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4.1 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using IMFs data . . . . . . 4.2 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using Raw data . . . . . . 4.3 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using EMD and Raw data 4.4 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEC condition . . . . 4.5 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEO condition . . . . 4.6 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FTEC condition . . . . 4.7 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FTEO condition . . . . 4.8 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEC condition . . . . 4.9 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEO condition . . . . 4.10 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FTEC condition . . . . 4.11 F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FTEO condition . . . . Resumé L'analyse de la stabilité posturale chez l'homme a fait l'objet, ces dernières années, d'un intéret grandissant au sein de la communauté scientifique. Le système postural permet de maintenir la stabilité du corps humain en posture statique ou dynamique. Cette capacité à maintenir cette stabilité devient critique dans le cas des sujets Parkinsoniens. La maladie de Parkinson a en effet une forte incidence sur la stabilité posturale. Un moyen efficace pour évaluer l'équilibre postural consiste à analyser les déplacements dans le plan horizontal du centre de pression du corps humain en posture orthostatique ; les trajectoires mesurées dans la direction medio-latérale (ML) et la direction Antéro-postérieure (AP) sont appelées signaux stabilométriques. Dans cette thèse, nous visons le développement de méthodes efficaces pour l'analyse de l'équilibre en posture orthostatique sous différentes conditions liées, l'entrée visuelle (yeux ouverts/yeux fermés), la position des pieds (pieds joints/pieds écartés), et en considérant d'autres facteurs comme le genre et l'age. Dans ce cadre, nous proposons, tout d'abord, une méthode exploitant la variante EEMD (Ensemble Empirical Mode Decomposition) de la décomposition en modes empiriques (EMD) et l'analyse de la diffusion du stabilogramme. Dans le contexte du diagnostic de la maladie de Parkinson, la discrimination entre sujets sains et sujets Parkinsoniens est très importante, de même que l'évaluation du stade de la maladie pour les sujets atteints. Dans ce cadre, deux méthodes sont proposées. La première consiste tout d'abord en une extraction et sélection de caractéristiques temporelles et spectrales, à partir des signaux stabilométriques bruts ou des modes de fonctions intrinsèques dérivés de la décomposition EEMD. Des méthodes standards de type KNN, CART, RF et SVM sont ensuite appliquées pour reconnaitre les sujets Parkinsoniens.

La deuxième méthode proposée, est une approche de classification qui repose sur l'emploi des modèls de Markov cachée (HMMs) construits en utilisant les signaux stabilométriques bruts dans les directions ML, AP et ML/AP. Enfin, une dernière méthode est proposée pour la segmentation automatique des signaux stabilométriques sous différentes conditions (entrée visuelle, position des pieds). Pour ce faire, un modèle de régression régi par une chaine de Markov cachée (HMMR) est utilisé pour détecter automatiquement les variations des structures des signaux stabilométriques entre ces conditions. Les résultats obtenus montrent clairement la supériorité des performances des méthodes proposées par rapport aux approches standards, aussi bien, en termes d'analyse de l'équilibre postural que de diagnostic de sujets Parkinsoniens. 

GENERAL INTRODUCTION

In recent years, human balance control analysis has received an increasing interest from the research community. This is mainly due to the necessity of understanding the complex mechanisms of the human postural system, which contribute to the development of efficient solutions for unstable postures in terms of orientation and equilibrium and to help decrease the high rate of falls among elderly and patients. The human postural system maintains the stability of the body both in the static posture (quiet standing) and during locomotion by considering external perturbations. It successfully keeps the human body in the upright position through the interactions among the central nervous system, the musculoskeletal system, and three sensory systems : vestibular, visual and proprioception systems.

The ability to maintain postural stability becomes a difficult task with aging and when suffering from some pathologies that affect the human stability such as Parkinson's disease (PD), cerebellar disease and vestibular deficits. Stability disorders of the elderly may lead to sudden falls with important orthopedic complications. Parkinson's disease is one of the most common degenerative movement disorders which is characterized by the progressive loss of specific neurons in the brain. It has a strong impact on postural stability during quiet standing situations, and during locomotion. This disease is the second most common neuro-degenerative disease in France, after Alzheimer's disease.

According to the national institute of health and medical research, between 100,000 and 120,000 people are affected in France, and about 8000 new cases occur each year. The work of this thesis aims to develop efficient approaches in order to :

(1) Analyze the postural stability under different visual and feet position conditions, and between gender and age groups. In other words, the goal is to analyze the effect of the aforementioned conditions on the human stability using stabilometric signals. This is achieved using the Ensemble Empirical Mode Decomposition (EEMD) method for non-linear signals decomposition. This method does not use any a priori, and allows to decompose the original signal into a finite number of intrinsic mode functions (IMFs) based on frequency bands decomposition. Compared to classical approaches used in the literature, the EEMD method allows better analysis of the stabilometric signals. The analysis of each IMF, provides further information in depth about the human postural behaviors. The proposed method is compared favorably to standard stabilometric analysis that is often used to assess the human stability.

(2) Discriminate healthy from PD subjects. This discrimination is very important for diagnosing Parkinson's disease, as well as for evaluating the patient's disease level. Two approaches are proposed to address this problem. The first approach consists of an EMD-based temporal and spectral feature extraction/selection from the stabilometric signals. The EMD method allows to decompose the stabilometric signal into several components based on the frequency bands. Standard classification techniques were used to discriminate healthy from Parkinsonian subjects. This approach guarantees a better caracterisation of the stabilometric signal through the analysis of the features resulting from the different generated IMFs. The second approach to discriminate healthy from PD subjects is based on a Hidden Markov model (HMM). The raw stabilometric data are used directly as input for the HMM model. The HMM model is an efficient tool to analyze temporal and sequential data. Compared to classical approaches, the proposed approach allows accurate discrimination between healthy and PD subjects based on the sequential structure of their stabilometric signals.

(3) Segment the stabilometric signals recorded under four different conditions related to vision and feet position. A Hidden Markov Model Regression (HMMR)-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. The problem of condition recognition is formulated as one of a joint segmentation of multidimensional time series, in which each segment is associated with one condition. The proposed approach performs in an unsupervised context, which avoids data labeling phase, that is often time-consuming especially in the case of massive databases. This manuscript is organized as follows :

Chapter 2 provides an exhaustive study about human postural stability. The postural system and its components in the human body are first presented. The second part of the chapter describes the primary tools commonly used to record and evaluate human postural sway in quiet standing. In the third part, the most relevant studies in the literature are presented and analyzed to highlight their performances and limitations.

Chapter 3 presents a new approach to analyze the human stability during orthostatic posture. The protocol used for measuring the stabilometric signals is first described, and then, the EMD method and its extension Ensemble EMD (EEMD) are presented. The principal of the Stabilogram-diffusion analysis technique, and the EMD-based proposed approach for a better assessment of the human posture, are then presented. Finally, the performances of the proposed approach are presented and discussed.

Chapter 4 proposes a novel approach to distinguish healthy subjects from PD ones using an EMD-based temporal and spectral feature extraction. The first part of this chapter describes the supervised classification methods used in this study. The proposed framework for discriminating between healthy and PD subjects using stabilometric data is then presented. Finally, the last part of the chapter presents the experimental results and discussions of this study.

Chapter 5 presents another classification approach to discriminate healthy subjects from PD subjects using the Hidden Markov model (HMM) method. The raw stabilometric data in ML, AP, and ML/AP directions, are used directly as model's input. The first part of this chapter describes the hidden Markov models used in this study. The proposed approach for classifying healthy and PD subjects is then detailed in the second part. Finally, the performances of this approach are presented and discussed in the last part of the chapter. 

Introduction

The tonic postural system guarantees the equilibrium of the human body in static and dynamic standing situations, as well as during locomotion activities. We can say that such a system is in a balance state when the sum of all forces and all moments acting on this system is null. In case of static posture, static balance is achieved when two conditions are considered : first, the weight applied to the center of mass and the reaction forces of support applied to the center of pressure of the contact surface are equal and opposite ; second, the center of gravity and the center of pressure are aligned on the same vertical line.

In the present chapter, an exhaustive study of human postural stability is presented. The first part describes the human postural system and its components. The primary tools to record and evaluate human sways in static posture are then presented. In the last part, the most relevant studies in the literature are shown and analyzed by highlighting the performances and limitations of the proposed techniques.

The human postural system 2.2.1 Definition

The tonic postural system is considered as a complex organization which involves several internal systems and has multiple sources of information. This system controls the human body sways and provides the human body equilibrium whatever the external environment status.

In case of standing in stable position with or without external disturbances, it is impossible for the human body to remain perfectly immobile [START_REF] Bouisset | Is body balance more perturbed by respiration in seating than in standing posture ?[END_REF]. This fact is due to several reasons mainly coming from neuromuscular adjustments [START_REF] De Luca | Control scheme governing concurrently active human motor units during voluntary contractions[END_REF], respiration [START_REF] Bouisset | Is body balance more perturbed by respiration in seating than in standing posture ?[END_REF], insufficient sensitivity of sensory receptors [3], or from the blood circulation [4].

The interaction between three principal systems including sensory, motor and central nervous systems insures the stability of the human body. The postural system uses information sourced from visual, vestibular and proprioceptive sensors [5] to estimate the center of mass position in the three directions of space. The variation of the center of Chapter 2 mass position is captured by these sensors which send information to the central nervous system (vestibular nuceli, the spine, and the cerebellum). The central nervous system sends commands to the skeletal muscles and to all other body muscles (motor system) to provide again the postural equilibrium.

The feet are the base of support of the human body which plays the main role in the balance control [6]. The size, strength and position of the feet affect strongly the human postural stability. The visual input helps also the postural system to maintain its stability and provides external information about the human body environment [START_REF] Redfern | Visual influences on balance[END_REF].

Aging population suffers from stability problems more than young population due to the decrease in some internal function abilities or due to the appearance of some specific diseases, such as the Parkinsons disease (PD) [START_REF] Abrahamová | Age-related changes of human balance during quiet stance[END_REF][START_REF] Freitas | Age-related changes in human postural control of prolonged standing[END_REF][START_REF] Blaszczyk | Effect of ageing and vision on limb load asymmetry during quiet stance[END_REF][START_REF] Granacher | Age-related effects on postural control under multi-task conditions[END_REF][START_REF] Callisaya | Ageing and gait variability, a population-based study of older people[END_REF]. In contrast, internal and external factors can affect the functions of the postural system, and therefore, the human body stability.

The main components of the postural system

The tonic postural system has two types of entries. The input related to external information and those related to interior information. The sensory input provides the observed information, the body orientation, as well as the external environment status.

The postural system takes into account the information related to the position of each body segment with respect to others as well as the whole body position with respect to its environment. In the following subsections, the components of the tonic postural system are presented. (1) the cephalic sensors including the ocular sensor and vestibular system ; (2) the primary sensory organ of equilibrium (the foot) ; (3) the central regulation system and motor response.

Ocular sensor

The ocular sensor provides two different types of information. The first type is purely visual information, when the retinal picture is transmitted to the central nervous system.

The second type of information is related to the tension of the external oculomotor muscles (Figure 2.1).
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The retina provides information about the position and the movement of the body in space. This is achieved thanks to the retina sensory receptors which transmits foveal and peripheral visual information. The foveal vision allows the identification of objects and provides the main directions, i.e. the vertical and horizontal ones. The peripheral vision gives information about the situation of the subject with respect to its environment. This type of vision is involved in the dynamic equilibrium [START_REF] Amblard | Rôle des informations fovéales et périphériques dans le maintien de léquilibre postural chez lhomme[END_REF]. 

Vestibular system

The vestibular system is one from the essential sensory systems that provide and maintain the human body stability. It is located in the inner ear as a 3D motion detector (Figure 2.2). The inner ear consists of two distinguished parts, the first one has a neurosensory canal for the hearing function. The second part is the vestibule which is the responsible of the equilibrium function. The vestibule has three semicircular canals positioned at right angles to each other in the superior, posterior and horizontal positions.

These canals are very sensitive during body movements and detect any displacement in the three planes of the space. The first canal detects the displacements on the horizontal plane, the second one detects the displacements on the frontal plane, and the last one, the displacements on the sagittal plane. These canals are attached to the utricle which communicates with the saccule. These two organs controls the positions of the head, in the horizontal and vertical planes respectively [5,[START_REF] Angelaki | Vestibular system : the many facets of a multimodal sense[END_REF][START_REF] Gaerlan | The role of visual, vestibular, and somatosensory systems in postural balance[END_REF].

The three canals are filled with a fluid called endolymph. When the head rotates, the endolymphatic fluid within the concerned canal lags behind because of inertia, and exerts pressure that deflects the cupula in the opposite direction. This deflection stimulates the hair cells by bending their stereocilia in the opposite direction. The receptor then sends impulses to the brain about movement from the specific canal that is stimulated. When the vestibular organs on both sides of the head are functioning properly, they send symmetrical impulses to the brain (Figure 2.2). 

The base of support : the foot

The foot is an important organ for the postural stability process, which is also the contact area between the human body and the ground. It informs the postural system on the geometry of the body support zone on the ground and also on the characteristics of the reaction force acting on that zone. The foot is equipped with multiple sensory receptors at different levels : cutaneous, joint, tendon and muscle. The proprioception of the foot is about four times higher than that of the leg. By transmitting the ground reaction force to the body, the foot accurately adjusts the posture of the human body. Indeed, plantar soles continuously indicate the differential pressure between the two plantar vaults. In consequence, the feet generates its own internal forces and adapts its compliance [START_REF] Gaerlan | The role of visual, vestibular, and somatosensory systems in postural balance[END_REF]. The feet position on the ground and their symmetrical arches determine the support polygon. This polygon is constituted by the surface of the foot on the ground. Normally, the projection of the body center of gravity passes through the center of the polygon in the static posture. In contrast, a projection appearing outside the polygon, induces a balance problem.

Central regulation system

Central regulation is based on the actions of superiors centers. The nerve impulses lead to cortical and subcortical structures. Their integrative action allows control of all components of the tonic postural system through intermediary reflexes. The control of stabilizing look is possible thanks to vestibulo-ocular and visual-oculomotor reflexes. The vestibulo-spinal and vestibular-ocular-cervical reflexes allow the overall control and the maintenance of posture by their action on the myotatic reflex [START_REF] Horak | Postural orientation and equilibrium : what do we need to know about neural control of balance to prevent falls ?[END_REF]. Chapter 2

Motor response

The whole skeleton-Musculature provides a chain of articulated segments. The form of these segments, the functional distribution of muscles, and the degrees of freedom of the various joints especially in the lower limbs for the standing posture cause effective movements to maintain their position and thus body stability [START_REF] Serra-A Ñó | Postural control mechanisms in healthy adults in sitting and standing positions[END_REF]. The muscles are the main effectors of corporal movement. The adaptation of postural disturbances involves the following muscles : At the level of the posterior compartment of the leg innervated by the tibial nerve, the soleus is a primary agonist in standing position. The muscles of the anterior compartment innervated by the deep peroneal nerve are involved in the dorsal flexion of the ankle with the main agonist anterior tibialis. Among the muscles acting on the knee flexion, there is the semitendinosus, which has as primary antagonist, the right thigh and the vast quadriceps (medial and lateral).

According to the directions in which postural adjustments are required, the osteoarticular biomechanics and muscular system use specific strategies such as, ankle strategy, hip strategy and stepping strategy.

The primary strategies to maintain stability

Generally, the postural control system uses three types of movement strategies (Figure 2.4) [START_REF] Horak | Postural orientation and equilibrium : what do we need to know about neural control of balance to prevent falls ?[END_REF]. The first strategy considers the whole body to be an inverted pendulum that moves around the ankle to maintain the equilibrium during quiet stance (ankle strategy). This strategy is used for small disturbances to maintain the body center of mass (COM) within the feet polygon.

The second strategy uses fast movements when the body exerts torque at the hip in order to generate an appropriate center of mass position to avoid falling (hips strategy). This strategy is used for rapid external disturbances and for small support surfaces.

