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Préface

La dynamique des écoulements fluides qualifiés de “turbulents” est aujourd’hui encore
mal comprise. Pourtant, les équations de leurs mouvements sont connues depuis plus
d’un siècle et demi, mais l’on peine à en extraire toutes les informations nécessaires
à une compréhension profonde du phénomène. En effet, l’incompressibilité, mélangé
à l’advection du champ de vitesse par lui même, rend la résolution de ces équations
très difficile, aussi bien analytiquement que numériquement. Pour en venir à bout, le
“turbulencier” doit donc mettre en œuvre toute son ingéniosité, et trouver d’autres angles
d’attaque pour démonter cette édifice pierre par pierre, et en comprendre l’agencement.
Cette thèse présente ma modeste contribution.

Il me serait difficile, aujourd’hui, de faire la liste de tous les facteurs qui, au cours de
ma vie, m’ont conduit à rédiger ces lignes. Ces facteurs sont nombreux, aussi bien sur
le plan scientifique qu’humain. Ils sont parfois évidents, parfois subtiles, parfois dignes
d’intérêt, et parfois triviaux. Quoi qu’il en soit, une telle liste n’apporterait rien ici, et si
je ne peux énumérer toutes les circonstances qui m’ont conduit là où j’en suis, je sais en
revanche quelles sont les personnes qui m’ont soutenues tout au long de mon parcours.

Lyon, le 4 Novembre 2016
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Résumé en Français

Il est communément admis que la dynamique des écoulements fluides incompressibles est
régie par les équations de Navier-Stokes

∂tu + (u ⋅∇)u = −∇p + 1

Re
∆u, (1)

∇ ⋅u = 0, (2)

où u est le champ de vitesse, p le champ de pression, et Re le nombre de Reynolds. En
particulier, ces équations sont supposées décrire la dynamique des écoulements turbulents
pour n’importe quelle valeur de Re. En revanche, il est moins connu que dans la limite
asymptotique Re→∞, les solutions singulières des équations d’Euler

∂tu + (u ⋅∇)u = −∇p, (3)
∇ ⋅u = 0, (4)

pourraient tout à fait décrire les écoulements turbulents, comme le proposa pour
la première fois Onsager en 1949. Les idées d’Onsager prennent leurs racines dans les
travaux de Taylor. En 1935, ce dernier rapporte pour la première fois le fait que pour
des valeurs de Re suffisamment élevées, le taux de dissipation d’énergie ε stagne à une
constante indépendante de Re. Ce fait expérimental a eu depuis de nombreuses confir-
mations aussi bien empiriques que numériques, dans de nombreux types d’écoulements
différents. Si ces observations sont correctes, alors on en déduit que limRe→∞ ε > 0. C’est
un fait remarquable puisqu’il n’y a aucune raison, a priori, que l’énergie cinétique soit
transformée en chaleur quand Re → ∞. Cependant, le fait que ε semble rester non-nul
dans cette limite est au centre de notre compréhension actuelle de la turbulence, et est
au coeur de la théorie de Kolmogorov de 1941. C’est ce qu’on appelle la loi zéro de la
turbulence.

En 1949, Onsager est le premier à se rendre compte qu’une dissipation d’énergie peut
se produire même en l’absence de forces de viscosité. Plus précisément, il déclare que
si les solutions des équations d’Euler deviennent non-dérivables, alors la conservation de
l’énergie n’est plus assurée, et il existe un mécanisme de dissipation dû à l’existence de
ces singularités. Les idées d’Onsager ont été formalisées dans un cadre mathématique
rigoureux en 2000 par deux mathématiciens français, Jean Duchon et Raoul Robert.

xix
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Leur approche consiste à établir un bilan d’énergie local à toutes les échelles, permettant
de prendre en compte un terme de dissipation supplémentaire brisant la conservation
de l’énergie dans les équations d’Euler, dans le cas où le champ de vitesse perdrait sa
régularité. En définissant le champ de vitesse u` régularisé à l’échelle ` comme le produit
de convolution de u avec une fonction de filtrage G`, on obtient à partir des équations
d’Euler

∂t (
1

2
u ⋅u`) +∇ ⋅ [(1

2
u ⋅u`)u + 1

2
(pu` + p`u) + 1

4
(∣u∣2u)` − 1

4
(∣u∣2)`u]

= −1

4 ∫ dr ∇G` (r) ⋅ δu∣δu∣2, (5)

où δu (x,r) = u (x + r) − u (x). Le terme à droite de l’équation (5) est interprété
comme un terme de transfert à travers les échelles, non-nul en moyenne (statistique),
décrivant la cascade d’énergie vers les petites échelles selon la vision de Richardson et
Kolmogorov. Nous le notons Π`

DR. L’idée d’Onsager a été de remarquer que Π`
DR ne dis-

parait pas forcément dans la limite `→ 0. En effet, si le champ de vitesse est suffisamment
singulier, alors Π`

DR tend vers une limite DI (au sens des distributions) qui peut être non-
nulle. Dans ce cas, la conservation de l’énergie est brisée et l’équation bilan locale devient

∂t (
1

2
∣u∣2) +∇ ⋅ [1

2
∣u∣2u + pu] = −DI . (6)

Cette thèse se concentre sur l’étude du terme de transfert Π`
DR à différentes échelles.

L’idée principale est d’essayer de détecter de possibles singularités grâce aux transferts
d’énergie qu’elle produisent, en se concentrant sur les évènements extrêmes de Π`

DR. Pour
cela, nous nous plaçons dans le cadre de l’écoulements de von Kármán situé au Service
de Physique de l’Etat Condensé du CEA Saclay, dans lequel il est possible d’effectuer des
mesures locales du champ de vitesse en plusieurs points de l’écoulement simultanément
(méthode de vélocimétrie par image de particules). Ainsi, nous avons accès aux incré-
ments de vitesse δu, et nous pouvons calculer Π`

DR à plusieurs échelles ` différentes en
fonction de la résolution de notre système de mesure. L’échelle naturelle pour évaluer
Π`
DR est l’échelle de Kolmogorov η ∼ Re−3/4, qui représente l’échelle typique à laquelle il

est communément admis que toute la dissipation d’énergie se fait grâce aux forces de vis-
cosité, et à laquelle le champ de vitesse est supposé être lisse. Le résultat de notre calcul
pour Πη

DR est présenté sur la Fig. 1. Nous détectons plusieurs évènements extrêmes, cha-
cun correspondant à une topologie du champ de vitesse semblant non-dérivable. De plus,
nous constatons que toutes ces topologies semblent se regrouper en quatre catégories: les
fronts, les spirales, les jets et les points de rebroussement, avec une large majorité de
fronts (75% des cas) par rapport aux trois autres groupes. La question est donc: est-ce
que ces structures correspondent à de vraies singularités, ou est-ce que l’on ne détecte
que des structures qui sont régularisées à des échelles encore plus petites ? En fait, il est
difficile de répondre à cette question car la dissipation inertielle survient dans la limite des
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échelles infiniment petites, ce qui signifie devoir étudier la topologie du champ de vitesse
aux très petites échelles (bien inférieures au micromètre). Cependant, les techniques de
mesures actuelles ne permettent pas d’obtenir de telles résolutions, et il faut donc trouver
d’autres méthodes pour répondre à cette question. Quoi qu’il en soit, que les structures
montrées sur la Fig. 1 soient de vraies singularités ou soient régularisées à plus petite
échelle, ces travaux indiquent que la physique aux échelles inférieures à η n’est pas triviale.

En conclusion, cette thèse fournit des résultats très encourageants sur la détection
expérimentale de singularités dans des écoulements incompressibles. Les travaux qui
sont présentés ici sont, à notre connaissance, les premiers visant à vérifier si les idées
d’Onsager ont une quelconque pertinence dans un tel cadre. De plus, même si cette
étude ne permet pas de conclure quant à l’existence de singularités, elle montre tout de
même qu’il existe des échelles plus petites que l’échelle de Kolmogorov qu’il est intéressant
de sonder pour étudier la dissipation d’énergie dans les écoulements turbulents.
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Figure 1: Topologie du champ de vitesse au niveau des évènements extrêmes de Π`
DR à

l’échelle de Kolmogorov. Pour chaque figure: sur la figure principale, les couleurs codes
l’intensité de Π`

DR, et les flèches représentent la composante du champ de vitesse dans
le plan de mesure. L’encart en haut à droite montre les trois composantes du champ de
vitesse où les flèches représentent la composante dans le plan de mesure et les couleurs
la composante orthogonale. L’encart en haut à gauche montre les variations de Π`

DR en
fonction de ` au niveau du point blanc, qui correspond au point où Π`

DR est localement
maximal.



Notations

Before entering the heart of the matter, let us first define some notations. These notations
will hold throughout this manuscript, unless otherwise specified.

• Vectors are denoted using bold characters, the components of vector v being denoted
vi where i = 1,2,3, . . . or i = x, y, z, . . ..

• The unit tensor is δij = 1 if i = j and 0 otherwise. The fully antisymmetric Levi-
Civita tensor is εijk = (−1)s, where s denotes the sign of the permutation of (i, j, k).

• The operations of symmetrization and antisymmetrization will respectively be de-
noted by parentheses and square brackets: T(ij) = (Tij+Tji)/2 and T[ij] = (Tij−Tji)/2.

• (xi, t) ∈ Rd ×R+ denotes a point in the d + 1 dimensional Galilean spacetime.

• V , ∂V ⊂ Rd denote an open connected space and its boundary: V ⋃∂V is a closed
connected space.

• (∂i, ∂t), denotes the partial derivatives in spacetime, and ∂ij = ∂i∂j.

• The Einstein summation convention over repeated latin indices is used, except on
index ` denoting scales. Therefore, for two tensors Sij and Tij, SijTkj = ∑

j
SijTkj.

• If the velocity field is denoted ui, velocity increments are defined as

δui(x,r, t)
def= ui(x + r, t) − ui(x, t).

The dependence of δui on x and t will usually be kept implicit.

• Q denotes the time or ensemble average of Q. < Q > denotes its space average.

• Sp denotes the pth order structure function

Sp
def= δup.
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If we decompose the velocity increments into two orthogonal components δu =
δu∣∣ + δu�, where δu∣∣(r) = δu(r) ⋅ r/r, we can define the pth order orthogonal and
longitudinal structure functions as

S�p
def= δup

�
,

and

S
∣∣

p
def= δup

∣∣
,



Causality in Natural Laws

You know my methods. Apply them.

Sir Arthur Conan Doyle

During the year 2011/2012, before the London Summer Olympics1, I was an Erasmus
student at Imperial College, London. One of my many occupations there was to pace up
and down the physics section of the library, looking for some interesting readings. Some
day, I found a book titled Causality & Chance in Modern Physics, written by [Bohm,
1961]. I took it back to my 10 m2 room, and read through the first chapter. In this
chapter, Bohm discusses causal laws, contingencies and describes in details the scientific
method which allows to discover new laws. I was very impressed with the clarity of the
ideas and, since then, I believe that every student in science should read through the first
pages of this book.

To me, the purpose of teaching science to students, besides stimulating their curiosity
or providing general knowledge, is to teach them a method for reasoning, i.e. to pro-
vide them with tools to make logical connections by themselves in everyday life. The
typical situation that each one of us experience on a daily basis is the following. Start-
ing from some observations of the world around us, plenty of data are gathered. From
all these data, those which are crucial must be separated from those which are merely
incidental. Then, causes must be inferred from inductive reasoning and consequences
from deductions. However, during physics and maths lectures, teachers always use funda-
mental principles as a starting point (according to my own experience) and then deduce
everything that can be. While this presents a pedagogical interest because it places
the students in some rigid reasoning structure which allows most of them to keep up,
it also has the drawback of never teaching inductive reasoning, which is the hardest.
Moreover, most of breakthroughs in science are made when causal laws are understood.
As a consequence, I cannot conceive beginning my thesis without spending a little time
writing about the scientific method, which has driven my work during the last three years.

In the physical world, nothing remains constant. Everything undergoes changes of
some sort which arise from something else (causes) and will in turn give rise to some other
things (consequences). Bohm sums this principle up by saying that “everything comes

1Which would turn out to be a major disappointment for French fencing.
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Observations

Patterns

HypothesesPredictions

Experiment

Figure 2: Seeking new laws: the scientific method as an ongoing process.
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from other things and gives rise to other things”. This means that it is not possible
for anything in nature to come out of nothing or disappear without without leaving
any trace, however small. This statement is fundamental and, without it, it would be
impossible to understand nature in a rational way. Up to now, it has never been disproved.
However, this statement alone does not ensure that nature can be understood. For that,
causal laws in physical processes must exist. That is, inside of all of the complexity of
change and transformation, there are regular relationships that hold within a wide range
of conditions. However, causal laws cannot be known a priori, they must be found in
nature. To discover these laws, the scientific method dictates to proceed as illustrated
on Fig. 2. Starting from some observations, we look for patterns, and we provisionally
assume these regularities to arise from causal laws. The next step is to make hypotheses
on these laws following the most probable explanation of the facts, and allowing for a
rational understanding of what is observed. These hypotheses usually provide additional
input and make it possible to derive new informations not contained (or not found) in
the first set of data. These constitute predictions which can then be tested, either by
simple observations or by the more active process of making an experiment. If needed,
the hypotheses are modified or refined according to the results of the experiment until
all the predictions which can be derived from them are found to hold. When this state
is reached, the hypotheses are temporarily considered as true statements until a wider
range of observations are made which may challenge them.

As a consequence, we can only prove a theory wrong, and we can never prove it right.
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Chapter 1

Basics of Fluid Dynamics

. . . time and space are modes by
which we think and not conditions in
which we live.

Einstein as quoted in [Forsee, 1963]
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4 CHAPTER 1. BASICS OF FLUID DYNAMICS

Figure 1.1: Leonhard Euler (left), Claude Louis Marie Henri Navier (middle), George
Gabriel Stokes (right).

1.1 The equations of motion

The subject of fluid dynamics aims at describing the motion of fluids at macroscopic scales
under various conditions. In this framework, the microscopic nature of fluids is believed
to be irrelevant, and matter is considered to be a continuous medium. This means that
any small volume is always assumed large enough so that it contains a great number
of particles. In this context, fluid particles are the smallest elements to be considered.
They are infinitely small with respect to the whole volume of the flow, but extremely large
compared to the distance between molecules. In addition, their mass δm is assumed to
be conserved as they move throughout the flow.

Like all macroscopic theories, fluid dynamics involves physical quantities which are
averages over infinitely small volumes, neglecting the fluctuations due to the molecular
nature of matter. Therefore, when we speak of the velocity of a fluid particle, we actually
mean the average velocity of all the molecules which are contained in this infinitely
small volume. The validity of these assumptions will hold as long as the mean free path
between molecules is negligible compared to the smallest characteristic length scale of
the flow under study. The physical quantities of interest are then fields, defined at every
points in the Galilean spacetime.

In pure hydrodynamics, the state of a fluid is completely described by the velocity
field u plus any two thermodynamic quantities like the pressure field p and the mass
density ρ. In our study, we will consider fluids which are incompressible, i.e. the volume
δV of a fluid particle remains always the same so that ρ = δm/δV is conserved. It can be
shown from the mass continuity equation

∂tρ + ∂j (ρuj) = 0, (1.1)

that incompressibility can be written as a divergence free condition ∂juj. As a conse-
quence, throughout this manuscript, we will consider ρ as known and, for simplicity, set
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ρ = 1. This condition of incompressibility is equivalent to saying that the speed of sound
Cs in the medium is infinite, so that incompressibility is valid as long as ∣∣u∣∣ ≪ Cs every-
where in the flow. Therefore, only four independent equations are needed to build a full
mathematical description of fluids in motion. In addition to mass conservation, Newton’s
second law applied to a fluid particle, gives the following set of equations, known as the
incompressible Navier-Stokes equations (INSE)

∂tui±
local time variation of ui

+ uj∂jui
´¹¹¹¹¹¸¹¹¹¹¹¶

inertial forces

= −∂ip
±

pressure forces

+ ν∂jjui
´¹¹¹¹¸¹¹¹¹¶

viscous forces

, (1.2)

∂juj = 0, (1.3)
ui (x,0) = u0

i (x) , (1.4)

where ν is the kinematic viscosity of the fluid, and u0 is a divergence free vector field
[Landau and Lifshitz, 1987]. In the absence of viscosity, these equations are known as the
incompressible Euler equations. Eq. (1.2) expresses momentum conservation while Eq.
(1.3) and Eq. (1.4) respectively are the incompressibility and initial conditions. In order
to be considered as physically reasonable, solutions to the INSE must further satisfy some
regularity conditions [Fefferman, 2006] on the whole physical domain of interest V ⊂ R3.
We require that

ui, p ∈ C∞ (V ×R+) , i = 1,2,3, (1.5)

along with u ∈ L2 (V). In other words, the total kinetic energy must remain finite at
all times

∫
V

dr E (r, t) < ∞,∀t ∈ R+, (1.6)

where E (r, t) = 1
2u

2 (r, t). In order to avoid discussing boundary effects, it is common
to take V = R3 or work on the three dimensional torus T3 [Fefferman, 2006]. In practice,
such domains do not exist and experiments are always confined by some finite smooth
boundaries ∂V . Therefore, the INSE must be supplemented with appropriate boundary
conditions.

An interesting remark is that even though it would seem at first glance that the INSE
are local because only local derivatives are involved, the dynamics of incompressible flows
is actually non-local. Indeed, incompressibility implies that the velocity at any point in
a flow is coupled to the velocity at every other points. This can be seen by taking the
divergence of Eq. (1.2), which leads to a Poisson equation for p

∂jjp = −∂ij (uiuj) , (1.7)

which can then be plugged back into Eq. (1.2) in order to express it solely in terms
of the velocity field

∂tui + (δik − ∂ik∆−1)∂j (ujuk) = ν∂jjui. (1.8)
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The operator ∆−1 is the inverse Laplacian which is non-local in the physical space
(see e.g. [Chorin, 1994]).

From vector calculus, we know that under conditions less restrictive than the one
required by Eq. (1.5) and Eq. (1.6), a vector field on V ⊂ R3 is uniquely defined by
its divergence and its curl1. As a consequence, since for incompressible flows we have
∇ ⋅u = 0, the INSE actually only need to be solved for the vorticity field ω = ∇ ×u. The
equations for the dynamics of ω are obtained by taking the curl of Eq. (1.2) and take
the form

∂tωi + uj∂jωi = ωj∂jui + ν∂jjωi, (1.9)
ωi = εijk∂juk, (1.10)

ωi (x,0) = ω0
i (x) . (1.11)

Eq.(1.9) can be solely expressed in terms of the vorticity field by taking the curl of
Eq. (1.10), solving the resulting Poisson equation for u, and then plugging back the
expression into Eq.(1.9). Therefore, as for Eq. (1.8), the non-local operator ∆−1 is still
involved in the dynamics of the vorticity field.

1.2 Symmetries and conservation laws

The concept of symmetry plays a central role in the formulation of modern physics, es-
pecially since the development of the theory of compact groups in relation to quantum
mechanics, largely due to Hermann Weyl [Weyl, 1950]. Weyl’s definition of a symmetry
is the following

An object is said to be symmetrical if there exists a transformation which preserves
the features of this object. The transformation is called a symmetry, and the object is
said to be invariant under such symmetry.

The most important symmetry in Newtonian physics is the invariance of physical laws
in any inertial frame, the associated symmetry group being the Galilean group. The INSE
are widely believed to contain all the informations about the dynamics of fluids in nature.
As such, the first property this set of equations must satisfy is invariance under Galilean
transformations, and it can be checked that they indeed do [Frisch, 1995]. However, these
transformations are not the only symmetries of the INSE and one can also check that
parity (x, t,u,→ −x, t,−u) leaves these equations invariant. The symmetries of scaling
(x, t,u,→ λx, λ1−ht, λhu), where (λ,h) ∈ R+ ×R, and time reversal (x, t,u,→ x,−t,−u),
hold for the Euler equations but are explicitly broken by viscous forces. If ν ≠ 0, the

1This theorem, also known as Helmholtz theorem, plays a central role in electromagnetism. Indeed,
it explains why Maxwell’s equations are solely written in terms of curls and divergences of the electro-
magnetic field.
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Figure 1.2: Amalie Emmy Noether.

scaling symmetry only holds for h = −1.

In 1915, the German mathematician Amalie E. Noether (Fig. 1.2) established a
deep relation between symmetries and conservation laws. In the case of continuous me-
dia, Noether’s theorem states that every differentiable symmetry of the action of a non-
dissipative system leads to a local conserved current. This theorem offers a very elegant
and natural way of discussing conservation laws, which is not commonly used in fluid
dynamics2. A mathematical article on the subject can be found at [Tao, 2014]. In the
case where there is not any internal frictions, Euler equations describe a non-dissipative
system. It is a well known result of Noether’s theorem that homogeneity in space and
time respectively lead to conservation of momentum and energy, while isotropy leads to
the conservation of angular momentum.

• Local momentum conservation (Euler equations):

∂tui + ∂jU ij = 0, (1.12)

where U ij = uiuj + pδij. An equivalent statement of the local momentum conser-
vation is Kelvin theorem which states that the circulation of velocity Γ = ∮C u ⋅ ds

2We do not attempt to make an exhaustive list of all the invariants of the Euler and Navier-Stokes
equations. Here, we only discuss the usual ones.
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around any closed contour C advected by the fluid is a material invariant i.e. is
conserved along any fluid particle trajectory

∂tΓ + ∂jG j = 0, (1.13)

where G j = ujΓ. As we saw in Sec. 1.1, conservation of momentum is also equivalent
to the conservation of vorticity

∂tωi + ∂jW ij = 0, (1.14)

where W ij = 2ω[iuj].

• Local kinetic energy conservation

∂tE + ∂jE j = 0, (1.15)

where E j = uj (E + p).

• Local angular momentum conservation

∂tLi + ∂jL ij = 0, (1.16)

where Li = εijkrjuk is the angular momentum and L ij = ujLi − εijkrkp.

Finally, Moreau showed [Moreau, 1961] that the helicity H (r, t) = 1
2uiωi is also a

conserved quantity. Later, the conservation of helicity was discovered to be generated by
an enlarged Arnold symmetry group of fluid element labeling [Moreau, 1977].

• Local helicity conservation

∂tH + ∂jH j = 0, (1.17)

where H j = ujH + ωj (1
2E + p).

Like kinetic energy, helicity is a quadratic invariant, however, it not sign definite.
According to a theorem by Arnold [Arnold, 1986; Arnold and Keshin, 1998], helicity can
be topologically interpreted as the average self-linking number of vortex lines in a flow
[Betchov, 1961; Moffatt, 1969].

In the presence of internal frictions, the story is a little bit different. Indeed, as we said
before, Noether’s theorem holds for non-dissipative systems only. In most experiments,
flows are studied using fluids with ν ≠ 0, i.e. are dissipative systems. In this case, the
differentiable symmetries that we discussed above such as Galilean transformations do
not have to lead to a local conserved current. In the case of nonzero viscosity, it can
actually be checked that the conservation laws given above become
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• Local momentum conservation (Navier-Stokes equations):

∂tui + ∂jU ij
ν = 0, (1.18)

where U ij
ν = U ij − ν∂jui. Kelvin theorem becomes

∂tΓ + ∂jG j
ν = 0, (1.19)

where G j
ν = G j − ν∂jΓ. Therefore, Γ is not a material invariant anymore but still

has an associated conserved current. The conservation of vorticity becomes

∂tωi + ∂jW ij
ν = 0, (1.20)

where W ij
ν = W ij − ν∂jωi.

• Local balance of kinetic energy

∂tE + ∂jE j
ν = −Dν , (1.21)

where E j
ν = E j −ν (∂jE + ∂i (uiuj)), Dν = 2νSijSij and Sij = ∂(iuj) is the local strain

rate tensor.

• Local angular momentum conservation

∂tLi + ∂jL ij
ν = 0, (1.22)

where L ij
ν = L ij − ν (∂jLi − εijk∂m (rkum) + εijkuk)

• Local balance of helicity

∂tH + ∂jH j
ν = −Dω

ν , (1.23)

where H j
ν = H j − ν (ui∂jωi + ∂i (ωiuj)), Dω

ν = 2νSijSωij and Sωij = ∂(iωj).

We conclude from this discussion that viscous forces are responsible for the local
non-conservation of quadratic invariants of Euler equations.
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1.3 The Reynolds number

The fact that for all λ ∈ R+ the INSE are invariant under (x, t,u,→ λx, λ2t, λ−1u), means
that the dynamics of fluids has the same properties when spacetime variables are appropri-
ately rescaled. Let us now consider some fluid in motion where there exist a characteristic
length scale L and a characteristic velocity U . Making all the quantities dimensionless,
we can write the INSE as

∂tui + uj∂jui = −∂ip +
1

Re
∂jjui, (1.24)

∂juj = 0, (1.25)
ui (x,0) = u0

i (x) , (1.26)

where

Re = UL
ν
, (1.27)

is a dimensionless number called the Reynolds number. The Reynolds number plays a
very important role in fluid dynamics as it appears to be the only control parameter that
we may act upon in order to change the properties of the dynamics. Indeed, what equation
(1.24) tells us is that if two different flows are generated in two different experiments with
only a change in the values of U , L and ν (boundary and forcing conditions do not change),
the properties of the two flows will be the same as long as the Reynolds numbers are the
same. This is known as the similarity principle. As a consequence, any symmetry of
the INSE must leave the Reynolds number invariant, and this explains why the scaling
symmetry of the Euler equations breaks down to h = −1 for finite values of Re. Indeed,
h = −1 is the only value of the scaling exponent compatible with the similarity principle.

Re bears the name the Irish engineer Osborne Reynolds who, at the end of the XIX th

century, understood the importance of this quantity by studying various pipe flows in a
systematic fashion [Reynolds, 1883]. Reynolds was able to show that when Re ≪ Rec
the flow is laminar, whereas when Re ≫ Rec the flow becomes turbulent. The critical
value of Re for which this transition happens is not universal and depends on the way
turbulence is generated. In general, Rec ≈ 10 − 100. On the other hand, it is easy to
see that Re measures the relative effects of inertial forces compared to viscous forces.
Turbulence therefore appears as an inertial, non-linear effect.

1.4 The turbulent regime

Instability of steady flows at very high Re

Like all physical systems, the evolution of the state of any fluid is governed by a set of
fundamental equations, which we have seen to be the INSE. However, not all solutions
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Figure 1.3: Transition to turbulence of the plume of smoke rising from a candle generated
by Kelvin-Helmholtz instability.

to the INSE are observed in nature. In the stationary regime, these solutions must also
be stable with respect to infinitely small disturbances. If small perturbations, which
inevitably occur, do not decrease with time, the solution is unstable and the state of the
fluid is bound change. For sufficiently high Re, it is an experimental fact that all steady
flows are unstable and undergo a transition to an unsteady solution (see [Chandrasekhar,
1961; Landau and Lifshitz, 1987] for a discussion about the stability of the INSE). This
property, which is due to nonlinear effects, is responsible for the onset of turbulence, and
in general, high Re steady flows are unstable with respect to various mechanisms. For
instance, Fig. 1.3 displays an example in which the transition to a turbulent state is due
to Kelvin-Helmholtz instability.

Sensitivity to initial conditions

Turbulent motions are characterized by a highly disorganized and unpredictable space-
time behaviour. The velocity continuously fluctuates around some mean value u in a
random fashion, and it is therefore convenient to decompose the velocity field as u = u+v,
where v is called the turbulent component. Measurements of u using recent velocimetry
techniques make it possible to visualize the turbulent component at one time as a func-
tion of space, or at one point as a function of time. These kind of measurements show
wild fluctuations over a wide range of space and time scales. Therefore, one could adopt
a deterministic approach and study the dynamics of v by solving the INSE considering a
geometry with enough symmetries to allow for their resolution3, given the initial condi-

3Because it is still not known how to solve them in the general 3D case. A high enough degree of
symmetry leads to enough simplifications to allow for an analytical resolution.
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Figure 1.4: Edward Norton Lorenz.

tion u0 and the forcing details. Then, if u0 can be prepared in a real set-up, the predicted
evolution of the turbulent component may be experimentally tested. Now the problem
is that very high Re flows exhibit a strong sensitivity to initial conditions. This is a
problem because initial conditions and forcing details can only be known and imposed
approximately in real experiments. Therefore, discrepancies between the predicted and
observed flow field will eventually become much larger than the resolution of measure-
ments and, in the end, the measured v will be completely different in its details from
what was predicted theoretically.

A reasonable idea is, then, to turn to DNS. In DNS, initial conditions and forcing
details can be better controlled. However, the precision of computers is inevitably finite,
and this is known to be the source of rounding errors which magnify more or less quickly
depending on the nature of the computations. Nonlinearities, which are the cause of the
sensitivity to initial conditions, will amplify the computational errors very quickly so that
the deterministic approach cannot be saved by turning to DNS. Therefore, this method
of investigation has to be dropped4.

Turbulent fluids as dynamical systems

A possible approach to turbulence is to consider high Re flows as dynamical systems.
The theory of dynamical systems was brought into being by the work of the meteorologist
Edward N. Lorenz who studied the coupling of the atmosphere with the ocean, described
by a coupled system of INSE, through a simplified model for Rayleigh-Bénard convection.

4I am not saying that deriving an analytical solution from the INSE for a turbulent flow would be
useless. On the contrary, as we shall see later, the statistical properties of such solution could be studied
and would bring a deep insight on the physics of turbulence.
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This model involves a system of three nonlinear coupled equations which were discovered
to exhibit sensitivity to initial conditions [Lorenz, 1963]. Actually, this sensitivity was first
studied by Poincaré, and the unpredictable nature of weather was discussed in [Poincaré,
1912]. Discussing the definition of chance, Poincaré said:

Le premier exemple que nous allons choisir est celui de l’équilibre instable;
si un cône repose sur sa pointe, nous savons bien qu’il va tomber, mais nous
ne savons pas de quel côté [...]. Si le cône était parfaitement symétrique, si son
axe était parfaitement vertical, s’il n’était soumis à aucune autre force que la
pesanteur, il ne tomberait pas du tout. Mais le moindre défaut de symétrie
va le faire pencher légèrement d’un côté ou de l’autre, et dès qu’il penchera,
si peu que ce soit, il tombera tout à fait de ce côté. Si même la symétrie est
parfaite, une trépidation très légère, un souffle d’air pourra le faire incliner de
quelques secondes d’arc ; ce sera assez pour déterminer sa chute et même le
sens de sa chute qui sera celui de l’inclinaison initiale.

Si nous connaissions exactement les lois de la nature et la situation de
l’univers à l’instant initial, nous pourrions prédire exactement la situation
de ce même univers à un instant ultérieur. Mais, lors même que les lois
naturelles n’auraient plus de secret pour nous, nous ne pourrions connaître la
situation qu’approximativement. Si cela nous permet de prévoir la situation
ultérieure avec la même approximation, c’est tout ce qu’il nous faut [...] ; mais
il n’en est pas toujours ainsi, il peut arriver que de petites différences dans
les conditions initiales en engendrent de très grandes dans les phénomènes
finaux ; une petite erreur sur les premières produirait une erreur énorme sur
les derniers. La prédiction devient impossible [...].

Sensitivity to initial conditions is a well known phenomenon which often occurs when
the dynamics of a system is nonlinear, as for e.g. the INSE at high Re. When in-
finitely small perturbations magnify exponentially quickly in time, the system is said to
be chaotic. Let us consider the initial state of a flow, in which the velocity field is denoted
u0. Let us further assume that this initial state is known within some infinitely small
uncertainty δu0. If we call Tp the time during which the velocity field can be predicted
within a small tolerance δu, then we have

Tp ∼
1

λmax
ln( δu

δu0
) , (1.28)

where Tp is called the predictability time, and λmax is the leading Lyapunov exponent
[Eckmann and Ruelle, 1985]. As pointed out in e.g. [Boffetta et al., 1998], this means that
Tp has a weak dependence on δu0 and, like λmax, is an intrinsic property of the system.
However, this description raises some issues [Paladin and Vulpiani, 1987a; Crisanti et al.,
1993]. In particular Eq. (1.28) only holds for infinitely small δu0 and δu whereas in
practice, initial errors and the resolution of measurement systems are finite quantities.
To remedy this problem, a generalized notion of Lyapunov exponents was introduced
in [Aurell et al., 1996] to study the predictability of turbulent motion. By introducing
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Tr (∆u0) as the time it takes for a finite perturbation ∆u0 to grow to r∆u0, one can
define

λ (∆u0) = ln r

Tr (∆u0)
. (1.29)

The interesting feature of Eq. (1.29) is that the Lyapunov exponent λ now depends
on ∆u0 and the predictability time therefore takes the form

Tp (∆u0, r) = ∫
r∆u0

∆u0

d (ln ∆)
λ (∆) . (1.30)

It can be expected that λ is a decreasing function of ∆u0, so that Eq. (1.30) gives
longer predictability times than Eq. (1.28). In particular, for Kolmogorov’s theory of
turbulence (see Sec. 1.7), λ (∆u0) ∼ (∆u0)−2 [Aurell et al., 1996]. For more discussions
and reviews, see [Aurell et al., 1997; Cencini and Vulpiani, 2013].

Turbulent fluids as stochastic systems

All these considerations about the unpredictability of turbulent flows do not mean that we
should give up on making predictions. Another important aspect of high Re flows is that
their statistical properties are found to be quite reproducible and even predictable. This
points towards a statistical description of turbulence, in which the quantities of interest
are obtained from appropriate averages. The question of how these averages should be
taken is treated in e.g. [Batchelor, 1982; Orszag, 1973; Frisch, 1995].

Equilibrium statistical mechanics is built upon universal fundamental principles which
allow to develop a clear framework. The partition function Z is the central object of
the theory as it allows to obtain macroscopic quantities from a microscopic description.
Therefore, once the system has been defined and the microstates identified, the thermo-
dynamic state of the system is known through the computation of Z. The problem is
that turbulent flows are out-of-equilibrium systems and there does not exist a complete,
systematic framework in statistical physics in which they could be studied. There ex-
ists various approaches (Langevin, Fokker-Planck, master equations,...), but these lack
universality.

The current situation of turbulence theory is such that we do not know (yet) how to
extract all the informations we want about turbulence from the INSE, and there does
not exist (yet) a general framework for out-of-equilibrium systems we could work in.
The strategy which must be adopted is therefore to go back to experiments in order
to get some additional input. Patterns in empirical data should be looked for, and
reasonable hypotheses will be made and considered as basic assumptions in a first time,
their explanations or modifications being brought later if needed. This will lead us to the
famous Kolmogorov’s theory of homogeneous isotropic turbulence described in Sec. 1.7.
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1.5 Symmetry breakings

In Sec. 1.2, we reviewed various symmetries of the INSE and their associated conservation
laws. It is an experimental fact that these symmetries are spontaneously broken by the
mechanisms through which turbulence is generated. In [Frisch, 1995], considering a fluid
flow past a cylinder, the author highlights the successive breakings of the symmetries
allowed by the equations of motion. However, the author also emphasizes the fact that
these symmetries appear to be restored in a statistical sense at sufficiently high Reynolds
numbers, and away from boundaries. This is actually a general observation and it will be
at the heart of our presentation of Kolmogorov’s theory in Sec. 1.7. The regime in which
symmetries are statistically restored is known as fully developed turbulence, and will be
our main focus throughout this thesis.

A particular symmetry which will be of great interest to us, is the time reversal
symmetry (x, t,u,→ x,−t,−u). As we said in Sec. 1.2, this symmetry holds for the Euler
equations but is explicitly broken for the Navier-Stokes equations by viscous forces. This
symmetry breaking is deeply related to the concepts of energy cascade, energy dissipation
and entropy production. Getting a little bit ahead of ourselves, fully turbulent 3D flows
are characterized by a cascade of energy from large to small scales (see Sec. 1.6), where
kinetic energy is converted into heat by viscous frictions. From thermodynamics, we know
that production of heat inside the system leads to an entropy production Ṡ > 0. The
specific direction of the energy cascade, plus the increase of the entropy of the system are
direct consequences of the time reversal symmetry breaking. Their effects can be directly
measured in experiments via calorimetric measurements.

A central experimental fact of fully turbulent flows is the law of finite energy dissi-
pation. This fact is so important in turbulence that it is also called the zeroth law of
turbulence.

Zeroth law of turbulence For high enough but not infinite Re, the time aver-
aged dimensionless energy dissipation rate per unit mass ε is a nonzero constant
independent of Re.

This observation was first reported by [Taylor, 1935], in a paper discussing turbulent
pipe flows. Since Taylor, the zeroth law of turbulence has found many confirmations in
several other experiments [Comte-Bellot and Corrsin, 1971; Williams and Paulson, 1977;
Lathrop et al., 1992; Cadot et al., 1997] and DNS [Jimenez et al., 1993; Wang et al.,
1996; Yeung and Zhou, 1997; Cao et al., 1999; Gotoh et al., 2002; Kaneda et al., 2003] in
various geometries, but a derivation from the INSE has yet to be found. The zeroth law
is a surprising statement for at least two reasons. First of all, the scaling of ε does not
depend on viscosity, which is the property through which fluids dissipate energy. Second,
these observations show that the time reversal symmetry of the Euler equations does not
appear to be restored as viscosity vanishes, as one might have naively expected. When
Kolmogorov developed his theory of homogeneous, isotropic turbulence, this led him to
assume that energy dissipation remains nonzero even after taking the limit Re→∞, i.e.
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Figure 1.5: Leonardo di ser Piero da Vinci and his drawing of a turbulent flow generated
by water falling into a pool.

lim
Re→∞

Ṡ > 0. (1.31)

This hypothesis is at the heart of Kolmogorov’s theory and is termed anomalous
dissipation by analogy with conservation law anomalies which occur in quantum field
theory [Polyakov, 1993].

1.6 Energy cascade and energy dissipation

The turbulent regime of fluids in motion was first described by Leonardo da Vinci who
produced the well known drawing displayed on Fig. 1.5. The property of turbulent
motion highlighted by this drawing, and which can also be observed on Fig. 1.3, is the
existence of eddies of various sizes, down to very small scales compared to the larger ones.
This observation reflects what we said in Sec. 1.4 about turbulence occurring on a wide
range of space and time scales.

Richardson’s energy cascade

Lewis F. Richardson was an English mathematician and physicist who got interested in
turbulence. Richardson, as many others, had noticed that turbulent flows are composed
of a great number of eddies of different sizes. In order to illustrate this observation in
wind patterns, Richardson adapted a nursery rhyme called "The Siphonaptera":
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Figure 1.6: Lewis Fry Richardson

Big whorls have little whorls
That feed on their velocity ;

And little whorls have lesser whorls
And so on to viscosity.

In the Richardson’s picture of turbulence [Richardson, 1920], kinetic energy is injected
at a certain scale L by some forcing system. Therefore, the first eddies which are created
have typical size L. When energy is injected efficiently enough inside the flow, turbulence
sets in, and these eddies become unstable. They break down into smaller eddies, the
energy of the “mother” eddy being divided between the “daughter” eddies. Then, these
smaller eddies undergo the same process and create even smaller eddies, and so on. In
this way, a continuous set of eddies is created. The dynamics of each of these eddies is
governed by the INSE at a Reynolds number Re` which depends on their size ` and their
characteristic velocity u`: Re` = u``/ν. For large eddies, Re` is small and their dynamics
is governed by inertial forces. The range of scales for which this is true is thus called
the inertial range. Viscous forces on the other hand only act at small scales, where they
destroy the smallest eddies as they are created. This process, by which each mode is
excited by smaller modes and in turn excite larger ones, allows energy to be transferred
towards the scales where viscous forces can efficiently dissipate energy into heat. We
say that energy “cascades” from large to small scales, which appears from this discussion
as a non-linear effect. Fig. 1.7 shows a representation of the cascade as pictured by
Richardson. Of course, this is just a cartoon and, as described in Richardson’s poem,
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Energy injection

Viscous dissipation

Figure 1.7: Richardson’s cascade picture in physical space. Kinetic energy injection is
limited to the largest scales and unstable eddies break down creating a local cascade in
scale space. When small scales are reached, energy is dissipated into heat. This figure is
taken from [Nazarenko, 2014]. Courtesy of S. Nazarenko.

small eddies are contained into larger ones, are advected by them, and span a continuous
range of scales. The assumption which is made in the Richardson’s picture is the locality
of interactions in scale space. This means that when an eddy breaks down, the daughter
eddies have a size similar to the mother eddy: only modes close to each other can interact.
The arrows in Fig. 1.7 represent such local interactions, and transfers of energy between
well separated scales do not occur (there are not any arrows from e.g. the first line of
eddies to the third one).

Taylor’s mechanism for energy dissipation in turbulent flows

When [Taylor, 1935] discovered the zeroth law of turbulence, the Richardson’s picture
was known to him. Discussing the process in which energy is dissipated in turbulent flows
he wrote [Taylor and Green, 1937]

To explain this process is, perhaps, the fundamental problem in turbulent
motion.

