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Resumé

L’analyse de la stabilité posturale chez l’homme a fait l’objet, ces dernières années, d’un intéret

grandissant au sein de la communauté scientifique. Le système postural permet de maintenir la

stabilité du corps humain en posture statique ou dynamique. Cette capacité à maintenir cette

stabilité devient critique dans le cas des sujets Parkinsoniens. La maladie de Parkinson a en

effet une forte incidence sur la stabilité posturale. Un moyen efficace pour évaluer l’équilibre

postural consiste à analyser les déplacements dans le plan horizontal du centre de pression du

corps humain en posture orthostatique ; les trajectoires mesurées dans la direction medio-latérale

(ML) et la direction Antéro-postérieure (AP) sont appelées signaux stabilométriques. Dans cette

thèse, nous visons le développement de méthodes efficaces pour l’analyse de l’équilibre en posture

orthostatique sous différentes conditions liées, l’entrée visuelle (yeux ouverts/yeux fermés), la

position des pieds (pieds joints/pieds écartés), et en considérant d’autres facteurs comme le genre

et l’age. Dans ce cadre, nous proposons, tout d’abord, une méthode exploitant la variante EEMD

(Ensemble Empirical Mode Decomposition) de la décomposition en modes empiriques (EMD)

et l’analyse de la diffusion du stabilogramme. Dans le contexte du diagnostic de la maladie de

Parkinson, la discrimination entre sujets sains et sujets Parkinsoniens est très importante, de

même que l’évaluation du stade de la maladie pour les sujets atteints. Dans ce cadre, deux

méthodes sont proposées. La première consiste tout d’abord en une extraction et sélection de

caractéristiques temporelles et spectrales, à partir des signaux stabilométriques bruts ou des

modes de fonctions intrinsèques dérivés de la décomposition EEMD. Des méthodes standards de

type KNN, CART, RF et SVM sont ensuite appliquées pour reconnaitre les sujets Parkinsoniens.

La deuxième méthode proposée, est une approche de classification qui repose sur l’emploi des

modèls de Markov cachée (HMMs) construits en utilisant les signaux stabilométriques bruts dans

les directions ML, AP et ML/AP. Enfin, une dernière méthode est proposée pour la segmentation

automatique des signaux stabilométriques sous différentes conditions (entrée visuelle, position des

pieds). Pour ce faire, un modèle de régression régi par une chaine de Markov cachée (HMMR) est

utilisé pour détecter automatiquement les variations des structures des signaux stabilométriques

entre ces conditions. Les résultats obtenus montrent clairement la supériorité des performances

des méthodes proposées par rapport aux approches standards, aussi bien, en termes d’analyse

de l’équilibre postural que de diagnostic de sujets Parkinsoniens.

Mots clés : Analyse posturale, stabilométrie, décomposition du signal, classification, HMM,

HMMR, maladie de Parkinson. .





Chapitre 1

GENERAL INTRODUCTION

In recent years, human balance control analysis has received an increasing interest

from the research community. This is mainly due to the necessity of understanding the

complex mechanisms of the human postural system, which contribute to the development

of efficient solutions for unstable postures in terms of orientation and equilibrium and

to help decrease the high rate of falls among elderly and patients. The human postural

system maintains the stability of the body both in the static posture (quiet standing)

and during locomotion by considering external perturbations. It successfully keeps the

human body in the upright position through the interactions among the central nervous

system, the musculoskeletal system, and three sensory systems : vestibular, visual and

proprioception systems.

The ability to maintain postural stability becomes a difficult task with aging and

when suffering from some pathologies that affect the human stability such as Parkinson’s

disease (PD), cerebellar disease and vestibular deficits. Stability disorders of the elderly

may lead to sudden falls with important orthopedic complications. Parkinson’s disease

is one of the most common degenerative movement disorders which is characterized by

the progressive loss of specific neurons in the brain. It has a strong impact on postural

stability during quiet standing situations, and during locomotion. This disease is the

second most common neuro-degenerative disease in France, after Alzheimer’s disease.

According to the national institute of health and medical research, between 100,000

and 120,000 people are affected in France, and about 8000 new cases occur each year.

One effective way to assess human stability is to analyze the postural sway during

4



General introduction

quiet standing. This can be performed by quantifying the center of pressure (CoP)

displacements of the human body during the quiet standing. The CoP displacements

are recorded in the medio-lateral (ML) and antero-posterior (AP) directions over time,

and the resulting signals are called stabilometric signals. Many classical parameters,

such as, the mean velocity, the range, the swept area, the root mean square distance,

are generally extracted from the stabilometric signals in order to analyze and compare

stability under different conditions, such as the visual input and feet position.

The work of this thesis aims to develop efficient approaches in order to :

(1) Analyze the postural stability under different visual and feet position conditions,

and between gender and age groups. In other words, the goal is to analyze the effect of

the aforementioned conditions on the human stability using stabilometric signals. This

is achieved using the Ensemble Empirical Mode Decomposition (EEMD) method for

non-linear signals decomposition. This method does not use any a priori, and allows to

decompose the original signal into a finite number of intrinsic mode functions (IMFs)

based on frequency bands decomposition. Compared to classical approaches used in the

literature, the EEMD method allows better analysis of the stabilometric signals. The

analysis of each IMF, provides further information in depth about the human postu-

ral behaviors. The proposed method is compared favorably to standard stabilometric

analysis that is often used to assess the human stability.

(2) Discriminate healthy from PD subjects. This discrimination is very important for

diagnosing Parkinson’s disease, as well as for evaluating the patient’s disease level. Two

approaches are proposed to address this problem. The first approach consists of an

EMD-based temporal and spectral feature extraction/selection from the stabilometric

signals. The EMD method allows to decompose the stabilometric signal into several

components based on the frequency bands. Standard classification techniques were used

to discriminate healthy from Parkinsonian subjects. This approach guarantees a better

caracterisation of the stabilometric signal through the analysis of the features resulting

from the different generated IMFs. The second approach to discriminate healthy from

PD subjects is based on a Hidden Markov model (HMM). The raw stabilometric data

are used directly as input for the HMM model. The HMM model is an efficient tool to

analyze temporal and sequential data. Compared to classical approaches, the proposed
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approach allows accurate discrimination between healthy and PD subjects based on the

sequential structure of their stabilometric signals.

(3) Segment the stabilometric signals recorded under four different conditions related to

vision and feet position. A Hidden Markov Model Regression (HMMR)-based approach

is used to carry out the segmentation between the different conditions using simple

and multiple regression processes. The problem of condition recognition is formulated

as one of a joint segmentation of multidimensional time series, in which each segment

is associated with one condition. The proposed approach performs in an unsupervised

context, which avoids data labeling phase, that is often time-consuming especially in the

case of massive databases.

This manuscript is organized as follows :

Chapter 2 provides an exhaustive study about human postural stability. The postural

system and its components in the human body are first presented. The second part of

the chapter describes the primary tools commonly used to record and evaluate human

postural sway in quiet standing. In the third part, the most relevant studies in the

literature are presented and analyzed to highlight their performances and limitations.

Chapter 3 presents a new approach to analyze the human stability during orthostatic

posture. The protocol used for measuring the stabilometric signals is first described, and

then, the EMD method and its extension Ensemble EMD (EEMD) are presented. The

principal of the Stabilogram-diffusion analysis technique, and the EMD-based proposed

approach for a better assessment of the human posture, are then presented. Finally, the

performances of the proposed approach are presented and discussed.

Chapter 4 proposes a novel approach to distinguish healthy subjects from PD ones

using an EMD-based temporal and spectral feature extraction. The first part of this

chapter describes the supervised classification methods used in this study. The proposed

framework for discriminating between healthy and PD subjects using stabilometric data

is then presented. Finally, the last part of the chapter presents the experimental results

and discussions of this study.

Chapter 5 presents another classification approach to discriminate healthy subjects

from PD subjects using the Hidden Markov model (HMM) method. The raw stabilo-

metric data in ML, AP, and ML/AP directions, are used directly as model’s input. The
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first part of this chapter describes the hidden Markov models used in this study. The

proposed approach for classifying healthy and PD subjects is then detailed in the second

part. Finally, the performances of this approach are presented and discussed in the last

part of the chapter.

Chapter 6 addresses the problem of the automatic segmentation of stabilometric

signals recorded under four different conditions related to vision and feet position. This

is achieved for both healthy subjects and PD subjects. A Hidden Markov Model Re-

gression (HMMR)-based approach is used to carry out the segmentation between the

different conditions using simple and multiple regression processes. The first part of this

chapter describes the HMM regression model used in this study. The HMMR-based ap-

proach, proposed for automatic segmentation of stabilometric signals, is then detailed

in the second part of the chapter. The performances of this approach are presented and

discussed in the last part of the chapter.

Chapter 7 consists of a general conclusion, in addition to open perspectives from

algorithmic and application points of view.
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Chapitre 2

THE HUMAN POSTURAL

STABILITY ANALYSIS
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Chapter 2

2.1 Introduction

The tonic postural system guarantees the equilibrium of the human body in static and

dynamic standing situations, as well as during locomotion activities. We can say that

such a system is in a balance state when the sum of all forces and all moments acting

on this system is null. In case of static posture, static balance is achieved when two

conditions are considered : first, the weight applied to the center of mass and the reaction

forces of support applied to the center of pressure of the contact surface are equal and

opposite ; second, the center of gravity and the center of pressure are aligned on the

same vertical line.

In the present chapter, an exhaustive study of human postural stability is presented. The

first part describes the human postural system and its components. The primary tools

to record and evaluate human sways in static posture are then presented. In the last

part, the most relevant studies in the literature are shown and analyzed by highlighting

the performances and limitations of the proposed techniques.

2.2 The human postural system

2.2.1 Definition

The tonic postural system is considered as a complex organization which involves seve-

ral internal systems and has multiple sources of information. This system controls the

human body sways and provides the human body equilibrium whatever the external

environment status.

In case of standing in stable position with or without external disturbances, it is impos-

sible for the human body to remain perfectly immobile [1]. This fact is due to several

reasons mainly coming from neuromuscular adjustments [2], respiration [1], insufficient

sensitivity of sensory receptors [3], or from the blood circulation [4].

The interaction between three principal systems including sensory, motor and central

nervous systems insures the stability of the human body. The postural system uses

information sourced from visual, vestibular and proprioceptive sensors [5] to estimate

the center of mass position in the three directions of space. The variation of the center of
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mass position is captured by these sensors which send information to the central nervous

system (vestibular nuceli, the spine, and the cerebellum). The central nervous system

sends commands to the skeletal muscles and to all other body muscles (motor system)

to provide again the postural equilibrium.

The feet are the base of support of the human body which plays the main role in

the balance control [6]. The size, strength and position of the feet affect strongly the

human postural stability. The visual input helps also the postural system to maintain

its stability and provides external information about the human body environment [7].

Aging population suffers from stability problems more than young population due to

the decrease in some internal function abilities or due to the appearance of some specific

diseases, such as the Parkinsons disease (PD) [8–12]. In contrast, internal and external

factors can affect the functions of the postural system, and therefore, the human body

stability.

2.2.2 The main components of the postural system

The tonic postural system has two types of entries. The input related to external in-

formation and those related to interior information. The sensory input provides the

observed information, the body orientation, as well as the external environment status.

The postural system takes into account the information related to the position of each

body segment with respect to others as well as the whole body position with respect

to its environment. In the following subsections, the components of the tonic postural

system are presented. (1) the cephalic sensors including the ocular sensor and vesti-

bular system ; (2) the primary sensory organ of equilibrium (the foot) ; (3) the central

regulation system and motor response.

2.2.2.1 Ocular sensor

The ocular sensor provides two different types of information. The first type is purely

visual information, when the retinal picture is transmitted to the central nervous system.

The second type of information is related to the tension of the external oculomotor

muscles (Figure 2.1).
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The retina provides information about the position and the movement of the body in

space. This is achieved thanks to the retina sensory receptors which transmits foveal and

peripheral visual information. The foveal vision allows the identification of objects and

provides the main directions, i.e. the vertical and horizontal ones. The peripheral vision

gives information about the situation of the subject with respect to its environment.

This type of vision is involved in the dynamic equilibrium [13].

Figure 2.1: Eye components [14]

2.2.2.2 Vestibular system

The vestibular system is one from the essential sensory systems that provide and main-

tain the human body stability. It is located in the inner ear as a 3D motion detector

(Figure 2.2). The inner ear consists of two distinguished parts, the first one has a neu-

rosensory canal for the hearing function. The second part is the vestibule which is the

responsible of the equilibrium function. The vestibule has three semicircular canals po-

sitioned at right angles to each other in the superior, posterior and horizontal positions.

These canals are very sensitive during body movements and detect any displacement in

the three planes of the space. The first canal detects the displacements on the horizontal

plane, the second one detects the displacements on the frontal plane, and the last one,

the displacements on the sagittal plane. These canals are attached to the utricle which
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communicates with the saccule. These two organs controls the positions of the head, in

the horizontal and vertical planes respectively [5, 15, 16].

The three canals are filled with a fluid called endolymph. When the head rotates, the

endolymphatic fluid within the concerned canal lags behind because of inertia, and exerts

pressure that deflects the cupula in the opposite direction. This deflection stimulates the

hair cells by bending their stereocilia in the opposite direction. The receptor then sends

impulses to the brain about movement from the specific canal that is stimulated. When

the vestibular organs on both sides of the head are functioning properly, they send

symmetrical impulses to the brain (Figure 2.2).

Figure 2.2: Inner ear [17]

2.2.2.3 The base of support : the foot

The foot is an important organ for the postural stability process, which is also the contact

area between the human body and the ground. It informs the postural system on the

geometry of the body support zone on the ground and also on the characteristics of the

reaction force acting on that zone. The foot is equipped with multiple sensory receptors

at different levels : cutaneous, joint, tendon and muscle. The proprioception of the foot is

about four times higher than that of the leg. By transmitting the ground reaction force

to the body, the foot accurately adjusts the posture of the human body. Indeed, plantar

soles continuously indicate the differential pressure between the two plantar vaults. In

consequence, the feet generates its own internal forces and adapts its compliance [16].
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Each foot consists of three support points which constitute three arches : The internal

arch is normally the most hollow goes from the first metatarsal head to the support

center of the calcaneus (Figure 2.3). The external arch is much less hollow and goes

from the fifth metatarsal head to the support center of the calcaneus. The anterior

arch is relatively flat and goes from the head of the first metatarsal head of the fifth

metatarsal.

Figure 2.3: Feet polygon

The feet position on the ground and their symmetrical arches determine the support

polygon. This polygon is constituted by the surface of the foot on the ground. Normally,

the projection of the body center of gravity passes through the center of the polygon

in the static posture. In contrast, a projection appearing outside the polygon, induces a

balance problem.

2.2.2.4 Central regulation system

Central regulation is based on the actions of superiors centers. The nerve impulses lead

to cortical and subcortical structures. Their integrative action allows control of all com-

ponents of the tonic postural system through intermediary reflexes. The control of sta-

bilizing look is possible thanks to vestibulo-ocular and visual-oculomotor reflexes. The

vestibulo-spinal and vestibular-ocular-cervical reflexes allow the overall control and the

maintenance of posture by their action on the myotatic reflex [18].
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2.2.2.5 Motor response

The whole skeleton-Musculature provides a chain of articulated segments. The form of

these segments, the functional distribution of muscles, and the degrees of freedom of

the various joints especially in the lower limbs for the standing posture cause effective

movements to maintain their position and thus body stability [19]. The muscles are the

main effectors of corporal movement. The adaptation of postural disturbances involves

the following muscles : At the level of the posterior compartment of the leg innervated

by the tibial nerve, the soleus is a primary agonist in standing position. The muscles

of the anterior compartment innervated by the deep peroneal nerve are involved in the

dorsal flexion of the ankle with the main agonist anterior tibialis. Among the muscles

acting on the knee flexion, there is the semitendinosus, which has as primary antagonist,

the right thigh and the vast quadriceps (medial and lateral).

According to the directions in which postural adjustments are required, the osteoarti-

cular biomechanics and muscular system use specific strategies such as, ankle strategy,

hip strategy and stepping strategy.

2.2.3 The primary strategies to maintain stability

Generally, the postural control system uses three types of movement strategies (Figure

2.4) [18]. The first strategy considers the whole body to be an inverted pendulum that

moves around the ankle to maintain the equilibrium during quiet stance (ankle strategy).

This strategy is used for small disturbances to maintain the body center of mass (COM)

within the feet polygon.

The second strategy uses fast movements when the body exerts torque at the hip in

order to generate an appropriate center of mass position to avoid falling (hips strategy).

This strategy is used for rapid external disturbances and for small support surfaces.