The third strategy consists of moving the feet (stepping) to bring back the human body to a stable position (stepping strategy) [START_REF] Mok | Hip strategy for balance control in quiet standing is reduced in people with low back pain[END_REF][START_REF] Colobert | Force-plate based computation of ankle and hip strategies from double-inverted pendulum model[END_REF][START_REF] Kanamiya | Ankle and hip balance control strategies with transitions[END_REF]. It is used when the person has a high risk of falling. In the literature, there are several methods to measure the human body displacements in quiet standing. Three categories of methods can be identified :

1. Video-based methods [START_REF] Goffredo | A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography[END_REF][START_REF] Günther | All leg joints contribute to quiet human stance : a mechanical analysis[END_REF],

3. Inertial sensors-based methods [START_REF] Mancini | Isway : a sensitive, valid and reliable measure of postural control[END_REF]. 2. Force platform-based methods [START_REF] Lafond | Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people[END_REF][START_REF] Prieto | Measures of postural steadiness : differences between healthy young and elderly adults[END_REF][START_REF] Maki | Aging and postural control[END_REF],

The first category includes video-based methods allowing to model the human body as one or several articulated segments ; this modeling refers to segmental postural stability. [START_REF] Lafond | Comparison of three methods to estimate the center of mass during balance assessment[END_REF][START_REF] Winter | Stiffness control of balance in quiet standing[END_REF][START_REF] Hasan | Simultaneous measurement of body center of pressure and center of gravity during upright stance. part i : Methods[END_REF]. These methods are not easy to use because they require specific environment with video cameras and sensors that must be placed on the human body. The second category uses accelerometers for the human postural assessment. The third category, based on the use of force platforms, includes three methods that are detailed bellow.

Video-based methods

The motion analysis video-based system was used by Collins et al. to analyze the influence of added noise under feet of subjects (Fig. 2.6) [START_REF] Priplata | Vibrating insoles and balance control in elderly people[END_REF]. This system consists of cameras and a reflective marker placed on the shoulder of the subject. The camera records the human body displacements through the marker displacements [START_REF] Priplata | Vibrating insoles and balance control in elderly people[END_REF].

Another system, called active markers system, uses powered markers sending an infrared signal which is captured by sensor units. This technology requires small powered boxes that should be attached to the subject.

The video-based methods can provide qualitative and quantitative information about postural stability, using markers or sensors placed on the subject body ( Fig. 2.7), and can also provide high level of accuracy and reliability during the recording of the postural sway in a quiet stance [START_REF] Goffredo | A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography[END_REF][START_REF] Günther | All leg joints contribute to quiet human stance : a mechanical analysis[END_REF]. 

Body-worn inertial sensors-based methods

Accelerometers are used as an alternative technique to assess the posture stability in both static and dynamic conditions. This technology is widely used due to the low-cost of items compared to other systems such as videos systems [START_REF] Mancini | Isway : a sensitive, valid and reliable measure of postural control[END_REF]. Accelerometers can be placed on the posterior trunk to estimate the center of mass (COM) displacements or on specific positions to assess joint movements. There are other techniques to estimate the human body movements such as Electrogoniometers that have been mainly used to analyze changes in segmental postural position by measuring the joint angular displacements. Three different graph types can be used to visualize the center of pressure displacements :

The first method used in the force platform-based techniques consists of integrating twice the acceleration of the COM to estimate its displacements [START_REF] King | Extracting gravity line displacement from stabilographic recordings[END_REF][START_REF] Shimba | An estimation of center of gravity from force platform data[END_REF]. The second method is based on the modeling of the human body as an inverted pendulum [START_REF] Winter | Stiffness control of balance in quiet standing[END_REF][START_REF] Karlsson | Analysis of postural sway strategies using an inverted pendulum model and force plate data[END_REF][START_REF] Levin | An iterative model for estimation of the trajectory of center of gravity from bilateral reactive force measurements in standing sway[END_REF]. The third method is the frequency method [START_REF] Rougier | Backward and forward leaning postures modelled by an fbm framework[END_REF][START_REF] Breniere | A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place[END_REF][START_REF] Caron | Estimating the centre of gravity of the body on the basis of the centre of pressure in standing posture[END_REF][START_REF] Benda | Biomechanical relationship between center of gravity and center of pressure during standing[END_REF]. Its principle is that the center of pressure is interpreted as a noisy signal of the center of mass. It uses the low-frequency filter, defined by the relationship between the center of pressure and the center of mass in the frequency domain, to calculate the center of mass displacements. This method has some problems with inertia moments to define the filter parameters. The COP position can be easily estimated using a force platform and it is widely used to characterize the human balance in quiet standing [START_REF] Lafond | Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people[END_REF][START_REF] Prieto | Measures of postural steadiness : differences between healthy young and elderly adults[END_REF][START_REF] Maki | Aging and postural control[END_REF]. Therefore, to determine the position of the center of pressure in static posture and to analyze its fluctuations versus time, stabilometry is widely used as a measurement technique for postural assessment. This quantification is performed using a force platform for determining the coordinates of the center of pressure exerted by the person on the surface of this platform (Figure

2.8).

The center of pressure is the application point of the reaction forces generated by the person on the surface of the force platform. This platform allows to measure six components : three reaction forces F x , F y and F z and three moments M x , M y and M z from which the anteroposterior (AP) and mediolateral (ML) displacements of the center of pressure will be calculated. The coordinates of the center of pressure can be calculated from the following equations :

X = AP = - M y F z Y = M L = - M x F z (2.1)
Figure 2.9 shows the COP position trajectory according to AP axis (x) and ML axis (y).

Indeed, it is possible to extract from this trajectory spatial and temporal parameters to characterize the balance, such as the mean position, the mean velocity, etc. In figure 2.11, a spectral representation of the center of pressure in both AP and ML directions is illustrated. In static position, the frequency band of the center of pressure in both directions is between 0 and 5 Hz. From this representation, the frequency parameters can be extracted such as mean and median frequencies, etc. For feet position, postural tests are recorded either in a bipedal stance (see figure 2.12 (a), (b), (c), and (d)) or in a monopedal stance (see figure 2.12 (e)). In both stances, there are many types of feet displacements such as : feet together, feet apart, quiet stance using one foot, semi tandem, full tandem, etc. (Figure 2.12). The feet either form an angle of 15 to 30 degrees or they are positioned in parallel. The inter-feet distance is usually between 5 to 15 cm with an angle of 15 to 30 degrees.

Protocols for COP displacements recordings

For visual input, the postural tests are recorded with or/and without visual information.

The suppression of visual input occurs by closing the eyes to compare the human stability with and without these information.

On the other hand, most of time, the postural tests are recorded in static or/and in dynamic conditions. This is accomplished to analyze and compare the postural stability under perturbations such as arm, leg and platform perturbations [START_REF] Yang | Postural dynamics in the standing human[END_REF][START_REF] Winter | Overall principle of lower limb support during stance phase of gait[END_REF][START_REF] Horak | Postural adaptation for altered environments, tasks, and intentions[END_REF][START_REF] Mcilroy | Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance[END_REF][START_REF] Moore | Human automatic postural responses : responses to horizontal perturbations of stance in multiple directions[END_REF]. In addition, the postural tests are measured under different test durations. The test duration commonly used varies between 20 and 60 s.

Clinical stabilometry standardization

As mentioned in the previous section, there are a lot of experimental protocols used in different postural conditions. In This study shows that 30 s of recording time sampled at 100 Hz is acceptable for static human postural stability analysis. In [START_REF] Mcilroy | Preferred placement of the feet during quiet stance : development of a standardized foot placement for balance testing[END_REF] , the authors studied the preferred feet position of 262 subjects in order to establish a standardized stance position for static standing analysis. All subjects were asked to stand quietly with a comfortable and preferred feet position. The width and angle of orientation between feet are calculated and recorded for each subject. As shown in figure 2.15, there is a high degree of variability in preferred stand width and foot angle. The authors identify the standard width and angle by computing the averages of Chapter 2

Figure 2.14: Normalized parameters values vs. testing time [START_REF] Scoppa | Clinical stabilometry standardization : basic definitions-acquisition interval-sampling frequency[END_REF] width and angle parameters for all subjects. These standard values are 0.17 m and 14 degrees for width and angle respectively. 

Postural stability analysis techniques

Over the last decade, human balance control strategies have received increasing interest from the research community. This is mainly due to the necessity of understanding the complex mechanisms of the human postural system, which will contribute to the development of efficient solutions for unstable postures in terms of orientation and equilibrium [START_REF] Horak | Postural orientation and equilibrium : what do we need to know about neural control of balance to prevent falls ?[END_REF], and will help decrease the high rate of falls among elderly and patients Many classical parameters can be extracted from the stabilometric signals (for each direction alone ML/AP and also for planar representation) to characterize the human static stability. These parameters can be grouped into two categories [START_REF] Priplata | Vibrating insoles and balance control in elderly people[END_REF][START_REF] Chiari | Stabilometric parameters are affected by anthropometry and foot placement[END_REF][START_REF] Nejc | Sensitivity of body sway parameters during quiet standing to manipulation of support surface size[END_REF][START_REF] Ramdani | On the use of sample entropy to analyze human postural sway data[END_REF].

The first category includes parameters taking into account the geometric and temporal characteristics of the center of pressure such as :

1. The mean position : It is given by the following formula :

M P = 1 n n i=1 x i (2.2)
where x is the stabilometric signal and n is the samples number. This parameter was used in studies [START_REF] Caron | Effects of ventilation on body sway during human standing[END_REF][START_REF] Brauer | A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers[END_REF][START_REF] Baloh | Static and dynamic posturography in patients with vestibular and cerebellar lesions[END_REF][START_REF] Rocchi | Feature selection of stabilometric parameters based on principal component analysis[END_REF] 2. The standard deviation which is expressed as follows :

SD = 1 n n i=1 (x i -x) 2 (2.3)
3. The root mean square (RMS) of CoP displacements can be expressed as follows :

RM S = 1 n n i=1 x 2 i (2.4)
4. The covered distance (total excursions TOTEX) is the length of the path. It is given by :

T OT EX = (x AP i+1 -x AP i ) 2 + (x M L i+1 -x M L i ) 2 (2.5)
where x AP and x M L represent the CoP displacements respectively in AP and ML directions.

5. The covered distance in ML or AP directions (T OT EX AP or T OT EX M L ) : It is equal to the sum of the distance between two consecutive points in the AP or ML signals :

T OT EX AP = |x AP i+1 -x AP i | (2.6) T OT EX M L = |x M L i+1 -x M L i | (2.7)
6. The mean velocities in ML/AP, AP and ML directions. Their expressions are as follows :

M V ELO = T OT EX T (2.8) M V ELO AP = T OT EX AP T (2.9) M V ELO M L = T OT EX M L T (2.10)
where T represents the time interval of CoP displacements.

7. The range : It represents the maximum distance between any two points of CoP.

It can be calculated for AP, ML directions and for planar (AP, ML).

Range = max[x] -min[x]; (2.11) 
8. The 95% confidence circle area AREA-CC : It represents the area of the circle of planar displacements. It contains, in the case of normal distribution, 95% of the CoP points. It is given by the following formula :

AREA -CC = π × (M DIST + 1.645 × ST D P ) (2.12)
Where ST D P = √ RDIST 2 -M DIST 2 is the standard deviation for planar CoP. Moreover, numerous spectral parameters extracted from the stabilometric signals are used to characterize the postural stability, such as, total power frequency, mean frequency, centroid frequency, median frequency, the frequency which includes 95% of the total power, etc.

In addition, based on the nonlinear structure of the stabilometric signals, many nonlinear methods of signal processing and models have been used to better analyze human stability, such as inverted pendulum model, auto-regressive model, Fourier transformations, Wavelet analysis and Empirical mode decomposition [START_REF] Amoud | Univariate and bivariate empirical mode decomposition for postural stability analysis[END_REF][START_REF] Amoud | Fractal time series analysis of postural stability in elderly and control subjects[END_REF][START_REF] Tanaka | The effects of visual input on postural control mechanisms : an analysis of center-of-pressure trajectories using the auto-regressive model[END_REF].

In [START_REF] Collins | The effects of visual input on open-loop and closed-loop postural control mechanisms[END_REF][START_REF]Open-loop and closed-loop control of posture : a random-walk analysis of center-of-pressure trajectories[END_REF][START_REF]Random walking during quiet standing[END_REF], the authors have shown that the postural sway in quiet standing can be modeled as a correlated random walk. This is achieved by calculating the mean square displacements of the postural sway over many time intervals. The plot of the mean square CoP displacements versus time intervals is called the stabilogram-diffusion plot.

It shows two regions corresponding to positive and negative correlated random walks.

In addition, it illustrates that the postural control system adopts both open-loop and closed-loop control mechanisms. The open-loop mechanism is generally related to the short-term intervals when the postural system shows a positive correlation between past and future increments. Conversely, the closed-loop mechanism is related to the long-term intervals when the postural system shows a negative correlation between past and future increments.

In [START_REF] Carneiro | Analysis of static postural balance using a 3d electromagnetic system[END_REF], the authors have analyzed the postural system using a 3D electromagnetic system. The tests were conducted with open/closed eyes and stable/unstable surfaces. The results proved significant differences between stable and unstable surfaces. However, no significant differences were observed between open and closed eyes on the stable surface.

In For each subject and for each condition, the stabilometric signals were modeled as an auto-regressive (AR) model (Figure 2.16). This is achieved for each direction (ML and AP) separately, and the order of the AR models was practically fixed at M=20. The new measures (The percentage contributions and geometrical moment of AR coefficients)

were obtained from the estimation of the AR models parameters. They showed statistically significant differences between open eyes and closed eyes conditions [START_REF] Tanaka | The effects of visual input on postural control mechanisms : an analysis of center-of-pressure trajectories using the auto-regressive model[END_REF]. The quiet standing under eyes-open condition showed higher correlation between present and past COP displacements compared to the eyes-closed condition. In contrast, no significant differences between vision conditions were found for conventional classical parameters (the total length of the COP path, mean velocity). The results showed that the AR parameters are useful to assess postural stability during static posture for visual conditions.

Recently, in [START_REF] Blaszczyk | The use of force-plate posturography in the assessment of postural instability[END_REF], the authors have tried to assess human postural stability away from the standard COP characteristics used in the literature. A large dataset consisting of 168 subjects has been used. These subjects were divided into three groups : young, elderly and PD subjects. They were asked to perform quiet standing under eyes open and eyes closed conditions. To assess the postural stability under visual input, age, and pathology factors, three new sensitive parameters were extracted from the stabilometric signals including the sway directional index (DI), the sway ratio (SR), and the sway vector (SV). These measures were computed using the COP path length and its directional components in ML and AP directions. These new parameters are very sensitive with visual input, age, and PD disease. They showed significant differences between young Chapter 2 and elderly groups, young and PD groups, elderly and PD groups and between eyes open and eyes closed conditions. Specifically, the SV may be recommended as a useful parameter to assess postural control in quiet standing.

Some authors [START_REF] Priplata | Vibrating insoles and balance control in elderly people[END_REF][START_REF] Gravelle | Noise-enhanced balance control in older adults[END_REF] studied the positive impact of an added-noise under the feet using a vibrating insoles, on the balance control in elderly people. This noise stimulates and enhances the functions of the somatosensory system. This technique was also applied on subjects with specific diseases such as : diabetes and stroke. The results showed significant reductions in eight sway parameters, leading to improve the overall balance control.

Other studies explored the risk of fall in elderly population using CoP displacements measured during quiet standing [START_REF] Gabell | Falls in the healthy elderly : predisposing causes[END_REF][START_REF] Overstall | Falls in the elderly related to postural imbalance[END_REF][START_REF] Prudham | Factors associated with falls in the elderly : a community study[END_REF]. Other studies tried to isolate each physiological system (visual, vestibular, and proprioceptive systems) to describe their specific role on balance control. Several modalities are classically tested to explore human balance :

with and without visual input [START_REF] Khasnis | Romberg's test[END_REF], with mechanic perturbations, such as arm movement [START_REF] Winter | Human balance and posture control during standing and walking[END_REF][START_REF] Cordo | Properties of postural adjustments associated with rapid arm movements[END_REF][START_REF] Frank | Coordination of posture and movement[END_REF], leg movement [START_REF] Yang | Postural dynamics in the standing human[END_REF][START_REF] Winter | Overall principle of lower limb support during stance phase of gait[END_REF], or platform perturbations [START_REF] Horak | Postural adaptation for altered environments, tasks, and intentions[END_REF][START_REF] Mcilroy | Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance[END_REF][START_REF] Moore | Human automatic postural responses : responses to horizontal perturbations of stance in multiple directions[END_REF].

PD is one of the incurable diseases that strongly affects human balance control. Tremors, muscle rigidity, and postural and balance problems often occur with PD and inevitably lead to falls and injuries [START_REF] Orawiec | Assessment of postural instability in patients with parkinsons disease[END_REF]. Many researchers have investigated the postural stability of PD subjects in static (quiet standing) and dynamic (gait) postures [81-84] [85-89].

Several data mining techniques were used to extract information from PD data and provide better discrimination between control and PD subjects [START_REF] Palmerini | Feature selection for accelerometer-based posture analysis in parkinson's disease[END_REF][START_REF] Brewer | Feature selection for classification based on fine motor signs of parkinson's disease[END_REF].

In [START_REF] Palmerini | Feature selection for accelerometer-based posture analysis in parkinson's disease[END_REF], Palmerini et al. used accelerometer-based data recorded from control and PD subjects to analyze posture in a quiet stance. First, 175 temporal and spectral features were computed, and feature selection with classification techniques were then used to select the best parameters that discriminate between control and PD subjects. Two parameters were selected to clearly separate the control subjects from the PD subjects.