Therefore, Taylor did not stop at simply reporting an experimental fact. He knew
that a physical mechanism was missing, and proposed his own [Taylor and Green, 1937;
Taylor, 1938]. In this work, Taylor realized the importance of vortex line stretching in the
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process of energy dissipation. Indeed, it can be shown that viscous dissipation is related
to vorticity and pressure by

Dν = νω2 − 2ν∆p. (1.32)

Therefore, if we take the space average of Eq. (1.32) on i.e. T3 we get

⟨Dν⟩ = ν ⟨ω2⟩ . (1.33)

Now the dynamics of large eddies is governed by Euler equations which can be written
in vorticity form as (see Eq. (1.9))

∂tωi + uj∂jωi = ωj∂jui. (1.34)

The l.h.s of Eq. (1.34) simply describes the convection of vorticity while the r.h.s
describes the production of vorticity by vortex line stretching. Indeed, as we discussed in
Sec. 1.4, turbulence is a diffusive process and any two fluid particles which are initially
infinitely close to each other will quickly separate as time evolves. Therefore, if these
two particles initially lie on a vortex line, and since vortex lines are material, they will
stretch. By incompressibility, this stretching will be accompanied by a reduction of the
cross section of any vortex tube in which they are contained, thus increasing ω2 through
Kelvin’s theorem. At some point, when ⟨ω2⟩ reaches some viscosity dependent value, the
effects of viscosity cannot be neglected anymore and kinetic energy dissipation occurs.
This process is the widely accepted mechanism from which the zeroth law is believed to
arise.

1.7 Kolmogorov’s 1941 phenomenology of turbulence

In 1941, the Russian mathematician Andreï N. Kolmogorov (see Fig. 1.8) published
four papers [Kolmogorov, 1941a;b;c;d] and paved the way towards a statistical theory of
turbulence. His theory, which aims at describing homogeneous, isotropic turbulence and
referred to as K41, was based on two universality assumptions.

Kolmogorov’s first universality assumption For finite, large enough values of the
Reynolds number, all the small scale statistical properties of turbulent flows are uniquely
and universally determined by the scale `, the mean energy dissipation rate ε and the
viscosity ν.

Kolmogorov’s second universality assumption For the subrange of these scales
which are much larger than the smallest scale in the flow, the statistical properties are
uniquely and universally determined by ` and ε.

The idea at the root of these assumptions is that as eddies break down in the process of
energy cascade, there is a point at which the details of the forcing generating turbulence
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Figure 1.8: Andreï Nikolaïevitch Kolmogorov.

at large scales should become irrelevant. In particular, the anisotropy induced by the
forcing disappears locally at small scales, so that all eddies lose their structures and
become similar. In [Kolmogorov, 1941b], Kolmogorov actually called these assumptions
“similarity assumptions”. A reformulation of K41 can be found in [Frisch, 1995], where
the emphasis is put on symmetries rather than universality. In this section, we follow
this reformulation.

As we said in Sec. 1.2 and 1.5, the INSE have several symmetry groups which are
broken at the onset of turbulence, and restored in a statistical sense at very high Re.
The first assumption of K41 is that

H1 In the limit of infinite Re, all the symmetries of the INSE, which are spontaneously
broken at the transition to turbulence, are restored statistically at small scales and away
from boundaries.

Small scales are defined as the scales much smaller than the energy injection scale
L introduced in Sec. 1.6. In particular, H1 states that local statistical properties of
turbulent flows are homogeneous and isotropic. However, for scale invariance in the limit
of infinite Re, there are infinitely many symmetry groups labelled by a scaling exponent
h ∈ R (Sec. 1.2). The next hypothesis is made in order to consider the simplest case, i.e.
only one value of h is allowed.

H2 In the limit of infinite Re, turbulent flows are globally self-similar at small scales,
i.e. have a unique exponent h.
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Figure 1.9: Lev Davidovitch Landau and his fabulous hairstyle.

The value of h will be specified later, and we will see that it is a direct consequence
of the dissipation anomaly.

H3 In the limit of infinite Re, the mean dimensionless rate of energy dissipation per
unit mass ε remains nonzero.

These hypotheses, added to the INSE, will allow us to study the physics of turbulence
in the inertial range. As we will see, they allow to recover some known results and also lead
to new predictions. They are the starting point for the description of turbulence in the
sense of Kolmogorov. Actually, as we said in the beginning of this section, Kolmogorov did
not exactly formulate his work in this manner. The emphasis was put on the assumed
universality of turbulent flows rather than on their symmetries. The problem is that
Lev D. Landau (see Fig. 1.9 for an epic hairstyle) argued against universality. The
interested reader can find a detailed discussion on this subject in [Frisch, 1995], where
it is explained how a reformulation of K41 (which Kolmogorov was aware of) based on
symmetries helps reconcile Kolmogorov’s work and Landau’s objections. Let us now
investigate what additional informations can be extracted from H1, H2 and H3.
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The Kolmogorov energy density spectrum

If we consider a turbulent flow in the stationary regime, the mean rate of energy injection
and dissipation ε are equal and constant on time average. The picture which we have
drawn up to now is that energy is injected at scale L, cascades locally through the
inertial range where there is not any direct energy injection or dissipation, and is finally
transformed into heat at small scales. Moreover, statistical stationarity means that there
is not any accumulation of energy at any `, on average. As a consequence, the mean
rate at which energy cascades does not depend on ` or time and is therefore equal to ε.
Furthermore, locality implies that ε can only depend on the characteristic quantities of
the flow at scale `. Let us, then, denote as u` the characteristic velocity of an eddy of
size `. Since ε does not vanish in the limit of infinite Re (H3), dimensional analysis tells
us that the only scaling we can write is

ε ∼ u
3
`

`
. (1.35)

Therefore, we get that

u2
` ∼ (ε`)2/3

, (1.36)

where u2
` represents the characteristic kinetic energy at scale `. Let us now define the

energy density spectrum over the whole three dimensional space E(3D) (k) as

E(3D) (k) = 1

2 ∫R3

dr

(2π)3 ui (x)ui (x + r) e−ikjrj . (1.37)

Mathematically, E(3D) (k) is the Fourier transform of the two-point autocorrelation
function of the velocity field. Physically, E(3D) (k) represents the amount of energy stored
at a wavenumber k ∼ `−1 per unit wavenumber. We then deduce from (1.36) and (1.37)
that E(3D) scales as5

E(3D) (k) ∼ ε2/3k−11/3. (1.38)

In the case of homogeneous, isotropic turbulence (recovered at small scales through
H1), the same amount of information is contained in E(1D) (k) = 4πk2E(3D) (k). It then
follows

E(1D) (k) ∼ ε2/3k−5/3. (1.39)

Therefore, the hypotheses of locality of the energy cascade and H3 lead to the con-
clusion that E(1D) scales as k−5/3. This result was derived independently by several
physicists during the 1940s [Kolmogorov, 1941a;b;c; Obukhov, 1941a;b; von Weizsäcker,
1948; Heisenberg, 1948; Onsager, 1949], and is known as the Kolmogorov energy spectrum

5In a formulation of K41 based on universality, one directly arrives at Eq. (1.38) from the second
assumption.
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for homogeneous, isotropic turbulence6. It can be shown that this scaling is equivalent
to S2 (r) ∼ r2/3 [Frisch, 1995].

Kolmogorov’s 4/5 law

An important result derived in [Kolmogorov, 1941a] is the 4/5 law of turbulence which
can be stated as

4/5 law In the limit of infinite Reynolds number, when homogeneity and isotropy
are recovered at small scales, the third order longitudinal structure function is
related to ε via

S
∣∣

3 (r) = −
4

5
εr. (1.40)

As stressed in [Frisch, 1995]

This is one of the most important results in fully developed turbulence
because it is both exact and nontrivial. It thus constitutes a kind of “boundary
condition” on theories of turbulence: such theories, to be acceptable, must
either satisfy the four-fifths law, or explicitly violate the assumptions made
in deriving it.

The derivation of the 4/5 law by Kolmogorov is based on a cornerstone in turbulence
known as the Kármán-Howarth equation. This equation, derived for the first time in
[von Kármán and Howarth, 1938] from the INSE in homogeneous isotropic turbulence,
provides a relation between the second and third order correlations of the velocity field
(a derivation can also be found in [Hinze, 1959]). A more systematic derivation of the
4/5 law than Kolmogorov’s can be found in [Frisch, 1995] starting from an anisotropic
generalization of the Kármán-Howarth equation, largely attributed to Monin [Monin,
1959; Monin and Yaglom, 1975].

Let us define

Π (r) def= −∂NLt
u (x) ⋅u (x + r)

2
, (1.41)

where the operator ∂NLt only acts on nonlinear terms of the INSE, i.e. inertial forces
and pressure. Π (r) is called the physical space energy flux, and can be linked to the
scale space energy transfers through its Fourier transform. Assuming that turbulence is
maintained in the statistically stationary regime by a large scale, statistically homoge-
neous forcing f , it can be shown that

6It is interesting to note that the equipartition of energy, which would be expressed as E(1D) (k) ∼ k2,
does not hold in K41. However, since turbulent flows are out-of-equilibrium systems, this is not surprising.
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Kármán-Howarth-Monin (KHM) relation In homogeneous (but not necessarily
isotropic) turbulence

Π (r) = −1

4
∇ ⋅ ∣δu∣2δu (r), (1.42)

= −∂t
u (x) ⋅u (x + r)

2
+u (x) ⋅ f (x + r) + f (x − r)

2
+ ν∆u (x) ⋅u (x + r). (1.43)

Using the KHM relation, and after a few pages of calculations, Kolmogorov’s 4/5 law
is derived. The successive assumptions made in these computations are

• First of all, the stationary regime exists and the limit t → ∞ has been taken. In
this limit, the mean energy per unit mass remains finite.

• Then, Re→∞ and homogeneity and isotropy are assumed (H1).

• If there is an external forcing which aims at maintaining turbulence in a stationary
regime, the energy injection is confined to large scales as discussed in Sec. 1.6.

• Hypothesis H3 is used.

• S
∣∣

3 (r) is assumed to vanish as r → 0.

In the end, the anomalous dissipation can be written as

−4

5
ε = lim

r→0
lim
Re→∞

lim
t→∞

S
∣∣

3 (r)
r

. (1.44)

It is interesting to note that the approach used in [Frisch, 1995] to arrive at this result
is reminiscent of the point-splitting regularization method used by [Schwinger, 1951] in
the first derivation of the axial anomaly in quantum electrodynamics. Indeed, in quantum
field theory, products of field operators at different points in spacetime are usually more
regular than local products at the same point. The idea of point-splitting regularization
is therefore to replace local products by separated products and take the limit of zero
separation at the end. This is exactly what we have done here. The analogy was noted
by Eyink in a private communication with Frisch (see footnote 5 on page 77 in [Frisch,
1995]).

Finally, dropping isotropy and leaving all other assumptions unchanged, a generaliza-
tion of the 4/5 law can still be derived

ε = −1

4
∇ ⋅ ∣δu∣2δu (r)∣

r=0
. (1.45)
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The value of h

The transformation (x, t,u,→ λx, λ1−ht, λhu) leaves the dynamics of turbulent flows in-
variant in the limit Re → ∞. However, K41 allows for only one particular value of h,
which can be determined by rescaling the 4/5 law. We obtain

ε = − 5

4r
S

∣∣

3 λ
3h−1. (1.46)

Now since ε remains nonzero in the limit Re→∞, we can conclude that

h = 1

3
. (1.47)

As a consequence, the value of h is a direct consequence of H3. In addition, from this
result and hypothesis H2, we also obtain the additional prediction that

S
∣∣

p (r) ∼ (εr)p/3 . (1.48)

Kolmogorov microscales and degrees of freedom

All the results we have derived up to now have been obtained starting from an initial
flow with Re < ∞, then the limit t → ∞ is taken first, then Re → ∞, and finally ` → 0.
Taking these limits allow us to always work in the inertial range where energy is neither
directly injected nor dissipated, but only cascades from large to small scales. However, if
we do not let the viscosity vanish, there appears a range of scales called the dissipation
range where entropy is created by kinetic energy dissipation due to viscous forces. This
dissipation range contains the scales close to the Kolmogorov length scale which is defined
as

η = (ν
3

ε
)

1/4

. (1.49)

η is a quantity which is once again built assuming locality in scale space7. Nothing
much is believed to happen at smaller scales so that η represents the smallest length scale
in a flow. In addition to the Kolmogorov length scale, a time scale τη can be associated
to η

τη =
√
ν

ε
, (1.50)

which is called the eddy turnover time. Therefore, in order to fully resolve a flow in
space and time, velocity must be probed in volumes of size at most η3 over the whole
volume of the flow, every τη. A nice reasoning taken from [Saint-Michel, 2013] (and which
resembles the introduction of [Diu et al., 1997]) is the following: if we compare the ratio
of the energy injection scale L to η we find

7Or assuming universality.
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L

η
∼ Re3/4. (1.51)

In the case of the von Kármán flow studied in Saclay, and given the characteristics of
the experimental set-up (see Chap. 2), we get that for Re = 106, η ∼ 1 µm and τη ∼ 10 µs.
Therefore, having a full knowledge of such a flow requires to know 1015 numbers every
10 µs. This is a huge amount of data, even for modern storage systems. For instance, an
external hard drive needs approximately 20 octets to store the components of a 3D vector.
This means that recording the flow for one minute in the whole tank requires around 1010

modern external hard drives. This huge number tells us that it is impossible to monitor
all the scales of high Reynolds number flows. It also explains why DNS are limited to
much smaller Re than what is achieved in experiments. Indeed, the number of grid points
N needed in order to be able to follow the dynamics of the smallest structures grows as
the cube of Eq. (1.51), i.e. N ∼ Re9/4. This number typically represents the number
of degrees of freedom of a flow. In the example of the von Kármán flow at Re = 106,
N ≈ 1013. This is an additional justification for the statistical approach to turbulence we
have adopted so far. We give up keeping track of the variations of physical quantities
such as the energy dissipation rate, the structure functions, etc..., and focus our attention
on statistical averages.

At this point, it is interesting to make a small remark. As we discussed in Sec. 1.4,
there still does not exist any general framework in which out-of-equilibrium systems such
as turbulent flows can be studied in a systematic fashion. However, surprisingly, some
features of turbulent flows can be understood from equilibrium statistical physics [Chorin,
1994; Thalabard et al., 2015]. In this framework, similitudes have been found between K41
and mean field theory (MFT) [Nelkin, 1974]. The aim of MFT is to gain some insight into
the physics of large systems at equilibrium, by approximating the interactions between
each components by an average or effective interaction. In field theory, the Hamiltonian
associated to the system under consideration can be expanded in the magnitude of the
fluctuations around the MFT. MFT then represents the zeroth order of this expansion,
and it trivially follows that fluctuations are left aside. In K41, the only relevant dynamical
parameter to characterize the properties of turbulent flows is the mean rate of energy
dissipation ε. K41 therefore appears as a MFT. Of course, MFT is an approximation
valid only when fluctuations can be neglected compared to the value of ε. Therefore,
when these fluctuations are strong, we should expect experimental deviations from K41.
Interestingly enough, Landau’s argument against Kolmogorov’s universality assumption
at the root of K41 was based on the role played by these fluctuations. As a matter of
fact, discrepancies from K41 do exist in nature, and their manifestations constitute what
is called intermittency [Frisch, 1995].

1.8 Conclusion and outlooks

The K41 theory has had many successes for the last seventy five years, and most of
the predictions we have deduced from H1, H2 and H3 in Sec. 1.7 have had many ex-
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perimental confirmations. On the other hand, some experimental results also disprove
K41. For instance, the existence of intermittency, i.e. the fact that velocity measure-
ments show periods/areas of strong turbulent intensity separated by periods/areas of
weaker fluctuations indicates that, if turbulence is self-similar, this symmetry cannot be
global as assumed in H2. Moreover, K41 considers homogeneous isotropic turbulence,
and there is a priori not any reason why its predictions should apply beyond this case.
Building a general consistent framework in which turbulent flows could be studied in a
systematic fashion therefore requires to go back to the assumptions underlying our un-
derstanding of turbulent flows. Kolmogorov himself made an attempt in this direction
by modifying K41 in order to take Landau’s comments into considerations [Kolmogorov,
1962]. This thesis attempts at making another step, however small, in the same direction.

In this thesis, we investigate the possibility for turbulent flows not to remain smooth
as assumed in Eq. (1.5). This study is rooted in a conjecture by Onsager which provides
an alternative explanation to Taylor’s in order to account for the existence a dissipation
anomaly in turbulence. This conjecture can be found in the last sentences of [Onsager,
1949]:

It is of some interest to note that in principle, turbulent dissipation as
described could take place just as readily without the final assistance by vis-
cosity. In the absence of viscosity, the standard proof of the conservation of
energy does not apply, because the velocity field does not remain differen-
tiable! In fact it is possible to show that the velocity field in such “ideal”
turbulence cannot obey any Lipschitz condition of the form

∣u (r′ + r) −u (r′) ∣ < (const.) rn, (1.52)

for any order n greater than 1/3 ; otherwise the energy is conserved. Of
course, under the circumstances, the ordinary formulation of the laws of mo-
tion in terms of differential equations becomes inadequate and must be re-
placed by a more general description ; [...].

A lot of work has been performed trying to prove Onsager’s conjecture. Following
Onsager’s idea, Jean Duchon and Raoul Robert have been able to derive an analytical
expression for Onsager’s dissipation anomaly, along with the corresponding local energy
balance [Duchon and Robert, 2000]. In this thesis, we are going to test the predictions of
Onsager’s theory from experimental data, mostly based on Duchon and Robert’s results.
In Chap. 2, we will introduce the experimental set-up we used for our study, known as
von Kármán (VK) set-up, and review the basic physics of VK flows in the light of the
notions introduced in this chapter. In Chap. 3, we will come back on Onsager’s assertion,
explain its origin by considering a sequence of coarse-grained INSE, connect these ideas
to finite time singularities, and introduce the “more general description” mentioned by
Onsager. Moreover, as the results obtained in [Duchon and Robert, 2000] are central
to our work, we will explain how they have been derived and will comment them in
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details. Chap. 4 presents new data analyses of Onsager’s dissipation anomaly based
on Duchon and Robert’s results. These analyses are done using measurements specially
performed for our study by Ewe-Wei Saw, who implemented a zoom procedure on well
chosen areas of fully developed turbulent VK flows, allowing to resolve the Kolmogorov
scale. To our knowledge, these analyses are the first attempt at studying Onsager’s
theory from experimental data obtained in the inertial range as well as in the dissipative
range. In Chap. 5, we make use of the results obtained in Chap. 4 and introduce a new
criterion in order to track potential finite time singularities through scales in turbulent
incompressible flows, and we apply it to VK flows at Kolmogorov scale. We show that
we detect four main types of potential singularities, therefore providing strong evidences
that the topology of turbulent incompressible flows at sub-Kolmogorov scales is non-
trivial. In Chap. 6, we discuss the possible consequences of our experimental results for
computational fluid dynamics. In particular, we provide a promising alternative to large-
eddy-simulation models which is more accurate in estimating ε in the case of a VK flow,
and does not introduce any eddy viscosity. Finally, Chap. 7 presents the conclusions of
our studies and the perspectives for future works.



Chapter 2

Illustration on a Concrete Example:
The von Kármán Experiment

Scientists study the world as it is,
engineers create the world that never
has been.

Theodore von Kármán
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Figure 2.1: Theodore von Kármán.

In Chap. 1, we have reviewed the basic notions for the study of fluids in motion.
We have adopted an approach which emphasizes the role of symmetries, and we now
propose to illustrate these concepts on a concrete example. In this chapter, we enter
the framework of von Kármán (VK) flows generated in the so-called “VK2” experimental
set-up located in Saclay. We are going to review the basic properties of such flows in the
light of Chap. 1, and we will see that this framework offers an interesting gateway to the
study of inhomogeneous, anisotropic turbulence.

2.1 Introduction

VK flows are a particular class of hydrodynamic flows which are generated inside a cylin-
drical tank by two impellers located at both ends of the tank. This class of flows is
named after Theodore von Kármán (see Fig. 2.1), which first investigated the problem
of a viscous fluid set into motion by an infinite rotating flat disk (see [Ravelet, 2005] for
a concise historical review). The physics of VK flows is very rich and has both prac-
tical and fundamental interests. In Saclay, their study began with the “von Kármán
sodium” (VKS) project which was built as a model for the study of turbulent geodynamo
[Bourgoin et al., 2000; Marié, 2003; Ravelet et al., 2005; Berhanu et al., 2007; Monchaux
et al., 2007]. However, VK flows are also a framework of choice for the study of non-
homogeneous, non-isotropic hydrodynamic turbulence [Moisy et al., 1999; 2001; Cortet
et al., 2009; Herbert et al., 2012]. In the recent years, the emphasis has been put onto the
investigation of the statistical properties of time-averaged large scale structures, and has
revealed interesting phenomena such as multistability [Ravelet et al., 2004; Ravelet, 2005;
de La Torre and Burguete, 2007; Cortet et al., 2010; 2011], spontaneous symmetry break-
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ings [Thalabard, 2013; Saint-Michel et al., 2014a; Thalabard et al., 2015] and hysteresis
cycles [Ravelet, 2005; Monchaux, 2007]. Therefore, VK flows appear as an interesting
paradigm for the study of out-of-equilibrium statistical mechanics [Saint-Michel, 2013],
which surprisingly also exhibit features of equilibrium statistical mechanics. Finally, VK
flows provide interesting insights in quantum turbulence. The set-up located in Grenoble
as part of the SHREK project benefits from a high power cooling system which allows
for the study of both classical and quantum turbulence using normal liquid or superfluid
helium [Rousset et al., 2014; Saint-Michel et al., 2014b].

2.2 The VK set-up at SPEC

Over the years, the von Kármán set-up located in the basement of SPEC has undergone
many changes. The first version, built as part of the VKS project, has been studied during
Louis Marié’s and Florent Ravelet’s Ph.D theses [Marié, 2003; Ravelet, 2005], under the
supervision of François Daviaud. Here, we describe the VK2 set-up1 built during Romain
Monchaux’s Ph.D thesis [Monchaux, 2007] with the help of Vincent Padilla, and which
has been further studied in [Saint-Michel, 2013; Thalabard, 2013].

The tanks

The VK2 set-up, displayed on Fig. 2.2, is constituted of a vertical Plexiglas cylinder of
axis (Oz). Its radius is R = 10 cm, its height is 47 cm, its thickness is 1 cm, and it can
be filled with glycerol, water or a mixing of both, without (theoretically) any leakage.
This cylindrical tank is placed inside another cubic Plexiglas tank of square cross section
26 × 26 cm2, and thickness 1 cm, filled with the same fluid as the cylindrical tank. The
addition of this cubic tank aims at decreasing chromatic aberrations which occur at the
interface air-plexiglas when using optical measurement systems.

Impellers geometry

The fluid contained into the cylindrical tank is mechanically stirred by two coaxial im-
pellers, driven by two independent motors. The impellers are H = 18 cm apart, which
gives the experiment an aspect ratio of H/R = 1.8. There exist many different available
geometries of impellers, some of them being displayed in Fig. 2.3. Most of the studies
performed in this thesis focus on two particular impellers called TM60 and TM87 (see
Fig. 2.3) in the counter rotating regime. Their characteristics are summarized in Tab.
2.1. These two types of impellers are essentially the same: they are flat disks, fitted
with curved blades, the curvature of which being characterized by the angle α defined
on Fig. 2.3. For impellers with α ≠ 0, there are two non-equivalent ways of forcing the
flow, labelled (+) and (-). The rotation frequencies f1 and f2 of both impellers can be

1Better known among Bérengère Dubrulle’s group as “Denis’ set-up”.
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Figure 2.2: The VK2 set-up.

TM87

TM60
Figure 2.3: Picture of different types of impellers, definition of the angle of curvature α
and convention used for the sense of rotation.
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radius blade α blade thickness
impellers material (cm) number (○) (cm)

TM60 stainless steel 9.25 16 72 2
TM87 stainless steel 9.25 8 72 2

Table 2.1: Characteristics of the impellers used in this thesis.

imposed in a range from 1Hz up to typically 10Hz, speed servo loop control ensuring a
precision of 2%� for the mean frequency f = (f1 + f2) /2.

Relevant parameters

Describing the hydrodynamical properties of a VK flow requires to specify some relevant
parameters.

Forcing conditions

The VK set-up located at SPEC allows to set the impellers in corotation or counter
rotation and to either impose their rotation frequency or the torque applied by the motors.
Throughout this thesis, we will only study flows generated by counter rotating impellers,
the frequency of which are imposed.

There exist different types of forcing conditions for generating flows inside a VK set-
up. The two main categories are viscous and inertial forcing. Viscous forcing is achieved
by using flat disks (i.e. without any blades), in which case the fluid is set into motion
through momentum diffusion. Inertial forcing, on the other hand, is achieved by fitting
blades on these disks, which allow for the generation of a flow through advection2. As
we said, our study is going to focus on flows generated by TM60 and TM87 impellers.
We are thus going to consider inertial forcing only, and the reader is referred to [Ravelet,
2005] for more informations on viscous forcing.

As we noted, the fact that TM60 and TM87 are fitted with curved blades implies that
there exist two non-equivalent ways of inertially forcing a VK flow, which are labelled
(+) and (-) on Fig. 2.3. As we shall see later, a forcing in the (-) sense is more efficient
at creating turbulent fluctuations for the same rotation frequency. Finally, along with
the “sign” of the forcing, the curvature of the blades also changes the hydrodynamical
properties of the flows and the reader is referred to [Ravelet, 2005] for more discussions
on the subject.

Control parameters

The conventional choice made in Saclay for making quantities dimensionless are the radius
R of the cylindrical tank for unit length, Ω−1 where Ω = 2πf for unit time, and ρR3 where

2In this case, the VK set-up is also called the “french washing machine”.
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ρ is the mass density of the working fluid for unit mass. In what follows, all the quantities
are made dimensionless in this way.

Two control parameters can be defined in our experiment. The first one is the Reynolds
number introduced in Sec. 1.3, and the choices of unit length and time naturally lead to
a Reynolds number built from R, Ω, and the viscosity ν of the working fluid

Re = R
2Ω

ν
. (2.1)

One could actually argue that building a Reynolds number based on the radius of
the impellers would have been a better choice. In our case, the difference between the
two choices is not important since the radius of the impellers is Rimp = 0.925R. Since
the radius of the cylinder is fixed, the Reynolds number can only be varied by changing
either Ω or ν. As we said, f1 and f2 can take values from 1Hz up to 10Hz and viscosity
can be changed by using different mixings of water and glycerol. Varying these two
parameters, it is possible to span range of Reynolds numbers from 102 up to more than
106. Higher values of Re are reached in the SHREK experiment in Grenoble [Saint-Michel
et al., 2014b] where the radius of the tank is 39 cm for the same aspect ratio of 1.8, and
superfluid helium is used.

The second control parameter, defined as

θ = f1 − f2

f1 + f2

, (2.2)

measures the relative effects of global rotation over a turbulent shear frequency. In-
deed, it was shown in [Marié, 2003] that a VK set-up at θ ≠ 0 is equivalent within
boundary conditions to the same VK set-up at θ′ = 0 where f ′1 = f ′2 = f , the whole set-up
globally rotating at (f1 − f2) /2. Our set-up allows to fix the value of θ with an absolute
precision of 10−3, and a stability along time better than 0.5 × 10−3. In the following, we
are mainly going to study flows generated with symmetric forcing conditions (θ = 0).

Measurement systems

The experimental set-up allows for both global and local flow diagnostics.

Torque measurements

Torque (global) measurements at each impeller are performed using SCAIME technology
and provide values over the kHz range for Kp1 and Kp2, being respectively the dimen-
sionless torque applied to the bottom and the top shafts (in units of ρR5Ω2). Following
the procedure described in [Marié, 2003], they are calibrated using measurements at dif-
ferent mean frequencies, so as to remove spurious contributions from genuine offsets or
mechanical frictions. For more details see e.g. [Marié, 2003; Saint-Michel, 2013].

In the statistically stationary regime, energy input must balance energy dissipation
(heat production) on average. It has been checked that this is true within less than 10%
in the SHREK experiment using calorimetric measurements and liquid helium [Rousset
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Figure 2.4: Stereoscopic particle image velocimetry set-up for the VK2 experiment.

et al., 2014]. Therefore, torque measurements also provide accurate estimates for the
mean global dissipated power D expressed as

D =Kp1 (1 + θ) +Kp2 (1 − θ) , (2.3)

for θ ∈ [−1,1]. The mean dimensionless energy dissipation rate per unit mass then
takes the form

ε =DR
3

V . (2.4)

Velocimetry measurements

Local velocimetry measurements are performed in the stationary regime using a Stereo-
scopic Particle Image Velocimetry (SPIV) system provided by DANTEC Dynamics (see
e.g. [Riethmuller, 1994; Brossard et al., 2009] for reviews on PIV). A sketch of the PIV
set-up along with typical instantaneous and time-averaged frames of the velocity field
are displayed on Fig. 2.4 and Fig. 2.5. The typical size of the trackers is a few tens of
micrometers and their density is 1.4. The SPIV system is constituted of a laser which
produces a 1.5 mm thick sheet, and two digital cameras which take successive pictures
of the flow at a 15 Hz frequency. The resolution of our camera frame is 1600 × 1200 pix-
els, and the reconstruction of the velocity field is done using peak correlation performed
over overlapping windows of size 32 × 32 pixels. The investigation plane covers a whole
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Figure 2.5: Typical instantaneous and mean velocity frames obtained from stereoscopic
particle image velocimetry in the meridional plane of measurements at Re ≈ 3 × 105, and
generated with TM87(+). The arrows represent the in-plane component of the velocity
while the colors code the orthogonal component.

meridional plane contained inside the volume of interest between the two impellers. The
covered area is approximately 20×14 cm2 and, at the end, we get the three components of
the velocity field on a grid of approximate size 59×64 points as time series of statistically
independent samples. The maximum spatial resolution we reach is therefore of the order
of 3 mm, which is about 10 to 100 times larger than the dissipative scale, depending on
Re. The resulting velocity fields are therefore windowed so as to fit to the boundaries of
the flow and remove spurious velocities measured in the impellers and at the boundaries.
Two types of filtering are further applied to clean the data: first, a global filter to get
rid of all velocities larger than 3×RΩ ; then, a local filter (based on velocities of nearest
neighbors) to remove isolated spurious vectors. Typically, 1% of the data are changed
by this processing. For more details about the experimental setup or the measurement
techniques, see e.g. [Saint-Michel, 2013].

Zoom procedure

Since the resolution of our measurements is too low to resolve the Kolmogorov scale,
Ewe-Wei implemented a zoom procedure in order to get a better resolution. SPIV mea-
surements are now performed by adapting lenses on the objectives of our two cameras.
The lenses are Tokina AT-X M100 F2.8 PRO D and their manufacturer specifications
are given in Tab. 2.2.

For the PIV algorithm to be able to reconstruct the velocity field, the number of
tracers inside the flow had to be increased so as to keep their number per reconstruction
cells approximately the same. Two main problems are encountered in the quest for very
high resolution PIV data.
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Focal length 100 mm
Aperture max. F/2.8
Aperture min. F/32
Optical system 9 lenses in 8 groups
Diaphragm 9 blades
Close Focus 300 mm
Filter thread 55 mm
Dimensions 73 × 95.1 mm2

Weight 540 g
Auto-Focus yes

Table 2.2: Manufacturer specifications of the lens.

plane of focus = plane
of measurements

image plane

lens plane

α

β

Scheimpflug
condition

Figure 2.6: The Scheimpflug condition.
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First, as is briefly mentioned on Fig. 2.4, the Scheimpflug condition must be satisfied
by each cameras in order to make their planes of focus coincide with the Laser sheet. Let
us call α the angle between the image and lens planes, and β the angle between the plane
of focus and the image plane (see Fig. 2.6 for a sketch). It is known that

tanα = m

m + 1
tanβ, (2.5)

where m is the magnification of the optical system. In our experimental set-up, both
the plane of measurements and the image plane are fixed so that β should be kept constant
for the plane of focus to coincide with the plane of measurements. What Eq. (2.5) tells
us, is that keeping β constant, α increases with m. This obviously limits how much one
can zoom in the flow with such a technique, and these considerations had to be taken
into account by Ewe-Wei.

The second problem is that in order to accurately reconstruct the velocity field from
snapshots of the flow, the PIV algorithm needs a minimum number of tracker particles per
reconstruction cell. Therefore, as one magnifies the flow, more trackers must be added.
Clearly, this also limits the maximum magnification of the flow since adding more particles
makes the flow opaque, thus preventing the laser sheet to pass through. However, after
some discussions with Ewe-Wei, the main limitation came from the Scheimpflug condition
described above, and this second problem was not really one.

Once all of these considerations have been taken into account, Ewe-Wei was able
to perform SPIV measurements on areas of approximate size 40 × 30 mm2. Typical
instantaneous and mean flow are provided on Fig. 2.7 at the center and close to the
wall, in the middle shear layer (see Chap. 4 as to why these areas were chosen). Seeding
the flow with enough tracers, the velocity field could be reconstructed, now using a post
processing system provided by LaVision, with overlapping windows of size 32 × 32 or
16 × 16 pixels so as to get different resolutions. The minimum gridstep we can reach
using 16 × 16 pixels windows is of the order of ∆g = 0.25 mm. As a consequence we
gain an order of magnitude in the flow resolution. The total acquisition time was up to
two hours, i.e. two order of magnitudes longer than the characteristic time scale of the
slowest patterns of the turbulent flow. Fast scales are statistically sampled. In the end,
around 30000 statistically independent frames of approximate size 80 × 80 or 160 × 160
(depending on the size of the reconstruction cells) are processed which, as we will see in
Chap. 4, provide enough data for well converged third order statistics.

All the informations about the flows and corresponding high resolution data which
we are going to study in further chapters are provided in Tab. 2.3 and Tab. 2.4.
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Figure 2.7: Typical instantaneous and mean high resolution velocity fields. These data
have been obtained from stereoscopic particle image velocimetry at the center of the flow
and near the wall, in the meridional plane of measurements at Re ≈ 3×105, and generated
by TM87(-). The arrows represent the in-plane component of the velocity while the colors
code the orthogonal component.
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2.3 Symmetries of the set-up

The VK experimental set-up is axisymmetric, i.e. it is invariant under any rotation
around the axis (Oz)3. This means that SO(2,R) (special orthogonal group in dimension
2) is a symmetry group of the system. In the special case of the exact counter rotating
regime, the system is, in addition, invariant under a rotation of π around any horizontal
axis going through the center of the cylinder. This symmetry is calledRπ and is illustrated
on Fig. 2.2. As shown in [Nore et al., 2003], this additional invariance enlarges the
group of symmetry of the VK set-up to O(2,R) (orthogonal group in dimension 2).
Indeed, let us call Rz(ψ) a rotation of ψ around (Oz) and Rπ a rotation of π around any
horizontal axis going through the center of the set-up like e.g. (Ox). For any vector field
ui (r, θ, z) , i = 1,2,3, sharing the same symmetry properties as the VK set-up, we have

Rz(ψ)
⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
(r, θ, z) =

⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
(r, θ + ψ, z) , (2.6)

Rπ
⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
(r, θ, z) =

⎛
⎜
⎝

u1

−u2

−u3

⎞
⎟
⎠
(r,−θ,−z) . (2.7)

The key remark is that Rz and Rπ do not commute, thereby generating a group
isomorphic O(2,R).

For ∣θ∣ ≪ 1, the O(2,R) symmetry is slightly broken. Since, in this case, hydrodynamic
quantities vary linearly with θ, this parameter can then be taken as a measure of the
distance to the exact O(2,R) symmetry. Perturbative methods have been applied in
[Chossat, 1993; Porter and Knobloch, 2005].

2.4 Flow topology, multistability and spontaneous sym-
metry breaking

Naively, it would be expected that VK flows share the same degree of symmetry as
the set-up. SPIV measurements allow us to study the topology of VK flows at various
Re, and to check whether this is true or not. Fig. 2.8(a) displays an instantaneous
velocity frame obtained in the meridional plane of measurement at Re = 150 and θ = 0
for TM60(+). At such value of Re, the flow is laminar, steady, and time fluctuations
are almost inexistent. We see that the velocity field is indeed Rπ symmetric, and is
constituted of two recirculation cells separated by an azimuthal shear layer at z = 0.
These cells are created through Ekman pumping in the neighbourhood of each impellers,

3Actually, for impellers mounted with blades, the set-up is only invariant under a discrete number
of these rotations. In the discussion that follows, one must keep in mind that axisymmetry is actually
slightly broken.
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Figure 2.8: Instantaneous frames of the velocity field obtained from stereoscopic particle
image velocimetry in the meridional plane of measurements for (a) a laminar flow at
Re ≈ 150 generated with TM60(+) and (b) a fully turbulent flow at Re ≈ 3×105 generated
with TM87(+), both at θ = 0. The arrows represent the in-plane component of the velocity
while the colors code the orthogonal component. It can be seen that the laminar flow
displays the same degree of symmetry as the VK set-up, while the turbulent flow does
not exhibit any obvious symmetry.
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and are superimposed to an azimuthal flow generated by the rotation of the nearest
impeller. For θ ≠ 0, one impeller rotates faster than the other and is going to impose its
regime in a wider volume. As a consequence, as ∣θ∣ approaches unity, the median shear
layer is progressively sent towards the slower impeller, going from a two-cells to a one-cell
topology.

We have seen in Chap. 1 that as Re is increased, the various symmetries of the flow
spontaneously break down. This also applies to VK flows and Fig. 2.8(b) displays an
instantaneous velocity frame of a fully turbulent VK flow at Re = 3 × 105 and θ = 0
for TM87(+). We see that turbulent fluctuations prevent the flow from conserving its
axisymmetry as well as its Rπ symmetry. This illustrates spontaneous symmetry break-
ing: even if the system (or equivalently the equations of motion) is O(2,R) symmetric,
the flow (or equivalently the solution to the equations of motion) has a lower degree of
symmetry. However, as mentioned in Chap. 1, these broken symmetries are recovered
in a statistical sense, meaning that even though instantaneous quantities do not share
the symmetries of the system, statistical quantities such as the mean flow do, assuming
ergodicity. This is illustrated on Fig. 2.9(a) which displays the mean flow for the same
set of data as in Fig. 2.8(b), and which exhibits the same topology as the instantaneous
laminar case showed on Fig. 2.8(a).

Multistability and spontaneous statistical symmetry breaking

In the case of TM60(-)/TM87(-), and for Re ≳ 104, the ground state of VK flows is degen-
erate. This degeneracy can be observed when considering time-averages, as illustrated on
Fig. 2.9. The mean flows displayed on Fig. 2.9 have been obtained at Re = 3 × 105 and
θ = 0. The one displayed on Fig. 2.9(b) is, from our discussion above, the expected canon-
ical mean flow. It is Rπ symmetric and will therefore be denoted (s). However, quite
surprisingly, a bifurcation to one of the two equally stable states displayed on Fig. 2.9(c)
and (d) can be observed. These flows are not Rπ symmetric, but rather have the one-cell
topology which would be expected when θ ≈ ±1. These bifurcated states are denoted (b1)
when the bottom impeller (labelled 1 on Fig. 2.2) imposes its regime and (b2) when the
top impeller (labelled 2 on Fig. 2.2) does. The existence of such multistability in VK
flows was first reported in [Ravelet et al., 2004], and studied in more details in [Ravelet,
2005]. This study revealed that the symmetric state (s) is actually only metastable and
that at any time t, the probability of remaining in this state until the bifurcation time
tbif > t decreases exponentially: P (t < tbif) ∝ exp (−t/τ). The parameter τ is a function
of θ, and diverges to infinity as θ → 0. Of course, in real experiments, θ is never exactly
vanishing, and there always remain some nonzero fluctuations which, in the long term,
make the flow end up in one of the two bifurcated states. When this occurs, the flow
spontaneously loses its statistical Rπ symmetry which held for time-averaged quantities.
This further break-down of the Rπ symmetry is thus called statistical symmetry breaking.
However, due to the random fluctuations of θ, the choice of final state appears to be
equiprobable between (b1) and (b2), so that the Rπ symmetry, broken for time-averaged
quantities, still holds when considering ensemble averages. As a consequence, since tran-
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Figure 2.9: The four possible large-scale topologies for mean VK flows generated by
(a) TM87(+), (b) TM87(-) symmetric state (s), (b) TM87(-) bifurcated state (b1), (d)
TM87(-) bifurcated state (b2). These maps illustrate the statistical spontaneous symme-
try breaking which occurs for Re ≳ 104 in VK flows.
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sitions between the two bifurcated states, or from one bifurcated state to (s) do not
occur, this statistical symmetry breaking makes the system lose its ergodicity.

Multistability and spontaneous dynamical symmetry breaking

Spontaneous statistical symmetry breaking does not occur for TM60(+)/TM87(+) be-
cause the forcing do not produce large enough fluctuations to induce a bifurcation.
Nonetheless, in this case, VK flows still exhibit multistability. In [Cortet et al., 2010],
the authors consider time series obtained from SPIV measurements of the dimensionless
space-averaged vertical component of the angular momentum Lz (t). It was noted that for
Re ≈ 4×104 and θ = 0, Lz (t) does not fluctuate in a random fashion around 0, but instead
exhibits a tendency to lock on plateaus for which Lz = ±L∗z . This is another example of
multistability in VK flows: at a critical value of Re, there appear metastable, Rπ asym-
metric states which the system is now able to explore dynamically. This dynamics occurs
over two well separated time scales. The smaller one corresponds to fluctuations due to
the usual small-scale turbulence, while the larger one corresponds to periods during which
the flow occupies one of the two metastable states. This spontaneous “momentization”
dynamically breaks down the time-averaged Rπ symmetry for short periods of time, and
is therefore referred to as dynamical symmetry breaking. However, since the flow shares
an equal amount of time between the two states, the Rπ symmetry (and therefore er-
godicity) still holds for very large times. For further discussions, see also [Cortet et al.,
2011].

