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Introduction

The development of Makerspaces and Fablabs is a good indicator that rapid manu-
facturing blossomed in the past few years. Most of these spaces are equipped with Fused
Filament Fabrication (FFF) 3D printers and laser cutters 1, which are inexpensive and
easy to operate technologies for fabrication. The popularization of those spaces led to the
development of inexpensive and more user friendly 3D printers. It is now very simple to
manufacture physical objects from virtual models, without any specific expertise. Despite
their simplicity these machines produce functional physical objects in a variety of mate-
rials (plastics, nylon, wood, etc.). Those technologies are important to study because they
are popular and accessible, and thus any improvement can bring benefits to a large user
base.

Industrial 3D printers were initially targeted at specialists operating the machine, close
to the final fabrication process. The increased accessibility of rapid prototyping now allows
the initial designer to also be the one operating the machine, and let us envision that the
designer might become anyone, from home users to enthusiasts and small entrepreneurs.
Interestingly, the main barrier to entry for novel users is no longer the equipment or how
to operate it, but rather how to create interesting and useful 3D models to print. Hence
we need software that helps end users directly produce parts that can be fabricated, where
the software takes into account the constraints of the process, the desired function of the
object, and the structural constraints on the final product.

Making an object is not a simple task. It is a complex process that begin with the
design of a shape, its function, its aesthetics, while taking into consideration all the various
constraints. The process ends by the fabrication itself. Throughout this thesis, we will see
novel techniques aimed at simplifying and improving the process of making objects using
rapid fabrication technologies. Algorithms can improve the quality of a fabricated model
without interfering with the design of the shape. Algorithms may also synthesize novel
shapes from incomplete specifications or cooperate with the designer to model fabricable
shapes.

The techniques I propose in this thesis explore a trade off along a line between the
user and the machine (see Figure 1). The closer the cursor is to the user, the more the
algorithm helps her to create the shape. The closer the cursor is from the printer, the less
the algorithm changes the design and instead tries to adapt the process.

The increasing popularity of 3D printers led to a change of the community of people
that are using the technology. It ranges from designers that are expert users of design
tools to hobbyists who do not master these tools. The best software is not the same for

1. http://fabfoundation.org/setting-up-a-fab-lab/
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Introduction

different groups of the community. While a design made by an expert might be a work
of art that should not be deformed, and fabricated as it is, a hobbyist might expect the
software to help him realize his vision. Those different expectations give importance to
the exploration of the different positions of the cursor.

The next chapter presents the state of the art of a wide range of methods from the
optimization of the 3D printing process to the synthesis of shapes. After the state of the
art, I detail my contributions.

The first approaches I introduce focus on the optimization of the 3D printing process.
Chapter 2 presents a method to improve the quality of a model printed with multiple
materials. I also discuss my contribution to the design of support structures, that are
sacrificial scaffoldings added to the geometry of a design to ensure it prints correctly.
Chapter 3 introduces techniques that handle fabrication constraints as part of the mo-
delling process. A first approach enables partial 2D specifications of mechanisms to be
automatically transformed into fabricable 3D mechanisms. A second approach helps re-
duce wastage on parametric models made by assembling laser cut planar parts. Moving
the cursor even closer to the user, Chapter 4 introduces a technique helping users to model
entire designs (in this case furniture) from functional specifications (supporting objects
located in space).

Figure 1 – The line between the user and the machine. The closer the cursor it is to the
machine (left), the more precise the specification by the user has to be.
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1

State of The Art

1.1 Overview

Digital manufacturing is everywhere in modern factories, where computer controlled
machines turn virtual designs into actual objects. Objects are mass produced through
complex chains of operations involving different machines and processes. However, while
largely adopted for mass production, producing prototypes remained a manual activity
for a much longer time, involving highly skilled and trained specialists handcrafting phy-
sical models. This motivated the research on rapid prototyping techniques. They allow
fabricating unique prototypes at low cost, and have been designed to turn a virtual object
into a physical prototype as automatically (and quickly) as possible.

Rapid prototyping relies mostly (but not exclusively) on additive manufacturing tech-
niques which are processes of making an object by stacking successive layers of material.
There are different technologies based on different principles. Here are the main ones :

— Selective Laser Sintering (SLS) is the principle of using a laser to fuse powder
material. Powder is added to the bed layer after layer (typically with 0.1 mm
thickness). The laser then locally solidifies contours and the inside. The next layer
is added on top, progressively forming the object (see Figure 1.1).

— Binder Jetting uses a binder to bond powder material similar to plaster. The
binder is deposited by a print head similar to a standard inkjet 2D printer, directly
onto the powder bed.

— Stereolithography Aparatus (SLA) uses light to solidify a liquid photo-sensible
resin with a projector or a laser and mirrors (Figure 1.1).

— Fused Filament Fabrication (FFF) uses melted plastic to build the object
(Figure 1.4). As I will be focusing on this process later on, it is explained in more
detail in Section 1.2.

While initially limited to prototyping, the wider range of available materials and the
improvements in processes make it now possible to use additive manufacturing to produce
functional parts. Among those technologies, fused filament fabrication blossomed the last
decade. It is used in fablabs and makerspaces to repair or fabricate customized objects,
where mass production is not an option because it is too expensive.

Other fabrication techniques such as laser cutting or computer numerical control mil-
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Chapitre 1. State of The Art

Figure 1.1 – Left : a selective laser sintering machine works by depositing powder that
is locally solidified by a laser. Image from Wikipedia (www.wikipedia.fr).Right : a
Stereolithography apparatus machine works with a projector that is solidifying a liquid
photo-sensible.

ling reached maturity and became simpler to operate. Free software and firmwares are
available (Grbl, LinuxCNC are open source solutions for example) for those technologies,
which are also present in fablabs and makerspaces.

Makerspaces, fablabs and start-ups massively adopted those technologies. This led to
a profound change of the typical user profile. At first, the processes were used by expert
technicians with extensive training. Nowadays, these machines are used by hobbyists,
teachers, small entrepreneurs who want to produce unique and customizable products [73].
This evolution creates a need for new software tools that are usable by a wider range
of users. My work is part of this trend, focusing on algorithms that can help exploiting
available technologies of rapid manufacturing without significant training in CAD software
and processes.

Figure 1.2 shows a set of 3D printed models from the website thingiverse, which is a
website where people share models to fabricate. As can be seen a wide range of objects
are being shared, from chess set pieces, to a functional 3D mechanical clock, and a small
music box. All these objects have been created to be 3D printed on inexpensive filament 3D
printers. Such sharing platforms are a good example of the profound evolution triggered
by the massive availability of 3D printers. Figure 1.3 shows a set of laser cut models.
There is an arcade, a dragonfly sculpture and a bottle holder that have been laser cut
and assembled. Note how all these models are neatly assembled from planar cut-outs.

In Section 1.2 and Section 1.3 I discuss challenges in fabricating shapes with both
FFF and planar cutting. There is a strong link between the geometry of a design and
how challenging it is to fabricate on a specific technology. For instance, a given model

6
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1.1. Overview

Figure 1.2 – A chess game (thingiverse thing 1575432), a mechanical clock (thingiverse
thing 328569), a music box (thingiverse thing 53235). All those model have been 3D
printed

Figure 1.3 – An arcade (thingiverse thing 1428410), a bee (thingiverse thing 297758),
and a pack of bottle laser cut (thingiverse thing 16290). All those laser cut models require
an assembly.

might contain features that cannot be printed because they are too thin, in which case
the fabrication software has to decide (perhaps arbitrarily) either to remove or thicken
these features. In some cases, the software will simply reject the design as not fabricable.
However, small changes to the design – either by the user or by an algorithm – can greatly
simplify the fabrication process. This avoids arbitrary decisions by the machine software,
and in some cases is the only way to produce the model.

Research has been conducted on both fronts : Some techniques have been developed to
print despite problems in the model, while others have been developed to help users design
shapes that can be fabricated more reliably. I present next both methodologies for each of
the challenges on filament 3D printing and planar cutting. In Section 1.4 and 1.5 I describe
techniques that go even further and automatically model objects from partial user inputs.
For example, I describe topology optimization, which is a mathematical technique that
optimizes a shape from a set of loads placed in space. These techniques are not necessarily
dedicated to specific manufacturing tools. They are focusing on helping users model or
synthesize objects that have a specific purpose.

7
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1.2 Modelling and printing with Fused Filament Fabri-
cation

Figure 1.4 – Fused Filament Fabrication

Fused Filament Fabrication (FFF) is the process of making an object with melted
plastic. Plastic is pushed by a step-by-step motor in a hot tool-head that is moving on a
build plate and depositing plastic to build the object layer after layer (See Figure 1.4).
This is an additive manufacturing technology : the material is added layer after layer to
build an object. The layer thickness is typically between 0.1 and 0.3 millimetre. Usually,
printers are equipped with a single print-head but some models have two or more. Having
multiple print-heads allows printing multi-material models, and is often used to print
multi-color models or to print temporary structures in a dissoluble material.

A software tool is needed to compute the paths along which the extruder deposits
plastic. This software is called a slicer since its main operation is to slice the 3D repre-
sentation of an object into thin layers (See Figure 1.5). To compute those layers, the
slicer computes the intersection between a plane swept along the Z-axis and the boundary
of the model [58]. The intersection between the plane and the surface is a set of closed
2D polygons (assuming the input shape defines a solid). From those polygons the slicer
computes the deposition paths. There are four main types of paths :

— The perimeters that represent the visible contour of the model. They are obtained
by offsetting the polygons by half the diameter of the extruder.

— The shells that are computed by offseting the perimeters inwards. The more shells
there are, the sturdier the external surface hull is.

— The infills that are inside the shell and fill the printed model. Infills can be dense
or sparse, to avoid spending time and material printing inner parts of the model.

8



1.2. Modelling and printing with Fused Filament Fabrication

Figure 1.5 – This figure shows the slicing process. The slicer computes the intersection
between an XY plan and the model. From the intersection, the software computes all
paths that will be followed by the extruder. Left : The Square ball model, Center :The
intersection between a plan and the surface of the model, Right : The paths at the
corresponding height

— The travel paths that are the motions done by the extruder between two printing
paths. An important difference to other paths is that travel paths are free variables :
they do not define the actual geometry of the printed object. However, as I detail
in Chapter 2 these paths may have a detrimental impact on surface quality if not
carefully computed, in particular when printing with multiple materials.

There is a wide body of research regarding how to slice and to generate tool paths
for additive manufacturing. For a review of the main aspects the reader can refer to the
survey by Pandey [80] et al and the SIGGRAPH course by Dinh and colleagues [28].

1.2.1 Challenges of Fused Filament Fabrication

Existing works tackle several challenges, for instance improving the quality of surface
of 3D printed objects, ensuring that a model can be printed, decreasing the print time,
improving the mechanical robustness of the models and minimizing the material wastage.

Those challenges are described in detail below as well as the techniques that have been
used to solve them. Many of these challenges interact. For example, decreasing the print
time might lead to a decrease in the quality of the printed parts ; or reducing the amount
of material used to fabricate a model might decrease its mechanical robustness.

As I explained in the overview, some techniques have been developed to print the
model as-is. They impact only the way the object is fabricated and focus on the process
stage : the steps between the input design and the actual physical device. Other techniques
impact the design stage by providing user interfaces that help the user to model fabricable
objects or by optimizing the design to make it print more reliably. For each challenge, I
introduce both methodologies whenever applicable.

1.2.1.1 Surface Imperfection

Even if the model is printable on a filament printer, the process might not go well and
several defects might appear on the surface of the printed parts (See Figure 1.6). They
mostly come from the fact that the melted plastic is oozing from the extruder by gravity

9
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Figure 1.6 – The different kinds of defects. The holes (center) and ooze (right) appears
more likely in multi material print. Zippers (Left : appears even with single color prints.

Figure 1.7 – The volumetric error (in red) depends of the gradient of the surface. The
more horizontal it is, the bigger is the error. The zone shown in the figure presents the
error in function of the gradient of the surface.

(See Figure 1.6 Right). The plastic that oozed ends up being deposited on the surface of
the printed object. Oozing leads to another defect : holes (See Figure 1.6 Centre). The
plastic that oozed is now missing, and the software that planned the motions is unaware
of this. The extruder needs to be refilled to avoid holes in the printed part. Slicers reduce
oozing by relying on retraction : the plastic filament is pulled backwards by the motor
just before travel moves, thus depressurizing the melted plastic chamber inside the nozzle.
While plastic will not ooze immediately, oozing still restarts after a few seconds. Due to
this, oozing and holes are more likely to appear in multi-material prints since extruders
might be idle for long periods while others print.

Another defect are so-called zippers. The position of the endpoint of the perimeters
are visible on the final model (Figure 1.6 Left), producing defects that look like zippers
along the entire height of the printed part. This defect always appears but may be less
visible with a well-calibrated 3D printer.

Chapter 2 presents a technique that limits those three defects.
Slicing the object into layers produces an approximation of the original surface. This

produces a stair case defect, visible on the surface of most 3D printed objects. This defect
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1.2. Modelling and printing with Fused Filament Fabrication

reveals the approximation error with respect to the initial surface (see Figure 1.7). The
quality of the approximation depends on the thickness of the layers used during the slicing
process. For a same input object, the impact of layering can also be reduced by changing
the object orientation, whenever possible (in particular this interacts with the need for
supports, see Section 1.2.1.3). Thus, several approaches have been proposed to optimize
for the object orientation such as to increase surface quality [80]. Build orientation has
been studied a lot, the interested reader can refer to the survey by Taufik et al. [112].

A drawback of using thinner layers is that the print time may significantly increase. To
avoid this, adaptive slicing methods have been proposed [113, 107, 29]. These techniques
change the height of the layers depending on the model geometry. However they are not
able to adapt to changes in complexity within the layer. To tackle this problem locally
adaptive slicing has been introduced [116]. The key idea is to divide the model into region
that are sliced independently [126]. The mains issue is that zippers appear along the
surface, where the slices with different thicknesses meet. This smear can be avoided by
slicing the interior with a larger thickness than the exterior [91].

Another way to further improve quality is to decompose the input into different parts,
and change the build orientation of each part after decomposition [41].

1.2.1.2 Multi Material

Filament printers are sometimes equipped with multiple extruders. Those additional
tools allow users to print with multiple materials, and are often used to have different
colors within the same object.

In Chapter 2, I propose a method that improves print quality when printing with
multiple extruders. Here is how the main available slicers deal with this problem. The
input to the slicing process is a set of meshes. Each one describes the volume that has to
be filled with a material by the corresponding extruder. Each mesh is sliced independently
and the tool paths are merged, typically printing materials in sequence. KisSlicer 2 deals
with oozing by creating a wipe tower on the side of the print and by wiping the extruder
on this tower before switching tools. MakerBot Desktop 3 deals with oozing by adding a
wall on each side of the print to wipe the extruder before printing. RepRapPro 4 lowers
the temperature of the idling extruder to avoid oozing. However, this increases print
time significantly because the printer is not printing while the temperature is decreasing.
Inspired by dithering techniques, Reiner et al [87] presented a method to produce objects
that look like the colors in the extruders were mixed. For instance, using black and white
filaments it can print objects with shades of gray.

MakerBot and KisSLicer avoid holes by printing the wall or the tower with the next
printing extruder. This refills the extruder before printing the actual object. With this
technique, holes may appear in the wall or the cleaning tower – one danger is that they
might not be robust enough to clean the extruder and avoid oozing. Thus, the size of the
walls and towers has to be large enough to ensure it remains robust.

2. http://www.kisslicer.com/
3. https://www.makerbot.com/download-desktop/
4. https://reprappro.com/
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1.2.1.3 Overhangs

Newly extruded filament has to be deposited over an existing surface (the build plate
or previously deposited filament) or it will fall under gravity and the print fails (Figure
1.8). That is why it is necessary to compute a support structure that will be printed at
the same time as the model. This structure is removed and disposed of after fabrication.

Figure 1.8 – Bottom-Left : The leg of the puppy model. Top-Left :Without support
structure the bottom part is not printed correctly. Top-Right : With support structure,
the print is correct. Bottom-Right : After the removals of the support structure.

Some materials are dissoluble in special liquids (HIPS is dissoluble in D-Limonene,
PVA is dissoluble in water) and available as filaments that can be used in 3D printers.
They can be used to print the support structure with a second extruder mounted on the
printer (in which case all the challenges mentioned in the previous paragraph apply).

Figure 1.9 – an example of overhang. Left The angle (in green) between the Z axis and
the face is smaller than the threshold, the dark blue face does not require support. Right
The angle (in red) is bigger than the threshold, the face require support

Support structures are a major inefficiency of additive manufacturing processes, as
they waste time, material and require manual finishing steps. Therefore, reducing the

12
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need for supports and minimizing their impact has been, and remains, a very active topic
of research. This is a case where researchers have proposed techniques both at the process
stage (design remains unchanged) and at the design stage (guiding users towards designs
that require less supports).

Process Stage. First, one needs to compute the regions that require support, and then
one has to compute the shape of the structure itself.

The regions that require support are analyzed in several ways. It can be done by
comparing the angle between the vertical and the faces of the model [1, 3]. If the angle
is bigger than a threshold, then the face requires support (see Figure 1.9). Detection can
be done by a Boolean difference between two successive slices [4, 16], using the width
of the difference to determine if a region is self-supported. In our work we proposed to
compute it from the print paths and the slices. For each point of each print path, the
algorithm considers whether the slice below covers the point to be supported (checking
which percentage area of a disk centered on the point and having the extruder width is
covered). Note that other techniques have been proposed, for instance based on image
processing [44].

Several techniques have been proposed to generate supports. Some form a dense sup-
port volume below the surfaces in overhang. The support volume is then usually printed
with a weak infill pattern (KISSlicer, Makerware, [106]). The support is manually remo-
ved by breaking it apart from the object. Soluble material can also be used on multiple
material printers [54]. Printing the support volume uses a significant amount of material
and print time, but is very reliable : the support typically has a large area of contact with
both the part and the print bed, ensuring the print stability in most cases. The volume
is large enough to print without difficulty. A number of approaches modify the support
volume to reduce its size. Huang et al. [45] use sloped walls instead of straight walls for the
sides, shrinking the support volumes in their middle sections. Heide [37] also reduces the
support volume by decreasing its size and complexity as the distance below the supported
model increases. The size of the support structure depends on the size of the area that
requires supports. This area can be reduced by changing the orientation of the model on
the build-plate [1]. Zhang et al[140] optimize the orientation to avoid support in zones of
the model that have an impact on the perception of the model by an human.

Another family of approaches, increasingly popular, produces a sparse set of points
that need to be supported, usually by down-sampling [31] the initial set of points. Vanek
et al. produce a geometry based approach to support this set of point [121]. Schmidt and
Umetani [93] introduce branching support structure.

Design Stage The support structure has a significant impact on the quality-of-surface
of the model. When the support is removed, it leaves white dots on the printed parts.
There exist method that deform a shape to minimize the amount of support [43]. Reiner
et al. [88] presented a design tool that allows the user to model a 3D object that does not
require support structure.
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1.2.1.4 Print Time

The first point of 3D printing was to build prototypes quickly to let the designer iterate
and modify an initial design idea. However the print time is often in hours, and reducing it
would further fasten design iterations. Decreasing the print time by augmenting the speed
of the extruder leads to defects that appear on the surface of the models. In addition,
current printer firmwares take the maximal acceleration of the extruder into account
during the fabrication stage, and this often constitutes the limiting factor. Therefore, the
print time depends mostly on the path generation and the position of the different parts
on the print bed if there is more than one.

Figure 1.10 – Left : a slice with perimeters (in red) and infill paths (in blue). The
perimeters are cyclic and delimit zone. Right : the tree structure shows the topology of
the different paths.

Process Stage Several approaches optimize the tool-paths to minimize the print time
[14]. This leads to a Travelling Salesman problem (TSP) formulation [124] where each
node of the graph is a printing path and the edge are the distance between each path. In
general, print paths are closed paths and the formulation of the tool-path optimization
with a TSP is limited to methods that are selecting the in/out position of the extruder
for each path before the optimization. However, a TSP can be generalized (GTSP) [135] :
the node of the graph are grouped into clusters that are mutually disjoints. The sought
solution is the path that visits exactly one node of each clusters. This problem is still NP-
Hard and therefore it is recommended to use a heuristic to optimize it. We can note that
perimeters and shells are cycle and they are including infills or other shells (see Figure
1.10). This information helps to tailor a good heuristic that optimizes the tool-path [21].

If the path planning of concurrent tool has been investigated [20] it is less relevant
in the case of filament printers where the different extruders are most often fixed to the
same carriage (variants exists though).

The layering direction can be optimized to minimize the height of the part on the
build plate. The motion speed of the printer is not the same for each axis [115]. Z axis
moves slower, reducing the height reduces the build time.
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The print time can be significantly reduced by hollowing and splitting the object hull
in parts (I mention those techniques in section 1.2.1.5) or by printing the shape around
an empty core [102, 35].

Design stage Mueller et al. [74] presented a method to compute and fabricate wire like
low-res models that can be 3D printed faster than the designed model. This method has
been extended to 5 degrees of freedom (DOF) printers [134] which allows for a better shape
approximation. It has been extended to a 6 DOF robotic arm with an extruder [46]. The
print time can also be decreased by substituting some part of the model with construction
blocks (eg. Lego) [77].

1.2.1.5 Model Decomposition

Usually, the build volume of filament printers is around 200 ∗ 200 ∗ 200 mm3. If the
model is too large to be printed, it can be partitioned in smaller parts that will be
assembled later. In other cases the user might want to decompose the model before the
fabrication. For example mechanical parts might be fused together during the process,
which will prevent them from working properly.

