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Dear reader, you have just finished reading the essential part of this thesis; what 

follows is somewhat technical. 
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RESUME 

 
La résonance magnétique nucléaire (RMN) est devenue une des techniques 

spectroscopiques les plus puissantes et polyvalentes de la chimie analytique avec des 

applications multiples dans des différents domaines de la recherche. Cependant, un des 

inconvénients majeurs de la RMN est le processus fastidieux d'analyse de donnée qui 

nécessite fréquemment des interventions humaines. Ces dernières font diminuer non 

seulement l'efficacité et l'objectivité des études mais également renferment les champs 

d'applications potentielles de la RMN pour les non-initiés. Par conséquent, le 

développement des méthodes computationnelles non supervisées se trouve nécessaire. 

Les travaux réalisés ici représentent des nouvelles approches dans le domaine de la 

métabolomique et de la biologie structurelle. 

 

Le défi ultime de la RMN métabolomique est l'identification complète de 

l'ensemble des molécules constituant les échantillons biologiques complexes. Cette étape 

est vitale pour toute interprétation biologique. Dans la première partie de cette thèse, une 

nouvelle méthode numérique a été développée pour analyser des spectres à deux 

dimensions HSQC et TOCSY afin d'identifier les métabolites. La performance de cette 

nouvelle méthode a été démontrée avec succès sur les données synthétiques et 

expérimentales. 

 

La RMN est une des principales techniques analytiques de la biologie structurale. 

Le processus conventionnel de détermination structurelle est bien établie avec souvent 

une attribution explicite des signaux. Dans la seconde partie de cette thèse, une nouvelle 

approche computationnelle est présentée. Cette nouvelle méthode permet de déterminer 

les structures RMN sans attributions explicites des signaux. Ces derniers proviennent de 

données spectrales tridimensionnelles TOCSY et NOESY. Les structures ont été résolues 

en appliquant cette nouvelle méthode aux données spectrales d'une protéine de 12kDa. 
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ABSTRACT 

Nuclear Magnetic Resonance (NMR) has become one of the most powerful and 

versatile spectroscopic techniques in analytical chemistry with applications in many 

disciplines of scientific research. A downside of NMR is however the laborious data 

analysis workflow that involves many manual interventions. Interactive data analysis 

impedes not only on efficiency and objectivity, but also keeps many NMR application 

fields closed for non-experts. Thus, there is a high demand for the development of 

unsupervised computational methods. This thesis introduces such unattended approaches 

in the fields of metabonomics and structural biology. 

A foremost challenge to NMR metabolomics is the identification of all molecules 

present in complex metabolite mixtures that is vital for the subsequent biological 

interpretation. In this first part of the thesis, a novel numerical method is proposed for the 

analysis of two-dimensional HSQC and TOCSY spectra that yields automated metabolite 

identification. Proof-of principle was successfully obtained by evaluating performance 

characteristics on synthetic data, and on real-world applications of human urine samples, 

exhibiting high data complexity. 

NMR is one of the leading experimental techniques in structural biology. 

However the conventional process of structure elucidation is quite elaborated. In this 

second part of the thesis, a novel computational approach is presented to solve the 

problem of NMR structure determination without explicit resonance assignment based on 

three-dimensional TOCSY and NOESY spectra. Proof-of principle was successfully 

obtained by applying the method to an experimental data set of a 12-kilodalton medium-

sized protein. 
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FOREWORD 

This thesis is written for obtaining a Ph.D. in Chemistry at the Ecole Normale 

Supérieure (ENS) de Lyon, France. The aim of my doctoral research, carried out at the 

“Institut des Sciences Analytiques” (ISA Lyon), was to develop novel numerical 

approaches for accurate and robust automated Nuclear Magnetic Resonance (NMR) data 

analysis in the fields of NMR metabonomics and NMR protein structure determination. 

The thesis is structured in four parts. Chapter 1 provides a general introduction to 

NMR spectroscopy by focusing on recent progress and identifying remaining challenges 

in the fields of NMR metabonomics and NMR structural biology. Chapter 2 describes 

current barriers for exhaustive NMR metabolite identification and introduces our 

software solution ITERAMETA that enables automated metabolite profiling from two-

dimensional heteronuclear HSQC and homonuclear TOCSY spectra. Chapter 3 gives a 

general introduction to NMR protein structure determination and then details our novel 

numerical method that attempts to introduce protein NMR structure determination 

without prior sequence-specific resonance assignment (“NMR resonance-free structure 

determination”). The final Chapter 4 concludes the thesis and discusses some future 

perspectives of the results obtained. 
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CHAPTER 1 

1. General Introduction 

The extraordinary progress and witnessed numerous breakthroughs in the fields of 

Molecular Biology in the last decade are mainly due to discoveries from projects on 

human and model organisms. A large part of the success of these projects was achieved 

with the help of Computational Biology allowing reduction in both experimental time and 

the time needed to analyze the experimental data.  

There are about 127000 structures (mainly proteins (93%), nuclear acids (NA) 

(2%) and protein/NA complexes (5%)) in the Protein Data Bank (PDB) as of end of 

February 2017 (http://www.rcsb.org/pdb/statistics/holdings.do). That is a considerable 

advance from about 55 000 deposited experimentally determined structural models of 

macromolecules as of end of 2008.  Nuclear Magnetic Resonance (NMR) spectroscopy 

was used to determine about 10% of these biomolecular structures, compared to 90% 

done by X-ray crystallography diffraction and a relatively minor contribution of 

depositions was using other methods (Electron Microscopy (EM) (1%), Hybrid Methods  

(HM) (0.1%) and others (0.1%)). Although the number of protein structures determined 

by X-ray crystallography diffraction is still prevailing, NMR protein structure 

determination keeps playing an important role in Structural Biology, thanks to a number 

of underlying experimental benefits that allow the study of the structure-function relation 

by explicitly including dynamical aspects. Notably, it is also worthy to mention that the 

above-mentioned percentages of deposited PDB structures divided by different 

experimental techniques is quite dramatically changing, if one filters the deposited PDB 

entries by high (90%) sequence identity, in particular by excluding multiple PDB entries 

of macromolecular structures determined at different X-ray atomic resolution. Regardless 

of such statistical analysis of deposited experimental three-dimensional (3D) structures in 

the PDB, automating the NMR protein structure determination process has become a 

substantial part of ongoing research in order to bridge the gap between the requirements 

of high-throughput structural genomics/proteomics projects and the tremendously 
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laborious manual data analysis process involved. Our work in this thesis addresses one of 

the remaining bottlenecks of automated NMR protein structure determination: the task of 

sequence-specific resonance assignment that we propose to suppress by the process of so-

called “NMR (sequence-specific) assignment-free” structure determination that has the 

potential to become an attractive alternative to the conventional strategy commonly used 

in NMR structure determination (Wuthrich, 1986). 

In recent years, there is also a growing interest of applying NMR to study human 

and model metabolism. Metabolomics, or the science of metabolism, is becoming 

nowadays a regular tool to study the homeostatic responses of biological systems due to 

intrinsic or extrinsic stimuli and/or perturbations. Metabolites are small biochemical 

compounds that are found in bio-fluids (urines, blood, plasma or serum). The annotation 

of mixture composition remains however time-costly, burdensome and frequently 

subjected to (human) experience bias. With the growing of high-quality public metabolite 

databases, e.g., such as the Human Metabolite Database (HMDB) or the metabolomics 

Biological Magnetic Resonance Bank (BMRB), automated metabolite profiling by direct 

search and matching against catalogued metabolites becomes feasible and even necessary 

for obtaining a comprehensive compound identification, as it will be demonstrated in the 

work presented here. 

Before going into further details, we feel the need to present some general NMR 

principles and an overview of computational methods in both fields, metabolomics NMR 

and protein NMR. 

1.1 General Principles of Nuclear Magnetic Resonance (NMR) 

The physical principle of Nuclear Magnetic Resonance (NMR) is that when 

commonly detected NMR-active nuclei such as �
! , �

!"  and �
!"  are placed in a strong 

magnetic field, these nuclei absorb energy at a characteristic resonance frequency 

(Larmor frequency). This characteristic frequency is a fundamental function of the 

nuclei’s local chemical and geometric environment; hence, even chemically identical 
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nuclei usually resonate at different resonance frequencies what ultimately makes NMR 

spectroscopy such a powerful probe for structural and dynamical studies. The resonance 

frequency of a nucleus (measured in Hz) can be transformed into a magnetic field-

independent variable, called chemical shift, via a mathematical formulation called the 

Fourier transformation. The chemical shift parameter is computed as the relative 

variation of the nucleus’s resonance frequency and its standard value (a NMR reference 

standard). In order to obtain a magnetic field independent parameter, it is commonly 

indicated in parts per million (ppm) relative to a reference agent. 

This very fundamental NMR parameter, the chemical shift values of individual 

nuclei, is one of the two main types of inputs employed in our numerical methods 

developed here, the other being the spatial and covalent correlations between nuclei that 

can be measured by NMR. The design and application of a set of specific pulse sequences 

can bring very specific structural information about the mixture composition or 3D 

structure present in the biological sample under investigation. The NMR acquisition for 

metabolomics and protein structure determination that are explored in our projects rely on 

routinely used pulse sequences developed to reveal exactly such correlations between 

atom pairs in small molecules (metabolite) or macromolecules (proteins). 

In the first part of this thesis in order to achieve accurate and complete metabolite 

identification, we propose that for future metabolomics projects, standard two-

dimensional homonuclear �
!

− �
!  and heteronuclear �

!"
− �

!  correlation 

spectroscopy are acquired, such as the TOCSY (TOtal Correlation SpectroscopY) 

correlating the total (proton) spin system of a compound, and �
!"

− �
!  HSQC 

correlating the covalently connected carbon and proton pairs.  

In the second part of this thesis in order to determine protein NMR structures, we 

propose that for future protein projects, only standard aliphatic and aromatic �
!"

−

�
!

− �
! -NOESY and �

!"
− �

!
− �

! -NOESY and heteronuclear �
!"

−

�
!

− �
!  TOCSY spectra are acquired. We believe that this minimal set of 

multidimensional 3D NMR spectra may provide sufficiently valuable correlations 

between NMR-active nuclei (the correlations could be either intra, inter-residue or long-
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range) that can be profitably used to determine the fold of a protein without prior 

sequence-specific resonance assignment, thus replacing the conventional, laborious NMR 

structure determination process. 

1.2 NMR Metabolomics 

Metabolomics is a steadily growing field of biological sciences measuring the 

metabolic response of organisms or living systems to internal and external stimulus 

(Ellinger et al. 2013; Nicholson and Lindon 2008). It is the field of “omics” science 

concerned with the identification and/or quantification of small molecules called 

metabolites found in cells, tissues, bio-fluids and organisms (Brown et al. 2005). 

Metabolomics is often defined as the characterization of the ensemble of resulting 

metabolites as a phenotyping tool (Goodacre et al. 2004). 

Metabolomics covers a wide variety of research fields, such as nutrition science, 

oncology, disease biomarker discovery and diagnosis, drug development, food quality 

control, just to name a few. It employs a variety of analytical chemistry techniques to 

precisely identify metabolites or generate metabolic spectral profiles. Nuclear Magnetic 

Resonance (NMR) and Mass Spectrometry (MS) are two most popular and standard 

spectroscopic techniques used for metabolomics studies.  

Within recent years thanks to NMR sensitivity-related technology advances - 

increased magnetic field strengths, gyro-probe detection and very recently dynamic 

nuclear polarization (DNP) sensitivity enhancements - NMR has developed into a 

standard, routinely applied technique to identify and quantify metabolites that are present 

in biogenic samples under or close to physiological conditions. An indispensable 

prerequisite for any quantitative NMR (equally valid for MS) metabolomics study is the 

accurate and complete identification of all compounds present in a complex metabolite 

mixture, with biological sample diversity ranging from bio fluids, intact cell or tissue 

extracts to whole organisms. The fundamental key for metabolite identification by NMR 

is its high-resolution fitness that allows the simultaneous detection of a wide range of 
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different types and hundreds of metabolites in complex biological samples without the 

need for extensive sample preparation and hyphenation techniques. Notably, NMR 

spectroscopy as an untargeted, quantitative, reproducible, non-destructive and unbiased 

spectroscopic technique for metabolomics provides versatile information that is in 

principle readily amenable to pattern recognition methods for rapid, high-throughput 

identification of catalogued metabolites. Due to these exclusive benefits in comparison to 

Mass Spectrometry (MS), NMR plays a vital role in modern medical research in order to 

detect meaningful disease biomarkers, as well as to explore metabolic pathway within 

living organisms. 

 

 
 

Figure 1.1. The hierarchical classification of “omics” sciences. 

The challenge in metabolite profiling lies in the time and effort needed to identify 

and quantify compounds in bio-fluid mixtures. The major bottleneck of high-throughput 

NMR-based metabolomics remains metabolite signal assignment, since manual tasks are 
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arduous and time-consuming. For example, recent manual intensive efforts to identify 

metabolites in NMR urine samples yielded over 200 metabolites (Bouatra et al. 2013) 

that have been assigned by an expert spectroscopist using several men-weeks in 

interactive spectral analysis. Thus, there is obviously an urgent need and high desire to 

develop a robust numerical approach for accelerating this ultimate prerequisite for any 

quantitative NMR metabonomics study. 

In principle, NMR is readily amenable to pattern recognition methods for rapid, 

high-throughput identification of catalogued metabolites. Under the plausible hypothesis 

that the chemical environment of individual molecules remains virtually unaffected in a 

complex mixture, and thus corresponds closely to its isolated, pure state, a NMR 

spectrum of a metabolite blend can be disentangled through its interpretation as a linear 

combination of the NMR spectra of its pure compounds. Hence, spectral NMR analysis 

for identifying a prior unknown individual constituents in a biological sample is 

commonly and most efficiently achieved by querying of NMR metabolomics databases 

(untargeted profiling of metabolites), which for each catalogued metabolite entry 

provides information about its covalent, chemical structure and a corresponding list of 

NMR resonance frequency (chemical shifts) of the molecule’s atoms. Several public 

and commercial databases are available for this purpose, e.g., such as HMDB (Wishart et 

al. 2007, 2009, 2013, 2016), Metabolomics Biological Magnetic Resonance Database or 

BMRB (Markley 2012; Markley et al. 2007). 

In daily practice though, the task of metabolite identification in biological 

complex samples remains still a quite cumbersome, time-consuming process and imposes 

a frustrating barrier for robust and efficient analysis of endogenous and exogenous 

metabolites for biomarker discovery. This is so because of the combination of the 

following five key challenges which may create difficulties for manual and/or automated 

data analysis based on direct database searching: (i) A simple direct matching between 

the mixture spectrum and a library of reference spectra recorded for pure metabolites can 

only be done, if the experimental conditions are closely similar. Even minor and 

practically unavoidable variations in temperature, pH and buffer conditions (salt 

concentration, overall dilution and relative concentration of specific ions), or external 
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magnetic field may change the absolute resonance frequencies, and most troubling alter 

the relative position in the connectivity pattern of a metabolite in a complex mixture, due 

to the fact that not all NMR nuclei-active atoms are affected by the same extend. 

Systematic signal shifts can be theoretically accounted for by applying internal or 

external re-referencing prior to direct database searching. In practice however, 

experimental conditions are too diverse in order to achieve exact matching with the 

controlled conditions used for recording the compounds in the reference libraries. 