Analogy with ferromagnetism

In [Cortet et al., 2010; 2011], the authors introduced parameters typically used for the
study of phase transitions in lattice models. They define the analogs of an order parameter
I = Lz, a susceptibility χ = ∂I/∂θ, and a temperature T ∼ 1/ logRe. They exhibited the
singular behaviour of χ (θ = 0) for Re ≈ 4×104, and even provided the value of the critical
exponent γ = 1 in accordance with [Castaing, 1996]. These features therefore suggest
that the mechanisms responsible for statistical and dynamical spontaneous symmetry
breakings in VK flows are analogous to the mechanisms leading to phase transitions in
appropriate corresponding lattice models. In order to understand these mechanisms, a
toy model of an out-of-equilibrium system which can be mapped onto a real VK flow was
first designed in [Saint-Michel et al., 2014a]. This model exhibits spontaneous symmetry
breaking through a zero-mode mechanism, and manages to reproduce the experimental
results reported by [Cortet et al., 2010; 2011] in a quantitative way, by specifying only
three parameters. In a following work, strong evidences were provided that coherent
structures in VK flows can be described as equilibrium states of an Ising model [Thalabard
et al., 2015]. In this framework, one can define hydrodynamic analogs of the notions of
spin, magnetization, temperature, external field and susceptibility. The bifurcation from
the Rπ symmetric state (s) to (b1) or (b2) then appears as a transition between the
analogs of a paramagnetic and a ferromagnetic phase. The deep analogy which seems
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to exist between the physics of VK flows at large scales and ferromagnetism is quite
remarkable as it allows to understand some properties of an out-of-equilibrium system
in the framework of equilibrium statistical physics. For more discussions see [Thalabard,
2013; Saint-Michel, 2013].

2.5 Axisymmetric turbulence: a journey in 2.5D

In Chap. 1, we insisted on the fact that there does not exist any complete statistical theory
of turbulence. The most successful theory we have is due to Kolmogorov which, however,
does not account for experimental results such as intermittency [Frisch, 1995]. The 3D
case being too complicated, the intuitive approach would be to first build a statistical
theory for 2D turbulence, and then investigate how such a theory can be generalized to
the 3D case.

In 1949, Onsager built a hamiltonian equilibrium statistical mechanics of 2D inviscid
turbulence [Onsager, 1949]. In this work, Onsager models the vorticity field by discrete
point vortices, and notices that whenever there exist negative “temperatures”, strong vor-
tices will cluster and create large coherent structures, as is experimentally observed in 2D
turbulence. However, Onsager was aware [Onsager, 1949] that the discrete nature of his
description makes it incomplete and that a continuous description was needed. Building
such a theory was achieved in [Miller, 1990; Robert, 1990; Sommeria and Robert, 1991]
with a certain success [Sommeria et al., 1991; Chavanis and Sommeria, 1996; Chava-
nis et al., 1996; Chavanis and Sommeria, 1997; 1998a;b; Bouchet and Sommeria, 2002;
Chavanis, 2004].

Therefore, the question is whether it is possible to extend these considerations to 3D
turbulent flows, but the generalization is actually difficult for various reasons. First of
all, the physics of 2D turbulent flows (see e.g. [Tabeling, 2002] for a review) is quite
different from the 3D case because in 2D, the enstrophy, which is defined as Ω = ω2/2, is
conserved. As a consequence, the vortex stretching mechanism which plays a central role
in 3D turbulence (see Chap. 1) does not exist in 2D where vorticity is simply redistributed
within the flow, and the zeroth law does not apply. In order to make progress, the key
remark is that the work of Robert and Sommeria [Robert, 1990; Sommeria and Robert,
1991] is based upon the existence of a conserved scalar quantity which allows for the
existence of a Liouville theorem. Therefore, their approach can be applied whenever the
turbulent dynamics conserve such a quantity. Axisymmetric turbulence then appears as
an interesting framework because it conserves angular momentum, so that Robert and
Sommeria’s ideas can be applied, whilst maintaining features of 3D turbulence like, for
instance, the validity of the zeroth law. In this sense, axisymmetric flows are intermediates
between 2D and 3D turbulence, sometimes called 2.5D flows. A statistical theory for
axisymmetric flows was built by [Leprovost et al., 2006].
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2.6 Energy cascade in VK flows

As we mentioned in Sec. 2.5, the mechanisms through which energy is dissipated in 2D
and 3D turbulent flows are quite different. In 3D, the quadratic quantities conserved
by Euler equations are the kinetic energy E = u2/2 and the helicity H = ω ⋅ u/2 (see
Chap. 1). Energy cascades towards small scales with a spectrum E(1D)(k) ∼ k−5/3 for
homogeneous isotropic turbulence, while a cascade of helicity is also expected [Kraichnan,
1973; Borue and Orszag, 1997; Ditlevsen and Giuliani, 2001]. On the other hand, in
2D, the conserved quadratic quantities are the energy E and the enstrophy Ω = ω2/2.
Therefore, vortex stretching is absent, so that Taylor’s mechanism is irrelevant. Instead,
Kraichnan scenario [Kraichnan, 1967] occurs where energy cascades towards large scales
with E(1D)(k) ∼ k−5/3, while enstrophy cascades towards small scales with E(1D)(k) ∼ k−3.
The difference between 2D and 3D can be explained by the nature of the conserved
quadratic quantities: in 2D, both E and Ω are sign definite while, in 3D, only E is
[Brissaud et al., 1973; Kraichnan, 1973].

As we saw in Sec. 2.4, fully developed turbulent VK flows are not axisymmetric
but remain statistically axisymmetric. Since axisymmetric flows can be considered as
intermediate between 2D and 3D turbulence, the obvious question is whether energy
dissipation mechanisms in VK flows are closer to the 2D or 3D case. It was experimentally
shown that stationary states in VK flows are close to Beltrami states as Re is increased
[Monchaux et al., 2006; 2008]. Beltrami flows are defined by a vorticity everywhere
proportional to the velocity ω = αu. This class of flows has been widely studied [Joseph,
1964; Truesdell, 1954; Constantin and Majda, 1988] as they appear in DNS of turbulent
flows [Pelz et al., 1985; Yakhot et al., 1987], and constitute an analytical solution to the
3D Euler equations. The key remark is that for such flows, helicity becomes sign definite
so that both quadratic invariants in 3D are now sign definite, as in the 2D case. Moreover,
the energy and helicity spectra are related via H(1D)(k) = kE(1D)(k) which is the analog
of the relation Ω(1D)(k) = k2E(1D)(k) in 2D turbulence. Therefore, the cascading process
is dominated by helicity transfers at small scales and by energy transfers at large scales.
Now, all these remarks tend to suggest that the energy dissipation mechanism in VK
flows is close to what occurs in 2D turbulence.

The question of the direction of the energy and helicity cascades, their localities, and
the dependence of the corresponding spectra on the wavenumber k in a VK flow generated
with TM87(+) was addressed in [Herbert et al., 2012]. The authors reported the first
experimental observation of a dual cascade of energy and helicity, where it was shown
that the energy spectra at large wavenumbers scales as k−2, and changes to k−7/3 as Re is
increased. This is explained as the relative influence of local and non-local interactions
in the scale dynamics. These results suggest that Kolmogorov’s theory can be excluded
for the description of turbulence in the inertial range of high Re stationary VK flows4.
Interestingly enough, it was also noted that the value of Re for which the interactions
switch from a non-local to a local dynamics is associated with the critical Re at which

4Which is not too surprising since turbulence in VK flows are neither homogeneous nor isotropic.
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Figure 2.10: Energy spectrum computed from stereoscopic particle image ve-
locimetry obtained in VK flows generated with TM87(-). (−●−) TM87(-
)5H_nozoom32_center_water, (−●−) TM87(-)5H_zoom32_center_water, (−●−)
TM87(-)5H_zoom16_center_water, (−●−) TM87(-)1H_zoom16_center_glyc59.

the dynamical spontaneous symmetry breaking observed in [Cortet et al., 2010] appears.
From the data presented in Tab. 2.3, it is possible to compute the energy spectrum

of fully turbulent VK flows directly in the space domain, at smaller scales than what
was done in [Herbert et al., 2012]. Moreover, according to K41, all the spectra in the
inertial and intermediate dissipation ranges can be collapsed onto a single curve [Frisch,
1995; Gibson and Schwarz, 1963]. Fig. 2.10 displays the normalized energy spectrum,
compensated by k = 1/`, obtained from SPIV measurements performed at the center
of the tank for TM87(-). We are able to span three decades in kη by changing the
resolution of our cameras, the size of the interrogation cells in the PIV processing, and
by decreasing the Reynolds number in order to increase the Kolmogorov scale. At the
beginning of the inertial range, we find the same scaling for the energy spectrum as
in [Herbert et al., 2012]. However, at larger wavenumbers, we observe that the scaling
changes to E(1D) ∼ k−5/3 showing that K41 applies at smaller scales, and indicating an
energy dissipation mechanism like in 3D. This is a very nice result because it is the first
time (to our knowledge) that such a spectrum is computed directly in the space domain
over such a wide range of scales. Finally, it can be observed from Fig. 2.10 that at small
scales, the energy spectrum departs from the universal, infinite Reynolds number curve.
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This confirms the result obtained by [Gibson and Schwarz, 1963] that the dissipation
range begins at scales of the order of 10η.

2.7 Zeroth law in VK flows

Experimental results

A central assumption in K41 is that the mean energy dissipation rate per unit mass ε in
turbulent flows remains finite in the limit Re → ∞. In VK flows, its value depends on
the control parameters, the characteristics of the impellers, and the mean flow geometry
[Ravelet et al., 2008]. The variations of ε as a function of Re at θ = 0 are provided on
Fig. 2.11 for TM87(±) and TM60(±). At low Reynolds numbers, the dissipation rate
decays as Re−1 (dotted line), until Re ≈ 300 where turbulence sets in. The dissipation
rate then levels off (zeroth law) at a value which depends upon the large scale mean flow
geometry. For TM87(+) (●), ε is the lowest and increases for state (s) (◆) due to the
larger amount of turbulent fluctuations generated by TM87(-). For bifurcated states, the
mixing layer is sent towards one of the impellers, the other one “trying” to impose its
regime in the whole bulk. As a consequence, a greater amount of energy must be spent
by the receiving impeller in order to maintain its rotation frequency. In this case, the
dissipation rate is larger (▴). In conclusion, these measurements show that whatever the
mean flow geometry, the zeroth law of turbulence holds for the four possible configurations
at θ = 0.

Direct numerical simulations

DNS of von Kármán flows are performed in the group of Caroline Nore at the Laboratoire
d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI) in Orsay, and
in collaboration with Jean-Luc Guermond at Texas A&M, in order to study the dynamo
effect. During the second year of my Ph.D, a collaboration began between them and
our group. The first step of this collaboration was to compare diagnostics obtained
both numerically and experimentally in order to calibrate the hydrodynamic part of
their numerical scheme. The first quantity we looked at was ε for flows generated by
TM87(±). However, the only torque measurements performed with TM87 which were
available at the time were made by Brice [Saint-Michel, 2013] at Re ⩾ 105 (● - ◆ - ▴),
which is a range still out of reach for DNS. Therefore, new torque measurements have
been performed by Cécile at lower Re which have then been post-processed by Bérengère
and I. In the meantime, Loïc Cappanera and Caroline provided us with their numerical
estimates of ε obtained with the SFEMaNS code [Cappanera, 2015]. The comparison
between experiments and DNS is provided on Fig. 2.11. The values of ε obtained by
DNS (★ - ★) are in very good agreement with experimental measurements (◾ - ◾), even
though the numerical estimates seem to decrease slightly slower than our measurements
in the Stokes regime.
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Figure 2.11: Estimates of the mean energy dissipation rate per unit mass ε as a function
of the Reynolds number. These estimates have been obtained via torque measurements
for symmetric forcing conditions. (● - ◆ - ▴) torque measurements performed using
TM60 impellers [Ravelet, 2005], (● - ◆ - ▴) torque measurements performed using TM87
impellers [Saint-Michel, 2013]. (● - ●) (+) forcing condition, (◆ - ◆) Rπ symmetric
state (s), and (▴ - ▴) bifurcated states (b). No distinction is made between the two
bifurcated states since they have the same mean energy dissipation rate. (◾ - ◾) torque
measurements performed by Cécile for TM87(±). The results obtained from DNS of VK
flows with TM87(±) by Loïc Cappanera are displayed as (★ - ★) following the same
colour code. At low Re, both experimental measurements and DNS show a variation
ε ∼ Re−1. For Re ⩾ 105, ε stabilizes at a nonzero value for the four possible states.
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In conclusion, we see that the zeroth law of turbulence holds in experimental VK flows
for any symmetric large-scale configuration at θ = 0, and that there are strong evidences
that this is also the case in DNS. The time reversal symmetry, explicitly broken by viscous
forces, is not recovered as ν → 0. As a consequence, the VK geometry offers an interesting
framework in order to investigate the dissipation anomaly in fully developed turbulence.



Chapter 3

Onsager’s Mechanism For Energy
Dissipation

The difficulty lies not so much in
developing new ideas as in escaping
from old ones.

John Maynard Keynes
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Figure 3.1: Lars Onsager.

In the 1930’s, the French mathematician Jean Leray investigated the possibility for
solutions to the INSE to lose their regularity in finite time. In 1949, Onsager realized
that the development of such singularities may have physical consequences as they may
lead to a break-down of energy conservation in the limit of infinite Reynolds number.
Since then, the regularity of the INSE has been widely studied, and several results have
been analytically derived. However, the regularity of the INSE is still unknown. In this
chapter, we introduce Onsager’s and Leray’s ideas and connect them to the more classical
picture of turbulence presented in Chap. 1. We present some mathematical results on the
regularity of the INSE, and discuss the results obtained by [Duchon and Robert, 2000],
which are central to the study performed in this thesis and presented in the following
chapters.

3.1 Onsager’s conjecture

For the INSE to be well defined, the velocity field need to only be twice continuously
differentiable and the pressure field once, i.e. u ∈ C2 (V ,R+) and p ∈ C1 (V ,R+). However,
as remarked by [Leray, 1934b], it is not unreasonable to believe that starting from an
incompressible velocity field u0 ∈ C2 (V), the mechanism which tends to smooth out
possible irregularities, i.e. the viscous forces, might not be efficient enough to ensure that
u will remain in C2 (V) for all later times. Actually, the question of knowing whether such
singularities can develop starting from a given smooth initial condition is still an open, one
million dollars problem [Fefferman, 2006]. This question also arises for Euler equations,
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and the two problems, despite some differences, are deeply connected. However, these
problems were largely ignored by physicists, until it was realized that they may have
important practical consequences.

The chemist Lars Onsager was the first to make the connection between the regularity
properties of the velocity field and anomalous dissipation [Onsager, 1949]. In order to
explain this, let us consider a local space averaged (low-pass filtered) velocity field1. In
the INSE, the unknown velocity and pressure fields contain informations about the flow at
all possible scales. Let us define a coarse-grained velocity field by taking the convolution
of u with some kernel G`

u`i (x, t) = ∫ dr G` (r)ui (x + r, t) , (3.1)

where G is a smooth filtering function, non-negative, spatially localized and such that
∫ dr G (r) = 1. The function G` is rescaled with ` as G` (r) = `−3G (r/`). This process of
coarse-graining thus averages out fine details about the fields while keeping informations
about large scales. One can think of this as taking a picture of the Empire State Building
with a camera having a finite resolution. It can be seen on Fig. 3.2 that details about the
building can be seen from the building size scale down to the windows scale. However,
details finer than the size of the windows, like e.g. a fly which would have landed on
the building at the moment of the picture cannot be recovered, even by zooming on the
picture. In image processing, the scales we have access to from the picture are called
resolved while those which have been averaged out are called unresolved. We shall keep
this terminology in the following.

Let us now derive the equations satisfied by u`i . Starting from the INSE and applying
the coarse-graining procedure we get

∂tu
`
i + u`j∂ju`i = f `i − ∂ip` + ν∂jju`i , (3.2)

∂ju
`
j = 0, (3.3)

where f `i = −∂jτ `ij is called the turbulent force, and τ `ij = (uiuj)` − u`iu`j is the subscale
stress tensor. We thus obtain a sequence of equations describing the dynamics of large
scales. From these equations, we can derive a local energy balance at scale `

∂tE
` + ∂jE `,j

ν = −Π` −D `
ν , (3.4)

where E` = u`iu`i/2, E `,j
ν = u`j (E` + p`) + u`iτ `ij − ν (∂jE` + ∂i (u`iu`j)), Π` = −S`ijτ `ij, D `

ν =
2νS`ijS

`
ij, and S`ij = (Sij)`. Π` appears as a source term (a priori positive or negative)

which stems from interactions between scales larger and smaller than `. Therefore, energy
is not conserved at large scales, even for ν = 0, because small modes excite higher modes,
their interactions being described by Π`. However, if u satisfies the regularity condition

1Which is what we get as the output of a PIV system. For more discussions on the relation between
PIV measurements and the filtering approach, see Sec. 6.1.
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Figure 3.2: The large scales of the Empire State Building.

given in Eq. (1.5), it is easy to show that τ `ij vanishes as ` → 0 so that Eq. (3.4) gives
back Eq. (1.21), and energy conservation is recovered for ν = 0 (1.15).

Onsager studied turbulence in the 1940’s [Eyink and Sreenivasan, 2006] and, during
this period of time, published only one paper in this field [Onsager, 1949]. At the end of
this paper, he noted that ν → 0 does not actually ensure conservation of energy because
in this limit it is possible that the velocity field does not remain smooth enough for
allowing Π` to vanish as ` → 0. The key realization of Onsager was that τ `ij and S`ij can
be rewritten in terms of velocity increments as

τ `ij = (δuiδuj)` − δu`iδu`j, (3.5)

S`ij = −
1

2` ∫ dr ∂iG` (r) δuj (x + r, t) + ∂jG` (r) δui (x + r, t) . (3.6)

Let us assume that the velocity field has some regularity at small scale which can be
expressed as a Hölder continuity condition with exponent h

∣u (x + r) −u (x) ∣ < Crh, (3.7)

or equivalently

∣δu (r) ∣ = O
r→0

(rh) . (3.8)
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Let us now define δu (`) def= sup
r<`

δu (r). We directly get that

Π` = O
`→0

(δu (`)3

`
) . (3.9)

Therefore, if u is Hölder continuous in space with exponent h, i.e. δu (`) ∼ `h, then

Π` = O
`→0

(`3h−1) . (3.10)

As a consequence, we see that if h > 1/3, Π` vanishes as ` → 0 and Euler equations
are seen to conserve energy. On the other hand, it may well be that this condition does
not hold, in which case turbulent flows might keep on dissipating energy, even if ν → 0.
Onsager’s arguments lead to the conclusion that a necessary condition for the mean energy
dissipation rate ε not to vanish in inviscid turbulence is h ⩽ 1/3, h = 1/3 being the K41
case. In this case, the non-vanishing of ε would stem from a lack of smoothness in the
velocity field, and could be an alternative to Taylor’s mechanism for energy dissipation.
As a matter of fact, there are evidences coming from DNS that a continuous set of
scaling (or Hölder) exponents h are allowed, with the most probable exponent close to
1/3 [Muzy et al., 1991; Kestener and Arneodo, 2004]. Therefore, Onsager’s hypothesis is
an interesting candidate for explaining the zeroth law of turbulence, and would allow for
a deeper understanding of H3.

Finally, in his paper, Onsager also remarked that if the velocity field does not remain
differentiable, the expression of the equations of motion as differential equations should
be replaced by a more general formulation. This is what we discuss now (see [Eyink,
2008a] for more details).

3.2 Weak formalism

Since solutions to the INSE may lose their regularity in finite time, a more general
mathematical framework to study fluid dynamics is needed. Indeed, if u cannot satisfy
any regularity condition stronger than a Hölder condition with some exponent h < 1,
then it is not differentiable. In this case, u cannot be a solution to the INSE in the usual
sense and we must work in a more general framework than the one introduced in Chap.
1. We already know how to relax regularity constraints and generalize the concept of
functions, we get distributions [Schwartz, 1997]. The weak formalism applies the idea of
distributions in order to make sense of solutions to partial differential equations (PDE)
which are not necessarily differentiable.

Weak formulation of the INSE

Before writing this part of the manuscript, I had the intention of providing a rigor-
ous mathematical definition of weak solutions to the INSE. However, such a definition
introduces notions of functional analysis which might not be familiar to all physicists.
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Moreover, there exists different (but not unrelated) definitions for these weak solutions
[Leray, 1933; 1934b;a; Hopf, 1951; Lions, 1969; Masuda, 1984]. Since all these notions are
not of direct interest in this manuscript, and being too rigorous would only overwhelm
the reader with a flood of unnecessary mathematical concepts which would not serve the
intended clarity of this manuscript, I will restrict the definition of weak solutions to the
necessary minimum, and give some of their most important properties.

The key idea of the weak formalism is to move differential operators on test functions
through integration by parts, so as to impose minimum regularity assumptions on solu-
tions to PDE. Let us assume that (ui, p) is a solution to the INSE in the classical sense.
Then, for any test functions ψ, ϕi, i = 1,2,3, with the right properties, we have

∫
R3
∫
R
ui∂tϕi + ∫

R3
∫
R
uiuj∂jϕi = −∫

R3
∫
R
p∂iϕi − ν ∫

R3
∫
R
ui∂jjϕi, (3.11)

∫
R3
∫
R
ui∂iψ = 0. (3.12)

This system of equations is called the weak form of the INSE (WINSE), and should be
supplemented with appropriate initial and boundary conditions. Solutions which satisfy
theWINSE are called weak solutions, by opposition to strong (or classical) solutions which
have higher regularity properties. It can be seen that for the WINSE to make sense,
regularity requirements on u and p are relaxed compared to their strong counterpart.
Indeed, now we only need u ∈ L2 (V ,R+) and p ∈ L1 (V ,R+).

Some results about weak solutions of the INSE

Showing the existence of strong solutions to the INSE at all times, for arbitrary smooth
initial conditions, remains one of the greatest mathematical challenges. The usual strat-
egy to prove the existence and regularity of solutions to PDE is to build a weak solution,
and then show that every weak solution is actually a strong solution. This has been tried
for the INSE in the pioneering work of Leray [Leray, 1933; 1934a;b]. However, Leray was
able to show the global (in time) existence of solutions in R3 for any initial conditions,
only at the cost of giving up regularity. However, Leray’s idea opened the door for more
studies on the regularity of the INSE and many results about weak solutions have been
uncovered. For instance, [Hopf, 1951] was able to extend Leray’s result to problems with
boundaries. However, the unicity and regularity of these solutions remain unknown, and
only partial regularity theorems exist. As an example, there exists a local (in time) ex-
istence theorem which states that for any regular initial condition u0, a strong solution
exists at least up to a time T0 which depends on the regularity of u0. However, this result
does not provide any information about the regularity of the solution at T0, and it might
be that nothing singular actually happens at that time. The work of Beale, Kato and
Majda (BKM) exhibited a necessary criterion for a solution to lose its regularity [Beale
et al., 1984]. They proved that if u, along with its weak derivatives up to order at least
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3, are initially square-integrable (i.e. are in L2), then this remains the case until the
blow-up time T∗ for which

∫
T∗

0
∣∣ω∣∣∞dt = ∞, (3.13)

so that

lim
t→T∗

∣ω∣ = ∞. (3.14)

It immediately follows that if there exists a time T0 such that the norm of the vorticity
remains finite on any interval [0, T ] where T < T0, then the solution is regular on [0, T0].
This result is of great importance as it shows that the norm of the vorticity alone controls
the regularity of solutions to the INSE.

Since singularities might occur, it seems natural to study the spacetime distribution of
these possible events. Considering the whole space R3, [Leray, 1934b] derived his “struc-
ture theorem” which states that the time set for which global weak solutions lose their
regularities has zero Lebesgue measure. Later, in a series of papers [Scheffer, 1976a;b;
1977; 1980], Scheffer was able improve this result. In [Scheffer, 1976b], it was shown that
Leray’s structure theorem yields that the set of singular times has zero half-dimensional
Hausdorff measure. This result was shown to hold for a bounded domain in [Foias and
Témam, 1979]. In [Scheffer, 1976a], Scheffer showed that if the velocity field loses its
regularity at a certain time T∗, then the space set of singularities at T∗ has a finite one-
dimensional Hausdorff measure. In [Scheffer, 1977], the spacetime set of singularities
was proved to have finite two-dimensional Hausdorff measure. This result was refined in
[Scheffer, 1980] where it was shown that for a bounded domain, the spacetime set of sin-
gularities has finite one-dimensional Hausdorff measure. Finally, this study culminated
with the famous Caffarelli-Kohn-Nirenberg (CKN) theorem [Caffarelli et al., 1982] which
states that for “suitable” (in a sense that will be made precise in Sec. 3.3) weak solutions,
the spacetime set of singularities has zero one-dimensional Hausdorff measure. This is
an important theorem since it says that singularities cannot curve in spacetime. As a
consequence, these events do not persist in time, singularities pop up at one point in
space and immediately disappear.

What is the singular quantity?

We have been using the word “singularity” quite often since the beginning of this chapter
without clearly defining it. Singularities are events which can be mathematically char-
acterized by a diverging quantity. The question therefore is: what is the quantity which
diverges when solutions to the INSE lose their regularity?

[Onsager, 1949] explicitly states that in the limit of vanishing viscosity the flow might
lose its differentiability, and conjecture that the minimum regularity condition for energy
conservation is a Hölder condition. Therefore, at first sight, it seems that the diverging
quantity is the gradient of the velocity. However, it has been shown that contrary to
Euler equations, regularity of the solutions to the INSE is ensured if the velocity field
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remains bounded [Serrin, 1962; Escauriaza et al., 2003; Constantin, 2008]. Therefore, the
problem of Navier-Stokes regularity is a velocity blow-up problem. An interesting remark
is that if such blow-up occurs, this may experimentally result in a break-down of the
incompressibility condition [Frisch, 1995; Constantin and Fefferman, 1994; Constantin,
1994].

3.3 Energetic aspects of weak solutions

Energy inequalities

For weak solutions, the different terms in Eq. (1.21) make sense as distributions. However,
there is a priori not any reason why this balance should hold for the WINSE. Leray’s
structure theorem states that the global (in space) kinetic energy of a weak solution is a
decreasing function of time in the absence of external forcing. Actually, it can be shown
that Leray-Hopf weak solutions satisfy the global energy inequality

d

dt ∫V dr E (r, t) ⩽ −∫
V

dr Dν (r, t) , (3.15)

keeping the same notations as in Sec. 1.2. This implies

∫
V

dr E (r, t) ⩽ ∫
V

dr E (r,0) − ∫
t

0
dt∫

V

dr Dν (r, t) . (3.16)

If, in addition, they also satisfy the local energy inequality

∂tE + ∂jE j
ν ⩽ −Dν , (3.17)

then they are called suitable in the sense of CKN. Eq. (3.15) - (3.17) state that a
fluid in motion always loses energy quicker than the rate at which energy is dissipated by
viscous forces. Therefore, if the velocity field happens to be irregular, the irregularities
cannot be the source of a local or global (in spacetime) input of energy. This condition
seems reasonable in order to accept a weak solution as physically realistic. However, these
inequalities do not prevent for any additional energy dissipation. Such an additional
dissipation would then stem from a lack of regularity in the velocity field, and thus break
down the energy balance (1.21), even in the case where ν = 0 (1.15). This dissipation
is thus called the inertial energy dissipation. The question which was raised by Onsager
can then be reformulated as follows: what is the minimum regularity requirement on
solutions to the INSE for the inertial energy dissipation to vanish?

An expression for the inertial dissipation

The weak formalism constitutes a framework of choice for mathematicians wishing to
prove Onsager’s conjecture, and many results concerning the regularity of weak solutions
have been derived. This study places weak solutions in interpolation spaces called Besov
spaces, and is outside the scope of this thesis. The importance of the question of regularity
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for turbulence phenomenology was emphasized in [Eyink, 1994], where a proof of the
conservation of kinetic energy under a slightly stronger assumption than Hölder continuity
was given. In the same year, it was demonstrated by [Constantin et al., 1994] that kinetic
energy is still conserved under a weaker assumption than Hölder continuity, which requires
u to belong to some particular Besov space. Following these lines of investigation, the two
French mathematicians Jean Duchon and Raoul Robert, were able to derive an expression
for the inertial dissipation [Duchon and Robert, 2000], and again weaken the conditions
on u for kinetic energy to be conserved. The contribution of this thesis to the study of
the zeroth law of turbulence is largely based upon their results. As a consequence, we are
going to sum up the main steps of their approach, their paper being included in App. A.

The key idea of [Duchon and Robert, 2000] was to introduce a distribution DI (u)
such that

DI
def= −∂tE − ∂jE j

ν −Dν . (3.18)

Then, using the filtering approach described in Sec. 3.1, they proceed with the deriva-
tion of a balance equation for the point-split kinetic energy density at scale `, defined as
e`

def= uiu`i/2. They find

∂te
` + ∂j [uje` +

1

2
(p`uj + pu`j) − ν (∂je` +

1

2
∂i (uiu`j + u`iuj))] = −

1

2
∆` − 2νSijS

`
ij, (3.19)

where ∆` = ui∂j (uiuj)` − uiuj∂ju`i . Note that Eq. (3.19) is different from what we
derived in Sec. 3.1 since Eq. (3.4) gives the balance for E` = u`iu`i/2 ≠ e`. They proceed
by showing that ∆` converges in the sense of distributions towards 2DI when ` vanishes.
Finally, they introduce the sequence of function

Π`
DR (u) = 1

4 ∫T3
dr ∇G` (r) ⋅ δu∣δu∣2, (3.20)

where G is a smooth test function with suitable properties (see Sec. 3.1). After
another small computation, they show that Π`

DR and ∆`/2 have the same limit as `→ 0.
In the end, the following energy balance is obtained

∂tE + ∂jE j
ν = −DI −Dν , (3.21)

where

DI = lim
`→0

Π`
DR, (3.22)

does not depend on the choice of G. Following the same line of reasoning which
brought us to Eq. (3.10), we get from Eq. (3.20) that

Π`
DR = O

`→0
(`3h−1) . (3.23)



62 CHAPTER 3. ONSAGER’S MECHANISM FOR ENERGY DISSIPATION

As a consequence, Onsager’s assertion about energy conservation for velocity fields
with Hölder exponent h > 1/3 directly follows from Eq. (3.20) and Eq. (3.22). If the
velocity field has h > 1/3 globally in spacetime, then there does not exist any inertial
energy dissipation, and conservation of energy holds for Euler equations. However, if
there exist local areas where h ⩽ 1/3, then inertial dissipation might2 occur3. Actually,
we mentioned in Sec. 3.1 that there are evidences that exponents h ⩽ 1/3 are allowed
[Muzy et al., 1991; Kestener and Arneodo, 2004] so that areas where a nonzero inertial
energy dissipation are likely to exist.

We have now presented the mathematical arguments explaining why the zeroth law
of turbulence might stem from the existence of singularities in solutions to the INSE.
They provide a deeper understanding of Kolmogorov’s assumption H3. However, it is
not clear whether such arguments are actually relevant to real turbulence. A question
raised in [Duchon and Robert, 2000] is about the existence4 of a weak solution for which
DI (u) ≠ 0. Indeed, if it happens that all weak solutions to the INSE are regular enough
so that DI (u) = 0, then the result derived by Duchon and Robert will not have any
practical interest for the physics of turbulence.

3.4 Further remarks on the DR results

Relation to the 4/5 law

In Sec. 1.7, we discussed third order structure functions in the classical theory of tur-
bulence, and linked them to energy fluxes and second order correlation functions of the
velocity field through the KHM relation. Assuming a smooth velocity field, we get that
∣δu∣2δu (`) ∼ `3 since velocity increments vary linearly at small scales. As observed in
[Frisch, 1995], if we keep ν > 0 and let `→ 0, we obtain from the KHM relation that Π (`)
vanishes and we have

∂t
uiui

2
= fiui + νui∂jjui. (3.24)

This expression simply states that changes in the mean kinetic energy can only come
from forcing and viscous frictions, ∇` ⋅ ∣δu∣2δu (`) simply representing the redistribution
of energy within in the flow. However, regularity of u is not ensured as viscosity vanishes.

In the case where Re → ∞ and assuming only homogeneity, the 4/5 law becomes
Eq. (1.45). It is interesting to note that the expression for Π`

DR given in Eq. (3.20) for
weak solutions of the INSE is obtained from Eq. (1.45) by simply moving the gradient
operator on the test function. However, the expression for DI was derived without any

2We insist on the word “might” because h ⩽ 1/3 is only a necessary condition for inertial dissipation
to be nonzero.

3Actually, Duchon and Robert showed that their expression for DI vanishes under regularity conditions
weaker than Onsager’s estimate.

4Another question raised by the authors is whether DI (u) ⩾ 0 is a strong enough criterion to imply
uniqueness of weak solutions to the INSE which, we recall, is still unknown.
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assumption of homogeneity or isotropy, and therefore appears as a generalization of Eq.
(1.45). In the last section of their paper, Duchon and Robert choose a radially symmetric
test function, and make use of the fact that DI does not depend on the choice of G in
order to derive

DI = −
3

16π
lim
`→0

1

` ∫ dΣ (`) `

`3
⋅ δu (`) ∣δu∣2, (3.25)

where dΣ (`) denotes the area measure on the sphere of radius `. On the other hand,
they note that integrating Eq. (1.45) over a ball of radius ` leads to

ε = − 3

16π
lim
`→0

1

`∫ dΣ (`) `

`3
⋅ δu (`) ∣δu∣2. (3.26)

They therefore conclude that Eq. (3.25) provides a local non-random expression
for the inertial dissipation. It follows from Eq. (3.25) and Eq. (3.26) that under the
assumptions of homogeneity, isotropy and smoothness of the velocity field, Kolmogorov’s
4/5 law is recovered. As a consequence, Onsager’s theory satisfy the expected “boundary
condition” discussed in Sec. 1.7.

Testability of Onsager’s theory

A strong feature of the mathematical theory for inertial dissipation is that it only involves
quantities which can be experimentally measured or obtained in DNS. Indeed, being able
to compute Π`

DR only requires to know velocity increments, which are easily accessible
from e.g. PIV measurments. The only challenge in computing DI is to be able to obtain
measurements with a high enough resolution since Eq. (3.22) explicitly requires to take
the limit ` → 0. This problem will be discussed in Chap. 4, which is dedicated to the
computation of Π`

DR from experimental PIV measurements in various situations, and for
various scales `. We are going to see that the structure of Π`

DR is not trivial, even at the
Kolmogorov scale, and that this has important consequences on the choice of theoretical
and phenomenological models suitable for describing small scale turbulence.

3.5 Cascade of circulation

In [Chen et al., 2006; Eyink and Aluie, 2006; Eyink, 2008a], Eyink proposed to study
the conservation of circulation for high Re turbulence. In this work, an analog version
of Onsager’s arguments was derived, and a necessary condition for the break-down of
Kelvin theorem in terms of Hölder exponents was given. This phenomenon was termed
by the authors “cascade of circulations”. This is an important statement because Kelvin
theorem plays an important role in Taylor’s mechanism for energy dissipation (see Sec.
1.6). In order to explain this cascade, let us define the large scale velocity circulation Γ`

as

Γ` = ∮
C `

u` ⋅ ds, (3.27)
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where C ` is a closed loop advected by the large scale velocity field u`. We obtain
from the coarse-grained Euler equations a balance for Γ` which takes the form

∂tΓ
` + ∂j (u`jΓ`) = −Υ`, (3.28)

where Υ` = −∮C ` f ` ⋅ ds. Therefore, as for energy, circulation of velocity is not con-
served at scale `, and there exist transfers of circulation between scales. Using Eq. (3.5),
we get that

f ` = O
`→0

(δu (`)2

`
) . (3.29)

As a consequence, if the velocity is Hölder continuous with h > 1/2, Υ` vanishes as
` → 0 and Kelvin theorem holds. On the other hand, if this condition is not satisfied, a
break-down of Kelvin theorem may be observed. In the theory of Kolmogorov, h = 1/3
everywhere so that K41 allows for such a break-down. Actually, we have said in Sec. 3.1,
there are evidences supporting the fact that a continuous set of exponents h are allowed,
with the most probable exponent close to 1/3 [Muzy et al., 1991; Kestener and Arneodo,
2004]. The problem was numerically studied in a 10243 DNS of a forced 3D turbulent flow
[Chen et al., 2006], where it was shown that a continuous range of values are allowed for
Υ`, with a symmetric probability density function (PDF) peaking around 0. Therefore, it
seems that Kelvin’s theorem only holds on average. More interesting is the fact that the
PDF and root-mean-square of Υ` appear as nearly independent of ` in the inertial range.
This means that the cascade of circulation persists in scale. Further investigations were
performed in [Eyink and Aluie, 2006] where a detailed physical theory for this cascade
of circulation was developed. The cascade is found to be local in scale space, and the
physical mechanism responsible for the break-down of Kelvin’s theorem is shown to be
the diffusion of lines of large scale vorticity out of the advected loop C `.

As we have said, the aim of this thesis is to investigate the inertial mechanism conjec-
tured by Onsager for energy dissipation, which would explain the zeroth law of turbulence,
and cast some light on Kolmogorov’s hypothesis H3. The interest of the circulation cas-
cade mechanism for this work lies in the following relation

f `i u
`
i = −∂j (τ `iju`i) −Π`. (3.30)

Therefore, in the small scale limit, the power of the turbulent force is related to the
inertial energy dissipation and thus to Duchon and Robert’s result (3.22).

3.6 A side remark on 2D turbulence

In Chap. 2, we have discussed the classical picture for energy dissipation in 2D turbulence.
In Kraichnan picture, there exists a direct (i.e. from the forcing scale to smaller scales)
cascade of enstrophy together with an inverse (i.e. from the forcing scale to larger scales)
cascade of energy, so that small unstable eddies combine into larger ones [Kraichnan,
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Figure 3.3: An example of large structures formed in 2D turbulence. Hurricane Isabel
seen from the International Space Station (2003).

1967]. This phenomenon is at the origin of the formation of very large atmospheric
structures such as the one displayed in Fig. 3.3. The dimensional arguments we used in
Sec. 1.7 in order to derive the scaling of the energy density spectrum in 3D did not depend
on the direction of the cascade, and we therefore still have the same scaling associated to
the inverse cascade of energy in 2D for homogeneous isotropic turbulence

E(1D) (k) ∼ ε2/3k−5/3. (3.31)

Let us now introduce the enstrophy dissipation rate εω. From the definition of the
enstrophy, and using dimensional analysis, we get the Kraichnan spectrum associated to
the direct cascade of enstrophy

E(1D) (k) ∼ ε2/3ω k−3, (3.32)

where the dimensionless constants in Eq. (3.31) and Eq. (3.32) are different a priori.
The Kraichnan dual cascade picture has been confirmed in high resolution DNS in e.g.
[Boffetta, 2007].

Based on the work of [Leray, 1933], the question of the regularity of the INSE in 2D
has been answered [Lions and Prodi, 1959]. For any smooth initial condition u0 ∈ L2 (V),
Leray-Hopf solutions are unique and regular, and Eq. (3.16) becomes an equality

∫
V

dr E (r, t) = ∫
V

dr E (r,0) − ∫
t

0
dt∫

V

dr Dν (r, t) , (3.33)

where V may be a bounded domain [Ladyzhenskaya, 1958; Lions and Prodi, 1959;
He, 2012]. In [Duchon and Robert, 2000], Duchon and Robert showed that this unique
solution also satisfies DI = 0, as expected from regular solutions. As a consequence,
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Taylor’s and Onsager’s mechanism for energy dissipation do not exist in 2D turbulence.
This is consistent with the well known fact that there is not any dissipation anomaly in
this case [Tabeling, 2002]. For more discussions on the regularity of the INSE in 2D, and
the differences from the 3D case, see e.g. [Giga, 1983; Constantin, 1995].

3.7 Regularity of the axisymmetric Navier-Stokes equa-
tions

Solutions to the 2D INSE exist, are unique and regular, while in 3D, only the existence
of weak solutions is known. The main difference between the two cases comes from
the fact that vortex stretching is absent in 2D, which leads to the conservation of an
additional quadratic quantity: the enstrophy. In 3D on the other hand, the lack of
information about how vortex are stretched is the main issue which prevents from making
any final conclusion on the global regularity of weak solutions. In Chap. 2, we discussed
axisymmetric flows as being an interesting framework to study turbulence, because it is
intermediate between 2D and 3D. The question we ask now is: what can be said about
the regularity of the axisymmetric INSE?

Let us work in a cylindrical coordinate system (r, θ, z) with vector basis (er,eθ,ez)
in R3. We say that a solution to the INSE is axisymmetric if and only if the fields ui, p
are independent of θ, i.e.

