation provides the
biggest regions in the image.
Two regions results from this step (Fig. 5.16). The sub-regions are represented
by their bounding boxes as nodes of the tree. A binary mask is burned into the
bounding box in order to show only the segmented sub-region.
The correlated left and right ROIs represent the top of the tree, and the segmented
sub-regions are the branches of the tree.

Later, the test sequence of the algorithm is performed on the resulting sub-
regions which are then labeled based on the results of the tests.
The decision tree is shown in Fig. 5.17. One valid sub-region is obtained corre-
sponding to the red building.

Figure 5.16: To the left: the extracted ROI region from the color image and
it SRM segmentation to the right.
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Figure 5.17: The ROI processing tree: On the top of the tree, the correlated
ROI pairs on the left and right images. The segmentation parameter is
Q = 0.5 and the segmentation yields to two sub-regions. Only the first one,
representing the red building, is validated.

The reconstruction of the final 3D model is done using our reconstruction
method previously presented in the chapter 4. The convex hull of the radar target
is projected into the image of the camera. For each extremity of the segmented
region, we choose the radar points that verify the minimum Euclidean distance.
The resulting radar points are shown in Fig. 5.18.

Figure 5.18: The outline of the target is overlaid on the radar panoramic (left
figure). The points that correspond to the extremities of the region convex
hull are shown as red circles (right figure).

Once the outline pairs are obtained, our 3D reconstruction method is applied.
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Then a 3D triangulation of the 3D model is performed in order to facilitate the
texture mapping. The color of each vertex is extracted from the color image and
then a color interpolation is done for each triangle. The results are presented in
Fig. 5.19. The 3D model is shown from different viewing points.
According to radar data corresponding to the building facet, it represents a plan
belonging to the same physical target. Therefore, despite the textured building,
and thanks to a low-level of segmentation, we could map the texture information
of the building without having to rebuild all the details using interest points for
example.

Figure 5.19: The reconstruction results of the target matched with valid
sub-region. From top to bottom rows, show different views of the 3D model.
The radar position is marked with the letter R in red and the red crosses
correspond to the left and right cameras. The outline of the radar target are
also plotted (black polygon) in order to validate the depth of the 3D model.

Second example The second example represents also an urban scene. The
corresponding radar panoramic and its segmentation are shown in Fig. 5.20. The
red cross represent the position of the radar.

Tow radar targets are considered from the resulting target list of the previous
step. The radar targets are re-projected into the images and it corresponds to
the facing building. In Fig. 5.21 (a) and (b), the ROI of each target are shown
together with the SRM segmentation of these ROI.
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Figure 5.20: The radar panoramic process is presented. To the left: part
of the original panoramic including the cameras viewing field indicated by
arrows. To the right: the extracted outlines (in magenta) of each radar
target.

(a)

(b)

Figure 5.21: Two ROIs extraction corresponding to two targets in (a) and
(b). The outlines of the radar targets are plotted in magenta (left column).
Their corresponding ROIs in the color image are represented by red rectangles
(middle column). And the SRM segmentation of each ROI are shown at the
column to the right.
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In this figure, the re-projection of each target into the left camera image is
illustrated as red rectangular ROIs. The decision trees corresponding to these two
targets are shown in Fig. 5.22 and Fig. 5.23.
It is notable that in Fig. 5.22, the algorithm proceeds to a second iteration because
the region selected in the first tour, didn’t validate the similarity test.

Figure 5.22: The ROI processing of the first target. Two sub-regions are
obtained at the first iteration. The first one is being re-segmented, with a
higher segmentation parameter (Q = Q ∗ 10 = 5), and six sub-regions are
obtained and only four of them are validated.
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Figure 5.23: The ROI processing tree of the second target: On the top,
the correlated ROI pairs of the left and right images. The segmentation
parameter is Q = 0.5 and the segmentation yield to five sub-regions. The
second and third sub-regions are validated.