Unsystematic signal shifts are much harder to deal with. Both types of fundamentally 

unavoidable NMR signal shifts may obscure metabolite identification and commonly 

demands in turn the use of a priory unknown, thus arbitrarily chosen chemical shift 

tolerance windows for pattern matching. (ii) Due to experimental imperfections, a key 

struggle is posed by missing signals in the NMR spectrum. This means that one can 

usually not expect a perfect, complete matching between a spin pattern of a metabolite in 

a complex mixture and the one of a single compound in the reference library, recorded 

under controlled conditions and in high concentration. (iii) In real-world metabolomics 

applications, severe NMR signal overlap may further complicate the accurate 

documentation of metabolites present in a complex mixture due to ambiguities in NMR 

signal assignment. (iv) The NMR detection limit of metabolite concentration (typically 

measured at natural abundance) is of the order of micromolar and depends on various 

factors such as external magnetic field strength, chemically equivalent protons of a 

molecule contributing to a NMR signal and the crowdedness of the spectral region. This 

implies that the manually or automatically generated input peak list contains NMR 

signals close to the signal-to-noise ratio of the spectrum, meaning that pattern matching 

may be further troubled by the presence of erroneous signals in the input data. (v) 

Numerous public and commercial metabolite databases are available for direct database 

searching and matching. Unfortunately, a currently foremost problem in the NMR 

metabolomics field is the fact that the archiving formats exhibit a large, non-universal 

diversity in metabolite documentation (file format diversity), and also the access to most 

customized databases is only granted by their own query algorithms. 
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In the current context of metabolite identification, one-dimensional (1D) �
!  

spectroscopy with multivariate statistical analysis has become one of the main and 

standardized routine analytical tools in NMR metabolomics. Despite good sensitivity and 

quick acquisition time, 1D proton spectra have one major disadvantage: the high degree 

of spectral overlap due to the high complexity of the experimental mixture associated 

with the low spectral dispersion of proton resonances. Manual spectral deconvolution, 

i.e., determination of individual proton 1D spectra of known compounds present in the 

sample, provides a possible way to overcome the signal overlap problem. While 1D 

automated methods for metabolite profiling are quite provided: proprietary programs like 

AMIX, dataChord Spectrum Miner and free-of-charge programs like MetaboLab 

(Ludwig and Günther 2011), Automics (Wang et al. 2009), MetaboAnalyst 2.0 (Xia et al. 

2012), 1D spectrum data analysis remains critically subjected to errors due to severe peak 

overlaps that disfavor significantly automated metabolite identification. Consequently, 

recent research activities in this field have shifted towards achieving such accurate and 

complete coverage of metabolite annotation in biological samples by exploring more 

sophisticated multidimensional NMR experiments. 

Increasing spectral dimensionality is probably the best way to efficiently reduce 

spectral overlap (Aue, Bartholdi, and Ernst 1976) and moreover offers the great 

prospective for robust and confident metabolite annotation. Hence, the use of two-

dimensional (2D) NMR for metabolite identification gained increasing traction during the 

past recent years, demonstrating an easier and more reliable identification of biomarkers 

than achievable with 1D spectra. Most widely used two-dimensional NMR experiments 

in NMR metabolomics are 2D heteronuclear 1H-13C single quantum correlation (HSQC) 

and 2D homonuclear 1H-1H total correlation spectroscopy (TOCSY). Such 2D NMR 

experiments provide a two-fold benefit for metabolite identification. The introduction of 

an additional indirect spectrum dimension leads first to a substantially increased 

separation of the NMR signals and secondly allows designing NMR experiments that 

provide covalent connectivity information of the nuclei belonging to the same molecule. 

These essential advantages for the subsequent data analysis are clearly outweighing the 2-

3 folds longer measurement time needed. Obviously, higher dimensional (3D or more) 
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NMR experiments providing further improved signal dispersion and thus significantly 

less signal overlap would be best suited for metabolite identification, but the associated 

restraint of considerably longer acquisition times and foremost sensitivity issues (NMR 

measurement at natural abundance) limit their routine applications. 

 

 
 

Figure 1.2. One-dimensional spectrum with assigned compounds, issued from EPIC 

project. 

In 2D 1H-13C HSQC spectra, the experimental cross-peak pattern is formed by all 

pairs of coupled 1H-13C moieties separated by one covalent bond belonging to the same 

molecule. Although the resolution of NMR signals is increased by the introduction of the 

indirect 13C-dimension, a drawback of this NMR experiment is that connectivity 

information between the different 1H-13C groups is still absent and complicates 

unambiguous metabolite identification, much similar to the case of 1D NMR analysis. 

More reliable peak annotation and metabolite identification can be achieved using 

2D 1H-1H TOCSY. If TOCSY spectra are recorded with sufficiently long mixing times 
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(isotropic mixing), connectivity information between all nuclei of the spin system 

becomes accessible. A 2D 1H-1H TOCSY pattern of a metabolite is accordingly formed 

by all directly and indirectly coupled hydrogen atoms, i.e., that each cross-section of a 

given proton corresponds to the 1D spectrum of the whole spin system. The advantage of 

this experiment lies exactly in this inherent redundancy of the connectivity pattern that 

can be used to obtain accurate cross-peak assignment and metabolite identification even 

in the presence of strong signal overlap and/or spectral imperfection. 

 

 
 

Figure 1.3. Homo-nuclear correlation between 1H NMR signals in the two-dimensional 

TOCSY spectrum of a wheat exudate (Krishnan, Kruger, and Ratcliffe 2005). 

In the last 10 years or so, several different algorithms for metabolite identification 

have been developed to identify metabolites using two-dimensional TOCSY/HSQC 

spectra: semi-automated methods such as MetaboMiner (Xia et al. 2008), Collaborative 
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Computational Project for NMR (CCPN) Metabolomics Project (Chignola et al. 2011), 

trace analysis (Bingol and Brüschweiler 2011; Bingol et al. 2014; Robinette et al. 2008), 

deconvolution methods like Newton (Ellinger et al. 2013), COLMAR based on 

covariance spectroscopy (Zhang et al. 2008, 2009) and heuristic likelihood search (Xi et 

al. 2006). These numerical approaches have all their advantages and disadvantages, but 

notably and most frustrating their use is commonly restricted to their own limited, 

customized metabolite databases, instead of taking profit of the available complete 

knowledge that is publically assessable and compiled in complementary repositories, 

such as HMDB (Wishart et al. 2013) and BMRB (Markley et al. 2007). Despite this 

general drawback of currently proposed numerical methods imposed by operating on 

relatively incomplete (home-made) metabolite repositories, further drawbacks are that - 

generally speaking - all strategies in common are that the manually or automatically 

detected NMR signals are compiled into a single list of NMR cross-peaks (peak list). This 

peak list is then subjected to a database searching using direct pattern recognition 

algorithms which returns a listing of identified compounds. Several reference metabolite 

databases and querying algorithms have been developed for this purpose over the recent 

years. The proposed methods are not only showing great variability in their performance 

and different coverage of catalogued metabolites, but also impose strong demands on the 

input quality for proper operation that complicate and ultimately limits their practical use. 

Generally speaking, most strategies share the idea to identify potential metabolites based 

on the following two criteria: First, a cross-peak in the reference connectivity pattern is 

labelled as “confirmed”, if it matches with an input cross-peak within a user-given 

maximal frequency difference (threshold parameter 1). Second, a minimal ratio of the 

confirmed to the total number of cross peaks in reference pattern is imposed as 

acceptance criterion (threshold parameter 2). The first parameter is introduced to account 

for variations of experimental conditions between the complex mixture and the reference 

spectrum, while prior re-referencing is still required. The second parameter is necessary 

in order to deal with spectral imperfections. It is obvious that pattern recognition 

algorithms that rely only on these two parameters can hardly differentiate between true 

positives and false positives. This is so because the optimal numerical values of the two 

threshold parameters is a priori unknown and sample-dependent, the optimal numerical 
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values may even differ from metabolite to metabolite resp. may be dependent on the total 

number of signal in the connectivity pattern. Therefore additional control parameters 

were introduced that take the “uniqueness” of peak annotation into account. However 

despite this recent progress, many issues remain to be addressed before numerical 

methods can become an accurate and robust tool for metabolite identification.  

In chapter 2, we address these issues in order to overcome current weaknesses in 

NMR metabolomics data analysis. We describe a suite of numerical routines 

implemented in a software suite called ITERAMETA (Iterative Metabolite Pattern 

Recognition) for metabolite identification in 2D homonuclear and heteronuclear NMR 

spectra, employing the HMDB and BMRB databases as query reference libraries. Various 

utility tools for assessment and validation of the results are also presented. Since our 

numerical method for iterative metabolite (ITERAMETA) pattern recognition is laid out 

to deal with 2D 1H-13C HSQC and 2D 1H-1H TOCSY spectra, the results of the TOCSY 

data can be easily used to validate and correct the results obtained for the HSQC data that 

is inherently prone to be less discriminative concerning true and false positives.  

1.2 Protein NMR Structure Determination 

Proteins are the basic functional building blocks of living organisms. They play 

the role of enzymes and hormones regulating metabolism, creating structures such as 

muscle and antibodies.  

There are commonly four hierarchical levels used to describe or analyze a 

biological macromolecule. The first level is its primary structure, which is simply the 

protein sequence. One can see the primary structure of a biomolecule as the linear chain 

of its successively ordered amino acids, commonly called residues; there are 20 of these. 

The twenty natural amino acids share a common structure with a central alpha carbon, an 

amino group and a carboxyl group; their distinctive side chain groups differentiate them. 

The second level is the secondary structure divided into three main classes of secondary 

structure elements: alpha helix, beta sheet and coil. These sub-structure elements are 
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stabilized by inter-residue hydrogen bonds, and each individual secondary structure is 

characterized and defined by their hydrogen bond network in term of residue distance, 

such as for example the alpha helix is held in place by hydrogen bonds between residue � 

and � + 4, while beta sheet is sustained by hydrogen bonds between the beta strands that 

are much longer in terms of residue distance. The third level is the tertiary structure that 

is commonly referred to as three-dimensional (3D) structure or fold of the protein. The 

fourth level, quaternary structure is the relative orientation or package of individual 

folded protein molecules into a multi-domain complex formed by multiple either identical 

or different sub-unit of 3D structures. 

 

 

Figure 1.4. The primary structure of our protein model VpR247 (PDB: 2KIM) is 

presented as a chain of one letter abbreviation for the different amino acids present in the 

protein sequence. The corresponding secondary structure elements are depicted above 

the primary sequence. The legend for the different structure elements and the three-

dimensional NMR structure represented as bundle of conformers is shown on the left and 

right hand bottom part of the figure, respectively. 

Despite recent progresses made by other complementary experimental techniques 

for Structural Biology - notably witnessing the significant progress achieved by near 

atomic-resolution gryo electron microcopy (gryo-EM) - NMR and X-ray crystallography 
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still remain the two principal experimental techniques used to study three-dimensional 

molecular structures of proteins or protein complexes at atomic resolution. The advantage 

of NMR is that it is the only experimental technique that allows the determination of 

three-dimensional (3D) structures of protein molecules in aqueous solution, i.e., close to 

physiological conditions. Another major strength of NMR is its power to complement the 

static picture of a protein structure with information about kinetic and dynamic properties 

of a protein or a macromolecular assembly. However, a drawback of NMR spectroscopy 

is that routine application is typically limited to small and medium-seized proteins with a 

molecular weight up to 20-25 kilo Dalton (kDa) at the best. Recent progress in solid-state 

NMR showed the theoretical possibility to study much large complexes, but the intrinsic 

problem of increased and unavoidable NMR signal overlap can also not be overcome by 

this alternative technique. 

Three-dimensional structure determination of a protein by NMR involves 

conventionally the preparation of the protein sample, the measurements of a set of two-

dimensional (2D) and three-dimensional (3D) NMR experiments, NMR data processing, 

NMR signal identification (peak picking), sequence-specific resonance assignment, NOE 

assignment, structure calculation, structure refinement in explicit water, and structure 

validation (Wüthrich, 1986). A  variety  of  sophisticated  automated  approaches  have 
been  introduced  targeting  individual  parts  of  the  NMR  structure  determination 
process,  and  excellent  review  articles  about  automated  NMR  data  analysis  have 
been  published  (Güntert,  P.,  2003,  Altieri,  A.  S.,  et  al.,  2004,  Güntert,  P.,  2009,  
Markwick, P. R. L. et al.  , 2008, Guerry et al., 2012).  While great progress has been 
achieved for automation of the process of NOE assignment (Guerry et al., 2012), the 
preceding  task  of  sequence‐specific  resonance  assignment  in  conventional  NMR 
structure  determination  still  remains  a  bottleneck,  despite  the  hundreds  of 
approaches  proposed  (Guerry  et  al.,  2012).    Since  in  this  thesis,  we  intend  to 
introduce  “NMR  (sequence‐specific)  assignment‐free  structure  determination”  in 
order  to  overcome  the  barrier  currently  imposed  by  sequence‐specific  resonance 
assignment for efficient NMR structure determination, the following paragraphs are 
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mainly  focusing on  the data  that  can be extracted  from Nuclear Overhauser Effect 
(NOE) spectroscopy. 

In conventional de novo three-dimensional (3D) structure determinations of 

proteins by NMR spectroscopy, the key conformational data are obtained from upper 

distance limits derived from the Nuclear Overhauser effects (NOEs). NOEs result from 

cross-relaxation due to the dipole–dipole interactions between nearby pairs of nuclear 

spins in a molecule undergoing Brownian motion, and in two-dimensional (2D) or 

higher-dimensional heteronuclear-resolved [1H,1H]-NOESY spectra they are manifested 

by NOE cross-peaks. These NOEs are translated into a dense network of lower and upper 

(unambiguous or ambiguous) distance restraints that can be subsequently used to 

determine the fold of a protein via restrained molecular dynamics (rMD) using a 

simplified hybrid force field in Cartesian or torsion angle space (Guentert et al., 1997). 

 

Figure 1.5. NMR experiments only yield a wealth of indirect structural information from 

which the protein 3D structure can only be uncovered by consistent interpretation of the 

experimental NMR signals. Protein NMR structure determination thus entails building an 

atomic resolution model which must simultaneously fulfill all experimentally determined 

conformational restraints. The principal source for the collection of conformational 

restraints is derived from the nuclear Overhauser effect that allows for the measurement 
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of interatomic distances between nuclear spins in close proximity. The figure shows a 

protein NMR structure represented as a bundle of conformers that are all equally well 

satisfying the dense network of NOE-derived distance restraints. 

The inter-nuclear distance between proton pairs is typically computed from the 

NOE volume by using the isolated spin approximation (ISA) formula: 

��� =  
�!"#$%&"'$()

< � >!
 

where �!"#$%&"'$() is a prior unknown calibration constant that for a given protein 

is often defined by some empirical approximations and is usually calculated for different 

classes of atoms involved (backbone and side-chain atoms), and < � > is the inter-

nuclear distance between proton pairs. Theoretically, �!"#$%&"'$()  is a clearly defined 

function �(�!)  of the effective correlation time �! , but since the isolated spin 

approximation formula is in principle invalid for a molecular system exhibiting a dense 

network of proton interactions, NOE volumes or intensities are typically only interpreted 

as loosely defined lower and upper distance limits. 

Proton-proton NOEs relate “through-space” interactions between pairs of protons 

in close spatial proximity (up to 5 Angstrom or so), i.e., being either close in the amino 

acid sequence (intra- or inter-molecular contacts) or far apart in the polypeptide chain, 

thus resulting in long-range distance restraints, that are most valuable for determining the 

fold of the macromolecule under investigation. Because the Brownian motions of large 

structures in solutions are slow, with long effective correlation times, �!, and proteins 

contain a dense network of hydrogen atoms, “spin diffusion” could partially or fully 

deteriorate distance measurements based on � − �
!!  NOE experiments (Gordon and 

Wuethrich 1978; Kalk and Berendsen 1976; Wagner and Wüthrich 1979). Spin diffusion 

arises as a consequence of the dependence of the NOE on the inverse sixth power of the 

inter-proton distance, since magnetization transfer between two spins through multiple 

short steps may be more efficient than a one-step transfer over the longer, direct distance. 
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Computational algorithms that use distances derived from the calibration of NOE 

spectra are termed in the early times as “distance geometry” approaches, since they are 

aiming to find numerical exact solutions for a given comprehensive distance matrix 

between atoms that can however not be provide by NMR measurements (Crippen and 

Havel 1988; Crippen 1977; Havel and Wüthrich 1985). Therefore, the current most 

convenient and commonly used approach for NMR structure calculation relies on 

simulated annealing protocols - restrained molecular dynamics (rMD) - that represents an 

efficient optimization method typically starting from extended or random structures 

(Nilges, Clore, and Gronenborn 1988; Nilges, Gronenborn, et al. 1988) are also loosely 

be classified as “distance geometry” methods since they use only distance data to 

determine the structure. Generally speaking, distance geometry methods have been used 

on the basis of underlying resonance assignment; the assigned distances are used as input 

in molecular dynamics/simulated annealing programs in order to fold the primary 

sequence into the tertiary structure. 