The third strategy consists of moving the feet (stepping) to bring back the human body

to a stable position (stepping strategy) [20–22]. It is used when the person has a high

risk of falling.
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Figure 2.4: Movements strategies [23]

2.3 Tools for evaluating postural stability

2.3.1 Postural recording systems

In fact, any person is not able to remain perfectly standing without movements of low

amplitudes. To assess the performance of the human postural system, it is necessary to

assess the movements of the center of mass of human body in static and/or in dynamic

situations. Consequently, in almost static situations, precise systems are necessary to

detect these weak oscillations of the human body. The first stabilometric measurements

were recorded by Karl Vierordt in 1960 (Figure 2.5) [24]. The equipment used by Vierordt

to record the postural sway was rudimentary : a feather attached to the top of a helmet

scratching a sheet coated by black carbon, and attached to the ceiling. Only the envelope

of the drawing made through this feather worn by the person for each of the following

conditions : (a) with eyes open, (a’) with eyes closed ; (b) the right leg being the support ;

(c) sitting with eyes open, (c’) sitting with eyes closed ; and (d) standing on the only

right foot.

In the literature, there are several methods to measure the human body displacements

in quiet standing. Three categories of methods can be identified :

1. Video-based methods [25, 26],

3. Inertial sensors-based methods [27].
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Figure 2.5: First stabilometric recordings [24]

2. Force platform-based methods [28–30],

The first category includes video-based methods allowing to model the human body as

one or several articulated segments ; this modeling refers to segmental postural stability.

[31–33]. These methods are not easy to use because they require specific environment

with video cameras and sensors that must be placed on the human body. The second

category uses accelerometers for the human postural assessment. The third category,

based on the use of force platforms, includes three methods that are detailed bellow.

2.3.1.1 Video-based methods

The motion analysis video-based system was used by Collins et al. to analyze the in-

fluence of added noise under feet of subjects (Fig. 2.6) [34]. This system consists of

cameras and a reflective marker placed on the shoulder of the subject. The camera

records the human body displacements through the marker displacements [34].

Another system, called active markers system, uses powered markers sending an infrared

signal which is captured by sensor units. This technology requires small powered boxes

that should be attached to the subject.

The video-based methods can provide qualitative and quantitative information about

postural stability, using markers or sensors placed on the subject body ( Fig. 2.7), and

can also provide high level of accuracy and reliability during the recording of the postural

sway in a quiet stance [25, 26].
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Figure 2.6: Vicon camera system [34]

Figure 2.7: Multicamera system (According to Maeva Le Goic)

2.3.1.2 Body-worn inertial sensors-based methods

Accelerometers are used as an alternative technique to assess the posture stability in both

static and dynamic conditions. This technology is widely used due to the low-cost of items

compared to other systems such as videos systems [27]. Accelerometers can be placed on

the posterior trunk to estimate the center of mass (COM) displacements or on specific

positions to assess joint movements. There are other techniques to estimate the human

body movements such as Electrogoniometers that have been mainly used to analyze

changes in segmental postural position by measuring the joint angular displacements.
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2.3.1.3 Force platform-bsed methods : the stabilometer

Figure 2.8: Force platform connected to a PC. The three axes (x, y, z) represent,
respectively, the anteroposterior (AP), mediolateral (ML) and the vertical axes.

Three different graph types can be used to visualize the center of pressure displacements :

The first method used in the force platform-based techniques consists of integrating twice

the acceleration of the COM to estimate its displacements [35, 36]. The second method

is based on the modeling of the human body as an inverted pendulum [32, 37, 38]. The

third method is the frequency method [39–42]. Its principle is that the center of pressure

is interpreted as a noisy signal of the center of mass. It uses the low-frequency filter,

defined by the relationship between the center of pressure and the center of mass in the

frequency domain, to calculate the center of mass displacements. This method has some

problems with inertia moments to define the filter parameters. The COP position can be

easily estimated using a force platform and it is widely used to characterize the human

balance in quiet standing [28–30]. Therefore, to determine the position of the center of

pressure in static posture and to analyze its fluctuations versus time, stabilometry is

widely used as a measurement technique for postural assessment.
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Figure 2.9: Planar illustration of COP displacements (Mondor stabilometric data)

Stabilometry is a specialized clinical assessment technique used to quantify the center of

pressure displacements of human body in standing position under a variety of conditions

such as : open eyes, closed eyes, stable or unstable support, feet apart, and feet together.

This quantification is performed using a force platform for determining the coordinates

of the center of pressure exerted by the person on the surface of this platform (Figure

2.8).

The center of pressure is the application point of the reaction forces generated by the

person on the surface of the force platform. This platform allows to measure six com-

ponents : three reaction forces Fx, Fy and Fz and three moments Mx,My and Mz from

which the anteroposterior (AP) and mediolateral (ML) displacements of the center of

pressure will be calculated. The coordinates of the center of pressure can be calculated

from the following equations :

X = AP = −My

Fz

Y = ML = −Mx

Fz

(2.1)

Figure 2.9 shows the COP position trajectory according to AP axis (x) and ML axis (y).
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Indeed, it is possible to extract from this trajectory spatial and temporal parameters to

characterize the balance, such as the mean position, the mean velocity, etc.
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Figure 2.10: Temporal representation of ML and AP displacements

The stabilogram shown in figure 2.10 represents a linear illustration of the anteroposte-

rior and mediolateral displacements of center of pressure versus time. From this repre-

sentation, the linear, non-linear parameters and those related to the temporal aspects

of the trajectory of the center of pressure can be extracted, such as Lyapunov exponent,

the Hurst exponent and entropy.
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Figure 2.11: Spectral representation of ML and AP displacements
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In figure 2.11, a spectral representation of the center of pressure in both AP and ML

directions is illustrated. In static position, the frequency band of the center of pres-

sure in both directions is between 0 and 5 Hz. From this representation, the frequency

parameters can be extracted such as mean and median frequencies, etc.

2.3.2 Protocols for COP displacements recordings

Figure 2.12: Feet positions : (A) feet together, (B) feet apart, (C) semi tandem, (D)
full tandem, (E) single foot

Various protocols and postural conditions have been used in the literature to record the

center of pressure (CoP) displacements. Usually, the main controlled variables are : feet

position, visual input (eyes closed, eyes open), test duration, and sampling frequency.

For feet position, postural tests are recorded either in a bipedal stance (see figure 2.12

(a), (b), (c), and (d)) or in a monopedal stance (see figure 2.12 (e)). In both stances,

there are many types of feet displacements such as : feet together, feet apart, quiet

stance using one foot, semi tandem, full tandem, etc. (Figure 2.12). The feet either form

an angle of 15 to 30 degrees or they are positioned in parallel. The inter-feet distance is

usually between 5 to 15 cm with an angle of 15 to 30 degrees.

For visual input, the postural tests are recorded with or/and without visual information.

The suppression of visual input occurs by closing the eyes to compare the human stability

with and without these information.

On the other hand, most of time, the postural tests are recorded in static or/and in

dynamic conditions. This is accomplished to analyze and compare the postural stability

under perturbations such as arm, leg and platform perturbations [43–47]. In addition, the

postural tests are measured under different test durations. The test duration commonly

used varies between 20 and 60 s.
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2.3.3 Clinical stabilometry standardization

As mentioned in the previous section, there are a lot of experimental protocols used

in different postural conditions. In [48], Scoppa et al. propose a clinical stabilometry

standardization technique for test duration and sampling frequency.

As shown in figure 2.13, standard parameters (Sway Path, Sway Area and Confidence

Ellipse Area) are steady and a sampling rate of 50 Hz seems to be acceptable to get re-

liable values of these parameters. Both oscillations and sway density parameters instead

requires a higher sampling frequency. The 100 Hz sampling rate is recommended to use

for postural stability analysis [48].

To analyze the effect of test duration, 25 time series of 40 s sampled at 100 Hz, were

analyzed and processed to calculate the standard parameters at different test times (5,

10, 15, 20, 30, 35 and 40 s). For duration times less than 25 sec, the sway parameters

are not steady, and therefore these testing times are not acceptable for static postural

analysis (Figure 2.14).

This study shows that 30 s of recording time sampled at 100 Hz is acceptable for static

human postural stability analysis.

Figure 2.13: Normalized parameters values vs. sampling frequency [48]

In [49] , the authors studied the preferred feet position of 262 subjects in order to

establish a standardized stance position for static standing analysis. All subjects were

asked to stand quietly with a comfortable and preferred feet position. The width and

angle of orientation between feet are calculated and recorded for each subject. As shown

in figure 2.15, there is a high degree of variability in preferred stand width and foot

angle. The authors identify the standard width and angle by computing the averages of
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Figure 2.14: Normalized parameters values vs. testing time [48]

width and angle parameters for all subjects. These standard values are 0.17 m and 14

degrees for width and angle respectively.

Figure 2.15: Preferred feet position for young and elderly subjects [49]

2.4 Postural stability analysis techniques

Over the last decade, human balance control strategies have received increasing inter-

est from the research community. This is mainly due to the necessity of understanding

the complex mechanisms of the human postural system, which will contribute to the

development of efficient solutions for unstable postures in terms of orientation and equi-

librium [18], and will help decrease the high rate of falls among elderly and patients

[50–53].

The human postural system maintains the stability of the body both in the static posture

(quiet standing) and during locomotion by considering external disturbances. It success-

fully keeps the human body in the upright position through the interactions among
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the central nervous system, the musculoskeletal system, and three sensory systems :

vestibular, visual and proprioception systems [54–56].

One effective way to assess human stability is to analyze the postural sway during

upright standing. This can be performed by quantifying the center of pressure (CoP)

displacements of the human body in quiet standing. The CoP displacements are recorded

in the medio-lateral and antero-posterior directions over time, and the resulting signals

are called stabilometric signals.

Many classical parameters can be extracted from the stabilometric signals (for each

direction alone ML/AP and also for planar representation) to characterize the human

static stability. These parameters can be grouped into two categories [34, 57–59].

The first category includes parameters taking into account the geometric and temporal

characteristics of the center of pressure such as :

1. The mean position : It is given by the following formula :

MP =
1

n

n∑
i=1

xi (2.2)

where x is the stabilometric signal and n is the samples number. This parameter

was used in studies [60–63]

2. The standard deviation which is expressed as follows :

SD =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (2.3)

3. The root mean square (RMS) of CoP displacements can be expressed as follows :

RMS =

√√√√ 1

n

n∑
i=1

x2i (2.4)

4. The covered distance (total excursions TOTEX) is the length of the path. It is

given by :

TOTEX =
√

(xAPi+1 − xAPi )2 + (xML
i+1 − xML

i )2 (2.5)
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where xAP and xML represent the CoP displacements respectively in AP and ML

directions.

5. The covered distance in ML or AP directions (TOTEXAP or TOTEXML) : It is

equal to the sum of the distance between two consecutive points in the AP or ML

signals :

TOTEXAP =
∑
|xAPi+1 − xAPi | (2.6)

TOTEXML =
∑
|xML
i+1 − xML

i | (2.7)

6. The mean velocities in ML/AP, AP and ML directions. Their expressions are as

follows :

MVELO =
TOTEX

T
(2.8)

MVELOAP =
TOTEXAP

T
(2.9)

MVELOML =
TOTEXML

T
(2.10)

where T represents the time interval of CoP displacements.

7. The range : It represents the maximum distance between any two points of CoP.

It can be calculated for AP, ML directions and for planar (AP, ML).

Range = max[x]−min[x]; (2.11)

8. The 95% confidence circle area AREA-CC : It represents the area of the circle of

planar displacements. It contains, in the case of normal distribution, 95% of the

CoP points. It is given by the following formula :

AREA− CC = π × (MDIST + 1.645× STDP ) (2.12)

Where STDP =
√
RDIST 2 −MDIST 2 is the standard deviation for planar CoP.

9. The 95% confidence ellipse area AREA-CE : It is computed based on ML and AP

stabilometric signals, by considering the main axes of the ellipse, which contains

95% of data points.

10. The total sway area : It represents the time integral of the COP trajectory.
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Moreover, numerous spectral parameters extracted from the stabilometric signals are

used to characterize the postural stability, such as, total power frequency, mean fre-

quency, centroid frequency, median frequency, the frequency which includes 95% of the

total power, etc.

In addition, based on the nonlinear structure of the stabilometric signals, many nonlinear

methods of signal processing and models have been used to better analyze human stabi-

lity, such as inverted pendulum model, auto-regressive model, Fourier transformations,

Wavelet analysis and Empirical mode decomposition [64, 65, 70].

In [66–68], the authors have shown that the postural sway in quiet standing can be

modeled as a correlated random walk. This is achieved by calculating the mean square

displacements of the postural sway over many time intervals. The plot of the mean

square CoP displacements versus time intervals is called the stabilogram-diffusion plot.

It shows two regions corresponding to positive and negative correlated random walks.

In addition, it illustrates that the postural control system adopts both open-loop and

closed-loop control mechanisms. The open-loop mechanism is generally related to the

short-term intervals when the postural system shows a positive correlation between past

and future increments. Conversely, the closed-loop mechanism is related to the long-term

intervals when the postural system shows a negative correlation between past and future

increments.

In[69], the authors have analyzed the postural system using a 3D electromagnetic sys-

tem. The tests were conducted with open/closed eyes and stable/unstable surfaces. The

results proved significant differences between stable and unstable surfaces. However, no

significant differences were observed between open and closed eyes on the stable surface.

In [70], Tanaka et al. proposed a new methodology to assess the postural stability through

the center-of-pressure (COP) trajectories during quiet standing. New sensitive parame-

ters were extracted and then utilized to investigate changes in postural stability with

respect to visual input. The experimental data consists of stabilometric signals of eleven

healthy subjects (20-27 years). These signals were recorded under eyes open and eyes

closed conditions using a force platform during quiet standing. The proposed approach

was applied separately for medio-lateral and antero-posterior stabilometric signals.
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Figure 2.16: A schematic diagram of the auto-regressive model [70].

For each subject and for each condition, the stabilometric signals were modeled as an

auto-regressive (AR) model (Figure 2.16). This is achieved for each direction (ML and

AP) separately, and the order of the AR models was practically fixed at M=20. The new

measures (The percentage contributions and geometrical moment of AR coefficients)

were obtained from the estimation of the AR models parameters. They showed statisti-

cally significant differences between open eyes and closed eyes conditions [70]. The quiet

standing under eyes-open condition showed higher correlation between present and past

COP displacements compared to the eyes-closed condition. In contrast, no significant

differences between vision conditions were found for conventional classical parameters

(the total length of the COP path, mean velocity). The results showed that the AR

parameters are useful to assess postural stability during static posture for visual condi-

tions.

Recently, in [71], the authors have tried to assess human postural stability away from the

standard COP characteristics used in the literature. A large dataset consisting of 168

subjects has been used. These subjects were divided into three groups : young, elderly

and PD subjects. They were asked to perform quiet standing under eyes open and eyes

closed conditions. To assess the postural stability under visual input, age, and pathology

factors, three new sensitive parameters were extracted from the stabilometric signals

including the sway directional index (DI), the sway ratio (SR), and the sway vector

(SV). These measures were computed using the COP path length and its directional

components in ML and AP directions. These new parameters are very sensitive with

visual input, age, and PD disease. They showed significant differences between young
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and elderly groups, young and PD groups, elderly and PD groups and between eyes

open and eyes closed conditions. Specifically, the SV may be recommended as a useful

parameter to assess postural control in quiet standing.

Some authors [72, 73] studied the positive impact of an added-noise under the feet using

a vibrating insoles, on the balance control in elderly people. This noise stimulates and

enhances the functions of the somatosensory system. This technique was also applied on

subjects with specific diseases such as : diabetes and stroke. The results showed signifi-

cant reductions in eight sway parameters, leading to improve the overall balance control.

Other studies explored the risk of fall in elderly population using CoP displacements

measured during quiet standing [74–76]. Other studies tried to isolate each physiological

system (visual, vestibular, and proprioceptive systems) to describe their specific role

on balance control. Several modalities are classically tested to explore human balance :

with and without visual input [77], with mechanic perturbations, such as arm movement

[78–80], leg movement [43, 44], or platform perturbations [45–47].

PD is one of the incurable diseases that strongly affects human balance control. Tremors,

muscle rigidity, and postural and balance problems often occur with PD and inevitably

lead to falls and injuries [81]. Many researchers have investigated the postural stability

of PD subjects in static (quiet standing) and dynamic (gait) postures [81–84] [85–89].

Several data mining techniques were used to extract information from PD data and

provide better discrimination between control and PD subjects [90, 91].

In [90], Palmerini et al. used accelerometer-based data recorded from control and PD

subjects to analyze posture in a quiet stance. First, 175 temporal and spectral features

were computed, and feature selection with classification techniques were then used to

select the best parameters that discriminate between control and PD subjects. Two

parameters were selected to clearly separate the control subjects from the PD subjects.

2.5 Conclusion

In this chapter, we presented various techniques and methods for recording, evaluating,

and analyzing postural stability in quiet standing. The standard parameters commonly
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used are not able to characterize efficiently the COP displacements due to the complex

structure of the stabilometric signals. In this study, we propose a new strategy to analyze

the postural stability using the Empirical Mode Decomposition (EMD) method. This

method is a specialized approach to analyze nonlinear and non-stationary signals as

stabilometric signals. It is capable to explore the signal and provide an effective time-

frequency analysis. The next chapter describes the proposed methodology for human

postural analysis based on EMD method.
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3.1 Introduction

In this chapter, we propose a new approach for the assessment of the human balance

control. One effective way to assess the human stability is to analyze the postural sway

during upright standing. This can be performed by quantifying the center of pressure

(CoP) displacements of the human body during quiet standing. The proposed approach

is based on the decomposition of the CoP displacements signal using the Empirical Mode

Decomposition method (EMD). This approach is motivated by the fact that the EMD

provides an effective time-frequency analysis of non-stationary signals.