Conclusion

In this chapter, we presented various techniques and methods for recording, evaluating, and analyzing postural stability in quiet standing. The standard parameters commonly 

Introduction

In this chapter, we propose a new approach for the assessment of the human balance control. One effective way to assess the human stability is to analyze the postural sway during upright standing. This can be performed by quantifying the center of pressure (CoP) displacements of the human body during quiet standing. The proposed approach is based on the decomposition of the CoP displacements signal using the Empirical Mode Decomposition method (EMD). This approach is motivated by the fact that the EMD provides an effective time-frequency analysis of non-stationary signals.

Stabilogram-diffusion analysis technique is applied to analyze the mean square displacement versus time interval (diffusion curve) of each Intrinsic Mode Function (IMF) signal.

Each diffusion curve is modeled as a second order system and provides representative features, such as, the gain parameter. Then, the proposed method compares favorably to conventional stabilometric analysis based on CoP excursion calculation.

The chapter is organized as follows : Section 3.2 describes the protocol used for measuring the stabilometric signals. Section 3.3 presents the EMD method and its extension Ensemble EMD (EEMD). Section 3.4 describes the principal of the Stabilogram-diffusion analysis technique. Section 3.5 describes the EMD-based proposed approach to extract new sensitive parameters for a better analysis and assessment of the human posture. In section 3.6, the performances of the proposed approach are presented and discussed.

Stabilometric data acquisition protocol

The experiments were conducted at the Mondor Hospital (Créteil-France). The resulting dataset is composed of stabilometric signals of 28 healthy subjects : 14 subjects are young (24 ± 4 years), and 14 subjects are elderly (65 ± 10 years) (Table : 1). The The stabilometric signal were measured in four conditions : -FAEO : Feet are Apart with Eyes Open.

-FTEC : Feet are placed closed Together with Eyes Closed.

-FTEO : Feet are placed closed Together with Eyes Open.

For each condition, three trials were performed to measure the stabilometric signals in system (Cortex, Motion Analysis, Motion Analysis Corporation, Santa Rosa, CA, USA).

The COP trajectories were determined in antero-posterior (AP) and mediolateral (ML)

directions. The investigator traced the outline of the feet of each subject in the two tested foot positions (see details below) on an A3-sheet, which was laid centrally and fixed on the force plate in order to standardize foot positions throughout the experiment. For each subject, the order of the experimental conditions was randomized. For each condition, subjects were asked to stand as steady as possible with the arms hanging alongside the body [START_REF] Zok | Should the instructions issued to the subject in traditional static posturography be standardised ?[END_REF]. With feet apart, subject feet were placed with an inter-calcaneus distance of 16 cm and a foot angle of 17 degrees [START_REF] Mcilroy | Preferred placement of the feet during quiet stance : development of a standardized foot placement for balance testing[END_REF]. With feet together, heels and big toes were in contact. With eyes open, subjects were asked to focus on a point at eye height on a wall at a distance of 3 meters across. With eyes closed, they were blindfolded, starting in the same head position as with eyes open. Each condition began with a 5 to 10 seconds period of familiarization. Each data collection started when subjects stood quietly and trials of 60 seconds were then recorded [START_REF] Carpenter | Sampling duration effects on centre of pressure summary measures[END_REF]. 60 seconds rest periods were provided to subjects, between two consecutive trials. Data were analyzed off-line with the Matlab software (The MathWork R, Inc., Natrick, MA, USA).

Empirical Mode Decomposition and its variant Ensemble Empirical Mode decomposition

Empirical mode decomposition (EMD) was introduced in order to offer a flexible employment method to facilitate reading, exploring, and then extracting information from the data, usually for a given application. In the following, we describe the basics of this method, the sifting process, the stopping criteria and various applications domains. 

EMD basics

x = K k=1 IM F k + r K (3.1)
where K is the number of IMFs, IM F k the k th mode and r K the residual signal.

An IMF (Intrinsic Mode Function) is an amplitude and frequency modulated signal that has the following characteristics :

1. The number of local minima and the number of local maxima are equal or differ at most by one.
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2. The mean of the upper envelope and the lower envelope is approximately null everywhere.

EMD is an iterative method in which the first component (IMF) is extracted from the original signal, the second component from the residual signal, and so on.

Sifting process

The sifting process allows extracting, from the original signal, elementary signals (IMFs)

starting from the highest frequency to the lowest one. The final component represents the residual of the signal [START_REF] Niang | A spectral approach for sifting process in empirical mode decomposition[END_REF]. Mathematically, the interpolation of maxima points and the minima points of a signal gives the upper envelope e + and the lower envelope e respectively using cubic-spline interpolation (Figure 3.5). The mean of these envelopes l k,j is subtracted from the local signal h k,j . These steps are repeated with the proto-mode function h k,j+1 until the generation of an IMF (Algorithm 1) [START_REF] Niang | A spectral approach for sifting process in empirical mode decomposition[END_REF]. Once the first IMF (Mode) is computed, it is subtracted from the original signal and the sifting process is repeated again with the residual signal r k+1 to extract the other IMFs.

Algorithm 1 Sifting process to extract the k th IMF

1: set j ← 0, h k,j+1 ← r k Initialization 2: repeat (Loop) 3: set j ← j + 1 4:
find extrema of h k,j (minima and maxima) 5: compute upper envelope e + by interpolation between maxima 6: compute lower envelope e -by interpolation between minima 7: compute proto-local mean l k,j ← (e

+ + e -)/2 8: update proto-local function h k,j+1 ← h k,j -l k,j 9: until h k,j+1 is an IMF. (End Loop) 10: set IM F k+1 ← h k,j+1 , and r k+1 ← r k -IM F k+1 (Result)

Stopping criteria

Different approaches have been proposed to determine when the sifting process should to stopped. In general, in all these approaches, two objectives are considered : 2. The sifting process should not be iterated too many times to avoid denaturing the information within an IMF.

Mainly focused on the first objective, the approach proposed in [START_REF] Huang | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] consists of stopping the sifting process when :

-All maxima are strictly positive and all minima are strictly negative.

-The SC criterion must be less than a threshold , in the range of 0.2-0.3 for a signal of 1024 points. The SC criterion can be expressed as follows :

SC = n i=1 ( h k,j+1 (i) -h k,j (i) h k,j (i) ) 2 < (3.2)
where n is the number of sample in the signal h k,j+1 ;

A new formulation of the SC criterion was proposed in [START_REF] Huang | Introduction to the hilbert-huang transform and its related mathematical problems[END_REF][START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF] : The EMD method has various extensions such as Bivariate EMD (BEMD) for images analysis and bivariate signals, and Multiple EMD (MEMD) for multivariate analysis.

SC = n i=1 (h k,j+1 (i) -h k,j (i)) 2 n i=1 (h k,j (i)) 2 < (3.3)
The MEMD method allows to decompose several signals together at the same time.

Moreover, the Ensemble EMD (EEMD) method was proposed to improve the signal decomposition used in the classical EMD method.

Ensemble Empirical Model Decomposition

An extension of the EMD method, called Ensemble Empirical Mode Decomposition (EEMD) method [START_REF] Wu | Ensemble empirical mode decomposition : a noiseassisted data analysis method[END_REF] was introduced by Huang to enhance the performances obtained with the classical EMD method, which suffers from the mode-mixing problem that appears in some IMFs. The mode-mixing appears when an IMF consists of two different elementary signals, or when an elementary signal appears in two different IMFs.

The underlying idea in the EEMD method is to generate a finite number of white noise signals that have small standard deviation. Classical EMD should be applied to a set of signals ; each trial consists of the original signal plus a white noise signal. Finally, the intrinsic mode functions are computed by averaging the IMFs resulting from all trials (Algorithm 2). This methodology avoids the mixing-mode problems and provides a good separation between modes that ensures isolation of each component having specific scales. This method allows obtaining a better decomposition of the stabilometric signals that ensures sensitive separation of frequencies in intrinsic mode functions. Consequently, this separation provides a better analysis of the diffusion curves than the standard EMD method.

Algorithm 2 EEMD algorithm 1: Set L : The number of the white noise signals and x : the initial signal 2: Loop l = 1 to L 3: Generate w (l) : a white Gaussian noise signal of length n 4: Set X (l) = x + w (l) (the initial signal + a white noise signal) 5: Decompose X (l) using classical EMD

6: X (l) = K k=1 IM F (l) k + r (l) K 7: End Loop 8: Set IM F k = 1 L L l=1 IM F (l)
k where k = 1, .., K

9: Result x = K k=1 IM F k + r K

Stabilogram-diffusion analysis 3.4.1 Brownian motion

Brownian motion is a special case from the family of Fractional Brownian Motion (FBM) that was introduced by Mandelbrot [107] [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF]. FBM is a non-stationary Gaussian process characterized by the Hurst parameter H. This parameter has a real value between 0 and 1 that specifies the nature of correlations in a given process (positive or negative correlations). Note that the classical Brownian motion has a Hurst parameter (H) equal to 0.5, which means that past and future increments are not correlated. For H < 0.5, past and future increments of a stochastic process are negatively correlated. On the other hand, for H > 0.5, past and future increments are positively correlated, and consequently, the stochastic process is positively correlated.

Mean square displacement

The Hurst parameter can be calculated using the Mandelbrot equation (eq. 3.4) that is generalized from the relation given in equation (eq. 3.5). This is achieved by computing the mean square displacement of the stochastic process over a time interval (eq. 3.6) :

< δx 2 > τ = τ 2H (3.4) < δx 2 > τ = 2 * D * τ (3.5) < δx 2 > τ = 1 n n i=1 (x i+τ -x i ) 2 (3.6)
Where < δx 2 > τ represents the mean square displacement for a signal x of n samples over a time interval τ ; D is the diffusion coefficient, and H, the Hurst parameter.

In [START_REF] Collins | The effects of visual input on open-loop and closed-loop postural control mechanisms[END_REF][START_REF]Open-loop and closed-loop control of posture : a random-walk analysis of center-of-pressure trajectories[END_REF] small time interval where the Hurst parameter is greater than 0.5 [START_REF] Collins | The effects of visual input on open-loop and closed-loop postural control mechanisms[END_REF][START_REF]Open-loop and closed-loop control of posture : a random-walk analysis of center-of-pressure trajectories[END_REF]. The second region corresponds to the remaining time interval where the Hurst parameter is less than 0.5. Consequently, the postural control system consists of two processes, a positive correlated process (the past and future increments are positively correlated in the quiet standing), and a negative correlated process, where the past and future increments are negatively correlated for long time interval values.

EMD-based approach for posture analysis

The block diagram presented in figure 3. 

Diffusion curves modeling

The diffusion curves of the obtained IMFs correspond to different forms of the classical diffusion curve proposed by Collins (Figure 3.7). These curves can be modeled as a system of second order response. First, the values of the mean square displacement increase and then converge to a specific value (Figure 3.12). For this purpose, a second order response equation is used to model these curves, such as : Similarly, an increase in ML CoP excursion and mean velocity can be observed under the eyes closed condition. These results show an interaction between feet condition and each gender. No effect of age on CoP excursion and mean velocity was found. 

< δx 2 > t = G * (1 - e -z.wn.t √ 1 -z 2 . sin(w n . 1 -z 2 .t + arcsin( 1 -z 2 ))) (3.7)

Gain analysis

The mean and standard deviation of the gain G as a function of w n is shown in Figure 3.11 with respect to the four conditions FAEC, FAEO, FTEC and FTEO. It is clearly observed that the gain parameter related to feet together condition (FTEC and FTEO)

shows higher values with respect to those under apart condition (FAEC and FAEO).

The gain parameter can be seen as a stability indicator of the human body. Indeed, the gain parameter gives a significant and fair image of the fluctuation of the center of pressure. When the the gain value is small, the stability of the human body is high, and when the value of the gain is relatively high, the stability is weak.

Table 3.5 provides a representation of the gain parameters (Gain3, Gain4, Gain5, Gain6 and Gain7) related to the diffusion curves of the IMF3, IMF4, IMF5, IMF6 and IMF7.

The gain values for all subjects who participated in this study are shown in terms of means and standard deviations. To facilitate the analysis, the results are analyzed using four groups : young-women, young-men, elderly-women and elderly-men. For each group, the results are expressed in AP and ML directions based on feet and eyes conditions. It can be noted that the feet position affects more the stability in ML direction rather than in AP direction as the variability of the gain values between feet apart and feet together condition is more important in ML than in AP direction. These results show clearly that, the human body during quiet standing is more stable with eyes-open rather than eyes-closed condition, and is more stable under feet apart condition rather than under feet together condition. Moreover, the highest differences between gain values is shown between young subjects under feet apart and elderly subjects under feet together and particularly with regards to the gains of the fifth, sixth and seventh IMFs. These relatively high differences are mainly related to two conditions that affect the stability of the human body, that are the age and the feet position. For example, the mean value of Gain6 for young-men under feet apart and eyes closed is equal to 0.77 whereas it is equal to 8.74 for elderly-men under feet together and closed eyes, both in AP direction (Table 3.5). In total, 15 statistical tests in different combinations are conducted for all conditions.

In the following, we consider a p-value with a value less than 0.05 equivalents to significant differences between groups based on the related conditions. In the other cases, "ns" means no significant differences was founded.

It can be noted from Table 3.6 that the number of p-values less than 0.05 in the ML direction is greater than in the AP direction. For example, Gain3 has only one p-value less than 0.05 in AP direction and three in ML direction . For Gain4, there are four p-values less than 0.05 in the AP direction and five p-values less than 0.05 in the ML direction. Also, Table 3.6 shows significant differences for Gain6 between the different conditions in the ML direction. As a result, Gain4 and Gain5 have the highest sensitivity and many small p-values, especially in the ML direction.

By analyzing the rows of Table 3.6, it can be noted that the feet position is ranked first as an essential condition since all parameters are affected and show p-values less than 0.05. These parameters have significant differences between feet apart and feet together conditions. Also, all parameters have high sensitivities and show significant differences between women and men (gender) in AP and ML direction. Furthermore, vision, feet*vision, age, and feet*gender have an important number of p-values that reflect significant differences between groups.

Compared to the statistical parameters calculated in section 3.6.1, the gain parameter extracted using the proposed approach for the different IMFs, shows significant differences as a function of visual conditions, feet position, age and gender (p-values less than 0.05). The gain parameter shows better sensitivity with respect to the different conditions including subjects who have small influence on the stability, while the statistical parameters are limited to detect the differences between feet apart and feet together conditions and do not show significant differences based on the feet placements, age and Chapter 3 gender (p-values > 0.05).

CP analysis

The critical point CP is identified as the first maximum of the diffusion curve that separates the two regions (Figure 3.12). Indeed, there are also two regions in each new diffusion curve ; the MSD values increase linearly in the first region and then oscillate around a specific value in the second one.

In this study, CPi corresponds to the critical point of IMFi. These results are related to four groups : young-women, young-men, elderly-women and elderly-men. For each group, the results are shown in both AP and ML directions based on feet and eyes conditions. The CP parameter can be seen as a stability indicator of the human body ; it gives information about the fluctuation of the center of pressure.

When the values of the CP are high, the stability is weak. It is clearly noticed that the CP5 values with eyes open condition are often smaller than those with eyes closed.

Furthermore, the CP values under feet apart condition are smaller than those under feet together condition. We can notice here that the evolution of CP values between feet apart and feet together conditions is more remarkable in the ML direction than in AP direction, and hence, the feet position affects more the stability in the ML direction than in the AP direction. Moreover, one can notice the high differences between CP values due to the influence of both age and feet position conditions. For example, the mean value of CP5 for elderly-men group under feet together condition is higher than that for young-men group under feet apart condition. 

Conclusion

We presented in this chapter a new approach based on the EEMD method to analyze the human stability during quiet standing. The obtained results show that the gain and CP parameters, extracted from the diffusion curves, are more sensitive than conventional stabilometric parameters in the postural stability analysis.

The analysis of the gain and CP parameters shows how the visual condition and feet position can improve the equilibrium in the quiet standing, especially, the feet position affects the human stability more than the visual conditions.

By using the gain and CP parameters extracted from the diffusion curves, it can be noticed that the human body is more stable under feet apart condition than under feet together condition. It is also more stable with open eyes condition than with closed eyes condition. The extracted parameters reveal also that the feet position affects more the stability in the ML direction than in AP direction. It is also shown that young population shows better stability in the static posture with significant differences compared to the elderly population. Women present also better stability in terms of IMFs gain values with respect to men in the same conditions. The present findings could help clinicians to better understand the motor strategies used by the patients during their static postures and may guide the rehabilitation process.