∂θp = 0 and ∂θuα = 0, α = r, θ, z. (3.34)

In the case of zero swirl, i.e. uθ = 0, further simplifications arise. The vorticity ω
takes the form ω = (∂zur − ∂ruz)eθ so that the vortex stretching term simply becomes
ωj∂jui = ωθur/r. Using the stream-function vorticity formulation [Lopez, 1990], we can
get rid of the pressure field p in the equations of motion, and the change of variables
(ur, uz) → (ψ, ξ) can be made, where ξ = ωθ/r and ψ is the stream function such that

ur = −
1

r
∂zψ, and uz =

1

r
∂rψ. (3.35)

Changing variables from (r, z) to (y, z) where y = r2/2, and after some calculations,
it can then be shown that the dynamics of the vorticity reduces to one partial differential
equation, supplemented with one mathematical constraint, which takes the compact form
[Leprovost et al., 2006]

∂tξ + {ψ, ξ} = ν (∆ξ + 2

r
∂rξ) , (3.36)

∂yyψ +
1

2y
∂zzψ = −ξ. (3.37)

For any two fields ψ,ϕ, {ψ,ϕ} def= ∂yψ∂zϕ − ∂zψ∂yϕ. The interesting feature of Eq.
(3.36) is that the vortex stretching term urξ has disappeared. This is a direct consequence



3.7. REGULARITY OF THE AXISYMMETRIC NAVIER-STOKES EQUATIONS 67

of introducing the field ξ which is conserved in axisymmetric inviscid turbulence. It
can then be shown that for a suitable norm5, ξ (t) remains bounded by its initial value
ξ (t = 0), everywhere in space. It then follows by the BKM criterion that axisymmetric
solutions to the INSE with zero swirl remain regular at all times. These results were
independently derived in [Ukhovskii and Yudovich, 1968] and [Ladyzhenskaya, 1968],
who also proved the existence and uniqueness of axisymmetric solutions in the absence
of swirl. Later, the assumptions on the initial conditions which ensure global regularity
were weakened in [Leonardi et al., 1999; Abidi, 2008]. However, despite many attempts
[Chae and Lee, 2002; Kim, 2003; Chen and Zhang, 2007; Agélas, 2013; Chen et al., 2015;
He et al., 2016; Pan, 2016], the problem is still open for nonzero swirl.

In the case of viscous axisymmetric flows with non zero swirl, if singularities develop,
we know from the CKN theorem that they can only lie on the axis of symmetry. However,
this is not necessarily the case for inviscid flows, and strong evidences of the finite time
blow-up of a solution to an axisymmetric Euler equations were provided in [Luo and
Hou, 2014]. In this paper, the authors find a blow-up in the vorticity field at the solid
boundary which takes the form of a ring due to axisymmetry. The blow-up of the vorticity
is confirmed by the rapid growth of ∣∣ω∣∣∞ which grows faster than double exponential.
This blow-up is interpreted as resulting from a compression mechanism.

Mathematically, it is not known whether the VK geometry prevents from the de-
velopment of finite-time singularities. Inertially forced VK flows are not axisymmetric,
however they remain axisymmetric on time average. Areas in the flow which therefore
appear to be of potential great interest to our study are the vicinity of the axis (Oz) and
the vicinity of the wall. In addition, areas lying in the middle shear layer are expected
to contain a greater amount of the total energy dissipation. This explains why we have
chosen to zoom in the areas represented on Fig. 2.7 in order to obtain our high resolution
data described in Tab. 2.3 and Tab. 2.4.

5Here, the norm on the Lebesgues spaces Lp, denoted ∣∣ ⋅ ∣∣p, for any p ⩾ 1
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Chapter 4

Testing Onsager’s Theory in Turbulent
von Kármán Flows: From Injection to
Dissipative Scales

“Come, Watson, come!” he cried.
“The game is afoot. Not a word! Into
your clothes and come!”

Sir Arthur Conan Doyle
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The discovery of the zeroth law of turbulence by [Taylor, 1935], and the assumed
existence of an energy dissipation anomaly in K41, were both interpreted by Onsager as a
possible loss of regularity in the velocity field. This idea naturally leads to a reformulation
of the laws of motion in a more general framework provided by the weak formalism.
Following these lines of reasoning, Duchon and Robert derived the corresponding energy
balance given in Eq. (3.21), where an inertial dissipation term unrelated to viscosity
appears. However, it is not known whether inertial dissipation is a relevant concept to
real turbulence and, to our knowledge, the possibility that DI might be nonzero in real
flows has never been experimentally investigated. In this chapter, we provide the first
study of Duchon and Robert’s results from experimental data. These data have been
obtained from the VK2 set-up described in Chap. 2. Our study follows the direction
of the cascade: we first review the informations we have about energy injection at large
scales, then we study energy transfers in the inertial range using the tools introduced in
Chap. 3, and finally we use the zoomed data in order to continue our investigations in
the dissipative range and close to Kolmogorov scale.

This chapter presents some results published in [Kuzzay et al., 2015] (see App. B)
and some others published in [Saw et al., 2016] (see App. D).

4.1 At injection scales

In fully developed turbulence, the injection and dissipation scales are well separated. In
between lies the inertial range (as illustrated on Fig. 4.1) where energy is neither directly
injected nor dissipated, but instead cascades in an infinite number of local continuous
steps due to nonlinear interactions. In the VK2 set-up, turbulence is maintained sta-
tionary by two counter-rotating impellers, the typical injection scale being the size of the
impellers. As described in Chap. 2, global quantitative informations about the amount of
energy injected into the flow are obtained via torque measurements, and the total dimen-
sionless injected power is denoted 2Kp for symmetric forcing conditions, where we recall
that Kp is the dimensionless energy injection rate of one impeller. Since, in the stationary
regime, there is not any accumulation or loss of energy at any scale on time-average, the
same measurements will also be used to infer the amount of energy scattered through
any wavenumber k per unit time, along with the total amount of dissipated power. This
is illustrated on Fig. 4.1 where the symbol “∼” stands for “estimates”. Of course, Fig. 4.1
is just an illustration, and does not accurately describe all the results we have discussed
in Sec. 2.6.

4.2 In the inertial range

When the field of view of the cameras covers the whole volume located between the
two impellers, the cut-off due to their finite resolution lies in the inertial range. As a
consequence, it is possible to check the relative contributions of Π`

DR and D `
ν at this

scale.
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ln k

ln E (k)

Injection

kL ∼ 1/L kη ∼ 1/η

inertial range

kL � k � kη

= 2Kp

Local transfers
∼ 2Kp

Dissipation
∼ 2Kp

Figure 4.1: Illustration of the energy cascade in Fourier space with notations used in von
Kármán flows.
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Global energy balance

In Eq. (3.19), it can be shown that locally, ∆`/2 and Π`
DR only differ by the divergence

of a current which vanishes as ` → 0 [Eyink, 2008b]. Therefore, Π`
DR appears as the

local amount of point-split kinetic energy e` transferred through scale `. The important
remark is that e` is an alternative definition to E` (defined in Eq. (3.4)) for the kinetic
energy at scale ` [Eyink, 2008b]. As a consequence, one would like to interpret Π`

DR as
the local amount of kinetic energy scattered through scale ` due to nonlinear interactions.
In the statistically stationary regime, energy cascades through the inertial range at the
same rate as it is injected at large scales. Introducing the notations εDR (`) = ⟨Π`

DR⟩ and

εν (`) = ⟨D `
ν⟩, we have

2Kp
R3

V´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
energy injection at large scales

= εDR (`) + εν (`)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

energy scattered through scale `

, (4.1)

where εν (`) is negligible if ` lies in the inertial range, and all the terms have been
made dimensionless as described in Chap. 2.

We would like to check whether Eq. (4.1) holds in our von Kármán set-up. In order
to implement the computation of Π`

DR, the choice of G which has been made is

G(r) =
⎧⎪⎪⎨⎪⎪⎩

1
N exp (− 1

1−r2/4) for 0 ⩽ r ⩽ 2,

0 otherwise,
(4.2)

where N is a normalization constant such that ∫V d3r G (r) = 1. This test function
has the properties required in Sec. 3.1, is C∞, and has compact support [Duchon and
Robert, 2000]. Clearly, the fact that our PIV system is stereoscopic and not tomographic
implies that we cannot compute velocity increments in the three directions of space, as
would be required. Therefore, there will be missing informations in our computations.
Nevertheless, due to the statistical axisymmetry of our set-up, it can be hoped that only
taking into account velocity increments on a meridional plane will be enough.

In addition to choosing ` in the inertial range in order to check Eq. (4.1), ` must also
be such that it is sufficiently large with respect to the PIV smallest resolved scale, so as to
guarantee statistical convergence through sufficient average in scale space (on the sphere
of radius `). To check these two points, Fig. 4.2 displays Π`

DR (u) in two plots averaged
in the radial (respectively, vertical) direction as a function of z (respectively, x) and ` for
a flow generated by TM87(+) at Re ≈ 8× 105 and θ =0. We see that the quantity Π`

DR is
close to zero at large scales (` > 0.4R), but that it increases in magnitude at small scales,
and shows strong dissipation at the location of the median shear layer. For ` between
0.1R and 0.15R (i.e., approximately 4-5 times the smallest scale resolved by our PIV
set-up), there is the start of a saturation indicating the beginning of the inertial range.
While the extent of the inertial range increases with Re, its largest scale is likely to be
independent of Re, as long as the flow is turbulent. Indeed, as discussed in [Thalabard
et al., 2015], the geometry of the largest scales in VK flows appears fairly independent of
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Figure 4.2: Variations of the time-averaged Duchon-Robert energy transfers Π`
DR, aver-

aged over one coordinate of space, as a function of scale ` and coordinates (a) x and (b)
z (in units of the radius R). The beginning of the plateau near ` ≈ 0.1R indicates the
beginning of the inertial range.
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Figure 4.3: Comparison between torque estimates of the mean energy dissipation (● -
◆) and Duchon-Robert PIV estimates for TM87(+) (●) and TM87(-) (◆) at various
Reynolds numbers, for Rπ symmetric flows. The estimates are computed based on 2 to
15 realizations of the same flow where at least 600 instantaneous velocity snapshots have
been taken for each of them. The symbols represent the mean of our computations over
these realizations, while the error bars represent the standard deviation.

the Reynolds number, except around Re = 105 where it may experience abrupt changes
due to the phase transition discussed in Chap. 2. Since, in the Kolmogorov picture,
energy cascades from large to small scales, it is reasonable to assume that the beginning
of the inertial range is solely determined by the large scale topology, thereby becoming
independent of the Reynolds number.

As a consequence, we have computed the contribution of εDR (`) at scale ` = 0.1R
from our PIV measurements. The results are displayed on Fig. 4.3 for Rπ symmetric
flows, where each point has been obtained by computing εDR (`) at the same scale, for
several realizations (2 to 15) of the same experiment. For each of these realizations, time-
averages have been performed using at least 600 instantaneous velocity snapshots. Points
represent the average of εDR (`) over these realizations, while the error bars represent the
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standard deviation. It can be seen that even though velocity increments could only be
computed on a plane, the PIV estimates for TM87(+) (●) and TM87(-) (◆) are in very
good agreement with direct torque measurements (● - ◆), with fairly small error bars. It
can be checked that for Re ≈ 4 × 103, the viscous term accounts for a non-negligible part
of the estimated mean dissipation rate (around 30%). For all the other points, viscous
effects can be neglected. For the highest values of Re, εDR coincides with 2Kp within
2%. Therefore, as argued in [Duchon and Robert, 2000], we deduce that εDR indeed
provides an exact form for the energy transfers towards subgrid scales, valid even for
non-homogeneous, non-isotropic flows. We can then complete Fig. 4.1 as shown on Fig.
4.4.

The same study has been performed in the paper provided in App. B for Rπ asymmet-
ric flows by considering bifurcated states and by varying θ ∈ [−.5, .5] at Re ≈ 105. It was
found that for these configurations, the discrepancies between PIV estimates and direct
torque measurements grow larger as θ is shifted away from zero. This is explained by the
fact that the mixing layer, where most of the dissipation occurs, gradually leaves the field
of view of our PIV system. As a consequence, Fig. 4.3 only displays the computation of
εDR for non bifurcated flows, and statistically Rπ asymmetric flows will not be further
considered in this thesis.

Local energy transfers

A strong feature of the point-split kinetic energy balance is that it provides the dynamics
of the kinetic energy at scale ` locally in space and time, whereas the KHM equation
(see Chap. 1) is global in space and time since it relates time-averaged quantities and
assumes homogeneity. As a consequence, we can look at local maps of Π`

DR in order to
visualize areas in the flow where energy transfers occur.

Fig. 4.5(a) and (b) respectively show time-averaged and instantaneous maps of Π`
DR

for TM87(+), while Fig. 4.5(c) and (d) show the same maps for TM87(-). Both of
these flows were generated at Re = 3 × 105. Clear localized structures symmetrically
distributed with respect to the midplane can be observed on Fig. 4.5(a). These structures
are reminiscent of the mean poloidal recirculation cells observed on the mean flow in
Fig. 2.9(a), and are statistically significant since they are not observed on instantaneous
frames. They may, therefore, trace the intense vortices of the shear layer. In addition,
one observes a clear localization of energy injection (blue areas) close to the tip of the
impellers, with energy transfers mostly occurring close to the rotation axis and near the
recirculation cells. Regarding Fig. 4.5(b), it is interesting to note that energy transfers are
characterized by intense, localized events that can reach up to twenty times the maximum
average local dissipation.

For Fig. 4.5(c) and (d), the remarks are essentially the same: energy transfers towards
subgrid scales are mostly located close to the rotation axis in the median shear layer.
However, a noticeable difference is that the color scale is wider for this configuration. We
thus recover the fact that the flow dissipates more energy for TM87(-) than for TM87(+),
so that the motors have to apply a greater torque to maintain the turbulence stationary.
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Figure 4.4: Illustration of the energy cascade for turbulent von Kármán flows. The results
of this section show that εDR captures the energy cascade with very good accuracy when
` lies in the inertial range, and opens the question as to what happens in the dissipative
range.
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Figure 4.5: Typical maps of (a) and (c): Π`
DR, and (b) and (d): Π`

DR, for flows generated
with (a) and (b): TP87(+), and (c) and (d): TP87(-), at Re ≈ 3 × 105.



80 CHAPTER 4. TESTING ONSAGER’S THEORY

4.3 From inertial to dissipative scales

Our investigations of the energy cascade have shown that Π`
DR ≠ 0 for ` lying in the inertial

range. Even more, the global contribution of Π`
DR over the whole flow bulk accurately

captures the energy transfers through scale `. These results are promising, and encourage
us to push our investigations further down the cascade.

The possible inertial energy dissipation introduced by Onsager has been expressed by
Duchon and Robert as the zero scale limit of Π`

DR. Of course this “zero scale limit” has
to be understood in the mathematical sense since, when ` becomes of the order of the
atomic scales, the continuous approximation of matter and all our considerations up to
now break down. Translated into physical terms, ` → 0 means λ ≪ ` ≪ ηI , where ηI is
the typical scale over which the inertial mechanisms leading to inertial dissipation occur,
and λ is the mean free path of the molecules constituting the fluid, and at which scale
the INSE should be replaced by Boltzmann’s equation. The problem which arises is that
ηI is not known, so that we do not know what resolution we should aim for to study
Onsager’s conjecture. In the classical picture of turbulence, dissipation occurs close to
the Kolmogorov scale η where gradients of velocity are strong enough so that all of the
dissipation is taken up by viscous frictions. At this scale, inertial effects are assumed to
be negligible. An interesting question therefore appears to be: is Πη

DR nonzero? And, if
this is the case, what are the properties of Πη

DR? In the remaining of this chapter, we use
the zoomed data described in Chap. 2, and provide the detailed analysis of Π`

DR for ` in
the dissipative range.

4.4 Data processing and related problems

A problem that we encountered, and for which we still have not found any satisfactory
solution, is how computations of Π`

DR near the boundaries of the grid should be dealt
with. The problem comes from the fact that Π`

DR is computed from velocity increments
over a sphere of approximate size `. As illustrated on Fig. 4.6, we take into account
every increments between e.g. points in the green area around P1 and P1. Therefore, for
points located farther away from the boundaries than length `, every increments can be
computed. However, for points like P2, some increments cannot be computed as they fall
out of the grid (red area). The first idea that we had was therefore to compute Π`

DR(P2),
taking only into account increments between points included into the green area and P2.
However, this leads to spurious structures which can be observed on the time-averaged
field near the boundaries. All the results which we showed in Sec. 4.2 have been obtained
in this way, spurious values of Π`

DR at the boundaries being discarded.
In order to get rid of these finite size effects, another idea is to use the method of

images. We try to discard boundaries by creating a larger imaginary velocity field which
replicates our boundary conditions. To do this, we create in our code an intermediate
larger grid Gcode, superimposed to the PIV grid GPIV . This is illustrated on Fig. 4.7
where Gcode is represented with dashed lines. Therefore, if we denote N`max the size of
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the largest velocity increment we want to compute, if GPIV is e.g. 802, then Gcode is
(80 + 2N`max)2. Let us denote uPIV the velocity field measured by the SPIV set-up at
each point of GPIV . We define the imaginary velocity field uimage as:

• uimage(P ) def= uPIV (P ), ∀P ⊂ Gcode⋂GPIV .

• For every other points, if the boundary of GPIV is not associated to any physical solid
boundary (typically for measurements at the center of the flow), then uimage = uPIV

as illustrated in Fig. 4.8.

• If the end of GPIV is associated to a physical solid boundary, then the parallel and
orthogonal components with respect to the boundary of both fields are related via
uimage

∣∣
= uPIV

∣∣
and uimage

�
= −uPIV

�
as illustrated in Fig. 4.8.

However, this did not remove finite size effects as can be seen on Fig. 4.9. Fig. 4.9(a)
displays the local quantity Π`

DR computed for TM87(+)5H_zoom32_center_water from
one instantaneous velocity frame, and Fig. 4.9(b) shows the time average over 3 × 104

samples. We can observe on the former that nothing strange happens at the boundaries
while there appears spurious bands of thickness N`max on the latter. As a consequence,
in the remaining of this thesis, we will cut off boundaries and focus our data analyses on
the domain

Dcenter = {(x, z) ∈ [−0.16,0.1] × [−0.18,0.07]} , (4.3)

which does not include any spurious bands for all the flows listed in Tab. 2.3. There-
fore, the analysis we are going to present from Sec. 4.5 to the end of Chap. 5 focuses on
what happens at the center of the flow. We have started to perform the same analysis
at the wall, however, we still have not obtained enough results to include them in this
thesis.

4.5 Data analysis at the center

Variations of energy transfers as a function of scale: a global study

In the classical picture of turbulence, the velocity field remains smooth at all scales, and
the only mechanism dissipating energy stems from viscous frictions. We saw in Sec. 4.2
that εDR is the dominant source term in the global balance (4.1) when ` lies in the inertial
range. As a consequence, as dissipative scales are approached, it would be expected that
Π`
DR vanishes so that D `

ν takes up all of the dissipation. Fig. 4.10 displays the variations
of both εDR/ε and εν/ε computed at the center of the flow at various scales. All the
computations obtained from the data described in Tab. 2.3 and Tab. 2.4 are displayed.

Using water, we are able to reach fairly high values of Re, so that the corresponding
data have been obtained in the inertial range (● - ◆ - −●− - −◆−). At these scales,
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P1

`

P2

Figure 4.6: Illustration of how Π`
DR is computed in our code, and the issue encountered

at the boundaries of the gird. The increments falling in the green areas can be computed,
but those in the red area cannot.
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P1

`

P2

GPIV Gcode

Figure 4.7: Illustration of how the problem at the boundary of the grid is dealt with. We
create a larger grid. . .
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no physical boundary physical boundary

Figure 4.8: . . . on which we create an imaginary field whose orthogonal component with
respect to the boundary is: symmetric if the end of the grid does not correspond to any
physical solid boundary, and antisymmetric if it does.



4.5. DATA ANALYSIS AT THE CENTER 85

−0.2 −0.1 0 0.1

−0.2

−0.1

0

0.1

 

 

−0.1

−0.05

0

0.05

0.1

−0.2 −0.1 0 0.1

−0.2

−0.1

0

0.1

 

 

−0.01

0

0.01

x

z

x

z

(a) (b)

Figure 4.9: Maps of (a) Π`
DR and (b) Π`

DR for TM87(+)5H_zoom32_center_water. We
see that even though nothing strange is observed at the edges of the grid on the instan-
taneous field, spurious bands which have the same size as the largest velocity increments
we compute appear on the time-averaged field.

we see that εDR is indeed much greater than εν by more than one order of magnitude, in
agreement with the results in Sec. 4.2. In addition, as `/η decreases keeping Re constant,
both εDR and εν take up an increasing fraction of the cascade (reaching up to 50% of
ε) at the center of the flow, this fraction being larger for TM87(-) than TM87(+). The
striking feature of the variations of εν(`) with `/η is that they follow a power law. This
can be understood from the two-thirds law of turbulence stating that δu (`)2 ∼ (ε`)2/3 so
that

D `
ν

ε
∼ ν
ε
(∆u

∆g

)
2

∼ ν
ε
(ε`)2/3

`−2 ∼ ( `
η
)
−4/3

, (4.4)

independently of all other parameters. The dotted line in Fig. 4.10 represents εν/ε ∼
(`/η)−4/3.

In order to get a better resolution and resolve the flow down to the Kolmogorov scale,
we decreased Re so as to increase η. (● - −●−) and (◆ - −◆−) have been respectively
obtained from TM60(+)2H_nozoom32_center_glyc100 and TM87(-)1H_zoom16_ cen-
ter_glyc59. At these scales, the fraction of ε contained into εDR is smaller, which is
probably due to the combined effect of a decreasing `/η and a decreasing Re. Nonethe-
less, the important result is that close to the Kolmogorov scale, εDR does not vanish
and still accounts for around 10% of ε. In addition, we observe that at fixed resolution
and close to η, the magnitude of εDR is very small for laminar flows and increases with
Re. This is consistent with the possibility that inertial dissipation occurs in turbulent
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Figure 4.10: Variations of the fraction of energy dissipation ε taken up by εDR and εν as
a function of the resolution of our PIV set-up `/η. These results have been obtained from
data at the center of the flow, at various Reynolds numbers: Re = 150, Re = 5900, and
Re = 3 × 105. (● - ● - ●) flows generated by TM87(+), (◆ - ◆ - ◆) flows generated by
TM87(-). Isolated symbols: εν/ε, linked symbols: εDR/ε. The dotted line represents the
fit εν = 9 (`/η)−4/3.
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Figure 4.11: Local variations of Π`
DR as a function of scale at the center of the tank.

(a) at three different scales, and (b) along a plane in scale space going through several
intense structures.

flows and not in the laminar regime. However, one should be careful when making in-
terpretations based on the data for which εDR < 0 in Fig. 4.10. Indeed, this change
of sign occurs for the cases with the smallest number of frames, so that the statistics
might not be converged. A discussion about statistical convergence is provided at the
end of this chapter. Finally, it is quite striking that the ratio εν/ε is larger than unity
for TM87(-)1H_zoom16_center_glyc59 (◆). This would mean that εDR < 0 over the
whole flow. This is very unlikely, and might be explained by our lack of informations
concerning the variations of the velocity field along the orthogonal direction to our plane
of measurements.

A local study

We have seen in Sec. 2.6 that the beginning of the dissipative range, characterized by the
departure of the variations of the energy spectrum from the −5/3 slope, occurs at ` ≈ 10η
in agreement with [Gibson and Schwarz, 1963]. Fig. 4.11 shows the local variations of
Π`
DR as a function of ` in the dissipative range for TM87(-)1H_zoom16_center_glyc59.

We see that Π`
DR does not vanish as η is approached, but instead points towards localized

intense structures. In addition, we observe that the topology of Π`
DR does not vary much,

and that only the magnitude of the structures appear to change.
In order to study the influence of the Reynolds number and understand how the

dissipated power is split between viscous and inertial effects, we show on Fig. 4.12
instantaneous maps of these two quantities at the highest resolution accessible for three
different cases:
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ν , (2) Π`

DR, and (3) dΓ`/dt for cases A, B and C. We observe
that the inertial dissipation remains strong in case B and C. Panels (a3), (b3) and (c3)
show that a non-zero circulation rate persists down to the dissipative scale, and areas of
high viscous dissipation seem correlated with the location of extreme events of inertial
dissipation.
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• case A = TM60(+)2H_nozoom32_center_glyc100,

• case B = TM87(-)1H_zoom16_center_glyc59,

• case C = TM87(-)5H_zoom16_center_water.

Case A is a laminar flow while case B and C are fully turbulent. Only for case C
is the Kolmogorov scale not resolved (see Tab. 2.3 and Tab. 2.4). In addition, we also
provide maps of the local rate of circulation decay predicted by Eyink dΓ`/dt. We note,
in all three cases, the smaller noise in the estimates of Π`

DR and dΓ`/dt compared to D `
ν .

This is due to the inherent smoothing procedure in the expression of these two quantities,
where the gradient operator acts on the test function rather than directly on the velocity
increments. As we can see from Fig. 4.12(b2) and (c2), Π`

DR detects clear structures,
which can be both positive and negative. However, as reported in Fig. 4.10, their time
average remains positive. This peculiar feature is parallel to the behavior of entropy in
non-equilibrium systems, where the entropy production can be positive or negative, but
remains positive on time-average, in agreement with generalized fluctuation-dissipation
theorems [Gallavotti and Cohen, 1995; Jarzynski, 1997; Ciliberto et al., 2010]. Π`

DR can
also be locally very strong, sometimes over three orders of magnitude larger than the
standard deviation σDR. The probability density functions (PDF) for case B for both
Π`
DR and D `

ν are displayed in Fig. 4.14. Furthermore, a comparison of maps of Π`
DR with

dΓ`/dt reveals that areas where Π`
DR is large are also areas of nonzero local rate of velocity

circulation decay, which could be the footprints of singularities providing local source of
circulation/vorticity, as conjectured by Eyink [Chen et al., 2006; Eyink and Aluie, 2006;
Eyink, 2008a].

If we now turn to the laminar case (case A), the resolution of our measurements over
the whole flow is smaller than Kolmogorov scale, so that all scales are resolved. There
are no clear dissipation structures in the map of Π`

DR given in Fig. 4.12(a2), which is
negative over the whole observation window, and on average, much smaller than the
viscous dissipation. The latter is also very small in this area, over one order of magnitude
smaller than the total energy injection (see Fig. 4.10). In a similar way, we observe that
the magnitude of dΓ`/dt is also very small at the center compared to viscous dissipation,
and compared to its value for the two other (fully turbulent) flows. This is in agreement
with the idea that the contribution of singularities is more important at high Reynolds
numbers while viscous effects decrease. For case A, it can be checked that if the energy
balance is performed over the whole experiment, εν accounts for all of the injected power
and supersedes by two order of magnitudes εDR.

Finally, we also see by comparing Fig. 4.12(b1) with (b2) and (c1) with (c2) that
areas of high viscous dissipation tend to be correlated with areas where strong inertial
transfers are localized. This is not too surprising since Π`

DR is nonzero at the locations
where the velocity field loses its regularity. Therefore, in these areas we expect to find
strong gradients and strong viscous dissipation. This argument can be made a little more
quantitative by stating that if δu ∼ `h, then Π`

DR ∼ `3h−1 and D `
ν ∼ `2(h−1). However,

for 0 ≤ h ≤ 1/3, 2 (h − 1) < 3h − 1 ≤ 0, so that in the limit ` → 0, D `
ν grows faster than
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Figure 4.13: Local maps of the norm of the y-component of the vorticity ωy for cases A,
B and C.

Π`
DR. This is what we have shown on Fig. 4.10, and is also confirmed by the fact that

the correlation between Π`
DR and D `

ν appears qualitatively stronger in case B where η is
resolved, than in case C where it is not. As a consequence, in the light of the discussion
in Sec. 3.3 about suitable weak solutions and the fact that we observe structures where
Π`
DR < 0 on Fig. 4.12(b2), we may ask the question as to whether we actually observe

inertial dissipation, or we still only capture transfers (as described in Sec. 4.2) to scales
smaller than η, where all of the energy dissipation comes from viscous effects. If this is
the case, this would mean that η is not the smallest relevant scale for viscous dissipation
as e.g. in the multiractal model (more discussions are provided in Chap. 5).

In order to see whether the structures on Fig. 4.12(a2), (b2) and (c2) are located
in areas of high vorticity (BKM criterion), we may compare them with maps of the
magnitude of the vorticity. In our case, we only have access to ∣ωy ∣ at the resolution
scale, which is displayed on Fig. 4.13 for case A, B and C. Comparing Fig. 4.13(b) with
Fig. 4.12(b2) we find that there is some agreement between maps of ∣ωy ∣ and maps of
Π`
DR. However, we see that some structures in Π`

DR are not mirrored in the vorticity
field, and that the agreement is worse for case A and C, showing that the link between
vorticity and inertial dissipation might be restricted to turbulent flows, when dissipative
scale is resolved.

Fig. 4.14(a) shows the PDF of Π`
DR which appears to be highly non-Gaussian with

very large tails. Fig. 4.14(b) shows the PDF of the logarithm of the viscous dissipation
along with a normal distribution of same mean and standard deviation. It can be seen
that the log-normal model holds well [Kolmogorov, 1962] for values of log (D `

ν) close to
their mean, while a clear discrepancy is observed in the tails of the distribution. However,
zooming in the center of the distribution, a slight discrepancy from the log-normal law
is observed (see inset on Fig. 4.14(b)). This slight discrepancy might be due to the
fact that since we perform SPIV measurements, we estimated the viscous dissipation
without taking into account the variations of the velocity along the orthogonal direction
to the plane of measurements. However, this might not be enough to explain the stronger
discrepancy in the tails.
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A brief remark on statistical convergence

It might be wondered whether in our study we have collected enough data to have well
converged statistics. Moreover, the PDF of Π`

DR being strongly non-Gaussian, it is not
obvious that all the quantities we have used up to now such as averages or standard
deviation are well defined. Indeed, Π`

DR being characterized by extreme events, it might
be that each time such an event occurs, this completely changes the value of the statistical
quantities. To check whether or not this is the case, Fig. 4.15 displays the evolution of
both the spacetime average εDR and the standard deviation σDR of Π`

DR as a function
of the number of frames for case B. It can be observed that both of these quantities are
not converged when few number of frames are used to perform the statistics. However,
for a number of frames around 20000, both of them saturate. Since we have collected
around 30000 instantaneous frames for our high resolution data, this indicates that we
have enough data to perform our study, and that it makes sense to define statistical
quantities.
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Chapter 5

Detection and Characterization of
Quasi-Singular Structures in a von
Kármán Flow

Our eyes only see the big dimensions,
but beyond those there are others
that escape detection because they
are so small.

Brian Greene
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Chap. 4 was concerned with the analysis from experimental data of the quantities
introduced in Chap. 3. Our study provided encouraging new results, and we now want
to push our investigations further. We have seen from Fig. 4.11 that as the scale `
is decreased, Π`

DR organizes into localized structures in the physical space. Moreover,
we know that in the limit of infinitely small scale, Π`

DR converges towards its limit DI ,
which is an energy dissipation term stemming from singularities in the velocity field (i.e.
independent of viscosity). These observations therefore lead to the idea of using Π`

DR as
a detection criterion for potential singularities in turbulent flows. We are going to track
local structures where Π`

DR ≠ 0 and, if these structures do not disappear as ` becomes
small, then we have found good candidates for dissipative singularities, and we can then
study the topology of the flow at the location of these structures.

In this chapter, we first present the main idea of our detection method, and compare
the results obtained from SPIV measurements with those obtained from TPIV in the
turbulent boundary layer of a wind tunnel. Then, we apply our detection criteria to
the high resolution data obtained in our VK flow and, finally, we exhibit quasi-singular
topologies in the velocity field and provide arguments for the existence of different types
of singularities.

5.1 Singularity detection method

In this section, we review the main idea and results of the singularity detection method
introduced in [Kuzzay et al., 2016] (paper provided in App. C).

The main idea

We saw in Chap. 3 that if the velocity is locally characterized by a scaling exponent
h > 1/3, then DI = 0. In this section, we will make use of the converse statement of this
result, i.e. if locally DI ≠ 0, then the flow in the region where this is observed is no more
regular than Hölder continuous with some h ⩽ 1/3. If this is the case, then the velocity
field is not differentiable, which necessarily comes from a blow-up of the velocity field
itself (see Chap. 3). However, from our discussions in Chap. 2 and Chap. 3, there are
several reasons why such singularities cannot be directly detected from our experimental
PIV measurements. First of all, measurement systems inevitably have a coarse spacetime
resolution while blow-ups occur on infinitely small spacetime scales [Caffarelli et al., 1982].
Furthermore, post-processing techniques, which provide the output velocity field, smooth
the data by performing local averages and by considering very large velocities as spurious
vectors which, in the end, are discarded (see Chap. 2). The key idea is therefore to track
singularities through the behaviour of Π`

DR as one comes across the dissipative scale η. If
Π`
DR vanishes as one approaches or goes to smaller scales than η, then we have only seen

local energy transfers through scales (see Chap. 4), which are ultimately converted into
heat by viscous frictions as in the traditional Taylor view of turbulence. If, on the other
hand, we see that Π`

DR keeps a nonzero value larger than some threshold Q (in absolute
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Figure 5.1: (a) sketch of the experimental set-up and (b) typical instantaneous velocity
field, obtained from TPIV measurements in a plane orthogonal to the mean flow. The
arrows represent the in-plane component of the velocity field while the colors code the
normal component.

value), then we have detected a structure connected to a singularity with h ⩽ 1/3. This
structure becomes fully singular in the exact limit ` → 0. Therefore, Eq. (3.22) will be
used as a criterion (hereafter referred to as DR criterion) to detect singularity candidates
through scales (which we call quasi-singularities). The only adjustable parameter in our
detection method is the threshold Q, and we argue in App. C that a natural choice is to
take

Q(`) = QσDR (`) , (5.1)

where Q is an arbitrary dimensionless parameter, and σDR is the standard deviation
of the spacetime distribution of Π`

DR.

Implementation from TPIV data and first tests

We apply the DR criterion to TPIV data obtained inside a fully turbulent flow generated
in the boundary layer of a wind tunnel located at the Laboratoire de Mécanique de Lille,
France. A sketch of the experimental set-up is displayed in Fig. 5.1 along with a typical
instantaneous frame in a plane orthogonal to the mean flow (details of the set-up can be
found in App. C or, more extensively, in [Martins et al., 2015]). In this experiment, the
grid step is ∆g ≈ 0.7 mm while the Kolmogorov scale is η ≈ 0.35mm. As a consequence,
our study is performed in the dissipative range close to the Kolmogorov scale. As already
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discussed in Chap. 4 for VK flows, we observe that at these scales, Π`
DR does not vanish,

and in this case remains larger than Q = 10 at localized areas which we identify as
possible singularities with h ⩽ 1/3. In addition, the validity of our method is confirmed
by comparison with the BKM criterion (the quantitative comparison is provided in App.
C).

Stereoscopic vs tomographic detection

In the beginning, the main purpose of the study performed in App. C was to check
whether areas of strong Π`

DR detected from SPIV measurements also correspond to areas
of strong Π`

DR computed from TPIV measurements. In other words, can the DR criterion
be applied to SPIV measurements ? This is an important question for us because our
PIV set-up in the VK experiment is stereoscopic, and the possibility of detecting spurious
structures would challenge our conclusions from Chap. 4. As a consequence, the paper
provided in App. C was first intended as a preliminary study for the one performed in
App. D. In order to answer the question, we provide mathematical arguments to show
that spurious structures are not detected from SPIV measurements.

Let us define a new quantity based on (3.22), which is built from the three components
of the velocity increments on a two-dimensional plane

D2D
I (u) def= lim

`→0
Π2D,`
DR (u) = lim

`→0

1

4 ∫S dr ∇G`(r) ⋅ δ2Du(r) ∣δ2Du(r)∣2, (5.2)

where δ2Du(r) = u(x2D + r2D) −u(x2D), x2D and r2D being the projection onto the
plane of measurements of the 3D coordinates. We now argue that areas where D2D

I is
nonzero are also areas where the full field DI is nonzero, thus proving that it is sufficient
to look for singularities in SPIV data.

To prove this, we first consider a situation where the velocity field is regular in the
direction perpendicular to the plane of measurement, that we call y. In such a case, as
` → 0 we may expand the velocity increments in Taylor series in the y-direction. Using
the notations introduced in Eq. (5.2), we get

δu(r) = δ2Du(r) + ry∂yu + O
ry→0

(r2
y). (5.3)

where ry is the y-component of r and δ2Du(r) the velocity increments on the (XZ)
plane. We then take the cube of this expression which leads to

[δ2Du(r)]3 = [δu(r)]3 + O
ry→0

([δu(r)]2ry). (5.4)

As we know from Chap. 3, Π`
DR(u) = O(δu(`)3/`). So that if δu(`) ∼ `h, then

Π2D,`
DR (u) = Π`

DR(u) + O
`→0

(`2h) , (5.5)

where the first term is O(`3h−1). So if the velocity field is regular with h = 1, then
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Figure 5.2: Comparison between two instantaneous maps of the Duchon-Robert (DR)
criterion computed from both SPIV and TPIV data. (a) map of the DR energy transfers
Π2D,`
DR and (b) map of the DR energy transfers Π`

DR (normalized by their space-time
averages) at the smallest resolved scale. The results are displayed in the plane y = 0
orthogonal to the streamwise direction.

lim
`→0

Π2D,`
DR (u) = lim

`→0
Π`
DR(u) = 0. (5.6)

If, on the other hand, the velocity field is singular with h < 1, the limit of Π2D,`
DR (u) is

controlled by the first term on the right-hand side of Eq. (5.5) and we have

lim
`→0

Π2D,`
DR (u) = lim

`→0
Π`
DR(u). (5.7)

This means that if the flow is regular in the y direction, all areas where the flow is
smooth in TPIV data are also smooth in SPIV data. Therefore, all singularities detected
using SPIV measurements will correspond to singularities detected using TPIV. That
is to say, computing the inertial energy dissipation from SPIV measurements does not
introduce any spurious structures which would disappear when performing the full 3D
computation. However, we cannot detect singularities lying only on the orthogonal di-
rection to the plane of measurements. As a consequence, D2D

I ≠ 0 is a sufficient but not
necessary condition to detect singularities.

An illustration of this result is also provided in Fig. 5.2 where a comparison between
Π2D,`
DR and Π`

DR shows a very high correlation between intense structures in both cases
(the quantitative comparison is provided in App. C). Moreover, another comparison
with the norm the vorticity shows that the agreement between the DR and BKM criteria
is still strong for SPIV data.
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5.2 Application to von Kármán flows

We are now going to apply our detection method to TM87(-)1H_zoom16_center_glyc59
(case B in Chap. 4) in order to track extreme events of Π`

DR and study the flow topology
at the location of these events. The threshold Q we introduced in Sec. 5.1 was expressed
in units of the spacetime average εDR. However, a more usual choice is to use the average
deviation from εDR: the standard deviation σDR. This makes sense because we have
shown in Chap. 4 that this quantity converges towards a definite value when computed
from a large enough amount of data. As a consequence, in this section, we take

Q± (`) = εDR (`) ±QσDR (`) . (5.8)
For TM87(-)1H_zoom16_center_glyc59, we have εDR = 0.0043 and σDR = 0.0679. As

might be expected, the number of events which correspond to Π`
DR > Q+ (`) or Π`

DR <
Q− (`) strongly depends on the choice of Q. For instance, if we choose Q = 50, we detect
that these events are distributed on approximately 100 instantaneous frames. However,
for Q = 100, only 6 frames contain such events. This therefore raises the question of the
appropriate choice of Q. In extreme value theory, there is no general rule as to what
quantile should be used in order to consider an event as extreme. The most common
choice when the events are normally distributed is to take Q = 3 − 5. In this section,
we are going to set Q = 75. This choice is motivated by the fact that the events which
are above this threshold correspond to ∣Π`

DR∣ > 100ε (see Tab. 2.3), and in this respect
can truly be qualified as extreme. The probability of finding such extreme events can be
computed from the PDF of Π`

DR displayed in Fig. 4.14a) and is less than 10−6. When
looking at the corresponding flow topologies, we observe many different patterns, some
examples being displayed on Fig. 5.3. In App. D, we proposed a first classification of
these patterns which we categorize in fronts, spirals, jets and vorticity cusps. Of course,
we must be careful in trying to interpret such classification since it does not rely on
any systematic and detailed analysis, but rather on “how the flow looks like”. Moreover
some of the detected topologies do not appear to enter any of the categories we just
mentioned in any obvious way. For instance, Fig. 5.3(e) and (f) show a flow which
seems to originate from a source point, where Π`

DR < 0 as would be expected in such
a case. However, we observe that most of the patterns we detect resemble those which
occur in the neighbourhood of critical points in inviscid, constant vorticity flows with
slip at the boundary [Perry and Fairlie, 1974]. For example, Fig. 5.3(a) and (b) seem
to correspond to a saddle, Fig. 5.3(c) and (d) to a focus and Fig. 5.3(g) and (h) to a
node. This is quite surprising for at least two reasons. First, we saw in Chap. 3 that
areas where the velocity field loses its regularity are areas where u blows up whereas
u = 0 at critical points. Second, the analysis performed in [Perry and Fairlie, 1974] is
based on the assumption that u can be expanded in Taylor series which is not the case at
the location of singularities. Clearly, more investigations are needed in order to improve
the understanding of our results. In any case, a general observation is that whatever the
in-plane flow, very intense structures of Π`

DR lie along a frontier across which uy changes
abruptly.
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Figure 5.3: Examples of flow topologies observed at the location of extreme events of
Π`
DR for TM87(-)1H_zoom16_center_glyc59. Left panels show maps of Π`

DR (colours)
along with the in-plane component of the velocity field (arrows). Right panels show the
three components of the velocity field. The colour codes for all the right and left panels
are the same.



