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Chapter 1

Introduction

General introduction

T
he famous Noble Prize physicist Richard Feynman in his visionary 1959 lecture There’s
plenty of room at the bottom [Feynman60] was asking “What could we do with layered

structures with just the right layers?”. More than half a century later, we are close to

answering this question and echoing his intuition “we will get an enormously greater range

of possible properties”.

Layered materials are composed of covalent crystalline layers stacked through weaker

van der Waals interactions. Because these layers are one or few atoms thick, they are said to

be two-dimensional. Such materials are known for a long time and are currently employed

in the industry, especially as dry lubricants [Hilton92]. However, in the past twelve years,

they have attracted tremendous attention. Indeed, in 2004 and 2005, Geim and Novoselov

(Nobel Prize in Physics in 2010) have shown that one or few layers can be isolated using ad-

hesive tape [Novoselov04, Novoselov05b] without damaging the crystallinity owing to the

strong in-plane covalent bonds and weak out-of-plane van der Waals forces.1 Surpringly,

two-dimensonal crytals are experimentally stable contrary to theoretical predictions that they

should be thermodynamically unstable (e.g., see [Landau80]). Due to their reduced dimen-

sionality, they show very different properties from their three-dimensional bulk counterparts,

making them ideal candidates to investigate the effects of dimensionality, and are highly sen-

sitive to their local environment.

Figure 1.1 gives an overview of the broad catalogue of two-dimensional materials which

goes from metal and semimetal to semiconductor and insulator. Among them, graphene,

and the vast family of transition metal dichalcogenides are currently the most actively in-

vestigated layered crystals. Graphene is a one-atom thick single layer of graphite. As a

1Interestingly, decades ago Frindt and coworkers have already demonstrated that these materials can be me-
chanically exfoliated using adhesive tape down to few layers [Frindt66] and even monolayers [Joensen86]. Unfor-
tunately, their work has not been noticed by the scientific community.
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Figure 1.1 – The world of two-dimensional materials. It is composed of graphene and its analogues, especially
hexagonal boron nitride; black phosphorus (BP) and its analogues; the III-VI family of semiconductors; and
the transition metal dichalcogenides (TMDs). The properties of these materials are ranging from semimetal
and metal to semiconductor and insulator. The cross section of the different materiald are sketched at the
four corners. Most are not strictly planar. Figure extracted from Ref. [Ajayan16].

genuine two-dimensional electron gas, it is endowed with unique electrical [Novoselov04,

Zhang05, Novoselov05a], optical [Mak08, Nair08, Mak12b], thermal [Ghosh10] and mechan-

ical [Lee08] properties, widely tunable by doping, strain, external fields and environmental

effects. Transition metal dichalcogenides, with chemical formula MX2 (where M is transition

metal and X a chalcogen) [Frindt63, Wilson69, Chhowalla13, Xu13], offer a broad range of

physical properties. In particular, the three-atom thick single layer of semiconducting transi-

tion metal dichalcogenides displays exceptional optoelectronic properties in the visible and

near-infrared that are distinct from their bulk counterpart [Wang12, Xia14, Mak16], together

with a valley pseudospin that can be exploited to process information [Xu14].

Furthermore, because the surfaces of two-dimensional materials display no dangling

bonds and because layers are coupled by van der Waals interactions, it is possible to

artificially stack these layered materials in any chosen sequence to form so-called van

der Waals heterostructures [Geim13]. Compared to traditional epitaxial heterostructures,

which are widespread in industrial applications [Alferov01], van der Waals heterostruc-

tures do not suffer from ‘lattice mismatch’ problems. Due to the diversity of layered ma-

terials, there is a large amount of possibilities that pave the way towards new physical

phenomena. Let us mention two remarkable examples. First, the Hofstadter butterfly,

predicted by Hofstadter [Hofstadter76], was experimentally observed in the energy spec-

trum of graphene stacked on hexagonal boron nitride (hBN, which is an insulator see

Fig. 1.1) [Dean13, Hunt13, Ponomarenko13]. Second, superfluidity at high temperature of

indirect excitons, where electrons are in one layer and holes in another, has been predicted
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in transition metal dichalcogenides based heterostructures [Fogler14]. In addition to van der

Waals heterostructures, two-dimensional materials can also be combined with nanoobjects,

such as quantum dots or plasmonic structures, to form hybrid heterostructures.

From a more technological perspective, two-dimensional materials and their heterostruc-

tures are very promising for a broad range of applications ranging from health and environ-

ment to (opto)electronics and energy storage and conversion [Ferrari15]. They offer potential

advantages over most materials currently employed in today’s technologies such as silicon.

Among these advantages are semi-transparency, low weight, large area, flexibility, high per-

formance, low power consumption, scalability, and low cost. Graphene and semiconducting

transition metal dichalcogenides offer complementary properties that can be harnessed in a

variety of novel optoelectronic devices [Koppens14, Xia14, Mak16, Mueller16], such as so-

lar cells, photoconductors, photodiodes or light-emitting diodes, operating in the visible and

near-infrared spectrum. However, researches in this emerging field are at their beginning, in

particular numerous fundamental questions still have to be addressed and new fabrication

techniques suitable for large-scale production have to be developed.

In this general context, this PhD project aims to build optoelectronic devices based on
van der Waals heterostructures, made of graphene and transition metal dichalcogenides,
to study and electrically control the interlayer interactions that govern their photophysics.
These systems are investigated usingmicro-optical spectroscopywith submicrometer resolu-

tion. Compared to other techniques, optical spectroscopy presents the advantage to be a non-

invasive, contactless, local and fast tool to probe physical properties of solids. The common

technique employed throughout this thesis is Raman spectroscopy [Ferrari13, Zhang15b]

which provides various information, such as the crystalline quality or the charge carrier den-

sity and which is employed here in an original way to investigate the interlayer couplings.

The second technique used in this work is spatially- and time-resolved photoluminescence
spectroscopy [Kolobov16] which is an accurate tool to probe the charge carrier dynamics, the

excitonic manifolds and exciton dynamics that are largely affected by interlayer coupling.

The group was in its early stages when I joined it in March 2013 as a master student. Two

PhD students, François Federspiel and DominikMetten, had just started their PhD projects.

The former was studying the energy transfer in hybrid heterostructures made of colloidal

quantum dots and graphene [Federspiel15a] and the latter was investigating the optoelec-

tronic properties of ultra-clean suspended graphene membranes [Metten16]. My project was

to combine these two works by fabricating optolectronic devices based on hybrid heterostruc-

tures in which the energy transfer could be electrically controlled through the fine tuning of

graphene’s properties. However, rapidly we choose to replace the hybrid heterostructures

by van der Waals heterostructures made of graphene and semiconducting transition metal

dichalcogenides because they offer interlayer distances of only few �Angströms where unex-

plored regimes of energy and charge transfer occur, yielding to richer, yet more challenging,

studies. To reach the ultimate goal of this project, I have defined the following milestones:
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1. Fabricating robust devices to efficiently and finely tune graphene’s Fermi energy and

developing a method to accurately monitor it.

2. Characterizing semiconducting transition metal dichalcogenides as a function of the

number of layers. Among the vast family of transition metal dichalcogenides, we have

selected molybdenum ditelluride (MoTe2) since it remained poorly known and, impor-

tantly, has an optical bandgap in the near-infrared (around 1 eV) which should make

the electrical control of the interlayer interactions easier.

3. Fabricating van der Waals heterostructures and integrating them into the devices devel-

oped in the first step.

Almost all these points were successfully achieved and are described in this manuscript. As

this work marks the beginning of the study of transition metal dichalcogenides and van der

Waals heterostructures in our group, I had to provide detailed introduction of their funda-

mental properties that are most relevant to this PhD.

Manuscript organization

This manuscript contains nine chapters including this one. Three chapters (Chapters 2 to 4)

are dedicated to the presentation and scientific context of two-dimensional materials and

their heterostructures, to the theoretical basis of Raman spectroscopy and to the experimental

methods. Three chapters describe already published experimental results (Chapters 5 to 7)

and one chapter to unpublished work (Chapter 8). The last chapter concludes this work and

exposes few perspectives. The full list of publications, six appendices and a general summary

(in French) complete the manuscript. Note that at the end of each chapter, the ‘take-home

messages’ are listed, together with the list of related publications and communications.

Chapter 2 provides an overview of the scientific context of this thesis. It gives a general

presentation of graphene, semiconducting transition metal dichalcogenides and their het-

erostructures with a focus on optoelectronic application. These are obviously vast topics and

we have focused on selected aspects that are particularly relevant to the work described in the

following chapters. In addition, relevant optoelectronic devices are introduced to provide an

overview of today’s state of the art and to show the tremendous possibilities offered by these

materials and structures.

Chapter 3 introduces Raman scattering from a theoretical standpoint, as it is our common

technique used to study the three different types of system investigated in this work. It is

probably the most technical chapter. However, the following chapters can be addressed with-

out reading it in detail. In a first part, we briefly summarize the essential principles and

notations of group theory needed to understand the analysis performed in the next sections.

A more detailed introduction to group theory is presented in Appendix A. In a second part,

we apply group theory to graphene and N -layer and bulk semiconducting transition metal

dichalcogenides. The results of this part are important, especially for Chapter 6. In a last
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part, the classical and quantum theoretical basis of Raman spectroscopy are presented in or-

der to obtain the two fundamental relations of Raman scattering, to define the Raman tensor,

to establish the dependance of the Raman intensity and to give the Raman selection rules.

Chapter 4 describes sample preparation methods and introduces our experimental setup.
The samples were prepared in the STnano cleanroom facility. Three techniques are explained:

the mechanical exfoliation with adhesive tape, the all-dry transfer technique and the fabrica-

tion of electric-field effect transistors based on graphene. The experimental setup consists in a

confocal microscope that can be used for Raman, PL and time correlated single photon count-

ing (TCSPC) measurements on electrically connected samples. Finally, the important effects

of optical interferences on the measurements are introduced and their complete treatment is

displayed in Appendix C.

Chapter 5 focuses on the comprehensive Raman scattering study of electrochemically-gated
graphene field-effect transistors. The geometrical capacitance of the electrochemical top-

gates is accurately determined from dual-gated Raman measurements, allowing a quantita-

tive analysis of the two prominent Raman features of graphene. This analysis provides a mea-

surement of the electron-phonon coupling for zone-center and zone-edge optical phonons. In

addition, correlations between the frequencies and linewidths can be utilized for accurate es-

timations of the charge carrier density. Finally, we also show that electrochemical reactions,

occurring at large gate biases, can be harnessed to efficiently create defects in graphene.

Chapter 6 is dedicated to the Raman spectroscopy of N -layer semiconducting transition

metal dichalcogenides and more precisely to how interlayer interactions modify their Ra-

man spectrum. First, a unified description of the Davydov splitting of all the zone-center

optical phonons in N -layer MoTe2 is outlined both experimentally and theoretically. The

complete manifold of these phonons is quantitatively described by a force constant model
including interactions up to the second nearest neighbor and surface effects. This analysis

provides both intra- and interlayer force constants and gives a measurement of bulk silent

modes. To show the generality of this study, we also present the results obtained on N -layer

molybdenum diselenide (MoSe2). Second, the low-frequency phonon modes are addressed

for various transition metal dichalcogenides and described using a simplified force constant

model allowing the determination of the interlayer force constants. Third, an alternative de-

scription of the phonon modes in N -layer transition metal dichalcogenides deduced from the

bulk phonon dispersion relation is presented. Finally, the influence of resonance effects on
these measurements are discussed.

Chapter 7 is devoted to the photoluminescence spectroscopy ofN -layer semiconducting tran-

sition metal dichalcogenides. We begin by displaying the monolayer and bilayer photolumi-

nescence spectrum for different transition metal dichalcogenides. We then focus on the room

temperature photoluminescence of N -layer MoTe2. We carefully analyze the photolumines-

cence lineshape of a function of N to unravel the direct to indirect bandgap crossover. To
finish, we investigate the evolution of the photoluminescence intensity in monolayer MoTe2

15



as a function of the absorbed photon flux. The observed sub-linear grow is well-captured by

an elementary exciton-exciton annihilation rate equation model.

Chapter 8 displays an original study of monolayer graphene/monolayer MoSe2 van derWaals

heterostructures by means of micro-Raman and micro-photoluminescence measurements.

From Raman measurements of the graphene layer, we show that photoexcited electrons are
transferred fromMoSe2 to graphene. Using the results of Chapter 5, we quantitatively mea-

sure the amount of transferred charge and find that this charge transfer levels off as the in-

coming photon flux increases, suggesting that the interlayer charge transfer rate decreases as

graphene’s Fermi energy rises. On the other hand, a massive quenching of MoSe2 photo-

luminescence is observed and does not depend on graphene’s Fermi energy. These observa-

tions cannot be explained if one only consider interlayer charge transfer. This indicates that

other fast mechanisms are responsible for the strong photoluminescence quenching. We sug-

gest that fast interlayer energy transfer, a process that has been largely overlooking in van

der Waals heterostructures, may be responsible for these observations. Finally, a toy model,
which qualitatively reproduced all these results, is introduced.

Chapter 9 concludes this work and outlines a few of its perspectives.

Appendix A presents a pedagogical introduction to group theory applied to phonons. The
aim of this appendix is to provide the reader the basis of group theory needed to understand

and interpret the Raman measurements. The very simple example of the water molecule is

used all along as a pedagogical example. See Chapters 3, 5 and 6.

Appendix B describes how the laser spot area is experimentally measured. See Chapters 7

and 8.

Appendix C introduces a simple model to account for the optical interference effects in

layered structures. First, the equivalent reflection and transmission coefficients are presented.

Then, the theoretical expressions of the absorptance of one given layer and of the whole

structure are set. Finally, the enhancement factor of the Raman and photoluminescence

intensity is defined. See Chapters 5, 6, 7 and 8.

AppendixD shows the vector decompositionmethod used to optically separated strain from
electron and hole doping in graphene. See Chapters 5 and 8.

Appendix E exhibits the analytical resolution of the normal modes of a finite linear chain
model of N identical masses. See Chapter 6.

Appendix F displays the atomic displacements associated with the phonon modes for N = 1

to N = 6 layers of MoTe2. See Chapter 6.
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Chapter 2

Introduction to graphene,

semiconducting transition metal

dichalcogenides and their

heterostructures for optoelectronics

In this chapter, we present the basic properties of graphene, semiconducting transition metal
dichalcogenides and their heterostructures. These are obviously vast topics and we therefore focus
on the properties that are the most relevant for this work. In particular, we thoroughly introduce
the near-field coupling mechanisms that govern the photophysics in these heterostructures. We then
discuss state of art optoelectronic devices and highlight the fundamental questions raised by the
study of their performances. Clearly, the scientific literature on this very active research field is vast
and we have done our best to showcase the landmark references.

2.1 Graphene

The first section is devoted to the basic electrical, optical and vibrational properties of mono-

layer graphene. Few examples of optoelectronic devices are depicted at the end of the section.

2.1.1 Crystal structure

Graphene is made of carbon atoms arranged in a a two-dimensional honeycomb lattice as

illustrated in Fig. 2.1(a). From a crystallographic point of view, not all the carbon atoms are

equivalent. Two types of atoms can be identified. As shown in Fig. 2.1(a), the atoms labeled

A (gray filled circle) have their nearest neighbors at 0◦, 120◦ and 240◦, which are labeled B

(black open circle), whereas the atoms B have their nearest neighbors (atoms A) at 60◦, 180◦

and 300◦. Consequently, the graphene lattice can be seen as two triangular (or hexagonal)
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Figure 2.1 – (a) Honeycomb lattice structure of graphene, composed of a triangular lattice with a basis of
two inequivalent carbon atoms, A and B. a1 and a2 are the primitive unit vectors. the vectors δ1, δ2 and
δ3 connect an atom B to its three nearest neighbors A. In tight-binding picutre, an electron can hop from a
carbon atom to one of its three nearest neighbor with hopping parameter t. (b) Corresponding first Brillouin
zone. b1 and b2 are the basis vectors of the reciprocal lattice. High symmetry points are indicated with black
dots and labeled.

sublattices made of atoms A and B, respectively, or as one triangular lattice with a basis of

two atoms A and B.

The distance between two neighboring atoms A and B is a = 1.42 �A, which corresponds

roughly to themean value of the simple (a = 1.47 �A) and the double (a = 1.35 �A) carbon-carbon

bond length, as it is the case for benzene. The basis vectors of the primitive unit cell are a1 =
a
2 (3,
√
3) and a2 =

a
2 (3,−

√
3). The three vectors connecting an atom B to its nearest neighbors

A are δ1 = a
2 (1,
√
3), δ2 = a

2 (1,−
√
3) and δ3 = −a(1,0) (see Fig. 2.1(a)). The basis vectors of

the reciprocal lattice in momentum space are b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√
3). The first

Brillouin zone is hexagonal and characterized by four high symmetry points, indicated by

black dots in Fig. 2.1(b) and labeled Γ, M , K and K ′. In particular, the two points K and K ′

are inequivalent, whichmeans that they are not connected by a vector of the reciprocal lattice.

These two points play an important role for the physics of graphene, as we will see later. Their

positions in momentum space are given by the vectors K =
(

2π
3a ,

2π
3a
√
3

)

and K ′ =
(

2π
3a ,− 2π

3a
√
3

)

.

Note that the four others corner of the Brillouin zone can be connected to one of these two

points by a vector of the reciprocal lattice.

2.1.2 Electronic properties

Band structure

In its neutral and ground state, each carbon atom possesses six electrons and its electronic

configuration is 1s22s22p2. Contrary to the four electrons 2s and 2p, the two 1s electron are

located in the vicinity of the atomic nucleus and are thus not involved in chemical bonding

or reactions. In graphene, the 2s, 2px et 2py mix and form three hybrid orbitals labeled sp2,

which are separated by an angle of 120◦ in the xy-plane. The non hybridized orbital 2pz is
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perpendicular to this plane. The combination of the sp2 (2pz) orbitals of adjacent carbon

atoms give rise to the bonding σ and antibonding σ∗ (π and π∗) molecular orbitals. For each

pair of adjacent carbon atoms, the energetically more favorable bonding orbitals are therefore

filled while the antibonding ones are empty. Going from the picture of individual carbon

atoms to the whole graphene lattice, the molecular orbitals merge into bands. Energetically,

the π and π∗ bands are situated close to the Fermi energy, while the σ and σ∗ bands are

further away and well separated by an energy of more than 10 eV. As a result, to describe

the electronic properties of graphene it is sufficient to consider only electrons in the π and π∗

bands [Fuchs08].

The first calculation of the π and π∗ bands in graphite was performed byWallace in 1947

using a tight-binding model [Wallace47]. This model was later improved to more accurately

describe the properties of graphene and carbon nanotubes [Reich02]. Nevertheless, here we

consider only the interaction with the first nearest neighbors. In this model, the electron of

a carbon atom can hop to its three nearest neighbors with a hopping parameter t ≈ 3 eV (see

Fig. 2.1(a)). The electronic dispersion of graphene’s π (−) and π∗ (+) bands writes [Wallace47]:

E±(k) = ±t
√

3+ f (k), (2.1)

with

f (k) = 2cos(
√
3kya) + 4cos

(√
3

2
kya

)

cos
(
3

2
kxa

)

, (2.2)

where k denotes the electron wavevector. This dispersion relation is plotted in Fig. 2.2 and

is clearly symmetric with respect to the zero-energy plane. However, by considering the

hopping to the second nearest neighbors, the symmetry is broken and the π and π∗ bands

become asymmetric. In addition, we directly notice that the two bands are degenerate at the

six corners of the Brillouin zone (i.e., K and K ′ points).1 Since, in neutral graphene, each

carbon atom contributes with one π electron and each electron may occupy either a spin-up

or a spin-down state, the lower π band is completely filled (valence band) and the upper π∗

band is completely empty (conduction band) [Fuchs08]. As a result, the Fermi Energy EF is

situated at the touching points of the two bands, i.e., EF = 0 with the choice of origin made

here. Graphene is therefore a semimetal. Furthermore, an electron close to the Fermi level

can occupy a state either around the K or the K ′ point since the dispersion relation is identical

near these two inequivalent points. Hence, for an electron, in addition to the spin, there is a

valley degree of freedom.

Around K and K ′ points

Linear dispersion relation The low energy (compared to t) electronic states are in the vicin-

ity of the K and K ′ points. Their wavevector k can be rewritten as: k = K(′) + κ, with

1Note that there is conceptual difference between the K and K ′ points and the points where the π and π∗

bands are degenerate. The latter points can move away from the K and K ′ points [Hasegawa06] if the hopping
parameter t is anisotropic (e.g., under mechanical strain). However, we will not consider this possibility here.
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Figure 2.2 – Electronic dispersion relation of graphene calculated using a first nearest neighbor tight-binding
model. A zoom shows more precisely the dispersion relation close to the K and K ′ points.

|κ| ≪
∣
∣
∣K(′)

∣
∣
∣ ∼ 1/a, or more easily |κ|a ≪ 1. In this condition, the Taylor expansion of the

dispersion relation of Eq.(2.1) at first order in |κ|a yields, regardless of the valley,

E±(κ) = ±~vF |κ| , with vF =
3ta

2~
≈ 1× 106 m s−1. (2.3)

vF is called the Fermi velocity. A zoom in Fig. 2.2 shows this dispersion relation, i.e., the

famous ‘Dirac cones’. Note that because of this name the K and K ′ points are often called

Dirac points. Since the Fermi energy is located around these points and since most of the

electronic properties are given in the vicinity of the Fermi energy, this dispersion relation is

very important. The expansion up to the second order in |κ|a leads to the so-called trigonal
warping [Castro Neto09], i.e., for higher energy states the cone deforms to adopt a triangular-

like shape (in other words the dispersion relation depends on the direction in momentum

space). In this thesis such an effect is neglected. Remarkably in supported graphene, many

body effects can be neglected, i.e., electrons behave as if there were no electron-electron inter-

actions [Elias11, Hofmann14, Faugeras15]. As a result, the vF can be considered as a constant.

Density of states In the vicinity of the Dirac points, using Eq. (2.3), g(E) is given by

g(E) =
2E

π(~vF)2
, (2.4)

where the spin (×2) and the valley (×2) degeneracy are taken into account. Note that due to

the electron-hole symmetry, this density of states is valid for both electrons and holes. It has

the particularity to scale linearly with the energy E and to vanish at the Dirac points. This

situation is different from what is usually happening in a two-dimensional solid, where the

density of states is constant (due to the parabolic dispersion relation). Hence, this distinctive

feature is a direct consequence of the two-dimensionality and of the linearity of the dispersion

relation of Eq. 2.3.
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Massless Dirac Fermions One may wonder “what makes Dirac cones so famous?”, and the

answer is pretty simple “they are cones!”. Indeed, rather than being quadratic, as it is usually

the case for electrons in solids, the dispersion relation is linear E ∝ p, where p is the electron

momentum measured from the Dirac points. For this reason it strongly reminds the pho-

tons dispersion relation, i.e., massless relativistic particles. Equation (2.3) can be written in

a relativistic form E(p) = ±
√

p2c∗2 +m∗2c∗4 = ±c∗p with an effective mass m∗ = 0 and an ‘ef-

fective light velocity’ c∗ equal to the Fermi velocity vF. However, electrons in graphene are

not strictly speaking relativistic as their velocity is approximately 300 times smaller than the

speed of light c = 299 792 458 m s−1. In addition, the electronic wavefunctions near the K and

K ′ points obey the Dirac equation (and not the Schrödinger one) for massless fermions, and

have a well defined chirality (or helicity). In other words, electrons near the K point possess

a pseudospin that is parallel (for the π band) or anti-parallel (for the π∗ band) to the electron

momentum.2 The pseudospin endows charge carriers in graphene with unique properties,

that allow the observation of new phenomena such as the half integer quantum hall effect

and the absence of back-scattering (and the subsequent possibility of observing Klein tunnel-

ing) [Castro Neto09]. Finally, for all these reasons, electrons and holes in graphene as called

massless Dirac fermions [Novoselov05a].

2.1.3 Optical properties

Absorption In graphene, light absorption arises mainly from two contributions: interband
and intraband transitions [Mak12b], as drawn in Fig. 2.3(a). Because g(0) = 0, intraband

transitions make only sense in doped graphene. The relative importance of these two contri-

butions depends on the spectral range. In the far infrared (i.e., photon energies . 50 meV),

intraband absorption dominates. In order to fulfill the momentum conservation, an extra

scattering by, e.g., phonons or defects is required. The associated optical conductivity is well

captured by a Drude model. From the ultraviolet to the mid-infrared, interband absorp-

tion dominates. Such processes correspond to vertical transitions (the photon momentum

is neglected compared to the electron momentum, see Chapter 3) and lead to the creation

of electron-hole pairs. The associated optical conductivity can be calculated from the Fermi

golden rule [Dresselhaus99]. The complex dielectric constant of graphene and hence, its

complex refractive index can be deduced from these optical conductivities [Dresselhaus99].

In the visible and near-infrared, only the interband conductivity σinter is not equal to zero and

one can show that, in first approximation, the absorptance (i.e., the fraction of absorbed light,

see Appendix C Section C.2) of a graphene monolayer is given by [Mak12b]

A ≈ 2ω

c
× σinter
2ωε0

=
e2

4~cε0
= πα ≈ 2.3 %, (2.5)

2Similarly, electrons near the K ′ point possess a pseudospin that is parallel (for the π∗ band) or anti-parallel
(for the π band) to the electron momentum.
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where ω is the photon frequency and α = e2

4π~cε0
≈ 1/137 the fine-structure constant. It is

remarkable that A is constant on this spectral range and even more that it does not depend

on the properties of the material (such as vF). An easy way to understand this is to study

the ω and vF dependence of the three main terms in the Fermi golden rule used to calculate

σinter (proportional to A) [Mak12b]: the square of the matrix element scales as v2F/ω
2, the

density of state (see Eq. (2.4)) as ω/v2F and the incident photon energy as ω. The product

of the three terms is independent of ω and vF. Note that Eq. (2.5) holds only in the linear

approximation. This constant absorptance was experimentally confirmed by different groups,

see for example Refs. [Mak08, Nair08, Mak12b] (see Figs. 2.3(b)-(c)). Interestingly, for few

layers, the absorptance in the visible range is roughly proportional to the number of layers.

At last, the magnitude ofA can be regarded as extremely high for an atomically thin material,

yet very small for applications of graphene as a transparent electrode.

EF

π*
π

(a) (b) (c)

Figure 2.3 – (a) Scheme of intra- (blue arrow) and interband (red arrow) transitions in graphene, resulting
from the absorption of a photon (green wavy arrow). Occupied states are in gray. Note that due to the Pauli
principle, a transition occurs from an occupied state below the Fermi level (EF) to an unoccupied state above
it. (b) Optical image of monolayer and bilayer graphene suspended over a hole. The line scan profile shows
the intensity of transmitted white light along the yellow line. Increasing the number of graphene layers leads
to a drop of 2.3 % of the intensity of the transmitted light. (c) Transmittance of the two graphene regions
shown in (b), as a function of the light wavelength. (b) and (c) are adapted from Ref. [Nair08].

Emission Although light absorption is efficient in graphene, graphene is not an efficiency

light emitter because the absence of a bandgap allows very efficient non-radiative charge

carrier relaxation on a typical timescale of 100 fs − 1 ps [Kampfrath05, George08, Lui10,

Tielrooij13]. However, hot luminescence can be observed [Bonaccorso10, Mak12b] but with

weak quantum efficiency ∼ 10−9 [Lui10], and Black-body-like thermal radiative emission can

also be observed [Freitag10, Berciaud10, Lui10, Kim15b] due to graphene’s high stability at

elevated temperature.

One solution to make graphene emit light with higher efficient would be to open a

bandgap. For instance, graphene can be patterned into nanoribbons to confine the elec-

trons, or graphene can be physically or chemically treated to reduce the connectivity of the

π-electron network [Bonaccorso10]. However, in that case, graphene is not strictly speaking

graphene anymore.
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2.1.4 Vibrational properties

Phonons in graphene

Phonon dispersion relation Graphene has two atoms per unit cell. Consequently there

are six phonon branches (see Fig. 2.4 and Chapter 3 Section 3.2): three acoustic (A)

and three optical (O). Two of them are in-plane longitudinal (iLA and iLO), two are

in-plane transverse (iTA and iTO) and two are out-of-plane transverse (oTA and oTO).

These six branches can be measured experimentally by inelastic neutron [Nicklow72] or

X-ray [Maultzsch04b, Mohr07, Grüneis09] scattering, as well as electron energy loss spec-

troscopy (EELS) [Oshima88, Siebentritt97, Yanagisawa05] (see symbols in Fig. 2.4). Raman

scattering can also be used to measure the phonon modes in graphene. From a theoretical

point of view, the phonon dispersion has been determined using empirical force-constant

calculations [Nicklow72, Al-Jishi82, Mohr07]. The interaction up to the fifth nearest neigh-

bors was taken into account [Mohr07] to accurately describe the observed dispersion rela-

tion. Density functional theory (DFT) was also successfully employed [Dubay03, Wirtz04,

Maultzsch04b, Piscanec04, Mounet05, Bonini07, Yan08a] to calculate the phonon dispersion

of graphene. A closer look at the agreement between experiment and theory for both ap-

proaches reveals that in the vicinity of the K point, the dispersion is not well reproduced. In

order to accurately describe the dispersion relation around this point, one has to take into ac-

count the long-range character of the electron-electron interaction. For instance, these effects

are taken into account by the so-called GWmethod. It turns out that this method accounts for

a notable correction to the standard DFT calculations [Lazzeri08, Grüneis09, Venezuela11].

To date, the reference dispersion relation, calculated using DFT with the GW correction, is

displayed in Fig. 2.4.

Kohn anomalies An extremely important feature of this phonon dispersion is that near

the Γ and K points the phonon frequency varies abruptly (see Fig. 2.4). Such phenomena

are known as Kohn anomalies. In 1959, Kohn (Nobel Prize in chemistry in 1998) stated

that such anomalies occur in metals for phonon wavevector q such that two electronic states

with wavevectors k1 and k2 = k1 + q are both on the Fermi surface [Kohn59]. In the case of

neutral graphene, the Fermi surface is composed of six points located at the corners of the

Brillouin zone. Thus Kohn anomaly can occur for q = Γ or q = K(′). More precisely, there

are two pronounced Kohn anomalies in graphene: one for the LO phonons at Γ and one the

for the TO branch at K (′) [Piscanec04]. For these two branches and around these two points,

the strength of electron-phonon coupling is particularly important. Physically, this strong

coupling can be understood as a manifestation of the conservation of energy and momen-

tum in electron–phonon scattering. Indeed, as the energy of phonons is small compared

to the energy of electrons, electron-phonon interaction couples electronic states around the

Fermi level (it is Kohn’s condition), i.e., phonons are near Γ or K (′). Consequently, the Raman

features involving near zone-edge and near zone-center optical phonons will dominate the

Raman spectrum of graphene layers, as we will see below.
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Figure 2.4 – Phonon dispersion of graphene. The solid lines represent density functional theory calculations
with GW corrections from Refs. [Lazzeri08] and [Grüneis09]. The symbols represent inelastic X-ray scatter-
ing measurements from Refs. [Maultzsch04b] (full circles) and [Mohr07] (open triangles). The six phonon
branches are labeled. This figure is adapted from Ref. [Venezuela11].

Raman spectrum of graphene

Typcial Raman spectrum As we will see in the other chapters, Raman spectroscopy will

be largely employed throughout this manuscript. The first Raman spectrum of graphite was

measured in 1970 [Tuinstra70], but the full theoretical understanding of this spectrum was

only achieved in the years 2000-2010 [Reich04]. The first Raman spectrum of isolated mono-

layer graphene was performed in 2006 [Ferrari06]. Figure 2.5 shows the typical Raman spec-

trum of pristine (i.e., defect free) and defective graphene recorder at a laser energy of 2.33 eV.

The two prominent features are:

• the G-mode feature at ≈ 1580 cm−1. This mode is associated with the only one-phonon

Raman active process in graphene, which involves the Γ-point phonon with E2g sym-

metry (see Chapter 3). This phonon mode is doubly degenerate and corresponds to the

iLO and iTO phonon branches that are degenerate at Γ (see Fig. 2.4). As discussed in

Chapter 5, the G mode is a non-resonant process.

• the 2D-mode feature at ≈ 2675 cm−1. This mode cannot be associated with a one-

phonon process since the frequency is too high. Consequently, it is a second order

process involving two phonons with opposite momentum +q and −q connecting the

two inequivalent valleys K and K ′. As K −K ′ = K and K ′ −K = K (see Fig. 2.1(b)), the
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involved phonon are around K or K ′, i.e., |q| ≈ |K | or |K ′ |. Due to a Kohn anomaly at

these two points, only the phonons from the iTO branch are concerned. As we will see

in Chapter 5, this mode arises from a resonant mechanism.

The two other important features that are only present in defective graphene are:

• the D-mode feature at ≈ 1340 cm−1 which involves phonons with |q| ≈ |K | or |K ′ | and
an elastic scattering with a defect.

• the D’-mode feature at ≈ 1620 cm−1 which involves phonons with |q| ≈ 0 and an elastic

scattering with a defect.

Both modes correspond to resonant one-phonon processes which are symmetry forbidden in

pristine graphene (see Chapter 3) but are activated by defects. Therefore, the D and D’ modes

can be used to evaluate the quality of a sample. Note that the D stands for defects. In addition

to these four modes, there are other modes in graphene. Especially, overtones of the modes

described above (e.g., 2D’, 4D) or combinations (e.g., D+D’) can be observed.3 Some of these

processes are detailed, for instance, in Ref. [Ferrari13].
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Figure 2.5 – Typical Raman spectrum of defect-free (black line) and defective (red line) monolayer graphene.
The four main features are labeled together with their typical Raman shift. These spectra were recorded using
a laser at 2.33 eV. Note that the two spectra were recorded on the same point of the same sample before and
after the creation of defects by electrochemical reactions (see Section 5.5).

Sensitivity to strain and doping The Raman features of graphene are very sensitive to ex-

ternal perturbations, in particular to strain and to the addition of charges (i.e., doping). This

sensitivity makes Raman spectroscopy a powerful tool to probe graphene’s properties beyond

the basic vibrational properties.

3The overtone of the G mode is not observed. In fact, as the G mode is a non-resonant process, its overtone has
a very tiny intensity compared to resonant two-phonon processes. As the overtone of the G mode is close to the
2D’-mode feature, it is screened by the latter. See Chapter 5 Section 5.1.3 for detail on the 2D’ mode.
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Influence of strain Applying mechanical strain to graphene results in a change of the

lattice parameter which leads to a variation of the phonon frequency. As already mentioned,

a sufficiently high uniaxial strain can break the crystal symmetry and thus lift the degener-

acy of the G mode (i.e., the degeneracy of the iLO/iTO phonon branches at Γ), which splits

into two subfeatures [Huang09, Mohiuddin09, Mohr09]. For sufficiently low strain, only the

phonon frequency is modified. Especially, in the case of biaxial strain, the shift of the phonon

frequency is proportional to the strain via the Grüneisen parameter [Mohiuddin09]. The ef-

fects of strain of the vibrational properties of graphene were studied in our group by Dominik

Metten and are summarized in detail in his thesis manuscript [Metten16]. Here, we assume

that there can be homogenous or inhomogeneous strain in the samples but it is supposed to

be constant during the measurements.

Influence of doping The addition of charges in graphene (see Section 2.1.5) has an im-

pact on the phononmodes in graphene. Indeed, as for the strain, doping induces a variation of

the bond lengths and thus of phonon frequencies. In addition, the presence of Kohn anoma-

lies at the Γ and K (′) points results in strong electron-phonon coupling and hence to phonon

renormalizations. As a consequence, this leads to prominent modifications of the Raman fea-

tures [Yan07, Pisana07]. These modifications will be thoroughly investigated in Chapter 5.

In particular, we will show that they can be used to identify the nature of the doping and to

accurately quantify it. Then, we will apply these results in Chapter 8.

Raman spectroscopy: an efficient tool to determine the number of layers In this work,

we are studying exclusively monolayer graphene. Hence, we need a unambiguous way to

identify atomically thin layers. One can use optical contrast (see Section 2.1.3). However,

it is not an accurate method. For instance, optical interference effects (see Chapter 4 Sec-

tion 4.3) can drastically affect the contrast and lead to an incorrect evaluation of the number

of layers. On the other hand, Raman spectroscopy is a powerful tool to quantitatively de-

termine the number of layers [Malard09b, Ferrari13]. Indeed, the main features described

in this section are also observable in multilayer graphene and graphite samples, with some

of them very sensitive to the number of layers. Additional graphene layers change sig-

nificantly the electronic structure due to the interlayer coupling [Partoens06, Partoens07].

Hence, a more complex electronic structure results in a 2D-mode feature consisting of sev-

eral sub-features [Graf07, Malard07, Malard09b], since it is a resonant process. The evolu-

tion of the 2D-mode feature with increasing number of layers has been studied experimen-

tally [Graf07, Malard07, Malard09b] and the distinctive shapes help to determine the exact

number of layers.

Figure 2.6 shows the Raman spectrum of monolayer, bilayer, trilayer and graphite

recorded at EL = 2.33 eV. We notice that (i) the G-mode feature is independant of the number

of layers which is in agreement with the non-resonant nature of the mode and (ii) the position

and shape of the 2D-mode feature clearly evolve with the number of layers. Especially, the

2D-mode feature of monolayer graphene is the lowest in frequency and most importantly the
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Figure 2.6 – (a) Optical image of graphene exfoliated onto Si/SiO2 with monolayer (1L), bilayer (2L) and
trilayer (3L) thickness. (b) Raman spectra of pristine monolayer (1L), bilayer (2L), trilayer (3L) and graphite
samples recorded at 2.33 eV for different integration times. The spectra are vertically offset for clarity. The
G-mode and 2D-mode features are clearly visible. The former is insensitive to the number of layer, while the
latter is distinctly affected. The characteristic shapes help to determine the exact number of layers, especially
to identify the monolayers which have a quasi-symmetric 2D-mode feature.

narrower and quasi-symmetric. This criterion can be used to unambigously identify mono-

layer graphene. Furthermore, the distinctive shapes of the 2D-mode feature for bilayer and

trilayer can also be used to identify this number of layers. However, for more than three lay-

ers, it becomes complicated to precisely determine the number of layers. One can then use

the rigid layer modes [Tan12, Lui14] or combinations of these modes [Lui13, Herziger12] to

accurately count the number of layers up to tens of layers. A detailed study of the rigid layer

modes is presented in Chapter 6 for transition metal dichalcogenides.

2.1.5 Tuning graphene’s optoeletronic properties by the electric field effect

Graphene’s physical properties strongly depend on the Fermi energy EF. In practice,

the Fermi energy is tuned by changing the charge carriers density either using chemical

(e.g., [Jung09, Zhao10]) or physical (e.g., [Novoselov04, Zhang05]) methods. The latter make

use of the electric field effect. Typically, graphene is incorporated into a field-effect transistor

(FET) which has a geometry similar to a parallel plate capacitor (see Fig. 2.7(a)) where one of

the two electrodes is replaced by graphene, the other being the gate electrode. Applying an

external electric field through a potential difference V between these two electrodes leads to

the injection of charge carriers in the two electrodes (depending on the sign of V electrons or

holes are injected). The density of injected charge carriers n is proportional to the gate bias V

and to the total capacitance C: ne = CV .

The density of charge carriers in graphene is linked to the Fermi energy EF by [Ashcroft76]

ne =

+∞∫

0

f (E)g(E)dE and nh =

+∞∫

0

[1− f (E)]g(E)dE, (2.6)

where ne and nh are the electron and hole density, respectively, g(E) is the density of states
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Figure 2.7 – (a) Schematic cross-section of a parallel plate capacitor composed of a single layer graphene and
a metallic electrode separated by a dielectric of thickness d. (b) Equivalent electrical circuit. (c) Schematic
energy diagrams of the electronic states of the gate electrode and of graphene. Occupied states are repre-
sented in gray. At zero gate voltage (V = 0), the electrochemical potentials of the gate electrode µ and the
graphene layer µSLG are equal. The Fermi energy of graphene is E0

F . Applying a gate voltage V results in an
electrostatically-induced shift (eφ) and in a change of the Fermi energy of graphene (EF). The electrochemical
potential difference is equal to eV , leading to Eq. (2.8) with eV0 = E0

F . (d) Graphene’s electrical resistivity ρ
as a function of gate voltage Vg in a FET. The insets show the conical low-energy dispersion with changing
Vg . Figure adapted from Ref. [Geim07]. (d) Graphene’s optical conductivity (which is proportional to A) as
a function of the incident photon wavenumber ω for increasing EF. The insert illustrates that due to Pauli
blocking a range of interband transitions are forbidden. Figure adapted from Ref. [Li08].

from Eq. (2.4) and f (E) = [1 + exp(E/kBT )]
−1 is the Fermi-Dirac distribution at a temperature

T . Because of the electron-hole symmetry, it is more convenient to define only one density n

counted positively for the electrons and negatively for holes. At T = 0,

EF = sgn(n)~vF
√

π |n|, (2.7)

where sgn is the sign function. In practice, finite temperature effects only induce a very

minor correction to this simple scaling [Li11], therefore we will use this expression at any

temperature. Note that again, the case of graphene is peculiar since in general the Fermi

energy is proportional to n and not to its square root.

In a graphene FET, due to the two-dimensional nature of the electron gas, the capacitance

C is not simply equal to the geometrical capacitance CG of the parallel plate capacitor but to

this capacitance in series with the quantum capacitance CQ [Luryi88] (see Fig. 2.7(b)). This

capacitance comes from the fact that, as opposed to the metallic gate electrode which can be

viewed as a reservoir of electrons, injection in the graphene layer leads to a change of EF.
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Note that CQ is also observed in Metal-Oxide-Semiconductor FET (MOSFET). To naturally

introduce and establish the expression of CQ let us use the schematic diagram in Fig. 2.7(c).

An applied gate bias V creates an electrostatic potential difference φ between the graphene

monolayer and the gate electrode. Besides, the injection of charge carriers in graphene leads

to a shift of its Fermi energy. Note that in this work, a positive (negative) gate voltage cor-

responds to electron (hole) injection. Consequently, V introduces a difference in the electro-

chemical potentials of the gate electrode µ and of the graphene layer µSLG

µSLG −µ = eV = EF + eφ + eV0, (2.8)

where V0 is a constant that accounts for the initial doping and implicitly includes the work

function difference between the two materials [Giovannetti08]. The electrostatic potential

difference φ is directly related to CG by φ = ne/CG [Das08, Das09], hence we can rewrite

Eq. (2.8)

V −V0 =
EF
e

+
ne

CG
= ne

(

1

CQ
+

1

CG

)

=
ne

C
. (2.9)

We deduce that the quantum capacitance in graphene is given by

CQ = sgn(n)
e2

~vF
√
π

√

|n| = e2

2
g(EF), (2.10)

where g(EF) is the density of states at the Fermi level. Noteworthy, in the classical limit

~→ 0, CQ → 0 and thus CQ can be neglected in C. The origin of CQ is of course quantum!

Importantly, the term related to CQ in Eq. (2.9) scales as EF (i.e.,
√
n), while the term related

to CG scales as E2
F (i.e., as n). Consequently, the contribution of CQ (CG) dominates at low

(high) EF.

In practice, various structures of FET exist, e.g., solid state FET which make use of

a solid dielectric, electrochemical gate that use electrolytes, or layered materials such as

hBN in van der Waals heterostructures (see Section 2.3). In any case, tuning the Fermi

energy can lead to drastic changes in the optoelectronic properties of graphene. To illus-

trate this point, we choose two examples depicted in Figs. 2.7(d) and (e). In the first ex-

ample (Fig. 2.7(d)), graphene’s electrical conductivity or resistivity is tuned [Novoselov04,

Novoselov05a, Zhang05]. Interestingly, at zero gate voltage the conductivity (resistivity) does

not fall to zero (go to infinity). This is an intrinsic property of the Dirac fermions in graphene

where the minimum conductivity is σmin = e2/4~ [Ando02, Peres06]. In reality, this con-

ductivity is never reached due to residual charge inhomogeneities [Tan07]. Because σmin is

nonzero, graphene FET does not show very good on/off ratio (i.e., ratio between the conduc-

tive and non conductive states) as compared to the existing MOSFET. The second example

(Fig. 2.7(e)) shows that graphene’s absorptance can be tuned [Li08, Wang08]. Indeed, due to

Pauli blocking, interband transitions with energy lower than 2EF are not allowed. As a re-

sult, for photon energies smaller (larger) than 2EF, A is minimal (maximal) as illustrated in

Fig. 2.7(e).
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2.1.6 Optoelectronic applications

For optoelectronic applications, graphene offers several distinct advantages compared to

bulk materials, especially for photodetection [Koppens14]. Despite a low value (2.3%),

graphene’s absorptance has the benefit to be constant over a wide spectral range going from

terahertz to near ultraviolet range. Furthermore, graphene exhibits ultrafast charge car-

rier dynamics enabling conversion of photon into electrical currents with multi-gigahertz

electrical bandwidth [Xia09, Mueller10], and also tunable optoelectronic properties (as

shown just below). Accordingly, graphene is suitable for applications in optical commu-

nications [Pospischil13, Gan13] and long-wavelength detection [Vicarelli12]. On the other

hand due to the peculiar behavior of electrons in graphene, graphene-based photodetec-

tors suffer from high dark currents and thus large power consumption. Most of the stud-

ied graphene-based photodetectors consist of lateral p-n junctions created by doping dif-

ferently two regions of graphene either electrostatically or chemically. An example of

such a device with split gates is depicted in Fig. 2.8(a). The built-in electric field at the

junction separates the photogenerated electron-hole pair giving rise to a photocurrent (see

Fig. 2.8(b)). However, in this device the photo-thermoelectric (Seebeck) effect is believed to

be the dominant photocurrent generation mechanism and not the electron-hole pair separa-

tion [Xu09, Gabor11]. Note that this mechanism is very fast since the electron thermalization

is ultra-fast (∼ 10− 50 fs) [Tielrooij13].

Thermal radiative emission from graphene was reported by several groups,

e.g., [Berciaud10, Freitag10, Engel12, Kim15b]. Recently, Kim et al. [Kim15b] have re-

ported bright visible light emission in suspended mono- and multilayer graphene (see

Figs. 2.8(c) and (d)). The devices basically consist in graphene transistors that work in the

same way as the filament in a light bulb.4 In contrast to a light bulb’s filament (such as

tungsten), when temperature increases, graphene conducts less heat resulting in a spatial

localization of the hot electrons in a spot at the center of the graphene sheet. Consequently,

the efficiency of the thermal radiation is greatly enhanced in this spot. In addition, by playing

with optical interference (see Chapter 4 Section 4.3) and with the design of the devices, it is

possible to enhance and spectrally filter the light (see also [Engel12]).

4Fun fact: they were awarded by the Guinness World Records the record for ‘the world’s thinnest (0.335 nm)
light source’
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Figure 2.8 – (a) Three-dimensional schematic view of double-gated (back and top) device used to demonstrate
the photo-thermionic effect. By applying appropriate biases to the top (VTG) and back (VBG) gates, two
differently doped regions (1 and 2) are created. (b) Photocurrent map of the corresponding device. White
lines mark location of gold contact and gate electrodes. A hot spot at the p-n junction is observed. Figures
extracted from Ref. [Gabor11]. (c) Schematic representation of the photo-thermoelectric mechanism. The red
shaded area indicates elevated electron temperature. S1 and S2 are the Seebeck coefficient in graphene areas
with different doping. Figure extracted from Ref. [Koppens14]. (d) Optical image of a device with suspended
multilayer graphene flakes. Each flake is contacted by source and drain electrodes. No bias is applied. (e)
Optical image of the same device but with a source-drain bias VSD = 7.90 V. Scale bars, 5 µm. Images
extracted from Ref. [Kim15b].
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2.2 Semiconducting transition metal dichalcogenides

This second section is dedicated to the basic properties of semiconducting transition metal

dichalcogenides. As for graphene, we give few examples of optoelectronic devices at the end

of the section.

2.2.1 Crystal structure

Transition metal dichalcogenides (TMDs) are layered crystals with chemical formula MX2,

where M is a transition metal atom (e.g., Mo, W, Ta, Nb, Zr,. . . ) and X is a chalcogen atom

(S, Se, Te) [Wilson69, Chhowalla13, Xu13]. These crystals consist in one layer of transition

metal atoms sandwiched between two layers of chalcogen atoms, thus forming a X-M-X struc-

ture (see Fig. 2.9). Within each layer, the atoms are held together by strong covalent bonds

while adjacent layers are connected by weaker van der Waals interactions. Among all ex-

isting TMDs, we focus only on semiconducting transition metal dichalcogenides (SCTMDs).

Despite the fact that all TMDs have an hexagonal structure, thery can display different poly-

types [Wilson69, Katzke04, Ribeiro-Soares14]. The two most common polytypes of SCTMDs

are trigonal prismatic (H) and octahedral (T). These terms refer to the metal atom coordi-

nations in the monolayer (see Fig. 2.9(a) and (b)). For bulk TMDs, these two polytypes are

denoted 2H (since two layers are required to form the primitive unit cell) and 1T (as only one

layer is required to form the bulk primitive unit cell), respectively. The 2H polytype can exist

in two forms with different stacking order: 2Ha with /AbA CbC stacking and 2Hc with /CaC

AcA/ stacking, where upper cases represent chalcogen atoms and lower cases metal atoms

(see Fig. 2.9(d) and (e)). In the former, a metal atom is always on top of another metal atom of

the subsequent layer. In the latter, any metal atom is sitting on top of two chalcogens of the

next layer. In this thesis, we focus only on the 2Hc polytype5 which occurs in many TMDs

such as MoS2, MoSe2, MoTe2, WS2 and WSe2. Let us just mention two points. First, many

1T TMDs, such as ReS2 and ReSe2, adopt a distorted structure (denoted 1T’) with lower

symmetry in which the metal atom is displaced away from the center of the coordination

unit [Ho97, Ho98, Ho04, Tiong99]. Second, phase transition between different polytypes can

occur, for instance MoS2 crystals can be brought in the metastable 1T/1T’ phase by lithium

intercalation and then brought back to the thermodynamic stable 2H phase by deintercala-

tion due to heat [Guo15b].

Figure 2.10(a) displays the top view of 2Hc TMDs. Like graphene, the Bravais lattice

is hexagonal with two basis vectors (a1,a2). Consequently, the first Brillouin zone is also

hexagonal (see Fig. 2.10(b)) with basis vectors (b1,b2) and there are two inequivalent points

K and K ′ at the corner of the zone. Noteworthy, in the bulk case, the first Brillouin zone is

a hexagonal prism with an additional high symmetry point A located on top of the Γ point

at half the length of the reciprocal basis vector along kz (see Fig. 2.10(c)). In addition, the

absence of inversion center in the monolayer, and more generally in all odd number of layers

5If not mentioned, in the following when we refer to SCTMDs, we implicitly refer to the 2Hc polytype.
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Figure 2.9 – The two most common semiconducting TMDs polytypes. Transition metal atom coordination
for (a) trigonal prismatic H and (b) octahedral T polytypes. The blue spheres represent transition metal atoms
and orange ones chalcogen atoms. Top and lateral views of (c) 2Ha, (d) 2HC and (e) 1T bulk polytypes. The
primitive unit cells are highlighted with black diamonds in the top views and red dashed squares in the lateral
ones. The primitive unit cell of 2H polytypes comprises six atoms, while the one of 1T polytypes has three
atoms. The stacking orders are indicated in brackets. Figure adapeted from Ref. [Ribeiro-Soares14].

(see Chapter 3 Section 3.3), has important consequences on the optoelectronic properties such

as valley properties (see below) or second harmonic generation [Kumar13, Li13, Malard13,

Zeng13].

2.2.2 Indirect-to-direct bandgap crossover

N -layer molybdenum- and tungsten-based SCTMDs are semiconductors with optical

bandgaps in the range 1 − 2 eV making them very attractive for visible and near-infrared

applications, but also for fundamental studies. Indeed, they provide a unique platform to

investigate the evolution of the physical properties from three-dimensional bulk to quasi

two-dimensional (2D6) monolayer systems.

The most obvious illustration of the evolution of the physical properties with the N is

the transition from an indirect bandgap in the bulk to a direct bandgap in the monolayer.

This transition was first observed experimentally by Mak et al. [Mak10] and Splendiani et
al. [Splendiani10] as a drastic enhancement of the photoluminescence (PL) in monolayers.

6It should not be confused with graphene’s 2D mode.
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Figure 2.10 – (a) Top view of 2Hc TMDs. a1 and a2 are the in-plane primitive unit vectors. (b) Correspond-
ing first Brillouin zone. b1 and b2 are the in-plane reciprocal primitive unit vectors. The main four points
are labeled: Γ, K , K ′ and M . (c) Three-dimensional first Brillouin zone of bulk 2Hc TMDs. In addition to
the four points depicted in (b), there is a fifth point labeled A.

Indeed, a 100-fold enhancement of the quantum yield for monolayers compared with bilayers

(see Fig. 2.11(a)) was reported for MoS2. Compared to bulk, this quantum yield is even four

orders of magnitude larger. This observation is confirmed by density-functional theory (DFT)

band structure calculations. Figure 2.11(b) shows computed electronic band structure for

bulk MoS2 and various thicknesses. Bulk MoS2 has an indirect bandgap of approximately

1.3 eV with the valence band maximum at the Γ point and the conduction band minimum

halfway along the K−Γ direction in the Brillouin zone. As the thickness decreases the valence

band maximum and conduction band minimum shift due to quantum confinement effects. In

the monolayer limit, MoS2 has a direct bandgap of approximately 1.9 eV at K . Interestingly,

the direct transition at K remains almost not altered by the thickness variation, while the

indirect transition is much more affected. Similar observations were made for others Mo- and

W-based TMDs [Gutiérrez12, Tonndorf13, Ruppert14].

Photon Energy (eV)

1lay
2lay

N

Q
Y

2 layers

1 layer

1 layer2 layers4 layersBulk(a) (b)

Figure 2.11 – (a) Photoluminescence spectra of suspended monolayer and bilayer MoS2 recorded under
ambient conditions. The inset shows the quantum yield (QY) for N = 1 to N = 6 MoS2 layers. Figure
adapted from Ref. [Mak10]. (b) Calculated band structure of bulk, 4 layers, bilayer and monolayer MoS2.
The arrows indicate the lowest energy transitions. Figure extracted from Ref. [Splendiani10].
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Although monolayers SCTMDs are direct semiconductors, they exhibit very poor quan-

tum yield. As an example, the room-temperature quantum yield of monolayer MoS2 was

found to be 4 × 10¯3 only [Mak10] (see inset in Fig. 2.11(a)). One order of magnitude better

yields were reported for MoSe2 and WSe2 [Tonndorf13]. Furthermore, very recently, organic

superacid treatment has shown to enhance the PL by more than two orders of magnitude

resulting in nearly unity quantum yield [Amani15]. All these observations reflect the high

sensitivity of monolayers to their environment [Qiu12, Tongay13, Nan14, Lee15a, Gao16]

and show that the PL of monolayers SCTMDs is dominated by extrinsic effects rather than in-

trinsic. The mechanisms associated with these effects are not yet understood and are actively

under investigation by many research groups.

2.2.3 Excitonic properties

Excitons The optical properties of SCTMDs are dominated by excitonic effects (see Chap-

ter 7 Section 7.1 for a brief introduction to excitonic effects) especially for monolayers. The

values of the bandgaps given below were estimated from the position of the PL feature

and thus do not correspond to interband (or band-to-band) transitions. It is essential to

distinguish between the optical bandgap which is the energy of the emitted or absorbed

photons (and therefore takes into account the binding energy of the exciton) and electri-
cal bandgap which characterizes single-particle (or quasiparticle) excitations. In the quasi

two-dimensional limit of monolayers, such excitonic effects are very strong due to reduced

screening of the Coulomb interaction (resulting in strong interactions) and relatively large

effective masses [Mak16] (see Fig. 2.12(a)). As expected, the exciton binding energy decreases

with thickness due to strong screening. Experimentally, excitonic effects lead to sharp fea-

tures in the absorption spectrum rather than expected steps for a two-dimensional system, as

sketched in Fig. 2.12(b). The inset in Fig. 2.12(c) displays the measured reflectance contrast7

of WS2 monolayer allowing to identify the A, B and C excitons.8 These different excitons

arise from distinct excitonic transitions as we will see later. Note that the typical absorp-

tance of monolayers SCTMDs for photon energies higher than the A exciton is on the order

of 10 %. The A exciton, which is the band-edge exciton, dominates the PL response of mono-

layers SCTMDs (e.g., in Fig. 2.11(a) only the A exciton is visible). Consequently, the optical

bandgap corresponds to the energy of the A exciton. Let us point out that in general, excitonic

effects are particularly strong in low-dimensional system where screening effects are reduced

such as SCTMDs or carbon nanotubes [Wang05, Maultzsch05].

Exciton binding energy As the optical response of SCTMDs is dominated by excitonic ef-

fects, optical spectroscopy, especially absorption and PL, are primary tools to study exci-

tons (see Chapter 7 Section 7.1 for a brief introduction to PL spectroscopy). Several groups

have predicted [Ramasubramaniam12, Cheiwchanchamnangij12, Molina-Sánchez13, Qiu13]

and reported [Chernikov14, He14b, Ye14, Ugeda14, Wang15b, Zhu15] tightly bound exci-

7The absorption spectrum can be deduced from this quantity, see, e.g., [McIntyre71, Buckley77].
8This notation follows the pioneering work of Wilson and Yoffe [Wilson69].
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Figure 2.12 – (a) Cartoon of an exciton in a monolayer TMD. The lines represent the electric field lines of
the electron-hole dipole. ε2D is the dielectric constant of the TMD and ε0 is the vacuum permittivity. (b)
Schematic illustration of the absorption spectrum of a monolayer TMD that shows one exciton feature at
lower energy than the bandgap. (c) Derivative of the reflectance contrast spectrum. The exciton ground
state is labeled 1s and the excited states are denoted 2s, 3s, 4s and 5s (this states are sketched at the bottom
right). In addition to these states of the neutral A exciton (AX), the trion is also visible (AXT). The inset
displays the A, B and C exciton transitions. These three figures are adapted from Ref. [Chernikov14]. (d)
Color map of the photoluminescence of monolayer MoSe2 as a function of the gate voltage. Near zero doping,
the neutral X0 and impurity-trapped exciton XI dominate the spectrum, while for electron (hole) doping the
negative (positive) trion dominates. (e) Illustration of the gate-dependent trion and exciton quasiparticles
and transitions. These two figures are extracted from Ref. [Ross13].

tons in monolayers SCTMDs. For instance, Fig. 2.12(c) presents the reflectance measure-

ments of monolayer WS2 reported by Chernikov et al. [Chernikov14]. Multiple peaks are

resolved (corresponding to optically active states) and can be associated with the s-shell ex-

citonic Rydberg series.9 However, the careful analysis reveals severe deviations from the

two-dimensional hydrogen-like model due to the complex screening of the Coulomb inter-

action. An exciton binding energy of Eb = 0.32 eV was extracted. Typical measured val-

9Note that the p-like states can be probed using two-photon measurements [He14b, Wang15b, Zhu15].
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ues of Eb for monolayers SCTMDs lie between 0.3 and 0.6 eV (see Tab. 2.1), which corre-

spond to a Bohr radius of approximately 1 nm. The exciton binding energies exceed by more

than one order of magnitude those in the bulk and in conventional two-dimensional sys-

tems based GaAs-like semiconductors [Glazov15]. All these results show that the optical

properties of monolayers SCTMDs are governed by robust excitons even at room tempera-

ture. Furthermore, PL lifetime in the range of one to tens of picoseconds were predicted

and reported [Korn11, Lagarde14, Shi13, Wang14, Palummo15, Robert16a] at low and room

temperature, showing the high exciton oscillator strength in these 2D materials.

Trions In addition to excitons, higher-order excitonic quasiparticles can also be observed in

monolayers SCTMDs due to the strong Coulomb interaction. In particular, trions [Kheng93],

which are positively or negatively charged excitons, were reported [Mak13, Ross13]. These

observations were accomplished by electrostatic control of the doping level in TMD field

effect transistors. Figure 2.12(d) shows the PL measurements by Ross et al. [Ross13] for a

monolayer MoSe2 under gate bias. When going from hole to electron doping (i.e., from nega-

tive to positive gate bias), we observe the evolution from positive trion (X+) to neutral exciton

(X0) and then to negative trion (X−). The trion binding energy (i.e., the energy difference be-

tween X± and X0) was found to be around 30 meV for both negative and positive trions, as the

effective electron and hole masses are similar. Comparable values were also experimentally

measured [Mak13, Jones13, Yang15] or theoretically calculated [Berkelbach13], and far ex-

ceed those in conventional quasi two-dimensional semiconductors [Glazov15, Mak16]. The

observation of stable trions at room temperature opens very promising perspectives, espe-

cially for electrical purpose or quantum coherent states [Mak16]. It is worth mentioning that

biexcitons (bound states of two excitons) were reported in monolayer SCTMDs under high

optical excitation densities [You15, Plechinger15].

2.2.4 Spin and Valley properties

Let us now focus more precisely on the band structure of monolayers SCTMDs. Various

methods, such as DFT, tight-binding models or k · p perturbation theory [Glazov15], can be

employed to calculate this band structure. In any case, it exhibits degenerate conduction and

valence band-edges around the two inequivalent K and K ′ points in the Brillouin zone (see

Fig. 2.13(a)), which govern most of the electrical and optical properties.

These two inequivalent valleys are coupled by time-reversal symmetry. To distinghuish

if a carrier is in one valley or in the other, one can define a valley pseudospin [Xu14].

A careful symmetry analysis reveals that interband optical transitions are chiral: the

transitions at K (K ′) valley are only excited by left (right) circularly polarized light σ+

(σ−) [Xu14, Glazov15]. Note that such valley-contrasting physical properties are a direct

consequence of inversion symmetry breaking in monolayers SCTMDs [Xu14]. Selective

valley population was experimentally demonstrated using circularly polarized light excita-

tion [Mak12a, Sallen12, Jones13]. By measuring the polarization of the emitted light, it was
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Figure 2.13 – (a) One-dimensional band structure around K and K ′ points of monolayers SCTMDs. The
electronic spin states are labeld by small arrows and drawn in different colors. Spin-orbit coupling leads to
the splittings of valence ∆VB

SO and conduction bands ∆CB
SO. Long vertical solid and dashed arrows show the

allowed interband transitions giving rise to A and B excitons. The optical chiral selection rules are indicated.
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Mo-based SCTMDs. The order is reverse for W-based SCTMDs. (b) Focus on the A excitonic transitions.
Filled circles denote electrons and the open circle hole. One bright and two dark (crossed arrows) excitons are
represented.

proven that valley polarization was achieved and largely preserved during the exciton life-

time. The ability to manipulate the valley degree of freedom, together with unique properties

such as the valley Hall effect [Mak14], paves the way towards the new field of valleytronics
which exploits this degree of freedom for information processing. In this thesis, we will not

further consider this degree of freedom since we are exciting the samples with linearly polar-

ized light (see Chapter 4) and therefore excitons in both valleys are created.

Taking into account the electron spin, the spin-orbit interaction splits the valence bands

by an energy ∆
VB
SO and the conduction band by ∆

CB
SO at each valley [Xu14, Glazov15]. The

time-reversal symmetry ensures the splittings to be of opposite signs in the K and K ′ valley

(see Fig. 2.13(a)). As a result, spin and valley pseudospin degrees of freedom are locked. The

chiral selection rules are not changed by spin-orbit coupling [Glazov15]. However, because

the dipole interaction with electromagnetic field conserves the spin, only two interband tran-

sitions at each valley are allowed. These transitions give rise to the aforementioned A and B

excitons. As ∆VB
SO ≫ ∆

CB
SO (see Tab. 2.1), the energy difference between the A and B excitons

provides a direct measurement of the valence band splitting.

The conservation of spin for the interband transitions has very important consequences.

Let us focus on the A exciton. Figure 2.13(b) illustrates the band structure in the case of

Mo-based SCTMDs. In the case of W-based materials, the order of conduction band states is

opposite (see Tab. 2.1). When an exciton is created, there are eight possibilities: two for the

hole (the two valleys) and four for the electron (two valleys and two spins). Among them,

there are only two bright excitons (corresponding to intravalley interband transitions that

preserve the spin)10 and six dark excitons (corresponding to all intervalley excitons and to

10These excitons are singlet like intravalley excitons.
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not allowed intravalley interband transitions11). As an example, one bright exciton and two

dark excitons are sketched in Fig. 2.13(b). An exciton can transit from a bright state to a

dark state for instance by intravalley spin flip or intervalley scattering due to, e.g., thermal

fluctuations. The energy difference between bright and dark excitons is determined (in first

approximation) by the conduction band splitting ∆
CB
SO which is in the meV to tens of meV

range (see Tab. 2.1). As a consequence, bright states inMo-basedmaterials are lower in energy

than dark states and vice-versa in W-based materials. It qualitatively explains why MoS2

and MoSe2 are better emitters at low temperature than WS2 and WSe2 [Zhang15a]. It also

explains why in time-resolved PL measurement at room-temperature at least two times are

observed, one short and one long, which reflect competiting emission pathways from bright

and dark excitons. In contrast only one time is observed at low temperature. However, to

fully understand the exciton dynamics in monolayers SCTMDs, others mechanisms have to

be taken into account.12 For a recent review on this subject, see Ref. [Moody16].