NOE resonance assignment constituted for long time the major hurdle towards 

high-throughput protein NMR structure determination, due to its highly time-consuming 

and laborious procedure. Over the last 20 years or so, innovations were successfully made 

to counter the underlying combinatory problem, such as the introduction of using 

ambiguous distance restraints (Nilges 1995), network anchoring and restraints 

combination (Herrmann, Güntert, and Wüthrich 2002a). The remaining bottleneck of 

efficient NMR structure determination – see the success story for unbiased, automated 

NOE analysis in the blind test competition in CASD-NMR (Rosato et al., 2012, Guerry et 

al., 2015 – is currently imposed by obtaining the sequence-specific backbone and side-

chain resonance-assignments.  
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Figure 1.6. Concepts used for automated NOE assignment and structure calculation: (a) 

Initial chemical shift-based assignment possibilities and ambiguous distance restraint: 

Because of the limited accuracy with which NOE cross peak positions and chemical shift 

values of atoms can be determined experimentally, multiple pairs of hydrogen atoms can 

be in general attributed to a given NOE signal. An ambiguous distance restraint will then 

be used for the generation of a conformational restraint. (b) Network-anchored 

assignment exploits the fact that correctly assigned NOE cross peaks form a mutually 

supportive network of distance restraints. An initial assignment between the two atoms, A 

and B, is considered as network-anchored, if additional assignments exist that allow to 
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establish one or several triangular connectivities of the atom pair, A and B, to a third 

atom, C and/or D. (c) The effect of constraint combination during protein structure 

calculation is depicted. The native protein fold is shown in the left panel. Assuming that 

the input for a structure calculation comprises one correct distance restraint between the 

hydrogen atoms, A and B, and one erroneous distance restraint between C and D, then 

the calculation will result in a distorted protein structure (middle panel), since all 

conformational restraints needs to be fulfilled simultaneously. However, if constraint 

combination is applied, i.e., the two original, unrelated distance restraints are merged 

into a new single, virtual distance restraint, then the correct protein fold can be obtained, 

since only one of the two distances A and B, or C and D needs to be short in the resulting 

3D structure.   

In this thesis, we present an algorithm in order to bypass the conventionally used 

sequence-specific resonance assignment step and therefore, to directly determine the 

structure without prior resonance assignment (“NMR resonance-free structure 

determination”). The algorithm proposed calculates protein structures solely based on 

spectral peak-lists of 3D TOCSY and NOESY spectra.  

1.4 Conclusion 

Many diseases imply a change in patient’s metabolism that causes significant 

variations to the concentrations of metabolites that appear in bio-fluids. The studies of a 

person’s metabolic profile, i.e., the list of concentrations of different metabolites can help 

detect diseases (Ravanbakhsh et al. 2015). The compound identification process, known 

as spectral profiling is not yet conveniently automated, making NMR metabolomics a 

relatively low-throughput science. The automation hurdle is widely recognized and has 

led to a number of efforts to automate compound identification and/or quantification. 

While several software suites have been developed to support NMR spectral profiling of 

1D 1H NMR spectra, automated methods to exploit 2D NMR data are still unsolved. The 

need for manual interventions leads to many issues such as slower throughput, operator 

accumulated errors hence incoherent or inconsistently interpreted results. In the first part 



  31 

of the this Ph.D. manuscript, we present the algorithm ITERAMETA in order to address 

the highly desired need having a software platform that performs robust and automated 

spectral metabolite profiling and assignment assessment, thus enabling a reliable 

compound identification process. 

A decade ago or so, protein NMR structure determination required months even 

years of hard work by well-trained experts. Nowadays, with stunning advances in NMR 

experiments, instrumentation and computation, structure calculation is feasible within 

weeks. Sequence-specific and NOE resonance assignment programs are abundant and 

various: there are ongoing efforts to establish a general and robust protocol for NMR 

structure determination that could be estimated in hours, not weeks (Billeter, Wagner, and 

Wüthrich 2008; Gronwald and Kalbitzer 2004; Williamson and Craven 2009). 

Here we hope to present a truly real-world proof – without using synthetic data or 

so - for achieving protein NMR structure determination without prior sequence-specific 

backbone and side-chain resonance assignment. This second goal of the thesis presents a 

formidable challenge in terms of algorithmic developments, however with the ultimate 

promise of possibly fasten and alter the process of NMR structure determination/  

A central initiative to promote accurate computational algorithms for NMR 

structural biology is the worldwide “Critical assessment of automated structure 

determination of proteins from NMR data” (CASD-NMR), providing a survey of 

unsupervised protein structure determination based on NMR chemical shifts and/or 

NOESY data (Rosato and Billeter 2015; Rosato et al. 2009, 2012). CASD-NMR offers an 

ideal source of NMR data in order to test new methods or to assess old ones. To 

demonstrate the feasibility of NMR assignment-free protein structure determination 

method, we tested our algorithm on data taken from the CASD-NMR competition. 
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CHAPTER 2 

2. Automated Metabolite Profiling from 2D TOCSY and/or 

HSQC Spectra 

As comprehensively elaborated in Chapter 1 of this thesis, commonly used one-

dimensional (1D) proton NMR spectral data analysis in metabonomic studies suffers 

severely from the unavoidable disadvantage that chemical shift dispersion of NMR 

signals in complex biological mixtures is relatively small, resulting in a multitude of 

overlapping signals in most regions of the 1D spectrum. Consequently, the resulting poor 

spectral resolution of individual nuclei renders the task of unambiguous metabolite 

identification into a nearly impossible undertaking. This is so because this strong signal 

overlap compromises the necessary identification of the characteristic underlying spin-

coupled resonance patterns of metabolites (fingerprints) for unambiguous, confident 

metabolite annotation. 

Multidimensional (2D, 3D or more) NMR spectroscopy offers a convenient 

solution to resolve metabolite assignment ambiguities by spreading NMR resonances into 

distinct spectral dimensions, such as demonstrated by targeted projection spectroscopy, 

resulting in significantly reduced signal overlap (Pontoizeau et al. 2010). But this comes 

with a cost, multidimensional NMR spectra require (considerably) more NMR 

measurement time than needed for the acquisition of 1D NMR spectra, an aspect that is 

important considering the fact that typically multiple biological samples need to be 

analyzed in a single NMR metabonomics study. Therefore – as good compromise – two-

dimensional (2D) NMR spectroscopy is mainly used in NMR metabonomics. In 

particular, two-dimensional homonuclear 1H - 1H total correlation spectroscopy (TOCSY) 

and two-dimensional heteronuclear single quantum correlation 13C- and/or 15N- 1H 

spectroscopy (HSQC) are the most popular NMR experiments used in order to achieve 

confident metabolite. 
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2.1 Introduction 

Recently, a number of numerical strategies have been developed to automatically 

identify metabolites using the above-mentioned 2D homo- and/or hetero-nuclear NMR 

spectra: semi-automated methods such as MetaboMiner (Xia et al. 2008) or CCPN 

Metabolomics Project (Chignola et al. 2011), automated methods such as trace analysis 

(Bingol and Brüschweiler 2011, 2014; Bingol et al. 2015, 2016; Robinette et al. 2008, 

2011), COLMAR based on covariance spectroscopy (Zhang et al. 2008, 2009; Zhang, 

Bruschweiler-Li, and Brüschweiler 2012) and heuristic likelihood search (Xi et al. 2006). 

Generally speaking, a common drawback of the currently proposed semi- or fully 

unsupervised approaches is that they are operating on their own customized, relatively 

small and thus more or less incomplete metabolite database. As a result, the availability 

and steadily growing potential of (complementary) public metabolite databases such as 

the Human Metabolite Database or HMDB (Wishart et al. 2007, 2009, 2013, 2016), 

Metabolomics Biological Magnetic Resonance Database or BMRB (Markley 2012; 

Markley et al. 2007), the Madison Metabolomics Consortium Database (Cui et al. 2008) 

or the Yeast Metabolome Database or YMDB (Jewison et al. 2012) are currently only be 

partly exploited by direct searching and mapping query algorithms, despite their 

expanding collection of available experimental two-dimensional NMR peak-lists and/or 

spectra of hundreds of individual metabolites. 

Here we propose a novel and robust numerical method for the individual and/or 

combined analysis of two-dimensional hetereonuclear 1H-13C HSQC and homonuclear 
1H-1H TOCSY spectra that yields automated metabolite identification without any or only 

minor input restrictions using as reference libraries two of the largest repository archives 

available, namely the Biological Magnetic Resonance Data Bank (BMRB) and the 

Human Metabolome Database (HMDB), thus intrinsically guaranteeing a high coverage 

of currently catalogued metabolites. Key elements of our method designed to overcome 

current data analysis deficiencies in NMR metabolomics are the combined use of 

contemporary, sorely mathematically based pattern recognition techniques, such as 

advanced peak cluster methods and optimal peak assignment methods that enable 
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confident metabolite determination with high accuracy. These techniques are applied in 

an iterative, adaptive spectral analysis mode in order to achieve convergence to the best 

possible matching between experimental and reference spectra, and shows great potential 

to provide a better identification of known metabolite than existing methods. Proof-of 

principle was first obtained by evaluating performance characteristics on different 

synthetic data sets, and more importantly on real-world applications of human urine 

samples, exhibiting high data complexity. Flawless metabolite assignments were obtained 

for the synthetic case. Notably for manually prepared input peak lists of experimental 

urine samples, the unsupervised result delivered a high agreement between automated 

and in-depth manual, interactive spectral evaluation. These results clearly demonstrate 

that the numerical method proposed provide a significant advance towards providing a 

robust tool for rapid identification of metabolites at natural abundance, and most 

importantly achieves an accurate and high coverage of identified metabolite in complex 

mixtures. 

2.2 Description of ITERAMETA approach 

The flowchart of the proposed numerical method ITERAMETA is shown as a 

combination of multiple building blocks with three main elements (Figure 2.1.) that 

subsequently  

(i) initialize the input data 

(ii) perform iterative searching and matching between experimental input signals and 2D 

TOCSY/HSQC metabolite database patterns  

(iii) assess the matching quality thanks to various tools implemented along the program. 
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Figure 2.1. Flowchart of NMR metabolite assignment using the ITERAMETA method 

proposed. 
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The input for the ITERAMETA method consists of: (i) one or several 

experimental two-dimensional NMR peak-lists, HSQC and/or TOCSY; (ii) a set of 

numerical parameters for controlling applied assignment thresholds in the ITERAMETA 

method (default parameter values are provided, but can be changed by the user); and (iii) 

a public metabolite resonance database. The public metabolite database in the 

ITERAMETA program can be chosen as HMDB (www.hmdb.ca) or BMRB 

(http://www.bmrb.wisc.edu).  

[Building block 1] Input resources: Available database-deposited metabolites are 

processed by their name in alphabetic order: every metabolite will be associated with its 

corresponding TOCSY and/or HSQC reference peak-lists. The reference peak-list is 

either already provided by the public reference database or created internally from the list 

of resonance frequencies of nuclei and the adjacency matrix encoding the covalent 

connections between atoms (see [Building block 2]). 

Each occurring NMR signal between atoms pairs of a metabolite in the reference 

peak-list is characterized by its two chemical shift coordinates: �!
! with �  ∈   1,2  and k 

stands for the (arbitrary) peak number in the reference peak-list. 

The experimental input peak-list is denoted as a set of NMR signals E: � =   �!  

with �! =   �!
! ,�!

!  and its associated peak volume �!. The experimental NMR peak 

volume is only stored for the final reporting about identified metabolites, no use of it is 

made during the annotation process. �!
!  is the first frequency coordinate of the 

experimental peak �!: it contains the chemical shift value of a hydrogen or a heavy atom 

( �
!"  or �

!" )  atom, depending if the set of experimental input peaks E originates from a 

2D TOCSY or a HSQC spectrum, respectively. 

The ITERAMETA user can freely decide to use as query reference library either 

the HMDB or the BMRB. The extent of available reference metabolite in these two 

public metabolite databases is reported in Table 2.1. 
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 Number of HSQC spectra Number of TOCSY spectra 

HMDB 972 242 

BMRB 1081 1042 

 

Table 2.1. The number of available reference metabolite spectra is shown for each of the  

two databases, HMDB and BMRB, used in the ITERAMETA program. 

[Building block 2] TOSCY/HSQC pattern: Each database-deposited metabolite will be 

internally associated with a chemical shift list �!: �!  =   Ω!,!
!  with M stands for the 

name of the metabolite, � encodes an individual nucleus of the metabolite, and i assigns 

the current iteration cycle. In each assignment iteration, the original reference chemical 

shift values of individual nuclei are adapted in order to find best possible query matching 

between experimental and reference peak pattern (see [Building block 5]). At the outset 

of the process, i.e., i = 0, the chemical shift values of individual nuclei of a metabolite are 

taken from the HMDB and/or BMRB data. In later iterations, these values are allowed to 

change in order to account for different experimental conditions used during the 

acquisition of the experimental and reference NMR spectra.  

Each theoretical HSQC peak is resulting from the coupling of a proton and its 

covalently bonded carbon/nitrogen atom. The complete expected HSQC pattern is the 

combination of all these theoretical peaks. The HSQC pattern of each metabolite is 

denoted �!  that contains individual peaks �!
!  = (Ω!!

! ,Ω!
! ), l is the (arbitrary) peak 

number in the expected pattern, �  the proton and �!  its corresponding (covalently 

bonded) heavy atom ( �
!"  or �

!" ). 

A theoretical, expected two-dimensional TOCSY peak is labeled T, resulted from 

two protons � and �, denoted Ω
!,!

!,!
,Ω

!,!
!,!  with i the number of iteration cycle; two 

protons � and � being separated by no more than 4 covalent bonds.  
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For the a given metabolite M, an initial TOCSY pattern �!
!  is generated from the 

proton chemical shift list and the connectivity matrix between protons: �!
!
=   �

!

!,!  with 

�
!

!,!
=   Ω

!,!

!,!
,Ω

!,!
!,!  where i is the current iteration cycle. 

The cardinality �!
!  gives the number of elements present in the set �!

! , i.e., the 

number of NMR signals in the expected peak pattern, and this number remains 

unchanged throughout the iterations. For the simplification and the readability of the 

following equations, the superscript i for the current iteration cycle, and the subscript M 

encoding the name of a metabolite will be dropped in the following description. 

[Building block 3] Resonance assignment:  

TOCSY resonance assignment: For each metabolite and in each iteration cycle i, 

the expected or library query TOCSY pattern � is compared to the set of experimental 

NMR signals E. Each experimental peak k, �! =   �!
! ,�!

!  or �! �!
!  is assigned to an 

expected peak, �! , if their respective shift coordinates are matched within a user-given 

chemical shift tolerance range Δδ:  �!
!
− Ω!

!
≤ Δ�, where � =   1, 2  is the frequency 

dimension and � =   �,�  encodes the atoms involved. An assignment possibility is then 

established between �!
!  and �! �!

!  and is denoted as �!,! . To each assignment 

possibility is associated with a Gaussian probability for chemical shift matching that is 

denoted �!,!:  

�
!,!

=  ��� −
!

!

!!
!
!!

!

!

!!

!

!!!,!

!!!,!

. 

