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Abstract

The work presented in this thesis focuses on developing new modelling tools
for the electroencephalography (EEG) forward problem using the boundary el-
ements method. Indeed, in the EEG forward problem (i.e. the computation of
the electric potential at the scalp, knowing the electric current source configu-
ration in the brain) it is often necessary to model the anisotropic conductivity
profiles of the skull and of the white matter. These profiles, however, can-
not be handled by standard surface integral formulations (Boundary Element
Methods, BEMs). The work presented fits the general framework of electro-
magnetic modelling. The introductory chapter shows how from Maxwell’s
equations we can derive the EEG forward problem. It is also explained how
this problem can be solved by using integral equations and the Boundary El-
ement Methods. The discussion on the function spaces, besides familiarizing
the readers with them, also allows to show that the usual discretization of the
current integral EEG formulation does not abide by the spectral properties of

the operators.

The second chapter seeks to fill the gap in the treatment of anisotropy in the
EEG forward problem within the framework of the boundary element method.
A new surface integral formulation for the EEG forward problem that can han-
dle anisotropic conductivity profiles is proposed. The main challenge resides

in the fact that standard formulations for the isotropic case can leverage on



the existence of a globally harmonic function satisfying the isotropic and ho-
mogeneous Poisson’s equation in each head compartment. In the case of the
anisotropic EEG forward problem, instead, a solution of the homogeneous
Poisson’s equation in one compartment will not be, in general, a solution of
the homogeneous Poisson’s equation in a different compartment of the head.
To circumvent this problem, we opted in this work for an indirect formulation.
This strategy has also the advantage of straightforwardly enabling the treat-
ment of non-nested head compartments. Furthermore, a mixed discretization
is employed to further improve the accuracy of the new formulation. A set
of numerical results is presented to corroborate all theoretical treatments and
to show the impact of the proposed approach on both canonical and real case

scenarios.

The third chapter assesses the impact of mixed forward EEG formulations in
the EEG inverse problem. Its contribution is twofold : (i) to merge the mixed
forward formulation with the inverse algorithm in a stable way, that would
allow to decrease the error which is traditionally observed when the source
approaches the boundary; (ii) to show by mean of extensive numerical assess-
ments that mixed discretization BEM formulations compare favorably with
previously existing techniques and that this technique can be easily adapted to

real case scenarios.

In the fourth chapter, we show how the preconditioning effect of Calderon
strategies can be extended from the classical framework (high frequency, ho-
mogeneous media) to multilayered media. This result is quite relevant for EEG
simulations since high resolution brain imaging necessitates to solve with a
high accuracy the EEG forward problem. This means that the mesh used to

model the geometry of the head should be very dense. Without any fast direct



techniques, the high dimensions of the problem prevent the use of direct solvers
and iterative solvers must be used. The precision of the solution obtained with
an iterative solver as well as the rapidity of computation of the solution directly
depends on the condition number of the system matrix. Calderon precondition-
ing technique enables to get a stable condition number with the mesh refine-
ment by multiplying the system matrix with an operator which is spectrally
equivalent to its inverse. The contribution of this chapter proves that Calderon
techniques are applicable to the multilayered EEG forward problem. This is

further corroborated by means of numerical evidences.

Chapter five proposes a Calderon preconditioner for the wire Electric Field
Integral Equation. The proposed preconditioner uses the classical and modified
single layer operators in 1D. The preconditioning technique allows to build
a system matrix whose condition number is stable with the mesh refinement
when the geometry is closed. For open curves the condition number grows,
but only logaritmically, i.e. O(log(1/h)) with h the mesh parameter. The
idea of modelling wires with 1-D curves is extended to the brain. The chapter
ends by presenting also a new wire (1D) integral equation for the EEG forward

problem to take into account the anisotropy of the white matter fibers.

The sixth chapter studies the impact of a fast direct solver in solving the EEG
forward problem. Such a solver enables to get the solution of a matrix equation
in O(N'9) instead of O(N?) in the case of pure direct solver (where N is the
number of unknowns in the system). Since the solution of the EEG inverse
problem requires many solutions of the EEG forward problem, the advantage
of a fast direct solver can be seen both in computing the solution of the inverse
and in the forward EEG problem. This chapter presents preliminary results on

the impact of the use of such a solver in forward modelling.



Finally, chapter seven presents the conclusions of this thesis and delineate

some avenues for future investigations.
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Résumeé

Le travail présenté dans cette these s’articule autour du développement de nouveaux outils
de modélisation du probleme direct de I’électroencéphalographie (EEG). En exploitant les
trois dimensions de 1’espace, lignes, surface et volume, le travail permet de représenter
précisément les différentes caractéristiques du milieu de propagation qu’est la téte. En effet,
lors de la résolution du probleme direct de I’EEG, c’est-a-dire lors du calcul du potentiel
électrique au niveau du scalp, il est nécessaire de modéliser correctement les propriétés
anisotropes du crane et de la matiere blanche. Ces propriété€s ne peuvent pas €tre prises
en compte par les formulations intégrales présentes dans la littérature. Le travail présenté
entre dans le cadre plus général de la modélisation des phénomenes électromagnétiques.
Le chapitre introductif montre comment il est possible d’obtenir les équations modélisant
le probleme direct de 1’électroencéphalographie a partir des équations de Maxwell. Ainsi

le probleme direct de I’electroencéphalogrphie est donné par
V.-aVV=f (1)

ou V est le potentiel inconnu, & le tenseur de conductivité de chaque domaine et f la source
électrique. Une unique solution (2 une constante pres) est assurée avec les conditions aux
frontieres suivante, a chaque interface I';; entre deux domaines €2; et (2; de conductivité

différente

[V]; =0Vi,Vj €w; \ {N +1} (2a)

[7i - GVV],; = 0Vi,Vj € wi. (2b)
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Ce chapitre explique aussi la maniere dont ce probleme peut étre résolu en utilisant les
équations intégrales et la méthode des moments. La discussion sur les espaces de Sobolev,
au-dela de familiariser le lecteur avec ces derniers, permet de montrer que la discrétisation
standard, de type Galerkin, utilisée dans les formulations actuelles du probleme direct de
I’EEG ne correspond pas aux propriétés spectrales des opérateurs.

Le second chapitre cherche a combler les lacunes des formulations intégrales actuelles
du probleme direct de I’EEG dans le traitement de 1’anisotropie. Une nouvelle formula-
tion intégrale surfacique est ainsi proposée. Le défi principal réside dans le fait que les
formulations actuelles traitant le cas isotrope peuvent exploiter I’existence d’une fonction
globalement harmonique dans le domaine considéré. Cette fonction satisfait a I’équation
de Poisson dans chaque compartiment de la téte. Dans le cas du probleme direct de ’'EEG
anisotrope, une solution de I’équation homogene de Poisson dans un compartiment n’est
en général pas une solution de 1’équation de Poisson homogeéne dans un compartiment
différent. Pour résoudre ce probléme, nous avons eu recourt a une formulation indirecte.
Cette stratégie a de plus ’avantage de permettre directement le traitement de géométries

de la téte non définies par couches et donc plus générales. En considérant la géométrie

(a) Probléme intérieur dans 2. (b) Probleme intérieur dans €)5. (c) Probléme a I’interface entre {2
et Q.

Figure 1: Notations pour obtenir la nouvelle équation intégrale du probleme direct de
I’EEG prenant en compte 1’anisotropie du milieu cérébral

décrite Figurel, les deux équations intégrale que nous obtenons pour chaque interface I';;

12



du domaine considéré sont les suivantes:

S St — Y Sioq = — (30 — Yo 05) 3)
k€w; lew;
@” Z Dj pun + ¢ﬂ Z D*¢Jl — (71 ijVi — ’Yii_«,‘“j)' “4)
kew; lew;

ou S; et D} sont respectivement 1’opérateur simple couche et I’opérateur double couche
adjoint associés a I’équation de Poisson anisotropique; I’ensemble w; représente les do-
maines voisins de €);; v; est le potentiel connu généré par une source placé dans le domaine
2; ne prenant pas en compte les conditions aux frontieres et ¢ est la densité aux frontieres
inconnue telle que V; = v; + S;¢; = v; + >, Sidik.

Une discrétisation de type mixe est employée, ceci afin d’améliorer la précision de la
formulation. L’ensemble des résultats numériques présentés confirme les développements
théoriques et montre I’impact de la nouvelle approche dans les cas de scénarios canoniques
et réalistes. La Figure 2 que lors de ’augmentation de la densité du maillage, 1’erreur
relative avec la solution de référence diminue. Ceci confirme la validité de la solution
proposée. Une comparative montre que la précision de la solution obtenue est comparable
a la précision des solutions intégrale existant dans la littérature. Ces résultats sont montrés
Figures 3 et 4. Dans ce chapitre, il est aussi montré que la formulation proposée peut
étre appliqué a des maillages volumiques en fusionnant les différents tétrahedres lorsque la
conductivité est la méme comme montré Figure 4

Le troisieme chapitre de ce manuscrit cherche a évaluer I’impact de I’emploi d’une
discrétisation de type mixe dans les formulations intégrales standard du probleme inverse
de 'EEG. Sa contribution est (i) de relier les discrétisations mixes du probleme direct au
probléme inverse d’une maniere stable, ce qui permet de diminuer 1’erreur de localisation
lorsque la source électrique est proche d’une fronticre; (ii) de montrer, a 1’aide de plusieurs

simulations numériques, que les formulations aux éléments de frontiere (BEM) ayant une
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Figure 2: Convergence de la solution de 1’équation intégrale proposée avec I’accroissement
du nombre d’inconnues (la solution de référence est la solution analytique dans le cas
isotropique et une solution aux éléments finis dans le cas anisotropique.
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Figure 3: Erreur relative par rapport a 1’excentricité de la source dipolaire pour la méthode
proposée dans ce travail et d’autres formulations existantes dans la littérature.
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Figure 4: Erreur relative par rapport au rapport de conductivité (entre le cerveau et le
crane) pour la méthode proposée dans ce travail et d’autres formulations existantes dans la
littérature.

(a) Maillage volumique. (b) Maillage surfacique obtenu apreés prepro-
cessing selon les valeurs de conductivité des
tétrahedres..

Figure 5: Maillage volumique obtenu a partir des données IRM avant (a) et apres prepro-
cessing (b).
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discrétisation mixes sont favorablement comparables aux formulation BEM ayant une discré-
tisation de type Galerkin et que ces méthodes peuvent €tre facilement adaptées a des
scénarios réalistes. La méthode employé ici pour résoudre le probleme indirect de I’'EEG
est distributive et linéaire : les sources inconnues responsables du potentiel mesuré a la
surface du scalp sont placées sur une grille cartésienne, pour chaque source de la grille, la
solution au probleéme direct est calculé. Dans les résultats présentés, I’inversion est réalisée
a I’aide de sSLORETA. On montre Figure 6 que lorsqu’une discretisation de type mixe est

employée, la localisation est plus résistante a la présence de bruit dans les mesures.

1r
: DPOPO
—t— D*POP)

= D*POP1

0.9

Relative error of Localization
(|rd-re|/rbrain)
= =2 o 2
w L L) o

o
N
T

=
S

Figure 6: Erreur de localisation par rapport au SNR, I’erreur de localisation est donné par
|rg — re| ol 4 représente la vraie position du dipole position et r, sa position estimée.
L’imagerie cérébrales haute résolution nécessite de résoudre avec une grande précision
le probleme direct de ’EEG. Cela signifie que la géométrie de la téte doit étre fidelement
reproduite lors de la résolution du probleme direct. Par conséquent, cela implique que
les maillages utilisés doivent étre tres denses. Sans technique de résolution rapide di-
recte, les grandes dimensions du probleme empéchent la résolution directe du probleme
et un solveur itératif doit étre utilisé. La précision de la solution obtenue en utilisant une

technique itérative ainsi que le nombre d’itérations requis dépend du conditionnement de
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la matrice du systeme. La contribution du quatrieme chapitre montre que les techniques
de préconditionnement de type Calderon, connues dans le domaine des hautes fréquences
pour les milieux homogenes peut étre étendue aux milieux multicouches. Ce résultats
est appliqué a I’imagerie cérébrale en présentant des résultat liés a 1’introduction d’une
technique de préconditionnement de type Calderon pour la formulation symmétrique du
probleme direct de I’EEG. En effet, différemment des autres formulations du probleme di-
rect de I’EEG, cette formulation intégrale esst de premiere espece. La technique proposée
permet d’obtenir un conditionnement de la matrice du systeme stable avec le raffinement du
maillage. Cela est réalisé en multipliant la matrice du systéme par une matrice représentant
un opérateur spectralement équivalent a son inverse. Ceci peut étre vu Figure 7, ou le
numéro de conditionnement de la matrice du systeme de la formulation symmétrique du
probleme direct de 'EEG avec et sans préconditionement est montré en fonction de la

taille du maillage (h).

2500 ' ‘ ' ' '
—©—8ymmetric [}
—&-Calderon Symmetric /
2000 -
@ //
0 p
= /
> 1500 /
F o
el F
5 1000 ¢ //
= v
o /
500 - P
M_"ﬁ"ﬂﬁ £ = 3
1 2 4 5 6 7
1/h

Figure 7: Condition Number with respect to the mesh refinement.

Une simulation numérique, Figure 8, d’un cas réaliste montre que le préconditionnement

permet d’obtenir la solution du probleme direct avec un nombre d’itérations bien moindre.
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(a) Modele de téte et
électrodes.

(b) Potentiel électrique
calculé.

Number of Iterations

(c) Convergence du solveur itératif.
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Figure 8: Résultats pour un modele de téte réel.

Un préconditionneur de type Calderon est proposé pour I’équation intégrale du champ
électrique (EFIE) lorsque la structure considérée est une courbe de 1’espace tridimension-
nel. Le préconditioneur proposé utilise 1I’opérateur intégral classique de simple couche
et une version modifié en une dimensions afin de prendre en compte les effet de bord
lorsque la structure n’est pas fermée. La technique de préconditionement proposée per-
met de construire une matrice de systeme ayant un numéro de conditionement stable avec
I’accroissement de la densité du maillage dans le cas de courbes fermées. Pour des courbes
ouvertes, le numéro de conditionement augmente mais seulement de maniere logarithmique
c’est a dire en O (log(1/h)) ou h est le parametre du maillage. Ce résulat est montré Fig-
ure 9.

L’idée de modéliser les structures fines avec des courbes est étendue au milieu cérébral.
Le chapitre présente ainsi une nouvelle équation intégrale pour le probleme direct de 'EEG
afin de prendre en compte les caractéristiques anisotropes des fibres constituant la matiere
blanche. La Figure 10 permet de vérifier que lorsque la densité du maillage augmente,
Perreur relative de la solution proposée, par rapport a une solution aux éléments finis
choisie comme référence, diminue. Ceci confirme la validité de 1I’approche présentée.