All parts have to be printable and it should be possible to assemble the final model
from the parts. Such a partition can be done by taking into account the size of the
parts, the interface between the parts, the robustness and the aesthetics of the assembled
models [62]. The model can be decomposed to save print time and to minimize support
structure [122]. The model can be decomposed and packed to be printed in a single print
then assembled. Attene [5] tackles the problem of shape segmentation and packaging to
ship the model to a customer who will later assemble the parts. Dapper [18] considers the
problem of decomposing the input into pyramidal shapes, packed into the print bed using
a voxel representation of the parts. The decomposition of the model can be computed
to save space during the shipping to a customer [139]. The decomposed model can be
assembled with small connectors [62] or by creating interlocking parts [103].

1.2.1.6 Physical Properties after Fabrication

We need to be sure that the target model is fabricable and that it will endure its
intended everyday use. Stava et al. [104] introduce an optimization technique that optimize
a model to ensure the physical integrity of a 3D printed model. Zhou et al. [143] perform
a modal analysis to extract the weak region of a 3D model. Langlois et al. [56] presents a
method to compute failure probabilities with Finite Element Method (FEM).

The elastic models are deforming under gravity and the user has to predict the defor-
mation and to edit the model such that the deformed model is the one that the user wants
to build. Chen et al. [19] presents a technique that computes automatically the inverse
elastic shape.

There is a trade-off between the stress resistance of a 3D printed object and the
amount of material that is used inside the model. By creating honeycomb patterns inside
the model, one can reduce the amount of material with a little impact on the strength of
the 3D printed model [61].
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1.2.1.7 Material Usage

The amount of material usage depends of the way the model interior is filled. Mini-
mizing the amount of material inside the model minimizes also the fabrication cost (time
and material) of the model. The techniques that tackle this challenge focus mostly the
process stage.

Kisslicer, MakerBotDesktop, Cura 5 let the user choose the amount of plastic used
inside the models. They use different infill patterns (e.g. straight line, Hilbert, honeycomb)
and they do not truly ensure the printability of the model : when the inside is sparse,
internal support might become necessary for the object tops. Wu et al. [133] consider the
optimization of a rhombic infill that ensures that the inner structure is self-supported.
Kumar et al. [55] uses hierarchical space filling curves to control the density of the infill
pattern.

The minimization of material usage can also be done by hollowing the object to fasten
print time and decrease the material usage. Hollowing is done by computing the offset
surface of the model [32, 89]. The offset surface can be extracted from the distance field
of the model.

The interior of a model can be filled with spare struss structure. Wang et al. [127]
optimize those truss to preserve rigidity and use the reduce the number of beams. Zhang
et al. [141] uses the medial axis as a skeleton from which grows a tree like structure.
Medeiros et al. [67] generate an adaptive tessellation of the interior, and offset the edges
of either the primal or the dual to produce an inner beam structure. It allows to generate
a denser structure along the shape boundary than inside. Lu et al. [61] optimize for a
Voronoi diagram inside the print, which faces form an infill pattern.

The complexity of the infill pattern might leads to an increase of the travel time.
Yaman et al. [137] tackle this problem by printing the face of a Voronoi diagram. They
use Euler loops to minimize path length in a graph where the edge are the face of a
Voronoi diagram. It avoids travel move.

1.3 Planar cutting

Planar cutting is a subtractive technology. Usually, a panel made of wood, plastic or
textile is cut into different planar parts that are assembled to build a 3D object. The
cutting tool might be of different nature (laser, CNC, water jet, etc.). It requires to
compute cutting paths like filament printers require to compute deposition paths for the
extruder. The paths are not computed by exactly the same method however, as the tool
in this case removes material, and issues such as oozing and zippers do not occur (see
Figure 1.11).

Planar cutting is very common in many industries. It is used to fabricate wooden
structures for boats, furniture, and to cut the fabric and the leather of our clothes. A
complete overview would extend well beyond this thesis. This section thus focuses on the
assembly of 3D shapes from 2D cutouts of rigid material like woods or acrylic, in the
context of personal and hobbyist fabrication.

5. https://ultimaker.com/en/products/cura-software
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1.3. Planar cutting

Figure 1.11 – Bottom :The model of a round table. Top Left : The cutting plan to
cut the different part of this table. Top Right : The leftover of material after the cut.

Laser cut objects almost always require an assembly. Industrial use the technology to
fabricate planar parts, present in boats or in textile industry. Clothes need to be sewn,
and the wooden parts need to be assembled.

1.3.1 Modelling and fabrication with planar cutting

There are two main challenges in planar cutting. The first one is to design objects
for planar cutting. The second one is to minimize the amount of wasted material. This
section follows the same organization as Section 1.2. First, I present the challenges that are
specific to this manufacturing technology, and for each challenge I present the techniques
that have been used to solve them at process or design stage.

1.3.1.1 Modelling 3D shapes from 2D cuts

Modelling for planar cutting is not straightforward. This presents two major draw-
backs : First the cut materials are thick (e.g. a few millimeters) and this thickness must
be taken into account for the subsequent assembly. Second the cut parts are almost always
planar, and this limits the design possibilities. Note however that it is possible to create
a pattern with the laser that allows some deformation of the parts (See figure 1.12).

The planar cut parts can be created by the user through a modelling interface [66, 96,
95] or optimized to best capture a 3D model [40]. This optimization can be done with
crossfield [23]. The method from Mueller et al. [76] allows the user to draw directly shapes
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Figure 1.12 – Those boxes have been cut with a laser cutter. The pattern followed by
the cutter allows some deformation that permit the user to close the boxes. (Things 17240
from Thingiverse, user bdahlem)

on the laser cutter with different pens. Clothes are 2D shape, cut in leather or tailored
from fabrics that are deformed afterwards to be assembled. Umetani et al. [118] developed
a technique to edit garment and model clothes. The method allows designers to edit a
cloth by editing either the garment, or the 3D representation of the cloth.

The fabrication and assembly of a model with a laser cutter is usually faster than a 3D
print. Beyer et al. [10] present a technique that allows the user to replace the 3D printing
by an assembly of laser cut parts. However, the fidelity of the cut model is lower than the
quality of the 3D printed model. Mueller et al. introduced [75] LaserOrigami that uses a
planar cutter to produce 3D objects faster and without assembly. It works by changing
the focus of the laser of the cutter to heat and bend the model.

1.3.1.2 Minimizing Wasted Material

Planar cutting is extensively used in several industries. When cutting parts from a
rectangular piece of material, left over regions are wasted. This has a huge impact on
cost as not only material is wasted, but also additional clean-up and waste handling is
necessary. Thus, minimizing wastage has been studied in computer science since decades.

Process Stage We need to pack the different cut parts in the (typically) rectangular
cut area to waste the minimal quantity of material. This nesting problem is known NP-
Hard [24]. The packing algorithms are mostly heuristics however Fishetti and Luzzi [33]
proposed an exact solution based on Mixed Integer Programming. Some heuristic have
been developed, in particular based on the Bottom Left placement rule. The idea is to place
iteratively each piece in the left-most possible position. More recently Jones [49] proposed
an algorithm based on the decomposition of the polygon into circles. An initial solution
can be improved with compaction and separation algorithms [60] that can be thought as if
forces are applied on the parts to move them in the packing space. The interested reader
can find a more detailed survey in the thesis by Antonio Martínez Sykora : "Nesting
problem, exacts and heuristics algorithms" [109] or refer to the tutorial by Bennell and
Oliveira [8].

If a user wants to use a limited number N of panel to build an object, she has to
edit her model manually until the packing algorithm found a solution for N panels. The
chapter 3 of this thesis presents a technique that optimizes a shape to minimize the waste.
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Design Stage Saakes et al. [90] present a method to reuse leftover of panels. The
method is interactive and the user is placing the part that she wants to cut in a virtual
version of the panel. The second chapter of this thesis presents a technique that performs
design changes (within user defined bounds) to minimize the wastage of material with
laser cut designs.

1.4 Shape Synthesis

"Form follows function" is a design philosophy that appeared in the 20th century
[108]. This is based on the fact that the form of a model depends primarily on its function.
Sometimes, especially with non-experts, the user has no particular wishes about the shape
of the model she wants to fabricate, however she knows precisely its intended function. In
this case, the system has to create the geometry automatically from the function, without
any other information. Designers call this process generative design 6. To solve this kind
of problems and produce shapes automatically, scientists proposed several methodologies.
I describe the most related to my work in this section.

Interestingly, the automatic synthesis of shapes (geometry and surface details) is a
common problem in the video game and movie industries, see for instance the work of Ma
et al. [63] where variants of game levels are produced from basic building blocks, or the
work of Weta Digital [129] that recreates 1933 New York City for the movie King Kong.
However the goal is mainly about aesthetics and serving a story or gameplay. While it is
time consuming to design a single shape, many scenes in video games or movies require a
lot of different models of the same type (e.g. a forest with different trees).

1.4.1 Approaches for shape synthesis

Different techniques exist to represent shapes as parametric geometries, from which
infinite variations can be explored. Below I mention some examples such as procedural
modelling and by example synthesis.

1.4.1.1 Procedural Modelling

Grammar Procedural modelling techniques are based on the generation of content from
a set of rules. Among them, shape grammars [105] consist of a set of rules that define how
a shape can be transformed. A parametric, stochastic, conditional, context-free
Grammar [111] is a tuple :

G = 〈V, T,Σ, ω, P 〉

where V is the set of variable, T is the set of terminals, Σ is the set of formal para-
meters, ω ∈ ((V ∪ T )×R∗)+ is the axiom and P ⊂ (V ×Σ∗×B × ε)× ((V ∪ T )× ε∗)∗ is
a finite set of production rules. In this definition ε is the set of all correctly constructed
arithmetic expressions with parameters from Σ. B is the set of all possible expression

6. https ://redshift.autodesk.com/generative-design/
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involving quantities form ε. A production rule ρ ∈ P begins with a predecessor and ends
with a successor. A predecessor is defined by a variable, any number of formal parameters,
a boolean condition on the formal parameters and a function R∗ → [0, 1] that specifies
the probability of using the production rule. A successor is a set of variables or terminals.
Here is an example of a grammar :

V = {X}, T = {S,+,−, [, ]}, Σ = {l}, ω = X(1)

P =

{
X(l) : l ≤ 2

1−l/2−→ F (l)[−X(l + 1)][+X(l + 1)]

X(l) : l ≤ 2
l/2−→ F (l)

To use the grammar and generate a shape, the idea is as follows. From the axiom,
we apply a rule and build a new chain. The system applies rules until all symbols are
terminals. The rules to apply are selected with some probability (written on the top of
the arrow) and under some conditions (on the left of the arrow). An example of derivation
is given Figure 1.13. We still need to generate a graphical content from the chain that
have been constructed with the grammar. We can imagine a moving pen that interprets
the terminal symbol as motion [84].

Figure 1.13 – By following the rule of the previous grammar, we can obtain this deriva-
tion, terminal are shown in green and non-terminal in blue. The probability of each step
is written on the line.

Grammars were introduced into the graphics community by Prusinkiewicz [84]. Early
techniques were tailored to represent models of plants [86]. Using only deterministic L-
System was not enough to represent the diversity of shapes that could be generated. Thus,
the concept has been extended to stochastic and parametric versions that are now widely
adopted. Later techniques incorporate constraints from the surrounding environment [85].
Some techniques were dedicated to the generation of cities [81]. Wonka et al. introduced
split grammars to produce architectural models [131]. Grammars have also been used to
represent ornamental structures [130]. The derivation and the parameter of a L-system
can be controlled with a probabilistic model to optimize an objective [111].

The question of defining the set of rules remains. Indeed, in most of the case the
grammar is handcrafted and it requires a lot of effort and knowledge about the appli-
cation domain and the desired shapes. It can be defined by the user through high level
specification languages or, in most of the case it is defined beforehand. Recent works
consider inverse procedural modelling to generate the grammar automatically from given
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input shapes. I mention some of these techniques in the following section, which considers
by-example modelling techniques.

1.4.1.2 By Example Modelling

By example modelling of shapes consists in using a shape (or a set of shapes) to produce
a variety of novel shapes. The early work of Funkhouser et al. [34] is a great example is
this methodology : the work introduces a modelling tool that is able to cut and mix
different shapes, and also gives the possibility to search for similar shape (sub)parts using
similarities metrics.

Inverse Procedural modelling represents a set of techniques that generate a pro-
cedural model (grammar) from existing content. Stava et al. [123] shows a method to
automatically build L-Systems from 2D shapes. The analysis relies on self-similarities de-
tection techniques [71, 12]. This is a vast domain of research, interested reader can refer
to the SIGGRAPH course by Aliaga and colleagues [2].

Part-based modelling relies on the decomposition and assembly of a large dataset
of models. Whereas the segmentation is mandatory, it is often done manually by the
users [34]. Kreavoy et al[53] present a technique to segment the input mesh into a mea-
ningful decomposition. The user can assemble the different parts through an interface
that presents the most probable part to place next [17], but the synthesis can also be
done automatically. Zheng et al. [142] present a method that uses symmetry information
to mix different parts of different models together. Kalogerakis et al. [50] present a me-
thod to obtain probabilistic model by segmenting and analysing shapes from the same
domain. While inverse procedural modeling relies on the study of one model to generate
the grammar, their technique uses more models allowing to generate more varied content.

Texture synthesis The synthesis of textures from examples is also a typical problem
in computer graphics. The purpose of those techniques is to generate large non-repetitive
images of materials (wood, rocks, carpet) from small samples. The generated image has
to be similar to the example such that a human observer thinks it represents the same
material. The interested reader can refer to the survey by Wei and colleagues [128] on
this extensively researched topic. Similar techniques have been proposed by Perlin and
Hoffert [82] to synthesize volumes with a procedural method or to produce variations in
geometry across a surface [11]. Merrel and Manocha [70] use the adjacency information
of the edges, the faces and vertices of a 3D mesh to generate various shapes. More recent
work focuses on microstructures generation to change the physical properties of a fabri-
cated object [64].

Many approaches have been proposed to generate virtual content. Those techniques ini-
tially targeted video games and cinema industries, and need to be adapted if they are used
to produce fabricable designs. Indeed, the fabrication constraints and the user intents need
to be integrated into the synthesis.
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Integrating the fabrication aspect in methods for modelling by example has been
studied. For example, Yang et al. developed [138] a technique that changes a shape such
that it will look as if it has been fabricated with a different material than the original
shape (e.g. reforming a chair in wood to show how it will look in wrought iron). Schulz
et al. [94] extended by-example modelling [34] with information about fabrication (in
particular connectors) in order to produce fabricable models. Shugrina et al. [97] presented
a technique to maintain the validity and ensure that a parametric design customized by a
novice user is fabricable. AutoConnect [52] synthesizes a 3D printable connector between
two objects.

1.4.1.3 Synthesizing from functional specification

There exist other synthesizing techniques that create a shape by optimizing an objec-
tive function.

Figure 1.14 – Topology Optimization in 2D. The user determined anchor on the left top
and bottom corner, and a force on the right edge. The colour shows the material density
(0 : blue 1 : red) From left to right : without penalization, without filtering, with both.

Topology Optimization [7, 98] typically synthesizes a shape by maximizing its rigi-
dity (other objectives are possible). Given the boundary condition and a set of loads it
computes the shape with minimal compliance energy. The Solid Isotropic Material with
Penalization (SIMP) approach formulates the problem as a material distribution problem.
The domain is discretized into a regular grid of elastic elements with varying densities in
[pmin, 1]. The density of each element is optimized with a gradient descent on the com-
pliance energy. Unfortunately this gradient descent is not straightforward. The density
takes value between [pmin, 1], which have no real meaning because we cannot fabricate
composite material on most technologies (see Figure 1.14, left). To avoid this, p is repla-
ced by p3 in the optimization. Doing this produces a checkerboard pattern (see Figure
1.14, center). This pattern is problematic because it appears independently of the size
of the element. However, it can be filtered by using the average gradient of the neigh-
bourhood of each element (see Figure 1.14, right). The interested reader can refer to the
review by Sigmund and Maute [99].

Topology optimization is a great tool but it is hard to combine it with a desired
appearance. It is also time consuming because it requires the results of the FEM simulation
to compute the gradients, at each iteration of the optimizer. Those limitations hinder
the participation of the user in the design process. She only determines the boundary
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conditions of the problem and waits for the result. Topology optimization has been used
a lot recently in graphics community [132, 22, 65].

It is not easy for a user to drive a system that fully automatically synthesizes shapes.
The synthesis can be constrained, and additional objectives added, but the system often
proposes a single solution. This particular answer might not suit exactly the user intent.
In this case, one alternative is to rely on shape enhancement techniques to refine a base
shape provided by the user. I present such approaches next.

1.5 Shape Enhancement

The boundary between shape enhancement and shape synthesis is not strict. I call
"shape enhancement" the set of techniques that require partial information about a shape
to work. If the user knows what parts of the shape looks like, she will not use shape
synthesis techniques because they are not easily constrained by partial – but precise –
information. In this case shape enhancement is better suited. The shape emerges from
lower level partial specifications (e.g. a mesh, a drawing, a set of 2D curves) as opposed
to synthesis techniques that require high level specifications (e.g. loads in space, grammar
describing a space of shapes, etc.). Lower level specification can also be used to guide a
grammar : Nishida et al. [78] use sketches to determine derivation of a grammar, showing
that low level specification can guide a synthesis system.

Automatically enhancing a design has been studied in computer graphics in a wide
range of applications to make designers life easier. A classical example is inpainting [9],
that reconstructs a deteriorated image. There are also work on geometry cloning [110]
that allows the user to clone the detail of a surface of a 3D model on another. We can
also cite sketch-based modelling tools that use sketch to produce 3D models [27, 136].
The interested reader can refer to the survey by Olsen et al. [79].

A first approach to design enhancement is to start from an existing geometry and
modify it through deformation or other geometric operations to achieve the user intent.

When the 3D model is given by the user, it can be deformed to match the real world
constraints. A volume can be optimized to balance it, by carving inside and deforming its
surface [83]. The optimized volume remains 3D printable. A volume can be deformed to
optimize rotational properties and inertia [6] or the buoyancy of a fabricated part [125].
Zhou et al. [144] introduced boxelization which is a method to transform an object in a box
by folding the different parts of the model. The object can be fabricated and transformed
from a shape to the other.

User involvement Shape enhancement techniques allow more user involvement than
automatic synthesis techniques, and that makes the process more controllable. The user
can be involved in the design process to different degrees or at different times. In some
techniques he is guided in the exploration of the design space.

The user might be involved at the beginning of the optimization. She specified entirely
the input of the algorithm which generates the model [125]. She might be able to interact
with the final model to deform it [83]. The solution can be generated in real time as she is
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modifying the initial model through an interface [25]. Ion et al. introduced a specialized
3D editor to allow the user to create mechanical object with metamaterial [47].

Focus While applicable to many different domains, I noticed two cases where shape
enhancement techniques are particularly relevant. The first is mechanism design : desi-
gning mechanism for additive manufacturing is a complex task that requires knowledge in
mechanics, 3D printing and proficiency with modeling tools. Simplifying the design stage
is important. The second domain is furniture design. Furniture is ubiquitous in our lives,
and there are many case where one would like to design a custom furniture. Yet, designing
durable, fabricable, low-cost furniture is a difficult modeling task.

1.5.1 Assisted design of mechanisms

Figure 1.15 – Different Intersection types presented in [25] Left : The green bar is
intersecting the small gear. Right : the green bar is intersecting the hinge between the
two gears.

In computer graphics and fabrication, the design of mechanical models has been largely
studied. Duygu et al. [15] propose a system that can embed an oscillation module in an
animated character to reproduce the motion of a motion capture sequence. Calì et al. [13]
propose a method that helps the user to add articulations on a Rigged 3D model in order
to fabricate an articulated character. Skouras et al. [101] optimize a material distribution
and the positions of actuators in a shape to reach deformations specified by the user.
Zhu et al. [145] introduce a method that synthesize a mechanical toy that reproduce the
motion of an animated input. Through a design system, a user is able to models craftable
character with planar motion [68]. Thomaszewski et al. [114] present a system that allows
the user to interactively build a moving character from an animated character. Ureta
et al. [119] introduce an interactive system that helps the user to create joints between
different moving parts.

24



1.6. Positioning of my contributions

1.5.1.1 Mechanical Layout

Computational design of mechanical character [25] presents a method that synthesize
a mechanism from a user input. The user interactively animate an articulated character
by drawing motion curves for different parts of the model. Then the system generates a
mechanism whose motions follow the drawn curves. This generation is done by optimizing
the parameters of parametrized small mechanisms that are given as input.

Once the elementary mechanisms are optimized, their relative positions is determined
such as to prevent intersections between their respective components. There are two main
ways intersections can occur between parts (Figure 1.15). If two parts are colliding, and
if a third part intersects a pin between two other parts. The problem of placing the
different parts in different layers is highly combinatorial and a brute force approach is not
applicable. The layering problem presented in [25] is solved by a Constraint Satisfaction
Problem (CSP). Since their formulation requires the number of layers in the mechanism,
the solution they proposed optimizes the number of layer by trying to solve the CSP several
times. When the problem has no solution, they increase the number of layer and solve
again. The different mechanical parts are integrated in the model and are hidden in a gear
box. This algorithm cooperates with the user to design the motion of the mechanism. It
requires a bit of artistic bent which may appear as a limitation or an advantage depending
on the target audience.