The segmentation parameter Q for the second iteration is Q = 5 so the seg-
mentation results in more detailed sub-regions. Thus, the windows in the building
are also segmented. The resulting 3D textured model is represented, from different
viewing point, in Fig. 5.25. The building is detected as two separated target in
the radar but after having the 3D model it can be seen that the targets correspond
to the same building. The red crosses correspond to the position of the radar and
the color camera.
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Figure 5.24: The targets outlines points are paired. To each pixel (green
stars in the image) corresponds a radar point (red circles in the camera).

Figure 5.25: The reconstruction results of the targets matched with valid sub-
regions. From top to bottom rows shows different views of the 3D model.
The radar position is marked with the letter R in red and the red crosses
correspond to the left and right cameras. The 3D coordinates in the left
figure at the last row are in m.
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Third example The third example corresponds to a semi-urban scene. Unlike
the previous examples, the scene presents a multi-plan house.
The extraction of the radar targets is shown in Fig. 5.26. It is noticed that the
boundaries of the multi-plan house, are chosen rather than its convex hull.

Figure 5.26: To the left, part of the radar panoramic and to the right, the
segmentation of the radar image. The outlines of the targets are plotted in
magenta.

The ROIs are extracted and segmented as shown in Fig. 5.27. The first
segmentation with Q = 0.5 didn’t result in a correct segmentation of the house.
Therefore, more detailed segmentation is done with Q = 5 in a second iteration of
the algorithm as shown in Fig. 5.28 where the rest part of the house is extracted.

Figure 5.27: Example of the 3D reconstruction of the matched regions, with
texture mapped into the 3D model.
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Figure 5.28: The ROI processing of the first target. Four sub-regions are
obtained at the first iteration. The first one is being re-segmented, with a
higher segmentation parameter (Q = 5), and four sub-regions are obtained
and only one of them are validated. A total of two sub-regions are validated
for this target.

The second radar target extracted from the panoramic is shown in Fig. 5.29.

Figure 5.29: The radar target outlines are shown in magenta.

Note that in Fig. 5.30 all sub-regions are labeled ’discard’, this mean that the
radar targets could not been seen by the cameras so they are not matched with
any sub-region. In this case, the targets are occluded by other obstacles. The
radar target outlines are also drawn at an elevation z = 0 in order to validate the
depth of the 3D model. Finally, the targets matched with valid sub-regions are
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reconstructed. The resulting 3D model is shown in Fig. 5.31. The 3D model is
shown from viewing points.

Figure 5.30: The decision tree of the second target. The segmentation pa-
rameter is Q = 0.5 at the first iteration. The segmentation yields to three
and two sub-regions at the first and second iterations respectively. All sub-
regions were discarded because of the occlusion of the target.
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Figure 5.31: The reconstruction results of the targets matched with valid
sub-regions. The top row shows oblique and top view of the 3D model. The
bottom row shows the overlaid 3D model with the radar extracted targets in
magenta at the ground level. The radar position is marked with the letter R
in red and the red crosses correspond to the left and right cameras. The 3D
coordinates are in m.

Results analysis Qualitatively, the resulting 3D model, are a good represen-
tation of the facets of the buildings in the urban scenes. The 3D model is made
up of planar blocks corresponding to the planar facets.
Thus, the resulting model takes into consideration the geometric nature of urban
areas without the need to use complex algorithm such as machine learning. Also,
this facilitates the texture and color mapping to the final model. The results show
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that the texture of the 3D model is consistent, detailed and well represent the real
appearance of the building.

Afterward, in order to compare our results to a realistic model, we used the
Google Earth application. The dimensions of the reconstructed facades are com-
puted from both 3D models and the Fig. 5.32 illustrate this comparison.
Although the ground truth data are not exact measures, yet this interpretation
shows that the dimensions of the resulting models using our methods are realistic.

(a) (b)

Figure 5.32: To the top row: The ground truth dimension of the recon-
structed facades using the Google Earth application. To the bottom row:
The dimension of the resulting facades using our methods. The dimensions
are in m and the RMSE error are about 0.3767m and 0.1614m respectively.

3.2 SFM similarity criterion
The second approach consists in using two images acquired at two different times
without needing additional camera. This pair of images is used in order to elabo-
rate the similarity criterion. This approach is called SFM.