Stabilogram-diffusion analysis technique is applied to analyze the mean square displace-

ment versus time interval (diffusion curve) of each Intrinsic Mode Function (IMF) signal.

Each diffusion curve is modeled as a second order system and provides representative

features, such as, the gain parameter. Then, the proposed method compares favorably

to conventional stabilometric analysis based on CoP excursion calculation.

The chapter is organized as follows : Section 3.2 describes the protocol used for measu-

ring the stabilometric signals. Section 3.3 presents the EMD method and its extension

Ensemble EMD (EEMD). Section 3.4 describes the principal of the Stabilogram-diffusion

analysis technique. Section 3.5 describes the EMD-based proposed approach to extract

new sensitive parameters for a better analysis and assessment of the human posture. In

section 3.6, the performances of the proposed approach are presented and discussed.

3.2 Stabilometric data acquisition protocol

The experiments were conducted at the Mondor Hospital (Créteil-France). The resul-

ting dataset is composed of stabilometric signals of 28 healthy subjects : 14 subjects

are young (24 ± 4 years), and 14 subjects are elderly (65 ± 10 years) (Table : 1). The

28 subjects correspond to 14 women and 14 men. All subjects were asked to perform

quiet standing during measuring of their stabilometric signals in the AP and ML direc-

tions. ML trajectories correspond to the CoP displacements in the left/right direction

of the human body, while AP trajectories correspond to the CoP displacements in the

forward/backward direction (Fig 3.1).

The stabilometric signal were measured in four conditions :
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Table 3.1: Subjects information are expressed in mean±standard deviation [min-max]
values.

Young Elderly
Women Men Women Men

Number of subjects 7 7 7 7
Age 24±2 [20-27] 24±3 [20-27] 61±5 [55-70] 66±7 [55-75]
Height (cm) 166±2 [164-170] 182±6 [175-193] 163±9 [150-173] 171± 6 [163-182]
Weight (kg) 56±6 [45-63] 78±12 [54-92] 65±10 [52-85] 77±9 [61-86]

Figure 3.1: ML and AP directions of human body

– FAEC : Feet are Apart with Eyes Closed.

– FAEO : Feet are Apart with Eyes Open.

– FTEC : Feet are placed closed Together with Eyes Closed.

– FTEO : Feet are placed closed Together with Eyes Open.

For each condition, three trials were performed to measure the stabilometric signals in

ML and AP directions. The duration of each trial is 60 seconds. Fig. 3.2, 3.3 and 3.4

show the recorded signals of one subject in AP, ML and planar directions.

Data were collected from a 6-components force plate (60 x 40 cm, strain gauge based de-

vice, Bertec Corporation, Columbus, OH, USA) at a sampling rate of 1000 Hz by means

of an AD-converter (National Instruments, Austin, TX, USA) and a data acquisition
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Figure 3.2: Stabilometric signals in ML direction for FAEC, FAEO, FTEC and FTEO
conditions.
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Figure 3.3: Stabilometric signals in AP direction for FAEC, FAEO, FTEC and FTEO
conditions.

system (Cortex, Motion Analysis, Motion Analysis Corporation, Santa Rosa, CA, USA).

The COP trajectories were determined in antero-posterior (AP) and mediolateral (ML)

directions. The investigator traced the outline of the feet of each subject in the two tes-

ted foot positions (see details below) on an A3-sheet, which was laid centrally and fixed

on the force plate in order to standardize foot positions throughout the experiment.
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Figure 3.4: Planar representation of ML and AP signals for FAEC, FAEO, FTEC
and FTEO conditions.

Participants stood upright with feet apart or feet together, with eyes open or eyes closed.

For each subject, the order of the experimental conditions was randomized. For each

condition, subjects were asked to stand as steady as possible with the arms hanging

alongside the body [92]. With feet apart, subject feet were placed with an inter-calcaneus

distance of 16 cm and a foot angle of 17 degrees [93]. With feet together, heels and big

toes were in contact. With eyes open, subjects were asked to focus on a point at eye

height on a wall at a distance of 3 meters across. With eyes closed, they were blindfolded,

starting in the same head position as with eyes open. Each condition began with a 5 to

10 seconds period of familiarization. Each data collection started when subjects stood

quietly and trials of 60 seconds were then recorded [94]. 60 seconds rest periods were

provided to subjects, between two consecutive trials. Data were analyzed off-line with

the Matlab software (The MathWork R, Inc., Natrick, MA, USA).

3.3 Empirical Mode Decomposition and its variant En-

semble Empirical Mode decomposition

Empirical mode decomposition (EMD) was introduced in order to offer a flexible em-

ployment method to facilitate reading, exploring, and then extracting information from
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Table 3.2: Characteristics comparison between Fourier, wavelet and EMD methods

Fourier Wavelet EMD

Basics a priori a priori adaptive
Frequency Global Regional Local
Presentation Energy-frequency Energy-time-frequency Energy-time-frequency
Non-stationary No Yes Yes
Nonlinear No No Yes

the data, usually for a given application. In the following, we describe the basics of this

method, the sifting process, the stopping criteria and various applications domains.

3.3.1 EMD basics

EMD technique is a nonlinear method for analyzing nonlinear and non-stationary signals

that was introduced by Norden Huang, a NASA engineer, in 1998 [95] [96] [97]. It is

similar to Fourier and wavelet transforms in the sense that any signal is composed of

many elementary signals. Table 3.2 provides a comparison between Fourier, wavelet and

EMD methods.

Unlike classical methods, the advantages of EMD lie in the fact that it decomposes any

given signal into a finite number (K) of oscillating components extracted directly without

any a priori condition. These components are called intrinsic mode functions (IMFs) :

they are interpreted as non-stationary waveforms. Ideally, these IMFs are oscillating

functions with zero mean, and reflect the frequencies present locally in the signal from

the highest frequencies to the lowest ones. The residue is a low frequency term that

gives the overall trend of the signal (Figures 3.9, 3.10). Any signal x of length n can be

modeled as follows :

x =

K∑
k=1

IMFk + rK (3.1)

where K is the number of IMFs, IMFk the kth mode and rK the residual signal.

An IMF (Intrinsic Mode Function) is an amplitude and frequency modulated signal that

has the following characteristics :

1. The number of local minima and the number of local maxima are equal or differ

at most by one.
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2. The mean of the upper envelope and the lower envelope is approximately null eve-

rywhere.

EMD is an iterative method in which the first component (IMF) is extracted from the

original signal, the second component from the residual signal, and so on.

3.3.2 Sifting process

The sifting process allows extracting, from the original signal, elementary signals (IMFs)

starting from the highest frequency to the lowest one. The final component represents

the residual of the signal [98]. Mathematically, the interpolation of maxima points and

the minima points of a signal gives the upper envelope e+ and the lower envelope e

respectively using cubic-spline interpolation (Figure 3.5). The mean of these envelopes

lk,j is subtracted from the local signal hk,j . These steps are repeated with the proto-mode

function hk,j+1 until the generation of an IMF (Algorithm 1) [98]. Once the first IMF

(Mode) is computed, it is subtracted from the original signal and the sifting process is

repeated again with the residual signal rk+1 to extract the other IMFs.

Algorithm 1 Sifting process to extract the kth IMF

1: set j ← 0, hk,j+1 ← rk Initialization

2: repeat (Loop)
3: set j ← j + 1
4: find extrema of hk,j (minima and maxima)
5: compute upper envelope e+ by interpolation between maxima
6: compute lower envelope e− by interpolation between minima
7: compute proto-local mean lk,j ← (e+ + e−)/2
8: update proto-local function hk,j+1 ← hk,j − lk,j
9: until hk,j+1 is an IMF. (End Loop)

10: set IMFk+1 ← hk,j+1, and rk+1 ← rk − IMFk+1 (Result)

3.3.3 Stopping criteria

Different approaches have been proposed to determine when the sifting process should

to stopped. In general, in all these approaches, two objectives are considered :
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1. The signal being processed should verify the definition of an IMF.

2. The sifting process should not be iterated too many times to avoid denaturing the

information within an IMF.

Mainly focused on the first objective, the approach proposed in [95] consists of stopping

the sifting process when :

– All maxima are strictly positive and all minima are strictly negative.

– The SC criterion must be less than a threshold ε, in the range of 0.2-0.3 for a signal

of 1024 points. The SC criterion can be expressed as follows :

SC =
n∑
i=1

(
hk,j+1(i)− hk,j(i)

hk,j(i)
)2 < ε (3.2)

where n is the number of sample in the signal hk,j+1 ;

A new formulation of the SC criterion was proposed in [99, 100] :

SC =

∑n
i=1(hk,j+1(i)− hk,j(i))2∑n

i=1(hk,j(i))
2

< ε (3.3)
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Figure 3.6 summarizes the basic steps of EMD in a block diagram.

Figure 3.6: Block diagram of EMD

The EMD method has been widely used in signal and image processing [101], [102],

[103], biomedical applications [104], and mechanical system identification [105]. It is

well adapted for processing non-linear and non-stationary signals such as stabilometric

signals. Moreover, it describes the signals locally, and separates the different oscillation

components, which facilitate the analysis of each component apart.

The EMD method has various extensions such as Bivariate EMD (BEMD) for images

analysis and bivariate signals, and Multiple EMD (MEMD) for multivariate analysis.

The MEMD method allows to decompose several signals together at the same time.
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Moreover, the Ensemble EMD (EEMD) method was proposed to improve the signal

decomposition used in the classical EMD method.

3.3.4 Ensemble Empirical Model Decomposition

An extension of the EMD method, called Ensemble Empirical Mode Decomposition

(EEMD) method [106] was introduced by Huang to enhance the performances obtained

with the classical EMD method, which suffers from the mode-mixing problem that ap-

pears in some IMFs. The mode-mixing appears when an IMF consists of two different

elementary signals, or when an elementary signal appears in two different IMFs.

The underlying idea in the EEMD method is to generate a finite number of white noise

signals that have small standard deviation. Classical EMD should be applied to a set

of signals ; each trial consists of the original signal plus a white noise signal. Finally,

the intrinsic mode functions are computed by averaging the IMFs resulting from all

trials (Algorithm 2). This methodology avoids the mixing-mode problems and provides a

good separation between modes that ensures isolation of each component having specific

scales. This method allows obtaining a better decomposition of the stabilometric signals

that ensures sensitive separation of frequencies in intrinsic mode functions. Consequently,

this separation provides a better analysis of the diffusion curves than the standard EMD

method.

Algorithm 2 EEMD algorithm

1: Set L : The number of the white noise signals and x : the initial signal

2: Loop l = 1 to L
3: Generate w(l) : a white Gaussian noise signal of length n
4: Set X(l) = x+ w(l) (the initial signal + a white noise signal)
5: Decompose X(l) using classical EMD

6: X(l) =
K∑
k=1

IMF
(l)
k + r

(l)
K

7: End Loop

8: Set ĨMFk = 1
L

L∑
l=1

IMF
(l)
k where k = 1, ..,K

9: Result x =
K∑
k=1

ĨMFk + r̃K
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3.4 Stabilogram-diffusion analysis

3.4.1 Brownian motion

Brownian motion is a special case from the family of Fractional Brownian Motion (FBM)

that was introduced by Mandelbrot [107] [108]. FBM is a non-stationary Gaussian pro-

cess characterized by the Hurst parameter H. This parameter has a real value between

0 and 1 that specifies the nature of correlations in a given process (positive or nega-

tive correlations). Note that the classical Brownian motion has a Hurst parameter (H)

equal to 0.5, which means that past and future increments are not correlated. For H

< 0.5, past and future increments of a stochastic process are negatively correlated. On

the other hand, for H > 0.5, past and future increments are positively correlated, and

consequently, the stochastic process is positively correlated.

3.4.2 Mean square displacement

The Hurst parameter can be calculated using the Mandelbrot equation (eq. 3.4) that is

generalized from the relation given in equation (eq. 3.5). This is achieved by computing

the mean square displacement of the stochastic process over a time interval (eq. 3.6) :

< δx2 >τ= τ2H (3.4)

< δx2 >τ= 2 ∗D ∗ τ (3.5)

< δx2 >τ=
1

n

n∑
i=1

(xi+τ − xi)2 (3.6)

Where < δx2 >τ represents the mean square displacement for a signal x of n samples

over a time interval τ ; D is the diffusion coefficient, and H, the Hurst parameter.

In [66, 67], Collins et al. study the center of pressure displacement of human body as

a stochastic process. The random walk theory and the diffusion equation are applied

on stabilometric signals to calculate the mean square displacement for each direction
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Figure 3.7: Diffusion curve of a stabilometric signal

ML/AP apart and for the planar (ML Vs. AP), as one and two-dimensional random walk.

This study is called Stabilogram-diffusion analysis. The mean square displacement versus

time interval values (0.1 < τ < 10 sec) is called the diffusion curve (Figure 3.7). This

diffusion curve shows two different regions. The first region corresponds to a relatively

small time interval where the Hurst parameter is greater than 0.5 [66, 67]. The second

region corresponds to the remaining time interval where the Hurst parameter is less

than 0.5. Consequently, the postural control system consists of two processes, a positive

correlated process (the past and future increments are positively correlated in the quiet

standing), and a negative correlated process, where the past and future increments are

negatively correlated for long time interval values.

3.5 EMD-based approach for posture analysis

The block diagram presented in figure 3.8 shows the global methodology proposed to ex-

tract parameters including the gain and the critical point. First, the stabilometric signals

in ML and AP directions are decomposed using the EMD method to generate several

IMFs components (Figures 3.9 and 3.10). Second, the stabilogram-diffusion technique

is applied over five IMFs starting from IMF3 to generate their diffusion curves. These
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curves are then modeled as a system of second order response to extract sensitive para-

meters for control postural analysis. The first IMFs (IMFs 1 and 2) are ignored because

they mostly represent noises. Repeated measures analysis of variance (ANOVA) is used

to perform a statistical analysis of these parameters under feet and visual conditions, as

well as for young/elderly and for women/man groups.

Figure 3.8: The proposed methodology

3.5.1 Diffusion curves modeling

The diffusion curves of the obtained IMFs correspond to different forms of the classical

diffusion curve proposed by Collins (Figure 3.7). These curves can be modeled as a

system of second order response. First, the values of the mean square displacement

increase and then converge to a specific value (Figure 3.12). For this purpose, a second

order response equation is used to model these curves, such as :

< δx2 >t= G ∗ (1− e−z.wn.t

√
1− z2

. sin(wn.
√

1− z2.t+ arcsin(
√

1− z2))) (3.7)
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Figure 3.9: ML stabilometric signal and its EMD decomposition for FAEO condition

where G represents the gain, z the damping ratio and wn the natural frequency.

A least square optimization strategy is used to identify the parameters G, z, and wn for

each mode. The adopted least squares strategy minimizes the square errors between the

real values and the estimated values of parameters for each diffusion curve. The first

IMFs (IMFs 1 and 2) are ignored because they mostly represent noises.
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Figure 3.10: AP stabilometric signal and its EMD decomposition for FAEO condition

3.6 Results and discussions

3.6.1 Balance analysis : classical approach

All obtained results are presented in Tables 3.3 and 3.4. ”ns” means no significant dif-

ferences was founded. One can observe that CoP excursion for women is lower along

AP and ML directions than for men, while CoP planar velocity is similar. Feet toge-

ther condition induces an increase in CoP excursions (AP and ML) and mean velocity.