Introduction

Parkinson's disease (PD) is one from the most common degenerative movement disorders which is characterized by the progressive loss of specific neurons in the substantia nigra, called dopaminergic neurons. It has a strong effect on postural stability during quiet standing situations, and during locomotion.

Many researchers have investigated the postural stability of PD subjects in static (quiet standing) and dynamic (gait) postures [START_REF] Orawiec | Assessment of postural instability in patients with parkinsons disease[END_REF][START_REF] Rocchi | Identification of distinct characteristics of postural sway in parkinson's disease : a feature selection procedure based on principal component analysis[END_REF][START_REF] Mcvey | Early biomechanical markers of postural instability in parkinson's disease[END_REF][START_REF] Horak | Direction-specific postural instability in subjects with parkinson's disease[END_REF][START_REF] Schoneburg | Framework for understanding balance dysfunction in parkinson's disease[END_REF][START_REF] Kerr | Coupling between limb tremor and postural sway in parkinson's disease[END_REF][START_REF] Frenklach | Excessive postural sway and the risk of falls at different stages of parkinson's disease[END_REF][START_REF] Orawiec | Assessment of postural control in patients with parkinsons disease : sway ratio analysis[END_REF][START_REF] Menant | Postural sway approaches center of mass stability limits in parkinson's disease[END_REF]. Several data mining techniques were used to extract information from PD data for differentiating between healthy and PD subjects [START_REF] Palmerini | Feature selection for accelerometer-based posture analysis in parkinson's disease[END_REF][START_REF] Brewer | Feature selection for classification based on fine motor signs of parkinson's disease[END_REF]. Most of the commonly analyzed COP output measures are not sensitive enough. Thus, the standard spatio-temporal analysis of the COP provides only descriptive information which is not sufficiently relevant to analyze the postural system behaviors of PD disease.

In [START_REF] Palmerini | Feature selection for accelerometer-based posture analysis in parkinson's disease[END_REF], accelerometer-based data recorded from healthy and PD subjects were used to analyze posture in a quiet stance. First, 175 temporal and spectral features were computed, and then, feature selection with classification techniques were used to select the best parameters that discriminate between healthy and PD subjects. Two parameters were selected to clearly differentiate the healthy subjects from the PD subjects.

In this chapter, we propose a novel methodology for discriminating between healthy and PD subjects through EMD-based temporal and spectral features extraction from stabilometric signals. The data used in this study are those collected from twenty eight healthy subjects that were described in chapter III, in addition to data collected from thirty two PD subjects that are also measured in Mondor hospital with the same equipment and data collection protocols.

The proposed methodology consists of four steps. In the first step, the EMD is applied The rest of this chapter is organized as follows : The supervised classification methods used in this study are described in Section 4.2. Section 4.3 presents the proposed framework for discriminating between healthy and PD subjects using stabilometric data.

Finally, section 4.4 presents the experimental results and discussions of this study.

Classification techniques

In this section, we describe briefly the supervised classification techniques that are used in the study.

K Nearest Neighbors

K-Nearest Neighbors (KNN) [START_REF] Cover | Nearest neighbor pattern classification[END_REF] is a supervised classification method widely used for its simplicity and performance. This method is one of the non-parametric approaches that do not need any information about the distribution of different classes or type of separating surfaces. KNN does not need any modeling or explicit training phase before the classification process. The classification of new individual includes two main steps :

(1) Calculating the distance between this individual with all the individuals in the training data set. The Euclidean distance is used in this study.

(2) Selecting the K nearest neighbors to assign as output label, the majority class of these k nearest individuals (Figure 4.1).

The performance of this approach depends on the value of K ; this value is in general determined by a cross validation. 

Classification and regression tree (CART)

A decision tree is a decision support model commonly used in machine learning [START_REF] Breiman | Classification and regression trees[END_REF]. The wide use of this model is essentially based on several factors : simplicity, efficiency, easily interpretable. It has also an ability to capture nonlinear relationships between inputs and outputs of system. A decision tree is a recursive partitioning classifier of variables.

It consists of nodes and branches. Nodes of a decision tree are composed of one root node, many internal nodes and leaves ( a leaf node does not has outgoing branches). In fact, many algorithms are used for the construction of a decision tree including : ID3 (Iterative Dichotomiser 3), C4.5, CART (Classification And Regression Tree), CHAID (CHi-squared Automatic Interaction Detector), etc.

In this study, we use the CART algorithm, which solves both classification and regression problems. The CART algorithm allows to build only binary trees. A binary tree has exactly two outgoing branches for each internal node. The nodes division criterion used by this algorithm is the Gini criterion. The leaves give the final decision about the labels of new observations.

Random Forest

The random forests (RF) are a family of methods for classification, regression and other tasks, that operate by constructing multitude decision trees [START_REF] Breiman | Random forests[END_REF]. The main idea of the Chapter 4

RF method is to create a set of decision trees using the bootstrap aggregating technique [START_REF]Bagging predictors[END_REF]. This technique leads to decrease the effects of the noisy data and therefore gives high classification performances. In [START_REF] Breiman | Random forests[END_REF], Breiman combines the bagging technique and the random selection of variables in the construction of each tree. This combination is known as the random forest method that improves the classification performances of a single tree. The assignment of a new observation vector to a class is based on a majority vote of the different decisions provided by each tree constituting the forest. However, RF needs huge amount of labeled data to achieve good performances.

Support Vector Machine

The Support Vector Machine (SVM) represents in the last years a widely recognized approach in the community of the supervised classification for its excellent overall performance [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. Basically, the SVM is a supervised classification method essentially used for solving binary classification problems. In the case of linearly separable data, the main The margin is twice the distance between the hyperplane and the support vectors.

In the case of separable data, we can find an infinite number of separators between positives and negatives points, but the performances of these separators are different. There is a unique optimal separator that maximizes the margin between itself and the support vectors. For the nearest points (support vectors), the output values of the hyperplane equation should be equal to one, i.e. |w T x sv + b| = 1 for all support vectors x sv .

The distance between a point x i and the hyperplane can be expressed as follows :

distance i = |w T x i + b| ||w T || (4.1)
In particular, for the support vectors (x sv ), this distance becomes :

distance sv = |w T x sv + b| ||w T || = 1 ||w T || (4.2)
Therefore, the margin can be formulated as follows :

M argin = 2 ||w T || (4.3)
Finally, the problem is therefore to maximize the term 2 ||w T || . This problem is equivalent to the problem of minimizing a function F (w T ) with some constraints. min

w T ,b F (w T ) = ||w T || 2 2 (4.4) subject to l i (w T x i + b) ≥ 1 for all x i , where l i ∈ {-1, +1} is the label of point x i .
This is a Lagrangian optimization problem that can be solved using Lagrange multipliers to obtain the weight vector w T and the bias b of the optimal hyperplane, where the Lagrangian is given by :

L(w T , b, α) = 1 2 ||w|| 2 - i α i (l i (w T x i + b) -1) (4.5)
This Lagrangian must be minimized with respect to w T and b, and maximized with respect to α ; where α is the Lagrange multiplier. Moreover, if no linear separator is found between data, (right part of Figure 4.2), the idea of SVM is to reconsider the classification problem in a space of higher dimension, possibly of infinite dimension. In this new space, it is likely to find a linear separator between data.

More formally, it should apply to the input data, a non-linear transformation φ ; for all

x i . In this new space, we can search the linear hyperplane that discriminates between data :

f (x) = w T φ(x) + b (4.6) which verifies l i (w T φ(x i ) + b) ≥ 1 for all x i
The kernel trick is used to do this transformation. It consists of using a kernel function that verifies the following equation :

K(x i , x j ) = φ(x i ) T .φ(x j ) (4.7)
The interest of the kernel function is that the calculation is made in the original space. This is much less expensive than a scalar product in large dimension. The transformation φ does not need to be explicitly known, only the kernel function is used in the calculations.

The simplest example of the kernel function is the linear one :

K(x i , x j ) = x i .x j (4.8)
There is also, the Gaussian kernel function expressed in the following equation :

K(x i , x j ) = exp(- ||x i -x j || 2 2σ 
2 ) (4.9)

Feature extraction and selection for subjects classification

In this section, we describe the proposed approach for discriminating between healthy and PD subjects through EMD-based temporal and spectral features extraction from stabilometric signals. This approach includes four steps. 1. The standard deviation σ is the mean square root of the variance of the signal. It can be expressed as follows :

σ = 1 n n i=1 (x i -µ) 2 (4.10)
where n is the number of samples in a given signal x, and µ is the mean value. 2. Skewness β is a parameter that evaluate the asymmetry of the probability distribution of data ; it is calculated from the third order moment of a given signal x as follows :

β = 1 n n i=1 ( x i -µ σ ) 3 (4.11)
3. Kurtosis Kurt measures the tailedness of the probability distribution ; it is calculated from the fourth order moment as follows : C spec = w wP (w) w P (w) (4.13) where P(w) is the amplitude of the frequency w in the spectrum.

Kurt = 1 n n i=1 ( x i -µ σ ) 4 ( 
The spectral Skewness β spec and the spectral Kurtosis Kurt spec measure, respectively, the asymmetry and the tailedness of the spectral energy distribution (eq. 4.14 and 4.15).

These parameters can be expressed as follows :

β spec = w ( w-Cspec σspec ) 3 P (w) w P (w) (4.14)
where σ spec is the mean square root of the spectral variation. 

Performance evaluation

In order to evaluate the performances of the proposed methodology for classification of health and PD subjects, the accuracy, the F-measure, the recall, and the precision metrics are used.

Accuracy = T p + T n T p + T n + F p + F n , (4.16 
)

recall = T p T p + F p , ( 4 
.17) The F-measure criterion is given by the following equation :

precision = T p T p + F n , ( 4 
F β -measure = (1 + β 2 ).recall.precision β 2 recall + precision , (4.19) 
where β represents a weighting factor that characterizes the degree of importance with respect to recall and precision metrics. In order to give the same importance to these two metrics, β is set to 1.

The classification of healthy and PD subjects is achieved within a supervised learning framework using their stabilometric data. In this context, the data labels are used to 4.3 summarizes the results obtained using features extracted/selected from EMD&raw data. It can be observed that the obtained recognition rate is higher than 80%. As in the previous case, RF method also gives the best performance in terms of Accuracy, F-measure, precision, and recall, followed by KNN, then SVM, and at the last CART approach gives the worst performances. By comparing the results obtained using the extracted/selected features from IMFs data, raw data and EMD& raw data, it can be noticed that the best results are obtained using the EMD and EMD& raw data. It can also be noticed that the worst results are obtained features extracted/selected from raw data.

Obtained results using data collected from each condition (IMFs data)

As presented above, the best results are obtained using features extracted/selected from IMFs data. These features are used to analyze the effect of each condition on the classification performances. Figure 4.9 shows the obtained results using SVM, RF, Cart and KNN on data collected from each condition (FAEC, FAEO, FTEC and FTEO) in terms of accuracy and standard deviation.

The obtained results using data collected from each condition are given in tables 4.4, 4.5, 4.6 and 4.7. Table 4.4 summarizes the results obtained using features extracted/selected from IMFs data in the case of data collected under FAEC condition. It can be observed that the obtained recognition rate is higher than 77%. It can be also noticed that SVM method gives the best performance in terms of Accuracy, F-measure, precision, and recall, followed by CART, then RF, and at the last KNN method gives the worst performances. 4.5 summarizes the results obtained using features extracted/selected from IMFs data in the case of data collected under FAEO condition. It can be observed that the obtained recognition rate is higher than 71%. It can be also noticed that the KNN method gives the best performance in terms of Accuracy, F-measure, precision, and recall, followed by SVM, then RF, and at the last CART method gives the worst performances. 4.6 summarizes the results obtained using features extracted/selected from IMFs data in the case of data collected under FTEC condition. It can be observed that the obtained recognition rate is higher than 77%. The RF, SVM, and KNN methods give almost similar performance in terms of Accuracy, F-measure, precision, and recall, with slight performance in favor of SVM. Finally, the CART method gives the worst performances. By comparing the results obtained using the different conditions, it can be observed that the best results are obtained when using features calculated in the case of FTEO condition. The remaining results obtained under FAEC, FAEO, and FTEC conditions are almost similar. 4.10 summarizes the results obtained using features extracted/selected from raw data collected under FTEO condition. The obtained recognition rate is higher than 76%.

SVM method gives the best performance up to 90.48 % in term of accuracy, followed by RF 84%, then KNN 78.5%, and finally, the CART method gives the worst performances. 4.11 shows the results obtained using features extracted/selected from raw data collected under FTEC condition. It can be observed that the obtained recognition rate is higher than 75%. RF method gives the best performance up to 83 % in terms of Accuracy, followed by the CART method, then KNN. The SVM method gives the worst performances. 

Conclusion

In this study, we developed a methodology to discriminate PD subjects from healthy ones. This methodology consists of four main steps : stabilometric data decomposition using EMD, temporal and spectral features extraction, feature selection and classification using KNN, CAT, RF and SVM classifiers. The obtained results show that the proposed methodology is efficient for classifying PD subjects with classification rates up to 96%.

The classifiers based on the IMFs data can classify subjects with better performances than those based on raw data. The best results are obtained under FTEO condition.

This can be explained by the fact that under feet together condition, the stability of PD subjects becomes lower, and therefore, PD subjects become more distinguishable from healthy ones. It can be noticed also that the RF method outperforms the other classification approaches in terms of accuracy, F-measure, precision, and recall. Finally, this study shows that the proposed methodology is useful for differentiating between healthy and PD subjects.

Introduction

In this chapter, we present a classification approach for discriminating healthy subjects from PD subjects using a Hidden Markov model (HMM). The raw data corresponding to stabilometric signals are used directly without any preprocessing task. The HMM model is constructed using ML, AP or both ML and AP signals. The 10-fold cross validation method is used to decompose data between training and testing dataset.

This chapter is organized into three main sections. Section 5.2 describes the hidden Markov models used in this study. The proposed approach for classifying healthy and PD subjects is detailed in section 5.3. Finally, the performances of this approach are presented and discussed in section 5.4.

Hidden Markov Models

Introduction

The Hidden Markov Model (HMM) was introduced by Baum et al. in years 1965-1970 [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF]. A HMM is a statistical model defined by a structure composed of states and transitions between these states. This model is similar to the probabilistic automata with an essential difference that the generation of symbols is done on the states and not during transitions. Another difference could be noticed ; in the automata, each state is associated to one symbol from the alphabet, while in a HMM model, for each state, there are probability distributions of all symbols in the alphabet. HMM is an efficient tool for the analysis of temporal or sequential data. It is widely used in various domains and applications, such as, voice recognition, hand writing recognition, DNA and RNA sequencing, activity recognition, etc.

Markov Chain

Before describing the HMM model, it is important to present the probabilistic model of the observable sequences : the observable Markov model (Markov chain).

A Markov chain [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF] is a stochastic process used for modeling various sequential and temporal phenomena in many applications areas. A Markov chain of an observable sequence is characterized by the initial distribution of states and by the transition probabilities between these states (Figure 5.1). In general, the elements of an observable sequence generated by a Markov chain should be dependent over time. In the case of a Markov chain of first order, the transition probability of the current state, given the previous states sequence, is depend only from the previous state. Formally :

p(z n |z n-1 , z n-2 , .., z 1 ) = p(z n |z n-1 ) (5.1) 
where, z n is a sequence of random variables, for all n > 0.

Generally, a p-order Markov chain is a sequence of random variables that verifies the following equation :

p(z n |z n-1 , z n-2 , .., z 1 ) = p(z n |z n-1 , z n-2 , .., z n-p ) (5.2)
where, z n is a sequence of random variables, for all n > 0 and n > p.

Therefore, a typical Markov model can be characterized by :
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-K : the state number of the model ; it is similar to the number of characters in the used-alphabet.

-A = {a kl } : the matrix of transition probabilities, where a kl = p(s l |s k ) is the transition probability from the state s k to the state s l with 1 < k, l < K and K l=1 a kl = 1 -π : the vector of the initial probabilities, where π k = p(s k ) is the initial probability of the state s k , with 1 < k < K

Discrete HMM

The Hidden Markov Model (HMM) is a statistical model that can be defined as a combination of two stochastic processes. The first process is a Markov chain that describes the hidden states sequence, while the second process is a sequence of random variables that describes the sequence of observations. Unlike the observable Markov model, the states of a HMM model are not observable directly, but they emit observations which are weighted by their emission probabilities.

Consider a first order HMM model, and let S = {s 1 , s 2 , .., s K } be the set of the states, and O = {o 1 , o 2 , .., o M } the set of the alphabet, where K is the number of states and M , the number of the characters in the observable alphabet. Let X = {x 1 , x 2 , .., x n } be the observations sequence generated from the HMM process using the hidden Markov chain sequence Z = {z 1 , z 2 , .., z n }. It is important to note that an observation x i takes its value from the set O and the hidden Markov chain z i from the set S ; with 1 < i < n.