Le dernier chapitre présente I’impact de I’utilisation d’un solveur direct lors de la

18
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—0— EFIE without preconditioner
—O— EFIE with the proposed preconditioner
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Figure 9: Nombre de conditionnement de la matrice de system de I’EFIE (Z) non
préconditioné et préconditioné avec 1’opérateur simple couche non modifi€¢ (V) et mod-
ifié (V) pour une courbe ouverte.

0.065
=0—Proposed Wire Formulation
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(a) La sphere blanche représente la source dipolaire, (b) Erreur relative lors de 1’accroissement du nom-
les couleurs montrent I’amplitude du courant sur les bre d’inconnues par rapport a une solution FEM an
cylindres représentant la matiere blanche. présence de 12 fibres.

Figure 10: Simulation de 12 fibres anisotropes dans un modele de téte homogene simple
couche.

résolution du probleme direct de I’EEG. Le solveur utilis€ permet de passer d’une com-
plexité algorithmique O(N?) lors de la résolution directe du systtme 2 O(N'9), avec N
le nombre d’inconnues du systeéme. Puisque la résolution du probleéme inverse de I’'EEG
nécessite de résoudre de nombreuses fois le probleme direct de I'EEG, I’avantage d’un

solveur rapide direct se situe non seulement lors du calcul de la solution au probleme mais

19



aussi lors de la reconstruction des sources cérébrales de I’EEG. Le chapitre présente des
résultats préliminaires sur I’impact d’un tel solveur lors de la modélisation de la propaga-

tion des sources cérébrales.

20



Contents

1 Introduction 1
1.1 Recording the Brain Activity . . . . . . . . .. .. ... ... ... 1
1.2 From Maxwell’s Equations to the EEG Forward Problem . . . . . ... .. 4
1.3 Integral Equations for Elliptic Problems . . . . . .. ... ... ... ... 6
1.3.1 Function Spaces for the Solution . . . . . ... ... ... ..... 7
1.3.2 Fundamental Solutions . . . . . . ... .. ... .. ........ 9
1.3.3 Representation Theorem . . . . . . ... ... ... ... ..... 11
1.4 Discretization . . . . . . . . . ... e e 14
1.5 Solving the Discrete System . . . . . .. ... .. ... ... ... 16
1.6 Conclusion . . . . . . .. .. . 18
2 A New Integral Formulation for Handling Brain Anisotropies in the EEG For-

ward Problem 19
2.1 Introduction . . . . . . . . ... 20
2.2 Background and Notation . . . . . . . .. ... ... ... ... ... .. 22
2.3 A Surface Integral Formulation for Anisotropic Conductivity Profiles . . . . 23

24

2.3.1 A New Anisotropic Integral Formulation for Nested and Non-Nested

Compartments . . . . . . . . . . . i e 24
Discretization of the New Equation . . . . . . ... ... ... .. ..... 27
2.4.1 Mixed Discretizations and Implementation Related Details . . . . . 28



2.5 Numerical Results . . . . . . . . . . . 34

2.6 Discussionand Conclusion . . . . . . . ... ... Lo 42
3 EEG Brain Source Reconstruction Based on Mixed Discretization 45
3.1 Background and Notations . . . . . .. .. ... .. ... ......... 45
3.1.1 The EEG Forward Problem . . . . ... ... ........... 45

3.1.2 Boundary Integral Formulations . . . . . ... ... ... ..... 46

3.2 Mixed EEG formulations . . . . .. .. .. . Lo 48
3.3 A mixed Discretization Based Inverse Problem . . . . ... ... ... .. 50
3.3.1 Solving the Inverse Problem . . . . . ... ... .......... 51

34 Numerical Results . . . . . . .. .. ... L 53
34.1 Methodology . . . . ... . . ... ... 53

3.4.2 Localization Ability in Noisy Context . . . . . .. ... ... ... 54

3.4.3 Influence of the Active Region Parameters . . . . . . . . ... ... 55
3.4.3.1 Single Dipole Localization . . . ... ... ....... 55

3.4.3.2 Dipole Position . . . ... ... .. ... ... ... 55

3.4.3.3 Conductivity Ratio Between the Brain and the Scalp . . . 56

3.4.4 Source Reconstruction Using a Realistic Mesh . . . . .. ... .. 57

3.5 Discussionand Conclusion . . . . . . . ... ... oo 58
3.5.1 Localization in noisy environment . . . . . . . . . ... ... ... 58

3.5.2 Influence of the Dipole Position . . . . .. ... ... ... .... 59

3.5.3 Conductivity Ratio . . . . .. ... ... L oL 60

354 Conclusion . . . .. . L 60

4 A Proof of the Preconditioning Effect of Calderon Strategies for Multilayered
Media 63

4.1 Multiplicative Preconditioning Techniques and Calderon Identities . . . . . 64

i1



4.2

4.3

4.4

4.1.1 Compact Operators . . . . . . . . . o v v v v it 65

4.1.2 Calderon Identities . . . . . . . . .. .. .. ... ... 68
4.1.3 Discretization . . . . . . . .. ..ol 69
Preconditioning of Integral Equations associated to Multilayer Domains . . 70
4.2.1 Compactness of the 2 X 2 block operator . . . . ... ....... 71
4.2.2  Calderon identities for multilayers domains . . . . . . . ... ... 72

Application to the Calderon Preconditioning of the EEG forward problem . 74

4.3.1 The symmetric formulation for the EEG forward Problem . . . . . 74
4.3.2 Calderon Multiplicative Preconditioner . . . .. .. ... ... .. 77
433 Numerical Results . . . . ... ... ... ... .. ... ..., 79

4.3.3.1 Condition Number Assessments . . . . . . . .. .. ... 80

4.3.3.2  Assessments on a MRI-obtained head model . . . . . . . 81
434 DiscusSion . . ... e e 81
Conclusion . . . . . . ... 83

Wire Integral Equations : Preconditioning and Modelling of the White Matter

Fiber 85
5.1 Backgroundonthewire EFIE . . . ... ... ... ... ... ..... 86
5.2 Analysis of the Spectral Behaviour . . . . . ... ... ... ... ..... 90
5.2.1 Discretizationofthe EFIE . . . . . ... ... ... ... ..... 95
5.2.2 Numerical Results . . . . .. ... ... ... .. ... 97
5.3 Proposed Calderon Preconditioner . . . . . .. ... ... ......... 98
5.3.1 Theoretical Developments . . . . .. ... ... ... ....... 99
5.3.2 Discretization of the Preconditioning Operators . . . . . . . . . .. 104
5.3.3 Numerical Results . . . .. ... ... ... .. ... ... ... 105
5.4 A New Integral Equation for the EEG Forward Problem that Models the

White Matter fibers . . . . . . . . .. 107

il



5.4.1 Discretization of the Equations . . . . . . ... ... ... ..... 110

54.2 Numerical Results . . . .. ... ... ... ... ... ... 111

5.5 DISCUSSION . . . . v v v o e e e e 113

5.6 Conclusion . . . . . ... 113

6 A Fast Direct Solver for the EEG Forward Problem 115
6.1 Introduction . . . . . . . . .. 115

6.2 Inversion of Block Separable Matrices . . . . ... ... ... ....... 116
6.2.1 Validity of Low Rank Approximation in the EEG Forward Problem 117

6.2.2 Hierarchical Partitioning . . . . . . ... ... ... ........ 118

6.2.3 Block separation of the System Matrix . . . . . ... ... ..... 119

6.2.4 HODLR Matrix Construction . . . . . .. .. ... .. ...... 121

6.2.5 Inversion of the HODLR Matrix . . . .. .. ... ... ...... 122

6.3 Numerical Results . . . . . . ... ... .. oo 123
6.3.1 Relative Error and Low Rank Approximation . . . . ... ... .. 124

6.3.2 Memory and Complexity of the Solver. . . . . . .. ... .. ... 125

6.4 Conclusion . . . ... ... . e e 128

7 Conclusion and Future Work 131
List of Publications 137
Bibliography 137

v



List of Figures

1 Notations pour obtenir la nouvelle équation intégrale du probleme direct de
I’EEG prenant en compte 1’anisotropie du milieu cérébral . . . . . . . . .. 12
2 Convergence de la solution de I’équation intégrale proposée avec I’accroissement
du nombre d’inconnues (la solution de référence est la solution analy-
tique dans le cas isotropique et une solution aux éléments finis dans le cas
ANISOLTOPIQUE. .« .« v v vt o e e e e e e e e e e e e 14
3 Erreur relative par rapport a 1’excentricité de la source dipolaire pour la
méthode proposée dans ce travail et d’autres formulations existantes dans
lalittérature. . . . . . . . .. 14
4 Erreur relative par rapport au rapport de conductivité (entre le cerveau et
le crane) pour la méthode proposée dans ce travail et d’autres formulations
existantes dans la littérature. . . . . . . . .. ... Lo 15
5 Maillage volumique obtenu a partir des données IRM avant (a) et apres
preprocessing (b). . . . ... L 15
6 Erreur de localisation par rapport au SNR, I’erreur de localisation est donné

par |rqy — 7| ou r4 représente la vraie position du dipole position et 7, sa

positionestimée. . . . ... ... 16
7 Condition Number with respect to the mesh refinement. . . . . . . . . . .. 17
8 Résultats pour un modelede téteréel. . . . . . . . ... ..o, 18



10

1.1

1.2

1.3

2.1

2.2
23

24

2.5

Nombre de conditionnement de la matrice de system de I’EFIE (Z) non
préconditioné et préconditioné avec I’ opérateur simple couche non modifié
(V) et modifié ({7) pour une courbe ouverte. . . . . . ... ...
Simulation de 12 fibres anisotropes dans un modele de téte homogene sim-

plecouche. . . . . . . ...

The figure on the left (a), shows a Lipschitz domain while the domain in the
right figure is not a Lipschitz domain. The notations employed for defining
the geometry are also shown in both figures. . . . . . ... ... ... ...
A Lipschitz surface (a), and an example of mesh of this surface (b).

Example of two polynomial basis functions defined on a mesh. . . . . ..

Decomposition of the domain 2 into subdomains €2; with boundary I';; and
normal 7. . . . .. .. e e
Conventions used in setting up the integral equations. . . . . . ... .. ..
Standard mesh (in bold) and associated barycentric refinement. Three cells
of the dual mesh are shown in differentcolors. . . . . . . .. ... ... ..
Figure (a) shows a constant piecewise function on the standard mesh, Fig-
ure (b) a piecewise linear function on the standard mesh, and Figure (c)
a dual piecewise linear function. These dual functions are obtained by a
linear combination of standard piecewise linear functions Py shown in Fig-
ure (d) defined on the barycentrically refined mesh: ]51 B = 217:1 /@1151 ; with
k1 =1,k = 1/2if | € {2,3,4} and k; = 1/n with n the number of tri-
angles of the standard mesh sharing the considered vertex, if [ € {5,6, 7}.
The coefficients « are shown in Figure 2.3. . . . . . ... ... ... ...
Decomposition and notation of the domains used to write the exemplifica-

tory system matrix in Section 2.4.1. . . . . .. ... oL oo

vi



2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14
2.15

Convergence of the solution of the proposed equation when increasing the
number of unknowns. . . . .. ... Lo Lo 35
Relative error vs dipole eccentricity for the method proposed in this work

and for other formulations in literature (see Table 2.1 for interpreting the
ACTONYIMNS). & v v v v v e e e e e e e e e e e e e e e e 36
Relative error vs conductivity ratio (between the skull and the scalp) for the
method proposed in this work and for other formulations in literature (see

Table 2.1 for interpreting the acronyms). . . . . . . .. ... ... ..... 37
Relative Difference Measure versus dipole eccentricity in the computation

of 100 dipole source both for radial and tangential dipole orientation for

the method proposed in this work and for other formulations in literature

(see Table 2.1 for interpreting the acronyms). . . . . .. . ... ... ... 38
Magnitude error versus dipole eccentricity in the computation of 100 dipole
source both for radial and tangential dipole orientation for the method pro-
posed in this work and for other formulations in literature (see Table 2.1

for interpreting the acronyms). . . . . . . . ... ... L L L. 38
Relative Error with respect to the dipole source excentricity, when no anisotropy
is present (Figure (a)) and when an anisotropic fiber is inserted (Figure (b)) 39
Volume mesh before (a) and after preprocessing (b) . . . . .. ... . ... 40
Relative error of the new anisotropic solution with respect to the analytical
solution . . . . .. e 41
Realistic Volume mesh before (a) and after preprocessing (b). . . . . . .. 41
Simulation of the potential generated by a dipole in the realistic head mesh

using the proposed formulation. The dipole source is represented by a

white sphere. . . . . . ... L 42

Vil



3.1

3.2

3.3

3.4

35

4.1
4.2

43
4.4

4.5

4.6

5.1
5.2
53

Localization error with respect to SNR, localization error is defined as |r;—
re| where r; stands for the true dipole position and r. for the estimated
dipole position . . . . .. ...
error of localization with respect to the dipole position using (a), D Fy P,
(b), D*FPyF,, and (¢), D*]50151 for the leadfield matrix construction. The
dipole grid is displayed in grid points the brightest color designs the highest
error of localization. . . . . . . .. ... ... o o
Mean error of localization with respect to the conductivity ratio for the
different forward method . . . . . . .. . ... L L oo
(a) : Three layers head with 256 electrodes, (b) and (c): simulated potential
on the brain and on the scalp using the true source configuration. . . . . . .
Estimated potential on the brain using (a) D* POPO0, (b), DP0OP0 and (c)
D*POPL . . . e

Geometry under consideration. . . . . . . . ... ...
Relative error with respect to the mesh refinement. the average length of a
cellisgivenby h. . . . . . . ..
Condition Number with respect to the mesh refinement. . . . . . . .. . ..
MRI-obtained head model . . . . . .. ... ... .. ... ... ... ..
Validation of the new formulation via a potential comparison at the EEG
electrodes’ position (dipolar source). . . . . . . ... ...
Convergence of the iterative solver for the preconditionned and not precon-

ditioned symmetric approach . . . . . .. ... oL Lo

Description of the geometry for deriving the EFIE in the general case
Notations for the cylindrical coordinates in case of a thin wire . . . . . . .