Similarly, an increase in ML CoP excursion and mean velocity can be observed under

the eyes closed condition. These results show an interaction between feet condition and

each gender. No effect of age on CoP excursion and mean velocity was found.
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Table 3.3: Stabilometric results

Range of CoP Mean velocity
AP (mm) ML (mm) (mm/s)

Young
Women (=7)
Feet apart

Eyes open 19 ± 5 9 ± 3 7 ± 3
Eyes closed 21 ± 5 9 ± 2 8 ± 5

Feet Together
Eyes open 25 ± 5 27 ± 4 10 ± 4
Eyes closed 25 ± 5 29 ± 4 12 ± 6

Men (n=7)
Feet apart

Eyes open 26 ± 7 12 ± 7 7 ± 2
Eyes closed 30 ± 10 10 ± 1 8 ± 2

Feet together
Eyes open 32 ± 6 34 ± 6 12 ± 5
Eyes closed 29 ± 5 35 ± 4 15 ± 7

Elderly
Women (n=7)
Feet apart

Eyes open 24 ± 10 8 ± 3 8 ± 2
Eyes closed 24 ± 8 8 ± 3 8 ± 3

Feet together
Eyes open 25 ± 9 29 ± 4 12 ± 6
Eyes closed 27 ± 9 30 ± 7 15 ± 7

Men (n=7)
Feet apart

Eyes open 26 ± 4 10 ± 2 11 ± 7
Eyes closed 31 ± 8 11 ± 2 14 ± 8

Feet together
Eyes open 32 ± 8 35 ± 7 15 ± 7
Eyes closed 40 ± 8 45 ± 8 25 ± 16

3.6.2 Balance analysis using EMD

The parameters G, z and wn defined in the previous section, are calculated and compared

with respect to the five diffusion curves. These diffusion curves correspond to IMF3,

IMF4, IMF5, IMF6 and IMF7 of the EMD decomposition of the original stabilometric

signals. By analyzing the relationship between the gain parameter G and the natural

frequency wn, it can be observed that the gain values related to IMF3 and IMF4 are

relatively small while their natural frequencies are relatively high, as shown on the right

part of figure 3.11. Also, as shown in the left part of figure 3.11, the IMF5, IMF6 and

IMF7 show relatively high gain values and low wn values.
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Table 3.4: Effect of age, gender, feet position and vision for the COP excursion and
the mean velocity parameters

Range AP Range ML MPV

Age ns ns ns
Gender 0.007 0.0002 ns
Age*Gender ns ns ns
Feet <0.0001 <0.0001 <0.0001
Feet*Age ns ns ns
Feet*Gender ns 0.002 ns
Feet*Age*Gender 0.01 ns ns
Vision ns 0.003 <0.0001
Vision*Age ns ns ns
Vision*Gender ns ns ns
Vision*Age*Gender ns 0.049 ns
Feet*Vision ns 0.0007 0.0005
Feet*Vision*Age ns ns ns
Feet*Vision*Gender ns ns ns
Feet*Vision*Age*Gender ns ns ns
p-value based on 4-way repeated measures ANOVA.

3.6.2.1 Gain analysis

The mean and standard deviation of the gain G as a function of wn is shown in Figure

3.11 with respect to the four conditions FAEC, FAEO, FTEC and FTEO. It is clearly

observed that the gain parameter related to feet together condition (FTEC and FTEO)

shows higher values with respect to those under apart condition (FAEC and FAEO).

The gain parameter can be seen as a stability indicator of the human body. Indeed,

the gain parameter gives a significant and fair image of the fluctuation of the center of

pressure. When the the gain value is small, the stability of the human body is high, and

when the value of the gain is relatively high, the stability is weak.

Table 3.5 provides a representation of the gain parameters (Gain3, Gain4, Gain5, Gain6

and Gain7) related to the diffusion curves of the IMF3, IMF4, IMF5, IMF6 and IMF7.

The gain values for all subjects who participated in this study are shown in terms of

means and standard deviations. To facilitate the analysis, the results are analyzed using

four groups : young-women, young-men, elderly-women and elderly-men. For each group,

the results are expressed in AP and ML directions based on feet and eyes conditions.
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Figure 3.11: Natural frequencies (wn) Vs Gain (G) : means + STDs
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Table 3.6: Effect of age, gender, feet position and vision on EMD results.

Gain3 Gain4 Gain5 Gain6 Gain7
p-value AP ML AP ML AP ML AP ML AP ML

Age ns ns ns ns ns 0.005 0.007 0.006 ns ns
Gender ns 0.003 0.008 0.001 0.008 ns 0.001 0.003 0.008 0.005
Age*Gender ns ns ns ns ns ns ns ns ns ns
Feet ns <0.0001 0.006 <0.0001 0.001 <0.0001 0.003 <0.0001 0.002 <0.0001
Feet*Age ns ns ns 0.015 ns 0.004 ns ns ns ns
Feet*Gender ns 0.0018 ns 0.0009 ns 0.02 ns ns ns 0.01
Feet*Age*Gender 0.002 ns 0.008 ns ns ns ns ns ns ns
Vision ns ns ns ns 0.01 0.0002 0.001 <0.0001 <0.0001 <0.0001
Vision*Age ns ns ns ns ns ns ns ns ns ns
Vision*Gender ns ns ns ns ns ns ns ns ns 0.009
Vision*Age*Gender ns ns ns ns ns ns ns ns ns ns
Feet*Vision ns ns ns 0.009 ns 0.0003 <0.0001 <0.0001 ns <0.0001
Feet*Vision*Age ns ns ns ns ns ns ns 0.006 ns ns
Feet*Vision*Gender ns ns ns ns ns ns ns ns ns 0.007
Feet*Vision*Age*Gender ns ns ns ns ns ns ns ns ns ns

It is clearly observed that the gain values with eyes open condition are often smaller than

those with eyes closed condition for all groups : young/elderly or women/men, in both

ML and AP directions. For example, the mean value of Gain4 for young-women under

feet together is equal to 0.22 for eyes-open condition and 0.32 for eyes-closed condition,

in the AP direction. It is equal to 0.17 and 0.23 respectively in the ML direction.

Furthermore, the gain values under feet apart condition are smaller than those under

feet together condition. For example, the mean value of Gain5 for elderly-men with eyes

open in AP direction is equal to 0.82 and 1.11 for feet apart and feet together conditions

respectively, while it is equal to 0.31 and 2.56 for the same conditions in the ML direction.

It can be noted that the feet position affects more the stability in ML direction rather

than in AP direction as the variability of the gain values between feet apart and feet

together condition is more important in ML than in AP direction. These results show

clearly that, the human body during quiet standing is more stable with eyes-open rather

than eyes-closed condition, and is more stable under feet apart condition rather than

under feet together condition. Moreover, the highest differences between gain values is

shown between young subjects under feet apart and elderly subjects under feet together

and particularly with regards to the gains of the fifth, sixth and seventh IMFs. These

relatively high differences are mainly related to two conditions that affect the stability

of the human body, that are the age and the feet position. For example, the mean value

of Gain6 for young-men under feet apart and eyes closed is equal to 0.77 whereas it is

equal to 8.74 for elderly-men under feet together and closed eyes, both in AP direction

(Table 3.5).
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Table 3.6 shows a statistical analysis using repeated measures ANOVA by taking into

account the different conditions for each gain in both ML and AP directions. These

conditions are : age (young versus women), gender (women versus men), feet position

(feet apart versus together) and eyes condition (eyes open versus together). Anova Sta-

tistical analysis is done for each condition first, and then, for combinations of different

conditions, such as Age with gender, feet with age, and feet with age and gender, etc.

In total, 15 statistical tests in different combinations are conducted for all conditions.

In the following, we consider a p-value with a value less than 0.05 equivalents to signifi-

cant differences between groups based on the related conditions. In the other cases, ”ns”

means no significant differences was founded.

It can be noted from Table 3.6 that the number of p-values less than 0.05 in the ML

direction is greater than in the AP direction. For example, Gain3 has only one p-value

less than 0.05 in AP direction and three in ML direction . For Gain4, there are four

p-values less than 0.05 in the AP direction and five p-values less than 0.05 in the ML

direction. Also, Table 3.6 shows significant differences for Gain6 between the different

conditions in the ML direction. As a result, Gain4 and Gain5 have the highest sensitivity

and many small p-values, especially in the ML direction.

By analyzing the rows of Table 3.6, it can be noted that the feet position is ranked

first as an essential condition since all parameters are affected and show p-values less

than 0.05. These parameters have significant differences between feet apart and feet

together conditions. Also, all parameters have high sensitivities and show significant

differences between women and men (gender) in AP and ML direction. Furthermore,

vision, feet*vision, age, and feet*gender have an important number of p-values that

reflect significant differences between groups.

Compared to the statistical parameters calculated in section 3.6.1, the gain parameter

extracted using the proposed approach for the different IMFs, shows significant diffe-

rences as a function of visual conditions, feet position, age and gender (p-values less than

0.05). The gain parameter shows better sensitivity with respect to the different condi-

tions including subjects who have small influence on the stability, while the statistical

parameters are limited to detect the differences between feet apart and feet together

conditions and do not show significant differences based on the feet placements, age and
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gender (p-values > 0.05).

3.6.2.2 CP analysis

The critical point CP is identified as the first maximum of the diffusion curve that

separates the two regions (Figure 3.12).
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Figure 3.12: Diffusion curve of an IMF (mode)

Indeed, there are also two regions in each new diffusion curve ; the MSD values increase

linearly in the first region and then oscillate around a specific value in the second one.

In this study, CPi corresponds to the critical point of IMFi.
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Table 3.8: Repeated measures ANOVA analysis of CP parameters

CP3 CP4 CP5 CP6 CP7
p-values AP ML AP ML AP ML AP ML AP ML

Age ns ns ns 0.04 0.016 0.005 0.003 0.008 Ns ns
Gender 0.01 0.002 0.04 0.02 0.02 0.027 0.003 0.003 0.008 0.005
Age*Gender ns ns ns ns ns ns ns ns Ns ns
Feet 0.006 <0.0001 0.02 0.0001 0.004 <0.0001 <0.0001 <0.0001 0.001 <0.0001
Feet*Age ns 0.02 ns 0.011 ns 0.004 0.02 0.008 Ns ns
Feet*Gender 0.02 0.001 ns 0.016 ns 0.03 ns 0.035 Ns 0.01
Feet*Age*Gender 0.02 ns ns ns ns ns ns ns Ns ns
Vision ns 0.026 ns 0.008 0.008 0.0001 0.002 <0.0001 <0.0001 <0.0001
Vision*Age ns 0.027 ns ns ns ns ns ns Ns ns
Vision*Gender ns ns ns ns ns 0.03 0.03 ns 0.01 0.01
Vision*Age*Gender ns 0.046 ns ns ns 0.02 ns ns Ns ns
Feet*Vision ns 0.017 ns 0.007 0.003 0.0002 0.006 <0.0001 Ns <0.0001
Feet*Vision*Age ns 0.026 ns 0.05 0.049 0.03 ns ns Ns ns
Feet*Vision*Gender ns 0.032 ns ns ns 0.02 0.03 ns Ns 0.009
Feet*Vision*Age*Gender ns 0.041 ns ns ns 0.05 ns ns Ns ns

Table 3.7 gives the mean and the standard deviation values of the CP parameters.

These results are related to four groups : young-women, young-men, elderly-women and

elderly-men. For each group, the results are shown in both AP and ML directions based

on feet and eyes conditions. The CP parameter can be seen as a stability indicator of

the human body ; it gives information about the fluctuation of the center of pressure.

When the values of the CP are high, the stability is weak. It is clearly noticed that

the CP5 values with eyes open condition are often smaller than those with eyes closed.

Furthermore, the CP values under feet apart condition are smaller than those under

feet together condition. We can notice here that the evolution of CP values between feet

apart and feet together conditions is more remarkable in the ML direction than in AP

direction, and hence, the feet position affects more the stability in the ML direction than

in the AP direction. Moreover, one can notice the high differences between CP values

due to the influence of both age and feet position conditions. For example, the mean

value of CP5 for elderly-men group under feet together condition is higher than that for

young-men group under feet apart condition.

Table 3.8 shows the p-values of the statistical tests repeated measures ANOVA for all

combinations : age (young vs women), gender (women vs men), feet position (feet apart

vs together) and vision (eyes open vs together). This analysis is achieved for all CP

parameters in the the ML and AP directions. This statistical test allows to analyze each

condition separately and also all combinations between conditions such as Age with

gender, feet with age, feet with age with gender. In Table 3.8, one can observe that the

CP parameters in ML direction have p-values less than 0.05 more than those in AP

direction. For CP3, there are four p-values less than 0.05 in AP direction but there are
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eleven p-values less than 0.05 in the ML direction. Also, CP5 shows significant differences

for almost all conditions combinations in the ML direction. For CP6, several p-values less

than 0.05 were found for the following conditions and combinations : age, gender, feet

position, feet*age, feet*gender, vision, and feet*vision in the ML direction. In addition,

feet position is ranked first as an essential condition since all CP are affected and have

significant differences between feet apart and feet together conditions. All parameters

have high sensitivities with respect to women and men (gender) in both AP and ML

directions. Furthermore, vision, feet*vision, age, feet*gender, and feet*age combinations

have a lot of relatively small p-values that reflect the high sensitivity of the CP.

3.7 Conclusion

We presented in this chapter a new approach based on the EEMD method to analyze the

human stability during quiet standing. The obtained results show that the gain and CP

parameters, extracted from the diffusion curves, are more sensitive than conventional

stabilometric parameters in the postural stability analysis.

The analysis of the gain and CP parameters shows how the visual condition and feet

position can improve the equilibrium in the quiet standing, especially, the feet position

affects the human stability more than the visual conditions.

By using the gain and CP parameters extracted from the diffusion curves, it can be

noticed that the human body is more stable under feet apart condition than under feet

together condition. It is also more stable with open eyes condition than with closed eyes

condition. The extracted parameters reveal also that the feet position affects more the

stability in the ML direction than in AP direction. It is also shown that young population

shows better stability in the static posture with significant differences compared to the

elderly population. Women present also better stability in terms of IMFs gain values

with respect to men in the same conditions. The present findings could help clinicians to

better understand the motor strategies used by the patients during their static postures

and may guide the rehabilitation process.
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4.1 Introduction

Parkinson's disease (PD) is one from the most common degenerative movement disorders

which is characterized by the progressive loss of specific neurons in the substantia nigra,

called dopaminergic neurons. It has a strong effect on postural stability during quiet

standing situations, and during locomotion.

Many researchers have investigated the postural stability of PD subjects in static (quiet

standing) and dynamic (gait) postures [81–89]. Several data mining techniques were

used to extract information from PD data for differentiating between healthy and PD

subjects [90, 91]. Most of the commonly analyzed COP output measures are not sen-

sitive enough. Thus, the standard spatio-temporal analysis of the COP provides only

descriptive information which is not sufficiently relevant to analyze the postural system

behaviors of PD disease.

In [90], accelerometer-based data recorded from healthy and PD subjects were used

to analyze posture in a quiet stance. First, 175 temporal and spectral features were

computed, and then, feature selection with classification techniques were used to select

the best parameters that discriminate between healthy and PD subjects. Two parameters

were selected to clearly differentiate the healthy subjects from the PD subjects.

In this chapter, we propose a novel methodology for discriminating between healthy and

PD subjects through EMD-based temporal and spectral features extraction from stabilo-

metric signals. The data used in this study are those collected from twenty eight healthy

subjects that were described in chapter III, in addition to data collected from thirty two

PD subjects that are also measured in Mondor hospital with the same equipment and

data collection protocols.

The proposed methodology consists of four steps. In the first step, the EMD is applied

to decompose each stabilometric signal into several elementary signals called Intrinsic

Mode Functions (IMFs). This decomposition provides an effective time-frequency analy-

sis of the stabilometric signals. The first eight IMFs are selected for further processing.

The second step consists of a feature extraction which is performed by calculating the

temporal and spectral characteristics from raw stabilometric data and their correspon-

ding IMFs. In the third step, a feature selection method is applied to retain the first five
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relevant characteristics. In the fourth step, four well-known classification methods inclu-

ding KNN, CART, RF and support vector machine (SVM) are used for the classification

task.

The rest of this chapter is organized as follows : The supervised classification methods

used in this study are described in Section 4.2. Section 4.3 presents the proposed fra-

mework for discriminating between healthy and PD subjects using stabilometric data.

Finally, section 4.4 presents the experimental results and discussions of this study.

4.2 Classification techniques

In this section, we describe briefly the supervised classification techniques that are used

in the study.

4.2.1 K Nearest Neighbors

K-Nearest Neighbors (KNN) [109] is a supervised classification method widely used for

its simplicity and performance. This method is one of the non-parametric approaches

that do not need any information about the distribution of different classes or type of

separating surfaces. KNN does not need any modeling or explicit training phase before

the classification process. The classification of new individual includes two main steps :

(1) Calculating the distance between this individual with all the individuals in the trai-

ning data set. The Euclidean distance is used in this study.

(2) Selecting the K nearest neighbors to assign as output label, the majority class of

these k nearest individuals (Figure 4.1).

The performance of this approach depends on the value of K ; this value is in general

determined by a cross validation.
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Figure 4.1: Classification of new individual using KNN with K=5

4.2.2 Classification and regression tree (CART)

A decision tree is a decision support model commonly used in machine learning [110]. The

wide use of this model is essentially based on several factors : simplicity, efficiency, easily

interpretable. It has also an ability to capture nonlinear relationships between inputs

and outputs of system. A decision tree is a recursive partitioning classifier of variables.

It consists of nodes and branches. Nodes of a decision tree are composed of one root

node, many internal nodes and leaves ( a leaf node does not has outgoing branches). In

fact, many algorithms are used for the construction of a decision tree including : ID3

(Iterative Dichotomiser 3), C4.5, CART (Classification And Regression Tree), CHAID

(CHi-squared Automatic Interaction Detector), etc.

In this study, we use the CART algorithm, which solves both classification and regression

problems. The CART algorithm allows to build only binary trees. A binary tree has

exactly two outgoing branches for each internal node. The nodes division criterion used

by this algorithm is the Gini criterion. The leaves give the final decision about the labels

of new observations.

4.2.3 Random Forest

The random forests (RF) are a family of methods for classification, regression and other

tasks, that operate by constructing multitude decision trees [111]. The main idea of the

61



Chapter 4

RF method is to create a set of decision trees using the bootstrap aggregating technique

[112]. This technique leads to decrease the effects of the noisy data and therefore gives

high classification performances. In [111], Breiman combines the bagging technique and

the random selection of variables in the construction of each tree. This combination is

known as the random forest method that improves the classification performances of a

single tree. The assignment of a new observation vector to a class is based on a majority

vote of the different decisions provided by each tree constituting the forest. However,

RF needs huge amount of labeled data to achieve good performances.