A HMM model is defined by : -K : the state number of the model ; -M : the number of characters in the alphabet O ; -A = {a kl } : the matrix of transition probabilities, where

a kl = p(z i = s l |z i-1 = s k )
is the transition probability from the state s k to the state s l with 1 < k, l < K and Each observable character x i , associated to a hidden state z i , is characterized by its emission probability.

When using a HMM to model time series, three main points should be considered :

-The evaluation problem : given the HMM model λ and the observations sequence, what is the probability that these observations are generated by the model ?

The aim is to compute the probability p(X|λ) to generate the observations sequence X = {x 1 , x 2 , .., x n } by the HMM model λ = {π, A, B}. This probability is equal to the sum of all probabilities that X can be generated using all possible states sequences.

The analytical solution to this problem is time costly, and thus, the Forward-Backward algorithm is generally used for solving it [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF].

Chapter 5 -The decoding problem : given the HMM model λ and the observations sequence X, how to select the best state sequence (Hidden sequence) that generate the observations sequence ? i.e., what is the most likely state sequence of the model λ that produce the observations sequence X. The Viterbi algorithm is generally used to solve this problem [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF].

-The learning problem : how to adjust the parameters of the model λ = {π, A, B} in order to maximize the probability of the observations sequence p(X|λ) ? The Expectation-Maximization (EM) algorithm is commonly used to learn the HMM model.

Parameter estimation :

The distribution of the state sequence Z = (z 1 , z 2 , .., z n ) in the case of a hidden Markov chain of first order can be written as follows :

p(Z; π, A) = p(z 1 ; π) n i=2 p(z i |z i-1 ; A) (5.3) 
The conditional distribution of the observations sequence Y given the state sequence Z can therefore be written as follows :

p(X|Z; λ) = n i=1 p(x i |z i ; λ) (5.4)
Finally, the joint distribution of X and Z (the complete-data likelihood) can be expressed as follows :

p(X, Z; λ) = p(Z; π, A)p(X|Z; A)

= p(z 1 ; π)p(x 1 |z 1 ; λ) n i=2 p(z i |z i-1 ; A)p(x i |z i ; λ) (5.5)
For a HMM model λ = {π, A, B}, the parameters that should be estimated are : the initial distribution π, the transition probability matrix A and the emission probability matrix B. The maximum likelihood method is used in order to maximize the log-likelihood of the observation data. The log-likelihood can be expressed as follows The maximization of this log-likelihood is very difficult analytically. The dedicated Expectation-Maximization (EM) algorithm for the HMMs (Baum-Welsh algorithm) is used for that propose [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF].

The EM algorithm starts with initial parameters of the model λ (0) = {π (0) , A (0) , B (0) }, and then repeats two steps until convergence : E-step : This step computes the expectation of the data log-likelihood :

Q(λ, λ (q) ) = E[L c (λ; X, Z)|X, λ (q) ] = K k=1 τ (q) 1k logπ k + n i=2 K k=1 K l=1 ξ (q) ilk logA lk + n i=1 K k=1 τ (q) ik logB ki (5.7) 
where :

-L c (λ; X, Z) is the complete-data log-likelihood.

-τ ik = p(z i = k|X; λ (q) ) is the posterior probability of state k at time t, given the observations sequence X and the current model parameters λ (q) .

-ξ ilk = p(z i = k, z i-1 = l|X; λ (q) ) is the joint posterior probability of state k at time i and state l at time i-1, given the observations sequence X and the current model parameters λ (q) . M-step : This step is used to maximize the expectation Q with respect to λ in order to update the model parameters λ (q+1) . The model parameters are updated as follows :

π (q+1) k = τ (q) 1k
(5.8)

A (q+1) lk = n i=2 ξ (q) ilk n i=2 τ (q) ik (5.9) B (q+1) km = n i=1; x i =om τ (q) ik n i=1 τ (q) ik
(5.10)

Gaussian HMM

In several applications, the observations are considered as continuous values. Thus, the emission probability of each state is given by a Gaussian density function. Therefore, the state conditional density (emission probability) can be written as follows :

p(x i |z k ; λ) = N (y i ; µ k , Σ k ), (5.11) 
where :

-N : the Gaussian probability density function ;

-µ k : the mean of the distribution of observations at state k, ∀ k=1,..,K ;

-Σ k : the covariance matrix at state k, ∀ k=1,..,K. To estimate the parameters of a Gaussian HMM model, the equations used to update the initial probability π, and the transition probability of a discrete HMM model remain the same. For the emission probability, the Gaussian distribution parameters µ k and Σ k should be calculated for each state. This is achieved as follows :

µ (q+1) k = 1 n i=1 τ (q) ik n i=1 τ (q) ik x i (5.12) Σ (q+1) k = 1 n i=1 τ (q) ik n i=1 τ (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k
) T (5.13) The classification task of test subjects is carried out as follows : for each test subject, the processing described in fig. 5.4 is applied as follows : the observation probabilities of the test subject is computed for the H-HMM and PD-HMM models. The highest value between these two probabilities determines the class to which the test subject belongs. If the healthy HMM model gives the highest probability, the test subject is then considered as a healthy subject. In contrast, if the PD model gives the highest probability, the test subject is considered as a PD subject. This maximization is characterized by the number of iterations of the process. Figure 5.5

shows the evolution of the log-likelihood probability during the maximization process for AP, ML and AP/ML signals. It can be observed that the log-likelihood value converges from the 15 th iteration for the H-HMM and PD-HMM models. After fifteen iterations, the log-likelihood probability does not grow significantly and converges as shown in fig.

5.5. Therefore, the number of iterations of the log-likelihood maximization process is set to fifteen.

It is important to analyze the effect of the number of states on the HMM models performances to determine the number that gives the best results. Table 5.1 shows the correct classification rates of healthy and PD subjects using the two HMM models with different numbers of states. It can be noted that all obtained classification rates are higher than or equal to 90%, and that the best classification performances are obtained when the number of states is equal to three. The effect of the number of Gaussian mixtures on the HMM models'performances is also addressed in this study. Table 5.2 shows the correct classification rates of healthy and PD subjects using the two HMM models with different numbers of Gaussian mixtures.

It can be noted that, all classification rates are higher than or equal to 90%. The best classification performance is obtained when the Gaussian mixtures number is equal to two. Finally, note that the best performances were obtained when the number of iterations used in the log-likelihood maximization process, the number of states, and the number of Gaussian mixtures are equal to 15, 3 and 2 respectively.
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The 10-fold cross validation method was used to evaluate the performances of the HMM models. Three statistical parameters including sensitivity, specificity and the overall accuracy are calculated to evaluate the performances of the HMM models :

-Sensitivity : it represents the percentage of healthy subjects who are correctly classified ;

-Specificity : it is equal to the percentage of PD subjects who are correctly classified ;

-Accuracy : it represents the percentage of both healthy and PD subjects who are correctly classified. 

Conclusion

In this chapter, we proposed a HMM-based classification approach to differentiate healthy from PD subjects using stabilometric signals measured in static posture. The classification performances obtained using this approach are better than those obtained in the previous chapter. We observed that by using both ML and AP signals, only one PD subject was classified incorrectly. The sensitivity and the specificity are 100% and 96.4% respectively, while the overall accuracy is equal to 98.4%. The proposed approach opens new perspectives in terms of posture analysis, for identifying the pathology degrees of patients and for fall prediction. position. This is achieved for both healthy subjects and PD subjects. A Hidden Markov Model Regression (HMMR)-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. This approach allows to automatically detect the variation in structures of stabilometric signals between these conditions. The advantage of the used approach relies mainly in its capability to operate in an unsupervised context that avoids data labeling phase that is often time/computation efforts consuming, particularly in the case of massive databases.

This chapter is organized into three main sections. Section 6.2 describes the HMM regression used in this study. The HMMR-based approach proposed for segmentation of stabilometric signals is detailed in section 6.3. Finally, the performances of this approach are presented and discussed in section 6.4.

Hidden Markov Model Regression

The Hidden Markov Model Regression (HMMR) method is an extension of the classical HMM method for regression analysis [START_REF] Fridman | supervised classification algorithms[END_REF]. It is useful for the segmentation of temporal sequences based on regression models governed by a hidden Markov chain. In fact, there are two types of regression models : i) the simple regression model that corresponds to the regression of one-dimensional observations sequence and ii) the multiple regression model that is commonly used for the regression of multidimensional time series.

Simple Hidden Markov Model Regression

Consider the simple regression model governed by a hidden Markov chain for time series.

Let X = (x 1 , x 2 , ..., x n ) be a time series of n real observations x i ∈ R observed at the time sequence t = (t 1 , t 2 , ..., t n ). The HMMR assumes that the observed sequence is generated using K states of a hidden process. The hidden state sequence Z = z 1 , z 2 , ..., z n is obtained from the regression of the observed sequence X, where each z i corresponds to a discrete value between 1 and K (number of classes). This means that each hidden value z i is obtained from its related state. In this study, the observation sequence represents the whole stabilometric signal and the number of states in the Markov chain is equal to four because four conditions (classes) are considered : FTEO, FAEO, FTEC and FAEC.

Thus, the transition between states in the hidden Markov chain is done as a function of variation in the structure of the observation sequence. These variations are detected when the conditions change with respect to feet and eyes. The polynomial regression is used in the HMMR model in this study. Each observation x i at time t i corresponds to a regression model related to one state. The regression model can be written as follows :

x i = β T z i t i + σ z i i ; with i ∼ N (0, 1), and 1 ≤ i ≤ n. (6.1)

where z i is a hidden variable corresponding to a discrete value between 1 and K.

β z i = (β z i0 , β z i1 , ..., β z ip ) T is a vector of dimension p. It represents the regression coefficients of the polynomial regression model z i . t i = (1, t i , t 2 i , ..., t p i ) is the p+1 covariate vector, and p is a finite integer that represents the order of the polynomial regression model.

Parameter estimation

In the case of a simple regression model, the HMMR model assumes that the hidden sequence Z = (z 1 , z 2 , ..., z n ) is a homogeneous Markov chain parameterized by the initial state probability distribution vector π and the transition probability matrix A. In this context, x i has a Gaussian distribution, with a mean β T k t i and variance σ 2 k . Thus, the HMMR model is parameterized by the parameters vector Φ = (π, A, β 1 , ..., β K , σ 2 1 , ..., σ 2 K ). This vector is estimated by the maximum likelihood method. The log-likelihood can be written as follows :

L(Φ; X) = log z 1 ... zn p(z 1 ; π) n i=2 p(z i |z i-1 ; A) n i=1 N (x i ; β T z i t i ; σ 2 z i ) (6.2)
Because this log-likelihood cannot be maximized analytically, the Expectation-Maximization (EM) iterative algorithm is used to provide efficient estimation of the parameters. The EM algorithm is described in the next section in the context of multiple regression model.

Multiple Hidden Markov Model Regression

In the case of multiple regressions, the observation data to be segmented should be a multidimensional time series. In this study, the multiple regression is achieved on the stabilometric signals in both the ML and AP directions. This is called joint segmentation of both ML and AP signals. Let X = (x 1 , x 2 , ..., x n ) be a multidimensional time series.

Each observation

x i = (x (1) 
i , x

i , ...x

i ) ∈ R d is observed at time t i ; d is the dimension of time series ; in our case, d=2 for ML and AP signals. The multiple regression model with a hidden Markov chain can be written as follows :

x (1) i = β (1)T z i t i + σ (1) z i i x (2) i = β (2)T z i t i + σ (2) z i i .. .. .. x (d) i = β (d)T z i t i + σ (d) z i i (6.3)
However, the multiple regression model performs the regression of all univariate sequences, which provides better model efficiency and provides better results based on the Chapter 6 joint segmentation. Model (6.3) can be rewritten as follows :

x i = B T z i t i + δ i ; δ i ∼ N (0, Σ z i ) with 1 ≤ i ≤ n. (6.4) 
where

x i = (x (1) 
i , x

i , ...x

i ) ∈ R d , B z i is the regression coefficients matrix with dimension (p+1) × d and Σ z i represents its covariance matrix.

The multiple regression model is therefore parameterized by the following parameters

vector : Φ = (π, A, B 1 , B 2 , ..., B K , Σ 1 , Σ 2 , ..., Σ K ).
To provide the best regression and segmentation, the estimation of these parameters is achieved using the EM algorithm that maximizes the log-likelihood of data.

Parameter estimation

The parameters vector Φ is estimated using the iterative algorithm EM. The log-likelihood that has been maximized is written as follows :

L(Φ; X) = log p(x 1 , x 2 , ...x n ; Φ) = log z 1 ... zn p(z 1 ; π) n i=2 p(z i |z i-1 ; A) n i=1 N (x i ; B T z i t i ; Σ z i ) (6.5)
The EM algorithm, also known as the Baum-Welch algorithm for HMM, includes two main steps. At each iteration, the model parameters are estimated until they converge.

The algorithm starts with initial values of model parameters Φ (0) . E-step : From the observation data, time, and current estimation Φ (q) , the log-likelihood of completed data is estimated as follows :

Q(Φ, Φ (q) ) = E[log p(X, z, t, Φ)|X, t; Φ (q) ]. (6.6)
The calculation of this expectation requires calculating two parameters :
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1. The posterior probabilities that x i is generated from the k th regression model, given the observation data and the current estimation φ (q) : τ (q) ik = p(z i = k|X, t; Φ (q) ) for all i and k. (6.7)

2. The joint posterior probabilities of state k at time t and state l at time t-1, given the observation data and the current estimation Φ (q) : ξ

(q) ilk = p(z i = k, z i-1 = l|X, t; Φ (q)
) for all i, k and l. (6.8)

These probabilities can be calculated by using the forward-backward procedure used for the standard HMM. = τ (q) 1k (6.9)

A (q+1) lk = n i=2 ξ (q) ilk n i=2 τ (q) ik (6.10)
The regression coefficients of the matrix B and its covariance matrix Σ can also be updated as follows :

B (q+1) k = [ n i=1 τ (q) ik t i t T i ] -1 n i=1 τ (q) ik t i x T i (6.11) Σ (q+1) k = 1 n i=1 τ (q) ik n i=1 τ (q) ik (x i -B T (q+1) k t i ) T (x i -B T (q+1) k t i ) (6.12)
the regression model parameters are time-varying according to the most likely condition.

The resulting model is therefore a type of latent data model that is particularly suitable for performing unsupervised activity recognition. Let us recall that from a statistical prospective, latent data models aim to represent the distribution of the observed data, which in this case are stabilometric signal recordings. The unsupervised learning task for the proposed approach is achieved by maximizing the observed-data log-likelihood via a dedicated iterative algorithm known as the expectation-maximization (EM) algorithm.

The approach proposed here, i.e., performing temporal segmentation of multivariate time series, is based on an alternative to the Markov process in the HMM regression model ( [START_REF] Fridman | supervised classification algorithms[END_REF]). It also directly uses raw data, rather than performing feature extraction and feature selection. This is indeed one of the main advantages of the proposed unsupervised approach because it does not require preprocessing and because the model parameters are learned in an unsupervised way from the acquired unlabeled raw data. However, the feature extraction step may itself require implementing additional models or routines, well-established criteria or additional expertise to extract and select the optimal features.

The feature extraction step may also require an additional computational cost, which can be penalizing.

HMMR method takes as input the entire stabilometric signal and takes also the number of classes (segments). The Viterbi path is considered as the output of the regression process Fig. 6.1.

Results and discussions

In this section, the segmentation performances obtained using the HMMR approach are presented and discussed. For the simple regression, the HMMR approach takes the whole stabilometric signal as input for both the ML and AP directions as well as the number of classes (segments). For the multiple regression, the HMMR approach takes two stabilometric signals as input, which correspond to the ML and AP directions for the same subject, as well as the number of classes (segments). The proposed approach learns the model using the EM iterative algorithm to perform the best regression (segmentation) To determine the performance of the proposed segmentation approach, the correct classification rate is calculated between the desired classes (Viterbi path) and the actual classes (Known classes) of our data.

Segmentation based on feet and visual conditions of healthy subjects

In this section, the segmentation results are shown for the healthy subjects. These results are compared to those obtained using standard well known classification methods to prove the efficiency of the segmentation strategy based on the HMMR method. High rates of segmentation are obtained for k=1 (FAEC) and k=4 (FTEO), although there are some segmentation errors in segments k=2 (FAEO) and k=3 (FTEC). In contrast, Fig. 6.2 (d), which illustrates the posterior probabilities using the HMM method, shows segmentation errors in all parts of the signal.