Graph of the modified Bessel Function of second kind of order zero, K, . .

viil

80

93



54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

Hat functions A\ used to discretize the unknown and to test the wire EFIE . 95
Simulated current and reference solution on a half-wavelength dipole antenna. 97
Radiation pattern of the loop antenna. . . . . . .. ... ... ... .... 98
Condition Number of 7, S and N versus the spectral index 1/h for a
straight antenna (a) and a loop antenna (b). . . . . . . ... ... ... ... 99
Condition Number of 7, S and N versus the spectral index 1/h for a
straightantenna. . . . . . . . . ... ... oL L 99
Maximum and minimum singular values of N with respect to the spectral
index 1/h for a straight antenna. . . . . . . ... ... ... ... ..... 100
Maximum and minimum singular values of S with respect to the spectral
index 1/h for a straightantenna. . . . . . ... ... ... .. ....... 100
Dual mesh and dual patch basis functions ¢, used to discretize Y and V.
Hat functions Ay are showningrey.. . . . . . . . ... ... ... ..... 104
Condition Number of the EFIE matrix Z and of the EFIE matrix precon-
ditioned with V when the geometry is a loop, it can be observed that the
condition number of the preconditioned matrix is independent of the spec-
tral index parameter 1/h. . . . . . .. ... Lo L 106
Condition Number of the EFIE matrix Z and of the EFIE matrix precon-
ditioned with V and V for a straight antenna (a). Figure (b) displays the
condition number xz, of the EFIE matrix preconditioned with V in linear
scale. It can be seen that the preconditioner is not optimal but limits the
growth of the condition number to a logarithmicone. . . . . . ... .. .. 106
Maximum and minimum singular values of the preconditioned system with
respect to the spectralindex . . . . . . ... ... ... .. ... ..., 107
Relative error when increasing the number of unknowns with respect to a

FEM solution in the presence of one fiber. . . . . . ... ... ... .... 112

ix



5.16 Simulation with 12 fibers in a one layer spherical head mesh. . . . . . .. 113

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Graph of the fundamental solution for the Laplace operator with a source
in the center. The graphs have been truncated since the peak goes to infinity. 117
Schematic description of the block interaction in building the system ma-
trix. The sources are represented by the red square while the observation
points lie in the black square. . . . . . . .. ... ... oL 118
Two levels of a quad tree, showing the root of the tree, [, its children /5,
I3, I, and the leaf nodes {I;}?1,. A partition of the indices is presented (b). 120
Comparison of the solution obtained with and without fast solver in the
case where a high approximation rank was selected. . . . . . ... ... .. 125
Relative error of the solution obtained with the fast solver for different rank
approximations and associated memory requirements for storing the inverse. 126
Relative error of the solution computed with the fast solver with respect to

the analytical solution for different rank approximation and three different

Memory requirements for building the HODLR matrix in computing the
solution computed with the fast solver with respect to the analytical solu-
tion for different rank approximation and three different meshes. . . . . . . 127
Time necessitated for building the HODLR matrix in computing the solu-
tion computed with the fast solver with respect to the analytical solution
for different rank approximation and three different meshes. . . . . . . .. 128
Memory needs for building the HODLR matrix with respect to the number
of unknowns (a). The second graph, on the right (b) displays the same

curve rectified foralinearscale. . . . . . . . . . . .. ... ... ... 129



Chapter 1

Introduction

This chapter shows how from Maxwell’s equations we can derive the electroencephalog-
raphy (EEG) forward problem. It explains how this problem can be solved using integral
equations and the boundary element method. The chapter will show the necessity of im-
proving currently available solutions of the EEG forward problem to take into account
realistic conductivity profiles and in particular the anisotropy properties of the head media
with in the boundary element method framework. For handling such properties fast solu-
tions are also a must. This is why we will introduce preconditioning techniques and fast

algorithms.

1.1 Recording the Brain Activity

While the euphoric effect of poppy plant has been known by the Sumerian since at least
4000 BC, one must wait until the fourth century BC for Hippocrates to deny the divine
origin of epilepsy and to attribute it to brain malfunction [60]. Since then, the advances
in medicine and technology have greatly improved our current knowledge of the brain.
In particular, the work of du Bois Reymond and von Helmholtz, gave birth to what is
now known as electro-physiology [81]. It is the electrochemical activity of the neurons
which is responsible for the potential that can be recorded using ElectroEncephaloGraphy

(EEG) [72]. This neuro-imaging tool is used in many medical applications such as the



presurgical evaluation of the epileptic focus [82, 71], the study of strokes, or the design of
Brain Computer Interfaces (BCls) [59].

Neurons, or nerve cells, are mainly located in the neocortex (the gray matter), a 2 to
5 mm thick folded layer that surrounds the white matter in the cerebrum [72]. Neurons
process and transmit electrochemical signals through their synapses. Typical neurons are
made of a cell body, dendrites and axons. In the white matter, axons connect the neurons
together. The synaptic potential generated by groups of neurons are the so-called generator
of the electric field that EEG (and Magnetoencephalography -MEG-) can measure [72].
Because of the dynamics behind the EEG sources, EEG temporal resolution is very good
(around 1 milliseconds) hence it can be used for real time applications [59]. EEG recorded
on the scalp of patients or with intracranial electrodes records the activity of groups of
neurons. It is possible, by placing micro electrodes or meso-electrodes in the cortex, to
record the activity of a single neuron. However, this operation (as well as intracranial
EEG) remains invasive and cannot be a long term solution since the glial cells soon form
a scar around the electrode that mutes the electrical activity [84]. As a consequence, EEG
if not invasive, has a low spatial resolution. However, the anatomy of the brain can be
imaged using other tools such as Magnetic Resonance Imaging (MRI) or Positron Emis-
sion Tomography (PET). The physical quantity recorded by MRI is the relaxation time of
water nucleus in the body exposed to magnetic field [86]. Diffusion tensor MRI (DTI) can
be used to infer the conductivity of the head tissues from the water diffusion tensor data
[98]. Positron Emission Tomography also provides a way to image the brain by labelling
molecules with radioisotopes. Functional MRI or Near Infrared spectroscopy (NIRS) give
an insight of the brain dynamics by recording the change of oxygen concentration in the
blood that circulates in the brain [73], however the achieved temporal resolution is not as
high as the one of EEG. The rational behind this is that these neuroimaging techniques only

record metabolic changes linked to the brain activity. Those phenomena are slow (with re-



spect to the electric activity) and therefore the achieved temporal resolution is limited. The
ideal neuroimaging technique would combine the high spatial resolution of MRI and the
high temporal resolution of EEG and MEG.

Locating the brain sources responsible for the EEG measured potential is still possible
by solving the so called EEG inverse source problem [37] [68]. Since the number of EEG
signal generators is much greater than the number of electrodes, this problem is ill-posed.
It is therefore necessary to make assumptions on the underlying sources. First of all an
accurate propagation model from the sources to the sensor must be available. This problem
is known as the EEG forward problem [43]. In solving the EEG forward problem, since the
head is topologically equivalent to a sphere, spherical head model have historically been
used. They have the advantage that their analytical solution is known [26]. However, it
has been shown that the solution to the inverse problem is greatly improved if realistic head
models are used [21] [3]. These accurate models can be recovered using MRI data. Another
important information to provide is the correct conductivity of head tissues, in particular
their anisotropy and inhomogenity. Indeed, it was shown that neglecting the anisotropic
properties of the skull and the white matter increases the error when performing source
imaging [39] [41] [61] [104]. This data, as mentioned previously, can be obtained by us-
ing DTI. Then, assuming that the anatomical information is known, what are the equations
governing the phenomena? A partial answer is given by Maxwell equations and the derived
equation is a partial differential equation that, in quasi static, fits the more general frame-
work of elliptic problems. The work carried out in this thesis focuses on developing new
tools for solving the EEG forward problem leveraging mathematical concepts developed in

the framework of boundary elements methods.



1.2 From Maxwell’s Equations to the EEG Forward Prob-
lem

As in any electromagnetic phenomena, the governing equations are the Maxwell’s equa-
tions. These equations relate the electric field, the magnetic field and their sources i.e.

charges and currents. They read

V-E :’—6) (1.1a)
V-H=0 (1.1b)
OH
OE
VxH=J e (1.1d)

where E and H are respectively the electric field and the magnetizing field, to which
we can respectively associate the electric field displacement field D = ¢E and the mag-
netic field B = pyH. The constants € and . are the electric permittivity and the magnetic
permeability of the medium. In the above equations, J is the electric current density and p

the charge density. They are related through the charge conservation law

ap

Vol ==%

(1.2)

Moreover, the Ohm’s law gives

J=0cE+Jo (1.3)

where Jg is the initial current density (impressed) and o the conductivity of the medium.
In case of isotropic conductivity, o is a scalar.
The frequency of the recorded brain electric phenomena is well below 1000 Hz [72]. In

this situation, the temporal derivative can be neglected and as a consequence, the electric



field and the magnetic field decouple. We then obtain from (1.1c¢)

VXE=0&E=-VV (1.4)

with V' the electric potential. This is this physical quantity that is measured when recording
an EEG. We can derive the associated equation using the quasi static approximation of

(1.1d)

VxH=1, (1.5)

and the Ohm’s law (1.3), so that (1.5) becomes

V x H = 0E + J,. (1.6)

Inserting the result of (1.4), we get

VxH=-0VV +Jp (1.7)

Applying the divergence operator we finally obtain

V.oVV =V.J,. (1.8)

This partial differential equation is the Poisson equation. In order to find a unique solution
(up to a constant) we must enforce boundary conditions. In the context of EEG, the poten-
tial must be continuous through the interfaces of the different domain of the head media as

well as its conormal derivative. Then denoting with
Vou = ur= (1.9)
the outer and inner trace of a function u defined in a domain €2 of boundary I" and

yiu =it - yioVu (1.10)
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its conormal derivative [92], those boundary conditions read

J’_ —
YWV =%V
- 1.11
{’Yfrvz%‘/ ( )

The partial differential equation (1.8) together with the boundary conditions (1.11) form
the EEG forward problem. If, as desired, realistic head shapes are to be taken into account,
only numerical solutions exist. In the last decades, many solutions have been proposed [43].
Finite Elements Methods (FEM) [17, 43, 61, 64, 103, 105] and Finite Difference Methods
(FDM) [43, 99] can handle both inhomogeneous and anisotropic conductivity profile natu-
rally since they discretize the whole volume. They however have the disadvantage of being
based on differential operators and as such are intrinsically ill-conditioned. Boundary EI-
ement methods [54] are very accurate and only require the discretization of the interfaces
of the conductor. However, they can only handle isotropic conductivity profiles even if
some steps have been taken towards the handling of anisotropy in [74] and [108]. Chapter
2 of this thesis is dedicated to the introduction of a new boundary element method that
can handle anisotropies. In Chapter 5, a specific boundary element method for handling
white matter anisotropy is also presented. In the following section, we present the general

strategy for solving partial differential equation with the boundary element method.

1.3 Integral Equations for Elliptic Problems

It is easy to see that the differential operator V- oV can be simplified into the Laplacian op-
erator A when ¢ is isotropic. From Maxwell equations, we can also derive other equations
for other types of electromagnetic problems, like, for example, the Helmholtz equation
V- Vu+ k*u = f. Actually, away from resonance, all the differential operators mentioned
are elliptic differential operators for which we can prove the existence and uniqueness of
the solution [94]. The following discussion will then be oriented towards the treatment of

this class of operators and the EEG forward problem will be treated as an applicative case.



In a domain €2 with boundary I', we consider the following general linear elliptic dif-
ferential operator

Lu=V - -AVu+b-Vu+cu (1.12)

with A a symmetric positive definite matrix and b a vector. Note that throughout the text,
bold characters will indicate vector or matrix parameters (in capital letters). In the EEG
forward problem, A = o, b = 0 and ¢ = 0.

The variational form of the problem Lu = f is given by

(Lu, g) = (f, 9) (1.13)

where (-, -) is the Lo duality product:
(w,v) :/w(r)v(r)dr w,v € L*(Q) (1.14)
9)

The two formulations are equivalent [94]. We recall that L?((Q) is the space of all square

integrable functions on (2.

1.3.1 Function Spaces for the Solution

The solution of Lu = f requires that u is twice differentiable. When formulating the
variational problem (1.13), this condition can be weakened by requiring « to be only once
derivable. In this case (1.13) is often referred to as weak formulation. However for func-
tions in L?, it is not possible to define the classical pointwise derivative everywhere, one
needs to resort to generalized derivative, denoted D and defined using integration by part,

where « is the order of derivation. We then need to introduce the following function space

[4]

Definition 1.1. For a bounded domain  C R, the Sobolev space of order s > 0 H*(£2)
is defined as

H*(Q) = {u € Ly(Q)|D%u € L2(Q),V]a| < s}.



This allows to conclude that the solution of (1.13) is in H*, the space of function square
integrable and whose first (generalized) derivative is also square integrable.

The Sobolev spaces H*({2) are Hilbert spaces. For s < 0, they are defined by duality
with respect to the L, inner product. Denoting X’ the dual of X, a bounded and linear

space, we have

(H(Q)) = H ().

They are also defined for s non integer. In particular, if we want to define boundary integral
equations, we need to define Sobolev spaces on J€2 = I'. This can be done assuming a
certain smoothness of {2. The smoothness of the domain will determine the smoothness of
a function defined on its boundary. (For a rigorous definition of the smoothness of a domain
we refer the reader to [92], informally it refers to the continuity and derivability properties
of the function that describes the boundary). Since we are concerned only with functions

at most in H' (1), the following trace theorem holds [94]

Theorem 1.1. If Q@ C R is a Lipschitz domain with 0 = T, then for% < s <1, the

interior trace operator

Yo @ HY(Q) — H* V(D)

is bounded satisfying

|70 vl =172y < c|[v|| s ().

This remains true for s € {3, 2} [94]. Since the EEG forward problem enforces bound-
ary conditions using the trace operator, we will always assume that 2 is a Lipschitz domain.
Definition of the geometry as well as an example of a non Lipschitz domain are shown Fig-
ure 1.1.

We are now equipped with the correct topology to solve elliptic boundary value prob-

lems, in particular the EEG forward problem. The next section will introduce fundamental

solutions and the representation theorem.



(a) Lipschitz domain (b) Non-lipschitz domain

Figure 1.1: The figure on the left (a), shows a Lipschitz domain while the domain in the
right figure is not a Lipschitz domain. The notations employed for defining the geometry
are also shown in both figures.

1.3.2 Fundamental Solutions

We call fundamental solution of the equation Lu = f a function G(r) which is the solution
of Lu = dy. This solution is also often called Green’s function. It depends on the dimension

of the problem. We have [92]

(et 1 ( 1 ) ford =2and A = 0
————log | —— ord=2and \ =
oVt A e[|

(b,r)
€ (1) /s
————iH;" (i)\||r ford=2and A 40 (1.15)
4\/m 0 ( || ”A) 7é
1 e<b’r>_>‘||r”A
C4rydet A [|rl[a
with A = iy/[c + [|b|[4], and [|x||4+ = (x,x)}* where (x,y)a = x’A~ly. Moreover

in the above equation, Hél) denotes the Hankel function of first kind and order 0. The

ford =3

fundamental solution is singular for r = 0 and analytical when r # 0. We choose to work
with Green’s functions that satisfy the following radiation condition at infinity,

lim r|G(r)| < o
T—r+00

lim r—8|G(r)| =0
r—400 87"

which means that the solution vanishes at infinity.