3.2.1 Setup of the acquisitions

The Grasshopper3 camera and the radar are mounted on the vehicle with the same
configuration (the baseline B = 40cm). Two images from two successive camera
acquisitions were used in this example.
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The transformation matrix between the two positions of the vehicle, is com-
puted by automatic detection and matching of Harris features points.
Then the same matching algorithm is applied. The considered urban scene presents
two receding planar facets and a bridge in the middle. This example shows clearly
the ambiguity of the matching between the camera and the radar. Indeed, lateral
position of the bridge can be obtained using only the calibration results.
But, the height of the bridge is to be depicted by the algorithm.

3.2.2 The data processing and reconstruction of the final 3D model

The outlines detection of the radar targets is done first. The outlines are shown in
Fig. 5.33. Only the targets falling into the cameras field of view are considered.

Figure 5.33: To the left, part of the radar panoramic and to the right, the
segmentation of the radar image. The outlines of the targets are plotted in
magenta.

Four targets were considered in the radar panoramic. The decision trees cor-
responding to four radar targets are shown in Fig. 5.34, 5.35. The correlated left
and right ROI represent the top of the tree, and the segmented sub-regions are
the branches of the tree.
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(a)

(b)

Figure 5.34: Two targets are considered in this figure: (a) and (b), are the
resulting decision trees of the matching algorithm. Only the validated regions
are considered. Two valid regions corresponds to the same target in (b)
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Figure 5.35: The resulting decision tree of the matching algorithm. To the
top of each tree, the pair of images used for the reconstruction of the model.

Once the outlines pairs are obtained, our 3D reconstruction method is ap-
plied.Then a 3D triangulation is applied to the 3D model in order to facilitate the
texture mapping. The color of each vertex is extracted from the color image and
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then a color interpolation is done for each triangle. The final textured 3D model
using our reconstruction method is shown in Fig. 5.36.

Figure 5.36: The reconstruction results of the targets matched with valid
sub-regions. The 3D model with the radar extracted targets in magenta.
The radar position is marked with the letter R in red and the red cross
corresponds to the right cameras. The 3D coordinates are in m.
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4 Conclusion on the matching algorithm
An algorithm which generates set of radar-to-image region correspondences was
developed. The segmentation of both camera and radar images into polygonal
regions enables to define similarities between the features of the two sensors despite
the heterogeneity of their data.

Contrarily to global consistency verification (such as RANSAC techniques),
the search for positive matches is restricted to limited image regions selection.

In order to solve these two problems, a similarity test is carried out in order
to validate or discard a region.

The matching process is drastically simplified: first, image subregions are
matched as a whole since they are supposed to correspond to the same physi-
cal target. Thus there is no need to look for interest point nor to match all the
pixels (dense matching). Second there is no search space since the matching con-
sists only in checking the score of the similarity between the predicted candidate
regions by exploiting the epipolar geometry.

The experimental validation with real data and the analysis of the resulting
3D models were also presented. Note that the complexity and details in the final
3D model is depending, essentially, on the segmentation level of the camera im-
age. Indeed, for a higher segmentation level, the image is segmented into details
(windows for example). These details are then reconstructed and added to refine
the final model.
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Conclusion and openings

1 Conclusion
In this work, we addressed the problem of outdoor 3D mapping by combining
MMW radar with vision sensors. Our main goal was to prove the feasibility of the
radar and vision sensor fusion for 3D reconstruction and to propose an integrated
sensor providing a representation of it surrounding environment, enhanced with
visual data. The final objective is to develop a perception tool which is capable of
building an elevation map of large scale outdoor spaces considering the robustness
to the environmental conditions and depth detection ability of the radar on one
hand, and the high spatial resolution and color representation of a vision sensor on
the other hand. While the radar data are used to measure the depth of physical
obstacles surrounding the sensor, the cameras are used to retrieve their elevation
and appearance.