In fig. 6.3, similar trends can be observed on the segmentation results obtained for both HMM and HMMR methods in the ML direction. shows high rates of correct segmentation on all segments. Although the performances obtained using the HMM method are relatively acceptable, they still suffer from important segmentation errors, as shown in fig. 6.4 (c). Tables 6.1 and 6.2 represent the confusion matrices in the case of HMMR segmentation using AP and ML signals, respectively. It should be noted that the rates of correct segmentation (classification) in ML direction are higher than those in AP direction, except under the last condition (FTEO). One can notice that the classification errors of a given condition with respect to its neighborhood condition present small rates in the ML direction but show relatively high error rates in the AP direction. The correct classification rates are 79.6% and 81.6% for K-NN and RF, respectively. The HMMR method gives the best results, with a 98.5% correct segmentation (classification) rate.

In addition to its high performance, the HMMR method is an unsupervised method that does not need data labelling for the segmentation process. Additionally, it does not need any pre-processing tasks, and the model is learned automatically from the raw data. gives the posterior probabilities obtained using the HMMR approach. One can observe relatively high rates of correct segmentation, although there are some errors in the posterior probabilities related to some segments. These results are still satisfactory compared to those obtained with the classical HMM method, which shows important errors in the posterior probabilities (Fig. 6.5 (c)). Table 6.5 shows the correct classification rates obtained with the ML and AP directions separately as simple inputs and together as multiple inputs. The results obtained with multiple inputs (both ML and AP signals) show better segmentation than does the simple input case with both HMM and HMMR methods.

Segmentation based on feet and visual conditions of PD subjects

As we can see, the results obtained with HMMR are better than those obtained with the standard HMM method. For example, HMM and HMMR obtained correct classification rates in the ML direction of 57.3% and 87.8% respectively, in the case of single input (AP or ML directions). They grew to 63.6% and 89.9% respectively with multiple input (ML/AP).

These performances can be compared to those discussed previously for healthy subjects.

Note that the HMMR method provides high segmentation rates for healthy subjects (up to 98%) and for PD subjects (up to 89%). This can be explained by the fact that the visual input and foot position have more influence on human stability with healthy subjects. These factors also influence PD subjects but remain relatively limited.

Conclusion

The human postural system can be affected by several conditions such as visual input and feet position. In this chapter, an automatic segmentation approach of the stabilometric signals is proposed to segment signals under visual and feet conditions. This is achieved to prove whether the HMMR is capable of automatically detecting the variation in structures of signals between these conditions. This approach allows to automatically detect the variation in structures of stabilometric signals between these conditions. The model Chapter 6

is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. The performances obtained with multiple regression are better than those obtained with simple regression. The HMMR shows satisfactory results for signal segmentation between the used-conditions.

The present findings could help clinicians to better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process.

Chapitre 7

GENERAL CONCLUSION AND PERSPECTIVES

Conclusion

This thesis addresses the issue of postural stability analysis. This is a research topic whose results can be exploited in the postural system behaviors analysis, diagnosis of PD subjects, prevention of falls, etc. Four approaches were proposed as contributions of this thesis.

The first approach deals with the human stability analysis in quiet standing using the The second approach allows to discriminate between healthy and PD subjects using their stabilometric signals. This approach consists of four steps. In the first step, for each stabilometric signal, the first eight IMFs, obtained from EEMD method, are selected for further processing. In the second step, temporal and spectral characteristics are extracted from raw stabilometric data and their corresponding IMFs. In the third step, a feature selection method is applied to retain the first five relevant characteristics. In the fourth step, four well-known classification methods, including KNN, CART, RF and support vector machine (SVM) are used for the classification task. The obtained results show that the proposed approach is efficient for classifying PD subjects with classification rates up to 96%. The classifiers based on the IMFs data can classify subjects with better performances than those based on raw data. The best results were obtained under FTEO condition. This can be explained by the fact that under feet together condition, the stability of PD subjects becomes lower, and therefore, PD subjects become more distinguishable from healthy ones.

The third approach is an HMM-based method for differentiating between healthy and PD subjects using their raw stabilometric data. This approach consists of constructing 
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  One effective way to assess human stability is to analyze the postural sway during quiet standing. This can be performed by quantifying the center of pressure (CoP) displacements of the human body during the quiet standing. The CoP displacements are recorded in the medio-lateral (ML) and antero-posterior (AP) directions over time, and the resulting signals are called stabilometric signals. Many classical parameters, such as, the mean velocity, the range, the swept area, the root mean square distance, are generally extracted from the stabilometric signals in order to analyze and compare stability under different conditions, such as the visual input and feet position.

Chapter 6

 6 addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and feet position. This is achieved for both healthy subjects and PD subjects. A Hidden Markov Model Regression (HMMR)-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. The first part of this chapter describes the HMM regression model used in this study. The HMMR-based approach, proposed for automatic segmentation of stabilometric signals, is then detailed in the second part of the chapter. The performances of this approach are presented and discussed in the last part of the chapter. Chapter 7 consists of a general conclusion, in addition to open perspectives from algorithmic and application points of view.
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 21 Figure 2.1: Eye components [14]
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 22 Figure 2.2: Inner ear [17]
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 2 foot consists of three support points which constitute three arches : The internal arch is normally the most hollow goes from the first metatarsal head to the support center of the calcaneus (Figure 2.3). The external arch is much less hollow and goes from the fifth metatarsal head to the support center of the calcaneus. The anterior arch is relatively flat and goes from the head of the first metatarsal head of the fifth metatarsal.
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 23 Figure 2.3: Feet polygon
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 24 Figure 2.4: Movements strategies [23]
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 25 Figure 2.5: First stabilometric recordings [24]

Figure 2 . 6 :

 26 Figure 2.6: Vicon camera system[START_REF] Priplata | Vibrating insoles and balance control in elderly people[END_REF] 
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 27 Figure 2.7: Multicamera system (According to Maeva Le Goic)
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 2313 Force platform-bsed methods : the stabilometer

Figure 2 . 8 :

 28 Figure 2.8: Force platform connected to a PC. The three axes (x, y, z) represent, respectively, the anteroposterior (AP), mediolateral (ML) and the vertical axes.
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 29 Figure 2.9: Planar illustration of COP displacements (Mondor stabilometric data)
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 210 Figure 2.10: Temporal representation of ML and AP displacements
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 211 Figure 2.11: Spectral representation of ML and AP displacements
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 212 Figure 2.12: Feet positions : (A) feet together, (B) feet apart, (C) semi tandem, (D) full tandem, (E) single foot

  [START_REF] Scoppa | Clinical stabilometry standardization : basic definitions-acquisition interval-sampling frequency[END_REF],Scoppa et al. propose a clinical stabilometry standardization technique for test duration and sampling frequency.As shown in figure2.13, standard parameters (Sway Path, Sway Area and Confidence Ellipse Area) are steady and a sampling rate of 50 Hz seems to be acceptable to get reliable values of these parameters. Both oscillations and sway density parameters instead requires a higher sampling frequency. The 100 Hz sampling rate is recommended to use for postural stability analysis[START_REF] Scoppa | Clinical stabilometry standardization : basic definitions-acquisition interval-sampling frequency[END_REF].To analyze the effect of test duration, 25 time series of 40 s sampled at 100 Hz, were analyzed and processed to calculate the standard parameters at different test times(5, 10, 15, 20, 30, 35 and 40 s). For duration times less than 25 sec, the sway parameters are not steady, and therefore these testing times are not acceptable for static postural analysis (Figure2.14).
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 213 Figure 2.13: Normalized parameters values vs. sampling frequency[START_REF] Scoppa | Clinical stabilometry standardization : basic definitions-acquisition interval-sampling frequency[END_REF] 
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 215 Figure 2.15: Preferred feet position for young and elderly subjects[START_REF] Mcilroy | Preferred placement of the feet during quiet stance : development of a standardized foot placement for balance testing[END_REF] 

[ 50 -

 50 53]. The human postural system maintains the stability of the body both in the static posture (quiet standing) and during locomotion by considering external disturbances. It successfully keeps the human body in the upright position through the interactions among Chapter 2 the central nervous system, the musculoskeletal system, and three sensory systems : vestibular, visual and proprioception systems [54-56]. One effective way to assess human stability is to analyze the postural sway during upright standing. This can be performed by quantifying the center of pressure (CoP) displacements of the human body in quiet standing. The CoP displacements are recorded in the medio-lateral and antero-posterior directions over time, and the resulting signals are called stabilometric signals.

9 .

 9 The 95% confidence ellipse area AREA-CE : It is computed based on ML and AP stabilometric signals, by considering the main axes of the ellipse, which contains 95% of data points. 10. The total sway area : It represents the time integral of the COP trajectory. Chapter 2

  [70], Tanaka et al. proposed a new methodology to assess the postural stability through the center-of-pressure (COP) trajectories during quiet standing. New sensitive parameters were extracted and then utilized to investigate changes in postural stability with respect to visual input. The experimental data consists of stabilometric signals of eleven healthy subjects (20-27 years). These signals were recorded under eyes open and eyes closed conditions using a force platform during quiet standing. The proposed approach was applied separately for medio-lateral and antero-posterior stabilometric signals.
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 216 Figure 2.16: A schematic diagram of the auto-regressive model [70].
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 2 are not able to characterize efficiently the COP displacements due to the complex structure of the stabilometric signals. In this study, we propose a new strategy to analyze the postural stability using the Empirical Mode Decomposition (EMD) method. This method is a specialized approach to analyze nonlinear and non-stationary signals as stabilometric signals. It is capable to explore the signal and provide an effective timefrequency analysis. The next chapter describes the proposed methodology for human postural analysis based on EMD method.

  28 subjects correspond to 14 women and 14 men. All subjects were asked to perform quiet standing during measuring of their stabilometric signals in the AP and ML directions. ML trajectories correspond to the CoP displacements in the left/right direction of the human body, while AP trajectories correspond to the CoP displacements in the forward/backward direction (Fig 3.1).
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 31 Figure 3.1: ML and AP directions of human body
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 3233 Figure 3.2: Stabilometric signals in ML direction for FAEC, FAEO, FTEC and FTEO conditions.

FTEOFigure 3 . 4 :

 34 Figure 3.4: Planar representation of ML and AP signals for FAEC, FAEO, FTEC and FTEO conditions.
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 35 Figure 3.5: Upper, lower and mean envelopes of a signal

Figure 3 .

 3 Figure 3.6 summarizes the basic steps of EMD in a block diagram.
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 36 Figure 3.6: Block diagram of EMD
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 37 Figure 3.7: Diffusion curve of a stabilometric signal

  [START_REF] Abrahamová | Age-related changes of human balance during quiet stance[END_REF] shows the global methodology proposed to extract parameters including the gain and the critical point. First, the stabilometric signals in ML and AP directions are decomposed using the EMD method to generate several IMFs components (Figures 3.9 and 3.10). Second, the stabilogram-diffusion technique is applied over five IMFs starting from IMF3 to generate their diffusion curves. These Chapter 3 curves are then modeled as a system of second order response to extract sensitive parameters for control postural analysis. The first IMFs (IMFs 1 and 2) are ignored because they mostly represent noises. Repeated measures analysis of variance (ANOVA) is used to perform a statistical analysis of these parameters under feet and visual conditions, as well as for young/elderly and for women/man groups.
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 38 Figure 3.8: The proposed methodology
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 39310 Figure 3.9: ML stabilometric signal and its EMD decomposition for FAEO condition
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 62 Balance analysis using EMDThe parameters G, z and w n defined in the previous section, are calculated and compared with respect to the five diffusion curves. These diffusion curves correspond to IMF3, IMF4, IMF5, IMF6 and IMF7 of the EMD decomposition of the original stabilometric signals. By analyzing the relationship between the gain parameter G and the natural frequency w n , it can be observed that the gain values related to IMF3 and IMF4 are relatively small while their natural frequencies are relatively high, as shown on the right part of figure 3.11. Also, as shown in the left part of figure 3.11, the IMF5, IMF6 and IMF7 show relatively high gain values and low w n values.
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 311 Figure 3.11: Natural frequencies (wn) Vs Gain (G) : means + STDs
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 312 Figure 3.12: Diffusion curve of an IMF (mode)

  to decompose each stabilometric signal into several elementary signals called Intrinsic Mode Functions (IMFs). This decomposition provides an effective time-frequency analysis of the stabilometric signals. The first eight IMFs are selected for further processing. The second step consists of a feature extraction which is performed by calculating the temporal and spectral characteristics from raw stabilometric data and their corresponding IMFs. In the third step, a feature selection method is applied to retain the first five Chapter 4 relevant characteristics. In the fourth step, four well-known classification methods including KNN, CART, RF and support vector machine (SVM) are used for the classification task.
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 41 Figure 4.1: Classification of new individual using KNN with K=5

  idea of SVM is to find the hyperplane (separator) f (x) = w T x+b that separates positive observations (y i = +1) from negative ones (y i = -1), and maximizes the distance between the closest observations (support vectors) and the hyper-plane as much as possible (left part of Figure 4.2) ; where w T and b are the parameters of the hyperplane equation.
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 42 Figure 4.2: Linear and non-linear hyperplanes of SVM classifier
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 134 EMD decomposition of the stabilometric signal, to generate a set of IMFs. The first eight IMFs are selected for further processing and feature extraction (Figures 4.4, 4.5, 4.6, 4.7). 2. Feature extraction : three time-domain features, namely, standard deviation (σ), Skewness (β) and Kurtosis (Kurt), and three frequency-domain features, namely, spectral centroid (C spec ), spectral Skewness (β spec ) and spectral Kurtosis (Kurt spec ) are extracted from raw stabilometric data and their IMFs in ML and AP directions. Feature selection : the five most relevant features characterizing the postural sway of healthy and PD subjects are selected using random forest-based selection method. Classification, four well-known classification methods including KNN, CART, RF and support vector machine (SVM) are used for the classification of healthy and PD subjects using 10-fold cross validation.

Figure 4 .

 4 Figure 4.3 shows the block diagram of the proposed approach for the classification of healthy and PD subjects.
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 43 Figure 4.3: Healthy and PD subjects classification process
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 44 Figure 4.4: AP stabilometric signal and its first eight IMFs for a healthy subject in FAEO condition
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 412 Moreover, three spectral features are calculated and extracted from the stabilometric signal itself and from the extracted IMFs. These features are characteristics of the spectral energy distribution of data. The spectral centoid C spec is the balance point or the center of mass of the spectrum. It is widely used for the brightness of sound and for the
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 45 Figure 4.5: ML stabilometric signal and its first eight IMFs for a healthy subject in FAEO condition

  Kurt spec = w ( w-Cspec σspec ) 4 P (w) w P (w)
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 46 Figure 4.6: AP stabilometric signal and its first eight IMFs for a PD subject in FAEO condition
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 47 Figure 4.7: ML stabilometric signal and its first eight IMFs for a PD subject in FAEO condition
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 48 Figure 4.8: Obtained results in terms of recognition rate for each classifier using extracted/selected features from EMD, Raw and EMD& Raw data.
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 49 Figure 4.9: Obtained results in terms of recognition rate for each classifier using extracted/selected features from IMFs data for each condition.

Figure 5 . 1 :

 51 Figure 5.1: An example of a Markov Chain model

K l=1 a kl = 1 - 5 -

 15 The emission probability of the character o m by the state s l , is defined by : p(x i = o m |z i = s l ). All emission probabilities are grouped in the emission probabilities matrix B = {b lm } , where :b lm = p(x i = o m |z i = s l ) for 1 < m < M and 1 < l < KChapter π : the vector of the initial probabilities, where π k = p(z i = s k ) is the initial probability of the state k, with 1 < k < K.
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 52 Figure 5.2: An example of a discrete hidden Markov model

Chapter 5 L

 5 (λ; X) = log p(X; λ) = log Z p(X, Z; λ) = log z 1 ,..,zn p(z 1 ; A)p(x 1 |z 1 , λ) n i=2 p(z i |z i-1 ; A)p(x i |z i ; λ) (5.6)

Figure 5 .

 5 Figure 5.3 shows an example of a continuous HMM.

Figure 5 . 3 :

 53 Figure 5.3: An example of a Gaussian hidden Markov model
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 54 Figure 5.4: The block diagram of the proposed classification approach
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 55 Figure 5.5: The log-likelihood maximization process of the HMM models for healthy and PD subjects (a) AP direction (b) ML direction (c) AP/ML directions.

  Posture analysis in quiet standing is an essential element in evaluating human balance control. Many conditions affect the human postural system's ability to maintain stability, such as the visual condition and base of support (feet) positions. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This chapter addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and feet

M

  -step : This step consists of updating the values of model parameters vector Φ. The new values Φ (q+1) are calculated by maximizing the expectation. The updated values of the initial state probability distribution vector π and the transition probability matrix A are calculated as follows : π (q+1) k
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 61 Figure 6.1: The input and the output of the HMMR model for the discrimination between visual and feet conditions

Fig. 6 .