For the EEG forward problem (1.8), the Green’s function is given by

1 1
B dn/det oo lr v

G(r) (1.16)

This is the fundamental solution that we will use to introduce a boundary element method
that takes into account the anisotropy of the head media. The common BEM formulations
that assume an isotropic conductivity are using the fundamental solution of the Laplace

problem for which the Green’s function is

1
G(r) = (1.17)
Ar|[r|
For the Helmholtz equation it is
e—ikllrll
r) = (1.18)
Ar||r|

This solution will be used in the fifth Chapter where we study the wire electric field integral
equation. In this chapter, we will also deal with operators derived from the solution of the

Laplace Problem in 2D. The fundamental solution in this case is given by

1
G(r) = =5 log x| (1.19)

By integrating on the domain {2, we can obtain a solution to the equation Lu = f using

the fundamental solutions

u(r) = —/QG(r — 1) f(r')dr (1.20)

Note that this solution does not respect the boundary conditions on I' and an additional term
should be added to enforce them. This term should satistify the homogeneous equation
Lu = 0. Solutions to this equation are called L-harmonic. Actually for solving the EEG

forward problem, the key point lies in finding this harmonic function.

10



1.3.3 Representation Theorem

Considering, here and in the following of this manuscript, that the normal 77 of the boundary
I" is oriented towards the exterior of the domain 2, the divergence theorem gives, for all
fen(Q)

/QV - f(r)dr = /Fﬁ-fyo_f(r)dpr (1.21)

We then have for u € H?*(Q) and v € H'(Q) the Green’s first formula [92]

/ V- AVu(r / AVu(r) - Vo(r)dr + / A7 - Vu(r)u(r)drr  (1.22)
Exchanging v and v we obtain

/ V- AVoy(r / AVu(r) - Vu(r)dr + / A7l - Vo(r)u(r)drr  (1.23)

Taking the difference of the two equations, we get the second Green’s formula [92]

/V-AVu(r)v(r)dr / u(r)V - AVo(r)dr =
Q /An Vu(r dpr—/An Vo (r)u(r)drr -

Now, let’s choose u(r) = G(r — r’), the fundamental solution for the operator L and

v = ¢ € H*(Q) the unknown function. We obtain:

/ V- AVG(r — r')o(r)dr — / G(r —r')V - AVo(r)dr =
0 Q

/Aﬁ -VG(r —r')é(r)drr — / A7 -Vo(r)G(r — r')drr
' ' (1.25)

/[L—b-V—c] r—r1)¢ ()dr—/G(r—r’)[L—b-V—c]gb(r)dr:
0 Q
r')

G(
-
/Aﬁ -VG(r —1")p(r)drr — /Aﬁ - Vo(r)G(r — v')drr
r r

11
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o) = [ oV + 6l =)oty — [ Gle =) (e)dr
=N +/QG(I‘—I’/) bV +c|¢(r)dr = (1.27)
/FAﬁ -VG(r —r')é(r)drr — /FAﬁ -Vo(r)G(r —r')drr

qﬁ(r’)—/ﬁ[b-V] G(r—r’)qb(r)dr—/QG(r—r’)f(r)dr+/G(r—r’) [b- V] o(r)dr =

Q
< /Aﬁ -VG(r —r')é(r)drr — /Aﬁ -Vo(r)G(r —r')drr
' ' (1.28)

In the case of interests in this thesis b = 0 which gives

o(r') = /QG(r — ') f(r)dr + /FAﬁ -VG(r —r')o(r)drr — /FAFL -Vo(r)G(r —(j’)j;)r

S o(r') = /QG(I'—I")f(r)dr—l— Ffyl_G(r—r')qb(r)dpr—/F’yl_(b(r)G(r—r’)dpr (1.30)

which is known as the Green’s representation theorem [92]. It shows that the solution ¢ of
the differential equation Lu = f is determined only by its boundary values. The following

operators

Saih(r) = /F G(r —r)(r)dpr’ Sy : HY2(T) — HY(Q) (1.31)
and

Dad(r) = [ uGlr—1)ot)rs’ Dos VAT 5 HYQ) 132)
arise naturally in (1.30). We can show that [92, Theorem 3.1.1]

LS =LDé =0 (1.33)

In other words, we can build a L—harmonic function using the operators .S and D. This
property will be used in Chapter 2 to build a solution for the anisotropic EEG forward prob-

lem. Since we are interested in building a harmonic function given Neuman and Dirichlet
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data, we recall the following relationships and introduce the single layer operator .S, the

double layer operator D, the adjoint double layer operator D*, and the hypersingular oper-

ator V.

Vo Sat(r) G(r — ') (r)dr’ (1.34a)
_S;(r Sy HV2(T) — H'Y*(T)

WDadlr) =+ 50()+ /F 7Gx =)o (x)dr’ (1.34b)
=% 20(r) + Do(r),  Do: HY(T) - H'2(T)

W) =F 500+ [ G — e (1,340

= S0()+ D), D HOVAT) - HOAD)
" Dag(r) =i /F 7Gx —1)o(r')dr’ (1.34d)

=N¢(r), No¢:HY*T)— HV¥I).

Using the Green’s function for the Laplace equation in 3D, those operators are the
operators we find in the common BEM formulations of the EEG forward problem as given
in [54] for example. They are derived using the representation theorem (1.30) and the
boundary conditions (1.11).

The operators S is elliptic, D and D* are compact operators, and N is a bounded first
order operator [92]. We will use these properties for deriving a preconditioner for the
symmetric EEG formulation in Chapter 4 and a preconditioner for the wire electric field

integral equation in Chapter 5.
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1.4 Discretization

A strategy to solve a differential equation is to resort to a variational formulation as stated

in the beginning of section 1.3. Consider the following equation
Bu=f

where B is a differential operator B : X — Y”. By multiplying with a test function v € Y’

and integrating on 0f), we get the following variational formulation

(v, Bu) = (v, f)

In many situations this equation can only be solved numerically. This means that the ge-
ometry must first be discretized into simple elements. On this elements, we define the
basis and testing functions used to discretize the unknown and test the equation. In the
previous section, we showed that the original differential equation could be turned into a
boundary integral equation. As a consequence, we just need to discretize the surface of
the considered domain. Even if quadrilateral elements could be used, we will always use
triangular elements to discretize the geometry. We call mesh Mg, of the surface I the sets
of triangles {¢;}1\*,, vertices {v;}.*;, and edges that constitute the discrete approximation
of the surface. We call mesh parameter (or mesh width) the maximum length of the edges
that constitute the elements of the mesh. Here and in the following, this parameter will be
denoted with h. Figure 1.2 shows a surface and an associated mesh.

We denote with X;, = span{¢p}?L, C X and Y, = span{y,}Y_, C Y the finite
dimensional spaces of functions associated to X and Y. The discretization process leads
to look for u;, = Zle a;¢;. The standard Galerkin approach is to expand and test the
equation with the same set of functions. However, the convergence of the discrete solution
up, towards the solution u of the variational formulation is ensured in this case only if

Y’ = X'. In the general case, ||u — uy|| — 0 if the set of testing function is chosen in the
_>

14



(@) (b)

Figure 1.2: A Lipschitz surface (a), and an example of mesh of this surface (b).

dual of the range of the operator [94], i.e. Y. Since we deal with Hilbert spaces, we have
Y"” =Y. Therefore, the testing should be done using functions in Y},. Assuming moreover

that dim (X)) = dim(Y},) we get the following system matrix
Bu=f
with u; = oy, £; = (¢, f)y <y’ and
Bij = (Un, Bdj)vxyr,

a square matrix (invertible if there is no null space).

Hence, the boundary elements method provides a way to build the solution using finitely
many parameters. This can be done for example using polynomials functions defined on
the elements of the mesh. The most common elements are the piecewise constant functions
Py and piecewise linear functions P illustrated in Figure 1.3.

Piecewise constant basis functions Py = span{ Py; }2*, are defined such that

1 ifr et

0 elsewhere
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(a) Piecewise constant basis function P, (b) Piecewise linear basis function P,

Figure 1.3: Example of two polynomial basis functions defined on a mesh.

The choice of the constant value could be different. This is however the choice we did
throughout the text if not specified otherwise. Piecewise constant basis functions P, =
span{Py;})\", are the set of functions defined on vertices such that their value is one on
the corresponding vertex and linearly decrease to zero on the neighbouring vertex. Here
also the choice of the value 1 could have been different. Their support is given by jip,, =
{t;]v; is a vertex of t;}. We have Py C H~*/?(T") and P, C H'/?(T'). These basis functions
are used commonly in formulating the discrete system for the integral equations associated
to the EEG forward problem. However, they are not sufficient to be able to test correctly
(i.e. in the dual of the range of the operator) all the integral equation. This is why we will
also resort in Chapter 2, 3, 4 and 5 to dual boundary elements, as proposed by [18] and as

[88] did for the single and double layer integral formulations of the EEG forward problem.

1.5 Solving the Discrete System

After finding the integral equation, expanding the unknown in terms of finite boundary
elements and testing it with the correct discrete functions, we end-up with a square linear
system to solve. This system can be solved with different techniques. If the size of the
matrix is small enough, direct inversion of the obtained system matrix is possible. However,
in the context of EEG, to achieve high accuracy and since MRI images from which we can
obtain the mesh [24] and [28] have a high resolution; the number of unknowns can reach

the order of hundreds of thousands [3], preventing direct inversion. In this case, one must
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resort to iterative methods such as conjugate gradient square methods. In this technique,
the number of iterations needed to achieve a desired accuracy depends on the condition
number of the matrix, the ratio of the maximum singular value over the minimum singular
value of the matrix. These values depends on the integral operators involved.

In second kind integral equations (that is when the unknown function is also outside the
integrand), the presence of the identity operator bounds the minimum singular value away
from zero. If the other integral operator has a bounded maximum singular value then the
overall operator has bounded minimum and maximum singular values. This is the case for
the double layer and adjoint double layer EEG formulations : the involved operators are DD
and D* which are compact operators and which have the property to have a bounded max-
imum singular value. However, in first kind integral equations (that is when the unknown
function is only inside the integrand), the bounds on the minimum and maximum singular
value cannot be enforced by the involved operator alone (it would otherwise be spectrally
equivalent to an identity). This means that these integral equations will give rise to system
matrices which are ill-conditioned. This is the case of the EEG symmetric formulation [54]
that we will introduce in Chapter four. Nonetheless it is possible to build a stable system
matrix by multiplying the ill-conditioned operator with an operator spectrally equivalent to
its inverse. This technique is called preconditionning, it aims at achieving a stable condi-
tion number with respect to the mesh parameter. In Chapter 4 we propose a preconditioner
for the EEG symmetric formulation.

Electroencephalography is well-known for its temporal resolution. However, when per-
forming source imaging, the solution of the forward model must be computed several times.
It would be very desirable to solve the forward problem as fast as possible. Fast direct
solvers can also be used. Differently from Fast Multiple Method (FMM) or any Krylov
subspace method, they do not store the system matrix in a linear complexity [62] but its

inverse. This means that once this inverse is built, only one matrix-vector multiplication is
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needed to obtain the solution, even if the dimensions of the system are large. This tech-
nique is therefore very promising for solving the EEG forward problem several times. In
the last chapter, we present preliminary results on the impact of using a fast direct solver in

solving the EEG forward problem.

1.6 Conclusion

This chapter presented a basic introduction to integral equations for the EEG forward prob-
lem and presented the challenges we have faced. It gives the reader the definitions and
notations that will be used throughout the text. The fundamental steps for obtaining a
numerical solution to this elliptic boundary problem were presented. We also discussed
on the merits of the current formulations for the EEG forward problem. We showed that
current BEM formulations do not handle anisotropies even if this parameter appears to be
important in the literature. We will propose in Chapters 2 and 5 two new formulations for
handling anisotropic conductivity profiles. The discussion on the function space, besides
familiarizing the reader with them, also allowed to show that the usual discretization of the
current integral EEG formulation does not abide by the spectral properties of the operators.
We will discuss in Chapter 3 the effect of testing the equation in the dual of the range of the
operators instead of using the usual Galerkin discretization. Finally, the section on the nu-
merical solution of the obtained discrete system introduced the concept of preconditioning,

that we will apply in Chapters 4 and 5.
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Chapter 2

A New Integral Formulation for
Handling Brain Anisotropies in the EEG
Forward Problem

In the electroencephalography (EEG) forward problem (i.e. the computation of the
electric potential at the scalp, knowing the electric current source configuration in the
brain), it is often necessary to model the anisotropic conductivity profiles of the skull and
of the white matter. These profiles, however, cannot be handled by standard surface integral
formulations (Boundary Element Methods, BEMs). This chapter proposes a new surface
integral formulation for the EEG forward problem that can handle anisotropic conduc-
tivity profiles. The main challenge resides in the fact that standard formulations for the
isotropic case can leverage on the existence of a globally harmonic function satisfying the
isotropic and homogeneous Poisson’s equation in each head compartment. In the case of
the anisotropic EEG forward problem, instead, a solution of the homogeneous Poisson’s
equation in one compartment will not be, in general, a solution of the homogeneous Pois-
son’s equation in a different compartment of the head. To circumvent this problem, we
opted in this work for an indirect formulation. This strategy has also the advantage of
straightforwardly enabling the treatment of non-nested head compartments. Furthermore,
a mixed discretization is employed to further improves the accuracy of the new formulation.

A set of numerical results is presented to corroborate all theoretical treatments and to show
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the impact of the proposed approach on both canonical and real case scenarios.

2.1 Introduction

Epileptic source localization from high resolution electroencephalographies (EEGs) is a
fundamental step in the pre-surgical evaluation of focal epileptic patients that are refractory
to pharmacological treatment and for whom surgical resection of the epileptic focus is
considered [57, 83, 67, 32, 38]. In this brain imaging technique, starting from the electrical
potential measured on the scalp, the brain current sources responsible for focal epilepsy are
localized by solving an inverse source problem [37, 13, 35]. Solving this inverse problem
requires the multiple solution of an EEG forward problem that provides, from known brain
electrical current sources, the surfacic potential measured at the electrodes’ locations [37,
43]. The inverse problem is ill-posed so that different source configurations can produce
the same potential measure. As a consequence, the solution of the forward problem must
be computed with the highest possible precision [31, 78, 3].

In solving the EEG forward problem, spherical head models have been historically
used since analytic solutions are available for them [26, 106]. However, modern tech-
niques rely on the use of realistic head models that require a numerical solution, but for
which the accuracy of the forward EEG solution is largely improved [9, 21, 89, 102].
Several methods can be used for numerically solving the EEG forward problem, includ-
ing Finite Difference [99] , Finite Element (FEM) [103] and Boundary Element methods
(BEM) [44, 30, 54, 96]. Boundary Element methods have been quite popular given that
they require only surfacic discretization of the brain layers when compared to the other two
techniques that rely on volume discretizations. These methods however are not panacea
given that, in their standard incarnations, they cannot handle anisotropic conductivity pro-
files. Indeed, correct modeling of anisotropic conductivity profiles is quite important given

the influence of white matter and especially of the skull anisotropic conductivities on source
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localization [61, 104, 41, 45, 69]. The reader should notice that anisotropic conductivity
profiles can be naturally treated with FEM approaches although, as pointed out before, this
would result in volumetric discretizations and thus a purely surfacic BEM method (with
anisotropic modeling capabilities) would be highly desirable. Some steps in this direction
have been presented in [75] where a hybrid surface volume scheme is presented but without
obtaining a fully surfacic scheme given that the anisotropies are still treated in a volumetric
way. Moreover, [108] proposed an interesting coordinate transform to handle a constant
anisotropy of a single conducting body. No details, however, were provided for the multi
compartments problem and the associated numerical solutions.