MoS2 MoSe2 MoTe2 WS2 WSe2

EX (eV) 2 1.7 1.1 2.1 1.8

Eb (meV) 300 600 580 550 400

∆
VB
SO (meV) 150 180 250 430 470

∆
CB
SO (meV) 3 20 ? -30 -35

Table 2.1 – Basic optoelectronic properties of 2Hc monolayers TMDs. EX denotes the optical bandgap (A-
exciton energy), Eb the A-exciton binding energy, and ∆

VB
SO and ∆

CB
SO the spin-orbit splittings of the valence

and conduction bands, respectively. The values are extracted from the review [Mak16], except for MoTe2 for
which the data are extracted from Refs. [Ruppert14, Yang15].

2.2.5 Vibrational properties

Similarly to their optoelectronic properties, the vibrational properties of TMD critically de-

pend on the number of layers. Raman spectroscopy emerges as the ideal tool to study these

vibrational properties [Lee10]. Indeed, it offers a fast and unambiguous method to deter-

mine the number of layers and to probe the electron-phonon interactions [Zhang15b]. Fig-

ure 2.14 shows the calculated phonon dispersion relation for monolayer MoS2. In contrast

to graphene, there are no Kohn anomalies. Consequently, electron-phonon interactions are

weaker than in graphene. However, such interactions are notably important for transport

properties as they limit the carrier mobility in monolayers TMDs due to deformation poten-

tial and Fröhlich interactions [Kaasbjerg12]. Furthermore, compared to graphene, Raman

spectroscopy of TMDs remains less known. Therefore, we have dedicated the whole Chap-

ter 6 on the Raman spectroscopy of N -layer TMDs.

11These excitons are triplet like intravalley excitons.
12For instance, a bright exciton can be scattered to a dark exciton state with the same spin but located outside

the light cone [Robert16a].
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Figure 2.14 – Calculated phonon dispersion relation of monolayer MoS2. Figure extracted
from [Molina-Sánchez11].

2.2.6 Optoelectronic applications

SCTMDs-based optoelectronic devices have attracted tremendous attention due to their prop-

erties that complement those of graphene-based devices. Indeed, SCTMDs are advantageous

for applications that require high sensitivity and low dark currents, and can operate in the vis-

ible and near-infrared spectrum. Up to now, mainly two groups of SCTMDs-based optoelec-

tronic devices have been investigated: (i) SCTMDs-based FETs (i.e., lateral metal-TMD-metal

devices) that are called phototransistors and (ii) in-plane p-n junction in SCTMDs where p-

n junctions are created by local electrostatic gates. An example of each type of devices is

depicted in Fig. 2.15.

Phototransistors Phototransistors are chiefly used for photodetection (see Fig. 2.15(a)),

e.g. [Yin11, Lee12a, Lopez-Sanchez13]. Such devices consist in applying a source-drain volt-

age and monitoring the source-drain current under optical illumination which changes the

sheet conductivity. The mechanisms that give rise to photoconductivity in SCTMDs-based

transistors are carefully studied in Ref. [Furchi14a]. These devices have the advantage to be

able to operate on homogeneous SCTMDs layers and do not need the introduction of a junc-

tion or a built-in field. On the other hand, they are rather slow and are thus only suitable for

applications that do not require fast response times. Phototransistors can also be exploited

for electrically driven light emission. Under high source-drain bias hot carrier processes can

occur and light can be emitted [Sundaram13]. However, the efficency (ratio between the emit-

ted optical power and electrical input power) of such devices was found to be ∼ 10−5 which

is rather low compared to conventional devices based on p-n junctions (see below).

Lateral p-n junctions The second type of optoelectronic devices was achieved almost si-

multaneously by three independent groups [Pospischil14, Baugher14, Ross14]. They all used

the same design: split-gate electrodes coupled to two different regions of a WSe2 monolayer
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Figure 2.15 – (a) Top: three-dimensional schematic view of a monolayer MoS2 phototransistor. Middle:
band diagram of the phototransistor under source-drain bias and optical illumination. Bottom: map of the
photocurrent displaying a hot spot that corresponds to the monolayer MoS2. Scale bar: 5 µm. Figures
extracted from Ref. [Lopez-Sanchez13]. (b) Top left: three-dimensional schematic view of a WSe2 devices
with split-gate electrodes. Popt is the optical power. Top right: band diagram of the device when operating
as a p-n junction. Bottom: Photocurrent as a function of the bias voltage under different biasing conditions.
The solid green line correspond to p-n junction,the solid blue line n-p, the dashed green line n-n, and the
dashed blue line p-p. VOC is the open-circuit voltage, ISC is the short-circuit current, Pel is the electric power
and EF is the Fermi energy. Figures extracted from Refs. [Pospischil14, Mak16].

(see Fig. 2.15(b)). By biasing one gate electrode with a negative voltage and the other with a

positive voltage a lateral p-n junction is made. The main advantage, compared to traditional

p-n junctions created with impurities, is that depending on the sign of the two gate voltages,

p-n, n-p, p-p or n-n junctions can be obtained on the same device. Such devices exhibit the

typical photodiode characteristic as shown in Fig. 2.15(b). Hence, they can operate as pho-

todetector or photovoltaic devices. By driving a current through the electrostatically defined

diode, electroluminescence was obtained with much better efficiency that for the hot carrier

emission in phototransistors. However, for both detection and emission, these devices suffer

from the fact that their active area are limited in space because of the lateral arrangement of

the junction. This last point brings us to the next section where heterostructures based on 2D

materials offer the possibility to build vertical junctions with larger active areas than lateral

ones.
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2.3 Heterostructures

In this section, we give a brief overview of heterostructures based on 2D materials. Broadly

speaking these heterostructures can be separated into two groups: (i) hybrid heterostruc-
tures based on 2D materials and nano-objects such as quantum dots or plasmonic antennas

and (ii) van der Waals heterostructures made by artificially stacking different 2D materi-

als.13 Compared to devices based on pristine layers, heterostructures offer the possibility to

combine the advantages of different nanomaterials. Heterostructures are already used in the

semiconductor industry in a variety of applications such as light emitting diodes (LED) or

laser [Casey12]. However, compared to the existing technologies, heterostructures based on

2D materials offer flexibility, semi-transparency, better scalability and integrability at lower

cost. We will first present the fabrication techniques and the coupling mechanisms. Then, we

introduce selected examples of heterostructures.

2.3.1 Fabrication techniques

Hybrid heterostructures Hybrid heterostructures are usually fabricated following conven-

tional micro-fabrication techniques [Houdy06]. The 2D material is either mechanically ex-

foliated or grown using chemical vapor deposition (CVD) or epitaxial methods. Then the

nano-objects are deposited by drop-casting or spin-coating. In the case of plasmonic struc-

tures, they are patterned by standard fabrication techniques. Noteworthy, large-area hybrid

heterostructures are in general easy to fabricate (especially compared to van der Waals het-

erostructures).

Van der Waals heterostructures On the other hand, van der Waals heterostructures (vd-

WHs) are fabricated using outlandish techniques. Currently, the most versatile technique is

the direct assembly by micromechanical stacking (see Fig. 2.16(a)). This technique is possible

owing to the van der Waals nature of the interlayer interactions. Because of this weak in-

terlayer interactions, vdWHs have the major advantage of not requiring any lattice matching

conditions contrary to traditional epitaxial semiconductor heterostructures. Consequently,

any arbitrary sequence of layered materials is allowed and since there exists a library of

avaiblable layered materials with distinct properties, a huge amount of novel heterostruc-

tures can be built showing unique properties [Geim13]. Unfortunately, such a fabrication

technique is not suitable for large scale production. However for fundamental research, it

is a practical tool that provides samples of unmatched quality. Meanwhile, alternative tech-

niques (e.g., liquid exfoliation, CVD or epitaxial growth), that might be appropriate for large

scale production, are under investigation but are currently in their infancy. For a recent re-

view, see Ref. [Novoselov16].

Micromechanical assembly of layers can be divided into three methods:

13Note that in hybrid heterostructures, the different systems are usually also connected by van der Waals in-
teractions. However, here van der Waals heterostructures refer exclusively to heterostructures made up of 2D
materials.
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Figure 2.16 – (a) Cartoon of the fabrication of van der Waals heterostucutres. The mechanical assembly
(top) is suitable for research purposes, while large-scale growth by CVD or epitaxy (bottom) are promising
for technological purposes. Figure extracted from Ref. [Novoselov16]. (b) Atomic force microscopy images
of graphene transfered on various 2D crystals. A self-cleaning mechanism occurs for graphene on (i) hBN,
(ii) MoS2 and (iii) WS2. In contrast for (iv) mica, (v) BSCCO and (vi) V2O5, no self-cleaning mechanism
happens, instead contamination is spread uniformly across the whole interface. Insets: 1.5 µm × 1.5 µm.
Pictures extracted from Ref. [Kretinin14].

(i) The ‘sacrificial’ method. This technique is based on exfoliating a flake on a sacrificial

membrane, aligning and placing it on top of another flake and then removing the mem-

brane with chemical treatments in liquid phase [Dean10]. This process is repeated to

deposit further layers. Annealing is often performed to remove the contaminants and to

improve the interface quality. As it involves at least one step with chemical treatments

in liquid phase, it is referred to as a wet transfer.

(ii) The ‘stamp’ method. This technique makes use of the viscoelastic properties of a poly-

mer stamp like PDMS [Castellanos-Gomez14]. A flake is directly exfoliated onto the

stamp, aligned and placed on top of another flake and then the flake is released by peel-

ing off the stamp very slowly. This method is known as the all-dry transfer technique
and results in cleaner samples. Although it is a method easy to implement, it is not a

convenient technique to build vdWHs with a large number of layers. It is the method

used in this thesis, see Chapter 4.

(iii) The ‘pick-and-lift’ method. This technique is based on strong van der Waals interac-

tions that exist between 2D crystals [Wang13]. A first flake is exfoliated on a membrane,

aligned and placed on top of a second flake, and then brought into contact. The mem-

brane is lifted up and the second crystal may stick to the first one. The process can be

repeated several times and produces to very clean interfaces. At the end of the process,

the entire stack is deposited onto a substrate and the membrane is washed away with

chemical treatments in liquid phase. As there is a last step involving wet chemical pro-

cessing, it is not a completely all-dry transfer but is often said to be because only the top

layer might be contaminated by the membrane. Very recently, an improved version of

this method came up which is called the ‘hot pick-up’ technique [Pizzocchero16]. This
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method utilizes a polypropylene carbonate (PPC) membrane to pick-up and release 2D

crystals by playing with temperature and thus does not involve a sacrificial membrane.

It can be viewed as a mix between the stamp and the pick-and-lift methods, and offer a

much more precise control of the transfer.

Surprisingly, the interfaces between the different layers are free of contamination and are

atomically flat due to the so-called ‘self-cleaning’ mechanism [Haigh12, Kretinin14]. Fig-

ure 2.16(b) illustrates this mechanism: the affinity between 2D crystals is in general higher

than the affinity between the crystals and contaminants, therefore it is energetically favorable

to have the largest possible common interface between the two crystals; in consequence, the

contaminants are pushed away. It results in the observed bubbles under transfered 2D crys-

tals that correspond to pockets of contamination pushed away from the rest of the interface.

Note that this mechanism works only for certain pairs of crystals.

2.3.2 Near-field coupling mechanisms

The physical properties of optoelectronic devices based on heterostructures are governed by

the coupling mechanisms at the heterointerface. Uncovering and controlling these mecha-

nisms is of scientific and technologic interest in order to improve the device performances or

develop new devices. In this thesis, we choose to focus on the two main coupling mechanisms

that are: charge transfer (CT) and energy transfer (ET). Before presenting charge and energy

transfer, we have first to discuss how the electronic band structure of the different materials

is changed in the heterostructure.

Band alignment

In conventional semiconductor heterostructures, the electronic bands of the different semi-

conductors deform to ensure the continuity of the band structure [Rosencher02]. How-

ever, in heterostructures based on 2D materials this situation is rather different especially

in the case of monolayers. Indeed, the depletion region is often much larger than the

atomically thin layers. Consequently, in first approximation, the band structure of the het-

erostructure can be considered as the superposition of the bands of the different materi-

als [Kośmider13, Pierucci16a]. Figure 2.17(a) displays examples of calculated band align-

ments and bandgaps for II-VI semiconductors [Norris08], monolayer SCTMDs [Liang13] and

monolayer graphene. The relative position of the bands is determined by the electronic affin-

ity or the work function. These parameters can be experimentally measured using, for in-

stance, scanning Kelvin probe microscopy [Yu09] or tranport measurements [Kim15a]. How-

ever, as illustrated in Fig. 2.17(b), calculated one-electron band structures provide a fair esti-

mation of the bandgap and band alignment. Indeed, the single particle gap Egap,0 is renormal-

ized to Egap by electron-electron interactions (δEe-e). The significant exciton binding energy

(Eb) results in an optical transition (Eopt) that can be close to Egap,0 [Ugeda14].

Interestingly, in Fig. 2.17(a) we can notice that it is possible to form type-II heterojunc-
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tions where the lowest-energy electron states are spatially located in one component while

the highest-energy hole states are in another. In type-II heterojunctions based on SCTMDs,

optical excitation followed by charge separation may lead to the formation of interlayer ex-
citons as as the interlayer separation is smaller than 1 nm. Such a charge separation can be

harnessed in optoelectronic devices as depicted in Section 2.3.3.
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Figure 2.17 – (a) Calculated band alignments and bandgaps for II-VI semiconductors [Norris08], monolayer
SCTMDs [Liang13] and monolayer graphene [Yu09]. (b) Schematic of the relevant energy levels. The single
particle gap Egap,0 is renormalized to Egap by electron-electron interactions (δEe-e). The significant exciton
binding energy (Eb) results in an optical transition (Eopt) that can be close to Egap,0 [Ugeda14].

Microscopic mechanisms

To present the microscopic mechanisms associated to the charge and energy transfer, we will

use the example of a two-level system (which can correspond to the HOMO and LUMO of

a molecule, the ground and excited state of a quantum dots, or the valence and conduction

band edges) and a monolayer graphene. An electron is photoexcited in the two-level system

which is the donor, while graphene plays the role of the acceptor. This example is of practical

interest since in photodetectors graphene usually plays the role of the transparent electrode

while the two-level system represents the photoactive material (see Section 2.3.3). From a

more scientific point of view, graphene is an ideal acceptor because it is a semimetal, i.e., it

offers a continuum of states covering the whole range of energies. However, thesemechanisms

can be generalized to other heterostructures.

Charge transfer The charge transfer corresponds to the spatial transfer of the photoexcited

electron from the two-level system to an available state with equal or lower energy in the

graphene sheet, as illustrated in Fig. 2.18(a). Since the electron is not in the two-level system

anymore, CT leads to a quenching of the PL of the two-level system. The charge transfer can

be evidenced by monitoring the doping level in the graphene flake. This is the approach that

we will employ in Chapter 8 to study the CT between monolayers of MoSe2 and graphene.

Zhang et al. have followed a similar approach [Zhang14]. They have demonstrated and

quantified a photoinduced electron transfer from a MoS2 monolayer to graphene by monitor-

ing the shift of the CNP in the electrical measurements as a function of the incident optical
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Figure 2.18 – Schematic illustration of (a) charge transfer, (b) Förster energy transfer and (c) Dexter energy
transfer between a two-level system and a graphene monolayer. (d) Top: three-dimensional schematic view of
a vdWH device made of a monolayer graphene on top of a monolayer MoS2. Bottom: transfer curves for the
graphene sheet in the corresponding device under various incident optical densities. The CNP shifts with the
optical density. Figures extracted from Ref. [Zhang14]. (e) Top: schematic diagram of a hybrid heterostucture
based on semiconducting nanoplatelets and a monolayer graphene. The nanoplatelets are separated by a
MgO spacer with various thicknesses. Bottom: measured decay rate of the nanoplatelets as a function of
the thicknesses of the MgO spacer. The red solid and dashed lines are, respectively, a theoretical model which
considers a thermal distribution of free excitons in a 2D quantumwell, and a theoretical model in 1/d4 with d
the distance between the middle of the nanoplatelets and the graphene sheet. This latter model is expected for
Förster ET from a 0D donor to a 2D acceptor. Figures extracted from Ref. [Federspiel15b]. (f) Top: cartoon
of the energy transfer from a monolayer WS2 to a monolayer MoSe2. Bottom: photoluminescence excitation
intensity map of the corresponding vdWH. The color scale represents the emission intensity. Exciton energies
of each material are indicated by the horizontal dotted line. M (W) denotes MoSe2 (WS2). Figures extracted
from Ref. [Kozawa16].

density (see Fig. 2.18(d)). Such a transfer was reported to happen on a timescale of 1 ps in

monolayer graphene/monolayer WS2 heterostructures [He14a].

Charge transfer also takes place in TMD/TMD vdWHs, especially in the case of inter-

layer excitons between two monolayers where electrons and holes can be transferred from

one layer to the other [Ceballos14, Fang14, Hong14, Lee14a, Yu14, Ceballos15, Rivera15,

Rivera16, Wang16a, Zhang16] (see Figs. 2.21(c) and (d)). Careful optical studies have

revealed an ultrafast CT between the monolayers with a transfer time of the order of

100 fs [Ceballos14, Hong14, Ceballos15, Wang16a] event at room temperature. The obser-

vation of such a short charge transfer time is remarkable and may be due to the formation

of interlayer excitons that are energetically favourable compared to excitons confined to only

one layer [Hong14]. In addition, interlayer excitons can be electricaly tuned using electro-
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static doping [Rivera15]. Remarkably, the interlayer exciton lifetime was found to be higher

than the one in the pristine layers [Ceballos14, Ceballos15, Rivera15]. Lifetimes as high as

1.8 ns were reported [Rivera15] at low temperature. Furthermore, interlayer excitons can

exhibit valley lifetime of 40 ns which is also higher than in pristine layers [Rivera16]. Sur-

prisingly, the ultrafast CT does not show a strong dependence on the relative orientation of

the two monolayers [Hong14, Lee14a, Rivera15, Wang16a]. However, the relative twist plays

an important role in the direct or indirect nature of the interlayer excitons because of momen-

tum conservation [Yu15]. Noteworthy, if the photoexcitation is done at an energy higher than

the energy difference between the two levels, hot CT can occur, especially if the transfer time

is similar to the relaxation time. Finally, let us precise that CT is a short-range mechanism

which typically scales exponentially with the donor-acceptor distance.

Energy transfer Energy transfer can be divided into two mechanisms (as depicted in

Figs. 2.18(b) and (c)):

(i) Förster energy transfer [Förster48] (usually denoted FRET for Förster Resonant Energy

Transfer) which corresponds to direct transfer of energy from the photoexcited electron

in the two-level system to graphene through dipole-dipole interaction. As it arises from

near field Coulomb interaction, no photon is emitted during the process. The excited

electron in graphene can further relax through electron-phonon coupling for instance.

The ET rate typically follows a power law dependence on the donor-acceptor distance.

However, for distances of the order of few �A, this dependence is not known.

(ii) Dexter energy transfer [Dexter53] (denoted DET) which corresponds to two opposite

charge transfers leading to no macroscopic charge transfer. Indeed, the photoexcited

electron in the two-level system is brought into its ground state and an electron in

graphene is excited. It is a short-range transfer, as for CT, because it directly depends on

the overlap of the orbital function or in other words on the band alignment.

Both mechanisms lead to a quenching of the PL of the two-level system since the energy

of the photoexcited electron is transfered nonradiatively to the graphene. This quenching is

of practical interest for imaging purposes, espcially in biology [Jares-Erijman03]. However,

contrary to CT, there is no carrier density change in both systems. This makes ET much more

difficult to quantified than CT since it cannot be monitored by the doping level in graphene.

In general, ET is investigated using PL spectroscopy.

Charge versus energy transfer In the general case, CT and both ET mechanisms oc-

cur and quench the PL. Therefore, it is not always obvious to separate them. Neverthe-

less, it is possible to isolate the FRET by separating the donor and acceptor so that CT

and DET are negligeable. Then by further studying the distance dependence of the ET

process, the Förster nature can be demonstrated. FRET between semiconducting quan-

tum dots [Chen10], molecules [Gaudreau13], NV (Nitrogen-Vacancy) color center in dia-

mond [Tisler13] and semiconducting nanoplatelets [Federspiel15b], and a graphene sheet
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was evidenced (see Fig. 2.18(e)). The latter study was perfomed in our group by a former

PhD Student, François Federspiel with my collaboration. More information can be found in

François’ thesis [Federspiel15a]. Furthermore, FRET between semiconducting quantum dots

and SCTMDs was also reported [Prins14, Raja16]. In our group, a PhD Student, Olivia Zill,

has just started her PhD on the study of the FRET between semiconducting nanoplatelets and

SCTMDs.

Up to now, no study on the ET in graphene/SCTMD vdWHs was performed. Such an

experiment is very challenging because CT and ET are very strong and compete due to the

subnanometer donor-acceptor distance. In this range of separations, the regimes of CT and

ET remain poorly known. In addition, it is difficult to distinguish between Förster and Dex-

ter processes. Temperature measurements might help to separate the two contributions since

Förster and Dexter ET do not have the same temperature dependence [Lyo00]. However,

very recently, interlayer ET (IET) was evidenced in vdWHs made of monolayers WS2 and

MoSe2 [Kozawa16]. As shown in Fig. 2.18(f), for resonant excitation energies with the A, B

and C excitons energy ofWS2, luminescence at the A exciton energy of theMoSe2 is enhanced.

Although the type-II heterojunction, the authors did not observe emission from interlayer ex-

citon due to not very obvious reasons. Nevertheless, contrary to all the previous studies

on TMD/TMD vdWHs (see above) where only the charge transfer was highlighted, the au-

thors have suggested that the IET rate can be larger than the ICT one. In Chapter 8, we will

demonstrate that in graphene/SCTMD vdWHs there is a charge transfer from the SCTMD to

graphene but also show that there are strong hints for IET that may even dominate the PL

quenching.

Electrical control of the transfer mechanisms Finally, let us discuss on the influence

graphene’s Fermi energy on the CT and ET. From the schematic diagrams in Figs. 2.18(a)-

(b)-(c), it seems quite obvious that when the Fermi energy reaches the ground or excited state

of the two-level system, the CT and DET are suppressed due to Pauli blocking. This shows the

importance of band alignment in the heterostructures. In contrast, FRET processes are not

sensitive to the relative position of the two-level system with respect to graphene’s band, but

to the energy of the transition. If E0 is the energy difference between the two states, then FRET

is suppressed for |EF|> E0/2 (the 2 comes from the electron-hole symmetry of graphene’s dis-

persion relation). As a result for FRET, the bandgaps of the materials in the heterostructure

are more important than the band alignment. Note that in any case hot CT or ET might still

occur. Consequently, by tuning graphene’s Fermi energy is it possible to electrically control

the transfer mechanisms. For instance, experimental demonstration of the electical control

of the FRET was already achieved by various groups for quantum dots/graphene [Lee14b],

erbium ions/graphene [Tielrooij15] and quantum dots/MoS2 [Prasai15] hybrid heterostruc-

tures. The electrical control of the transfer processes is of great interest for applications but

also for studying different transfer regimes. Especially, in the case of vdWHs it could be used

to separate CT and DET from FRET. In this context, it is particularly important to have a effi-

cient and reliable method to tune graphene’s Fermi energy, but also to accurately determine
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it. This is the aim of the work presented in Chapter 5.

2.3.3 Optoelectronic applications

Hybrid heterostructures

Optoelectronic devices based on hybrid heterostructures have generally a FET geometry,

where the layered material is employed as an electrode and the nano-objects as efficient

light absorbers and/or emitters. Several studies have reported hybrid phototransistors based

on graphene and various nano-objects such as quantum dots [Konstantatos12], plasmonic

nanoantennas [Fang12], molecules [Chen13], or more recently nanoplatelets [Robin16] (see

Fig. 2.19). In the work of Konstantatos et al. [Konstantatos12], a graphene FET was deco-

rated with colloidal lead sulphide (PbS) quantum dots (see Fig. 2.19(a)). The illumination

of the device leads to a modification of graphene’s conductance due to charge transfer from

the PbS quantum dots that absorb light, similarly to what happens in graphene/MoS2 de-

vices [Zhang14] (see the photocurrent map in Fig. 2.19(a)). However, these devices suffer

from high dark currents and large power consumption due to the semimetallic nature of

graphene. Therefore, in a next generation of hybrid phototransistors, the graphene channel

was replaced by few layers of MoS2 [Kufer15] whose semiconducting nature provides orders

of magnitude lower dark current and high signal-to-noise ratio. Furthermore, SCTMDs can

be strongly coupled [Liu16, Wang16b, Wang16c, Zhao16] to plasmonic structures and optical

microcavities [Liu15b, Dufferwiel15] resulting in the formation of polaritons and paving the

way towards new polaritonic devices. At the time of writing this thesis and to the best of

our knowledge, no electrically driven light emission from hybrid heterostuctures have been

observed.

Van der Waals heterostuctures

The first fabrication of vdWHs based on 2D systems was performed in 2010, by depositing

graphene on nanometer thick terraces of hexagonal boron nitride [Dean10]. This landmark

result has demonstrated that substrate engineering could greatly improve the electron trans-

port properties of graphene. Since them, vdWHs have attracted much attention. In this

subsection, we will focus on two types of vdWHs: (i) graphene/TMD and (ii) TMD/TMD.

Graphene/TMD based heterostructures Despite the recent emergence of vdWHs, a large

variety of novel experiments and prototypes of optoelectronic devices have already been re-

ported. Figure 2.20 presents examples of such devices that compared to lateral devices (see

Section 2.2.6) offer larger area and easier scalability. In all these devices, graphene is em-

ployed as tunable work function electrodes and SCTMDs as photoactive material with strong

light-matter interaction. Britnell et al. [Britnell13] and Yu et al. [Yu13] have reported the first

vdWHs photodetectors displaying a graphene-SCTMD-graphene structure (see Fig. 2.20(a)).

A bias between the two graphene electrodes is applied in order to separate and collect the
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Figure 2.19 – (a) Top right: three-dimensional schematic view of a hybrid phototransistor based on graphene
and PbS quantum dots. Top left: cartoon of the electron-hole separation in the quantum dot. Bottom: map
of the photocurrent displaying a hot spot that corresponds to the location of the overlap between graphene
and quantum dots. Figures extracted from Ref. [Konstantatos12] (b) Three-dimensional schematic view
of a hybrid electrochemically top-gated phototransistor based on graphene and CdSe nanoplatelets. Figure
extracted from Ref. [Robin16]. (c) Three-dimensional schematic view of a hybrid phototransistor based on
graphene and plasmonic nanoantennas. (d) Zoom on a nanoantennas showing the hot electron transfer to
the graphene sheet. Figures extracted from Ref. [Fang12].

photogenerated carriers in the TMD. Note that electrostatic doping of graphene layers can

also create a built-in field even without applying a bias voltage. Furthermore, very recently

Massicotte et al. [Massicotte16a] have demonstrated an intrinsic response time shorter than

10 ps in such devices (see Fig. 2.20(b)). They establish that this time is limited by the transfer

at the heterointerface, proving the importance of the coupling at the heterointerlayer. Inter-

estingly, they also show that monolayer WSe2 does not give faster response than trilayer and

that monolayer based devices are less efficient due to higher losses caused by direct electron-

hole recombinations and presumably ET. This highlights the importance of N -layer SCTMDs

for applications. Note that the same device was utilized to detect infrared light through

photothermionic effect at the graphene/WSe2 interface [Massicotte16b]. Light emitters were

achieved as well. For instance,Withers et al. [Withers15] make use of a more complex vdWH

(see Fig. 2.20(c)) to fabricate a vertical LED. In this LED, electrons and holes are injected into

a monolayer TMD (they have used WS2 or MoS2) from the graphene electrodes. Few layers

of hBN separated the graphene electrodes and the monolayer TMD in order to prevent direct

tunneling between graphene sheets.
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Figure 2.20 – (a) Top left: three-dimensional schematic view of a vdWH photodetector. Top right: schematic
band diagram with a built-in electric field to separate the photogenerated carriers. Bottom: gate dependent
electrical characteristics taken under illumination (left axis) and in the dark (right). Figures extracted from
Ref. [Britnell13]. (b) Top left: cartoon of a vdWH where a photogenerated electron-hole pair is separated
and collected by the graphene sheets. Top right: photocurrent map displaying a photocurrent in the over-
lap region. Bottom: photoresponse rate Γ as a function of bias voltage VB between graphene electrodes for
various values thickness L of WSe2. The solid black line corresponds to a linear relationship between Γ and
VB, whereas the dotted line shows the effective minimum response time τ = 5.5 ps. Figures extracted from
Ref. [Massicotte16a]. (c) A vdWH LED. Left: cartoon of the heterostructure. Middle: optical image of the
heterostructure. Scale bar, 10 µm. Right: optical image of electroluminescence from the sample. Figures
extracted from Ref. [Withers15].

TMD/TMD based heterostructures Several works have reported TMD/TMD based opto-

electronic devices [Cheng14, Furchi14b, Lee14a]. All these devices consist in vertical p-

n junction where one layer is n-type (e.g., MoS2) and the other p-type (e.g., WSe2). Fig-

ure 2.21(a) depicts such a structure with monolayers MoS2 and WSe2. In the overlap re-

gion, a type-II heterojunction is formed (see Fig. 2.21(c)). As a result interlayer excitons

are created due to ultrafast and efficient interlayer CT (see Section 2.3.2). An unambigous
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signature of this interlayer exciton appears in the PL spectrum of the overlap region at

lower energy than the features of pristine layers as shown in Fig. 2.21(d) for monolayers

MoSe2/WSe2 vdWHs [Rivera15]. Owing to the spatial charge separation, these devices dis-

play the typical characteristic of a photodiode indicating that they can be used as photode-

tectors or photovoltaic devices [Furchi14b, Lee14a]. Noteworthy, in these devices the cou-

pling mechanisms at the heterointerface play a important role as charges are transferred

from one layer to the other. These mechanisms are notably different from what happens

in conventional epitaxial heterostructures in which charges are separated by an extended de-

pletion region [Rosencher02]. Electroluminescence from this type of vdWHs was reported as

well [Cheng14].
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Figure 2.21 – (a) Three-dimensional schematic view of a p-n vdWH made of a monolayer MoS2 on top of
a monolayer WSe2. (b) Photocurrent map showing a hot spot in the overlapping region. Scale bar, 3 µm.
Figures extracted from Ref. [Lee14a]. (c) Top: band diagram of the corresponding heterostructure displaying
the charge transfer and the interlayer exciton. Bottom: cartoon of the same heterostructure illustrating the
spatial separation of the electron and hole. Figures extracted from Ref. [Novoselov16]. (d) Photoluminescence
of individual monolayers and the heterostructure recorded at 20 K. Figure extracted from Ref. [Rivera15].

2.4 Conclusion

In this chapter, we have presented the crystal structure and basic properties of graphene and

semiconducting transition metal dichalcogenides. We have also introduced heterostructures

based on these layered materials, and presented the two main coupling mechanisms, namely

charge and energy transfer, that govern the photophysics of these heterostuctures. Further-

more, for both pristine materials and heterostructures, we have shown several examples of

optoelectronics devices to illustrate the broad range of possibilities. Many more examples

can be found in the literature, for recent reviews see Refs. [Koppens14, Mak16, Mueller16].

All these devices exhibit very different figures of merit. For instance, the responsivity of the
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photodetectors14 shown in this chapter ranges from 10 mA W−1 for the device in Fig. 2.15(b)

to 107 AW−1 for the one in Fig. 2.18(d). Such a huge discrepancy probably arises from differ-

ent experimental conditions (e.g., different incoming photon energy, temperature), distinct

geometry (e.g., surface of the detector) and method of calculations (internal versus external
quantity15). Therefore, it is challenging and not necessarily meaningful to quantitatively

compare the performance of these devices. However, from this comparison we can conclude

that these optoelectronic devices hold great promise for various applications but remain for

now proof-of-principle devices. Progresses are still needed in order to reach a level of ma-

turity. In addition, large scale production of high-quality layered materials and heterostruc-

tures remains to be developed.

From a scientific point of view, most of these photodetectors are based on the dissociation

of excitons followed by a separation and/or a charge transfer from one material to the other.

In particular, van der Waals heterostructures are very interesting because the underlying mi-

croscopic mechanisms differ strongly from those of conventional epitaxial heterostructures.

In particular, owing to the subnanometer interlayer distance, they provide a unique platform

to investigate the competition between charge and energy transfer in regimes that remain

unexplored. While energy transfer is usually seen as a negative aspect and remains mostly

unexploited, it could be employed to inject electron-hole pairs into a emitter without con-

tacting it [Achermann04]. In this context, developing model systems based on graphene and

semiconducting transition metal dichalcogenides to study and control the interlayer charge

and energy transfer is of great interest but remains challenging. To achieve this goal, it is

essential

(i) to fabricate devices in which the doping level can be efficiently and finely tuned, and to

develop method to accurately monitor it. This point will be presented in Chapter 5.

(ii) to precisely characterize the properties of N -layer semiconducting transition metal

dichalcogenides since they potentially offer distinct advantages as a function of N . This

point will be addressed in Chapters 6 and 7.

(iii) to fabricate elementary heterostructures to investigate the charge and energy transfer.

This point will be considered in Chapter 8.

Take home messages

• Graphene and semiconducting transition metal dichalcogenides offer complementary

properties which can be harnessed in heterostuctures.

• Heterostructures show very rich physics and hold great promises especially for opto-

14The responsitvity of a photodetector is the ratio between the electrical output current and the optical input
power.
15In particular, the external quantum efficiency (EQE) is equal to the number of electron-hole pairs per second

collected to produce the photocurrent divided by the incident photon flux, while the internal quantum efficiency
(IQE) is calculated in a similar way except that the absorbed photon flux is considered.
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electronic applications.

• Studying and controlling the coupling mechanisms, which govern the photophysics of

these heterostructures, are of great interest for optoelectronics but remains challenging.

Related publication and communications

Paper

• F. Ferderpiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S.

Park , J. Lee , D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, Distance Depen-
dence of the Energy Transfer Rate from a Single Semiconductor Nanostructure to Graphene,
Nano Letters 15, 1252-1258 (2015).

Posters

• F. Ferderpiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park

, J. Lee , D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, Distance Scaling of the Energy
Transfer Rate from a Single Semiconductor Nanostructure and a Graphene Monolayer, E-
MRS Spring Meeting, May 2016, Lille, France

• François Federspiel, G. Froehlicher, David Halley, Michelangelo Romeo, Michel

Nasilowski, Benoît Dubertret, Pierre Gilliot and Stéphane Berciaud, Energy transfer
from individual semiconductor quantum dots to graphene, UFA-Winter School “Surface-

Confined Synthesis of Nanostructures”, February 2014, Baden-Baden, Germany.

54 Chapter 2 Introduction to graphene, TMDs and their heterostructures

http://dx.doi.org/10.1021/nl5044192


Chapter 3

Introduction to group theory and

Raman spectroscopy

This chapter introduces the common spectroscopic tool used throughout this work: Raman spec-
troscopy. As the interpretation of the experimental results often requires group theory analysis,
we first recall the main principles and notations of group theory applied to phonons. For readers
unfamiliar with group theory, corresponding basics are pedagogically introduced in Appendix A.
Then group theory is applied to graphene, N -layer and bulk 2Hc transition metal dichalcogenides
to derive the phonon symmetries. Finally, the theory of Raman scattering in the classical and quan-
tum frameworks is outlined. This chapter is rather technical but contains essential elements for
Chapters 5 and 6. However, the following chapters can be addressed without reading this chapter
in detail.

3.1 A brief summary of group theory

For readers not familiar with group theory, a pedagogical introduction applied to phonons is

presented in Appendix A. The statements are not demonstrated but they are illustrated using

the very simple example of the water molecule. More detailed references on this subject in-

clude [Dresselhaus07, Yu10]. Here, we briefly recall the main notions and notations of group

theory that are essential to understand the symmetry analysis performed in the following

sections and used in Chapters 5 and 6.

The symmetry operations in a crystal are
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E identity;

Cn/C
−1
n clockwise/anticlockwise rotation by 2π

n with n ∈ N;
σ reflection about a plane;

i inversion;

Sn/S
−1
n rotation Cn/C

−1
n followed by a reflection through a plane perpendicular to the

rotation axis;

plus the combination of a rotation Cn/C
−1
n (screw axis) or a reflection σ (glide plane) plus a

translation of a fractional lattice vector along the same axis or parallel to the plane of reflec-

tion, respectively.

The space group of a crystal is described by a Bravais lattice plus a point group. This

crystal point group corresponds to the symmetry of the unit cell including the rotations and

reflection of screw axis and glide plane. In the case of phonons, the determination of the

crystal point group is sufficient since the symmetry of the Bravais lattice is included in the

reciprocal space (i.e, in the space of wavevectors). These groups are labeled following the

Schönflies notation [Schoenflies91] and their irreducible representations with the Mulliken

one [Mulliken55, Mulliken56]. The meaning of Mulliken’s symbols is presented in Tab. 3.1.

Symbols symmetry property with respect to comments

A/B sym/antisym principal axis Cn one-dimensional
representations

subscript 1/2 sym/antisym C2 perpendicular to
principal axis Cn or
vertical plane σv or

σd

subscript u/g sym/antisym inversion center i from German
‘gerade’/‘ungerade’

′/ ′′ sym/antisym horizontal plane σh

E two-dimensional
representations

from German
‘entartet’

(degenerate)

T three-dimensional
representations

F is also used in
spectroscopy

Table 3.1 – Mulliken notation. Sym (antisym) means symmetric (antisymmetric).

To find the symmetry of the phonons at a given point of the Brillouin zone, one first has to

determine the group of the wavevector, which is always a subgroup of the crystal space group.

This group corresponds to the set of space group operations, which transform the wavevector

q into itself (possibly plus a reciprocal lattice vector). For zone-center phonons (i.e., q = 0), the

group of the wavevector is always the same as the space group of the crystal. Consequently,

the symmetries of the phonons are described using the irreducible representation of the crys-

tal point group. In the following, we will mostly study zone-center phonons. However, in

the case of graphene, we will also find the irreducible representation of the phonons at the
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edges of the Brillouin zone. The irreducible representation of all the phonon modes at a given

point of the Brillouin zone can be deduced from the decomposition of the representation of

the total vibration Γvib using the following relation [Dresselhaus07]

Γvib = Γeq ⊗ Γvec, (3.1)

where Γvec is the representation of a vector (x,y,z) and Γeq is the equivalence representation,

in the group of the wavevector.

3.2 Group theory applied to graphene

In this section, we applied group theory to graphene to get the phonon symmetries at the Γ

and K (′) points.

3.2.1 Crystal symmetries

As shown in Chapter 2, the Bravais lattice of graphene is hexagonal. To determine the crys-

tal point group, we must analyze the symmetry in the unit cell. This analysis leads to the

following 24 rotation operations [Malard09a]

E identity;

2C6 clockwise and anticlockwise rotations of 60 ◦ along the axis shown in Fig. 3.1;

2C3 clockwise and anticlockwise rotations of 120 ◦ along the axis shown in Fig. 3.1;

C2 rotation of 180 ◦ along the axis shown in Fig. 3.1;

3C ′2 rotations of 180 ◦ along the axis shown in Fig. 3.1;

3C ′′2 rotations of 180 ◦ along the axis shown in Fig. 3.1;

i inversion center shown as a red dot in Fig. 3.1;

σh reflection with respect to the xy plane shown in Fig. 3.1;

2S6 clockwise and anticlockwise rotations of 60 ◦ along the axis shown in Fig. 3.1

followed by a σh reflection;

2S3 clockwise and anticlockwise rotations of 120 ◦ along the axis shown in Fig. 3.1

followed by a σh reflection;

3σd reflections with respect to the vertical planes shown in Fig. 3.1.

3σv reflections with respect to the vertical planes shown in Fig. 3.1.

Consequently, the point group is D6h and the space group D1
6h [Malard09a]. The charac-

ter table of this space group is displayed in Tab. A.6. Note that although graphene is two-

dimensional, we need to consider a three dimensional space group to account for the out-of-

plane phonons.

3.2.2 Irreducible representations of the phonons

The primitive unit cell has two atoms. Therefore, monolayer graphene exhibits six phonons:

3 acoustic and 3 optical modes. The irreducible representations of these phonon modes are
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Figure 3.1 – Symmetry operations of monolayer graphene. The primitive unit cell (gray diamond) contains
two inequivalent atoms A (gray filled circle) and B (open black circle). (a) Top view of a monolayer graphene
with six atoms (one hexagon) represented. The inversion center i and the axis (along z axis) of the C6, C3,
C2, S6 and S3 operations is illustrated as a red dot. The horizontal σh reflection is in the xy plane. The axis
of the C ′2 and C ′′2 are illustrated in black dashed and solid lines, respectively. The vertical planes for the σv
and σd reflections are demonstrated as black dashed and solid lines, respectively. (b) Top view of a monolayer
graphene with more hexagons. The axis and planes of one C ′3, C

′′
3 , σv and σd operation are drawn. This

sketch is useful to determine the characters of the equivalence representation.

given by the direct product Γvib = Γeq⊗Γvec, where Γeq denotes the equivalence representation

for the atomic sites and Γvec is the representation for the x, y and z real space vectors. These

representations have to be determined for the group of the wavevector.

Γ-point phonons

The group of the Γ-point is the same as the point group of the crystal, thus we need to consider

the symmetry operations of D6h. From the character table A.6, we see that

Γvec = A2u ⊕E1u ,

where z and (x,y) transform as A2u and E1u , respectively. To find Γeq, we have to consider

the transformation of the two atoms in the unit cell under the symmetry operations of the

group. With the help of Fig. 3.1, we obtain the character table 3.2. Following the procedure

described in detail in Appendix A Section A.4 and using the character table ofD6h, we deduce

the irreducible representation of the equivalence representation

Γeq = A1g ⊕B1u .

Finally, the irreducible representation of the six Γ-point phonon modes is

Γvib = A2u ⊕B2g ⊕E2g ⊕E1u . (3.2)
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E1u and E2u are doubly degenerate and correspond to the in-plane modes (in xy plane), while

A2u and B2g correspond to the out-of-plane mode (along z axis). As we will explain in sec-

tion 3.4, from the character table A.6, we see directly that only E2g is Raman active (this mode

is called the G mode), A2u and E1u IR active, and B2g silent.

E 2C6 2C3 C2 3C ′2 3C ′′2 i 2S3 2S6 σh 3σd 3σv

Γeq 2 0 2 0 2 0 0 2 0 2 0 2

Table 3.2 – Characters for Γeq for monolayer graphene within the D6h group. When the character is equal to
zero, A and B atoms are exchange.

Figure 3.2 sketches the atomic displacements of the six Γ-point phonons in monolayer

graphene with the corresponding irreducible representation. We notice that the phonon

modes with A2u and E1g symmetry correspond the acoustic modes, while E2g and B2g cor-

respond to the optical ones.

iLO/iTO iLA/iTA

oTO oTA
x

y

z

E2g E1u

A2uB2g

Figure 3.2 – Atomic displacements and irreducible representations associated with the six Γ-point phonons in
monolayer graphene. The solid and open circles indicate the A and B atoms, respectively. The corresponding
phonon branch is indicated (see Fig. 2.4). E2g and E1u are doubly degenerated: red arrows corresponds to
transverse modes (T) and green arrows to longitudinal modes. Crossed and dotted points represent vectors
pointing in and out of the image plane. Only E2g is Raman active, E1u and A2u are acoustic modes and have
a zero frequency, and B2g is optically inactive.

K (′)-point phonons

Having studied the Γ-point phonons, we now turn to the K (′)-point phonons. We will focus

on K-point phonons but the results are similar for K ′-point phonons. The complete analysis
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can be found in Ref. [Dresselhaus07]. As illustrated in Fig. 3.3(a), among the 24 symmetries

of the crystal, only 12 are still symmetry operation for the K vector: E, σh, 2C3, 2S3, 3C2, 3σv .

Consequently, the group of the wavevector at the K point is D3h. The character table of this

group is displayed in Tab. A.7.
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Figure 3.3 – (a) Symmetry operation of the K vector in the Brillouin zone of monolayer graphene. The center
of the Brillouin zone Γ, and the three equivalent K and K ′ points, respectively, are indicated. The axis (along
kz axis) of the C3 and S3 operations is illustrated as a red dot. The horizontal σh reflection is in the kxkyy
plane. The axis of the C2 and the planes of the σv reflections are illustrated in black solid lines. (b) Top view
of the corresponding graphene monolayer with six atoms.

From the character table A.7, we see that

Γvec = A′′2 ⊕E′ ,

where z and (x,y) transform as A′′2 and E′, respectively. To find Γeq, we have to consider

the transformation of the two atoms in the unit cell under the symmetry operations of the

group D3h. To determine the characters of Γeq we can use the previous analysis made for

the D6h group. From Fig. 3.3, 3C2 and 3σv corresponds to the 3C ′′2 and 3σd in the crystal

symmetry (see Fig. 3.1). Therefore, with the help of Tab. 3.2, the character of E and σh is

2, and 0 for C2 and σv . However, the character of C3 and S3 is not 2 because under these

rotations K is invariant only with the addition of a reciprocal lattice vector. Hence, the phase

factor due to this reciprocal lattice vector has to be taken into account, and the character

is −1 [Dresselhaus07]. From the character table of D3h, we deduce immediately that the

irreducible representation of the equivalence representation is

Γeq = E′ .

Finally, the irreducible representation of the six K-point phonon modes is

Γvib = A′1 ⊕A′2 ⊕E′ ⊕E′′ . (3.3)

E′ and E′′ are doubly degenerate. The corresponding atomic displacements are drawn in
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Fig. 3.4. Note that due to the wavevector K , the periodicity is described by a supercell of six

carbon atoms.

(a) (b) (c)

(d) (e) (f)

Figure 3.4 – Atomic displacements and irreducible representation associated with the six K-point phonons.
The solid and open circles indicate the A and B atoms, respectively. The corresponding phonon branch is
indicated (see Fig. 2.4). The crossed and dotted points in (c) and (f) represent the vectors pointing in and
out of the image plane. The large and small points indicate the magnitudes of the vectors. Figure from
Ref. [Dresselhaus07].

3.2.3 Generalization to graphite

Let us briefly discuss the case of graphite with AB Bernal stacking. Because of this stacking,

graphite’s unit cell is composed of four atoms: the two atoms of the unit cell of two layers.

From the symmetry analysis, graphite belongs to the non-symmorphic D4
6h group [Ferrari13]

which point group is D6h as for the monolayer. The irreducible representation of the 12 Γ-

point phonons is [Ferrari13]

Γvib = 2
(

A2u ⊕B2g ⊕E2g ⊕E1u
)

. (3.4)

Compared to Γvib for the monolayer (see Eq. (3.2)), we notice that the graphite phonons have

the same irreducible representation. Indeed, the phonons in graphite can be deduced from

the vibrational modes in the two monolayers. These modes can be either in-phase or out-of-

phase [Nemanich77]. Therefore, the monolayer modes are said to become Davydov doublets

(see chapter 6). Only the phonon modes with E2g symmetry are Raman active. One is similar

to the E2g vibration in monolayer (in-phase combination of the E2g mode in the two layers),

the other corresponds to a rigid layer shear mode which is the out-of-phase combination of
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the acoustic modes E1u (see chapter 6 for more a detailed study of interlayer modes).

3.3 Group theory applied to 2Hc transition metal dichalcogenides

3.3.1 Bulk crystals

Symmetry analysis

As introduced in Chapter 2, this manuscript focuses only on 2Hc TMDs. The bulk primitive

cell is composed of two layers and has six atoms. Top and lateral views of the primitive cell

are highlighted in Figs. 3.5(a) and (b), respectively.
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Figure 3.5 – Symmetry operations of bulk 2Hc transition metal dichalcogenides. The primitive unit cell
contains two layers. Blue spheres represent metal atoms and orange spheres chalcogen atoms. (a) Top view
of the two layers. a1 and a2 are the in-plane primitive unit vectors. (b) Lateral view of the two layers. The
unit cell is highlighted by a dashed rectangle. The unit cell comprises six atoms: two metal atoms and four
chalcogen atoms. (c) Side view of the two layers. The axis of the C6, C3, C2, S6 and S3 is illustrated as red
dashed line. The horizontal σh reflection is shown as a light red plane. The light blue plane P alone is not a
symmetry operation but is part of S operations. The inversion center is drawn as a black dot. (d) Top view of
the layers. The unit cell is highlighted in gray. The axis of the C ′2 and C ′′2 are illustrated in black dashed and
solid lines, respectively. The former axis are lying in the σh plane and the latter in the P one. The vertical
planes for the σv and σd reflections are demonstrated as black dashed and solid lines, respectively. The red
dot represents the red dashed line in (c).

The Bravais lattice of the bulk crystal is hexagonal. To determine the crystal point group,

rotations accompanied by a translation of one layer along the out-of-plane direction (z axis
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in Fig. 3.5), namely screw axis and glide plane, also have to be taken into account. Note that

this translation does not belong to the Bravais lattice, since it is a translation of half the c

lattice parameter along the out-of-plane axis (z axis). Knowing this, there are 24 rotational

symmetry operations [Wilson69, Ribeiro-Soares14] that can be divided into two categories.

First, the rotations that belong to the space group (see Fig. 3.5): E, 2C3, 3C
′
2, 3C

′′
2 , i, 2S6, 2S3,

σh and 3σv . Second, the rotations that without the one layer translation do not belong to the

space group (see Fig. 3.5): 2C6, C2, 3σd .

Consequently, the point group of bulk 2Hc TMDs is D6h and thus the space group is the

non-symmorphic D4
6h group [Wilson69, Ribeiro-Soares14]. The character table of this space

group is displayed in Tab. A.6.

Irreductible representations of the Γ-point phonon modes

The primitive unit cell has six atoms. Therefore, bulk 2Hc TMDs exhibit 18 zone centrers (Γ)

phonons: 3 acoustic and 15 optical modes. The irreducible representations of these phonon

modes are given by the direct product Γvib = Γeq ⊗ Γvec, where Γeq denotes the equivalence

representation for the atomic sites and Γvec is the representation for the x, y and z real space

vectors [Dresselhaus07]. Since the group of the Γ point is the same as the point group of the

crystal, we need to consider the symmetry operations of D6h. From the character table A.6,

we see that

Γvec = A2u ⊕E1u ,

where z and x,y transform as A2u and E1u , respectively. To find Γeq, we have to consider the

transformation of the six atoms in the unit cell under the symmetry operation of the group.

We obtain the character table 3.3. From the character table of D6h, we deduce the irreducible

representation of the equivalence representation

Γeq = 2A1g ⊕B2g ⊕A2u ⊕ 2B1u .

Finally, the irreducible representation of the 18 Γ-point phonon modes is

Γvib = A1g ⊕ 2A2u ⊕B1u ⊕ 2B2g ⊕E1g ⊕ 2E1u ⊕E2u ⊕ 2E2g . (3.5)

E1g , E1u , E2u and E2g are doubly degenerate and correspond to the in-plane modes (in xy

plane), whereas A1g , A2u , B1u and B2g correspond to the out-of-plane mode (along z axis).

From the character table A.6, we see directly that A1g , E1g and E2g are Raman active, A2u and

E1u IR active, and B1u , B2g and E2u silent.

3.3.2 N -layer crystals

In N -layer 2Hc TMDs, the stacking order is maintained. Due to the lack of translation in-

variance in the out-of-plane direction (z axis), the primitive unit cell of the N -layer crystal

contains theN layers. Therefore, the symmetry operations are reduced from 24 in the bulk to
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E 2C6 2C3 C2 3C ′2 3C ′′2 i 2S3 2S6 σh 3σd 3σv

Γeq 6 0 6 0 2 0 0 2 0 2 0 6

all all 2 M 2 M 2 M all

Table 3.3 – Characters for Γeq for bulk 2Hc TMDs. The atoms that remain unchanged under each symmetry
operation are indicated. M stands for the metal atom. Note that C3 operations need a lattice vector and C ′2,
S3 and σh can be done independently in the two planes of the metal atoms.

12 in N -layer crystal, and the symmetry group of N -layer crystal is different from the bulk’s

one. Moreover, the symmetry groups of even and odd N are different. However, contrary to

the bulk, the space groups of N -layer crystal are symmorphic, i.e., there are no screw axis or

glide plane operations. To determine the crystal point group of N -layer crystals, we will use

N = 1 and N = 2 as examples for odd and even N , respectively.

Odd N

To analyze the symmetries of odd N , we are using the simplest case of monolayer N = 1. This

analysis can be easily generalized to any odd N . The 12 rotational symmetry operations are

(see Fig. 3.6): E, σh, 2C3, 2S3, 3C2 and 3σv . Consequently, the point group of monolayer and

more generally odd N -layer 2Hc TMDs is D3h and thus the space group is the symmorphic

D1
3h [Ribeiro-Soares14]. The character table of this group is displayed in Tab. A.7.
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Figure 3.6 – Symmetry operations of monolayer (N = 1) 2Hc transition metal dichalcogenides. Blue spheres
represent metal atoms and orange spheres chalcogen atoms. (a) Lateral view of the monolayer. The unit cell
is highlighted by a dashed rectangle. The unit cell comprises three atoms: one metal atoms and two chalcogen
atoms. (b) Side view of the monolayer. The axis of C3 and S3 is illustrated as red dashed line. The horizontal
σh reflection is shown as a light red plane. (c) Top view of the monolayer. The unit cell is highlighted in gray.
The axis of the C2 is drawn in black solid lines and is lying in the σh plane. The vertical planes for the σv
reflections are demonstrated as black solid lines. The red dot presents the red dashed line in (b).

Next, we find the irreducible representation of the Γ-point phonon modes. The primitive

unit cell of the N -layer crystal has 3N atoms. Therefore, N -layer 2Hc TMDs exhibit 9N Γ-

point phonons: 3 acoustic and 9N − 3 optical modes. In the case of the monolayer, there

are 9 modes. The irreducible representation of these modes is given by the direct product

Γvib = Γeq ⊗ Γvec. From the character table A.7, we see that

Γvec = E′ ⊕A′′2 ,
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where x,y and z transform as E′ and A′′2 , respectively. To find Γeq, we use the character

table 3.4 of the equivalence representation of the atomic sites. From this table we get

Γeq = 2A′1 ⊕A′′2 .

Finally, the irreducible representation of the 9 Γ-point phonon modes of the monolayer is

Γvib = A′1 ⊕E′′ ⊕ 2(A′′2 +E′). (3.6)

E′ and E′′ are doubly degenerate and correspond to the in-plane modes (in xy plane), whereas

A′1 and A′′2 correspond to the out-of-plane mode (along z axis). From the character table A.7,

we see directly that A′1 and E′′ are Raman active, A′′2 IR active, and E′ both Raman and IR

active.

E σh 2C3 2S3 3C2 3σv

Γeq 3 1 3 1 1 3

all M all M M all

Table 3.4 – Characters for Γeq for monolayer 2Hc TMDs. The atoms that remain unchanged under each
symmetry operation are indicated. M stands for the metal atom.

We can generalize this result to any odd N (N = 1,3,5, ...)

Γvib =
3N − 1

2
(A′1 ⊕E′′) +

3N +1

2
(A′′2 ⊕E′) . (3.7)

Note that we clearly observed the Davydov splitting in this equation (see Chapter 6).

Even N

To analyze the symmetries of even N , we are using the simplest case of bilayer N = 2. This

analysis can be easily generalized to any even N . The 12 rotational symmetry operations

are (see Fig. 3.7): E, 2C3, 3C2, i, 2S6 and 3σd . Consequently, the point group of bilayer and

more generally even N -layer 2Hc TMDs is D3d and thus the space group is the symmorphic

D3
3d [Ribeiro-Soares14]. The character table of this group is displayed in Tab. A.8.

As mentioned previously, in the case of the bilayer, there are 18 Γ-point modes. The

irreducible representation of these modes is given by the direct product Γvib = Γeq ⊗ Γvec.

From the character table A.8, we see that

Γvec = A2u ⊕Eu ,

where z and x,y transform as A2u and Eu , respectively. To find Γeq, we use the character

table 3.5 of the equivalence representation of the atomic sites. From this table we get

Γeq = 3A1g ⊕ 3A2u .
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Figure 3.7 – Symmetry operations of bilayer (N = 2) 2Hc transition metal dichalcogenides. Blue spheres
represent metal atoms and orange spheres chalcogen atoms. (a) Lateral view of the bilayer. The unit cell is
highlighted by a dashed rectangle. The unit cell comprises six atoms: two metal atoms and four chalcogen
atoms. (b) Side view of the bilayer. The axis of C3 and S6 is illustrated as red dashed line. The horizontal σh
reflection is shown as a light red plane. The inversion center is drawn as a black circle. (c) Top view of the
bilayer. The unit cell is highlighted in gray. The axis of the C2 is drawn in black solid lines and is lying in
the σh plane. The vertical planes for the σd reflections are demonstrated as black dashed lines. The red dot
presents the red dashed line in (b).

Finally, the irreducible representation of the 18 Γ-point phonon modes of the bilayer is

Γvib = 3(A1g ⊕A2u ⊕Eg ⊕Eu). (3.8)

Eg and Eu are doubly degenerate and correspond to the in-plane modes (in xy plane), whereas

A1g and A2u correspond to the out-of-plane mode (along z axis). From the character table A.8,

we see directly that A1g and Eg are Raman active, and A2u and Eu IR active.

E 2C3 3C2 i 2S6 3σd

Γeq 6 6 0 0 0 6

all all all

Table 3.5 – Characters for Γeq for bilayer 2Hc TMDs. The atoms that remain unchanged under each sym-
metry operation are indicated.

We can generalize this result to any even N (N = 2,4,6, ...)

Γvib =
3N

2
(A1g ⊕A2u ⊕Eg ⊕Eu). (3.9)

As for odd N , we explicitly observe the Davydov splitting in this equation.

3.4 Raman spectroscopy: generalities

When light propagates through a medium, most of it is either transmitted or absorbed, but

a very tiny fraction is scattered in all directions due to inhomogeneities inside the medium.

These inhomogeneities may be static such as defects in crystals, or dynamic like atomic vi-

brations or fluctuations in the charge or spin density in crystals. The former correspond to

elastic scattering of light (i.e., without frequency change) and is called Rayleigh scattering,
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while the latter correspond to inelastic scattering of light (i.e., with frequency change) and

is called Raman scattering from the name of one of his discoverer C. V. Raman (Nobel prize

in 1930).1 Note that only a tiny fraction of the scattered light (typically one photon over ten

millions) is scattered inelastically, which made this phenomenon difficult to observe before

the invention of the laser. Nowadays, the spectroscopy based on the Raman scattering of light

(known as Raman spectroscopy) is a widely used technique to study liquids, gases and solids.

In this section, we will focus on Raman scattering in crystals.2 First we will give a classical

picture of the light scattering (macroscopic approach) in crystals in order to obtain the basic

properties of Raman scattering, then we will present the quantum approach (microscopic

theory), and finally we will introduce the Raman activity and selection rules. This section is

largely based on [Yu10].

3.4.1 Classical picture of light scattering (macroscopic theory)

In the classical framework, the incoming light induces microscopic dipole moments by

disturbing the electronic charge distribution in the atoms of the crystal. The sum of all

these induced dipole moments will act as a macroscopic polarization P. This polariza-

tion is the source of a secondary electromagnetic field that corresponds to the scattered

light [Jackson99].

Light scattering

Let us assume that the incident light is a monochromatic sinusoidal plane wave. The incident

electric field is therefore equal to Ei(r, t) = E0(ki ,ω)cos(ωt − ki · r) where E0 is the amplitude

of the field, ki is the wavevector and ω the frequency. For the sake of readability, in the

following we will omit the dependencies of all the quantities. The polarization P is related to

the incident electric field by

P = ǫ0χEi , (3.10)

where χ is the electric susceptibility and represents the ability to disturb all the electronic

clouds out of their equilibrium configurations and ǫ0 is the vacuum permittivity. In general, χ

is a second rank tensor but without changing the result, we assume that the crystal is isotropic

so that χ can be represented by a scalar. Atomic vibrations act on χ because the electronic

density adiabatically adjusts to the nuclear motion to minimize the energy of the system. χ is

therefore a function of atomic vibrations. A given atomic vibration can be decomposed into a

sum of normal modes (i.e., phonons) therefore without loss of generality, we can consider the

atomic displacements u associated with one phonon of frequency Ω and wavevector q:

u = u0 cos(Ωt −q · r). (3.11)

1In the case of vibrations in crystals, one distinguishes scattering by optical and acoustic phonons. The latter
is known as Brillouin scattering.

2However, the results are general and also apply to molecules.
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As χ varies with u, it can be expanded as a Taylor series with u. The first order expansion

reads

χ = χ0 +

(

�χ

�u

)

0

·u. (3.12)

The subscript 0 stands for the equilibrium position of the atoms. The electric susceptibility

splits into a static and a dynamic u-dependent part. Inserting Eqs. (3.11) and (3.12) into

Eq. (3.10) yields,

P = ǫ0

[

χ0 +

(

�χ

�u

)

0

·u0 cos(Ωt −q · r)
]

E0 cos(ωt −ki · r). (3.13)

Finally,

P = ǫ0χ0E0 cos(ωt −ki · r) +
1

2
ǫ0

(

�χ

�u

)

0

·u0E0

{

cos[(ωi +Ω)t − (ki + q) · r]

+ cos[(ωi −Ω)t − (ki −q) · r]
}

. (3.14)

This equation constitutes the conceptual core of light scattering since P will act as a secondary

source of scattered radiation. It contains three distinctive terms:

1. The first one oscillates at the same frequency ωi as the incident light and has the same

wavevector ki . As a results, this term is responsible for the elastic Rayleigh scattering.

Note that this light does not give any information on the phonons.

2. The second one oscillates at a frequency ωs = ωi +Ω and has a wavevector ks = ki + q.

Therefore, this term represents inelastic light scattering. The scattered light is blue-

shifted with respect to the incoming light, thus this process corresponds to the annihi-

lation of a phonon of frequency Ω and wavevector q. It is called anti-Stokes scattered
light.

3. The third one oscillates at a frequency ωs = ωi −Ω and has a wavevector ks = ki − q.
It gives rise to inelastic scattered light which is red-shifted with respect to the inci-

dent light. This process corresponds to the creation of a phonon of frequency Ω and

wavevector q. It is known as the Stokes scattered light.

Note that in this classical approach,
(
�χ
�u

)

0
represents the light-matter interaction. If this term

is equal to zero, there is no light-matter interaction. This simple approach allows us to obtain

the two fundamental relations for Raman scattering

~ωi = ~ωs ± ~Ω, (3.15)

ki = ks ±q, (3.16)

where the + correspond to the Stokes process and the − to the anti-Stokes. The former relation

expresses the conservation of energy while the latter corresponds tomomentum conservation.

The processes studied here correspond to first-order Raman processes because they involve
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only one phonon. However, the expansion in Eq. (3.12) can be extended to higher orders in

u. This will give rise to multiple-phonon Raman scattering (e.g., second order give rise to

two-phonon processes). In that case, Eqs. (3.15) and (3.16) still hold if Ω and q are the sum

of all the phonon frequencies and wavevectors, respectively. At last, let us precise that in

Raman experiments the incident light is usually in the visible range and that in the case of

crystals the maximum phonon frequency is about 1012 − 1013 Hz [Fox10]. Therefore, from

Eqs. (3.15) and (3.16), the maximum possible value of |q| is ∼ 107 m−1. This is very small

compared to the typical size of the first Brillouin zone (∼ 1010 m−1). Hence, one-phonon
Raman scattering in crystals probes only zone-center phonons, i.e., phonons with q ≈ 0.

However, multiple-phonon Raman scattering can probe others points of the first Brillouin

zone but the total phonon wavevector must be (almost) equal to zero. This is especially the

case in graphene, as we will see in Chapter 5.
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Figure 3.8 – Schematic representation of a typical Raman spectrum showing the Rayleigh, Stokes and anti-
Stokes lines. The spectrum is represented as a function of the Raman shift δ usually expressed in wavenumber
(cm−1).