1.5.2 Assisted design of furniture

Designing a furniture can be a hard task. Usually, the designer considers aesthetics
and rely on a physical simulator to validate the physical properties (e.g. Finite Element
Method). Some recent research integrated the physical analysis in the design process.
Umetani et al. [117] propose a method where the user participates in the design process
and the interface helps her to model feasible furniture by analyzing the physical validity
of the design. This is defined by the durability of the joints between the different parts of
the planks and the stability of the model. Lau et al. [57] convert a 3D model of furniture
in fabricable parts and connectors. The system decomposes a voxel representation of the
3D model. It parses this decomposition performing a lexical analysis to obtain a graph.
The graph is augmented by information about the connection between the different parts.
Koo et al. [51] compute a model from high end specifications provided by a designer. The
designer places several boxes in space and choses the different interactions between those
boxes. Then the system optimizes the parts and joints to generate a fabricable model.
Saul et al. [92] present an interface that allows the user to control entirely the process
of designing and building a chair. This tool allows users to sketch the planar parts that
compose the chair. Li et al. [59] introduce a method to compute foldable furniture from
a partitioned input shape.

1.6 Positioning of my contributions
In my contributions I explored along the cursor from the machine to the user. The

next section lists my contributions, from the closest to the machine to the closest to the
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user.

Clean Color presents a technique that deals with the defects that appear with Fused
Filament Fabrication. By changing the paths followed by the print head and optimizing
the part orientation we minimize the surface imperfections. This technique optimizes the
process but it does not impact the design. It has been done with my advisor and has
been published in Computer Graphics Forum, special issue of Eurographics 2014 [38]. It
is presented in the Chapter 2.

2D Fabrication of 2D Mechanism computes a fabricable mechanism from a partial
2D blueprint. It computes the layout of the different parts from the simulation of the
mechanism. It helps the user design pre-assembled 3D printed mechanisms by taking
most of the fabrication constraints into account. It has been done with my advisor and
has been published in Computer Graphics Forum, special issue of Eurographics 2015 [39].
It is presented in the Chapter 3.

Towards Zero Waste Furniture Design presents a technique to optimize parametric
models of planar cut designs in order to minimize the amount of wasted material. Unlike
previous work, the technique changes the model given by the user – within specified
bounds. It is at the boundary between the design stage and the fabrication stage. It
has been accepted with major revision at Transactions on Visualization and Computer
Graphics. It has been done in collaboration with Bongjin Koo, Niloy Mitra and Sylvain
Lefebvre. It is presented in the Chapter 3.

Synthesis of User-Friendly Shelf presents a technique that synthesizes complete
shelves from user input. After the synthesis, the user is able to deform the furniture
to achieve different purposes (e.g. minimizing material, improving aesthetics). It covers
almost all the design stage, while still synthesizing a shape that is easy to manipulate for
the user. This work will be submitted early 2017. It has been done in collaboration with
Niloy Mitra and Sylvain Lefebvre. It is presented in the Chapter 4.
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Improving the 3D printing process

Introduction

Rapid digital manufacturing holds the promise to let artists and hobbyists create
complex, intricate designs. This extends beyond the geometry to the material properties
of an object, with the ability to use different materials in different areas, locally changing
properties such as color, elasticity, opacity or even conductivity 7.

A major advantage of filament printers is that they can easily be equipped with mul-
tiple extruders to print using different materials. However, as I have discussed before
in Section 1.2 of the state of the art (see also Figure 1.6), there are several challenges
hindering the fabrication of high quality parts using multiple filaments.

One could argue that high-end industrial printers would be better suited to this task.
However, only few processes can change the material properties during printing. Most are
limited to colour gradings, such as the ZCorp 8 and MCor 9 printers (the first uses ink to
colour the powder before binding, the second creates objects by layering paper and prints
a colour pattern on each sheet). The others, such as the Objet Geometries printers 10 or
the MultiFab printer [100] print with different materials by projecting droplets of different
resins. However, all of these technologies are expensive to acquire and operate, and require
special training and facilities (in particular, resins and powders have to be handled with
care).

In contrast, filament based printers are easier to handle and assemble/modify, inex-
pensive, wide spread, and do not require specific precautions beyond a well ventilated
area. This could be one of the reasons why the technology blossomed during these past
years.

I therefore considered how to improve the quality of multi-material prints on filament
printers. I chose to not modify the hardware in any way in order to keep it simple and

7. https://www.proto-pasta.com/pages/conductive-pla
8. http://www.3dsystems.com/3d-printers/professional/projet-460plus
9. http://mcortechnologies.com/3d-printers/

10. http://www.stratasys.com/3d-printers/design-series/objet30-pro
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Figure 2.1 – A slice of the dragon heart model.

affordable. Instead, I focused on novel algorithms for preparing the object and compu-
ting the travel paths. Our approach eliminates or strongly reduces most of the defects
mentioned in Section 1.2.1.1 of the state of the art.

This chapter presents a technique that is closer to the printer than to the user : it is a
process stage technique and strives to accurately reproduce the input design. For clarity
in the remainder of the chapter I often refer to different materials has different ’colors’. It
is to be understood, however, that each colour could be a different material supplied as a
filament.

This work has been done with my advisor and has been published in Computer Gra-
phics Forum, special issue of Eurographics 2014 [38].

2.1 Overview

Our algorithm targets low–cost FFF printers of the RepRap family, equipped with
multiple extruders. We focus our explanations on dual printing (two extruders), but our
approach can be adapted to more extruders. The extruders are mounted on a single
carriage at a fixed offset δ (2D vector). We denote by δi the offset of extruder i, with
δ0 = 0 and δ1 = δ.

The input to the slicing process are two meshes, each describing the volume in space
to be filled with the corresponding color/material. An example is given Figure 2.1. We
name the meshes M0, M1 and refer to the volume enclosed by each as respectively V0,
V1. We assume non self-intersecting watertight meshes, with V0 ∩ V1 = ∅.

To understand our approach, let us consider the major defect : strings of plastic depo-
sited by oozing extruders. Strings are deposited in two circumstances, which we will refer
to as Case 1 and Case 2 throughout the text :

— Case 1 Travel moves (no extruder prints, all ooze). This is illustrated Figure 2.2,
left.
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— Case 2 Print moves (one extruder prints, others ooze). This is illustrated Fi-
gure 2.3, left.

Figure 2.2 – Case 1. blue extruder travels across the green region, depositing ooze.

Figure 2.3 – Case 2. Blue extruder prints a segment, which makes the green one oozing
over the blue region.

Case 1 is addressed by our path planner (Figure 2.2 right, Section 2.4). It navigates
around the part while avoiding strings to deposit, finding travel paths where the idle
extruder stays away from the print. If no such path can be found, our planner favors
string deposition on matching colors. In last resort, it will always favor deposition in low
visibility areas.

Case 2 is more constrained : the input printing paths cannot be changed. We address
this in two ways. First, we minimize such cases through azimuth optimization (Section 2.2)
and second, we create a rampart in close proximity of the shape, wiping extruders before
they reach the surface (Figure 2.3 right, Section 2.3).

The planner and the rampart work in conjunction : the planner uses the rampart for
circulation around the part. Each time an extruder crosses a rampart wall, it is wiped
cleaned of any oozing string. In addition, we exploit the time during which the extruder
circulates within the rampart to perform a refill : we run plastic through the extruder
to refill the hot plastic chamber and keep it ready for printing. This prevents holes from
appearing.

2.2 Optimizing print azimuth
For clarity let us consider the case of two extruders separated along the X print axis.

We refer to them as the left and right extruders. Whenever the right extruder prints,
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Figure 2.4 – The left extruder uses black and the right extruder red. While the red (right)
extruder prints the body of the dragon, some black (left) plastic will interfere with the
red region. This is accurately predicted by the intersection volume (green). The printed
model exhibits severe color smears and strings throughout this volume. Additional defects
are due to poor path planning.

the left extruder creates a ghost image of the print shifted by δ on the left. This ghost
represents the locus of the points that may suffer color smears if the left extruder starts to
ooze. Depending on the part size and azimuth, the ghost image will interfere (intersect)
with what the right extruder is printing. Minimizing the size of this region will reduce the
chance that smears occur. This is illustrated in Figure 2.4.

We perform the change of azimuth by a rotation of the object around the Z-axis of
angle Θ, noted in matrix form as RZ

Θ in the following. We do not change the vertical
orientation of the part (Section 1.2.1.1).

By reasoning throughout all the print layers, for a given orientation angle Θ the total
size of the interference region due to the left extruder is the volume IL(Θ) =

(
RZ

Θ × VR
)
∩(

TXδ ×RZ
Θ × VR

)
where TXδ is a translation matrix of δ along the X-axis. Similarly, the

interference region due to the right extruder is IR(Θ) =
(
RZ

Θ × VL
)
∩
(
TX−δ ×RZ

Θ × VL
)
.

We therefore search Θmin such that :

Θmin = argminΘ (IR(Θ) + IL(Θ))

In general computing the volume of the intersection between two meshes is a difficult
problem. We rely on an approximate computation based on boolean mesh operations with
dexels [120]. This integrates very well within our slicer which also relies on this principle
to extract slices [58]. The best angle is selected after testing for all angles by 10 degree
increments.

Figure 2.5 shows an example of optimized azimuth angle. A better azimuth angle
strongly reduces the defects due to Case 2. However, they often cannot be entirely sup-
pressed in particular on large parts. The rampart, described next, further reduces these
defects.
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Figure 2.5 – Robot-ice (user Ultimaker on Youmagine) : this model is larger than the
spacing between the extruders, and its default azimuth results in significant color smears.
Our azimuth optimization finds an angle avoiding these entirely.

2.3 Rampart

The rampart is a disposable structure built around the part. Its primary purpose is
to catch the oozing strings before they reach the part (Case 2, Figure 2.3). Its secondary
purpose is to provide a space where extruders can be refilled with plastic.

We construct the rampart in close proximity of the part. This allows to wipe the
extruders clean as close as possible to the surface, and also keeps travel time low by
avoiding traveling to a distant wipe station.
Geometry : The outline of the rampart is obtained by rendering the part as seen from
above, in black on a white background. We process this silhouette image to only keep
the connected component containing the image border (inner holes are removed). The
remainder is then offset towards the outside to obtain the contour of the first wall of the
rampart. Another offset gives the second wall. We use 2 mm between the part and the
first wall, and 4 mm for the inner spacing. These contours are added to each layer at all
heights, creating a vertical extrusion of the rampart contours.
Printing : The walls of the rampart are built at the start of each layer. Having the
walls reach the tips of the extruders ensures proper wiping. We print the rampart at high
speed (120 mm/sec), using a different extruder for each wall. One subtlety is that while
a rampart wall is printed, the other extruder may move over the part – risking ooze to
deposit. We have to ensure that it will be properly wiped before reaching the part. Our
approach is simple : we start printing the wall from a location which guarantees that the
other extruder reaches the rampart before the print. On our dual–extruder printer, when
the right extruder is used we start printing the rampart from its leftmost point, and vice
versa.

2.4 Path planning for multiple colors

The azimuth optimization and the rampart reduce defects due to Case 2, where strings
are deposited by the idle extruder while the other one prints. We now consider Case 1,
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Figure 2.6 – Left : One slice near the top of the 4–cones model. The red outlines are
the walls of the rampart. Lime-green paths are travel moves. The bold paths within the
rampart walls show were the extruders are active to refill with plastic. Right : Printed
model, using our technique.

Figure 2.7 – Left : The 4–cones model printing. The red arrow shows how much ooze
exits the left (white) nozzle while the right (black) nozzle prints. Right : The rampart
captured a significant amount of stringing. Result shown Figure 2.6.
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Figure 2.8 – The ambient occlusion computed on the kitten model. The algorithm uses
darker area to hide defects where they are least visible.Thingiverse, thing 12694, user
MBCook

where both extruders are idle and traveling.
The path planner chooses in which order the print paths are visited, the point where

to start printing each, and the travel path for moving from a print path to the next. We
design our planner under the worst case assumption that idle extruders are always oozing.
Our strategy is therefore to always avoid having the idle extruders cross over the part. In
cases where crossing over the part is mandatory, we hide defects in low visibility regions.
In addition our path planner exploits the rampart, circulating within its double walls.
This encourages wiping and reduces the quantity of oozing : even if the idle extruder
crosses over the part, the defect will be minimal. Each time an extruder travels within the
rampart we perform a refill of its hot plastic chamber, ensuring that it is always ready to
print.

2.4.1 Overview

After slicing, we obtain a set of 2D slices, generated from the input 3D models. In our
slicer each slice is a set of paths, tagged with an extruder id and a type. The path type
can be either of perimeter, shell, or infill (Figure 2.1). Recall that most print paths are
cyclic and therefore we can freely choose their start/end point when printing.

Conceptually our algorithm works in high resolution images representing the slice. We
set the resolution to 0.05 mm per pixel, which for a nozzle of size 0.4 mm covers 8× 8

pixels. This offers enough resolution for detailed prints. Our slicer generates paths by
contour tracing the slice images ; the paths are therefore sampled at the pixel resolution.

In addition to the slices we also consider the visibility volume computed from the
surface, using ambient occlusion (AO) – an example is shown in Figure 2.8. This sparse
3D grid defines in every surface point a visibility coefficient. This determines whether a
point along a perimeter is highly visible. We do not describe here the computation of the
visibility volume and refer the reader to the survey on ambient occlusion techniques by
Méndez-Feliu et al. [69]. In this volume, at any point in space we store a value between 0
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Figure 2.9 – Left : Print paths for both extruders. Right : During printing, we consider
the motion of extruder 0 only. The plain and dashed blue lines reveal its trajectory.
However, when printing in green extruder 1 is activated, depositing plastic at the correct
location (plain green line).

and 1 ; 1 being the value for the most visible point.
The toolpath planning problem is a constrained form of TSP (See Section 1.2 of the

state of the art). Solving directly with a TSP heuristic poses several difficulties. First, we
need to consider a large number of nodes : paths have to be finely sampled to properly take
into account visibility. Second, TSP is a global compromise between the order with which
paths are printed and the navigation between them, while we want to favour quality over
print time (within reasonable bounds) : navigation is of primary importance. Therefore
we divide the problem in two distinct steps :

1. Ordering of paths, described in Subsection 2.4.3 ;

2. Navigation between paths, described in Subsection 2.4.4.

The ordering step decides the order in which print paths will be visited. The navigation
is solved in a second step, maximizing the quality while taking into account the travel time.
The benefit of resolving ordering first is to let us formulate the navigation optimization
as a shortest path search in a graph, obtaining a high quality solution.

After these two steps we obtain a complete set of toolpaths, including travel paths
that avoid or hide print defects.

2.4.2 Handling of multiple extruders

Our path planner always keeps track of the position of all extruders. However, all
coordinates are rewritten using extruder 0 as the reference. The print paths for the other
extruders are therefore translated into the frame of reference of extruder 0, as illustrated
in Figure 2.9. When printing with extruder 1, the carriage will move along a trajectory
defined for extruder 0, but extruder 1 will be extruding plastic at the correct location.
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2.4.3 Ordering of perimeters

Our ordering step makes sure that paths are visited in reverse order of inclusion, from
the inner-most towards the exterior of the slice. This ordering avoids an extruder to have
to re-enter a region whose perimeter was just printed.

Since some regions can enclose multiple child regions, we also have some degrees of
freedom in the ordering. We exploit these to further minimize the risk of defects, in
particular holes due to missing plastic.

Inclusion tree. Most of the paths, with the exception of infills, are cycles which follow
the hull of the surface. We organize the slice into zones, where each zone is a region
separated by a print path. This is illustrated in Figure 2.10, left.

The notion of zone is well defined since, by construction, paths do not intersect : they
capture the contours of the intersection of a plane with a well defined interior-exterior
mesh. Infill paths are generated by the slicer only within the inner parts. In case of thin-
features paths may come in contact with each other, but do not cross.

Similarly to prior work, we build a tree representing the zones with the most exterior
zone at the root (Figure 2.10, right). The tree contains two types of nodes : zone nodes and
path nodes. Each parent zone node is separated from a child zone node by a path node,
indicating which cycle separates both zones in the slice. The infill paths are attached to the
zone representing the inside region they are filling. The tree is quickly built with a flood-
filling algorithm in the sparse image of the slice, tracking which paths are neighbouring
each zone.

Ordering children in a zone. Zones of the inclusion tree may have multiple child
paths (Figure 2.10, right). We can freely choose in which order these children are printed.

Their ordering is not without impact on quality. In particular, the risk of holes can be
reduced by printing long paths first : any lack of plastic is more likely to go unnoticed.
Indeed, the inner–most paths are infills and shells (and therefore invisible). Note that lack
of plastic is a rare event since our path planner encourages the use of the rampart, where
refills occur.

We therefore order the children by decreasing path length. Once the children of all
zones have been ordered, we traverse the tree in post–order, gathering all paths. For the
example Figure 2.10, the final print order will be F0,F1,F2,D,B,C,A.

2.4.4 Navigation

After the order is determined we obtain a sequence of paths to be printed. We seek
to generate travel paths in between. Each will navigate from one print path to the next,
minimizing defects, using the rampart for circulation, and maintaining the print time low
whenever possible.

We optimize for navigation by a Dijkstra algorithm in a navigation graph comprising
the paths to be printed, as well as a number of additional navigation pathways. The
Dijkstra algorithm traverses the graph from one print path to the next, constrained by the
order computed previously. Note that it computes a single navigation path and therefore

37



Chapitre 2. Improving the 3D printing process

Figure 2.10 – Left : A slice showing print paths (A–D), infill paths (F0–F2) and zones
(Z0-Z4). Each zone is a different region of the slice plane, with Z0 the outermost zone.
Right : The inclusion tree captures inclusion relationships. Note how B, C, F0, F1 are
children of the same zone Z1.

solves for the global navigation problem – as opposed to solving for each in-between travel
path independently.

The optimized navigation path is only concerned with travel : it is enough to reach
the start of a print path and resume from its end, or to reach any single point along a
cyclic print path – the extruder resumes from the same location after printing the cycle.

Navigation graph. The navigation graph has a sparse set of nodes which are located at
integer coordinates in a grid. Multiple nodes can occupy a same coordinate. The resolution
of the grid matches the resolution of the slice, with a larger extent to take into account the
motion of all extruders. A node in the graph represents the reference extruder positioned
at this location. Nodes are connected through edges representing segments in the plane.
The cost of edges takes into account the defects that can occur when traveling this edge,
considering the position of all extruders.

The construction of the graph is described in the next paragraphs. An example graph
is shown Figure 2.11.

Print paths. We insert in the graph the paths along which plastic has to be deposited :
cyclic paths are rasterized into the grid, adding nodes and edges between neighbors. We
only add the start/end points of open paths.

Navigation paths. It would be wasteful to add one node per grid coordinate in the
graph for navigation : once optimized, travel paths use only a small set of optimal pathways
to navigate around different regions of the part. To speed up computations we explicitly
select a small number of pathways and connect them to form the complete navigation
graph.

We form the navigation pathways by adding to the graph a set of nodes N . We start by
inserting the nodes corresponding to multiple versions of the print paths, each translated
in the reference frame of one extruder (dashed lines in Figure 2.9).

We call these the ghost paths. Even though they are navigation paths they generally
incur a large cost since they correspond to cases where an extruder passes over a mismat-
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Figure 2.11 – The graph nodes of a slice of the dragon–heart model, for a dual left/right
extruder printer. The right (red) extruder is the reference. Green paths are navigation
pathways, the orange paths circulate within the rampart. The bold colored paths are the
location of the reference extruder while printing ; their color indicates which extruder is
activated. Note the red/black dots corresponding to the start/end points of (open) infill
paths.
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Figure 2.12 – The orange dashed lines are navigation paths added around the print and
ghost paths. The ghosts are necessary to generate the navigation paths allowing extruder 0
to travel while extruder 1 avoids crossing the print.

ching color. They serve their main purpose at the next stage, when constructing additional
navigation paths going around print and ghost paths as illustrated Figure 2.12.

We next compute a distance field in the grid [26], from all path nodes added so far
(print and ghost). The distance field indicates for each empty cell at coordinate e in the
graph grid, the vector d(e) to the closest cell occupied by a node n = G(d(e)), with G
the graph grid.

Using the distance field, we select a number of additional nodes : We form go-around
pathways by selecting nodes at a fixed distance in the distance field (we use 4 times the
nozzle width). We also form pathways between print paths, selecting the medial axis of
the distance field – that is, selecting the nodes on either side of the medial axis which is
located along integer cell edges. Finally, we add nodes for the path enclosed within the
rampart, again in multiple versions translated in the frame of reference of each extruder.
This provides a circulation around the part regardless of which extruder is active.
Figure 2.11 shows the nodes of a complete navigation graph.

Edges. We next add edges in the graph. Edges are always added in both directions
(a→ b and b→ a).

First, all nodes at neighboring integer coordinates are connected. Second, we connect
the navigation nodes N to the rest of the graph, adding edges (n,G(d(n))), with n ∈ N .
Finally, the navigation nodes are connected together : For each node n ∈ N we gather the
set of nodes C(n) = {m ∈ N|n 6= m,G(d(n)) = G(d(m))}. These are the navigation nodes
having the same closest node as n. We then add all edges {(n,m)|m ∈ C(n),d(n) ·d(m) >
0.5}, where "·" denotes the scalar product. This connects n to the other navigation nodes
that are on the same side of the node G(d(n)), within a tolerance.

Edge costs. The cost of following an edge between nodes p→ q in the graph is :

c(p→ q) = Wd ∗ d(p, q) + T (p→ q)
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with d(p, q) the Euclidean distance between the grid coordinates of p and q normalized
by the largest extent of the slice, and Wd a weight allowing to trade between travel time
and quality (we use Wd = 0.1). The term T is computed as :

T (p→ q) =
E∑
i

(Mi(q + δi) · ao(q + δi) + Z(p+ δi → q + δi))

where Mi(q+ δi) checks in the slice image whether at position q+ δi the extruder number
i is above a mismatching color. If that is the case, then Mi(q + δi) = 10 and 0 otherwise.
ao(x) returns the value at coordinate x in the AO grid. In case no value is available at
x we search for the closest value in a small neighborhood (nozzle width), and return 0 if
none is found. The ao(q+δi) factor thus modulates the penalty in function of the visibility
of the point.