This chapter will propose a fully surfacic mixed discretized BEM formulation capable
of handling constant piecewise homogeneous conductivity profiles including anisotropies
for both nested and non-nested compartments. This has been obtained by leveraging on
an indirect method strategy that, differently from standard approaches to obtain EEG Inte-
gral Equations, allows to maintain harmonicity properties also across different anisotropic
media. Moreover, the work leverages on a mixed discretization strategy which abides by
the mapping properties of all the operators involved and provides highly accurate solutions
with minimal computational overhead.

The chapter is organized as follows: Section 2.2 describes background material and
sets the notation. Section 2.3 presents the new anisotropic integral equation. Section 2.4
focuses on the BEM solution of the new formulation and introduces a mixed discretization
to further improve its accuracy. Section 2.5 complements all the theoretical developments
with numerical results that show the effectiveness of the newly proposed method in both

canonical and real case scenarios.
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2.2 Background and Notation

Consider a domain € divided into N non overlapping subdomains {2; with Lipschitz bound-

ary I'; = 0Oq, such that Q = U;V Q. We further define I'; = I';;, where w; = {j <

jEw;
N+1 | ©nQ; #0}andTy; = QN Q;. The normal 7;; to the interface I';; is ori-
ented from €2; to 2; with ¢ < j. The index N + 1 corresponds to the external domain.
Figure 2.1 shows a general decomposition of {2 into subdomains. Standard EEG BEM for-
mulations often make use of nested domains [54], so that when a three layers geometry is
chosen, the compartments represents the brain, the skull and the scalp. In this particular

case, I'; = I';,_1 UT'; ;11. We define the traces of a function g on a boundary I'; and of its

conormal derivative as [92]

%0:9 = 9pr= (2.1a)

Mg =1 0EVgr=, (2.1b)

where ¢ is the conductivity tensor Moreover [-];; will denote the jump of a function
across the surface T'i;: [glij = 70:9i5 — V0,935 and [77 - 5V gl = Y1955 — V1395

The EEG forward problem amounts at computing the electric potential V' knowing the
brain electric sources f = V - 7 when the current j propagates in a medium of conductiv-
ity & which is a real symmetric and positive definite matrix. Under standard quasi-static

assumptions, this calls for the solution of the Poisson’s equation [91]
V-aVV =Ff (2.2)
with boundary conditions at each interface I';;

V], = 0Vi,¥j €w \ {N+1} (2.3a)

[ii - GVV], = 0Vi,¥j € w. (2.3b)
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Figure 2.1: Decomposition of the domain €2 into subdomains €2; with boundary I';; and
normal 7.

The conditions above enforce the continuity of the potential and of its derivative between
different compartments of the head. The conductivity ¢ is assumed to be piecewise ho-
mogeneous and potentially anisotropic, ; will denote the conductivity of the domain 2.
The source term f = V - j is usually a linear combination of dipole sources f; such that

[i = q; - V,,, with g; the dipole moment and rq; the dipole position [27], [72].

2.3 A Surface Integral Formulation for Anisotropic Con-
ductivity Profiles

The fundamental solution (Green’s function) of (2.2) in an unbounded medium reads [19]
1 1
T Jdet @)\ J57 =) (=)

where o; denotes the homogeneous conductivity tensor of the domain €2;. Define the fol-

G(r,r")

(2.4)

lowing integral operators
Siv(r) = / Gi(r, ™ w(rYdr'  S; - HY2(T;) — HY2(T) (2.5)

and

Dip(r) = /F GG N D HP(T) » HEAT).@6)
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Here and in the following [ ° will denote the Sobolev space of order s. It can be shown that
for the elliptic differential operator A defined as Azg = V - aVyg, we have (A;Sv)(x) =
(AsDp)(x) = 0,Yv € HY2, Y € HY2 Yo € Q[92]. It should be noted that

1

S1+ D} 27

1S =F
with
Div(r) = /(9 N v(r)i - (5;VGy(r,r"))dr’  Df: HY*(;) = HY3(T)). (2.8)
and where [ is the identity operator.

2.3.1 A New Anisotropic Integral Formulation for Nested and Non-
Nested Compartments
If an integral equation formulation should be able to handle anisotropic conductivity pro-
files, the integral form of the EEG forward problem cannot be obtained by following the
standard procedure. Indeed, the common way to solve the isotropic EEG forward problem
(which reads AV = f/o with g = ai) is to divide the solution V' into two contributions:
V' = uw + v. One term, v, accounts for the source term in an unbounded medium. This
part of the solution is easily obtained using the Green’s function. The second contribution
w is a harmonic solution, Au(r) = 0 Vr € (2, that enforces the boundary conditions [54].
This harmonic function is an homogeneous solution in each of the sub-domains €2, i.e.
whatever the conductivity is, we have V - cVu = 0 Au = 0. However, in the case of the
anisotropic EEG forward problem, if u is a homogeneous solution for A;, =V -0,V-, i.e.
V-c1Vu = 0, we have in the general case V - 5, Vu # (0. This means that A;-harmonicity
is not maintained between the compartments when the conductivity changes and, as a con-
sequence, u cannot be defined globally harmonic on ). A solution is to consider the prob-
lem in each compartment separately by leveraging on an indirect approach. We will hence

tackle the anisotropic EEG forward problem (2.2) with boundary conditions (2.3a) and
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(2.3b) still by considering, V' = u + v, with v accounting for the source contribution in an
unbounded medium but where u is piecewise Az-harmonic i.e. Asu = V - aVu = 0, and
u="7y . u withV.&;Vu,(r) = 0if r € Q; and u; = 0 elsewhere. The unknown potential
V will then be V' = >, V; with V; = u; + v;, where v; is the contribution in an infinite

medium of a source placed in €2;. In a nutshell, we let

N a;Vu;(r) =0 if r € Q
V = Z Vi ,with V; = u; + v; where ¢ v(r) = Z; g - VGi(r,ro;) ifr e,
i w; =v; =0 elsewhere

The next step is to find a procedure to build the unknown Az -harmonic function ;. As
said before, the strategy here is to resort to an indirect approach. Indeed, as shown before,
the ansatz S;v satisfies the homogeneous equation 7;V.S;v = 0. In other words, for any
boundary density v it is possible to build a Az -harmonic function using the single layer
potential operator .S; (or the double layer operator D;, mutatis mutandis). Then the problem
amounts at finding the boundary density v that abides by the boundary conditions (2.3a)
and (2.3b). In the following, this particular boundary density will be denoted ¢; and then
u; reads

U; = Si¢z‘ (2.9)

where ¢, € H™/ 2(T;). Then, the boundaries conditions (2.3a) and (2.3b) allows to write

two equations for the unknown ¢; such that

(2.32) & [u+v]; =0Vi,Vj€w \N+1 (2.10)
(2.3b) < [ii -5V (u+0)], = 0i,¥j € w, '
’Vl_ij (SZQbZ + ’UZ') = 7;;] (Sj¢j + ’Uj) Vi, V) € w; )

The above equations highlight the fact that we can treat each domain separately: in each
domain we can express the unknown potential using the unknown boundary density ¢;,

then the obtained interior problems are linked using (2.11) in order to find the unknown
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®;. As the boundaries of the subdomains are also subdivided, I'; = U;¢,,L'ix, we let ¢; =

Z]Ewi ¢ij, With ¢;; = 0in Iy, k # 7.

Let us consider I';; = I, NT'; # (0 with i < j to express the interior problems and

combine the obtained equations to enforce the boundary conditions at the interface I';;

(see Figures 2.2a, 2.2b, and 2.2c, where we describe the geometry when dealing with the

interface I'y, : we first express the potential in {2, then in €2, and finally find the equations

on the interface I'12 between 2 and ). In §; we have, forr € T'; = (J kew; [, writing

Gi = D pew, Pir With @i (r) = 0if 7 & ['iy,, we can derive

Yo.Vi = Vo0 + Sidi S YouVi = Vouvi Z SiGik

kew;

I D . o *
Y1.4Vi = Vv + §¢i + Do = yVi= 10+ 59%’ + Z D} i

kEw;

and, in Qj, forr € Pj = UlEu}j Fjl with ¢j = Zlewj ¢jl with ¢jl(r) =0ifr ¢ Fjll

Y05V =%+ 8% & wyVi =00+ Z S0

lej

— — 1 | * — 1 *
71,jvj =M,V — 5@]‘ + Dj¢j <~ f)’f:ijvj = N,V — §¢]z + Z Dijjl
lEUJj

then from (2.3a), (2.12) and (2.14) we obtain
Z Sidix — Z Sipj = _(”Vo_,z'jvi - 70_,]'2"03')
kew; Iij

and from (2.3b), (2.13) and (2.15) we get

| 1 . ) .
59%‘ + Z Di i + 5%’2’ — Z Dioj = — (71450 — V1.4505)-

kew; lej

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

After solving (2.16) and (2.17), a solution for the entire EEG forward problem is obtained.

In fact, once ¢; is known for all ¢, V' can be easily derived using V; = v; + S;¢; = v; +

> i Si®iks k € w;. The proposed formulation can be easily be applied, as a special case, to

layered domains for which standard formulations are very popular [54].
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(a) Internal problem in ;. (b) Internal problem in €25. (c) Interface problem between {2y
and s.

Figure 2.2: Conventions used in setting up the integral equations.

2.4 Discretization of the New Equation

Following a BEM strategy, to numerically solve the obtained integral equations, the geom-
etry, the unknown and the equations have to be discretized. The geometry is tessellated into
N; triangular cells ¢; and N, vertices v;. With Mg we denote the mesh representing the
discretized domain. To obtain a linear system to be solved, following the usual BEM strat-
egy [94], the integral equations must be tested with a suitably chosen set of basis functions.

This will give rise to the following linear system
Za=Db (2.18)

where Z is the system matrix that contains the discrete version of the integral equation, i.e.

each entry of Z is given by

Z],, = T (P Z (fop) (r")dr! (2.19)

Fefep

where Z is the operator of the integral equation under consideration, {f;} is the set of
testing functions, and {f.} is the set of expansion functions. The right hand side b is
defined as

[b], = fer(rbdr’, (2.20)

P fexe

with b the known data and jiy,, the support of the function f;,. The vector a contains the

coefficients in the unknown expansion.
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In our case, the unknown ¢;; can be discretized using as expansion functions, f. in

(2.19), piecewise constant functions Fy; such that

Gij & Z a;j 1 Por 2.21)
k

where Fy;(r) = 1if r € t; and 0 elsewhere. The support of Fy; is given by pup, = t;.
Piecewise linear elements, P, can also be used albeit a higher computational cost. They
are defined such that Py;(r) = 1 if r = 1; and linearly decreases to 0 on their support
ppy,; = {tilv; is a vertex of ¢ }. In this case, the discretized unknown would read ¢;; =
Z k Qijk Py

In the context of BEM solutions, Galerkin’s strategy to discretize the equations consists
in using the same testing function as the expansion functions. This method has been widely
used in solving the EEG forward problem with BEM [54]. As [88] has stressed, however,
the choice of expansion and testing functions should be carried out with care. In fact, ex-
pansion and testing functions should comply, in our case, with the operatorial mappings of
the involved integral operators S; and D;. Standard source and testing boundary elements
are chosen to be the piecewise constant ones, i.e. Py € H~'/? would play the role of both
expansion and testing functions, f.; and f, in (2.19). Regrettably, this is compatible only
with a L, discretization of D* while a more consistent formulation would dictate a testing
in the dual space of the range of D}, i.e. H'/2. This choice is expected to be more per-
forming in particular when the source location is in the proximity of a boundary layer given
that a testing with H'/2 elements would allow the right hand side to live in H~'/? which
is a larger space than L. For this reason we also propose a conforming discretization that

abides by the mapping properties of the operators, as described in the following paragraph.

2.4.1 Mixed Discretizations and Implementation Related Details

As stated before, the range of .S; is H'/? for which the dual space is H~/2. As Py € H~'/?

these functions can indeed be used for testing equation (2.16). However, the operator of
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(2.17) 1s D} whose range is H ~1/2_ This means that P, functions suitable to test S; should
not be used. To test in H'/2, pyramidal functions P, € H'/? are suitable, but N; # N,, as
a consequence, P; functions cannot be used directly given that otherwise the system matrix
would result being rectangular. A solution is to resort to the so called mixed discretizations.
For the sake of completeness and readibility, we recall the main technical points about these
techniques. However, for a more detailed treatment of the matter, the reader should refer to
[88].

Start by considering the dual mesh M, of M. In this mesh each cell corresponds to
a vertex in Mg and vice versa. The dual mesh is obtained using a barycentric refinement
of Mg, by joining each vertex v; to the mid-point of the opposite edge. Figure 2.3 shows
the standard mesh, its barycentric refinement and the dual mesh. We denote with c; the
cells of Mg, and with b; the barycenter of ¢;. In Mg, we can build the dual pyramidal
functions P, [18], (shown in Figure 2.4c), such that their support ,u}‘:;h_ is the set of cells
¢y around the considered barycenter: 1 = {c;|b; is a vertex of ¢} }. The coefficients to
obtain these functions are provided in the caption of Figure 2.4. Hence, using P; centered
on the barycenters of M, to test D, we can correctly discretize (2.17) and obtain a square
invertible system matrix.

To fix the ideas and to simplify the implementation of the scheme, we provide below
the explicit form of the matrices in the case of the geometry depicted Figure 2.5, were the

skull layer is subdivided into four subdomains. The system matrix reads

Z}11 212 0
. 221 222 O
o0
0 262 v 266
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Figure 2.3: Standard mesh (in bold) and associated barycentric refinement. Three cells of
the dual mesh are shown in different colors.

with

211 =

S1
;I1+Dj
S1
Dj
S1
D;
S1
D3

3!