5.3. DISCUSSION 103

5.3 Discussion

In this chapter, we have presented a new method for detecting potential singularities in
real turbulent flows from PIV measurements, and applied it in the case of a VK flow
where the Kolmogorov scale is resolved. Our results provide a further indication of the
non-trivial structures of turbulent flows at small scales, complementary to previous scal-
ing based studies of dissipative intermittency (see e.g [Sreenivasan and Antonia, 1997]).
We have shown that extreme events in Π`

DR are associated with the existence of nearly
singular structures in the topology of the velocity field, a classification being proposed in
App. D. These kinds of topologies are typically associated with special configurations of
eigenvalues of the velocity strain tensors around critical points of flow patterns. At such
points, it is often the case that Lagrangian trajectories cross [Perry and Fairlie, 1974],
which would make these extreme events possible locations of shock-like singularities. In
any case, the flow topology around an extreme event is different from the usual flow
topology associated with viscous dissipation. For instance, [Moisy and Jiménez, 2004]
used box counting to study the fractal structure of regions of intense vorticity and energy
dissipation in a direct numerical simulation of isotropic turbulence. Their work suggests
that the geometry of the regions of intense dissipation resemble sheets or ribbons. This
further suggests the existence of an inertial mechanism contributing to energy dissipation.

Another interesting observation is that extreme events of Π`
DR provide significant local

contributions to energy balance at dissipative scales, regardless of whether the energy
lost pertaining to these events is eventually dissipated by genuine singularities or by
viscosity at yet smaller scales. This suggests that Kolmogorov scale might not be the
only characteristic scale for energy dissipation. This seemingly surprising conjecture is
in fact compatible with the multi-fractal picture of turbulence, which predicts that for
a given flow singularity of exponent h there is a specific dissipation scale ηh scaling like
Re−1/(1+h) [Paladin and Vulpiani, 1987b]. For h = 1/3, we recover the classical Kolmogorov
scale η. For the case where h < 1/3, we have ηh < η so that energy dissipation can occur at
much smaller scales than the expected one in K41. Our findings are therefore compatible
with the multi-fractal picture of turbulence, if the extreme events of inertial dissipation
are the footprints of singularities of exponent h < 1/3, as suggested in App. C. Whether
this interpretation is valid or not is still debatable, as we have no means to follow the
inertial dissipation down to ` = 0, as required in Eq. (3.22). In order to unambiguously
distinguish between inertial and viscous dissipation, and to answer the question as to
whether these extreme events are simply energy transfers to yet smaller scales or not,
one may need to resolve the flow down to the kinetic limit and track the evolution of
these extreme events in time until they fully dissolve, which represents an experimental
challenge for future works.

Perhaps a more immediate practical question one could ask is: knowing the signif-
icance of such extreme events even at the dissipative scales, how should one truncate
models and simulations at tractable hydrodynamic scales with the correct physics reflect-
ing their properties ? In compressible fluid dynamics, these kinds of questions are usually
addressed in relation with the building of a singularity through shock formation. In these
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cases, it has been common practice starting with [Von Neumann and Richtmyer, 1950]
to select physically admissible solutions, and ensure the stability of numerical schemes
via the introduction of an appropriate numerical viscosity [Guermond et al., 2011]. Our
results suggest that the same kind of procedure should also be introduced in incompress-
ible numerical simulations, in order to account for extreme events of inertial dissipation
that are not captured at the model resolution scale.
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First Discussions on Numerical
Simulations

Real programmers don’t comment
their codes. They were hard to write,
they should be hard to read.
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Figure 6.1: Illustration of the idea of large eddy simulations. The INSE are directly
solved for the wavenumbers smaller than some cut-off, while higher modes are averaged
out and modeled.

6.1 Large eddy simulations

This section presents the main results published in [Kuzzay et al., 2015] (see App. B).

Principle

Performing DNS of turbulent flows requires to solve the INSE and keep track of all the
scales from the energy injection scale down to dissipative scales. As we discussed at the
end of Chap. 1, the number N of grid points needed to fully resolve the flow down to
Kolmogorov scale grows like N ∼ Re9/4, which rapidly becomes expensive in terms of data
storage and computational power as Re increases. Therefore, DNS are limited to fairly
low values of Re. For instance, the DNS of VK flows performed by Caroline Nore and
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Jean-Luc Guermond do not go beyond Re ≈ 2500 (see Chap. 2), and if one wants to
simulate flows at higher Re, other solutions must be come up with.

The idea of large eddy simulations (LES) was first proposed by [Smagorinsky, 1963]
in order to simulate atmosphere’s general circulation. As illustrated on Fig. 6.1, the idea
of LES is to reduce computational cost by ignoring the scales smaller than some cut-off
`c, usually lying in the inertial range, and numerically solve the INSE for large scales
only. The interaction between large and small scales must then be modeled in terms of
the resolved velocity field in order to have a closed problem. Physically, this approach is
justified by the fact that large-scale structures in turbulent flows are the ones which absorb
energy from the mean flow and pass it on to smaller scales. As a consequence, they are
very anisotropic and depend on various large-scale parameters such as forcing conditions,
flow geometry, etc. . . Small scales on the other hand are the ones which dissipate energy.
They are assumed to be isotropic and universal, i.e. they do not depend on the details
of the flow (see Kolmogorov’s universality assumptions discussed in Chap. 1).

In LES, small scales are averaged out via some low-pass filter applied to the INSE:
this is exactly the approach we have introduced at the beginning of Chap. 3. We have
seen that the dynamics of the coarse-grained velocity field defined in Eq. (3.1) by

u`ci (x, t) = ∫ dr G`c (r)ui (x + r, t) , (3.1)

obeys Eq. (3.2) and (3.3)

∂tu
`c
i + u`cj ∂ju`ci = f `ci − ∂ip`c + ν∂jju`ci , (3.2)

∂ju
`c
j = 0, (3.3)

which have the same form as the INSE with the added turbulent force f `ci = −∂jτ `cij .
τ `cij is the subscale stress tensor defined as τ `cij = (uiuj)`c−u`ci u`cj . However, if scales smaller
than `c are ignored, (uiuj)`c cannot be computed, and a closure relation must be found in
order to solve Eq. (3.2) and (3.3) numerically. Historically, the first one was introduced in
[Smagorinsky, 1963], who proposed to write τ `cij = −2νeS

`c
ij , where νe is the eddy viscosity

and must be tuned depending on the type of flow under investigation. It follows that the
scale-to-scale energy transfers represented by Π`c

LES = −τ `cij S`cij are modeled by a viscous
dissipation, which therefore does not allow for backscatter of energy, known to occur in
real turbulence.

Large eddy approach to PIV measurements

Designing new LES models is an active area of research. However, a question which can
be raised is whether these models accurately describe the physics of turbulent flows at
small scales.

PIV measurements are obtained by computing correlations between two successive
snapshots of the flow. As a consequence, the output velocity field is obtained through local
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averages over interrogation cells, and its properties are similar to the low-pass filtered field
studied in LES. In this case, the cut-off `c is imposed by the resolution of the PIV system.
In order to estimate the energy dissipated in turbulent flows where PIV measurements
can be performed and where η ≪ `c, it has therefore recently been suggested in [Sheng
et al., 2000] to use LES models for the estimation of energy transfers towards subgrid
scales (SGS). This approach has been successfully applied for various flow geometries
in [Saarenrinne and Piirto, 2000; Baldi and Yianneskis, 2003; Tanaka and Eaton, 2007;
Delafosse et al., 2011; Tokgoz et al., 2012; Kuzzay et al., 2015].

The VK2 set-up offers a framework of choice in order to test the accuracy of LES
models from experimental data. As discussed in Chap. 2, torque measurements provide
precise estimations of the global power dissipated within the flow, and SPIV measure-
ments allow to implement techniques borrowed from LES. In addition, we also know
from Chap. 4 that εDR computed over the whole volume between the impellers agrees
with torque measurements within 2%. The idea is therefore to test our results obtained in
Chap. 4 in the inertial range against results obtained using LES models for the estimation
of the subgrid energy transfers.

In order to perform this study, we use the gradient model first introduced in [Clark
et al., 1979]. In this model, the subscale stress tensor is expressed as an inner product of
the resolved velocity gradients

τ `cij = C∆2
r∂ku

`c
i ∂ku

`c
j , (6.1)

where C is a constant to be calibrated and ∆r is the width of the filtering. This model
is known to ensure forward and backscatter of energy between resolved scales and SGS.

Application to von Kármán flows

In order to apply the LES approach to the PIV data obtained from our VK set-up, the
first step is therefore to find the value of the constant C in order to be able to compute
Π`c
LES. The procedure we followed is based on the angular momentum balance given in

Eq. (1.22), and is described in App. B. We choose C so as to recover the results of
[Marié and Daviaud, 2004], who showed that the vertical flux of angular momentum in
VK flows is a constant equal to the torque injected by the impellers. It is shown in
App. B that the optimum value of the constant is C ≈ 4, which is around 50 times
larger than the conventional choice made in [Leonard, 1974; Eyink, 2006] for a Gaussian
filter. Possible explanations for this large value of C are: our data are not filtered in a
Gaussian way ; since we ignored azimuthal derivatives in our computations from SPIV
measurements, the constant must be higher to compensate ; the turbulence is neither
isotropic nor homogeneous.

Comparison between PIV estimates of εLES = ⟨Π`c
LES⟩ (● - ◆), εDR (● - ◆) and

torque measurements (● - ◆) is provided on Fig. 6.2. We observe that, overall, the LES
approach is in good agreement with direct torque measurements. At Re ≈ 4 × 103, the
dissipative scale is of the order of 1mm, close to the PIV resolution. As a consequence,
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Figure 6.2: Comparison between estimates of ε obtained from torque measurements (● -
◆), from SPIV measurements by computing Π`

LES (● - ◆), and from SPIV measurements
by computing Π`

DR (● - ◆). The estimates are computed based on 2-15 realizations of
the same flows where at least 600 instantaneous velocity snapshots have been taken for
each of them. The symbols represent the mean of our computations, while the error bars
represent the standard deviation. εν has been taken into account only for Re ≈ 4 × 103

and is negligible compared to εDR for all the other points.
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Figure 6.3: Maps of Π`c
LES at Re = 3 × 105 for (a) TM87(+) and (b) TM87(-).

a non-negligible part of energy transfers (around 30%) is contained in the viscous term,
and we find a very good estimation of the mean energy dissipation rate by taking into
account both scale-to-scale transfers and viscous dissipation. This result is therefore in
agreement with the observation of [Tokgoz et al., 2012] made for a Taylor-Couette flow.
However, for all the other points, the contribution of viscous effects can be neglected
compared to εLES and εDR. For Re > 7 × 105, the LES approach allows to capture up
to 90% of the actual energy dissipation. In any case, it appears that εDR is in better
agreement with torque measurements than εLES. Indeed, as we discussed in Chap. 4,
DR-PIV estimates allow to capture up to 98% of the actual dissipation with smaller error
bars. As a consequence, since the expression of Π`

DR is an exact result derived from the
INSE, and since it provides better estimates of ε without introducing any free parameter
to be calibrated, the conclusion from this study is that Π`

DR offers a very promising
alternative to LES methods for the computation of scale-to-scale energy transfers from
PIV measurements in real turbulent flows.

Finally, if we compare the maps of Π`c
LES displayed on Fig. 6.3 with the ones of Π`c

DR

from Fig. 4.5(a) and (c) obtained from the same data, we observe that they contain the
same qualitative informations so that our discussion from Chap. 4 holds for the results
displayed on Fig. 6.3. However, a noticeable difference is that the maps of Π`c

DR are less
noisy than those of Π`c

LES. As discussed in Chap. 4, this is due to the fact that in Π`c
DR

the gradient operator acts on a smooth test function rather than directly on the velocity
field.
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6.2 Energy balance in the DNS of a dynamical mixer

Some details about the geometry

DNS of turbulent incompressible flows generated inside a dynamical mixer are studied
by Salur Basbug in the group of Dr. Georgios Papadakis and Prof. Christos Vassilicos
at Imperial College, London. The geometry in which these simulations are performed is
described on Fig. 6.4. The tank is cylindrical of axis (Oz), radius R, height H = 2R,
for an aspect ratio of H/R = 2. An impeller, constituted of four straight blades of length
Rimp = R/2, is located at the center of the tank and rotates with angular velocity Ω. The
Reynolds number based on the length of the blades is

Re =
R2

impΩ

ν
≈ 500. (6.2)

The structure of the grid which has been used for the DNS, along with the ratio of
the cell size over the Kolmogorov length scale are displayed on Fig. 6.5 and Fig. 6.6.
We see that everywhere the cell size is smaller than (or very close to) η, which indicates
that the flow is spatially well resolved. In this section, we perform our study in a specific
volume V represented on Fig. 6.4, fixed in the reference frame of the rotating impeller.
Typical maps of the instantaneous and mean flows in V are provided in Fig. 6.7.

Energy balance

A strong feature of numerical simulations compared to the VK set-up discussed in pre-
vious chapters, is that one has access to the pressure field at every point where velocity
is probed. Therefore, it can be checked whether viscous dissipation and advection bal-
ance the variations of kinetic energy globally in space and time. When this balance is
performed from the numerical data at the resolution of the grid, it is found to hold well
and the relative discrepancy between the two sides of Eq. (1.21) is close to 2%.

The question we ask is whether this discrepancy (which we shall call ε0 from now on)
can be accounted for by taking into account the contribution of Π`

DR. In order to check
that, Salur provided us with six sets of data. Each set contains the three components of
the velocity field on a 3D cartesian grid in V . The difference between these sets lies in the
number of points at which Salur probed the velocity field, which are: 83, 153, 223, 293,
363, and 433. These resolutions correspond to a ratio of the gridstep over the Kolmogorov
scale of: 6.8, 3.4, 2.3, 1.7, 1.4, and 1.1. Fig. 6.8 displays the results of our computations
of εDR (−●− - −●− - −●− - −●− - −●− - −●−) from these data along with ⟨−3S3/4⟩
(−◾− - −◾− - −◾− - −◾− - −◾− - −◾−), and we see that the variations of these two
quantities are quite similar. Moreover, we see that we are not able to compute εDR down
to the Kolmogorov scale because we need to compute velocity increments over a few grid
steps for εDR to be well converged. However, we can fit the variations of ⟨−3S3/4⟩ by a
quadratic function in order to extrapolate its behaviour at smaller scales, and we see that
the fit reaches ε0 at `/η = 1.8.
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Figure 6.4: Geometry of the dynamical mixer.
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Figure 6.5: Structure of the grid in the meridional plane and at mid-height. Courtesy of
Salur Basbug
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Figure 6.6: Ratio of the size of the mesh over Kolmogorov length scale. Courtesy of Salur
Basbug
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Figure 6.7: Typical instantaneous and mean velocity field in V . (a) instantaneous frame
in the meridional plane and (b) the corresponding time-average. (c) instantaneous frame
in the mid-height plane and (d) the corresponding time-average
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Figure 6.8: Variations of εDR (−●− - −●− - −●− - −●− - −●− - −●−) and ⟨−3S3/4⟩
(−◾− - −◾− - −◾− - −◾− - −◾− - −◾−) as a function of `/η in V , computed
from data on grids of size 83, 153, 223, 293, 363, and 433. When the energy balance is
computed, there exists a discrepancy from the exact balance obtained from Eq. (1.21).
This discrepancy is denoted ε0. The arrows indicate the points corresponding to the
time-average of the dashed curves displayed in Fig. 6.10 (same colour code).
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Figure 6.9: Global (in space) energy balance in V as a function of time obtained from
numerical data. The relative discrepancy between the two curves is close to 2% at all
times.
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Figure 6.10: Global (in space) energy balance in V as a function of time, taking into
account the contribution of Π`

DR at various grid size. (−−) 83, (−−) 153, (−−) 223, (−−)
293, (−−) 363, (−−) 433.
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Figure 6.11: Collapse of the dashed curves in Fig. 6.10 onto the solid red one.
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Fig. 6.9 displays the energy balance obtained by Salur as a function of time. The
relative discrepancy between the two curves remains close to 2% at all times. When we
add the contribution of Π`

DR, we obtain the dashed curves displayed in Fig. 6.10. Each
of these curves corresponds to the points indicated by the arrows of the same colour in
Fig. 6.8. We see that adding the contribution of ⟨Π`

DR⟩ does not improve the balance,
and actually makes it even worse. However, this is not surprising since we know from
our discussion of Fig. 6.8 that Π`

DR has not been computed at a small enough scale for
εDR to be equal to ε0. However, we notice that as our computation is performed onto
finer grids, the discrepancy between the dashed curves and the solid red curve decreases.
Actually, we observe that the dashed curves can be collapsed onto the solid red one by
multiplying Π`

DR by ε0/εDR (`), where we recall that εDR (`) = ⟨Π`
DR⟩ . This is illustrated

on Fig. 6.11, which shows the balance

1

V ∫V (∂tE + ∂jJ j) = −
1

V ∫V (
ε0

εDR (`)Π`
DR +Dν) . (6.3)

At the highest resolution, the maximum relative discrepancy in the energy balance is
3%�. This suggests that taking εDR into account at smaller scales actually improves the
balance and that Π`

DR should be computed in DNS.
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Conclusion

“[. . . ] and, as you can see, we observe
singularities.”
“Well, you observe. . . something.”

A discussion between Bérengère and
François.
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7.1 Contributions

In this thesis, we provide the first investigations on the possible existence of an inertial
mechanism for energy dissipation in real turbulent flows. This mechanism for the breaking
of the time-reversal symmetry of Euler equations was conjectured by [Onsager, 1949] as
stemming from a possible lack of smoothness in the velocity field, and has since remained
at the heart of the mathematical analysis of the INSE. However, these ideas have been
largely ignored by the physics community in which the consensus is that the velocity and
pressure fields in experimental incompressible flows remain regular at all times. Here, we
provide a physicist’s approach to the study of Navier-Stokes regularity from experimental
data. This approach is made possible by mainly two things: first, the derivation of the
analytical expression of the inertial dissipation by [Duchon and Robert, 2000] in terms
of velocity increments, and second, the development of particle image velocimetry (PIV)
systems which provide measurements for the three components of the velocity field, at
several points in the flow bulk at the same time. Using these tools, we are able to
investigate the energy cascade in a turbulent von Kármán (VK) flow. This type of flows
provide a framework of choice for studying Onsager’s conjecture because the energy input
is well controlled, they have a finite mean energy dissipation rate ε at large Reynolds
numbers, and their regularity is not known.

We were able to show in Chap. 4 that in the inertial range, Duchon and Robert’s re-
sults capture the energy cascade with very good accuracy, and provide better estimations
of the mean dissipation rate than large-eddy-simulation (LES) techniques. In addition,
we observe by looking at the local variations of Π`

DR that when ` is decreased, areas where
Π`
DR is nonzero do not vanish but instead become more localized in the physical space.

This naturally leads to the idea presented in Chap. 5 of introducing Π`
DR as a criterion

to detect candidates for singularities in our PIV data through scales. When computed
in the dissipative range close to the Kolmogorov scale at the center of the flow, we show
that Π≳η

DR does not vanish as might be expected, but instead has a non trivial structure
with extreme events where at one grid point Π≳η

DR > 100ε. By looking at the flow topology
at the location of these extreme events, we are able exhibit quasi-singular structures,
different from those expected at the location of extreme viscous dissipation. First studies
suggest that it is possible to classify the types of structures we observe, and we make an
attempt in this direction. Finally, we provide discussions of our results in the framework
of computational fluid dynamics.

7.2 Perspectives

Whether we observe the signature of actual irregularities or structures which are smoothed
out at smaller scales, the work presented in this thesis opens many perspectives for
future work. For instance, the irregular topologies which we detect at Kolmogorov scale
resemble the topologies observed at critical points described in [Perry and Fairlie, 1974].
However, velocity at critical points is zero while the regularity of the INSE is a blow-up
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problem. Therefore, more systematic investigations are needed in order to be able to
really characterize the structures we observe, and understand what happens at the level
of the flow topology at the location of extreme events of Πη

DR.
Another interesting question, which we are not able to answer until further improve-

ments of our PIV set-up, is whether these quasi-singular structures persist at smaller
scales or whether viscosity smoothes them out and takes up all of the energy dissipa-
tion. Whatever the answer to this question may be, our results strongly suggest that
Kolmogorov scale is not the smallest relevant scale for energy dissipation. As discussed
in Chap. 5, this naturally leads to the idea of connecting our results to intermittency
and the multifractal picture.

In this thesis, we only have performed our study at the center of the flow. However,
as explained in Chap. 3, another area of interest is located in the middle shear layer,
close to the solid wall. The question is whether the properties of Π`

DR are the same close
to the axis of rotation and close to the wall, or whether we observe differences in e.g.
the probability density functions or in the kind of irregular topologies which we detect.
Actually, preliminary investigations show that what happens in these two parts of the
flow is different.

Moreover, the results we have presented were obtained for TM87(-) only. The same
study could be performed for TM87(+), at the center and at the wall, in order to inves-
tigate whether different forcing conditions lead to different statistical properties of Π`

DR,
or different flow topologies at the location of extreme events.

Our work focused on the experimental study of Π`
DR, and to a lesser extent on the

velocity circulation decay dΓ`/dt. As discussed in Chap. 3, the these two quantities
are related via the turbulence force f `, the properties of which have not been directly
investigated in this thesis. For instance, the properties of Υ` (see Chap. 3) could be
studied down to Kolmogorov scale from our SPIV data. In theory, based on the results
obtained by [Chen et al., 2006; Eyink and Aluie, 2006], it would be possible to detect
quasi-singular structures where dΓ`/dt ≠ 0 and Π`

DR = 0. These would be characterized
by a scaling exponent 1/3 < h ⩽ 1/2. The same analyses as those performed in this
thesis could then be repeated based on the properties of Υ`, and the flow topology at
the location of extreme events of velocity circulation decay could then be studied. The
parallel study of the properties of Π`

DR and f ` ⋅u` should also yield interesting results as
briefly mentioned in Chap. 3.

Considering numerical simulations, our results may have an impact on computational
fluid dynamics, as we discussed in Chap. 6. The fact that Π`

DR provides better estimates
for ε than LES models in our experimental set-up confirms that Π`

DR may be viewed
as a local non-random form for the energy transfers towards small scale. Of course, we
are aware that this study has only been performed globally, in a specific geometry, and
tested against only one LES model. Therefore, we cannot claim that LES models should
be dropped yet. However, the results presented in Chap. 4 are pointing in this direction.

In addition, the results we presented in Chap. 5 highlight the important contribution
to the local energy balance of Π`

DR close to the Kolmogorov scale. These quasi-singular
structures are not known to occur in direct numerical simulations (DNS) of incompressible
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flows, which might be due to mainly two reasons: either they exist in DNS but have never
been detected, or numerical schemes intrinsically prevent such structures from developing.
In the last case, this would mean changing the numerical scheme, and implementing
procedures similar to what is done in DNS of compressible fluids where singularities are
known to occur during e.g. shock formations. In any case, more investigations are needed,
which will provide deeper insights on the results obtained in this thesis.

Finally, it might be wondered what happens at the transition to turbulence. In this
thesis, we have shown that Π`

DR is very small for laminar VK flows, and studied its
statistical properties in fully turbulent flows. However, an interesting question is what
happens at intermediate Reynolds numbers when the flow becomes chaotic but is not
fully turbulent yet. Of course, all these considerations can be applied to other geometries
where PIV measurements can be implemented.



Appendix A

Duchon and Robert’s paper: Inertial
energy dissipation for weak solutions of
incompressible Euler and Navier-Stokes
equations

125



This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.166.23.127
This content was downloaded on 22/07/2014 at 10:02

Please note that terms and conditions apply.

Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes

equations

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience



Nonlinearity 13 (2000) 249–255. Printed in the UK PII: S0951-7715(00)04594-1

Inertial energy dissipation for weak solutions of
incompressible Euler and Navier–Stokes equations

Jean Duchon† and Raoul Robert‡
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Abstract. We study the local equation of energy for weak solutions of three-dimensional
incompressible Navier–Stokes and Euler equations. We define a dissipation term D(u) which
stems from an eventual lack of smoothness in the solution u. We give in passing a simple proof
of Onsager’s conjecture on energy conservation for the three-dimensional Euler equation, slightly
weakening the assumption of Constantin et al. We suggest callingweak solutionswith non-negative
D(u) ‘dissipative’.

AMS classification scheme numbers: 35Q30, 76D05

1. Introduction

Here we consider the three-dimensional (for the most part) incompressible Navier–Stokes and
Euler equations. For simplicity we limit ourselves to flows on the torus T = (R/Z)3, i.e. with
periodic boundary conditions.

Let us take the Navier–Stokes equation first. For an initial velocity field u0 with
finite energy, as is well known (Leray [4, 5]), there exists at least one weak solution (i.e.
in the sense of distributions) to the Cauchy problem. A priori such a solution belongs to
L1(0, T ; L2) \ L2(0, T ; H 1) and there is not enough smoothness to ensure the classical
energy equality; all we know is that one can define some weak solution satisfying, in addition,

d
dt

Z
1
2u

2 dx + ⌫
Z

(ru)2 dx 6 0.

As a first step we show that for any weak solution u of the Navier–Stokes equation, the local
equation of energy

@t (
1
2u

2) + div(u( 12u
2 + p)) � ⌫1 1

2u
2 + ⌫(ru)2 +D(u) = 0

is satisfied, withD(u) defined in terms of the local smoothness ofu. Thus the non-conservation
of energy originates from two sources: viscous dissipation and a possible lack of smoothness
in the solution.
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For the Euler equation, we consider weak solutions in L3(0, T ; L3). Although there is no
general result at present for the global-in-time existence of such solutions, some examples are
known (consider any two-dimensional weak solution given by Yudovich’s [10] theorem).

According to an approach in the study of turbulence that goes back to Onsager [7], it might
be true that such weak solutions of the three-dimensional Euler equation describe the turbulent
flow correctly (in the limit of infinite Reynolds number of course). Smooth solutions conserve
energy as is shown by a simple integration by parts, but this calculation does not extend to
weak solutions. Some weak solutions have been constructed without energy conservation
(Scheffer [9], Shnirelman [8]). Onsager had conjectured that weak solutions of the Euler
equation satisfying a Hölder continuity condition of order > 1

3 should conserve energy. The
great interest of this question was duly emphasized by Eyink [2], who also gave a proof of
energy conservation under a stronger assumption. Then Constantin et al [1] gave a simple and
elegant proof of energy conservation under the weaker and more natural assumption that u

belongs to the Besov space B
↵,1
3 with ↵ > 1

3 .
Our considerations above on dissipation in the Navier–Stokes equation apply to weak

solutions of Euler as well: one has a local equation of energy

@t (
1
2u

2) + div(u( 12u
2 + p)) +D(u) = 0

and the explicit form of D(u) makes it possible to prove energy conservation under a slightly
weaker assumption.

We then come to the problem of distinguishing, among weak solutions of Euler or Navier–
Stokes equations, which ones may be considered physically acceptable. We first see that the
weak solutions of Navier–Stokes constructed by Leray [4, 5] do satisfy D(u) > 0. We also
show that any weak solution of the Euler equation which is a strong limit of smooth solutions
of the Navier–Stokes equation satisfies this same condition. Finally, we are led to a definition
of dissipative weak solutions: those satisfying D(u) > 0.

2. The local equation of energy for weak solutions of Navier–Stokes and Euler equations

Our main point is expressed in the following two results:

Proposition 1. Let u 2 L2(0, T ; H 1) \ L1(0, T ; L2), a weak solution of the Navier–Stokes
equation on the three-dimensional torus T :

@tu + @i (uiu) � ⌫1u + rp = 0
divu = 0.

(1)

Let ' be any infinitely differentiable function with compact support on R3, even, non-negative
with integral 1 and '"(⇠) = (1/"3)'(⇠/").

Put D"(u)(x) = 1
4
R

r'"(⇠) · �u(�u)2 d⇠ , where �u = u(x + ⇠) � u(x).
Then, as " goes to 0, the functions D"(u) (which are in L1(]0, T [⇥T )) converge, in the

sense of distributions on ]0, T [⇥T , towards a distributionD(u), not depending on ', and the
following local equation of energy is satisfied:

@t (
1
2u

2) + div(u( 12u
2 + p)) � ⌫1 1

2u
2 + ⌫(ru)2 +D(u) = 0.

Proof. Using Sobolev inclusion of H 1 in L6, one easily sees that u is in L3(0, T ; L3) and
therefore uiuk is in L3/2(0, T ; L3/2); and the same for p since, taking the divergence of (1),
one obtains

�1p = @k@i (uiuk)
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and ifp is the only solutionwithmean zero, the linear operatoruiuk ! p is strongly continuous
on Lq for 1 < q < 1, and so p 2 L3/2(0, T ; L3/2).

Now let us regularize equation (1): denotingu" = '"⇤u,p" = '"⇤p, (uiu)" = '"⇤(uiu),
etc one has

@tu
" + @i (uiu)" � ⌫1u" + rp" = 0.

This equation multiplied scalarly by u, plus equation (1) multiplied by u", gives

@t (u · u") + div((u · u")u + p"u + pu") + E" � ⌫1(u · u") + 2⌫ru · ru" = 0

where

E"(t, x) = @i (uiuj )
"uj � uiuj@iu

"
j .

Since u 2 L3(0, T ; L3), u · u" converges to u2 and (u · u")u + p"u + pu" converges to
(u2 + 2p)u in the sense of distributions on ]0, T [⇥T . Moreover, ru" tends to ru strongly
in L2(]0, T [⇥T ), thus E"(t, x) converges in the sense of distributions towards

�@t (u2) � div(u(u2 + 2p)) + ⌫1u2 � 2⌫(ru)2.

Another calculation gives
Z

r'"(⇠) · �u(�u)2 d⇠ = �@i (uiujuj )
" + 2@i (uiuj )

"uj + @i (ujuj )
"ui � 2uiuj@iu

"
j .

However, @i (ujuj )
"ui = @i (ui(ujuj )

"), due to the incompressibility of u.
Moreover, @i (ui(ujuj )

" � (uiujuj )
") tends to 0 in the sense of distributions on ]0, T [⇥T

and thus
R

r'"(⇠) · �u(�u)2 d⇠ has the same limit as 2E". ⇤

The same reasoning applies entirely for a weak solution of the Euler equation (⌫ = 0) and
gives

Proposition 2. Let u 2 L3(0, T ; L3) be a weak solution of the Euler equation. Then the
functionsD"(u) converge, in the sense of distributions, to a distributionD(u), not depending
on ', and the following local equation of energy holds:

@t (
1
2u

2) + div(u( 12u
2 + p)) +D(u) = 0.

Remark. In the two previous propositions D(u) measures a possible dissipation (or
production) of energy caused by a lack of smoothness in the velocity field u, this term is
by no means related to the presence or absence of viscosity.

Now let us state a simple smoothness condition which implies D(u) = 0.

Proposition 3. Let u satisfy
R

|u(t, x + ⇠) � u(t, x)|3 dx 6 C(t)|⇠ |� (|⇠ |), where � (a) tends
to 0 with a, and

R T

0 C(t) dt < +1. Then D(u) = 0.

Proof. One has
����

Z
r'"(⇠) · �u(�u)2 d⇠

���� 6
Z ��r'"(⇠)

�� |�u|3 d⇠
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integrating over ]0, T [⇥T yields
Z
dt

Z ��D"(u)
�� dx 6

Z
dt

Z ��r'"(⇠)
�� d⇠

Z ���u
��3 dx

6
Z T

0
C(t) dt

Z 1
"4

����r'
✓
⇠

"

◆����|⇠ |� (|⇠ |) d⇠

and putting ⇠ = "⌘, one can see that this tends to 0 with ". ⇤

Remark. Ifu is a weak solution of the Euler equation and satisfies the smoothness condition in
proposition 2 above, then the kinetic energy of u is conserved (just integrate the local equation
of energy over x). This provides a proof of Onsager’s conjecture [1, 2, 7] under an assumption
slightly weaker than u 2 L3(0, T ; B

↵,1
3 ) with ↵ > 1

3 .

3. Relevance to real turbulence?

There is still some doubt as to whether weak solutions of the Navier–Stokes equation, the
uniqueness of which is unknown, or hypothetical weak solutions of the Euler equation, are
relevant to the description of turbulent flows at high Reynolds number. It seems reasonable
to require some extra conditions: one of them might be that the lack of smoothness
could not lead to local energy creation. In other words, one should have D(u) > 0 on
]0, T [⇥T .

It is quite remarkable that this condition is satisfied by every weak solution of the Navier–
Stokes equation obtained as a limit of (a subsequence of) solutions u" of the regularized
equation introduced by Leray [4, 5]:

@tu" + @i (('" ⇤ u"i )u") � ⌫1u" + rp" = 0
div(u") = 0 u"(0) = '" ⇤ u0.

For u0 given in L2 and " > 0, this equation has a unique C1 solution u".
The sequence (u") is bounded in L2(0, T ; H 1) \ L1(0, T ; L2) and a subsequence

converges to u, a weak solution of Navier–Stokes, weakly in L2(0, T ; H 1) and strongly in
L3(0, T ; L3). However, for the regularized equation, one has the local energy balance

@t
� 1
2u

2
"

�
+ div

��
'" ⇤ u"

� 1
2u

2
" + p"u"

�
� ⌫1 1

2u
2
" + ⌫

�
ru"

�2 = 0

hence ⌫(ru")
2 converges in the sense of distributions towards

�@t ( 12u
2) � div(u( 12u

2 + p)) + ⌫1 1
2u

2.

For every function  (t, x) infinitely differentiable and non-negative, the functional u !RR
(ru)2  (t, x) dx dt is convex and lower semicontinuous on the weak space L2(0, T ; H 1),

and thus

lim
"!0

Z Z
(ru")

2  (t, x) dx dt >
Z Z

(ru)2  (t, x) dx dt

which implies lim"!0 ⌫(ru")
2 � ⌫(ru)2 = D(u) > 0. This fact is well known; see, for

example, [6].

Remark. Two natural questions arise at this point:
(a) Does there exist a weak solution of Navier–Stokes in L2(0, T ; H 1) \ L1(0, T ; L2) with

D(u) 6= 0?
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(b) Does the condition D(u) > 0 imply uniqueness for weak solutions of Navier–Stokes?

Let us call ‘dissipative’ such weak solutions with D(u) > 0.
In the case of the inviscid Burgers equation in one space dimension, D(u) > 0 coincides

with the usual entropy condition of negative jumps, which does imply uniqueness.
The following proposition shows that the conditionD(u) > 0 appears naturally for weak

solutions of the Euler equation.
Proposition 4. Let u 2 L3(0, T ; L3) be a weak solution of the Euler equation, which is the
strong limit of a sequence of dissipative weak solutions of Navier–Stokes as viscosity goes to
zero. Then D(u) > 0.

Proof. The weak solution of Navier–Stokes u⌫ satisfies
@t (

1
2u

⌫2) + div(( 12u
⌫2 + p⌫)u⌫) � ⌫1 1

2u
⌫2 + ⌫(ru⌫)2 +D(u⌫) = 0.

Since u⌫ tends to u in L3(0, T ; L3) strong, one has
lim
⌫!0

(⌫(ru⌫)2 +D(u⌫)) = �@t ( 12u
2) � div(( 12u

2 + p)u) = D(u)

in the sense of distributions, and thus D(u) > 0. ⇤

Remark. Let u 2 L3(0, T ; L3) be a weak solution of the Euler equation, dissipative in the
sense that D(u) > 0. Then it is a dissipative solution of the Euler equation in the sense of
Lions [6]. Indeed, every weak solution with (d/dt)

R 1
2u

2 dx 6 0 is a dissipative solution in
Lions’ sense. Notice that this last condition does not prevent a priori local creation of energy
in some regions of the flow.

4. The two-dimensional case

In two space dimensions the situation is clearer for the Navier–Stokes equation. For every
initial velocity field u0 in L2 one has a unique weak solution in L2(0, T ; H 1) \ L1(0, T ; L2)

and this solution satisfies the global energy balance

1
2

Z
u2(T , x) dx + ⌫

Z T

0
dt

Z
(ru)2 dx = 1

2

Z
u20(x) dx.

In fact, one has a slightly stronger result:
Proposition 5. Let u be the unique weak solution of the two-dimensional Navier–Stokes
equation above. Then D(u) = 0.

Proof. We use the interpolation inequality kvkL3 6 Ckvk2/3
L2

kvk1/3
H 1 together with k�ukL2 6

|⇠ |kukH 1 and k�uk 6 2kuk (for any norm).
From the expression for D"(u) one has

kD"(u)kL1(dx) 6
1
4"

Z Z
|r'(⇠)||u(t, x + "⇠) � u(t, x)|3 dx d⇠

and since u 2 L1(0, T ; L2), this is bounded from above, for almost every t 2 [0, T ], by a
fixed integrable function Cku(t)k2

H 1 .
On the other hand, for almost every t 2 [0, T ], u(t) is in H 1 and

��u(t, x + "⇠) � u(t, x)
��3

L3(dx)
6 C"2|⇠ |2kuk3

H 1

so that kD"(u)kL1(dx) ! 0 as " goes to 0.
Applying Lebesgue’s dominated convergence theorem, one obtains D(u) = 0. ⇤
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The case of the 2D Euler equation

For u0 in L2 such that !0 = curlu0 2 Lr , 1 < r < 1, there exists at least one weak solution
of the Euler equation in the space C([0, 1[; W 1,r ) [6]. From Sobolev inclusion, for r > 6

5
one hasW 1,r ⇢ L3, then D(u) is defined and the local energy balance holds with D(u).

Moreover, we have

Proposition 6. Let u be a weak solution of the 2D Euler equation as above with r > 3
2 , then

D(u) = 0.

Proof. Apply the Hölder inequality
���u

��
L3
6

���u
��↵

Lr

���u
��1�↵

Lq

1
3

= ↵

r
+
1� ↵

q
.

Taking q = 2r/(2� r), so that k kLq 6 ck kW 1,r , and using k�ukLr 6 |⇠ |kukW 1,r , one obtains

k�ukL3 6 c|⇠ |↵kukW 1,r with ↵ = 5
3

� 2
r
.

If r > 3
2 , then ↵ > 1

3 and proposition 3 applies. ⇤

5. Inertial dissipation and the four-fifth law

We have already seen that D(u) does not depend on '. Assuming some space continuity of
u, we are able to express it more explicitly using a radially symmetric function '(|⇠ |).

Let us put

S(u)(x, r) =
Z

|⇠ |=1
(u(x + r⇠) � u(x))2(u(x + r⇠) � u(x)) · ⇠ d6(⇠)

where d6 denotes the area measure on the sphere.
An easy computation gives

D"(u) = 1
4

Z 1

0
'0(r) r3

S(u)(x, "r)

"r
dr.

Now let us assume that, as " ! 0, S(u)(x, ")/" tends to a limit s(u)(x). Then

D"(u) ! 1
4 s(u)

Z 1

0
'0(r) r3 dr = � 3

16⇡
s(u).

The four-fifth law (von Karman and Howarth, Kolmogorov) says that for a stationary,
homogeneous and isotropic random turbulent velocity field u one should have

⌧✓
�u · ⇠

|⇠ |

◆3�
= � 4

5D|⇠ |

where D is the mean rate of (inertial) energy dissipation per unit mass and h i denotes the
statistical mean.

Without isotropy, one proves (Monin, cf Frisch [3])

D = � 1
4 div⇠ h(�u)2�ui

��
⇠=0

integrating in ⇠ over the ball |⇠ | 6 " one obtains

D = � 3
16⇡

lim
"!0

1
"

⌧Z

|⇠ |=1
(u(x + "⇠) � u(x))2(u(x + "⇠) � u(x)) · ⇠ d6(⇠)

�
.