For each metabolite and in each round of iteration, all possible assignments for a 

given metabolite are gathered into a comprehensive set of plausible assignment 

possibilities, denoted A: 

� =   �
!,!

= �, � |  �, � = Ω!
! ,Ω!

!
,�!

! ,�!
! ,�!,! . 

HSQC resonance assignment: Very similarly as computed for the experimental 

TOCSY input peak-lists, the expected HSQC peak pattern is compared to the set of 
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experimental NMR signals E. The experimental input peak �! �!
!  is assigned to the 

theoretical peak (�!
! ), if their respective frequency coordinates are matched within user-

defined chemical shift tolerance ranges, Δδ  for protons and Δ�!  for heavy atoms: 

�!
!
− Ω!!

!
≤ Δ�! and �!

!
− Ω!

!
≤ Δ�. 

Identically to the task of TOCSY resonance assignment, all plausible assignment 

possibilities are gathered into a set of assignment possibilities, A. But since the HSQC 

spectrum does not contain any spectral redundancy properties in terms of multiple 

reoccurring frequency resonances of the same atom that can be profitably exploit for 

reliable chemical shift adaption between theoretical and experimental peak pattern of a 

metabolite, the HSQC resonance assignment is applied as simple direct searching and 

matching method without any iterations. In particular, the ITERAMETA building blocks 

4 and 5 of TOCSY assignment clustering and Shift list updating as described below are 

not applied for such experimental input data. 

[Building block 3-1] Presence counting score: The number of theoretical or expected 

NMR signals that can be found, R, in the experimental input peak-list, should be more 

than �!% of the total number of peaks in the reference pattern 
!

!
 ≥  �!% or 

!

|!|
≥  �!% 

for TOCSY and HSQC input data, respectively. 

[Building block 4] TOCSY assignment clustering: From the set of all plausible 

assignment possibilities �, a set of chemical shift deviations � is computed in order to 

characterize the two-dimensional deviations between the theoretical and the experimental 

input peaks in each respective assignment: 

� =   �
!,!

=  Δ(�, �)| Δ(�, �) =   �!
!
− Ω!

!  with � ∈ 1, 2  and �  ∈   �,� . 

The quality threshold clustering method (Heyer, Kruglyak, and Yooseph 1999; Jin 

and Han 2010) is here used for differentiating between most likely and rather unlikely 

assignment possibilities. The workflow of this clustering algorithm can be summarized as 

follows: 
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(i) Build a candidate cluster for each data point Δ(�, �) by including the closest 

point, then the next closest point and continuing to do so, until the distance of the 

cluster is superior to a predefined threshold value �. 

(ii) Take out the biggest cluster from the data (and from any further consideration) 

and save it as an outcome cluster �! with j=1..n, and n is the number of resulting 

clusters. 

(iii)  Repeat the process with the reduced set of points until no more clusters can be 

formed. 

The resulted clusters are denoted �! =   Δ(�, �)!  with j being the cluster number. The 

advantage of the quality threshold clustering method in contrast to other clustering 

methods proposed is the fact that the number of identified clusters does not need to be 

specified, i.e., the number of obtained clusters is only a function of the (quality) of the 

experimental input data. 

[Building block 4-1] Shifting dependency score: An assignment cluster is considered 

eligible if its cardinality is more than �!% of the total number of peaks in the reference 

pattern: 
!
!

!
 ≥ �!%. 

[Building block 5] Shift list updating: If an assignment cluster �!  is eligible (see 

Building block [4-1]), the reference updating process will take place in order to adapt the 

reference chemical shift list - originally taken from a database - to the experimental input 

data. Each database chemical shift is updated according to its corresponding eligible 

assignments: 

Ω!
!"#

=  

!
!

!

(!,!)∈!!
×!

!,!

!!,!
(!,!)∈!!

 , where Ω!
!"#

−  �!
!
≤  Δ�. 

[Building block 6] Fractional Hausdorff-distance score: A Hausdorff-distance-based 

score measures the similarity between the subsequently shifted reference pattern and the 

experimental input data. The Hausdorff distance between two sets of points A and B is 

defined as: h A, B =  maxa∈Aminb∈Bd(a,b) with d(a,b) holds the distance between two 
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points depending on the chosen norm. The norm chosen in ITERAMETA is Euclidean 

norm. A fractional Hausdorff-distance computes the Hausdorff distance only over a pre-

defined fraction of A, thus removing the unmatched outliers. The user can define the 

Hausdorff-distance-based fraction denoted �!% used in the program.  

The matching between the shifted reference pattern �!
!  and the experimental input 

data E is considered as reliable, good matching, if their �!-Hausdorff distance is lower 

than a predefined threshold �: h(�!, E) = maxa∈!!×!!minb∈E d(a,b) ≤ �. 

The parameter values that are used to control to process of metabolite assignment 

are listed in Table 2.2., default values are provided, but the user can freely change this 

values.  

 

Symbol Parameter Value 

Δ��, Δ�� Tolerance range for peak 
positions in both directions of 

proton and/or carbon resonance 

0.05-0.1 ppm for proton 
0.7-1.7 ppm for carbon 

� Cluster diameter threshold 0.03-0.05 

�� Minimal percentage of pattern 
found in spectrum 

70% 

�� Minimal percentage of pattern 
found within a cluster 

70% 

�� Fraction of pattern considered in 
Hausdorff distance computing 

70% 

� Maximum fractional Hausdorff 
distance between two patterns 

0.05 

j Number size of patterns = 
number of eligible clusters 

 

 

Table 2.2. Default parameter values used in ITERAMETA. 

 

 [Building blocks] Optimal matching by the Auction algorithm and Metabolite 

assigned and reported: In order to select the best assignment for each metabolite among 
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all the retained assignment possibilities by the previous quality threshold clustering 

method, an optimization method named auction algorithm is implemented in 

ITERAMETA. In the following we will give a brief description of the auction procedure, 

a detailed assessment of the auction algorithm and pseudo-code of the algorithm can be 

found in its dedicated book (Bertsekas 1988) and the original paper (Bertsekas and 

Castañon 1992). The iterative auction algorithm implemented is found to perform very 

fast for problems with few elements, which is exactly the case of metabolite assignment 

optimization. 

The problem of reporting selective metabolite assignment, i.e., best-matching 

pattern for each metabolite among the retained assignment possibilities, is part of a larger 

numerical research field called asymmetric assignment problem. To solve this problem, 

we have chosen an auction-type algorithm whose general principles are detailed 

hereafter. 

The present assignment optimization problem can be formulated as follows: for 

each retained metabolite, �  theoretical signals are matched against �  experimental 

signals; �!"  is the probability that the theoretical signal �!  can be assigned to the 

theoretical signal �!. We seek a complete assignment �: � → � that maximizes the total 

value � � =   �!,! �! . 

When an experimental signal �! is assigned to the theoretical signal �!, the value 

function is increased by an amount of �!". However, there is a cost to obtain this value: 

that is the opportunity cost that �! cannot be assigned to other theoretical signals or other 

experimental signals cannot be assigned to �!. This lost cost must be taken into account 

in the optimization process. 

The auction algorithm ((Bertsekas and Castañon 1992) solves the asymmetric 

assignment problem by simulating an auction session. The “auction” is simultaneously 

done for all signals, i.e., all assignment combinations. In the end, the total value is 

maximized while minimizing the lost cost function. 
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Figure 2.2. Illustration of auction algorithm in order to find the best matching between 

theoretical peaks, 1t, 2t, 3t, and experimental input peaks, 1e, 2e, 3e and 4e. 

In Figure 2.2., we give a brief explanation how the auction algorithm is used 
to increase the total optimization value and to simultaneously minimize the lost cost 
function.  The  theoretical  peaks,  1t,  2t  have  exactly  one  corresponding  assignment 
possibility 1e, 2e. The theoretical peaks 3t has however two possible assignments to 
experimental  peaks  3e  and  4e.  The  first  assignment  possibility  is  the  set 
{1�: 1�, 2�: 2�, 3�: 4�} and has a total value of 0.9 + 0.9 + 0.6 = 2.4, while its lost cost 
is 0.9 – 0.6 = 0.3. The second assignment possibility is the set {1�: 1�, 2�: 2�, 3�: 3�} 
and has a total value of 0.9 + 0.9 +0.9 = 2.7, while its lost cost is 0. Hence this second 
set of assignments is the better one and this one would be reported by ITERAMETA 
for a given metabolite.  
 

2.3 Results 

The performance characteristics of ITERAMETA is first assessed on synthetic 

input peak-lists constructed from reference libraries with arbitrarily applied chemical 

shift variations and using different settings of parameters values (Table 2.2.). Finally, 

ITERAMETA is evaluated on experimental peak-lists of human urine samples resulting 

from manually peak-picking by an expert analyst. These experimental input peak-lists 

1t

2t

3t3t

1e

2e

3e

4e

0.9

0.9

0.6

0.9
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exhibit high data complexity and are used to evaluate ITERAMETA for real-world 

applications. 

2.3.1. ITERAMETA applied to TOCSY synthetic input data 

Three model mixtures extracted from the BMRB reference library are evaluated 

by ITERAMETA. The compositions of the three synthetic model mixtures is listed in 

Table 2.3. below and shows different complexity in the input peak pattern. 

 
Mixture TOCSY synthetic amino acid composition 

1 Alanine (Ala), Isoleucine (Ile), Valine (Val) 

2 Glutamine (Glu), Leucine (Leu), Threonine 

(Thr) 

3 (mixture 1 + 2) Alanine (Ala), Isoleucine (Ile), Valine (Val), 

Glutamine (Glu), Leucine (Leu), Threonine 

(Thr) 

 

Table 2.3. Three TOCSY synthetic model mixtures with their metabolite composition are 

shown. 

The three model mixtures are generated from the BMRB reference database by 

adding an arbitrary variation of chemical shifts to each metabolite (Figure 2.3.). The 

quality threshold � used for obtaining different assignment clusters is a specific measure 

that is equivalent to alignment tolerance range, but while alignment tolerance range is 

usually used to align peaks along one spectral dimension, the quality threshold � is 

applicable to quantify the assignments over the full pattern of the metabolite (over all 

spectral dimensions). The larger the value of � is set, the more matching possibilities 

(assignments) will be included into one cluster, thus more assigned patterns can exist. For 

the specific case of synthetic data here, the quality threshold can be fixed at 0.00 ppm to 

quantify the perfect match between initial and shifted patterns. For practical cases, as 
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discussed below, a numerical value for quality threshold �  of 0.03-0.04 ppm is 

recommended. 
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Figure 2.3. The synthetic spectra resulted from mixture 1, mixture 2 and mixture 3 

(mixture 1 + mixture 2) are displayed (see Table 2.3.). In color, alanine: blue, isoleucine: 

green, valine: magenta, glutamine: cyan, leucine: red, threonine: black. 

 

For the first evaluation of the programs performance, the algorithm ITERAMETA 

is applied to these three mixtures using the following parameter values: �!= 70%, 

�! = 70%, �!= 70%, � = 0.05 (see Table 2.2.), huge chemical shift matching tolerance 

Δ� of 0.1 ppm in order to challenge the robustness of the algorithm, and the quality 

threshold � is set to 0.00 and 0.04 ppm, respectively. 

Using � at 0.00 ppm, ITERAMETA assigned correctly the compounds targeted in 

each mixture. When increasing � to its recommended value of 0.04 ppm, we expect new 

compounds to be listed since we increase the scope of assignment possibilities; the 

corresponding result is listed in the Table 2.4. 
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Mixture Metabolite profiling by ITERAMETA 

1 Alanine, Isoleucine, Valine 

2 Glutamine, Leucine, Threonine, 

monoethyl-malonate 

3 Alanine, Glutamine, Isoleucine, Leucine, 

Threonine, Valine, Monoethyl-malonate, 

nonadecane 

Table 2.4. Metabolite profiling by ITERAMETA setting the value of the quality threshold 

σ to 0.04 ppm. 

As expected setting  the clustering threshold value �  to 0.04 ppm, the 

ITERAMETA algorithm is listing all the original compounds, but in addition new 

compounds are assigned whose patterns are sub-pattern of the combinations of the 

original compounds. For example, Monoethyl malonate was reported “found“ with 4 over 

5 peaks, and its observed pattern is a sub-pattern of threonine. The found peak pattern is 

shown in Figure 2.4 below. 
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Figure 2.4. The pattern of threonine and monoethyl malonic acid are shown in red and 

bleu, respectively. The two patterns are superposed over 4 out of 5 peaks of the pattern of 

monoethyl malonic acid. Note that the patterns are shifted towards their respective 

matches. 

 

By varying the tolerance value used for initial chemical shift matching Δ�, we 

observed its effect on the quality of assignment obtained. In the present case, the 

assignment quality is defined as the number of compounds found in the mixture (see 

Table 2.5 below) 

 

Δ� (ppm) � (ppm) Mixture 1 Mixture 2 Mixture 3 

0.05 0.00 3 3 6 

0.1 0.00 3 3 6 

 
Table 2.5. The effect of the variation of the tolerance matching �� on the number of 

assigned metabolites. 

Despite using a large matching tolerance Δ� , the ITERAMETA algorithm 

correctly assigns metabolites in the input peak-lists, therefore demonstrates the robustness 

of the approach. 

In the following tests, without noted otherwise, the values of the ITERAMETA 

parameters are the following: Δ� = 0.07 ppm and � = 0.04 ppm, �! = 70%, �! = 70%, 

�! = 70% and � = 0.05 and the reference database HMDB is used to construct the 

theoretical, expected peak patterns. 

 

2.3.2. ITERAMETA applied to TOCSY synthetic human urine sample 

In order to further validate the ITERAMETA approach, the algorithm is applied to 

a synthetic human urine sample containing the 16 most frequently occurring metabolites 

(Saude and Sykes 2007). The composition of this complex model mixture is the 
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following: alanine, aspartate, citrate, creatine, creatinine, cytidine, formate, glutamate, 

hippurate, hypoxanthine, lactate, phenylalanine, threonine, tryptophan, tyrosine, uridine. 

The ITERAMETA parameters were set to its default values (see above). Similar 

to the results obtained for the previous three small model mixtures, all 16 initial 

compounds are identified, but again also additional metabolites are found. ITERAMETA 

assigns a total of 33 metabolites that are listed in Table 2.6 below. As intermediate 

conclusion using synthetic input data, one can state that ITERAMETA is exactly 

performing as originally designed, i.e., all original compounds could be reliable 

identified, and additional metabolites that form sub-patterns are also identified, thus a 

exhaustive set of metabolite identification is obtained. 

 
 

Pattern size  Assigned metabolites 
1  Dimethylamine 

Glycolic acid 
Glycine 
Guanidoacetic acid 
Formic acid 

Oxalacetic acid 
Pyruvic acid 
Trimethylamine 

2  Syringic acid 
Hypoxanthine 

Between 2 and 10  Citric acid 

Creatine 

Creatinine 
Glyceric acid 
Alanine 
Lactic acid 

Serine 
Taurine 
Acetyl‐alanine (4/5) 
Pyridoxamine (7/9) 
Hippuric acid 

Between 10 and 20  Fructose (12/13) 
Guanosine (17/21) 
Glutamic acid 
Phenylalanine 

Threonine 
Aspartic acid 
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Myoinositol (13/17) 
Tyrosine 

Glucaric acid 
Indoxyl sulfate (14/15) 
Aminobenzoic acid (9/12), 

>20  Cytidine 
Uridine 
Xanthosine (17/21) 
Tryptophan 

Phosphogluconic acid (19/23) 
 
Table 2.6. ITERAMETA assigned metabolites for a synthetic human urine model mixture, 

in bold character are the initial compounds; for incomplete matched peak patterns, the 

number of experimental peaks found and the number of expected peaks are noted between 

the brackets. 