After the geometric modeling of each sensor, we addressed the problem of
calibrating the camera/radar system. It can be concluded from the state of the
art, that very few works addressed this problem and that this step is hard to carry
out for this type of sensor fusion. One critical point, when addressing this type
of problem, is to propose a method which is accurate but also easy to implement
out of laboratory conditions. We described a simple method of calibration of the
system, using simple physical targets which are freely positioned. The process is
based on two different constraints: the inter-distance and the pose constraints.

The simulations and experimental results prove the feasibility of our methods
and a quite good performance in the presence of noise. The accuracy of these
methods with respect to several parameters (the number of targets, the noise level
and the baseline width) has been studied. It should be noted that given the type
of sensors used, we must not expect a precision comparable to a laser rangefinder
for example.

In chapter 4, we presented a geometrical algorithm for 3D reconstruction of
large-scale scenes using MMW radar and a camera. To our knowledge, this type of
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data fusion has not been used for large-scale outdoor reconstruction. In contrast
to other reconstruction methods, such as SFM and Lidar based reconstruction, the
proposed method uses very few input data.

The effect of point depth and the baseline on the results of reconstruction is
formalized and studied. The resulting graphs showed that the method outperforms
classical stereo for large scale scenes and that it is not influenced by the baseline
width. The experimental validation with real data and a qualitative validation of
urban scene reconstruction were also presented.

The 3D reconstruction process requires an automatic feature matching between
the camera and the radar data. The matching problem has been addressed in
chapter 5.

The algorithm was designed in order to reach two goals: it must deal with the
heterogeneous nature of the two sensors data, and the search strategy should be
efficient and robust.

Contrarily to global consistency verification, such as RANSAC techniques, the
complexity of the proposed process is linear with respect to the number of features.
In addition, the matching is locally dense since the sub-regions are reconstructed
as complete patches basing on the knowledge that they belong to the same physical
target.This approach enables to focus directly on features that are relevant to the
mapping task. Algorithm efficiency is thus boosted.

The proposed processing sequence from the geometric modeling to the final
reconstruction focuses on an optimal fusion level where only the targets of the
radar are considered. Thus, areas that are not corresponding to real obstacles
such as the sky and the ground or areas representing detailed texture like the
windows of a building are repealed.

The obtained results meet, indeed, the primary objectives presented in the first
chapter. The 3D model does not correspond to a dense point cloud but to a group
of 3D plans forming the elevation map. The texture is then plated into these plans
in order to obtain a 3D model dense in texture and color information.

The final results with texture mapping are very promising and proved the
feasibility of the proposed fusion method on semi structured environment and its
simplicity in term of computation. This is an advantageous characteristic for future
real time mapping applications.

2 Future works
Additional works on the optimization process for the determination of singular
configurations of the 3D canonical targets, used for the calibration, are to be done
in perceptive works. For instance, coplanar points, colinear points, points situated
at the same distance from the radar and so on.

An additional perspective work is the enhancement of the algorithms typically
in terms of speed. An optimal performance of the matching algorithm, which is
the most costing in time, can be carried out. For example, if two or more radar
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targets share a similar ROI in the image, this ROI can be processed once for all
the considered targets. Also, during the elaboration of the results of the matching
algorithm, we could define thresholds adequate enough for the kind of scenes we
processed. However, further processing of different kinds of scenes (having differ-
ent level of brightness, texture, color ...), are needed to determine more general
thresholds.

Another approach for the matching algorithm is to match grids of pixels in
both images instead of regions. The size of the grids can be variable following the
texture of the scene: smaller grids can be used for regions presenting higher texture
information. The same method of extraction of ROI can be used but this time
corresponding to a grid in the radar image not to a region. This method can provide
a denser 3D model and facilitates the texture mapping. For the current stage,
the processing sequence is performed offline. Therefore, real-time reconstruction
experiments of urban and sub-urban scenes should be carried out and compared to
an accurate ground truth. Also the algorithm could focus on other type of urban
targets, such as cars, traffic signs or trees which occupy small areas in the image
and irregular shapes. This could be done by setting up a segmentation process that
could extract efficiently these types of targets. A higher value of the parameter Q
could be used in this case resulting in a higher level of segmentation.