2

_S2
— D;

O OO OO oo

an 2V;, x 2N, matrix (with [V, the number of triangles of [';),

222 =

Sa
;I+ D3
S2
D;
S2
D;

Sy 0 S 0 S 0
D; 0 D} 0 D} 0
S —Ss3 S 0 S 0
I+D; iI-D; Dj 0 D} 0
S 0 S —S4 S 0
D; 0 iI+D; iI-D; Dj 0
Sy 0 S 0 Sy —Ss
D; 0 D; 0 ;1+D; ;1-D;
—S3 S 0 S 0
iI-D; Dj 0 D; 0
0 Sa —Ss S2 0
0 iI+D; iI-D; Dj 0 ’
0 S2 0 S2 —Se6
0 D; 0 i1+ D; iI-Dj

an 2NV} x 2N matrix (with NV;, the number of triangles of T'; and NNy, the number of
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(@)

Figure 2.4: Figure (a) shows a constant piecewise function on the standard mesh, Figure
(b) a piecewise linear function on the standard mesh, and Figure (c) a dual piecewise linear
function. These dual functions are obtained by a linear combination of standard piece-
wise linear functions P; shown in Figure (d) defined on the barycentrically refined mesh:
Py = Zl?:1 ki Py with 5y = 1, k; = 1/2ifl € {2,3,4} and x; = 1/n with n the num-
ber of triangles of the standard mesh sharing the considered vertex, if [ € {5,6,7}. The

coefficients x are shown in Figure 2.3.

triangles in I'yo,

-S,
~D;
0

o O O O

with 345 a 2NV;, X 2N matrix, and Xp; a 2N},

Ny

5 —

0

0
—S,
-D;

0

0
0
0

Niy, = Niy,),
—S; 0
~D; 0

0 0
0 0
0 0
0 0
0 —Ss
0 -D:

OO O OO

OO OO oo oo

X 2Ny,

OO O O OO

Y62=(0 0 0 0 0 Dj),%e6 = (51+Dg),

O O O O oo

O O O O OO

O O O O OO

with Ygz is a Ny x 2NN; matrix (where N, is the number of triangles of the outermost
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layer, I'g7) and with ¥gg a Ny, X Ny, matrix. and where the matrices S; and D} are given

by’
[Si]kzl = / SZ‘<P01)(T,) Pok(rl)dT'/ (222)
2
D] = / D (Py)(r") Po(r')dr’ (2.23)
1,

Each couple of lines of the system matrix Z is associated with a domain interface and
arises from the discretization of the integral equations (2.16) and (2.17). An exception
is represented by the last line which corresponds to the outermost surface where we only
enforce equation (2.3b). The columns of the matrix also should be considered pairwise: to
each pair of column corresponds the inner and outer unknowns defined on the considered

interface. Summarizing, the linear system that needs to be solved reads

aj2 b1z
azy di2
a b
z| == (2.24)
ags dse
aer der
where
[aij]z = Q1 (2.25)
[byl1 = / (’Y&ij?}i - ’Yo_,jivj)POk (2.26)
175
[k = / (Va0 — Yi05) Pu (2.27)
M

In practice, to compute the elements [S;]y; and [D;*]; two integrations are needed.

The inner integral requires to compute either the integral of G; or of its derivative times

"If a standard discretization is to be used (with P, used as both expansion and testing func-
tions) then the operators matrices would read: [Si]m = ftk Si(Poi) (") Por(r")dr’ (as above) and

[D;k]kl = ftk D;F(POZ)(TI) Py (r')dr.
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Figure 2.5: Decomposition and notation of the domains used to write the exemplificatory
system matrix in Section 2.4.1.

the constant function Fy,. An analytical solution to obtain this integration for the usual

1 1

Green’s function G(r,r’') = —=—
) i T

has been proposed in [34]. In (2.4), the change of
variable R = \/?r (0, is a symmetric positive definite tensor) transforms G;(r, ') into
Gi(R,R) = ﬁnrlfe'n for which we can apply the analytical integration formulas in [34].
The outer integrals (arising from the testing of the operators) are performed numerically

using Gaussian integration rules.

Remark 2.1. The formulation can naturally handle volume meshes made of tetrahedra pro-
vided that a preprocessing of the volume mesh is done: the neighbouring tetrahedra pre-
senting the same conductivity can be gathered to form one unique domain whose boundary
will be defined by the triangular cells of the tetrahedra whose neighbours do not have the

same conductivity.

Remark 2.2. As the reader can notice, in the proposed formulation two unknowns per layer
are defined except on the outermost layer. Denoting with V.., the number of triangles in

the outermost layer, the total number of unknown is given by 2 X N; — Ny
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2.5 Numerical Results

A first set of numerical experiments has been focusing on verifying the convergence of the
newly proposed formulation when the number of unknowns is increased. We have firstly
considered a spherical geometry with a piecewise homogeneous, nested, and isotropic con-
ductivity profile. The model used consists of three spherical layers of radius 0.87, 0.92
and 1 in normalized units. These layers stand for the brain, skull, and scalp, respectively.
A first convergence test was done by using an isotropic conductivity with a ratio between
the skull and the brain equal to o is0 = 1/15, following [76]. It is well known that in
this case an analytical solution is available [106]. The accuracy is assessed by calculat-
ing RE = ”V]Bﬁ+_f‘|/|””, i.e. the relative error Vzpj of the proposed integral formulation
with respect to the analytic reference solution V;..;. The results for this case are shown in
Figure 2.6.

In a second test, the validity of the proposed formulation is assessed in the presence of
anisotropic conductivity profiles. The same three spherical layer structure of the previous
case has been used. In this case, however, it is assumed an homogeneous isotropic conduc-
tivity for the brain and the scalp (equal to 1) and a diagonally anisotropic conductivity for
the skull such that [104]

4 4 .

—7o,(0,)* = —mo?

3 3 skull,iso* (228)

A conductivity ratio of 1/10 has been used between the conductivity along one Cartesian
component coordinate (say z) and the other two Cartesian components (z and y). This case,
even if not realistic, is chosen only to test the ability to handle anisotropic conductivity
profile. In this case, the reference method is a FEM method computed on a very refined
mesh.

In both simulations, the number of cells per layer is increased from 320 to 1280. A

single dipole source with unitary moment along the z-axis is placed in the center of the
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innermost sphere to avoid the dipole position influence on the numerical results (studied in
a second scenario). From Figure 2.6 it is clear that the relative error decreases, showing the

convergence of the proposed approach.

0.035 . . . ; :
—#—Isotropic Case

0.03 —4— Anisotropic Case

0.025}

0.02

0.015¢

Relative Error

0.01

0.0051 1

?00 400 600 800 1000 1200 1400
Number of cells per Layer

Figure 2.6: Convergence of the solution of the proposed equation when increasing the
number of unknowns.

The performances of the proposed formulation has then been evaluated with respect to
BEM formulations available in the literature as listed in Table 2.1. As these methods only
handle isotropic conductivities, the simulation was performed under this condition. A three
layer sphere was employed to model the geometry in order to use the analytical solution
as the reference solution for all the methods. In Figure 2.7, the relative error of the for-
mulations with respect to the dipole eccentricity is displayed. It shows that the mixed
discretization employed with our formulation enhances greatly the accuracy of the solu-
tion of the forward problem with respect to the other methods when the dipole is moved

close to the exterior boundary of the brain. It should be noted that the high accuracy of
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the adjoint double layer discretized with P1 expansion and testing functions for low dipole
eccentricity is obtained at the cost of using linear elements, and as a consequence a higher
computational load. The relative error with respect to the conductivity ratio is shown in
Figure 2.8. It is evident from the figure that the performance of the proposed approach is

very competitive with the existing formulations.

Abbreviation Name Discretization
testing functions | expansion functions
DLPO Double Layer PO PO
DLP1 P1 P1
SLPO Adjoint Double Layer PO PO
SLP1 P1 P1
SYM Symmetric formulation [54] PO & P1 PO & P1

Table 2.1: Acronyms used for identifying different BEM formulations in the numerical
examples.

10 [ T T T T
' | —#—This work Mixed
[ | == This work P0
—*—DLP0
| —*—DLP1
| |——sLPo
510 | -o-spp1 i
|-
| =
=
%)
2z
-
=
e
1073 ]
73 )

0 20 40 60 80 100
% of Dipole Eccentricity

Figure 2.7: Relative error vs dipole eccentricity for the method proposed in this work and
for other formulations in literature (see Table 2.1 for interpreting the acronyms).

Since one dipole may not be representative of the complex brain electric sources pattern

of activation, we carried out another experiment in which dipole positions are randomly set.
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Figure 2.8: Relative error vs conductivity ratio (between the skull and the scalp) for the
method proposed in this work and for other formulations in literature (see Table 2.1 for
interpreting the acronyms).

For each eccentricity, we computed the relative error in 100 simulations of 1 dipole source,
for radial and tangential dipole moment. The resulting Relative Difference Measure (RDM)
and Magnification error (MAG) are shown Figure 2.9 and Figure 2.10. These two figures
confirms that the proposed approach provides a formulation whose accuracy matches the
other existing formulation with the advantage that it can handle anisotropies as will be
shown in further numerical experiments.

The axons present in the white matter result in an anisotropic conductivity profile since,
along the fiber, the conductivity is ten times higher. This can be modelled by adding, in the
brain layer, differently conducting cylinders that would simulate the axons’ presence as in
the study case proposed by [75]. Following this paper, we considered a cylindrical region
of anisotropic conductivity oriented along the z-axis in the innermost sphere of an isotropic
three-layers model. The cylindrical region has a radius 0.05, length 1, and it is centered in

(0.2, 0, 0). In this simulation, the conductivity ratio between the skull and the scalp is 1/30,
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Figure 2.9: Relative Difference Measure versus dipole eccentricity in the computation of
100 dipole source both for radial and tangential dipole orientation for the method proposed
in this work and for other formulations in literature (see Table 2.1 for interpreting the
acronyms).
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Figure 2.10: Magnitude error versus dipole eccentricity in the computation of 100 dipole
source both for radial and tangential dipole orientation for the method proposed in this
work and for other formulations in literature (see Table 2.1 for interpreting the acronyms).

following [75]. The results are shown in Figure 2.11. The results of the simulation without

anisotropy are presented in Figure 2.11a, in this case, the relative error is computed against
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the analytical solution [106]. The relative error with respect to the dipole eccentricity in the
presence of the fiber (anisotropic case) is instead displayed in Figure 2.11b. In this case,
the reference solution for computing the relative error is a FEM solution. From the figures

it is clear that the accuracy of the formulation is not jeopardized by the presence of the

anisotropy.
10’ ‘ 10’
—+—This work Mixed —+—This work Mixed
—#—This work POP0O —*— This work POP0
5107 510"
z £
o =]
L ©
Z Z
= g
é 104’ é 107
&
3 -3
10 ! - . - 10 . . . .
0 20 40 60 80 100 0 20 40 60 80 100
% of radial excentricity % of radial excentricity
(a) (b)

Figure 2.11: Relative Error with respect to the dipole source excentricity, when no
anisotropy is present (Figure (a)) and when an anisotropic fiber is inserted (Figure (b))

A last simulation was performed showing that the proposed formulation can also handle
volume mesh. This has the advantage that it could directly be applied to MRI data in which
the conductivity is known in each voxel. It consists in a three layer sphere of radii 0.87, 0.92
and 1. The conductivity is assumed isotropic in the innermost layer (representing the brain),
radially anisotropic in the layer representing the skull and isotropic in the outermost layer
(that represents the scalp). The conductivity ratio between the brain and the scalp is 1/15
and the ratio between the radial and tangential conductivity in the skull is 1/10. We start
from a volume mesh and extract a surface mesh according to these values of conductivity as
explained in the remark 2.1. To achieve a higher accuracy, we selected a very low difference
in the conductivity between two adjacent tetrahedra that are to be merged : two tetrahedra
with respective index 7 and j where merged if ||sig?nai — S g?naj || < 1073. In this fashion,

no tetrahedron of the skull layer will be merged with its neighbour while the tetrahedra in
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the brain and scalp layers will be gathered to form only two domains. Figure 2.12 shows the
volume mesh and the surface mesh obtained. We show in Figure 2.13 that while refining the
mesh, the relative error with the analytical solution described in [107] for radial anisotropy
decreases. This shows the correctness of the approach. In this numerical experiment, the
skull conductivity was chosen 15 times smaller than the conductivity of the brain and the
scalp. The anisotropic conductivity was set in the skull layer by applying equation (2.28)

in each tetrahedra, with a ratio of 1/10 between the radial and tangential conductivity.

(a) Volume mesh. (b) Surfacic mesh obtained after prepro-
cessing, according to the conductivity value
of the tetrahedra.

Figure 2.12: Volume mesh before (a) and after preprocessing (b)

This method can easily be applied to realistic data. From grey scale data given by
MR, it is possible to extract volume meshes (see for example [29]) that are usually used in
FEM simulations. From this volumetric mesh, our method can extract surfaces that delimit
domains with the same conductivity (up to a chosen relative error) and run the proposed
BEM anisotropic formulation. We applied this to MRI data obtained from the adult brain
atlas [20]. The first mesh generation done by [28] results in a tetrahedral mesh. From
this volume mesh, shown in Figure 2.14a, the preprocessing subroutine provides a surface

mesh presented in Figure 2.14b for which we can directly apply the proposed method. The
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Figure 2.13: Relative error of the new anisotropic solution with respect to the analytical
solution

number of tetrahedra was reduced from 423345 to 119554 triangular cells. The potential

computed with the proposed method is shown Figure 2.15.

(a) Volume mesh. (b) Surface mesh obtained after preprocessing,
according to the conductivity value of the tetra-
hedra.

Figure 2.14: Realistic Volume mesh before (a) and after preprocessing (b).
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Figure 2.15: Simulation of the potential generated by a dipole in the realistic head mesh
using the proposed formulation. The dipole source is represented by a white sphere.

2.6 Discussion and Conclusion

In this chapter, a new integral formulation for the EEG forward problem that takes into ac-
count anisotropic conductivity profiles was presented. The integral formulation is obtained
by leveraging on an indirect approach and can naturally take into account non-nested do-
mains. Implementations details are provided and explain in particular the mixed discretiza-
tion strategy.

The numerical results show the correctness of the formulation. The parameter used to
assess the accuracy of the new integral formulation is the relative error with respect to a
reference solution. When the geometry is a layered isotropic sphere, the reference solution
is an analytical solution. For all the other cases, the reference solution is a FEM solu-
tion computed on a very refined mesh. The first numerical test studies the convergence
of the proposed formulation with respect to the mesh refinement both with isotropic and

anisotropic conductivity profiles (Figure 2.6). It clearly shows that the relative errors of the
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proposed formulation decreases with the increase of the number of unknowns. The second
test compares the new formulation with existing integral equations for solving the EEG for-
ward problems. It shows that the accuracy of the proposed approach is comparable to the
accuracy of the existing formulations both when the dipole is moved towards a boundary
(Figure 2.7) and for different values of conductivity ratio between the brain and the skull
(Figure 2.8). The third test reproduced a study case proposed by [75] in which a cylindrical
anisotropic conductive volume is introduced in the innermost medium of a nested three lay-
ers geometry. The results of these simulations (Figure 2.11a and Figure 2.11b) show that
the accuracy of the approach is preserved in the presence of anisotropic conductivity and
confirms the ability of the proposed formulation to handle anisotropic conductivity profile.
The last test case scenario shows the ability of the proposed method to handle realistic MRI
obtained head models.