 

2.3.3. ITERAMETA applied to an experimental human urine sample 

To demonstrate the robustness and the reliability of the ITERAMETA approach 

for real-world applications, ITERAMETA was applied to experimental data measured at 

800 MHz proton resonance frequency that were issued from human urine samples 

prepared under physiological condition. The typical computing time of the program is 

considerably less than a minute on a single CPU unit of contemporary desktop 

computers, and usually ranges from 10-20 seconds for an experimental input peak-list of 

about 1000 NMR signals. 

For this current performance evaluation of ITERAMETA, the input data consists 

of manually prepared 2D TOCSY and HSQC peak-lists. The input peak-lists were 

previously used to identify metabolites in these human urine samples. The total time to 

achieve an exhaustive manual, interactive metabolite assignment was estimated to have 

taken several man-weeks of an experienced analyst. A comparison of the manually and 

automatically identified metabolites is shown in Table 2.7 below. 
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 Number 

of peaks 
Automatically 

assigned 
metabolites 

Number of 
automatically 

assigned peaks 

Manually 
assigned 

metabolites 

Number of 
manually 
assigned 

peaks 
HSQC 1484 HMDB BMRB HMDB BMRB 281 324 

355 271 810 612 

TOCSY 824 HMDB BMRB HMDB BMRB 109 749 

120 336 502 577 

 

Table 2.7. Comparison of identified metabolite resulting from the automatic 

ITERAMETA approach and manual, interactive analysis for both HSQC and TOCSY 

spectra of human urine measured at 800 MHz proton resonance frequency. 

 

ITERAMETA employs a non-mutually-exclusive approach: one experimental 

peak can be used for the assignment of several metabolite patterns, a criterion that is also 

followed by an interactive, manual expert analysis. This assignment strategy is designed 

so to list any plausible assignment possibility. The independently performed assignment 

of both HSQC and TOCSY spectra and the intersection between the two assignments 

found yield a number of overlapping metabolites (Table 2.8). The combined analysis of 

HSQC and TOCSY spectra is obviously the best procedure to reliably achieve metabolite 

annotation in a complex biological sample. All over, the automated method shows 

comparable results to the intensive manual assignment process in terms of both the total 

number of identified metabolites and identical metabolites found by the two approaches 

(Table 2.9). The agreement between identical metabolites assigned by both methods for 

the combined TOCSY/HSQC analysis is in the range of 76-87%, respectively. 
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 Automated assignment by 
ITERAMETA using 

HMDB 

Manual assignment 

HSQC 355 281 

TOCSY 120 109 

HSQC ∩ TOCSY 72 63 

 
Table 2.8. Comparison of the number of manually or automatically identified metabolite 

using 2D HSQC and TOCSY spectra. 

 
 

 Number of 
identical 

metabolites 
identified by both 

approaches 

Number of 
metabolites 
identified by 

ITERAMETA 

Number of 
metabolites 
identified by 

interactive analysis 

HSQC 213 355 281 
TOCSY 87 120 109 

HSQC ∩ TOCSY 55 72 63 
 
Table 2.9. Comparison of identical metabolites identified by automated and manual 

approach. 

The automated ITERAMETA approach has however significantly reduced the 

time amount needed for finding metabolites within TOCSY/HSQC peak-lists. In minutes, 

the program provides plausible assignments and could therefore leave the user the softer 

task of validating and/or completing metabolite annotation in the NMR spectra. In 

conclusion, the automated ITERAMETA approach shows very satisfying assignment 

robustness through different input peak-lists and yields results in reliable agreement with 

manual procedures.  
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2.4 Discussions 

In the following, some novel concepts introduced by ITERAMETA are discussed 

and their importance for robust metabolite annotation is illustrated with some hopefully 

intriguing example cases. 

2.4.1. About the importance of assignment-clustering in ITERAMETA 

Due to the high sensibility of metabolite resonances to pH as well as to other 

physiological conditions, the chemical shift matching tolerance value should be 

sufficiently large for obtaining a nearly complete matching between the experimental 

input and reference patterns. It is straightforward that the larger the value of the chemical 

shift matching tolerance, the more assignment possibilities can be found in the input 

peak-list for a given metabolite. As the number of assignment possibilities increases, an 

assignment assessment process is needed to identify plausible assignments and to discard 

the improbable ones. The algorithm denoted assignment clustering is introduced for this 

purpose. 

The assignment-clustering step explores the symmetrical property of 

TOCSY/COSY spectrum as well as the correlation between systematic or unsystematic 

chemical shift deviations between reference and experimental data. ITERAMETA uses a 

centroid-based algorithm, called quality-threshold clustering algorithm (Heyer et al. 

1999) to differentiate between correct/wrong assignments. For a quality-threshold 

clustering algorithm, it’s not necessary to specify the number of clusters. The quality of 

each cluster is defined by its diameter and size and is controlled by the threshold of 

largest allowed cluster radius that is defined by the user. The algorithm is time-

consuming by the building of clusters for each data point, but as the number of 

ambiguous assignments is limited, the computing time is negligible. 

To demonstrate the usefulness of this assessment step, we use the case of the 

assignment of hippuric for whose expected peak pattern multiple matching possibilities 

are possible in the experimental input data. In Figure 2.5, the expected 2D TOCSY 
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pattern of hippuric and the experimental input peak-list is shown in blue and red, 

respectively. There is obvious a systematic shift deviation between the two peak sets, as 

best seen in the bottom panel of Figure 2.5. The isolated diagonal peak at 3.8 ppm 

presents two assignment possibilities, labeled 1 and 2 in the figure. Using a value for the 

quality threshold � of 0.03 ppm, the algorithm is able to differentiate between the correct 

and wrong assignment.  

In Figure 2.6, the chemical shift deviation in each spectral dimension between 

expected and experimental peaks is depicted. The correct assignments (in orange) are 

gathered around a centroid while all wrong assignments (in green) are dispersed, and also 

the number of elements found in the green clusters would be too low for confident  

hippuric identification. 
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Figure 2.5. The experimental and theoretical patterns of hippuric, and zooming-in of the 

aromatic region. The isolated diagonal peak at 3.8 ppm presents two assignment 

possibilities that will be differentiated using a clustering algorithm as employed in 

ITERAMETA. 

 

 

Figure 2.6. Assignment clustering of hippuric resonance assignment. The best cluster 

resulted from the quality threshold algorithm is colored in orange, the rest is in blue. 
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The choice of the value for the quality threshold � is crucial: since peaks in the 

same pattern do not shift in exactly the same pace altogether, one should expect � larger 

than 0.00. A too small � will not probably include enough good peaks for the iteration; 

on the other hand, a too large � will include too many matching possibilities, thus slow 

down the process of chemical shift reference database updating. In the specific case of the 

hippuric acid assignment here, the value threshold � of 0.03 allows the finding of the 

whole correct pattern while the value of 0.02 allows the finding of only 9 over 10 peaks. 

The assignment-clustering step provides an independent way to verify the 

consistency of the assigned pattern. The resulting shift-dependency-score objectives the 

number of peaks in each cluster over the number of peaks expected in the reference 

pattern: only clusters score over the threshold �! are retained for database updating. This 

score is complementary to the simple presence-score �! which is the number of peaks 

found in the input peak-list over the number of peaks expected in the reference pattern. 

 

2.4.2. About the importance of fractional Hausdorff distance-based 

assignment assessment in ITERAMETA 

To add to the robustness of ITERAMETA, a fractional Hausdorff distance-based 

score is introduced to deal with imperfect matching between expected and experimental 

peak pattern, potentially caused by missing signals, strongly shifted signals, etc.. The 

fractional Hausdorff distance score introduced in ITERAMETA is based on the practical 

aspect of NMR resonance assignment: if a pattern is only partially found in the 

experimental peak-list but the found part is of good-quality assignment, should one report 

this pattern? In the case of perfect superposition between two patterns, their Hausdorff-

distance will be zero, as well as any of their fractional Hausdorff-distance. The Hausdorff 

distance quantifies the similarity between two sets of peaks, and the fractional Hausdorff 

distance does the same but only on a fraction of the pattern. 
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The fractional Hausdorff distance score takes into account the fact that even if the 

presence of a metabolite is confirmed, its 2D TOCSY theoretical pattern can hardly be 

superposed perfectly onto its found experimental pattern. To illustrate this idea, we take 

the hypothetical case of threonine for which the reference pattern can be perfectly 

assigned and moved toward its experimental pattern except for one pair of peaks denoted 

A for the theoretical peak and 1 for its closest experimental counterpart (see these peaks 

in Figure 2.7). 

 

 
 

Figure 2.7. The theoretical and experimental peak pattern of threonine with an initially 

introduced systematic reference offset.  

 

We have introduced a systematic reference offset between the two sets of peaks, 

this shift deviation will be overcome by the fact that ITERAMETA successive adapts the 

reference shift list to the experimentally found peaks. However the unsystematic shift 

deviation between peaks A and 1 in Figure 2.7 is harder to deal with, and leads to the fact 
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that the input and the reference peak pattern could never be perfectly superposed, despite 

the perfect matching and clustering of 8 out of 9 peaks within the pattern. 

By using a simple matching probability strategy and assignment assessment solely 

based on the counting of theoretical peaks found in experimental peak-list, in the example 

shown here, threonine would have a nice matching of 9/9 peaks within a user-given 

chemical shift tolerance value. Using a fractional Hausdorff-distance score, we quantify 

differently the similarity between two patterns. Considering only a pattern of 8 peaks, the 

two patterns are perfectly matched, i.e. by using a fraction �!= 0.7 or 70%, the Hausdorff 

distance between the two patterns is zero, well under the standard threshold � = 0.05.  

By employing the fractional Hausdorff distance, we provide a score attesting the 

assignment quality that is not only based on the number of peaks found within the 

patterns, but accounts for experimental errors like spectral alignment, signal missing or 

unsystematic shift deviations. Therefore, the fractional Hausdorff distance score is an 

important reporting and assessment feature, valuable both for the correct performance of 

ITERAMETA and for providing quantitative response to the user. 

 

2.4.3. The ITERAMETA user interface 

 

We design the ITERAMETA interface to be user-friendly (GUI programming 

using the standard library Tkinter). ITERAMETA allows user to assign multiple TOCSY 

and/or HSQC peak-lists at the same time (opened in different windows), allowing them to 

compare between different mixtures. Once selecting the choice of TOCSY or HSQC 

spectrum, the user can adjust the algorithm parameters in order to restrict or widen one’s 

searching field. Furthermore, the user disposes of an image tool following the assignment 

in order to visually assess the assignment of each metabolite. 
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Figure 2.8. ITERAMETA main menu presenting the user’s multiple options: peak-list 

automated assignment, manual addition of new peak patterns and auto-update HMDB 

database by pre-downloading the updated database version.  

 
 

 
 

Figure 2.9. ITERAMETA user-friendly interface. Here we showed an example of TOCSY 

matching. Different matching parameters can be adjusted on the right panel & the main 

window shows the automated assignment result. For each assigned signal, ITERAMETA 
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also shows its contribution to fractional Hausdorff distance score (Euclidean distance), 

in order to help the user in assessing the results.  

 

 

 

 

Figure 2.10. In ITERAMETA, the user has also the option to auto-update the HMDB 

database by pre-downloading the frequently updated database from the homepage of 

HMDB project.  
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The TOCSY standard database in ITERAMETA contains 246 high-quality 

patterns compared to 164 TOCSY patterns from HMDB, and 972 HSQC patterns 

compared to 898 from HMDB. Therefore, our standard database outnumbers the 

experimental HMDB. This is the consequence of the fact that we have not only built our 

database based on the initial experimental patterns issued from HMDB but also manually 

added (and verified) new patterns from metabolite structure connectivity and individual 

chemical shift assignment. We qualify our manually created database as standard, and 

the downloaded version of HMDB as extended. We equally leave the user the possibility 

to add new metabolite patterns themselves, in order to broaden his/her specific query 

library. 

 

 
 

Figure 2.11. The user has the possibility to add new metabolite patterns to their own 

database for user-specific querying purposes.  
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2.5 Conclusions 

The imperfect matching between a given reference chemical shift library and the 

input experimental signals, as well as the large variation of chemical shift deviations due 

to different physiological conditions make automated metabolite profiling a formidable 

challenge. Here we propose the algorithm ITERAMETA that automatically identifies a 

significant number of compounds in complex biofluids. Using various quality filters, the 

assignments are archived with high degree of reliability and good agreement with manual 

procedures. The algorithm was tested on synthetic peak-lists and on experimental peak-

lists issued from either automated peak-picking program or manual peak-picking step. 

We have also shown on selected examples the advantage of assignment clustering 

strategy and assignment assessment using Hausdorff-distance concept. 

Our results show that automated 2D homo- and heteronuclear TOCSY/HSQC 

NMR metabolic profiling by ITERAMETA can be a powerful and reliable approach 

providing an exhaustive listing of metabolites. An automated approach does not suffer 

from the effects of a hypothesis-driven metabolic research i.e. the search for metabolites 

is not biased by the prior knowledge of the user about metabolic pathways. Our approach 

allows the user to potentially find new metabolites and therefore new biomarkers and new 

metabolic pathway.  

 
 

2.5.1. ITERAMETA software availability 

 

ITERAMETA is an open source software tool with a friendly user interface, 

developed to solve practical problems encountered in metabolomics. The program is 

written in Python 3.0 with standard libraries, and it is distributed free-of-charge to the 

academic community. 
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CHAPTER 3 

3. NMR protein structure determination 

Beside the numerical developments for NMR metabonomics as presented in the 

previous chapter, a second major aim of this PhD program was to establish a new 

automated method for NMR protein structure determination. The desired method follows 

the stream of “direct methods” rather than “indirect methods” (Guntert 2003), i.e., the 

desired development of the here proposed numerical approach aims at obtaining protein 

structures directly from NMR data, without prior sequence-specific resonance 

assignments (“NMR assignment-free method). Before diving into the findings, I believe, 

however, a detailed review of protein structures and the conventional process of structure 

determination by NMR spectroscopy is necessary. 

3.1 NMR in structural biology 

NMR has nowadays determined about 12% of protein structures that are deposited 

in Protein Data Bank (PDB). The overwhelming remaining 87% are done with X-ray 

diffraction (a small part with neutron diffraction or other techniques, see details given in 

the Introduction Chapter 1). In X-ray crystallography, a measured diffraction pattern is 

directly converted into an electron densities and therefore into a three-dimensional 

structure. However the principal experimental quantity in NMR, the chemical shift 

parameter, is in the conventional workflow not readily converted into a three-dimensional 

structure.  

In conventional NMR, the main source of structural information is taken from 

inter-proton distances provided by the Nuclear Overhauser effect (NOE), backbone 

torsion angle restraints determined from scalar coupling constants and orientation 

restraints (especially residual dipolar couplings). These experimentally determined 

structural parameters are then used as input for a computational structure calculation 
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procedure in order to find a set or bundle of structures (conformers) that is in 

simultaneous agreement with all the experimental input conformational restraints. 

The conventional process of the NMR protein structure determination usually 

consists of the following steps (Wuthrich, 1986): (1) Sample preparation and data 

acquisition, (2) resonance assignment, (3) extraction of structural restraints from spectra, 

(4) structure computation, and (5) structure validation (see Figure 3.1). 

 

 
 

Figure 3.1. Depicted is the conventional workflow of NMR structure determination.  

 
 

In this conventional workflow, sequence-specific backbone and side-chain 

resonance assignment is an intermediate step to ultimately translate all available NMR 
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spectral information into a set of meaningful distance restraints between pairs of 

hydrogen atoms present in the protein sequence. This intermediate step of sequence-

specific resonance assignment forms also the basis for characterizing regular secondary 

structure elements (helix, beta-strands, coil regions) and three-dimensional structures of 

proteins (Moseley and Montelione 1999). Conventional automated sequence-specific 

resonance assignment methods use the same general analysis schema as follows: 

1. Grouping of chemical shifts into spin systems that are related to a single amino 

acid or dipeptide. Many methods gather resonances via common “root” 

resonances found in all or most of the spectra. Other methods use bond pattern 

templates to group resonances into spin systems. 