Typical spectrum

Figure 3.8 sketches the typical spectrum of the scattered light. It is composed of three fea-

tures: the Stokes, anti-Stokes and Rayleigh lines.3 The two first are symmetrically located

from both sides of the Rayleigh line. Their positions with respect to the Rayleigh line do not

depend on the position of the latter (i.e., the frequency of the incident light ωi ) but only on

the material (i.e., the different possible value of the phonon frequency Ω). Therefore, it is

more convenient to represent the spectrum of the scattered light as a function of the Raman
shift δ defined as

δ = ωi −ωs. (3.17)

This quantity is generally express as a wavenumber in cm−1. It is equal to 0 for the Rayleigh

line, and to +Ω (positive) and −Ω (negative) for the Stokes and anti-Stokes lines, respectively

(see Fig. 3.8). Note that every Raman process has a Stokes and anti-Stokes feature. Hence, if

a line is present only in one side of the spectrum, it is an artifact (such as a cosmic ray).

3One can say that light scattering somehow looks alike the frequency modulation (FM) in radio transmission
where the role of the carrier wave is played by the incident light.
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Raman tensor

As mentioned previously, the polarization P acts as a secondary source for the scattered light.

In fact, the microscopic oscillating induced dipoles serve as small antennas that emit the

scattered field. From the total power emitted by an oscillating dipole [Jackson99], we deduce

that the Raman scattered intensity is proportional to

I ∝ ω4
s

∣
∣
∣
∣
∣
∣
es ·

(

�χ

�u

)

0

·u0E0

∣
∣
∣
∣
∣
∣

2

= ω4
s

∣
∣
∣
∣
∣
∣
es ·

(

�χ

�u

)

0

· u0|u0|
ei

∣
∣
∣
∣
∣
∣

2

|u0|2 |E0|2 , (3.18)

where ei (es) is the unit vector of the polarization of the incident (scattered) field. We notice

that I is proportional to the intensity of the incident light |E0|2 and to the square of the

amplitude of vibration |u0|2, i.e., there is no scattering if no vibrations are present. This is a

direct consequence of the classical treatment and we will see later that it is not true. Note

that, I depends on the fourth power of ωs. Consequently, short wavelengths are scattered

more efficiently than long wavelengths. Up to now for the sake of simplicity, we assumed

that χ is a scalar. However, in general it is a second rank tensor. Therefore,
(
�χ
�u

)

0
is also a

tensor. The Raman tensor is defined as

R =

(

�χ

�u

)

0

· u0|u0|
, (3.19)

and the Raman intensity in Eq.(3.18) can be express as

I ∝ ω4
s |es · R · ei |2 |u0|2 |E0|2 . (3.20)

The Raman tensor has the same symmetry as the corresponding phonon. It is worth men-

tioning that if the Raman tensor is null then the corresponding phonon is not observable in

Raman experiments. On the other hand, if the phonon mode is visible, Eq. (3.20) can be used

to predict if this mode is observable or not under a given experimental geometry, i.e., a cer-

tain choice for the polarizations ei and es. These are the so-called Raman selections rules.
We will come back later in more detail on these rules.

3.4.2 The quantum approach (microscopic theory)

The classical approach allows us to deduce the two fundamental conservation laws of Raman

scattering, to define the Raman tensor and to determine the dependence of the Raman in-

tensity especially on the polarization of the incident and scattered light. But this description

has some severe shortcomings. In particular, in this picture the incoming photon interacts

directly with a phonon. As the frequency of the photons (at least in the visible range) is much

higher than the one of the phonons, such direct interactions are very weak [Yu10]. However,

the coupling of photons and electrons is much stronger. Therefore, even if electrons remain

globally unchanged, they play a very important role in Raman scattering.
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Figure 3.9 – (a) Anti-Stokes (left) and Stokes (right) processes. ωi , ωs and Ω are the frequencies of the
incident light, scattered light and phonon, respectively. The system is initially in state |i〉 and comes back
to this state after the process. States |e1〉 and |e2〉 are intermediate states that can be either real or virtual.
(b) Summary of Rayleigh and Raman scattering processes in resonant and non resonant conditions. Figure
adapted from Ref. [Ferrari13].

Microscopic description of the scattering process

In the quantum framework, the Raman scattering procces can be separated into three steps

(see Fig. 3.9(a)):

1. The system is initially in the state |i〉. The incident photon ωi excites an electron into an

intermediate state |e1〉 by creating an electron-hole pair (or an exciton). The electron-

photon interaction is described by the Hamiltonian He-l.

2. The electronic intermediate state |e1〉 interacts with the lattice by emitting (Stokes) or

absorbing (anti-Stokes) a phonon of frequency Ω and is converted into another inter-

mediate state (or electron-hole pair) |e2〉. The electron-phonon interaction Hamiltonian

is He-v.

3. The intermediate state |e2〉 deexcites into the initial state |i〉 by recombining the electron-

hole pair with the emission of the scattered photon ωs. The electron-photon interaction

is described by the Hamiltonian He-l.

The intermediate states |e1〉 , |e2〉 can be either real states (i.e., correspond to eigenstates of

the system) or virtual states (i.e., do not correspond to eigenstates of the system).4 Note

that virtual transitions do not have to conserve energy, although they still have to conserve

4In the classical language, it corresponds to the driven oscillations of the electrons at ωi or ωs .
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momentum.5 If at least one of these two states is real, the process is said to be resonant.
More precisely, if |e1〉 (|e2〉) is real the process is referred to as an incoming (outgoing) reso-

nance. Rayleigh scattering is described similarly but with only one intermediate state since

no phonon is involved. The different scattering processes are summed up in Fig. 3.9(b). One

may wonder what is the difference between resonant scattering process and luminescence.

First, luminescence process involves only real states. Second, if the scattering is fully reso-

nant (i.e., all the states are real), luminescence differs from scattering because luminescence

takes a finite time to occur, while scattering is an instantaneous phenomenon. In addition,

luminescence is more efficient than scattering. Because scattering is instantaneous, the order

of the interactions described above does not matter and all possible permutations of these

interactions can describe the process. In total there are six possibilities [Yu10].

ωi
Ω

ωse1 e2

He-l He-lHe-v

Figure 3.10 – Feynman diagram of the Raman Stokes process described in the main text and in Fig. 3.9. The
incident and scattered light have a frequency ωi and ωs, respectively. The emitted phonon has a frequencyΩ.
|e1〉 and |e2〉 are the two electronic intermediate states. The interaction Hamiltonian for the three vertex is
denoted: He-l for the electron-photon interaction and He-v for the electron-phonon interaction. Due to time
reversal invariance, this diagram can also be read from right to left. This order represents the anti-Stokes
process.

Feynman diagrams

The Raman intensity is proportional to the probability of the six possible processes described

above. As long as the interactions are weak enough, the probability can be calculated using

third-order perturbation theory. This is fundamentally different from the classical theory,

where Raman is viewed as a one order perturbation because photons directly interact with

phonons. However, in the quantum framework they interact through electrons. The calcula-

tion can be done with the help of Feynman diagrams. To simplify, let us focus on the Stokes

process. Each of the six possibilities for the Raman process described above is represented by

one Feynman diagram. Figure 3.10 shows one out of the six Feynman diagrams correspond-

ing to the process depicted in detail previously (see also Fig. 3.9(a)). As a consequence of time

invariance, the Feynman diagram can also be read from right to left. This case corresponds to

the anti-Stokes process. The other five possible permutations of the interactions in the Raman

process are presented in the Fig. 7.28 of Ref. [Yu10]. However, the order shown in Fig. 3.10

gives the strongest contribution, especially in the vicinity of electronic resonances. There-

fore, we will only consider this term in the scattering probability. The Feynman diagram in

5This can be understood by the fact that this transitions are instantaneous. Therefore, from the uncertainty
principle, the energy is not conserved. On the other hand, there no specific constrains on the position and thus
momentum is conserved.
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Fig. 3.10 can be translated into a scattering probability using the Fermi Golden rule [Yu10]

IS ∝

∣
∣
∣
∣
∣
∣
∣
∣

∑

|e1〉,|e2〉

〈i |He-l |e2〉〈e2|He-v |e1〉〈e1|He-l |i〉
[~ωi − (E1 −Ei )][~ωs − (E2 −Ei )]

∣
∣
∣
∣
∣
∣
∣
∣

2

with ~ωs = ~ωi − ~Ω, (3.21)

where Ei , E1 and E2 are the energy of the states |i〉, |e1〉 and |e2〉, respectively. The summation

is on all the intermediate states |e1〉 and |e2〉. For simplicity, Ei is often taken to be equal to

zero. To avoid any unphysical divergence in the scattering probability, one needs to take into

account the damping constant Γ (or in other words the lifetime τ = Γ−1) of the intermediate

states by replacing E1 and E2 by E1 − iΓ1 and E1 − iΓ2, respectively. But here, we will neglect

this broadening. The rigorous scattering probability with the six Feynman diagrams is ex-

pressed in Eq. (7.50b) in Ref. [Yu10]. Note that Eq. (3.21) is generally not used to compute

Raman intensity because the matrix elements in the numerator are often difficult to evaluate.

However, under resonance conditions, it is common to assume that the numerator is con-

stant and integrate over all possible intermediate states |e1〉 and |e2〉 [Reich08] (see Chapter 5
Section 5.1).

Stokes and anti-Stokes intensities

Since phonons are Bosons, at thermodynamic equilibrium, the average number of phonons of

frequency Ω at a temperature T is given by the Bose-Einstein distribution

nv =
1

exp(~Ω/kBT )− 1
, (3.22)

where kB is the Boltzmann constant. We recall that the Stokes (anti-Stokes) process involves

the creation (annihilation) of a phonon. Therefore, the electron-phonon interaction Hamil-

tonian He-v in Eq. (3.21) includes the phonon creation and annihilation operator, respec-

tively. Let us assume that initially there are n phonons in the crystal, i.e., |e1〉 ∝ |nv〉. For

a Stokes process, after the scattering there will be nv + 1 phonons, thus |e2〉 ∝ |nv +1〉 and
〈e2|He-v |e1〉 ∝ (nv+1)1/2. Similarly, for an anti-Stokes process |e2〉 ∝ |nv − 1〉 and 〈e2|He-v |e1〉 ∝
n1/2v [Cohen-Tannoudji79]. As a consequence, IS is proportional to nv +1 and IAS to nv [Yu10].

To make the link with Eq.(3.20), one has to replace |u0|2 by a term proportional to nv + 1 or

nv [Cardona83]. This has two important consequences. First, even in the absence of phonons

(i.e., nv = 0) the Stokes intensity IS is different from zero. Second, the ratio IAS/IS is propor-

tional to the Boltzmann factor exp(−~Ω/kBT ). This is the reason why the anti-Stokes feature

has, in general,6 a lower intensity than the Stokes one, as drawn in Fig. 3.8. Finally, let us

point out that the ratio of the Stokes to anti-Stokes intensities may be used to determine nv
and the temperature T .

3.4.3 Raman selection rules

6Due to resonance effect the anti-Stokes feature can be more intense than the Stokes one. For instance in
N -layer MoTe2 see Ref. [Goldstein16].
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Raman selection rules on activity

To find out whether a particular vibrational normal mode is observable in Raman scattering

(Raman active) or not (Raman inactive), wemust examine thematrix element
〈

ψf
∣
∣
∣HRaman

∣
∣
∣ψi

〉

,

where ψi is the initial state of the crystal, ψf the normal mode that may be excited andHRaman

is the Hamiltonian of the Raman process [Dresselhaus07]. The vibrational mode is Raman

active if this matrix element is non zero. Let Γi , Γf and ΓRaman be the irreducible represen-

tations of ψi , ψf and HRaman, respectively. The matrix element does not vanish if the direct

product ΓRaman ⊗ Γi contains Γf [Dresselhaus07]. In general,
∣
∣
∣ψi

〉

corresponds to the ground

state of the crystal which is totally symmetric. Therefore, ΓRaman ⊗ Γi = ΓRaman and more sim-

ply a given vibration mode is Raman active if its irreducible representation is contained in

the irreducible representation of HRaman. As HRaman is proportional to the Raman tensor which

is a symmetric second rank tensor,7 it has the same transformation properties as a general

quadratic form (e.g., x2, y2, z2, xy, yz, zx, . . . ) [Dresselhaus07]. Hence, ΓRaman is directly ob-

tained by identifying the quadratic basis function in the character table. In conclusion, if a

given normal mode has an irreducible representation with a quadratic basis function, it is

Raman active, otherwise it is not. Let us precise that a similar rule apply for multi-phonon

processes. For instance in a second-order Raman process, a combination of two modes Γv1

and Γv2 is Raman active if the irreducible decomposition of Γv1 ⊗ Γv1 contains at least one

Raman-active irreducible representation [Dresselhaus07]. In particular, as the direct product

of a representation with itself always contains the identity representation, which transforms

as a combination of x2, y2, z2, all second-harmonic modes at 2Ω (if Ω is the frequency of

the mode) are Raman-active. Therefore, silent modes that cannot be observed in first-order

spectrum may be observable in second-order spectrum.

Similarly, we can determine if a particular vibrational mode is infrared (IR) active follow-

ing the same procedure. But in that case,HIR transforms as a vector [Dresselhaus07] (because

it corresponds to an electric dipole transition), i.e., ΓIR = Γvec (see Section A.4). In short, if a

given normal mode has an irreducible representation with a linear basis function (e.g., x, y,

z, (x,y), . . . ), it is IR active, otherwise it is not. Note that some modes are both Raman and IR

active, while others are neither Raman active nor IR active. The latter are called silentmodes.
Raman and IR spectroscopies are complementary techniques since IR processes couple states

with opposite parity, while Raman processes couple states with the same parity.

These rules were already applied in Sections 3.2 and 3.3 to determine the Raman or IR

activity of the phonon modes.

Raman selection rules on polarizability

In practice, even if a given vibrational mode is Raman active, it not necessarily experimentally

observable depending on the geometry of the setup. Indeed, as shown in Eq. (3.20), the Ra-

7Rigorously, it is only symmetric if we can neglect the frequency difference between ωi and ωs . However, this
is the case for crystals and visible light.
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man intensity depends on the polarization of the incident ei and scattered es light following

the relation

I ∝ |es · R · ei | , (3.23)

where R is the Raman tensor of a particular mode. Since, the Raman tensor has the same

symmetry as the corresponding mode, one can deduce the general form of the tensor which

can be represented as a 3×3 matrix. For the different crystallographic point group, R. Loudon

has tabulated [Loudon64] the general form of the 3×3 matrices of the Raman tensors (assum-

ing a symmetric tensor) for the Raman active modes. Note that there are as many tensors as

the dimension of the irreducible representation.

�

�

�

����

��

��
�

Figure 3.11 – Scattering configuration used for all the Raman measurements in this thesis. ki and ks are the
wavevectors of the incident and scattered light, respectively. As they are antiparallel, this geometry is said
to be the backscattering one. ei and es are the unity vectors of the polarization of the incident and scattered
light, respectively. es is in the xy plane and makes a angle θ with x axis (or ei). The sample (here a monolayer
TMDs) lies in the yz plane.

To illustrate the Raman selection rules, let us take the example of the monolayer TMDs

studied in Section 3.3.2. From Eq. (3.7), the irreducible representation of the Raman active

modes at Γ are A′1, E
′′ and E′. The most common scattering geometry for studying 2D crystals

is the backscattering one, i.e., ki and ks are antiparallel to each other. Let us assume that ki
and ks are along the z axis, that the incident light is linearly polarized (ei ) along the x axis,

that the scattered light is chosen8 to be linearly polarized (es), in the xy plane, along an axis

making an angle θ with the x axis, and that the monolayer lies in the yz plane (see Fig. 3.11).

Note that a given scattering configuration is usually represented as ki(ei ,es)ks [Yu10]. The

8In practice, a polarizer is used to select the linear polarization, see Chapter 4.
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Raman tensor for this configuration are given by [Loudon64]

R(A′1) =














a 0 0

0 a 0
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, (3.24)

where a,b,c,d ∈ C. It is worth noticing that, as E′ and E′′ are representation of dimension two,

there are two Raman tensors. Applying Eq.(3.23) yields to the following Raman selection

rules

∣
∣
∣es · R(A′1) · ei

∣
∣
∣
2
= |a|2 cos2θ, (3.25)

∣
∣
∣es · R(E′)x · ei

∣
∣
∣
2
= |d |2 sin2θ, (3.26)

∣
∣
∣es · R(E′)y · ei

∣
∣
∣
2
= |d |2 cos2θ, (3.27)

∣
∣
∣es · R(E′′) · ei

∣
∣
∣
2
= 0. (3.28)

Consequently, phonon modes with E′′ symmetry are not observable in backscattering geome-

try. To be observable, these two modes require the polarization to have a non-zero component

along z. For θ = 0 (i.e., es = ei ), the phonon modes with A′1 and E′ symmetry are observable.

This configuration is usually denoted z(x,x)z or XX and is called the parallel configuration.

For θ = π
2 (i.e., es ⊥ ei ), only the phonon modes with E′ symmetry are observable. This config-

uration is often denoted z(x,y)z or XY and is referred to as the perpendicular configuration.

For θ ∈]0, π2 [, the phonon modes with A′1 and E′ symmetry are observable. Interestingly, the

intensity of the phonon modes with E′ symmetry is constant since ∀θ,cos2θ + sin2θ = 1. In

conclusion, among the seven Raman active phonon modes at Γ only five are observable in this

configuration including one which is not visible in the perpendicular configuration. Note

that in principle, by measuring the Raman intensity for different θ it is possible to determine

|a|. Inversely, by using different configurations, it is possible to identify the symmetry of the

Raman tensor and thus the symmetry of the underlying phonon. For instance in the example

above, the parallel and perpendicular configurations allow to distinguish between the A′1 and

E′ modes.

3.5 Conclusion

In conclusion, we have successfully applied group theory to graphene, and to N -layer and

bulk 2Hc transition metal dichalcogenides in order to derive the phonon symmetries. In
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addition, we have introduced Raman scattering in a classical and quantum framework. We

have established the two fundamentals laws (energy and momentum conservation) and the

expressions of the Raman intensity, defined the Raman tensor and given the Raman selection

rules. All these results will be particularly useful for the Chapters 5 and 6.

Take home messages

• Group theory is an extremely powerful tool to predict the vibrational properties of lay-

ered materials.

• The Raman intensity is highly sensitive to the symmetry of the phonons and is directly

related to the scattering probability.

• In graphene, there is only one Raman-active mode at Γ (see Chapter 5).

• Depending on the parity of N , N -layer 2Hc transition metal dichalcogenides belongs to

different space groups. The irreducible representations of the phonons at Γ are given by

Eqs. (3.7) and (3.9) for odd and even N , respectively. In particular, multiple phonons

with same symmetry give birth to the Davydov splitting studied in detail in Chapter 6.
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Chapter 4

Experimental methods

The experimental methods used in this thesis are described in this chapter. The first part presents the
fabrication techniques used to prepare the different types of samples studied in this work, namely
graphene, N -layer transition metal dichalcogenides, van der Waals heterostructures and electro-
chemically top-gated graphene field-effect transistors. The second part is dedicated to our exper-
imental setup, with which Raman and photoluminescence measurements can be performed under
ambient conditions with electrical access. Finally, the third part is devoted to the optical interference
effects that occurs in quasi two-dimensional samples deposited onto layered substrate. However, the
mathematical treatment of these effects is presented in Appendix C.

4.1 Sample fabrication

In this section, we introduce the techniques used to fabricate the three different types of

samples. N -layer TMDs deposited onto silicon (Si) substrate covered with a ∼ 100 nm-thick

silicon oxide (SiO2) epilayer are used for the Raman and PL studies in Chapters 6 and 7. Van

der Waals heterostructures based on graphene and TMDs are exploited in Chapter 8 to inves-

tigate the heterolayer coupling by mean of Raman and PL spectroscopy. Dual-gated graphene

FETs, with a solid state back gate and an electrochemical top gate, are used in Chapter 5 to

study the electrical tuning of the optoelectronic properties of graphene by Raman scattering.

4.1.1 Mechanical exfoliation

Although, mechanical exfoliation of layered crystal using adhesive tape has been known

for decades [Frindt66], this technique was popularized only recently by Geim and

Novoselov [Novoselov04, Novoselov05b]. This method is commonly called ‘Scotch-tape

technique’. To date, it is the most utilized way to produce monolayers and few layers of

graphene and TMDs. As surprising as it may sound, this technique has so far provided crys-

tallites of unmatched quality.
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All samples studied in this thesis were prepared by mechanical exfoliation following two

slightly different protocols. The first one corresponds to the standard procedure and is used

to exfoliate graphene. The the second one involves one supplementary step with a viscoelastic

polymer and is used to exfoliate TMDs. The two protocols are described in detail below.

Graphene exfoliation

All graphene samples were obtained from natural graphite using the standard ‘Scotch-tape

technique’. This technique can be summarized in the following steps (see Fig. 4.1 for the

illustration of each step):

1. Put a graphite piece on an adhesive tape.

2. Fold the adhesive tape and open it delicately to increase the surface.

3. Stick another adhesive tape to the first adhesive tape and press delicately on it.

4. Peel off slowly the two adhesive tapes and keep the first, repeat steps 2 and 3 with that

adhesive tape until transparent zones appear.

5. Stick the adhesive tape with thin transparent graphite on a substrate and massage it

with a finger by applying a moderate pressure, for a few minutes.

6. Peel off slowly the adhesive tape from the substrate.

1. 3.2.

4. 5. 6.

Figure 4.1 – Photos of the six steps of the standard ‘Scotch-tape technique’ used to exfoliate graphene. The
steps are described in the main text.

The substrates used are highly p-doped Si substrates covered with a thermally grown 90-

nm or 285-nm SiO2 epilayer (these thicknesses are well-suited for optical microscope identi-

fication, see Section 4.3). The substrates are typically 1 cm × 1 cm. Prior to deposition (step
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5), the substrates are cleaned with acetone, ethanol and isopropyl alcohol in an ultrasonic

bath for 10 min each time. Then they are heated up to about 120 ◦C to remove residual sol-

vent and water molecules. Finally, they are surface-activated by exposure to a 10 min oxygen

plasma to improve the adhesion of the graphene flakes on the substrate. Since the surface

activation remains for a few minutes, step 5 has to be done as quickly as possible after the

oxygen plasma exposure.

This exfoliation technique produces flakes with different sizes and thicknesses randomly

distributed over the sample substrate as it can be seen with the naked eyes. Among all these

fragments only a small fraction are atomically thin. We can detect the interesting flakes

under an optical microscope by using the optical contrast variation with the number of lay-

ers [Blake07, Roddaro07]. Indeed, one layer of graphene absorbs about 2.3 % of the visible

light (see Chapter 2 Section 2.1) and in first approximation, the absorptance of few layers

is proportional to the number of layers (see Appendix C Section C.2). In addition, this de-

tection is made easier by a suitable choice of oxide thickness due to interference effects (see

Section 4.3). The positions of the regions of interest are then located with respect to an ori-

gin (usually a corner of the substrate). A trained eye can easily identify monolayers from

few layers. However, the exact number of layers is further confirmed by Raman (or AFM)

measurements (see Chapter 5 Section 5.1).

Transition metal dichalcogenides exfoliation

All TMDs samples were obtained from synthetic bulk crystals purchased from 2D Semicon-
ductors orHQ Graphene using a slightly modified ‘Scotch-tape technique’. This modified tech-

nique involves the use of a viscoelastic substrate. Viscoelastic materials exhibit both viscous

and elastic properties: at short timescales it behaves as an elastic solid and at long timescales

it flows slowly [Meitl06]. Here, we employ commercially available viscoelactic films (Gel-Pak

4) based on Polydimethylsiloxane (PDMS). We choose to work with commercial films and not

with homemade PDMS films because they are flatter [Castellanos-Gomez14]. TMDs are exfo-

liated onto the same Si/SiO2 substrates as graphene. These substrates are prepared following

the same exact protocol.

This modified exfoliation technique can be summarized in the following steps (Fig. 4.2

for the illustration of each step):

1. to 4. Same steps as the standard ‘Scotch-tape technique’ (see description above and

Fig. 4.1) but less one repetition of steps 2 and 3.

5. Stick the adhesive tape to the viscoelastic substrate and massage it with a finger by

applying moderate pressure, for a few minutes. Let in contact for few more minutes an

apply eventually a uniform pressure with a small weight.

6. Peel off very quickly the adhesive tape from the substrate. Peeling off with sufficiently

high velocity leads to the adhesion of the flakes to the viscoelactic film [Meitl06].
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5. 6.

7. 8.

Figure 4.2 – Photos of the four last steps of the modified ‘Scotch-tape technique’ used to exfoliate TMDs. The
steps are described in the main text.

7. Turn the Si/SiO2 substrates upside down and press carefully against the viscoelastic

film. Leave in contact for some minutes and facultatively apply a uniform pressure

with a small weight.

8. Peel off very slowly the Si/SiO2 substrate from the viscoelastic film. Peeling off with

sufficiently low velocity causes the flakes to separate from the viscoelastic film and to

adhere preferentially to the Si/SiO2 substrate [Meitl06].

Compared to the standard ‘Scotch-tape technique’, this modified technique deposits less

materials onto the Si/SiO2 substrate. However, the size of the flakes is larger. Note that for

graphene, standard exfoliation leads to better results. All the exfoliated TMDs were found to

degrade over tens of days in ambient conditions [Qiu12, Tongay13, Nan14, Lee15a, Gao16].

Therefore, the samples were stored in vacuum. In the case of MoTe2, the aging effects were

found to be even faster (few days), especially for theMoTe2 crystals provided byHQGraphene.
Consequently, all the data presented in this manuscript were obtained on freshly exfoliated

samples.

4.1.2 All-dry transfer technique

To fabricate van der Waals heterostructures of 2D crystals, we have developed an all-dry

transfer technique based on the work of A. Castellanos-Gomez [Castellanos-Gomez14].

This technique utilizes a viscoeleactic film as a stamp to deterministically transfer a given

flake onto a user-defined location on an acceptor surface, like another 2D crystal or a pre-

patterned substrate (e.g., with trenches to obtain freely suspended samples). Such deter-

ministic transfer is possible owing to the viscoelastic properties of the stamp [Meitl06]

and to the fact that 2D crystals adhere preferentially to the acceptor surface rather to the

stamp [Castellanos-Gomez14]. Therefore, peeling off with low velocity causes the flakes to
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be transferred.

In brief, this transfer technique is similar to the modified ‘Scotch-tape technique’ de-

scribed above, except that the random transfer of the flakes is replaced by the positioning

and transfer of a given flake to the target surface. This desired positioning is achieved using a

Karl Suss MJB3 mask aligner. Such commercial system has the advantage to be optimized for

accurate alignments at sub-micrometer resolution. The viscoelactic films employed are also

the commercial PDMS Gel-Pak 4.

(a) (b) (c)

(d) (e)

PDMS

Figure 4.3 – Photos of the all-dry transfer technique. (a), (b) and (c) illustrate the preparation of the vis-
coleslactic stamp on the mask glass slide (see Section 4.1.1). (d) An optical microscope is used to identify and
locate the interesting flakes. (e) Photo of the Karl Suss MJB3 mask aligner employed to align the viscoelactic
stamp with the target substrate and to bring them into contact.

This all-dry transfer technique is illustrated in Fig. 4.3 and can be summarized in the

following steps:

1. Exfoliate the desired 2D crystals onto the viscoelactic stamp following steps 1 to 6 of

the modified ‘Scotch-tape technique’ (see Section 4.1.1). Prior to exfoliation, stick the

viscoelactic film to a mask glass slide.

2. Identify and locate an interesting flakes at the surface of the stamp by optical contrast

under a optical microscope.

3. Place the target substrate in the mask aligner by sticking it to the stage with double side

adhesive tape. The acceptor substrate being first prepared for instance by exfoliating

and detecting another 2D crsytals or by pre-patterning it.

4. Turn down the mask glass slide and put it in the mask aligner.
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5. Carefully align the flake on top of the target substrate.

6. Cautiously bring the acceptor substrate and the viscoelastic film in contact. Once in

contact, do not press further the stamp against the target substrate in order to not in-

duce strain and bubbles in the transferred flake [Castellanos-Gomez14].

7. Peel off very slowly the stamp from the acceptor subtrate.

Transfer

Stamp Target substrate

before

after after

before

20 µm

(a) (b)

Figure 4.4 – (a) Cartoon of the transfer process extracted from Ref. [Castellanos-Gomez14]. (b) Optical
images of the surface of the PDMS stamp (left) and the target substrate (right). Before the transfer: a graphene
flake was exfoliated and detected on a PDMS film. The flake is highlighted with a dashed line. A monolayer
of MoSe2 was exfoliated and detected onto a Si/SiO2 substrate. After the transfer: almost all the graphene
flake has disappeared on the PDMS stamp. Most of the graphene layer was transferred on top of the MoSe2
sheet. Note that during the transfer process the graphene flake cracked.

Figure 4.4 shows an example of a van der Waals heterostructure made by transferring a

monolayer of graphene on top of a monolayer of molybdenum diselenide (MoSe2). The top

photos display the surface of the PDMS stamp and the surface of the acceptor substrate before

the transfer. The MoSe2 flakes was exfoliated with the modified ‘Scotch-tape technique’ and

detected under an optical microscope. Then the bottom photos exhibit the same surfaces but

after the transfer. We notice that almost all the graphene flake was transferred to the target

substrate. But a part of graphene monolayer broke during the process. This happens some-

times especially for ‘large’ flakes. However, the graphene flake covers a part of the MoSe2

sheet (see Chapter 8 for the characterization of this heterostructure). It is worth mentioning
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that for such structures, the entire process, from the exfoliation on the target substrate to the

transfer, is done in a clean room as quick as possible to avoid oxidation and contamination of

the flakes. In practice, it can be done in 2 hours.

Finally, let us precise that this technique has the advantage not to involve any sacrificial

layer. Therefore, the all-dry technique presented here is well adapted for the fabrication of

clean suspended samples and is now widely used in the team to fabricate such samples. Let

us precise that a dedicated transfer setup is currently being built in our group by Etienne

Lorchat, PhD student. This setup will be more stable compare to the old MJB3 and also offer

the possibility to heat the sample in order to improve the interface quality or to used the ‘hot

pick-up technique’ [Pizzocchero16] (see Chapter 2 Section 2.3.1).

4.1.3 Fabrication of graphene field-effect transistors

The dual gated graphene field-effect transistors studied in Chapter 5 were fabricated fol-

lowing standard microfabrication processes in the STnano cleanroom. Source, drain and

gate electrodes are made by photolithography, followed by metal deposition. A second pho-

tolithography step is performed to coat the source and drain electrodes with a thick resist.

Then the electrochemical top gate is drop-casted. Finally, the metal contacts on the sample

are connected to a chip carrier by thin gold wires glued to the contacts with silver epoxy. The

main fabrication steps are summarized in Fig. 4.5 and described in more detail below.

resistΩ

Si/SiO2

graphene

Si/SiO2

UV

Si/SiO2

(a)

Si/SiO2

(c)(b)

(e)

Si/SiO2

(f)
Gold

Si/SiO2

(d)

Figure 4.5 – Schematic summary of the fabrication steps. (a) Spin-coating of the negative photo-sensitive
resist. (b) Mask alignment and UV exposition. (c) Development of the sample. The non-expose resist is
washed away by the developer solution. (d) Metal deposition. (e) Lift-off of the resist. (f) Manual wire
bonding. Electrodes are connected to the chip carrier by means of thin gold wires glued with conductive
silver epoxy.

Photolithography Photolithography (or optical lithography) is a powerful technique to fab-

ricate micrometer-sized structures. It consist in transferring a geometric pattern from a mask

to a photo-sensitive resist. Standard optical lithography is limited by optical diffraction. To

achieve the highest possible resolution, ultra-violet (UV) light at 365 nm is used allowing to

obtain, for our setup (Karl Suss MJB4), a resolution of ≈ 4 µm. We first design a mask for

the two lithography steps (see Fig 4.6.). The three main steps of photolithography are (see

Figs. 4.5(a)-(b)-(c))
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1. A photo-sensitive resist is spin-coated on the sample. This photoresist is used as a

negative tone resist, i.e., the exposed area are modified in order to be washed away in

the developer (see step 3).

2. The mask with source, drain and gate electrodes is align on top of the graphene flake

with a Karl Suss MJB4 mask aligner. The mask is brought in contact with the sample

and the non protected areas are exposed to UV light.

3. The sample is immersed in the developer solution1 in order to dissolve the non exposed

area. The sample is then rinsed with deionized water and dried with nitrogen. The

resist acts then like a mask for following fabrication steps.

Metal deposition A metal film is deposited onto the sample by heating and evaporating

solid metal under high vacuum at typically 10−7 bar (see Fig. 4.5(d)). The film thickness is

controlled in the nanometer range. Different metals can be evaporated successively with one

machine, the metal sources being placed in melting pots in a revolving disc. An electron

beam heats the metal source to create an evaporation cone containing metal atoms which

then deposit above the metal source. The sample to be covered is upside down within that

cone, and the thickness is controlled by shutters and a quartz crystal micro-balance in a very

accurate way. As gold does not stick very well to SiO2, we first deposit a 3 nm-thick film of

titanium (Ti) followed by a 47 nm-thick film of gold (Au). Finally, the sample is immersed in

acetone to remove the resist covered with metal. This step is called lift-off (see Fig. 4.5(e)).

Second photolithography This second photolithography is not neccessary but was found

to greatly improve the top gating efficiency of the sample. This photolithography is identical

to the first one except that we use ≈ 4-µm-thick photoresist layer (MicroChem SU8 2005) and

the secondmask. This mask opens a windows above the graphene channel, gate electrode and

parts of source and drain electrodes for wire bonding (see Fig. 4.6). Once this photolithogra-

phy is done, the resist is hard backed to ensure it being insoluble in most of chemical solvent

including acetone and methanol.

Wire bonding The source, drain and gate electrodes are connected to the chip carrier by

a manual bonding procedure. First, the sample is glued with silver paste to the conductive

bottom of the chip carrier since the highly p-doped Si substrate can be used as a back gate

electrode for dual-gated geometry. Then, the electrodes on the sample are connected to the

chip carrier with gold wires and conductive silver epoxy (see Fig. 4.5(f)). The conductive

epoxy is dropped on the electrodes and the chip carrier, and before drying, these drops are

connected by a thin gold wire.

Electrochemical top gate the electrochemical top-gate is formed by depositing a drop

of polymer electrolyte with a micropipette. The polymer electrolyte is prepared by mix-

ing lithium perchlorate (LiClO4) and polyethylene oxide (PEO) in methanol at a weight

1A chemical solution, provided by the resist manufacturer, specially made for this step.
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ratio[Das08, Lu04, Liu13] 0.012:1:4. The mixture is then heated at 45 ◦C and stirred until

it becomes uniform. This suspension is filtered to get a clear solution. After dropcasting, the

methanol evaporates and a thin film of transparent polymer electrolyte is formed. To remove

residual moisture and solvent, the device is annealed at about 90 ◦C.

Figure 4.6(c)-(d) shows an example of a device prior deposition of the polymer electrolyte.

The device geometry features a well-defined gated region and prevents the polymer elec-

trolyte to be in contact with the source and drain electrodes.

1 mm

(c) (d) 

SU8 

No SU8 

(a) (b) 

1 mm 1 mm 

Figure 4.6 – (a) and (b) Optical images of the mask used in the firt and second lithography, respectively.
(c) and (d) Optical images of a graphene field-effect transistor prior deposition of the polymer electrolyte.
The sample is covered with photoresist (SU8). Windows above the graphene channel, gate electrode and two
squares on source and drain electrodes are opened. This photoresist prevents the source and drain to be in
contact with the polymer electrolyte.

4.2 Experimental setup

All the samples fabricated following the techniques described in the previous section were

studied using photoluminescence and/or Raman measurements. These measurements were

performed on the same setup. The core of this setup is a home-built confocal microscope
used in backscattering geometry. This setup allows for spatially resolvedmicro-PL andmicro-

Ramanmeasurements, and time-resolved PL under ambient conditions with electrical access.

The setup is described in detail below with its main characteristics.
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4.2.1 The setup

The principle of the experimental setup is sketched in Fig. 4.7. The heart of the setup is a

backscattering commercial (Nikon) microscope. An infinity conjugated, enlarged, and spa-

tially and spectrally filtered (F1) laser beam (green line) is injected into the microscope and

directed towards the sample by means of a dichroic mirror (DM) or 10/902 beam splitter

(for ultralow Raman measurements3). Different optical paths allow to choose the laser beam

among continuous wave (cw) lasers at photon energy EL equal to 2.33 eV (532 nm), 1.96 eV

(633 nm) and 1.58 eV (785 nm) for PL and Raman measurements, and a supercontinuum

tunable laser (repetition rate between 1.96− 78.05 Hz and pulsed width of ∼ 20 ps) for time-

resolved PL. The spectral filter F1 is a bandpass filter (Semrock MaxLine® or OptiGrate Brag-

Grate™ bandpass filter for ultralow Raman measurements). The intensity of the laser beam

can be adjusted with optical densities. The laser beam is focused on the sample via an ob-

jective, which can be chosen among objectives with different magnifications and numerical

aperture (NA) (see Tab. 4.1). The sample holder is mounted on a xyz-piezoelectric stage al-

lowing for a precise positioning. The range of the piezoelectric element is 100 µm in x- and

y-direction and 20 µm in z-direction. To locate the region of interest on the sample, a white

light (yellow line) can be focused on the sample by means of a removable 50/50 beam splitter,

and the optical image can then be detected by a removable mirror (M1) and a camera.

The backscattered and/or emitted light (orange line) is collected by the same objective and

passes through the dichroic mirror or 10/90 beam splitter. In the case of the dichroic mirror,

a first spectral separation of the residual excitation and PL or Raman scattered light is made.

The subsequent beam is spatially filtered with the help of two lenses (L1 and L2) and a pinhole

(P) of diameter 100 µm. The lens L1 permits to focus the incident beam at the center of the

hole and the lens L2 to parallelize the outgoing beam. The pinhole is spatially conjugated

with the laser spot on the sample, which ensures that the recorded signal originates from a

well defined volume on the sample and further improves the signal to noise ratio.

Spectroscopy The light can then be sent on two different detection systems by means of a

removable mirror (M2). The first system is used for PL and Raman measurements. It con-

sists in a spectrometer with a dispersive element (grating can be choose between 150, 300,

900 and 2400 grooves/mm) and a charged-coupled device (CCD) array. The CCD camera is

either a liquid nitrogen cooled Si array of 1340× 100 pixels (Princeton Instruments Spec-10)

or a thermoelectrically cooled two-dimensional InGaAs array of 640 × 512 pixels (Princeton

Instruments NIRvana®).4 The former is used for Raman and visible PL measurements while

the latter is used for NIR PL measurements. The second system is adapted to time-resolved

PL measurements. The photons are detected by an avalanche photodiode (APD). The tunable

pulsed laser and the APD are connected to a TCSPC board (PicoHarp 300) allowing to obtain

210 % of the light is reflected and 90 % transmitted.
3Indeed, the dichroic mirror is no spectrally steep enough.
4This camera was loaned by Philippe Bernhard at Roper Scientific.
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Figure 4.7 – (a) Sketch of the confocal microscope setup in backscattering geometry. See main text for details.
Li lenses, Fi filters, Mi mirrors, P pinhole, DM dichroic mirror, A analyzer and S scrambler. The angle θ
of the analyzer is adjustable (blue arrow). The red arrows indicate removable elements. The cw lasers are
used for PL and Raman measurements and are all linearly polarized, while the tunable laser is only employed
for PL measurements. The sample holder is electrically connected to a sourcemeter and mounted on a xyz-
piezoelectric stage. The spectrometer, the CCD camera, the piezoelectric element and the sourcemeter are
interfaced with a computer. (b) and (c) Photos of the experimental setup. (d) Photo of the home-built sample
holder.

photoluminescence decays. For both system, a spectral notch filter (F2) blocks the reflected

laser and Rayleigh signal, so that the PL or Raman signal can enter the detection system.

For ultralow Raman measurements, F2 is composed of two narrow notch filters (OptiGrate

BragGrate™ notch filters). In combination with the narrow bandpass filter F1 and after op-

timization, Raman features at frequencies as low as 4.5 cm−1 could be measured. For others

measurements, F2 is a Semrock StopLine® notch filter. The light is focused into the detection

system with lenses L3 and L4.

Polarizedmeasurements Polarization-dependent Raman studies were performed using the

linearly polarized cw lasers and by placing an analyzer before the entrance of the spectrom-

eter, followed by a polarization scrambler in order to avoid any artifacts due to polarization

sensitive optics in the spectrometer. The angle θ (see Fig. 3.11) between the analyzer and

the linear polarization of the excitation laser can take any values. However, in this thesis we

use only two configurations: the parallel one XX (θ = 0) and the perpedendicular one XY

(θ = 90 ◦). To avoid any artifacts due to polarization sensitive optics in the spectrometer, a

polarization scrambler is placed at the entrance of the spectrometer.
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Electrical access The sample holder is electrically connected to a Keithley 2612A

SourceMeter®. The electrical sample holder was designed and fabricated with the help of

Fabien Chevrier, technician at IPCMS. We chose to work with chip carriers of 44 pins (Spec-

trum Semiconductor LCC04420) to ensure compatibility with others experimental setup in

the team. The corresponding socket is fixed onto an epoxy board and is is electrically con-

nected to a matrix box, which itself is connected to the two channel sourcemeter. This box

simplifies the connection. Note that we connected only 10 pins. The sourcemeter can be used

to apply a source-drain bias and a gate voltage, and to measure the source-drain and gate

currents.

Computer interfacing The piezoelectric stage, the sourcemeter, the spectrometer and the

CCD camera are controlled by Labview interfaces. These interfaces were developed by

Michelangelo Romeo, research engineer at IPCMS. One interface controls at the same time

the spectrometer, the CCD camera and the piezoelectric element in order to record PL or Ra-

man hyperspectral maps by spatially scanning the sample and recording spectrum at each

point. The second interface commands simultaneously the CCD camera and the sourcemeter.

This program permits to apply source-drain and gate voltages, to measure source-drain and

gate currents and to trig the CCD camera. In particular, it allows a smooth gate voltage ramp-

ing with an adjustable delay time before starting the Raman measurement. For instance for

the electrochemically top-gated measurements of Chapter 5, the gate bias is first applied for

a settling time of ∼ 1 min (i.e., once a steady gate leak current, typically lower than 100 pA,

is achieved), before recording each Raman spectrum. This procedure ensures that Raman

spectra are recorded at constant charge carrier densities.

4.2.2 Incident photon flux Φph

For the experimental measurements, one important quantity to know is the the incident pho-

ton flux denoted Φph. This quantity is particularly useful for Chapters 7 and 8. The incident

photon flux is given by Φph = Popt/(ALEL) where Popt is the laser beam power at the objective,

AL is the laser spot area and EL laser photon energy. The laser beam power at the objective is

measured by focusing the laser beam onto the surface of a powermeter. Instead of repeating

this measurement for every laser power, we calibrated the experimental setup by measuring

the power of the infinity conjugated laser beam at the entrance of the microscope and the

power at the objective. By repeating the measurement for few laser power, we have checked

that these two quantities are proportional. The laser spot area AL is measured by recording

an optical image of the tightly focused laser spot on the surface of a substrate. An example a

such a measurement is depicted in Appendix B. For the cw laser at 2.33 eV (which is the most

used laser in this manuscript), Tab. 4.1 summarized the measured AL and the corresponding

Φph for Popt = 1 µW.

90 Chapter 4 Experimental methods



Objective ×100 ×50 ×40

NA 0.90 0.65 0.6

AL (µm2) 0.12 0.40 0.6

Φph

(×1020cm2 s−1)
22 6.7 4.5

Table 4.1 – Measured spot area for the three objectives used in this thesis for the cw laser at 2.33 eV. Corre-
sponding incident photon flux Φph for a laser beam power at the objective Popt = 1 µW.

4.2.3 Data acquisition and treatment

As mentioned previously, the setup is interfaced with a computer. The data are either

recorded with the commercial software Winspec or with Labview interfaces developed by

Michelangelo Romeo. In both cases, the result is exported to ASCII files to be further used

with Origin® or MATLAB®.

In particular, I developed various MATLAB® scripts (non-exhaustive list) to analyze the

PL and Raman maps, to calculate the optical interference in multilayered systems (see next

section), and for various fitting procedure. For instance, the script to analyze the PL and

Raman maps was used to obtain the hyperspectral maps shown in Chapters 6 and 8. The

main steps of the script are:

• Interactive file selection.

• Loading and calibration of the spectra.

• Selection between 1. integration at a given frequency or photon energy or 2. fitting of

the spectra.

• If choice 1: selection of the range of integration, integration, displaying and saving of

the results.

• If choice 2: interactive selection of the feature(s) to fit, fitting, interactive display of the

fitting results and saving.

4.3 Optical interference effects

N -layer crystals deposited onto given substrates (e.g.,the silicon substrates covered with a

∼ 100 nm-thick SiO2 epilayer used in the fabrication of our samples, see Section 4.1) can

be viewed as multilayered systems. Since the involved layer thicknesses are of the same

order of magnitude as the wavelength of the light, interference effects appear due to mul-

tiple reflections at interfaces. The importance of these interference effects is well illus-

trated by the drastic variations in the optical visibility of N -layer crystals with the sub-
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strate [Blake07, Roddaro07]. As an example, Fig. 4.8(a) shows the difference in graphene’s

visibility between silicon substrates covered with a (1) 300 nm and (3) 200 nm SiO2 layer

when illuminated with white light. In the case of 200 nm of silicon oxide, we do not see the

graphene flake whereas it is clearly visible for a silicon oxide thickness of 300 nm. To further

highlight that variations in the optical contrast are due to interference effects, the top and

bottom panels in Fig. 4.8(a) show the same samples as in (1) and (3), respectively, but illumi-

nated through different narrow bandpass filters (with a bandwidth of ≈ 10 nm). We notice

that the flakes are clearly visible for given wavelengths and not for others. Finally, Fig. 4.8(b)

presents a color plot for the expected optical contrast of graphene onto a Si/SiO2 substrate as

a function of the oxide thickness and the illumination wavelength. It turns out that Si/SiO2

substrates with oxide thickness of 90 nm, 285 nm and 500 nm are themost suitable to identify

few-layer graphene by optical means. These values are also appropriate to identify few-layer

TMDs [Li12b], but only 90 nm is suitable to identify few-layer BN [Gorbachev11].

These optical interference effects strongly affect the optical absorption, as well as the Ra-

man [Yoon09, Li12b] and PL [Buscema14] signal of layered materials. To quantitatively com-

pare the absorptance, PL or Raman intensity of a layered material in different configurations

(e.g., with varying number of layers N or for different incoming photon energy), it is manda-

tory to carefully calculate the amplitude of the electric field of the incident light and of the

emitted (PL) or scattered (Raman) light within the layered materials. These calculations are

summarized in one quantity called the enhancement factor F which reflects how the propa-

gation of electric fields in the layered structure affects the absorptance, PL or Raman intensity

as compared to a interference-free case. In practice, the measured absorptance, PL or Ra-

man intensity are the product of the enhancement factor F (homogeneous to a length) and

the interference-free quantity (homogeneous to the inverse of a length). The detail of the

calculations of the absorptance of a layer in a multilayered system and of the PL and Raman

enhacement factors can be found in Appendix C. The absorptance will be useful in Chapters 7

and 8 to compute the absorbed photon flux, the Raman enhancement factor is employed in

Chapters 5 and 6 to deduce interference-free intensities and the PL enhancement factor is uti-

lized in Chapter 7 to quantitatively compare the PL intensity of N -layer MoTe2 as a function

of N .

4.4 Conclusion

To conclude, we have shown the different fabrication technique used to prepare the sam-

ples studied in the following chapters. We have also presented the experimental setup that

can be used for spatially-resolved micro-Raman and micro-photoluminescence, as well as for

time-resolved, measurements under ambient conditions and with electrical access. The setup

is fully computer-interfaced allowing for fast and reliable acquisitions. Furthermore, MAT-

LAB®scripts were developed for data treatment. Finally, we have pointed out that optical

interference can drastically affect the absorptance, Raman and photoluminescence signal of

the different layers in a multilayered structure.
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(a) 

(b) 

1 2 3 

Figure 4.8 – (a) Optical images of graphene sheets on silicon substrates covered with a (1) 300 nm- and
(2) 200 nm-thick SiO2 epilayer, and illuminated with white light. The graphene layers are visible in (1)
whereas the optical contrast vanishes in (3). Top and bottom panels show the same flakes as in (1) and
(3),respectively, but illuminated through different narrow bandpass filters (with a bandwidth of ≈ 10 nm).
(2) corresponds to the same sample as (1) but illuminated with green light. The trace shows steplike changes
in the contrast. This measurement can be used as a quantitative tool for determining the number of layers
on a given substrate. (b) Calculated optical contrast of graphene on a Si/SiO2 substrate as a function of the
oxide thickness and illumination wavelength. Figures are taken from Ref. [Blake07].

Take home messages

• All the sample studied in this work were prepared by mechanical exfoliation using

adhesive tape from bulk crystals.

• Van der Waals heterostructures were fabricated with an all-dry transfer technique.

• Raman and photoluminescence measurements can be performed on the same home-

built experimental setup.

• Optical interference effects can drastically affect the absorptance, Raman and photo-
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luminescence signal. These effects can be easily computed following the expressions

depicted in Appendix C.
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Chapter 5

Raman spectroscopy of

electrochemically gated graphene

transistors

This chapter is devoted to the study of electrochemically-gated graphene field-effect transistors by
means of micro-Raman spectroscopy. In the first part, we discuss the microscopic mechanisms as-
sociated with the main Raman features in graphene, that were briefly introduced in Chapter 2
Section 2.1.4. In the second part, we carefully investigate the Raman response of graphene under
electrostatic doping. By comparing the evolution of the two prominent Raman features with theo-
retical models, we are able to deduce the electron-phonon coupling for zone-center and zone-edge
phonons. In the third part, we show that the linewidth and frequency of these two features in doped
graphene follow sample-independent correlations that can be utilized for accurate estimations of the
charge carrier density. Finally in the last part, we display that electrochemical reactions, occurring
at large gate biases, can be harnessed to efficiently create defects in graphene.

5.1 Raman scattering in graphene

In this section, we provide more details on the main Raman features of graphene introduced

in Chapter 2 Section 2.1.4. In particular, we focus on the underlying microscopic mecha-

nisms.

5.1.1 The G mode

The G mode is associated with the only one-phonon Raman active process in graphene which

involves the Γ-point phonon with E2g symmetry. The representation of this vibrational

mode in the real space is shown in Fig. 3.2. It corresponds to the out-of-phase vibration
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of the sublattices A and B with respect to each other.1 The atomic displacement can be

along the carbon-carbon bond (iLO) or perpendicular to it (iTO). It is noteworthy to men-

tion that the degeneracy can be broken by applying, for instance, a mechanical deformation

to the graphene lattice which breaks the crystal symmetry. As a result, the G-mode feature

splits [Mohiuddin09, Huang09, Mohr09, Polyzos15].

Experimentally, the G-mode feature is very well described by a Lorentzian pro-

file [Ferrari13]

I(Ω) =
2IG
π

ΓG

4(Ω −ΩG)
2 + Γ

2
G

, (5.1)

whereΩG is the center of the feature, ΓG its FWHM and IG its integrated intensity. The center

ΩG is assigned to the phonon frequency. The width ΓG is related to the phonon damping

or lifetime (e.g., phonons can decay into other phonons due to anharmonicity [Bonini07] or

into electron-hole pairs due to electron-phonon coupling, see Section 5.3), but also contains

the influence of the experimental setup such as the instrumental function response. The

integrated intensity IG corresponds to the intensity of the Raman mode, which is linked to

the Raman tensor by Eq. (3.20) or to the scattering probability by Eq. (3.21).

In this work, we are using Raman spectroscopy as a very sensitive tool to probe the prop-

erties of graphene. Therefore, it is very important to know how ΩG, ΓG and IG are affected

by external perturbations, such as the energy of the incident photon or the doping level. As

expected for a one-phonon Raman process, the G mode is not dispersive, i.e. ΩG does not de-

pend on the frequency of the incident photon ωi [Malard09b, Ferrari13]. However, ΩG and

ΓG are strongly affected by doping, see Section 5.2.1. In contrast, as long as the Fermi energy

EF is different from half of the incident photon energy (~ωi ), IG remains constant. For EF
close to ~ωi /2 a drastic increase of IG is observed [Kalbac10, Chen11]. These observations are

quite surprising and need a close description of the Raman process to be fully understood.

First, let us precise that for phonons with E2g symmetry [Loudon64], IG is insensitive to

the polarization of the incident and scattered light in our experimental geometry [Ferrari13].

In the quantum framework, the microscopic process associated with the G mode is well de-

scribed by the diagram in Fig. 3.10: the system, initially in state |i〉, is excited by an incident

photon ωi into a first intermediate state |e1〉, then the system goes to a second intermediate

state |e2〉 by emitting a phonon and finally deexcites to |i〉 by emitting a photon ωs. In the

momentum-energy space, this process is represented in Fig. 5.1. The intermediate states can

be either real or virtual. Because transitions from an empty state or to a filled state are im-

possible due to Pauli blocking, some transition might be excluded (as the one crossed out in

Fig. 5.1). In the case of neutral graphene (EF = 0), regardless of the incident photon energy

~ωi , a resonant interband transition is always possible, and therefore the G mode process

could be expected to be resonant. Counterintuitively, D. Basko has shown that destructive

quantum interference leads to a non-resonant process [Basko09a]. In addition, this interfer-

1Note that all the A atoms and all the B atoms have exactly the same displacement, as expected this is a direct
consequence of the zero phonon momentum.
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ence can be controlled externally by changing the Fermi energy. This change suppresses the

destructive interference and makes the G-mode intensity increases, as observed experimen-

tally in [Kalbac10, Chen11].

K,	K'ħωS

ħωi

ħΩG

E

k

EF

Figure 5.1 – One-dimensional schematic representation of the G mode in graphene in the momentum-energy
space. Occupied states are represented in gray. The green arrow illustrates the absorption of the incident
photon ωi , the blue one the emission of the phonon ΩG and the red one the emission of the scattered pho-
ton ωs. The horizontal dashed lines denote virtual states. Three different elementary processes are drawn.
The G mode is a non-resonant process due to strong quantum interference between the different elementary
processes. Some elementary processes can be suppressed by tuning the Fermi energy, such as the one that is
crossed-out.

These observations can be understood by a simplified version of the calculations. The in-

tensity of the G-mode feature IG is given by Eq. (3.21). Owing to the linear band structure

of graphene (see Eq. (2.3)), each electronic energy is characterized by a wavevector k mea-

sured from the K or K ′ point. For the sake of simplicity, we will consider a one-dimensional

problem. The energies of the initial Ei and intermediate states E1 and E2 are characterized by

the wavevectors ki , k1 and k2, respectively. Knowing that the phonon has zero momentum,

momentum conservation imposes ki = k1 = k2 = k, i.e., the transitions are vertical as depicted

in Fig. 5.1. As a result, E1−Ei = E2−Ei = 2~vF |k|. Furthermore, the transition matrix elements

in the numerator in Eq. (3.21) are assumed to be the same for all transitions. Finally, the sum

over the continuum of states can be converted to an integral over k. Thus, IG is given by

IG ∝ 2 |Mtot|2

∣
∣
∣
∣
∣
∣
∣
∣
∣

+∞∫

kF

dk

(~ωi − 2~vFk)(~ωs − 2~vFk)

∣
∣
∣
∣
∣
∣
∣
∣
∣

2

= 2
|Mtot|2
(~ΩG)2

(

ln

∣
∣
∣
∣
∣

~ωi − 2 |EF|
~ωs − 2 |EF|

∣
∣
∣
∣
∣

)2

, (5.2)

where Mtot is the total matrix elements (i.e., the product of the three transition matrix ele-

ments), kF = |EF| /~vF and ~ωs = ~ωi + ~ΩG (energy conservation) with ΩG ≈ 196 meV. In

the case of neutral graphene (EF = 0), we notice that for visible light (∼ 1.5 − 3 eV ) there is

no selection of a specific interband transition (i.e., a specific k). The logarithmic function in

Eq. (5.2) is a slowly varying function of ~ωi as shown in Fig. 5.2(a). Consequently, the Raman

G mode is a non resonant process and can be represented by any of the allowed processes

in the momentum-energy space (see for instance the two allowed processes in Fig. 5.1). For

doped graphene (EF , 0), the situation is rather different. For a given incident photon energy
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~ωi , there are two singularities at |EF| = ~ωi /2 and |EF| = ~ωs/2 (see Fig. 5.2(b)). Surprisingly,

these two maxima occur when the incoming and outgoing resonances are blocked due to the

Pauli principle. This is a direct manifestation of quantum interference. Indeed, each term

in the sum of Eq. (5.2) can be viewed as the amplitude of the corresponding elementary pro-

cess with given intermediate states. These amplitudes may add up in-phase or out-of-phase,

which corresponds to constructive or destructive quantum interference. To make the inter-

ference explicit, let us focus on the terms close to the incoming and outgoing resonances. If

we set the transition energies to the intermediate states to be ~ωi − ~ΩG/2+ ǫ, the amplitude

of the corresponding elementary process is

1
[

~ωi −
(

~ωi − ~ΩG
2 + ǫ

)] [

~ωs −
(

~ωi − ~ΩG
2 + ǫ

)] =
1

(

ǫ + ~ΩG
2

)(

ǫ − ~ΩG
2

) (5.3)

∼
ǫ→± ~ΩG

2

1

~ΩG

(

−~ΩG
2 ± ǫ

) . (5.4)

Around ±~ΩG/2, this function is an odd function of ǫ. In consequence, in the sum over

k of Eq. (5.2), the terms close to the incoming (ǫ ≈ +~ΩG/2) and outgoing (ǫ ≈ −~ΩG/2)

resonances interfere desctructively and cancel each other. This destructive interference can

be suppressed by tuning |EF| close to ~ωi /2 or ~ωs/2 in order to exclude some terms from

contributing to the sum and hence increase IG. Note that for |EF| much higher than ~ωi /2,

the intensity IG is approximately the same as for neutral graphene when all the elementary

processes are allowed and that in Fig. 5.2 this condition is not really satisfied. However, in the

full calculations one has also to take into account the matrix elements [Basko09b]. All these

results show that the simple picture of G mode, in which only the on-resonance processes are

considered, is invalid.
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Figure 5.2 – (a) Calculated intensity of the G-mode feature for neutral graphene as a function of the incident
photon energy ~ωi . The insert shows a zoom in the visible range where the intensity varies slowly compared
to the resonances at 0 and ~ΩG. (b) Calculated intensity of the G-mode feature for an incident photon energy
~ωi = 2.33 eV as a function of two times the Fermi energy EF. Two singularities are observed at ~ωi − ~ΩG
and ~ωi . The insert shows a zoom in the typical range of Fermi energy reached in experiments. The intensity
varies slowly as compared to the two singularities.
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In the rigorous calculations, the damping of the intermediate states has to be taken into

account. This leads to the broadening of the two peaks at ~ωi − ~ΩG and ~ωi in Fig. 5.2(b).

Qualitatively, assuming an identical damping constant γ ≈ ~ΩG ≈ 0.2 eV [Chen11] for each

intermediate state, the two peaks will merge to form a broader peak centered at ~ωi−~ΩG/2.
2

5.1.2 The 2D mode

Surprisingly, the 2D-mode feature, observed at approximately 2675 cm−1 in the Raman spec-

trum (see Fig. 2.5), has an intensity somewhat larger than the G-mode one. Because of this

unusual observation, the physical origin of the 2D-mode feature underwent a long period

of discussion since the first Raman spectrum [Tuinstra70] had been observed. The complete

story is summarized in the Supplementary Information of Ref. [Ferrari13]. Finally, it is only

thirty years later that the first consensus on the mechanism of the 2D mode was achieved:

Thomsen and Reich [Thomsen00] suggested a double resonant (DR) mechanism.3 Note that

DR was first proposed by Baranov in 1987 [Baranov87] but somehow went unnoticed.

As already mentioned in Chapter 2 Section 2.1.4, the 2D mode involves two phonons

with opposite momentum from the iTO branch near K or K ′ points. These phonons have a

A′1 symmetry and correspond to the breathing vibration of the six atoms of one hexagon (see

Fig. 3.4). This process is illustrated in Fig. 5.3(a) and can be separated into four steps (the

K and K ′ points can be exchanged and all wavevectors are expressed with respect to the Γ

point):

1. An electron, around K , with wavevector ki and energy Ei = −~vF |ki −K | is excited into a

real state with wavevector k1 = ki and energy E1 = ~vF |ki −K | by absorbing the incident

photon ωi and thus creating an electron-hole pair. This is the first resonance.

2. The excited electron is inelastically scattered by a phonon of wavevector q and fre-

quency ΩD to a second real state, around K ′, of wavevector k2 and energy E2 =

~vF |k2 −K ′ |. This is the second resonance. Momentum conservation imposes q = ki+k2.

3. The electron is inelastically back-scattered by a phonon of wavevector −q and frequency

ΩD to a virtual state, around K , of wavevector k3 = ki due to momentum conservation.

4. The electon-hole pair in the K valley recombines with the emission of the scattered

photon ωs = ωi − 2ΩD.

As the process connects points from the two inequivalent valleys, it is referred to as an inter-
valley process. Note that the process described here is in resonance with the incident photon,

2Rigorously, taking into account a constant broadening γ for each intermediate states, Eq. (5.2) becomes

IG ∝ 2
|Mtot|2
(~ΩG)2

∣
∣
∣
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∣
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∣
∣
∣
∣
∣

~ωi − 2 |EF|+ iγ

~ωs − 2 |EF|+ iγ

∣
∣
∣
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∣
+ iarg

(

~ωi − 2 |EF|+ iγ

~ωs − 2 |EF|+ iγ

)∣
∣
∣
∣
∣
∣

2

, (5.5)

where arg is the argument of the complex number.
3Note that they suggested this mechanism for the D mode. However, as we will see later, the 2D mode is an

overtone of the D mode. Thus, they are of the same physical origin.
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but it can also be resonant with the scattered photon. In that case the first intermediate state

is virtual and the last one real.
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Figure 5.3 – One-dimensional schematic representation of the 2D mode in graphene in the momentum-
energy space. The green arrow illustrates the absorption of the incident photon ωi , the blue one the emission
of the phonon ΩD with wavevector ±q and the red one the emission of the scattered photon ωs. (a) A typical
double-resonant process that involves two real intermediate states and one virtual (horizontal dashed line).
See main text for details. (b) Typical fully-resonant processes, i.e., all intermediate states are real. One outer
and one inner process are drawn. (c) Feynman’s diagrams of all (double-resonant) processes that contribute
to the 2D mode. Left column represents processes where the electron or hole scattered twice. Note that the
process sketched in (a) corresponds to the second diagram. Right column displays the processes where the
electron and the hole scattered one phonon each. Note that the two processes sketched in (b) correspond to
the second diagram. This column, higlihted with the gray rectangle, corresponds to the dominant processes.
(c) is adapted from Ref. [Venezuela11].

To highlight the resonant nature of this process, let us calculate the intensity of the 2D-

mode feature with Eq. (3.21). Note that since it is a second order process, there is one addi-

tional term in the numerator and denominator [Cardona83] in Eq. (3.21). As for the G mode,

we consider a one-dimensional problem (see Fig. 5.3(a)) and assume that the four transition

matrix elements in the numerator are constant. In addition, we suppose that ki , k2 ≥ K or

ki , k2 ≤ K , i.e., only electronic states with opposite slopes can be connected [Maultzsch04a]

(see also below). In the first case q ≥ 2K and points from outer slopes are connected, thus the

process is said to be an outer process. In the second case q ≤ 2K and the process is referred

to as an inner process (see Fig. 5.3(a) and (b)) The sum over the continuum of states can be

converted to an integral over k and thus the intensity of the process described above is given
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by

I2D ∝ |Mtot|2
∣
∣
∣
∣
∣

1

~ωi − ~ΩD − ~vF(q − 2K)
+

1
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∣

2

, (5.6)

where Mtot are the total matrix elements (i.e., the product of the four transition matrix ele-

ments), kF = |EF| /~vF and ~ωs = ~ωi +2~ΩD (energy conservation). Compared to the G-mode

intensity in Eq. (5.2), the integral gives a similar logarithmic function but there are two ad-

ditional terms which correspond to outer and inner processes, respectively. These two terms

are important because if their denominator goes to zero, the intensity is drastically enhanced.

Therefore, there is a double resonance when the following relation is satisfied

~ωi − ~ΩD = ~vF |q − 2K | . (5.7)

As ΩD ≪ ωi , this relation can be simplified to 2 |ki −K | ≈ |q − 2K |, where |ki −K | = ωi /2vF is

the wavevector of the first excited electron. This implies that the phonons with wavevec-

tor q couple preferentially to the electronic states with wavevector ki . Accordingly, for a

given incident photon frequency ωi , it fixes the phonon wavevector q and its corresponding

frequency ΩD(q). The deduced variation of ΩD with ωi is in good agreement with measure-

ments [Thomsen00], proving that the 2D mode arises from a DR mechanism.

When ki ≥ K and k2 ≤ K or when ki ≤ K and k2 ≥ K (i.e., points from parallel slopes are

connected), a similar calculation leads, at first sight, to a double resonance when q ≈ 2K .