Summarising, the new integral equation is able to handle anisotropic conductivity profiles
using only surface elements. The proposed formulation is at least as accurate as the existing
BEM formulation for the EEG forward problem. A limitation of the proposed formulation,
reminiscent of similar limitations of other surface schemes for isotropic profiles, is that it
can handle only piecewise constant anisotropic conductivity profiles. As shown in our re-
sults however, this drawback can be effectively mitigated by the capability of our scheme
of easily handling non nested domains and tetrahedral meshes with inhomogeneous con-

ductivity.
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Chapter 3

EEG Brain Source Reconstruction
Based on Mixed Discretization

This chapter will assess the impact of mixed forward EEG formulations in the EEG
inverse problem. Its contribution is twofold : (i) to merge the mixed forward formulation
with the inverse algorithm in a stable way, effectively decreasing the error which is tradi-
tionally observed when the source approaches the boundary, (ii) we will show by means
of extensive numerical assessments that mixed discretization BEM formulation compares
favorably with previously existing techniques and that this technique can be easily adapted

to real case scenarios.

3.1 Background and Notations

3.1.1 The EEG Forward Problem

The EEG forward problem is based on the solution of the Poisson equation [85] that reads
V.-oV® = finR? (3.1)

where ® stands for the electrical potential generated in the medium, ¢ for the medium
conductivity and f represents the electrical sources. It is generally accepted that these
sources can be represented by dipoles [27] [72].

The head is modelled by N nested compartments €2;, where ¢ denotes the domain index,

i € {1,2,..N + 1}. Q4 is the external unbounded domain. We denote I'; the boundary
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of ; : I'; = 0Jg,. These domains usually stand for the brain, the skull and the scalp.
Furthermore, the conductivity is considered homogeneous and isotropic in each region. It
can then be represented with a piecewise constant function o; in each ; with o1 = 0.

Setting f; as the source in €2; with fy.1 = 0, ((3.1)) becomes, in each domain
o AP = f; (3.2)

where we have : Y. f; = f. Associating to ((3.2)) the boundary conditions on Jj, that
stand for the continuity requirement of the potential and its conormal derivative, we obtain

the so-called EEG forward problem [54] [85] :

o AD = f; Yi=1,...,N (3.3)
[@];, =0 Vi=1,...,.N—1 (3.4)
[00:®]; =0 Vi=1,...,N (3.5)

with 1 the outward normal to the surface 0, and where []; defines the jump of a function
g at the surface Jq, such that [g]; = g; — g;7, where g; and g;" are respectively the inner

7

and outer limit of the function g at the boundary I';.

3.1.2 Boundary Integral Formulations

A common way to solve ((3.1)) is to divide the solution ® into two parts [54]: a harmonic
part ¢, which gives the solution of ((3.3)) with a source term equal to zero and which takes
into account the boundary conditions ((3.4)) ((3.5)), and a function ¢ which will account
for the source term f; in an unbounded medium. Thus we have: ® = ¢} + ¢,. Given that
we model the electric sources using dipoles [27] [72], ¢, is built using a dipolar potential
Vaip(r) = ﬁ, where q is the dipole moment and 7 is the position of the dipole.

By selecting the boundary conditions that are naturally respected by the source term

solution ¢y, different solutions are obtained [5] [54]: the double layer formulation, the
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symmetric formulation and the adjoint double layer formulation. We will define the fol-

lowing operators:
o the double layer operator:

DV (r) = /F U(r')0G(r —r')dr', D : HY*(') — HY?(T), (3.6)
e the adjoint double layer operator:
D*U(r) = /F U(r)0:G(r — v')dr’, D* : HV*(T) — H YT, (3.7)
e the single layer operator:

SW(r) = /F\If(r')G(r —r)dr', S: HY*(T) — HYX(I) (3.8)

where H*(I"), s € {—1/2,1/2} denotes the Sobolev space of order s, and where G is
the Green’s function associated to ((3.2))

B 1
N Ar|lr — /||

Glr—1') (3.9)

The next paragraph of this section will briefly review the adjoint double layer and dou-
ble layer BEM formulation. For the sake of conciseness, the development will be superfi-
cial. For a more elaborate approach, the reader can refer to [54].

The adjoint double layer formulation arises by enforcing the condition of continuity of

the derivative ((3.5)) at the boundary. It starts by defining the source contribution as

N

Vdi ;
da =)~ (3.10)

=1

This gives [¢s1] = 0. As [®] = 0, we directly have [¢;] = 0. This means that one of
the boundary condition is naturally enforced with the choice of the dipole contribution. It
remains to enforce the continuity of the conormal derivative. This is given by ((3.5)), we
need [00;0]; = [00:¢n1 + 00r¢0s1]; = 0. Solving the following integral equation

0; + 041

N
Onps, 7, = jr > Dir, (3.11)
Jj=1

2(02'4-1 — 0;
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where &, = [0a®n1]; is the unknown permits to find, in a second step, the potential ¢

N
¢ = ¢s1 + Z Siér,- (3.12)
i=1

The double layer is obtained in a similar fashion, setting:

N
(bsz = Z ¢S,Qi (313)
=1

where ¢, o, is the unknown potential in €2;, the condition ((3.4)) is now the condition to be
enforced, it eventually gives rise to

N
o; + 0;
sy 1y = Tﬂﬁbri - Z<Uj+1 — 0;)Djj¢r, (3.14)

j=1

that provides directly ¢.

3.2 Mixed EEG formulations

In order to obtain a numerical solution to the EEG forward problem, discretization of the
geometry and of the solution must be considered. The geometry is discretized through the
meshing of the surface I' =  J, I'; into IV, triangular cells and NN, vertices. We denote .#¢,
the mesh defined on Q such that: .#Z3 = {t;}2, is the subset of .#, of the triangular
cells, .Z9 = {v;}1\*, is the subset of .#, containing the vertices or nodes. On .Z, , basis
functions a; and testing functions b; are defined.

Integrating the operators against the testing function b; permits to discretize the equa-

tions. We then denote

Z;; = (bi, Zaj) = / bi(r)Zaj(r)dr (3.15)

i
the system matrix that derives from the discretization of the operator Z with the basis func-
tion a; and the testing function b;, where i, is the support of b;.

Patch basis functions or piecewise constant functions Py = span{Fy;}>*, and pyra-
Ny

mid functions or piecewise linear functions P, = span{Py;};* are two sets of bound-

ary elements commonly used either for basis or testing functions. In our approach, we
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used Py, = 1 on ¢; and O elsewhere. P;; = 1 on v; and linearly decreases to O in
all other vertices. For Py functions, we have y; = t; and for P, functions we have
pi = {t; : v;is avertex of t;}.

The standard formulations [5] [54] are usually discretized using the Galerkin method,
this means that testing and basis functions are in the same functional space. When the

operator is discretized and tested with F, functions, ((3.15)) becomes
[Z]ij = / Poi(r)Z Poj(r)dr (3.16)
ti

However, Petrov-Galerkin theory states that the testing should be performed in the
dual space of the operator [94]. This means in particular that D* : H~%/2 — H~1/2
should be tested with functions in /2. The usual choice of piecewise constant functions
Py € H™'/27¢ ¢ > 0, does not abide by the regularity requirements of H'/2. Galerkin
discretization using P1 basis function could be performed but this requires a higher com-
putational cost.

A solution to discretize and test correctly the previous equations is to resort to the
mixed formulations introduced by our team [88] in the context of EEG. These formulations
provide a way to merge in the same integral formulation functions in H~'/2 or in H'/?
either as basis or testing functions. In particular for the adjoint double layer formulation, it
proposes to use Py C H~'/2 functions for the discretization of the potential and P, C H'Y?
functions as testing functions.

One should note that P, functions are defined with respect to vertices, as N, # N,
it is not possible to use directly P; functions for the testing : the system matrix would be
rectangular. The dual mesh . of ., must then be used. This mesh has been defined in
Chapter 2, section 2.4. We just recall here the definition of the dual functions that are used.
We denote P; = {P;;}N* the set of piecewise linear functions defined on the barycentric

refined mesh. The dual pyramid functions, also known as the as the Buffa-Christiansen
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basis functions [18] , are Pl = span{ﬁli}f\ﬁl, obtained by linear combination of seven P}
functions : P; = 2]7‘:1 a; P,
We then obtain, for the usual discretizations and testing :
[D];; = (o, DFy,)
[D*];; = (P, D™ Fy)
and for the mixed adjoint double layer formulation:

D7 = (P, D"Ry).

1

label Formulation basis testing
D*POP0O Standard single layer  F, P
DPOPO  Standard double layer P, B

D*POP1  Mixed single layer Py Py

Table 3.1: labels of testing and basis functions of the EEG Integral formulations studied

3.3 A mixed Discretization Based Inverse Problem

In the integral equations (3.11) and (3.14) the unknowns faﬂi and ¢agz. respectively, are
discretized using F, basis functions. Denoting X; the unknown for both formulation, we

obtain:
Ny
Xi=Y ;P (3.17)
J

The known source potential ¢, r, on I'; and its derivative Oy ¢s r, are used in the double layer
and respectively in the adjoint double layer to obtain the solution of the integral equation.
We denote this known term W, in both cases.

Using (3.17) and testing against the chosen testing functions b;, (Fp; in the usual for-
mulations and ]51i for the mixed adjoint double layer formulation), the equations (3.11) and

(3.14), we obtain the discretized equations that can be written in a matrix form
7ZX = & (3.18)
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with X the vector containing the unknown coefficients z; ;, and [W|; = (b;, ¥). Z is the
system matrix. It contains the [Z];; terms plus a term [/];; on the diagonal. In the adjoint

double layer formulations [I]. = _oitoiy1

i = o) (b;, Py,) and in the double layer formulation

1], = S50 (b, Py,

i

Solving this system of equations allows to compute the desired potential. In the context
of the inverse problem, solving (3.18) enables to compute the potential generated by known
brain electric sources at the electrodes location. The inversion permits to find the active
source knowing the potential. This problem is ill-posed : there are much more unknown
than measurements. That means that the solution is not unique.

The next paragraph ((3.3.1)) will present the merging of the inverse EEG problem and

the forward problem.

3.3.1 Solving the Inverse Problem

Given a set of EEG measurments, the solution of the EEG inverse problems is the source
configuration that generated the measured potential. Solving this problem can be done
in two fashions [37]. Parametric solutions look for the position and the amplitude of the
sources while distributed solutions make assumptions on the source positions and seek only
their amplitude. In what follows, we tackle the EEG inverse problem from this distributed
point of view. In this approach, the solution of the forward problem is computed for each
position of grid with unitary dipole moment in the three cartesian directions. Note that
the orientation can also be enforced for the sources. We will denote with d the number of
orientations for which the forward solution is computed (d = 3 or 1). We further assume
that the measurements are a linear combination of the sources placed in this grid. Then,
from this perspective and denoting with M the number of points in this grid (sources) and

with IV the number of measurement points (electrodes), solving the EEG inverse problem
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amounts to solving the following equation
GJ=o. (3.19)

where J is a dM x 1 vector that contains the source amplitude for each chosen directions;
® is a N x 1 vector containing the measured potentials; and G is a N x dM matrix often
called lead-field matrix that contains the solution of the forward problem. Since the number
of measurements is small with respect to the number of unknowns (M > N), the inverse
problem is ill-posed. One of the consequence of this ill-poseness is that the solution is not
unique. A particular solution is obtained by choosing a cost function. The solution will
then be given by computing the minimum of this cost function. Different assumptions on
the source model will give rise to different functions (and solutions) [79] [37] [12]. The
simplest approach consists in assuming that the solution will be given by the minimum
energy solution. This approach is called the minimum norm estimate. By regularizing the
solution using its variance reference [80] developed sSLORETA. This algorithm is known
to provide in a noiseless and single source localization context, an exact solution to the
localization problem. Given these properties, it is this algorithm that we chose to assess the
effect of mixed discretization on brain source reconstruction.

The solution of (3.19) using sSLORETA [80] is obtained in several steps. The first step

is to solve the minimum norm problem given by the minimum of the following function:
Fy(J) = (ll® = GJ|[* + AllJ|°) (3.20)

where A is a regularization parameter that controls the trade-off between the fidelity to
the measurements and the norm of the solution. Its minimum gives the estimated current

distribution J such that

[

=T® (3.21)

where

T = GI[GGT + A" (3.22)
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This solution actually corresponds to the minimum norm estimate [37]. In SLORETA, a
second step is performed that consists in standardizing the computed current distribution J
with the estimated variance of the data S; = GT[GG” + A\ ;]~'G. Then in the {*" point

of the grid, the estimated current density is given by

I ((S5]0) 1. (3.23)

3.4 Numerical Results

This section studies the influence of the choice of the forward formulation in solving the
EEG inverse source problem. It presents the impact of the previously presented BEM
formulations for localizing a single dipole, in the presence of noise, for different source

positions and using a realistic head mesh.

3.4.1 Methodology

We first consider spherical head mesh. Indeed, a layered sphere can provide a simple
model of the head anatomy in a first approximation and has the advantage that for such a
head model, the analytical solution [40] is available and can be used as benchmark. In this
scenario, 256 electrodes were placed on the outermost layer of the head model. The mea-
sured potential for each of the electrodes has been computed using the analytical solution.
The layered sphere is made of three nested spheres whose respective radius are 0.87, 0.92
and 1 according to Rush’s spherical head model [90] and represent respectively the brain,
the skull and the scalp. Each sphere is meshed into 500 triangular cells. The reference
electrode was arbitrarily chosen to be the average of the measurements since [68] stated
that the reference electrode would not influence the spatial distribution of the electrodes
potential and thus the source reconstruction.

The last part of this section 3.4.4, presents the results obtained in the case of a realistic

mesh. In both cases, we consider the conductivity o; of the different compartments €2;
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in arbitrary units. The conductivity of the brain and of the scalp is set equal to 1. In this
framework, the conductivity of the skull is equal to the conductivity ratio oy /Tprain- This
parameter is controversial and its value varies upon the study between 1/15 [76] and 1/80
[50]. As in [75], we chose a conductivity ratio of 1/30. Since this parameter influences the
performances of the forward method, the localization error with respect to the conductivity
ratio will also be studied. To assess the performance of the forward formulations, we will

use the following relative localization error:

Eloe = Ira=re| (3.24)

Tbrain
in spherical cases, where r,rain is the radius of the brain representing the brain layer, 7, is
the true dipole position and 7, is the estimated dipole position. Furthermore, in spherical
cases, the measurements will be generated using the analytical solution. The estimated
dipole position is selected using 1. = max <j (r)) In this work, the error in the moment

estimation has not been carried out.

3.4.2 Localization Ability in Noisy Context

One of the major problem in scalp EEG is the low signal-to-noise ratio (SNR) that makes
the task of distinguishing between the signal that carries useful information and the other
signals (system noise, muscle artifacts, background neuronal activity) difficult.