Z(u→ v) takes into account edges entering or exiting print paths. These are the loca-
tions where zippers may occur and strings may deposit. Therefore, it is defined differently
depending on the type of edge :

Z(u→ v) =


0 if the edge u→ v does not exist
ao(u) if u on print path, v on navigation
ao(v) if v on print path, u on navigation
0 otherwise

Our edge cost favors travel paths avoiding strings to deposit : the term Mi strongly
penalizes any crossing of an extruder above a print path of a different color. In all other
cases the term Z(u → v) ensures that defects (zippers, strings) will be located in low
visibility areas, as given by ambient occlusion.

Edges belonging the rampart pathway have a smaller cost (10 times smaller) to en-
courage their use.

Shortest path optimization. We solve the navigation problem by searching for the
shortest path from the start point of the slice, through all print paths, to a point of the
last print path. We select the start point from the end point of the previous slice, or the
origin for the first slice. The path is constrained to traverse the print paths in the order
defined by the ordering step. Open paths are visited as soon as their first point is reached,
and the shortest path search resumes directly from their last point. Cyclic paths can only
be considered visited when all their nodes have received their shortest path cost.

We backtrack the overall shortest path from the node of the last perimeter having
smallest cost. The shortest path goes through one node of each cyclic print paths and
the first/last node of non–cyclic paths. The sequences of nodes between each print path
node form travelling paths. We insert them into the initial sequence of paths to obtain the
final sequence of paths. These are then used to produce the instructions for the printer
(G-code).

2.4.5 Triggering refill

The path planner generates travel paths that tend to circulate within the walls of the
rampart. After path planning, we follow each travel path and detect when it enters/exits
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the rampart. We then activate the extruder which circulates the rampart, allowing plastic
to flow. This is illustrated in Figure 2.6.

Our goal is to run a sufficient volume of plastic through the nozzle to properly refill
the hot chamber. Since the travel path within the rampart is already determined, we can
only vary the travel speed or the extrusion speed. We use a fixed extrusion speed ensuring
reliability. We therefore adapt the travel speed. Given a path length L (mm), a volume
to push v (mm3), a filament extrusion speed e (mm/s), and a filament diameter f (mm),
we compute the travel speed as :

s =
L · e · π · f 2

4 · V

For mechanical safety we ensure the speed remains below a maximum (120mm/s). This
guarantees that enough plastic is pushed, regardless of the length of the segment within
the rampart. We use v = 2mm3 and e = 2mm/s.

While it is possible for several refill paths to overlap, we did not find that to be a
source of concern during printing – however we disable refill on the first few layers where
the nozzle is close to the print bed.

Figure 2.13 – Our result (right) has almost no defects compared to the same model
printed with Skeinforge/ReplicatorG (left). Pictures focus on the worst regions of the
surface. Both models use the optimized azimuth angle.
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2.5 Results
We implement our method in our slicer [58]. We print on a Replicator 1 dual with

Sailfish 7.4, using ABS plastic.
Our prints are all obtained with same values for all parameters. Our parameters are

30 mm/s for perimeters, 60 mm/s for other print paths, 120 mm/s travel, 20% infill and
2 shells, 0.5mm prime/deprime. All the results shown in this chapter are exactly as they
came out of the printer : we do not clean them in any way.

Figure 2.20 shows how zippers are hidden in low visibility regions by the edge cost
defined Section 2.4.4. This benefits both single and dual color prints.

Figure 2.16 summarizes the performance of our approach. Timings for processing in-
clude all steps (azimuth, path planning, AO). Timings are measured on an Intel I7 4770,
3.4 GHz equipped with a GeForce GTX 770. We process multiple slices in parallel (8
threads). Note that the relative overhead in filament length becomes smaller on larger
objects or with denser infills (here we use only 20% infill).

The Weight of Plastic The weight of plastic depends of the shape of the support
but also of the surface that require supports. To make a fair comparison of the weight of
plastic, we need to apply the methods that generate the supports on the same surfaces. If
the said surface are not the same for all algorithms, one might out performed the others
if it detect less surface to support.

The Print Time Comparing the print time is tricky. We need to compare it for the
same surface to support and sliced by the same software. However it is not always possible
since the support generation is often embedded with the slicing process.

Some algorithm integrate the user in the loop for the generation of support and we
have to compare them to fully automatic method.

2.5.1 Multiple color prints

We first test two challenging models. Dragon–heart has a significant imbalance between
both extruders, implying that one is idle for long periods of time. The body is larger than
the extruder spacing in all directions. The dragon is printed at 0.2 mm layer height. Two–
color–world combines fine, detailed features with a circumference which is larger than the
extruder spacing. We print it in black and natural plastic at 0.3 mm layer height. The
later being translucent, any color smears end up being visible. Nevertheless, we reach high
print quality with crisp color separation as shown Figure 2.19. This is to be compared
with ReplicatorG/Skeinforge as shown in Figure 2.18.

Figure 2.13 compares dragon–heart printed with ReplicatorG/Skeinforge and our tech-
nique, both using our azimuth angle optimization.

Figure 2.17 shows the Robot–ice model printed in opaque red within a crust of trans-
lucent natural white ABS, at 0.3 mm layer height. As shown by the back–lit model our
approach produces a clean output within the volume itself.

Figure 2.15 compares the result of progressively enabling each component of our tech-
nique (none, rampart only, full) versus the result of Makerware 2.4. The model fits within
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the extruder spacing, so all defects are due to Case 1. For this comparison we match the
settings of Makerware and use 150 mm/s for the travel speed, 40 mm/s for the perimeters
and 90 mm/s for all other paths. Layer height is 0.3 mm. The print time for our full
technique is 46 min versus 24 min without, using respectively 4.6 and 2.3 meters of fila-
ment. The overhead goes down on larger prints (see Figure 2.16). Makerware 2.4 prints in
39 min using 3.91 meters of filament. Some differences with Makerware are explained by
the different approaches used for slicing, in particular regarding the thin petals ; however
color smears are clearly visible in all but our result.

Figure 2.14 – A black and white crystal and its rampart. Note the significant amount of
stringing captured on the rampart. Small defects are due to thin color slabs not adhering.

2.5.2 Limitations and future work

The rampart wastes a small amount of plastic – to be compared with the cost of
failed or low–quality prints. Plastic is also easily recycled in filament (see for instance the
Filabot). Printing the rampart may involve crossing over the print, risking color smears.
This is visible at close inspection on the right side of the Robot–ice, Figure 2.17.

While we strongly minimize the amount of defects, some color smears may still be
visible when one extruder prints for a long time and, due to the object geometry, misses
the wipe. Vertical complexity also increases the rampart-surface distance which reduces
its efficiency. A direction of future work is to further optimize the shape of the rampart to
perform more wipes. Our ordering step could be improved to take print time into account.
Our edge cost could also easily incorporate additional terms, for instance hiding zippers
in high curvatures of the surface.
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Figure 2.15 – Quality comparison. Top left : Print without our approach. Top right :
Print with only the rampart (no navigation, no refill). Bottom left : Our final result.
Bottom right : Print from Makerware 2.4. Rose by user Jillian (Thingiverse)

Model Processing Print time Filament
World 4m22s 2h20m [1h32m] 12.3 [8.3]
Dragon 4m25s 1h51m [1h16m] 7.50 [4.3]
Robot 8m40s 1h53m [1h06m] 9.91 [4.9]

Figure 2.16 – Timings for processing, printing and length of plastic filament used (me-
ters). Numbers in brackets are timings/lengths without using our technique.

2.6 Later improvement to the implementation

Since the publication of the work, we decided that the computation time was too
high for its integration in the IceSL software developed within the team. In single color
print, it does not require that much optimization to obtain good results based on the
geometry of the model. We decided to not use the information based on computation of
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Figure 2.17 – Robot–ice printed with our technique. The backlit model reveals the
absence of smears within the volume.

Figure 2.18 – From left to right : Two–color–world model, printed with Replica-
torG/Skeinforge, our technique without azimuth optimization and our complete tech-
nique.

the ambient occlusion and to simplify the path planning in order to decrease both print
and computation time.

Instead of exploiting ambient occlusion information to determine the starting point of
each perimeter paths, we now rely on the curvature of the paths. Points on high curvature
regions are favoured as starting points, with a higher priority given to the ones in concave
regions (low visibility area). This hides zippers well for paths with salient angles – as
before the zippers are not really hidden, but their visual impact on the surface of the
model is reduced.

The rampart motivated future work by colleagues. Hornus et al. [42] developed a
technique that generates ramparts that are printable, and as close as possible to the
object.
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Figure 2.19 – Our result seen from different angles.

Figure 2.20 – Left : Our result, zippers are hidden in low visibility regions. Right :
Skeinforge with jitter plugin.
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2.7 Other contribution to the printing process

This section describes my contribution to other projects linked to the printing process.
In particular, it presents an algorithm that detects points that need supports, and a
guideline to compare slicers. The first part is part of a collaboration with Jérémie Dumas
and Sylvain Lefebvre. It has been published in Transaction of Graphics, special issue of
SIGGRAPH 2014 [30].

2.7.1 Detection of support points

Before computing the geometry of the support structure, we need to determine a set
of points that require support (See Figure 2.21). Our approach starts by slicing the model
without any support, determining the full set of print paths. Each print path is a sequence
of segments along which plastic has to be deposited. The print paths are of two types :
the perimeters which follow the outer boundary of the surface and the infills which fill
the interior of the volume.

Our algorithm walks along each print path and checks whether each segment endpoint
is properly supported by the layer just below. The test considers the coverage of a disk
having for diameter the size of the print nozzle (0.4mm in our setup). If more than 50%
of the disk lies outside the object on the layer below, we consider the endpoint unsuppor-
ted — this threshold was determined experimentally to ensure good surface quality. In
practice, we implement the test using images of the layers with 0.05mm pixel resolution.
The algorithm 1 describes this step. An simple example of how the algorithm works is
given Figure 2.22. We only check segment end points since the segments themselves form
bridges if their extremities are supported. However, in order to ensure a good quality for
bottom surfaces, we restrict the longest segment length. This is done by re-sampling any
segment whose length exceeds a threshold (5mm in our implementation).

Figure 2.21 – Cube floating in space. Left) Set of points requiring support. Middle)
Generated scaffold. Right) Bottom surface quality.

This simple analysis does not take into account the fact that when a point is supported,
a whole length of filament around it can be considered supported as well — the cooling
filament having a non negligible rigidity. This is the case on perimeters. This effect turns
into a surface support when filaments are deposited side by side, for instance when filling
an area with a tight infill pattern (see [16] for a nomenclature of such cases). We therefore
select only a subset of the detected points. Pseudo code is given by Algorithm 1. C(u, v)
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1 2 3 4

5 6 7 8

Figure 2.22 – The decimation of supporting point on the cube. It starts by removing
required point on the perimeters then decimate points on infill segment

denotes the curvilinear distance between two points u and v on a same print path ; τ
is the canceling distance (2mm in our implementation) ; isUnsupported tests the disk
coverage test using the layer directly below the point. Figure 2.21 shows the result for a
box floating in empty space.

Algorithm 1: Select support points
Input: Array of paths P , stored as array of points, ordered by Z ↗.
Output: Set of points S to be supported.

1 foreach perimeter perim ∈ P do
2 foreach u ∈ perim do
3 if isUnsupported(u) then
4 if @v ∈ S s.t. v ∈ perim and C(u, v) < τ then
5 S ← S ∪ {u}

6 foreach non perimeter path ∈ P do
7 foreach u ∈ path do
8 if isUnsupported(u) then
9 if @v ∈ S s.t. z(v) ≤ z(u) and ||u− v|| < τ then

10 S ← S ∪ {u}

11 return S
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2.7.2 Comparing slicers

Whenever we improve the quality of a surface or when we generate support structures
for 3D printing, we need a way to compare our new techniques with previous work. The
different techniques are not always available as publication or the code has not been
published, making it hard to reproduce.

In the case of the technique for multi material printing, we wanted to compare the
visual quality of an object printed with our method with others, which was straightfor-
ward : it required pictures of the prints under different viewpoints. We also compared
the computation time, and the amount of wasted material for auxiliary structures. The
key difficulty was to match the parameters as best as possible despite the different slicing
algorithms.

Our algorithm that generates supports structures was more difficult to compare with
previous work. First of all, our algorithm is integrated into the slicing process, and the
print paths are used to compute the set of support points. In contrast, previous support
techniques use the angle with the geometry or image based computations to compute the
area that need support (see section 1.2.1.3 of the state of the art). Therefore, we could not
easily ensure that two different support structure generation algorithms would be given
the exact same set of points as input.

To compare our results with MeshMixer [93], we adjusted two parameters in Mesh-
Mixer : the angle threshold and the density of point to support to match as closely as
possible our support density. The Makerbot desktop support generator is integrated to the
slicing software, and the slicing algorithm is not the same as ours. In order to compare the
print times, we needed to carefully select the slicing parameters such that first print times
would match without support, and only then would we slice with the support structures.

In general, comparing support structures is very difficult as their performance heavily
depends on the choice of subsequent slicing algorithm and, of course, on the geometry
to be supported itself. Ultimately, it could be interesting to let the user choose between
different algorithms or interactively edit the initial produced support (which, for instance,
MeshMixer and Simplify3D allow).

Conclusion

Our work makes it easier to get satisfactory results with multi-material prints. By
carefully analysing the defects and the behavior of the extruders we proposed a technique
removing or hiding most issues. Our algorithm finds a better azimuth angle for printing
and uses a specialized path planner exploiting a disposable rampart in close proximity of
the shape to protect the printed part and refill the extruders with plastic. Our approach
also improves the quality of single color prints by hiding zippers in regions of low visibility.
This is a side effect of our edge cost definition, which seeks to enter perimeters in hidden
locations.

Some printers are equipped with one extruder with multiple filament for example
the Cyclope 11 form E3D. Our method has to be adapted to this case. The refill is still

11. http://e3d-online.com/Cyclops
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important because the change of material is not immediate : it takes time to flush the
previous material from the nozzle. Our refill strategy can be used to absorb this transition
time. Zippers still appear and still have to be hidden. However, oozing will appear less
because in this case the extruder idles only during travel which might be short enough
to consider only retractation. However in this case retractation might lead to an other
defects, because both filament are pressurized in the extruder and might be mixed during
retractation.

The input of our algorithms is a complete specification of a 3D shape. If it needs
external support, they are computed on software side, but it does not simplify the design
process. It’s limited to a particular technology. If we consider only what can be done
software side there isn’t so much thing that can be done. If we consider the hardware
improvement, this work might become less relevant, in particular if the 3D printing tech-
nologies evolve to fast. As I explained in previous section, we can also look for methods
that are closer to the user and help her to design the shape. There are two ways to do so,
either the algorithm can handle some parts of the design process by completing incom-
plete specification or by guiding the user in the exploration of the design space. The next
chapter shows a method that does the first.
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3

Synthesis from Partial Shape
Specification

Introduction

It is hard to define a 3D model entirely. It can be done using a modelling software
that requires extensive training to master, such as Blender or 3DSMax, or by writing
parametric models through Computer Aided Design (CAD) modellers such as IceSL or
OpenSCAD. Taking into account fabrication constraints makes it even harder in particular
if the user is not familiar with those constraints. Moreover she needs to iterate between
the fabrication and the design, which is time consuming.

Thus, it seems natural to simplify the design process itself by developing algorithms
that help the user to design shapes, or by optimizing shapes to make them fabricable.
As we saw in the previous work, the design can be optimized to enforce the fabrication
constraints. This chapter presents two contributions inspired by this methodology.

The set of constraints to deal with and the design process heavily depend on the ap-
plication domain. Thus, to explore this approach I identified cases where it is particularly
interesting. The first case I considered is the aided design of mechanisms, and the second
case I considered is for aided design of assemblies from planar cutouts. In both cases, the
user needs an extensive knowledge of the fabrication constraints before starting to de-
sign. Both cases will be detailed later in this chapter, and they both result in formulation
of difficult combinatorial problems, such as a constraint satisfaction problem and a Bin
Packing problem, which are both known to be NP-hard.
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In the first section I will describe a technique that assists the modeling of mechanisms.
It takes into account the fabrication constraints and use a simplified version of the design
– given by the user – to produce the final model. The final mechanism is meant to be fa-
bricated pre-assembled (i.e. it is functional immediately after fabrication). This technique
is not limited to a particular manufacturing technology, but we demonstrate its efficiency
on low-cost filament printers. This work has been done with my advisor and has been
published in Computer Graphics Forum, special issue of Eurographics 2015 [39].

The second section tackles the problem of reducing wastage when modeling planar
cut assemblies. As discussed in the previous work, these designs are made of several parts
cut out from a same master board. The material in between the cutouts is wasted. Given
a parametric model of such a design, we minimize the amount of material wastage by
optimizing both the packing and the parameters of the design. We presented our results
with actual furniture cut with a CNC machine and smaller models cut with a laser cutter.
This work has been accepted with major revision at Transactions on Visualization and
Computer Graphics. It has been done in collaboration with Bongjin Koo, Niloy Mitra and
Sylvain Lefebvre.

3.1 3D Fabrication of 2D Mechanism

Designing mechanisms is a difficult task therefore significant research is dedicated
to automated their generation or to simplify their design. Yet popular sandbox games
allows gamers to design mechanisms, either through a simple interface (Physical Sandbox,
Algodoo) or as an element of gameplay (Minecraft). Algodoo is a sandbox game in witch
the user can design and simulate 2D mechanisms. The simple interface and graphics of
the game make it appealing and fun. This game not only simplify the design process, but
also make it enjoyable.

In this section, I seek to fabricate mechanisms with low-end 3D printer, that were
design with those kind of interface. While modelling mechanisms for fabrication is an
hard task, we developed a method that supports part of the modelling for the user. Given
underspecified mechanisms (i.e. 2D scheme) we compute a 3D printable shape that makes
the same motion.

(a)

n0

n1

n2

(b) (c) (d) (e)

Figure 3.1 – Our algorithm takes as input a 2D design of a mechanism (a) and produces
a 3D model (c) by computing a layout encouraging inclusion between parts, formulating
the layout as a graph orientation problem (b). In the graph, edge orientation indicates
inclusion relationships. The 3D model can be printed (c,d) and is functional. The chassis
is automatically synthesized.
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Figure 3.2 – Possible solutions for the example of Figure 3.1. Left : Print out of our
result using layering only. Middle : Out-of-plane motion resulting from using layering.
Right : Print out of our result using inclusion. It produces less out-of-plane motions as
axes are connected on both extremities.

Contributions
— We solve for the 3D layout of the mechanism by exploiting inclusions whenever

possible.
— We define the 3D shapes of the final parts by constructive solid geometry (CSG),

considering the positions of the parts throughout the mechanical simulation.
— We automatically synthesize a chassis for the mechanism using topology optimiza-

tion. Our approach takes into account the forces generated by the mechanism on
the chassis during the entire simulation.

Our approach makes no assumption regarding the shape of the mechanical parts :
gears, cranks and cams are not tagged in the input. They function properly through
the preservation of the set of contacts and interactions from the 2D mechanism into the
fabricated mechanism.

Limitations Our algorithm does not detect unrealistic mechanisms (i.e. mechanisms
that may generate excessive stresses, that may exhibit singularities, or mechanisms where
parts can fall or detach). Some over-constrained 2D designs cannot be resolved by layering
or inclusion (Section 3.1.2.6).

3.1.1 Overview

The input to our algorithm is a set of N parts P = {Pi|i = 0..N−1}, each described by
a 2D polygon. The polygon of a part may have holes, but has to form a single component.
The parts may be connected through hinges and fixed joints. We denote the set of joints :

H = {(Pi, Pj)|Pi, Pjare connected by a hinge or a fixed joint}

Our approach involves three steps : layout (Section 3.1.2), geometry synthesis (Sec-
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n1

n2

n3

n4

n5

n6

n7

Figure 3.3 – Left : Input 2D mechanism. Middle : Graph used to construct the
layout. Edge orientation indicates which part includes which other, while the red edges
show which parts have to be layered. Right : Two views of the generated mechanism. The
synthesized chassis appears in pink. The crankshaft configuration automatically results
from the inclusion and layering constraints.

tion 3.1.3) and chassis synthesis (Section 3.1.4). These three steps are illustrated in Fi-
gure 3.3.

The layout step determines the relative positions of parts and assigns them with a
depth interval. We denote I(Pi) = [li, hi] the interval assigned to part Pi, with li ≤ hi
two integers. The inclusions between parts are determined by orienting edges in a graph
capturing contact and collision constraints. The geometry synthesis step determines the
exact 3D geometry of each part, using the layout and the motions resulting from the
simulated mechanism. The last step synthesizes a chassis for the mechanism : a geometry
for the main body holding everything together.

3.1.2 Mechanical layout

Our approach produces mechanisms favoring inclusion between parts. This is used
in particular to resolve cases where the parts overlap in the 2D specification without
interacting. The main advantage of this approach is to reduce mechanical jitter : the
hinge axles are much stronger when supported on both their extremities. Inclusion alone
cannot work on all mechanisms due to additional geometric constraints and interactions
between parts. For these cases our approach resorts to layering, but only locally.

The layout process starts by analyzing the simulated mechanism, tracking overlaps
and interactions between parts (Section 3.1.2.1). This information provides us with a set
of observations that are used to make hypotheses regarding which parts can include which
others (Section 3.1.2.3). Our algorithm greedily add inclusions, until contradictions are
detected (such as having both A ⊃ B and B ⊃ A). These contradictions are transformed
into layering rules. The final optimization assigns depth values to the intervals by solving
a constrained satisfaction problem (Section 3.1.2.4).
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3.1.2.1 Analysis

Our approach starts by simulating the mechanism to construct the set of observations.
It keeps track of overlaps – parts that overlap without colliding – and interactions – parts
that are allowed to be in contact during the simulation. This is done by simulating the
input 2D mechanism using the Box2D library.