2. Amino acid typing. Most programs identify amino acid spin systems with respect 

to the reference bond-pattern templates. 

3. Linking sequential spin systems into segments. There are two major linking 

methods: deterministic best-first methods and energy optimization algorithms, 

such as simulated annealing.  

4. Mapping spin-system segments onto the protein primary sequence. 

An exhaustive search algorithm could map the NMR-identified signals to their 

most probable positions in the primary sequence. However, the inevitable presence of 

spectral artifacts as well as spectral overlap in the experimental data is unavoidably 

inducing ambiguities into the available sequential information. Therefore, the 

computational time needed for an exhaustive search of the corresponding configuration 

space is exponentially growing with increasing protein size. This combinatorial explosion 

makes the development of highly sophisticated assignment algorithms necessary, 

exhaustive search algorithms being typically only successfully applicable for small to 

medium-sized biological systems with optimal, high quality data, in order to achieve 

reliable and robust results. 
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3.2 Structure-oriented methods for protein NMR structure 

determination 

A successfully applied project used for conventional protein NMR structure 

determination relies on nearly complete sequence-specific resonance assignment of the 

resonance frequency of atoms in the protein sequence (Wuthrich 1986). A 2011-2012 

review by Guerry and Herrmann (Guerry and Herrmann 2011, 2012) lists 44 publications 

of automated or semi-automated programs performing automated chemical shift 

assignment; 19 of which work exclusively on (manually prepared) peak-lists and others 

require additional input information such as grouping of resonances into spin systems, 

partial assignments, residual dipolar coupling or available information about an initial 

three-dimensional fold. 

Backbone sequence-specific resonance assignment can generally be obtained in a 

reasonable amount of time. A number of algorithms (non exhaustive list is given next) are 

available for this purpose, such as AUTOASSIGN (Zimmerman et al. 1997), MATCH 

(Volk, Herrmann, and Wüthrich 2008) or MARS (Jung and Zweckstetter 2004), PASA 

(Xu et al. 2006), RASP (MacRaild and Norton 2014). However, much fewer 

computational developments have been seen for the subsequent step for obtaining side-

chain resonance assignment with numerical algorithms, one of the very few examples 

frequently used is ATNOS/ASCAN (Fiorito et al. 2008). Most popular NMR programs 

address only the NOE assignment process: ARIA (Fossi et al. 2005; Linge et al. 2003; 

Linge, O’Donoghue, and Nilges 2001; Mareuil et al. 2015; Nilges et al. 1997) and 

AutoStructure (Huang et al. 2006). Automation of the entire process of conventional 

NMR structure determination was so far only proposed by the FLYA procedure (Schmidt 

and Güntert 2012) and the J-UNIO protocol (Guerry, Duong, and Herrmann 2015; 

Herrmann et al. 2002a, 2002b; Serrano et al. 2012). 

Apart from obtaining sequence-specific resonance-assignment, a further 

bottleneck for indirect methods consists in the final step of NOE resonance assignment. It 

is indeed difficult and time-consuming to get near-complete NOE chemical shift-based 
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assignments, due to missing signals and/or artifacts and noises. As NOE chemical shift-

based assignment is a NMR procedure with no biological equivalent (Guntert 2003), it is 

in theory possible to generate structures without explicit NOE assignment. Such a 

strategy attempts to model a three-dimensional biomolecular structure as a spatial 

distribution of covalently unconnected atoms (“gas” of atoms) (Bermejo and Llinás 

2008). Gronwald and Kalbitzer refer to this direct structure-oriented methods as “top-

down” protocols, compared to the “bottom-up” approach of assignment-oriented 

procedure (Gronwald and Kalbitzer 2004). 

The aim of direct methods is to obtain protein structure directly from NMR data 

(usually NOE data), without prior sequence-specific resonance assignment. Direct 

methods seek to bypass the time-consuming sequence-specific backbone, side-chain and 

NOE resonance assignment process by translating directly the spectral information into 

distance restraints between (unassigned) pairs of atoms. These atoms are unassigned 

(hence the classification of assignment-free methods) and only labeled by their chemical 

shifts (or resonance frequency). No prior covalent connectivity is known. 

The fundamental idea behind direct methods is rather simple: the presence of a 

NOE signal (not artifact or noise) implies the presence of two nuclear spins (or group of 

chemical equivalent atoms) and the spatial proximity between them. Four distance 

restraints are necessary and sufficient to define a unique spin position in real space (4n+1 

distances for a system of 3n-6 degrees of liberty). The resonance assignment as a by-

product in itself brings along two additional sources of information: 

1. The specific position of each nuclear spin in the primary sequence of the protein. 

2. A supplementary list of covalent distance restraints due to molecular structure 

constraint of the system of investigation. 
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3.2.1. Nuages 

The direct approach was first mentioned in 1992 as nuages (clouds in French) 

using simulated NOE data from the X-ray crystallographic structure of lyzosyme (129 

residues) and only 1HN-1HN NOE were considered (Malliavin et al. 1992). Using a cut-off 

distance of 4.5 Angstrom, simulated NOE data yielded 302 distance restraints, considered 

determined with 5% precision. Relative to the crystallographic coordinates, the overall 

accuracy of the 1HN -only clouds was poor (11.47 angstrom RMSD); however, regions 

corresponding to elements of secondary structure were more accurately determined. An 
1HN chain was then threaded in each cloud by assuming likely sequential 1HN -1HN 

distances. Importantly, the directionality of the primary sequence was not mentioned 

(Malliavin et al. 1992). 

 

3.2.2. ANSRS 

Kraulis reported the ANSRS (Assignment of NOESY Spectra in Real Space) 

algorithm in 1994 (Kraulis 1994). The algorithm needs two sets of data inputs: the first 

data set is a list of all detectable 1H spins of the protein under consideration, with 

chemical shifts of the proton nuclei and their covalently attached heavy atoms (13C or 
15N); the second data set is a list of the distance restraints derived from all observable 

NOEs in the protein (assumed to be derived from 3D or 4D NOESY). 

The algorithm hence generates proton clouds or three-dimensional real-space 

structures of the unassigned 1H spins from the NOE distance restraints via a restraint 

molecular dynamics or simulated annealing (rMD/SA) protocol (Nilges et al., 1988a, 

Nilges et al., 1988b, Nilges et al., 1988c) with combined restraint molecular dynamics 

(Kaptein et al., 1985; Clore et al., 1985). 
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Figure 3.2. Illustration of the workflow for direct structure determination by ANSRS. 
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In the ANSRS approach, the molecular system is only roughly mimicked, i.e., the 

simulated annealing (SA) procedure is only applied to one single type of atom that 

represents the unassigned 1H spins, and also the force field comprises only terms for the 

van der Waals repulsive potential between the atoms and attractive potential terms for the 

NOE distance restraints. There is no explicit term for imposing the covalent peptide 

structure. The van der Waals repulsion force constant is set to a low value at the 

beginning of the SA process when the initial temperature is high and is steadily increased 

during the simulation when the temperature is reduced towards zero. 

ANSRS was tested on a segment of the DNA binding domain of GAL4 (residues 

9-41) and the bovine pancreatic trypsin inhibitor (BPTI, 58 residues), on the basis of 

experimental chemical shifts and simulated NOE distance restraints corresponding to a 

cut-off inter-proton distance of 4 Angstrom in the reference structures. In both cases, 

average proton clouds exhibited less than 2 Angstrom root mean-square deviation 

(RMSD) from the reference structures. 

 

3.2.3. CLOUDS 

Grishaev and Llínas reported in 2002 a complete direct approach using 

experimental NOE data (Grishaev and Llinas 2002). CLOUD relies on precise and 

abundant inter-proton distance restraints calculated via a relaxation matrix analysis of sets 

of experimental NOE cross-peaks. The protocol was tested on the col 2 domain of human 

matrix metalloproteinase-2 (60 residues) and the kringle 2 domain of human plasminogen 

(83 residues), starting from a list of unassigned, unambiguous experimental NOESY data 

available from the previously assigned structures (Briknarová et al. 1999; Marti, Schaller, 

and Llinás 1999). 
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Figure 3.3. Individual clouds for col 2 (A and B) and kringle 2 (C and D). All 
1
H atoms 

are included in A and C; HNatoms only are shown in B and D. The illustrated clouds are 

those closest to the average minimal RMSD. 
 

Unassigned hydrogen atoms (labeled solely by their chemical shifts) are extracted 

from standard multidimensional experiments and listed. NOE inter-proton distances are 

obtained by relaxation matrix analysis. A force field consisting only of NMR-derived 

distance restraints and a repulsive van der Waals term was applied to an initial gas of 

randomly distributed proton atoms. In the applied process, average proton clouds 

exhibited more than 0.8 Angstrom 1HN RMSD from the known NMR structures are 

discarded. 
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Figure 3.4. Stereo views of molecular focs (backbone H atoms only). (A) col 2; (B) 

kringle 2. HN and Hα atoms are shown in blue and green, respectively. The illustrated focs 

are all-cloud overlaps by reference to the cloud closest to the average. 

 

The polypeptide backbone is traced through the HN and HA atoms in the clouds 

via a Bayesian approach where the probabilities of sequential connectivity hypotheses are 

inferred from likelihoods of HN-HN, HN-HA and HA-HA distances, as well as chemical 

shifts, derived from public databases. Once the polypeptide sequence of (HN, HA) atoms 

becomes identified, a similar procedure is followed to link the side chain protons to the 

main chain. 

In 2008, Bermejo and Llínas proposed the sparse-constraint CLOUDS (SC-

CLOUDS) (Bermejo and Llinás 2008). These sparse distance constraints were obtained 



  73 

from a highly deuterated protein. While NMR spectra of highly deuterated proteins give 

rise to less signal overlap hence less assignment ambiguity, but on the downside they also 

include a smaller number of distance restraints available for modeling the protein fold. 

In order to compensate the inherent loss of distance restraint information, the 

authors proposed to include a number of “anti-distance constraints” (ADC) in the 

structure calculation or simulated annealing process. The effect of ADCs and chemical 

shift degeneracy on the accuracy of proton cloud calculations is already detailed 

(Atkinson and Saudek 2002) with the protein model BPTI (58 residues). ADCs assume 

that when an NOE signal is not observed between a pair of proton nuclei, the protons are 

likely to be separated by a longer distance than an usual NOE cutoff of 5-6 Angstrom; 

thus in the molecular dynamics calculation, their non-proximity is well-kept by the 

application of an additional repulsive atom-atom potential (Bruschweiler et al., 1991; 

Rejante and Llinas, 1994). In SC-CLOUDS, ADCs are based on NOE intensities 

simulated from a structural database of known proteins (Bermejo and Llinas, 2008). 

The proposed SC-CLOUDS approach was tested with experimental three-

dimensional 15N- and 13C-edited NOESY data on the Z domain of Staphylococcal protein 

A (58 residues). A total of 234 NOEs and 4483 ADCs were included in the calculation. 

One can observe that the used ADCs outnumber the NOEs by more than 19:1. While 

ADCs had a significant effect in preventing the collapse of the cloud under the attractive 

NOE forces, there is much uncertainty to call for the existence of an arbitrary ADC: 

signal missing in NOESY spectra is common and even more common in highly 

deuterated samples. The higher quality of NOE data comes at a cost: lesser quantity. 

The chain-tracing (cloud interpretation) algorithm used in SC-CLOUDS is 

noteworthy. In the CLOUDS version, backbone and side-chain proton clouds were 

identified via a Bayesian protocol based on proton-proton distance distributions derived 

from high quality public database (CLOUDS 2002). The protocol assumed that distances 

within a cloud comply with the distance distribution derived from the database, hence 

assumes a high-quality (highly accurate) computed cloud. Clouds generated from sparse 
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data are of lower accuracy hence the reliance on the database distribution is not 

warranted.  

 

 

Figure 3.5. SC-CLOUDS on the Z domain of Staphylococcal protein A. (a) Backbone 

trace of reference NMR structure generated via an assignment-oriented method using a 

fully protonated sample (PDB code: 2spz). (b) Backbone HN atoms from 2szp. (c) SC-

CLOUDS-derived backbone HN atoms using ADCs (lowest-energy cloud). (d) SC-

CLOUDS-derived backbone HN atoms without using ADCs (lowest-energy cloud). The 

coloring represents a blue (N-terminus) to red (C-terminus) gradient. 

 
 

The chain-tracing (cloud interpretation) algorithm used in SC-CLOUDS is 

noteworthy. In the proposed CLOUDS method, backbone and side-chain proton clouds 
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were identified via a Bayesian protocol based on proton-proton distance distributions 

derived from high quality public database (Grishaev and Llinas 2002). The protocol 

assumes that proton-proton distances within a cloud comply with the distance distribution 

derived from their customized database, hence assumes a high-quality (highly accurate) 

computed cloud. Clouds generated from sparse data are of lower atomic precision and 

accuracy hence the reliance on the database distribution is not warranted.  

The chain-tracing algorithm is based on the ARP/wARP method for building a 

CA-chain from an X-ray electron density map (Morris, Perrakis, and Lamzin 2002, 

2003). ARP/wARP was the first automatic interpretation tool successfully used to 

establish protein models from X-ray electron density map and remains one of the most 

used tools in the crystallographic community for 3D map interpretation. It focuses on the 

best placement of individual atoms in the map and requires in general an atomic 

resolution of 2-3 Angstrom or higher in order to produce an accurate, reliable trace. 

Given a map, it can form a backbone trace by looking for pairs of atoms that are 

separated by a proper distance. The algorithm verifies candidate pairs by overlaying them 

with a peptide template; if there is a match between the template and the map, the 

algorithm saves the candidate pairs. Given a chain of candidate CA pairs, ARP/wARP 

considers all possible connections between those pairs in order to extend the main-chain 

connections. 
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Figure 3.6. The chain-tracing algorithm in SC-CLOUDS is based on a graph 

search for a chain of connected backbone amide 
1
H

N
 hydrogen atoms. Exhaustive search 

being computationally impossible are excluded, the search is limited with candidates 

within a distance cutoff of 5 Angstrom.  

 

3.3 Description of the DINO approach 

Throughout the brief description of the very few currently existing “NMR 

resonance assignment-free” or direct methods mentioned above, one can state that for all 

so far approaches proposed the required input information consists either of simulated, 

synthetic data or experimental NMR data exhibiting nearly perfect quality of NMR data. 

The most successful, yet still pure theoretical, non-practical NMR assignment-free 

method to date, CLOUDS or its updated version SC-CLOUDS, uses abundant and 

unambiguous NOE data to obtain three-dimensional structures of biomolecules. In 
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general, such (unrealistic) input data is very likely difficult to obtain for real-world 

applications, due to the presence of unavoidable artifacts and spectral overlap or others. 

Most current manual or automatic sequence-specific resonance assignment 

approaches rely on a large suite of triple resonance NMR spectra, e.g., HNCA, 

HNCACB, HN(CO)CACB in order to establish sequential connectivities of adjacent spin 

systems in the polypeptide backbone chain of 13C and 15N doubled labeled protein 

samples. Isotopic labeling of a protein required by most automated sequence-specific 

assignment algorithms is expensive, but more importantly also the required NMR 

acquisition time is very lengthy, and the following NMR data analysis might - despite the 

use of unattended approaches – remain cumbersome. On the other side, determining 

biomolecular structures using solely a small set of NMR spectra raises a number of very 

challenging algorithmic pattern matching and combinatorial issues, so one needs to find a 

reasonable balance for the development of a novel NMR structure determination 

procedure between the desired limited number of input NMR experiments and the 

possibility for achieving reliable and robust NMR structure determination. In the 

following, we introduce a new method for direct NMR structure determination without 

explicit prior sequence-specific resonance assignment that is dubbed as DINO (Direct 

NOE structure determination).  