Finally, the color, texture, shape and the reflection amplitude provided by
the radar are interesting data that could be exploited to elaborate a semantic
classification of the detected targets.

In the ideal case, a total reconstruction of the environment allows to model all
the points in the scene, taking into account the occluded objects of a voluminous
target. Yet, the reconstruction is limited to the viewing field of the camera. This
could be released by implementing a mechanical system for the rotation of the
camera providing therefore a panoramic processing of the scene which allows a
large covering of the area. Also, a possible solution is the multi-passage of the
vehicle around the scene in order to access hiding facades and objects (SLAM).
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Appendix

1 Appendix A
1.1 Cross correlation of stereo ROI
A correlation step is needed in order to perform 3D triangulation of the ROI, using
the stereo images. The correlation performed is a normalized cross correlation in
the spatial domain [51, 36]. It is a statistical similarity measure that proceeds in
computing the correlation of a template, t(x, y), with an image f(x, y), where the
template is normally smaller than the image. The location and orientation of the
template in the image are found. The normalization step is needed especially for
outdoor image acquisitions where the intensity of the images varies due to lighting
conditions and may influence the measures. This is done at every step by dividing
the cross-correlation by the standard deviation in order to get the correlation
coefficients. The correlation coefficient will have its peak at (i, j), if the template
matches best the image at this location. The implementation generally pursues
the following equation ([51]):

γ(u, v) =
∑
x,y

[
f(x, y)− f̃u,v

] [
t(x− u, y − v)− t̃

]
{
∑
x,y

[
f(x, y)− f̃u,v

]2 ∑
x,y

[
t(x− u, y − v)− t̃

]2
}0.5

(7.0)

2 Appendix B
2.1 Epipolar geometry
Regardless of the structure of the scene, the intersection of the light rays passing
through the optical centers of two or more cameras, forming triangles in the 3D
space, allows the 3D reconstruction of the 3D coordinates.
This process is the so called triangulation ([37]) and it is inspired from the natural
reconstruction system: the eyes.
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The 3D reconstruction using a stereo head is a well-known reconstruction
method.

It consists in finding the 3D dimensions of the projected scene onto two different
images. This information is recovered thanks to the geometrical constraints of the
system of two cameras:
The geometric constraint introduced by the acquisition of the same scene from
different view-points is the so called epipolar geometry (fig. 7.1).

A 3D point m is projected onto the left image frame in pl and onto the right
image frame in pr.
The epipolar geometry describes the relationship between these two pixels: the
cameras optical centers Ocl and Ocr form a plan with pr, pl and m.

This plan intersect the image plans in two straight lines called Epipoles, to
which pr and pl should belong.

Figure 7.1: The epipolar geometry: two acquisitions from two cameras of the
same 3D point.

Therefore, the stereo calibration is needed in order to find the position of the
cameras relative to each other.

2.2 Stereo calibration
3D reconstruction using stereo-vision is needed for the matching process. A 3D
transformation (rotation R and translation t) relates the two frames. The trans-
formation matrix A is composed of the rotation and translation and it is written in
homogeneous coordinates in order to transform it into a square reversible matrix:

A =
[
R t
0 1

]
=


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz

0 0 0 1

 (7.0)

The extrinsic and intrinsic calibration parameters can be obtained by the stereo
camera calibration using Matlab toolbox of [12]; Multiple views of the checker-
board are acquired by the cameras from different angles (fig. 7.2). Its position
relative to the camera is computed for each pose. The Euclidean geometry of
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the pattern (positions of pattern corners) is known in respect to the coordinate
system of the pattern. About 12 images of a planar checker-board are used in our
experiment. The images are imported into Matlab and the grid corners are then
extracted automatically. Calibration is done by looking for the parameters that
minimize the re-projection error of each point of the pattern in each image. The
pattern should be entirely visible in each image.The dimensions in millimeter of
a square in the grid are to be provided by the user (10.3 × 10.3cm in our case).
The positions of the cameras and of the pattern are shown in fig. 7.3. The results
obtained could be refined by additional parameters if needed.