We assume mechanisms to have a periodic motion, and run the simulation until a prior
configuration is encountered, or a user selected maximum time is reached. The result is a
set of T time frames. We denote by M t

i the position matrix of part Pi at time t ∈ [0, T [,
and denote by M t

iPi the polygon of part Pi at time t.
We record all overlaps between parts in a set :

O = {(Pi, Pj)|∃ t such that Pi, Pj overlap at time t}

We keep track of all interactions between parts during simulation. We denote the set of
interacting parts as :

C = {(Pi, Pj)|∃ t such that Pi, Pj are in contact at time t}

Note that for any two parts Pi, Pj we have (Pi, Pj) ∈ O ⇒ (Pi, Pj) /∈ C and (Pi, Pj) ∈
C ⇒ (Pi, Pj) /∈ O. We also have H ⊂ O since all parts sharing a joint also overlap.

From these sets we define the mechanism graph as G = (P ,H ∪ O ∪ C). The set of
edges is the union of the joint set H, the overlap set and the contact set. Each edge in
the graph is tagged to track which set it belongs to (edges in both H and O are tagged
as belonging to H).

Additional observations are made about the mechanism. The first are erasing cases.
A part Pj is said to erase a part Pi if the temporal sweep of its polygon covers Pi entirely
and they are not connected by a joint. More formally :

Pj erases Pi if Pi\ ∪t∈[0,T [ ((M t
i )
−1M t

jPj) = ∅ and (Pi, Pj) /∈ H

In such cases, the part Pi cannot include the part Pj as it would have to be split in two
independent parts to fit Pj within its depth. If Pi, Pj are connected by a joint, then Pi
remains connected through the axle and is not erased by Pj.

The second are detachment cases. A part Pj is said to detach Pi, Pk(k 6= j) if the
temporal sweep of Pj overlaps with the joint between Pi, Pk. Note that the overlap test is
considering the diameter of the joint axle (5 mm in practice). If Pj detaches Pi, Pk then
we request that Pj includes both Pi and Pk to avoid having Pj cross the axle between
Pi, Pk.

These cases are illustrated Figure 3.4.

3.1.2.2 Mechanical configurations

The mechanisms we generate can produce three types of mechanical configurations
between two parts A and B. Each results in a rule regarding their intervals :

1. A includes B (denoted by A ⊃ B)

⇒ I(A) ⊃ I(B)
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Figure 3.4 – Left : The bar A sweeps across the (fixed) bar B, covering it entirely during
the simulation. A is said to erase B. In this case, B cannot possibly include A within its
depth or it would be disconnected in two independent parts. Right : During simulation,
the bar A sweeps across the hinge between B and C. A is said to detach B and C. In
this case we request A to include B and C so that their axle is not cut by A. Note that
these constraints will be combined and may conflict, in which case layering will be locally
performed.

2. A interacts with B

⇒ (I(A)\ ∪∀P⊂A I(P )) ∩ (I(B)\ ∪∀Q⊂B I(Q)) 6= ∅

3. A layered with B
⇒ I(A) ∩ I(B) = ∅

These configurations are depicted in Figure 3.5. They are mutually exclusive : if A is
layered with B they cannot interact as they share no interval in depth. If A is layered with
B, then B cannot be included within A (and vice-versa) as they also share no interval.
If A includes B, then the volume of B is carved out from A (see Figure 3.5 top-left) and
therefore they cannot interact.

Whenever possible our algorithm favors inclusion over the other two configurations.

3.1.2.3 Generating inclusions

The goal of this step of the algorithm is to generate as many inclusion configurations
as possible. To this end, we exploit the observations made during analysis and greedily
attempt to include parts into one another. Whenever inclusion cannot be used we fallback
to layering. At this stage we only determine relationships between the parts intervals (e.g.
I(A) ⊃ I(B)). The exact values of the depth intervals will be computed at the next stage
(Section 3.1.2.4).

Inclusion relationships are determined by orienting the H and O edges of the mecha-
nism graph G (Section 3.1.2.1). An edge (Pi → Pj) implies that I(Pi) ⊃ I(Pj). The goal
is to find an acyclic orientation : an inclusion cycle would produce an unsolvable case
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Figure 3.5 – Two parts in the three possible configurations, as seen from above. Inclusion
(top-left), interaction (bottom left), layering (right). The configurations can be mixed, i.e.
a part can include others that are in a layering configuration.

of circular inclusion, e.g. I(Pi) ⊃ I(Pj) ⊃ I(Pi). When orienting the edges we take care
not to contradict the interaction rules (recall that A includes B is incompatible with A
interacts with B, see Section 3.1.2.2). This is done by verifying that no inclusion path is
formed between two parts A and B if they interact in the input mechanism.

The orientation of some of the edges is constrained by the erasing and detachment
cases :

Pj erases Pi ⇒ I(Pj) ⊃ I(Pi)
Pj detaches (Pi, Pk) ⇒ I(Pj) ⊃ I(Pi) and I(Pj) ⊃ I(Pk)

As a result of these constraints, contradictions may appear during the orientation process,
where both I(Pi) ⊃ I(Pj) and I(Pi) ⊂ I(Pj) are required. Such cases are resolved by
switching to a layering configuration for Pi and Pj.

We orient the edges of G considering edges in H first and then edges in O. In each
subset, we start by the edges with a constraint. This order is important : we prefer to
avoid layering on joints (set H) since this is the case where fragile axles are generated.
We therefore orient the edges in H first, so that contradictions are more likely to appear
on the edges of O which are later considered.

For each edge in sequence, we first determine which orientations are possible. This
involves checking for an existing constraint, verifying whether an orientation violates any
interaction rule, and then checking whether an orientation would produce an inclusion
cycle. If two orientations are possible we use a heuristic to select the orientation of lowest
cost (see below). If no orientation is possible, we have encountered a contradiction.

Contradictions. We deal with contradictions by removing the problematic edge from
the graph and by adding a layering configuration rule between the parts : I(Pi)∩I(Pj) = ∅.
This forces Pi and Pj to be in different depth intervals instead of being included into one
another. However, this introduces an additional requirement on the graph orientation :
the parts Pi and Pj should not have any common descendant in the oriented graph. Let
us assume such a descendant Pk exists. We would have I(Pi) ⊃ I(Pk) and I(Pj) ⊃ I(Pk)
which gives (I(Pi)∩I(Pj)) ⊃ I(Pk). This directly contradicts I(Pi)∩I(Pj) = ∅. To account
for this, every time a contradiction is detected we add the additional constraint that Pi, Pj
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should not have a common descendant. The set of descendants is easily maintained during
the graph orientation algorithm, and we reject any edge orientation that would violate
such a requirement. When checking for common descendants we also follow interaction
edges (edges in C) to prevent the layered parts to include parts that have to interact, i.e.
Pu ⊂ Pi, Pv ⊂ Pj where Pv, Pu interact : this would result in a similar contradiction.

Resolving a contradiction by layering removes all detachment constraints between
Pi, Pj : as both parts will be placed in non-intersecting depth intervals, they can no longer
cross their respective axles.

Since the set of constraints is updated, and because some earlier choices may violate the
new constraints, we restart the graph orientation every time a contradiction is resolved.
When the process restarts edges are traversed the same order, skipping the edges removed
due to contradictions.

Chassis. The chassis appears as a part in the graph. To guarantee that it includes all
other parts, we orient the chassis edges prior to considering any other edge in the graph.

Figure 3.2 illustrates a case where the chassis is involved in a detachment constraint.
In such cases, we request the detaching primitive to be the most included. That is, Pj
detaches (Pi, C) implies I(Pj) ⊂ I(Pi) and I(Pj) ⊂ I(C), where C is the chassis. The
axle between C and Pi will exist around Pj – even though Pj cuts it, it will exist in two
parts attaching C and Pi on both sides. E.g. in Figure 3.2 the main wheel axle is cut by
the inner arms. Nevertheless the wheel is properly connected on both sides to the chassis,
and remains a single part through the axle with the arm. This is possible as long as Pj
does not erase Pi, in which case layering would automatically be used between Pj and Pi.
Indeed a contradiction would then appear when orienting the edge (Pi, Pj).

Orientation cost heuristic. Whenever we can freely choose the orientation of an
edge, we apply the following cost heuristic. In absence of constraints our goal is to avoid
thickening the parts too much. In other words, we want to keep the size of the depth
intervals |I(Pi)| small. The intervals are optimized at the next step (Section 3.1.2.4) and
therefore we do not know their exact size during graph orientation. However, we can easily
determine a lower bound. Consider a path in the oriented graph from part Pi to part Pk :
Pi → ... → Pk and denote L the length of this path. Since we have Pi ⊃ ... ⊃ Pk, it
follows that |I(Pi)| ≥ L. We therefore seek to minimize the length of the longest path
from every node. When orienting an edge (Pi, Pj) we select the orientation minimizing
L(Go, Pi)+L(Go, Pj) where L(Go, P ) computes the longest path from P to any other node
in the oriented graph Go (the graph with only the previously oriented edges, and the edge
being tested).

3.1.2.4 Depth intervals

The previous step produces a number of rules relating the depth intervals of the
parts. The goal of this section is to compute the depth values assigned to the lower
and upper bounds of each interval I(Pi) = [li, hi]. We assign integer depth values to
the intervals, which are later mapped to physical thicknesses in the final object (see
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Section 3.1.3). Intervals where li = hi correspond to parts having the minimal thickness
(2 mm in practice).

After the analysis we obtain three types of interval rules : inclusion (e.g. I(Pi) ⊃ I(Pj)),
layering (e.g. I(Pi) ∩ I(Pj) = ∅) and interactions.

Inclusion. Inclusions are captured by the oriented edges in G. They result in the follo-
wing inequalities :

I(Pi) ⊃ I(Pj)⇒ li < lj and hi > hj

Note the use of strict inequalities, which guarantees that the including part (Pi) has one
layer on each side of the included part (Pj). This ensures that axles are supported on both
sides.

Layering. Layering rules are produced when resolving contradictions on edge orienta-
tions. We distinguish layering due to the removal of an overlapping edge (∈ O) from the
layering due to the removal of a hinge edge (∈ H).
On overlapping edges :

Pi layered by overlap with Pj ⇒ li > hj + 1 or lj > hi + 1

These inequalities guarantee that Pi, Pj will have a spacing of at least one between them,
ensuring an including parent piece will support their axles on both sides.
On hinge edges :

Pi layered by hinge with Pj ⇒ li = hj + 1 or lj = hi + 1

This constrains both parts to appear next to each others through depth, ensuring that
the axle between them is as short as possible.

Interactions. These rules are necessary to enforce that contacts exploited by the mecha-
nisms (gears, racks) are properly captured by the 3D model. They result in the following
equalities :

(Pi, Pj) ∈ C ⇒ li = lj or li = hj or hi = lj or hi = hj

This ensures that the parts will properly interact through their top or bottom layers. This
rule is more restrictive than it could be, since in principle the parts interact as long as
they share an interval where no included part exists (see Section 3.1.2.2). However, we
found it sufficient in practice while reducing the combinatorial complexity for the CSP
solver.

3.1.2.5 Solver

We directly translate these rules into an integer constraint problem that we solve using
Minion [36]. We restrict the space of integer to [0, 2 ·N ], with N the number of parts.

Minion returns the solution minimizing the sum of part thicknesses, that is
∑N

i=0 |I(Pi)|.
As Minion performs an exhaustive search within the solution space, we configure it to re-
turn the best solution found after at most 90 seconds.

Once the intervals are determined for each part, we are ready to generate the final
geometry of the 3D parts.
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3.1.2.6 Discussion, failure cases

At worst our algorithm eliminates all edges between the parts in the graph and includes
everything in the chassis. The parts will then be layered within the chassis, which becomes
a crankshaft hosting the layered mechanism.

However, this does not guarantee success as some mechanisms cannot be layered. Such
a case is shown Figure 3.6. The only solution involves modifying the shape of the fixed
joint between the two bars. This is not considered by our system nor, to the best of
our knowledge, by any of the existing techniques. In such cases, the CSP solving for the
intervals will admit no solution.

Figure 3.6 – Left : Four bars seen from the top. Black segments indicate a fixed joint,
while orange indicates a hinge joint. C,D can rotate around A,B but will cut the fixed axle
between A,B. This system cannot be resolved by assigning different layers to A,B,C,D.
Right : The only solution is to change the shape of the axle, making room for C,D.

3.1.3 Part geometry synthesis

This step of the process takes as input the set of parts Pi, i = 0...N and their corres-
ponding depth intervals I(Pi) = [li, hi]. The output is the 3D geometry of each part.
In order to produce the 3D geometry we take into account the following :

— Parts have to be carved to allow for passage of other, included parts.
— Parts that come in contact have to be modified to take a spacing tolerance into

account (0.4 mm in practice).
— Parts that slide along others without being attached to the chassis have to be

maintained at their selected depth.
— The geometry of hinge joints has to be produced, enabling the mechanism to print

pre-assembled.
The base shape of a part is formed by the linear extrusion along the z axis (depth) of
its 2D shape. We denote by Bi the base volume of part Pi. The position of the part
in depth is computed such that pieces allotted in consecutive layers are separated by a
small space. For an interval [li, hi], the extrusion takes places between zli = (t + s)li and
zhi = (t+s)(hi+1)−s where t is the minimal thickness (2 mm) and s the spacing tolerance
between consecutive parts (0.4 mm).

The final shape Si is obtained from Bi by subtracting from the initial volume the time
sweep of the pieces included in Pi, as well as the time sweep of the pieces in contact with
Pi. All subtracted pieces are dilated by the contact tolerance spacing. The volume Si is
precisely defined as :

Si = Bi\
(
∪j∈N (i) ∪t∈[0,T [ ((M t

i )
−1M t

jBj)⊕ Bz0.4
)
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where N (i) = {j|(Pi, Pj) ∈ O ∪ C}, ⊕ is the dilation operator and Bz0.4 is a cylinder of
axis z, of height and diameter 0.4 mm. We compute the shape by a combination of 2D
operations using the Clipper library [48], and a few 3D CSG operations.

Free assemblies. The mechanism might include parts, or sub–assemblies of parts that
are not connected to the background by any hinge : they are only sliding along other
parts. We call these free assemblies. They are detected as disconnected components in the
graph with only H edges.

Free assemblies require special care : in 3D nothing prevents them from falling out of
their assigned depth interval – recall however that we assume that they are properly locked
inside the 2D mechanism. We address this issue by creating fins (protrusions) along the
sliding parts, see Figure 3.7. These fins are added to the base shapes Bi of the parts, and
are thus subtracted from the other parts that are in contact (with a spacing tolerance).
They physically constrain the parts to remain aligned in depth.

This approach in currently limited to the case of free assemblies sliding against non-free
assemblies : we do not support several free assemblies sliding against each others.

Figure 3.7 – Left : The part in pink slides along the L-shaped part. Our approach
generates fins around the sliding part so that it is locked in depth inside surrounding
parts. Middle : Printed result, note how the gear is also carved by the fin. Right :
Interlocking shape of the axles allowing for pre-assembled printing on filament based
printers.

Hinges. The geometry of the hinges is designed to allow for pre-assembled printing (see
Figure 3.7, right). We add the hinges by CSG, carving the parts to let the axles through.
If the part is too narrow the axle geometry will introduce a local bulge to ensure the axle
fits properly – in some cases this can prevent the mechanism to function, e.g. if a surface
along which two parts interact is modified. We do not currently address this issue.
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After this stage the mechanism is almost ready to print, but still lacks a chassis.

3.1.4 Chassis synthesis

When designing mechanisms in 2D the user attaches primitives to the background
’wall’. When creating the 3D counterpart of the mechanism we have to synthesize a chassis
acting as the background. We produce a 2D geometry that is used to sandwich the 3D
mechanism in between two walls, as illustrated Figure 3.2. Alternatively the chassis could
be extruded to the full mechanism depth and carved like any other part, see Section 3.1.3.
This is unnecessary unless the chassis is a crankshaft, so to reduce material use and print
time we prefer the sandwiching approach in practice.

The trade-offs in synthesizing the chassis are that we want it to be strong enough to
support the efforts generated by the mechanism, but at the same time we would like to
keep it small to reduce material use, print time and for aesthetics reasons (a thick chassis
would hide the mechanism entirely). This problem is elegantly answered by topology
optimization techniques [7].

3.1.4.1 Background on topology optimization

We cast chassis synthesis as a case of 2D topology optimization for minimizing the
compliance energy. The optimization domain is a grid of square elastic elements where
each element i, j takes a density ρi,j ∈ [ρmin, 1]. We denote by ρ the vector of all element
densities. Given a choice of densities and a set of fixed elements where the structure is
anchored, the finite element method can be used to compute the planar deformation due to
a set of forces f = f1, ..., fn located at the grid nodes (element corners). The displacement
vector for all grid nodes u is obtained by solving K(ρ) · u = f where K(ρ) is the global
stiffness matrix assembled from the elements. The stiffness matrix of an element ρi,j is
given by ρ3

i,jKe where Ke is the 8 × 8 stiffness matrix of a square element in the target
material.

The compliance energy is defined as E(ρ) = f ·u. Minimizing the compliance maximizes
the rigidity of the system under the given forces. This energy is minimized by gradient
descent under the constraint that

∑
i,j ρi,j = A, where A is the target area of the produced

structure. Thanks to the cubic exponent in the per-element stiffness, the system tends to
use only 0 or 1 for ρi,j.

3.1.4.2 Chassis optimization

The chassis has to resist to the forces exerted by the mechanism at all times. We
therefore record the forces at the joints attached to the background for the entire si-
mulation. This gives us a set of T force configurations, where T is the number of time
frames. We optimize the chassis by maximizing the compliance over all time frames, that
is E(ρ) =

∑
t∈T ft · ut where K(ρ)ut = ft. This is made efficient by pre-factoring the

stiffness matrix K and then solving for ut for all time frames.
We select a resolution of 2 mm per pixel, a Poisson ratio of 0.35 and an elastic modulus

of 2.3 GPa (ABS plastic material). The target area A is set to 10% and then reduced
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until the structure is disconnected. We select the last value generating a fully connected
structure. The final outline of the shape is extracted by smoothing out the result with a
box filter of size 3× 3 and then contouring the isovalue 0.25. The process is summarized
Figure 3.8.

Figure 3.8 – Chassis synthesis by topology optimization. Left : four forces resulting from
hinges at a given time frame (pink) and attachment point (gray). Middle : Optimized
densities for these forces. Right : Final shape after smoothing and contour extraction.

Figure 3.9 – Left : Model after printing, with weak infill support. Right : Cleaned
model. The gears have rotated, note the small leftover from the infill pattern on top of
the gears.

3.1.5 Results

Wemodeled all our results using Algodoo, with the only constraint that the mechanisms
have to function properly in 2D and be in a valid position (interacting parts such as gears
should not overlap). By default the models are rescaled so that their bounding box fits a
150× 150 mm square.

All the 3D mechanisms are generated automatically from the scenes created in Algodoo,
without any user intervention.

Figure 3.10 shows a number of printed results. From top-left to bottom right : the Gear
Puppet model is made of six gears with custom shapes. The small brown box indicates
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the base for the chassis. The EG flag model is a case of sliding part. The model has
automatically generated fins along the sliding part that are carved from both the L-
shaped part and the gear. This model broke during clean up and we used screws to repair
it (see also Section 3.1.5.1). The Scissor model is a case where no chassis is needed. It is
actuated by a hidden mechanism which is ignored by our system after simulation. This
shows how our algorithm alternates inclusions as a result of the edge orientation cost
heuristic. The Wheel model illustrates how part geometry is automatically created to
allow for passage of included objects. The green box at the bottom of the design indicates
the base of the chassis. The Gear Train model is case of cyclic interaction between gears,
creating a layering between the two central gears. The Three Leg model is a case that
results automatically in a crankshaft. It is also shown Figure 3.3.

The complexity of our printed results is limited by the capability of our printers. We
show in Figure 3.11 and Figure 3.12 outputs of our algorithm on more complex designs.
Our system is capable of keeping the overall design thickness small, while exploiting
inclusions wherever possible.

Performance. Most results are computed in a few seconds. For instance, for the small
model Figure 3.1 graph orientation takes 154 ms, Minion returns the CSP solution in
7 ms. For the larger model Figure 3.12 graph orientation takes 489 ms, Minion returns
the CSP solution after 90 seconds as it explores for the best possible solution until the
timeout. Running for longer does not return a better solution, but Minion has to finish
exploring the space to guarantee the optimal is found. Chassis optimization takes 2.34
seconds.

Figure 3.10 – A variety of results automatically generated from the input 2D design. All
these results are 3D printed on filament printers.

66



3.1. 3D Fabrication of 2D Mechanism

n0

n2

n10

n11 n14

n1

n3

n4

n8n5

n9

n6

n7

n12

Figure 3.11 – Eagle model. The mechanism shown in transparency (right) is generated
from the design (top left). The mechanism graph (bottom left) shows inclusions and
contact edges (bold blue). No contradictions were encountered : there is no layering. Note
the double gears including the bars, as well as the space carved for the inner bars in the
bars actioning the wings.

3.1.5.1 3D printing

We print all our objects on inexpensive filament printers in ABS and PLA plastic : a
Replicator 1 from Makerbot, and Ultimakers 1 and 2 from Ultimaker.

All objects are printed in one piece, using support. We experimented both with disso-
luble plastic and a weak filling pattern for support. We had better results using a weak
infill pattern. See Figure 3.9 for an example of a print before and after cleanup.