However, the full calculation shows that theses contributions cancel [Maultzsch04a] due to

destructive interference. As a conclusion, the outer and inner processes contribute solely to

the DR mechanism.

In the above calculation, we have considered only one possible DR for simplicity rea-

sons. Indeed, both phonons can be emitted by the electron (as the above process), or by the

hole, or one can be emitted by the electron and the other by the hole (see the Feynman’s

diagrams in Fig. 5.3(c)). In the latter case, all the involved states are real (see Fig. 5.3(b)).

Therefore, this process is sometimes said to be triple-resonant (TR) [Malard09b] or fully-

resonant [Ferrari13]. All these processes obey the relation of Eq. (5.7). In a rigorous cal-

culation of the 2D-mode intensity, one has to take into account all these different possibil-

ities. Venezuela et al. [Venezuela11] have performed the complete calculations (for a two-

dimensional system) and found that the dominant processes are the fully-resonant ones be-

cause of destructive quantum interference that cancels out processes involving only electrons

or only holes (see Fig. 5.3(c)). This conclusion can be easily understood by considering the

Raman process in real space [Basko08a, Ferrari13]. For these processes, the electron and hole

motion can be viewed in a quasi-classical manner. In the case of fully-resonant processes, the
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real-space picture is illustrated in Fig. 5.4 and summarized in the following steps:

1. The incident photon ωi creates an electron-hole pair. The electron and hole move in

opposite directions so that their total momentum is zero (the momentum of the light is

neglected). They also travel with the same speed because of the linear band structure of

graphene.

2. At some point, the electron and hole are both scattered by a phonon of frequency ΩD

with opposite momentum ±q such that the total phonon momentum is zero. The elec-

tron and hole move now towards each other.

3. The electron and hole meet and recombine to emit the scattered photon ωs.

Obviously, if only the electron or the hole is scattered twice, one carrier has to travel for longer

than the other in order to meet and recombine. However, this is in conflict with the fact that

both electron and hole travel at the same speed. Therefore, such processes are prohibited

in the quasi-classical picture. Moreover, the G mode is also classically forbidden because

electron and hole cannot meet at the same point to recombine. Hence, care has to be taken

when dealing with the classical picture. It might help to understand Raman processes, but

strictly speaking they have to be treated in the quantum framework.

e
-

h
+

ωi

ΩD ΩD

ωs

Figure 5.4 – Real-space representation of the fully-resonant 2D-mode process. The horizontal gray arrows
indicate the displacement of the electron e¯ and hole h+. The green, red an blue wavy arrows illustrates the
incident photon ωi , the scattered photon ωs and the two scattered phonons of frequency ΩD and opposite
wavevector ±q, respectively.

Among the fully-resonant processes, the dominant contribution to the intensity of the

2D-mode feature has been first attributed to the outer loop [Kürti02, Ferrari06, Graf07], be-

fore a possible explanation by a dominant inner loop came up [Huang10, Mohr10, Frank11,

Mafra11, Yoon11]. Again, Venezuela et al. [Venezuela11] have shown that the dominant con-

tribution comes from the inner loop. Nevertheless, experimentally the 2D-mode feature is

generally viewed as a single quasi-Lorentzian peak [Ferrari06, Graf07] and the distinction be-

tween inner and outer loop is challenging [Berciaud13], even if clear bimodal 2D-mode line

shapes are observed experimentally on undoped ultra-clean graphene [Berciaud09, Luo12,
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Berciaud13].

In practice, the 2D-mode feature in supported graphene (which is always the case in this

manuscript) is phenomenologically well described by a modified Lorentzian profile proposed

by Basko [Basko08a]

I2D(Ω) = I2DΓ
2
2D



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
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8(22/3 − 1)

[

(Ω −Ω2D)
2 +

Γ
2
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

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

−1

, (5.8)

where Ω2D is the center of the feature, Γ2D its FWHM and I2D its integrated intensity. Note

that we use this profile in a pure phenomenological manner. We have stated that this shape

adjusts well the experimental data of the 2D-mode feature, in particular better than a pure

Lorentzian profile, but not necessarily better than a Voigt profile. However, the latter requires

more fitting parameters, whereas the modified Lorentzian profile comes along solely with the

peak position and its linewidth.

In a nutshell, the 2D mode is a second order Raman process which is resonant. Therefore,

the frequency of the 2D-mode feature depends on the energy of the incident photon, but also

on the electronic dispersion that is directly related to the number of layers (see Fig. 2.6). It

also explains why the intensity of the 2D-mode feature is comparable to the one of the G-

mode feature which is a first-order process but is non-resonant. However, contrary to the

intensity of G-mode feature, the intensity of the 2D-mode feature depends on EF even for

energies smaller than half the energy of the incoming photon, as we will see in Section 5.3.3.

5.1.3 The 2D’ mode
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Figure 5.5 – One-dimensional schematic representation, of the 2D’ mode in graphene in the momentum-
energy space. The process is identical to the 2D mode (see Fig.5.3 except that it is intravalley and not
intervalley.

Let us briefly mention the existence of the 2D’ mode. This feature lies at approximately

3240 cm−1 [Ferrari13] and is not displayed in this manuscript but will be used in Sec-

tion 5.3.3. The mechanism that gives rise to this mode is identical to the one of the 2D

mode but instead being intervalley it is intravalley, i.e., the whole process takes place in

the same valley (see Fig. 5.5). Therefore, it involves phonons from the iLO branch close
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to the Γ-point (with E2g symmetry) where a Kohn anomaly occurs [Piscanec04]. As the

electron-phonon coupling is weaker at that point than at the K and K ′ points (see Sec-

tion 5.3), the intensity of the 2D’-mode feature is smaller than the one of the 2D-mode fea-

ture [Basko08a, Venezuela11]. As for the 2D mode, the 2D’-mode feature is well described by

the modified Lorentzian profile of Eq. (5.8).

5.1.4 The D mode and D’ mode

The D-mode and D’-mode features are only observable in defective graphene samples (see

Fig. 2.5). Indeed, themechanisms that give rise to the D andD’modes are identical to the ones

of the 2D and 2D’, respectively, except that one inelastic scattering by a phonon is replaced

by one elastic scattering by a defect [Thomsen00] (see Fig. 5.6). Consequently, these two

modes are one-phonon process that are forbidden in pristine graphene but become allowed

in defective graphene.
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Figure 5.6 – One-dimensional schematic representation of the (a) D mode and (b) D’ mode in graphene in
the momentum-energy space. The first one is an intervalley process, while the second one is intravalley. The
green arrow illustrates the absorption of the incident photon ωi , the blue one the emission of the phonon ΩD
with wavevector +q, the horizontal purple one the elastic scattering by a defect and the red one the emission
of the scattered photon ωs. Horizontal dashed lines correspond to virtual states.

The D (D’) mode is an intervalley (intravalley) process that involves phonons withA′1 (E2g )

symmetry from the iTO (iLO) branch close to the K or K ′ (Γ) point [Ferrari13], i.e., the same

phonon as the 2D (2D’) mode. Note that these modes cannot be fully resonant, there is at

least one virtual state. However, as shown in Fig. 2.5, the intensity of the D-mode feature is

comparable to the one of the 2Dmode. Althought, the dominant contribution of the 2D-mode

feature intensity is attributed to fully-resonant processes, the simple argument of being fully-

resonant does not hold, it is more subtle than that [Venezuela11]. Note also that the intensity

of the D’-mode feature is smaller than that of the D-mode one, as for the 2D’ mode compared

to the 2D mode. As the D and D’ modes involve only one phonon, their frequency is twice as

small as that of the 2D or 2D’ mode, or in other words the 2D and 2D’ mode can be viewed as

overtones of the D and D’ mode, respectively. This explains the name of the 2D and 2D’ mode

even if they are not defect induced. Finally, both D- and D’-mode feature are well described

by the modified Lorentzian profile of Eq. (5.8).
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Having described in detail the microscopic mechanisms of the main Raman features in

graphene, we now turn to their experimental investigation in the next sections.

5.2 Electric field effect and geometrical capacitance

In Chapter 2 Section 2.1.5, we have shown that graphene’s optoelectronic properties can be

efficiently tune using the electric field effect. Here, we make use of this effect to study how

the Raman spectrum is affected by graphene’s Fermi energy. The dual-gated field-effect tran-

sistors used in this chapter were fabricated following the method described in Chapter 4

Section 4.1. Figures 5.7(a) and (b) show an optical image and a schematic cross-section of a

device.

(a) (b)

Polymer electrolyte Photoresist Graphene

- - - - SourceDrainGate

- - --
++++

+ + + +

+-
-

+
+

-

VTG

VBG

+ -

SiO2

Si p++

Figure 5.7 – (a) Optical image of a dual-gated graphene field-effect transistor prior deposition of the polymer
electrolyte. The source and drain electrodes are covered with photoresist (SU8) to prevent them to be in
contact with the polymer electrolyte. (b) A schematic cross-section of our dual gated graphene field-effect
transistor, with Li+ (green) and ClO−4 (red) ions and the electrical double layers near each electrode. The Si
substrate is used as a back-gate.

Micro-Raman scattering measurements were performed on these samples in the exper-

imental setup presented in Chapter 4 Section 4.2 in ambient conditions. The laser power

was maintained below 500 µW in order to avoid thermally induced spectral shifts or line-

shape modifications of the Raman features [Calizo07], as well as photo-electrochemical re-

actions [Kalbac10, Efetov10, Bruna14]. Raman spectra were recorded as a function of the

applied gate bias, once a steady gate leak current (typically lower than 100 pA in the elec-

trochemically top-gated configuration) was achieved. For this purpose, the gate bias was first

applied for a settling time of ∼ 1 min, before recording each Raman spectrum. This proce-

dure ensures that Raman spectra were recorded at constant charge carrier densities. Raman

spectra were also recorded during several forward and backward top-gate sweeps at the same

spot on a given sample and very reproducible results, with no significant hysteresis, were

observed. We find, however, that the geometrical capacitance of the top-gate, as well as the

electron-phonon coupling constant may exhibit a certain degree of spatial inhomogeneity.

Additionally, in ambient air, the gate capacitance may decrease over time, by up to one order

of magnitude over a couple of days, due to a degradation of the polymer electrolyte. Such ag-

ing effects underscore the necessity of fast characterizations of electrochemically gated FETs

5.2 Electric field effect and geometrical capacitance 105



and may account for the fairly large spread in the gate capacitances reported in literature.

In order to avoid sample aging effects, our measurements were performed immediately af-

ter deposition of the polymer electrolyte. Interestingly, the dispersions obtained from a set

of measurements at several spots on a given graphene FET are very similar to the sample-

to-sample dispersions observed by measuring at (single) random spots on a set of graphene

FETs. This further highlights the interest of spatially resolved studies.

To study the influence of doping on Raman features of graphene, an accurate determina-

tion of the Fermi energy EF (or equivalently the doping n) as a function of the gate voltage is

a critical requirement. To this end, let us first present the effect of a gate bias on the Raman

spectrum of graphene.

5.2.1 Electric field effect

Figure 5.8 shows typical Raman spectra recorded over a top-gate voltage sweep, with the

two prominent Raman features in pristine graphene: the first order G-mode feature and

the second-order resonant 2D-mode feature. Note that no defect-induced D-mode feature

emerges from the background in our experimental conditions. This illustrates the high struc-

tural quality of the graphene sample. As expected [Das08], the G-mode frequency and

linewidth vary significantly with the top-gate bias (VTG). Similar trends are observed by

applying a back-gate voltage (VBG). The minimum value of the G-mode frequency ΩG and

the maximum value of its full width at half maximum (FWHM) ΓG are reached at the same

value of VTG,0 = +0.5 V. This value corresponds to the charge neutrality point (CNP), where

EF = 0. The CNP is reached at a finite VTG,0, due to an unintentional doping of the graphene

layer, induced by the substrate as well as the polymer electrolyte [Das08]. A finite value of

VTG −VTG,0 results in a finite charge carrier density n. In this work, a positive (negative) gate

voltage corresponds to electron (hole) injection. Qualitatively, for both positive and negative

values of VTG −VTG,0, we observe a nearly symmetric increase of ΩG accompanied by a sym-

metric decrease of ΓG (see Section 5.3). In contrast, the 2D-mode feature is less sensitive to

doping than the G-mode feature [Das08] (see Section 5.3).

In order to carefully study the G- and 2D-mode features as a function of EF, one has to

convert the gate voltage into EF or, equivalently, n. This was done in Chapter 2 Section 2.1.5.

Equation (2.9) can be rewritten:

V −V0 =
EF
e

+ sgn(EF)
eE2

F

π(~vF)2CG
. (5.9)

One may have noticed in Fig. 5.8, that compared to traditional SiO2 solid state back-

gate [Yan07, Pisana07], the applied voltages are much smaller. This can be easily understood

by the estimation of the involved capacitances. For a typical SiO2 back-gate insulator, the

geometrical capacitance CBG per unit area is simply given by CBG = εrε0/dBG, where εr ≈ 4 is

the relative permittivity of SiO2, ε0 the vacuum permittivity and dBG is the SiO2 thickness. In
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Figure 5.8 – (a)-(c) Color maps of the Raman spectra of a pristine graphene monolayer (sample 1), measured
using a 532 nm laser beam, as a function of the top-gate voltage VTG. The G- and 2D-mode features appear
prominently and no defect-induced D-mode feature is observed. Panels (b) and (c) show a clear evolution of
the G- and 2D-mode features with varying VTG. The black dashed lines correspond to the central frequency
of each Raman feature. The charge neutrality point (CNP) is indicated by an arrow. (d) Raman spectra at
values of VTG between -0.5 V and +1 V. The circles are the experimental data and the solid lines are fits (see
text for details). The CNP is reached at VTG,0 = +0.5 V (see green line).

this work, dBG = (285 ± 15) nm results in a back-gate capacitance CBG = (12.4 ± 0.7) nF cm−2.

For a typical Fermi energy EF ∼ 100 meV, the quantity EF/e is negligible as compared to the

other term in Eq. (9.1).

The case of the polymer electrolyte top-gate is slightly more complicated. Indeed, when

a voltage is applied between the gate and the SLG, Li+ and ClO−4 diffuse in the polymer to

form electrical double layers (EDLs) at the interfaces as it is sketched in Fig. 5.7(b) [Das08].

These EDL can be modeled as parallel plate capacitors with a thickness given by the Debye

length dTG, and a geometrical capacitance per unit area CTG = εrε0/dTG. The total geometrical

capacitance of the polymer electrolyte is thus given by CTG

(

S−1p−gate + S
−1
p−graphene

)−1
, where

Sp−gate (resp. Sp−graphene) is the contact area between the polymer electrolyte and the gate

electrode (resp. the graphene monolayer). Since Sp−gate ≫ Sp−graphene (see Fig. 5.7(a)), one

only needs to take into account the geometrical capacitance of the EDL at the graphene-

polymer electrolyte interface. The Debye length is theoretically given by dTG = 2Ce2/ε0εrkBT ,
where T is the temperature, kB is Boltzmann’s constant and C is the concentration of ions in

the polymer electrolyte [Das08]. In practice, the exact value of C cannot bemeasured. One can

nevertheless obtain an estimate of CTG ≈ 4.4 µF cm−2, assuming a typical value of dTG ≈ 1 nm

and εr ≈ 5 for PEO [Das08]. This capacitance is more than two orders of magnitude larger

than CBG and becomes comparable to the quantum capacitance for EF ∼ 100 meV. As a result,

the two terms in Eq. (9.1) are of the same order of magnitude and must be taken into account

in the present study.
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5.2.2 Geometrical capacitance of the electrical double layer

Our first objective is to precisely determine CTG. Previous works on oxide dual-gated

graphene FETs [Meric08, Xu11b] have shown that provided one geometrical capacitance is

known, the other can be determined by monitoring the minimum (source-drain) conductiv-

ity point as a function of the bottom and top-gate biases. At steady state, our dual-gated

graphene FETs have the same equivalent electrical circuit (see Fig. 5.9(c)) as the devices of

Ref. [Xu11b]. Here, rather than using electron transport measurements, we apply micro-

Raman scattering spectroscopy, which provides a local measurement. For a fixed VBG, we

sweep VTG and record Raman spectra. Then, we extract ΩG and ΓG from Lorentzian fits (see

Eq. (5.1)).
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Figure 5.9 – (a) Frequency ΩG and (b) relative FWHM ∆ΓG of the G-mode feature as a function of the
top-gate voltage, recorded at various back-gate voltages on sample 1. The curves are vertically offset by 10
cm−1 for clarity. The symbols are experimental data. (C) Equivalent electrical circuit of our device at steady
state. CBG is the geometrical capacitance of the Si/SiO2 back-gate, CG is the geometrical capacitance of the
electrical double layer at the graphene/polymer electrolyte interface and CQ is the quantum capacitance of
graphene. (d) Top-gate voltage VTG,neutral, corresponding to the CNP in dual-gated graphene, as a function
of the applied back-gate voltage VBG. A top gate capacitance CTG = 3.3 µF cm−2 is deduced from a linear fit
of the data (solid line). The solid lines in (a) and (b) are fits based on Eq. (5.12) and (5.13), respectively, with
CTG = 3.3 µF cm−2.

Figures 5.9(a) and 5.9(b) show these two quantities as a function of VTG for five different

values of VBG. We observe a clear shift of the CNP, attained at VTG,neutral, with VBG. In
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practice, VTG,neutral is extracted from the ΓG(VTG) curves, which, expectedly (see Section 5.3),

exhibit a sharper extremum near neutrality than theΩG(VTG) curves. As shown in Fig. 5.9(d),

VTG,neutral varies linearly with VBG. Indeed, from the equivalent circuit in Fig. 5.9(c), the total

charge density injected by top- and back-gates leads to [Xu11b]

ne = −CTG

(

VTG −VTG,0 −
EF
e

)

−CBG

(

VBG −VBG,0 −
EF
e

)

. (5.10)

At the CNP, n = 0 and EF = 0. Therefore,

VTG,neutral = VTG,0 −
CBG

CTG
(VBG −VBG,0). (5.11)

Using Eq. (5.11), a linear fit of the data in Fig. 5.9(d) yields CBG/CTG = (3.8 ± 0.2) × 10−3.
Since CBG = (12.4 ± 0.7) nF cm−2, we deduce that CTG = (3.3 ± 0.3) µF cm−2, which is of

the same order of magnitude as what was reported before for similar devices [Das08, Das09,

Shimotani06, Efetov10, Bruna14]. We may now convert VTG into EF.

5.3 Electron-phonon coupling in pristine graphene

Having an accurate determination of EF as a function of VTG, we can focus on the doping-

dependance of the G- and 2D-mode features. This study will allow us to quantitatively de-

duce the electron-phonon coupling at the Γ and K (′) points, where Kohn anomalies strongly

increase the electron-phonon coupling [Piscanec04].

5.3.1 Doping-dependence of the G-mode feature

Considering only lattice expansion, due to the addition of charge carriers, one may expect the

G-mode frequency to increase (decrease) under hole (electron) doping [Lazzeri06]. Thus,

the peculiar, nearly symmetric behaviors observed here and previously reported by oth-

ers [Pisana07, Yan07, Das08, Kalbac10, Chen11, Chattrakun13] contrast strongly with the

trends predicted if one only considers lattice expansion effects. This anomalous behavior has
been originally predicted by Ando [Ando06] and by Lazzeri and Mauri [Lazzeri06] as a

consequence of the strong coupling between zone-center optical phonons and low-energy

electronic excitations across the gapless bands of graphene. Related effects occur in metal-

lic carbon nanotubes [Piscanec07]. The anomalous doping dependence of the G-mode can

be described using the phonon self-energy [Taylor02, Ando06, Lazzeri06, Pisana07, Yan07,

Yan08b, Araujo12], the real part of which give the correction to the phonon frequency ΩG

due to electron-phonon interaction and the imaginary part is equal to ΓG. As a result, the

evolution of ΩG and ΓG are deeply connected. Note that these renormalizations can also be

obtained without defining the self-energy, by calculating the change in phonon energy caused

by electron-phonon interaction with second-order perturbation theory [Taylor02] and by ap-

plying Fermi’s golden rule [Lazzeri06], respectively.
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Figure 5.10 – Frequency ΩG (red squares, left axis) and relative FWHM ∆ΓG (blue circles, right axis) of
the G-mode phonon, extracted from the measurements in Fig. 5.8, as a function of Fermi energy or doping.
The corresponding Feynman diagrams are shown as insets. The left inset represents the renormalization of
the G-mode phonon frequency due to interactions with virtual electron-hole pairs. The right inset represents
lifetime broadening due to the resonant decay of a G-mode phonon into an electron-hole pair. The solid
blue and red lines are fits based on Eqs. (5.12) and (5.13), respectively. The fitting parameters are CTG =
3.9 µF cm−2, λΓ = 0.027 and δEF = 35 meV.

G-mode linewidth The variation of ΓG is due to the decay of the G phonon into an electron-

hole pair (see right inset in Fig. 5.10) and can be deduced from Fermi’s golden rule4

∆ΓG = ΓG − Γ0 =
λΓ
4
Ω

0
G ×








f








−
~Ω

0
G

2
−EF








− f









~Ω
0
G

2
−EF
















, (5.12)

where Ω
0
G is the phonon frequency at EF = 0, f (E) = [1 + exp(E/kBT )]

−1 is the Fermi-Dirac

distribution at a temperature T and λΓ is a dimensionless coefficient corresponding to the

electron-phonon coupling strength5 at the Γ point. Γ0 contains all other sources of broaden-

ing that are independent on the carrier density (anharmonic coupling [Bonini07], disorder,

instrument response function). For |EF| > ~Ω
0
G/2, ∆ΓG vanishes due to Pauli blocking.

G-mode frequency The evolution of ΩG with EF is the sum of two contributions. The first

one corresponds to the modification of the carbon-carbon bond strength (or equivalently to

the modification of the equilibrium lattice parameter) due to the addition of charges. Indeed,

electron doping adds electrons to the antibonding orbitals which leads to a softening of the

4In detail, ∆ΓG = Γph→e-h − Γe-h→ph, where Γph→e-h and Γe-h→ph are computed using Fermi’s golden rule and
correspond, respectively, to the transition probability of the phonon decay into an electron-hole pair (see right
insert in Fig. 5.10, read left to right) and of the the electron-hole pair decay into a phonon (see right insert in
Fig. 5.10, read right to left).

5Here, we choose to use the coupling constant λΓ as defined by Basko in Ref. [Basko08a]. In Refs. [Lazzeri06,
Pisana07] the dimensionless electron-phonon coupling constant is denoted α′ and is defined as α′ = λΓ/2π
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carbon-carbon bond, whereas removing electrons leads to a hardening [Lazzeri06, Kalbac10].

This contribution can be computed within the standard textbook Born-Oppenheimer ap-

proximation, which states that the lighter electrons adjust adiabatically to the motion of

the heavier nuclei, remaining at any time in their instantaneous ground state. Thus, this

term is referred to as the adiabatic contribution Ω
A
G. The second one corresponds to the

renormalization of the G-mode phonon energy due to interactions with virtual electron-hole

pairs [Ando06, Lazzeri06]. Indeed, due to strong electron-phonon coupling a phonon spends

part of its time as a virtual electron-hole pair as suggested by the left insert in Fig. 5.10. This

causes a change in the phonon energy (that can be described with the phonon self-energy).

However, this change cannot be deducedwithin the adiabatic Born-Oppenheimer approxima-

tion because due to interactions with phonons, the electrons do not have enough time to relax

to the instantaneous adiabatic ground state. Hence, this correction is referred to as the nona-
diabatic contributionΩ

NA
G and is responsible of the anomalous G-mode frequency shift. Note

that without a strong electron-phonon coupling, this contribution is negligible and is there-

fore directly related to the Kohn anomaly [Lazzeri06].6 Finally, the frequency shift with re-

spect to theΩ0
G (the phonon frequency for neutral graphene) is given by [Lazzeri06, Pisana07]

∆ΩG =ΩG −Ω0
G = ∆Ω

A
G +∆Ω

NA
G . (5.13)

At a finite temperature T , the adiabatic contribution ∆Ω
A
G is accurately described by the

analytic expression obtained by Lazzeri and Mauri [Lazzeri06]:

∆Ω
A
G = −2.13n− 0.0360n2 − 0.00329n3 − 0.226 |n|3/2 , (5.14)

where ∆Ω
A
G is in cm−1 and the charge carrier density n in 1013 cm−2. Note that this ex-

pression is independent of the temperature T . The nonadiabatic contribution ∆Ω
NA
G is given

by [Lazzeri06, Pisana07]

∆Ω
NA
G =

λΓ
2π~
−
+∞∫

−∞

[f (E −EF)− f (E)]E2 sgn(E)

E2 − (~Ω0
G)

2/4
dE, (5.15)

where −
∫

denotes the Cauchy principal value. This expression is obtained from the difference

between the renormalized phonon frequency for a given EF (f (E − EF) term) and for EF = 0

(f (E) term). Because of the difference of the Fermi-Dirac distributions f (E − EF) − f (E), the
integration is restricted approximately to the range [0, |EF|]. As a consequence, there are a
priori two singularities when EF = ±~Ω0

G/2, which are known as the two phonon anoma-

lies [Ando06, Lazzeri06, Yan08b]. For T = 0, one can obtain an analytic expression of ∆ΩNA
G

and notice that these two divergences are logarithmic [Ando06, Lazzeri06, Yan07]. However,

because the typical width of Fermi-Dirac distribution is kBT and because ~ΩG/2 ≈ 98 meV,

6In fact, Kohn anamolies occur for phonon wavevector q such that q = 2kF where kF is a Fermi-surface
wavevector [Kohn59]. Thus, varying EF causes the Kohn anomaly at Γ to shift away from Γ. This shift is re-
flected in Ω

NA
G .
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these singularities are smeared out with increasing T . In fact, one can see this as an upper

integral limit slightly higher than |EF| resulting in smaller divergences. These phonon anoma-

lies can also be understood more physically. The renormalization of the phonon frequency is

due to the interaction with virtual electron-holes pairs. As it involves transitions to virtual

states, energy conservation is not required. Consequently, the phonon interacts with all the

virtual electron-hole pairs allowed by Pauli principle, with higher, lower or the same energy

as the phonon (this is mathematically done in Eq. (5.15) by summing on all the allowed en-

ergy). The coupling of the phonon with an electronic state at an energy between −~ΩG/2

and +~ΩG/2 tends to increase the phonon frequency. In return, the coupling with an elec-

tronic state at higher energy than |~ΩG| /2 tends to decrease the phonon frequency. Hence,

for neutral graphene the phonon frequency is given by the equilibrium between this two con-

tributions. Let us assume that T = 0 for simplicity. When increasing |EF|, the coupling with

electronic states at absolute energies lower than |EF| is forbidden due to Pauli principle. In

this way, when increasing |EF| from 0, we first decrease the number of states that increase the

phonon frequency. Consequently, the phonon frequency decrease. For |EF| = ~ΩG/2, there

are no states that increase the phonon frequency anymore, therefore the phonon frequency

diverges. When |EF| > ~ΩG/2, the number of states that descrease the phonon frequency is

reduced and thus the phonon frquency increase. Finally, one should note that ∆ΓG and ∆ωG

are proportional to λΓ.

Charge inhomogeneity Furthermore, to accurately describe the experimental evolution of

the G mode, one also has to take into account random spatial fluctuations of the Fermi en-

ergy [Casiraghi07, Martin08, Xu11a, Li11]. As a result, the measured ΩG and ΓG are average

values of the fluctuating quantities under the laser spot. To calculate these average quantities,

we assume that the graphene layer under the laser spot can be divided into N small cells of

the same area. If the cells are small enough, we can suppose that the Fermi energy and thus

ΩG and ΓG are uniform across each cell. If the Fermi energy of the ith cell is EiF and if N tends

to infinite, the average ΩG and ΓG are given by:

ΩG(EF) =
1

N

N∑

i=1

ΩG(E
i
F) =

+∞∫

−∞

ΩG(E)P(E,EF)dE, (5.16)

ΓG(EF) =
1

N

N∑

i=1

ΓG(E
i
F) =

+∞∫

−∞

ΓG(E)P(E,EF)dE, (5.17)

where P is the statistical distribution function of the Fermi energy and EF is the average

value of the Fermi energy. It is reasonable to assume that P follows a Gaussian distribu-

tion [Martin08, Xu11a, Li11] center on the average value of the Fermi energy EF and with a

standard deviation (or in other words a Fermi energy fluctuation) δEF :

P(E,EF) =
1

δEF
√
2π

exp

[

− (E −EF)
2

2δEF
2

]

. (5.18)
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Thereafter, the computed ∆ΩG(EF) and ∆ΓG(EF) used to fit our data are given by the convolu-

tion of this Gaussian distribution with Eq. (5.12) and (5.13).

Results of the simultaneous fit Figure 5.9 displays the results of simultaneous fits of

∆ΩG(VTG) and ∆ΓG(VTG) for five top-gate sweeps at different VBG. We used vF = 1.1 ×
106 m s−1 and the values of CTG, VTG,neutral and Ω

0
G obtained previously (see subsec-

tion 5.2.2). Thus, the fitting parameters are λΓ, δEF and Γ0. The experimental data are re-

markably well fitted by the theoretical model. Interestingly, although the two phonon anoma-

lies [Ando06, Lazzeri06, Yan08b] predicted at EF = ±~Ω0
G/2 by Eq. (5.13) are largely smeared

out at room temperature, one can still notice a hint of their presence in Fig. 5.9(a) and 5.10.

From these five fits, we get λΓ = 0.036 and δEF = 40 meV. Since δEF ≈ 50 meV on bare SiO2

without an electrochemical top-gate [Martin08, Xue11], we conclude that charge inhomo-

geneity does not have a major effect on our analysis. DFT calculations [Lazzeri06, Pisana07]

have predicted λΓ = 0.028, which is slightly smaller, but consistent with our measurement.
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Figure 5.11 – Frequency ΩG (red squares, left axis) and FWHM ΓG (blue circles, right axis) of the G-mode
phonon, extracted from Fig. 3 of Ref. [Yan07], as a function of back gate voltage. The solid blue and red
lines are fits based on Eqs. (5.12) and (5.13), respectively. The fitting parameters are CBG = 10.8 nF cm−2,
λΓ = 0.025 and δEF = 80 meV.

Another way to further compare the experimental data and theory is to set CTG as ad-

justable parameter when fitting ∆ΩG(VTG) and ∆ΓG(VTG). This yields CTG = 3.9 µF cm−2,

λΓ = 0.034 and δEF = 35 meV. These values are very consistent with the more constrained

fits discussed above. Similar studies were repeated on more than five samples, with similar

conclusions. Additionally, to show the generality of this procedure, we fit the data measured

on a conventional solid state graphene FET using a SiO2 epilayer as a gate dielectric. These

data were extracted from Fig. 3 of Ref. [Yan07]. The result of the fit is shown in Fig. 5.11

and is in good agreement with the experimental data. The deduced fitting parameters are

CBG = (10.8 ± 1.4) nF cm−2, λΓ = 0.025 ± 0.003 and δEF = (80 ± 10) meV. In particular, CBG

is in excellent agreement with the value determined theoretically from the thickness of the

SiO2 epilayer CBG = 11.5 nF cm−2 [Yan07].
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In conclusion, this demonstrates that a direct fit of ∆ΩG(VTG) and ∆ΓG(VTG) can be used

to get an accurate measurement of CTG, which allows to convert VTG into EF through Eq. (9.1).

This is a much faster approach to determine CTG, which does not require a dual-gated device.

As an example, a fit of the data in Fig. 5.8 is shown in Fig. 5.10, and shows a very good

agreement between experiment and theory. More generally, our fitting procedure allows us to

estimate CTG and λΓ with relative uncertainties of approximately 20% and 10%, respectively.

In return, these results show also that the theoretical evolution of ∆ΩG(VTG) and ∆ΓG(VTG)

can be used to determine the doping level (see Chapter 8).

To better understand the importance to fit simultaneously ∆ΩG(VTG) and ∆ΓG(VTG), we

have fit these quantities separately for the measurements shown in Fig. 2.6. From the fit of

∆ΩG(VTG), we obtain CTG = 2.3 µF cm−2, λΓ = 0.042 and δEF = 50 meV. Except the large

value of λΓ, the two parameters are reasonable. From the fit of ∆ΓG, we obtain λΓ = 0.033 and

δEF ≈ 40 meV and an unrealistically large CTG ∼ 100 µF cm−2. The latter value suggests that

the behavior of ∆ΓG can be rationalized using solely the quantum capacitance of graphene.

This is understandable, since the variations of ∆ΓG occur near EF = 0, where the contribution

of the quantum capacitance dominates in Eq. (9.1). However, the value of ∆ΓG near EF = 0

is directly proportional to λΓ and is not influenced by CTG, while ∆ωG varies mostly away

from the CNP. Hence, its evolution with VTG is influenced by both λΓ and CTG. Consequently,

a simultaneous fit allows for a reliable estimation of λΓ (through the doping dependence of

∆ΓG(VTG)), and, in turn of CTG (through the slope of ∆ΩG(VTG) curve, having λΓ constrained

by ∆ΓG(VTG)).

Comparison between different samples Let us now compare the results obtained on dif-

ferent samples. Figure 5.12 shows the evolution of EF as a function of ∆ΩG for five different

graphene FETs (denoted sample 1 to 5) in which CTG and λΓ have been previously deter-

mined by the simultaneous fit of ∆ΩG(VTG) and ∆ΓG(VTG). For these five samples, we found

an average of 〈CTG〉 = (4.5 ± 1.5) µF cm−2 and 〈λΓ〉 = 0.032 ± 0.004 (see also Table 5.2). This

translates into an average relative G-mode FWHM (see Eq. (5.12)) of ∆ΓG = (12.6 ± 1.6) cm−1

(at T = 0, EF = 0 and δEF = 0) that is consistent with the value of ΓG ≈ 15 cm−1 recorded on

quasi-undoped suspended graphene at low temperature [Berciaud13]. Remarkably, and in

spite of the different values of CTG, the data for these five devices shown in Fig. 5.12 collapse

onto a same curve. In practice, this very reproducible behavior can be used to evaluate EF
knowing ∆ΩG, which is of broad interest in graphene science. For this purpose, we consider

the asymptotic behavior of ∆ΩG(EF). When |EF| ≫ ~Ω
0
G/2, Eq. (5.15) becomes

∆Ω
NA
G ≈ λΓ

2π~
|EF| . (5.19)

Assuming that the adiabatic contribution ∆Ω
A
G is negligible compared to ∆Ω

NA
G , ∆ΩG should

be linear with |EF|. Indeed, in Fig. 5.12 for the five different samples, ΩG(EF) clearly scales

linearly for |EF| & 100 meV. The slightly different slopes observed for electron and hole
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doping arise from the opposite sign of the adiabatic corrections. For |EF|& 100 meV, we find

EF & +100 meV, EF = +21∆ΩG +75, (5.20)

EF . −100 meV, EF = −18∆ΩG − 83, (5.21)

where EF is expressed in meV and ∆ΩG in cm−1. However, it should be noted that this lin-

ear scaling only holds for |EF| . 500 − 600 meV. In fact, for higher |EF|, ∆ΩG no longer

scales linearly with |EF| since ∆ΩA
G can no longer be neglected compared to ∆Ω

NA
G . Moreover,

Eqs. (5.20) and (5.21) can be applied provided the shift in ∆ΩG is exclusively due to doping,

i.e., other extrinsic factors, such as mechanical strain do not contribute. If this is not the case,

one has to separate the various contributions, using, e.g., the G- and 2D-mode frequency

correlations [Lee12c] (see Section 5.4).
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Figure 5.12 – Fermi energy EF as a function of the relative frequency of the G mode ∆ωG. Measurements
on five different devices are represented with different symbols. The dashed and solid lines correspond to
Eq. (5.20) and (5.21), respectively.

5.3.2 Doping-dependence of the 2D-mode feature

We now briefly comment on the 2D-mode feature. Figure 5.13 shows the evolution of the fre-

quency Ω2D and FWHM Γ2D of the 2D-mode feature with EF for sample 2 (2D mode spectra

are also shown for sample 1 in Fig. 5.8). As expected for supported graphene, the 2D-mode

feature exhibits a quasi-symmetric lineshape that can be phenomenologically fit to the modi-

fied Lorentzian profile of Eq. (5.8). We find that Γ2D does not vary significantly with EF, while

Ω2D varies little at moderate doping (|EF| . 200 meV), but tends to stiffen (soften) signifi-

cantly for stronger hole (electron) doping. The observation of an almost constant Ω2D can

be understood from the fact that, contrary to the G-mode phonon, the resonant decay of the

2D-mode phonon into an electron-hole pair is not possible since the phonon momentum q is

fixed by Eq. (5.7). The observed evolution of Ω2D outlined in Fig. 5.13 (see also Fig. 5.8) can
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be qualitatively understood as the sum of a dominant adiabatic contribution and a weaker

non-adiabatic contribution. The latter is reduced as compared to the case of the G-mode fea-

ture, likely because the 2D-mode feature involves phonons that are significantly away from

the Kohn anomalies at the edges of the Brillouin zone [Das08].

-400 -200 0 200 400

-9.8 -2.4 0.0 2.4 9.8

2672

2674

2676

2678

2680

2682

n (x 10
12

 cm
-2
)

 

E
F
 (meV)

Ω
2

D
 (

c
m

-1
)

22

24

26

28

30

32

34

36

 Γ
2

D
 (

c
m

-1
)

Figure 5.13 – Doping dependence of the frequency (red squares, left axis) and FWHM (blue open circle, right
axis) of the 2D mode (sample 2 without defect).

5.3.3 Integrated intensity of the G- and 2D-mode features: electron-electron

and electron-phonon scattering

Up to now, we did not discuss the integrated intensity of the G- and 2D-mode features. In

Chapter 3 Section 3.4, we have stated that this integrated intensity is proportional to the total

probability of the Raman process (see Eq. (3.21)). The integrated intensity of the 2D-mode

feature (I2D) depends on EF [Das08, Das09, Basko09b], while previously in this chapter (see

Fig. 5.2(b)), we have shown that as long as |EF| ≪ ~ωL/2, where ~ωL is the energy of the

incident laser, IG is almost constant [Basko09a, Kalbac10, Chen11].

In Fig. 5.14, we consider the ratio I2D/IG, which is maximum for EF = 0 and decreases

almost symmetrically for increasing |EF|. Following [Basko08a, Basko09b], the integrated

intensity of the 2D-mode feature writes

I2D ∝
(

γK
γe−ph +γD +γee

)2

, (5.22)

where γe−ph + γD + γee is the total electron scattering rate, with γe−ph the electron-phonon

scattering rate, γD the electron-defect scattering rate, and γee the electron-electron scatter-

ing rate. The electron-phonon scattering rate can be approximated as γe−ph = γK +γΓ, where

γK and γΓ are the scattering rates for zone-edge and zone-center optical phonons, respec-
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tively. Note that Eq. (5.22) is obtained under the assumption of a fully resonant process (see

Fig. 5.3), and that trigonal warping effects leading to momentum-dependent scattering rates

are neglected [Basko08a, Basko09b, Venezuela11, Basko13]. While γD and γe-ph do not de-

pend on EF, γee has been predicted to scale linearly with |EF|. For |EF| ≪ ~ωL/2, Basko et al.
calculated [Basko09b]

√

IG
I2D

=

√

IG
I2D

∣
∣
∣
∣
∣
0

γe-ph +γD
(γe-ph +γD +0.06 |EF|), (5.23)

where
√

IG
I2D

∣
∣
∣
∣
∣
0
corresponds to the value at EF = 0.

In this section, we are considering pristine graphene, in which γD≪ γe−ph. As illustrated

by the dashed line in Fig. 5.14, our experimental data agree well with a fit based on Eq. (5.23)

for |EF| & 100 meV. However, we observe a deviation from Eq. (5.23) near the CNP, likely

due to Fermi energy fluctuations. As for the G-mode frequency and linewidth (see Eqs. (5.16)

to (5.18)), we therefore fit the experimental data with the Gaussian convolution of Eq. (5.23),

resulting in the solid line in Fig. 5.14. The agreement between theory and experiment is very

good and more compelling than in the seminal study in Ref. [Basko09b]. The fitting param-

eters are I2D
IG

∣
∣
∣
∣
0
= 3.6, γe-ph = 51 meV and δEF = 110 meV. We repeated this analysis on three

pristine samples and found average values of
〈

γe-ph
〉

= (47 ± 7) meV, 〈δEF〉 = (120 ± 10) meV

and
〈

I2D
IG

∣
∣
∣
∣
0

〉

= 4.2 ± 0.6 (see Tab. 5.2). Note that the dispersion of the measurements on these
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three devices is very similar to the dispersion observed when measuring on several spots on

the same sample. The value of γe-ph is in good agreement with the estimate in [Basko09b].

The Fermi energy fluctuation δEF obtained here is more realistic than the lower values es-

timated from the simultaneous fit of ∆ωG(VTG) and ∆ΓG(VTG). It corresponds to a charge

inhomogeneity of δn. 1012 cm−2, in line with previous scanning tunneling microscopy mea-

surements [Martin08, Xue11].

Interestingly, in Ref. [Basko09b], the authors claim that the intrinsic value of I2D
IG

∣
∣
∣
∣
0
for un-

doped graphene is in the range 12-17 (using a 2.4 eV excitation laser). However, this estima-

tion is based on Raman measurements on quasi-undoped suspended graphene [Berciaud09]

and does not take into account the effect of optical interferences, which occur in graphene-

based multilayer structures and may critically affect the intensity of the Raman features (see

Chapter 4 Section 4.3 and Appendix C). An intrinsic value corrected from interference effects

of I2D
IG

∣
∣
∣
∣
intr

= 5 ± 1was estimated for freely suspended, undoped graphene, using a 2.33 eV exci-

tation laser, as in the present study [Metten15]. Considering the distinct Raman enhancement

factors for the G- and 2D-mode features in the PEO/graphene/SiO2 (285 nm)/Si multilayer

structure, the average value of
〈

I2D
IG

∣
∣
∣
∣
0

〉

= 4.2 ± 0.6 translates into an average intrinsic value of
〈

I2D
IG

∣
∣
∣
∣
intr

〉

= 4.9 ± 0.7 (see Tab. 5.2), which is in excellent agreement with the measurements

on suspended graphene.

As outlined in Refs. [Basko08a, Basko09b, Basko08b], the scattering rate γe-ph is linked to

the dimensionless electron-phonon coupling constants λΓ and λK through

γe-ph = γK +γΓ =
λK
4

(
~ωL

2
− ~ΩK

)

+
λΓ
4

(
~ωL

2
− ~ΩΓ

)

, (5.24)

where ~ΩK ≈ 1210 cm−1 = 150 meV is the in-plane transverse optical (TO) phonon energy at

the K (′) point, ~ΩΓ := ~ΩG ≈ 1580 cm−1 = 196 meV is the in-plane optical phonon energy at

Γ (i.e., the G-mode frequency) and ~ωL = 2.33 eV is the laser photon energy.

For sample 2 (see Fig. 5.14 and Tab. 5.2), a value of λΓ = 0.034 is deduced from the simul-

taneous fits of ∆ΩG and ∆ΓG. Then, using Eq. (5.24), we can estimate7 λK = 0.17. Overall, for

the three pristine samples studied here, we obtained average values of 〈λΓ〉 = 0.031 ± 0.004,

〈λK〉 = 0.15 ± 0.03 and
〈
λK
λΓ

〉

= 5.1 ± 1.2 (see Tab. 5.2).

To close this section, we compare the average ratio
〈
λK
λΓ

〉

deduced from the doping-

dependent Raman study to a direct estimate derived from themeasured ratio of the integrated

intensities of the intravalley (2D’ mode) and intervalley (2D mode) resonant two-phonon

features. This ratio is expected to be independent of EF [Basko08a, Basko09b] and writes
I2D
I2D’

= 2
(
λK
λΓ

)2
. In our experimental conditions, we obtain I2D

I2D’
= 40 ± 2. Thus, by considering

7Following [Basko09b, Basko08b], the value of λK deduced from Eq. (5.24) corresponds to the electron-phonon
coupling constant at a carrier energy of ~ωL/2. To obtain the coupling constant exactly at the K point λK(~ωK), we
can use the relation λK(~ωK)/λK(~ωL/2) ≈ 1.2 that is valid for a polymer electrolyte with a relative permittivity
εr ≈ 5. In this manuscript, λK implicitly denotes λK(~ωL/2).
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one more time the different Raman enhancement factors for the 2D- and 2D’-mode features

in the PEO/graphene/SiO2 (285 nm)/Si multilayer system, we deduce λK
λΓ
≈ 4.2. This value is

consistent with the analysis outlined above.

5.4 Correlations

In the previous section, we have successfully compared our measurements to theoretical cal-

culations and, in particular, estimated the electron-phonon coupling constants. In this sec-

tion, we present correlations between the frequencies and linewidths of the G- and 2D-mode

features in doped graphene, with the aim to extract universal behaviors that could be useful

for sample characterization.8

5.4.1 G-mode frequency and linewidth

Figure 5.15 shows ∆ΓG as a function of ∆ΩG for the five different samples already shown in

Fig. 5.12. We observe a universal behavior and the experimental data are in good agreement

with the theoretical calculations, although the very slight difference expected for electron and

hole doping (due to ∆Ω
A
G, see Eq. (5.13)) is not resolved experimentally, likely due to Fermi

energy fluctuations. We also note that in the high-doping regime, ∆ΓG tends to increase some-

what. This increase, also observed by others [Bruna14] is presumably due to the increasing

inhomogeneity of the charge distribution at high top-gate biases. The correlation displayed

in Fig. 5.15 may be used to estimate EF, in particular in the low doping regime
(

|EF|. ~Ω
0
G

)

.
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Figure 5.15 – Correlation between the relative FWHM ∆ΓG and relative frequency ∆ΩG of the G-mode
feature in doped graphene, for the five samples introduced in Fig. 5.12. The solid and dashed lines correspond
to theoretical calculations (based on Eqs. (5.12) and (5.13)), for electron and hole doping, respectively.

8Based on the conclusions of next section 5.5, the correlations discussed in the following will also hold in
weakly defective graphene.

5.4 Correlations 119



5.4.2 G- and 2D-mode frequencies

Figure 5.16 represents the evolution of Ω2D as a function of ΩG for the same five samples.

A clear correlation is observed between these two quantities. For hole doping, the corre-

lation is quasi-linear in the range of EF studied here (−500 meV . EF < 0). In contrast,

for electron doping, a quasi-linear scaling, again with a (much smaller) positive slope is

also observed at low doping (0 < EF . 250 meV), until Ω2D levels off and ultimately de-

creases, leading to a non-linear scaling. This behavior was observed on every sample either

for electrolyte-gated or conventional back-gated FETs and has been also observed in chemi-

cally doped graphene [Lee12c].
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�ΩG
under hole and electron

doping are shown in (b) and (c), respectively.

From the slopes �Ω2D

�ΩG
extracted on thirty samples (see Fig. 5.16(b)-(c)), we find an average

of (0.55 ± 0.2) for hole doping and of (0.2 ± 0.13) for electron doping, respectively. These

values agree with the slopes reported previously [Lee12c, Fromm13, Tiberj13]. However, we

provide a much more accurate statistical study. From this statistical study, we note that the

correlation between Ω2D and ΩG is more dispersed than the correlation between ∆ΓG and

∆ΩG. This is chiefly due to the dependence of Ω2D on EF, which is not as universal as that

of ΩG. In addition, it is rather challenging to extract a well-defined correlation for electron

doping due to the small variations of Ω2D at moderate doping.

Noteworthy, estimations of EF based on the frequency and/or linewidth of the Raman

features may only be reliable if graphene is not subjected to significant strains. Indeed, as
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mentioned before, strain also affects the Raman features. However, for biaxial strains9 be-

low 1 % [Metten14], ΓG is marginally affected and ΩG soften (stiffen) under tensile (com-

pressive) strain. Thus, a linear correlation between Ω2D and ΩG has been measured in

strained graphene [Lee12c, Zabel11, Lee12b, Metten13, Metten14]. Since the measured

slopes (�Ω2D

�ΩG
≈ 2.2, for undoped, strained graphene [Metten14]) are appreciably larger than

the slopes measured in doped graphene (presumably under a small but constant built-in

strain), Lee et al. have proposed to use the correlation between ω2D and ωG as a robust tool

to optically separate strain from charge doping [Lee12c].

This optical separation of mechanical strain from charge doping is based on a vector de-

composition model in the ΩG-Ω2D-plane, reliably up to certain limiting conditions, which

will be discussed hereafter. The complete decomposition method is described in Appendix D.

In this method, three basis vectors are defined corresponding to the slopes �Ω2D

�ΩG
, under strain,

hole and electron doping, respectively (see Fig. 5.16). For each vector, a coefficient is defined

in order to deduce the absolute levels of strain and/or doping (in Appendix D, these coef-

ficient are denoted Cs and Cd, respectively). Moreover, one also has to know the 2D- and

G-mode frequencies that correspond to an undoped and unstrained graphene sample. For

clarity, in Fig. 5.16, the 2D- and G-mode frequencies are shown relative to the measurements

at EF ≈ 0. These origin points, denoted (Ω0
G, Ω

0
2D) might differ from the reference point cor-

responding to undoped and unstrained graphene, since an undetermined amount of native

strain may be present and induce a shift along the strain vector. Furthermore, Ω0
2D depends

on the photon energy of the excitation laser and on the nature of the substrate (see Chapter 8).
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the reference point corresponding to undoped graphene. Data are shown for the five samples introduced in
Fig. 5.12. The continuous and dashed lines are global linear fits, performed in the low doping regime on the
electron and hole branches, respectively.

9We assume that biaxial strain is the most common type of strain present in exfoliated graphene.
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The data in Fig. 5.17 allows an estimation of the coefficient which connects
[

(ΩG −Ω0
G)

2 + (Ω2D −Ω0
2D)

2
]1/2

, the measured distance from the zero doping point, to a given

doping level (see Fig. 5.17). We chose to consider n instead of EF because it is a more relevant

quantity as far as graphene characterization is concerned. Although the curves displayed

in Fig. 5.17 are not expected to exhibit a linear scaling (as opposed to the data shown in

Fig. 5.12), we observe a quasi-linear scaling for sufficiently small doping (|n|. 7×1012cm−2).
We therefore fit the linear part for both electron- and hole-doping with a line intercepting

the zero doping point. We find slopes of 4.4 × 1011 cm−1 for electrons and −3.6 × 1011 cm−1

for holes, respectively.

Finally, considering the Grüneisen parameters of 1.8 and 2.4 for the Raman G- and 2D-

modes under biaxial strain Ref. [Metten14], we can estimate a slope of 7.1×10−3 % strain/cm−1

to connect
[

(ΩG −Ω0
G)

2 + (Ω2D −Ω0
2D)

2
]1/2

to an applied biaxial strain. In practice, the strain

field may be anisotropic, depending on the sample and on the experimental conditions, lead-

ing to a different slope.

In summary, the value of the slopes and coefficients that can be used in the decomposition

method, described in Appendix D, are listed in Tab. 5.1. For a 2.33 eV excitation laser and

supported graphene on Si/SiO2, the statistical analysis on the thirty samples leads to a refer-

ence point for undoped and unstrained graphene of (1581± 0.5 cm−1,2673.6± 1 cm−1). Note

that the polymer electrolyte seems to induce no significant changes as compared to devices

without top gate. All these values can be used for a reliable estimation of doping and strain

in graphene samples and devices. In particular, it can be used to identify the nature of the

doping (see Chapter 8) or to study the spatial variations of strain and doping within a sample

using hyperspectral imaging. One must keep in mind that this method is only valid up to

charge densities of approximately 7 × 1012 cm−2 for electron doping and 1013 cm−2 for hole

doping.

slope �Ω2D
�ΩG

Coefficients

Electron 0.2± 0.13 +4.4× 1011 cm−1

Hole 0.55± 0.2 −3.6× 1011 cm−1

Strain 2.2± 0.1 7.1× 10−3 %/cm−1

Table 5.1 – Summary of the extracted values, from this work and [Metten14], that can be used to separate
strain from electron and hole doping following the decomposition method described in Appendix D.

5.5 Defective graphene

In Chapter 2, Fig. 2.5 shows the typical Raman spectrum of pristine and defective graphene.

These two spectra were recorded at zero gate bias on the same point of the sample 1 before

and after the creation of defects. Indeed, when an electrochemically gated graphene FET

is subjected to a sufficiently high gate bias, electrochemical reactions may occur [Kalbac10,

Efetov10, Bruna14] and create defects in the graphene channel. In our devices, a reaction
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systematically occurs at negative gate biases (VTG ≈ −1 V to −2 V). The threshold voltage

depends on the sample and on the gate capacitance. Electrochemical reactions result in an

increase of the gate leak current above 1 nA, and in the emergence of defect-induced features

in the Raman spectrum. Figure 5.18 illustrates this in-situ creation of defects during a sweep

gate from +4 V to −3 V. Close to −1.7 V , we observe the emergence of an intense D-mode

feature, a deformation and an increase of the intensity of the G-mode feature, and a drastic

decrease of the intensity of the 2D-mode feature. At this point, the Raman spectrum resemble

that of amorphous carbon [Ferrari00]. These observations suggest that sp3 bonds are proba-

bly formed. However, after a couple of hours at VTG = 0, one obtains a spectrum similar to

the one of defective graphene shown in Fig. 2.5.
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Figure 5.18 – Color map of the Raman spectra of graphene monolayer (sample 1), measured using a 532 nm
laser beam, as a function of the top-gate voltage VTG. The top gate voltage was decreased from +4 V to −3 V.

We took advantage of the created defects to investigate their effects on the G- and 2D-

mode features. This comprehensive study is published in Physical Review B [Froehlicher15]

and will not be detailed here. However, let us sum up the main results of this study. The

defect concentration nD can be estimated, independently of the type of defect, using the rela-

tion

nD ≈ 1.8× 1010(~ωL)
4

(

ID
IG

)

0

, (5.25)

where nD is the concentration of defects in cm−2, ~ωL is the laser photon energy in eV and
(
ID
IG

)

0
is taken at |EF|. 100 meV. For defect concentration up to 1.4×1012 cm−2, the evolution

of the G- and 2D-mode features upon doping remain unaffected by the presence of defects

and the doping dependence of the D mode closely follows that of its two-phonon (2D mode)

overtone. Finally, at such defect concentrations, we estimate that the electron-defect scatter-

ing γD (see Eq. (5.22)) rate remains much smaller than the electron-phonon scattering rate.

Consequently, in defective graphene, the ratio between the integrated intensity of the G- and

2D-mode features provides a fair estimate of γe-ph from which λK can be extracted knowing

λΓ. Table 5.2 summarizes the results obtained on the 5 samples studied here.
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Sample I2D
IG

∣

∣

∣

∣

intr

(

ID
IG

)

0
nD γe-ph +γD λΓ λK

(×1012 cm−2) (meV)

1 (w.o. D) 5.6 < 0.05 - 50 0.027 0.17

1 (w. D) 4.6 1.7 0.9 57 0.031 . 0.20

2 (w.o. D) 4.2 < 0.05 - 51 0.034 0.17

2 (w. D) 3.3 1.3 0.7 69 0.031 . 0.24

3 5.0 < 0.05 - 39 0.031 0.12

4 4.4 2.6 1.4 53 0.037 . 0.18

5 4.3 1.4 0.7 72 0.031 . 0.25

Table 5.2 – Intrinsic integrated intensity ratio (corrected from interference effects, see Appendix C) I2D
IG

∣
∣
∣
∣
intr

at EF = 0, measured integrated intensity ratio
(
ID
IG

)

0
at EF = 0, estimated defect concentration nD, sum of the

electron-phonon and electron-defect scattering rates, and dimensionless electron-phonon coupling constants
at Γ and near K (′), for five different electrochemically gated graphene transistors. w. D and w.o. D stand for
with without defects, respectively.

5.6 Conclusion

In conclusion, we have presented a quantitative analysis of the doping dependence of the

frequency, linewidth and integrated intensity of the main Raman features in pristine and

defective graphene. The anomalous doping dependence of the G-mode phonons is well cap-

tured by theoretical models over a broad range of Fermi energies above or below the Dirac

point, and provides an experimental measurement of the electron-phonon coupling constant

at the Γ point of the Brillouin zone. We have then exploited the peculiar doping dependence

of the integrated intensity of the resonant 2D-mode feature to estimate the electron-phonon

coupling constant at the edges (K (′)) of the Brillouin zone. We find that the electron-phonon

coupling strength at Γ is five times weaker than at K (′).

This study provides useful guidelines for the characterization of graphene samples. We

have, in particular, considered the correlation between the frequency and width of the G-

mode feature, as well as between the frequencies of the 2D- and G-mode features. These

correlations reveal universal behaviors that can therefore be applied to evaluate doping in a

variety of experimental situations. We have also demonstrated that defects can be efficiently

created in-situ in electrochemically gated graphene field effect transistors with concentrations

up to approximately 1.4 × 1012 cm−2. At such defect concentrations, we notice that the evo-

lution of the G- and 2D-mode features upon doping remain unaffected by the presence of

defects.

Finally, this work demonstrate that Raman spectroscopy can be accurately utilized to lo-
cally estimate the doping level in graphene. This technique will therefore be employed in

Chapter 8 to monitor the charge transfer in graphene/transition metal dichalcogenides van

der Waals heterostructures. In addition, we conservatively estimate that Fermi energies as

124 Chapter 5 Raman spectroscopy of electrochemically gate GFETs



high as ≈ 700 meV above the Dirac point can be achieved in ambient conditions, without

damaging graphene. This naturally opens exciting perspectives for the electrical control of

the interlayer charge and energy transfer (see Chapter 2 Section 2.3.2) in optoelectronic de-

vices.

Take home messages

• We developed very robust and efficient electrochemically-gated graphene field-effect

transistors.

• Raman spectroscopy is a powerful tool to monitor the evolution of the quality of a sam-

ple.

• Raman spectroscopy is a highly sensitive tool to precisely estimate the doping level:

– the measurements are quantitatively described by theoretical models,

– universal correlations are very useful for advanced characterizations.

Chapter 8 depicts an original utilization of this tool.
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Chapter 6

Raman spectroscopy of N -layer

transition metal dichalcogenides

In this chapter, we focus on the Raman response of N -layer transition metal dichalcogenides. These
systems provide a unique platform to investigate the evolution of the physical properties between
the bulk (three-dimensional) and the monolayer (quasi two-dimensional) limits. The evolution of
these properties are of great interest for the applications as illustrated in Chapter 2. The results
of the group theory analysis performed in Chapter 3 are fully utilized in this chapter. In a first
part (Section 6.1), we investigate the Davydov splitting of all the Γ-point optical phonons in N -
layer MoTe2 and introduce a unified description of all these modes based on a force constant model
that includes interactions up to the second nearest neighbor. To show the generality of this model,
we also present the results obtained on N -layer MoSe2. In a second part (Section 6.2), we show
that a simplified force constant model accurately describes the low-frequency modes in any layered
materials and provides a measurement of the strength of the van der Waals interlayer interactions.
In a third part (Section 6.3), we give an alternative description of the frequency of the phonons by
deriving it from the bulk phonon dispersion. In a last part (Section 6.4), we discuss the possible
influence of resonance effects in all the measurements presented in the chapter. Note that this work
was done in collaboration with the group of Ludger Wirtz at the University of Luxembourg.

6.1 Unified description of the phonon modes in N -layer transition

metal dichalcogenides

In Chapter 3, we have introduced group theory and applied it to unveil the symmetry of

the zone-center phonons in N -layer 2Hc TMDs. Interestingly, Eqs. (3.7) and (3.9) show

that multiple phonons in N -layer TMDs have the same symmetry but different frequen-

cies. All these different phonon modes with the same symmetry arise from the same mono-

layer mode. This observation is known as the Davydov splitting. The Davydov splitting

(or factor-group splitting) is “the splitting of bands in the electronic or vibrational spectra
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of crystals due to the presence of more than one (interacting) equivalent molecular entity

in the unit cell” [Davydov71, McNaught97]. Such effect has been studied in polyaromatic

molecules [Khelladi75] and thin films [Aroca87]. N -layer TMDs provide an ideal platform to

investigate this splitting. Indeed, the unit cell contains N equivalent MX2 entities (the three

atoms of one layer) that are coupled via van der Waals interactions.

As shown in Chapter 3, Raman spectroscopy is an ideal technique to study such a splitting

in N -layer TMDs. Up to now, the Davydov splitting has mainly been reported for the low-

frequency modes in N -layer MoS2 [Plechinger12, Zeng12, Zhao13, Zhang13, Boukhicha13]

andWSe2 [Zhang13]. Thesemodes correspond to interlayer shear (LSM) and breathing (LBM)

modes, which arise from the Davydov splitting of the zero frequency acoustic modes. Related

splittings of the higher frequencymodes involving intralayer atomic displacements have been

reported in N ≤ 5-layer MoSe2 [Tonndorf13, Chen15] and WS2 [Staiger15]. However, these

splittings solely involve the out-of-plane Raman-active phonon with A1g symmetry in the

bulk, while other high-frequency modes, such as the in-plane phonon with E2g symmetry in

the bulk, exhibit anomalousN -dependent frequency shifts [Lee10, Li12a, Molina-Sánchez11,

Luo13a, Luo13b, Tonndorf13, Berkdemir13, Yamamoto14], but no splitting.

In this section, we quantitatively investigate the Davydov splitting of all the Γ-point opti-

cal phonon modes, over the range 4− 300 cm−1, in N -layer 2H MoTe2, and provide a unified

description of this splitting. This analysis can be generalized to other TMDs as we will show

for MoSe2.

6.1.1 Identification of the one phonon modes in N -layer MoTe2

Using the symmetry analysis done in Chapter 3 Section 3.3, we have summarized in Table 6.1

the irreducible representations of the phononmodes for single-, bi-,N - layer and bulkMoTe2.

Taking into account the backscattering geometry of our experimental setup (see Chapter 3

Section 3.4.3), the bold characters denote Raman-active modes which in theory are observ-

able.

Figure 6.1(a) shows the micro-Raman spectra of monolayer, bilayer and bulk MoTe2

recorded at EL = 2.33 eV for θ = 0 (parallel configuration, XX) and θ = π/2 (cross-polarized

configuration, XY). We recall that polarized measurements allow to identify the in- and out-

of-plane phonon modes (see Chapter 4 Section 3.4.3) since here out-of-plane modes are not

visible in XY configuration.

We first address the low-frequency range below 40 cm−1. In bulk MoTe2, we observe only

a single feature at 26 cm−1 that shows similar intensities in the XX and XY configurations. The

latter is assigned to the in-plane interlayer shear mode (LSM) with E2g symmetry [Wieting80].

For N = 2, we observe a prominent feature at 28 cm−1 that shows strong extinction in the XY

polarization and a fainter feature at 18 cm−1 whose intensity is similar in the XX and XY

configurations. The former is thus assigned to the out-of-plane layer breathing mode (LBM)

with A1g symmetry, while the latter is assigned to the LSM with Eg symmetry. The LBM has
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Number of LSM LBM iX oX iMX oMX
layers 6 30 cm−1 6 40 cm−1 ∼ 120 cm−1 ∼ 170 cm−1 ∼ 235 cm−1 ∼ 290 cm−1

1 − − E′′ A′1 E′ A′′2

2 Eg A1g Eg A1g Eg A1g

− − − Eu A2u Eu A2u

odd N N−1
2 E′ N−1

2 A′1
N−1
2 E′ N+1

2 A′1
N+1
2 E′ N−1

2 A′1
− N−1

2 E′′ N−1
2 A′′2

N+1
2 E′′ N−1

2 A′′2
N−1
2 E′′ N+1

2 A′′2

even N N
2 Eg

N
2 A1g

N
2 Eg

N
2 A1g

N
2 Eg

N
2 A1g

−
(
N
2 − 1

)

Eu
(
N
2 − 1

)

A2u
N
2 Eu

N
2 A2u

N
2 Eu

N
2 A2u

bulk E2g B2g ⋆ E1g A1g E2g B2g ⋆

− − − E2u ⋆ B1u ⋆ E1u A2u

Table 6.1 – Irreducible representations of the optical phonon modes at Γ for single-, bi-, N - layer and bulk
MoTe2. Bold characters denote Raman-active modes in a backscattering geometry. Note that modes with
E1g and E′′ symmetry are Raman-active but not observable in a backscattering geometry [Loudon64] and
that modes with E′ are Raman- and infrared-active. Stars (⋆) denote silent modes. All the other modes are
infrared active.

B2g symmetry in the bulk and is silent. As expected, we do not observe any interlayer mode

for N = 1.

In themid- (100−200 cm−1) and high-frequency (200−300 cm−1) ranges, the Raman spec-

tra of bilayer MoTe2 displays four one-phonon features, which have previously been iden-

tified as originating from the following intralayer displacements [Wieting80, Yamamoto14,

Guo15a]:

(i) The in-plane, out-of-phase vibration of the Te planes, with E1g symmetry in the bulk (iX

mode, near 120 cm−1).