 6 Fig. 6.2 shows the segmentation results obtained for both the HMM and HMMR methods in the AP direction. Fig. 6.2 (a) and (b) represent the entire stabilometric signal in the AP direction, and the separated lines between the truth segments can be observed. Fig. 6.2 (c) illustrates the posterior probabilities of the four conditions obtained with the
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 62 Figure 6.2: Results obtained in the case of HMMR (left) and HMM (right) for AP direction with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.

Fig. 6 .

 6 3 (a) and (b) represent the entire stabilometric signal in the ML direction. For HMMR segmentation, high rates of segmentation are obtained for k=1 (FAEC) and k=2 (FTEC), and some segmentation errors appear in the later segments : k=3 (FAEO) and k=4 (FTEO) in Fig.6.3 (c). However, segmentation errors are observed in all parts of the signal. Fig.6.3 (d) illustrates the posterior probabilities using the HMM method.
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 6 Fig.6.4 shows the segmentation results using multiple inputs (stabilometric signals for
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 63 Figure 6.3: Results obtained in the case of HMMR (left) and HMM (right) for ML direction with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.

Five

  well-known classification methods were used to assess the performance of the HMMR method for stabilometric signals segmentation : K-nearest neighbours (K-NN), decision tree (CART), random forest (RF)[START_REF] Cover | Nearest neighbor pattern classification[END_REF][START_REF] Breiman | Classification and regression trees[END_REF][START_REF] Breiman | Random forests[END_REF]. These methods are all supervised classification techniques and require a training process. The true class labels are used as inputs for the training set with the number of segments (groups = 4). After the training phase, the class labels obtained from the test set are compared with the true labels, and the correct classification rates are calculated with regards to all classifiers. Table6.4 gives the correct segmentation (classification) rates using different classification methods with respect to ML and AP directions, both separately and together. The correct classification rates in the AP and ML directions are 85.2% and 94.2%, respectively, for the HMMR method and less than 60% for the remaining methods. The use of multiple inputs (both AP and ML signals) improves the performances of all classifiers.

Fig. 6 .

 6 Fig.6.5 shows the segmentation results obtained using multiple inputs (stabilometric signals with respect to both AP and ML directions) for PD subjects. Fig.6.5 (a) shows an example of a stabilometric signal related to a PD subject in both the AP and ML directions.
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 64 Figure 6.4: Results obtained with HMMR (b) and HMM (c) for multi-input AP and ML directions (a) for healthy subjects with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.
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 6 Fig. 6.5 (b) gives the posterior probabilities obtained using the HMMR approach. One
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 65 Figure 6.5: Results obtained with HMMR (b) and HMM (c) for multi-input AP and ML directions (a) for PD subjects with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.

  EEMD method and the stabilogram-diffusion analysis technique. The EEMD method allows to decompose the stabilometric signal into a finite number of elementary signals called IMFs. The stabilogram-diffusion analysis technique is then applied on each IMF to generate the diffusion curve. Each diffusion curve is modeled as a second order system and provides representative features, such as, the gain and CP parameters. These parameters are used to assess the postural stability and to analyze the influence of the visual input, feet position conditions, age and gender on the human stability. The obtained results show a high sensitivity of the extracted parameters under the aforementioned conditions, and more precisely : (1) the human stability under eyes-open condition is higher than under eyes-closed condition ; (2) the human body under feet-apart condition is more stable than under feet-together condition especially, in ML condition ;(3) the young subjects show postural stability higher than elderly subjects with significant differences ; (4) the women subjects show higher postural stability compared to men subjects ; (5) the extracted parameters better characterize the stabilometric signals than the standard parameters used in the literature.

  two HMM models : the first model (H-HMM) was constructed using the training healthy subjects data, and the second model (PD-HMM) was learned by the training dataset of PD subjects. Healthy and PD subjects are classified first using either ML or AP stabilometric signals, and then using signals from both ML and AP directions. The classification task of test subjects is carried out as follows : The observation probabilities of each test subject is computed for the H-HMM and PD-HMM models. The highest value between these two probabilities determines the class to which the test subject belongs. The classification performances obtained using this approach are better than those obtained in the previous chapter. The sensitivity and the specificity are 100% and 96.4% respectively, while the overall accuracy is equal to 98.4%.The last approach addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and feet position.The Hidden Markov Model Regression (HMMR) approach is used to ensure the segmentation of the stabilometric signals related to the different conditions. The advantage of the used approach relies mainly in its capability to operate in an unsupervised context that avoids data labeling phase that is often time/computation efforts consuming, particularly in the case of massive databases. The segmentation was done based on a multiple HMMR regression process between the different conditions using ML, AP, and ML/AP signals. The HMMR shows excellent results for signal segmentation between the different conditions with up to 98% in terms of overall accuracy. The performances obtained with multiple regression are better than those obtained with simple regression. The outcome of this study may help the clinicians to better understand the motor strategies used by the subjects during quiet standing and may provide a guideline for the rehabilitation process.
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Table 3 . 1 :

 31 Subjects information are expressed in mean±standard deviation [min-max] values.

		Young	Elderly
		Women	Men	Women	Men
	Number of subjects	7	7	7	7
	Age	24±2 [20-27]	24±3 [20-27]	61±5 [55-70]	66±7 [55-75]
	Height (cm)	166±2 [164-170] 182±6 [175-193] 163±9 [150-173] 171± 6 [163-182]
	Weight (kg)	56±6 [45-63]	78±12 [54-92]	65±10 [52-85]	77±9 [61-86]

Table 3 . 2 :

 32 Characteristics comparison between Fourier, wavelet and EMD methods

		Fourier	Wavelet	EMD
	Basics	a priori	a priori	adaptive
	Frequency	Global	Regional	Local
	Presentation	Energy-frequency Energy-time-frequency Energy-time-frequency
	Non-stationary	No	Yes	Yes
	Nonlinear	No	No	Yes

Table 3 . 3 :

 33 Stabilometric results

		Range of CoP	Mean velocity
		AP (mm) ML (mm)	(mm/s)
	Young			
	Women (=7)			
	Feet apart			
	Eyes open	19 ± 5	9 ± 3	7 ± 3
	Eyes closed	21 ± 5	9 ± 2	8 ± 5
	Feet Together			
	Eyes open	25 ± 5	27 ± 4	10 ± 4
	Eyes closed	25 ± 5	29 ± 4	12 ± 6
	Men (n=7)			
	Feet apart			
	Eyes open	26 ± 7	12 ± 7	7 ± 2
	Eyes closed	30 ± 10	10 ± 1	8 ± 2
	Feet together			
	Eyes open	32 ± 6	34 ± 6	12 ± 5
	Eyes closed	29 ± 5	35 ± 4	15 ± 7
	Elderly			
	Women (n=7)			
	Feet apart			
	Eyes open	24 ± 10	8 ± 3	8 ± 2
	Eyes closed	24 ± 8	8 ± 3	8 ± 3
	Feet together			
	Eyes open	25 ± 9	29 ± 4	12 ± 6
	Eyes closed	27 ± 9	30 ± 7	15 ± 7
	Men (n=7)			
	Feet apart			
	Eyes open	26 ± 4	10 ± 2	11 ± 7
	Eyes closed	31 ± 8	11 ± 2	14 ± 8
	Feet together			
	Eyes open	32 ± 8	35 ± 7	15 ± 7
	Eyes closed	40 ± 8	45 ± 8	25 ± 16

Table 3 . 4 :

 34 Effect of age, gender, feet position and vision for the COP excursion and the mean velocity parameters

		Range AP Range ML	MPV
	Age	ns	ns	ns
	Gender	0.007	0.0002	ns
	Age*Gender	ns	ns	ns
	Feet	<0.0001	<0.0001	<0.0001
	Feet*Age	ns	ns	ns
	Feet*Gender	ns	0.002	ns
	Feet*Age*Gender	0.01	ns	ns
	Vision	ns	0.003	<0.0001
	Vision*Age	ns	ns	ns
	Vision*Gender	ns	ns	ns
	Vision*Age*Gender	ns	0.049	ns
	Feet*Vision	ns	0.0007	0.0005
	Feet*Vision*Age	ns	ns	ns
	Feet*Vision*Gender	ns	ns	ns
	Feet*Vision*Age*Gender	ns	ns	ns

p-value based on 4-way repeated measures ANOVA.

Table 3 . 5 :

 35 Mean (STD) of gain parameters

	Gain 7	AP (mm) ML (mm)			1.69 ± 0.91 0.22 ± 0.14	2.75 ± 1.90 0.21 ± 0.09		2.38 ± 0.9 4.44 ± 1.76	3.72 ± 2.66 7.31 ± 2.2			2.08 ± 1.02 0.51 ± 0.43	3.97 ± 0.74 0.38 ± 0.21		2.74 ± 1.2 4.33 ± 1.47	4.48 ± 1.57 11.01 ± 4.93				2.42 ± 1.57 0.18 ± 0.12	2.58 ± 0.94 0.21 ± 0.10		2.62 ± 1.45 5.27 ± 2.06	3.54 ± 1.80 6.34 ± 2.65			3.64 ± 1.22 0.31 ± 0.20	5.77 ± 1.77 0.36 ± 0.16		3.76 ± 1.33 8.16 ± 3.44	6.45 ± 3.01 12.6 ± 5.52
	Gain 6	AP (mm) ML (mm)			0.66 ± 0.3 0.30 ± 0.12	1.13 ± 0.77 0.35 ± 0.17		1.01 ± 0.29 1.98 ± 0.74	1.77 ± 0.54 3.83 ± 1.61			1.13 ± 0.37 0.65 ± 0.47	1.52 ± 0.65 0.77 ± 0.41		1.82 ± 0.74 2.41 ± 0.64	3.5 ± 0.96 4.97 ± 2.66				1.02 ± 0.48 0.31 ± 0.14	1.07 ± 0.41 0.36 ± 0.25		1.97 ± 0.96 3.03 ± 0.83	2.78 ± 1.26 4.66 ± 2.40			2.07 ± 1.01 0.54 ± 0.27	3.59 ± 2.01 0.66 ± 0.24		2.52 ± 0.44 4.80 ± 1.61	7.78 ± 6.21 8.74 ± 4.17
	Gain 5	AP (mm) ML (mm)			0.22 ± 0.1 0.2 ± 0.16	0.33 ± 0.16 0.39 ± 0.48		0.39 ± 0.16 0.8 ± 0.3	0.68 ± 0.3 1.45 ± 1.05			0.47 ± 0.2 0.23 ± 0.06	0.59 ± 0.31 0.25 ± 0.12		0.83 ± 0.33 1.17 ± 0.36	1.01 ± 0.61 1.77 ± 1.17				0.52 ± 0.39 0.18 ± 0.11	0.53 ± 0.31 0.24 ± 0.12		0.54 ± 0.17 1.57 ± 0.35	1.04 ± 0.29 2.09 ± 0.79			0.82 ± 0.51 0.31 ± 0.26	1.56 ± 1.07 0.43 ± 0.39		1.11 ± 0.58 2.56 ± 1.58	3.14 ± 3.07 5.75 ± 3.75
	Gain 4	AP (mm) ML (mm)			0.10 ± 0.07 0.04 ± 0.04	0.12 ± 0.05 0.05 ± 0.05		0.22 ± 0.18 0.17 ± 0.06	0.32 ± 0.38 0.23 ± 0.07			0.43 ± 0.41 0.09 ± 0.11	0.44 ± 0.5 0.05 ± 0.04		0.65 ± 0.64 0.47 ± 0.40	0.39 ± 0.31 0.49 ± 0.41				0.33 ± 0.51 0.02 ± 0.01	0.25 ± 0.19 0.03 ± 0.03		0.21 ± 0.18 0.23 ± 0.06	0.24 ± 0.19 0.34 ± 0.18			0.33 ± 0.23 0.05 ± 0.04	0.54 ± 0.53 0.07 ± 0.06		0.93 ± 1.36 0.54 ± 0.24	1.52 ± 1.37 1.45 ± 1.05
	Gain 3	AP (mm) ML (mm)			0.15 ± 0.13 0.01 ± 0.01	0.17 ± 0.09 0.02 ± 0.01		0.37 ± 0.4 0.22 ± 0.15	0.50 ± 0.76 0.23 ± 0.12			0.73 ± 0.8 0.09 ± 0.21	0.75 ± 0.09 0.10 ± 0.01		1.09 ± 1.35 0.74 ± 0.61	0.87 ± 0.23 0.57 ± 0.39				0.58 ± 0.71 0.01 ± 0.01	0.65 ± 0.31 0.02 ± 0.01		0.30 ± 0.29 0.25 ± 0.13	0.27 ± 0.29 0.30 ± 0.25			0.36 ± 0.41 0.02 ± 0.01	0.37 ± 0.29 0.05 ± 0.01		1.37 ± 2.21 0.54 ± 0.35	1.08 ± 0.68 1.15 ± 0.89
		Young	Women	Feet apart	Eyes open	Eyes closed	Feet together	Eyes open	Eyes closed	Men	Feet apart	Eyes open	Eyes closed	Feet together	Eyes open	Eyes closed	Elderly	Women	Feet apart	Eyes open	Eyes closed	Feet together	Eyes open	Eyes closed	Men	Feet apart	Eyes open	Eyes closed	Feet together	Eyes open	Eyes closed
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 36 Effect of age, gender, feet position and vision on EMD results.

		Gain3	Gain4	Gain5	Gain6	Gain7
	p-value	AP	ML	AP	ML	AP	ML	AP	ML	AP	ML
	Age	ns	ns	ns	ns	ns	0.005	0.007	0.006	ns	ns
	Gender	ns	0.003	0.008	0.001	0.008	ns	0.001	0.003	0.008	0.005
	Age*Gender	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Feet	ns	<0.0001 0.006 <0.0001 0.001 <0.0001	0.003	<0.0001	0.002	<0.0001
	Feet*Age	ns	ns	ns	0.015	ns	0.004	ns	ns	ns	ns
	Feet*Gender	ns	0.0018	ns	0.0009	ns	0.02	ns	ns	ns	0.01
	Feet*Age*Gender	0.002	ns	0.008	ns	ns	ns	ns	ns	ns	ns
	Vision	ns	ns	ns	ns	0.01	0.0002	0.001	<0.0001 <0.0001 <0.0001
	Vision*Age	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Vision*Gender	ns	ns	ns	ns	ns	ns	ns	ns	ns	0.009
	Vision*Age*Gender	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Feet*Vision	ns	ns	ns	0.009	ns	0.0003 <0.0001 <0.0001	ns	<0.0001
	Feet*Vision*Age	ns	ns	ns	ns	ns	ns	ns	0.006	ns	ns
	Feet*Vision*Gender	ns	ns	ns	ns	ns	ns	ns	ns	ns	0.007
	Feet*Vision*Age*Gender	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

It is clearly observed that the gain values with eyes open condition are often smaller than those with eyes closed condition for all groups : young/elderly or women/men, in both ML and AP directions. For example, the mean value of Gain4 for young-women under feet together is equal to 0.22 for eyes-open condition and 0.32 for eyes-closed condition, in the AP direction. It is equal to 0.17 and 0.23 respectively in the ML direction.

Furthermore, the gain values under feet apart condition are smaller than those under feet together condition. For example, the mean value of Gain5 for elderly-men with eyes open in AP direction is equal to 0.82 and 1.11 for feet apart and feet together conditions respectively, while it is equal to 0.31 and 2.56 for the same conditions in the ML direction.

Table 3 .

 3 6 shows a statistical analysis using repeated measures ANOVA by taking into account the different conditions for each gain in both ML and AP directions. These

	conditions are : age (young versus women), gender (women versus men), feet position
	(feet apart versus together) and eyes condition (eyes open versus together). Anova Sta-
	tistical analysis is done for each condition first, and then, for combinations of different
	conditions, such as Age with gender, feet with age, and feet with age and gender, etc.