4.2.4 Support Vector Machine

The Support Vector Machine (SVM) represents in the last years a widely recognized

approach in the community of the supervised classification for its excellent overall per-

formance [113]. Basically, the SVM is a supervised classification method essentially used

for solving binary classification problems. In the case of linearly separable data, the main

idea of SVM is to find the hyperplane (separator) f(x) = wTx+b that separates positive

observations (yi = +1) from negative ones (yi = −1), and maximizes the distance bet-

ween the closest observations (support vectors) and the hyper-plane as much as possible

(left part of Figure 4.2) ; where wT and b are the parameters of the hyperplane equation.

The margin is twice the distance between the hyperplane and the support vectors.

In the case of separable data, we can find an infinite number of separators between posi-

tives and negatives points, but the performances of these separators are different. There

is a unique optimal separator that maximizes the margin between itself and the support

vectors. For the nearest points (support vectors), the output values of the hyperplane

equation should be equal to one, i.e. |wTxsv + b| = 1 for all support vectors xsv.

The distance between a point xi and the hyperplane can be expressed as follows :

distancei =
|wTxi + b|
||wT ||

(4.1)

In particular, for the support vectors (xsv), this distance becomes :

distancesv =
|wTxsv + b|
||wT ||

=
1

||wT ||
(4.2)
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Therefore, the margin can be formulated as follows :

Margin =
2

||wT ||
(4.3)

Finally, the problem is therefore to maximize the term 2
||wT || . This problem is equivalent

to the problem of minimizing a function F (wT ) with some constraints.

min
wT ,b

F (wT ) =
||wT ||2

2
(4.4)

subject to li(w
Txi + b) ≥ 1 for all xi, where li ∈ {−1,+1} is the label of point xi.

This is a Lagrangian optimization problem that can be solved using Lagrange multipliers

to obtain the weight vector wT and the bias b of the optimal hyperplane, where the

Lagrangian is given by :

L(wT , b, α) =
1

2
||w||2 −

∑
i

αi(li(w
Txi + b)− 1) (4.5)

This Lagrangian must be minimized with respect to wT and b, and maximized with

respect to α ; where α is the Lagrange multiplier.

Figure 4.2: Linear and non-linear hyperplanes of SVM classifier
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Moreover, if no linear separator is found between data, (right part of Figure 4.2), the

idea of SVM is to reconsider the classification problem in a space of higher dimension,

possibly of infinite dimension. In this new space, it is likely to find a linear separator

between data.

More formally, it should apply to the input data, a non-linear transformation φ ; for all

xi. In this new space, we can search the linear hyperplane that discriminates between

data :

f(x) = wTφ(x) + b (4.6)

which verifies li(w
Tφ(xi) + b) ≥ 1 for all xi

The kernel trick is used to do this transformation. It consists of using a kernel function

that verifies the following equation :

K(xi, xj) = φ(xi)
T .φ(xj) (4.7)

The interest of the kernel function is that the calculation is made in the original space.

This is much less expensive than a scalar product in large dimension. The transforma-

tion φ does not need to be explicitly known, only the kernel function is used in the

calculations.

The simplest example of the kernel function is the linear one :

K(xi, xj) = xi.xj (4.8)

There is also, the Gaussian kernel function expressed in the following equation :

K(xi, xj) = exp(−||xi − xj ||
2

2σ2
) (4.9)
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4.3 Feature extraction and selection for subjects classifi-

cation

In this section, we describe the proposed approach for discriminating between healthy

and PD subjects through EMD-based temporal and spectral features extraction from

stabilometric signals. This approach includes four steps.

1. EMD decomposition of the stabilometric signal, to generate a set of IMFs. The

first eight IMFs are selected for further processing and feature extraction (Figures

4.4, 4.5, 4.6, 4.7).

2. Feature extraction : three time-domain features, namely, standard deviation (σ),

Skewness (β) and Kurtosis (Kurt), and three frequency-domain features, na-

mely, spectral centroid (Cspec), spectral Skewness (βspec) and spectral Kurtosis

(Kurtspec) are extracted from raw stabilometric data and their IMFs in ML and

AP directions.

3. Feature selection : the five most relevant features characterizing the postural sway

of healthy and PD subjects are selected using random forest-based selection me-

thod.

4. Classification, four well-known classification methods including KNN, CART, RF

and support vector machine (SVM) are used for the classification of healthy and

PD subjects using 10-fold cross validation.

Figure 4.3 shows the block diagram of the proposed approach for the classification of

healthy and PD subjects.
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Figure 4.3: Healthy and PD subjects classification process

4.3.1 Feature extraction

Three temporal features are used in this study :

1. The standard deviation σ is the mean square root of the variance of the signal. It can

be expressed as follows :

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (4.10)

where n is the number of samples in a given signal x, and µ is the mean value.
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Figure 4.4: AP stabilometric signal and its first eight IMFs for a healthy subject in
FAEO condition

2. Skewness β is a parameter that evaluate the asymmetry of the probability distribution

of data ; it is calculated from the third order moment of a given signal x as follows :

β =
1

n

n∑
i=1

(
xi − µ
σ

)3 (4.11)

3. Kurtosis Kurt measures the tailedness of the probability distribution ; it is calculated

from the fourth order moment as follows :

Kurt =
1

n

n∑
i=1

(
xi − µ
σ

)4 (4.12)

Moreover, three spectral features are calculated and extracted from the stabilometric

signal itself and from the extracted IMFs. These features are characteristics of the spec-

tral energy distribution of data. The spectral centoid Cspec is the balance point or the

center of mass of the spectrum. It is widely used for the brightness of sound and for the
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Figure 4.5: ML stabilometric signal and its first eight IMFs for a healthy subject in
FAEO condition

musical timbre analysis. It can be expressed as follows :

Cspec =

∑
w wP (w)∑
w P (w)

(4.13)

where P(w) is the amplitude of the frequency w in the spectrum.

The spectral Skewness βspec and the spectral Kurtosis Kurtspec measure, respectively,

the asymmetry and the tailedness of the spectral energy distribution (eq. 4.14 and 4.15).

These parameters can be expressed as follows :

βspec =

∑
w(

w−Cspec

σspec
)3P (w)∑

w P (w)
(4.14)

where σspec is the mean square root of the spectral variation.

Kurtspec =

∑
w(

w−Cspec

σspec
)4P (w)∑

w P (w)
(4.15)
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Figure 4.6: AP stabilometric signal and its first eight IMFs for a PD subject in FAEO
condition

4.4 Experimental results

4.4.1 Performance evaluation

In order to evaluate the performances of the proposed methodology for classification

of health and PD subjects, the accuracy, the F-measure, the recall, and the precision

metrics are used.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
, (4.16)

recall =
Tp

Tp + Fp
, (4.17)

precision =
Tp

Tp + Fn
, (4.18)
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Figure 4.7: ML stabilometric signal and its first eight IMFs for a PD subject in FAEO
condition

where :

– Tp represents the number of true positive examples ;

– Tn represents the number of true negative examples ;

– Fp represents the number of false positive examples ;

– Fn represents the number of false negative examples.

The F-measure criterion is given by the following equation :

Fβ −measure =
(1 + β2).recall.precision

β2recall + precision
, (4.19)

where β represents a weighting factor that characterizes the degree of importance with

respect to recall and precision metrics. In order to give the same importance to these

two metrics, β is set to 1.

The classification of healthy and PD subjects is achieved within a supervised learning

framework using their stabilometric data. In this context, the data labels are used to
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train and test the classification methods. In this study, the training dataset and the

testing dataset are estimated using a 10-fold cross-validation method.

4.4.2 Results and discussions

In this study, for each condition, a total of 12 and 96 characteristics are calculated,

respectively, from raw stabilometric data and their corresponding IMFs. In order to select

the subset of the most relevant features, a feature selection process is carried out. This

process consists of finding a minimal subset of features that are necessary and sufficient

to adequately differentiate between the healthy and PD subjects. For this purpose, a

random forest feature selection method is used to select the most relevant features from

the extracted ones. This method belongs to the family of wrapper methods, in which the

prediction performance is included in the score calculation phase. The Random forest

feature selection method consists of reordering the features according to their scores. In

this study, a set of 5 relevant features representing the best scores are selected as the

classifiers inputs in both cases : raw data and IMFs data.

4.4.2.1 Obtained results using data collected from all conditions

In this paragraph, we present the obtained results using the features extracted/selected

from raw stabilometric data, IMFs data and both IMFs & Raw data together from all

conditions. In this case, a total of 48 (12*4), 384 (96*4) and 432 (12*4 +96*4) features

are used, respectively, for raw data, IMFs data and IMFs & Raw data under the four

conditions : FAEO, FAEC, FTEO and FTEC.

The obtained results using data collected from all conditions are given in tables 4.1,

4.2 and 4.3. Table 4.1 summarizes the results obtained using features extracted/selected

from IMFs data. It can be observed that the obtained recognition rate is higher than

78%. It can be also noticed that the SVM method gives the best performance in terms

of Accuracy, F-measure, precision, and recall, followed by RF, then KNN, and at the

last, CART approach gives the worst performances.

Table 4.2 summarizes the results obtained using features extracted/selected from Raw

data. It can be observed that the obtained recognition rate is higher than 73%. It can be

noticed that RF method gives the best performance in terms of Accuracy, F-measure,
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Figure 4.8: Obtained results in terms of recognition rate for each classifier using
extracted/selected features from EMD, Raw and EMD& Raw data.

Table 4.1: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) using IMFs data

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 89.85 89.82 89.83 90.26 90.25 89.83± 4.94

SVM (%) 90.69 91.6 91.14 91.1 91.23 91.17± 4.01

RF (%) 89.62 90.35 89.99 89.98 90.16 90± 3.16

CART (%) 75.67 81.01 78.34 79.01 78.19 78.67± 3.78

precision, and recall, followed by KNN, then SVM, and at the last Cart approach gives

the worst performances. It can be also noticed that RF and KNN approaches give almost

the same performances.

Table 4.2: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) using Raw data

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 79.23 81.33 80.28 80.25 80.33 80.33± 4.96

SVM (%) 77.13 81.97 79.55 80.14 79.4 79.83± 5.59

RF (%) 79.29 81.57 80.43 80.41 80.47 80.5± 6.33

CART (%) 71.81 75.58 73.7 73.72 73.68 73.83± 7.13

Table 4.3 summarizes the results obtained using features extracted/selected from EMD&raw
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data. It can be observed that the obtained recognition rate is higher than 80%. As in

the previous case, RF method also gives the best performance in terms of Accuracy,

F-measure, precision, and recall, followed by KNN, then SVM, and at the last CART

approach gives the worst performances.

Table 4.3: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) using EMD and Raw data

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 93.15 93.51 93.33 93.39 93.57 93.33± 2.41

SVM (%) 92.25 92.73 92.49 92.51 92.7 92.5± 2.04

RF (%) 93.81 94.49 94.15 94.11 94.2 94.17± 2.82

CART (%) 79.37 81.21 80.29 80.27 80.38 80.33± 4.74

By comparing the results obtained using the extracted/selected features from IMFs data,

raw data and EMD& raw data, it can be noticed that the best results are obtained using

the EMD and EMD& raw data. It can also be noticed that the worst results are obtained

features extracted/selected from raw data.

4.4.2.2 Obtained results using data collected from each condition (IMFs

data)

As presented above, the best results are obtained using features extracted/selected from

IMFs data. These features are used to analyze the effect of each condition on the classi-

fication performances. Figure 4.9 shows the obtained results using SVM, RF, Cart and

KNN on data collected from each condition (FAEC, FAEO, FTEC and FTEO) in terms

of accuracy and standard deviation.

The obtained results using data collected from each condition are given in tables 4.4, 4.5,

4.6 and 4.7. Table 4.4 summarizes the results obtained using features extracted/selected

from IMFs data in the case of data collected under FAEC condition. It can be obser-

ved that the obtained recognition rate is higher than 77%. It can be also noticed that

SVM method gives the best performance in terms of Accuracy, F-measure, precision,

and recall, followed by CART, then RF, and at the last KNN method gives the worst

performances.
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Figure 4.9: Obtained results in terms of recognition rate for each classifier using
extracted/selected features from IMFs data for each condition.

Table 4.4: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FAEC condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 75.81 79.26 77.53 77.58 77.5 77.67± 4.43

SVM (%) 79.11 82.85 80.98 81.26 80.87 81.17± 5.8

RF (%) 85.14 87.35 86.25 86.34 86.18 86.33± 4.94

CART (%) 82.05 82.93 82.49 82.56 82.7 82.5± 6.02

Table 4.5 summarizes the results obtained using features extracted/selected from IMFs

data in the case of data collected under FAEO condition. It can be observed that the

obtained recognition rate is higher than 71%. It can be also noticed that the KNN me-

thod gives the best performance in terms of Accuracy, F-measure, precision, and recall,

followed by SVM, then RF, and at the last CART method gives the worst performances.

Table 4.5: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FAEO condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 85.61 86.98 86.3 86.26 86.38 86.33± 3.16

SVM (%) 82.61 85.19 83.9 83.98 83.84 84± 4.14

RF (%) 78.68 82.32 80.5 80.71 80.4 80.67± 4.7

CART (%) 67.42 74.14 70.78 71.19 70.71 71.17± 5.73
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Table 4.6 summarizes the results obtained using features extracted/selected from IMFs

data in the case of data collected under FTEC condition. It can be observed that the

obtained recognition rate is higher than 77%. The RF, SVM, and KNN methods give

almost similar performance in terms of Accuracy, F-measure, precision, and recall, with

slight performance in favor of SVM. Finally, the CART method gives the worst perfor-

mances.

Table 4.6: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FTEC condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 83.51 85.67 84.59 84.61 84.58 84.67± 4.68

SVM (%) 85.67 86 85.83 86.05 86.14 85.83± 5.52

RF (%) 81.82 85.71 83.77 84.46 83.57 84± 3.36

CART (%) 74.58 79.82 77.2 77.69 77.08 77.5± 4.57

Table 4.7 summarizes the results obtained using features extracted/selected from IMFs

data in the case of data collected under FTEO condition. It can be observed that the

obtained recognition rate is higher than 85%. In this case, The RF method outperforms

the other classification approaches. The KNN and CART methods give almost similar

performances, while SVM method gives the worst performances.

Table 4.7: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FTEO condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 87 88.85 87.93 88 87.88 88± 3.67

SVM (%) 84.42 86.73 85.57 85.67 85.51 85.67± 3.79

RF (%) 90.56 91.4 90.98 90.94 91.09 91± 3.41

CART (%) 85.76 86.86 86.31 86.3 86.45 86.33± 2.87

By comparing the results obtained using the different conditions, it can be observed

that the best results are obtained when using features calculated in the case of FTEO

condition. The remaining results obtained under FAEC, FAEO, and FTEC conditions

are almost similar.
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4.4.2.3 Obtained results using data collected from each condition (Raw

data)

Figure 4.10 shows the obtained results in terms of accuracy using SVM, RF, Cart and

KNN methods applied on raw stabilometric data. It is observed that the best results are

obtained under FTEO condition using SVM classifier.
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Figure 4.10: Obtained results in terms of recognition rate for each classifier using
extracted/selected features from raw data for each condition.

The results obtained using raw data collected under each condition are given in tables

4.8, 4.9, 4.10, and 4.11.

Table 4.8 summarizes the results obtained using features extracted/selected from raw

data collected under FAEO condition. It can be observed that the obtained recognition

rate is higher than 71%. The SVM method gives the best performance in terms of

accuracy, F-measure, precision, and recall, followed by RF, then KNN, and at the last

CART method gives the worst performances.

Table 4.9 shows the results obtained using features extracted/selected from raw data

collected under FAEC condition. It can be observed that the obtained recognition rate

is higher than 78%. The KNN method gives the best performance in terms of Accuracy,

F-measure, precision, and recall, followed by RF, then SVM, and finally, the CART

method gives the worst performances.
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Table 4.8: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FAEC condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 80.56 81.74 81.21 78.52 82.58 81.1± 5.65

SVM (%) 78.67 81.11 79.89 80.93 77.87 79.4± 5.74

RF (%) 79.81 79.71 79.76 80.46 79.34 79.9± 7.37

CART (%) 78.48 78.4 78.44 78.31 78.19 78.24± 8.4

Table 4.9: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FAEO condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 76.31 76.11 76.21 76.61 77.58 77.17± 5.23

SVM (%) 80.67 80.11 80.39 81.53 81.07 81.30± 7.12

RF (%) 79.82 81.71 80.76 80.46 80.94 80.7± 8.27

CART (%) 71.58 71.82 71.70 72.69 70.08 71.37± 7.04

Table 4.10 summarizes the results obtained using features extracted/selected from raw

data collected under FTEO condition. The obtained recognition rate is higher than 76%.

SVM method gives the best performance up to 90.48 % in term of accuracy, followed by

RF 84%, then KNN 78.5%, and finally, the CART method gives the worst performances.