(ii) The out-of-plane, out-of-phase vibration of the Te planes, with A1g symmetry in the bulk

(oX mode, near 170 cm−1).

(iii) The in-plane vibration of the Mo and Te planes against each other, with E2g symmetry

in the bulk (iMX mode, near 230 cm−1).

(iv) The out-of-plane vibration of the Mo and Te planes against each other, with B2g symme-

try in the bulk, (oMX mode, near 290 cm−1).

The bulk iX and oMXmodes are predicted to be Raman inactive in a backscattering geometry

and silent (see Tab. 6.1), respectively. However, both modes appear as faint features in thick

MoTe2 flakes (considered as a bulk reference). This surprising observation, also reported
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Figure 6.1 – (a) Raman spectra of monolayer, bilayer and bulk MoTe2 in the parallel (XX, thick colored solid
lines) and perpendicular (XY, thin gray lines) polarization configuration. The spectra are vertically offset for
clarity and the asterisk highlights residual contributions from the exciting laser beam. (b) Atomic displace-
ments and irreducible representations associated with the Γ point phonon modes in monolayer, bilayer and
bulk MoTe2. The Raman (R) and/or infrared (IR) activity are indicated, and stars denote silent modes. The
zero frequency acoustic modes (LA, TA, ZA) and their irreducible representations are also shown for clarity.

recently on other TMDs might be a consequence of the finite penetration depth of our laser

due to the strong optical absorption of MoTe2 (see Appendix C Section C.2). As predicted, the

iX and oMX modes are not observed in monolayer MoTe2 and can thus be used as a robust

criterion to identify MoTe2 monolayers. We verified that the oX and oMX features nearly

vanish in the XY configuration, while the integrated intensities of the iX and iMX features do

not change.

Finally, Fig. 6.1(b) illustrates the atomic displacements of these phonon modes in mono-

layer, bilayer and bulk. The Davydov splitting is clearly evidenced: one monolayer phonon

mode gives rise to two bilayer phonon modes, in which the relative motion of equivalent

atoms belonging to two adjacent layers is either in-phase or out-of-phase. This observation

can be generalized to any number of layers: in a N -layer system each monolayer mode (LSM,

LBM, iX, oX, iMX, oMX) gives rise to N modes with different optical activity (see Tab. 6.1).

Note that since acoustic modes have a zero frequency, there are N − 1 LSM and LBM.
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6.1.2 Experimental spectra

Low-frequency modes

Figure 6.2 shows the evolution of the low-frequencymodes (LSM and LBM) fromN = 2 toN =

12-layer MoTe2. As previously reported in multilayer graphene [Tan12, Lui14] and recently

in other TMDs, [Plechinger12, Zeng12, Zhao13, Boukhicha13, Zhang13, Chen15], a set of N -

dependent low-frequency Stokes and anti-Stokes peaks appears for N ≥ 2. The number of

detected peaks increases withN and the peaks can be separated into branches that seemingly

stiffen or soften with increasingN (see the dashed lines in Fig 6.2(a)). Interestingly, compared

to a reference recorded in the XX configuration, the integrated intensity of peaks belonging to

a branch that softens with increasingN drops by more than one order of magnitude in the XY

configuration, while the integrated intensity of the peaks that belong to a branch that stiffens

with increasing N is marginally affected (see Figs 6.2(b) and (c)). Therefore, the branches

that soften (stiffen) with increasing N are assigned to the LBM (LSM). We are able to resolve

two branches of LSM and, remarkably, five branches of LBM, i.e., the complete manifold of

Raman-active LBM up to N=11 (see Tab. 6.1).
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Figure 6.2 – (a) Polarization-resolved low-frequency Raman spectra of N = 1 to N = 12-layer and of bulk
MoTe2, in the parallel (XX) and transverse (XY) configuration recorded at EL = 2.33 eV. The interlayer
breathing modes (LBM) largely dominate the spectra in the XX configuration and their intensity is reduced
by more than one order of magnitude in the XY configuration. The shear modes (LSM) are not sensitive to the
polarization configuration. The dashed lines follow the frequencies of each LSM and LBM. (b-c) Polarization-
resolved low-frequency micro-Raman spectra of (b) N = 9 and (c) N = 10 layer MoTe2 in the parallel (XX)
and transverse (XY) configuration. The four (five) expected Raman-active LBM denoted Ba to Bd (Ba to
Be) for N = 9 (N = 10) and two LSM denoted Sa and Sb are observed. The asterisks highlight residual
contributions from the exciting laser beam.
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Mid- and hig-frequency modes

The Raman spectra of the mid- (iX, oX) and high-frequency (iMX and oMX) modes in N -

layer MoTe2 are shown in Fig. 6.3. For N ≥ 3-layer MoTe2, we observe a prominent split-

ting of the oX-mode feature (see Fig. 6.3(b)), while in the bulk limit, one recovers a sin-

gle symmetric feature (assigned to the Raman-active A1g mode). Interestingly, as shown

in Fig. 6.3(a), the iX-mode feature also splits, but only for N ≥ 4. We can resolve up to

three subfeatures for N = 6 and 7, but the Raman signal in N ≥ 8-layer MoTe2 becomes

too small to perform a quantitative analysis. At EL = 1.96 eV, the oMX-mode feature also

exhibits a modest splitting, on the order of 1 cm−1, for N ≥ 4. Two subpeaks can be dis-

tinguished. However, the evolution of their frequencies does not follow a specific trend as

a function of N (see Fig. 6.3(d)). In contrast, the iMX-mode feature exhibits a faint shoul-

der on its high-energy side (see Fig. 6.3(c)), but no appreciable splitting can be resolved.

However, the iMX feature downshifts as N increases, consistently with previous reports on

N -layer TMDs [Lee10, Li12a, Molina-Sánchez11, Luo13a, Luo13b, Berkdemir13, Tonndorf13,

Zhao13, Yamamoto14, Ruppert14].
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Figure 6.3 – Normalized micro-Raman spectra of the (a) iX, (b) oX, (c) iMX, and (d) oMX mode-features in
N -layer MoTe2. The laser phonon energy EL and the elementary intralayer displacements are indicated. The
measured Raman features (symbols) are fit to Voigt profiles (solid lines). For the modes that show a Davydov
splitting, each subpeak is represented with a colored dashed line. A featureless background (gray dashed line)
has been considered when necessary.

To sum up, in agreement with predicted Davydov splittings, the Raman measurements

reveal that
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(i) secondary LSM and LBM features appear for N ≥ 4;

(ii) the oX feature splits for N ≥ 3 and we observe ⌈N/2⌉ Raman active subfeatures in N -

layer MoTe2;

(iii) the splitting of the iX feature into ⌊N/2⌋ Raman active subfeatures is observed from

N ≥ 4;

(iv) a splitting of the oMX feature appears for N ≥ 4.

The frequencies of all the measured Raman features, extracted from Voigt fits (see Figs. 6.2

and 6.3) are reported in Fig. 6.5. The Gaussian component is fixed in order to take into

account our spectral resolution.

6.1.3 Force constant model

The model

To describe the observed splittings and frequency shifts of the phonon modes with increas-

ing number of layers, we now introduce a semiempirical model. N -layer MoTe2 is modeled

as a finite linear chain composed of 2N Te atoms of mass per unit area µX and N Mo atoms

of mass per unit area µM (see Fig. 6.4) [Luo13b]. Within one MoTe2 unit nearest neighbor

Mo and Te atoms and the pair of second nearest neighbor Te atoms are connected by springs

with force constants per unit area α and δ respectively [Luo13b] (see Fig. 6.4). Interlayer in-

teractions are then described by two force constants per unit area, β and γ , between nearest

neighbor Te atoms belonging to adjacent layers and between second nearest neighbor Mo and

Te atoms, respectively. In addition, finite size effects are known to lead to a slight reduction

of the metal-chalcogen bond length on the outer layers (these effects are called ‘surface ef-
fects’) [Luo13b]. As a result, to improve our model, effective values αe > α and δe > δ are

phenomenologically considered for the first and N th layer. We note that our choice of using

the same value of αe at both ends of the chain is consistent with the fact that no significant

substrate-induced frequency shifts have been observed on the Raman response of MoTe2 and

other TMDs [Lee10, Yamamoto14, Luo13a, Luo13b, Zhao13].

e

1L

e e

e

Mo (µM)

Te (µX)

u1,1 u2,1 u3,1 u1,2 u2,2 u3,2 u2,N-1u1,N-1 u3,N-1 u1,N u2,N u3,Nu1,j+1u3,ju2,ju1,ju3,j-1

Figure 6.4 – Schematic of the finite linear chain model. µX (µM) is the mass per unit area of the Mo (Te)
atom. α and β are the force constants that connect the first nearest neighbor atoms. γ and δ are the force con-
stants that connect the second nearest neighbor atoms. ui,j the displacement, with respect to the equilibrium
position, of the ith atom (i = 1,3 for Te and i = 2 for Mo) in the jth MoTe2 layer (j ∈ ~1,N�).

We define ui,j the displacement, with respect to the equilibrium position, of the ith atom
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(i = 1,3 for Te and i = 2 for Mo) in the j th MoTe2 layer (j ∈ ~1,N�). From Newton’s and

Hooke’s law, we can write 3N coupled differential equations which can be rewritten in matrix

form
d2U
dt2

= −C U , (6.1)

with the displacement vector U =
(

u1,1, u2,1, u3,1, . . . , ui,j , . . . , u1,N , u2,N , u3,N

)

and the

3N × 3N force constant matrix

C =
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To find the zone-center (Γ) normal modes, one has to seek for sinusoidal solutions in the

form ui,j = εi,je
−iΩt . For this kind of solutions, Eq. (6.1) becomes

D E =Ω
2 E , (6.2)
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where E =
(

ε1,1, ε2,1, ε3,1, . . . , εi,j , . . . , ε1,N , ε2,N , ε3,N

)

is known as the polarization vector of the nor-
mal mode and D = C is the dynamical matrix [Ashcroft76]. It is noteworthy that the dynam-

ical matrix is equal to the force constants matrix only for zone-center (Γ) normal modes. The

3N normal modes of the finite linear chain, with eigenfrequencies Ωp and normal displace-

ments Ep (p ∈ ~1,3N�), are obtained by diagonalizing the matrix D.

Equation. (6.2) can be generalized to any wavevector q of the Brillouin zone. If ui,j =

εi,je
−i(Ωt−qxi,j ), the eigenvalue problem becomes [Ashcroft76]

D(q) E =Ω(q)2 E , (6.3)

where xi,j is the equilibrium position of the ith atom within the j th layer and the dynamical

matrix D(q) can be viewed as the representation of the force constant matrix in reciprocal

space, since C implicitly depends on the equilibrium positions xi,j . Knowing the force con-

stant matrix C, the dynamical matrix D(q) is given by

Dn,m(q) = Cn,meik(qk,l−xi,j ), (6.4)

with n = 3(j − 1) + i, m = 3(l − 1) + k, and i, k ∈ ~1,3� and j, l ∈ ~1,N�.

The in-plane and out-of-plane displacements are both described by Eq. (6.2) using two

different set of force constants. Indeed, for in-plane (out-of-plane) displacements, Eq. (6.2)

predicts three manifolds of N normal modes that correspond to (i) the low frequency LSM

(LBM) (including the zero frequency acoustic mode) (ii) the mid-frequency iX (oX) modes

and (iii) the high-frequency iMX (oMX) modes. Note that the in-plane phonon modes are

doubly degenerate, thus only one set of parameters is enough to describe the 6N modes.

Furthermore, except for the zero acoustic mode, one has

N∑

j=1

3∑

i=1

µi εi,j = 0, (6.5)

where µ1 = µ3 = µX and µ2 = µM. This relation means that the center of mass of the N -layer

system stays at rest [Michel12].

Bulk frequencies

Contrary to a finite number of layers, the frequencies of the bulk normal modes have a simple

analytic expression. To take into account the infinite size of the crystal, we apply the Born

von Kármán periodic boundary conditions. In this case, the unit cell of the one-dimensional

Bravais lattice of this linear chain contains the three atoms of one layer.

For the nth layer, we suppose that the equilibrium positions are nc for the Mo atom and

nc − d and nc + d for the two Te atoms. Thus, Mo atoms belonging to adjacent layers are
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separated by a distance c which is the lattice parameter of the linear chain.1 We seek for

solutions in the form of a plane wave with frequency Ω and wavevector q: uj,n = Aje
−i(Ωt−qnc)

where j = 1,3 for Te and j = 2 for Mo, and Aj are constants to be determined, whose ratio

specify the relative amplitude and phase of vibration of the atoms within each layer. We

emphasize that we are seeking for solutions not limited to zone center phonons (i.e., q = 0)

for a reason that will become clearer below. By substituting uj,n into the equations of motion,

we obtain three homogeneous equations in terms of Aj . These equations will have a non-zero

solution provided that the determinant of the coefficients vanishes. This yields

[

µXΩ
2 − (α + β +γ + δ)

]2 [

µMΩ
2 − 2(α +γ)

]

+ (α +γeiqc)2(δ + βe−iqc) + (α +γe−iqc)2(δ + βeiqc)

−
[

µMΩ
2 − 2(α +γ)

]

(δ + βeiqc)(δ + βe−iqc)

− 2
[

µXΩ
2 − (α + β +γ + δ)

]

(α +γeiqc)(α +γe−iqc) = 0. (6.6)

The Born von Karman boundary condition leads to N nonequivalent values of q given by

q = 2π
c
p
N with p an integer. In addition all the information is contained in the Brillouin

zone, i.e. we can consider only wavevectors such that q ∈ [−πc , πc ]. Eq. (6.6) does not need be

solved for every q since we are only interested in phonons with q = 0. However, the real unit

cell of the bulk crystal contains the six atoms of two layers and not the three atoms of one

layer, i.e., the arrangement has a repeat distance 2c instead of c. Consequently, the reciprocal

lattice changes from c∗old = 2π
c to c∗new = π

c . In the former lattice the border of the Brillouin

zone was at π
c , now it is at half that distance. We must translate the pieces of dispersion

relation for |q| ∈ [ π2c ,
π
a ], through a reciprocal lattice vector c∗new. Hence, the frequencies of

the six bulk normal modes are obtained by solving Eq. (6.6) for q = 0 and q = π
c . For q = 0

(q = π
c ) the displacements of the three atoms within one layer are in-phase (out-of-phase)

with the displacements of the atoms of adjacent layers. Using the symmetry of the atomic

displacements, we can get the expression of the six bulk frequencies [Luo13b] associated with

the low-frequency modes (LSM, LBM)

Ω
−
low = 0, (6.7)

Ω
+
low =

α +γ +2β

2µX
+
α +γ

µM
−

√
(

α +γ +2β

2µX
− α +γ

µM

)2

+2
(α −γ)2
µXµM

, (6.8)

the mid-frequency modes (iX, oX)

Ω
−
mid =

α +γ +2δ

µX
, (6.9)

Ω
+
mid =

α +γ +2δ +2β

µX
, (6.10)

1Note that c is here the distance between two adjacent planes and not the lattice parameter of the bulk crystal.
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and high-frequency (iMX, oMX) modes

Ω
−
high =

(2µX +µM)(α +γ)

µXµM
, (6.11)

Ω
+
high =

α +γ +2β

2µX
+
α +γ

µM
+

√
(

α +γ +2β

2µX
− α +γ

µM

)2

+2
(α −γ)2
µXµM

. (6.12)

It is striking to notice that these expressions give the force-constant dependence of the

phononmodes: (i) the low-frequencymodes depend on β and γ , (ii) the mid-frequencymodes

depend on α (αe), β, γ and δ (δe), and (iii) the high-frequency modes depend on α (αe), β and

γ .

Since α is the only force constant that describes covalent bonds, its value is expected to be

higher than the others. Thus assuming |α| ≫
∣
∣
∣β

∣
∣
∣ ,
∣
∣
∣γ

∣
∣
∣ , |δ|, we can perform Taylor developments

of Eqs. (6.8) and (6.12) to get more convenient expressions

Ω
+
low ≈ 4

β +2γ

µ
, (6.13)

Ω
+
high ≈

αµ2 +2βµ2M +γ(2µX −µM)2

µµXµM
, (6.14)

where µ = 2µX + µM is the mass per unit area of the unit cell. The relative difference be-

tween the results of Eqs. (6.13)/(6.14) and the exact values obtained using Eqs. (6.8)/(6.12),

respectively, is lower than 1 %�for the parameters in Tab. 6.2.

An interesting quantity than can be deduced from the expressions of the bulk frequencies,

for low-, mid- and high-frequency modes, is the bulk Davydov splitting ∆Ω =Ω+−Ω−. Again
by performing Taylor expansions, we get the following expressions for the Davydov splitting

∆Ωlow ≈ 2

√

β +2γ

µ
, (6.15)

∆Ωmid ≈
β

α

(

1− γ +2δ

2α

)√

α

µX
, (6.16)

∆Ωhigh ≈
(

µ2M
µ2

β

α
− 4µXµM

µ2
γ

α

)√

αµ

µXµM
. (6.17)

The deviation of the results of Eqs. (6.15) and (6.16) from the exact values deduced from Eqs.

(6.7)-(6.10) is lower than 1%, and the deviation of the results of Eqs. (6.17) from the exact

values deduced from Eqs. (6.11) and (6.12) is lower than 10 % for the parameters in Tab. 6.2.

Interestingly, the high-frequency Davydov splitting (Eq. (6.17)) is the only one that can

be negative since |α| ≫
∣
∣
∣β

∣
∣
∣ ,
∣
∣
∣γ

∣
∣
∣ , |δ| . If

µM
4µX

β
γ ≥ 1, the splitting is normal and the bulk high-

frequency in-phase mode has a lower frequency than the bulk high-frequency out-of-phase

mode. Otherwise, the splitting is anomalous, as it has been reported for the iMX mode in

bulk transition metal dichalcogenides [Wieting80].
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Fitting procedure

The force constants are determined by fitting the experimental data. Since Eq. (6.2) gives the

frequency of all the phonon modes, one has to sort the proper frequencies. First, the acoustic

mode is easily identified. Second, using the eigenvectors and symmetry arguments, we can

find the Raman-active modes in a backscattering geometry. For a N -layer system, the criteria

are the following:

• For in-plane modes

– if N is even then ∀j ∈
�

1, N2
�

and i ∈ ~1,3�,

εi,j + ε4−i,N+1−j = 0; (6.18)

– if N is odd then ∀j ∈
�

1, N+1
2

�

and i ∈ ~1,3�,

εi,j − ε4−i,N+1−j = 0; (6.19)

• For out-of-plane modes

– if N is even then ∀j ∈
�

1, N2
�

and i ∈ ~1,3�,

εi,j + ε4−i,N+1−j = 0; (6.20)

– if N is odd then ∀j ∈
�

1, N+1
2

�

and i ∈ ~1,3�,

εi,j + ε4−i,N+1−j = 0. (6.21)

Third, since not all Raman-active modes are experimentally observed (e.g, we observe no

splitting for the iMX feature), we have to select manually the observed frequencies within the

Raman-active modes. Once the frequencies are selected, we use a least squares method to

obtain the force constants.

6.1.4 Results of the fits

Force constants

The fan diagrams in Fig. 6.5 associated with the in-plane LSM, iX- and iMX-mode frequencies

on the one hand, and out-of-plane LBM, oX- and oMX-mode frequencies on the other hand,

are very well described by the force-constant model (red connected symbols in Fig. 6.5). The

force constants (per unit area) used as fitting parameters are reported in Tab 6.2. We find

that all the force constants correspond to a restoring force, except for the in-plane second

nearest neighbor force constant between Te pairs. The values obtained here are qualitatively
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similar to the values that Luo et al. reported for MoS2 by fitting the bulk frequencies (ob-

tained from calculations based on the local density approximation (LDA)) to a force constant

model [Luo13b]. From a quantitative point of view, two important remarks have to be made:

(i) As supposed to obtain Eqs. (6.13)-(6.17), |α| ≫
∣
∣
∣β

∣
∣
∣ ,
∣
∣
∣γ

∣
∣
∣ , |δ|.

(ii) A force constant model restricted to the first nearest neighbor interactions (i.e., γ =

δ = 0) suffices to fit the frequencies of the low- and mid-frequency modes, but would

then fail to predict the frequencies of the oMX and iMX modes. Indeed, the second

nearest neighbor interlayer (γ) and intralayer (δ) force constants are of the same order of

magnitude and larger than the nearest neighbor interlayer force constant β, respectively.

in-plane out-of-plane

α(1019 N/m3) 105 159

αe(10
19 N/m3) 107 163

β(1019 N/m3) 2.28 5.61

γ(1019 N/m3) 0.585 1.11

δ(1019 N/m3) -4.53 19.8

δe(10
19 N/m3) -4.22 20.4

Table 6.2 – Force constants per unit area extracted from the fit of the experimental data to the finite linear
chain model (see Eq. (6.2) and Fig. 6.5).

Phonon frequencies and atomic displacements

Using the deduced force constants in Tab. 6.2, we were able to calculate all phonon modes

(see Fig. 6.5) and the corresponding atomic displacements. Figure 6.6 represents the calcu-

lated displacements for N = 4 and N = 5 (see Appendix F for N = 1 to N = 6). Note that

these displacements satisfy Eq. (6.5). In addition, we computed the bulk frequencies using

Eqs.(6.7)-(6.12) (see gray dashed lines in Fig. 6.5). The non-zero low- and mid-frequency of

the bulk modes are reported in Tab 6.3. We emphasize that we deduced the frequency of op-

tical phonons that are silent in bulk crystals, namely the low-frequency interlayer breathing

mode (LBM) with B2g symmetry, and the mid-frequency in-plane (iX) and out-of-plane (oX)

modes with E2u and B1u symmetry, respectively. The deduced bulk frequencies are in good

agreement with frequencies obtained from ab-initio calculations (see Tab 6.3). These calcu-

lations were done by our collaborators at the University of Luxembourg. They used density

functional perturbation theory (DFPT) [Baroni01] as implemented in the Quantum Espresso

code [Giannozzi09], with the local-density approximation (LDA) which does not properly

take into account van der Waals interaction between the layers. Nevertheless it gives decent

results for the phonons of many layered systems because it overestimates the weak covalent

part of the interlayer bonding.

We now discuss more carefully the results for the low-, mid- and high-frequency modes.
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fitting parameters in Tab. 6.2. The gray-filled triangles in (a), (c), (f) (resp. the open squares in (a)-(f))
are the frequencies of the E′′ modes that are not Raman active in a backscattering geometry (resp. of the
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±
mid, and ω

±
high, respectively (see also

Tab. 6.2). The green open circles (squares) in (e) and (f) correspond to the Raman-active (infrared-active)
surface modes (see also Fig. 6.6).

Low-frequency modes The low-frequency branches of LSM and LBM are very well fit by

this force constant model and that the LSM and LBM branches have opposite trends with

140 Chapter 6 Raman spectroscopy of N -layer transition metal dichalcogenides



in-plane out-of-plane

exp. DFT exp. DFT

ω+
low(cm

−1) 26.755 27.2 (E2g ) 40.289 37.5 (B2g ) ⋆

ω−mid(cm
−1) 117.17 116.4 (E2u) ⋆ 168.93 171.2 (B1u) ⋆

ω+
mid(cm

−1) 119.92 118.5 (E1g ) 173.60 174.5 (A1g )

ω−high(cm
−1) 234.48 233.3 (E1u) 289.44 281.5 (A2u)

ω+
high(cm

−1) 234.34 233.2 (E2g ) 289.41 287.3 (B2g ) ⋆

Table 6.3 – Bulk frequencies extracted from the fit of the experimental data (exp.) to the finite linear chain
model (see dashed lines in Fig. 6.5) and from DFT calculations. Note that ω−low = 0 for both in- and out-of-
plane modes. The irreducible representations of the bulk phonon modes are indicated. Stars (⋆) denote silent
modes.

increasing N . These distinct trends can be weel understood using symmetry arguments. The

eigenfrequencies increase (decrease) as the layers exhibit more out-of-phase (in-phase) rela-

tive motion, up to the limit of the highest- (lowest-) frequency mode, which corresponds to an

out-of-phase (in-phase) oscillation for all layers.2 From this analysis, we can readily conclude

that the dominant LBM feature (Ba) corresponds, for even N to the out-of-phase oscillation

of two blocks composed of N/2 layers that vibrate in-phase; for odd N to the out-of-phase os-

cillations of two blocks composed of (N − 1)/2 layers that vibrate in-phase, while the central

layer stays at rest. In contrast, the dominant LSM feature (Sa) corresponds to an out-of-phase

displacement of adjacent layers as in bulk crystals [Michel12, Zhao13] (see Fig. 6.6).

Mid-frequency modes The mid-frequency Raman-active modes that are observable in

our backscattering experiments correspond to the second-lowest, fourth-lowest,. . . frequency

mode for the iX phonons and to the highest, third-highest,. . . frequency mode for the oX

phonons. These distinct symmetry properties result in a set of softening and stiffening
branches in the experimentally measured fan diagrams in Fig. 6.5(c) and 6.5(d), respectively.

A remarkable validation of this symmetry analysis is that the highest frequency iX mode that

can be observed has the highest frequency (Eg symmetry) for even N and the second high-

est frequency (E′ symmetry) for odd N (see Fig. 6.6). As a result, the iX-mode frequency

for N = 3 is lower than for N = 2, and the two observed iX-mode subfeatures for N = 4 are

slightly upshifted relative to their counterparts recorded for N = 5 (see Figs. 6.3 and 6.5).

The bulk Davydov splitting is given by Eq. (6.16) which leads to the values of 2.7 cm−1

and 4.7 cm−1 for the iX and oX modes, respectively. These Davydov splittings are in good

agreement with the ones deduced from ab-initio calculations. However, they are typically one

order of magnitude smaller than the splittings of low-frequency modes. This is partly why

Davydov splittings of mid-frequency modes have been scarcely studied. We also note that

our model predicts a somewhat lower frequency for the oX (A′1) mode in monolayer MoTe2

2This trend is as expected from classical theories of coupled oscillators.
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(see Fig. 6.5(d)). This discrepancy is due to a stronger bond length contraction in the limit of a

monolayer [Luo13b], as compared to the bilayer or to the outer layers in N ≥ 2-layer samples.

That is why we do not fit the frequency of the monolayer.

High-frequency modes For iMX and oMX modes, the force constant model predicts very

small anomalous Davydov splittings (below 0.2 cm−1), which are consistent with previous

studies of the iMX mode in bulk TMDs [Wieting80, Ghosh83, Molina-Sánchez11, Luo13b],

and a critical influence of surface effects. Indeed we find that among the N iMX and oMX

normal displacements, two modes predominantly involve atomic displacement of the first

and/or N th layer and can be regarded as surface modes. Such surface modes are not pre-

dicted for the iX and oX displacements (see Fig. 6.6). As a result, the surface terms αe and

δe, will only bring a small correction to the fan diagrams associated with the mid-frequency

modes, but will shape the manifold of high-frequency phonon modes. For N ≥ 3, the force

constant model predicts a fan diagram forN−2 quasi-degenerate iMX and oMXmodes, where

atomic displacement chiefly occurs in the inner layers, and two surface modes (see Fig. 6.6

and Fig. 6.5). The strength of the surface effects will set the frequencies of the surface modes

relative to that of the other modes.

iMX mode A tentative explanation for the pronounced downshift observed for the iMX

mode is that the surface mode dominates for small N and that the modes arising from the

inner layers provide most of the Raman intensity as N increases. To confirm this scenario

our collaborators at the University of Luxembourg has performed calculations based on a

bond polarizability model [Umari01], which was also recently used for layered BN and BN

nanotubes [Wirtz05]. Such model can assign a Raman intensity to each Raman frequency

obtained with the force constant model. The result of their calculations is that for the iMX

mode there are two close peaks for N ≥ 3. The lower in frequency corresponds to the quasi-

degenerate inner mode and the higher being the surface mode. For increasingN , the absolute

intensity of the quasi-degenerate inner mode increases almost linearly, as there are more

modes, whereas the absolute intensity of the surface mode is independent of N , as only the

outer layers are vibrating. In addition, the iMX-mode feature inN -layer MoTe2 is appreciably

broader (with a FWHM decreasing from 3.5 cm−1 for N = 1 down to 2.6 cm−1 in the bulk)

than the iX, oX and oMX peaks, whose FWHM are approximately 1 cm−1. This broadening

prevents us from unveiling any splitting of the iMX-mode feature in N -layer MoTe2, even

between surface and inner modes where the frequency difference is smaller than 1 cm−1. As a

result, the relative intensity of the surface mode drops asN increases, and thus the maximum

of the combined peak shifts to smaller frequencies as N increases. Therefore, for the fit of

iMX, we have used the average frequency of all the Raman active mode. In that case, for

increasing N , the number of quasi-degenerate inner modes increases, and thus their weight

in the average increases. Finally, the Davydov splitting is anomalous and equal to 0.14 cm−1

according to the force-constant fit and to Eq. (6.17). Ab initio calculations (see Tab. 6.3) yield
also a minimal anomalous Davydov splitting of 0.1 cm−1.
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oMXmode For the oMXmode, we also find that the surface modes have a slightly higher

frequency than the modes localized on the inner layers. The bond polarizability model pre-

dicts that the surface mode has a much larger intensity than the inner modes irrespective of

N . Supported by these results, we assign the dominant high-energy oMX subfeature to the

surface mode, while the faint lower-energy shoulder is assigned to the quasi-degenerate inner

modes. This is the criteria used to fit the oMX features to the force constant model. The de-

duced Davydov splitting is also anomalous and is equal to 0.04 cm−1. Ab-initio calculations

(see Tab. 6.3) yield a sizable (normal) Davydov splitting of 5.8 cm−1 between the bulk A2u and

B2g frequencies. In order to reproduce this splitting, an additional force-constant betweenMo

atoms of neighboring layers should be introduced (which would not modify the splitting be-

tween the oX modes B1u and A1g modes because those modes do not involve motion of the

Mo atoms). Since the resulting fan-diagram is not visible in the experimental spectra of the

oMX mode, we did not include this additional force constant here.

(a)
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oMXiMX

LSM LBM
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A1gA2u A1g A2u
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(b)

Figure 6.6 – Calculated normal displacements associated with all the in-plane (a) and out-of-plane (b) optical
phonon modes inN = 4 andN = 5 layer MoTe2. The size of the arrows is proportional to the amplitude εpi,j of
the normal displacement obtained from the solution of Eq. (6.2). At a given N , the mode frequencies increase
from left to right. The irreducible representation of each normal mode is indicated.
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6.1.5 Generalization: the case of MoSe2

To show the generality of our model, we have also studied N -layer MoSe2. The results were

analyzed with the help of two Master 1 students under my supervision: Edurne Iriondo

and Minghao Li. As already mentioned at the beginning of this section, Davydov split-

tings of mid-frequency modes have been previously reported in N -layer MoSe2 [Tonndorf13,

Chen15]. Very recently, following our work on MoTe2, Kim et al. have reported a unified

description of the optical phonons in N -layer MoSe2 [Kim16] which can be compared to our

results.

Raman spectra of N = 1 to N = 8 layer MoSe2 and of bulk MoSe2 were recorded in similar

conditions asN -layer MoTe2 at the two same photon energies: EL = 1.96 eV and EL = 2.33 eV.

However, the result presented here were all obtained at EL = 2.33 eV as Davydov splitting are

more visible at this energy (see Section 6.4).
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Figure 6.7 – (a) Raman spectrum of bilayer MoSe2. The one-phonon modes are identified and labeled (except
the LBM). The corresponding atomic displacement are sketched. (b) Raman spectra of the oX-mode features
of N = 1 to N = 8 layer MoSe2 and of bulk MoSe2. The gray dashed lines are guide to the eye to distinguish
the subfeatures. Note that we have plotted the log of the spectra to highlight the subpeaks. The spectra are
vertically offset for clarity.

Figure 6.7(a) shows the Raman spectrum of a bilayer MoSe2. We identified the one-

phonon modes with the help of Ref. [Soubelet16] and labeled them with the same notation as

for N -layer MoTe2. We observe the same modes but with some discrepancies:

(i) We identified only one LBM branch (and no LBM for N = 2) while we observed three

LSM branches (i.e., all the LSM except the lowest one for N = 7).

(ii) The iX mode is only visible for N = 2 and N = 3 but we observed all the oX subfeatures

as displayed in Fig. 6.7(b).

(iii) We noticed no splitting for the high-frequency modes.

The frequencies of all the measured Raman features, extracted from Voigt are reported in
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Fig. 6.8.

We use the force constant model developed previously to fit these frequencies. As for

N -layer MoTe2 (see Fig. 6.5), the fan diagrams are very well described by the force-constant

model. The force constants (per unit area) used as fitting parameters are reported in Tab 6.4

and should be compared to the values in Tab 6.2 for N -layer MoTe2. We find comparable

values for both materials. In particular, the in-plane second nearest neighbor force constant

between Se pairs (δ) is also negative. Note that for the iMX and oMX modes, we used the

average of all the Raman-active modes, and that for the in-plane modes we did not use δe
as there are only two points which might not be enough to obtain a significant value of δe.

The deduced bulk frequencies are in very good agreement with the measured one and the

Davydov splittings are similar to MoTe2. Interestingly, the Davydov splitting of the high-

frequency modes of MoSe2 is found to be normal while it is anomalous in MoTe2 and no clear

surface modes were identified. A direct consequence is that the frequency trends of iMX and

oMX subfeatures are the opposite of MoTe2.

The results obtained by Kim et al. [Kim16] are also displayed in Tab 6.4. We notice that all

values very consistent with ours. In particular, they also observe a normal Davydov splitting

for the high-frequency modes. However, the frequency difference is obviously too small to

draw a clear conclusion.

in-plane out-of-plane

This work [Kim16] This work [Kim16]

α(1019 N/m3) 152 152 232 229

αe(10
19 N/m3) 154 155 234 235

β(1019 N/m3) 2.34 1.82 5.24 5.47

γ(1019 N/m3) 0.324 0.55 1.43 1.63

δ(1019 N/m3) -6.88 -6.80 24.0 25.3

δe(10
19 N/m3) -6.88 -6.70 25.5 25.3

ω+
low(cm

−1) 27.40 27.09 (E2g ) 45.09 46.80 (B2g ) ⋆

ω−mid(cm
−1) 167.7 167.7 (E2u) ⋆ 238.7 238.5 (B1u) ⋆

ω+
mid(cm

−1) 170.5 169.9 (E1g ) 243.1 243.1 (A1g )

ω−high(cm
−1) 289.0 285.8 (E1u) 353.7 351.4 (A2u)

ω+
high(cm

−1) 286.3 285.8 (E2g ) 353.8 351.4 (B2g ) ⋆

Table 6.4 – Force constants per unit area and corresponding bulk frequencies extracted from the fit of the
experimental data to the finite linear chain model (see Eq. (6.2) and dashed lines in Fig. 6.8) for MoSe2. Note
that ω−low = 0 for both in- and out-of-plane modes. The irreducible representations of the bulk phonon modes
are indicated. Stars (⋆) denote silent modes.
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cirles in (a)-(f) are the frequencies of the Raman-active modes calculated by solving Eq.(6.2) with the fitting
parameters in Tab. 6.4. The open-squares in (a)-(f) are the frequencies of the E′′ modes that are not Raman
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±
mid, and ω
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6.2 A simplified description of the low-frequency modes

In this section, we present a simplified description of the low-frequency modes that can be

employed for any layered materials. This simplified description opens very interesting per-

spectives to accurately determine the number of layers and to easily extract the strength of

the van der Waals interlayer interactions. To shed light on the universality of this model, we

will compare the results obtained in our group on different materials: 2Hc MoTe2, MoSe2,
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WS2 and WSe2, and distorted octahedral 1T’ phase ReS2 and ReSe2. The latter two display

much lower symmetry and significant in-plane anisotropy due to covalent bonding between

Re atoms leading to quasi one-dimensional Re chains [Ho97, Ho98, Ho04, Tiong99].

6.2.1 Frequency of the LSM and LBM

As for N -layer MoTe2, the frequencies of the LSM and LBM were extracted from fits with

Voigt profiles and are displayed in Fig. 6.10. Note that the branches have been identified by

polarized measurements for the 2Hmaterials and by the fact that the LSM are split for the 1T’

ReX2 due to the in-plane anisotropy [Lorchat16]. The LBM and LSM branches are denoted

by Ba, Bb,. . . and Sa, Sb,. . . , respectively. First of all, we notice that the frequencies of the

different crystals have the same order of magnitude. We observe that for ReX2 both LSM and

LBM decrease as N increases, in contrast to the case of MoX2 and WX2. This observation can

be explained by a simple symmetry analysis knowing that the 1T’ structure has no mirror

symmetry plane but preserves an inversion center for any value of N . Consequently, for both

LSM and LBM, the frequency modes that can be observed have the highest frequency, with

Ag symmetry, for N = 2 and the second highest frequency, with also Ag symmetry, for N = 3.

As a result, the LSM and LBM frequencies for N = 3 are lower than for N = 2, and so on

for increasing N [Lorchat16]. In contrast, N -layer 2H compounds exhibit a mirror symmetry

plane (but no inversion center) for odd N and an inversion center (but no mirror symmetry

plane) for even N (see Chapter 3 Section 3.3). Therefore, for the LSM (LBM), the frequency

modes that can be observed have the highest frequency, with Eg (A1g ) symmetry, for N = 2

and the (second) highest frequency, with E′ (A′′2 ), for N = 3. In consequence, the LSM (LBM)

frequency for N = 3 is higher (lower) than for N = 2 (see Tab. 6.1 and Fig. 6.6).

6.2.2 Hyperspectal Raman imaging

The observation of a well-defined, N -dependent series of LBM and LSM opens very inter-

esting perspectives for hyperspectral Raman imaging. In Fig. 6.9(a), we present an optical

image of a MoTe2 crystal containing domains with N ranging from N = 2 to N = 13. The

number of layers is readily identified by atomic force microscopy (Fig. 6.9(b)) and the height

difference between two MoTe2 layers is measured to be ∼ 0.6 nm, in agreement with previ-

ous studies [Böker01, Ruppert14, Yamamoto14, Lezama15]. Note that the step between the

Si/SiO2 substrate and N = 2 might be due to changes in the tip-surface interaction between

the substrate and the sample [Nemes-Incze08] or to the presence of adsorbates under the

sample [Lee10]. In Fig. 6.9(c), we plot the hyperspectral map of the frequency ωBa of the low-

est energy and most intense LBM (see Fig. 6.2). This map readily allows one to distinguish

N -layer domains, up to N ≈ 10 with a high contrast. One can also map out the Raman scat-

tering intensity at a given shift. By selecting the Raman shifts that correspond to the Ba mode

frequency of a N -layer specimen, we can then selectively image all the N -layer domains with

an unprecedented contrast as illustrated in Fig. 6.9(d)-(o). Such a high contrast arises chiefly

from the strong enhancement of the LBM features (especially for the Ba branch) and to the
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fact that the Ba branch is spectrally well separated from the other LBM and LSM modes. In

principle, such hyperspectral imaging can be applied to any TMDs providing that there is

a spectrally well separated and intense enough branch. Note that it may also be possible to

combine different branches.
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Figure 6.9 – Optical (a) and atomic force microscopy (AFM) (b) images of a MoTe2 flake. A height profile
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6.2.3 A simplified force constant model

For the low-frequency modes, the displacements of the atoms within one layer are the same.

Consequently, the bond lengths within one layer remain unchanged and the LSM and LBM

can be modeled using a linear chain of N -oscillators, where one layer is treated as a rigid

mass unit with a mass µ = 2µX + µM, where µX is the mass per unit area of the chalcogen

atom and µM of the metal atom. In other words, van der Waals interactions between adjacent

layers are, in first approximation, sufficient to accurately describe the series of interlayer

modes without further consideration of the in-plane crystal structure and intralayer force

constants [Tan12, Michel12, Zhao13, Zhang13, Boukhicha13].

Contrary to the full force constant model developed in subsection 6.1.3, this simpler

model has analytic expressions for the eigenfrequencies and eigenvectors. Let us consider

a finite linear chain of N identical masses µ (numbered from 1 to N ) connected to each other

by identical springs of force constant κ. The normal modes, such that the displacement of the

ith mass is u
p
i = ε

p
i e
−iΩpt , can be calculated analytically (see Appendix E) and yield

Ωp =

√

2κ

µ

[

1− cos
(

(p − 1)π
N

)]

with p ∈ ~1,N�, (6.22)

ε
p
i =











1√
N

if p = 1,
√

2
N cos

(
(p−1)(2i−1)π

2N

)

if p ∈ ~2,N�,
(6.23)

Note that ε
p
i is normalized to unity since the eigenvectors are defined up to a constant mul-

tiplier. p = 1 corresponds to the acoustic mode with a zero frequency and a center of mass

not at rest. For N = 2, the non-zero frequency is Ω =
√

2κ
µ and the non-zero bulk frequency

is Ω+ =
√

4κ
µ . These two expressions can be deduced from simple considerations. For N = 2,

the problem is equivalent to a spring-mass system with a reduced mass µ/2 and a spring κ.

Such oscillator has a frequency Ω =
√

2κ
µ . For the bulk, the two masses are connected by two

springs of force constant κ because of the boundary condition. This system is equivalent to

one oscillator with a reduced mass µ/2 and a spring 2κ which frequency is Ω =
√

4κ
µ .

We use this simplified model to describe the observed frequencies. Using Eq. (6.23), we

globally fit the LSM and LBM branches with the shear (κS) and breathing (κB) force constants

as the only fitting parameter. The observed Raman-active modes correspond to branches with

(i) p =N, N −2, N −4, . . . for the LSM Sa, Sb, Sc, . . . and (ii) p = 2, 4, 6, . . . for the LBM Ba, Bb,

Bc, . . . . We obtain excellent agreement for all the materials we consider here (see Fig. 6.10).

The resulting force constants are reported in Tab. 6.5 and compared to measurements on

other layered materials found in the literature. Despite different compounds and crystal

structure, we notice that the interlayer force constant are all very close. As a result, the low-

frequency phonon modes can be viewed as vibrations of rigid layers, independent of their

composition and structure. In addition, in all these layered materials, the van der Waals
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Figure 6.10 – Frequencies (symbols) of the interlayer shear (Sa, Sb,. . . ,) and breathing (Ba, Bb,. . . ) modes as
a function of N for N -layer (a) MoTe2, (b) MoSe2, (c) WS2, (d) WSe2, (e) ReS2 and (f) ReSe2. The measured
frequencies are globally fit to Eq. (6.23) (lines). The theoretical curves are plotted in the range of N where
the corresponding mode is observable. Due to in-plane anisotropy, each LSM branches of ReS2 and ReSe2 is
split into a lowest- (open symbols and dashed lines) and a highest-frequency branch (filled symbols and solid
lines), leading to two shear (κS) force constants. The extracted force constants are summarized in Tab. 6.5.
WX2 measurements were done by Olivia Zill and ReX2 by Etienne Lorchat.

interaction between the layers are similar. This explains why all of them can be cleaved in the

samemanner andwhey they can be stacked artificially to form van derWaals heterostructures

(see Chapter 2 Section2.3).

To finish this section, let us explain why this simplifiedmodel describes the low-frequency

modes as good as the full force constant model. If layers are treated as rigid planes, it means
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Material κS (1018 N/m3) κB (1018 N/m3)

MoTe2 34.2 76.9

MoTe2 [Grzeszczyk16,
Song16]

36.0, 42.5 75.0, 91.2

MoSe2 29.6 78.4

MoSe2 [Kim16] 29.2 87.3

WS2 29.4 80.6

WSe2 30.5 83.7

WSe2 [Zhao13] 30.7 86.3

ReS2 17.1/18.9 69.3

ReSe2 17.8/19.4 69.2

MoS2 [Boukhicha13,
Zhang13, Zhao13]

28.1, 28.2, 27.2 88.1, 89.0, 86.2

Graphite [Tan12, Lui14] 12.8 88.0

Table 6.5 – Force constants per unit area extracted from the fit of the experimental data to the finite lin-
ear chain model (see Fig. 6.10) and from the literature. For ReS2 and ReSe2, the shear force constants κS
correspond to the lowest-/highest-frequency branch, respectively.

that the force constant α in the complete model (see Fig. 6.4) is infinite |α| ≫
∣
∣
∣β

∣
∣
∣ ,
∣
∣
∣γ

∣
∣
∣ , |δ|. How-

ever, as shown in Tab. 6.2, this relation is verified. In that case, the non-zero bulk frequency

is given by Eq. (6.13). By comparing with the non-zero bulk frequency obtained from the

simplified model, we deduce that κ ≈ β + 2γ . As expected, this relation involves the two in-

terlayer force constants. This relation is experimentally very well verified (see Tab. 6.2 and

Tab. 6.5). Therefore, the use of a simplified model for the low-frequency mode is justified.

Note that surface effects only affect intralayer force constants and have therefore a negligible

influence on the rigid layer modes.

6.3 Deriving the phonon frequency in N -layer TMDs from the bulk

phonon dispersion

In this section, we give an alternative description of the phonon modes in N -layer crystals

using the phonon bulk dispersion [Karssemeijer11, Michel12]. Note that this description can

be viewed as a ‘top-down’ approach, while the description of Section 6.1 can be viewed as a

‘bottom-up’ approach. As for rest of this chapter, we will use N -layer MoTe2 as an example

but this description can be generalized to any TMDs.
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6.3.1 Low-frequency modes

To demonstrate that the phonon modes can be deduced from the bulk dispersion, we will

use the simplified model established in Section 6.2 that accurately depicts the low-frequency

modes in any layered crystals. The dispersion relation of an infinite monoatomic linear chain

can be found in e.g., [Ashcroft76]. Using the same notation as previously, the dispersion

relation is

Ω(q) =

√

2κ

µ
(1− cosqc), (6.24)

where q ∈
[

−πc , πc
]

is the phonon wavevector taken in the Brillouin zone of the monoatomic

linear chain. But Eq. (6.24) is not the dispersion relation of the bulk crystal since the unit

cell contains two layers. However, as explained previously (see section 6.1.3), the dispersion

relation of the bulk crystal can be deduced from the one with one layer in the unit cell.

Therefore using Eq. (6.24), we obtain

Ω(q) =

√

2κ

µ
(1± cosqc), (6.25)

with q ∈
[

− π2c , π2c
]

. The phonon branch with the + (−) corresponds to the optical (acoustic)

branch. Note that q = 0 gives the two frequencies of the bulk zone center phonon modes.

For non-zero wavevector q and N ≥ 23, by comparing Eqs. (6.23) and (6.25), and using the

trigonometric formula ∀θ ∈ R cos(π −θ) = −cos(θ), we infer

q(ν) =
π

c

ν

N
, (6.26)

with ν ∈
�

1,
⌊
N
2

⌋�

andN ≥ 2. Thus, we find that theN −1 LSM and LBM of theN -layer system

are obtained as the intersections of the bulk phonon branches and vertical lines located at q

given by Eq. (6.26), in the range
[

0, π2c
]

.4 To recover the complete low-frequency modes, one

has to add the lowest frequency obtained at q = 0, i.e. the zero frequencyΩ = 0 of the acoustic

mode. Interestingly, Eq. (6.26) suggests that the modes are confined to an effective thickness

of Nc. Extrapolating to the single layer gives an effective thickness of c (i.e., an interplanar

distance) for one layer, as we have assumed in the calculations of the enhancement factors in

Appendix C.

3For N = 1, q = 0 and thus the only mode is the acoustic one.
4Similar results could be obtain in the range

[

− π2c ,0
]

since the dispersion relation is an even function of q.
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Figure 6.11 – Calculated phonon dispersion along Γ −A (q = (0,0, q)) for (a) in-plane and (b) out-of-plane
phonon modes in bulk MoTe2. The relations were computed using Eq. (6.6). c is the interplanar distance.
Cuts at values of q defined by Eq. (6.26) (marked by vertical red dashed lines and labeled at the top horizontal
axis) yield the Γ-point phonon frequencies of the N -layer system.
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6.3.2 Deriving the phonon frequency from the bulk

This simple analysis can be extended to the mid- and high-frequency modes. The bulk dis-

persion relation along the Γ−A line in the 3D Brillouin zone can be computed using Eq. (6.6)

and the values of the force constants in Tab. 6.2. The calculated bulk dispersion relation is

plotted in Fig. 6.11. The frequencies all phonon modes in the N -layer system are obtained

as the intersections of these plots and vertical lines given by Eq. (6.26), plus the lowest fre-

quencies of the mid- and high-frequency modes at q = 0 (namelyΩ
−
mid andΩ

+
high). These two

frequencies correspond to q = π
c in Eq. (6.6), i.e., the displacements of the three atoms within

one layer are out-of-phase with the displacements of the atoms of adjacent layers. This is in

agreement with the displacements drawn on Fig. 6.6 and in Appendix F, where the mid- and

high-frequency mode with the lowest frequency has out-of-phase displacements of atoms of

two adjacent layers.

The extracted frequencies are plotted in Fig. 6.12. We obtain well-defined fan diagrams

delimited by the two bulk frequencies Ω− and Ω+. The in- and out-of-plane fan diagrams

are qualitatively similar (as the dispersion relation in Fig. 6.11) since the in-plane and out-of-

plane vibrations are described by the same force constant model but with two different sets of

force constants. For N even, the value ν = N
2 corresponds to q = π

2c , i.e., the A-point in the 3D

Brillouin zone. This value gives rise to the series of central points with the same frequency

in the fan diagrams. More generally, the frequencies present for N are also present for all

multiples of N . Comparing these extracted frequencies with the frequencies obtained from

the diagonalization of the dynamical matrix (see Fig. 6.5), we notice that (i) the low-frequency

modes are in excellent agreement, (ii) the mid-frequency are in qualitative agreement but

do not correspond exactly, and (iii) the quasi-degenerate high-frequency modes are in good

agreement but there are no surface modes. Indeed, surface effects are not present in the bulk

since it is infinite and the low-frequency modes are not sensitive to such effects whereas the

mid- and high-frequency are. To illustrate more precisely these differences, we focus on the

oX mode in Fig. 6.13. We observe first that the constant frequencies at ω−mid are not constant

for the frequencies obtained by the diagonalization, because of the renormalized αe and δe for

the two outer layers. The differences are also due to the fact that the two outer layers are only

connected by two γ-springs while the inner layers are all connected by four γ-springs. As

expected, when increasing N the differences become smaller since the surface effects have a

smaller influence. Finally, even if there are slight differences, the extraction of the frequencies

from the bulk dispersion relation is an easy way to qualitatively describe and quantitatively

estimate the frequency of all the modes of the N -layer system.

6.4 Resonance effects?

At this point, we could ask why we observe more modes in N -layer MoTe2 than in N -layer

MoSe2 (compare Figs. 6.3 and 6.7)? More generally, one may wonder why the Davydov

splitting was reported only on MoTe2 [Grzeszczyk16, Song16], MoSe2 [Tonndorf13, Chen15,
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Figure 6.12 – Frequencies (symbols) of the (a) LSM (b) LBM (c) iX, (d) oX, (e) iMX, (f) oMXmodes extracted
from cuts in the bulk dispersion relation displayed in Fig. 6.11 as a function of the number of layers N . The
upper and lower horizontal gray dotted lines in (a)-(b), (c)-(d), and (e)-(f) correspond to the bulk frequencies
Ω
±
low, Ω

±
mid, and Ω

±
high, respectively.

Kim16] and WS2 [Staiger15], while group theory (see Chapter 3 Section 3.3) predicts a Davy-

dov splitting for all N -layer 2Hc TMDs? For instance, no splittings have seen in numerous

studies on MoS2 using visible photon energies [Lee10, Li12a, Luo13b, Lee15b, Zhang15b].

Obviously, distinct TMDs can have different inter- and intralayer force constants leading to

more or less important Davydov splitting. However, by comparing the results obtained for

MoTe2 and MoSe2 (see Tabs. 6.2 and 6.4) the force constants seem to be of the same order
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of magnitude. Consequently, this assumption seems to be unlikely. Another explanation is

that resonance effects can affect the measurements. The possible influence of these effects are

discussed in this section.

6.4.1 Raman measurements at 2.33 eV and 1.96 eV in N -layer MoTe2

The Raman results presented on N -layer MoTe2 were recorded at two photon energies: EL =

2.33 eV for LSM, LBM and iX, and EL = 1.96 eV for oX, iMX and oMX. Each time, we choose to

use the data at the photon energy where we observe more modes. However, we recorded the

entire spectra at both photon energies. Figure 6.14 shows the raw Raman spectra of N -layer

MoTe2 recorded at EL = 2.33 eV and EL = 1.96 eV. Note that the iX mode is not shown at

1.96 eV because its intensity is too weak.

First, at low-frequency, we observe the same modes at both photon energies. As expected,

these phonon modes have the same frequency. However, we notice that the integrated inten-

sity of the LSM compared to LBM is higher at EL = 1.96 eV than at EL = 2.33 eV. In particular,

the intensity of the first LBM branch EL = 1.96 eV is not as intense as at EL = 2.33 eV. Second

at mid- and high-frequency, we identify the same features at both photon energies. Even for

the iX mode, we were able to observe a faint feature at EL = 1.96 eV but almost one order of

magnitude less intense. Since at EL = 1.96 eV its Raman signal is already small compared to

the other modes, we do not display this feature in Fig. 6.14. Figure 6.15 shows more precisely

the Raman spectra of the oX, iMX and oMXmodes inN -layer MoTe2 recorded at EL = 2.33 eV.

The results have to be compared to Fig. 6.3. At EL = 2.33 eV, the Davydov splitting also ap-

pears clearly for the oX feature, although the highest energy subfeature contains most of the
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Figure 6.14 – Raman spectra of N−layer MoTe2 recorded under the same conditions at a photon energy of
(a)-(c) 2.33 eV and (b)-(d) 1.96 eV. The spectra are vertically offset for clarity. At 1.96 eV, the intensity of
the iX mode is too weak to be observable.

oscillator strength for N ≥ 6. The iMX feature also downshifts as N increases and no appre-

ciable splitting can be resolved. However, in contrast with our results at EL = 1.96 eV, the

oMX feature does not exhibit any measurable splitting at EL = 2.33 eV.

The frequency of the oX-, iMX- and oMX-mode recorded at EL = 2.33 eV can be extracted

and compared to the ones measured at EL = 1.96 eV. These two sets of data (not shown) are

very consistent with each other. Still, there is a small rigid shift of approximately 0.2 cm−1

which is smaller than the resolution of the experimental setup. This shift presumably arises

from uncertainties (below our spectral resolution) in the calibration of our spectrometer. This

is further confirmed by the fact that the fan diagrams associated with the LSM and LBM are
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the same. Indeed, for such modes the frequency is deduced from the difference between

the Stokes and anti-Stokes features which is supposed to be independent of any systematic

error due to the calibration. Importantly, such a small shift has a negligible influence on the

determination of the force constants. Indeed, the latter vary by less than 1.5 % if one uses

the oX, oMX and iMX frequencies recorded at EL = 2.33 eV instead of their values recorded

at EL = 1.96 eV in the global fitting procedure described previously.

Finally to conclude, the Γ-point phonon frequencies are not affected by EL, although the

integrated intensity of one given Raman feature and the repartition of the spectral weight

within a given subfeature are affected by EL. Similar conclusions hold for other TMDs. In

particular, recent experiments [Soubelet16, Kim16] on N -layer MoSe2 different excitation

energies have shown that the Raman intensity strongly depends on the excitation energies.

For instance at EL = 2.5 − 2.6 eV, the mid-frequency modes are more visible. Unfortunately,

we cannot measure at such photon energies on our experimental setup, this is why less modes

were observed in N -layer MoSe2 than in MoTe2.
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6.4.2 Bond polarizability model

To explain these observations, our collaborators at the University of Luxembourg performed

calculations based on a bond polarizability model to assign a Raman intensity to each iX and

oX subfeatures in N -layer MoTe2. The results of their calculations are described in the fol-

lowing. For the iX mode, the bond polarizability model predicts spectral weights that are

in-line with group theory predictions and the experimental results at EL = 2.33 eV. How-

ever, the same model predicts that the highest frequency oX mode should have a much larger

oscillator strength than its lower energy counterparts. This prediction is clearly in contradic-

tion with the observations at EL = 1.96 eV (see Fig. 6.3(b)), where the oX-mode subfeatures

have comparable integrated intensities, but is closer to the observations at EL = 2.33 eV (see

Fig. 6.15(a)).

Let us focus more precisely on the oX mode for the trilayer. Figure 6.16 shows the three

spectra recorded at 1.58 eV, 1.96 eV and 2.33 eV. As already observed at 1.96 eV and 2.33 eV,

there are two subfeatures at almost the same Raman shift. However, the intensity ratio of the

two subfeatures is rather different and is in agreement with the bond polarizability model

only at 1.58 eV.
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Figure 6.16 – Normalized Raman spectra of the oX-mode features in N = 3 layers MoTe2 recorded at (a)
EL = 1.58 eV, (b) EL = 1.96 eV and (c) EL = 2.33 eV.

Very recently, Song et al. [Song16] have measured the oX mode of a trilayer at ten photon

energies from 1.58 eV to 2.54 eV. The measured Raman spectra are displayed in Fig. 6.17(a).
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These spectra were recorded on quartz substrates to minimize the optical interference effects.

They were further normalized by the intensity of the A3 modes in quartz at ∼ 465 cm−1 to

eliminate the difference of CCD efficiencies at different excitation energies. The two subfea-

tures are observed at every photon energies (R1 (R2) denotes the high- (low-) frequency sub-

feature) but with distinct intensity ratios. The extracted intensity for the two subfeatures are

plotted in Fig. 6.17(b) with the reflectance spectra (∆R/R) which is in first approximation pro-

portional to the absorptance [McIntyre71, Buckley77]. We observe that the high-frequency

subfeature (R1) is considerably enhanced at 1.58 eV and 1.71 eV. This energy range corre-

sponds to the A’ exciton. The low-frequency subfeature (R2) shows a strong intensity en-

hancement at 1.83 eV, which is between the A’ (∼ 1.73 eV) and B’ (∼ 1.96 eV) exciton. Our

measurements at three different photon energies (see Fig. 6.16) are in agreement with this

conclusion. However, further investigations are needed to unveil the underlying physics be-

hind these resonant exciton-phonon couplings. We are currently working on these resonance

effects with our collaborators at the University of Luxembourg (see Chapter 9).

Figure 6.17 – (a) Raman spectra of the oX-mode features in N = 3 layers MoTe2 recorded at ten laser
excitation energies. The Raman intensity is normalized to the A3 mode in quartz at about ∼ 465 cm−1. The
spectra are vertically offset for clarity. (b) The intensity of the high-frequency subfeature A′1(R1) (blue open
diamonds) and low-frequency subfeature A′1(R2) (red solid circles) as a function of the excitation energy. The
dashed gray line is the reflectance contrast spectrum (R/R) ofN = 3 layers MoTe2. Figure from Ref. [Song16].

6.5 Conclusion

In this chapter, we have reported a unified description of the optical phonon modes in N -

layer 2Hc transition metal dichalcogenide crystals (more precisely MoTe2 and MoSe2), be-

tween the bulk and monolayer limits. The manifolds of low-frequency interlayer shear and

breathing modes, and of the mid-frequency modes involving out-of-phase intralayer motion

of the chalcogen atoms are well understood using classical theories of coupled oscillators.

160 Chapter 6 Raman spectroscopy of N -layer transition metal dichalcogenides



Especially, the low-frequency modes of any N -layer materials are well described by rigid-

plane modes. In contrast, the behavior of the high-frequency modes that involve out-of phase

motion of the metal and chalcogen planes is largely influenced by surface effects. We have

introduced a global fitting procedure based on linear chain model to derive the force con-

stants up to the second nearest neighbor and to assess the strength of the surface effects.

This model allows us to deduce the frequency of optical phonons that are silent in bulk crys-

tals, namely the low-frequency interlayer breathing mode (LBM) with B2g symmetry, and the

mid-frequency in-plane (iX) and out-of-plane (oX) modes with E2u and B1u symmetry, re-

spectively. We have also shown that the phonon frequencies can be deduced reasonably from

the bulk phonon dispersion relation. Finally, this work shed light on resonant effects in lay-

ered materials and has already motivated multiple studies of the Davydov splitting in other

TMDs [Grzeszczyk16, Song16, Kim16].

Take home messages

• Raman spectroscopy is an extremely sensitive technique to probe the influence of inter-

layer coupling and the surface effects.

• The complete manifold of all the Γ-point phonons in N -layer transition metal dichalco-

genides is well captured by a simple force constant model which includes interactions

up to the second nearest neighbor and surface effects.

• The low-frequency modes correspond to rigid layer modes and are accurately described

by a simplified force constant model which includes only the interlayer force constant

in spite of the crystal structure and composition.

• Resonant exciton-phonon couplings play a major role in the observations of very clear

Davydov splittings.
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Chapter 7

Photoluminescence spectroscopy of

N -layer semiconducting transition

metal dichalcogenides

The present chapter is devoted to the study of the photoluminescence properties ofN -layer semicon-
ducting transition metal dichalcogenides. We first recall the main theoretical concepts of photolu-
minescence spectroscopy that are essential to understand the experimental results. Then, we thor-
oughly investigate the room temperature photoluminescence of N -layer transition metal dichalco-
genides using the example of MoTe2. Finally, the evolution of the photoluminescence intensity in
monolayer MoTe2 as a function of the absorbed photon flux is presented and an elementary rate
equation model is introduced to describe the observed sub-linear scaling of the photoluminescence
intensity with the incoming photon flux.

7.1 Photoluminescence spectroscopy: generalities

“Luminescence is the general name given to the process of spontaneous emission of light by

excited atoms in a solid state material” [Fox10]. Atoms can be promoted to excited states by,

for instance, absorbing light (photoluminescence), electrical excitation (electroluminescence),

heat (thermoluminescence), chemical reactions (chemiluminescence), friction (tribolumines-

cence), . . . In all cases, the light is emitted in all directions. In this work, we are studying

the PL of SCTMDs. Therefore, we will focus on the PL of semiconductors, first with a direct

bandgap and then with an indirect one.

Direct bandgap

Light absorption The fraction of absorbed light is quantified by the absorptance A which

is defined and calculated in Appendix C Section C.2. In semiconductors, optical absorption

is dominated by interband absorption, i.e., electrons are excited from the valence band to
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the conduction band as sketched in Fig. 7.1. The excited electron leaves an unoccupied state

in the valence band which is described as a hole. Hence, the interband absorption process

creates an electron-hole pair. The energy conservation and momentum conservation in this

process imply that

Ef = Ei + ~ω, (7.1)

kf = ki ±k, (7.2)

where Ei (Ef ) is the energy of the electron in the valence (conduction) band, ~ω is the incom-

ing photon energy, ki (kf ) is the wavevector of the electron in the valence (conduction) band

and k is the wavevector of the incoming photon. Because there are no states in the gap (we do

not consider the possible defect states and we will consider the effect of the attractive force

between the electron and hole later), there is a threshold: interband transitions are only pos-

sible if ~ω = Ef − Ei ≥ Eg , where Eg is the energy of the gap. Thus, the absorption spectrum

is continuous from the energy threshold at Eg to an upper value set by the extreme limits of

the participating bands. As for Raman spectroscopy (see Chapter 3), in the visible range the

photon wavevector in Eq. (7.2) can be neglected

kf = ki . (7.3)

Equation (7.3) implies that the interband absorption processes correspond to vertical transi-

tions and are represented by vertical arrows in diagrams such as the one in Fig. 7.1.

Emission of light The PL phenomenon in semiconductors is dominated by the interband

luminescence that occurs when an electron excited into the conduction band drops back to the

valence band by the emission of a photon. This process corresponds to a radiative electron-

hole recombination and is the opposite process of interband absorption. However, this re-

combination is not necessarily radiative. For example, the electron-hole pair can recombine

non-radiatively by emitting phonons or by transferring its energy to impurities or defects. As

for the interband absorption, interband luminescence follows Eqs. (7.1) and (7.3). To under-

stand the basic concepts, let us take a very simple picture where at a time t = 0, a number

N (0) of electron-hole pairs is created by the absorption of light. The evolution of the number

of electron-hole pairs N (t) for t > 0 is governed by

dN

dt
= −ΓrN − ΓnrN = ΓN, (7.4)

where Γr (Γnr) is the radiative (non-radiative) recombination rate and Γ = Γr + Γnr is the to-

tal recombination (or deexcitation) rate. ΓrN is the radiative emission rate and ΓnrN is the

non-radiative recombination rate. Note that non-linear processes in N , such as the mutual

annihilation of two electron-hole pairs which is proportional to N2, might also occur but are

not considered in this simple picture. Therefore, Γ is usually referred as the linear recombi-
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Figure 7.1 – Schematic band diagram of the photoluminescence processes in a semiconductor with a direct
bandgap. An electron-hole pair is created by the absorption of a photon of energy ~ωi . The electron and
hole rapidly relax, by emission of phonons, to the bottom and top, respectively, of their band. The occupied
states are indicated in gray and follow a statistical distribution of width ∼ kBT . Electron hole pairs from
these occupied states can recombine by emitting a photon ~ωe close to Eg . If the electron hole pair recombine
before reaching the bottom of the conduction band and the top of the valence band, the emitted photon has an
energy ~ωhot higher than Eg . Such process is said to be hot luminescence because the electron and hole are
not in a thermal equilibrium.

nation rate. This rate equation can be solved to give

N (t) =N (0)exp(−Γt) =N (0)exp(−t/τ), (7.5)

where τ = Γ−1 is the lifetime of the electron-hole pair. One can also define the radiative

and non-radiative lifetime of the electron-hole pair τr = Γ−1r and τnr = Γ−1nr , respectively. The

luminescence efficiency η is given by the ratio of the radiative rate to the total recombination

rate

η =
Γr

Γr + Γnr
. (7.6)

If Γr≫ Γnr then η approaches unity and the maximum possible amount of light is emitted. On

the other hand, if Γr ≪ Γnr then the light emission is poor. In other words, efficient lumines-

cence requires that the radiative lifetime is much smaller than the non-radiative one.