The DINO algorithm utilizes the small set of experimental NMR spectra as follows: 

1. NOESY data: The 3D 15N-edited NOESY correlates an amide proton 1HN and its 

covalently bound 15N heavy atom with another hydrogen atoms that are in spatial 

proximity of less than 5.5Å. The aliphatic and/or aromatic 13C-edited NOESY 

correlates a proton and its directly bound carbon atom with a second proton that 

gives rise to dipolar interactions within a distance of less than 5.5Å. 

2. HCCH-TOCSY data: The 3D 13C-edited TOCSY correlates a carbon-proton root 

with another proton that is covalently bonded. Within the DINO method, the 

TOCSY spectrum is used to extract amino acid spin systems through a 

partitioning algorithm.  
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Figure 3.7. Schematic illustration of the DINO workflow for direct NMR structure 

determination.  
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3.3.1. TOCSY and NOESY spin system recognition 

 

During the spin system forming process, the unassigned resonance frequencies or 

chemical shifts from the input NMR signals are gathered together in order to build spin 

systems of each amino acid in the protein sequence. The set of unassigned spin systems is 

a major building block used for the following processes of defining “interatomic 

connectivities” and “backbone tracing”. A novel clustering-based method is here 

developed so to group the resonance frequencies of different spectra into individual spin 

systems. The input for the DINO spin system identification module is given by 3D 

HCCH-TOCSY, 15N-and 13C-resolved (1H, 1H) NOESY spectra. 

 

Spin system identification by analyzing 3D HCCH-TOCSY data: 

To extract spin systems present in the protein sequence from 3D HCCH-TOCSY 

data, we use a numerical method that has previously been introduced (Li and Sanctuary, 

1996). However, the originally proposed workflow of the algorithm by Li and Sanctuary 

was modified so to fit out input data: 

1. Search the HCCH-TOCSY cross peak list for pairs of (�! ,�! ,�!)  and 

(�!!,�!!,�!) where �! and �!! are within the �
!  chemical shift range (���!), and 

�! and �!! are within the �
!"  chemical shift range (���!). 

2. If a HCCH-TOCSY (�! ,�!,�!) is found and a HCCH-TOCSY (�! ,�!,�!) is 

found; then add �!, �!, �!, �! and �! to a spin system. 

3. Else if a HCCH-TOCSY (�! ,�!,�!) is found and a HCCH-TOCSY (�! ,�!,�!) 

is found; then add �!, �!, �!, �! and �! to a spin system. 

4. Back to step 1, until no more TOCSY cross peak pair fulfilled the condition of 

step 1 remain in the data set. 
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Figure 3.8. Spin system identification using 3D TOCSY data. 

 
 
 
Root identification by analyzing 3D NOESY data: 

 

Experimental NOE data from standard 13C- and 15N-edited NOESY experiments 

consist of a list of spectral NMR singlas with their spectral coordinates (�!
! , �!

! , �!
!) 

where �!
!and �!

!are the chemical shifts of protons � and �, respectively, and �!
! (X = 13C, 

15N) is the chemical shift of the heavy heteroatom �, directly bonded to proton �. In 

addition to the spectral coordinates, each NMR signal can be via its peak volume 

associated to an upper distance restraint value (in Ångstrom). The process of peak 

intensity or volume calibration individually performed for each input experimental peak-

list yields its corresponding upper distance restraint value list. Conventionally, each peak-

list is calibrated using the isolated-spin-approximation (IPA) (embedded as a routine in 

UNIO) (Herrmann et al. 2002b) with lower and upper bounds set to 2.4 and 5.5 Å., 

respectively. 

The connection between a proton and its directly bound heavy atom is defined as 

a root. Each spin system is a vector of chemical shift values. Therefore, each spin system 
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issued from HCCH-TOCSY includes a set of roots that are likely to belong to the same 

residue in the sequence.  

 

3.3.2. NOESY inter-residue connectivity clustering using network 

anchoring 

The network-anchoring approach was proposed (Herrmann et al., 2002a) in order 

to reduce the number of initial chemical-shift based NOE assignment possibilities during 

an iterative NMR structure determination process. The approach exploits the fact that any 

network of correctly assigned constraints forms a self-consistent subset within the initial 

network of constraints. Each initial assignment is weighted by the extent to which it can 

be embedded into the network formed by all other NOE peak assignments. 

 

 

 
 

Figure 3.8. NOE assignment attributed to the interaction between atom A and B is 

reinforced by the possible assignments of related constraints. 

 

Network anchoring evaluates the self-consistency of NOE assignments 

independent of knowledge on the three-dimensional structure, thus compensates for the 

absence of 3D structural knowledge at the outset of a de novo structure calculation. 
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Notably, this process of network-anchoring guided determination of interatomic 

proximities – originally developed for the conventional procedure of assigned chemical-

shift based NOE assignment - does not at all rely in theory on prior knowledge of 

sequence-specific resonance assignment, but only on the mutual NOE connectivity 

support between individual atoms or in our case between unassigned resonance 

frequencies. This fact is exactly exploit in the present DINO approach.  

 

Mathematical formulation of network-anchoring: 

 

Consider two unassigned spin-systems � and �. We denote �!" as the interaction 

probability between two spin-systems � and �. If no resonance assignment ambiguity 

exists, i.e., the interaction between � and � is known, then: 

�!" =  
 0 �� �� �����������

1 �� �����������
 

However, since the interaction is not known in advance, one can only quantify the 

interaction by a probability. We construct a model to assess this interaction probability 

based on the network anchoring algorithm.  

Consider an experimental peak �! issued from a NOESY peak list. If �! can be 

assigned to �!" then we have the following Bayesian probability formulation: 

� �!" �! ×� �! =  
� �! �!" ×� �!"

� �! �!" ×� �!"!!"

   

with � �!" �!  the probability that the signal �!  emerges from the interaction �!" ; 

� �! �!"  the probability there is a signal close to the coordinates of �!  given the 

interaction �!"; � �!"  is the probability of interaction between two spin-systems � and �; 

� �!  is the probability of existence of the signal �! which is equal 1, � �! = 1.0. 
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One observes that the probability � �! �!"  is proportional to � �!" . If there is 

no interaction between two spin-systems � and �, i.e., � �!" = 0, then � �! �!"  will be 

also zero. 

� �! �!" = �!"#$$#%&× � �!"   

By supposing the same emission probability �!"#$$#%& for each spin-system, we 

can simplify the above original Bayesian probability formulation to 

� �!" �! =  
� �!"

!

� �!"

!

!!"

  

The probability of interaction between two spin-systems �  and � , � �!"  is 

computed as the number of signals that can be attributed to the interaction, weighted by 

their mean probability or a given maximal threshold number: 

� �!" =  
� �!" �!!!

max (�ℎ���ℎ���, 1!!
)
   

 

3.3.3. Clouds generation by rMD/SA 

Molecular dynamics (MD) algorithm solves Newton’s equation of motion in order 

to obtain a trajectory for the molecular system. Standard MD tries to simulate the 

behavior of a real physical system as close as possible. MD used for NMR structure 

calculation searches the conformational space of a given protein for the 3D structure or 

bundle of conformers that simultaneously fulfills all the experimental restraints and 

simplified physical forces (hybrid force field) using simulated annealing (SA) with a 

hybrid target energy function that controls this process. 
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Multiple independent simulating annealing runs are performed, and a subset of 

converged conformers is selected by the values of their target energy function. A single 

starting structure (randomly generated) is heated to a high temperature in this simulation. 

During many discrete cooling steps, this starting structure can evolve towards the 

energetically most favorable final structure under the influence of the hybrid force field 

derived from the experimental restraints, and typically only using the van de Waals 

repulsive potential (Guntert 2002). 

In order to generate a cloud of unassigned atoms in close spatial proximity from 

the given list of most likely connected intra- and inter-residual atoms, we implemented a 

simulated annealing procedure in Cartesian space using the program UNIO (Guerry et al. 

2015; Serrano et al. 2012) to perform such rMD optimization. It is worth mentioning that 

such optimization runs product due to the limited information available – covalent 

connectivities are a prior unknown - also mirror image structures that can however be 

easily removed by simple geometric analysis using Ramachandran statistics about 

allowed combinations of backbone torsion angles (applied after the process of “backbone 

tracing”). 

 

3.3.3. Dynamic backbone tracing algorithm 

The intermediate result of the previous step is a set of clouds of atoms. The 

challenging problem is now to fit the polypeptide chain (protein primary sequence) into 

this cloud of more or less accurately defined atoms. At the outset of the calculation, this 

initial cloud, obtained by molecular dynamics/simulated annealing, does not generally 

provide exact distances between covalently connected atoms. The fundamental idea of 

the algorithm is to recursively constructing a search space having the structure of a tree, 

and by verifying the feasibility of any forward connection, either to move back then try 

another possibility, or to move forward then try the next possibility. The sequence fitting 

algorithm has recently been employed to enumerate all possible protein conformations 

that verify a set of distance constraints, using an interval Branch-and-Prune algorithm 
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(Cassioli et al. 2015). This approach requires however a complete backbone and side-

chain assignment as well as the corresponding assigned distances. 

Given the cloud structures from the previous molecular dynamics step, a 

downstream analysis with known residue assignment yields an rmsd of a range of 3-4 Å, 

removing mirror image structures (see Results section). This quality range of structures 

does provide an initial good estimation of the target structures, but the quality is not high 

enough to execute the backbone tracing used in SC-CLOUDS. The latter algorithm uses a 

cut-off search of 5 Å. Notably consider that real experimental data is used here (see the 

Results section). 

Therefore we designed an algorithm to generate an initial primary sequence fitting 

independently of the knowledge of the intermediate atomic low resolution cloud 

structure. The backbone tracing algorithm takes as inputs the previously determined spin 

systems and the spatial interaction network between them. The spatial interaction 

network is the result of the precedent step that includes both correct and incorrect 

constraints. By further analyzing the outcome between the sequence mapping, amino acid 

typing and the spatial interaction network, the algorithm performs a restraint violation 

analysis to further remove incompatible interactions between atoms. In the following 

iteration step, this refined atomic distance restraint list together with the available 

covalent information from the backbone tracing analysis will lead to more precise three-

dimensional model and so on. 

The DINO sequence fitting algorithm is based on a previously published 

algorithm GANA (Lin et al. 2005) for obtaining sequence-specific backbone assignment. 

Taking spin systems as input data and using two data structures, GANA uses a genetic 

algorithm to automatically perform backbone resonance assignment. Two data structures 

are the candidate lists and adjacency lists to assign the spin systems to each amino acid of 

a target protein. To assign chemical shifts and make sequential resonance assignment on 

backbone structures, GANA uses the data from 2D HSQC and 3D NMR experiments 

CBCANH and CBCA(CO)NH. We have correspondingly adapted the GANA algorithm 

to serve our purpose in order to achieve backbone tracing of unassigned spin systems. 
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Amino acid typing: 

A spin system contains (all) the chemical shifts of atoms within a residue. Two 

consecutive or sequentially adjacent residues, the � − 1  and (�) residues, have better 

chances of issuing NOE signals than two residues that are far from each other in the 

protein sequence. Mutually, given two spin systems whose interaction produces NOE 

signals, amino acid typing allows the placing of these spin systems in consecutive 

positions in the protein sequence with a matching probability to assess how well the 

couple is placed in those specific positions.  

Given two spin-systems ��! and ��! whose interaction expresses NOE signals and 

two consecutive positions �! and �!!! in the primary sequence, the matching probability 

to assess how well the couple of spin-systems can be fitted in the position of the protein 

sequence is: 

�(!→!,!→!!!) = � �!, �����! ��!  × � �!!!, �����!!! ��!  

(!"#"$!,!"#"$!!!)

× �!"#$%&!&'$ �����! �����!!!   

 

with � �!, �����! ��!  and � �!!!, �����!!! ��!  the probabilities that the spin-

systems ��! and ��! can be fitted in the positions �! and �!!!, respectively, using the 

statistical distribution of their respective states (alpha helix, beta strand, coil). The spin-

system-position fitting probability is computed by local chemical shift assignment, as the 

number of peaks found in the locally assigned spin-system divided by the number of 

signals that are expected for the amino acid position.  

The state transition probability is known in advance by computing a secondary 

structure database. The construction of the probability formula is based on the statistical 

observation that the chemical shift assignment has shown the correlation between the 
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chemical shifts and the amino acid types and underlying secondary structures, as well as 

some underlying secondary structures are rarely consecutive found next to each other in 

the sequence. Thereby, an alpha-helix-chemical-shift spin-system has less chance to be 

found immediately next to a beta-sheet-chemical-shift spin-system. 

Chemical shift value of a nucleus depends on the local chemical and local 

geometric environment. Hence, a structured protein has a dispersed chemical shift 

distribution. The goal of spin system typing is to reduce the number of candidate spin 

systems for each position in the sequence.  

Chemical shift statistical analysis has shown the correlation between the chemical 

shifts and the amino acid types and underlying secondary structures. These statistics are 

used to build a probabilistic model to estimate how likely a spin system can be 

matched/mapped to a certain position in the sequence. For this purpose, the re-referenced 

chemical shift database or RefDB (Zhang, Neal, and Wishart 2003) is used for the 

computation of the spin-system-position fitting probability. The database is assembled 

from comparing predicted shifts using the program SHIFTX (Neal et al. 2003) to predict 

protein backbone chemical shifts from X-ray and NMR coordinate data of previously 

assigned proteins, and the corresponding assigned shifts. The side-chain chemical shift 

database is completed with experimentally assigned chemical shift values as available in 

the BMRB database. 

Considering only three secondary structure elements: alpha helix, beta sheet and 

coil, the spin-system-position fitting probability is computed as follows: 

� �! ��! =
�(��!)

�(�!)
  

with �(��!) the number of matched peaks and �(�!) the number of expected peaks. The 

local chemical shift assignment uses a simple matching and counting algorithm within a 

predefined tolerance range (as default, 0.03 ppm for proton and 0.3 ppm for heavy atoms 

are used). 
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Data structures: 

By setting a user-given threshold value for the probability that two spin-systems 

��! and ��! are connected, two data structures are created: the candidate list and the 

adjacency list.  

The candidate list is used to record potential spin systems for each residue in the 

target protein. For each residue (�) in the target protein, the candidate list ��! records all 

the spin-systems {��!} that match residue (�). 

Adjacency lists are used to express the consecutive connectivity relations between 

spin-systems. Each adjacency list ��! contains two kinds of lists: an L-list (adjacent to 

the left), denoted by ���! and an R-list (adjacent to the right), denoted by ���!. The L-

list records the spin-systems that can be connected to the left and the R-list records those 

that can be connected to the right of the sequence direction.   

If the probability 

� �!, �����! ��!  × � �!!!, �����!!! ��!  × �!"#$%&!&'$ �����! �����!!!  

exceeds the matching probability threshold, then the algorithm adds ��! to ��!, ��! to 

��!!!, ��! to ���! and finally, ��! to ���!. 

Genetic algorithm model: 

Genetic algorithms, first proposed by (Holland and Reitman 1977) mimic the 

Darwinist biological evolution to solve efficiently optimization problem with large search 

space. Genetic algorithms usually begin with an initial population of chromosomes and a 

metric to measure the fitness of each chromosome. At each generation, only the top-

ranking chromosomes in the population survive. The top half mate with each other, and 

their offspring constitute the population for the next iteration. When two chromosomes 

mate, the newborn of the population inherits a new sequence, half of which randomly 
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comes from the father and from the mother. Mutations are also introduced to allow the 

algorithm to escape local optimal. The algorithm stops when a maximum number of 

iterations are reached or a chromosome of the population with maximum fitness is found. 

 

Chromosome initialization: Each chromosome is a string of spin-systems and 

represents a candidate solution for sequence fitting. A chromosome �ℎ has � components 

corresponding to the size of the target sequence. Each position of �ℎ is denoted by �ℎ[�] 

that is assigned to either a spin-system or is empty. 