Table 4.10: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FTEC condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 78.45 78.31 78.38 78.44 78.08 78.26± 4.6

SVM (%) 76.56 75.04 75.80 75.86 75.28 75.57± 5.11

RF (%) 85.17 83.64 84.41 84.41 83.39 83.89± 4.63

CART (%) 78.65 77.32 77.48 79.99 79.89 79.44± 6.07

Table 4.11 shows the results obtained using features extracted/selected from raw data

collected under FTEC condition. It can be observed that the obtained recognition rate

is higher than 75%. RF method gives the best performance up to 83 % in terms of

Accuracy, followed by the CART method, then KNN. The SVM method gives the worst

performances.
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Table 4.11: F1-measure per class,F1-measure, precision, recall, and average of accuracy
rates (R) and its standard deviation (std) for FTEO condition

F1 measure per class F1 measure Precision Recall Accuracy
Healthy PD (R)± (std)

KNN (%) 78.68 77.89 78.28 78.64 78.36 78.5± 3.6

SVM (%) 77.56 76.14 76.85 89.73 89.24 89.48± 3.12

RF (%) 85.02 83.64 84.33 83.76 84.85 84.30± 3.42

CART (%) 77.50 76.14 76.32 77.01 76.13 76.57± 5.34

4.5 Conclusion

In this study, we developed a methodology to discriminate PD subjects from healthy

ones. This methodology consists of four main steps : stabilometric data decomposition

using EMD, temporal and spectral features extraction, feature selection and classification

using KNN, CAT, RF and SVM classifiers. The obtained results show that the proposed

methodology is efficient for classifying PD subjects with classification rates up to 96%.

The classifiers based on the IMFs data can classify subjects with better performances

than those based on raw data. The best results are obtained under FTEO condition.

This can be explained by the fact that under feet together condition, the stability of

PD subjects becomes lower, and therefore, PD subjects become more distinguishable

from healthy ones. It can be noticed also that the RF method outperforms the other

classification approaches in terms of accuracy, F-measure, precision, and recall. Finally,

this study shows that the proposed methodology is useful for differentiating between

healthy and PD subjects.
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5.1 Introduction

In this chapter, we present a classification approach for discriminating healthy subjects

from PD subjects using a Hidden Markov model (HMM). The raw data corresponding to

stabilometric signals are used directly without any preprocessing task. The HMM model

is constructed using ML, AP or both ML and AP signals. The 10-fold cross validation

method is used to decompose data between training and testing dataset.

This chapter is organized into three main sections. Section 5.2 describes the hidden

Markov models used in this study. The proposed approach for classifying healthy and

PD subjects is detailed in section 5.3. Finally, the performances of this approach are

presented and discussed in section 5.4.

5.2 Hidden Markov Models

5.2.1 Introduction

The Hidden Markov Model (HMM) was introduced by Baum et al. in years 1965-1970

[114]. A HMM is a statistical model defined by a structure composed of states and

transitions between these states. This model is similar to the probabilistic automata

with an essential difference that the generation of symbols is done on the states and

not during transitions. Another difference could be noticed ; in the automata, each state

is associated to one symbol from the alphabet, while in a HMM model, for each state,

there are probability distributions of all symbols in the alphabet. HMM is an efficient

tool for the analysis of temporal or sequential data. It is widely used in various domains

and applications, such as, voice recognition, hand writing recognition, DNA and RNA

sequencing, activity recognition, etc.

5.2.2 Markov Chain

Before describing the HMM model, it is important to present the probabilistic model of

the observable sequences : the observable Markov model (Markov chain).
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A Markov chain [115] is a stochastic process used for modeling various sequential and

temporal phenomena in many applications areas. A Markov chain of an observable se-

quence is characterized by the initial distribution of states and by the transition pro-

babilities between these states (Figure 5.1). In general, the elements of an observable

sequence generated by a Markov chain should be dependent over time.

Figure 5.1: An example of a Markov Chain model

In the case of a Markov chain of first order, the transition probability of the current

state, given the previous states sequence, is depend only from the previous state. For-

mally :

p(zn|zn−1, zn−2, .., z1) = p(zn|zn−1) (5.1)

where, zn is a sequence of random variables, for all n > 0.

Generally, a p-order Markov chain is a sequence of random variables that verifies the

following equation :

p(zn|zn−1, zn−2, .., z1) = p(zn|zn−1, zn−2, .., zn−p) (5.2)

where, zn is a sequence of random variables, for all n > 0 and n > p.

Therefore, a typical Markov model can be characterized by :
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– K : the state number of the model ; it is similar to the number of characters in the

used-alphabet.

– A = {akl} : the matrix of transition probabilities, where akl = p(sl|sk) is the transition

probability from the state sk to the state sl with 1 < k, l < K and
∑K

l=1 akl = 1

– π : the vector of the initial probabilities, where πk = p(sk) is the initial probability of

the state sk, with 1 < k < K

5.2.3 Discrete HMM

The Hidden Markov Model (HMM) is a statistical model that can be defined as a com-

bination of two stochastic processes. The first process is a Markov chain that describes

the hidden states sequence, while the second process is a sequence of random variables

that describes the sequence of observations.

Unlike the observable Markov model, the states of a HMM model are not observable

directly, but they emit observations which are weighted by their emission probabilities.

Consider a first order HMM model, and let S = {s1, s2, .., sK} be the set of the states,

and O = {o1, o2, .., oM} the set of the alphabet, where K is the number of states and

M , the number of the characters in the observable alphabet. Let X = {x1, x2, .., xn} be

the observations sequence generated from the HMM process using the hidden Markov

chain sequence Z = {z1, z2, .., zn}. It is important to note that an observation xi takes

its value from the set O and the hidden Markov chain zi from the set S ; with 1 < i <

n.

A HMM model is defined by :

– K : the state number of the model ;

– M : the number of characters in the alphabet O ;

– A = {akl} : the matrix of transition probabilities, where akl = p(zi = sl|zi−1 = sk)

is the transition probability from the state sk to the state sl with 1 < k, l < K and∑K
l=1 akl = 1

– The emission probability of the character om by the state sl, is defined by : p(xi =

om|zi = sl). All emission probabilities are grouped in the emission probabilities matrix

B = {blm} , where :

blm = p(xi = om|zi = sl) for 1 < m < M and 1 < l < K
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– π : the vector of the initial probabilities, where πk = p(zi = sk) is the initial probability

of the state k, with 1 < k < K.

Figure 5.2: An example of a discrete hidden Markov model

Figure 5.2 shows an example of a graphical representation of a discrete HMM model.

Each observable character xi, associated to a hidden state zi, is characterized by its

emission probability.

When using a HMM to model time series, three main points should be considered :

– The evaluation problem : given the HMM model λ and the observations sequence,

what is the probability that these observations are generated by the model ?

The aim is to compute the probability p(X|λ) to generate the observations sequence

X = {x1, x2, .., xn} by the HMM model λ = {π,A,B}. This probability is equal to the

sum of all probabilities that X can be generated using all possible states sequences.

The analytical solution to this problem is time costly, and thus, the Forward-Backward

algorithm is generally used for solving it [115].
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– The decoding problem : given the HMM model λ and the observations sequence X,

how to select the best state sequence (Hidden sequence) that generate the observations

sequence ? i.e., what is the most likely state sequence of the model λ that produce

the observations sequence X. The Viterbi algorithm is generally used to solve this

problem [116].

– The learning problem : how to adjust the parameters of the model λ = {π,A,B} in or-

der to maximize the probability of the observations sequence p(X|λ) ? The Expectation-

Maximization (EM) algorithm is commonly used to learn the HMM model.

Parameter estimation :

The distribution of the state sequence Z = (z1, z2, .., zn) in the case of a hidden Markov

chain of first order can be written as follows :

p(Z;π,A) = p(z1;π)
n∏
i=2

p(zi|zi−1;A) (5.3)

The conditional distribution of the observations sequence Y given the state sequence Z

can therefore be written as follows :

p(X|Z;λ) =
n∏
i=1

p(xi|zi;λ) (5.4)

Finally, the joint distribution of X and Z (the complete-data likelihood) can be expressed

as follows :

p(X,Z;λ) = p(Z;π,A)p(X|Z;A)

= p(z1;π)p(x1|z1;λ)
n∏
i=2

p(zi|zi−1;A)p(xi|zi;λ)
(5.5)

For a HMM model λ = {π,A,B}, the parameters that should be estimated are : the ini-

tial distribution π, the transition probability matrix A and the emission probability ma-

trix B. The maximum likelihood method is used in order to maximize the log-likelihood

of the observation data. The log-likelihood can be expressed as follows

85



Chapter 5

L(λ;X) = log p(X;λ) = log
∑
Z

p(X,Z;λ)

= log
∑
z1,..,zn

p(z1;A)p(x1|z1, λ)
n∏
i=2

p(zi|zi−1;A)p(xi|zi;λ)

(5.6)

The maximization of this log-likelihood is very difficult analytically. The dedicated

Expectation-Maximization (EM) algorithm for the HMMs (Baum-Welsh algorithm) is

used for that propose [114].

The EM algorithm starts with initial parameters of the model λ(0) = {π(0), A(0), B(0)},

and then repeats two steps until convergence :

E-step : This step computes the expectation of the data log-likelihood :

Q(λ, λ(q)) = E[Lc(λ;X,Z)|X,λ(q)]

=
K∑
k=1

τ
(q)
1k logπk +

n∑
i=2

K∑
k=1

K∑
l=1

ξ
(q)
ilk logAlk +

n∑
i=1

K∑
k=1

τ
(q)
ik logBki

(5.7)

where :

– Lc(λ;X,Z) is the complete-data log-likelihood.

– τik = p(zi = k|X;λ(q)) is the posterior probability of state k at time t, given the

observations sequence X and the current model parameters λ(q).

– ξilk = p(zi = k, zi−1 = l|X;λ(q)) is the joint posterior probability of state k at time

i and state l at time i-1, given the observations sequence X and the current model

parameters λ(q).

M-step : This step is used to maximize the expectation Q with respect to λ in order

to update the model parameters λ(q+1). The model parameters are updated as follows :

π
(q+1)
k = τ

(q)
1k (5.8)

A
(q+1)
lk =

∑n
i=2 ξ

(q)
ilk∑n

i=2 τ
(q)
ik

(5.9)
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B
(q+1)
km =

n∑
i=1;
xi=om

τ
(q)
ik

∑n
i=1 τ

(q)
ik

(5.10)

5.2.4 Gaussian HMM

In several applications, the observations are considered as continuous values. Thus, the

emission probability of each state is given by a Gaussian density function. Therefore,

the state conditional density (emission probability) can be written as follows :

p(xi|zk;λ) = N (yi;µk,Σk), (5.11)

where :

– N : the Gaussian probability density function ;

– µk : the mean of the distribution of observations at state k, ∀ k=1,..,K ;

– Σk : the covariance matrix at state k, ∀ k=1,..,K.

Figure 5.3 shows an example of a continuous HMM.

To estimate the parameters of a Gaussian HMM model, the equations used to update

the initial probability π, and the transition probability of a discrete HMM model remain

the same. For the emission probability, the Gaussian distribution parameters µk and Σk

should be calculated for each state. This is achieved as follows :

µ
(q+1)
k =

1∑n
i=1 τ

(q)
ik

n∑
i=1

τ
(q)
ik xi (5.12)

Σ
(q+1)
k =

1∑n
i=1 τ

(q)
ik

n∑
i=1

τ
(q)
ik (xi − µ(q+1)

k )(xi − µ(q+1)
k )T (5.13)
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Figure 5.3: An example of a Gaussian hidden Markov model

5.3 HMM-based classification approach

In this section, we present the proposed HMM-based approach for differentiating between

healthy and PD subjects using their COP displacements in quiet standing. The present

study consists of constructing two HMM models : the HMM parameters are learned

using the training dataset of healthy subjects in the first model (H-HMM), and the

training dataset of PD subjects in the second model (PD-HMM). The construction of

each HMM model is based on the sequential structure of the training signals. Healthy

and PD subjects are classified first using either ML or AP stabilometric signals, and

then using signals from both ML and AP directions.

The classification task of test subjects is carried out as follows : for each test subject,

the processing described in fig. 5.4 is applied as follows : the observation probabilities of

the test subject is computed for the H-HMM and PD-HMM models. The highest value

between these two probabilities determines the class to which the test subject belongs. If

the healthy HMM model gives the highest probability, the test subject is then considered

as a healthy subject. In contrast, if the PD model gives the highest probability, the test

subject is considered as a PD subject.
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Figure 5.4: The block diagram of the proposed classification approach

5.4 Results and discussions

In this section, the classification performances obtained using the HMM models are pre-

sented and discussed. As previously mentioned, a HMM model is characterized by a set

of parameters including, the initial probability, the transition probability matrix and the

Gaussian model of each state. It is also characterized by the number of states and Gaus-

sian mixtures that are considered. All of these parameters can affect the performances

of the HMM model. Another parameter that should be taken into account is the num-

ber of iterations of the log-likelihood maximization process during the training of the

model. A bad choice of the value of this parameter may decrease the model performances.

In this study, the K-means algorithm is used to estimate the initial values of Gaussian

model parameters : the average µk and the covariance matrix Σk for each state sk. Once,
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the initial values of these parameters are estimated, the Baum-Welch algorithm is used

to optimize these parameters by maximizing the log-likelihood of the training dataset.

This maximization is characterized by the number of iterations of the process. Figure 5.5

shows the evolution of the log-likelihood probability during the maximization process for

AP, ML and AP/ML signals. It can be observed that the log-likelihood value converges

from the 15th iteration for the H-HMM and PD-HMM models. After fifteen iterations,

the log-likelihood probability does not grow significantly and converges as shown in fig.

5.5. Therefore, the number of iterations of the log-likelihood maximization process is set

to fifteen.

It is important to analyze the effect of the number of states on the HMM models perfor-

mances to determine the number that gives the best results. Table 5.1 shows the correct

classification rates of healthy and PD subjects using the two HMM models with different

numbers of states.

Table 5.1: Classification rates with different numbers of states

Number of states 2 3 4 5 6 7 8
Classification rates 93.3 98.4 96.6 93.3 95 90 90

It can be noted that all obtained classification rates are higher than or equal to 90%,

and that the best classification performances are obtained when the number of states is

equal to three.

Table 5.2: Classification rates with different numbers of Gaussian mixtures

Number of Gaussian mixtures 2 3 4 5 6 7 8
Classification rates 98.4 97 97 95 95 90 91.6

The effect of the number of Gaussian mixtures on the HMM models'performances is also

addressed in this study. Table 5.2 shows the correct classification rates of healthy and

PD subjects using the two HMM models with different numbers of Gaussian mixtures.

It can be noted that, all classification rates are higher than or equal to 90%. The best

classification performance is obtained when the Gaussian mixtures number is equal to

two. Finally, note that the best performances were obtained when the number of ite-

rations used in the log-likelihood maximization process, the number of states, and the

number of Gaussian mixtures are equal to 15, 3 and 2 respectively.
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The 10-fold cross validation method was used to evaluate the performances of the HMM

models. Three statistical parameters including sensitivity, specificity and the overall

accuracy are calculated to evaluate the performances of the HMM models :

- Sensitivity : it represents the percentage of healthy subjects who are correctly classi-

fied ;

- Specificity : it is equal to the percentage of PD subjects who are correctly classified ;

- Accuracy : it represents the percentage of both healthy and PD subjects who are

correctly classified.
Table 5.3: Performances of the proposed classification approach for differentiating

between healthy and PD subjects using both ML and AP signals

Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
Healthy 28 28 0 100% 98.4%
PD 32 1 31 96.8%

Table 5.3 shows the classification performances of the HMM models using both ML and

AP stabilometric signals. It can be observed that only one PD subject was classified

incorrectly. The sensitivity and the specificity are 100% and 96.4% respectively. The

overall accuracy of healthy and PD subjects classification is 98.4%.

Table 5.4: Performances of the proposed classification approach for differentiating
between healthy and PD subjects using AP signals

Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
Healthy 28 27 1 96.4% 96.6%
PD 32 1 31 96.8%

Table 5.5: Performances of the proposed classification approach for differentiating
between healthy and PD subjects using ML signals

Subjects Predicted H Predicted PD Sensitivity/Specificity Overall Accuracy
Healthy 28 28 0 100% 98.4%
PD 32 1 31 96.8%

Table 5.4 and table 5.5 give the performances of the proposed classification approach

when using AP and ML signals respectively. The performances obtained using ML signals

are similar to those obtained using both ML and AP signals, where the overall accuracy

is 98.4%. Using AP signals, only one healthy subject and one PD subject were classified

incorrectly. The overall accuracy is 96.6% (Table 5.4).