Photoluminescence In general, the incoming photon has a much higher energy than the

bangap ~ω > Eg so that the excited electrons (holes) are promoted in states well above (be-

low) the conduction (valence) band edges (see Fig. 7.1). However, they do not remain in these
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states for long. Indeed, they rapidly lose energy by emitting phonons. In Fig. 7.1, this process

is illustrated by the cascade of transitions within the conduction (or valence band) band. The

typical timescale of this process is of the order of 100 fs [Fox10] while the typical radiative

lifetime of electron-hole pairs is of the order of ns. Consequently, the electrons (the holes)

relax to the bottom (top) of the conduction (valence) band before radiatively recombine, and

form a thermal distribution with a width of ∼ kBT . The radiative recombination takes place

within ∼ kBT of the bottom and top of the conduction and valence band, respectively. As a

result, the PL spectrum consists in a peak at an energy Eg with a width ∼ kBT .1 Hence, PL

spectroscopy is a technique to measure the bandgap of a semiconductor. The PL intensity is

proportional to ηN . In the case of continuous wave excitation, η is also equal to the quantum
yield which is the ratio of the number of emitted photons to the number of absorbed ones.

Recombination outside the range of energy close to the conduction and valence band edges

is also possible and is called hot photoluminescence because the electrons and holes do not

have the time to thermalize to the bottom of the conduction band and top of the valence band.

In this case, the emission energy is always higher than Eg . Emission at energies lower than

Eg might occurs if states exist in the gap. Such states are associated to impurities or defects.

Photoluminescence from these states is usually low and will not be considered here. To dif-

ferentiate between this PL and the one described previously, the latter is said to be intrinsic
while the former is said to be extrinsic. However even if there are no impurities or defects

states in the gap, PL at lower energies than Eg is observable due to excitonic effects. Finally,
let us briefly mention that the carrier dynamics (i.e., Γ in the simple picture described in the

previous paragraph) can be obtained using time-resolved PL spectroscopy. In this measure-

ments, the sample is excited with a very short light pulse and the emitted light is recorded as

a function of time after the pulse arrives. In practice, we use the TCSPC configuration of the

experimental setup described in Chapter 4.

Excitonic effects Up to now, we have neglected the attractive force between the negative

electron and the positive hole. In fact, the oppositely charged particles are created at the

same point in space and can attract each other through Coulomb interactions. Such interac-

tions can lead to the formation of a bounded electron-hole pair which is called exciton. This
neutral particle can be viewed as a hydrogenic system. Its energy levels lay in the gap and are

characterized by the binding energy E
(n)
X where n = 1,2,3, . . . ,∞ (see Fig. 7.2). These energies

follow a Rydberg-like series. As the formation of excitons is energetically favorable, features

at energies equal to Eg −E
(n)
X appear in the absorption and emission spectra (see Fig. 2.12). In

mono and few layers SCTMDs, Coulomb interactions are so high (see Chapter 2 Section 2.2)

that each electron-hole pair created forms a tightly bound excitons. The PL spectrum is there-

fore dominated by the lowest excitonic feature at Eg − E
(1)
X . To avoid any confusion with the

electronic bandgap Eg , the energy Eg −E
(1)
X is referred as the optical bandgap. For SCTMDs,

PL spectroscopy always probe the optical bandgap. Note that by measuring the electronic

1In practice, the peak is larger because of broadening due for instance to electron-phonon coupling, especially
at room temperature.
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and optical bandgaps, one can deduce the exciton binding energy Eb = E
(1)
X .
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Figure 7.2 – Exciton dispersion relation. K is the wavevector of the exciton center of mass. Photolumines-
cence corresponds to the recombinations from excitons in the lowest excitonic state (1). Emitted photons have
an energy ~ωe close to the optical bandgap Eg −E

(1)
X . Note that exciton concept goes beyond the one-electron

approximation used to compute the band structure such as the one drawn in Fig. 7.1. Therefore K = |0〉
cannot be identified with the top of the valence band, it represents the ground state of the whole crystal.

Indirect bandgap

Indirect bandgap semiconductors have their conduction band minimum at a different

wavevector than their valence band maximum (see Fig. 7.3). Therefore, transitions at the

band edges need an additional momentum. This momentum can be provided by a phonon of

energy ~Ω and wavevector q. Energy and momentum conservation impose

Ef = Ei + ~ω ± ~Ω, (7.7)

kf = ki ±q, (7.8)

where, (Ei ,ki ) and (Ef ,kf ) are the initial and final states, ~Ω is the phonon energy, and the

± stands for the creation or annihilation of a phonon. Note that the photon momentum is

neglected as in Eq. (7.3). The phonon energy ~Ω is often negligible compared to the other

energies. Such indirect transition is a second-order process contrary to the direct transition

discussed above which is a first-order process. As a result, it is much less probable than

direct transitions. Note that higher processes involving multiple phonons are possible but

even less likely. Light absorption at energies close to Eg is therefore weak in indirect bangap

semiconductors compared to the case of direct bandgap ones. However in PL measurements,

the creation of electron-hole pairs usually corresponds to a direct transition at much higher

energy than Eg . In that case, the efficiency of the process is similar for direct and indirect

semiconductors. As for direct semiconductors, the created electron-hole pairs rapidly relax

to the bottom and top of their bands. Radiative recombination of electron-hole pairs also
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happens in the vicinity of the minimum of the conduction band and maximum of the valence

band, and needs an additional momentum as sketched in Fig. 7.3. In consequence, the PL

intensity of an indirect bandgap semiconductors is much weaker than the one of a direct

bandgap. As for the direct bandgap semiconductor, the emission feature is also close to Eg
but is generally broader due to the energy of the involved phonon in the process. In addition,

hot PL can occur, especially from direct recombination at the wavevector of the top of the

valence band (k = 0 in Fig. 7.3). Note that excitonic effects also play a role but they are more

difficult to conceptualize since electron and holes have different wavevectors. As for direct

bandgap SCTMDs, PL spectroscopy also probes the optical bandgap in the case of indirect

bandgap SCTMDs.
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� 

Figure 7.3 – Schematic diagram of the photoluminescence processes in a indirect semiconductor. The bottom
of the conduction band and the top of the valence band are not located at the same wavevector. As for the
direct semiconductor, electron-hole pair are created at an energy well above the gap and relax rapidly to the
bottom and the top of their bands (not shown, see Fig. 7.1). The occupied states are indicated in gray. To
recombine electron-hole pairs need a supplementary momentum q provided by phonons. The emitted photon
has an energy ~ωe close to Eg .

Finally, let us precise that the dimensionality of the system plays a very important role in

the PL properties. Indeed, the reduction of dimensionality, induced by confinement effects,

can lead to drastic changes in the density of states and thus in the PL properties. Such changes

are responsible of the indirect-to-direct bandgap transition observed in 2Hc SCTMDs.
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7.2 Photoluminescence of N -layer MoTe2

In the previous section, we have shown that PL spectroscopy is a powerful technique to

study semiconductors, as it gives information on the band structure and on the charge car-

rier dynamics. In Chapter 2 Section 2.2, we have mentioned that N -layer TMDs are model

systems to study the effects of dimensionality. The most prominent manifestation of these

effects is the drastic enhancement of the PL intensity of MoS2, shown in Fig. 2.11, when

the number of layers is decreased [Mak10, Splendiani10]. This change in the PL demon-

strates a transition from an indirect bandgap in the bulk to a direct bangap in the mono-

layer limit. Such transition also occurs in others 2Hc SCTMDs like MoTe2, MoSe2, WS2 and

WSe2 [Zhao12, Tonndorf13, Ruppert14] (see Fig. 7.4). In addition to the PL intensity, the

PL lineshape also depends on the number of layers and provides more information on the

band structure. In this section, we will address the room temperature PL properties of N -

layer MoTe2. Compared to others SCTMDs, a detailed analysis of the PL lineshape inN -layer

MoTe2 is still lacking2 and the exact value of N at which the crossover occurs is a matter of

debate [Lezama15].

7.2.1 Photoluminescence spectra of N -layer MoTe2

N -layer MoTe2 were prepared by the slightly modified ‘Scotch-tape technique’ described in

Chapter 4 Section 4.1.1 and deposited onto Si wafers covered with a 90 nm-thick SiO2 epi-

layer. In that case, we have shown in Chapter 4 Section 4.3 that interference effects strongly

affect the absorbed photon flux, as well as the PL response. In order to take these phenomena

into account, interference-free PL spectra were obtained by normalizing the raw spectra by

the enhancement factor calculated with Eq. (C.19) in Appendix C using the refractive index

extracted from the measurements in Ref. [Lezama14]. This allows us to quantitatively com-

pare the interference-free PL quantum yields, which are proportional to the integrated inten-

sity of the interference-free PL spectra. Note that the enhancement factor takes into account

the number of layers and is thus homogeneous to a length. Therefore, the interference-free

PL quantum yields are given per unit length and one would expect to observe the same value

for every N if there were no intrinsic changes in the PL quantum yields with N . Contrary to

what was reported in Ref. [Yang15], the PL background from the Si substrate is negligible in

our experiments.

Figure 7.5(a) displays the interference-free PL spectra for N = 1 to N = 7 and for the bulk.

Note that N was determined using Raman spectroscopy (see Chapter 6). As N increases, we

directly notice that

(i) the integrated PL intensity decreases monotonically and is three (resp. forty) times

smaller in bilayer (resp. bulk) MoTe2 than in the monolayer limit (see Fig. 7.5(b));

(ii) the PL peak energy redshifts from 1.10 eV for the monolayer down to 0.94 eV in the

2Likely because MoTe2 emits in the near-infrared and thus requires specific detectors.
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Figure 7.4 – Photoluminescence spectra of monolayer and bilayer (a) MoTe2, (b) MoSe2, (c) WS2 and (d)
WSe2 recorded at an excitation energy of 2.33 eV in ambient conditions. The data on WS2 and WSe2 were
recorded by Olivia Zill. For each crystal, we observe a greater (from a few times to two order of magnitude)
PL intensity when decreasing the number of layers, in agreement with a transition from an indirect bandgap
in the bilayer to a direct bandgap in the monolayer. Bilayer Mo based materials exhibit a single prominent
feature whereas W based exhibit two distinct features. he high energy feature is attributed to the direct optical
bandgap and the low energy to the indirect one.

bulk limit;

(iii) the PL lineshapes are slightly asymmetric for N = 1,2 and clearly bimodal for N ≥ 3.

The first two observations are consistent with a transition from an indirect optical bandgap

in the bulk limit to a direct optical bandgap for N = 1 [Ruppert14]. The increase in PL

quantum yield asN decreases is moderate (see Fig. 7.5(b)), as compared to recent observations

in MoS2, MoSe2, WS2, and WSe2 [Mak10, Tonndorf13, Zhao12]. This behavior is due to the

smaller energy difference between the bulk emission from the indirect optical bandgap and

from the direct optical bandgap. For instance, this difference is approximately 0.6 eV in

MoS2 [Mak10], 0.5 eV in MoSe2 [Tonndorf13] and WS2 [Zhao12, Zeng13], and 0.3 eV in

WSe2 [Zhao12, Zeng13].
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Figure 7.5 – (a) Interference-free PL spectra of N = 1 to N = 7 layer MoTe2 and of bulk MoTe2 deposited on
a Si/SiO2 substrate. (b) Average total integrated intensities of the interference-free PL spectra as a function
of N obtained on three samples (except for N = 5 and N = 6, for which only one sample was studied).

7.2.2 Indirect-to-direct optical bandgap crossover

The exact value of N at which the crossover, from indirect to direct optical bandgap, oc-

curs is still debated. Ruppert et al. [Ruppert14] have suggested a crossover when reaching

the monolayer limit, while Lezama et al. [Lezama15] concluded that the crossover occurs be-

tween N = 3 and N = 2. However, there is no apparent contradiction between these claims

since the two experiments were done at room and low (4− 180 K) temperature, respectively,

and it is well known that temperature might affect the crossover [Tongay12]. Furthermore,

recently Robert et al. [Robert16b] have studied the PL of mono- and bilayer MoTe2 at 10 K

and 200 K and performed time-resolved measurements at 10 K. Their results are compatible

with a direct or indirect optical bandgap for the bilayer. From DFT calculations, they ob-

tained an indirect electronic bandgap for the bilayer that lies only 60 meV above the energy

of the direct electronic bandgap. Taking into account the excitonic effects (binding energy

of ∼ 500 meV), this energy difference is very small. Unfortunately, they were not able to

conclude on the direct or indirect nature of the optical bandgap, since calculations are quite

difficult and were beyond the scope of their study.

Here, we could clearly identify two subfeatures within each PL spectrum, as illustrated in

Fig. 7.6(a). We may now wonder whether these two contributions may be associated with the

direct and indirect optical bandgaps. To answer this question, we have systematically fitted

the PL spectra with a double Voigt profile (see Fig. 7.6(a)) and extracted the high- (PL+) and

low-energy (PL−) contributions. We choose a Voigt profile because it phenomenologically fits

better and because there are no apparent reasons that at room temperature the PL lineshape

is purely Lorentzian or Gaussian. Figure 7.6(b) displays the peak positions PL+
max and PL−max.

First, the PL spectrum of monolayer MoTe2 exhibits an almost symmetric lineshape dom-

inated by a relatively narrow PL+ feature with a full width at half maximum (FWHM) of

approximately 50 meV. The peak position PL+
max matches the energy of the A exciton mea-
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Figure 7.6 – (a) Normalized interference-free photoluminescence spectra of N = 1 to N = 7 layer MoTe2
and of bulk MoTe2. The spectra are the same as in Fig. 7.5 and fit to Voigt profiles. The high (low) pho-
toluminescence peak energy is denoted PL+max (PL−max). (b) Energy of the photoluminescence peaks PL−max
(green open circles) and PL+max (red circles) as a function of the number of layers N . Our experimental mea-
surements are compared to the reflectance (open black triangles) measurements from Ref. [Ruppert14]. (b)
Energy difference between the two photoluminescence peaks as a function of the number of layers N .

sured by room temperature differential reflectance spectroscopy byRuppert et al. [Ruppert14]
(see Fig. 7.6(b)) and PL+

max is therefore identified as the direct optical bandgap energy. The

PL− shoulder is much broader (FWHM of approximately 100 meV) and has lower inte-

grated intensity than the PL+ peak. Assuming that monolayer MoTe2 is a direct bandgap

semiconductor, the PL− feature cannot arise from the indirect optical bandgap. Since

the energy difference between the PL± features is approximately 30 meV (see Fig. 7.6(c)),

the PL− peak can tentatively be assigned to emission from charged A excitons (i.e., tri-

ons [Lezama15, Yang15, Robert16b]) or to exciton-phonon sidebands involving the coupling

of A excitons with Γ-point optical phonons (whose energies lie in the range 15-35 meV see

Chapter 6).

Second, the PL spectrum of bilayer MoTe2 is slightly redshifted (by about 30 meV) with

respect to the monolayer case, with a normalized PL quantum yield about three times smaller

172 Chapter 7 Photoluminescence spectroscopy of N -layer SCTMDs



than that of monolayer MoTe2, suggesting that bilayer MoTe2 is not a direct bandgap semi-

conductor. However, although the bilayer PL spectrum is appreciably broader than that of the

monolayer PL spectrum (FWHM of approximately 65 meV), the spectra are similar. Indeed,

PL+
max also matches the energy of the A exciton for N = 2 [Ruppert14] (see Fig. 7.6(b)). In

addition, the PL+ peak is more intense than the PL− peak, and the energy difference between

the peak positions of these two features remains approximately 30 meV (see Fig. 7.6(c)), as

in monolayer MoTe2. We cannot attribute the PL− peak to a trion signature as no charge

tunable device based on bilayer has been reported yet. These observations indicate that the

room temperature PL in mono- and bilayer MoTe2 likely originates from similar mechanisms.

However, the reduced PL quantum yield of bilayer MoTe2 suggests that the indirect optical

bandgap is slightly smaller than the direct optical bandgap such that phonon-assisted emis-

sion across the indirect optical bandgap may contribute to the broadening of the PL spectrum

in bilayer MoTe2. Overall, we conclude that direct optical bandgap emission dominates the

room temperature PL response of bilayer MoTe2.

Third, the PL spectra of N ≥ 3-layer MoTe2 differ markedly from the mono- and bi-

layer cases. We observe (i) a broad and prominent PL− feature (with a FHWM of ap-

proximately 100 meV), which, as N increases, progressively dominates the narrower PL+

feature (with a FWHM in the range 60-70 meV), and (ii), as N increases, PL−max down-

shifts significantly, while PL+
max remains almost constant and very close to the energy of

the A exciton [Ruppert14] (see Fig. 7.6(b)). In the bulk limit, the PL− peak is centered

at 0.94 eV and is followed by a much fainter feature near 1.03 eV. Note that follow-

ing [Cappelluti13, Brumme15] the difference between the values of the integrated PL in-

tensities recorded in bulk and few-layer flakes (N = 6,7) (see Fig. 7.6) may arise from the

fact that the bulk conduction band minimum occurs at a point in momentum space that lies

halfway between the K and and the Γ points, while the conduction band minimum is reached

at the Γ point in the few-layer limit. Thus, the PL+ and PL− peaks can tentatively be assigned

to competing emission pathways, associated with hot luminescence from the A exciton and

with phonon-assisted emission from the indirect excitons, respectively. Note that the PL−

peak is broader than the PL+ peak, presumably due to the phonons involved in the indirect

emission process. Finally, our conclusions are further confirmed by the fact that the bulk val-

ues of PL+
max and PL−max are in fair agreement with previous measurements of the bulk direct

and indirect optical bandgaps obtained from optical transmission spectroscopy [Lezama14].

7.3 Exciton-exciton annihilation in monolayer MoTe2

Having studied the photoluminescence of N -layer MoTe2 as a function of the number of

layers N and shown that monolayer MoTe2 has a direct optical bandgap, we now focus on

the monolayer which optical properties are important in the perspective to develop novel

optoelectronic devices (see Chapter 2). In Chapter 2, we have shown that the PL prop-

erties, and more generally the photophysics, of SCTMDs is dominated by excitonic effects

due to the reduced screening of the Coulomb interaction and the relatively large effective
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masses [Mak16]. Interestingly, these enhanced Coulomb interactions result in exception-

ally strong exciton-exciton interactions and thus efficient Auger-type processes [Moody16].

Although, Auger-type processes are common in semiconductor physics, SCTMDs are ideal

systems to study such processes. Exciton-exciton annihilation (EEA) has been experimen-

tally observed at high exciton density in monolayers MoS2 [Sun14, Yu16], MoSe2 [Kumar14],

WSe2 [Mouri14, Zhu15, Yu16], andWS2 [Yuan15, Zhu15, Yu16] through changes in the PL or

absorption or in the exciton decays. However, the evolution of the PL spectrum and integrated

PL intensity of monolayer MoTe2 with increasing exciton density nx remains unexplored so

far. Therefore, in this section, we will focus on the influence of the absorbed photon fluxAΦph

on its PL quantum yield and PL spectral lineshape under continuous wave laser excitation

7.3.1 Photoluminescence spectra as a function of AΦph

Absorbed photon flux AΦph The absorbed photon flux is given by AΦph, where A is the

absorptance of monolayer MoTe2 in the Air/MoTe2/SiO2/Si layered structure and Φph the

incident photon flux. The former is calculated using the expressions presented in Appendix C

Section C.2. For a laser photon energy of 2.33 eV, we calculated an absorptance ofA ≈ 16.5 %

for monolayer MoTe2. This value is in line with the absorptance of MoS2, MoSe2 and WSe2

monolayers measured on SiO2/Si [Tonndorf13]. The latter is computed by measuring the

laser beam power at the objective and by taking into account the size of the tightly focused

laser spot (see Chapter 4 Section 4.2.2). The absorbed photon fluxes investigated here range

from AΦph ≈ 1× 1019 cm−2 s−1 up to 3.6× 1022 cm−2 s−1.

Photoluminescence spectra Figure 7.7(a) shows PL spectra recorded on the same mono-

layer for increasing values of AΦph. The spectra have been normalized by the absorbed pho-

ton flux AΦph and by the integration time. We clearly observe a non-linear decrease of the

normalized PL intensity suggesting that the raw integrated PL intensity levels off with in-

creasing AΦph. We have checked that this non-linear behavior was not due to irreversible

photo-induced damage of the sample by monitoring the PL intenisty when cycling AΦph.

As illustrated in Fig. 7.7(b), we notice that the linewidth of the PL spectra is independent

of AΦph and that the PL spectra downshift very slightly (by only 3 meV) only when AΦph

reaches 3.6 × 1022 cm−2 s−1. We may thus conclude that biexciton emission [You15] and

photothermally-induced modifications of the PL spectra can be neglected for the range of

exciton densities explored here. Note that we have checked that the PL background from the

Si substrate remains negligible in our experiments.

Photoluminescence intensity In order to quantitatively study this non-linear increase of

the PL intensity with AΦph, we fit the PL spectra with a Voigt profile and extract the in-

tegrated intensity. The results are presented in Fig. 7.8 for two different samples. We ob-

serve comparable sub-linear rises of the integrated PL intensity for both samples. Such

non-linear rises are typical of EEA, as previously reported in other SCTMDs monolay-

ers [Mouri14, Zhu15, Yu16]. However, at low AΦph (see insert in Fig. 7.8), the PL intensity is
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Figure 7.7 – (a) Photoluminescence spectra of a monolayer MoTe2 sample at different absorbed photon fluxes
AΦph. The spectra are normalized by AΦph and by the integration time, and are vertically offset for clarity.
(b) Photoluminescence spectra of monolayer MoTe2 for three different absorbed photon fluxes. The spectra
have been normalized to unity.

almost linear because the exciton density is not high enough to observe EEA processes. Such

low AΦph were used to record the N -layer spectra presented in Section 7.2. The transition

between the linear and non-linear regimes occurs at approximately AΦph ≈ 1021 cm−2 s−1.

Note that the Raman measurements in Chapter 6 were done at AΦph ∼ 1023 cm−2 s−1, i.e., in

the non-linear regime where EEA are non negligible.

7.3.2 Rate equation model

In order to further demonstrate the observation of EEA in monolayer MoTe2, we make use

of a simple rate equation model [Yu16]. In the continuous wave regime, the integrated PL

intensity is proportional to the steady state exciton density 〈nx〉. The proportionality factor

contains the product of the radiative decay rate and the detection efficiency of the experi-

mental setup. Assuming, that the time dependence of the exciton density nx is essentially

governed by the interplay between exciton formation (at a rate per unit areaAΦph), linear re-

combination (at a rate Γx) and excition-exciton annihilation (EEA) (at a rate γeea), one obtains

dnx
dt

=AΦph − Γxnx −γeean2x. (7.9)

Note that we have assumed that one absorbed photon gives rise to one exciton since excitonic

effects are very strong. The EEA term in this equation scales quadratically with nx since the

annihilation process involves Coulomb interaction between two excitons. The steady state

exciton density is

〈nx〉 =
Γx

2γeea











√

1+
4γeea
Γ
2
x

AΦph − 1










. (7.10)
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Figure 7.8 – Integrated photoluminescence intensity as a function of the absorbed photon flux AΦph for two
different monolayer samples MoTe2. The black-filled circles are data from the same sample as Fig.7.7 (sample
1). The solid red line is the fit to this data using Eq.(7.10). The raw PL intensity from the second sample
has been multiplied by a factor of 2.4 (open blue squares) to show a clearer comparison with the data from
sample 1. The normalized PL intensity from sample 2 scales very similarly as the PL intensity from sample
1, suggesting similar exciton-exciton annihilation rates and linear exciton decay rates for both samples. The
inset shows the same data at low absorbed photon fluxes AΦph, on a linear scale. The vertical dashed line
indicates the absorbed photon flux at which the measurements on N -layer MoTe2 shown in Section 7.2 have
been performed. The error bars are smaller than the symbols size.

The experimental data of sample 1 in Fig. 7.8 are very well fit by Eq. (7.10). From the fit,

we extract γeea/Γ
2
x ≈ 1.4 × 10−21 cm2 s. Assuming a reasonable value of γeea ∼ 0.1 cm2 s−1,

similar to previous estimates in substrate-supported SCTMDs monolayers [Kumar14, Sun14,

Yu16, Mouri14, Yuan15], one obtains a linear exciton recombination rate of Γx ∼ 8.5×109 s−1,
that is an exciton lifetime of ∼ 120 ps at room temperature. Although additional near-infrared

time-resolved measurements or transient absorption studies on monolayer MoTe2 are needed

to separately determine the exact values of γeea and Γx, our simple analysis provides values

that are in-line with recent room-temperature studies on other SCTMDs [Yu16]. Very re-

cently, Robert et al. [Robert16a] have measured an intrinsic exciton lifetime of 4 ps at 10 K.

However, it is well known [Moody16] that exciton lifetime increase with temperature due to,

for instance, the presence of dark states [Zhang15a] (see Chapter 2 Section 2.2) or exciton-

phonon coupling [Korn11]. Previously, we have mentioned that EEA dominates for AΦph

higher than approximately 1021 cm−2 s−1, while linear recombination dominates for lower

rates. Using the estimations of γeea and Γx, we can deduce that this value corresponds to

an average exciton-exciton distance of 1/
√
〈nx〉 ≈ 40 nm, which seems to be a reasonable

value knowing that micrometer-long exciton diffusion lengths were reported for monolayers

WSe2 [Mouri14].
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7.4 Conclusion

To conclude, we have first recalled some generalities on photoluminescence spectroscopy.

Then, we have performed a detailed analysis of the room temperature photoluminescence of

N -layer MoTe2. Monolayer MoTe2 displays a direct optical bandgap, with sharp emission at

1.10 eV. The crossover from a dominant direct excitonic emission (as observed in monolay-

ers) to a dominant phonon-assisted indirect emission (in the bulk limit) occurs more smoothly

than in other transition metal dichalcogenides, such as MoS2, MoSe2, WS2 and WSe2. As a

result, the difference between the bulk indirect optical bandgap and the monolayer direct

optical bandgap is found to be only about 160 meV. This observation of close-lying direct

and indirect emission lines invites further calculations of exciton-phonon coupling in MoTe2

and related systems, in order to correlate the values of the one-particle indirect bandgap to

the energy of the emission lines arising from indirect exciton recombination. In addition, we

have unveiled a sub-linear scaling of the photoluminescence intensity of monolayer MoTe2

with increasing absorbed photon flux, which can be rationalized using a simple model based

on exciton-exciton annihilation. This model also allowed us to obtain an order of magnitude

estimate for the exciton lifetime in the linear regime that needs to be quantitatively con-

firmed by time-resolved photoluminescence measurements in the near-infrared range. Note

that EEA in monolayers transition metal dichalcogenides is much more efficient than related

processes in conventional quantum wells [Haug92, Taylor96, Sun14] and that this reflects the

strongly enhanced Coulomb interactions in these materials.

Take home messages

• Monolayer MoTe2 exhibits a direct optical bangap 1.10 eV at room temperature.

• N -layer semiconducting transition metal dichalcogenides display a very rich photo-

physics.

• The photoluminescence of monolayers semiconducting transition metal dichalco-

genides presents strong nonlinearities.

Related publication

Papers

• G. Froehlicher, E. Lorchat, and S. Berciaud, Direct versus indirect band gap emission and
exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2),
Phys. Rev. B 94, 085429 (2016).
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Chapter 8

Monolayer graphene/monolayer

transition metal dichalcogenides van

der Waals heterostructures

In this chapter, we study the interlayer coupling in monolayer graphene/monolayer transition
metal dichalcogenides van der Waals heterostructures by means of micro-photoluminescence and
micro-Raman spectroscopy. As an example, we focus on monolayer graphene/monolayer MoSe2
heterostructures. Importantly, the results of Chapters 5 and 7 will be used in this chapter. We first
highlight the strong interlayer coupling by atomic force microscopy, by photoluminescence and by
Raman mapping. Then, from Raman measurements in graphene, we demonstrate and quantify the
transfer of photoexcited electrons from MoSe2 to graphene. Next, we investigate the photolumi-
nescence response of MoSe2 in the heterostructure and show that its massive quenching cannot be
solely explained by charge transfer, suggesting that energy transfer plays a significant role. Finally,
the influence of the environmental conditions is discussed and a toy model based on rate equations,
that qualitatively reproduces our observations, is presented.

8.1 Characterization of the heterostructures

8.1.1 Context

In Chapter 2, we have shown that van der Waals heterostuctures (vdWHs) are very promis-

ing for optoelectronic applications. In such structures, the behavior of photoexcited car-

riers and excitons is largely affected by interlayer coupling. Interlayer charge transfer

(ICT) and energy transfer (IET) may lead to drastic changes in the photophysical and op-

toelectronic properties. Charge transfer can be efficiently harvested in optoelectonic de-

vices [Zhang14, Massicotte16a]. However, the performances of such devices are limited by

the interlayer interactions: IET leads to losses and thus limits the gain, and ICT limits the
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response time of the detectors. Therefore, a good understanding, as well as a precise con-

trol, of these mechanisms is crucial for the improvement of the efficiency of optoelectronic

devices. So far, few essential points are still missing: (i) what is the relative weight of ICT

and IET, (ii) what are the associated microscopic mechanisms, (iii) what are their respective

efficency and (iv) how changes in the environment and in Fermi energies affect these two

mechanisms? To try to answer to these questions, we choose to investigate the basic unit

monolayer graphene/monolayer TMDs by means of Raman and PL. spectroscopy. Indeed,

the previous chapters have demonstrated the efficiency of these techniques to study 2D ma-

terials. In particular, in Chapter 5, we have shown that Raman spectroscopy is an accurate

tool to quantitatively measure the charge carrier density in graphene. Hence, it can be used

to demonstrate and quantify the ICT. Moreover, PL spectroscopy is a powerful technique to

address the carrier dynamics as evidenced in Chapter 7.

8.1.2 The samples

Sample 1

1L	MoSe2

SLG

Sample 2

SLG

1L	MoSe2

SLG

1L	MoSe2

Sample 3

Figure 8.1 – Optical image of three single layer graphene (SLG)/monolayer (1L) MoSe2 van der Waals het-
erostructures (deposited onto a Si/90 nm SiO2 substrate). Sample 2 and 3 were annealed at low pressure.
Scale bar: 5 µm.

Our first intention was to build monolayer graphene/monolayer MoTe2 vdWHs because

the smaller bandgap of MoTe2 should make the study of the influence of graphene’s Fermi en-

ergy on the interlayer transfer (IT) easier. Unfortunately due to technical reasons (we did not

have the proper detector1) but also for improved environment stability, we started by work-

ing with monolayer graphene/monolayer MoSe2 vdWHs (hereafter denoted SLG/MoSe2) pre-

pared using the transfer technique detailed in Chapter 4 Section 4.1.2. Note that during

the fabrication, we did not pay attention to the twist angle between the two monolayers

which is probably different for each sample. No strong effects were observed, suggesting

that the twist angle is probably not an essential parameter. Among the fabricated structures,

we have mainly studied three samples denoted sample 1, 2 and 3. These samples are dis-

played in Fig. 8.1. Contrary to sample 1, samples 2 and 3 were annealed at low pressure

(∼ 10−6 mbar) at 150 ◦C for 1 hour and 200 ◦C for 2 hours in order to improve the interlayer

1As outlined in Chapter 4, the InGaAs detector used to obtain the results of Chapter 7 was loaned by the
manufacturer.
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coupling [Lui15]. For all samples, the SLG is on the top of MoSe2 layer and is not covering

it entirely. Therefore, the PL of pristine MoSe2 can be recorded on the same flake as for the

vdWH. The part of the SLG lying in SiO2 can be used as a reference for Raman measure-

ments. Most of the results presented in this chapter were obtained on sample 1 but very

similar results were observed on the two others samples (see Section 8.2.5).

8.1.3 Atomic Force Microscopy

5 µm
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Figure 8.2 – (a) Optical image of sample 1. The two different layers have been highlighted with colors.
(b) Atomic force microscopy image of the black square in (a). (c) Height profiles, measured by atomic force
microscopy, along the blue and red lines drawn in (a). (d) Side view of the heterostructure showing the
coupled and decoupled regions. These two particular regions are highlighted with red and blue dashed lines,
respectively, in (a) and (b).

The heterostructures were first characterized by atomic force microscopy (AFM). Fig-

ure 8.2(b) shows an AFM image of sample 1. We distinguish two regions in the heterostruc-

ture. The region delimited by the red dashed line display a very clean interface, while the

other delimited by the blue dashed line shows lots of small ‘pockets’. As explained in Chap-

ter 2 Section 2.3, these small pockets corresponds to contaminants and are pushed away when

the two layers are well coupled (see also Fig. 2.16). Consequently, from this observation, we

conclude that in the former region the two layers are well coupled, while in the latter they are

not and thus said to be ‘decoupled’2 (see Fig. 8.2(d)). Note that this is why sample 1 is partic-

ularly interesting because one can compare a coupled and decoupled heterostructure on the

same sample. Furthermore, interlayer coupling is confirmed by the measured height differ-

ence between the two layers. The height profile for the two regions is displayed in Fig. 8.2(c).

2Note that this part may be not fully decoupled as we will see later.
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For the coupled region, we measure a step of 0.65 nm. Knowing that the typical thickness

of a monolayer graphene is 0.33 nm, we can estimate that the interlayer distance is approxi-

mately 0.3 nm. For the other region, we measure a step of 2.2 nm, i.e., an interlayer distance

of around 1.9 nm.

8.1.4 Photoluminescence mapping of MoSe2
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Figure 8.3 – (a) Optical image of sample 1. (b) Photoluminescence map of sample 1 (same dimensions as
the optical image in (a)) recorded in ambient conditions with an excitation energy of EL = 2.33 eV and an
incident photon flux Φph = 2× 1019 cm−2 s−1. The SLG is highlighted by white dashed lines. (c) Photolumi-
nescence spectra of the three points defined in (b). The spectra are plotted with the same color as the dots in
(b).

Figure 8.3(b) displays the photoluminescence map of sample 1 recorded in ambient

conditions with an excitation energy of EL = 2.33 eV and an incident photon flux Φph =

2 × 1019 cm−2 s−1. We can clearly recognize the shape of the MoSe2 layer and can dis-

tinguish three parts: pristine MoSe2, coupled and decoupled SLG/MoSe2. For each part,

Fig. 8.3(c) displays a PL spectrum. On these spectra, we observe the typical PL features of

monolayer MoSe2 [Tonndorf13, Ross13, Wang15a, Wang15c] (see also Fig. 7.4(b)) i.e., the

A exciton at around 1.570 eV and the B exciton at around 1.755 eV (not visible for cou-

pled SLG/MoSe2). However, the intensities are different for the three parts. For decoupled

SLG/MoSe2, there is only a slight decrease (factor ∼ 2) of the PL intensity compared to bare

MoSe2, whereas for the coupled part, the PL intensity is ∼ 300 times weaker than on pris-

tine MoSe2. Such a significant quenching indicates a strong interlayer coupling. Similar PL

quenching was observed for graphene/TMD [He14a, Shim14, Massicotte16a, Pierucci16b]

and TMD/TMD [Furchi14b, Cheng14, Fang14, Lee14a, Hong14, Yu14, Rivera15] vdWHs.

However, our quenching factor is higher than the reported ones in the literature. A possible

explanation is that the incident photon flux, used to record the reference on pristine TMD,

was too high in the other studies. Indeed, as evidenced in Chapter 7, the increase of the PL

intensity with Φph is sub-linear. In addition, not all the measurements were done at the same

temperature while temperature is known to affect the PL intensity because of the presence

of dark states [Zhang15a] or electron-phonon coupling [Korn11]. One may wonder if optical

interference effects could explain the reduction of the PL intensity in the heterostructure, at

least for the decoupled region. Using Appendix C, we calculated that the PL intensity for
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SLG/MoSe2 (assuming no gap between the two layers) is decreased by approximately 5 %

compared to pristine MoSe2. This value is too low to explain the observed difference in the

PL intensity, even for the decoupled region.

8.1.5 Raman mapping of graphene
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Figure 8.4 – (a) Optical image of sample 1. (b) G-mode frequency map of the sample 1 (same dimensions as
the optical image in (a)) recorded in ambient conditions with an excitation energy of EL = 2.33 eV and an
incident photon flux Φph = 2× 1022 cm−2 s−1. An increase in the G-mode frequency indicates an increase of
doping level (see Chapter 5). The monolayer MoSe2 is highlighted by white dashed lines. (c) Raman spectra
of the three points defined in (b). The spectra are plotted with the same color as the dots in (b) and are
vertically offset for clarity.

Figure 8.4(b) shows graphene G-mode frequency map of sample 1 recorded in ambient

conditions with an excitation energy of EL = 2.33 eV and an incident photon flux Φph =

2× 1022 cm−2 s−1. We can readily recognize the graphene shape (including the multilayer in

the upper right part of the heterostructure and the two pieces of rolled graphene probably

induced during the fabrication process). For the three same parts and points as previously,

Fig. 8.4(c) displays the corresponding Raman spectrum. We observe the two main Raman

features of pristine graphene (see Chapter 5), the G- and 2D- mode features, in the coupled

and decoupled SLG/MoSe2, but of course not for individual MoSe2. Note that no defect-

induced D-mode feature emerges from the background showing the very good quality of the

sample. However, the spectrum of the coupled and decoupled regions are different. To study

in detail these disparities, we have plotted the map of the frequency and FWHM of the G-

and 2D-mode feature, and the ratio between their integrated intensity in Fig. 8.5.

First, in all maps, we can immediately identify the coupled part of the heterostructure.

Indeed, we observe major spectral modifications compared to the others regions (pristine

MoSe2 and graphene, and decoupled SLG/MoSe2). In particular, we notice an upshift of ΩG

andΩ2D, a decrease of ΓG and Γ2D and of the I2D/IG ratio. Based on the results in Chapter 5, we

can readily conclude that these variations are robust signatures of changes in the doping level

of graphene. Such changes also demonstrate the strong interlayer coupling which induce an

interlayer charge transfer (ICT). Furthermore, the decoupled region exhibits similar values

as the rest of the graphene sheet laying on SiO2 or on multilayer MoSe2. Hence, no change of

doping level is observed for decoupled SLG/MoSe2 confirming the weak interlayer coupling
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of this part of the heterostructure.

5 µm 

G-mode frequency G-mode FWHM 

I2D/IG 2D-mode FWHM 2D-mode frequency 
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Figure 8.5 – (a) Optical image of sample 1. Raman map of graphene (b) G-mode frequency, (c) G-mode
FWHM, (d) 2D-mode frequency, (e) 2D-mode FWHM and (f) ratio between the integrated intensity of the
2D-mode feature and that of the G-mode feature I2D/IG. In (b)-(f) the monolayer MoSe2 is highlighted
with white dashed lines and the coupled part of the heterostructure with black dotted lines. These maps
were recorded in ambient conditions with an excitation energy of EL = 2.33 eV and an incident photon flux
Φph = 2× 1022 cm−2 s−1.

8.1.6 Conclusion

To conclude this section, we have reported a strong interlayer coupling in a well-defined part

of the SLG/MoSe2 heterostructure in sample 1. Similar results were observed on the two

other samples. Such strong interlayer coupling gives rise to a massive quenching of MoSe2

photoluminescenc and a clear ICT. However, at this stage, IET cannot be excluded as it may

significantly contribute to the large PL quenching factors that we observed.

In the following, we are going to study the Raman spectrum of the SLG and the PL of

MoSe2 as a function of the incident photon flux (Φph) to (i) confirm the photoinduced ICT, (ii)

identify the nature of the ICT, (iii) quantify the ICT and (iv) try to evidence an IET.

8.2 Raman spectroscopy as a function Φph
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Figure 8.6 – Raman spectra recorded at EL = 2.33 eV in ambient conditions for increasing values of incident
photon flux (Φph), between 3.3 × 1020 cm−2 s−1 and 4.2 × 1023 cm−2 s−1, for (a) SLG/SiO2, (b) decoupled
and (c) coupled SLG/MoSe2 heterostructures. The spectra are vertically offset for clarity. Symbols are the
experimental data and the solid lines are fits. A Lorentzian background have been subtracted for the G band
due to residual PL of the MoSe2.

8.2.1 Raman spectrum of graphene

We first study the Raman spectrum of graphene for increasing Φph at three fixed points of

sample 1: one on the coupled part of the heterostructure, one on the decoupled part and

one on graphene on SiO2 (located in the lower right part of the sample in Fig. 8.1(a)). The

latter serves as a reference. Note that in general Raman spectrum are measured at Φph &

1022 cm−2 s−1, but in this study we have also measured at much lower flux. Figure 8.6 shows

the G- and 2D- mode features for some of the recorded spectra. While the Raman spectra of

SLG/SiO2 and decoupled SLG/MoSe2 remain mostly not affected by the increase of Φph, the

Raman spectra of coupled SLG/MoSe2 are strongly affected. To quantitatively compare and

investigate these changes, we fit the G- and 2D-mode features and extracted the frequency,

linewidth and ratio of the integrated intensity. The results of the fit are displayed in Fig. 8.7.

On the one hand, for SLG/SiO2 and decoupled SLG/MoSe2, we observe that the G- and

2D-mode frequency, linewidth and integrated intensity are almost constant and equal to

ΩG ≈ 1583 cm−1, ΓG ≈ 16 cm−1, Ω2D ≈ 2674 cm−1 and I2D/IG ≈ 6.5. These values corre-

spond to very weakly doped graphene (|n| ∼ 1011 cm−2 or |EF| . 100 meV). This is further

confirmed by the slightly asymmetric line shape of the 2D-mode feature in Figs. 8.6(a) and

(b) [Berciaud09, Luo12, Berciaud13]. Noteworthy, we calculated that I2D/IG is enhanced by

a negligible factor of about 4 % compared to SLG/SiO2 due to optical interference effects.

On the other hand, for coupled SLG/MoSe2, the G- and 2D-mode features distinctly evolve

with increasing Φph in agreement with a change of doping (see Chapter 5). Since there are no

changes for SLG/SiO2 and decoupled SLG/MoSe2, we conclude that this doping is in fact a

signature of a photoinduced ICT from MoSe2 to graphene. Moreover, at low Φph, the value

of ΩG, ΓG and I2D/IG get closer to the values of weakly doped graphene, suggesting that by

extrapolating at Φph = 0 the graphene is weakly doped. Consequently, if there is a static
(i.e., not photoinduced) ICT between the two monolayers, it is negligible as compared to the

photoinduced one.
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Figure 8.7 – (a) G-mode frequency ΩG, (b) full width at half maximum ΓG, (c) 2D-mode frequency Ω2D
and (d) ratio between the integrated intensity of the 2D-mode feature and that of the G-mode feature I2D/IG,
extracted from the fits in Fig. 8.6(a)-(c).

Let us now briefly comment on the 2D-mode frequency. In Fig. 8.7(c), we notice that there

is a rigid upshift of ≈ 17 cm−1 in coupled SLG/MoSe2 compared to SLG/SiO2 and decoupled

SLG/MoSe2. This upshift cannot be explained by a change of doping or strain. Indeed, the

2D mode is less sensitive to doping than the G mode but is more sensitive to strain. However,

an upshift of the 2D-mode frequency of around 17 cm−1 caused by strain would also lead to

an upshift of the G-mode frequency of around 8 cm−1 [Metten14] (see Chapter 5 Section 5.4).

Such a shift is clearly not observed. Interestingly, a similar upshift of the 2D-mode feature

has been observed in SLG/thick hBN [Ahn13, Forster13, Neumann15] and SLG/monolayer

MoS2 heterostructures [McCreary14]. For SLG/hBN, this shift has been explained by the

screening of the thick hBN substrate, which reduces the electron-phonon coupling at the K

and K ′ points. It is not obvious that a similar explanation could work for SLG/monolayer

TMD because of the atomic thickness of the TMD. Another possible explanation could be the

modification of the band structure due to the interaction. However, in the case of MoS2/SLG,

it has been calculated that the effects of the interaction on graphene band structure at Γ, K and

K ′ can be neglected [Komsa13, Pierucci16a]. This observation will need further theoretical

186 Chapter 8 Monolayer graphene/monolayer TMD vdWHs



investigations to be fully understood.

8.2.2 Nature of the ICT

We can make use of the extracted frequencies and linewidths to identify the nature of the

ICT using the universal correlations shown in Chapter 5 Section 5.4. For this, we assume

that these correlations hold for SLG/MoSe2. Figure 8.8(a) shows ΓG as a function of ΩG and

Fig. 8.8(b) represents the evolution of Ω2D as a function of ΩG for the three same points of

sample 1 as in Fig. 8.7.
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Figure 8.8 – Correlations between (a) the FWHM and frequency of the G-mode feature, (b) the frequencies
of 2D- and G- mode features under increasing photon flux Φph for the three same fixed points of sample 1 as
in Figs. 8.6-8.7.

We observe that the ΓG(ΩG) follows the curve of doped graphene (see Fig. 8.7). The

SLG/SiO2 and decoupled SLG/MoSe2 points are close to the CNP (1583.5 cm−1, 17 cm−1),

while the coupled SLG/MoSe2 points are spread along the doping curve. Unfortunately, this

correlation cannot be used to differentiate electron and hole doping since the slight differ-

ence expected between the two curves cannot be resolved experimentally. However, it con-

firms again the photoinduced ICT and that be extrapolating at Φph = 0 the SLG coupled with

MoSe2 is weakly doped.

On the other hand, the 2D- and G-mode frequencies correlation can be used to sepa-

rate strain from hole and electron doping. When increasing Φph, the data for SLG/SiO2 and

decoupled SLG/MoSe2 cluster around (1583.5 cm−1, 2674.5 cm−1) and show no clear correla-

tions indicating that for the range ofΦph studied here heating effects can be neglected. On the

contrary, the measured frequencies on coupled SLG/MoSe2 follow a linear correlation with a

slope of about 0.11. This value indicates electron doping in graphene (see Fig. 5.16). Conse-

quently, photoexcited electrons generated in MoSe2 transfer to graphene. This is in agree-

ment with previous studies made on SLG/MoS2 [Zhang14, Shim14, De Fazio16, Pierucci16b]

and SLG/WS2 [He14a] heterostructures. However, here, we unambiguously demonstrate the

nature of the ICT. Noteworthy, the electron transfer is an agreement with the band alignments
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(see Chapter 2 Fig. 2.17).

8.2.3 Spatial variations

We now focus on the spatial variation of the ICT. Instead of recording Ramanmaps, we choose

to perform line scans because it is faster and gives similar information.
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Figure 8.9 presents the extracted frequency, linewidth and ratio between the integrated

intensities of the G- and 2D- mode features as a function of the position along the line scan

for various Φph. We can clearly observe the transition from coupled to decoupled SLG/MoSe2

in all quantities. Their evolution with Φph is in good agreement with the previous observa-

tions. Note that the rigid shift of the 2D-mode frequency between coupled and decoupled

SLG/MoSe2 is obvious in Fig. 8.9(d). Furthermore, Γ2D is approximately 3 cm−1 lower in the

coupled heterostructure than in the decoupled one. Such narrowing of the 2D-mode feature

was also observed in SLG/thick hBN [Ahn13, Forster13, Neumann15] and qualitatively ex-

plained with the same arguments as the frequency shift. Interestingly, Γ2D ≈ 22 − 23 cm−1

corresponds to the value measured for SLG/hBN [Forster13, Neumann15] and suspended

graphene [Berciaud09] suggesting that MoSe2 can also be viewed as a high quality substrate.

The increase of Γ2D by almost a factor 2 in the transition between coupled and decoupled het-

erostructure can be understood by the combined effects of the rigid frequency shift of Ω2D

and of the size of the focused laser beam.

For a given Φph along the line scan, ΩG and Ω2D slightly upshift (downshift) in the cou-

pled (decoupled) part. Such changes can be induced by strain and/or, in the case of coupled

SLG/MoSe2, by spatial differences in the ICT efficency. In decoupled SLG/MoSe2, ΓG and

IG/I2D are more dispersed than in coupled SLG/MoSe2. However, since for this part the

graphene is weakly doped, these quantities are more sensitive to small doping variations (see

Chapter 5). Therefore, the dispersion could be caused by spatial charge inhomogeneities.
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Figure 8.10 – Correlations between the 2D- and G-mode frequencies for the same line scans as in Fig. 8.9.

To study the spatial variations in more detail, Fig. 8.10 shows the 2D- and G-mode fre-

quencies correlations for the data shown in Fig. 8.9. We notice that for the decoupled part,

the frequencies collapse onto the same line of slope ∼ 2.7 for all Φph, while in the coupled

region, they are correlated along lines of same slope (∼ 2.7) but horizontally shifted to higher

ΩG for increasing Φph. This horizontal shift corresponds to the increase of doping with Φph.

The slope of ∼ 2.7 is approximately in agreement with the typical slope of 2.2 measured
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for biaxial strain [Metten14] (see Chapter 5 Section 5.4). Assuming a strain coefficient of

7.1× 10−3 % strain/cm−1 [Metten14], we deduced a variation of around 0.01% for decoupled

SLG/MoSe2 and around 0.03% for coupled SLG/MoSe2. Interestingly, the strain variations

are slightly higher in coupled SLG/MoSe2 most likely because of the coupling. The fact that

the slopes are similar for the two parts of the heterostructure tends to show that doping vari-

ations due to spatial fluctuations of the ICT are negligible. Finally, for all Φph the slopes and

the strain variations are similar in the coupled region, therefore heating effects are negligible

in the range of Φph studied here.

8.2.4 Quantitative measurement of the ICT

In Chapter 5, we have shown that the behavior of the G-mode phonon in doped graphene is

universal and can be utilized to accurately determine the charge carrier density. In this model,

ΓG(EF) and ΩG(EF) are given by Eq. (5.12) and Eq. (5.13), respectively. To calculate these two

quantities, we use the electron-phonon coupling λΓ = 0.031 deduced from the average of the

three non-defective graphene samples measured in Tab. 5.2. In contrast, the two constants Γ0

andΩ0 in the G-mode linewidth and frequency as well as the spatial fluctuations of the Fermi

energy δEF are sample dependent and therefore need to be determined for each sample. This

can be done using the correlation ΓG(ΩG). In this correlation, the adiabatic contribution Ω
A
G

can be neglected. Therefore, using Eqs. (5.12) and (5.15), we fit ΓG(ΩG) and obtained the

very good agreement depicted in Fig. 8.11(a) with Ω0 = 1582.9 cm−1, Γ0 = 4.53 cm−1 and

δEF = 31 meV. Note that the value of Ω0 is in agreement with the measured value of ΩG on

SLG/SiO2 and decoupled SLG/MoSe2 (see Fig. 8.7).
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axis) of the G-mode feature. The solid lines are theoretical calculations.
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We have now all the values needed to compute the theoretical evolution ofΩG (with both

adiabatic and non-adiabatic contributions) and ΓG with EF. Since the measured ΩG varies

more than ΓG, we utilize the theoretical variation of ΩG to deduce EF. Note that in these

calculation, we have assumed that the Ω
A
G, λΓ and vF have the same expression or value as

for graphene on SiO2. As sketched in Fig. 8.11(b), for a given Raman shift, one can simply

read the corresponding Fermi energy EF in the range (positive or negative) determined by the

correlationsΩ2D(ΩG). In the case of sample 1, there is only electron doping, i.e., EF > 0. Note

that the typical uncertainty associated with this determination is of order of 10meV. Finally,

we plot the ΩG and ΓG as a function of the extracted EF together with the theoretical curves

in Fig. 8.11(c). We obtain a excellent agreement for ΓG as expected. The deduced doping level

in graphene nG is plotted in Fig. 8.12 as a function of Φph. We clearly observe a sub-linear

rise of nG (phenomenologically, nG ∝Φ
1/5
ph ), which suggests that the ICT is not constant asΦph

(and therefore EF or nG) increases (see insert in Fig 8.12). As previously noticed, at Φph = 0

the graphene flake is weakly doped (. 1011 cm−2). Consequently, nG is also the density ∆n of

transferred electrons from MoSe2 to graphene.
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Figure 8.12 – Deduced density of electrons nG in graphene as a function of Φph. The error bars are smaller
than the symbol size. The insert shows the same points but on a linear scale. We can clearly observe a
saturation behavior.

8.2.5 Comparison with samples 2 and 3

We have performed similar measurements and analysis on samples 2 and 3, and have found

comparable results. For instance, for sample 2, Fig. 8.13(a) displays ΩG and ΓG as a function

of Φph. We observe that at low Φph the frequency (1591.5 cm−1) and the linewidth (9.7 cm−1)

of the G-mode feature indicate weakly doped graphene. Therefore, on the contrary to sam-

ple 1, the graphene sheet is not neutral at Φph = 0. This initial doping might be due to the

annealing done on the sample as it is well-known that such treatment can affect the dop-

ing level [Ryu10]. ΩG and ΓG vary significantly with Φph: the minimum value of ΩG and

the maximum value of ΓG are reached at the same value of Φph. This value correspond to
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the CNP. Such variations are similar to what we observed on gated graphene (see Fig. 5.10).

Figure 8.13(b) shows the correlations between Ω2D and ΩG. We observe a clear linear cor-

relation along two lines with different slope. Before the CNP, the frequencies follow a line

of slope 0.56 corresponding to hole doping, while after the CNP, the frequencies are aligned

along a quasi-horizontal line corresponding to electron doping (see Fig. 5.16). As a result,

the graphene flake is initially doped by holes and, as for sample 1, photoexcited electrons are

transferred from MoSe2 to graphene. A similar behavior was observed on sample 3.
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Figure 8.13 – (a) Frequency ΩG (red circles and lines, left axis) and FWHM ΓG (blue circles and lines, right
axis) of the G-mode feature measured on sample 2 at 2.33 eV under ambient conditions as a function of the
incident photon flux Φph. Lines are guides for the eye. (b) Correlations between the frequencies of 2D- and
G-mode features under increasing photon flux Φph for sample 2.

Furthermore, we can apply the same procedure as for sample 1 to deduce the doping level

nG (or equivalently EF) in samples 2 and 3. The results are shown in Fig. 8.14 together with

the result of sample 1. Let us recall that ΩG ≈ Ω
0
G corresponds to Fermi energies such as

|EF| . 100 meV (i.e, |nG| . 6× 1011 cm−2). Consequently, in this range of energy it is difficult

to use the theoretical evolution of ΩG to deduce an accurate EF. One can than use ΓG which

show steeper variations in the vicinity of the CNP. However, in this range of EF, the correla-

tionΩ2D(ΩG) is close to the origin and it is therefore not obvious to identify between electron

and hole doping (see Fig. 5.10). As a result, for |EF|. 100 meV there is an uncertainty on the

sign. For instance, the first point of sample 3 can corresponds to electron or hole doping as

reflected by the large vertical error bar in Fig. 8.14. Knowing all this, we can now compare

the results obtained on these three samples. We observe that (i) the samples do not have the

same initial doping, (ii) they do not show the same sub-linear variations with Φph, suggesting

different ICT rate and (iii) they all seem to tend to a maximum Fermi energy Emax
F around

250− 300 meV (i.e., 4− 5× 1012 cm−2). Note that on other samples, we typically measured a

shift of ∆ΩG ≈ 8 cm−1 which, using Eq. (5.20), corresponds to EF ≈ 250 meV. The different

ICT rate may arise from different near field couplings between the two layers. Indeed, AFM

measurements on samples 2 and 3 have revealed a slightly higher interlayer distance which

may be due to different twisting angle between monolayers or to an imperfect transfer during

the fabrication process. For further comparison, we have summarized in Tab. 8.1 the maxi-
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mummeasured EF with the corresponding Φph and the initial EF. In the case of sample 2 and

3, for Φph & 1024 cm−2 s−1 we start to observe thermal effects since the correlation Ω2D(ΩG)

displays a slope suggesting influence of mechanical strain (see Fig. 5.16). Hence, for these

points we have not deduced EF as we could not use the method of the previous subsection

to do it. As a conclusion of the comparison of the three samples, the ICT rate seemingly
decreases with the increase of the doping level in graphene.

10
20

10
21

10
22

10
23

10
24

-200

-100

0

100

200

300

0 2 4 6 8 10 12

-200

-100

0

100

200

300

 sample 1

 sample 2

 sample 3

E
F
 (

m
e

V
)

Φ
ph

 (cm
-2
 s

-1
)

E
F
 (

m
e

V
)

Φ
ph

 (x10
23

 cm
-2
 s

-1
)

Figure 8.14 – Fermi energy EF in graphene as a function of the incident photon flux Φph. Left: semi-
logarithmic scale. Right: linear scale. Measurements on the three samples are represented with different
symbols. The hatched region denotes the range of EF close to the charge neutrality point where there is an
uncertainty on the sign and on the exact value of EF. We have represented this uncertainty with an error bar
for the first point (open triangle) of sample 3. The gray rectangle illustrates the maximum attainable Fermi
level in graphene through ICT.

Φ
max
photons (cm

−2 s−1) Emax
F (meV) E0

F (meV)

Sample 1 5.0× 1023 290 . 100

Sample 2 1.2× 1024 220 −190

Sample 3 1.0× 1024 260 . 100

Table 8.1 – Comparison of the maximum measured Fermi energy Emax
F with the corresponding incident

photon flux Φ
max
ph and the initial Fermi energy E0

F .

8.2.6 Raman spectrum of MoSe2

Up to now, we have focused only on the Raman spectrum of graphene. In this subsection,

let us briefly address the Raman spectrum of MoSe2. Figure 8.15(a) displays the oX mode

with A′1 symmetry (see Chapter 6 and Fig. 6.7) of the Raman spectrum of MoSe2 recorded

on sample 1 for pristine MoSe2, decoupled and coupled SLG/MoSe2. We observe that the

feature of individual MoSe2 and decoupled SLG/MoSe2 are very similar, while the one of

coupled SLG/MoSe2 is blueshifted by approximately 0.5 cm−1 and narrower.

On the one hand, such changes may be due to the modification of the dielectric envi-
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Figure 8.15 – (a) Raman spectra of the oX-mode feature (the corresponding atomic displacements are
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to 6.7 × 1023 cm−2 s−1 (i.e., the same range as for the Raman measurements on graphene). Note that we
observe clear changes only for Φph > 3.3× 1022 cm−2 s−1.

ronment as for the 2D-mode feature in graphene. On the other hand, it has been observed

in MoS2 that the oX-mode phonon is sensitive to the doping level due to phonon renormal-

ization (as for the G-mode phonon in graphene, see Chapter 5) [Chakraborty12, Miller15].

More precisely, for increasing electron doping, the phonon frequency is redshifted and the

linewidth becomes larger [Chakraborty12, Miller15]. Figure 8.15(b) shows the correlation

between the linewidth and frequency of the oX-mode feature for increasing Φph. We observe

a correlation that phenomenologically agrees with changes in the carrier densities. The points

recorded on the coupled region have a higher frequency and a smaller width than the ones

obtained on bare MoSe2 and on the decoupled part, for all Φph. Note that bare MoSe2 was

found to be initially n-doped [Larentis12]. This observation suggests that the electron den-
sity in MoSe2 is smaller in the coupled heterostructure which is in good agreement with
the previous conclusion of an electron transfer fromMoSe2 to graphene.

Furthermore, for the three parts of the sample, we observe a linear correlation with in-

creasing Φph. Similar changes were reported on MoS2 [Miller15] and attributed to the des-

orption of molecules (e.g., H2O or O2) from the surface of MoS2 causes by the laser heating.

These molecules trap electrons and therefore removing them favors electron doping in MoS2.

The same argument should explain the observed variations for bare MoSe2 and decoupled

SLG/MoSe2. In the latter case, trapped molecules between graphene and MoSe2 are still mo-

bile. In the case of coupled SLG/MoSe2, the graphene layer prevents the physisorption of

molecules on the top surface of MoSe2. Consequently, these observations cannot be assigned

to a change of doping. However, it has been observed that such variations can be caused

by heating effects [Late14]. By assuming that the observed changes are only due to heating,

we deduce from Ref. [Late14], that there is an increase of the temperature of approximately

83 ◦C for bare MoSe2, 93
◦C for decoupled SLG/MoSe2 and 65 ◦C for decoupled SLG/MoSe2.

These values seem to be reasonable. We notice that for individual MoSe2 and decoupled
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SLG/MoSe2, the increase is higher most likely because the variations in the peak frequency

and width are due to a combination of heating and desorption of molecules. To conclude,

these observations are in qualitative agreement with the previous conclusions.

8.3 Photoluminescence spectroscopy as a function of Φph

In the previous section, we demonstrated and quantified a photoinduced electron transfer

form MoSe2 to graphene using Raman spectroscopy. In this section, by means of photolu-

minescence spectroscopy, we will study the excitons dynamics in MoSe2 as a function of the

incident photon flux with the aim to further unravel the consequences of the interlayer cou-

pling on the photophysics of MoSe2.

8.3.1 Photoluminescence spectra

Figures 8.16(a), (b) and (c) show the PL spectra, recorded respectively on bare MoSe2, decou-

pled and coupled SLG/MoSe2, for increasing Φph. The spectra have been normalized using

the product of the integration time by Φph. All the spectra have a similar shape for the three

regions of interest. We can clearly discern the A and B excitons at an energy around 1.570 eV

and 1.755 eV, respectively. Interestingly, the excitons energies slightly decrease by a few

meV with increasing Φph. This shift most likely arise from the laser heating and/or from

the increase of the exciton density. Furthermore, in coupled SLG/MoSe2, there is a redshift

of ∼ 10 meV compared to individual MoSe2 and decoupled SLG/MoSe2. This shift is prob-

ably due to a different dielectric environment caused by the close presence of the graphene

sheet [Ugeda14, He14a]. Such a modification of the dielectric environment can induce a

change of the exciton binding energy and thus of the optical bandgap (see Chapter 2 Sec-

tion 2.2). In addition, the energy difference between the A and B excitons is about 185 meV

in all regions of the sample and does not vary with Φph. This value is in good agreement with

previous observations [Ross13, Li14, Wang15c, Wang15a].

Figures 8.16(d), (e) and (f) display one PL spectrum for each region recorded at a given

Φph. The spectra were fit using Voigt profiles. The PL spectrum of pristine MoSe2 and decou-

pled SLG/MoSe2 are well fit with two Voigt profiles: one for the A exciton and one for the B.

Surprisingly, the PL spectrum of coupled SLG/MoSe2 needs two additional features between

the A and B excitons to be well described, at around 1.59 eV and 1.67 eV. At the moment, we

do not fully understand the origin of these peaks. A tentative explanation is that the former

peak corresponds to a slight asymmetry of the A exciton peak, while the latter is assigned

to the emission from an excited excitonic state of the A exciton (see Chapter 2 Fig. 2.12 and

Chapter 7 Section 7.1). However, further investigations are needed to confirm this statement.

Actually, these two features were only observed on sample 1. On sample 2 and 3, only the

feature at the lowest energy was observed.

Finally, when increasingΦph by three orders of magnitude, the PL signal normalized using

the product of the integration time by Φph clearly decreases for bare MoSe2 and decoupled
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Figure 8.16 – (a)-(c) Photoluminescence spectra, normalized by the integration time and the incident photon
flux (Φph), of (a) bare MoSe2, (b) decoupled SLG/MoSe2 and (c) coupled SLG/MoSe2 at different Φph. One
can clearly distinct the A and B excitons. (d)-(f) Photoluminescence spectra (black symbols) recorded atΦph ≈
1.7×1021 cm−2 s−1 and normalized by the integration time of (d) bare MoSe2, (e) decoupled SLG/MoSe2 and
(f) coupled SLG/MoSe2. Solid lines are fits with Voigt profiles. In (f), there are two unidentified features.

SLG/MoSe2, but is almost constant for coupled SLG/MoSe2. To quantitatively analyze this

behavior, we extracted the integrated intensity of A and B excitons from the fits.

8.3.2 Photoluminsecence intensity

Figure 8.17(a) displays the integrated intensity of the A exciton, normalized using the prod-

uct of the integration time by Φph, as a function of Φph. For individual MoSe2 and decou-

pled SLG/MoSe2, we observe a clear sub-linear evolution of the normalized intensity, con-

sistent with exciton-exciton annihilation as previously discussed in Chapter 7 Section 7.3.