Initially, all positions of �ℎ are set as being empty. The algorithm performs 

iteratively the following steps: 

1. Randomly select a position � that is empty. 

2. Given the position �, randomly select a spin-system ��! from ��! that has not 

been assigned to any other position and assigns ��! to �ℎ[�]. 

3. Extend the fragment first to the left by examining ���! . Sequentially and 

randomly select a spin-system ��!!! from ���! that is also in ��!!!, then assign 

��!!! to �ℎ[� − 1]. Repeat the process for the next left positions (� − 1), (� −

2)… until no further extension is possible. Similarly proceed the extension to the 

right by examining ���! 

4. When performing step 2, if no spin-system from ��! can be found for position �, 

label �ℎ[�] as empty. 

In out approach, the chromosome initialization is repeated 100 times to create the 

initial population. 

 

Fitness score: The fitness score determines the direction of the population 

evolution, therefore the fitness score is critical for the outcome. For a chromosome �ℎ, 

we proceed from the first position to the last one. The fitness score is initially set to be 

zero. 
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1. If �ℎ[�] and �ℎ[� + 1] both are not empty i.e. �ℎ[�] ≠ ∅ and �ℎ[� + 1] ≠ ∅ and 

a spatial interaction is found between �ℎ[�] and �ℎ[� + 1], then increase the 

fitness score by the spin-system-position probability previously computed. If no 

spatial interaction is found, then decrease the fitness score by the same amount. 

2. If one of the two positions is empty or both are empty, the fitness score is 

unchanged. 

 

Reproduction operations After ranking chromosomes according to their fitness 

scores, the top half of the population is kept for the next iteration. We use the top half as 

parent candidates to generate child chromosomes. The crossover operation between two 

randomly selected parents produces an offspring that has inherited as many connected 

fragments as possible from its parents (Lin et al. 2005). Initially, all positions of the child 

chromosome are set to be empty. The procedure of the crossover operation is as follows: 

1. Randomly select a position � of �ℎ��� that is empty. 

2. Randomly select a parent � (�! or  �!). If �[�] is empty, then label �ℎ���[�] as 

empty. Otherwise, proceed as follows: if �[�] has not been assigned to any other 

position in �ℎ���, then assign �[�] to �ℎ���[�]. 

3. Extend the connected fragment from �ℎ���[�] by referencing � and return to step 

1. 

4. If �[�] is already assigned to another position then label �ℎ���[�] to be empty. 

The mutation operation provides the population with reasonable diversity and 

prevents the solutions from falling into a local optimal. Single-point or multiple-point 

mutation operations can delete the continuity of the connected fragment, therefore 

whenever a position is muted; we consecutively modified its subsequent neighbors. A 

mutation frequency variable is introduced to control how often a mutation can occur. 

Let ��ℎ denote a new mutated chromosome to be generated and �ℎ the template 

chromosome for the mutation. All positions of ��ℎ are set to be empty. The mutation 

procedure is as follows: 
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1. Start with the first position i.e. � = 1. 

2. If the mutation frequency variable exceeds the mutation threshold, the current 

position will be muted. Randomly select a spin-system ��! from ��! that has not 

been assigned to any other position of ��ℎ, and attribute ��ℎ � =  ��!. If no 

spin-system is qualified, set ��ℎ[�] to be empty i.e. ��ℎ � =  ∅. Then perform 

only the right extension from ��! by following the same procedure as described in 

the chromosome initialization, until no further extension is possible. 

3. If position � is not muted, if �ℎ[�] has not been assigned to any position in ��ℎ 

then set ��ℎ � =  �ℎ[�]. 

4. Proceed to the next position until all positions are processed. 

  

Structure calculation reiteration: 

After ranking chromosomes in the current generation according to their fitness 

scores, the top half of the population as candidate solutions are selected for the 

structure/sequence mapping process, i.e., the most likely position in the protein sequence 

are getting to be known (in an iterative process). As consequence, a more reliable 

evaluation of possible interatomic (unassigned) atom proximities can be performed.  But 

equally important, sequential covalent knowledge (polypeptide) can be used as additional 

interatomic distance restraints in order to successively obtain more and more accurate 

atomic model of the protein under investigation. Especially the use of covalent 

polypeptide bond-derived (non-experimental) distance restraints between two consecutive 

amino acids are decisive for obtaining in an iterative fashion more and more precise and 

accurate structural models. 
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3.4 Results 

Rapid protein structure determination has become attractive in recent years 

because it can yield structural information for proteins in minimal amount of time 

providing quick insights to biological functions. The variety of NMR data structure is 

valuable in this area and offers various (computational) methods to define protein folds. 

We have described an algorithm dubbed DINO combining a set of TOCSY derived spin-

systems and NOE data to provide “acceptable-accuracy” or “medium-accuracy” protein 

structures. The structure calculation takes less than ten minutes of computation time to 

obtain protein structures within a range of 2-3 Å RMSD compared to the mean 

coordinates of the reference structure bundle of our target protein. Although, we will 

present in the following only the results obtained for one protein data set, this first proof-

of-principle shows that the DINO algorithm, has great potential to provide automated 

assignment-free protein structure determination in a robust way. 

 

3.4.1. Collection of distance restraints between spin systems and 

structure calculation 

 

The performance of the DINO algorithm was tested with the target protein 

VpR247 (PDB deposition code: 2KIF) that is a 11.5kDa monomeric protein consisting of 

102 residues. Experimental (refined) NOESY peak lists were obtained from the CASD-

NMR website (www.wenmr.eu/wenmr/casd-nmr-data-sets). Since only NOESY data are 

provided by CASD-NMR, the 3D TOCSY peak lists were synthetically generated from 

the deposited chemical shift list (BMRB deposition entry: 16272). 

Setting the proton and heavy atom tolerance range to 0.03 ppm and 0.3 ppm, 

respectively, used to establish spin systems based on the TOCSY input data, the NOESY 

peak lists are used to extract intra-and inter-residual NOE-derived distance restraints as 

descripted in the former section. At the outset of the calculation, a total of 2041 upper 
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distance restraints were computed (see Table 3.1) containing 359 long-range distance 

restraints between atoms. This list of distance restraints contains a large number of 

correct restraints between atoms, but also atom contacts that are not compatible with the 

reference structure of our target protein. This is not further surprising, since the inclusion 

of artifactual restraints is hard to avoid at the outset of a calculation, since no restraint 

violation based on a preliminary structural model can be performed. 

 

 

Number of distance restraints 2041 

Number of wrong distance 

restraints 

92 

Number of long-range distance 

restraints 

359 

Number of wrong long-range 

distance restraints 

88 

 

Table 3.1. Statistics about the collected NOE-derived distance restraints in DINO 

iteration cycle 1. Long-range distance restraints are defined as contact between two 

residues separated by at least 4 residues. 

 

This list of distance restraint served then as input for the following structure 

calculation using a simulated annealing protocol. 20 structures were calculated and the 

best 5 structures were selected according to lowest residual target function value. The 

RMSD of the bundle of conformers is 1.77 Angstrom, and the RMSD deviation between 

the mean coordinates of the structure bundle to the reference protein is 3.34 Angstrom. 

The clouds of heavy atoms for the best conformer with the lowest residual target function 

value is shown in Figure 3.9. 
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Figure 3.9. Clouds of heavy atom for the best conformer with lowest residual target 

function value. 

 

3.4.2. Mapping spin systems into the primary sequence 

Our mapping algorithm used the following parameters: the number of 

chromosomes in each generation = 100, the number of generations (iterations) = 100, the 

mutation rate = 30%. In order to prevent the genetic algorithm to fall into local 

maximum, we perform multiple rounds to select the chromosome with highest fitness 

scores.  

The GANA algorithm (Lin et al. 2005) from which our algorithm is inspired, 

reported up to 97-100% of correct matches, on simulated datasets generated from BMRB 

library. 
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Without prior structures, our mapping algorithm is capable of creating consistent 

and correct connected fragments. The mapping showed an average correct positioning of 

60-70%. A population of 100 chromosomes is diversified enough to cover the entire 

sequence. 

With the updated distance restraint set obtained after iteration 1 with violated-

restraints consensus analysis applied, the mapping results showed up to 90-95% of 

average correct positioning. 

 

 

3.4.3. Structure calculation quality 

Violation analysis: The violation analysis algorithm is computed as follows: 

1. Start with the first position � = 1. Consider another position � that is separated 

from � more than 6 residues. 

2. If �ℎ[�] shows NOE contact with �ℎ[�], consider the NOE contacts between the 

group (�ℎ � − 1 , �ℎ � , �ℎ[� + 1]) and the group (�ℎ � − 1 , �ℎ � , �ℎ[� + 1]), if 

a number of contacts are detected then confirm the contact between �ℎ[�] and 

�ℎ[�]. 

3. If no contact detected other than the one between �ℎ[�] and �ℎ[�], set the contact 

between �ℎ[�] and �ℎ[�] to be non-existent (i.e. violated restraint). 

 
 

The basic idea is that there should be at least one contact pair in the neighbor 

other than the pair itself to support the pair contact. The positions are chosen to be far 

enough to be consider “long-range” distance restraints. 

By repeating the violation analysis over the population of 100 chromosomes, the 

algorithm builds a consensus of violated distance restraints i.e., the restraints that are 

weakly supported by other restraints. By reiterating the restraint assessment step with the 

consensus, we create a better set of restraints between spin-systems. 
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3.4.3. DINO iterative structure calculation 

The idea behind the iteratively applied DINO protocol is that (a) the knowledge 

about intermediate structural models can be successfully exploit for obtaining 

successively more accurate distance restraint list via violation analysis, and (b) backbone 

tracing becomes also more and more accurate, and thus covalent bond information can be 

successively introduces as additional covalent distance restraints during the simulated 

annealing protocol. This is of special importance for forming the correct geometry of the 

peptide bonds between adjacent residues. After iteration 3, a total of 2034 distance 

restraints were computed. This restraint list is virtually artifact free (see Table 3.2). 

 

Number of distance restraints 2034 

Number of wrong distance 

restraints 

3 

Number of long-range distance 

restraints 

357 

Number of wrong long-range 

distance restraints 

3 

 

Table 3.2. Statistics about the collected NOE-derived distance restraints in DINO 

iteration cycle 3. Long-range distance restraints are defined as contact between two 

residues separated by at least 4 residues. 

 

In DINO iteration 3, this updated list of distance restraint served then as input for 

the following structure calculation using a simulated annealing protocol. As in the 

previous cycles, 20 structures were calculated and the best 5 structures were selected 

according to lowest residual target function value. The RMSD of the bundle of 

conformers is 0.99 Angstrom, and the RMSD deviation between the mean coordinates of 
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the structure bundle to the reference protein is 2.23 Angstrom. The bundle of NMR 

conformers superimposed onto the reference structure is shown in Figure 3.10. 

 

Figure 3.10. Bundle of the 5 best NMR conformers is shown in blue, the mean atomic 

coordinates of the reference structure is presented in red. 

 

3.5 Conclusions 

In this chapter, we have presented an algorithm performing assignment-free 

protein structure determination. The dubbed DINO algorithm takes spin-systems and 

standard NOE data set as input. The algorithm includes two main modules that interact 

iteratively with each other: (1) restraint assessment to assess interactions between spin-

systems and (2) spin-system-position mapping to place spin-systems onto the sequence 

based on the restraints previously identified; in its turn, the mapping result provides the 

list of potential violated restraints that are integrated and reiterated in the restraint 

assessment so to obtain successively more accurate distance restraints, and also to include 

more accurate the available knowledge about the covalent polypeptide structure. 



  98 

The performance of the DINO algorithm was so far tested only on our target 

small-sized protein VpR247, but these first results are promising and provided a NMR 

structure bundle of acceptable quality in terms of precision and accuracy of the atomic 

coordinates. 

 

 
 
 
 

 

CHAPTER 4 

4. General conclusions and perspectives 

Synopsis: After 3 and half years of my PhD work (and almost 6 years for me at the 

CRMN including my Master studies), we have reached the targets originally described in 

the PhD proposal: to create algorithms to automatically perform NMR data analysis. In 

this dissertation, we propose two fully automatic algorithms, one to generate automated 

metabolite assignment for the fields of NMR metabolomics and one to determine protein 

structure without performing the time-costly sequence-specific resonance assignment 

step.  

Metabolomics is defined as the science studying the metabolic response of 

organisms to internal/external stimuli. NMR metabolomics has a number of advantages in 

the race with mass spectroscopy, due to its minimal sample preparation, non-sample 

destruction and highly reproducible qualities. While one-dimensional NMR is still 

popular to study biological mixture composition, two-dimensional NMR offers more 

convenience in term of metabolite assignment quality as well as of the discovery of new, 

unknown metabolites. The NMR signals can be assigned based on two-dimensional 

homo- and hetero-nuclear correlation NMR experiments and by database querying, such 

as HMDB or BMRB.  
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Our proposed algorithm ITERAMETA performs automatically metabolite 

profiling on two-dimensional NMR, both on TOCSY or HSQC spectra. The assignment 

results are robust, reliable and comparable to exhaustive manual spectral analysis. The 

database employed is publicly available and can be regularly updated with new 

metabolites. The first year of the PhD was spent to develop the core algorithm while half 

the third year was used to write the stand-alone version and incorporate various useful 

tools such as the possibility to auto-update the reference databases used. 

In the second year and the forth year of the thesis, we investigated the potential of 

algorithms performing assignment-free NMR protein structure determination from 

minimal set of standard data. In NMR protein structure determination field, the idea of 

bypassing the tedious sequence-specific resonance assignment step is obviously very 

attractive. While the idea of NMR assignment-free protein structure determination is not 

new and a number of novel algorithms have already been developed (Grishaev and Llinas 

2002; Kraulis 1994), these algorithms used selective inputs that are frequently simulated 

and/or high-quality unambiguous data. We propose an algorithm, dubbed DINO, taking 

spin-systems and standard NOE data as inputs, to perform NMR assignment-free 

structure elucidation. 

The DINO algorithm includes two parts that mutually support each other. The 

first part called “restraint assessment” evaluates the contacts between spin-systems based 

on the resulted NOE signals, using a Bayesian scoring scheme. The second part called 

“spin-system-position mapping” puts spin-systems in the sequence, using a genetic 

algorithm that maximizes the contacts between consecutive residues. The outcome is 

used to remove violated restraints, by building a consensus of violated restraints through 

the population of possible solutions. The restraint set is recomputed according to the 

latter outcome, in order to take into account the incorrect restraints.  

The iteration loop is repeated until a self-consistent restraint set and a self-

consistent mapping result are found. The derived final protein structures are of 2-3 Å 

rmsd to the reference structure. While the structures are of “medium-accuracy” and can 

certainly be improved, the computing time to obtain such outcome is considerably 
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reduced. For our target protein, the total computation time was well below one hour on a 

single CPU unit. 

 

Perspectives: The computational NMR group at ISA develops analytical tools to solve 

recurrent and manually time-consuming problems for scientists in the field of NMR 

metabolomics and protein structure determination. In collaboration with the NMR 

metabolomics group at ISA, the ITERAMETA algorithm was developed. The daily 

exchange with the NMR metabonomics group members provided very valuable feedback 

and also the possibility to steadily test and improve the underlying numerical concepts. 

Therefore ITERAMETA is now ready to real-world applications in NMR metabonomics 

and has and will continue to provide a valuable aid to metabolomics scientists in their 

quest in finding biomarkers. 

As for the protein project, we have demonstrated the feasibility of obtaining the 

global fold of the target protein VpR247 using only the spin-systems and unassigned 

NOE peak  list obtained from 3D �
!" - and �

!" -edited NOESY experiments as input. The 

generated structures are within 2-3 Å rmsd to those of the reference structure that has 

been determined following the conventional structure determination process. Yet, this 

was only the very first proof-of-principle of the DINO method proposed. Applications to 

other protein data sets are needed to fully assess the potential of the DINO approach, yet 

this first result is very promising and documents the feasibility of robust and accurate 

NMR assignment-free structure elucidation.  
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