Energy dissipation for Euler and Navier–Stokes equations 255

Our expression of

s(u) = lim
"!0

1
"

Z

|⇠ |=1
(u(x + "⇠) � u(x))2(u(x + "⇠) � u(x)) · ⇠ d6(⇠)

thus simply gives a local non-random form of the above expression of the inertial dissipation.
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In this paper, we investigate the relations between global and local energy transfers
in a turbulent von Kármán flow. The goal is to understand how and where energy is
dissipated in such a flow and to reconstruct the energy cycle in an experimental device
where local as well as global quantities can be measured. In order to do so, we use
particle image velocimetry (PIV) measurements and we model the Reynolds stress
tensor to take subgrid scales into account. This procedure involves a free parameter
that is calibrated using angular momentum balance. We then estimate the local and
global mean injected and dissipated powers for several types of impellers, for various
Reynolds numbers, and for various flow topologies. These PIV estimates are then
compared with direct injected power estimates provided by torque measurements at
the impellers. The agreement between PIV estimates and direct measurements de-
pends on the flow topology. In symmetric situations, we are able to capture up to 90%
of the actual global energy dissipation rate. However, our results become increasingly
inaccurate as the shear layer responsible for most of the dissipation approaches one
of the impellers and cannot be resolved by our PIV setup. Finally, we show that a
very good agreement between PIV estimates and direct measurements is obtained
using a new method based on the work of Duchon and Robert [“Inertial energy
dissipation for weak solutions of incompressible Euler and Navier-Stokes equations,”
Nonlinearity 13, 249–225 (2000)] which generalizes the Kármán-Howarth equation
to nonisotropic, nonhomogeneous flows. This method provides parameter-free esti-
mates of the energy dissipation rate as long as the smallest resolved scale lies in the
inertial range. These results are used to evidence a well-defined stationary energy
cycle within the flow in which most of the energy is injected at the top and bottom
impellers and dissipated within the shear layer. The influence of the mean flow
geometry and the Reynolds number on this energy cycle is studied for a wide range
of parameters. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923750]

I. INTRODUCTION

Understanding how and where energy is dissipated in turbulent flows has been a great challenge
for many years and would have important implications in many areas such as fundamental research,
aeronautics, or industry. In the classical three-dimensional turbulence phenomenology, energy is in-
jected at large scales by the forcing mechanism, transferred downscale at a constant rate ϵ following
a self-similar cascade, and then dissipated into heat at the Kolmogorov length scale, where viscous
effects become dominant. In ideal stationary, homogeneous, and isotropic turbulence, the measure-
ment of energy dissipation can therefore be achieved via 3 independent and equivalent means: (i)
by monitoring the injected energy, (ii) by monitoring the dissipated heat, and (iii) by monitoring the
cascade energy rate via multiscale single points measurements of the velocity (via, e.g., anemom-
eters or array of hot wires). The first two measurements are global and the last is one local, but

a)Electronic address: denis.kuzzay@cea.fr
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given the homogeneity in space and time, they all provide the same information. In most realistic
situations, however, the turbulence is anisotropic and/or inhomogeneous and/or non-stationary. In
such cases, there is not any necessary equivalence between global energy injection, global en-
ergy dissipation, and local energy dissipation. The study of these three quantities requires detailed
knowledge of the forcing, the heat distribution, and velocity over the whole domain.

In that respect, it is interesting to focus on intermediate situations, where the turbulence is
generated by a well controlled mechanism, in a simplified geometry, as achieved, for example, in
classical laboratory experiments such as Taylor-Couette or von Kármán setups. In such cases, it is
easy to monitor the forcing and implement a cooling mechanism so as to achieve stationarity, where
global energy injection and dissipation equilibrate on average. The local energy dissipation can
then be computed from stationary energy budgets derived from Navier-Stokes equation, using local
measurements of velocity obtained, for example, using the now classical Particle Image Velocime-
try (PIV). This technique provides measurements of the instantaneous velocity field ui at several
points of a plane (or of a volume) at the same time. From this, one may compute the Reynolds
stress tensor Si j = 1

2 (∂iu j + ∂jui) and study the local dissipated power ϵ v = 2νSi jSi j. A detailed
comparison between this local estimate and the global energy dissipation rate in a Taylor-Couette
flow at various Reynolds numbers has recently been made by Tokgoz et al.1 using tomographic PIV
measurements. They observe that the local and global estimates coincide within 10% as long as the
laminar flow and Taylor vortex flow regimes are fully resolved. However, as the Reynolds number
increases, the dissipative scale decreases and becomes smaller than the finite resolution of the PIV
(set by the camera resolution and the velocity reconstruction algorithm). In that case, the estimate
of local energy dissipation based on the velocity gradients and on the viscosity ϵ v becomes increas-
ingly inaccurate and underestimates the global energy dissipation. In order to remedy this problem,
it has been suggested to use techniques borrowed from Large Eddy Simulation (LES).2 This allows
us to model the subgrid scales (SGS) in terms of the large scale velocity field resolved by the PIV
and allows computation of all terms in the energy budget3–6 including the terms responsible for
the scale-to-scale energy transfer. By the Richardson-Kolmogorov cascade picture, this allows an
estimate of the local energy dissipation as long as the scale used in the computation lies in the
inertial range.

In this paper, we test these methods in a turbulent flow generated by two contra-rotating impel-
lers (von Kármán flow) for Reynolds numbers ranging from 103 up to more than 106. At such
Reynolds numbers, the dissipative scale ranges from a few millimeters to a few tens of micrometer.
With fixed velocity of the impellers and cooling, the resulting flow is stationary, highly anisotropic,
and inhomogeneous,7 thereby providing a unique laboratory flow to test local energy dissipation
procedure. This closed flow geometry permits direct estimates of the global energy injection by
torque monitoring at the two impellers. Using a large scale Helium facility with calorimetric
measurements,8 we were able to show that in a stationary state, the global injected power and
the global dissipated heat coincide within a few percent at large Reynolds number and for a wide
range of operating conditions (including differential rotation of the impellers). Moreover, the simple
cylindrical geometry allows for stereoscopic PIV measurements of the velocity field over a vertical
plane spanning the whole experiment, at a resolution of a few millimeters. Since measurements
have only been made in a meridional plane, we do not have access to orthoradial derivatives. Hence,
it is challenging to have an accurate estimate of the local energy dissipation rate despite this lack
of information. To do this, we first use a LES method using statistical axisymmetry and angular
momentum budget to calibrate the model. Then, we test a generalization of the Kármán-Howarth
formula derived by Duchon and Robert9 that provides a parameter-free estimate of the local energy
dissipation for any nonhomogeneous, nonisotropic flow. Both estimates are then averaged over the
whole volume for comparison with the global estimate of the energy dissipation based on torque
monitoring. This is done for a wide range of control parameters, varying the Reynolds number,
the mean flow geometry, and the flow asymmetry. We then use these measurements to evidence a
stationary energy cycle within the flow where energy is injected at the top and the bottom impellers
and dissipated within the shear layer.

This paper is organized as follows: in Section II, we summarize the theoretical tools needed for
the implementation of the LES technique and the Duchon-Robert (DR) formula in our analysis of
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the energy dissipation rate. In Section III, we review the von Kármán geometry and specialize these
formulae to the case of cylindrical geometry. The flow diagnostics based on PIV measurements are
derived and summarized. In Section IV, we apply these results to a set of measurements drawn from
our database of von Kármán flow. We first tune our LES model using angular momentum balance.
Then, we compare PIV estimates of the global dissipated power with direct torque measurements
using both the LES technique and the DR formula. Finally, in Section V, we evidence the energy
cycle of the von Kármán flow and we discuss its evolution, as well the evolution of our diagnostics,
as a function of the flow topology.

II. THEORETICAL BACKGROUND AND METHODOLOGY

In this section, we use a filtering approach to derive energy and angular momentum balance at a
given scale ℓ from Navier-Stokes equations and we give the expression of the different terms that we
will use in our analysis of the injected and dissipated powers. We consider Navier-Stokes equations


∂tui + u j∂jui = −∂iP + ν∂j∂jui, (1)
∂ju j = 0, (2)

where we use Einstein summation convention over repeated indices.

A. The filtering approach

Following the procedure in Ref. 10, we define a coarse-grained velocity field at scale ℓ as

uℓ
i (x⃗) =


dr⃗ Gℓ(r⃗)ui(x⃗ + r⃗), (3)

where G is a smooth filtering function, non-negative, spatially localized, and such that


dr⃗ G(r⃗) =
1. The function Gℓ is rescaled with ℓ as Gℓ(r⃗) = ℓ−3G(r⃗/ℓ). Coarse-graining the Navier-Stokes
equations gives


∂tuℓ

i + uℓ
j∂ju

ℓ
i = −∂jτi j − ∂iPℓ + ν∂j∂juℓ

i , (4)

∂juℓ
j = 0. (5)

In Equation (4), we introduced τi j = (uiu j)ℓ − uℓ
iu

ℓ
j which is the stress tensor from the SGS.

In what follows, in order to simplify the formulae and for readability considerations, we will
drop the index ℓ. Unless specified otherwise, ui now denotes the ith component of the coarse-
grained velocity field (same thing for P).

B. The energy balance equation

We now take the scalar product of Equation (4) with ui, and after a few lines of algebra, we get
the local energy balance equation

∂tE + ∂j(u jE) = −∂j(uiτi j) + Si jτi j − ∂i(uiP) + ν(∂j∂jE + ∂i∂j(uiu j)) − 2νSi jSi j, (6)

where E = uiui
2 is the large scale kinetic energy per unit mass and Si j = 1

2 (∂iu j + ∂jui) is the large
scale strain rate tensor. The overline denotes the statistical average of a quantity. Let us now define a
vector J j = u j(E + P) + uiτ

i j − ν(∂jE + ∂i(uiu j)). We can then rewrite (6) as

∂tE + ∂j J j = Si jτi j − 2νSi jSi j . (7)

This local equation is valid in any geometry, for any type of flow and for any filtering with the prop-
erties given above. In Sec. III D, we apply this formula to the specific axisymmetric von Kármán
geometry to derive the local energy production and dissipation rate per unit mass.
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C. The angular momentum balance equation

In a very similar fashion, it is also possible to derive an angular momentum balance equation at
scale ℓ. We take the cross product of r j and Equation (4), and after a few lines of algebra, we get

∂tLi + ∂j(u jLi) = −ϵ i jk∂k(r jP) − ϵ i jk∂m(r jτkm) + ν(∂j∂jLi + ϵ i jk∂m∂k(r jum)) − νϵ i jk∂juk, (8)

where ϵ i jk is the three dimensional, total antisymmetric Levi-Civita symbol so that Li = ϵ i jkr juk is
the ith component of the angular momentum per unit mass. Of course, it can be checked that it is
also possible to derive (8) from (6) using (4) and the identity E = 1

2r⃗2 (L⃗2 + (r⃗ .u⃗)2). As before, we
can write (8) as an equation of conservation for each component of L⃗,

∂tLi + ∂jT i j = 0, (9)

where T i j = u jLi − ϵ i jkrkP + ϵ imkrmτ jk − ν(∂jLi − ϵ i jk∂m(rkum) + ϵ i jkuk).
In Sec. IV A, we use this angular momentum balance as a constraint to calibrate the LES model

that we will now describe.

D. LES method for balance equations

The computation of the different terms in (7) and (9) requires the knowledge of both the veloc-
ity field at scale ℓ and the Reynolds stress τi j. In most practical situations, e.g., when the flow is
turbulent and the velocity is measured through a PIV system, only the former is available, since we
cannot resolve the dissipative scale. A traditional way to overcome this problem is to use a LES-PIV
approach1,2 to model τi j in terms of the large scale velocity field.11,12 Several models exist. In the
present paper, we choose the gradient model13 where

τi j = C∆2
r∂kui∂ku j, (10)

where C is a constant to be calibrated and ∆r is the width of the filtering. This model ensures
forward scatter and backscatter of energy between resolved scales and SGS.

E. Duchon-Robert energy balance equation

An alternative local energy balance equation has been derived by Duchon and Robert9 using
Leray’s weak solution formalism and Onsager’s ideas.14 The latter amounts to consider a sequence
of coarse-grained solutions of Navier-Stokes equations (4) in the limit ℓ → 0 and to derive the
corresponding energy balance that reads

∂tE + ∂j
�
u j(E + P) − ν∂jE� = −ν∂jui∂

jui − D(ui), (11)

where D(ui) is expressed in terms of velocity increments δu⃗(r⃗) = u⃗(x⃗ + r⃗) − u⃗(x⃗) as

D(u⃗) ≡ lim
ℓ→0

Dℓ(u⃗) = lim
ℓ→0

1
4ℓ



V
dr⃗ (∇⃗Gℓ)(r⃗) · δu⃗(r⃗) |δu⃗(r⃗)|2, (12)

where the dependence of δu⃗ and D in x⃗ is implied. As the Reynolds number tends to infinity, the
scale ℓ can be chosen as small as one wants, and the quantity D(ui) can be seen as the contribution
to dissipation coming from a generalized cascade process (possibly linked with the formation of
small-scale singularities). Since the result cannot depend on the filtering function Gℓ, Duchon and
Robert specialized the expression to a radially symmetric filter to get the alternative expression
devoid of any free parameter

D(u⃗) = − 3
16π

lim
ϵ→0

1
ϵ



| χ⃗ |=1
dΣ( χ⃗) |δu⃗(ϵ χ⃗)|2 δu⃗(ϵ χ⃗) · χ⃗, (13)

where dΣ denotes the area measure on the sphere. As noticed by Duchon and Robert, this expres-
sion coincides with the statistical mean rate of inertial energy dissipated per unit mass derived
from the anisotropic version of the Kármán-Howarth equation. They therefore argue that the pre-
vious formula provides a local non-random form of the Kármán-Howarth equation, valid even for
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FIG. 1. Illustration of a TP87 type impeller, with 8 blades. The convention used to name the two different forcing conditions
is represented: (+) when the convex face of the blade goes forward and (−) for the other. The angle α characterizes the
curvature of the blades and is equal to α = 72◦ in the case of TP87 impellers. TM60 impellers look essentially the same, with
16 blades instead of 8.

anisotropic, inhomogeneous flows. In the sequel, we apply this formula to our PIV measurements
to test whether it can provide a parameter-free estimate of the global dissipation, as well as local
instantaneous maps of the local energy dissipation.

III. APPLICATION TO A VON KÁRMÁN GEOMETRY

The goal of the present paper is to compare global estimates of dissipated power with torque
measurements, check their coincidence, and study maps of local energy dissipation rate to get some
insight into the detailed processes governing energy transfers in a von Kármán flow.

A. Experimental setup

The von Kármán experiment has been extensively studied over the past years.7,15–22 We give
here a brief review of the main features of the setup.

Our von Kármán flow is generated in a vertical cylinder by two coaxial, contra-rotating impel-
lers providing energy and momentum flux at the upper and the lower ends of the cylinder. The
inner radius of the cylinder is R = 100 mm and the distance between the inner face of the impellers
is H = 180 mm, which gives an aspect ratio of H/R = 1.8. The turbulence properties (anisotropy,
fluctuations, and dissipation) are influenced by the geometry of the impellers, i.e., their nondimen-
sional radius Rt, the oriented angle α between the blades (see Fig. 1), the number n of blades, and
their heights hb.16 In the present paper, we consider only impellers with hb/R = 0.2 and α = ±72◦.
Those impellers are the so-called “TM60” (with 16 blades) and “TP87” impellers (with 8 blades),
the characteristics of which are summarized in Table I. They are essentially similar, except for their
number of blades and the material they are made of. A single impeller can be used to propel the
fluid in two opposite directions, respectively, associated to the concave or convex face of the blades

TABLE I. Parameter space explored in this paper.

Impellers Material Number of blades
α

(in deg) Re θ

TM60(+) Stainless steel 16 72 [103,106] 0
TP87(+) Polycarbonate 8 72 105 [−0.5,0.5]
TP87(−) Polycarbonate 8 −72 105 [−0.5,0.5]
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going forward. This can be taken into account by a change of sign of the parameter α. In the sequel,
we denote (−) (respectively, (+)) an impeller used with the concave (respectively, convex) face of
its blades going forward. The impellers are driven by two independent motors which can rotate at
frequencies up to 10 Hz. The motor frequencies can be either set equal to get exact counter-rotating
regime or set to different values f1 , f2. To change the viscosity, we have used either water or
glycerol at different dilution rates.

B. Control parameters

In the sequel, we choose R and Ω−1 = (π( f1 + f2))−1 as units of length and time. The von
Kármán experiment is then characterized by two control parameters:

• the Reynolds number

Re = π( f1 + f2)R2ν−1,

where ν is the fluid kinematic viscosity, ranges from 102 to more than 106 so that we can span a
full range of regimes, from the purely laminar to the fully turbulent one;

• the rotation number

θ =
f1 − f2

f1 + f2

measures the relative influence of global rotation over a typical turbulent shear frequency.
Indeed, the exact counter-rotating regime corresponds to θ = 0. For a nonzero rotation number,
our experimental system is similar, within lateral boundaries, to an exact counter-rotating
experiment at frequency f = ( f1 + f2)/2, with an overall global rotation at frequency ( f1 −
f2)/2.15,22 In our experiments, we vary θ from −1 to +1, exploring a regime of relatively weak
rotation to shear ratio.

Table I summarizes the parameter space explored in this paper. The Reynolds variation is done at
θ = 0, while the rotation variation has been explored at Re ≈ 105.

C. Measurements

The setup allows for both global and local flow diagnostics. Torque (global) measurements at
each impeller are performed with SCAIME technology and provide values over the kHz range of
C1 and C2, being, respectively, the torque applied to the bottom and the top shafts. Following the
procedure described in Ref. 15, they are calibrated using measurements at different mean frequen-
cies, so as to remove spurious contributions from genuine offsets or mechanical frictions. From this,
we compute the nondimensional values Kp1 and Kp2 of the torque as Kpi = Ci/(ρR5Ω2), where ρ is
the density of the working fluid.

Local measurements of the velocity field of the flow have been made by PIV techniques in
the stationary regime. The typical size of the particles used is a few tens of micrometers and their
density is 1.4. Two cameras take between 600 and a few thousand successive pictures of the flow
at a 15 Hz frequency. The resolution of our camera frame is 1600 × 1200 pixels, and the recon-
struction is done using peak correlation performed over overlapping windows of size 16–32 pixels.
As a result, we get measurements of velocity field on a grid of approximate size 602 in a vertical
plane containing the axis of symmetry (Oz) in a cylindrical system of coordinate. The maximum
spatial resolution we can reach for the velocity field with this setup is therefore of the order of
200/60 ≈ 3 mm, about 10–100 times larger than the dissipative scale. For more details about the
experimental setup or the measurement techniques, see for instance Ref. 18. We can therefore
estimate the derivatives of the velocity field only along the r and the z directions, but we do not
have access to derivatives along θ. As a consequence, we will either set these derivatives to zero in
the sequel or take them into account using hypothesis of statistical axisymmetry. We have checked
that the two procedures give essentially the same result. In any case, we use incompressibility to
estimate ∂θuθ.
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D. Diagnostics

1. Flow geometry

We are going to study different types of von Kármán flows (see Fig. 2). These types of flows
happen depending on the forcing condition (+) or (−) and whether the system undergoes a sponta-
neous phase transition (bifurcation) or not.19 There are, then, four types of flows: one corresponding
to the (+) forcing condition where a phase transition cannot be observed (Fig. 2(a)), one corre-
sponding to the (−) forcing condition where a phase transition is not observed (Fig. 2(b)), and two
more corresponding to the two states of the flow that can be observed once the flow has undergone
its phase transition (Figs. 2(c) and 2(d)). The difference between these flows can be characterized
through our PIV measurements by their mean velocity profile in the vertical plane of measurements
(see Fig. 2). In the first two types, the mean flow is symmetric with respect to the equatorial plane
z = 0 and there is a strong shear layer in the middle. In the bifurcated states, the flow is no longer
symmetric with respect to the equatorial plane. It consists in a one-cell flow in the vertical direction,

FIG. 2. The four types of flow characterized by their mean velocity profiles. Arrows represent the velocity field in the radial
plane, while colours represent the orthogonal component to that plane. (a) The flow is forced under the (+) condition, no
phase transition can be observed. (b)–(d) show the three different states of a flow forced under the (−) condition. (b) No phase
transition has occurred, (c) (respectively, (d)) the shear layer has been sent downwards (respectively, upwards). In each of
these flows, Re ≈ 3×105 and the two TP87 impellers rotate in opposite directions at θ = 0.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  132.166.23.127 On: Fri, 10 Jul 2015 08:02:31



075105-8 Kuzzay, Faranda, and Dubrulle Phys. Fluids 27, 075105 (2015)

with a strong shear layer at the impeller that rotates in the direction opposite to the orthoradial
mean flow. The two bifurcated states are symmetric to each other. The interest of considering these
different mean flow geometries is that they are characterized by well resolved (respectively, badly
resolved) shear layer for the symmetric state (respectively, bifurcated state). Since we expect an
important fraction of energy dissipation to be localized where there is a strong velocity gradient, this
difference may be a large source of error in local estimates based on PIV measurements, as we will
demonstrate later.

2. Global dissipation

Using torque measurements, we can get an accurate estimate of the global power injected into
the flow. Indeed, since we study a stationary situation, this input must balance the rate of energy
dissipation within the flow. This has been checked in a scale 4:1 version of our experiment (see
Ref. 8). From these measurements, we get the global mean dissipation rate as D = 2π(C1 f1 + C2 f2).
From this, we compute the following diagnostics:

• the dimensionless mean dissipation rate

D = D
ρR5Ω3 = Kp1(1 + θ) + Kp2(1 − θ), (14)

• the dimensionless mean dissipated power per unit mass

ϵ = D R3

V =
DR
πH
, (15)

which should not be confused with the Levi-Civita symbol. V = πR2H is the volume of the
experiment.

These quantities depend on the Reynolds number, the rotation number, the characteristics of the
impellers, and the mean flow geometry.23 Examples of variation of ϵ as a function of Re are
provided in Fig. 3(a) at θ = 0, with TP87 and TM60 impellers, for the different flow geometries
illustrated in Fig. 2. At low Reynolds numbers, the dissipation rate decays as Re−1, until Re ≈ 300
where the turbulence sets in. The dissipation rate then levels off at a value which depends upon the
flow geometry: it is the lowest for the symmetric (+) flow, then increases for the (−) symmetric flow,
and is the largest for the two bifurcated (−) flows. In Fig. 3(b), the mean dissipation rate is shown as
a function of θ for TP87 (±) impellers at Re = 3 × 105. In the (+) case (pink disks), it may be seen
that the minimum of ϵ is obtained at θ = 0. When θ is varied from, say, 0 to 0.5, ϵ increases and
reaches a value twice as large as its minimum. In the (−) case, there is a discontinuity of the energy

FIG. 3. Plots of the dimensionless dissipated power per unit mass. (a) As a function of Re for TP87 and TM60 impellers for
the four geometries depicted in Fig. 2 at θ = 0. Dotted line: Fit ϵ ≈ 37Re−1. Pink disks: Symmetric state (+). Blue rhombi:
Symmetric state (−). Red triangles: Bifurcated states (−). (b) As a function of θ for TP87 impellers, Re = 3×105. Pink disks:
Symmetric state (+). Blue rhombi: Symmetric state (−). Red triangles: Bifurcated states (−).
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dissipation at θ = 0 due to the global symmetry breaking. We see that the symmetric state (blue
rhombi) dissipates less energy than the two bifurcated states (red triangles). Another striking feature
of Fig. 3(b) is the coexistence of two branches of dissipation, corresponding to the two bifurcated
states, for a certain range of values of θ. This coexistence vanishes around θ = ±0.2 (this value
depends on the Reynolds number, see Ref. 21).

3. Local production and dissipation rates

Since the von Kármán flow is neither isotropic nor homogeneous, it is interesting to study more
locally the production and dissipation of energy. Our setup being statistically axisymmetric, it is
sufficient to perform the study in the vertical plane including the rotation axis, where we perform our
velocity measurements. We thus consider the main stationary terms of local energy balance Eq. (7)
and divide them by the experimental volumeV = πR2H to get three local quantities:

• the local production rate per unit mass

Γ = − 1
V ∂j J

j . (16)

Integrating over the whole volume, one may then get from this the corresponding total produc-
tion rate per unit mass ΓT ,

ΓT = − 1
V



V
∂iJ idV = − 1

V


S
J idSi, (17)

where the last equality comes from Green-Ostrogradsky formula;
• the positive local dissipation (transfer) rate per unit mass

Π =
1
V

(
−Si jτi j + 2νSi jSi j

)
. (18)

The first term represents the energy dissipation due to energy transfers towards SGS, while the
second one is the laminar energy dissipation;

• the positive local singularity dissipation (transfer) rate per unit mass

ΠDR =
1
V D(u⃗). (19)

As before, we denote by ΠT and ΠDRT the total dissipation rate per unit mass, obtained by
volume integration of Π and ΠDR.

With our stereoscopic PIV measurements, we have access to all terms to compute these quantities,
except for the pressure P in J i, and the terms involving derivatives with respect to the azimuthal
angle. In the sequel, we will present maps of the local quantities without the terms we do not
have access to. In other words, we neglect all terms involving pressure and azimuthal derivatives.
Moreover, the computation of the transfer terms requires the calibration of the constant C involved
in the gradient model (see Eq. (10)). In Sec. IV A, we describe a calibration procedure using the
angular momentum balance equation.

IV. DATA PROCESSING

A. Calibration of the gradient model using angular momentum balance

The first step is then to find the value of the C constant in order to be able to estimate the
contribution of the terms containing τi j in (16) and (18). For this, we follow the work of the authors
in Ref. 24 who have shown, by using high-resolution Laser Doppler Velocimetry (LDV) measure-
ments, that in a symmetric situation (θ = 0), the vertical flux of angular momentum is a constant
equal to the torque injected by the impellers. This result stems from the z-component of angular
momentum balance Eq. (9) integrated over a volume V (z) that describes a cylinder extending from
the bottom impeller to an altitude h(z) = H/2 + z (see Fig. 4). In this case, the global z-component
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FIG. 4. Left: Control volume for the angular momentum budget. Right: Plot of the normalized vertical flux of vertical angular
momentum as a function of z. The dark grey area represents convective transport due to the mean flow, while the light grey
area represents convective transport due to fluctuations. Filled squares represent the sum of the two contributions so that the
total convective transport is almost constant with z and equals to Kp. Each point has been obtained by taking the mean of
several computations obtained from several flows at different Re. The error bars represent the standard deviation.

of angular momentum balance equation (8) reads

Kp1 = −Re−1
(

S(z)
(uθ + r∂ruθ)dS −



Σ(z)
r∂zuθdΣ

)
+



S(z)
r (uruθ + τrθ)dS +



Σ(z)
r (uθuz + τθz)dΣ

≡ −Kv(z) +


Σ(z)
r (uθuz + τθz)dΣ, (20)

where Σ(z) is a surface at altitude h(z) from the bottom impeller and S(z) is the lateral boundary
(see Fig. 4). As discussed in Ref. 24, this equation states that the angular momentum transmitted by
the motor to the fluid (measured by the dimensionless torque at the bottom Kp1) is either evacuated
through the lateral boundary or transported to the upper layers of the fluid to be received by the
upper motor as a drag. It was further shown in Ref. 24 that in a symmetric situation (θ = 0), where
the torques at the bottom and at the top are equal, the Kv(z) term is negligible, so that there is
a constant flux of angular momentum from the bottom to the top. For each θ = 0 case, we thus
compute the quantity

ΦLz(z) =


Σz

r(uθuz + τθz)dS, (21)

and adjust the constant C, so that ΦLz(z) = Kp1 = Kp2 ≡ Kp for any z. In Fig. 4, we present the
results of our computations for TM60(+) impellers. The adjustment of the constant C is done
statistically by assuming that it does not depend on the Reynolds number (as it is supposed to
depend only on the velocity reconstruction algorithm). We then fix ∆2

r = ∆x∆z, where ∆x = 2R/58
and ∆z = (H − 2hb)/63 being the spatial resolutions of our PIV and we adjust C using 38 symmet-
rical flows at different Reynolds numbers so that their statistical mean provides a constant value of
Φ(z)/Kp = 1 within the (statistical) standard deviation.

The optimal value of C has to be taken equal to C ≈ 4. This is around 50 times more than
the conventional choice made in Refs. 12 and 25 for a Gaussian filter. We have identified several
factors that may explain this difference: our data are not filtered in a Gaussian way; since we ignored
azimuthal derivatives, the constant must be higher to compensate; the turbulence is neither isotropic
nor homogeneous.

Dividing the flux into the contribution due to the time-average flow and the contribution due to
the fluctuations, we also recover that near the impellers, the flux is only due to the mean flow, while
at the center, it is almost only due to fluctuations.24 We also checked that the diffusive terms in (20),
going as Re−1, are negligible at high Reynolds number. Likewise, the flux through S(z) is also small,
meaning that almost all of the flux goes in the vertical direction.
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FIG. 5. Vertical (a) and radial (b) average of the local dissipation Dℓ(u⃗) for TM60(+) at Re = 8×105 as a function of x, z,
and ℓ.

B. Implementation of the Duchon-Robert formula

As we have seen in Section II E, Dℓ(u⃗) provides the local dissipation for a given velocity field
u⃗, at a given length scale ℓ. Since this formula is a generalization of the Kármán-Howarth equation
to any kind of flow, it provides an estimate of the subgrid energy transfer as long as the considered
scale ℓ is in the inertial range. Moreover, the considered scale must be sufficiently large with respect
to the PIV smallest resolved scale, so as to guarantee statistical convergence through sufficient
average in the scale space (on the sphere of radius ℓ). To check these two points, we present in
Fig. 5 Dℓ(u⃗) in two plots averaged in the radial (respectively, vertical) direction as a function of z
(respectively, x) and ℓ for an experiment using TM60(+) impellers at very large Reynolds number
(Re ≈ 8 × 105). We see that this quantity is close to zero at large scales (ℓ > 0.4), but that it in-
creases at small scales in the domain |x | < 0.4, |z | < 0.7, i.e., at the location of the median shear
layer. For ℓ between 0.1 and 0.15 (i.e., approximately 4–5 times the smallest scale resolved by our
PIV setup), there is the start of a saturation, indicating the beginning of the inertial range. While
the extent of the inertial range is likely to vary (increase) with the Reynolds number, its largest
scale is likely to be independent of the Reynolds number, as long as the flow is turbulent. Indeed,
as discussed in Ref. 26, the geometry of the largest scales of the von Kármán flow appears fairly
independent of the Reynolds number, except around Re = 105 where they may experiment abrupt
changes due to the equivalent of a phase transition.19 Since in the Kolomogorov picture energy cas-
cades from large to small scales, it is reasonable to assume that the beginning of the inertial range
is solely determined by the large scale topology, thereby becoming independent of the Reynolds
number (except maybe around Re = 105). To check this, we report in Fig. 6(a) the comparison
between the total dissipated power ΠDRT at ℓ = 0.1 (blue symbols) and direct measurements of
the injected power (black symbols). We observe that our estimates are in good agreement with
direct measurements, especially for symmetric flows. In Fig. 6(b), the results of our computations
to estimate the global dissipated power using the LES method are displayed. These results will be
discussed in more detail later, but we can already observe that we obtain a good agreement with
direct measurements. We can conclude from all our computations that the method using the DR
formula may be seen as an interesting alternative to the widespread LES-PIV method, since it relies
on very few arbitrary hypotheses. We explore its performances with other flow geometries in the
sequel.

V. RESULTS

A. Symmetric case θ = 0

1. Energy production and transport

To understand the flux of energy in the von Kármán flow, it is interesting to focus first on the
symmetric case (θ = 0), specifically on the case when both impellers rotate in the (+) sense with
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FIG. 6. Comparison between direct measurements of energy injection obtained using torque measurements (black symbols)
and PIV estimates at various Reynolds numbers, for TM60 and TP87 impellers for the four different mean state geometries
displayed in Fig. 2. Disks: (+) symmetric. Rhombi: (−) symmetric. Up triangles: (−) shear layer sent downwards. Down
triangle: (−) shear layer sent upwards. (a) Energy dissipationΠDRT using the DR method (blue symbol). (b) Energy injection
ΓT (red symbols) and dissipation ΠT (blue symbols) using the LES-PIV method. The dotted line represents the “laminar fit”
ϵ = 37 Re−1. The estimates are computed based on 2–15 realizations of the experiment where at least 600 instantaneous
velocity snapshots have been taken for each of them. The symbols represent the mean of our computations, while the error
bars represent the standard deviation.

the same frequency in a stationary regime. In such regime, the dissipated power equals the injected
power. Through Green-Ostrogradski theorem, the total energy production ΓT is equal to the entering
flux of J i at the boundaries. In this symmetric case, most of the flux is provided by the component
Jz and appears to provide a fairly good estimate of the injected power at large enough Reynolds
numbers (Re ≥ 105). Indeed, we show in Fig. 6(b) the results of our computations for ΓT (empty
red symbols). We see that for Re ≥ 105, these estimates coincide within 20%. However, at lower
Reynolds numbers (Re ≈ 4 × 103), the PIV estimates only capture 55% of the actual injected power.
This may be due to the fact that as the Reynolds number is decreased, an increasing part of the
injected power is either through pressure effects, azimuthal variations, or viscous boundary layers
that are not resolved by our measurements.

Given that the Jz contribution dominates the total energy production, it is interesting to focus
on the spatial variation of this quantity. Fig. 7(a) shows such a local map of Jz for a symmetric flow
at Re ≈ 3 × 104.

As can be seen, at the center of the cylinder, i.e., x/R ∈ [−0.8 0.8], big structures reflect the
advection of energy towards the impellers through the mean Ekman pumping by the impellers. In
contrast, at the walls, smaller structures of opposite sign are observed, reflecting the injection of
energy within the flow. These two kinds of structures are mirrored by the recirculation cells that we

FIG. 7. Typical maps of J z: (a) mean energy transfer through the system, (b) contribution of the mean flow, and (c)
contribution of the fluctuations.
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FIG. 8. Plot of the normalized vertical flux of energy as a function of z. The dark grey area represents convective transport
due to the mean flow, while the light grey area represents convective transport due to fluctuations. Filled squares represent the
sum of the two contributions so that the total convective transport is a decreasing function of z. Each point has been obtained
by taking the mean of several computations obtained from several flows and the error bars represent the statistical standard
deviation.

observed in Fig. 2. The local structure of Jz can be further used to get information about energy
transport in the flow. Indeed, performing an integration of Equation (7) over the height-varying
volume V (z) (see Fig. 4) and setting ∂tE = 0, we can get an equation for the energy transport in the
flow as



S
J idSi = −Kp1(θ + 1) − K ′v(z) +



Sz
JzdS, (22)

where K ′v is the contribution due to the lateral boundaries at height z. Ignoring this contribution, we
can write



S
J idSi = −Kp1 + ΦE(z), (23)

where ΦE(z) =

Sz JzdS. This quantity is displayed in Fig. 8.

We observe that near the impellers, the total flux of energy (filled black squares) equals the
energy injected by the impellers. The change of sign comes from the fact that the impeller at the bot-
tom injects energy in the +z direction, whereas the upper impeller injects energy in the −z direction.
At the center of the experiment, the flux is zero, meaning that on average, there is not any energy
going from one half of the cylinder to the other through the shear layer. Finally, it is interesting
to see that, as before, the mean flow plays an important role in the transport of energy near the
impellers, whereas near the shear layer, energy is carried by fluctuations. A slight difference is that
near the impellers, as the mean flow sends energy towards the center of the cylinder, fluctuations
create a flux which goes in the opposite direction and tries to send energy back to the impellers.

Altogether, the local map of injected power is shown in Fig. 9(a). We see that near the impel-
lers, the divergence term brings energy into the system as is expected. We also see that energy leaves
the center of the recirculation cells and tends to be advected towards the center of the impeller
through Ekman pumping.

2. Energy dissipation

We now turn to the total energy dissipation estimated through the LES method ΠT .
Its values at various Reynolds numbers in the symmetric case are reported in Fig. 6(b). We

observe that it is in very good agreement with direct measurements at Re ≈ 4 × 103. At such
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FIG. 9. Top: Maps of the energy production rate (a) and energy transfer rate (b) for the same flow as in Fig. 2(a), using
LES-PIV estimates. Bottom: Instantaneous (c) and time averaged (d) maps of the local dissipation Dℓ(u⃗) at ℓ = 0.1 for the
same flow. Areas where energy accumulates are represented in red, while those where energy leaves are represented in blue.

Reynolds number, the dissipative scale is of the order of 1 mm, close to the PIV resolution. This
result is therefore in agreement with the observation of Tokgoz et al.1 obtained for a Taylor-Couette
flow. At larger Reynolds numbers, the estimates using the LES method are in good agreement
with respect to direct measurements since we are able to capture up to 90% of the actual energy
dissipation. The map of the local dissipation with this method is provided in Fig. 9(b) and appears
fairly uniform across the vessel, with larger intensity along the vertical axis around r = 0 and near
the lateral boundaries around z = ±0.3.

This map can be compared with the one obtained using the DR formula Dℓ(u⃗) at ℓ = 0.1
in Fig. 9(d). One observes the same localized structures of energy dissipation near the walls at
x = ±0.6, which are symmetrically distributed with respect to the midplane. These structures are
statistically significant, since they are not observed on plots of the instantaneous local dissipation
Dℓ(u⃗) (see Fig. 9(c)). They may, therefore, trace the intense vortices of the shear layer. In addition,
one observes a clear localization of energy injection (red areas) at the tip of the impellers, with an
energy dissipation in the middle part of the cells. Regarding instantaneous maps, it is interesting to
note that it is characterized by intense, localized events that can reach 10–20 times the maximum
average local dissipation. Whether these intense events are connected to localized quasi singular
structures is an interesting open question that we leave for future work.

Overall, these dissipation maps provide clear evidence that the maximum energy dissipation
lies within the shear layer and that the DR formula provides a better estimate of the energy dissipa-
tion than the LES method in the symmetric case.
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FIG. 10. Energy cycle in the von Kármán experiment: the energy is advected to the impellers via the Ekman pumping, the
flow is then accelerated inside the impellers and expelled at the walls, providing an energy injection ϵ towards the mixing
layer. In that mixing layer, turbulent fluctuations dissipate an energy equal to ϵ. The fluid is then pumped again into the
impellers for further reinjection, closing the energy cycle and providing a stationary situation with energy dissipation ϵ.

3. Description of the energy cycle

Altogether, our results regarding energy production, transport, and dissipation can be summa-
rized into a simple picture of the “energy cycle” for the von Kármán flow, which is sketched in
Fig. 10: the energy is advected to the impellers via the Ekman pumping, the flow is then accelerated
inside the impellers and expelled at the walls, providing an energy injection towards the mixing
layer. In that mixing layer, turbulent fluctuations dissipate an energy equal to ϵ . The fluid is then
pumped again into the impellers for further reinjection, closing the energy cycle and providing a
stationary situation with energy injection and dissipation equal to ϵ .

In the sequel, we study the influence the flow topology and the forcing conditions onto this
energy cycle. Since in this picture most of the energy is dissipated within the middle shear layer,
there is good hope that we can capture its main contribution by the PIV measurements, provided
that the shear layer is not too close to the impeller since in that case, the PIV measurements cannot
resolve the flow. We check in Secs. V B and V C that this is indeed the case and provide detailed
informations about the localization of energy dissipation to complete the picture of the energy cycle.

B. Influence of the flow topology

Let us now consider the case when both impellers rotate in the (−) sense at θ = 0. For this
type of forcing, at sufficiently high Reynolds numbers, there is coexistence of three different flow
geometries for TP87 type impellers.

Considering the case where the flow has not undergone any phase transition, Fig. 6 shows that
for this type of forcing, we measure a dissipation almost three times bigger than what was observed
with the previous forcing condition. In this symmetric case, our estimates of the injected and dissi-
pated powers are within 20% of the measured value using the LES-PIV method, whereas we reach
98% of the actual dissipation rate of energy with the DR formula (see Fig. 6(a)). Local maps of
injected and dissipated power are plotted in Fig. 11. They correspond to the flows (b) displayed
in Fig. 2 where the forcing is in the (−) sense. Here, Figs. 11(a) and 11(b) represent LES-PIV
estimates, while Figs. 11(c) and 11(d) represent instantaneous and time averaged maps using the DR
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FIG. 11. Top: Maps of the energy production rate (a) and energy transfer rate (b) for symmetric (−) geometry corresponding
to the flow in Fig. 2(b), using LES-PIV estimates. Bottom: Instantaneous (c) and time averaged (d) maps of the local
dissipation Dℓ(u⃗) at ℓ = 0.1 for the same flow. Areas where energy accumulates are represented in red, while those where
energy leaves are represented in blue.

method. Here, the remarks are essentially the same as in Fig. 9: near the impellers, the divergence
term brings energy into the system, while energy leaves the center of the recirculation cells to
accumulate at the center of the cylinder. The dissipation term does not change much either and is
approximately constant throughout the plane of measurements. A noticeable difference however is
that the color scale is bigger for this configuration. We thus recover the fact that the flow dissipates
more energy than for a forcing in the (+) sense and, as a consequence, the torque of the impellers
has to be higher.