On the contrary to the PL map in Fig. 8.3, the PL intensity in decoupled SLG/MoSe2 is

higher than pristine MoSe2. A possible explanation is that PL intensity decreased due to

aging effects since the PL map was acquired just after the fabrication on the sample, while

the measurements in Fig. 8.17 were done after few days in air. Aging effects such as oxi-

dation or adsorption of contaminants can quench the PL [Gao16]. In the case of decoupled

SLG/MoSe2 the graphene layer encapsulate MoSe2 and slow down aging effects. In the case

of coupled SLG/MoSe2, the normalized PL intensity is almost constant (see the gray dashed

line in Fig. 8.17(a)), i.e., the raw PL intensity increases linearly with Φph. This behavior re-

veals a drastic reduction of A exciton lifetime compared to pristine MoSe2 and decoupled

SLG/MoSe2. This reduction provides evidence of a very efficient coupling which serves as a

fast decay channel. The ICT demonstrated in the previous section offers such a decay channel.

However, at this stage, we cannot exclude the possibility of IET. Remarkably, because of the

dramatic reduction of the lifetime, exciton-exciton annihilation can be neglected in coupled
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Furthermore, Fig. 8.17(b) shows the integrated intensity of the B exciton, normalized us-

ing the product of the integration time by Φph, as a function of Φph. For the three parts of the

heterostructure, the normalized PL intensity of B exciton is of the same order of magnitude

and is almost constant with Φph. However, in the coupled region, the normalized intensity is

approximately two times smaller than in the two other regions. Thus, the interlayer coupling

has a minor effect, yet not negligible, on the B exciton. Note that for low Φph, the intensity of

the B exciton in pristine MoSe2 and decoupled SLG/MoSe2 is too weak to deduce a reliable

value, therefore we did not plot this points in Fig. 8.17(b). Since PL from the B exciton cor-

responds to hot photoluminescence, the B exciton has a shorter lifetime than the A exciton.

The effect of an additional fast decay channel is therefore less important. We deduce that

the B exciton recombination is on the same timescale as the transfer process between MoSe2

and graphene. Interestingly, for coupled SLG/MoSe2, the integrated intensity of the A and B

exciton are of the same order of magnitude. Consequently, the A and B exciton lifetimes in

the coupled heterostructure are comparable.

8.4 Discussion

In the previous section, we have evidenced that the interlayer coupling induces a dramatic

reduction of the A exciton lifetime and thus a quenching of the PL of the A exciton. The A

and B exciton lifetimes are comparable and are of the order of a few picoseconds. We have

also demonstrated that a photoinduced electron transfer fromMoSe2 to graphene occurs con-

sistently with the reduction of the A exciton lifetime. Indeed, the ICT offers an additional

non-radiative decay channel. In addition, we have noticed that this ICT seemingly saturates

at Fermi energies around 250 − 300 meV. This latter point is obviously not consistent with

the linear increase of the PL intensity with Φph suggesting that IET also plays a role. As an

attempt to explain this important point, we will first present the influence of the environ-

mental conditions and then, we will propose a simple model that qualitatively reproduce our
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Fig. 8.17.

observations.

8.4.1 Sensitivity to environmental conditions

Influence of the increase and decrease of Φph

Figure 8.19 shows the frequency of the G-mode feature and the PL intensity of the A exciton

for increasing and then decreasing Φph. We notice that the frequency of the G-mode feature

does not follow the same curve, while there is almost no changes in the PL intensity. Clearly,

the modifications in the G-mode frequency indicates that the graphene, which was initially

weakly doped, is clearly p-doped after the increase and decrease of Φph. Such a behavior was

found to be very reproducible: if one waits a couple of minutes and redo the experiment,

similar results will be obtained. A tentative explanation is that increasing Φph favors the

adsorption of electron-trapping molecules such as oxygen [Mitoma13]. Interestingly, as pre-

viously observed, regardless the initial doping of the graphene layer, the final ∆ΩG ≈ 7 cm−1

which corresponds to EF ≈ 220 meV. Furthermore, the fact that there is almost no varia-

tions in the PL intensity suggests that the PL quenching is insensitive to the modification of

the ICT and therefore to graphene’s Fermi energy (at least in the range of EF reached here).

Importantly, the most pronouced hysteretic behaviors were observed on annealed samples.

Measurements in air and under vaccum

Up to now, all the measurements were performed under ambient conditions. Figure 8.20 dis-

plays ΩG and ΓG as a function of Φph recorded under ambient condition and under vacuum

(at room temperature) on sample 1. Under vacuum, we observe that ΩG and ΓG varies much

less than in air. They both show a variation of approximately 1 cm−1. Remarkably, their val-
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Figure 8.19 – (a) Frequency of the G-mode feature and (b) integrated PL intensity of the A exciton as a
function of the incident photon flux Φph for first increasing Φph (black squares) and then decreasing Φph
(open red circles). Measurements recorded on sample 3.

ues correspond to the values measured at high Φph in air suggesting that graphene’s Fermi

energy EF is already around 250 − 300 meV even at low Φph. Note that Γ0 is slightly larger

under vacuum probably due to different experimental conditions. On the other hand, under

vacuum, we observe only small changes (∼ 1 cm−1) on decoupled SLG/MoSe2 and SLG/SiO2

compared to air. In conclusion, these observations indicate that under vacuum the ICT is
much more efficient than in air and saturates even at low Φph. At the same time, the PL

intensity is linear with Φph but is approximately two times smaller under vacuum than in

air. This observation is in agreement with the previous assumption that the ICT has only

a minor contribution to the quenching of the PL. As for the increasing and decreasing Φph,

the modification of the ICT are probably related to the adsorbates as vacumm removes H2O

and O2 molecules which are known to trap electrons due to the electronegativity of the oxy-

gen. Interestingly, changes in the ICT were also reported from electrical measurements on

SLG/MoS2 vdWH but with the opposite conclusion [Zhang14], i.e., ICT seems to be reduced

under vacuum compared to ambient conditions.

8.4.2 Toy model

Summary of the observations

Let us summarize all the observations and conclusions made up to this point:

(i) Regardless of the initial doping in graphene or the efficiency of the photoinduced elec-

tron transfer, the graphene’s Fermi energy seems to tends to a maximum value of

EF ≈ 250 − 300 meV (i.e., a doping level of nmaxG ≈ 5 × 1012 cm−2). As sketched in

Fig. 8.21, this observation can be well understood from band alignment considerations

(see Chapter 2 Section 2.3.2). When the Fermi level in graphene reaches the bottom

of the conduction band of MoSe2, the ICT stops occuring (at least from a macroscopic
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point of view). A similar behavior was observed in WSe2/graphene vdWHs by means

of electrical measurements and an electronic affinity of χM ≈ 4.06 eV for WSe2 was de-

duced [Kim15a]. From our observations and knowing that graphene’s work function is

equal toWG = 4.57 eV [Yu09], we deduce an electronic affinity of χM ≈ 4.3 eV for MoSe2.

This value seems reasonable knowing that a difference of 0.3 eV was theoretically cal-

culated for χM between MoSe2 and WSe2 [Liang13]. However, very importantly, in this

reasoning we did not take into account excitonic effects. Indeed, prior to the charge

transfer, the exciton has to be dissociated. Consequently, we have assumed than when

the CT happens the electron is at the bottom of the conduction band.

(ii) The environment, and most likely absorbates at the surface of the heterostructure, dras-

tically affects the ICT. A very small (or reduced) electron transfer can be observed even

at low Φph if graphene is sufficiently p-doped.

(iii) Although all these modifications of the ICT, the PL intensity of MoSe2 remains poorly

affected. Especially, when the ICT rate is reduced due to the increase of doping level

in graphene, the PL intensity still scales linearly with Φph. This suggests that a non-

radiative decay channel governs the carrier dynamics in the heterostructure on a shorter

timescale than the ICT. We propose that fast IET is responsible for this non-radiative

decay channel. If one thinks about the fact that ICT requires exciton dissociation prior to

the transfer, whereas IET does not, it seems to be a reasonable assumption knowing that

graphene is an ideal acceptor (see Chapter 2 Section 2.3.2) and that such transfer, with

almost 100 % efficiency, was evidenced in molecules/carbon nanotubes [Roquelet10].

Assuming that IET dominates the interlayer transfers, it is insensitive to the doping level

reached here and happens on a picosecond timescale (from the estimation of the exciton

lifetime done in Section 8.3). As a result, ICT occurs on a longer timescale. This is rather

different from the subpicosecond ICT observed in TMD/TMD vdWHs (see Chapter 2

Section 2.3.2). However, in these systems, there is presumably no exciton dissociation
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and the formation of interlayer excitons is energetically more favorable. On the other

hand, He et al. [He14a] have measured an ICT between monolayer WSe2 and graphene

on a picosecond timescale. Nevertheless, the authors of this study did not prove that

there is indeed an ICT and not a IET. Noteworthy, all these measurements were done

using pump-probe techniques, while we have estimated the exciton lifetime from cw

measurements, i.e., at a steady state. Therefore, this may lead to some discrepancy since

the regimes of measurement are rather different.

EF

VB
Graphene

e-

Eg

CB

MoSe2

χM
WG

Vacuum

Figure 8.21 – Schematic band structure of MoSe2/graphene heterostructure. The conduction (BC) and va-
lence (VB) band edges of MoSe2 are represented by horizontal lines separated by the bandgap Eg. Their
position in energy is determined by the electron affinity χM. The position of graphene’s band structure is
fixed by the work function WG. Occupied states are represented in gray. When graphene’s Fermi energy EF
reaches the bottom of MoSe2 conduction band, the electron transfer from this state in MoSe2 to graphene is
forbidden by the Pauli principle.

The model

Using all these ingredients, we can propose a toy model based on rate equations to qualita-

tively reproduce our observations. This model is illustrated in Fig. 8.22(a). nM describes the

photoexcited electrons density in MoSe2 (more precisely the exciton density) and nG the elec-

trons density in graphene. AΦph is the absorbed photon flux in MoSe2. The absorptance A
of MoSe2 in the air/SLG/MoSe2/SiO2/Si layered structure is calculated using the procedure

explained in Appendix C Section C.2.2 and found to be A ≈ 20.8 %. Note that graphene’s ab-

sorptance of 2.3 % can be neglected. We assume that if Φph = 0 then nM = 0 and nG = 0 (i.e.,

we neglect the initial doping of graphene, see below). ΓM = Γr+Γnr is the linear recombination

rate, where Γr (Γnr) is the (non) radiative recombination rate of the A exciton. Note that we as-

sume that ΓM is the same for bare MoSe2 and MoSe2 in the heterostructure. ΓIET is the IET rate

and ΓICT the ICT rate from MoSe2 to graphene. Our measurements were performed using cw

excitation. Therefore, the measured doping level in graphene corresponds to a steady state

and not all the electrons that are transferred to graphene may participate in the increase of

the doping level. Indeed, some of themmight be trapped by adsorbates, impurities or defects,

or some of them can also be retransferred to lower states in MoSe2. All these possibilities are

accounted for a ‘leaks’ rate Γleaks.
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withA ≈ 0.2, ΓIET ∼ 1012 s−1, nmax

G ≈ 5×1012 cm−2, and Γleaks/Γ
0
ICT ∼ 10−3 in air and 5×10−5 under vacuum.

The time dependence of nM and nG are given by

dnM
dt

=AΦph − ΓMnM − ΓIETnM − ΓICTnM, (8.1a)

dnG
dt

= ΓICTnM − ΓleaksnG. (8.1b)

Note that we have neglected the exciton-exciton annihilation in MoSe2, i.e., we have assumed

thatAΦph×γeea≪ (ΓM+ΓIET+ΓICT)
2. To a first approximation, ΓICT can be described by ΓICT(nG) =

Γ0ICT

(

1−nG/nmax
G

)

, where Γ0ICT is a constant. At steady state the carrier densities are

〈nM〉 =
AΦph

ΓM + ΓIET + ΓICT
≈
AΦph

ΓIET
, (8.2)

〈nG〉 =
〈nM〉

Γleaks/Γ
0
ICT + 〈nM〉 /nmax

G

, (8.3)

where we have assumed that ΓIET ∼ 1012 s−1≫ Γ0ICT,ΓM. This is a strong assumption but seems

to experimentally verified since the PL intensity of MoSe2 (which is proportional to 〈nM〉) is
linear withΦph (see Fig. 8.17). Interestingly, the fact that ΓIET is constant seems to indicate that

the associated mechanism is of Förster-type since Dexter-type energy transfer should vanish

as would the ICT (see Chapter 2 Section 2.3).

We can then use Eq. (8.3) to describe the measured 〈nG〉 as a function of Φph. Note that

Eq. (8.3) corresponds to a saturation curve. In Section 8.2, we have deduced that nmax
G ≈

5 × 1012 cm−2. Figure 8.22(b) shows the experimental and the theoretical evolution of nG
as a function of Φph for measurements under ambient conditions and under vacuum. The

experimental data are qualitatively well described by Eq. (8.3) with Γleaks/Γ
0
ICT equal to 10−3
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and 5×10−5, respectively. Note that we have neglected the initial doping as sample 1 is weakly

doped. However, if the initial doping is not negligible (as for sample 2), one has to add the

initial doping n0 to Eq. (8.3). Remarkably, this result is in good agreement with the fact that

under vacuum the desorption of adsorbates decreases Γleaks. Furthermore, these observations

are also in excellent agreement with the ones of Zhang et al. [Zhang14].

Overall, this toy model reproduces qualitatively our observations without the need of a

microscopic description of the interlayer charge and energy transfer. In particular, for the

ICT, we did not take into account the dissociation of the tightly bound excitons and how this

affects the band alignment sketched in Fig. 8.21. Furthermore, this model, which only deals

with electrons, does not consider the created holes in MoSe2 and the possibility of hot IET

and ICT. Especially, the latter does not require any exciton dissociation. All these comments

provide strong impetus for further experiments that will be discussed in Chapter 9.

8.5 Conclusion

In this chapter, we have studied the interlayer coupling in monolayer graphene/monolayer

MoSe2 heterostructure by means of optical spectroscopy. The photoluminescence measure-

ments reveal a drastic quenching of two orders of magnitude of the photoluminescence of

MoSe2. Using the results of Chapter 5, the Raman measurements demonstrate a photoin-

duced electron transfer fromMoSe2 to graphene that have been quantified. Interestingly, this

charge transfer seems to saturate for graphene’s Fermi energy around 250 − 300 meV (i.e.,

doping level of approximatively 5 × 1012 cm−2). This saturation may be explained by band

alignment. In contrast, the photoluminescence intensity is linear with the incident photon

flux suggesting that a fast interlayer energy transfer occurs and may dominate. Indeed, the

energy transfer may be favored compared to the charge transfer as the latter requires the ex-

citon dissociation. This energy transfer was evaluated to happen on a picosecond timescale,

while the charge transfer occurs on a longer timescale. This is rather different from the ul-

trafast charge transfer, leading to the formation of interlayer excitons, observed in type-II

heterojunctions made of transition metal dichalcogenides (see Chapter 2 Section 2.3.2. Fur-

thermore, the environment, presumably the adsorbates at the surface of the heterostructure,

influences the charge transfer. All these observations are qualitatively well described by a toy

model based on rate equations. However, additional experiments are still needed to fully jus-

tify this simple model and unveil the underlyingmicroscopic mechanisms associated with the

charge transfer (exciton dissociation, influence of the adsorbates,. . . ) and the energy transfer

(Förster or Dexter). Finally, this work opens interesting perspectives for local photogating

of graphene since doping levels similar to conventional gate dielectric, such as SiO2 can be

reached.

Take home messages

• A massive quenching of ∼ 300 of MoSe2 photoluminescence is observed.
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• A photoinduced electron transfer from MoSe2 to graphene occurs and saturates for

graphene’s Fermi energy around 250− 300 meV presumably due to band alignment.

• The fast interlayer energy transfer (∼ 1 ps) may be responsible for the large photolumi-

nescence quenching and may be more efficient than the interlayer charge transfer.

• The photoinduced charge transfer is sensitive to the presence of adsorbates at the sur-

face of the heterostructure.
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Chapter 9

Conclusion and perspectives

General conclusion

To conclude this thesis, I can say that the aim to build optoelectronic devices based on van

derWaals heterostructures, made of graphene and transition metal dichalcogenides, to study

and electrically control the interlayer interactions that govern their photophysics is nearly

achieved. To reach this goal, we have carefully addressed the three milestones defined in

Chapter 1.

First (Chapter 5), we have developed robust and efficient electrochemically-gated

graphene transistors, where the properties of graphene can be finely tuned by the electric

field effect. Using these devices, we have shown that Raman spectroscopy is an extremely sen-

sitive tool for advanced characterization of graphene samples. In particular, graphene’s Fermi

energy can be precisely determined and the evolution of the crystalline quality can be moni-

tored. For a more fundamental aspect, it has also allowed us to measure the electron-phonon

coupling constants for zone-center and zone-edge optical phonons, where the interactions are

particularly strong due to Kohn anomalies.

Second (Chapters 6 and 7), we have carefully investigated the evolution of the phys-

ical properties of semiconducting transition metal dichalcogenides between the three-

dimensional (bulk) and the (quasi) two-dimensional (monolayer) limits. We have demon-

strated that high-resolution Raman spectroscopy is a powerful technique to probe the Davy-

dov splitting of all the zone-center optical phonon modes in N -layer MoTe2 but more gener-

ally in all layeredmaterials. Furthermore, the complete manifold of phononmodes associated

with the in-plane and out-of-plane displacements are remarkably well described by a ‘text-

book’ force constant model, including interactions up to the second nearest neighbor and

surface effects as fitting parameters. The latter were found to play a major role in the evolu-

tion of the phonon frequencies. This study is an original example of the application of group

theory and also sheds light on phonon coupling in transitionmetal dichalcogenides [Jones16].
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Next, we have demonstrated that N -layer semiconducting transition metal dichalco-

genides exhibit a very rich photophysics and that photoluminescnece intensity of monolayers

present strong nonlinearities that reflects the strongly enhanced Coulomb interactions and

reduced dielectric screening in these atomically thin two-dimensional materials.

Third (Chapter 8), we have fabricated van der Waals heterostructures made of monolay-

ers graphene and MoSe2 using a simple all-dry transfer technique. We have then made use

of the results obtained in the previous chapters to characterize, in an original way, these het-

erostructures. In particular, using the highly accurate methods and powerful tools developed

in Chapter 5, we were able to demonstrate and quantify the photoinduced electron transfer

from MoSe2 to graphene. Remarkably, we have found that the rate of this charge transfer

decreases as graphene’s Fermi energy increases. In contrast, the massive quenching of two or-

der of magnitude of MoSe2 photoluminescence was found to scale linearly with the incoming

photon flux and thus to be insensitive to graphene’s Fermi energy. Such a behavior cannot

solely be explained by charge transfer and we have suggested that a fast energy transfer is

responsible for the photoluminescence quenching. This is a major assumption which pro-

vides a strong impetus for quantitative investigations of the energy transfer in van der Waals

heterostructures, that up to now has been mostly overlooked.

Finally, although the optoelectronic devices were ultimately not fabricated during my the-

sis, all the ingredients are now available together very efficient methods to analyze and model

the measurements, and a better understanding of key phenomena in these devices. My work

opens multiple interesting perspectives, especially for our group. In the short term, many

questions directly related to my work remain open and provide strong impetus for further

experiments. In the long term, more sophisticated fabrication techniques have to be devel-

oped so that more advanced heterostructures and more complex optoelectronic devices can

be investigated.

Perspectives

In the following, I discuss few perspectives related to my work. The two first subsections

present work directly related to my thesis, while the last subsection is a proposition to study

heterostructures based on transition metal dichalcogenides with a large in-plane anisotropy.

Resonant exciton-phonon coupling in N -layer transition metal dichalcogenides

Our measurements onN -layer MoTe2 have revealed that the Davydov splitting of the phonon

modes appear prominently for a certain incoming photon energy. This is in agreement

with recent observations of resonant effects in the Raman scattering of N -layer transi-

tion metal dichalcogenides [Chakraborty13, Luo13a, Carvalho15, Scheuschner15, Lee15b,

Grzeszczyk16, Kim16, Song16, Soubelet16]. The collaboration with the group of Ludger

Wirtz at the University of Luxembourg, which started for the work presented in Chapter 6;

now continues on the importance of resonant exciton-phonon coupling on ourmeasurements.
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We have provided them with carefully normalized measurements on N -layer MoTe2 at three

different photon energies. Henrique Miranda (PhD student) is working on ab initio calcu-

lations that would reproduce our observations. The results of his calculations and the com-

parison with the experiment has just been accepted to Nano Letters (see List of Publications

page 235). In brief, the intensity of the Davydov-split modes is governed by quantum inter-

ference effects. However, the quantitative agreement with the experimental data requires the

proper inclusion of excitonic effects.

Monolayer graphene/monolayer transition metal dichalcogenides

The points presented in this subsection are already or will be addressed in our group, es-

pecially by Etienne Lorchat, a PhD Student, who has started in early 2016 to work on het-

erostructures.

Two-color measurements The main disadvantage of the Raman measurements performed

in Chapter 8 is that the same laser beam is used to photogenerate excitons in MoSe2 and

to probe the Raman scattering in graphene. Hence, it is impossible to investigate a static

non-photoinduced charge transfer arising from the near field interaction between MoSe2

and graphene. Moreover, interlayer charge transfer under incident photon flux lower than

1020 cm−2 s−1 cannot be investigated because the Raman signal becomes too weak to be ex-

ploited. One solution to overcome these difficulties is to use two laser beams focused onto the

same point of the sample (see Fig. 9.1(a)): one with with a photon energy higher than the A

exciton to generate excitons in the TMD and the other with a photon energy lower than the

A exciton to record the Raman spectrum of graphene. Unfortunately, in monolayer MoSe2

the A exciton has an energy around 1.57 eV which requires the utilization of a laser in the

near-infrared that is currently not available in the lab and that makes Raman measurements

more challenging. However, in monolayer tungsten disulfide (WS2) the A exciton is around

2 eV. Therefore, we can use the laser at 2.33 eV to generate excitons in WS2 and the one at

1.58 eV to probe the Raman spectrum of graphene (see Fig. 9.1(b)). This type of heterostruc-

ture have been already fabricated and studied in our group by Etienne Lorchat, Jérémie

Chretien (Master student) and me, showing very similar behaviors as graphene/MoSe2 het-

erostructures. However, this measurement is more challenging as the Raman features are

in the near-infrared range, but all the required equipment are available in the lab. This ex-

periment is particularly interesting to confirm that under vacuum the observed high doping

level in graphene, even at low incident photon flux, is photoinduced and that the saturation

is reached at lower flux than in the air (see Fig. 8.22).

Monolayer MoSe2/monolayer graphene heterostructure A simple method to study the ef-

fect of the surrounding atmosphere, especially of the vacuum, is to fabricate van der Waals

heterostructures with the monolayer MoSe2 on top of the graphene sheet as depicted in

Fig. 9.2(b). In this configuration, the MoSe2 layer prevents the adsorption of molecules at

the surface of graphene. Thus, comparing the results obtained with this kind of heterostruc-
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Figure 9.1 – (a) Three-dimensional schematic view of a monolayer graphene/monolayer WS2 heterostructure
probed using a two-beam experiment. The excitation laser is used to generate excitons in WS2 while the
second laser is used to record the Raman spectrum of graphene wihout generating excitons in WS2. (b)
Absorption spectrum of a monolayer WS2 extracted from Ref. [Li14]. The photon energy of the two lasers are
indicated.

tures and the one presented in Chapter 8 will probably help to understand the role played

by the adsorbates at the surface of graphene and their possible effect on the ‘leaks’ rate Γleaks

defined in the toy model.

Band alignment A promising way to study the interlayer interaction in heterostructures is

to incorporate them into electric field-effect transistors. In particular, it is a relevant man-

ner to study the saturation of the charge transfer. Indeed, this saturation is observed for

graphene’s Fermi energy around 250 − 300 meV which corresponds to the typical energies

achievable with traditional solid state transistors. Therefore, by integrating the heterostuc-

ture into back-gated transistors where only the graphene flake is contacted, as illustrated in

Fig. 9.2(a), it is possible to tune graphene’s Fermi energy and then to study its effect on the

charge transfer. Such a geometry can also be used to experimentally determine the band

alignment (see Fig. 8.21) from electrical measurements (assuming that source and drain elec-

trodes are contacting the graphene flake) [Kim15a]. Comparing these results with the ones

obtained from Raman measurements for the photoinduced charge transfer in Chapter 8 will

help to understand better the influence of the excitonic effects, especially the role of the ex-

citon dissociation. Finally, let us mention that studying MoSe2 field-effect transistor is neces-

sary to confirm the supposed behavior of the oX-mode phonon under doping (see Fig. 8.15).

Electrical control of interlayer interactions To reach higher Fermi energies, conventional

solid state back-gated transitors are not relevant. One can make use of the top-gated tran-

sistor developed in Chapter 5. Or one can also use the recent technique called Space Charge
Doping introduced by Paradisi et al. [Paradisi15]. The principle of this technique is similar

to electrochemically gated transistor but instead using a polymer electrolyte, it exploits the

presence of mobile ions in glass (see Fig. 9.2(b)). Compared to polymer electrolyte, it has the

major advantage of avoirding electrochemical reactions (see Chapter 5 Section 5.5). Conse-

quently, extremely high doping levels higher than 1014 cm−2 (i.e., EF & 1 eV) can be reached
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Figure 9.2 – (a) Three-dimensional schematic view of a monolayer graphene/monolayer TMD heterostruc-
ture integrated in a back-gate transistor. Only the graphene flake is contacted and the Si substrate is
used as a back gate. (b) Three-dimensional schematic view of a monolayer graphene/monolayer TMD het-
erostructure incorporated into a field-effect transistor based on the space charge doping technique introduced
in [Paradisi15]. The mobile ions in the glass are used to create an electrical double layer and thus to efficiently
dope graphene.

with reversibility and without damaging graphene. This technique can also be extended to

other layered materials. For instance, superconductivity in few-layer MoS2 have been stud-

ied using space charge doping [Biscaras15]. However, to activate the mobility of the ions the

sample has to be heated to more than 340 K. We have therefore developed a new heating

sample holder for the experimental setup that will soon be operational. The possibility to

achieve such high doping level opens very interesting perspectives to study the effect of the

Fermi energy on the energy transfer and to achieve an electrical control of the interactions. In

fact, Pauli blocking is expected to occur for |EF| ≥ Eg/2 where Eg is the optical bandgap of the

TMD [Lee14b, Tielrooij15]. For such experiments, MoTe2 might be more appropriate since

the bandgap is smaller making the condition |EF| ≥ Eg/2 easier to reach.

Distance dependence of the interlayer energy transfer An interesting point to address

would be to investigate the variation of the interlayer energy transfer as a function of the

interlayer distance. Van der Waals heterostructures are particularly appealing because they

provide systems with interlayer distance of few �Angströms. In order to unravel the nature

of the energy transfer (Förster or Dexter), one solution is to study its distance dependence.

From the observations on the decoupled part of the heterostructure studied in Chapter 8, we

can get a first idea of this dependence since for interlayer distance of approximately 2 nm the

photoluminescence quenching is drastically reduced, but not negligible as suggested by the

photoluminescence map in Fig. 8.3. The natural dielectric spacer to use is hexagonal boron

nitride because it is the most common two-dimensional insulator. Unfortunately, due to the

presence of defects in boron nitride, a photoinduced charge transfer from boron nitride to

graphene also occurs [Ju14], which may complicate the interpretation of the observations.

Another solution is to use MgO grown by molecular beam epitaxy as successfully employed

to study the distance dependence of the energy transfer between colloidal quantum dots or

nanoplatelets and graphene [Federspiel15b]. However, preliminary tests have shown that

the photoluminescence of MoSe2 is strongly quenched in the presence of MgO. As a result,

further investigations are needed to find a proper way to investigate the distance dependence
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of the interlayer energy transfer. Furthermore, we have estimated that the energy transfer

happens at a picosecond timescale in graphene/MoSe2 heterostructures. Therefore, it would

be very interesting to have the possibility to perform time-resolved measurements with a

picosecond resolution in order to measure precisely this timescale.

Low-temperature photoluminescence measurements Last but not least, an interesting

point to explore is the low-temperature photoluminescence of MoSe2. Such an experiment

will be presumably useful to identify the two unknown features observed in the PL spectrum

displayed in Fig. 8.16. The highest one in energy was tentatively been assigned to highest

excitonic states of the A exciton. Furthermore, at low-temperature, one can distinguish the

emission from the neutral excitons and the charged ones. The intensity of these two fea-

tures provides information on the doping level of MoSe2 [Ross13]. Finally, low-temperature

measurements will allow us to study the temperature dependence of the interlayer transfer.

Knowing that Förster- and Dexter-type energy transfer are supposed to show different tem-

perature dependence [Lyo00], it could also be a way to pinpoint the nature of the energy

transfer. Note that preliminary experiment were already performed with our liquid helium

cryostat on sample 1 discussed in Chapter 8.

Heterostructures based on anisotropic transition metal dichalcogenides

A promising perspective of this work is to study heterostructures based on anisotropic tran-

sition metal dichalcogenides. In particular, rhenium disulfide (ReS2) and rhenium dis-

elenide (ReSe2) exhibit significant in-plane anisotropy and can be viewed as a distorted

1T phase due to the formation of a quasi one-dimensional chains of Re atoms [Wilson69,

Ho97, Ho98, Ho04, Tiong99]. This anisotropy was mainly probed using optical spec-

troscopy [Wolverson14, Aslan15, Chenet15, Cui15, Feng15, Nagler15, Zhao15] and electrical

measurements [Liu15a]. We have also investigated these materials using ultralow-frequency

Raman spectroscopy [Lorchat16] (see Chapter 6). In particular, we have shown that although

a complex angular dependence of the intensity of all Ramanmodes, low-frequency rigid layer

modes can be empirically utilized to determine the crystal orientation (i.e., the direction of

the Re chains) as depicted in Figs. 9.3(a) and (b). To further complicate the study of these

materials, different stacking orders with nearly equal stability (i.e., polytypism) exist. We

have also demonstrated that the angular dependence of the Raman response drastically de-

pends on the incoming photon energy (Fig. 9.3(b)), again shedding light on the importance

of resonant exciton-phonon coupling in these materials. Unfortunately, in contrast to the

exciton-phonon coupling mentioned previously in N -layer MoTe2, the theoretical calcula-

tions in such materials remain, up to now, out of reach due to the very complicated struc-

ture. Furthermore, several groups have observed that ReS2 shows a anisotropic excitonic

absorption [Aslan15, Cui15]. In our group, Etienne Lorchat has performed similar measure-

ments on ReSe2 and found a similar behavior. Consequently, van der Waals heterostructures

based on graphene and ReS2 or ReSe2 should exhibit polarization-dependent interlayer in-

teraction. As illustrated in Fig. 9.3(c), we could perform a similar study as in Chapter 8
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but as a function of the angle θ between the linear polarization of the incoming laser and

the direction of the Re chains. Althought, ReS2 and ReSe2 exhibit poor emission proper-

ties [Tongay14, Zhao15], such heterostructures offer exciting perspectives for anisotropic op-

toelectronic devices [Tiong99, Liu15a, Lin15], especially for polarization-sensitive photode-

tectors.
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Figure 9.3 – (a) Ultralow frequency Raman spectra of a bilayer ReSe2 recorded at EL = 1.96 eV in the parallel
(XX) configuration. The different spectra correspond to distinct angle θ between the linear polarization of
the incoming laser and the direction of the Re chains. We observed a splitting of the layer shear modes
due to the anisotropy. See also Chapter 6 Section 6.2. (b) Polar plots of the integrated Raman intensity
of shear modes recorded as a function of the angle θ, at two different photon energies EL = 1.96 eV (red
squares) and EL = 2.33 eV (open green triangles) in the parallel (XX) configuration on the ReSe2 bilayer.
Figure extracted from Ref. [Lorchat16]. (c) Three-dimensional schematic view of a monolayer rhenium TMD
(ReX2) and a monolayer graphene heterostructure. A top view of a 1T’-ReX2 monolayer (the rhenium chains
are highlighted in red) is depicted. The incoming laser is linearly polarized and the Raman spectrum of
graphene can be recorded as a function of the angle θ to investigate the interlayer charge transfer.
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Résumé détaillé

Introduction

E
n 1959, au cours d’une conférence intitulée Il y a plein de place en bas [Feynman60], le

célèbre physicien Richard Feynman se demanda « que pourrions-nous faire avec des

structures en couches ayant juste les bonnes couches? ». Plus d’un demi-siècle plus

tard, son intuition « nous aurons un éventail extrêmement large de propriétés possibles »

semble bel et bien se confirmer.

Les matériaux lamellaires sont composés de couches d’atomes empilées les unes sur les

autres. Ces couches sont qualifiées de matériaux bidimensionnels (M2D) car elles ne sont

épaisses que d’un ou quelques atomes. Ces véritables plans d’atomes sont reliés entre eux par

des interactions de van der Waals bien plus faibles que les liaisons covalentes qui assurent la

cohésion des atomes au sein d’une même couche. Il est donc possible « d’exfolier mécanique-

ment », c’est-à-dire de séparer, les différentes couches sans les endommager. Bien qu’étudiés

et utilisés depuis de très nombreuses années, ces matériaux ont connu un regain d’intérêt

très important à partir de 2004 lorsque Geim et Novoselov (prix Nobel de physique en 2010)

ont popularisé une méthode simple d’exfoliation mécanique utilisant du ruban adhésif et

permettant d’isoler une monochouche ou plus généralement un système de N couches de

M2D [Novoselov04, Novoselov05b].1 Dès lors, ces systèmes ont suscité un engouement scien-

tifique sans précédent. En effet, il a été très vite découvert que les propriétés physiques de ces

matériaux évoluaient drastiquement avec le nombre de couches et que du fait de leur épais-

seur atomique, ils étaient particulièrement sensibles à l’environnement. En outre, selon leur

composition chimique et leur structure, ces matériaux possèdent des propriétés très variées

et complémentaires (voi Fig. 9.4).

Parmi le vaste catalogue de M2D disponibles, le graphène et les dichalcogénures de

métaux de transition (DMTs) sont les systèmes les plus étudiés. D’un côté, le graphène

correspond à une seule couche d’épaisseur monoatomique de graphite. C’est un maté-

riau qui possède des propriétés électriques [Novoselov04, Zhang05, Novoselov05a], op-

1Etonnamment, quelques décennies plus tôt Frindt et ses collaborateurs avaient déjà démontré qu’il était
possible d’exfolier mécaniquement ces matériaux lamellaires à l’aide d’un ruban adhésif et ainsi d’isoler un sys-
tème de quelques couches [Frindt66], voire d’une seule [Joensen86]. Malheureusement, leur travaux n’ont pas été
remarqué par la communauté scientifique.
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Figure 9.4 – Le monde des matériaux bidimensionnels. Ce monde est composé du graphène et de ses ana-
logues, notamment du nitrure de bore héxagonal ; du noir de phosphore (BP) et ses analogues ; de la famille
des semi-conducteurs III-VI ; et ces dichalcogénures de métaux de transition (TMD). Les propriétés de ces
matériaux sont très variées, certains sont métalliques ou semi-métalliques, d’autres sont semi-conducteurs
ou isolants. Une coupe transversale des différent matériaux est représentée aux quatre coins. Remarquez que
la plupart ne sont pas planaires. La figure est extraite de la Réf. [Ajayan16].

tiques [Mak08, Nair08, Mak12b], thermiques [Ghosh10] et mécaniques [Lee08] remarquables

et relativement facilement accordables par effet de champ notamment. D’un autre côté

les DMTs, de formule chimique MX2 avec M un métal de transition et X un chalcogène,

offrent un éventail très large de propriétés physiques dont des semi-conducteurs émet-

tant dans le visible et le proche infrarouge. En particulier, la monocouche (épaisse de trois

atomes) des DMTs semi-conducteurs possède des propriétés optoélectroniques très intéres-

santes [Wang12, Xia14, Mak16], ainsi qu’un pseudospin de vallée pouvant être exploité pour

processer de l’information [Xu14].

De plus, en raison de l’absence de liaisons pendantes et du fait que les différentes couches

sont liées par des interactions de van der Waals, il est possible d’empiler artificiellement des

M2D pour former des « hétérostructure de van der Waals » [Geim13]. Comparées aux hé-

térostructures traditionnelles obtenues par épitaxie et actuellement très largement répan-

dues dans l’industrie [Alferov01], les hétérostructures de van der Waals (HvdW) présentent

l’avantage de ne pas être limitées par le désaccord des paramètres de maille. Ainsi, ces

structures sont très intéressantes d’un point de vue scientifique pour étudier de nouveaux

phénomènes physiques, tel que le papillon de Hofstadter [Hofstadter76, Dean13, Hunt13,

Ponomarenko13], mais aussi d’un point de vue technologique pour développer de nouvelles

applications dans des domaines variés [Ferrari15]. En particulier, le graphène et les DMTs

semi-conducteurs ont des propriétés complémentaires qui peuvent être combinées pour for-

mer de nouveaux dispositifs optoélectroniques fonctionnant dans le visible et le proche
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infrarouge [Koppens14, Xia14, Mak16, Mueller16]. Comparés aux technologies actuelles,

telles que le silicium, ces matériaux possèdent de nombreux avantages comme une semi-

transparence, un faible poids, une grande surface, une grande résistance mécanique, ce qui

ouvre la voie au développement de dispositifs flexibles, moins energivores et potentiellement

à faible coût. Néanmoins, les recherches dans ce domaine n’en sont qu’à leur début, de nom-

breuses questions fondamentales restent encore sans réponses et de nouvelles techniques de

fabrication à grande échelle doivent encore être développées. A noter, qu’en plus des HvdW,

il est possible de combiner des M2D avec d’autres nano-objets tels que des boîtes quantiques

ou des structures plasmoniques pour former des hétérostructures hybrides.

C’est dans ce contexte que s’insère les travaux de cette thèse. L’objectif de ce projet est de

fabriquer des dispositifs optoélectroniques à base d’hétérostructures de van der Waals com-

posées de graphène et de dichalcogénures de métaux de transition, pour étudier et contrôler

électriquement les interactions inter-couche qui gouvernent la photophysique de ces struc-

tures. Ces systèmes sont étudiés par micro-spectroscopie optique, qui comparée à d’autres

techniques présente l’avantage d’être une méthode non invasive, sans contact, locale et ra-

pide pour sonder les propriétés physiques. La technique commune employée tout au long de

ce projet de thèse est la spectroscopie Raman [Ferrari13, Zhang15b]. Cette technique fournie

généralement des informations telles que la qualité cristalline ou la densité de charge mais

est utilisée ici d’une manière originale pour étudier le couplage inter-couche. La deuxième

technique employée au cours de ce projet est la spectroscopie de photoluminescence (PL)

résolue spatialement et temporellement [Kolobov16] qui permet de sonder les dynamiques

des porteurs de charge, ainsi que les effets excitoniques qui sont affectés pour le couplage

inter-couche.

Pour atteindre le but de ce travail de thèse, j’ai défini trois objectifs intermédiaires :

1. Fabriquer des dispositifs robustes et efficaces pour contrôler précisément le niveau de

Fermi du graphène, et développer une méthode permettant de déterminer ce niveau.

2. Caractériser des dichalcogénures de métaux de transition semi-conducteurs en fonc-

tion du nombre de couche. Parmi la vaste famille de ces matériaux, j’ai sélectionné le

ditellurure de molybdène (MoTe2) car il possède un gap optique dans le proche in-

frarouge (autour de 1 eV) ce qui devrait rendre le contrôle électrique des interactions

inter-couches plus simple.

3. Fabriquer des hétérostructures de van der Waals et les intégrer dans les dispositifs dé-

veloppés lors de la première étape.

Pratiquement tous ces objectifs ont été atteints et sont décrits en détail dans ce manuscrit avec

en plus une introduction des propriétés des M2D et de leur hétérostructures, des éléments

théoriques sur la théorie des groupes, la spectroscopie Raman et de photoluminescence, les

effets d’interférences optiques, ainsi qu’une description des méthodes expérimentales. Néan-

moins dans ce résumé en français, nous nous focaliserons sur les résultats expérimentaux
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correspondant à chacun des trois objectifs définis ci-dessus. Plus concrètement, la première

partie résume le Chapitre 5, la deuxième les Chapitres 6 et 7 et la troisième le Chapitre 8.
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Spectroscopie Raman de transistors au graphène munis d’une

grille électrochimique

Dans cette partie sont présentés les résultats de l’étude par spectroscopie Raman de transis-

tors à effet de champ à base de monocouches de graphène munis d’une grille électrochimique

« par le haut ». De tels dispositifs permettent de contrôler électriquement, par effet de champ,

les propriétés optoélectroniques du graphène via le niveau de dopage du graphène.

Fabrication des transistors

(a) (b)

Polymère électrolyte Photo-résine Graphène

- - - - SourceDrainGate

- - --
++++

+ + + +

+-
-

+
+

-

VTG

VBG

+ -

SiO2

Si p++

Figure 9.5 – (a) Image optique d’un transistor à effet de champ à base de graphène avant le dépôt du polymère
électrolyte. La source et le drain sont recouverts d’une photo-résine (SU8) pour les empêcher d’être en contact
avec le polymère électrolyte. Au contraire, l’électrode de grille (gate) est laissée libre. (b) Schéma en coupe
d’un transistor à effet de champ muni d’une grille « par le haut » et « par le bas ». La grille « par le haut »
est constituée d’ions Li+ (vert) and ClO−4 (rouge) qui forment des doubles couches électriques à la surface des
électrodes.

Ces transistors ont été fabriqués par des techniques de photolithographie standards dans

la salle blanche de la plateforme STnano. Dans un premier temps, des monocouches de gra-

phène sont exfoliées mécaniquement à partir de graphite naturel, en utilisant du ruban adhé-

sif, sur des substrats de silicium (Si) recouverts d’une fine couche d’oxyde de silicium (SiO2)

épaisse de 285 ± 15 nm. Les monocouches de graphène ont été repérées par microscope op-

tique et par des mesures de spectroscopie Raman [Malard09b, Ferrari13]. Dans un deuxième

temps, deux étapes de photolithographie ont été réalisées. La première étape consiste à

contacter le graphène avec deux électrodes d’or (source et drain) et à déposer une troisième

électrode (la grille) sur le côté. La deuxième étape permet de recouvrir la source et le drain

d’une résine isolante (SU8) afin que la grille électrochimique ne contacte que le graphène et

l’électrode de grille. Cette géométrie permet de réduire les réactions électrochimiques para-

sites. Une fois ces processus achevés, on obtient un dispositif similaire à celui de la Fig. 9.5(a).

Enfin dans un troisième temps, une goutte d’une solution de polymère électrolyte est déposée

sur l’échantillon grâce à une micropipette. Le polymère utilisé est un mélange de perchlorate

de lithium (LiClO4) et d’oxyde de polyéthylène (PEO) dans du méthanol avec un ratio en

masse 0,012:1:4 [Das08, Lu04, Liu13]. C’est un polymère électrolyte fréquemment utilisé en

électrochimie, tout particulièrement pour réaliser ce type de structure. Après dépôt, le mé-
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thanol s’évapore et un fin film de polymère électrolyte transparent se forme, c’est la grille

électrochimique.

Effet de champ

Une fois les transistors fabriqués, le spectre Raman du graphène en fonction de la tension de

grille « par le haut » (VTG) appliquée entre le graphène et l’électrode de grille a été mesuré.

Les spectres obtenus sont présentés sur la Fig. 9.6
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Figure 9.6 – (a)-(c) Cartes des spectres Raman d’une monocouche de graphène, mesurées à 2,33 eV, en
fonction de la tension de grille « par le haut » VTG. On distingue les modes G et 2D, alors le mode D induit par
les défauts n’est pas visible. (b) et (c) montrent une évolution claire des modes G et 2D avec VTG. Les lignes
pointillées noires correspondent à la fréquence centrale de chacun des pics Raman. Le point de neutralité
(CNP) est indiqué par une flèche sur (b). (d) Spectres Raman à différentes valeurs de VTG entre -0.5 V et
+1 V. Les symboles correspondent aux données expérimentales et les lignes continues les ajustements. Le
point de neutralité est atteint pour une tension VTG,0 = +0.5 V (voir la courbe verte).

On y observe les deux principaux modes Raman du graphène: le mode G et le mode 2D.

On constate que ces deux modes évoluent clairement avec VTG pour des tensions de l’ordre de

1 V seulement. En particulier, le mode G (correspondant à la création d’un phonon de quan-

tité de mouvement nulle, c’est-à-dire au centre de la première zone de Brillouin) se translate

vers des fréquences plus élevées et devient plus fin lorsque VTG augmente en valeur absolue.

C’est une signature claire d’un changement de dopage dans le graphène. On remarquera que

la position de neutralité est atteinte pour un tension VTG,0 non nulle, ce qui traduit un do-

page initial de l’échantillon. On peut alors se demander comment relier VTG et le niveau de

Fermi EF dans le graphène? Pour répondre à cette question, il faut regarder ce qui se passe

lorsqu’une tension VTG est appliquée. Lorsqu’une différence de potentiel est appliquée entre

la grille et le graphène les ions se déplacent dans la matrice de polymère sous l’effet du champ

électrique créé. Des doubles couches électriques se forment aux interfaces grille/polymère et

polymère/graphène, comme illustré sur la Fig. 9.5(b). Une double couche électrique peut être
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modélisée par un condensateur plan dont la distance entre les couches de charges opposées

est donnée par la longueur de Debye typiquement de l’ordre de 1 nm. En plus de cette capa-

cité, il faut tenir compte de la capacité quantique (CQ) qui rend compte du déplacement du

niveau de Fermi dans le graphène. En tenant compte de ces deux contributions, il est possible

de relier la tension VTG au niveau de Fermi EF dans le graphène :

V −V0 =
EF
e

+ sgn(EF)
eE2

F

π(~vF)2CG
, (9.1)

e est la charge élémentaire, vF ≈ 1,1.106 m s−1 est la vitesse de Fermi dans le graphène sup-

porté sur SiO2 [Knox08], ~ est la constante de Planck réduite et CG la capacité géométrique

de la double couche électrique. Or il est difficile d’évaluer la longueur de Debye et donc de

connaître précisément CG, c’est pourquoi j’ai cherché à mesurer directement CG.

Pour ce faire, j’ai utilisé des dispositifs possédant une grille électrochimique « par le haut »

et une autre grille « par le bas », tel que schématisé sur la Fig. 9.5(b). Le silicium fortement

dopé est employé comme électrode de grille « par le bas » et la couche d’oxyde comme di-

électrique. Contrairement à CG, la capacité géométrique CBG de ce dispositif est très bien

connue puique l’épaisseur de la couche d’oxyde est elle-même précisément connue. Pour une

tension de grille VBG donnée, on balaye la tension VTG en enregistrant les spectres Raman de

manière à déterminer le point de neutralité VTG,neutre. D’après la Ref. [Xu11b], VTG,neutre est

linéaire avec VBG et le coefficient directeur de la droite est donné par le rapport CBG/CG, ce

qui permet d’en déduire que CG = 3,3± 0,3 µF cm−2 pour l’échantillon présenté ici (Figs. 9.5

et 9.6). Cette valeur est en bon accord avec ce qui a été reporté pour des dispositifs simi-

laires [Das08, Das09, Shimotani06, Efetov10, Bruna14]. Ainsi, VTG peut être convertie préci-

sément en EF. Remarquons qu’il est important de déterminer rigoureusement cette valeur car

elle varie d’un dispositif à l’autre, spatialement sur un même échantillon mais également au

cours du temps. En effet, après quelques jours passés à l’air libre, la capacité peut être réduite

d’un ordre de grandeur.

Couplage électron-phonon

Une fois EF précisément déterminé en fonction de VTG, il est possible de comparer l’évolu-

tion expérimentale des modes de phonons avec des modèles théoriques. Le processus associé

au mode 2D étant plus complexe que celui du mode G (voir Chapitre 5 pour plus de préci-

sion), nous nous concentrerons dans un premier temps uniquement sur les variations de la

fréquence et de la largeur du mode G, puis dans un second temps nous nous focaliserons sur

l’évolution du rapport entre les intensités intégrées des modes 2D et G.

Fréquence et largeur du mode G Une fois le phonon du mode G créé, celui-ci va in-

teragir avec le système électronique ce qui va induire une renormalisation. Cette interac-

tion peut correspondre (voir les diagrammes de Feynman de la Fig. 9.7) soit à une tran-

sition réelle qui fixe la durée de vie du phonon (et donc la largeur du pic Raman), soit
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partie de sa vie sous forme de paires électron-trou. Le diagramme de Feynman de droite illustre le déclin du
phonon du mode G en une paire electron-trou réelle. Ce processus fixe la durée de vie du phonon et donc la
largeur du pic Raman correspondant. (b) Axe de gauche: variation du rapport des intensités intégrées entre les
modes 2D et G avec le niveau de dopage (carrés rouges). Axe de droite: évolution de la racine carré du rapport
des intensités intégrées entre les modes G et 2D avec le dopage (carrés ouverts bleus). Les courbes noires en
pointillés et ligne continue correspondent aux ajustements, respectivement sans et avec une inhomogénéité
de charge, fondés sur le modèle de Ref. [Basko09b].

à une transition virtuelle qui fixe l’énergie du phonon (et donc la fréquence du pic Ra-

man). Cette évolution théorique du pic Raman associée au mode G a notamment été mise

en équation par Lazzeri et Mauri [Lazzeri06, Pisana07]. En convoluant leur modèle théo-

rique avec une gaussienne de largeur δEF afin de tenir compte de l’inhomogénéité de

charge [Casiraghi07, Martin08, Xu11a, Li11], on peut alors ajuster simultanément l’évolu-

tion expérimentale de la fréquence et de la largeur du mode G avec comme seul paramètre

d’ajustement le couplage électron-phonon au centre de la première zone de Brillouin λΓ et

l’inhomogénéité de charge δEF. Comme illustré sur la Fig. 9.7(a), l’accord expérience-théorie

est excellent avec une valeur de λΓ cohérente avec les calculs DFT [Lazzeri06, Pisana07] et une

inhomogénéité de charge raisonnable [Martin08, Xue11]. Ce très bon accord permet d’utili-

ser l’évolution théorique du mode G pour déterminer le niveau de Fermi dans le graphène

(voir la troisième partie de ce résumé). En particulier, plutôt que d’utiliser une géométrie

avec une grille « par le haut » et « par le bas » pour déterminer CG, il est possible de l’inclure

comme paramètre d’ajustement. On obtient alors une valeur de CG sensiblement identique

à celle obtenue avec la méthode des deux grilles. Notons que la renormalisation du mode G

est particulièrement importante car il y a une anomalie de Kohn [Piscanec04] au centre de la

première zone de Brillouin.

Intensité des modes 2D et G En plus des variations de fréquence et de largeur des modes

Raman avec EF, l’intensité intégrée des pics associés au mode Raman peut également dé-
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pendre de EF. En particulier, le rapport des intensités intégrées des modes 2D et G présente

une variation claire avec EF: le ratio I2D/IG est maximal à neutralité et décroit lorsque le do-

page augmente. Cette variation est plus complexe à décrire que celle de la fréquence et de

la largeur du mode G. Néanmoins, Basko a développé une modèle théorique pour décrire

cette évolution [Basko09b]. En utilisant ce modèle, on obtient un très bon accord expérience-

théorie (voir Fig. 9.7(b)). On peut alors déduire à l’aide de la valeur de λΓ déterminée précé-

demment, une valeur de couplage électron-phonon au bord de la première zone de Brillouin

λK. On constate que λK est environ cinq fois plus important que λΓ, en accord avec le fait que

le couplage au bord de la première zone de Brillouin est plus fort qu’au centre.

Corrélation entre la fréquence des modes G et 2D
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rets courts sont des ajustements globaux des portions linéaires pour le dopage par des trous et des électrons
respectivement. La ligne en tirets longs correspond à l’évolution de Ω2D et ΩG sous contrainte unique-
ment [Lee12c, Metten16].

Comme mentionné précédemment, l’évolution théorique de la fréquence et de la largeur

du mode G (voir du ratio I2D/IG) en fonction du niveau de Fermi EF peut être utilisée pour

déterminer précisément EF dans un échantillon de graphène quelconque. Néanmoins, comme

ces variations théoriques sont quasi identiques pour un dopage par des électrons ou par des

trous, il est difficile de connaître la nature du dopage. Une solution est d’utiliser la corrélation

entre la fréquence des modes G et 2D. En effet, comme illustré sur la Fig. 9.8, la corrélation

Ω2D(ΩG) est quasi linéaire de pente environ 0,55 pour une dopage par des trous et est quasi

linéaire de pente environ 0,2 pour un faible dopage par des électrons, et cela indépendement

de la valeur de CG, des coulages électron-phonon ou encore de l’inhomogénéité de charge.
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De plus, cette corrélation est également connue pour permettre de séparer les contraintes du

dopage [Lee12c]. Au cours de ce projet, je ne me suis pas intéressé à l’effet des contraintes

sur le spectre Raman du graphène. Cependant, Dominik Metten a réalisé un travail de thèse

complet sur ce sujet [Metten16]. En particulier, il a été observé que pour des contraintes

biaxiales, la corrélation Ω2D(ΩG) est quasi linéaire de pente environ 2,2. Ces corrélations

seront très utiles dans la troisième partie de ce résumé.

Conclusion

En conclusion de cette première partie, les transistors à effet de champ munis d’une grille

électrochimique « par le haut » développés au cours de ce projet de thèse, sont des dispositifs

très efficaces et robustse pour doper le graphène. Des niveaux de l’ordre de 700 meV sont at-

teignables dans des conditions ambiantes, ce qui ouvre des perpectives très intéressantes dans

l’optique de contrôler les interactions inter-couches dans des hétérostructures. Cette étude a

également permis de montrer que la spectroscopie Raman est une technique extrêmement

puissante pour caractériser des échantillons de graphène, et notamment pour déterminer la

nature et le niveau de dopage. Cet outil sera pleinement exploité dans la troisième partie de

ce résumé. Enfin au cours des mesures, j’ai remarqué qu’il était possible de créer des défauts

dans le feuillet de graphène in-situ en appliquant une tension de grille suffisamment élevée.

L’influence de ces défauts sur la réponse Raman du graphène en fonction du dopage a alors

été étudiée mais n’est pas présentée dans ce manuscrit. Malgré des concentrations de défauts

supérieures à 1012 cm−2, aucune influence sur les modes G et 2D n’a été constatée.
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Du cristal massif à la monocouche : évolution des propriétés op-

tiques d’un empilement de N couches d’un semi-conducteur la-

mellaire

Cette deuxième partie s’intéresse à l’évolution des propriétés optiques d’un semi-conducteur

lamellaire en fonction du nombre de couchesN . Le ditellurure de molybdène (MoTe2) qui ap-

partient à la famille des dichalcogénures de métaux de transition est utilisé comme exemple,

il est complètement caractérisé pour N = 1 à N = 12 par des mesures de micro-spectroscopie

Raman et de micro-photoluminescence.

Une description unifiée des phonons optiques dans un semi-conducteur lamel-

laire

Commençons par les modes de phonon dans les N couches de 2Hc MoTe2 (voir Fig. 9.9(a)

pour la structure cristalline). Dans un système de N couches de M2D, le couplage via des

interactions de van derWaals entre couches donne naissance à une levée de dégénérescence de

tous les modes de phonons existant dans une monocouche. Cet effet est connu sous le nom de

« splitting (séparation) de Davydov » [Davydov64, Davydov71]. Ainsi, à chaque déplacement

élémentaire présent dans la monocouche est associé N modes dans un système de N couches.

Graphiquement, les fréquences de ces modes peuvent être représentées sous la forme d’un

diagramme « en éventail ». C’est ce diagramme que j’ai cherché à mesurer expérimentalement

et à modéliser théoriquement.

En pratique, j’ai mesuré systématiquement le spectre Raman en fonction deN . Les échan-

tillons de N couches de MoTe2 ont été obtenus par exfoliation mécanique d’un cristal synthé-

tique de MoTe2 acheté chez 2D Semiconductors et déposés sur des substrats de Si recouverts

d’une couche de SiO2 de 90 nm.

Sur les spectres obtenus, des séries de pics apparaissent (voir Fig. 9.9(b)). Le dispositif

expérimental a été optimisé afin d’avoir accès à des décalages Raman dans la gamme 4 −
40 cm−1. Les modes observés sur les spectres Raman ont été distingués, selon qu’ils soient

dans le plan ou hors du plan, puis selon leur fréquence (ou énergie) [Wieting80, Yamamoto14,

Guo15a] :

• à basse fréquence (< 40 cm−1), les modes observés correspondent à des mouvements de

« plaque rigide » (cisaillement dans le plan et respiration hors du plan), issus des modes

acoustiques à fréquence nulle de la monocouche;

• à des fréquences intermédiaires (100 − 200 cm−1), les modes observés impliquent un

déplacement intra-couche des atomes de tellure;

• à des fréquences plus haute (200 − 300 cm−1), les modes observés font intervenir un

déplacement intra-couche des atomes de molybdène vis-à-vis des atomes de tellure.

223



En augmentant le nombre de couches N , on observe l’évolution de ces différents modes et

notamment le « splitting de Davydov ». Par exemple dans le cas du mode hors du plan de

fréquence intermédiaire (mode noté oX), on peut clairement distinguer sur la Fig. 9.9(c) ce

« splitting de Davydov ».
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Figure 9.9 – (a) Vue de côté et de dessus de la structure cristalline 2Hc du MoTe2. Le losange rouge repré-
sente la maille élémentaire. (b) Spectre Raman d’une bicouche de MoTe2 obtenu à une excitation de 2,33 eV
dans des conditions ambiantes. Les modes de phonon étudiés sont marqués. (c) Spectres Raman de N = 1 à
N = 10 et pour le cristal massif montrant le mode oX correspondant à un déplacement de atomes de tellure
uniquement (les atomes de molybdène sont fixes). On observe clairement une séparation de Davydov lors que
N augmente. (d) Fréquences (cercles noirs) du mode oX extraites des ajustements des spectres de (c) en fonc-
tion du nombre de couches N . Les cercles rouges ouverts (carrés bleus ouverts) correspondent aux fréquences
des modes Raman (infrarouge) actifs calculés à l’aide du modèle de chaîne linéaire finie. Les lignes reliant
ces points sont des guides pour les yeux. Les lignes horizontales en pointillé gris indiquent les fréquences des
modes du cristal massif.

L’ensemble de ces modes de phonons a ensuite été décrit à l’aide d’un modèle de chaîne

linéaire finie dans lequel les interactions entre atomes sont décrites jusqu’aux second plus
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proches voisins et où les effets de surface au niveau des deux couches externes sont pris en

compte [Luo13b]. Les modes propres et fréquences propres de cette chaine linéaire donnent

des résultats en excellent accord avec les mesures et permettent de déduire les constantes de

forces microscopiques associées aux interactions interatomiques et de comprendre l’activité

des modes observés en regard de leurs symétries. En outre, cela permet également d’obtenir

les fréquences de tous les modes du cristal massif et notamment les modes silencieux.

Ces résultats sont importants d’un point de vue pratique car pour un grand nombre d’ap-

plications, il serait préférable d’opter pour des dispositifs dont le canal contient N couches

de DMTs plutôt qu’une monocouche qui est intrinsèquement plus fragile et sensible aux per-

turbations extérieures. En outre, une compréhension détaillée du couplage électron-phonon,

en particulier avec les modes de basse énergie, est indispensable pour comprendre les limita-

tions et/ou optimiser les performances des nouveaux dispositifs à base de M2D.

D’un point de vue fondamental, ces travaux soulèvent aussi une nouvelle question im-

portante. Jusqu’à présent, les séries de modes de basse énergie (respiration et cisaillement)

typiques d’un échantillon de N couches ont été observées sur des systèmes similaires (MoS2,

WSe2) [Plechinger12, Zeng12, Zhao13, Zhang13, Boukhicha13]. En revanche, la séparation

de Davydov n’a été que très sporadiquement observée pour les modes à plus haute énergie

car le mode Raman similaire à celui du matériau massif domine très largement par rapport

aux autres modes issus de la séparation de Davydov [Tonndorf13, Chen15, Staiger15]. Com-

ment se fait-il que cette séparation soit visible de façon aussi nette pour MoTe2 ? La réponse

à cette question nécessite une étude détaillée du couplage entre les modes de phonons et les

fortes résonances excitoniques dans les DMTs, ainsi que de l’effet des symétries des fonctions

d’ondes excitoniques et des modes de phonon sur le couplage exciton-phonon à résonance.

Cette étude est en cours avec nos collaborateurs et théoriciens du groupe de Ludger Wirtz de

l’Université de Luxembourg et tout particulièrement par HenriqueMiranda dont ces travaux

constitue son projet de thèse.

Photoluminescence d’un semi-conducteur lamellaire

Une fois le nombre de couches des échantillons de MoTe2 déterminé, je me suis focalisé sur

l’évolution des propriétés de photoluminescence (PL) en fonction deN . La Fig. 9.10(a) montre

les spectres de PL mesurés en fonction de N pour N couches de MoTe2. Comme pour les

autres DMTs à base de molybdène [Mak10, Splendiani10, Tonndorf13], un fort décalage vers

le bleu ainsi qu’une forte augmentation de l’intenisté de PL sont observés pour les mono-

couches. Ces résultats suggèrent une transition d’un gap optique indirect (d’environ 0.94 eV)

en massif à un gap direct (d’environ 1.1 eV) pour N = 1 [Ruppert14]. Néanmoins, l’augmen-

tation de l’intensité de PL lorsque N diminue est plus faible que pour les autres DMTs à

base de molybdène. En effet, la différence d’énergie entre le gap optique direct et indirect est

sensiblement plus faible pour MoTe2 (0,16 eV) que pour MoS2 (0,6 eV) ou MoSe2 (0,5 eV).

Après avoir étudié la PL de N couches de MoTe2, nous pouvons nous concentrer sur
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Figure 9.10 – (a) Spectres de photoluminescence de N = 1 à N = 7 couches et pour le cristal massif de
MoTe2. Les spectres ont été corrigés des effets d’interférences optiques (voir Annexe C). (b) Intensité de
photoluminescence d’une monocouche de MoTe2 en fonction du flux de photons absorbésAΦph. Les symboles
correspondent aux mesures expérimentales faites sur deux monocouches différentes. La courbe en trait plein
correspond à l’ajustement des points expérimentaux à l’aide du modèle de l’équatioon de taux (9.2).

l’évolution de la PL d’une monocouche de MoTe2 en fonction du flux de photons absor-

bés AΦph, où A est le facteur d’absorption de la monocouche de MoTe2 dans le système

air/MoTe2/SiO2/Si (A ≈ 16,5 %) et Φph le flux de photons incident. La Fig. 9.10(b) présente

les variations de l’intensité intégrée de PL pour deux monocouches de MoTe2. On observe

distinctement une évolution sous-linéaire de l’intensité de PL avec le flux de photons absor-

bés. Une telle variation est caractéristique de phénomènes non-linéaires de type Auger tel

que les annihilations exciton-exciton (AEE). En effet, les interactions de Coulomb sont exal-

tées dans les DMTs semi-conducteurs du fait de l’écrantage réduit et de larges masses effec-

tives [Glazov15, Mak16], ce qui a pour conséquence des effets excitoniques importants et des

processus non-linéaires de type Auger efficaces [Moody16]. Des manifestations d’AEE dans

des monocouches de MoS2 [Sun14, Yu16], MoSe2 [Kumar14], WSe2 [Mouri14, Zhu15, Yu16],

et WS2 [Yuan15, Zhu15, Yu16] ont été observées expérimentalement. Pour démontrer que les

variations de PL de la monocouche de MoTe2 sont également dominées par des AEE, nous

avons utilisé un modèle simple d’équation de taux qui repose sur l’équation suivante :

dnx
dt

=AΦph − Γxnx −γaeen2x, (9.2)

où nx est la densité d’exciton, Γx le taux de recombinaison linéaire et γaee le taux d’AEE.

En résolvant cette équation en régime permanent (puisque les mesures sont effectuées sous

excitation laser continue) et en utilisant l’expression obtenue pour ajuster l’intensité de PL

(qui est proportionnelle à nx), on obtient le très bon accord de la Fig. 9.10(b).