91



Chapter 5

0 1 5 10 15 20 25
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
x 10

5

Iterations

Lo
g−

lik
el

ih
oo

d

 

 

Healthy
PD

(A)

0 1 5 10 15 20 25
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
x 10

5

Iterations

Lg
−

lik
el

ih
oo

d

 

 

Healthy
PD

(B)

0 1 5 10 15 20 25
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
x 10

5

Iterations

Lo
g−

lik
el

ih
oo

d

 

 

Healthy
PD

(C)

Figure 5.5: The log-likelihood maximization process of the HMM models for healthy
and PD subjects (a) AP direction (b) ML direction (c) AP/ML directions.
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5.5 Conclusion

In this chapter, we proposed a HMM-based classification approach to differentiate heal-

thy from PD subjects using stabilometric signals measured in static posture. The clas-

sification performances obtained using this approach are better than those obtained in

the previous chapter. We observed that by using both ML and AP signals, only one PD

subject was classified incorrectly. The sensitivity and the specificity are 100% and 96.4%

respectively, while the overall accuracy is equal to 98.4%. The proposed approach opens

new perspectives in terms of posture analysis, for identifying the pathology degrees of

patients and for fall prediction.
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6.1 Introduction

Posture analysis in quiet standing is an essential element in evaluating human balance

control. Many conditions affect the human postural system's ability to maintain stabi-

lity, such as the visual condition and base of support (feet) positions. In contrast, many

neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb

human stability. This chapter addresses the problem of the automatic segmentation of

stabilometric signals recorded under four different conditions related to vision and feet

position. This is achieved for both healthy subjects and PD subjects. A Hidden Mar-

kov Model Regression (HMMR)-based approach is used to carry out the segmentation

between the different conditions using simple and multiple regression processes. This

approach allows to automatically detect the variation in structures of stabilometric si-

gnals between these conditions. The advantage of the used approach relies mainly in its

capability to operate in an unsupervised context that avoids data labeling phase that is

often time/computation efforts consuming, particularly in the case of massive databases.

This chapter is organized into three main sections. Section 6.2 describes the HMM

regression used in this study. The HMMR-based approach proposed for segmentation of

stabilometric signals is detailed in section 6.3. Finally, the performances of this approach

are presented and discussed in section 6.4.

6.2 Hidden Markov Model Regression

The Hidden Markov Model Regression (HMMR) method is an extension of the classical

HMM method for regression analysis [117]. It is useful for the segmentation of temporal

sequences based on regression models governed by a hidden Markov chain. In fact, there

are two types of regression models : i) the simple regression model that corresponds to

the regression of one-dimensional observations sequence and ii) the multiple regression

model that is commonly used for the regression of multidimensional time series.
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6.2.1 Simple Hidden Markov Model Regression

Consider the simple regression model governed by a hidden Markov chain for time series.

Let X = (x1, x2, ..., xn) be a time series of n real observations xi ∈ R observed at the

time sequence t = (t1, t2, ..., tn). The HMMR assumes that the observed sequence is

generated using K states of a hidden process. The hidden state sequence Z = z1, z2, ..., zn

is obtained from the regression of the observed sequence X, where each zi corresponds to

a discrete value between 1 and K (number of classes). This means that each hidden value

zi is obtained from its related state. In this study, the observation sequence represents

the whole stabilometric signal and the number of states in the Markov chain is equal to

four because four conditions (classes) are considered : FTEO, FAEO, FTEC and FAEC.

Thus, the transition between states in the hidden Markov chain is done as a function

of variation in the structure of the observation sequence. These variations are detected

when the conditions change with respect to feet and eyes. The polynomial regression is

used in the HMMR model in this study. Each observation xi at time ti corresponds to a

regression model related to one state. The regression model can be written as follows :

xi = βTziti + σziεi; with εi ∼ N(0, 1), and 1 ≤ i ≤ n. (6.1)

where zi is a hidden variable corresponding to a discrete value between 1 and K.

βzi = (βzi0 , βzi1 , ..., βzip)T is a vector of dimension p. It represents the regression co-

efficients of the polynomial regression model zi. ti = (1, ti, t
2
i , ..., t

p
i ) is the p+1 covariate

vector, and p is a finite integer that represents the order of the polynomial regression

model.

6.2.1.1 Parameter estimation

In the case of a simple regression model, the HMMR model assumes that the hid-

den sequence Z = (z1, z2, ..., zn) is a homogeneous Markov chain parameterized by

the initial state probability distribution vector π and the transition probability ma-

trix A. In this context, xi has a Gaussian distribution, with a mean βTk ti and va-

riance σ2k. Thus, the HMMR model is parameterized by the parameters vector Φ =
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(π,A, β1, ..., βK , σ
2
1, ..., σ

2
K). This vector is estimated by the maximum likelihood me-

thod. The log-likelihood can be written as follows :

L(Φ;X) =

log
∑
z1

...
∑
zn

p(z1;π)
n∏
i=2

p(zi|zi−1;A)
n∏
i=1

N(xi;β
T
ziti;σ

2
zi) (6.2)

Because this log-likelihood cannot be maximized analytically, the Expectation-Maximization

(EM) iterative algorithm is used to provide efficient estimation of the parameters. The

EM algorithm is described in the next section in the context of multiple regression model.

6.2.2 Multiple Hidden Markov Model Regression

In the case of multiple regressions, the observation data to be segmented should be a

multidimensional time series. In this study, the multiple regression is achieved on the

stabilometric signals in both the ML and AP directions. This is called joint segmentation

of both ML and AP signals. Let X = (x1, x2, ..., xn) be a multidimensional time series.

Each observation xi = (x
(1)
i , x

(2)
i , ...x

(d)
i ) ∈ Rd is observed at time ti ; d is the dimension

of time series ; in our case, d=2 for ML and AP signals. The multiple regression model

with a hidden Markov chain can be written as follows :

x
(1)
i = β

(1)T
zi ti + σ

(1)
zi εi

x
(2)
i = β

(2)T
zi ti + σ

(2)
zi εi

..

..

..

x
(d)
i = β(d)Tzi ti + σ(d)zi εi (6.3)

However, the multiple regression model performs the regression of all univariate se-

quences, which provides better model efficiency and provides better results based on the
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joint segmentation. Model (6.3) can be rewritten as follows :

xi = BT
ziti + δi; δi ∼ N(0,Σzi) with 1 ≤ i ≤ n. (6.4)

where xi = (x
(1)
i , x

(2)
i , ...x

(d)
i ) ∈ Rd, Bzi is the regression coefficients matrix with dimen-

sion (p+1) × d and Σzi represents its covariance matrix.

The multiple regression model is therefore parameterized by the following parameters

vector : Φ = (π,A,B1, B2, ..., BK ,Σ1,Σ2, ...,ΣK).

To provide the best regression and segmentation, the estimation of these parameters is

achieved using the EM algorithm that maximizes the log-likelihood of data.

6.2.2.1 Parameter estimation

The parameters vector Φ is estimated using the iterative algorithm EM. The log-likelihood

that has been maximized is written as follows :

L(Φ;X) = log p(x1, x2, ...xn; Φ) =

log
∑
z1

...
∑
zn

p(z1;π)
n∏
i=2

p(zi|zi−1;A)
n∏
i=1

N(xi;B
T
ziti; Σzi) (6.5)

The EM algorithm, also known as the Baum-Welch algorithm for HMM, includes two

main steps. At each iteration, the model parameters are estimated until they converge.

The algorithm starts with initial values of model parameters Φ(0).

E-step : From the observation data, time, and current estimation Φ(q), the log-likelihood

of completed data is estimated as follows :

Q(Φ,Φ(q)) = E[log p(X, z, t,Φ)|X, t; Φ(q)]. (6.6)

The calculation of this expectation requires calculating two parameters :
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1. The posterior probabilities that xi is generated from the kth regression model,

given the observation data and the current estimation φ(q) :

τ
(q)
ik = p(zi = k|X, t; Φ(q)) for all i and k. (6.7)

2. The joint posterior probabilities of state k at time t and state l at time t-1, given

the observation data and the current estimation Φ(q) :

ξ
(q)
ilk = p(zi = k, zi−1 = l|X, t; Φ(q)) for all i, k and l. (6.8)

These probabilities can be calculated by using the forward-backward procedure used for

the standard HMM.

M-step : This step consists of updating the values of model parameters vector Φ. The

new values Φ(q+1) are calculated by maximizing the expectation. The updated values of

the initial state probability distribution vector π and the transition probability matrix

A are calculated as follows :

π
(q+1)
k = τ

(q)
1k (6.9)

A
(q+1)
lk =

∑n
i=2 ξ

(q)
ilk∑n

i=2 τ
(q)
ik

(6.10)

The regression coefficients of the matrix B and its covariance matrix Σ can also be up-

dated as follows :

B
(q+1)
k = [

n∑
i=1

τ
(q)
ik tit

T
i ]−1

n∑
i=1

τ
(q)
ik tix

T
i (6.11)

Σ
(q+1)
k =

1∑n
i=1 τ

(q)
ik

n∑
i=1

τ
(q)
ik (xi −BT (q+1)

k ti)
T (xi −BT (q+1)

k ti) (6.12)
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The pseudo-code in the algorithm 3 summarizes the EM algorithm of the HMMR method

with multiple regression.

Algorithm 3 Pseudo-code for EM algorithm with multiple regression

Input : time series X, number of polynomial components K, polynomial degrees p.

1: Initialization Φ = (π(0), A(0), B
(0)
1 , .., B

(0)
K , S

(0)
1 , .., S

(0)
K )

2: fix a threshold ε > 0
3: set q ← 0
4: while increment in log-likelihood > ε (do)
5: E-step :
6: for k=1,..,K do

7: compute τ
(q)
ik using Eq.6.7 and ξ

(q)
ilk using Eq.6.8 for i=1,..,n

8: M-step :
9: for k=1,..,K do

10: compute π
(q+1)
k using Eq.6.9

11: compute A
(q+1)
lk using Eq.6.10

12: compute B
(q+1)
k using Eq.6.11

13: compute Σ
(q+1)
k using Eq.6.12

14: end for
15: q ← q + 1
16: end while
17: Φ̂ = Φ(q)

Outputs : Φ̂ = (π̂, Â, B̂1, .., B̂K , Σ̂1, .., Σ̂K)

6.3 HMM Regression-based approach for automatic seg-

mentation of stabilometric signals

The Hidden Markov Model Regression (HMMR) approach is proposed for the segmen-

tation of the measured stabilometric signals.

The problem of condition recognition can therefore be reformulated as one of a joint

segmentation of multidimensional time series, in which each segment is associated with

one condition.

The proposed statistical approach is dedicated to temporal segmentation by including a

hidden process in which the process probabilities change over time according to the most

likely condition. The approach performs in an unsupervised context from CoP excursion

stabilometric signal recordings.

The configuration of the hidden process at each time step corresponds to a condition

described by a regression model. The hidden process configuration depends on time, and
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the regression model parameters are time-varying according to the most likely condition.

The resulting model is therefore a type of latent data model that is particularly suitable

for performing unsupervised activity recognition. Let us recall that from a statistical

prospective, latent data models aim to represent the distribution of the observed data,

which in this case are stabilometric signal recordings. The unsupervised learning task for

the proposed approach is achieved by maximizing the observed-data log-likelihood via a

dedicated iterative algorithm known as the expectation-maximization (EM) algorithm.

The approach proposed here, i.e., performing temporal segmentation of multivariate time

series, is based on an alternative to the Markov process in the HMM regression model

([117]). It also directly uses raw data, rather than performing feature extraction and

feature selection. This is indeed one of the main advantages of the proposed unsupervised

approach because it does not require preprocessing and because the model parameters

are learned in an unsupervised way from the acquired unlabeled raw data. However, the

feature extraction step may itself require implementing additional models or routines,

well-established criteria or additional expertise to extract and select the optimal features.

The feature extraction step may also require an additional computational cost, which

can be penalizing.

HMMR method takes as input the entire stabilometric signal and takes also the number

of classes (segments). The Viterbi path is considered as the output of the regression

process Fig. 6.1.

6.4 Results and discussions

In this section, the segmentation performances obtained using the HMMR approach are

presented and discussed. For the simple regression, the HMMR approach takes the whole

stabilometric signal as input for both the ML and AP directions as well as the number

of classes (segments). For the multiple regression, the HMMR approach takes two stabi-

lometric signals as input, which correspond to the ML and AP directions for the same

subject, as well as the number of classes (segments). The proposed approach learns the

model using the EM iterative algorithm to perform the best regression (segmentation)
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Figure 6.1: The input and the output of the HMMR model for the discrimination
between visual and feet conditions

for the signals used. The Viterbi path is considered to be the output of the regression

process (see Fig. 6.1). In fact, the Viterbi path is a signal that has the same dimension

as the entire stabilometric signal, and each sample of the output signal (Viterbi) takes a

value between one and four in case of discrimination between visual and feet conditions.

To determine the performance of the proposed segmentation approach, the correct clas-

sification rate is calculated between the desired classes (Viterbi path) and the actual

classes (Known classes) of our data.

6.4.1 Segmentation based on feet and visual conditions of healthy sub-

jects

In this section, the segmentation results are shown for the healthy subjects. These results

are compared to those obtained using standard well known classification methods to

prove the efficiency of the segmentation strategy based on the HMMR method.

Fig. 6.2 shows the segmentation results obtained for both the HMM and HMMR methods

in the AP direction. Fig. 6.2 (a) and (b) represent the entire stabilometric signal in the

AP direction, and the separated lines between the truth segments can be observed. Fig.

6.2 (c) illustrates the posterior probabilities of the four conditions obtained with the
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Figure 6.2: Results obtained in the case of HMMR (left) and HMM (right) for AP
direction with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.

HMMR model. The regression model k that has the highest posterior probability for a

sample i is considered to be the model that generates this sample.

High rates of segmentation are obtained for k=1 (FAEC) and k=4 (FTEO), although

there are some segmentation errors in segments k=2 (FAEO) and k=3 (FTEC). In

contrast, Fig. 6.2 (d), which illustrates the posterior probabilities using the HMM me-

thod, shows segmentation errors in all parts of the signal.

In fig. 6.3, similar trends can be observed on the segmentation results obtained for both

HMM and HMMR methods in the ML direction. Fig. 6.3 (a) and (b) represent the en-

tire stabilometric signal in the ML direction. For HMMR segmentation, high rates of

segmentation are obtained for k=1 (FAEC) and k=2 (FTEC), and some segmentation

errors appear in the later segments : k=3 (FAEO) and k=4 (FTEO) in Fig. 6.3 (c). Ho-

wever, segmentation errors are observed in all parts of the signal. Fig. 6.3 (d) illustrates

the posterior probabilities using the HMM method.

Fig. 6.4 shows the segmentation results using multiple inputs (stabilometric signals for
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Figure 6.3: Results obtained in the case of HMMR (left) and HMM (right) for ML
direction with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and k=4 : FTEO.

both AP and ML directions), thus proving that the use of signals from both the AP

and ML directions provides more information about the situation of each subject and,

consequently, provides results with respect to the one-directional analysis. Fig. 6.4 (a)

shows the AP and ML stabilometric signals used for the multiple HMMR model. Fig.

6.4 (b), which illustrates the posterior probabilities obtained with the HMMR method,

shows high rates of correct segmentation on all segments. Although the performances ob-

tained using the HMM method are relatively acceptable, they still suffer from important

segmentation errors, as shown in fig. 6.4 (c).

Tables 6.1 and 6.2 represent the confusion matrices in the case of HMMR segmentation

using AP and ML signals, respectively. It should be noted that the rates of correct

segmentation (classification) in ML direction are higher than those in AP direction,

except under the last condition (FTEO). One can notice that the classification errors of

a given condition with respect to its neighborhood condition present small rates in the

ML direction but show relatively high error rates in the AP direction.
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Table 6.1: Confusion Matrix for AP direction

Predicted Class
FAEC FTEC FAEO FTEO

True Class FAEC 95.70 4.29 0 0
FTEC 5.53 72.55 21.91 0
FAEO 0 25.14 72.05 2.79
FTEO 0 0 2.24 97.75

Table 6.2: Confusion Matrix for ML direction

Predicted Class
FAEC FTEC FAEO FTEO

True Class FAEC 97.94 2.05 0 0
FTEC 2.38 96.22 1.38 0
FAEO 0 4.22 92.11 3.65
FTEO 0 0 8.49 91.50

Table 6.3: Confusion Matrix for both AP and ML directions

Predicted Class
FAEC FTEC FAEO FTEO

True Class FAEC 100 0 0 0
FTEC 0 97.83 2.16 0
FAEO 0 3.31 96.66 0
FTEO 0 0 2.16 97.82

Table 6.3 shows the confusion matrix obtained for HMMR segmentation for both the

AP and ML directions. It shows better results compared to those shown in tables 6.1

and 6.2, where the minimum classification rate is greater than 96%.

Table 6.4: Correct classification rates (%) obtained with the different methods

Method Rate ML
(%)

Rate AP
(%)

Rate Pla-
nar (%)

KNN 51.2 47.1 79.6
CART 46.2 42.6 74.7
RF 51.3 47.2 81.6
HMM 58.2 53.4 72.9
HMMR 94.2 85.2 98.5

Five well-known classification methods were used to assess the performance of the

HMMR method for stabilometric signals segmentation : K-nearest neighbours (K-NN),

decision tree (CART), random forest (RF) [109–111]. These methods are all supervised

classification techniques and require a training process. The true class labels are used as

inputs for the training set with the number of segments (groups = 4). After the training
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phase, the class labels obtained from the test set are compared with the true labels, and

the correct classification rates are calculated with regards to all classifiers.