The situation changes for the bifurcated (−) states. The shear layer is now very close to the
upper or lower impeller, depending on the state “chosen” by the system. The mean velocity field for
these two states is essentially the same, differing only by the transformation z → −z. The measured
injected power is also the same in these two states. However, in terms of PIV-estimated injected
or dissipated power, a clear asymmetry occurs. Indeed, when the shear layer is sent downwards
(up-pointing triangles), the LES-PIV method provides good estimates of both the injected and
the dissipated powers (see Fig. 6(b)), while the DR method provides about 65% of the dissipated
power. In the case where the shear layer is sent upwards (down pointing triangles), however, both
the LES-PIV method and the DR method totally fail to reproduce the measured dissipated energy
(giving the wrong sign). Since there is not any asymmetry observed in the mean flow, this difference
must be attributed only to fluctuations and tiny asymmetries of the experimental setup (laser sheet
location, focalization of cameras, etc.). This points out the importance of resolving the shear layer

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  132.166.23.127 On: Fri, 10 Jul 2015 08:02:31



075105-17 Kuzzay, Faranda, and Dubrulle Phys. Fluids 27, 075105 (2015)

in the PIV estimates of the injection or dissipation energy rate. We thus conclude that neither the
LES-PIV nor the DR method is appropriate in cases when the shear layer is at the location of the
impellers, where it cannot be resolved by our PIV setup.

Local maps of injected and dissipated powers in the bifurcated states are plotted in Fig. 12.
They correspond to the flows (c) and (d) displayed in Fig. 2 where the forcing is in the (−) sense.

FIG. 12. Maps of the energy production rate and energy transfer rate for the two bifurcated geometries (−). Left: For the flow
represented in Fig. 2(c). Right: For the flow represented in Fig. 2(d). Top line represents the estimated injected energy, using
LES-PIV method. Middle line represents the estimated dissipated energy using the LES-PIV method. Bottom line represents
the estimated dissipated energy using the DR method. Areas where energy accumulates are represented in red, and those
where energy leaves are represented in blue.
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Maps (a), (c), and (e) correspond to a flow where the shear layer has been sent near the lower
impeller. As a consequence, we observe that energy enters from the top and is advected downwards
to the shear layer. The map of the dissipation term for this flow looks quite like the production term.
We see that most of the dissipation we are able to capture happens at the center of the cylinder
but, as we said before, we miss all the dissipation that happens near the lower impeller where there
is the shear layer. At first sight, maps (b), (d), and (f) are just symmetric of maps (a), (c), and (e)
with respect to z → −z. However, by looking closely, tiny differences are observed, especially near
the walls and impellers. These differences explain the asymmetry between the two bifurcated states
shown in Fig. 6.

C. Influence of the forcing asymmetry θ

We now investigate the case where the impellers are not exactly counter-rotating, so that the
parameter θ varies from −0.5 to 0.5. In the (−) case, the geometry observed at |θ | > 0 is always
bifurcated (see Fig. 3(b)), with the shear layer located at the top or bottom impeller. In the (+)
case, the transition is more gradual: the shear layer is increasingly shifted upwards (respectively,
downwards) as θ goes from 0 to 1 (respectively, −1), allowing for finer tests of the accuracy of our
PIV estimates as a function of the flow geometry.

In Fig. 13 are plotted our estimates for the total injected (red symbols) and dissipated powers
(blue symbols) using both the LES-PIV method (Fig. 13(b)) and the DR formula (Fig. 13(a)).
For each θ, our computations are based on sets of at least 600 instantaneous velocity snapshots.
Because of the symmetry z → −z, we expect all estimates to be symmetric with respect to θ → −θ,
provided the statistics are well converged and that the shear layer is sufficiently resolved. We see
that this is indeed the case for (+) forcing condition, where the shear layer always lies in between
the two impellers. However, we observe that both methods become inaccurate when |θ | is too
high, i.e., |θ | > 0.3. For the (−) forcing condition, the estimates give very good agreement for the
symmetric state. However, when the phase transition occurs, one observes the same asymmetry as
in the θ = 0 case between the two possible states: when the shear layer is sent downwards, we get a
good agreement between measurements and PIV estimates with the LES method. However, the DR
method systematically underestimates the dissipation. In the case where with the shear layer is sent
upwards, the estimates are really bad with both methods.

Corresponding maps of the injected and dissipated powers are provided in Fig. 14 at θ = −0.1
in the (+) and (−) senses. They obey qualitatively the same behavior as in the symmetric case, so

FIG. 13. Comparison between direct measurements of energy injection obtained through torque measurements (black
symbols) and PIV based estimates at various θ, for TP87 impellers for the four different mean state geometries of Fig. 2.
Disks (+). Rhombi: (−) symmetric. Up triangles: (−) shear layer sent downwards. Down triangle: (−) shear layer sent
upwards. (a) Energy dissipation using DR method (blue symbols). (b) Energy injection ΓT (red symbols) and dissipation
ΠT (blue symbols) using the LES-PIV method. The estimates are computed based on 1–2 realizations of the same experiment
where at least 600 instantaneous velocity snapshots have been taken for each of them. The symbols represent the mean of our
computations, while the error bars represent the standard deviation.
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FIG. 14. Maps of the energy production rate and energy transfer rate at θ =−0.1 for the two rotation directions. Left: (+).
Right: (−). Top line represents the estimated injected energy, using LES-PIV method. Middle line represents the estimated
dissipated energy using the LES-PIV method. Bottom line represents the estimated dissipated energy using the DR method.
Areas where energy accumulates are represented in red, and those where energy leaves are represented in blue.

that the energy cycle description is qualitatively the same, with the shear layer location being moved
as θ varies.

VI. CONCLUSION

In this paper, we investigate the energy cycle of a turbulent von Kármán flow. In this kind of
setup, it is possible to control the mean energy flux inside the flow in order to get a statistically
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stationary regime. It is also possible to monitor the torque and frequency of the impellers. In our
case, we use PIV measurements to study local and global energy transfers inside the flow. This
kind of measurements gives us access to the effective velocity field on a grid that does not resolve
the dissipative scale. Therefore, we use a LES approximation to model the influence of unresolved
scales. This procedure involves a free parameter which has to be calibrated for our setup. This is
achieved by imposing angular momentum balance at the smallest resolved scale.24 After deriving
an energy balance equation at a fixed scale ℓ, we proceed to estimate four quantities from our
PIV measurements: the local and global mean powers injected by the impellers and the local and
global mean dissipated powers. This computation is performed for various Reynolds numbers and
for various flow topologies. These PIV estimates are then compared with direct injected power
estimates provided by torque measurements at the impellers. The agreement between PIV estimates
and direct measurements depends on the flow topology. In symmetric situations, we capture up to
90% of the actual energy dissipation. However, our results become increasingly inaccurate as the
shear layer responsible for most of the dissipation approaches one of the impellers and cannot be
resolved by our PIV setup. At the same time, we explore a new method for PIV estimates of the
energy dissipation based on the work of Duchon and Robert9 that generalizes the Kármán-Howarth
equation to nonisotropic, nonhomogeneous flows. This method provides parameter-free estimates of
the energy dissipation as long as the smallest resolved scale lies in the inertial range and the shear
layer is resolved by the PIV setup. With this method, we obtain a very good agreement between PIV
estimates and direct measurements, and we are able to capture up to 98% of the actual dissipated
power in symmetric situations. However, this method also gives increasingly inaccurate results as
the mixing layer approaches one of the impellers. These results are used to evidence a well-defined
stationary energy cycle within the flow in which the energy is injected by the top and the bottom
impellers towards the shear layer. There, turbulent fluctuations dissipate energy and the flow is then
pumped towards the impellers, closing the energy cycle.
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We introduce two new singularity detection criteria based on the work of Duchon and Robert
[J. Duchon and R. Robert, Nonlinearity, 13, 249 (2000)], and Eyink [G.L. Eyink, Phys. Rev. E,
74 (2006)] which allow for the local detection of Navier-Stokes singularities in experimental flows,
using classical PIV measurements. These criteria allow to detect areas in a flow where the velocity
field in no more regular than Hölder continuous with some Hölder exponent h 6 1/2. We begin by
discussing the link with the Beale-Kato-Majda [J.T. Beale, T. Kato, A. Majda, Commun. Math.
Phys., 94, 61 (1984)] criterion based on the blow-up of vorticity. Then, we show that in order to
detect such singularities, one does not need to have access to the whole velocity field inside a volume
but can instead look for them from stereoscopic particle image velocimetry (SPIV) data on a plane.
We illustrate our discussion using tomographic PIV data obtained inside a high Reynolds number
flow generated inside the boundary layer of a wind tunnel. In such a case, BKM and DR criteria
are well correlated with each other.

I. INTRODUCTION

Viscous incompressible fluids are described by the incompressible Navier-Stokes equations (INSE)

∂tui + uj∂jui = −1

ρ
∂ip+ ν∂j∂jui + fi (1)

∂juj = 0, (2)

where ui is the velocity field, p the pressure field, ρ the mass density, fi some forcing and ν the molecular viscosity. A
natural control parameter for the INSE is the Reynolds number Re = LU/ν, which measures the relative importance
of nonlinear effects compared to the viscous ones, and is built using a characteristic length L and velocity U . The
INSE are the corner stone of many physical or engineering sciences, such as astrophysics, geophysics, aeronautics and
are routinely used in numerical simulations.
However, from a mathematical point of view, it is not known whether the mechanism which tends to smooth out
possible irregularities in the velocity field, i.e. viscous forces, is efficient enough to constrain ui to remain smooth
at all times. In two dimensions, the existence, unicity and smoothness theorems have been known for a long time
[1–4]. In three dimensions however, it is still unclear whether the INSE are a well-posed problem, i.e. whether their
solutions remain regular or develop finite time, small scale singularities. This motivated their inclusion in the AMS
Millennium Clay Prize list [5]. Historically, the search for singularities in the INSE was initiated by Leray [6–8] who
introduced the notion of weak solutions (i.e. in the sense of distribution). This notion has since remained a framework
of choice for those wishing to study their regularity. However, only partial regularity theorems have been obtained
up to now. For instance, we know that contrary to Euler equations, regularity of the solutions to the INSE is ensured
if the velocity field remains bounded [9–11]. Therefore, the problem of Navier-Stokes regularity is a velocity blow-up
problem, and may experimentally result in a break-down of the incompressibility condition (2) [12–14]. Another
well-known result about these potential singularities, is that they are very rare events: according to the Caffarelli-
Kohn-Nirenberg theorem [15] the singular set has zero one-dimensional Hausdorff measure in spacetime. This means
that if they exist, singularities manifest themselves by a velocity which becomes arbitrarily large at one fixed point
in space, reaches infinity and immediately after becomes finite again.
In 1949, Onsager published his only paper [16, 17] in the field of turbulence. In this work, he realized that far from
simply being a mathematical curiosity, the possible loss of smoothness in the velocity field could have important
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practical consequences. More precisely, he argued that if, at point x, the velocity field cannot satisfy any regularity
condition stronger than a Hölder condition

|u (x + r)− u (x) | < Crh, (3)

with h 6 1/3, then energy conservation is not ensured in the limit ν → 0 because there might exist an additional
energy dissipation due to this lack of smoothness, and which has nothing to do with viscosity. Let us note that Hölder
continuity (3) is a weaker regularity condition than differentiability. Therefore, at first sight, it seems that Onsager’s
assertion concerns the blow-up of the gradient of u. However, since Navier-Stokes singularities are velocity blow-ups
so that Onsager’s statement truly is about the blow-up of u itself.
Onsager’s arguments are important for turbulence because they provide an alternative mechanism to Taylor’s [18, 19]
in order to explain the fact that turbulent flows dissipate energy at a rate which is independent of Re, for sufficiently
large Re. In the following years, Onsager’s conjecture attracted a lot of attention from mathematicians, who tried to
prove that h > 1/3 indeed imply that energy dissipation is zero when viscosity vanishes. In 2000, Duchon and Robert
derived the corresponding local energy balance in Leray’s weak formalism, and were in addition able to express
Onsager’s dissipation in terms of velocity increments [20]. Later, Eyink used the same formalism to prove that
singularities may also produce a non-zero rate of velocity circulation decay, providing another interesting signature of
singularities in terms of a cascade of circulation [21–23].
These physical consequences illustrate the interest of detecting potential singularities of the INSE in order to advance
our understanding of turbulence. This task is however complicated by the scarcity of the putative singularities. For
example, numerical detection of singularities requires solving of the full INSE at large Reynolds numbers, for a time
long enough so that singularities might develop. These two constraints actually severely limit the quest for singularities
and explain why there still is no final answer about numerical detection of singularities in INSE. Part of the numerical
limitations are relaxed when performing experiments with turbulent flows. Indeed, in a well-designed experiment, one
can reach fairly easily large Reynolds numbers and monitor the results for a time long enough (minutes to hours) to
accumulate enough statistics for reliable data analysis. In the past, experimental detection of singularities of INSE
has been limited by the instrumentation, since only global (torque), or localised in space (Pitot, hot wire) or in time
(slow imaging) velocity measurements were available. With the advent of modern Particle Image Velocimetry (PIV),
measurements of the velocity field at several points at the same time over the decimetric to sub-millimetric size range
is now available, at frequencies from 1Hz to 1kHz, reviving the interest in experimental detection of singularities of
INSE. The main challenge remains to find an appropriate detection method.
Clearly, the naive method consisting in tracking the velocity field and locate areas where the velocity becomes very
large is unlikely to prove successful: it would require time and space resolved measurements, localized at the place
where the singularity appears. With the present technology, this means zooming over a small area of the flow (typically
a few mm2) and wait until a singularity appears. Since singularities are very scarce, there is little chance that one
will be able to detect one. Moreover, if the velocity is indeed very high at this location, any neutral particle in the
area will move very fast and leave the observation window in an arbitrarily small time. This is a problem for PIV or
Particle Tracking Velocimetry (PTV) measurements, which are based on particle tracking. An interesting alternative
is provided by multifractal analysis, which is a classical but powerful method to detect singularities based on statistical
multiscale analysis. Classical reviews on the method are provided in [24, 25]. With velocity field as the input, the
so-called multifractal spectrum can be obtained, quantifying the probability of observation of a singularity of scaling
exponent h through the fractal dimension of its supporting set D(h). This method has been applied to experimental
measurements of one velocity component at a single point at high Reynolds numbers in [24], who showed that the
data are compatible with the multifractal picture, with a most probable h close to 1/3. Later Kestener et al. [25]
extended the method to 3D signals (3 components of the velocity field), and showed on a numerical simulation that
the picture provided by the 1D measurements was still valid, with the most probable h shifting closer to 1/3. To
our knowledge, this method has never been applied to 3D experimental data. Moreover, due to the statistical nature
of the analysis, it appears difficult to obtain information regarding the possible instantaneous spatial distribution of
singularities.
In the present paper, we suggest a new method to detect singularities inside experimental turbulent incompressible
flows. This method is inspired from Onsager’s conjecture (summarized in Sec. IIA) and based directly on the energy
balance derived by Duchon-Robert (DR) [20] (see Sec. II B). The idea is to track singularities through scales by
detecting the energy transfers that they produce. We will use Duchon and Robert’s results [20] as a criterion (hereafter
referred to as DR criterion) which will tell us where to look (Sec. III). This criterion is easily implementable from
now classical velocity measurements such as tomographic PIV (TPIV) or stereoscopic PIV (SPIV). Furthermore, we
show that our approach provides a natural connection with the traditional cascade picture of turbulence, facilitating
the interpretation of the detected singularities. We further discuss how the DR criterion compares with another
well known criterion called the Beale-Kato-Majda (BKM) criterion in Sec III C. Finally, a result obtained by Eyink
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[21–23], and which resembles Duchon and Robert’s, will be investigated. This result concerns Kelvin’s theorem (Sec.
IV), and will give us indications on singularities with h 6 1/2. Our discussion is illustrated using tomographic PIV
(TPIV) data obtained inside the boundary layer of flow generated in a wind tunnel [26].

II. MATHEMATICAL TOOLS

A. Background on Onsager’s conjecture

Lars Onsager was the first to make the connection between the regularity properties of the velocity field and kinetic
energy conservation [17, 23]. In order to explain this, let us consider a local space averaged (low-pass filtered) velocity
field. In the INSE, the unknown velocity and pressure fields contain informations about the flow at all possible scales.
Let us define a coarse-grained velocity field by taking the convolution of u with some kernel G`

u`i (x, t) =

∫
dr G` (r)ui (x + r, t) , (4)

where G is a smooth filtering function, non-negative, spatially localized and such that
∫
dr G (r) = 1. The function

G` is rescaled with ` as G` (r) = `−3G (r/`). This process of coarse-graining thus averages out fine details about the
fields while keeping informations about large scales. Let us now derive the equations satisfied by u`i . Starting from
the INSE and applying the coarse-graining procedure we get

∂tu
`
i + u`j∂ju

`
i = f `i − ∂ip` + ν∂jju

`
i , (5)

∂ju
`
j = 0, (6)

where f `i = −∂jτ `ij is called the turbulent force, and τ `ij = (uiuj)
`−u`iu`j is the subscale stress tensor. We thus obtain

a sequence of equations describing the dynamics of large scales. From these equations, we can derive a local energy
balance at scale `

∂tE
` + ∂jE

`,j
ν = −Π` −D`

ν , (7)

where E `,j
ν = u`j

(
E` + p`

)
+ u`iτ

`
ij − ν

(
∂jE

` + ∂i
(
u`iu

`
j

))
, E` = u`iu

`
i/2, Π` = −S`ijτ `ij , D`

ν = 2νS`ijS
`
ij , and S`ij =(

∂iu
`
j + ∂ju

`
i

)
/2. Π` appears as a source term (a priori positive or negative) which stems from interactions between

scales larger and smaller than `. It represents the energy transfers through scale `. Therefore, energy is not conserved
at large scales, even for ν = 0, because of the well-known energy cascade. However, if u is a smooth function, it is
easy to show that τ `ij vanishes as ` → 0 so that Eq. (7) gives the usual energy balance, and energy conservation is
recovered for ν = 0.
Onsager studied turbulence in the 1940’s [16] and, during this period of time, published only one paper in this field
[17]. At the end of this paper, he noted that ν → 0 does not actually ensure conservation of energy because in this
limit it is possible that the velocity field does not remain smooth enough for allowing Π` to vanish as ` → 0. As
explained in [23], the key realization of Onsager was that τ `ij and S`ij can be rewritten in terms of velocity increments
as

τ `ij = (δuiδuj)
` − δu`iδu`j , (8)

S`ij = − 1

2`

∫
dr ∂iG` (r) δuj (x + r, t) + ∂jG` (r) δui (x + r, t) . (9)

Hölder continuity is expressed as

|u (x + r)− u (x) | < Crh, (10)

at small scales, or equivalently

|δu (r) | = O
r→0

(
rh
)
. (11)
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Let us now define δu (`)
def
= sup

r<`
|δu (r) |. We directly get that

Π` = O
`→0

(
δu (`)

3

`

)
. (12)

Therefore, if u is Hölder continuous in space with exponent h, i.e. δu (`) ∼ `h, then

Π` = O
`→0

(
`3h−1

)
. (13)

As a consequence, we see that if h > 1/3, Π` vanishes as ` → 0 and Euler equations are seen to conserve energy.
On the other hand, it may well be that this condition does not hold, in which case turbulent flows might keep on
dissipating energy even if ν = 0. The non vanishing of the mean energy dissipation rate ε in the limit of arbitrarily
large Re is a central assumption in the 1941 Kolmogorov’s theory of turbulence (K41) [27–30]. Onsager’s arguments
lead to the conclusion that a necessary condition for ε 6= 0 in inviscid turbulence is h 6 1/3, h = 1/3 being the K41
case. In this case, the non-vanishing of ε would stem from a lack of smoothness in the velocity field, and could replace
Taylor’s mechanism [18, 19] for energy dissipation. As a matter of fact, there are evidences coming from DNS that a
continuous set of scaling (or Hölder) exponents h are allowed, with the most probable exponent close to 1/3 [24, 25].
Therefore, such are likely to occur in real flows. Onsager’s hypothesis then constitutes an interesting candidate for
explaining why turbulent flows dissipate energy at a rate independent of Re at very large Re, and would allow for a
deeper understanding of turbulent energy dissipation (see [23] for a more detailed discussion).

B. Inertial energy dissipation

Onsager’s conjecture has been investigated by many mathematicians wishing to study the regularity of the INSE.
Actually, it is possible to obtain an exact expression for Π` as `→ 0. This result was derived by Duchon and Robert
[20] using Leray’s weak solution formalism [7] and Onsager’s ideas [17]. For this, they introduce a distribution

DI
def
= −∂tE − ∂jE j

ν −Dν , (14)

where E j
ν = E j − ν

(
∂jE + ∂ij

(
uiuj

))
, Dν = 2νSijSij , and Sij = (∂iuj + ∂jui) /2 (all these terms should be under-

stood as distributions). Then, using the filtering approach described in Sec. IIA, they proceed with the derivation of
an exact expression for DI . In the end, the following energy balance is obtained

∂tE + ∂jE
j
ν = −DI −Dν , (15)

where

DI = lim
`→0

D`(u) = lim
`→0

1

4

∫
dr ∇G` (r) · δu(δu)2, (16)

does not depend on the choice of G. Onsager’s assumption directly follows, and can even be weaken [20]. The key
point is that in (15), DI appears as the fraction of energy dissipated due to a lack of smoothness of the velocity field,
and has nothing to do with viscosity. If h = 1/3 globally in space (like in Kolmogorov’s theory), singularities dissipate
energy independently from the viscosity, and we have Onsager’s anomalous dissipation [17].

C. Connection with traditional turbulence notions

1. Kármán-Howarth-Monin formula

A corner stone of turbulence theory is provided by the Kármán-Howarth-Monin (KHM) relation [12, 31–33], valid for
homogeneous turbulence, linking the energy dissipation per unit mass D and velocity increments via



5

D = −lim
`→0

1

4
div`〈δu(δu)2〉, (17)

where 〈 · 〉 denotes statistical averaging. The fraction of energy dissipated in singularities DI (16) therefore appears
as a weak formulation of the KHM relation which is valid when u is not differentiable, contrary to Eq. (17). The
practical applicability of the KHM relation to turbulence relies on the fact that the statistical average of the third order
structure function is smooth enough to be differentiable. If this is not the case, taking the divergence introduces noise.
The weak formulation of Duchon and Robert ensures that the transfers can be computed locally and instantaneously,
without introducing further noise: indeed, the derivative in scale is not applied directly to the velocity increments,
but rather on the smoothing function, followed by a local angle averaging. This guarantees that no additional noise
is introduced by the procedure. Even more, the noise coming from the estimate of the velocity is naturally averaged
out by the angle smoothing. This makes the quantity DI a very interesting tool to localize singularities in both space
and time, as we discuss in Sec. III A.

2. Energy transfers

The fraction of energy dissipated in singularities DI appears as the limit of a scale dependent quantity D`(u). In
their paper, Duchon and Robert prove that D` has the same limit as ` → 0 as the classical energy transfer rate
Π`, defined in Eq. (7). Moreover, they prove that at any finite `, the statistical average 〈D`(u)〉 coincides with the
average over a ball of size ` of the energy dissipation per unit mass D . We have indeed checked [34] in the case
of an axisymmetric von Kármán flow that the space-time average of D` over the whole volume of the experiment
agrees with global direct torque measurements of the injected power within 2% at large Reynolds numbers, as long
as the scale ` lies in the inertial range. The quantity D` may therefore be interpreted as a local (in space and
time) energy transfer through scale `, and is related to the statistical energy dissipation rate which is at the base
of the refined similarity hypothesis of Kolmogorov [12]. As long as ` lies in the inertial range, D` coincides with
the energy injection, while as ` → 0, it converges to the energy dissipation induced by singularities. In this picture,
the classical Kolmogorov (dissipative) scale η ∼ Re−3/4 therefore appears as a natural border for the behavior of D`(u)

• when ` > η, D` describes some local energy transfers from injection scale.
• when ` 6 η, D` describes some local energy transfers towards scales smaller than the dissipative scale.

This is in agreement with the multi fractal picture of turbulence, in which a local singularity with exponent h < 1/3
transfers energy down to scale ηh ∼ Re−1/(1+h) < η. This kind of transfers may therefore be seen as local indicators
of singularities with h < 1/3. Our method of detection of singularities relies on this remark. Note finally that the
expression of D`(u) is very suitable for its implementation starting from experimental PIV velocity fields: it involves
only velocity increments, which are easily computed from the velocity field data obtained by such a technique.

III. SINGULARITY DETECTION THROUGH DUCHON-ROBERT FORMULA

A. Detection method

We saw in Sec. IIA that if the velocity is locally characterized by a scaling exponent h > 1/3, then DI = 0. In this
section, we will make use of the converse statement of this result, i.e. if locally DI 6= 0, then the flow in the region
where this is observed is no more regular than Hölder continuous with some h 6 1/3. If this is the case, then the
velocity field is not differentiable, which necessarily comes from a blow-up of the velocity field itself [9–11]. However,
there are several reasons why such singularities cannot be directly detected from experimental measurements. First of
all, measurement systems inevitably have a coarsed space and time resolution while blow-ups occur instantaneously
at one point [15]. Furthermore, post-processing techniques which provide the output velocity field smooth the data by
performing local averages, and by considering very large velocities as spurious vectors which in the end are discarded.
The key idea is therefore to track the singularities through the behaviour of D` as one comes across the dissipative
scale η. If D` vanishes as one approaches or goes to smaller scales than η, then we have only seen local energy transfers
through scales [34], which is ultimately converted into heat by viscous frictions, as in the traditional Taylor view of
turbulence. If on the other hand, we see that D` keeps a nonzero value larger than some threshold Q, then we have
detected a structure connected to a singularity with h 6 1/3. This structure becomes fully singular in the exact limit
` → 0. Therefore, Eq. (16) will be used as a criterion (hereafter referred to as DR criterion) to detect singularity
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FIG. 1: (a) sketch of the experimental set-up and (b) typical instantaneous velocity field, obtained from TPIV measurements
in a plane orthogonal to the mean flow. The arrows represent the in-plane component of the velocity field while the colors code
the normal component.

candidates through scales. We shall call "quasi-singularities" structures with h 6 1/3 located at a point where
D` > Q for 0 < ` < η.
The only adjustable parameter in our detection method is the threshold Q. A natural choice for Q is therefore to
take

Q = QD`(u), (18)

where the over line denotes spacetime averaging over the data set. That way, Q characterizes the quantile of the
distribution of quasi-singularities. For example, if Q = 10, we select events with an amplitude 10 times over their
mean. With Q = 1000, we select more extreme quasi-singularities, which represent in general very rare events.
In all our computations, we have used a spherically symmetric function of r given by

G(r) =

{
1
N exp

(
− 1

1−r2/4

)
for 0 6 r 6 1,

0 otherwise,
(19)

where N is a normalization constant such that
∫
dr G(r) = 1. G has a compact support and satisfies the properties

given in Sec. II A.

B. Implementation

We illustrate our detection method using experimental velocimetry measurements. The data are TPIV measurements
performed inside a boundary layer of a wind tunnel located at the Laboratoire de Mécanique de Lille, France. A sketch
of the experimental set-up is displayed in Fig. 1 along with a typical instantaneous frame in a plane orthogonal to the
mean flow. The test section of the wind tunnel is 1m high, 2m wide and 20m long. The boundary layer thickness can
reach up to 300mm and the Reynolds number Rθ based on the momentum thickness is Rθ = 8000, with a wall region
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FIG. 2: Maps of the Duchon-Robert (DR) energy transfers as a function of scale `. (a) map of D` at three different scales and
(b) map of D` (normalized by their space-time averages) at different scales, along a line going through a potential singularity.
The results are displayed in the plane y = 0 orthogonal to the streamwise direction, and the colors code D`(u). The scale is
expressed in units of the resolution scale (0.7mm).

of around 40mm. The TPIV system is composed of six high-speed cameras recording the flow into a volume normal
to the wall (see Fig . 1). The investigation volume is 5×45×45 mm3 and, in the end, we get the three components of
the velocity field on a grid of size 5× 67× 67. Note that for these data, the resolution (grid spacing) is ∆x = 0.7mm
while the Kolmogorov scale is of the order of η ≈ 0.35mm. Therefore, we will be able to test the DR criterion at
scales close to the dissipative scale. More details about the experimental set-up can be found in [26].
An example of variation of D`(u)/D`(u) as a function of scale ` and position x in a plane orthogonal to the mean
flow is provided in Fig. 2 (normalized by its space-time average). In these plots, the scale is expressed in units of
the gridstep ∆x. We see that for scales ` & 4∆x, the topology of the ratio D`(u)/D`(u) does not vary much. This
is because at these scales, we are in the inertial range where the DR transfers capture the cascade of energy [34].
On the other hand, as we reach the dissipative range, i.e. ` . 4∆x, D`(u)/D`(u) changes topology. We see that
the DR transfers does not vanish, but instead remain larger than Q = 10 at localized areas which we identify as
quasi-singularities with h 6 1/3. It can be checked that overall, both quantities D`(u) and D`(u) have an increasing
magnitude as ` decreases, so that the energy transfers which we observe at the smallest scales in Fig. 2 are not just
the fluctuations of a small quantity whose average is also very small.

C. Link with the Beale-Kato-Majda criterion

Contrary to Euler equations, the regularity of the solutions to the INSE is controlled by putting an upper bound on
the norm of the velocity field [9–11]. As a consequence, our detection method based on the DR criterion is actually a
detection of possible blow-ups of the velocity field. One might therefore wonder whether there are indicators of such
blow-ups.
In the limit of zero viscosity, the Navier-Stokes equations become the Euler equations. In such a case, it can be proven
[35] that if there exists a solution with a finite blow-up time T∗, then the vorticity ω(x, t) satisfies

∫ T∗

0

||ω(x, t)||∞dt =∞. (20)

Therefore, a necessary condition for the existence of singularities is the blowup of vorticity. This criterion (hereafter
referred to as BKM criterion) is usually used in numerical detection of singularities in Euler equations. However, even
though the authors of [35] only prove this result in the case of zero viscosity, they argue that their demonstration holds
for nonzero viscosity, so that the theorem still applies to INSE. Therefore, in this section, we address the question of
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FIG. 3: Comparison between the Duchon-Robert (DR) and Beale-Kato-Majda criteria using TPIV data. (a) map of the DR
energy transfers D` and (b) map of the norm of the vorticity |ω(x, z)| (normalized by their space-time averages) at the smallest
resolved scale. The results are displayed in the plane y = 0 orthogonal to the streamwise direction for the same data as in Fig.
2.

whether the DR and BKM criteria are correlated at large Reynolds numbers. Let us look at Fig. 3, where maps of
Q and |ω(x, z)| (normalized by its spacetime averages) are displayed.
First of all, we observe on Fig. 3b) that the vorticity is almost zero everywhere, except for some areas where vorticity
is concentrated into thin filaments of high intensity which can be up to 60 times larger than its spacetime average.
Moreover, comparing Fig. 3a) with Fig. 3b), it can be seen that areas where the structures of dissipation detected
by the DR criterion are localized are also areas where the norm of the vorticity is high. In order to quantify how
much both map are related, we compute the Pearson’s coefficient RN of linear correlation between areas where both
criterion indicate quasi-singularities. We find RN = 0.59, where the threshold of Q = 10 has been used to define
quasi-singularities. Therefore, we deduce that areas of strong energy transfers in D`(u) are well correlated with areas
of strong vorticity. The BKM and DR criteria are thus in good agreement.

D. 2D vs 3D detection

In principle, our method of detection requires the input of the three components of the velocity field in a volume, i.e.
requires data from TPIV. In practice, some PIV systems are only stereoscopic, giving access to the three components of
the velocity field on a plane only, but allowing for very long statistics. Since velocity increments along one direction of
space cannot be computed, this raises the question of whether the DR criterion is still able to detect quasi-singularities
from SPIV data, or does the absence of the third direction leads to the detection of spurious structures which would
disappear if the full 3D computation were to be performed. To answer this question, let us define a new quantity
based on (16), which is built from the three components of the velocity increments on a two-dimensional plane

D2D
I (u)

def
= lim

`→0
D2D
` (u) = lim

`→0

1

4`

∫

S
dr (∇G`)(r) · δ2Du(r) |δ2Du(r)|2, (21)

where δ2Du(r) = u(x2D + r2D) − u(x2D), x2D and r2D being the projection onto the plane of measurements of
the 3D coordinates. We now argue that areas where D2D

I (u) is nonzero are also areas where the full field DI(u) is
nonzero, thus proving that it is sufficient to look for singularities in SPIV data.
To prove this, we first consider a situation where the velocity field is regular in the direction perpendicular to the
plane of measurement, that we call y. In such a case, as `→ 0 we may expand the velocity increments in Taylor series
in the y-direction. Using the notations introduced in (21), we get
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FIG. 4: Comparison between two instantaneous maps of the Duchon-Robert (DR) criterion computed from both SPIV and
TPIV data. (a) map of the DR energy transfers D2D

` and (b) map of the DR energy transfers D` (normalized by their space-time
averages) at the smallest resolved scale. The results are displayed in the plane y = 0 orthogonal to the streamwise direction
for the same data as in Fig. 2. The two orthogonal lines on map (b) represent the two planar cuts displayed on Fig. 5.

δu(r) = δ2Du(r) + ry∂yu + O
ry→0

(r2
y). (22)

where ry is the y-component of r and δ2Du(r) the velocity increments on the (XZ) plane. We then take the cube of
this expression which leads to

[δ2Du(r)]3 = [δu(r)]3 + O
ry→0

([δu(r)]2ry). (23)

As we said in section IIA, D`(u) = O(δu(`)3/`). So that if δu(`) ∼ `h, then

D2D
` (u) = D`(u) + O

`→0

(
`2h
)
, (24)

where the first term is O(`3h−1). So if the velocity field is regular with h = 1, then

lim
`→0

D2D
` (u) = lim

`→0
D`(u) = 0. (25)

If the velocity field is singular with h < 1, the limit of D2D
` (u) is controlled by the first term of (24) and so

lim
`→0

D2D
` (u) = lim

`→0
D`(u). (26)

This means that if the flow is regular in the y direction, all areas where the flow is smooth in TPIV data is also smooth
in SPIV data. Therefore, all singularities detected using SPIV measurements will correspond to singularities detected
using TPIV. That is to say, computing the DR energy dissipation from SPIV measurements does not introduce
any spurious structures which would disappear by performing the full 3D computation. However, we cannot detect
singularities lying only on the y-direction by using SPIV data. Therefore, it is sufficient to use the criterion based on
D2D(u).
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FIG. 5: Instantaneous maps of the Duchon-Robert (DR) energy transfers, in the two planes represented by black lines on Fig.
4, at the smallest resolved scale, and normalized by their space-time averages. (a) shows a planar cut in an (XY) plane and
(b) shows a planar cut in a (ZY) plane for the same data as in Fig. 2. These maps allow us to see that singularities appear to
have a three dimensional structure

An illustration of this result can be provided by an application to our experimental data. In such a case, there is
a strong streamwise mean flow and singularities are more likely to occur in the direction orthogonal to this plane.
We thus choose y as the streamwise direction and compare the DR criterion applied on SPIV and TPIV data via
instantaneous maps of D2D

` (u) (Fig. 4a)) and D`(u) (Fig. 4b)) obtained from the same data as in Fig. 3. It can be
seen that even though there are some differences between the two maps, both fields are qualitatively the same. This
confirms what we showed previously, that all areas where D2D

` (u) 6= 0 are also areas where D`(u) 6= 0. Here again
we have performed the computation of the Pearson’s coefficient R of linear correlation between areas of high energy
transfer in D2D

` (u) and in D`(u). We find R = 0.92 where the value Q = 10 has been kept. The two fields are very
well correlated, as expected. However, if one is interested in the amount of energy dissipated on the plane of interest,
taking into account increments along the streamwise direction appears necessary since the space-time averages of
D2D
` (u) is about 5 times larger than the space time-average of D`(u) over the same plane. This may be due to

contributions in the y direction that have not been taken into account. Indeed, the structures of energy dissipation
appear stronger compared to their space-time average when increments along the streamwise direction are taken into
account.
Fig. 5 displays two planar cuts at z constant (a) and x constant (b), as represented on Fig. 4b). As described in [26],
the velocity field in only available in a few planes along the streamwise direction. Here, we have only access to five of
them. Therefore, the resolution of the flow is not as good along the y direction as it is for x and z. However, we can
see that singularities appear to have a three dimensional structure.
Let us now investigate whether the BKM and DR criteria are still in good agreement when computed from SPIV data.
The maps are displayed in Fig. 6. In the case of SPIV data, the only component of the vorticity that we are able to
reconstruct is the orthogonal component to the plane of measurement (here ωy). Therefore, the question we ask is:
does the link between the BKM and DR criteria still exist when using SPIV data? Or put another way, are areas of
strong DR energy transfer also areas where ωy is high? Comparing both maps on Fig. 6, there indeed seems to be a
correlation between both maps. We can quantify this correlation by once again computing the correlation coefficient
Ry = 0.63. As a consequence, the relation between the DR and BKM criteria seems to hold well for this geometry,
whether for TPIV or for SPIV data. However, there is no guarantee that it is still the same in other geometries.

IV. SINGULARITY DETECTION THROUGH EYINK FORMULA

A few years after the publication of [20], Eyink noticed that singularities may also cause a breakdown of Kelvin’s
theorem [21–23], in the sense that in addition to a nonzero energy dissipation rate, they might also produce a nonzero
rate of velocity circulation decay Γ`(u) given by



11

−150 0 150

200

400

 

 

−20

−10

0

10

20

−150 0 150

200

400

 

 

−6

−4

−2

0

2

4

6

x

z

x

z

a b

FIG. 6: Comparison between the Duchon-Robert (DR) and Beale-Kato-Majda criteria using SPIV data. (a) map of the 2D
DR energy transfers D2D

` and (b) map of the absolute value of the y-component of the vorticity |ωy(x, z)| (normalized by their
space-time averages) at the smallest resolved scale. The results are displayed in the plane y = 0 orthogonal to the streamwise
direction for the same data as in Fig. 2.

d

dt
Γ`(u) =

∮

C

ds ·F `(u), (27)

where

F `(u) =
1

`

∫

V
dr

[(
δu(r)−

∫

V
dr′G`(r

′)δu(r′)

)
·∇G`(r)

]
δu(r). (28)

C being any contour advected by the fluid. F `(u) is called the turbulent vortex-force. This is an important
remark since Kelvin’s theorem plays an important role in Taylor’s vortex stretching mechanism for energy dissipation
[18, 19, 23].

A. Detection method

We saw in section II and III that the velocity field u of a flow might develop singularities due to some internal
mechanisms of the INSE which are not fully understood. At the points in spacetime where this happens, u might
however satisfy some Hölder continuity property with exponent h. At points where h > 1/3, no additional dissipation
to viscosity occurs according to Onsager’s arguments. However, if h 6 1/3 an additional energy dissipation (or
production) might appear [20, 23] causing kinetic energy to cascade through scales. Our detection method introduced
in section III is based on the computation of this additional term to the energy balance and then track areas where
it does not vanish with decreasing scale.
We introduce now a very similar detection method which is based on the observation that the turbulent vortex-force
in (28) satisfies F `(u) = O(δu(`)2/`) = O(`2h−1) if δu(`) ∼ `h in the small scale limit, as discussed in [21–23].
Therefore, the computation of the turbulent vortex-force allows us to track singularities where h 6 1/2, whereas the
DR criterion only allows us to track the ones with h 6 1/3. Moreover, just as for the DR term (16), this computation
only involves velocity increments, which are easily accessible via PIV measurements. For the same reason mentioned
in section IIIA, a detection criterion based on circulation production is only a necessary but not sufficient one (since
our PIV set-up is not space resolved). Keeping the same test function G as in (19), we can implement a detection
method very similar to the one described in section III, but based on another cascading quantity. Therefore, two
questions arise. Starting from our TPIV data and computing maps of D`(u) and d

dtΓ`(u), are intense events in both
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FIG. 7: Comparison between the Duchon-Robert (DR) and Eyink criteria using SPIV data. (a) map of the DR energy
transfers D` and (b) map of the velocity circulation production d

dt
Γ`(u) ( normalized by their space-time averages) at the

smallest resolution scale accessbile. The results are displayed in the plane y = 0 orthogonal to the streamwise direction, and
for the same data as in Fig. 2. For easier comparison, we have reported on the circulation map the contours of the areas where
the DR dissipation is larger than 15 times its space-time average. We observe intense events in both maps.

cases well correlated? And, are we able to detect areas where a strong circulation production is observed while the
DR term is weak? This would mean the detection of potential singularities with 1/3 < h 6 1/2.

B. Implementation of the method

The arguments which have been made in section IIID to show that it is enough to look for singularities from SPIV
via energy transfers can be once again made here. Therefore, in the following, we will focus on SPIV data.
Let us first compare maps of D`(u) and d

dtΓ`(u) in order to answer the first question. On Fig. 7 are displayed maps
of these two quantities (normalized by their space-time averages) for the same data set as in Fig. 4a).
First of all, it can be observed that areas where d

dtΓ`(u) is nonzero are organized as very thin filaments. Therefore,
Fig. 7b) is more noisy than Fig. 7a) even though the same procedure is applied in both cases, i.e. a derivative in scale
is applied on the smoothing function, followed by a local angle averaging. There is some correlation between the maps:
in areas where the dissipation is strong, there always is some nonzero circulation. However, we observe that regions
of largest rate of circulation are either shifted with respect to areas of strong dissipation, or exist in some areas where
there is little dissipation (see contours on Fig. 7b)). Overall, the Pearson’s coefficient of linear correlation RΓ between
regions of strong events in both fields is RΓ = 0.40. This is consistent with the existence of singularities with local
exponent 1/3 < h 6 1/2 that contribute mildly (or not all al) to the dissipation, but strongly to the circulation. Note
that on Fig. 7b), areas of strong circulation production do not exceed ten times their space-time averages. Looking
at other maps of d

dtΓ`(u), it seems to be a general observation that while D`(u) can reach values up to 100 times its
space-time average, intense events of d

dtΓ`(u) are weaker compared to their own space-time average. Therefore, the
threshold we chose here to define "intense events" has been reduced to five times the space-time average. In addition,
the fact that the maps of circulation are more noisy than the maps of dissipation renders their use less straightforward
to detect singularities.