Our mechanisms exploit the fact that 3D printers can produce pre-assembled articu-
lated objects, so that we do not have to consider the assembly stage. However, this is not
necessarily the best option of filament printers. In particular after printing some force has
to be exerted to free the mechanism from inaccessible support. One issue we encountered
is breaking of the plastic axles when applying force. The EG flag design, for instance,
broke when we freed the sliding part and we had to use screws to reassemble it manually.
An interesting direction of future work is to split the mechanism into pieces that are easy
to assemble [62, 122].

Conclusion

We show that we can create a shape, here a mechanism, from partial specifications.
The initial input is not fabricable, and we computed a 3D printable shape from it. We
wanted to minimize the heights of the mechanisms under the constraints (collisions and
contacts) that were discovered during the simulation. The algorithm knows the shape
different parts and computes the relative positions of the parts of the mechanisms.

The lack of the user in the loop that generates the final shape can be seen as a
limitation. The mechanism does respect the fabrication constraints, but the result might
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Figure 3.12 – Frogger model. The mechanism shown in transparency (top right) is gene-
rated from the design (top left). This model contains two crankshafts for steering the arms
and legs. These were created by layering constraints (red bold edges in the graph). Inclu-
sions are used in most places. Note the lightweight synthesized chassis. One of the large
wheel is doubled to avoid the bottom bar of the neighboring crankshaft which overlaps
during motion (edge between n15 and n16 in the graph).

be unexpected. Even if the shape respects the initial design and its simulation, the relative
positions of the different parts are important for the global aesthetics of the mechanism.
Using user intents to guide the system would be important. It would lead to a different
system and methodology though, as this would be more ’modelling with the user’ than
’modelling from user specifications’.
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3.2 Towards zero-waste furniture design
There are softwares that allow to design parametric models for fabrication (IceSL,

OpenSCAD...). We can find such parametric models on specialized websites like “Thin-
giverse”. A parametric model defines a function that generates a shape from a set of
parameters to a design space. The parameters of the function are tuned by the user such
that the shape is good looking, and fits a function. In some cases, the exact values of the
parameters are not important to the user, however they impact the fabrication process.
In this case, there is an opportunity to optimize the parameters automatically.

In this work, we introduce the problem of waste-minimizing planar cutout designs,
and investigate it in the context of flatpack furniture design using laser cut wooden parts.
Specifically, we study the interplay between design exploration and cost-effective material
usage.

(a) input design (b) final design (c) fabricated design

Figure 3.13 – We introduce waste-minimizing furniture design to dynamically analyze
an input design (a) based on its 2D material usage (see inset) and design specifications
to assist the user through (b) multiple design suggestions to reduce material wastage (see
inset). The final user design can directly be exported for laser cutting and be assembled (c).
In this case, wastage was reduced from 22% to 11%.

3.2.1 Design Workflow

Our goal is to propose design variations that minimize material wastage without viola-
ting original design intent. In this section, we present the proposed system as experienced
by the user, and describe the main algorithmic details in the subsequent sections. Here
we particularly focus on how the user encodes her design intent.

The user starts by choosing the desired material (i.e., thickness of wooden planks) and
the number and dimensions of the master board(s). Our system considers rectangular
master boards — in practice these can represent new boards or left over rectangular
spaces in already used boards. The user starts by loading an initial part-based 3D object
design, either created in a modelling system or as a parametric model. The parts can be
rectangular or have curves boundaries. The user specifies also a range for all the variables
that can be modified by the system.
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The algorithm suggests multiple design variations that all satisfy the design specifi-
cations but achieve different material usages. We measure material usage based on the
fraction of the master board(s) utilized. Once satisfied with a design, she requests for the
cutting patterns. She can investigate the design, the material space usage and the cutting
patterns, and send the patterns directly for laser cutting.

Figure 3.14 – Evolution of shape variation across a run of our algorithm on the coffee-
table (top) and low-chair (bottom) models.

3.2.2 Overview

Our goal is to analyze aspects arising from material considerations, and investigate how
design changes affect such considerations. Specifically, we ask how to adapt a furniture
design so that it makes better utilization of material in the resultant design layout. Note
that this is the inverse of the design rationalization problem, i.e., instead of taking a design
as fixed and best fabricating it, we adapt the design so that the resultant rationalization
makes better utilization of available material.

3.2.2.1 Parameterized designs

The design is considered as a function D(X) that produces the geometry of a fixed
number of parts, given a configuration vector X. The parts can be assembled into a final
furniture design.

We make no assumption as to how D is implemented – we demonstrate in Section 3.2.4
parametric designs modelled by CSG. We however expect a continuous behavior from
D(X), i.e., small changes in X result in small changes in the part shapes. Parametric
modellers generally offer such continuity to smoothly navigate the space shape.

During wastage optimization our algorithm will change the value of X so as to explore
whether changes in part shapes reduce wastage. Since we focus on laser cut furniture
construction, we assume the parts to have the same thickness τ . The parts are thus
represented as planar polygonal contours extruded orthogonally.

The geometry of a part pi lies within a bounding box which we represent by a six
dimensional vector encoding the box center pi and the lengths of its three sides lxi , l

y
i , τ –

the Z axis being aligned with part thickness by convention.

3.2.2.2 Material space

Since we focus on laser cut furniture, any 3D design given by a configuration vector
X is realized as a layout (i.e., cutting plan) in the material space. Material space is
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Figure 3.15 – Our algorithm discovers design variations in shape space. The user starts
from a design M1, and the algorithm seeks for wastage minimizing variations by inter-
leaving between topologically different material layouts (indicated by changes in cur-
ved paths) or continuous changes to the layouts (indicated by same colored curves). For
example, paths (Mi,Mj) denote continuous design changes, while points Mi denotes de-
signs where new layouts are explored (i.e., branch points).

characterized by the largest master board that the machine can possibly cut, a rectangle
of size W × H. In this space, each part i is associated with a position (ui, vi) and an
orientation oi ∈ {0, π/2, π,−π/2}.

We use wi, hi as extent of a part bounding box in the material space along the x- and
y-axis, respectively. The part box lengths in material space are given by the two plank
dimensions other than thickness. For a plank i, of orientation oi, we get one of the two
cases :

oi = 0, oi = π ⇒ wi = lxi hi = lyi
oi = −π/2, oi = π/2 ⇒ wi = lyi hi = lxi

The material space positions and orientations are variables in the layout optimization
algorithm, alongside the design parameters X (see Section 3.2.3).

When wastage is not a concern and a design easily fits within material space, the
variables (ui, vi, oi) are independent of the design, i.e., they simply adapt to changes in
part sizes. However, as we seek to maximize utilization of the material space, the material
space variables become tightly coupled with the design parameters. Our layout optimizer
therefore jointly optimizes for material space variables and design parameters to minimize
wastage (see Section 3.2.3)

We next discuss what makes a desirable layout from the point of view of furniture
fabrication.
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bad layout mediocre layout good layout

Figure 3.16 – Examples of stages of layout refinement, from bad to mediocre to good.
A good layout is characterized by less area of material wasted (shown in green).

3.2.2.3 Properties of a good design layout

Rectangular master boards can be sourced in a large choice of sizes and thicknesses
from resellers. Therefore, our goal is to achieve a full utilization of rectangular spaces, so
that the user can use boards of exactly the right size and minimize wastage. The machine
dimensions determine the maximum extent of a single board.

We measure wastage as the fraction of the space not utilized by the design in its
material space bounding rectangle. Ideally, we want to achieve full utilization, i.e., null
wastage.

An ideal packing is one that tightly packs all the parts to perfectly fill up one or
more rectangular master boards (like a puzzle). Our system helps the user achieve this by
automatically exploring changes improving material space usage (see Figure 3.16).

3.2.3 Design Layout Optimization

The wastage of a layout depends essentially on two factors. The first factor is the
quality of the packing that can be achieved, given a fixed set of design parts. The second
factor is the set of parts itself, which can be changed through the design parameters X.

In our approach we pack the parts using a deterministic docking algorithm that always
produces the same result for a same ordering of the design parts. Therefore, a first opti-
mization variable is the order in which the parts are sent to the docking algorithm. The
second optimization variable is the vector of design parameters X. These two variables
have different natures : finding an ordering is a combinatorial problem while the design
parameters can be continuously explored.
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Algorithm 2: MinWastage
Input: Design function D, starting design parameters Xs

Output: Set of best layouts found L
1 Os ← identity ordering ; // 1,2,3,...
2 X ← {(Xs, Os)};
3 for G iterations do
4 foreach (X, O) ∈ X do
5 O ← ExploreOrderings(X, O);
6 foreach O ∈ O do
7 X ← X∪ {(ImproveDesign(X, O),O)};

8 X ← KeepBests(K,X );
9 L ← ∅;

10 foreach (X, O) ∈ X do
11 L ← L∪ Docking(D(X),O);

12 return (L);

We therefore proceed in two main steps, first determining a set of good orderings
that then serve as starting points for continuously evolving the design, reducing wastage.
The overall approach is described in Algorithm 2. The subroutine ImproveDesign is
described in Section 3.2.3.1 while ExploreOrderings is described in Section 3.2.3.2.
The process restarts for a number of iterations (we use G = 3) to jump out of local minima
reached by the continuous design exploration. This results in the shape space exploration
illustrated in Figure 3.15. The process returns the K best found layouts and designs and
presents them to the user in thumbnails. She can then select her favorite design, and if
desired update the constraints and restart the exploration from this point — which simply
calls MinWastage again.

Algorithm 3: ImproveDesign
Input: Starting design parameters X and ordering O
Output: Modified design parameters Xb with reduced wastage

1 L← Docking(D(X),O);
2 Xb ← X, Lb ← L ;
3 Xc ← X, Lc ← L ;
4 for N iterations do
5 Xb, Lb ←GrowParts(Xb, Lb,Xc, Lc, O);
6 Xc ←ShrinkParts(Xb, Lb);
7 Lc ← Slide(Lb,D(Xc));

// Check for improvement over current.
8 if W (Lc) < W (Lb) then
9 Xb = Xc, Lb = Lc;

10 return (Xb);

73



Chapitre 3. Synthesis from Partial Shape Specification

Bitmaps During optimization we regularly call the parametrized design function D(X)
to obtain a new set of parts after changing parameters. The layout optimization represents
parts internally as bitmaps : each part contour is rasterized at a resolution τ , typically 0.5
mm per pixel. This enables fast manipulation of the parts within the layout. Each part
thus becomes a bitmap having either 1 (inside) or 0 (outside) in each pixel. The size of
the bitmap matches the part extents in material space wi and hi. Every time the design
is refreshed a new set of bitmaps is computed for the parts. The master board is similarly
discretized into a regular grid of resolution τ .

3.2.3.1 Design optimization for wastage minimization

The design optimization improves the design parameters X to minimize wastage in the
layout, keeping the docking ordering fixed. It appears as the subroutine ImproveDesign
in Algorithm 2. The pseudo-code for this step is given in Algorithm 3. Our objective is
to suggest design changes that reduce wastage, progressively improving the initial layout.
The algorithm performs a guided local search by changing the parts – through the design
parameters – to reduce wastage.

Prior to considering which parts to modify, we have to answer two questions : First,
how to drive the design parameters X to change only a given part (Section 3.2.3.1). This
is achieved by relying on the gradients of the part size with respect to X. Second, we
have to decide on how to evolve the layout when parts are changed (Section 26). We rely
on a sliding algorithm that avoids jumps in the layout configuration, thus producing only
small changes in the wastage function when small changes are applied to the part sizes.

Overall strategy Our approach changes the size of parts iteratively with two different
steps in each iteration : grow (line 5) and shrink (line 6). These steps progressively modify
the design and keep track of the design of smallest wastage encountered so far.

The grow step attempts to enlarge the parts so as to reduce wastage. Each part is
considered and its size is increased for as long as the growth further reduces wastage. When
no further improvement can be obtained, we create further opportunities by shrinking a
set of parts. However, randomly shrinking parts would be inefficient, as most parts would
grow back immediately to their original sizes. Other parts are tightly coupled to many
others in the design D, and shrinking these would impact the entire design. Therefore, we
analyze the layout to determine which parts have a higher probability to result in wastage
reduction.

Changing part sizes During design space exploration the algorithm attempts to vary
the part sizes wi and hi individually. These dimensions vary as a function of design
parameters X. In the remainder we use s(X) to designate the vector of all part sizes
assembled such that s2i = wi and s2i+1 = hi.

Let us denote λ the change of size desired on si. Our objective is to compute a design
change ∆ such that si(X + ∆) = si(X) + λ. We denote the vector of changes as Λ =
s(X + ∆) − s(X). In this process only the size si should change with others remain
unchanged whenever possible, that is Λsj ,j 6=i = 0 and Λsi = λ.
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Parts are not independent in the design and therefore there is no trivial link between X
and si(X). We therefore analyze the relationship through the gradients ∂si(X)

∂xj
. These are

computed by local finite differencing (depending on the design analytical expressions may
be available). Each non-null gradient indicates that parameter xj influences si. Multiple
parameters may influence si and parameters typically also influence other variables : there
exists k 6= i such that ∂sk(X)

∂xj
6= 0.

To compute ∆ we formulate the following problem. Let us consider the components
of ∆ = (δ0, ..., δ|X|−1). The change in part sizes due to ∆ can be approximated in the first
order through the gradients as Λ =

∑
i δi ·

∂s(X)
∂xi

. We solve for ∆ such that Λsi = λ and
Λsj ,j 6=i = 0.

If there are less parameters than part sizes, the problem is over-constrained and solved
in the least-square sense, minimizing ||Λ− (0, ..., λ, ..., 0)||2. If there are more parameters
than part sizes, the problem is under-constrained and solved in the least-norm sense,
minimizing ||∆||. We rely on a QR decomposition of the system matrix to solve for both
cases, accounting for possible rank deficiencies due to overlapping parameters in X.

We implement this process as a subroutine ChangePartSize(X,si,λ), with X the
current design parameters, si the part size to change and λ the change to apply. It returns
the new design parameters X+∆. A second subroutine ChangePartSizes(X,Λ) allows
to change the size of multiple parts at once.

Updating layouts by sliding As the shapes and sizes of the parts change the layout
has to be updated. One option would be to restart the docking process after each change.
However, for a small change the docking process can produce large discontinuities in the
wastage function. This makes a local search difficult. Instead, we propose to rely on a
sliding operation that attempts to continuously update the position of the parts after
each change. Note that performing such an update while optimizing for a given objective
(i.e. wastage) is a very challenging combinatorial problem, as each part can move in four
directions (left/right/top/bottom) and multiple cascading overlaps have to be resolved.
We propose a heuristic approach that works well for small changes in the part shapes.

The algorithm is based on the following principle. After changing the part shapes,
we reintroduce them in an empty layout in order of docking. However, each time a part
is reintroduced it may now have empty space to its left/bottom or it may overlap with
previously placed parts. Both cases can be resolved by a single horizontal or vertical move.
However a single move is generally not desirable as empty space may remain along the
other direction. We therefore perform a limited sequence of horizontal/vertical moves. At
each iteration we select between vertical or horizontal by favoring moves that result in the
smallest layout bounding box. In case of a tie, we favor moves to the left/bottom versus
displacements to the top/right. This is illustrated in Figure 3.17.

The pseudo-code is given in Algorithm 4. In the algorithm we denote by L the layout
and denote by L Cpos pi the layout obtained when adding part pi at position pos in
the master board grid of L. A(.) measures the area, box(L) is the bounding rectangle
of the layout. The algorithm iterates over all parts in docking order (line 2). It then
performs a fixed number of sliding operations on each part (line 3) – we use N = 4
in our implementation. Lines 4-7 compute a horizontal move, favoring moves to the left
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Algorithm 4: slide
Input: current layout C = (u0, v0, ...) and set of changed parts parts
Output: updated layout L

1 L← ∅
2 foreach part pi ∈ parts in docking order do
3 for N iterations do
4 ∆x ← −smallestLeftFreeInterval(L, pi);
5 if ∆x = ∅ then
6 ∆x ← smallestRightDecollision(L, pi);

7 posx ← (ui + ∆x, vi) ;
8 ∆y ← −smallestBottomFreeInterval(L, pi) ;
9 if ∆y = ∅ then

10 ∆y ← smallestTopDecollision(L, pi) ;

11 posy ← (ui, vi + ∆y) ;
12 if posx = ∅ and posy = ∅ then

; // cannot fit masterboard
13 return ∅ ; // W (∅) = 1

14 if posx = pos and posy = pos then
15 break;

16 if A(box(LCposx pi) < A(box(LCposy pi)) then
17 (ui, vi)← posx

18 else if A(box(LCposx pi) > A(box(LCposy pi) then
19 (ui, vi)← posy

20 else
21 if ∆x < ∆y and |∆x| > 0 then
22 (ui, vi)← posx

23 else
24 (ui, vi)← posy

25 L← LC(ui,vi) pi

26 return (L);
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3.2. Towards zero-waste furniture design

Figure 3.17 – Sliding a layout after a change of part sizes. Top : From left to right,
initial layout, same after change revealing overlaps, layout after sliding. Bottom : Moves
performed on the three first parts during sliding.

that collapse newly created empty spaces. Lines 4-7 similarly compute a vertical move.
Lines 16-24 decide whether to select a horizontal move posx or vertical move posy.

The process may fail if parts can no longer fit in the masterboard. This can happen
either because there is not enough remaining area, or because sliding cascades in large
moves that prevent further insertion of parts. In such cases we return an empty layout
which by convention has a wastage of 1 (worst possible), line 13.

Grow step The grow step is described in Algorithm 5. The algorithm iterates over all
parts in random order (line 4) and progressively increases the size of a part in a loop
(line 7). Note that the first iteration of the loop determines the starting wastage for
growing this part (lines 5 and 12-13). The process continues until the growth results in
an increased wastage (line 15).

After each change of parameters the design parts are recomputed (line 9, D(Xe)) and
sliding is called to adapt the current layout to the change. The result is checked. If wastage
decreases the process continues (line 13). If not, we first attempt to dock the parts again
(line 11). This can help continue the growth in cases were sliding fails to resolve overlaps
by continuous changes. If wastage still not improves we stop the growth of this part size
(line 15).

Shrink step The goal of the shrink step is to create further opportunities for design
changes when no parts can further grow. The typical situation is that a subset of parts are
forming locking chains between respectively the left/right and top/bottom borders. The
parts belonging to these chains prevent any further growth. We therefore detect locking
chains and select the parts to shrink among these. This often results in a change of aspect
ratio of the masterboard, and new opportunities for other parts to grow.

The overall approach is described in Algorithm 6. It first determines which parts to
shrink by calling SelectPartsToShrink and then computes a change of parameters
using the approach described in Section 3.2.3.1.
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Algorithm 5: GrowParts
Input: Best design parameters Xb and layout Lb so far, current design parameters

Xc and current layout Lc being explored, ordering O.
Output: New best design and packing.

1 improvement← true;
2 while improvement do
3 improvement← false;
4 foreach part size si in random order do
5 We ← 1 ; // max wastage
6 Xe ← Xc, Le ← Lc ;

// Grow a first time and then continue as long as it improves.
7 while true do
8 Xe ← ChangePartSize(Xe,si,1) ; // +1 pix.
9 Le ← Slide(Le,D(Xe));

10 if W (Le) > We then
11 Le ← Docking(D(Xe),O);

12 if W (Le) < We then
13 We = W (Le);

14 else
15 break;

// Check for improvement over current.
16 if We < W (Lc) then
17 Xc = Xe, Lc = Le;
18 improvement← true;

// Check for improvement over global best.
19 if W (Lc) < W (Lb) then
20 Xb = Xc, Lb = Lc;

21 return (Xb, Lb);

Algorithm 6: ShrinkParts
Input: Best design parameters Xb and layout Lb so far.
Output: Shrunk design parameters.

1 Xs ← X;
2 S ← SelectPartSizesToShrink(Lb);
3 Λ← (0, ..., 0);
4 foreach si ∈ S do
5 Λi ← −1 ; // -1 pixel

6 Xs ← ChangePartSizes(Xs,Λ) ; // -1 pixel
7 return (Xs);
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The core component is the SelectPartSizesToShrink subroutine, described in
Algorithm 7. The selection starts by gathering all contacts between parts in the layout –
this is done efficiently in the discretized layout grid. We first draw the part images into
the grid and then check pairs of neighbors belonging to different parts. This produces
the set of left/right and bottom/left contacts between part sizes (the involved part size
is deduced from the part orientation and the considered axis). The contacts are oriented
from right to left (respectively top to bottom). We similarly detect which parts touch the
borders. The contact detection is implemented in the GatherContactsAlongAxis
subroutine.

Once the contacts are obtained we start from the right (respectively top) border
and form locking chains. Starting from the border, we produce the set of chains itera-
tively. Each chain c is a sequence (left, sfirst, ..., slast). At each iteration the chain spawns
new chains for each contact pair (slast, snext) obtained by augmenting c as (left, sfirst, ...
, slast, snext). Potential cycles are easily detected as repetition of a same part in the chain
and are ignored. The locking chain computation is implemented in the FormContact-
Chains subroutine.

We next randomly select part sizes to shrink until all locking chains are removed. The
selection probability of each part is designed to avoid too large a jump in the design space.
To achieve this we consider two factors. First, we compute the number of occurrences of
each part in the locking chains, occ(pi). A part with many occurrences is a good candidate
as shrinking it will resolve multiple locking chains at once. Second, we seek to avoid
shrinking part sizes that are tightly coupled with others in the design D. We compute
the dependence of a part size by counting the number of non-zero entries in the Λ vector
computed internally by ChangePartSize(Xe,si,−1).

We select part sizes with the following random process. First, we select a num-
ber of occurrences o with probability P (o) =

∑
pi,occ(pi)=o occ(o)∑

pi
occ(pi)

. Then, among the parts
such that occ(pi) = o we select a part size si with probability P (si|occ(si) = o) =

1 − dep(si)∑
pi,occ(pi)=o dep(pi)

. This process is implemented by the DrawPartSizeWithProba-
bility subroutine.