Table 3 .
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	CP 7	AP (mm) ML (mm)			2.66 ± 1.4 0.33 ± 0.19	4.48 ± 3.03 0.34 ± 0.14		3.83 ± 1.33 6.99 ± 2.29	6.13 ± 4.06 11.67 ± 3.08			3.46 ± 1.56 0.77 ± 0.58	6.66 ± 1.09 0.61 ± 0.27		4.36 ± 1.77 6.79 ± 2.21	7.93 ± 2.23 17.62 ± 7.45			3.79 ± 2.23 0.29 ± 0.18	4.16 ± 1.45 0.27 ± 0.15		4.22 ± 2.17 13.21 ± 5.09	5.81 ± 2.74 20.77 ± 8.36			5.82 ± 1.77 0.50 ± 0.29	9.71 ± 2.85 0.57 ± 0.23		6.06 ± 2.03 15.55 ± 3.37	10.44 ± 4.56 22.63 ± 4.20
		ML (mm)			0.51 ± 0.19	0.56 ± 0.26		3.14 ± 1.15	6.16 ± 2.34			1.02 ± 0.7	1.16 ± 0.62		3.87 ± 1.14	8.03 ± 4.04			0.51 ± 0.23	0.57 ± 0.41		7.75 ± 2.28	13.9 ± 6.26			0.92 ± 0.44	1.09 ± 0.37		4.86 ± 1.2	13.39 ± 3.71
	CP 6	AP (mm)			1.04 ± 0.48	1.68 ± 1.12		1.58 ± 0.51	2.75 ± 0.82			1.65 ± 0.54	2.28 ± 1.10		2.75 ± 1.19	5.50 ± 0.93			1.49 ± 0.55	1.69 ± 0.62		3.84 ± 1.22	4.70 ± 2.05			3.24 ± 1.42	5.60 ± 3.06		3.97 ± 0.77	7.19 ± 9.72
		ML (mm)			0.31 ± 0.23	0.63 ± 0.76		1.26 ± 0.50	2.27 ± 1.47			0.32 ± 0.1	0.34 ± 0.18		1.7 ± 0.69	2.82 ± 1.82			0.28 ± 0.17	0.32 ± 0.19		4.03 ± 2.51	9.21 ± 5.64			0.46 ± 0.54	0.74 ± 0.71		2.54 ± 0.56	3.41 ± 1.20
	CP 5																												
		AP (mm)			0.33 ± 0.15	0.50 ± 0.24		0.50 ± 0.21	0.92 ± 0.45			0.49 ± 0.19	0.65 ± 0.20		0.98 ± 0.43	1.49 ± 0.88			0.63 ± 0.49	0.77 ± 0.51		0.77 ± 0.16	1.59 ± 0.39			1.24 ± 0.86	2.44 ± 1.58		1.37 ± 0.66	4.69 ± 4.44
	CP 4	ML (mm)			0.06 ± 0.05	0.07 ± 0.06		0.12 ± 0.03	0.17 ± 0.07			0.07 ± 0.03	0.077 ± 0.072		0.19 ± 0.12	0.32 ± 0.36			0.02 ± 0.02	0.03 ± 0.03		0.45 ± 0.25	1.38 ± 1.20			0.06 ± 0.07	0.09 ± 0.09		0.16 ± 0.04	0.31 ± 0.19
		AP (mm)			0.05 ± 0.02	0.06 ± 0.04		0.09 ± 0.03	0.14 ± 0.06			0.11 ± 0.05	0.13 ± 0.08		0.21 ± 0.12	0.33 ± 0.41			0.12 ± 0.08	0.13 ± 0.082		0.10 ± 0.03	0.18 ± 0.10			0.24 ± 0.18	0.65 ± 0.60		0.41 ± 0.34	1.53 ± 0.34
	CP 3	ML (mm)			0.006 ± 0.004	0.007 ± 0.006		0.031 ± 0.014	0.034 ± 0.012			0.019 ± 0.025	0.014 ± 0.017		0.091 ± 0.079	0.095 ± 0.081			0.07 ± 0.005	0.09 ± 0.007		0.102 ± 0.039	0.348 ± 0.267			0.011 ± 0.009	0.017 ± 0.016		1.42 ± 0.012	1.57 ± 0.028
		AP (mm)	Young: Women	Feet apart	Eyes open 0.03 ± 0.01	Eyes closed 0.02 ± 0.01	Feet together	Eyes open 0.04 ± 0.03	Eyes closed 0.07 ± 0.07	Young: Men	Feet apart	Eyes open 0.08 ± 0.07	Eyes closed 0.09 ± 0.09	Feet together	Eyes open 0.14 ± 0.13	Eyes closed 0.10 ± 0.10	Elderly: Women	Feet apart	Eyes open 0.07 ± 0.10	Eyes closed 0.05 ± 0.04	Feet together	Eyes open 0.04 ± 0.04	Eyes closed 0.04 ± 0.03	Elderly: Men	Feet apart	Eyes open 0.07 ± 0.05	Eyes closed 0.13 ± 0.12	Feet together	Eyes open 0.71 ± 0.26	Eyes closed 0.91 ± 0.41

7: Mean (STD) of CP parameters

Table 3 . 8 :

 38 Repeated measures ANOVA analysis of CP parameters

			CP3		CP4		CP5		CP6		CP7
	p-values	AP	ML	AP	ML	AP	ML	AP	ML	AP	ML
	Age	ns	ns	ns	0.04	0.016	0.005	0.003	0.008	Ns	ns
	Gender	0.01	0.002	0.04	0.02	0.02	0.027	0.003	0.003	0.008	0.005
	Age*Gender	ns	ns	ns	ns	ns	ns	ns	ns	Ns	ns
	Feet	0.006 <0.0001 0.02 0.0001 0.004 <0.0001 <0.0001 <0.0001	0.001	<0.0001
	Feet*Age	ns	0.02	ns	0.011	ns	0.004	0.02	0.008	Ns	ns
	Feet*Gender	0.02	0.001	ns	0.016	ns	0.03	ns	0.035	Ns	0.01
	Feet*Age*Gender	0.02	ns	ns	ns	ns	ns	ns	ns	Ns	ns
	Vision	ns	0.026	ns	0.008 0.008 0.0001	0.002	<0.0001 <0.0001 <0.0001
	Vision*Age	ns	0.027	ns	ns	ns	ns	ns	ns	Ns	ns
	Vision*Gender	ns	ns	ns	ns	ns	0.03	0.03	ns	0.01	0.01
	Vision*Age*Gender	ns	0.046	ns	ns	ns	0.02	ns	ns	Ns	ns
	Feet*Vision	ns	0.017	ns	0.007 0.003 0.0002	0.006	<0.0001	Ns	<0.0001
	Feet*Vision*Age	ns	0.026	ns	0.05	0.049	0.03	ns	ns	Ns	ns
	Feet*Vision*Gender	ns	0.032	ns	ns	ns	0.02	0.03	ns	Ns	0.009
	Feet*Vision*Age*Gender	ns	0.041	ns	ns	ns	0.05	ns	ns	Ns	ns

Table 3 .

 3 [START_REF] Redfern | Visual influences on balance[END_REF] gives the mean and the standard deviation values of the CP parameters.
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	8 shows the p-values of the statistical tests repeated measures ANOVA for all
	combinations : age (young vs women), gender (women vs men), feet position (feet apart
	vs together) and vision (eyes open vs together). This analysis is achieved for all CP
	parameters in the the ML and AP directions. This statistical test allows to analyze each
	condition separately and also all combinations between conditions such as Age with

gender, feet with age, feet with age with gender. In Table

3

.8, one can observe that the CP parameters in ML direction have p-values less than 0.05 more than those in AP direction. For CP3, there are four p-values less than 0.05 in AP direction but there are
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	Accuracy

1: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using IMFs data F 1 measure per class F 1 measure Precision Recall precision, and recall, followed by KNN, then SVM, and at the last Cart approach gives the worst performances. It can be also noticed that RF and KNN approaches give almost the same performances.

Table 4 .

 4 2: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using Raw data

		F 1 measure per class F 1 measure Precision Recall	Accuracy
		Healthy	PD				(R) ± (std)
	KNN (%)	79.23	81.33	80.28	80.25	80.33 80.33 ± 4.96
	SVM (%)	77.13	81.97	79.55	80.14	79.4	79.83 ± 5.59
	RF (%)	79.29	81.57	80.43	80.41	80.47	80.5 ± 6.33
	CART (%)	71.81	75.58	73.7	73.72	73.68 73.83 ± 7.13
	Table						

Table 4 .

 4 3: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) using EMD and Raw data F 1 measure per class F 1 measure Precision Recall

	Accuracy

Table 4 .

 4 4: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEC conditionF 1 measure per class F 1 measure Precision Recall

	Accuracy

Table 4 .

 4 5: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FAEO condition

		F 1 measure per class F 1 measure Precision Recall	Accuracy
		Healthy	PD				(R) ± (std)
	KNN (%)	85.61	86.98	86.3	86.26	86.38 86.33 ± 3.16
	SVM (%)	82.61	85.19	83.9	83.98	83.84	84 ± 4.14
	RF (%)	78.68	82.32	80.5	80.71	80.4	80.67 ± 4.7
	CART (%)	67.42	74.14	70.78	71.19	70.71 71.17 ± 5.73

Table 4 .

 4 6: F 1 -measure per class,F 1 -measure, precision, recall, and average of accuracy rates (R) and its standard deviation (std) for FTEC conditionF 1 measure per class F 1 measure Precision Recall

	Accuracy
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[START_REF] Redfern | Visual influences on balance[END_REF] 

summarizes the results obtained using features extracted/selected from IMFs data in the case of data collected under FTEO condition. It can be observed that the obtained recognition rate is higher than 85%. In this case, The RF method outperforms the other classification approaches. The KNN and CART methods give almost similar performances, while SVM method gives the worst performances.
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Table 5 . 1 :

 51 Classification rates with different numbers of states

	Number of states	2	3	4	5	6	7	8
	Classification rates 93.3 98.4 96.6 93.3 95 90 90

Table 5 . 2 :

 52 Classification rates with different numbers of Gaussian mixtures

	Number of Gaussian mixtures	2	3	4	5	6	7	8
	Classification rates	98.4 97 97 95 95 90 91.6

Table 5 . 3 :

 53 Performances of the proposed classification approach for differentiating between healthy and PD subjects using both ML and AP signals

		Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
	Healthy	28	28	0	100%	98.4%
	PD	32	1	31	96.8%	

Table 5 .

 5 3 shows the classification performances of the HMM models using both ML and AP stabilometric signals. It can be observed that only one PD subject was classified incorrectly. The sensitivity and the specificity are 100% and 96.4% respectively. The overall accuracy of healthy and PD subjects classification is 98.4%.

Table 5 .

 5 

		4: Performances of the proposed classification approach for differentiating
			between healthy and PD subjects using AP signals	
		Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
	Healthy	28	27	1	96.4%	96.6%
	PD	32	1	31	96.8%	
	Table 5.5: Performances of the proposed classification approach for differentiating
			between healthy and PD subjects using ML signals	
		Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
	Healthy	28	28	0	100%	98.4%
	PD	32	1	31	96.8%	

Table 5 .

 5 4 and table 5.5 give the performances of the proposed classification approach when using AP and ML signals respectively. The performances obtained using ML signals are similar to those obtained using both ML and AP signals, where the overall accuracy is 98.4%. Using AP signals, only one healthy subject and one PD subject were classified incorrectly. The overall accuracy is 96.6% (Table5.4).

Table 6 . 1 :

 61 Confusion Matrix for AP direction

	Predicted Class			
	FAEC FTEC FAEO FTEO
	True Class FAEC 95.70	4.29	0	0
	FTEC 5.53	72.55	21.91	0
	FAEO 0	25.14	72.05	2.79
	FTEO 0	0	2.24	97.75

Table 6 . 2 :

 62 Confusion Matrix for ML direction

	Predicted Class			
	FAEC FTEC FAEO FTEO
	True Class FAEC 97.94	2.05	0	0
	FTEC 2.38	96.22	1.38	0
	FAEO 0	4.22	92.11	3.65
	FTEO 0	0	8.49	91.50

Table 6 . 3 :

 63 Confusion Matrix for both AP and ML directions

	Predicted Class			
	FAEC FTEC FAEO FTEO
	True Class FAEC 100	0	0	0
	FTEC 0	97.83	2.16	0
	FAEO 0	3.31	96.66	0
	FTEO 0	0	2.16	97.82

Table 6 .

 6 3 shows the confusion matrix obtained for HMMR segmentation for both the AP and ML directions. It shows better results compared to those shown in tables 6.1 and 6.2, where the minimum classification rate is greater than 96%.

Table 6 . 4 :

 64 Correct classification rates (%) obtained with the different methods

	Method	Rate ML	Rate AP	Rate Pla-
		(%)	(%)	nar (%)
	KNN	51.2	47.1	79.6
	CART	46.2	42.6	74.7
	RF	51.3	47.2	81.6
	HMM	58.2	53.4	72.9
	HMMR	94.2	85.2	98.5

Table 6 . 5 :

 65 Correct classification rates (%) obtained with PD subjects using HMM and HMMR.

	Method	Rate ML	Rate AP	Rate Pla-
		(%)	(%)	nar (%)
	HMM	57.3	49.4	63.6
	HMMR	87.8	75.7	89.9

Table 6 . 6 :

 66 Confusion Matrix for both AP and ML directions (Planar) for PD subjects

	Predicted Class			
	FAEC FTEC FAEO FTEO
	True Class FAEC 88.03	11.96	0	0
	FTEC 23.60	74.48	1.90	0
	FAEO 0	5.72	94.27	0
	FTEO 0	0	0	100
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train and test the classification methods. In this study, the training dataset and the testing dataset are estimated using a 10-fold cross-validation method.

Results and discussions

In this study, for each condition, a total of 12 and 96 characteristics are calculated, respectively, from raw stabilometric data and their corresponding IMFs. In order to select the subset of the most relevant features, a feature selection process is carried out. This process consists of finding a minimal subset of features that are necessary and sufficient to adequately differentiate between the healthy and PD subjects. For this purpose, a random forest feature selection method is used to select the most relevant features from the extracted ones. This method belongs to the family of wrapper methods, in which the prediction performance is included in the score calculation phase. The Random forest feature selection method consists of reordering the features according to their scores. In this study, a set of 5 relevant features representing the best scores are selected as the classifiers inputs in both cases : raw data and IMFs data.

Obtained results using data collected from all conditions

In this paragraph, we present the obtained results using the features extracted/selected from raw stabilometric data, IMFs data and both IMFs & Raw data together from all conditions. In this case, a total of 48 (12*4) The obtained results using data collected from all conditions are given in tables 4.1, 4.2 and 4.3. Table 4.1 summarizes the results obtained using features extracted/selected from IMFs data. It can be observed that the obtained recognition rate is higher than 78%. It can be also noticed that the SVM method gives the best performance in terms of Accuracy, F-measure, precision, and recall, followed by RF, then KNN, and at the last, CART approach gives the worst performances. The results obtained using raw data collected under each condition are given in tables 4.8, 4.9, 4.10, and 4.11.

Table 4.8 summarizes the results obtained using features extracted/selected from raw data collected under FAEO condition. It can be observed that the obtained recognition rate is higher than 71%. The SVM method gives the best performance in terms of accuracy, F-measure, precision, and recall, followed by RF, then KNN, and at the last CART method gives the worst performances.

Table 4.9 shows the results obtained using features extracted/selected from raw data collected under FAEC condition. It can be observed that the obtained recognition rate is higher than 78%. The KNN method gives the best performance in terms of Accuracy, F-measure, precision, and recall, followed by RF, then SVM, and finally, the CART method gives the worst performances.

Chapitre 5

HMM-BASED CLASSIFICATION APPROACH

Chapter 6

The pseudo-code in the algorithm 3 summarizes the EM algorithm of the HMMR method with multiple regression.

Algorithm 3 Pseudo-code for EM algorithm with multiple regression

Input : time series X, number of polynomial components K, polynomial degrees p.

1 , .., B

K , S

1 , .., S

K ) 2: fix a threshold > 0 3: set q ← 0 4: while increment in log-likelihood > (do)

5:

E-step :

for k=1,..,K do 7: compute τ (q) ik using Eq.6.7 and ξ (q) ilk using Eq.6.8 for i=1,..,n q ← q + 1 16: end while 17: Φ = Φ (q) Outputs : Φ = (π, Â, B1 , .., BK , Σ1 , .., ΣK )

HMM Regression-based approach for automatic segmentation of stabilometric signals

The Hidden Markov Model Regression (HMMR) approach is proposed for the segmentation of the measured stabilometric signals.

The problem of condition recognition can therefore be reformulated as one of a joint segmentation of multidimensional time series, in which each segment is associated with one condition.

The proposed statistical approach is dedicated to temporal segmentation by including a hidden process in which the process probabilities change over time according to the most likely condition. The approach performs in an unsupervised context from CoP excursion stabilometric signal recordings.

The configuration of the hidden process at each time step corresponds to a condition described by a regression model. The hidden process configuration depends on time, and

Perspectives

The perspectives resulting from this thesis can be summarized as follows :

-From an algorithmic point of view 1. Extension of the EMD method for bivariate analysis in order to decompose the stabilometric signals in AP and ML directions together.

2. Integration of a selection model in the HMMR-based approach that guarantees the automatic identification of the segment number without any prior knowledge. -From an application point of view :

1. Classification between healthy/PD, women/men, young/elderly based on gain and CP parameters.

2. Classification between healthy/PD, women/men, young/elderly based on the regression model parameters of segmentation process, proposed in chapter VI. Indeed, other extracted parameters, such as the regression coefficients β, may be considered as potential parameters that may impact the overall classification rate and necessitate further investigations.

3. Applying the used classification approaches in order to discriminate between different levels of PD subjects.