Conclusion

En conclusion, la spectroscopie Raman est une technique extrêmement puissante pour son-

der l’influence du couplage inter-couche et des effets de surface. Tous les phonons du centre

de la première zone de Brillouin d’un système de N couches de MoTe2 ont pu être décrits de
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manière unifiée à l’aide d’un modèle de chaîne linéaire finie dans lequel sont pris en compte

les interactions entre atomes jusqu’aux second plus proches voisins et les effets de surface

au niveau des deux couches externes. De plus, le rôle majeur joué pour les couplages exciton-

phonon à résonance sur l’observation de « splittings de Davydov » a été mis en évidence. Dans

un second temps, la photoluminescence de N couches de MoTe2 a été présentée. Comme ses

cousins MoS2 et MoSe2, MoTe2, on observe une transition d’un gap optique indirect (d’envi-

ron 0,94 eV) dans le cristal massif vers un gap optique direct (d’environ 1,1 eV) dans la limite

d’une monocouche. De plus, la monocouche de MoTe2 présente des non-linéarités caractéris-

tiques de processus de type Auger (tel que des annihilations exciton-exciton) qui reflètent la

forte exaltation des interactions de Coulomb dans ces matériaux. Enfin, bien que ces mesures

ont été effectuées sur MoTe2, elles sont parfaitement généralisable à d’autres DMTs semi-

conducteurs. En particulier, le modèle de chaine linaire finie sur N couches de diséléniure de

molybdène (MoSe2) a été employé avec succès (voir Chapitre 6).
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Une étude toute optique d’hétérostructures de van der Waals gra-

phène/dichalcogénure de métaux de transition

Cette troisième et dernière partie se focalise sur la fabrication et l’étude toute optique d’hé-

térostructures de van der Waals monocouche de graphène/monocouche de diséléniure de

molybdène (MoSe2).

Fabrication des hétérostructures

Pour fabriquer les hétérostructures, j’ai utilisé la technique de transfert sec (c’est-à-dire

n’impliquant aucune étape avec une phase liquide) mise au point par Castellanos-

Gomez [Castellanos-Gomez14]. Brièvement, dans une première étape on exfolie MoSe2 à par-

tir de cristaux massifs synthétiques achetés chez HQ Graphene sur des substrats de Si recou-

verts d’une couche de 90 nm de SiO2. Puis, on repère aumicroscope optique les monocouches.

Dans une seconde étape, on exfolie des monocouches de graphène à partir de graphite naturel

sur des substrats de PDMS commerciaux (Gel-Pak 4). Les monocouches sont également iden-

tifiées au microscope optique. Dans une troisième étape, les monocouches de MoSe2 et de

graphène sont alignées et mise délicatement en contact à l’aide de l’aligneur de masque Karl

Suss MJB3 de la salle blanche STnano. Enfin dans une dernière étape, le tampon de PDMS est

décollé lentement. La monocouche de graphène est transférée sur la monocouche de MoSe2.

La Fig. 9.11(a) montre un exemple de structure obtenue avec cette technique.

Caractérisation des hétérostructures

Une fois les hétérostructures fabriquées, j’ai commencé par les caractériser en réalisant des

cartographie AFM, de photoluminescence et de spectroscopie Raman. Les résultats obtenus

sont présentés sur la Fig. 9.11.

Une image optique de l’hétérostructure étudiée ici est visible sur la Fig. 9.11(a). Sur cette

image les deux monocouches ont été mises en évidence à l’aide de couleurs. On constate que

la monocouche de graphène ne recouvre pas toute celle de MoSe2. Sur les mesures de micro-

scopie de force atomique, on distingue une zone particulière de l’hétérostructure délimitée

par les pointillés blanc sur la Fig. 9.11(a). Pour cette zone, on mesure une hauteur d’environ

0.65 nm entre la surface de MoSe2 et celle du graphène (voir Fig. 9.11(b)). Or pour le reste de

l’hétérostructure cette distance est plutôt de 2-3 nm. De plus, pour cette même zone l’inter-

face entre les deux couches est bien plus propre que pour le reste de l’échantillon à cause du

mécanisme « d’auto-nettoyage » des couches bien couplées [Kretinin14]. Pour la suite et pour

distinguer ces deux zones de l’hétéreostructure, nous dirons que pour la première les couches

sont couplées alors que pour la deuxième elles sont découplées (voir Fig. 9.11(c)).

Les Figs. 9.11(d) et 9.11(e) montrent les cartes d’intensité de PL et de fréquence du mode

G pour l’échantillon complet. Sur la première carte, on distingue clairement la forme de la

monocouche de MoSe2, ainsi que la partie couplée de l’hétérostructure. En effet, pour cette
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Figure 9.11 – (a) Image optique d’une hétérostructure. Les monocouches de MoSe2 et de graphène (SLG)
sont mise en évidence avec des couleurs. La partie couplée de l’hétérostructure est délimitée par les pointillés
blancs. (b) Profiles de hauteur mesurés par microscopie de force atomique le long des lignes bleues et rouges
de (a). (c) Vue de côté de l’hétérostructure avec les parties couplées et découplées. (d) Carte de photolumi-
nescence de MoSe2. (e) Carte de la fréquence du mode G du graphène. Les deux cartes ont été enregistrées à
2,33 eV dans les conditions ambiantes, à un flux de photons de d’environ 2.1019 cm−2 s−1 pour la première
et 2.1022 cm−2 s−1 pour la seconde.

dernière zone, l’intensité de PL est diminuée d’environ 300 comparé à MoSe2 seul, alors que

pour le reste de l’hétérostructure l’intensité n’est réduite que d’un facteur deux. Une telle in-

hibition de l’intensité de PL est une signature manifeste d’un couplage inter-couche fort. Sur

la seconde carte, on observe la forme de la monocouche de graphène2 et une augmentation

de la fréquence du mode G pour la zone couplée. De plus, on constate également une dimi-

nution de la largeur du mode G pour cette même zone (non montré ici, voir Chapitre 8). De

tels changements sont des signatures claires d’une modification du dopage dans le graphène.

Ainsi, cette observation tend à montrer qu’il y aurait un transfert de charge photoinduit entre

MoSe2 et la monocouche de graphène dans le cas où elles sont couplées. Afin de démontrer

cette affirmation, j’ai réalisé des mesures Raman du graphène en fonction du flux incident de

photons Φph.

2Noter que l’extrémité haut droit correspond à un morceau de multicouche de graphène.

229



Spectres Raman du graphène en fonction de Φph

Les spectres Raman du graphène en fonction de Φph sont présentés sur les Figs. 9.12(a)-(c).

Comme référence, j’ai mesuré les spectres Raman d’une partie de la monocouche de graphène

sur SiO2 (SLG/SiO2). On observe que les spectres mesurés sur SLG/SiO2 et sur SLG/MoSe2

découplés sont semblables et ne changent quasiment pas avec Φph. En revanche, les spectres

de SLG/MoSe2 couplés évoluent très distinctement avec Φph. La fréquence et la largeur du

mode G, ainsi que le rapport entre l’intensité intégrée du mode 2D et du mode G sont extraits

des spectres et tracés sur les Figs. 9.12(d)-(f). On constate que les valeurs de ces paramètres

pour SLG/MoSe2 et SLG/MoSe2 découplés sont quasi constante avec Φph et correspondent

à un graphène proche de la neutralité (voir Fig. 9.7(a)). Inversement pour la zone couplée,

l’évolution de ces paramètres montre une augmentation du dopage avec Φph. On en conclut

qu’il y a bien un transfert de charge de MoSe2 vers le graphène et que celui-ci est photoinduit.
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Figure 9.12 – (a) Spectres Raman du graphène enregistrés à 2,33 eV dans des conditions ambiantes en
fonction du flux de photons incidents Φph pour (a) graphène sur SiO2, (b) graphène/MoSe2 découplés et (c)
graphène/MoSe2 couplés. (d) Fréquence ΩG du mode G, (e) largeur ΓG du mode G et (f) ratio I2D/IG entre
l’intensité intégrée du mode 2D et celle du mode G en fonction de Φph

.

On peut alors utiliser la corrélation des fréquences des modes G et 2D pour déterminer la

nature de ce transfert (voir Fig. 9.8). La Fig. 9.13(a) montre cette corrélation Ω2D(ΩG) pour

les mesures de la Fig. 9.12. On observe une corrélation linéaire de pente environ 0,1 pour

la partie couplée de l’hétérostructure, alors qu’il n’y a pas de corrélation claire pour le reste

de l’échantillon. D’après les résultats obtenus dans la première partie, une telle corrélation

correspond à un dopage par des électrons. Ainsi, on en conclut qu’il y a un transfert d’élec-
trons photoexcités du MoSe2 vers le graphène. De plus, en utilisant les courbes théoriques
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de ΩG(EF) et ΓG(EF) (voir Fig. 9.7(a)), il est possible d’en déduire le niveau de dopage dans le

graphène. En effet, il suffit de lire le niveau de Fermi correspondant à un couple (ΩG,ΓG) sur

les courbes théoriques pour un dopage par des électrons (d’après la corrélation Ω2D(ΩG)),

comme illustré sur la Fig. 9.13(b). Une fois les niveaux de Fermi ou de manière équivalente

la densité de porteur de charge nG (ici des électrons) extraite, on peut tracer, par exemple,

nG en fonction de Φph (voir Fig. 9.13(c)). On remarque pour cet échantillon que (i) nG aug-

mente de manière sous-linéaire avec Φph (phénoménologiquement nG ∝ Φph1/5) et (ii) nG
tend à saturer autour d’une valeur maximale d’environ 5.1012 cm−2 (soit EF ≈ 290 meV). Un

comportement similaire sur d’autres hétérostructures a été observé et ce indépendamment

du niveau de dopage initial. Ces observations montrent que lorsque Φph augmente, l’effica-

cité du transfert de charge diminue et que celui-ci devient même nul pour un flux de photons

incidents suffisamment grand.
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.
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Spectres de photoluminescence de MoSe2 en fonction de Φph

De la même manière que pour le spectre Raman du graphène, j’ai ensuite étudié le spectre

de photoluminescence de MoSe2 en fonction du flux de photons incidents Φph. Le spectre

de PL de la monouche de MoSe2 présentent deux pics [Tonndorf13] : le plus bas en énergie

et plus intense correspond à l’exciton A, alors que le plus haut en énergie et le moins in-

tense est l’exciton B. Nous nous intéresserons ici uniquement à l’exciton A. En enregistrant

les spectres de PL en fonction de Φph, puis en extrayant l’intensité intégrée de l’exciton A

pour MoSe2 seul, SLG/MoSe2 découplés et SLG/MoSe2 couplés, on obtient le graphique de la

Fig. 9.14. Sur cette figure, les intensités en été normées par le produit du temps d’acquisition

et de Φph. On constate que pour MoSe2 seul et pour la partie découplée de l’hétérostructure,

l’intensité normée de l’exciton A décroit avec Φph. Cette décroissance est en accord avec des

annihilations exciton-exciton telles qu’observées également pour la monocouche de MoTe2

(voir la deuxième partie de ce résumé). En revanche, l’intensité normée de l’exciton A est

constante avec Φph. En d’autres termes l’intensité non normée est proportionnelle à Φph. Un

tel comportement révèle une réduction drastique de la durée de vie de l’exciton A pour la

partie couplée comparé à MoSe2 seul et à la partie découplée. Cette réduction est due au fort

couplage inter-couche qui offre un canal de désexcitation non radiatif supplémentaire. On

remarquera que pour l’intervalle de Φph étudié ici, l’efficacité de ce canal de désexcitation est

constante.
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.

Comparaison des résultats Raman versus photoluminescence

A première vue, la réduction drastique de la durée de vie de l’exciton A (et donc de l’in-

tensité de PL) est compatible avec un transfert de charge de MoSe2 vers le graphène. Néan-
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moins, l’efficacité du transfert de charge diminue lorsque Φph augmente alors que parallè-

lement l’efficacité du canal de désexcitation non radiatif ne varie pas. Il y a donc un mé-

canisme supplémentaire au transfert de charge qui est responsable de l’inhibition de la

PL. Nous suggérons que ce mécanisme corresponde à un transfert d’énergie. En effet, un

tel transfert a déjà été étudié entre des nano-objets et un feuillet de graphène (voir par

exemple [Chen10, Gaudreau13, Tisler13, Federspiel15b]) ou entre des molécules et des na-

notubes de carbone (voir par exemple [Roquelet10]) avec des efficacités de transfert proche

de 100 %. Plus récemment, un transfert d’énergie inter-couche, plus efficace que le transfert

de charge, entre deux monocouches de DMTs dans un hétérostructure de van der Waals a

été mis en évidence [Kozawa16]. Il paraît donc naturel qu’un transfert d’énergie inter-couche

dans des hétérostructures de van der Waals graphène/DMT ait également lieu.

Conclusion

En conclusion, cette étude montrent qu’un fort couplage inter-couche entre les monocouches

de graphène et de MoSe2 conduit à une importante inhibition de la PL deMoSe2 et à un trans-

fert d’électrons photoinduit de MoSe2 vers le graphène. Ces travaux démontrent également

qu’il est possible de sonder localement les interactions inter-couches de manière tout op-

tique, et même de quantifier le transfert de charge. De plus, ils mettent également en lumière

la possibilité qu’il y ait, en plus du transfert de charge, un transfert d’énergie inter-couche.

Cependant, il reste encore à élucider les mécanismes microscopiques associés à ces transferts

et tout particulièrement comprendre le rôle joué par l’environnement qui semble fortement

influencer les interactions inter-couches. Enfin, d’un point de vue plus pratique, ce travail

ouvre la voie au dopage photoinduit réversible et local du graphène.
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Conclusion et perspectives

En conclusion, au cours de ce projet de thèse, je me suis intéressé aussi bien aux propriétés

de base des briques élémentaires d’hétérostructures de van der Waals, à savoir le graphène

et les dichalcogénures de métaux de transition, qu’à leur couplage dans de telles structures.

Toutes les études ont été menées à l’aide de techniques exclusivement optiques qui présentent

l’avantage d’être non invasives, rapides et locales.

L’objectif de ce projet, qui consiste en la fabrication de dispositifs optoélectroniques à

base de HvdWs, composés de graphène et de dichalcogénures de métaux de transition, pour

étudier et contrôler électriquement les interactions inter-couche qui gouvernent la photophy-

sique de ces structures, est quasiment atteint. Les méthodes ainsi que les outils, à la fois de

fabrication et de caractérisation, sont maintenant disponibles pour réaliser la dernière étape :

incorporer les hétérostructures dans les transistors développés dans la première partie avec

l’espoir de pouvoir contrôler électriquement les transferts inter-couches.

Ce travail ouvre de très nombreuses perspectives de recherche, tout particulièrement

parce qu’il constitue les premières études de matériaux bidimensionnels autre que le gra-

phène, ainsi que de HvdWs dans le groupe. A court terme, de nombreuses questions concer-

nant l’étude des hétérostructure graphène/MoSe2 restent encore en suspend, principalement

au sujet des mécanismes microscopiques associés aux différents transferts et à l’influence de

l’environnement. Etienne Lorchat, qui reprend la suite de mon travail de thèse, réalise ac-

tuellement des expériences complémentaires pour tenter de répondre à ces questions. A plus

long terme, d’autres hétérostructures à base d’autres matériaux bidimensionnels et/ou plus

complexes peuvent être envisagées. Par exemple, utiliser des matériaux anisotrope, tels que le

rhénium disulfure (ReS2) ou le rhénium diséléniure (ReSe2) qui ont déjà été étudié par notre

groupe [Lorchat16], afin de sonder les transfert inter-couches en fonction de l’angle entre la

polarisation linéaire du laser et la direction d’anisotropie du matériaux. En pratique, de telles

structures permettraient notamment de créer des détecteurs sensibles à la polarisation de la

lumière.
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Chapter A

A brief introduction to group theory

In 1894, Pierre Curie noticed that the properties of matter are linked to its symmetries and

formulated a principle that bears his name [Curie94]. In particular, vibrational properties

are closely related to the molecule or crystal symmetries. The mathematical tool for studying

symmetries is group theory. The purpose of this section is to give a brief introduction to

group theory applied to molecules and crystals. No effort will be made to prove the state-

ments, however they will be illustrated with the simple example of the water molecule. Rig-

orous proofs can be found in Ref. [Dresselhaus07]. This section is largely inspired from the

pedestrian introduction to group theory in Ref. [Yu10] and from a lecture (in French) avail-

able on the internet [Symmo].

A.1 Symmetry operations

A.1.1 Molecular symmetry

The symmetry operations in a molecule with the Schönflies notation [Schoenflies91] are

E identity;

Cn/C
−1
n clockwise/anticlockwise rotation by 2π

n with n ∈ N;
σ reflection about a plane;

i inversion;

Sn/S
−1
n rotation Cn/C

−1
n followed by a reflection through a plane perpendicular to the

rotation axis.

For simplicity, the above operations are denoted rotations. To distinguish between conven-

tional rotations (Cn/C
−1
n ) from other operations, the former are referred to as proper rotations

and the latter to as improper rotations. The axis of the highest order proper rotation (i.e.,

highest n) is called the principal axis. Usually, σh denotes the reflection about a horizontal

plane perpendicular to the principal axis and σv or σd a reflection about a vertical plane in-

cluding the principal axis. Note that it is possible (e.g., for linear molecules) to find an infinity
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of rotations along the axis of the bond(s). In that case the symmetry operation is written C∞.

As an illustration, we will consider the molecule of water H2O. The structure of the

molecule is shown in Fig. A.1. The symmetry operations of this molecule are (see Fig. A.1)

E identity;

C2 rotation by π along the z axis;

σ1 reflection about the yz plane;

σ2 reflection about the xz plane.

E and σ1 leave the atoms of the molecules unchanged, while C2 and σ2 switch the two hydro-

gen atoms.

�"

�$
�"

�

�

�

Figure A.1 – Symmetry operations of a water molecule H2O. The red sphere represents the oxygen atom and
the two white spheres hydrogen atoms. The axis of the C2 is illustrated as a black dashed line. The reflection
plane of σ1 and σ2 are shown as a blue and green delimited plane, respectively.

A.1.2 Crystal symmetry

A crystal is built up by the repetitive translation of a unit cell. The repeating unit cells are

located at the points that form a lattice. Therefore, the symmetries of a crystal result from

the one of the lattice and from the unit cell. The symmetry operations of a crystal are the

translation of a lattice vector, the proper and improper rotations and the combination of a

rotation and a translation of a fractional lattice vector. Such operations are called screw axis

and glide plane. The former corresponds to a rotation Cn/C
−1
n plus a translation along the

same axis. The latter is a reflection σ plus a translation parallel to the plane of reflection.

A.2 Symmetry group

The symmetry operations of a molecule or a crystal form a group in the mathematical sense.

In the case of a molecule, this group is called point group because all the operations in the

group leave at least one point fixed and unchanged in space. In the case of a crystal, it is

called space group. Note that for both, we will use the Schönflies notation [Schoenflies91]
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since it is the most common notation used in spectroscopy.1

A.2.1 Point group

Let us take again the example of the water molecule. The water molecule belongs to the C2v

group which has four elements presented in Fig. A.1. Since the product of two elements from

the group belongs also to the group, one can create a multiplication table of dimension 4× 4.
The multiplication table of the C2v group is displayed in Tab. A.1.

E C2 σ1 σ2

E E C2 σ1 σ2

C2 C2 E σ2 σ1

σ1 σ1 σ2 E C2

σ2 σ2 σ1 C2 E

Table A.1 – Multiplication table of the C2v group.

A.2.2 Space group

The space group of a crystal is formed by translation symmetry operations, rotations (proper

or improper) operations, and screw-axis and glide-plane operations. If there is no screw-axis

or glide-plane operation, the space group is said to be symmorphic otherwise (i.e., there is at

least one screw axis or one glide plane) it is said to be non-symmorphic.

The translational symmetry operations are obtained by analyzing the symmetries of the

lattice. These operations form a subgroup of the space group, called the Bravais lattice. In

three dimensions, there are 14 Bravais lattices. The rotations, screw-axis and glide-plane op-

erations are determined by studying the symmetries of the unit cell. In the case of a symmor-

phic space group, these operations (i.e., the rotations) form a subgroup of the space group,

but not in the case of a non-symmorphic space group because of screw axis or glide plane.

However, one can define the factor group of the space group with respect to the subgroup of

translation operations. Such factor group has several important properties. First, it contains

all symmetry operations that occur in the unit cell of both symmorphic and non-symmorphic

space group. Second, it is isomorphic to a point group which is made of the rotational part of

all symmetry operations (including possibly screw axis and glide plane) of the space group.

This isomorphism makes point group analysis directly applicable to factor group. Therefore,

the factor group is usually referred as simply the point group of the crystal.

To sum up, the space groups are described by a Bravais lattice plus a point group. Note

that the point group is a subgroup of the space group only in the case of symmorphic space

1The standard notation, adopted by the International Tables For Crystallography, is the Hermann–Mauguin
notation. This notation is more accurate for space groups.
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groups. Hence, special care must be taken when analyzing the symmetries of the unit cell

to determine the point group of the crystal (one has always to keep in mind that the crystal

is infinite and that screw axis and glide plane are possible). Not all molecular point groups

are compatible with crytals. In three dimensions, there are only 32 compatible point groups

because the space filling condition can only be met for n = 1,2,3,4,6 in Cn/C
−1
n and Sn/S

−1
n

operations. These groups are called crystallographic point groups.2 The combination of 14

Bravais lattices and 32 crystallographic point groups gives rise to 230 space groups among

which 73 are symmorphic and 153 non-symmorphic. In spectroscopy, only the symmetries

of the unit cell matter.3 As a result, the determination of the crystallographic point group is

sufficient.

A.3 Representations and character tables

A.3.1 Definition of a representation

A convenient way to study symmetry groups is to use representations. A representation of a

group G (often denoted by Γ) is another group G’ (with its own group law) which elements

can be substituted to the one of group G without changing the multiplication table. The

dimension of G’ can be equal or smaller than the dimension of G.

Let us consider again the water molecule. The symmetry operations of the water molecule

can be represented by square 3 × 3 matrices in the three dimensional Euclidean space. This

set of matrices forms a representation Γ of the C2v point group. The dimension of this repre-

sentation is 3 because matrices are 3× 3. Of course, these matrices depend on the choice of a

basis. With the basis sketched in Fig. A.1, the four matrices representing the four symmetry

operation are diagonal

Γ(E) =














1 0 0

0 1 0

0 0 1














, Γ(C2) =














−1 0 0

0 −1 0
0 0 1














, Γ(σ1) =














−1 0 0
0 1 0

0 0 1














, Γ(σ2) =














1 0 0

0−1 0
0 0 1














. (A.1)

One can easily verify that these four matrices have the same multiplication table as the one

in Tab. A.1. As they are diagonal, the product of two of these matrices consists simply in

multiplying corresponding diagonal elements together. Consequently, the four square matri-

ces 1 × 1 made of the elements in position (1,1) in the four matrices in Eq. (A.1) is another

representation. Similarly, the matrices built up with the elements in position (2,2) and (3,3)

are two others representations. These three representations are of dimension 1 and are la-

beled Γ1, Γ2 and Γ3 respectively. In addition, there is a fourth one dimensional representation

2The crystallographic point groups are Oh, O, Th, Td , T , D4h, D4, D2d , C4h, C4v , C4, S4, D2h, D2, C2v , C2h, Cs ,
C2, Ci , C1, D6h, D6, D3h, C6v , C6h, C6, C3h, D3d , D3, S6, C3v , C3.

3This comes from the fact that the Bravais lattice gives rise to the reciprocal lattice. Thus all the physics is given
by the wavevector in the reciprocal space and the symmetries in the unit cell. See the application to phonons in
Section A.4.
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Γ4 which cannot be deduced from geometry arguments in the three dimensional Euclidean

space. These four one-dimensional representations are

E C2 σ1 σ2
Γ1 (1) (-1) (-1) (1)

Γ2 (1) (-1) (1) (-1)

Γ3 (1) (1) (1) (1)

Γ4 (1) (1) (-1) (-1)

One can easily verify that Γ4 is also compatible with the multiplication table A.1. These four

representations of dimension 1 are said to be irreducible. They are also said to be inequiva-

lent, since no change of basis on the set of matrices of one representation can generate the set

of matrices of another one. We will see later that there are not more than four inequivalent ir-

reducible representations for the C2v group. In contrast, representations of dimension 3, like

Γ, are reducible because they can be decomposed into irreducible representations. Note that

irreducible representations are not necessary of dimension 1 but have the smallest possible

dimension.

To decompose Γ into irreducible representations, we first recall the definition of the direct

sum of two matrices. For any arbitrary matrices A (of sizem×n) and B (of size p×q), the direct
sum of A and B, denoted by A⊕B, is a block diagonal matrix (of size (m+p)× (n+p)) defined
as

A⊕B =









(A) 0

0 (B)








. (A.2)

With this definition, we readily deduce that

Γ = Γ1 ⊕ Γ2 ⊕ Γ3. (A.3)

In other words, by an appropriate choice of basis the matrices of a representation can be all

written as diagonal block matrices. These block matrices being the matrices of an irreducible

representation.

A.3.2 Character and character tables

As already pointed out, the choice of matrices to form a representation (either reducible or

irreducible) is not unique. Indeed, on can make a change of basis and obtain a different set

of matrices that is also a representation. These two sets are said to be equivalent. However,

the trace of a matrix is independent of the choice of basis, thus it suggests that the set of

equivalent representations can be specified uniquely by their traces. These traces are called

characters and are usually denoted by χ. Obviously, the representation contains more infor-

mation than their characters. However, the determination of the irreducible representations

of a given group and of their characters is sufficient for many applications.

For a given symmetry group, because of the uniqueness of the characters of each irre-
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ducible representation, the characters can be tabulated in what is called a character table.
The character table of the C2v group is presented in Tab. A.2. The top row labels the sym-

metry operations, the left-hand column lists the irreducible representations and the inter-

sections give the characters χ of the operations for the different irreducible representations.

In the case the C2v group, all the irreducible representations are of dimension 1 so that the

characters are equal to the unique element of the 1 × 1 matrices determined above. These

characters are equal to +1 or −1 depending on whether the object is symmetric or antisym-

metric, respectively, under the symmetry operation. The right-hand side column provides the

basis functions. These functions are usually expressed in terms of space coordinates (x,y,z)

and can be used to generate the corresponding representation by applying the symmetry op-

erations on them. From the construction of the irreducible representations Γ1, Γ2 and Γ3, it

is obvious that these representations are generated by the basis functions x, y and z, respec-

tively. Clearly, the choice of basis functions is not unique an this is why another set of basis

functions is given in the character table A.2. Sometimes, the basis functions are expressed

in terms of the angular momentum component Rx, Ry and Rz around the x, y and z axis,

respectively. These components transform as pseudovectors. However, these basis functions

are only relevant for molecules and will not be displayed for crystals.

E C2 σ1 σ2 Basis functions

Γ1 1 −1 −1 1 x; xz

Γ2 1 −1 1 −1 y; yz

Γ3 1 1 1 1 z; x2; y2; z2

Γ4 1 1 −1 −1 xy

Table A.2 – Character table of the C2v group. Different basis functions are separated by a semicolon.

Let us take another example of character table. The ammonia molecule NH3 has 6 sym-

metry operations: the identity E, clockwise and anticlockwise rotation C3 and C
−1
3 , and reflec-

tions σ1, σ2 and σ3 about vertical planes. The symmetry group is C3v and the corresponding

character table is displayed in Tab. A.3.

E 2C3 3σv Basis functions

Γ1 1 1 1 z; x2 + y2; z2

Γ2 1 1 −1
Γ3 2 −1 0 (x,y); (x2 − y2,xy); (xz,yz)

Table A.3 – Character table of the C3v group. Different basis functions are separated by a semicolon.

First, we notice that the character table A.3 has only 3 columns while there are 6 symme-

try operations. The two C3 rotations and the three vertical reflections were grouped together

into classes in the mathematical sense. Elements in a class have the same character, therefore

they can be grouped in the character table. In practice, rotations (either clockwise or anti-

clockwise) by the same angle around equivalent axis belong to the same class and reflections

about equivalent planes also belong to the same class. The number written before the symme-
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try operation corresponds to the number of elements in the class. Note that in the C2v group,

there are four classes of one element. Second, we observe that there are three inequivalent ir-

reducible representations. In fact, the number of inequivalent irreducible representations
of a group is equal to the number of classes. Third, the Γ3 representation has characters dif-

ferent from ±1. This is due to the fact that the dimension of the representation is 2. Indeed,

the identity operation E can always be represented by the identity matrix whose trace is equal

to the dimension of the representation. So, the character of the identity χ(E) is always equal

to the dimension of the representation. Since, the dimension is 2, the basis functions have two

terms written in brackets. Furthermore, note that for a given representation, if the character

of a symmetry operation is different from ±1, it is not possible to deduce the symmetric or

antisymmetric nature of the operation. Finally, there is no basis function specified for the Γ2

representation because it is not relevant. In general, only the most interesting basis functions

are specified as we will see later.

Character tables are very useful to decompose a representation into irreducible represen-

tations. It can also be used to determine the direct product of irreducible representations.

Nevertheless, these products are tabulated in product tables on the internet (e.g., [Moleca] or

[Molecb]).

A.3.3 Setting up a character table

Setting up a character table is often not necessary since they can be found in books (e.g.

[Dresselhaus07]), articles or on the internet (e.g., [Moleca] or [Molecb]). However, if one

needs to build up a character table it is not necessary to find all the matrices of the irreducible

representations, as we did for C2v group. In most cases, to set up the character table, one can

use the following two orthogonality relations [Dresselhaus07]

∑

k

χi(Ck)
∗χj (Ck)Nk = hδij , (A.4)

∑

i

χi(Ck)
∗χi(Cl ) =

h

Nl
δkl , (A.5)

where ∗ denotes the complex conjugate, h is the order of the group (i.e., the number of ele-

ments in the group, here the number of symmetries), Nk is the number of elements of class

Ck , χi(Ck) is the character of class Ck in the Γi irreducible representation and δij is the Kro-

necker delta. Note that
∑

kNk = h. Equation (A.4) can be viewed as a orthogonality relation

on the rows of the character table and Eq. (A.5) on the columns. One can easily check that

these two relations are verified for the characters tables A.1 and A.3. As mentioned earlier,

the character of the identity χ(E) is always equal to the dimension of the representation, i.e.

to a positive integer. Applying Eq. (A.5) to the identity, we obtain

∑

i

χi(E)
2 = h. (A.6)
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In general, this equation is easy to solve. Note that the trivial identity representation, whose

characters are all unity, is always an irreducible representation of a symmetry group. Without

any effort, one row of the character table is determined. In general, this row is written first in

the table. With all these ingredients, most of the character tables can be set up.

A.3.4 Notation for the irreducible representations

Up to now, we have labeled the irreducible representations following an arbitrary notation

(Γ1, Γ2, . . . ) that does not give any information on the representation itself. To give infor-

mation on the symmetry of the irreducible representations, we will use the Mulliken nota-

tion [Mulliken55, Mulliken56], which is mostly used in spectroscopy. The meaning of the

symbols is presented in Tab. A.4. Note that the subscript 1 or 2 does not always have a

specific meaning, especially for representation of dimension higher than one. Even for one-

dimensional representation, in some groups, such as D2h, a subscript 3 is used. In that case,

these numbers are just used to distinguish different representations.

Symbols symmetry property with respect to comments

A/B sym/antisym principal axis Cn one-dimensional
representations

subscript 1/2 sym/antisym C2 perpendicular to
principal axis Cn or
vertical plane σv or

σd

subscript u/g sym/antisym inversion center i from German
‘gerade’/‘ungerade’

′/ ′′ sym/antisym horizontal plane σh

E two-dimensional
representations

from German
‘entartet’

(degenerate)

T three-dimensional
representations

F is also used in
spectroscopy

Table A.4 – Mulliken notation. Sym (antisym) means symmetric (antisymmetric).

Using this notation, the irreducible representations of the water molecule (see Tab. A.2)

are labeled Γ1 = B2, Γ2 = B1, Γ3 = A1, and Γ4 = A2. σ1 was chosen as the vertical plane for the

subscript 1/2.

A.4 Application to phonons in crystals

In this subsection, we will apply group theory to vibrations (phonons) in crystals. Lattice

vibrations are characterized by their displacement vectors in real space and by their wavevec-

tors q in reciprocal space. Hence, symmetry operations on both vectors need to be taken into

account in order to determine the symmetry of a phonon. The set of space group operations
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which transform q into itself (possibly plus a reciprocal lattice vector) forms the group of the

wavevector. Obviously, this group is a subgroup of the space group. The symmetry of the

vibration is then given by the symmetries of the displacement vectors in the unit cell for the

group of the wavevector. Clearly, the group of the wavevector for the Γ point (i.e., q = 0) is

always the same as the space group of the crystals. Physically, q ≈ 0 means a long wavelength

vibration and therefore nearly uniform displacements of identical atoms in the different unit

cells. In the following, we will mostly study phonons at the Γ-point, so that we only have

to analyze the symmetry of displacement vectors in the unit cell for the crystal point group.

However, in the case of graphene, we will also consider the irreducible representation of the

phonons at the edges of the Brillouin zone. The approach is identical except that the crystal

point group is replaced by the group of the wavevector.

To find the normal modes at the Γ-point, we need to find the representation of the to-

tal vibration Γvib. In general, this representation is reducible and can be decomposed into

irreducible representations. Each irreducible representation corresponds to a normal mode

and give its symmetry properties and degeneracy (dimensionality of the representation). If

the same irreducible representation appears many times in the decomposition, it means that

there are multiple modes with the same symmetry but with different energy (or frequency).

The representation of the total vibration Γvib and its irreducible decomposition can be

obtained using the following relation [Dresselhaus07]

Γvib = Γeq ⊗ Γvec, (A.7)

where Γvec is the representation of a vector (x,y,z) and Γeq is the equivalence representation.

This latter representation describes the invariance of the atoms under the symmetry opera-

tions of the group. We will not prove this relation but we can understand it. A vibration

involves the symmetry of a vector (Γvec) but only the vectors of atoms which are invariant

under the symmetry operations (Γeq) contribute to the character (otherwise it corresponds to

non-diagonal terms which do not contribute in the trace).

Γvec is obtained by summing the irreducible representations to which the x, y, and z basis

functions belongs. In the case of two- or three-dimensional representations, pairs such as

(x,y), are counted only once. Γeq is determined by finding the characters and then by reduc-

ing it into irreducible representations. For Γ-point phonons, these characters are equal to the

number of atoms in the unit cell that are invariant, modulo a lattice vector, under the symme-

try operations of the group. Note that the character of product operations in non-symmorphic

groups is always equal to 0.

To illustrate this procedure, we use the example of the water molecule. Note that we

will not determine the normal modes of the water molecule4 but instead treat it as it were a

hypothetical unit cell of a crystal with point group C2v . From the character table, x, y and z

4To determine the normal modes of a molecule, one needs to subtract the representations for the simple trans-
lations Γtrans and rotations Γrot of the molecule about its center of mass in Eq. (A.7).

A.4 Application to phonons in crystals 245



transform as B2, B1 and A1, respectively. Thus

Γvec = A1 ⊕B1 ⊕B2. (A.8)

Next, we have to the study the transformation of the three atoms under the symmetry oper-

ations to deduce the equivalence representation. As explained previously, we apply the four

symmetry operations on the molecule, and each site that is invariant under an operation add

a contribution +1 to the character of that operation. We obtain the character table A.5 for Γeq.

E C2 σ1 σ2

Γeq 3 1 3 1

all O all O

Table A.5 – Characters for Γeq for the water molecule within the C2v group. The atoms that remain un-
changed under each symmetry operation are indicated.

We need to reduce Γeq because it does not correspond to any of the irreducible represen-

tations of C2v . To do it, we can use the following systematic procedure using the character

table A.2. Let us assume that the reducible representation Γr is decomposed into irreducible

representations Γir
i

Γr =
⊕

i

niΓ
ir
i , (A.9)

where ni ∈ N. Therefore, the characters of Γr and Γir
i for a given class Ck are linked by χr(Ck) =

∑

i niχ
ir
i (Ck). By multiplying by the complex conjugate χir

i
∗
(Ck), summming on k and using

the orthogonality relation (A.4), we deduce that

ni =
1

h

∑

k

Nkχ
r(Ck)χ

ir
i
∗
(Ck). (A.10)

Applying this relation to Γeq, we have

nA1
=
1

4
[3× 1+1× 1+3× 1+1× 1] = 2;

nA2
=
1

4
[3× 1+1× 1+3× (−1) + 1× (−1)] = 0;

nB1
=
1

4
[3× 1+1× (−1) + 3× 1+1× (−1)] = 1;

nB2
=
1

4
[3× 1+1× (−1) + 3× (−1) + 1× 1] = 0.

Thus,

Γeq = 2A1 ⊕B1. (A.11)

Finally, we have to calculate the direct product of Eq. (A.7). We can use the character ta-

ble A.2 and multiply the rows and then decompose into irreducible representation following

the procedure described just below. Or, more easily, we can use the tabulated product tables
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for the different point groups (e.g., [Moleca] or [Molecb]). We conclude that

Γvib = (2A1 ⊕B1)⊗ (A1 ⊕B1 ⊕B2) = 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2. (A.12)

So, there are three normal modes (with different frequencies) with A1 symmetry (i.e., com-

pletely symmetric), one with A2, three with B1 and two with B2. In total, there are nine

modes which agree with three atoms in the unit cell. The atomic displacements associated

with these modes are the same as the ones of the monolayer SCTMDs depicted in Fig. 6.1.

Again, we recall that these modes are not the normal modes of the water molecule since one

needs to subtract the translational and rotational degrees of freedom.

A.5 Character tables

This section presents the character table of D6h, D3h and D3d point groups [Moleca, Molecb].

E 2C6 2C3 C2 3C ′2 3C ′′2 i 2S3 2S6 σh 3σd 3σv Basis functions

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1
B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (yz,zx)

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0 (x2 − y2,xy)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x,y)

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

Table A.6 – Character table of the D6h group with relevant basis functions.

E σh 2C3 2S3 3C2 3σv Basis functions

A′1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 1 1 −1 −1
E′ 2 2 −1 −1 0 0 (x,y), (x2 − y2,xy)
A′′1 1 −1 1 −1 1 −1
A′′2 1 −1 1 −1 −1 1 z

E′′ 2 −2 −1 1 0 0 (x,y), (xz,yz)

Table A.7 – Character table of the D3h group with relevant basis functions.
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E 2C3 3C2 i 2S6 3σd Basis functions

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1
Eg 2 −1 0 2 −1 0 (x2 − y2,xy) , (yz,zx)
A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 z

Eu 2 −1 0 −2 1 0 (x,y)

Table A.8 – Character table of the D3d group with relevant basis functions.
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Chapter B

Measurement of the laser spot area

In this appendix, we show an example of how tomeasure the laser spot areaAL. It is measured

by recording an optical image of the tightly focused laser spot on the surface of a substrate.

The camera is calibrated with a optical image of a sample with a known distance. The inten-

sity of the pixels are proportional to the intensity of the laser beam.1 Assuming a Gaussian

beam, we fit the intensity of the image with a two-dimensional Gaussian function

f (x,y) = Aexp

(

− (x − xo)
2 + (y − yo)2
2σ2

)

, (B.1)

where A is the amplitude of the Gaussian, (x0, y0) are the coordinates of the center and σ

is the standard deviation (we assumed that the standard deviation is the same for the two

dimensions). For an excitation laser at 2.33 eV and a ×100 NA=0.90 objective, we obtained

the results in Fig. B.1 and a standard deviation of σ = 138 nm. The surface spot area is given

by 2πσ2. Table B.1 summarizes the spot sizes and area used in this thesis.

σ (nm) A (µm2)

×100 NA = 0.90 138 0.12

×50 NA = 0.65 253 0.40

×40 NA = 0.60 310 0.60

Table B.1 – Measured spot size (σ standard deviation), and calculated area for the cw laser at 2.33 eV.

1Only for a sufficiently low intensity.
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Figure B.1 – (a) Optical image of the focused laser spot on the surface of a substrate. (b) Two-dimensional
fit of the optical image. Cuts along (c) x0 and (d) y0. The solid lines are the fit to the experimental data
(symbols).
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Chapter C

Optical interference effects

In this appendix, we will calculate the enhancement factor F defined in Chapter 4 Section 4.3.

We will restrict the calculation to the case of normal incident light. This simplification is valid

because, even if the NA of the objective lens is large, the majority of light is close to normal

incidence provided that the laser beam is Gaussian and the focused beam hits the sample

surface at the beam waist [Yoon09, Li12b]. The full calculation can be found in Ref. [Yoon09].

It only shows slight differences, that can be neglected here providing we are using objective

lens with NA=0.6 or NA=0.65.

The calculations are performed as follows: first we calculate the effective reflection and

transmission coefficients of one layer in two semi-infinite media, second we use this result to

recursively obtain the equivalent coefficients for a multilayered structure, third we compute

the absorptance of one layer in a multilayered system, and finally we calculate the enhance-

ment factor for the PL or Raman intensity.

C.1 Equivalent coefficients

C.1.1 One layer interference

Let us suppose that one layer of medium (1) with complex refractive index n1 is encapsulated

in two semi-infinite media (0) and (2) with complex refractive indexes n0 and n2, respectively

(see Fig.C.1(a)). Such geometry is similar to a Fabry-Pérot interferometer. The purpose of this

subsection is to calculate the equivalent reflection ρ and transmission τ coefficients such that

the problem is equivalent to Fig. C.1(b) where there is only one interface separating medium

(2) and (0).

We first assume that a monochromatic light is coming from the top (medium (2)) and

propagates along the z-axis, and that no light is coming from the bottom (medium (0)). In

addition, the light is linearly polarized along the x-axis. Thus, the expression of the electric

field is E0(z, t) = E exp
(

−i
(

ωt − 2πn
λ z

))

, where E is the amplitude of the field, ω and λ are the
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Figure C.1 – (a) Multiple-beam interference from a one layer of medium (1) and thickness d1 encapsulated in
semi-infinite media (0) and (2). E0 is the incident electric field and Er (Et) is the total reflected (transmitted)
electric field. (b) Equivalent representation of the problem where medium (1) is represented as an interface
separating media (2) and (0) with reflection ρ and transmission τ coefficients. Note that the beams are drawn
with an angle for better illustration but the calculations are done for normal incidence.

pulsation and wavelength of the light in vacuum, respectively, and n is the (complex) refrac-

tive index of the medium. For the sake of readability, in the following we will omit the (z, t)

dependence of electric fields. To determine the equivalent reflection and transmission coeffi-

cients, we have to compute the total reflected Er and transmitted Et electric fields. The total

reflected and transmitted electric fields are equal to the sum all the reflected and transmitted

fields, respectively. Thus using the notation in Fig. C.1(a), we have

Er =
+∞∑

q=0

Erq and Et =
+∞∑

q=0

Etq. (C.1)

The Fresnel reflection and transmission coefficients at (i)/(j) interface for a normal incident

beam that propagates from medium (i) to (j) are respectively [Hecht01]

rij =
ni −nj
ni +nj

and tij =
2ni
ni +nj

. (C.2)

It is obvious that rji = −rij and easy to verify that tij tji − rijrji = 1. These expressions are the

consequence of the optical reversibility principle at the (i)/(j) interface [Hecht01]. Providing

these coefficients, we deduce

Er1 = r21E0,

Er2 = t21e
iβ1r10e

iβ1t12E0 = t21r10t12e
i2β1E0,

Er3 = t21e
iβ1r10e

iβ1r12e
iβ1r10e

iβ1t12E0 = Er2(r12r10e
i2β1),

...

Erq = Er2(r12r10e
i2β1)q−2,
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where q ≥ 2 and β1 = 2πn1d1
λ is the phase difference due to the propagation in medium (1).

Since |n0| , |n1| , |n2| ≥ 1,
∣
∣
∣r12r10e

i2β1
∣
∣
∣ < 1 and the total reflected electric field is

Er = r21E0 + t21r10t12e
i2β1E0

+∞∑

q=0

(r12r10e
i2β1)q = r21E0 +

t21r10t12e
i2β1

1− r12r10ei2β1
E0 (C.3)

By applying the relationships r12 = −r21 and t12t21 − r12r21 = 1, the equivalent reflection coef-

ficient is

ρ20 =
Er
E0

=
r21 + r10e

i2β1

1+ r10r21e
i2β1

. (C.4)

Similarly for the transmitted electric field, we have

Et =
+∞∑

q=0

t21e
iβ1t10E0(r10r12e

i2β1)q =
t21t10e

iβ1

1+ r10r21e
i2β1

E0 and τ20 =
Et
E0

=
t21t10e

iβ1

1+ r10r21e
i2β1

(C.5)

We can follow a similar procedure to determine ρ02 and τ02, or more easily we can per-

mute 0 and 2 subscripts in Eqs. (C.4) and (C.5), respectively. In either case, we obtain

ρ02 =
r01 + r12e

i2β1

1+ r10r21e
i2β1

and τ02 =
t01t12e

iβ1

1+ r10r21e
i2β1

. (C.6)

It is important to note that τ02τ20 − ρ02ρ20 , 1. Also if d1 = 0, one recovers ρ02 = −ρ20 = r02,

τ02 = t02 and τ20 = t20.

C.1.2 Multilayer interference
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Figure C.2 – Schematic diagram of a layered structure. Media (1) and (j+1) are supposed to be semi-infinite.
ρj,1, τj,1, ρ1,j and τ1,j are the equivalent coefficients of the structure from (1) to (j). Using these coefficients,
the equivalence coefficients ρj+1,1, τj+1,1, ρ1,j+1 and τ1,j+1 can be computed.

For a multilayered structure, we can calculate the equivalent reflection and transmission

coefficients recursively. Let us consider the j th layer and assume that we have already com-

pute ρj,1, τj,1, ρ1,j and τ1,j (see Fig. C.2). We therefore recover a structure similar to the one

of the previous subsection (the 1st and j + 1th layers are supposed to be semi-infinite). Thus,
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we can deduce the equivalent coefficients

ρj+1,1 =
rj+1,j + ρj,1e

i2βj

1+ rj+1,jρj,1e
i2βj

and τj+1,1 =
tj+1,jτj,1e

iβj

1+ rj+1,jρj,1e
i2βj

, (C.7)

ρ1,j+1 =
ρ1,j + rj,j+1(τj,1τ1,j − ρj,1ρ1,j )ei2βj

1+ rj+1,jρj,1e
i2βj

and τ1,j+1 =
τ1,j tj,j+1e

iβj

1+ rj+1,jρj,1e
i2βj

. (C.8)

C.2 Absorptance in a multilayer system

The fraction of absorbed light in the layered structure plays an important role in its photo-

physics. This quantity will be needed for the study of the PL of SCTMDs in Chapter 7 and for

the investigation of the interlayer coupling in van der Waals heterostructures in Chapter 8.

When light is shined into a given medium, a fractionR of the density flux is reflected, a frac-

tion T is transmitted and a fraction A is absorbed. These three fractions are called [Hecht01]

reflectance, transmittance and absorptance, respectively. The conservation of energy im-

poses

R+ T +A = 1. (C.9)

Note that the absorption of a medium is taken into account in the imaginary part of the re-

fractive index (called the extinction coefficient). Equation (C.9) shows that A can be deduced

from the determination of R and T which are linked to the reflection and transmission coef-

ficients, respectively.

Let us consider a system composed of a stack of N layers sandwiched in two semi-infinite

media (t) and (b). Light is coming from medium (t) at normal incidence. The object of this

section is to calculate the absorptance of the whole N -layer structure and of each layer.

C.2.1 Absorptance of the whole multilayered structure

The absorptance of the whole structure can be easily computed using the equivalent coeffi-

cients ρtb, τtb, ρbt and τbt determined with Eqs. (C.7) and (C.8). Indeed, the reflectance and

transmittance of the multilayered structure are given by [Hecht01]

R =
∣
∣
∣ρtb

∣
∣
∣
2
and T = |τtbτbt | , (C.10)

and thus from Eq. (C.9)

A = 1−
∣
∣
∣ρtb

∣
∣
∣
2 − |τtbτbt | . (C.11)

C.2.2 Absorptance of one layer

The absorptance A of one layer encapsulated in two media can be notably enhanced com-

pared to the interference-free case. Indeed, multiple reflections at interfaces increase the
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Figure C.3 – (a) A N -layer structure sandwiched in two semi-infinite media (t) and (b). The incident light
(E0) is coming from the top. The reflectance, transmittance, and absorptance of the whole N -layer structure
are R, T , and A, respectively. The mth layer has an absorptance Am. (b) mth layer encapsulated in media
(t) and (b) with equivalent reflection and transmission coefficient. The incoming light undergoes multiple
reflections and interacts several times (Ez1,Ez2, ...) at a depth z. Note that the light has been drawn with an
angle for clarity but is considered to be normal to the plane in the calculations.

chances for the light to be absorbed. This enhancement depends on the surrounding media

and on the thickness of the layer. First of all, one should precisely define the interference-
free reference. There are two situations where no interference occurs in the layer: (i) the layer

is thicker than the penetration length of the electric field therefore there are no reflections,

and (ii) the sample conditions are such that there are no coherent reflections [Buckley77].

Obviously, only the first situation can be used as the interference-free reference. In this case,

the problem is equivalent to two semi-infinite media separated by one interface. In order

to compare to non-infinite media, one can define an interference-free absorptance per unit

length a, which only depends on these two media.

Let us consider the mth layer in the N -layer system in Fig. C.3(a), which has a thickness

dm and a refractive index nm = n′m + in′′m. The absorptance Am of the layer is affected by the

interference effects in the layer and in the neighboring layers. On the contrary by definition,

the interference-free absorptance per unit length am depends only on the mth layer and on

the top medium (t). The equivalent reflection and transmission coefficients for the top and

bottom interfaces are computed applying Eqs. (C.7) and (C.8). The problem is then equivalent

to Fig. C.3(b). To calculateAm, we assume that the layer can be divided into layers of thickness

δ such that the electric field E is uniformed within each layers. The light intensity absorbed

by one of these layers is given by |E|2 amδ. The total absorbed intensity |E0|2Am is equal to the

sum of all these absorbed intensities. If the thickness δ tends to zero, we have

Am =
1

|E0|2

dm∫

0

|Ez |2 amdz = am

dm∫

0

|Ez |2

|E0|2
dz

︸      ︷︷      ︸

Fab

, (C.12)
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where Ez is the electric field at a distance z ≤ dm and Fab is the enhancement factor which is

homogeneous to a length. Hence to obtainAm, we have to determine the electric field Ez (i.e.,

Fab) within the layer and am.

According to the notations in Fig. C.3(b), the different components of the electric field at

point z ≤ dm are

Ez1 = τtme
iβzE0,

Ez2 = τtme
iβmρmbe

i(βm−βz)E0 = τtmρmbe
i(2βm−βz)E0,

Ez3 = τtme
iβmρmbe

iβmρmte
iβzE0 = Ez1(ρmbρmte

i2βm),

Ez4 = τtme
iβmρmbe

iβmρmte
iβmρmbe

i(βm−βz)E0 = Ez2(ρmbρmte
i2βm),

...

Ez2q+1 = Ez1(ρmbρmte
i2βm)q,

Ez2q+2 = Ez2(ρmbρmte
i2βm)q,

where q ≥ 0, βz =
2πnmz
λ and βm = 2πnmdm

λ are the phase differences arising from propagation to

z and the whole layer, respectively, and λ is the wavelength in vacuum of the incident light.

The total electric field at z is

Ez =
+∞∑

q=0

(Ez1 +Ez2)(ρmbρmte
i2βm)q = τtm

eiβz + ρmbe
i(2βm−βz)

1− ρmbρmtei2βm
E0, (C.13)

owing to
∣
∣
∣ρmbρmte

i2βm
∣
∣
∣ < 1. Finally, the enhancement factor is equal to

Fab =

dm∫

0

∣
∣
∣
∣
∣
∣
τtm

eiβz + ρmbe
i(2βm−βz)

1− ρmbρmtei2βm

∣
∣
∣
∣
∣
∣

2

dz (C.14)

Note that if dm≫ λ
4πn′′m

(the attenuation length in themth layer), Fab =
|τtm |2λ
4πn′′m

and if dm≪ λ
4πn′′m

,

Fab ∝ dm.

Since am depends only on the top medium (t), we have to consider that the mth layer is

encapsulated in medium (t) to determine am. Since the top medium is air, for usual experi-

ments, this configuration is usually referred to as free-standing. Let A0
m be the correspond-

ing absorptance and F0ab the enhancement factor. For any thickness dm, we have the relation

am =A0
m/F

0
ab. If dm→ +∞, from Eqs. (C.11) and (C.14) we deduce

am =
4πn′′m
λ

1− |rtm|2

|ttm|2
=
4πn′′m
λ









n′tn
′
m +n′′t n

′′
m

n′t
2 +n′′t

2








. (C.15)

Note that am is proportional to the attenuation coefficient 4πn′′m/λ of the mth layer. In the

case where the top medium is air (nt = 1), am = 4πn′mn
′′
m/λ and we recover the results of
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Ref. [Buckley77] for free-standing thin films.

We now have all the ingredients to calculate the absorptance of the different layers in the

multilayered structure. One can of course check that the sum of all layer absorptance give the

total absorptance of the structure calculated directly with Eq. (C.11). It is noteworthy to men-

tion that, in practice, am is not directly measurable quantity whereas A0
m is. Consequently,

the free-standing configuration can also be used as a reference

Am =
Fab
F0ab
A0
m (C.16)

where Fab/F
0
ab can be viewed as the enhancement factor compared to the free-standing case.

C.3 Photoluminescence and Raman enhancement factor

As alreadymentioned, PL [Buscema14] and Raman [Yoon09, Li12b] intensities from one layer

in the N -layer structure can be drastically affected by optical interference. Although these

two processes are fundamentally different, they are changed in the same way by optical inter-

ference. As for the absorptance, we can define an enhancement factor Fx and an interference-

free intensity per unit length ix such that the PL or Raman intensity of one layer is

Ix = Fxix, (C.17)

where x stands for PL or Raman. Note that contrary to the absorptance, we will not give

an expression for ix. Here, the idea is to deduce ix from the measurement of Ix in order to

quantitatively compare experimental results obtain under different conditions (e.g., graphene

or TMDs on various substrates or with different number of layers). Therefore, we need to

calculate the enhancement factor Fx.

Let us consider the mth layer in the N -layer system which has a thickness dm and a refrac-

tive index nm = n′m + in′′m (see Fig. C.3). The enhancement factor contains two contributions:

(i) the excitation light Eex at one point within the layer and (ii) the emitted (or scattered) light

Eem coming from the same point, which are both modified by the multiple reflections at the

boundaries (see Fig. C.4). The enhancement factor is then given by

Fx(λex,λem) =

dm∫

0

∣
∣
∣
∣
∣

Eex
E0

(λex)×
Eem
Ec

(λem)

∣
∣
∣
∣
∣

2

dz, (C.18)

where E0 is the incident light, Ec the light created at a point z within the layer and λex (λem)

the wavelength in vacuum of the incident light E0 (created light Ec). At point z ≤ dm within

the layer, the excitation electric field Eex is given by Eq. (C.13). The emitted electric field Eem
is computed following exactly the same method as Ez for the absorptance (see Section C.2.2).

One would notice that Eex and Eem have almost the same expression but at different wave-
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Figure C.4 – mth layer encapsulated in media (t) and (b) with equivalent reflection and transmission coef-
ficients (a) The incident light E0 with a wavelength λex undergoes multiple reflections and interacts several
times (Eex1,Eex2, ...) at a depth z. (b) The total emitted light Eem = Eem1 + Eem2 + ... coming from a point at
depth z also undergoes multiple reflections. Note that the light has been drawn with an angle for clarity but
the calculations are done for normal incidence.

lengths. Finally the enhancement factor is

Fx(λex,λem) =

dm∫

0

∣
∣
∣
∣
∣
∣

(

τtm
eiβz + ρmbe

i(2βm−βz)

1− ρmbρmtei2βm

)

ex

×
(

τmt
eiβz + ρmbe

i(2βm−βz)

1− ρmbρmtei2βm

)

em

∣
∣
∣
∣
∣
∣

2

dz, (C.19)

where βz =
2πnmz
λ and βm = 2πnmdm

λ are the phase differences arising from propagation to z

and the whole layer, respectively, and ρ and τ are the equivalent reflection and transmission

coefficients. ( )ex and ( )em indicate the wavelength (λex or λem) at which all quantities are

calculated.
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Chapter D

Optical separation of strain and

doping

In this appendix, we show how strain and doping can be separated using the frequency cor-

relations of the G- and 2D-mode feature. This method was proposed by Lee et al. [Lee12c]
and is based on a vector decomposition model in the ΩG-Ω2D-plane.

R

es

ed

(∆ΩG,	∆Ω2D)

ΩG

Ω2D

0

dopi
ng

st
ra
in

ε

n

sy

sx

dx
dy

Figure D.1 – Schematic of the vector decomposition of the strain and doping component in the ωG-ω2D-
plane. The point (∆ωG,∆ω2D) defines a vector R which can be projected on the vectors es and ed which form
the coordinate system of strain and doping.

The aim is to be able to attribute every measured pair of ΩG and Ω2D to a value of strain

ǫ and doping n. Let R be a a vector of Raman shifts (∆ΩG,∆Ω2D) in the ωG-ω2D-plane (see

blue vector in Fig. D.1). R can be expressed in a coordinate system with es and ed as unity

basis vectors, where es is a vector along the strain shift rate

es =









sx
sy








,

�Ω2D

�ΩG

∣
∣
∣
∣
∣
strain

=
sy
sx

(D.1)
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and ed is a vector along the doping shift rate

ed =









dx
dy








,

�Ω2D

�ΩG

∣
∣
∣
∣
∣
doping

=
dy
dx
. (D.2)

The vector R in the new coordinate system is then

R = n









dx
dy








+ ǫ









sx
sy








=









n

ǫ








, (D.3)

where n and ǫ are the projections on the doping and the strain axis in the new coordinate

system. Solving Eq. (D.3) with respect to n and ǫ yields

n = Cd
∆ΩGsy −∆Ω2Dsx

sydx − sxdy
,

ǫ = Cs
∆Ω2Ddx −∆ΩGdy

sydx − sxdy
,

(D.4)

where Cd and Cs are the doping and strain coefficients, respectively. The coordinates are the

basis vectors can be expressed in terms of the corresponding slopes

sx = cos

[

arctan

(

�Ω2D

�ΩG

∣
∣
∣
∣
∣
strain

)]

,

sy = sin

[

arctan

(

�Ω2D

�ΩG

∣
∣
∣
∣
∣
strain

)]

,

dx = cos

[

arctan

(

�Ω2D

�ΩG

∣
∣
∣
∣
∣
doping

)]

,

dy = sin

[

arctan

(

�Ω2D

�ΩG

∣
∣
∣
∣
∣
doping

)]

.

(D.5)

Finally, using Eqs. (D.4) and (D.5) and the value of the coefficients and the slopes displayed

in Tab. 5.1, one can accurately estimate the strain and doping for any pair of ΩG and Ω2D.

However, these method is only valid up to a certain doping level as shown in the main text.
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Chapter E

Finite Linear Chain Model

Let us consider a chain of N identical masses µ (numbered from 1 to N ) connected to each

other by identical springs of force constant κ (see Fig. E.1). We assume that the two extreme

masses are free, i.e., they are only connected to one spring.

k µ µ µ µ µ µ µ 

x1 x2 xn-1 xn xn+1 xN-1 xN 

k k k 

Figure E.1 – A linear chain of N identical masses µ (numbered from 1 to N ) connected to each other by
identical springs of force constant κ. The two extreme masses (1 and N ) are free. xn is the displacement of
the nth mass with respect to the equilibrium position.

If xn is the displacement of the nth mass with respect to the equilibrium position, the

equations of motion are

if n = 1,
d2x1
dt2

= −Ω2
0(x1 − x2), (E.1)

if n =N,
d2xN
dt2

= −Ω2
0(xN − xN−1, ) (E.2)

else,
d2xn
dt2

= −Ω2
0(2xn − xn+1 − xn−1), (E.3)

where ω0 =
√
κ
µ . These equation form a system of N coupled differential equations that can

be rewritten using matrix

d2X

dt2
= −Ω2

0MX, (E.4)
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withM =




































1 −1 0 0 ... 0 0

−1 2 −1 0 ... 0 0

0 −1 2 −1 ... 0 0

0 0 −1 2 ... 0 0

... ... ... ... ...−1 0

... ... ... ... ... 2 −1
0 0 ... ... ...−1 1




































(N,N )

and X =




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











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
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

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
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











.

To find the normal modes of this chain, one has to search for sinusoidal solutions. For this

kind of solution, Eq. (E.4) becomes

MX =

(

Ω

Ω0

)2

X. (E.5)

Therefore, the normal modes are obtained by diagonalizing matrix M . Solving this problem

leads to the eigenvalues

λp = 2

[

1− cos
(

(p − 1)π
N

)]

, with p ∈ ~1,N�, (E.6)

and eigenvectors

if p = 1, xp,n =
1√
N

(E.7)

if p ∈ ~2,N�, xp,n =
√

2

N
cos

(

(p − 1)(2n− 1)π
2N

)

. (E.8)

The frequency Ωp of each normal mode is linked to the eigenvalue λp by Ωp = Ω0

√

λp. The

displacement xp,j of the n
th mass for each normal mode corresponds to the components of the

eigenvector Xp. As these components are defined up to a constant multiplier, we choose to

norm the eigenvectors, i.e., ∀p,Xp ·Xp =
∑N
j=1 x

2
p,j = 1. Thus, the eigenvectors form a orthonor-

mal basis of the solutions.
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Chapter F

Normal mode displacements for

N -layer MoTe2

Figures F.1 to F.6 show the normal mode displacements associated with the LSM, iX, iMX,

LBM, oX, and oMX modes in N -layer MoTe2.
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E'E''

EuEg
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E'E'' E'E''

EuEg Eg Eu Eg

Figure F.1 – Calculated normal displacements associated with the LSM in N = 1 to N = 6 layers MoTe2.
The size of the arrows is proportional to the amplitude of εki,j of the normal displacement obtained from the
solution of Eq. (6.1). The frequencies of the modes increase from left to right. The irreductible representation
of each normal mode is indicated. The modes that are Raman-active in our geometry appear in black. The
other modes appear in grey.
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Figure F.2 – Same as Fig. F.1 for the iX modes in N = 1 to N = 6 layers MoTe2.
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Figure F.3 – Same as Fig. F.1 for the iMX modes in N = 1 to N = 6 layers MoTe2.
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Figure F.4 – Same as Fig. F.1 for the LBM in N = 1 to N = 6 layers MoTe2.
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Figure F.5 – Same as Fig. F.1 for the oX modes in N = 1 to N = 6 layers MoTe2.
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Figure F.6 – Same as Fig. F.1 for the oMX modes in N = 1 to N = 6 layers MoTe2.
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Guillaume FROEHLICHER

Optical spectroscopy of two-dimensional materials:
graphene, transition metal dichalcogenides

and van der Waals heterostructures

Résumé
Au cours de ce projet, nous avons utilisé la microspectroscopie Raman et de photolumi-
nescence pour étudier des matériaux bidimensionnels (graphène et dichalcogénures de
métaux de transition) et des hétérostructures de van der Waals. Tout d’abord, à l’aide de
transistors de graphène munis d’une grille électrochimique, nous montrons que la spec-
troscopie Raman est un outil extrêmement performant pour caractériser précisément des
échantillons de graphène. Puis, nous explorons l’évolution des propriétés physiques de
N couches de dichalcogénures de métaux de transition semi-conducteurs, en particulier
de ditellurure de molybdène (MoTe2) et de diséléniure de molybdène (MoSe2). Dans ces
structures lamellaires, nous observons la séparation de Davydov des phonons optiques au
point Γ, que nous décrivons à l’aide d’un modèle de chaîne linéaire. Enfin, nous présen-
tons une étude toute optique du transfert de charge et d’énergie dans des hétérostructures
de van der Waals constituées de monocouches de graphène et de MoSe2. Ce travail de
thèse met en évidence la riche photophysique de ces matériaux atomiquement fins et leur
potentiel en vue de la réalisation de nouveaux dispositifs optoélectroniques.

Mots-clés : spectroscopie Raman, spectroscopie de photoluminescence, matériaux bidimension-
nels, graphène, dichalcogénures de métaux de transition, hétérostructures de van der Waals, cou-
plage électron-phonon, séparation de Davydov, excitons, annihilation exciton-exciton, transfert de
charge, transfert d’énergie.

Abstract
In this project, we have used micro-Raman and micro-photoluminescence spectroscopy
to study two-dimensional materials (graphene and transition metal dichalcogenides) and
van der Waals heterostructures. First, using electrochemically-gated graphene transistors,
we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-
zations of graphene samples. Then, we investigate the evolution of the physical properties
of N -layer semiconducting transition metal dichalcogenides, in particular molybdenum
ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, the
Davydov splitting of zone-center optical phonons is observed and remarkably well de-
scribed by a ‘textbook’ force constant model. We then describe an all-optical study of
interlayer charge and energy transfer in van der Waals heterostructures made of graphene
andMoSe2 monolayers. This work sheds light on the very rich photophysics of these atom-
ically thin two-dimensional materials and on their potential in view of optoelectronic ap-
plications.

Keywords: Raman spectroscopy, photoluminescence spectroscopy, two-dimensional materials,
graphene, transition metal dichalcogenides, van der Waals heterostrucutures, electron-phonon
coupling, Davydov splitting, excitons, exciton-exciton annihilation, charge transfer, energy trans-
fer.
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