V. DISCUSSION

In this paper, we have introduced two new methods based on the work of Duchon, Robert and Eyink [20–23], which
allow for the local detection of singularities in experimental flows. Both criteria assume the knowledge of spatial
velocity increments only and are therefore easy to implement experimentally as well as numerically. The key idea
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behind their implementation is that velocity field in turbulent flows might satisfy Hölder continuity conditions with
an exponent h 6 1 in the limit of small scales. If h 6 1/2, a cascade of circulation might occur and Kelvin theorem
breaks down. This cascade can be detected at larger scales provided that we are in the inertial range. In the same
way, if h 6 1/3, then a cascade of energy might occur which can also be detected in the inertial range. The first
criterion that we introduced (DR criterion) focuses on these energy transfers.
Since Navier-Stokes singularities concern the blow-up of the velocity field, we compared the DR criterion to the well
known Beale-Kato-Majda (BKM) criterion [35]. We found a good agreement between them, whether SPIV or TPIV
data sets are considered.
We also showed analytically that to detect singularities, one does not need to have access to the whole velocity field
inside a volume, but can instead look for them from stereoscopic particle image velocimetry (SPIV) data on a plane.
This is confirmed by performing both 2D and 3D computations and comparing maps of the DR term D`(u). In our
case, the PIV data came from the measurements of the velocity field inside the boundary layer of a wind tunnel
[26]. Clearly, being limited to SPIV data means the informations along a third direction are lacking meaning that
singularities which only lies in this third direction cannot be detected. In this flow, we observe that the computation
of the DR term actually shows areas where it is nonzero, some of them being characterized by very strong (extreme)
energy transfers through scales.
Finally, we investigated a second new method for the detection of singularities based on the possibility of a breakdown
of Kelvin theorem at very large Reynolds numbers [21–23]. We showed that this method seems correlated with the
DR criterion even though areas of intense energy transfers are sometimes shifted compared to areas of high rate of
circulation. However, due to higher noise, this method is less reliable than the DR method, but it may allow for the
detection of a wider range of singularities.
In the present paper, our detection methods were applied inside a boundary layer geometry, the resolution of our data
being close to, but not exactly reaching, the dissipative scale. The fact that we detect areas with negative D` suggests
that we observe energy transfers through scales [34], but not dissipation due to singularities. This is a strong indication
that the Kolmogorov scale η is not the smallest relevant scale for energy dissipation and that there might actually
exist smaller scales at which dissipation takes place, as suggested in the multifractal picture of turbulence. Therefore,
we cannot yet conclude on the existence of singularities in experimental flows. This would require measurements with
a resolution high enough to consider that the condition ` → 0 is experimentally satisfied with good approximation.
This is still a challenge in measurement science. However, the results we showed are very promising, and applying our
detection methods to other types of geometries with increased resolution to check whether the structures as well as
the correlations we detect still exist appears to be the next step. We hope our work will help providing experimental
constraints on the properties of Navier-Stokes singularities as well as on corresponding suitable weak solutions.
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A
bout 500 years ago, Leonardo Da Vinci published what
appears to be one of the first detailed experimental
account of vortices in water. It then took three centuries

to establish the fundamental equations describing the dynamics
of water, now known as the incompressible Navier–Stokes
equations (INSE):

@tuþ u � rð Þu ¼ �rPþ nDuþ f; ð1Þ

r � u ¼ 0; ð2Þ
where u is the d-dimensional velocity field, P the kinematic
pressure, f a forcing and v the kinematic viscosity. A natural
control parameter of the INSE is the Reynolds number Re¼UL/v,
built using a characteristic length L and velocity U. The INSE are
the cornerstones of many physical and engineering sciences,
and are routinely used in numerical simulations1–4. From a
mathematical point of view, however, it is still unclear whether
the INSE are a well-posed problem in three dimensions, that is,
whether their solutions remain regular over sufficient large time
or develop singularities. This motivated their inclusion in the
AMS Clay Millennium Prize list5.

Historically, the search for singularities in INSE was initiated
by Leray6 who introduced the notion of weak solutions (that is, in
the sense of distribution). This notion was used to prove that the
mathematical singular set has a one-dimensional Haussdorff
measure equals to zero in spacetime7,8. Therefore, if these
singularities exist, they must be extremely localized events in
space and time. This makes their direct detection an outstanding
problem. For some times, the best evidence of their existence was
provided by the observation that the energy dissipation rate in
turbulent flows tends to a constant at large Reynolds numbers9.
This observation is at the core of the 1941 Kolmogorov theory of
turbulence10 and was interpreted by Onsager11 as the signature of
singularities with local scaling exponent h¼ 1/3. Later, it was
conjectured12 that the singularities are organized into a
multifractal set. Analysis of measurements of three-dimensional
numerical or one-dimensional experimental velocity fields
showed that the data are compatible with the multifractal
picture, with a most probable h close to 1/3 (refs 13,14).
However, this analysis could not reveal any information on the
space-time statistics of possible singularities.

A major breakthrough was achieved when Duchon and
Robert15 derived a detailed energy balance for weak solutions of
INSE and computed the contribution stemming from an eventual
lack of smoothness. They show that it can be lumped into a single
term D(u), which quantifies the ‘inertial’ energy dissipation, that
is, the energy dissipated by non-viscous means. They define
dissipative weak solutions of Navier–Stokes equations as those
with D(u)Z0, the equality being only achieved for smooth-
enough solutions (corresponding to a local scaling exponent
h41/3). Later, Eyink16 proved the existence of a like-wise
non-zero rate of velocity circulation decay d

dt GðuÞ, produced by
singularities. These mathematical results are obtained in the limit
of vanishing spatial scales, so that their direct application to
experimental or numerical flows is problematic. In such cases,

one can only expect to be able to measure coarse-grained
quantities, Dc(u) and d

dt GcðuÞ, at a scale c dictated by
experimental or numerical constraints17. In that respect, a
special role is played by the so-called dissipative scale c¼ Z, as
it is traditionally expected to be the scale at which all injected
energy is converted into viscous dissipation, and the flow is
regularized by viscosity. For example, it is at this scale that
numerical simulations are usually truncated, or experimental
velocity gradients estimated. On the road to the mathematical
limit c-0, it seems interesting to study the properties of Dc(u)
and d

dt GcðuÞ down to the dissipative scale.
The purpose of the present study is to use high spatial

resolution measurements of the velocity field in experiments of
turbulent swirling flow (see ‘Methods’ for more on this choice) to
compute Dc(u) and d

dt GcðuÞ down to dissipative scales. We show
that they are very intermittent in space and time, and provide the
first experimental attempt at characterization of isolated extreme
events of inertial dissipation. By characterizing the local topology
of these events, we find that most of them appear as fronts
separating regions of distinct velocities, whereas some correspond
to focusing spirals, jets and cusps. Our results highlight the
non-triviality of turbulent flows at sub-Kolmogorov scales as
possible footprints of singularities of the Navier–Stokes equation.

Results
Relevant hydrodynamic parameters in von Kármán swirling flows.
Details on the setup can be found in the Methods section. We
vary the rotating frequency (F) of the impellers that drive the flow
and use different mixture of glycerol/water, to vary the viscosity
of the working fluid, and thus the Reynolds number Re¼ 2pFR2/
v, (where R is the radius of the impellers). Monitoring the torques
C1 and C2 applied to each impeller, we obtain the energy injection
rate (per unit mass of fluid) as:

E ¼ 2pFðC1þC2Þ
rpHR2

: ð3Þ

where r is the fluid’s mass density and H the distance between the
impellers. From this, we can compute the Kolmogorov dissipative
scale as Z ¼ ðn3=EÞ1=4.

In a statistically stationary regime, the energy input must
balance the rate of energy dissipated within the flow. This has
been checked in a scale 4:1 version of our experiment in Helium,
using precise calorimetric measurements18. Previous global
dissipation measurements have shown that the dimensionless
energy dissipation rate saturates at large Re towards a value
that depends on the impellers and the mean flow geometry19

(more details in Supplementary Note 1). This property allows us
to determine the threshold for the onset of fully developed
turbulence as ReE3,500. This also corresponds to the threshold
where non-dimensional velocity fluctuations become inde-
pendent of the Reynolds number20.

Here we present three cases of the experiments. Case A: 100%
glycerol, where the flow is laminar; Case B: 59% glycerol by
volume in water, where the flow is fully turbulent; and Case C:

Table 1 | Parameter space describing the 3 cases considered in this paper.

Case F (Hz) Re g (mm) dx (mm) E1 Dn
dx

� �
Ddxh i

A 2 149 4.3 3.4 0.088 0.007 o0.0001
B 1.2 6� 103 0.32 0.24 0.049 0.07 0.007
C 5 3� 105 0.02 0.24 0.046 0.008 0.03

dx is the grid spacing of our measurements and E1 is the dimensionless injected power (in units of R2(2pF)3), averaged over the whole volume of the experiment, measured using torque meter. Dn
dx

� �
is

the space-time average of the viscous dissipation measured from stereoscopic particle image velocimetry system data in a region of 4�4 cm2 localized at the centre of our experiment and Ddxh i is the
dimensionless space-time average of the inertial dissipation in the same region (all in units of R2(2pF)3).
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pure water (0% glycerol), where the flow is also fully turbulent.
Table 1 lists the various parameters of the cases.

Velocity measurements and average quantities. Local velocity
measurements are performed with a stereoscopic particle image
velocimetry system (SPIV), providing the radial, axial and
azimuthal velocity components on a meridional plane of the flow
through a time series of 30,000 independent time samples. In the
sequel, we work with dimensionless quantities, using R as the unit
of length, and (2pF)� 1 as the unit of time. As shown in Kuzzay
et al.17, SPIV data are sufficient to detect events where Dc(u)
takes extreme values. Essentially, it was shown, through
mathematical considerations and application on experimental
data that SPIV is able to detect extreme events that have
components intercepting the measurement plane, and that any
such events detected via SPIV is also present when volumetric
three-dimensional data are considered17. The detection method is

based on evaluating two functions of du(c), the velocity incre-
ment over a distance c: (i) the inertial (non-viscous) energy
dissipation rate Dc(u) and (ii) the local circulation production
rate d

dt GcðuÞ (see ‘Methods’ for detailed expression). If these
events are connected to singularities in the flow, they can be
characterized by a local exponent ho1 via duBch; these two
functions should behave in the limit c-0 like DcðuÞ ¼
Oð c3h� 1Þ and d

dt GcðuÞ ¼ Oð c2h� 1Þ (see refs 11,16). Previous
studies based on multifractal analysis indicate that the most
probable exponent is close to h¼ 1/3 (ref. 13). This corresponds
to a constant bound for Dc(u) as Re-N. On the other hand, for
stronger events with ho1/3, both Dc(u) and d

dt GcðuÞ may diverge
at small scales. Formally, the spatial resolution of PIV
measurement is twice the grid spacing dx, which depends on
the cameras resolution, the field of view and the size of the
windows used for velocity reconstruction. In the sequel, we use
2 M-pixel cameras and two different zooms, to get measurements
at dx¼ 3.4 mm, for a field of view covering the whole
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Figure 1 | Coarse-grained energy dissipation and velocity circulation decay. Maps of the coarse-grained viscous energy dissipation Dn
dxðuÞ (a to c), the

coarse-grained inertial energy dissipation Ddx(u) (d–f) and the coarse-grained rate of velocity circulation decay d
dt GdxðuÞ (g–i) for the three cases described

in Table 1. Figures for case A are on the left panels (a,d,g), B on the middle panels (b,e,h) and C on the right panels (c,f,i). All the quantities have been made

dimensionless using the radius R of the cylinder and the angular velocity (2pF)� 1 of the impellers as units of length and time. We observe that the inertial

dissipation remains strong in case B and C. (g–i) A non-zero circulation rate persists down to the dissipative scale. Finally, areas of high viscous dissipation

seem correlated with the location of extreme events of inertial dissipation.
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experimental setup obtained through 32� 32 pixel windows and
dx¼ 0.24 mm for a field of view zoomed on a 4� 4 cm2 zone at
the centre of the experiment, and reconstructed with 16� 16
pixel windows. Table 1 summarizes the parameters
corresponding to the three different cases. We see that the
dissipative scale Z is resolved for case A and B, but not for case C.

Energy dissipation and circulation production rates. To study
the influence of the Reynolds number and to understand how the
dissipated power is split between normal (viscous) and the esti-
mates of inertial dissipation at various scales, we have computed
the local viscous dissipation Dn

dxðuÞ, estimates of the inertial
dissipation Ddx(u) and the circulation production rate d

dt GdxðuÞ
predicted by Eyink and Sreenivasan21, at the resolution scale of
our PIV system. Maps of these three quantities for instantaneous
sets of data are displayed in Fig. 1 for a region of size 4� 3 cm2

located at the centre of our flow. All three cases described in
Table 1 have been studied. For the three of them, we observe a
smaller noise in the estimate of Ddx(u) compared with Dn

dxðuÞ. As
argued in Kuzzay et al.17, this is due to the inherent smoothing
procedure in the expression of Dc(u).

As can be seen from Fig. 1, Ddx(u) detects clear dissipation
structures when the flow is fully turbulent and all scales down to
the Kolmogorov scale are resolved (case B). One observes that the
local inertial dissipation can be positive or negative, but on time
average remains positive as reported in Table 1. This peculiar
feature is parallel to the behaviour of entropy in non-equilibrium
systems, where the entropy production can be positive or
negative, but remains positive on time average, in accordance
with generalized fluctuation–dissipation theorems22–24. The
dissipation can also be locally very strong, sometimes over
three orders of magnitude larger than the average injected power.
The resulting distribution of dissipation intensity is strongly
non-Gaussian, with very large tails (see Fig. 2).

Comparing with instantaneous maps of d
dt GcðuÞ at the same

scale, we see that besides areas of large dissipation, there are also
areas of non-zero local rate of velocity circulation decay, which
could be the footprints of singularities providing local source of
circulation/vorticity, as conjectured by Eyink16. If we turn to the
laminar case (case A, Fig. 1a,d,g), the resolution of our
measurements over the whole flow is smaller than the relevant
scale; thus, all scales are resolved. There are no clear dissipation
structures in the map of Ddx(u), which appears to be negative
over the whole observation window and, on average, 3.5 times
smaller than the viscous dissipation. The latter is also very small
in that area, over one order of magnitude smaller than the total
energy injection. In a similar way, we observe on Fig. 1d,g that
both Ddx(u) and d

dt GdxðuÞ are very small at the centre compared
with viscous dissipation and compared with their values for the
two other (turbulent) flows. This is suggestive of the idea that the
contribution of possible inertial dissipation plays a more
important role at high Reynolds numbers, while viscous effects
decrease. For case A, if the energy balance is performed over the
whole experiment, the viscous dissipation accounts for all of the
injected power and supersedes, by two order of magnitudes, the
estimates of inertial dissipation. We also see by comparing Fig. 1b
with Fig. 1e and Fig. 1c with Fig. 1f that areas of high viscous
dissipation tend to be correlated with areas where strong inertial
dissipation are localized.

To see whether the structures on Fig. 1d–f are located in areas
of high vorticity, we may compare them with maps of vorticity
magnitude17. In our case, we have only access to the y component
of vorticity, oy ¼ @zux � @xuz at the resolution scale, whose
magnitude is displayed in Fig. 3 for the three cases described in
Table 1.

Comparing Fig. 3b with Fig. 1e we find an overall agreement
between the vorticity and dissipation map. However, we see that
some structures in the Ddx(u) field are not mirrored in the
vorticity field, and that the agreement is worse for case A and C,
showing that the link between vorticity and inertial dissipation
might be restricted only to turbulent flows, when dissipative scale
is resolved.

Extreme events in the inertial dissipation estimates. To focus
on the extreme events and to characterize them, we restrict our
analysis to very intense events that are locally responsible for very
large Ddx(u). We harvest from case B (the turbulent resolved case)
only those structures having Ddx(u) of 1,000 times higher than its
space-time average, corresponding to very rare extreme events.
Out of 30,000 images, we found only 28 events, corresponding to
probability of o1 in 50,000 (based on ratio of areas). Examples of
these events are shown in Fig. 4. By observing the local velocity
around these 28 events, we are able to classify them into
4 main types:

Fronts (Fig. 4a), where the velocity field shows two regions of
very different velocities separated by a clear boundary along
which the extreme event lies. In the frame of reference moving
with the peak of the event, the in-plane velocities typically display
a shock-like pattern. This type of structures is the result of two
blobs of fluids, initially well-separated in space and velocity, being
brought to close distance. In this sense, it is reminiscent of the
fronts found in studies of turbulent mixing of passive scalar25.
Similar patterns could also be found in weather patterns
(for example, cold fronts). Many of these events also show
velocity patterns such as in a saddle point (where fluid flows
inwards on one axis while escaping on another) as can be seen in
the periphery of Fig. 4a. In general, fronts and saddles belong to
the same causal family in the sense that two blobs of fluid are
mutually colliding and thus escape in other directions. These
events are the most frequent, representing 21 events, that is,
75% of the cases. The inertial dissipation of most of these
events (except two) increases without sign of saturation with
decreasing scale, corresponding to a local exponent ho1/3
(otherwise h¼ 1/3).
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Figure 2 | Probability density function of the estimated inertial

dissipation. Probability density function (PDF) of the coarse-grained

inertial dissipation Ddx(u) estimated at the dissipative scale (in units of

R2(2pF)3, where R is the radius of the cylinder and F the rotation frequency

of the impellers), evaluated from measurements in case B. The distribution

is highly non-gaussian with many events at values larger than 1,000 times

the mean value.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12466

4 NATURE COMMUNICATIONS | 7:12466 | DOI: 10.1038/ncomms12466 | www.nature.com/naturecommunications



Spirals (Fig. 4b), where the in-plane velocity has a spiral
structure. The inertial dissipation increases without saturation,
corresponding to a local exponent ho1/3. This type of events was
found three times. All these events are converging spirals
consistent with the scenario of vortex stretching in the out-of-
plane direction.

Jets (Fig. 4c), where the in-plane velocity has a strong narrow
jet and the peak is found near the edge where there is strong
shear. Another common feature is the complex profile of the out-
of-plane velocity. These are suggestive of further breakdown
energy by instability at certain location of fronts in the flow. The
inertial dissipation increases without saturation, while showing
possible saturation in another case. This type of events was only
found two times.

Cusps with helicity (Fig. 4d), where the velocity field in the
in-plane displays a horse-shoe-like structure, whereas the out-of-
plane velocity profile is clearly distinct across the hypothesized
cusps. These are events that seem incompatible with the above
categories. They have features suggestive of the velocity field
generated by a vorticity line motion with a local cusp and axial
motion (see Supplementary Note 3). Such vorticity pattern has
been frequently observed in numerical simulation of vortex lines
reconnection26 and has even been suggested to be at the origin of
the k� 5/3 turbulent spectrum27. On the other hand, as shown by
Danchin28, the velocity field generated by a cusp-like local
vorticity patch is still regular, so that such a simple model might
not be sufficient to explain our observations. The inertial
dissipation around cusp events increases without saturation,
corresponding to a local exponent ho1/3. They represent only
two events.

Discussion
We characterize, in our experiments, the topology of extreme
events of inertial dissipation estimated at the dissipative scales of
turbulence. Our results provide a further indication of the non-
trivial structures of sub-Kolmogorov flows, complementary to
previous studies based on scaling studies of dissipative inter-
mittency, for example, see Sreenivasan29. We show that extreme
inertial dissipation events are associated with the existence of
velocity fronts, saddle points, spirals, jets and, in some cases,
suggestive of cusps. These kinds of topologies are typically
associated with special configurations of eigenvalues of the
velocity strain tensors around critical points of flow patterns. At
such points, it is often the case that lagrangian trajectories cross30,
which would make these extreme events possible locations of
shock-like singularities. In any case, the flow topology around the
extreme inertial dissipation events is different from the usual flow

topology associated with viscous dissipation. For instance, Moisy
and Jimenez31 used box counting to study the fractal structure of
regions of intense vorticity and energy dissipation in a direct
numerical simulation of isotropic turbulence. Their work suggests
that the geometry of the regions of intense dissipation resemble
sheets or ribbons. This suggests that inertial dissipation and
viscous dissipation are two different processes, at least down to
the dissipative scale.

Another interesting observation is that extreme events of
inertial dissipation provide significant local contributions to
energy balance at the Kolmogorov scale, regardless of whether the
energy lost pertaining to these events is eventually dissipated by
singularities or by viscosity at yet smaller scales. This suggests that
Kolmogorov scale is not the only characteristic scale for
dissipation. This seemingly surprising conjecture is in fact
compatible with the multi-fractal picture of turbulence,
which predicts that for a given flow singularity of exponent h,
there is a specific dissipation scale32 Zh scaling like Re� 1/(1þ h).
For h¼ 1/3, we recover the classical Kolmogorov scale Z. For the
case with ho1/3, we have ZhoZ, so that the dissipation occurs at
much smaller scale than the Kolmogorov one. Our findings are
therefore compatible with the multi-fractal picture of turbulence,
if the extreme events of inertial dissipation are the footprints of
singularities of exponent ho1/3, as suggested in Kuzzay et al.17.

Whether this interpretation is valid or not is still debatable, as
we have no means to follow the inertial dissipation down to c¼ 0,
as required by the mathematical theorem15. To unambiguously
distinguish between the possibilities of whether the energy
contained in these extreme events is eventually dissipated by
non-viscous mean or otherwise, one may need to resolve the flow
down to the kinetic limit and track their evolution in time until
they fully dissolve, which represents a experimental challenge for
future works.

Perhaps a more immediate practical question one could ask is:
knowing the significance of such extreme events even at the
dissipative scales, how could one truncate models and simulations
at tractable hydrodynamic scales with the correct physics
reflecting their properties? In compressible fluid dynamics, these
kinds of questions are usually addressed in relation with the
building of a singularity through shock formation. In these cases,
it has been common practice starting with von Neumann and
Richtmyer33, to select physically admissible solutions and ensure
the stability of numerical schemes via the introduction of an
appropriate numerical viscosity34. Our results suggest that the
same kind of procedure should also be introduced in
incompressible numerical simulations, to account for extreme
events of inertial dissipation that are not captured at the model
resolution scale.
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Methods
The choice of von Kármán swirling flow. As inertial dissipation is expected to
originate from flow singularities, we focus on a geometry where lack of smoothness
is not forbidden by mathematical theorems. This motivates our choice of an
experimental set-up providing a turbulent flow with statistical axisymmetry. This
kind of geometry has attracted interest from many works on the regularity of
INSE35–41, where it was shown that the regularity properties of the axisymmetric
Navier–Stokes equations heavily depend on the intensity of the swirl component of
the flow uf and its variation with respect to the distance from the rotation axis.
When the swirl is zero, Ladyzhenskaya35 proved that the flow is smooth at all
times. When the swirl is non-zero, the regularity can also be proven for finite time,
in a domain excluding the symmetry axis38. In our experiment, we therefore
currently concentrate our measurements on a domain including the symmetry axis
and generate turbulence in a vertical cylinder of height H and radius R filled with
water, and stirred by two coaxial, counter-rotating impellers (von Kármán flow)
providing energy and momentum flux at the upper and lower end of the cylinder.
The resulting flow is statistically axisymmetric, with a time-averaged velocity
consisting of a swirl (toroidal flow) uSðr; zÞ ¼ ufðr; zÞef and a poloidal flow
uPðr; zÞ ¼ urðr; zÞer þ uzðr; zÞez , where (r, f, z) are the cylindrical coordinates and
(er, ef, ez) the corresponding unit vectors42. The ratio us/up is controlled by the
impellers geometry. In the sequel, we focus on impellers such that us/up¼ 2.5. The
impellers are driven by two independent motors rotating at a frequency F and the
experiment is thermalized at a temperature TE20 �C.

Torque and rotational frequency measurements. Torque (global) measurements
at each impeller are performed with SCAIME technology and provide values over
the kHz range of C1 and C2, being respectively the torque applied to the bottom
and top shafts. They are calibrated using measurements at different mean
frequencies, so as to remove spurious contributions from genuine offsets or
mechanical frictions. From this, we compute the injected power necessary to
maintain our turbulent flow in a statistical stationary state as P¼ 2p(C1F1þC2F2),
where C1 and F1 are the torques and the frequencies at the two impellers,
respectively. To get a meaningful comparison between different impellers, we
further renormalize the injected power by rR5(2pF)3, where r is the fluid density,
F¼ F1¼ F2 (exact counter-rotating regime) and R is the radius of the cylinder.

Particle image velocimetry. The typical size of the particles used in the PIV
measurements is a few tens of micrometres and their density is 1.4. Two cameras
take 30,000 successive pictures of the flow at a 15-Hz framerate. The resolution of
our camera frame is 1,600� 1200 pixels and the reconstruction is done using peak
correlation performed over 50% overlapping windows of size 16 to 32. As a result,
we get measurements of velocity field on a grid of approximate size 170� 160 to
90� 68 in a vertical plane containing the axis of symmetry (Oz), in a cylindrical
system of coordinates. We performed two types of experiments: one with the
cameras set at a distance such that their field of view covers the whole meridional
plane. This set-up enables a global view of the flow and reaches a minimum grid
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step of the order of 200/68E3 mm. In the second, we adapt lenses on the camera,
to focus on a five times smaller field of view, of the order of 40� 30 mm. Increasing
the number of particles in the flow and using overlapping windows of size 16� 16,
we are then able to reach a minimum grid step of the order of 40/160E0.25 mm.
The continuity between the two types of measurements can be checked by
degrading the resolution of the zoomed picture using overlapping windows of
32� 32 or 128� 128 for the velocity reconstruction. This last case corresponds
to the velocity field obtained without lenses, with a velocity field reconstructed
using windows of size 16� 16.

The total acquisition time is B10 min to 2 h, that is, one or two orders of
magnitude longer than the characteristic time of the slowest patterns of the
turbulent flow. Fast scales are statistically sampled.

The velocity fields are non-dimensionalized using a typical velocity
V0¼ 2pR(F1þ F2)/2 based on the radius of the cylinder and the rotation
frequencies of the impellers. The resulting velocity fields are windowed so as to fit
to the boundaries of the flow and remove spurious velocities measured in the
impellers and at the boundaries. We apply a local filter (based on velocities of
nearest neighbours) to remove isolated spurious vectors. Typically, B1% of the
data are changed by this processing.

Estimation of dissipation and circulation production rates. With our velocity
fields, we can compute the velocity increments duðrÞ ¼ uðx2D þ r2DÞ� uðx2DÞ,
From this, we define two scale dependent scalar functions: the local energy
dissipation rate Dc(u)15:

DcðuÞ ¼
1
4

Z
n

d3r ðrGcÞðrÞ � duðrÞ duðrÞj j2; ð4Þ

where n is a full disk and the local rate of velocity circulation decay16:

d
dt

Gc uð Þ ¼
I

C

ds �Fc uð Þ; ð5Þ

where

FcðuÞ ¼
Z

v

d3r du rð Þ�
Z

v

d3r0Gc r0ð Þdu r0ð Þ

0
@

1
A � rGc rð Þ

2
4

3
5 du rð Þ; ð6Þ

C being any contour advected by the fluid and Gc is a spherically symmetric
function of r given by17:

GcðrÞ ¼
1
N

exp ð� 1=ð1�ðr=2cÞ2ÞÞ; ð7Þ

where N is a normalization constant such that
R

d3rGcðrÞ ¼ 1.
In addition, we may also compute the local rate of viscous dissipation at the

resolution scale, given by:

Dn
dxðuÞ ¼ nSijSij; ð8Þ

where Sij ¼ @jui . In the present case, we are missing some components of the
viscous dissipation. Incompressibility condition provides S22¼ � S11� S33. We
have also used statistical axisymmetry to replace S21 by S12 and S23 by S13. We have
checked that this last hypothesis does not change the topology of the local maps of
dissipation, but changes the time-average, hopefully accounting for the missing
dissipation due to plane projection.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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an inertially-driven von Kármán closed flow. J. Fluid Mech. 601, 339–364
(2008).

21. Eyink, G. L. & Sreenivasan, K. R. Onsager and the theory of hydrodynamic
turbulence. Rev. Modern Phys. 78, 87135 (2006).

22. Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium
statistical mechanics. Phys.Rev. Lett. 74, 2694 (1995).

23. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev.
Lett. 78, 2690 (1997).

24. Ciliberto, S., Joubaud, S. & Petrosyan, A. Fluctuations in out-of-equilibrium
systems: from theory to experiment. J. Stat. Mech. Theor. Exp. 12, P12003
(2010).

25. Shraiman, B. I. & Siggia, E. D. Scalar turbulence. Nature 405, 639–646
ð2000Þ:

26. Melander, M. V. & Hussain, F. Cut-and-connect of two antiparallel
vortex tubes. Research Proceedings of the Summer Program. 256–286
ð1988Þ:

27. Hunt, J. C. R. & Vassilicos, J. C. Kolmogorov’s contributions to the physical
understanding of small-scale turbulence and recent developments. Proc. R. Soc.
Lond. A 434, 183–210 (1991).

28. Danchin, R. Evolution d’une singularité de type cusp dans une poche de
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1 Supplementary Figures

α

+

Supplementary figure 1: Experimental setup. Picture of the experimental set-up and of an impeller.

The notations for the two forcing conditions are defined along with the angle α characterizing the

curvature of the blades.
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y

z

Supplementary figure 2: Imaging Setup. Schematics of the PIV set-up viewed from above. A

laser lights micrometer sized particles in a meridional plane, while two cameras take successive

snapshots of the flow. This allows us to get the three components of the velocity field in the lit

meridional plane.
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Supplementary figure 3: Mean flow and fluctuations. Maps of the instantaneous (top panels) and

mean (middle panels) flows along with the standard deviation (bottom panels) at each measurement

points (same flow as in Fig. 1-4). Left column: V x. Middle column: V y. Right column: V z. We

see that the instantaneous flow is highly disordered, while the mean flow and the standard deviation

have well defined structures. Mesurements made at Re ≈ 3× 105.
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Supplementary figure 4: Mean injected kinetic power. Global dimensionless injected power per

unit mass ε (blue dots) in the stationary symmetric regime as a function of the Reynolds number

Re. The dotted line represents the fit ε ∝ Re−1. This figure has been adapted from Fig. 3 in 5. The

point at Re ≈ 107 was measured using normal liquid helium in the SHREK experiment while all

the other points have been obtained using water or glycerol.
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Supplementary figure 5: Variation of inertial energy dissipation with lenght-scale. Maps of the in-

stantaneous dimensionless coarse-grained inertial energy dissipation D`(u) as a function of scale

` for a flow at Re ≈ 3 × 105. a) Maps of D`(u) at three different scales. b) Maps of D`(u) at

different scales, along a line going through a peak in inertial dissipation. The colors code D`(u).

The scale is expressed in units of the grid step: 0.25mm.
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Supplementary figure 6: Inertial energy dissipation at different resolutions. Maps of the instanta-

neous dimensionless coarse-grained inertial energy dissipationD`(u) at three different resolutions

(2δx): a) 4 mm (PIV window 128×128), b) 1 mm (PIV window 32×32) and c) 0.5 mm (PIV win-

dow 16×16). Figure d) shows D`(u) as a function of scale `, at the "center" of the strong event

identified by the white dot on the maps: blue: computed at the resolution 4 mm , green: computed

at the resolution 1 mm; red: computed at the resolution 0.5 mm. The area inside the black square

in figure c) is magnified in Fig. 7.
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Supplementary figure 7: Local velocity around a strong event. Local in-plane velocity around a

strong inertial dissipation event. The colors code the instantaneous dimensionless coarse-grained

inertial energy dissipation D`(u), the arrows code the in-plane velocity. The region showed here

corresponds to the area inside the black square of Fig. 6c). The white dot is at the same position as

in Fig. 6. An abrupt change in the x-component of the velocity at this location can be observed.
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Supplementary figure 8: Simulated cusps. (Color online) inertial dissipation near singularity

generated by a vorticity cusp. Panel a: isocontour of vorticity showing the cusp at the origin.

Panel b: velocity in the plane Z = 0 in the vicinity of the cusp. The white line is the location of

maximum vorticity in that plane. The color code the out-of-plane velocity. The arrow codes the in-

plane velocity. Panel c: inertial dissipation computed using the velocity field of Panel b. The color

codes de inertial dissipation, while the arrow code the local in plane velocity. Units are arbitrary.
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2 Supplementary Notes

Supplementary Note 1: The experimental set-up Our von Kármán flow is generated by two

counter-rotating impellers in a vertical cylinder (see Fig. 1). The radius of the cylinder is R =

100mm and its height is H = 240mm. The impellers used in this paper are flat disks of diameter

185 mm, seperated by a distance h = 180 mm and fitted with 8 curved, radial blades of height

hb = 20mm. The curvature of the blades is characterized by an angle |α| = 72◦.

The impellers are driven by two independent motors which can rotate at frequencies up to

typically 10 Hz. In our study, the motor frequencies have been set equal in order to get exact

counter-rotating regime. The curvature of the blades allows to choose between two different forcing

conditions in order to generate flows with different statistical properties. Here, we choose to rotate

the impeller in the (-) direction defined on Fig. 1, to get α = −72◦

Our experimental set-up allows for both global and local flow diagnostics. Local velocity

measurements are performed using Stereoscopic Particle Image Velocimetry (SPIV) in the station-

ary regime (see Fig. 2). The particles we have used have a size of a few tens of micrometers and

their density is 1.4. A laser of wavelength 532 nm is used to light a meridional plane while two

cameras of resolution 1600x1200 pixels, set at 45◦ with respect to that plane, take successive snap-

shots of the flow. Then, the velocity field is reconstructed using peak correlation performed over

50% overlapping windows of size 16 to 32 pixels. As a result, we get instantaneous snapshots of

the three components of the velocity field on a grid of approximate size 90× 70 (see Fig. 3).
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Typical maps of the instantaneous (top panels) and time averaged (middle panels) velocity

fields for the global experiments are provided on Fig. 3, along with maps of the standard deviation

(bottom panels) of the three components of the velocity at each grid points at Re ≈ 3 × 105. The

statistics for these maps have been obtained from 3×104 instantaneous snapshots. We observe that

the instantaneous velocity fields are highly disordered contrary to the mean flow and the standard

deviation which have well defined structures.

Along with local measurements, global diagnostics can be obtained. The torque applied to

the top and bottom shafts are monitored using SCAIME technology, which allows us to measure the

total power injected by the impellers into the flow (see Fig. 4). The calibration procedure, along

with several other details on the experimental set-up may be found in 2, 3 and references therein.

Fig. 4 presents the global injected power per unit mass ε as a function of the Reynolds number

Re (blue rhombi). It can be seen that at low Reynolds numbers (i.e Re < 200), ε decreases as

Re−1 (dotted line). However, when Re becomes greater than 200, the flow becomes chaotic and

a discrepancy between the experimental measurements and the Re−1 law appears. For very large

Reynolds number, Re > 105, dissipation rate, ε, becomes constant 4 (ε ≈ 0.046).

Supplementary Note 2: Examples of measured inertial dissipation fields. An example of vari-

ation of D`(u) as a function of the scale ` and position x is provided in Fig. 5 for an instantaneous

velocity field at Re ≈ 3× 105. As the scale ` is decreased, the D2D(u) does not vanish, but instead

points towards localized points which we identify as strong inertial dissipation event with h ≤ 1/3.
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For this computation, we have used a spherically symmetric function of x given by:

G`(r) =
1

N
exp(−1/(1− (r/(2`)2)), (1)

where N is a normalization constant such that
∫
d3rG`(r) = 1. According to 1, the results should

not depend on the choice of this function, in the limit `→ 0.

To estimate the scaling range of the extreme event, we have performed the computation of

D`(u) at different resolutions, using different averaging windows to reconstruct the velocity flow

from the same image. An example is provided in Fig. 6. One sees that, as the resolution is

increased, the region of elevated D`(u) becomes sharper and sharper, but globally remains at the

same location (emphasized by the white dot). On the other hand, the plot of D`(u) at this location

(Fig. 6d) as a function of ` shows that there is a continuity between the measurements. For this

event, D`(u) is slowly varying at large scale, suggestive of a flow sturture with h ≈ 1/3 and then

increases at the smallest scales. This is corroborated by a local plot of the in-plane velocity field

around the event (Fig. 3). One clearly observes a front-like structure of the velocity field at this

location.

This study is however only performed at scales larger than about 10 times the dissipative

scale. Similar structures at the resolution scale is provided in the main part of this paper.

Supplementary Note 3: Simulation of dissipation around a cusp singularity We have sim-

ulated an artificial vorticity line with a cusp ω(x) on a 643 grid (Fig. 8-a). and computed the

associated velocity field vBS using Biot-Savart law. To obtain a non-zero velocity along the vortex
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line, we then consider the velocity v = vBS + αω (where α is the helicity). Its structure near the

cusp in a plane parallel to the vortex line is provided in Fig. 8-b. We then computed the function

Dδx(u) in the same plane, which is provided in Fig. 8-c. This singularity map is also similar to the

singularity map we observe in our experiment.
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Résumé
En turbulence pleinement développée et incompressible, on constate que l’énergie cinétique d’un

écoulement est dissipée à un taux indépendant du nombre de Reynolds. C’est la loi zéro de la turbu-
lence. Cette loi, qui fut découverte en 1935 par Taylor, a eu de nombreuses confirmations expérimentales
et numériques, et est au cœur de notre compréhension de la physique des régimes turbulents. Dans
les années qui suivirent, Taylor proposa un mécanisme pour rendre compte de la loi zéro, basé sur la
viscosité et sur l’idée d’une cascade d’énergie à travers les échelles. En 1949, Onsager se rend compte
qu’une dissipation d’énergie peut aussi se produire sans l’assistance des forces visqueuses à petite échelle
si le champ de vitesse devient suffisamment irrégulier, et propose une conjecture sur la régularité min-
imale que devrait satisfaire le champ de vitesse pour assurer la conversation de l’énergie en l’absence
de viscosité. En 2000, deux mathématiciens français, Jean Duchon et Raoul Robert, formalise pour la
première fois les idées d’Onsager dans un cadre mathématique rigoureux. Ils établissent la forme exacte
de la dissipation d’énergie émanant de l’existence possible de singularités, et I’expriment en fonction
des incréments de vitesse. Cependant, la pertinence de ces concepts en turbulence expérimentale reste
à établir, et n’a jamais été étudiée.

Dans cette thèse, nous proposons les premiers tests des idées d’Onsager à partir de données expéri-
mentales, en se basant sur le travail de Duchon et Robert. Pour cela, nous nous plaçons dans le cadre
des écoulements de von Kármán où la régularité des équations de Navier-Stokes n’est pas connue. Nous
utilisons des mesures de vélocimétrie par image de particules pour obtenir les trois composantes du
champ de vitesse dans un plan méridien, et ainsi calculer ses incréments à l’échelle de résolution de notre
système de mesure. Le résultat principal de ce travail est la mise en évidence du caractère non-trivial
des écoulements turbulents à l’échelle de Kolmogorov, où l’on observe des topologies très irrégulières
du champ de vitesse coïncidant avec des évènements extrêmes de transferts inertiels d’énergie.

Mots-clés: turbulence, dissipation, énergie, Onsager, singularités, Duchon-Robert, Navier-Stokes,
von Kármán

Abstract
The zeroth law of turbulence states that fully developed turbulent incompressible flows dissipate

their kinetic energy independently of the Reynolds number. Since its discovery by Taylor in 1935, this
law has had many experimental and numerical confirmations, and is at the heart of our understanding
of turbulence. In the following years, Taylor proposed a mechanism for the zeroth law, based on
viscosity and the idea of a cascade of energy through scales. In 1949, Onsager realized that energy
dissipation could occur without the final assistance by viscosity at small scales if the velocity field
becomes sufficiently irregular, and conjectured the minimum regularity condition above which energy
conservation is ensured in the absence of viscosity. In 2000, two french mathematicians, Jean Duchon
and Raoul Robert, were able to derive the analytical expression for the inertial dissipation in terms
of velocity increments, along with the corresponding energy balance. However, the relevance of these
ideas for real turbulence has never been studied.

In this thesis, we present the first tests of Onsager’s idea from experimental data, based on the
work of Duchon and Robert. We enter the framework of von Kármán flows for which the regularity of
Navier-Stokes equations is unknown. We use particle image velocimetry measurements which provide
us with the three components of the velocity field on a meridional plane, and allows for the computation
of velocity increments at the resolution scale of our measurement set-up. In this work, we point out the
non-trivial character of turbulent flows at the Kolmogorov scale, where we observe irregular topologies
in the velocity field at the location of extreme events of inertial energy transfers.

Keywords: turbulence, dissipation, energy, Onsager, singularities, Duchon-Robert, Navier-Stokes,
von Kármán