Figure 7.2: Example of images of the planar checker-board captured by the
left and right cameras for the calibration process.

and
Figure 7.3: The trigonometric relation between the 3D coordinates
M(X, Y, Z)T to the pixel coordinate p(x, y)T .
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3 Appendix C

3.1 Optimisation using Levenberg-Marquardt
K. Levenberg was the first to publish this algorithm in [50]. Then it was imple-
mented by D. Marquardt and republished in [59]. It is an iterative optimization
method that allows obtaining a solution to a non-linear minimization problem
starting from an initial estimation of the parameters. Considering a parameter
vector a and y the measurement vector, a non-linear function F , relates the pa-
rameters and the measurement vectors. In the ideal case, the model and the
measurement are perfectly adequate and we have

∑
(y − F (a)) = 0. In real case,

the problem is to minimize the error ε were ε =
∑

(y − F (a)). In each iteration of
the algorithm, F is considered linear and the parameter vector a is incremented
as (a+ δa):

F (a+ δa) = F (a) + Jδa (7.0)

The linearization add the term Jδa, where J is the Jacobian matrix of F . The
increment δa is to be determined and verifies the normal equations:

(JTJ)(δa) = JT (y − F (a)) (7.0)

The Levenberg-Marquardt algorithm adds a damping factor λ to the normal
equations as follows:

(JTJ + λdiag(JTJ))(δa) = JT (y − F (a)) (7.0)

The algorithm combines the Gauss-Newton and the gradient decent methods by
adjusting the dumping factor at each iteration. The Gauss-Newton method is
represented by a small λ and it is used if the algorithm converge quickly to a local
minimum. On the other hand, if the algorithm is converging slowly, the value
of λ is increased giving therefore the relay to the gradient descent method and
accelerating the convergence when the gradient is small.

In the real experiments, the approximate values of the transformation parame-
ters are measured manually. These values are then used for the initialization phase
of the optimization algorithm.

4 Appendix D

4.1 SRM image segmentation
The segmentation process is done using SRM (Statistical region merging) algo-
rithm by Nock R. et al in [67]. The algorithm consists on starting from pixels of
image I as an elementary region and then merge regions following a specific order.
The goal is to merge the given pixels of an image into a smaller groups of pixels
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following a merging criteria. A statistical test is used in order to have a local merg-
ing decision of the regions. This local decisions are the predicted segmentation of
the image I and should then preserve global properties of the image.

The principle of this algorithm is that it modules the image segmentation prob-
lem as an inference problem and tends to reconstruct the regions of a theoretical
image I∗ from the observation image I (i. e., image to be segmented). I is obtained
by sampling each pixel for the observed color channel.

A parameter Q is introduced in order to have an independent random variable
replacing the color values of the pixels such that it takes values from {1, 256/Q}. Q
modifies the statistical complexity of the scene, and makes it possible to control the
detail level of the segmentation and allows a hierarchical multi-scale segmentation
of the image.

The algorithm relies on the interaction between two main components: merging
predicate, and the merging order. The merging predicate is defined as follows:

P (R,R′) =
{
true if∀a ∈ {R,G,B}|R̄′a − R̄a| ≤ |

√
b2(R) + b2(R′)|

false otherwise
(7.0)

In this predicate, R,R′ and R̄a, R̄′a are the regions pairs and color average in
the regions for each channel a, respectively. To define a precise order for the region
merging, an invariant rule named A is followed, consisting on starting from the
smallest regions and carries on to have bigger regions so if two pairs of regions are
tested this means that the tests inside the regions are already done. Couples of
adjacent pixels (p, p′) are sorted in a increasing order of a function f(p, p′) defined
as follow:

fa(p, p′) = |pa − p′a| (7.0)

This is the simplest choice of f , where pa and p′a are the pixel channel values and
a ∈ {R,G,B}. That approximates A and is traversed once. This function needs to
approximate A by computing the maximal variation of the local gradient between
two pixels: max(fa(p, p′)). For more detailed presentation of the method please
refer to the reference article [67].
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