After each part size selection we update the set of locking chain by removing all chains
where the part size appears.

3.2.3.2 Exploring orderings

The subroutine ExploreOrderings in Algorithm 2 performs a stochastic search
of orderings resulting in low wastage layouts. The process starts from a random order
and iteratively considers possible improvements by swapping two parts. At each iteration,
we perform a swap and recompute a layout using the docking algorithm. If wastage is
reduced the swap is accepted, otherwise it is rejected. We apply the process for a number
of iterations and keep the best ordering found as the starting point. We use |D(X)|2
iterations, where |D(X)| is the number of parts. For each ordering, we use a fast docking
algorithm to compute a layout with low wastage.
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Algorithm 7: SelectPartSizesToShrink
Input: A layout L.
Output: Set of part sizes to shrink.

1 K ← ∅;
2 foreach axis a ∈ {X, Y } do
3 C ←GatherContactsAlongAxis(a) ;
4 K ← K ∪ FormContactChains(C) ;
5 S ← ∅;
6 while K 6= ∅ do
7 si ← DrawPartSizeWithProbability(K);
8 S ← S ∪ {si};
9 K ← K \ KilledChains(K,si);

10 return S;

Docking algorithm The docking algorithm places each part in order by ’dropping’ the
next part on the current layout either from the right, or from the top. It locally searches
for the best placement of each part, according to a criterion that minimizes wastage. The
result is a layout L including all parts.

Given the layout so far our algorithm searches for the best orientation and best position
for the next part. We denote by Li−1 the layout obtained for the i − 1 first parts, and
by Li ← Li−1 Cpos pi the layout obtained by adding the next part at position pos. The
docking position pos is computed from a drop location (s, x, o), with s ∈ {top, right}, x
a position along the corresponding axis and o ∈ {0, π/2, π,−π/2} an orientation.

The pseudo code for the docking algorithm is given in Algorithm 8. The drop locations
are ranked according to a docking criterion that we denoteD(Li−1, pi, pos), explained next.
The docking positions are computed from the drop locations by the ComputeDockingPosition
subroutine. It is efficiently implemented by maintaining the right/top height-fields of the
current layout as illustrated in Figure 3.18. Whenever evaluating a drop location we use
the height-fields to quickly compute the docking positions that bring the part in close
contact with the current layout.

Docking criterion The docking criterion considers wastage as the primary objective,
where wastage is defined by the ratio of occupied area divided by the bounding rectangle
area of the layout. We denote W (Li) the wastage of a layout including up to part i. It
is obtained as W (Li) =

∑i
k=0 A(pk)

A(box(Li))
where A measures area and box(L) is the bounding

rectangle of the layout. W is therefore the ratio between the area of the parts and the
area of the bounding rectangle.

However, as the algorithm heuristically docks parts in sequence it cannot foresee that
some spaces will be definitely enclosed. In particular, for newly inserted concave parts
there are often multiple orientations of the part resulting in the same wastage : if the
concavity remains empty there is no preferred choice. However, some choices are indeed
better than others. If the concavity faces an already placed object, then further docking
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Figure 3.18 – Height-fields of the layout used to position the next part. Left : Height-
field for dropping parts from the right (red curve). Right : Height-field for dropping
parts from above (green curve). These height-fields are maintained every time a new part
is added to the layout, and used for fast computation of the docking positions. Similar
height-fields are pre-computed for the left/bottom of the parts.

Algorithm 8: Docking
Input: Set of parts P , order O, master board dimensions W ×H
Output: A layout L

1 foreach part pi ∈ P following order in O do
2 best← ∅ ;
3 bestscore← 1 ;
4 foreach drop location (s, x, o) do
5 pos ← ComputeDockingPosition(pi, (s, x, o)) ;
6 score← D(Li−1, pi, pos) ;
7 if score < bestscore then
8 best← pos ;
9 bestscore← score ;

10 Li ← Li−1 Cpos pi ;

11 return Ln;
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Figure 3.19 – Designs created using our system. Each design is shown with initial shape,
starting layout, optimized layout, and final design.
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within the concavity will never be possible. This is illustrated in Figure 3.20, left.
We therefore propose a second criterion that discourages these bad choices. The idea is

to estimate the space that will be definitely enclosed when a part is added to the current
layout. This is done efficiently by considering the enclosed space between the height-field
of the current layout and the height-field of the added part, along both horizontal and
vertical directions.

Let Hr(L) (respectively H t) be the right (respectively top) height-field of layout L
and A(Hr(L)) the area below it. The enclosed area is then defined as :

E(Li−1, pi, pos) =∑
s∈{r,t}

max (0, A(Hs(Li−1 Cpos pi))− A(Hs(Li−1))− A(pi))

with A(pi) the area of part pi. Note the max that clamps negative values : this is due to
cases where the part nests in a concavity below the height-field of the other direction.

The enclosed space is used as a tie-breaker when docking positions produce the same
wastage values ; thereforeD(Li−1, pi, pos) returns the vector (W (Li−1Cpospi), E(Li−1, pi, pos)).
The effect of the enclosed area criterion is shown in Figure 3.20.

1
2

3

4

1
2

3
4

Figure 3.20 – Two layouts obtained with the same docking order. Left : Without taking
enclosed area into account the first part is placed with the concavity against the bottom
packing border. This prevents the second part to nest within and cascades into a series
of poor placements. Right : Taking into account enclosed areas results in a placement
of the first part that allows nesting of the second part and produces a layout with lower
wastage.

3.2.4 Results

We used our system for various design explorations. As the complexity of the designs
grows beyond 4-6 planks, the utility of the system quickly becomes apparent. Note that
the design constraints (see Figure 3.21), by coupling different object parts, make the op-
timization challenging by preventing independent adaptation of part sizes. By off-loading
material usage considerations to the system, the user can focus on the design. Note that
even when changes to the design are visually subtle, material utilization often increases
significantly.
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Figure 3.21 – We show effects of designing with (middle column) or without (right
column) the respective constraints activated.

Design examples We used our system to design and fabricate a range of examples
comprising rectangular and/or curved parts. We fabricated fullscale and miniature models
of designed furniture. Models were made from MDF of 3 mm thickness and MDF of
30 mm thickness. The designs are easy to manufacture in batches since after design layout
optimization they typically fit master boards completely : there is no need to attempt to
reuse leftover pieces of wood, and switching boards requires little clean up.

We directly output the cutting plan for the laser cutter (or CNC machine) from the
design layout, adding connectors for planks sharing an edge, if needed. These are conve-
niently detected since planks exactly overlap on edges in the 3D design. The connectors
are either finger joints, which are both strong after gluing and easy to assemble ; cross
connectors for interleaved planks, or dowel-jointed for thicker materials (20 mm and 30 mm
thickness).

Figures 3.19 and 3.22 show various results. Table 3.1 gives an overview of the com-
plexity of each model, and the gains obtained by the layout optimizer. The system per-
forms at interactive rates on a laptop taking from a few seconds to 3-4 minutes for the
larger examples. Note that speed depends on how many exploration threads are pursued.

Figures 3.13 and 3.19 show results for objects with curved parts. Figure 3.14 shows
some intermediate shapes as the design evolves for the coffee-table (Figure 3.13) and
the low-chair (Figures 3.19-top) examples. Figure 3.23 shows alternate designs discovered
by the algorithm for the Parrot shelf. While they have slightly lower usage they offer
interesting variations that the user might prefer.

Figures 3.13 was fabricated using a CNC machine. The optimized design achieved
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Figure 3.22 – Various material-driven design and fabrication examples. In each row,
we show initial design (with material space layout inset), optimized design result (with
material space layout inset), along with final cutout assembled model. Note that the design
changes are often subtle, but still leads to significant improvement in material usage.
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Figure 3.23 – Two different design suggestions (green has ratio 0.86, blue has ratio 0.85)
for the parrot-shelf. Original design with another design suggestion is shown in Figure 3.19.

Table 3.1 – Statistics for cut design showing the number of planks, material usage ratio
before and after the design suggestions/optimization.

#planks ratio before ratio after
Figure 3.13 4 0.78 0.89
Figure 3.19a 7 0.66 0.92
Figure 3.19b 9 0.66 0.80
Figure 3.19c 8 0.76 0.83
Figure 3.19d 16 0.79 0.86
Figure 3.22a 6 0.85 0.96
Figure 3.22b 11 0.85 0.97
Figure 3.22c 8 3 0.74 0.97
Figure 3.22d 16 0.89 0.98
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nearly 90% material usage, although one can achieve null wastage by deciding to pick a
rectangular top – a decision that can be made after layout optimization as this opportunity
is revealed. An allowable range was specified for the height and the bases were marked
as symmetric as input design constraints. In the case of the parrot-shelf (Figure 3.19a),
the user indicated minimum and maximum range for the horizontal shelves along with
desired range for the shelf heights.

As described, parameteric designs are easily supported and optimized for in our fra-
mework. Figures 3.19b-d show three such examples. In each case, additional constraints
were provided to keep the objects within a given volume. The parts of the objects are all
tightly coupled making these challenging examples to optimize for.

Figure 3.22a shows a L-shaped work table. The user specified a target height for the
design and a maximum work volume. Note that the legs of the table were also constrai-
ned to not change more than 25% of original dimensions to prevent unwanted design
changes. Figure 3.22b shows a coupled shelf and table design where height of shelves and
tabletop were similarly constrained. Figure 3.22c shows a stylized chair, where both the
chair seat height and chair width were constrained not to change beyond a margin. Fi-
gure 3.22d shows multiple designs covering 2 master boards. The second master board is
used as an overflow when docking can no longer fit a part in the first. The layouts are slid
independently.

Comparison We now evaluate the relative importance of the key algorithm steps. Fi-
gure 3.24a shows the importance of the docking criteria introduced in Section 3.2.3.2.
We ran 500 random runs of our proposed packing algorithm with (‘ours’) and without
(‘baseline’) the docking criteria on the coffee-table example. We sort the runs based on
resultant usage (no shape optimization is performed here) and plot the two conditions.
The docking criteria consistently resulted in 10-15% better usage.

Figure 3.24b shows usage improvement over one exploration run on the coffee-table
sequence. The legend explains which step (grow, shrink, etc.) is being performed. While
this is the result from a single thread, many similar threads are simultaneously explored.
The few best results are then presented to the user as suggestions.

Figure 3.24c-d compare the importance of analyzing the material space layout to decide
which plank to change and how. As baseline, we selected planks at random and perform
either a grow or shrink sequence with equal probability. Note that our method consistently
outperforms the alternative approach.

Limitations Currently, the algorithm can only make topological changes only for pa-
rameteric models. This will be an interesting future direction to pursue for constrained
models. Our docking approach cannot nest parts into holes of other parts, a more ad-
vanced algorithm would be required. A more material-induced restriction arises when the
starting layout does not leave much space to optimize over. This effectively means that
the degree of freedom for the design is low. Adding more planks does reduce this problem
(by providing additional freedom). However, beyond 25-30 planks, the exploration of the
shape space becomes slow as there are too many paths to explore. One option is to limit
exploration to only a subset of planks at a time, but then again, very desirable design
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Figure 3.24 – Comparison of our algorithm against baseline alternatives. Higher is better.
Please refer to the text for details.
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configurations may be missed.

3.2.5 Conclusions and Future Work

We investigated how design constraints and material usage can be linked together
towards form finding. Our system dynamically discovers and adapts to constraints arising
due to current material usage, and computationally generates design variations to reduce
material wastage. By dynamically analyzing 2D material space layouts, we determine
which and how to modify object parts, while using design constraints to determine how
the proposed changes can be realized. This interplay results in a tight coupling between
3D design and 2D material usage and reveals information that usually remains largely
invisible to the designers, and hence difficult to account for. We used our system to
generate a variety of shapes and demonstrated wastage reduction by 10% to 15%.

Interestingly, a first attempt was done with topology optimization, using the SIMP
method to optimize planks. However, topology optimization is hard to tune for an inex-
perienced user. In this early attempt, the user needed to specify the rectangular planks
that were optimized by the system. Topology optimization generated shape that are not
simple to cut (see Figure 3.25), which is an additional problem.

Figure 3.25 – Left : A furniture with three loaded horizontal planks. Center : The
Finite Element Analysis on this shelf. Right : The results of the topology optimization.
In this case, the shapes of the planks are constrained to be homeomorphic to a cube.

Currently, we do not consider the stability of the produced furniture nor the durability
of the joints. This could be integrated as dynamic constraints following previous work on
structural reinforcement and shape balancing. Another important future direction is to
generalize the framework to handle other types of laser cut materials, e.g., plastic plates
that can be easily cut and more interestingly bend to have freeform shapes. Note that
the packing problem will still be in 2D for such developable pieces. This can help produce
interesting freeform shapes, while still making efficient use of materials.
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Conclusion
Interestingly, during the work on waste minimization, we developed an interface to

design simple furniture with rectangular planks. Once a complete UI was obtained, we
confronted it to art school students (See figure 3.26). This has been an interesting expe-
rience : they had clear ideas about what they could do with this interface and they were
particularly enthusiasts about the material optimization. However, the design tool was not
easy to use for them, as it was too unusual in its interactions. They also lacked several
features to further refine the designs. We thus decided to not further investigate the UI
aspects and refocus on the optimization. This is however a very interesting direction of
future work, but that requires a close collaboration with designers from the start.

The two methods that I presented in this chapter require at least some partial specifi-
cation of the shape. It means that the user has to have a clear idea about what the shape
looks like. However, this cannot always been expected. Therefore, I developed a synthe-
sis system that automatically synthesize from functional specifications, in the context of
furniture design. This system is described in the next chapter.

Figure 3.26 – One drawing from the art school student.

90



4

Synthesizing from Functional
Specification

Introduction

The previous chapter details methods to optimize shapes – assemblies from planar
cutouts and mechanisms – with respect to the fabrication process. In the case of assemblies
from planar cutouts, our technique optimizes a parametric model to reduce the amount
of wasted material.

In this chapter, we explore the synthesis of furniture from functional specifications ;
where the function is to support a set of loads arbitrarily positioned in space. Instead
of defining the shape partially, the user only defines the function of the shape, and the
system fully synthesizes it – we are at the end of the spectrum of techniques I considered.

The optimization system presented in the chapter 3.2.5 required a parametric model
of the design that the user wanted to fabricate. In contrast, the technique presented here
operates similarly to topology optimization (see Section 1.4.1.3 of the state of the art), in
the sense that it fully synthesizes a final shape that can support the specified loads. In
this chapter, the shape is a shelf. It is more specialized than furniture ; however shelves
are everywhere. They can be easily manufactured at home with a saw and wooden planks.
At the same time, besides the trivial cases, they are not simple to imagine and design.
Modelling them to fit a particular environment, items to store and windows to avoid,
while minimizing waste and work to fabricate them is a difficult task. Our system does
exactly this. The shelves that are produced can have intricate, interesting layouts and
move beyond simple parallel shelves.
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As all methods presented in Chapter 3, we formulate a combinatorial problem. It
requires only a set of loads placed in space by the user, and it synthesizes a fabricable
furniture that supports all the loads and is guaranteed to stand stably. Interestingly, this
bares similarities to the problem of generating support structures in 3D printing [30] and
some of the issues we face here are similar. Indeed the structure has to be self supported
and at static equilibrium with or without the loads. Again, this work has been inspired
by the Do It Yourself trend and we develop a technique that does not require expensive
material or advanced manufacturing technologies.

This work has not been published yet. It is done in collaboration with Niloy Mitra
and Sylvain Lefebvre.

4.1 Overview

The idea is the following : Knowing the position of user specified items in space, we
want to synthesize a furniture that is at static equilibrium, is supporting all the items
placed by the user, can be further edited, and uses an as small as possible amount of
wood. In addition, avoidance constraints can be specified to provide clearance for e.g. a
window or door.

Figure 4.1 – Left : A Set of boxes in space placed by the user. Right : The synthesis is
done by adding horizontal planks below each box and adding vertical planks to support
the horizontal

The next section presents the user interaction. It also presents how the system main-
tains the topology of the furniture while the user is interacting to edit it. This is achieved
by formulating a least norm problem on the design variables.

Then I explain how the synthesis is done, and in particular the snapping operation
at its core. The snapping operation ensures that the static equilibrium is maintained. The
synthesis algorithm has been tailored to use a small amount of planks.

4.2 User Interaction

In this section I describe the interaction allowed by the system. The user is able to
place objects represented by their bounding boxes in space, to move and deform these
bounding boxes (see Figure 4.3). The user also defines the size of the master boards he
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will cut. As opposed to previous chapter, the master boards are planks, that will be cut
in only one direction(see Figure 4.3).

4.2.1 User Interface

3D View The 3D view shows the user input as well as the furniture that has been
synthesized by the system. In the 3D view, the user is able to select a plank and to move
it or to change its size (see Figure 4.2). Once the furniture has been synthesized, she
can move the boxes and preserve the same topology, or ask the system to synthesize the
furniture again to obtain a variation of the current model. It can also leads to a topology
change, since the user edit the input of the algorithm. The user is able to types of boxes :
the first one represents the objects that she want to support, the second one are avoidance
zones, that the synthesizer has to avoid.

Figure 4.2 – Left : The user moves the center of the horizontal green plank. Right :
The system maintains the connectivity between all the planks by changing the size and
the position of all other planks.

Material Space We considered that the material space is composed by long wood
planks that will be cut by the user. Indeed, those not require any special material to cut,
The system shows the material space to the user.

4.2.2 Preserving topology during user edition

After synthesis, we could let the user edit individual planks. However, doing these
changes without assistance would be difficult as changes would disconnect planks or result
in self intersections. Instead, our algorithm helps the user maintain connectivity with a
constraints based system described below. Throughout an edition session, the user is thus
able to modify the furniture that has been synthesized, by smoothly deforming planks.
The design globally adapts to these changes.

Notations A shelf S is represented by a set of planks P and a set of constraints C. A
plank Pi is represented by its orientation oi ∈ {Horizontal, V ertical}, its width direction
di ∈ {X, Y }, its length li (thickness and width are fixed), and the position of their center
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Figure 4.3 – This is the main view of the system. The user sees the box that she places
in space as well as the material space in the bottom right corner of the interface. The
planks have the same color in the material space than on the 3D view.

in space pi. We note U(S) the vector constituted by the position and the length of all
planks in S.

Once the synthesis is done, the user is also able to deform the furniture, and the system
maintains the topology. In order to maintain the feasibility during the user interaction,
linear constraints are automatically defined during the synthesis of the furniture. Those
constraints are under the form :

N∑
i=0

Ai ∗ pi.x+Bi ∗ pi.y + Ci ∗ pi.z +Di ∗ li = K

Where Ai,Di,Ci,Di and K are constants defined during the synthesis and N = Card(P).
The user is able to smoothly edit the furniture one variable at a time (See Figure 4.2). We
build the system by using all the constraints defined during the synthesis and a constraint
based on the last user edition. If the user modifies the variable pi.x by δ, the constraints
pi.x = p0

i .x+ δ where p0
i is the previous value of pi is added to the system.

Usually, the number of constraints (equations) in the system is greater than the number
of variables. The said system is under determined and has an infinite number of solutions.
However, to avoid non-intuitive moves in the solution, we minimize the distance between
the furniture before the user interaction, and the furniture after the user interaction. This
means that we want to minimize the following equation whereM(C) is the matrix defined
by the constraints in C :

||U(S)− U(S0)||
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Subject to :
M(C) ∗ U(S) = k

However, by posing : X(S,S0) = U(S)− U(S0) we can solve :

||X(S,S0)||

Subject to :
M(C) ∗X(S) = K(C)−M(C) ∗ U(S0)

This is a least norm problem and it has a direct solution. Thanks to the fact that it
minimizes ||U(S) − U(S0)||, the changes done by the system are only on variables that
appear in constraints that are impacted by the user edition.

Figure 4.4 – Without feasibility constraints, the user edition can lead to unwanted
results, that still verify all other constraints. Top : The user moves the center of the
yellow plank, which collides with a box. Bottom : The user moves the center of the pink
plank, which doesn’t support the top box.

Feasibility constraints Some user edits may lead to planks intersecting with the boxes
defined by the user (see Figure 4.4) – note however that this never happens after synthesis.
Since the boxes represent the objects that will lay on the furniture, those collisions have
to be avoided. For example, the user is also able to add avoidance zones which are zones
in which there will not be any planks. Or, in order to maintain the equilibrium of the
objects on the furniture, the planks that is supporting an object has to be bigger than
the objects (see Figure 4.4).

Those constraints are not equality constraints and appear in the system only when it
is necessary. They do not impact the topology of the furniture but they are necessary to
ensure the feasibility of the furniture. Our key idea is to add constraints dynamically in
the system to prevent moves that impact design feasibility.

We observe that all the feasibility constraints can be enforced by dynamically adding
or removing equality constraints. For instance, when a plank is about to hit an object a
constraint can be inserted to maintain the plank at the correct distance. A key difficulty is
when and in which order to insert the constraints. Note that a straightforward approach
can quickly over-constrain the problem, preventing to find a feasible solution.
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Our scheme is inspired by collision detection in physics simulations, where all contacts
within a potentially large time step have to be found. The intuition is to detect the
first time a constraint violation occurs, while progressively applying the vector change u
with ui = δ on the variable that the user changes, uk = O everywhere else. That is, we
parametrize the problem with a variable α ∈ [0, 1] and find the smallest value α1 such
that U(S) + α1u verifies all design effectiveness constraints, but one or more are violated
on α1 + ε for any ε > 0. We then add an appropriate equality constraint to C such
that all design effectiveness constraints are enforced. The algorithm then recurses until
reaching α = 1. During this entire process we take care of enforcing design constraints
while exploring along u. All constraints added during the process are discarded upon
termination. The full algorithm is given in Algorithm 9.