Table 6.4 gives the correct segmentation (classification) rates using different classifica-

tion methods with respect to ML and AP directions, both separately and together. The

correct classification rates in the AP and ML directions are 85.2% and 94.2%, respecti-

vely, for the HMMR method and less than 60% for the remaining methods. The use of

multiple inputs (both AP and ML signals) improves the performances of all classifiers.

The correct classification rates are 79.6% and 81.6% for K-NN and RF, respectively. The

HMMR method gives the best results, with a 98.5% correct segmentation (classification)

rate.

In addition to its high performance, the HMMR method is an unsupervised method that

does not need data labelling for the segmentation process. Additionally, it does not need

any pre-processing tasks, and the model is learned automatically from the raw data.

6.4.2 Segmentation based on feet and visual conditions of PD subjects

Table 6.5: Correct classification rates (%) obtained with PD subjects using HMM and
HMMR.

Method Rate ML
(%)

Rate AP
(%)

Rate Pla-
nar (%)

HMM 57.3 49.4 63.6
HMMR 87.8 75.7 89.9

Fig. 6.5 shows the segmentation results obtained using multiple inputs (stabilometric

signals with respect to both AP and ML directions) for PD subjects. Fig. 6.5 (a) shows

an example of a stabilometric signal related to a PD subject in both the AP and ML

directions.

Table 6.6: Confusion Matrix for both AP and ML directions (Planar) for PD subjects

Predicted Class
FAEC FTEC FAEO FTEO

True Class FAEC 88.03 11.96 0 0
FTEC 23.60 74.48 1.90 0
FAEO 0 5.72 94.27 0
FTEO 0 0 0 100

107



Chapter 6

Figure 6.4: Results obtained with HMMR (b) and HMM (c) for multi-input AP and
ML directions (a) for healthy subjects with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO,

and k=4 : FTEO.

Fig. 6.5 (b) gives the posterior probabilities obtained using the HMMR approach. One

can observe relatively high rates of correct segmentation, although there are some errors

in the posterior probabilities related to some segments. These results are still satisfactory

compared to those obtained with the classical HMM method, which shows important

errors in the posterior probabilities (Fig. 6.5 (c)).

Table 6.5 shows the correct classification rates obtained with the ML and AP directions

separately as simple inputs and together as multiple inputs. The results obtained with

multiple inputs (both ML and AP signals) show better segmentation than does the

simple input case with both HMM and HMMR methods.

As we can see, the results obtained with HMMR are better than those obtained with the

standard HMM method. For example, HMM and HMMR obtained correct classification

rates in the ML direction of 57.3% and 87.8% respectively, in the case of single input
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Figure 6.5: Results obtained with HMMR (b) and HMM (c) for multi-input AP and
ML directions (a) for PD subjects with k=1 : FAEC, k=2 :FTEC, k=3 : FAEO, and

k=4 : FTEO.

(AP or ML directions). They grew to 63.6% and 89.9% respectively with multiple input

(ML/AP).

These performances can be compared to those discussed previously for healthy subjects.

Note that the HMMR method provides high segmentation rates for healthy subjects

(up to 98%) and for PD subjects (up to 89%). This can be explained by the fact that

the visual input and foot position have more influence on human stability with healthy

subjects. These factors also influence PD subjects but remain relatively limited.

6.5 Conclusion

The human postural system can be affected by several conditions such as visual input and

feet position. In this chapter, an automatic segmentation approach of the stabilometric

signals is proposed to segment signals under visual and feet conditions. This is achieved

to prove whether the HMMR is capable of automatically detecting the variation in struc-

tures of signals between these conditions. This approach allows to automatically detect

the variation in structures of stabilometric signals between these conditions. The model
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is learned in an unsupervised context by maximizing the observed-data log-likelihood

via a dedicated expectation-maximization (EM) algorithm. The performances obtained

with multiple regression are better than those obtained with simple regression. The

HMMR shows satisfactory results for signal segmentation between the used-conditions.

The present findings could help clinicians to better understand the motor strategies

used by the patients during their orthostatic postures and may guide the rehabilitation

process.
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7.1 Conclusion

This thesis addresses the issue of postural stability analysis. This is a research topic

whose results can be exploited in the postural system behaviors analysis, diagnosis of

PD subjects, prevention of falls, etc. Four approaches were proposed as contributions of

this thesis.

The first approach deals with the human stability analysis in quiet standing using the

EEMD method and the stabilogram-diffusion analysis technique. The EEMD method

allows to decompose the stabilometric signal into a finite number of elementary signals

called IMFs. The stabilogram-diffusion analysis technique is then applied on each IMF

to generate the diffusion curve. Each diffusion curve is modeled as a second order system

and provides representative features, such as, the gain and CP parameters. These para-

meters are used to assess the postural stability and to analyze the influence of the visual

input, feet position conditions, age and gender on the human stability. The obtained

results show a high sensitivity of the extracted parameters under the aforementioned

conditions, and more precisely : (1) the human stability under eyes-open condition is

higher than under eyes-closed condition ; (2) the human body under feet-apart condi-

tion is more stable than under feet-together condition especially, in ML condition ; (3)

the young subjects show postural stability higher than elderly subjects with significant

differences ; (4) the women subjects show higher postural stability compared to men sub-

jects ; (5) the extracted parameters better characterize the stabilometric signals than the

standard parameters used in the literature.

The second approach allows to discriminate between healthy and PD subjects using

their stabilometric signals. This approach consists of four steps. In the first step, for each

stabilometric signal, the first eight IMFs, obtained from EEMD method, are selected for

further processing. In the second step, temporal and spectral characteristics are extracted

from raw stabilometric data and their corresponding IMFs. In the third step, a feature

selection method is applied to retain the first five relevant characteristics. In the fourth

step, four well-known classification methods, including KNN, CART, RF and support

vector machine (SVM) are used for the classification task. The obtained results show

that the proposed approach is efficient for classifying PD subjects with classification

rates up to 96%. The classifiers based on the IMFs data can classify subjects with

better performances than those based on raw data. The best results were obtained under
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FTEO condition. This can be explained by the fact that under feet together condition,

the stability of PD subjects becomes lower, and therefore, PD subjects become more

distinguishable from healthy ones.

The third approach is an HMM-based method for differentiating between healthy and

PD subjects using their raw stabilometric data. This approach consists of constructing

two HMM models : the first model (H-HMM) was constructed using the training healthy

subjects data, and the second model (PD-HMM) was learned by the training dataset

of PD subjects. Healthy and PD subjects are classified first using either ML or AP

stabilometric signals, and then using signals from both ML and AP directions. The

classification task of test subjects is carried out as follows : The observation probabilities

of each test subject is computed for the H-HMM and PD-HMM models. The highest

value between these two probabilities determines the class to which the test subject

belongs. The classification performances obtained using this approach are better than

those obtained in the previous chapter. The sensitivity and the specificity are 100% and

96.4% respectively, while the overall accuracy is equal to 98.4%.

The last approach addresses the problem of the automatic segmentation of stabilome-

tric signals recorded under four different conditions related to vision and feet position.

The Hidden Markov Model Regression (HMMR) approach is used to ensure the segmen-

tation of the stabilometric signals related to the different conditions. The advantage of

the used approach relies mainly in its capability to operate in an unsupervised context

that avoids data labeling phase that is often time/computation efforts consuming, parti-

cularly in the case of massive databases. The segmentation was done based on a multiple

HMMR regression process between the different conditions using ML, AP, and ML/AP

signals. The HMMR shows excellent results for signal segmentation between the different

conditions with up to 98% in terms of overall accuracy. The performances obtained with

multiple regression are better than those obtained with simple regression. The outcome

of this study may help the clinicians to better understand the motor strategies used by

the subjects during quiet standing and may provide a guideline for the rehabilitation

process.
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7.2 Perspectives

The perspectives resulting from this thesis can be summarized as follows :

- From an algorithmic point of view

1. Extension of the EMD method for bivariate analysis in order to decompose the

stabilometric signals in AP and ML directions together.

2. Integration of a selection model in the HMMR-based approach that guarantees the

automatic identification of the segment number without any prior knowledge.

3. Extraction of non-linear parameters, such as Lyapunov exponent, sample Entropy,

from the IMFs extracted from the stabilometric data, and usage of other machine

learning based approaches in the classification task.

- From an application point of view :

1. Classification between healthy/PD, women/men, young/elderly based on gain and

CP parameters.

2. Classification between healthy/PD, women/men, young/elderly based on the re-

gression model parameters of segmentation process, proposed in chapter VI. In-

deed, other extracted parameters, such as the regression coefficients β, may be

considered as potential parameters that may impact the overall classification rate

and necessitate further investigations.

3. Applying the used classification approaches in order to discriminate between dif-

ferent levels of PD subjects.

4. Exploring the feasibility of the proposed approaches to characterize human postu-

ral stability in the case of dynamic human postures, running and walking activities

and gait pathologies.
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[28] D. Lafond, H. Corriveau, R. Hébert, and F. Prince, “Intrasession reliability of cen-

ter of pressure measures of postural steadiness in healthy elderly people,” Archives

of physical medicine and rehabilitation, vol. 85, no. 6, pp. 896–901, 2004.

[29] T. E. Prieto, J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust,

“Measures of postural steadiness : differences between healthy young and elderly

adults,” IEEE Transactions on Biomedical Engineering, vol. 43, no. 9, pp. 956–966,

1996.

[30] B. Maki, P. Holliday, and G. Fernie, “Aging and postural control,” Journal of the

American Geriatrics Society, vol. 38, no. 1, pp. 1–9, 1990.

[31] D. Lafond, M. Duarte, and F. Prince, “Comparison of three methods to estimate

the center of mass during balance assessment,” Journal of biomechanics, vol. 37,

no. 9, pp. 1421–1426, 2004.

[32] D. A. Winter, A. E. Patla, F. Prince, M. Ishac, and K. Gielo-Perczak, “Stiffness

control of balance in quiet standing,” Journal of neurophysiology, vol. 80, no. 3,

pp. 1211–1221, 1998.

118



Bibliography

[33] S. S. Hasan, D. W. Robin, D. C. Szurkus, D. H. Ashmead, S. W. Peterson, and

R. G. Shiavi, “Simultaneous measurement of body center of pressure and center

of gravity during upright stance. part i : Methods,” Gait & posture, vol. 4, no. 1,

pp. 1–10, 1996.

[34] A. A. Priplata, J. B. Niemi, J. D. Harry, L. A. Lipsitz, and J. J. Collins, “Vibrating

insoles and balance control in elderly people,” The Lancet, vol. 362, no. 9390, pp.

1123–1124, 2003.

[35] D. L. King and V. M. Zatsiorsky, “Extracting gravity line displacement from sta-

bilographic recordings,” Gait & Posture, vol. 6, no. 1, pp. 27–38, 1997.

[36] T. Shimba, “An estimation of center of gravity from force platform data,” Journal

of Biomechanics, vol. 17, no. 1, pp. 53–60, 1984.

[37] A. Karlsson and H. Lanshammar, “Analysis of postural sway strategies using an

inverted pendulum model and force plate data,” Gait & Posture, vol. 5, no. 3, pp.

198–203, 1997.

[38] O. Levin and J. Mizrahi, “An iterative model for estimation of the trajectory of

center of gravity from bilateral reactive force measurements in standing sway,”

Gait & Posture, vol. 4, no. 2, pp. 89–99, 1996.

[39] P. Rougier, C. Burdet, I. Farenc, and L. Berger, “Backward and forward leaning

postures modelled by an fbm framework,” Neuroscience research, vol. 41, no. 1,

pp. 41–50, 2001.

[40] Y. Breniere and C. Ribreau, “A double-inverted pendulum model for studying the

adaptability of postural control to frequency during human stepping in place,”

Biological cybernetics, vol. 79, no. 4, pp. 337–345, 1998.

[41] O. Caron, B. Faure, and Y. Brenière, “Estimating the centre of gravity of the body

on the basis of the centre of pressure in standing posture,” Journal of biomechanics,

vol. 30, no. 11, pp. 1169–1171, 1997.

[42] B. J. Benda, P. Riley, and D. Krebs, “Biomechanical relationship between center

of gravity and center of pressure during standing,” IEEE Transactions on Reha-

bilitation Engineering, vol. 2, no. 1, pp. 3–10, 1994.

119



Bibliography

[43] J. Yang, D. Winter, and R. Wells, “Postural dynamics in the standing human,”

Biological Cybernetics, vol. 62, no. 4, pp. 309–320, 1990.

[44] D. A. Winter, “Overall principle of lower limb support during stance phase of

gait,” Journal of biomechanics, vol. 13, no. 11, pp. 923–927, 1980.

[45] F. Horak and A. Kuo, “Postural adaptation for altered environments, tasks, and

intentions,” in Biomechanics and neural control of posture and movement. Sprin-

ger, 2000, pp. 267–281.

[46] W. McIlroy and B. Maki, “Task constraints on foot movement and the incidence of

compensatory stepping following perturbation of upright stance,” Brain research,

vol. 616, no. 1, pp. 30–38, 1993.

[47] S. Moore, D. Rushmer, S. Windus, and L. Nashner, “Human automatic postural

responses : responses to horizontal perturbations of stance in multiple directions,”

Experimental brain research, vol. 73, no. 3, pp. 648–658, 1988.

[48] F. Scoppa, R. Capra, M. Gallamini, and R. Shiffer, “Clinical stabilometry stan-

dardization : basic definitions–acquisition interval–sampling frequency,” Gait &

posture, vol. 37, no. 2, pp. 290–292, 2013.

[49] W. McIlroy and B. Maki, “Preferred placement of the feet during quiet stance :

development of a standardized foot placement for balance testing,” Clinical Bio-

mechanics, vol. 12, no. 1, pp. 66–70, 1997.

[50] D. A. Winter, “Human balance and posture control during standing and walking,”

Gait & posture, vol. 3, no. 4, pp. 193–214, 1995.

[51] A. V. Alexandrov, A. A. Frolov, F. Horak, P. Carlson-Kuhta, and S. Park, “Feed-

back equilibrium control during human standing,” Biological cybernetics, vol. 93,

no. 5, pp. 309–322, 2005.

[52] E. Mira, “Improving the quality of life in patients with vestibular disorders : the

role of medical treatments and physical rehabilitation,” International journal of

clinical practice, vol. 62, no. 1, pp. 109–114, 2008.

[53] D. A. Winter, A. E. Patla, S. Rietdyk, and M. G. Ishac, “Ankle muscle stiffness in

the control of balance during quiet standing,” Journal of Neurophysiology, vol. 85,

no. 6, pp. 2630–2633, 2001.

120



Bibliography

[54] C. Maurer, T. Mergner, B. Bolha, and F. Hlavacka, “Vestibular, visual, and soma-

tosensory contributions to human control of upright stance,” Neuroscience letters,

vol. 281, no. 2, pp. 99–102, 2000.

[55] T. Mergner, C. Maurer, and R. Peterka, “A multisensory posture control model

of human upright stance,” Progress in brain research, vol. 142, pp. 189–201, 2003.

[56] R. Peterka, “Sensorimotor integration in human postural control,” Journal of neu-

rophysiology, vol. 88, no. 3, pp. 1097–1118, 2002.

[57] L. Chiari, L. Rocchi, and A. Cappello, “Stabilometric parameters are affected by

anthropometry and foot placement,” Clinical Biomechanics, vol. 17, no. 9, pp.

666–677, 2002.

[58] S. Nejc, R. Jernej, S. Loefler, and H. Kern, “Sensitivity of body sway parameters

during quiet standing to manipulation of support surface size,” Journal of sports

science & medicine, vol. 9, no. 3, pp. 431–438, 2010.

[59] S. Ramdani, B. Seigle, J. Lagarde, F. Bouchara, and P. L. Bernard, “On the use

of sample entropy to analyze human postural sway data,” Medical engineering &

physics, vol. 31, no. 8, pp. 1023–1031, 2009.

[60] O. Caron, P. Fontanari, J. Cremieux, and F. Joulia, “Effects of ventilation on body

sway during human standing,” Neuroscience letters, vol. 366, no. 1, pp. 6–9, 2004.

[61] S. G. Brauer, Y. R. Burns, and P. Galley, “A prospective study of laboratory

and clinical measures of postural stability to predict community-dwelling fallers,”

The Journals of Gerontology Series A : Biological Sciences and Medical Sciences,

vol. 55, no. 8, pp. M469–M476, 2000.

[62] R. W. Baloh, K. M. Jacobson, K. Beykirch, and V. Honrubia, “Static and dyna-

mic posturography in patients with vestibular and cerebellar lesions,” Archives of

Neurology, vol. 55, no. 5, pp. 649–654, 1998.

[63] L. Rocchi, L. Chiari, and A. Cappello, “Feature selection of stabilometric parame-

ters based on principal component analysis,” Medical and Biological Engineering

and Computing, vol. 42, no. 1, pp. 71–79, 2004.

121



Bibliography

[64] H. Amoud, H. Snoussi, D. Hewson, and J. Duchêne, “Univariate and bivariate
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