The function AddDynamicConstraints considers the points just before and just after
constraint violation, and adds the equality constraints required to resolve the case. For
instance, if a plank collides an object of height H, it adds a constraint to keep the colliding
plank at a distance of H of the plank supporting object. This is a very flexible approach
allowing for a variety of feasibility constraints.

Algorithm 9: DynamicFeasibilitysConstraints
Input: Valid furniture S, vector of changes u, position α ≤ 1
Output: Valid furniture Sc such that Sc verifies all effectiveness constraints.

1 U(S)←Solve(C, U(S) + u);
2 if U(S) verifies all effectiveness constraints then

// Found a solution, return
3 return S;

// Search for first violation, bisection on α
4 l← α;
5 r← 1.0;
6 while |l − r| > ε do
7 m← ( l+r

2
) · u;

8 U(S)←Solve(C, U(S) +m ∗ u);
9 if U(S) verifies all feasibility constraints then

10 l← l+r
2
;

11 else
12 r ← l+r

2
;

13 C2 ←AddDynamicConstraints(S,C);
14 if C2 = C then

// No constraint could be added: return best found so far
15 return U(S);

16 C← C2;
// recurse

17 return DynamicEffectivenessConstraints(S,u, l)
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4.3 Synthesis

As we saw in the previous section, the synthesizer does not not only synthesize the fur-
niture but it also generates a set of constraints to maintain the feasibility of the shelf while
the user is interacting. This section describe the snapping operation and the constraints
that are produced by it, as well as the overall synthesis algorithm.

4.3.1 Synthesis algorithm

First, the system adds a plank below each item specified by the user. The orientation
depends of the size of the item along X and Y axis. The idea is to snap all horizontal planks
together. If they have the same altitude, we snap them by their edges or add vertical
planks to snap an above plank to a plank below, again this can length the horizontal
planks. During this process several possibilities are considered, scored and the best is
kept at each iteration. Vertical planks have to touch the ground or to have their bottom
part on an horizontal plank. An overview of the algorithm is presented in Algorithm 15.

Algorithm 10: Synthesis
Input: A set of boxes D
Output: A shelf S

1 while S is not valid do
2 Cost←∞
3 BestOperation← NoOperation
4 foreach pair (Edge,Plank) in (E,P ) do
5 CurCost← Snapping(E,P )
6 if CurCost < Cost then
7 Cost← CurCost
8 BestOperation← Snapping(E,P )

9 foreach Edge E do
10 CurCostP illar(E))
11 if CurCost < Cost then
12 Cost← CurCost
13 BestOperation← Snapping(E,Ground)

14 if Cost < costMax then
15 apply BestOperation

Generating Variations The user can asks to the system to generate variation of the
topology of the current shelf. It is done by adding randomness in the choice of the snapping
operation, instead of taking the one of smallest cost. The system still chooses the snapping
that are adding the less wood with higher probability.
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4.3.2 Snapping operation

The algorithm is based on an operation called snapping, which snaps the edge of an
horizontal plank to the edge of another horizontal plank, possibly introducing vertical
planks to do so.

The snapping is tailored to ensure stability and to produce furnitures using few planks.
It also generates the constraints that maintain the feasibility during the user manipulation.
The snapping between an edge e an a plank p is possible under some precise conditions.
The edge has to be higher than the plank (noting the edge e, this gives e.Z < p.z). It is
only possible to snap planks that are aligned as seen from above, or that are perpendicular
to one another.

The cost of the snapping operation is the quantity of wood added by growing the
plank and adding the vertical plank.

Figure 4.5 – Snapping of left edge of plank A on plank B, with two parallel planks. The
operation extends the size of A, to the right edge of B and adds a vertical plank(in yellow)
between A and B. Top) Top View, Bottom) Side View.

Figure 4.6 – Snapping of left edge of plank A on plank B, with two perpendicular planks.
The operation extends the size of A, to the left edge of B to ensure static equilibrium.
Top) Top View, Bottom) Side View.

Avoiding collisions The snapping tries to avoid collisions by extending the planks
along the edges if it is possible (see figure 4.7 and 4.7). If it is not possible the snapping
operation is denied by the algorithm (it is given an infinite cost).
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Constraints The snapping operation generates constraints on the planks depending
on their relative orientations after snapping. The constraints are added to maintain the
connectivity during user edition. The constrained are detailed in section 4.2.2

Adding Vertical Planks If an edge is snapped to a plank that is not at the same
altitude, the system adds a vertical plank between this edge and the plank. The system
adds constraints to maintain this snapping despite user edition. The system also tries to
snap the edge of a plank to the ground, and compute the corresponding cost.

Figure 4.7 – Snapping of left edge of plank A on plank B. In this case, the vertical planks
is intersecting with the object on plank B (left). The algorithm extends both planks to
avoid the collision.

Figure 4.8 – Snapping of left edge of plank A on plank B. In this case, the vertical planks
is intersecting with the object on plank B (left). There is no way to snap the left edge
of A without intersecting a box. This snapping is impossible and not considered during
optimization.
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4.4 Results

We present a variety of results to show the efficiency of every part of our algorithm.
Figure 4.9 and 4.10 shows the effect of the avoidance zone placed by the user. Using
avoidance zone allows her to cope with room with more complex geometry (e.g. a room
with a pillar in the middle, Figure 4.4).

Figure 4.9 – The user moves the avoidance zone (red box) and ask for the system to
synthesize again. In both cases, the system carefully select the snapping operation to avoid
this zone.

Conclusion

We presented a technique that synthesizes a furniture from functional specifications.
A shelf is synthesized by using a set of objects placed in space by the user. The user is
allowed to edit the shelf after synthesis, and the system maintains its feasibility with a
constraint system automatically built during synthesis.

It is important to let the user edit the furniture to give her back the control over the
shape that she wants to fabricate. Designing from scratch is hard to do for a novice, but
our system provides and initial complete answer that the interaction system helps easily
edit through simple drag and drop.

Limitations and Future Work

This work is limited to the synthesis of shelves but they are omnipresent, and often
have to be adapted to fit difficult spaces and/or items. We did not consider the synthesis
of other type of furniture (e.g. table, chair...). We do not study the aesthetics impact that

100



4.4. Results

Figure 4.10 – The user moves the avoidance zone (red box) and ask for the system
to synthesize again. In both cases, the system carefully select the snapping operation to
avoid this zone.

Figure 4.11 – The user places a pillar in red in the middle of the room, and places objects
around.

the synthesized furniture might have – however having the user in the loop helps him
guide the system towards a desirable result.

The previous chapter of this thesis describes a technique that automatically explores
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possible designs to optimize the material space. We can imagine a similar technique based
on the linear constraint system that would optimize the shelves for material wastage. The
current system does not allow the user to change the topology of the furniture (only the
synthesizer can do it). This would be an interesting feature to add.
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Throughout this thesis I considered the problem of modeling objects for fabrication
in different ways, by proposing algorithm that increasingly help the user with the design.
My goal was to show that those modeling problems can be approached with different
methodologies depending on the the profile of the user who wants to model the object,
an what her intent and technical skills are.

The first part was tailored to optimize only the fabrication process. It is helpful for
users who are able and are willing to use complex modeling tools, and who want to
fabricate their models as close as possible to their virtual counterparts.

If the evolution of rapid manufacturing technology is as fast as the evolution of compu-
ters (e.g. by following some kind of Moore’s law [72]), the price of today’s state-of-the-art
technologies will drop and this will make them accessible. Therefore the work based on
a particular technology might become less relevant. However, helping the user to design
will remain interesting, and considering fabrication and functional constraints will always
be part of the process : the geometry, material and fabrication parameters of an object
are all tightly coupled to its final intended use.

Modeling is a very difficult task for most casual users who are not trained to use a
specific software. In this case I believe that the system has to support some part of the
design process. In a sense, letting the system handle the fabrication constraints is a way
to prune the design space. This pruning not only helps the user to explore the design
space more efficiency, but it allows her to design only shape that are fabricable.

Following this trend, I considered how to let the algorithm handle various aspects of
the design, up to the fully automated synthesis technique that is developed in the last
chapter.

Future Work. There are some future works that might be interesting to explore. For
example, instead of optimizing a parametric model of furniture to minimize the material
wastage, we can imagine an interface that guides the user to the same objective during
the modeling process. It would achieve the same purpose that the optimization method
discussed in Section 2.2 (reducing wastage), but it would give the user a more direct control
over the final shape. Also, we can imagine sketch-based modeling tools that take into
account the physical and fabrication constraints as priors to help with the reconstruction
of a 3D model from the sketch. These future works are both user oriented and serve the
same purpose : Using fabrication constraints as a guide to modeling.

I believe that synthesis cannot replace an artist with her style, her feelings and her
way to design, and the results that are shown in the last section are in no way pieces of
art. They, however, can help in the first stages of the design process, or can help a user
produce a furniture that function as intended, when aesthetics are a secondary concern. I
also believe that designers will always be confronted to the reality of fabrication and will
always benefit from tools that help them handle the constraints that they are facing.
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Synthèse de formes fabricables à partir de spécifications
partielles

Résumé long en français

Le développement des Fablabs et des Makerspaces montre que les techniques de fa-
brication rapide deviennent de plus en plus populaires. Une grande majorité de ces lieux
est équipée d’imprimante 3D à fil fondu et de découpe laser, qui permettent de fabriquer
des objets à faible coût. Leur popularisation à conduit au développement d’imprimantes
de moins en moins chères et de plus en plus facile à utiliser.

Ces technologies de fabrication rapide, issues des techniques de prototypage rapide
comme l’impression 3D permettent de fabriquer des pièces uniques sans demander d’
expertise particulière du procédé mis en œuvre. En revanche, la modélisation de nouveaux
objets tout comme la personnalisation d’objets existants restent difficiles : en effet, les
techniques de prototypage rapide imposent des contraintes sur la géométrie du modèle
qui doivent être respectées (e.g. epaisseurs minimale, angles limites). De plus, l’explosion
de ces technologies a modifié le profil de l’utilisateur qui manipulait les machines. Au
départ, il s’agissait d’experts designers qui étaient formés pour manipuler ces technologies,
aujourd’hui les machines sont utilisées par des amateurs enthousiastes, des enseignants,
qui souvent ne sont pas formés pour utiliser ces machines. Cette évolution a créé un
besoin de nouveaux outils logiciels utilisables par un plus grand nombre de personnes.
Cette thèse présente un ensemble de techniques qui ont pour point commun d’assister
l’utilisateur dans la modélisation d’un objet, en tenant compte des contraintes du procédé
qui permettra de le fabriquer. À cette fin, l’algorithme prend en charge tout ou partie de
la modélisation. Les problèmes présenté dans cette thèse sont d’ordre combinatoires et
ont requis le développement d’approches heuristiques dédiées.

Dans le premier chapitre, je propose d’améliorer la qualité des objets fabriqués avec une
imprimante 3D en minimisant certains défauts qui apparaissent lors de la fabrication. Je
m’intéresse en particulier aux techniques de fabrication par fil fondu (FFF) qui sont les
plus répandues. Le filament est poussé par un moteur pas à pas dans une tête d’impression
qui est chauffée. La tête dépose la plastique couche après couche pour fabriquer un objet
complet. Certaines imprimantes possèdent plusieurs têtes d’impression, ce qui permet
de déposer des matériaux de natures différentes. En revanche, la qualité de l’impression
souffre de la présence de plusieurs matériaux : du plastique fondu tombe par gravité des
têtes d’impression qui ne sont pas en train d’imprimer, et vient se coller sur l’impression,
laissant apparaître des défauts visibles sur l’objet. Ce problème est appelé oozing et le
résoudre n’est pas simple : augmenter la vitesse certes réduit le problème, mais réduit aussi
la qualité de surface. De plus, modifier l’imprimante pour ajouter un dispositif physique
limitant les dépots parasites a un coût, et augmente le temps d’impression.

À la place, nous avons décidé de modifier les chemins d’impression en exploitant les
degrés de liberté du procédé. Nous introduisons trois techniques pour améliorer signifi-
cativement la qualité d’impression. Premièrement, en changeant l’orientation de la pièce



sur le plateau d’impression pour minimiser l’impact du oozing. Ensuite, nous fabriquons
un rempart autour de la pièce pour nettoyer les têtes d’impression. Dernièrement, nous
introduisons une technique de planification de chemin pour éviter ou cacher au mieux
les défauts qui apparaissent à cause du oozing. L’algorithme de planification est basé sur
la recherche de zones peu visible du modèle grâce au calcul de l’occlusion ambiante. La
partie finale de ce chapitre est dédié aux comparaisons de différents logiciels d’impression.

Dans le second chapitre, je propose d’aider l’utilisateur à prendre en compte les contraintes
de fabrication pendant la modélisation. Mes techniques utilisent des informations partielles
sur la forme que l’utilisateur souhaite fabriquer. J’ai appliqué cette méthodologie à deux
problèmes distincts.

Le premier est la conception de mécanismes. En effet, comme le montre le succès
des applications de simulation physique "bac à sable" (par exemple Algodoo, Phyzical
Sandboxes, ou même MineCraft) qui permettent aux utilisateurs novices de modéliser des
mécanismes simples, il existe un fort intérêt pour ce type d’objets. De plus, les méca-
nismes sont complexes à modéliser même pour des experts de part les nombreuses parties
mobiles impliquées. Dans les applications facile d’utilisation, un ensemble de mécanismes
sont modélisés en 2D en plaçant des roues dentées, des axes, et d’autres composants de
bases a travers une interface intuitive. L’expérience de l’utilisateur reste agréable car il
n’a pas à s’inquiéter des détails géométriques complexes nécessairent à la fabrication du
vrai mécanisme. Dans ce chapitre, nous proposons donc de transformer un modèle de
mécanisme 2D en mécanisme 3D qui peut être directement fabriqué (sans assemblage)
sur des machines à dépôt de fils fondu. L’idée est de donner à l’utilisateur de ces logiciels
la possibilité de fabriquer leurs modèles et de les voir fonctionner dans le monde réel.

Pour cela, nous résolvons plusieurs problèmes. Le mécanisme 2D d’entrée permet à
certaines pièces de se chevaucher pendant la simulation. Ces pièces 2D qui se chevauchent
doivent être transformées en pièces 3D qui ne se collisionnent pas dans le mécanisme
fabriqué. La forme exacte du mécanisme 3D est déduite de la forme des pièces en 2D
ainsi que de la simulation du mécanisme en 2D. Nous utilisons aussi de l’optimisation
topologique pour synthétiser un châssis qui maintient le mécanisme fabriqué en une seule
pièce, en prenant en compte les forces exercées sur les axes pendant la simulation.

J’ai aussi appliqué cette méthodologie au design de meubles avec des modèles paramé-
trique. Ces modèles paramétriques sont faciles à trouver sur des sites spécialisés comme
Thingiverse. Ils définissent des fonctions qui génèrent des formes à partir d’un ensemble
de paramètres vers un espace de design. Ces paramètres sont choisis par l’utilisateur afin
d’avoir une forme plaisante, qui remplie une fonction. Dans certains cas, les valeurs exactes
des paramètres ne sont pas importantes pour l’utilisateur, mais le sont pour le procédé
de fabrication ( ici, une découpe laser est utilisé pour découper les différentes parties du
meuble qui sont assemblées plus tard ). En revanche, elles impactent le procédé de fabri-
cation. Dans de telles situations, les paramètres peuvent être optimisés automatiquement.
Dans ces travaux, nous introduisons le problème de « waste-minimizing-furniture-design
» (modélisation minimisant le gâchis) dans le cas de meubles composé de pièce plates dé-
coupés au laser. En particulier, nous étudions le lien entre la modélisation et le gâchis de



bois. En mixant les deux, nous donnons a l’utilisateur la capacité de prendre des décisions
basé de modélisation basées sur le gâchis du bois.

Le lien établi entre le gâchis de bois et le modèle paramétrique est basé sur un algo-
rithme qui explore l’espace de design en modifiant les paramètres du modèle de façon a
optimiser l’espace matériel : une planche dans laquelle des différentes pièces du meuble
sont placées pour gâcher le moins de bois possible. L’impact des paramètres sur la taille
et la forme des pièces qui composent le meuble est pris en compte pendant l’optimisation
pour modifier seulement les paramètres qui ont une influence sur l’espace matériel.

Enfin, dans certains cas (e.g. Grand public) l’utilisateur n’est pas forcément à même de
modéliser ces formes via des logiciels spécialisés. Pour ce cas précis, je propose une tech-
nique de synthèse de meubles à partir de spécifications fonctionnelles, e.g. la spécification
de poids à porter dans l’espace.

Le dernier chapitre de cette thèse porte sur une technique de synthèse de meuble
inspiré des techniques d’optimisation topologique. Contrairement au technique présentée
dans le second chapitre, l’utilisateur ne fournit pas d’information sur la forme de l’objet
qu’il souhaite fabriquer, mais seulement sur sa fonction. Après avoir spécifié un ensemble
de poids a porter dans l’espace, il laisse le système synthétiser le meuble qui permet de
supporter tous ces objets. L’algorithme est inspiré des techniques de génération de support
pour les techniques d’impression 3D. La synthèse génère aussi un ensemble de contraintes
sur la forme du meuble, qui permet a l’utilisateur de l’éditer, pour minimiser l’utilisation
de matière, sans s’inquiéter de la topologie de la forme finale. Cette technique simplifie la
modélisation a l’extrême et ne prend pas en compte l’esthétique de l’objet synthétisé.



Français Les techniques de fabrication rapide, issues des techniques de prototypage
rapide comme l’impression 3D ou la découpe laser permettent de fabriquer des pièces
uniques sans demander d’expertise particulière du procédé mis en œuvre. En revanche la
modélisation de nouveaux objets tout comme la personnalisation d’objets existants restent
difficiles : En effet, les techniques de prototypages rapides imposent des contraintes sur la
géométrie du modèle qui doivent être respectées.

Cette thèse présente un ensemble de techniques qui ont pour point commun d’assister
l’utilisateur dans la modélisation d’un objet, en tenant compte des contraintes du procédé
qui permettra de le fabriquer. A cette fin, l’algorithme prend en charge tout ou partie de
la modélisation.

En particulier, les problématiques suivantes sont abordées :
Tout d’abord, je propose d’améliorer la qualité des objets fabriqués avec une imprimante
3D en minimisant certains défauts qui apparaissent lors de la fabrication. Les approches
développées modifient uniquement les algorithmes de pilotage de l’imprimante.

En second lieu, je propose d’aider l’utilisateur à prendre en compte les contraintes de
fabrication pendant la modélisation. Mes techniques utilisent des informations partielles
sur la forme que l’utilisateur souhaite fabriquer, comme le dessin en deux dimensions d’un
mécanisme, ou un modèle paramétrique qui définit un meuble. L’algorithme optimise une
forme finale qui améliore des critères liés à sa fabrication (gaspillage, encombrement, etc.).

Enfin, dans certains cas (e.g. grand public) l’utilisateur n’est pas forcément à même de
modéliser ces formes via des logiciels spécialisés. Pour ce cas précis, je propose une tech-
nique de synthèse de meubles à partir de spécifications fonctionnelles, e.g. la spécification
de poids à porter dans l’espace.

English The Rapid Manufacturing techniques that emerged from Rapid Prototyping
techniques such as 3D printing or laser cutting allow to fabricate unique objects. However,
the design of those objects with existing CAD software remain a difficult task : rapid
prototyping processes impose constraints on the geometry of the model.

This thesis presents a set of techniques that assist the user in the design of an object
by taking into account the constraints of the fabrication process. To achieve this, the
algorithm automatically performs part of the modelling process.

The following problems have been tackled :
First, I propose to improve the quality of 3D printed objects by minimizing defects that
appear during the fabrication. The technique developed impacts only the algorithm that
drives the printer.

Then, I propose to help the user to take into account the fabrication constraints during
the modelling process. My techniques rely on partial information about the shape that
the user wants to fabricate like the 2D sketch of a mechanism or a parametric model of
a furniture. The algorithm optimizes the initial shape to improve fabrication objectives
(Wastage, etc.)

Finally, in some cases, the user does not know how to operate dedicated software. In
this case, I propose a synthesis technique of furniture from functionnal specification, e.g.
loads that have to be supported in space.


	Couverture
	Remerciements
	Dédicace
	Table des matières
	Introduction
	Introduction
	State of The Art
	Overview
	Modelling and printing with Fused Filament Fabrication
	Challenges of Fused Filament Fabrication

	Planar cutting
	Modelling and fabrication with planar cutting

	Shape Synthesis
	Approaches for shape synthesis

	Shape Enhancement
	Assisted design of mechanisms
	Assisted design of furniture

	Positioning of my contributions


	Contributions
	Improving the 3D printing process
	Overview 
	Optimizing print azimuth 
	Rampart 
	Path planning for multiple colors 
	Overview
	Handling of multiple extruders 
	Ordering of perimeters 
	Navigation 
	Triggering refill

	Results 
	Multiple color prints
	Limitations and future work

	Later improvement to the implementation
	Other contribution to the printing process
	Detection of support points
	Comparing slicers


	Synthesis from Partial Shape Specification
	3D Fabrication of 2D Mechanism
	Overview
	Mechanical layout
	Part geometry synthesis
	Chassis synthesis
	Results

	Towards zero-waste furniture design
	Design Workflow
	Overview
	Design Layout Optimization
	Results
	Conclusions and Future Work


	Synthesizing from Functional Specification
	Overview
	User Interaction
	User Interface
	Preserving topology during user edition

	Synthesis
	Synthesis algorithm
	Snapping operation

	Results


	Conclusion
	Bibliographie