As sLORETA gives exact results for single dipole localization in a noiseless context,
and has resulted in having the lowest localization error in noisy simulations [25], it is the
inverse algorithm chosen here. White noise is added to the simulated data. The relative
localization error ((3.24)) is computed for the usual and the mixed BEM methods. A unique
dipole is placed in the center of the innermost sphere. The Signal-to-Noise Ratio (SNR) is

increased from 0 dB to 18 dB in 1-dB increments. The SNR was defined as :

SNR =20 lag(@) (3.25)
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where A(®) stands for the root mean square amplitude of the noiseless simulated potential
on the scalp surface and ( is the standard deviation of the noise. The localization error is

averaged over 200 simulations. The results presented below (Fig. 3.1) show that the new

1r
: DPOPO
ol —t— D*POP)

= D*POP1

Relative error of Localization
(|rd-re|/rbrain)
= =2 o 2
w L L) o

o
N
T

=
S

Figure 3.1: Localization error with respect to SNR, localization error is defined as |rg — 7
where r; stands for the true dipole position and . for the estimated dipole position

mixed discretization formulation is more resistant to noise than the usual ones.

3.4.3 Influence of the Active Region Parameters

3.4.3.1 Single Dipole Localization

We consider the case when only one region of the brain is active. This area is represented
by a single active dipole of the dipoles grid. No noise was added to the simulated data.
The estimation of the current distribution is obtain using SLORETA for the same reasons
as before [80]. The active dipole is selected using : r, = max <j (r)), if the dipole is away

from a boundary, the exact dipole position can be found for every forward method.

3.4.3.2 Dipole Position

The BEM solutions to the forward problem presented in the section 3.1 have different

behaviours in terms of accuracy when the dipole is moved closer to the surface of the
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conducting body [101] and as can be also seen in Fig. 2.9. It could thus be expected that
these differences impact the localization of the active region of the brain. We investigate
here the ability to correctly detect a single active dipole whose position is moved to every
point of the grid. Figures 3.2a, 3.2b and 3.2c, shows the localization error ((3.24)) for each
dipole position when the source distribution is recovered using the different BEM forward
methods to build the lead-field matrix G. The inversion is done using SLORETA.

The source space is then divided into three subspaces containing respectively deep
sources, mid-deep sources and surface sources. The sphere radius used to delimit the sub-
spaces are (.35 and 0.7. Table 3.2 shows the average localization error E,. in each of these

subspaces.

Formulation Eloc,deep Eloc,mdeep Eloc,surf Eloc

DPOPO 0 0.0313 0.1117  0.0670
D*POPO 0 0.0089 0.1044  0.0532
D*POP1 0 0 0.0186  0.0087

Table 3.2: Mean relative error of localization Ej,. for deep sources (deep), mid-deep
sources (mdeep), surfacic sources (surf) and overall error of localization.

3.4.3.3 Conductivity Ratio Between the Brain and the Scalp

As mentioned previously, the conductivity ratio oy, /0 sk 1S N0t an established parameter
[56] [49]. Recent studies shows that a realistic conductivity ratio would be 1/15 [76]
whereas a ratio of 1/80 is commonly used [50]. Yet, it has to be taken into account when the
forward solution is built. We thus examine the localization ability of the different forward
model for a single dipole localization case. The error of localization (3.24) is computed
for every position of the grid and then averaged for every conductivity ratio. The brain and
scalp conductivity is taken equal to 1. The values of og,; for which the study is carried
out are {1/15; 1/30; 1/50; 1/80}. The inverse algorithm is SLORETA. The results are

shown in Fig. 3.3.
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Figure 3.2: error of localization with respect to the dipole position using (a), D P, Fo, (b),
D*Py Py, and (c), D* Py P, for the leadfield matrix construction. The dipole grid is displayed
in grid points the brightest color designs the highest error of localization.

3.4.4 Source Reconstruction Using a Realistic Mesh

Finally, the performance in source localization are tested with a nested mesh obtained using
simulated MRI data available from [20]. It consists of three layers standing for the brain,
the skull and the scalp with respectively 5996, 5996, and 13426 triangular cells. The dipole
grid that represents the potential solution lies in a layer that could be assimilated to the gray
matter, situated 6 mm below the brain external interface. It was obtained by rescaling the
brain layer. It contains 5996 dipoles oriented along the normal of the triangular mesh cells.

The conductivity ratio [oprain @ Tskuir © Oscalp) 1S taken equal to [1 : 1/15 : 1] as in [76].
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Figure 3.3: Mean error of localization with respect to the conductivity ratio for the different
forward method

Measures are simulated at 256 points placed on the scalp and correspond to the potential
generated by 3 active dipoles lying on the solution grid. Fig. 3.4a shows the considered
geometry configuration: the brain, the skull and scalp layers as well as the electrodes posi-
tions. The measures are obtained by solving the forward problem using the standard adjoint
double layer approach on the same geometry but with a denser mesh, composed of 43992
triangular cells in total. Fig. 3.4b shows the simulated potential on the brain surface. After
solving the inverse problem with the three described leadfield methods, the potential on
the brain is computed using the estimated source configuration. This potential that would
be obtained if the recovered source would be the underlying source is displayed Fig. 3.5b,

3.5a and 3.5c for the methods D* POP0, DP0OP(0 and D* POP1 respectively.

3.5 Discussion and Conclusion

3.5.1 Localization in noisy environment

The figure Fig. 3.1 shows that the mixed discretization method gives a lower error of lo-

calization than the standard formulations when the SNR decreases. This difference begins
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(b) (©

Figure 3.4: (a) : Three layers head with 256 electrodes, (b) and (c): simulated potential on
the brain and on the scalp using the true source configuration.

(a) (b) ©

Figure 3.5: Estimated potential on the brain using (a) D*P0P0, (b), DPOP0 and (c)
D*P0OP1

to appear when the SNR becomes smaller than 15dB. The SNR in scalp EEG can be very
low, [93] estimates that it can reach 0.08. In this context having a forward formulation

more stable in a noisy environment would be an asset for brain source investigation.

3.5.2 Influence of the Dipole Position

In section 3.4.3.2, the error of localization for all dipole positions of the grid has been
computed, when only one dipole was active at a time. Fig. 3.2a, 3.2c and 3.2b show the
distribution of this error on the dipole grid. It appears that, in average, for all dipole posi-
tions situated next to the boundary, i.e. at the brain surface, the active dipole is incorrectly
localized, with a minimum relative error of localization ranging from 2% to 12%. When
investigating the average error for three groups of dipoles : surface, mid-deep and deep

dipoles, we find that all the methods are able to localize a unique dipole situated in the
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“deep group”, and that the lowest error for surface dipoles is obtained when using the
mixed single layer. The mixed-discretization scheme is the method that gives the lowest
average error in total and for each group of sources. It then seems to be the best method to

compute, in this case, the leadfield matrix.

3.5.3 Conductivity Ratio

The mean relative error of localization was investigated for different conductivity ratio
between the brain and the skull. For all cases, the mixed single layer formulation showed
better performances. We also note that while the average error rises considerably with the
conductivity ratio for the double layer and mixed double layer formulation, the mean error

of localization is nearly constant for the mixed formulation.

3.5.4 Conclusion

This chapter assessed the effect of mixed discretization for the EEG forward problem in
solving the EEg inverse problem. The choice of this type of discretization is motivated
by the spectral properties of the involved operators. It is shown that for localizing dipole
sources close to the boundary, the mixed discretized double layer formulation is providing
a better accuracy. When studying the resistance to noise, it can be seen that the mixed
discretized formulation provides a lower localization error. Those results suggests that the
choice of mixed discretization in solving the EEG forward problem would allow to get
a better localisation ability in the case of single dipole localization. Results should be

extended to the case of multiple sources localisation.
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Chapter 4

A Proof of the Preconditioning Effect of

Calderon Strategies for Multilayered
Media

High resolution brain imaging necessitates to solve with a high accuracy the EEG for-
ward problem. This means that the mesh used to model the geometry of the head should be
very dense. Without any fast direct techniques, the high dimensions of the problem prevent
the use of direct solvers and iterative solvers must be used. The precision of the solution ob-
tained with an iterative solver as well as the rapidity of computation of the solution directly
depends on the condition number of the system matrix. The contribution of this chapter
is the introduction of Calderon preconditioning technique for multilayered media, and in
particular the head. This technique enables to get a stable condition number with the mesh
refinement by multiplying the system matrix with an operator which is spectrally equivalent
to its inverse. The chapter will show how this well-known technique in high frequency can
be extended to multilayered media for solving the Poisson’s equation associated to the EEG

forward problem.
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4.1 Multiplicative Preconditioning Techniques and Calderon
Identities

A common and efficient strategy to obtain high accuracy in solving an equation with numer-
ical techniques is to increase the number of unknowns. Indeed, in this case more degrees of
freedom are added both for describing the geometry and for expanding the solution and if
correctly discretized, we can prove that the discrete solution tends to the continuous solu-
tion when the mesh refinement parameter goes to zero. However, for large numbers of un-
knowns, without any fast direct technique, the solution of a numerical system Ax = b can
only be obtained with iterative solvers. Indeed, denoting with N the number of unknowns,
the complexity of a direct inversion is N whereas for iterative solvers, this complexity is
in the order of kN2, where k is the number of iterations. When using an iterative solver,
like conjugate gradient methods, the number of iterations necessary to obtain the solution
for a given accuracy depends on the condition number of the matrix [94]. The condition
number ~ of a matrix A is the ratio of its highest singular value \,,,, over its smallest
singular value A,

ATrlaw
K(A) = S (4.1)

This condition number usually depends on the mesh size. However, if it exists a symmetric

and positive definite matrix C such that
a(Cu,u) < (Au,u) < bH(Cu,u) 4.2)

with @ and b two constants independent from the mesh size then, xK(C1A) will also
be independent from the mesh size as can be seen using the Rayleigh quotient of A =

C12AC 12

N
3
S
8
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with @t = C'/2u we get

< (Au,u) (Au,u) ~
Amin(A) = min (Cu,u) < max (Cuu) Amaz (A). (4.3)

Hence, if C satisfies (4.2), then the system At = C Y2AC Y24 = C/2b has a
condition number independent of the mesh size, majored by b/a. This remains true for
A = C 1A since k(C~Y2AC1/2) = (C LA). It is very intuitive from (4.1) and (4.2)
that if it is possible to find a matrix C spectrally equivalent to A then x(C~*A) will be

independent from the mesh size.

4.1.1 Compact Operators

In a closed domain §2, with Lipschitz boundary I" and outward pointing normal 77, consider
the following differential equation

Lu=f (4.4)

where L is the differential operator, v is the unknown function and f the datum. We also
associate to (4.4) boundary conditions. The Green function associated to L will be denoted
by GG. As seen previously, in the introduction, we can associate to (4.4) an integral equation

given by the second Green identity [94]

u(z) = [ﬂG(:c,w’)yfu(x')daj’ - F%—G(x,x’)u(x')dx' —I—/QG(a:,x')f(x')dx' 4.5)

Vax € 2. It characterises u using only its boundary value vy, « and 7, u. This integral
equation gives rise to the integral formulation of the EEG forward problem when L is
identified with the Laplace operator A. For the following developments, we need to define

the integral operators [94]:

e the single layer operator S : H~'/2(I') — H'Y?(Q)

So(r) = /F Gl ) o(rVdr', 4.6)
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e the double layer operator D : H'/?(I') — H'/%(Q)
D¢@):z}3vgw¢mmwmﬁ (4.7)
e the adjoint double layer operator D* : H—'/?(T") — H~1/%(Q)
D*¢(r) = /Fﬁ.VG(r, o (r)dr’, (4.8)

e the hypersingular operator N : H'/?(I') — H~/2(Q)

Nmﬂ:ﬁv/ﬁvmnmmmmx (4.9)
r
with G(r,r') = mthat arise naturally from (4.5). We also need the following defini-

tion [1]

Definition 4.1. The spectrum o(T) of a bounded operator 7' : X — X' is the set of all
complex numbers A such that the operator AZ — 7' is not invertible on X; with Z the identity

operator.

Definition 4.2. The complex number A is an eigenvalue of T whenever there exist a non-
zero vector x (eigenvector) such that Tx = A\x. We define o, the point spectrum of T' such

that 0, = {\ € o(T") : Tx = Az for some = # 0}.

The set of all eigenvalues of a square matrix representing an operator in R (or CV)
coincides with the point spectrum of the operator in R (or CV) that consists of the eigen-

values of the matrix.

Definition 4.3. An operator 7" : X — Y between Banach spaces is called compact if T

carries norm bounded subsets of X to norm totally bounded subsets of Y.

It has the following properties
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Proposition 4.1. A bounded operator T' : X — Y is compact iff for every bounded se-

quence {x,} of X, the sequence {T'xz,} has a convergent subsequence in'Y'.

Proposition 4.2. If T' € L(x) is a compact operator then, for each € > 0 the set of all

eigen values of T with modulus greater than ¢ (i.e. the set {\ € o, : |\| > €}) is finite.

Proofs of the above properties can be found in [1]. It follows from proposition 4.2 that
the set of eigen values of a compact operator is bounded and that it accumulates at zero.

We now describe some properties of the integral operators defined above. The single
layer operator S is a compact operator of order —1 (acting like an integral), the condition
number associated to its stiffness matrix S is then proportional to 1/h [94], with h the
mesh parameter. Indeed, its highest singular value is stable while its smallest decreases
with h. The hypersingular operator N is an operator of order +1 (acting like a derivative),
this means that the smallest singular value of its stiffness matrix N is stable with the mesh
refinement while its largest singular value increases with 1/h [94]. Summarizing, x(S) =
O(1/h) and k(IN) = O(1/h), this means that none of the stiffness matrix of these operators
is well conditioned with respect to the mesh parameter. However, D and its adjoint D* are
compact operators [94], their spectrum is bounded and accumulates at zero. Their stiffness
matrix would be ill-conditioned if they were used alone. However, D and D* always appear
in second kind integral equation. Since their spectrum is bounded, the matrix associated
to the equation is always well conditioned. Indeed, the spectrum of the operator Z + D
or Z + D* will be bounded away from zero thanks to the identity operator. Moreover,
given that D and D* are bounded (by proposition 4.2), the spectra of Z + D and Z + D*
are also bounded. As a consequence, the associated system matrix is expected to be well
conditioned (provided that the discrete basis used to build the matrices has some properties,

as will be discussed in paragraph 4.1.3).

67



4.1.2 Calderon Identities

Applying the trace operators ;- and ~;"to the single layer potential Sq and the double layer

potential D, defined such that S : H-*2(I') — H'(Q), Sa¢(r) = [, G(r,

and Dq : HY2(T') — HY(Q), Doyp(r) = [0/ VG (r, 7' ) (r')dr', we get
% S0 = S
Yo Do= +iI+D
ViSe= F3I+D"
MDa=  —N

Taking the trace of (4.5) and choosing u L-harmonic (i.e Lu = 0), we obtain

_ —1
fyou:Syl_u—<TI+D)%_u

and
. 1 AN _
VU= <§I+D>ylu+N%u

In matrix form, this is equivalent to

You \ %I —D S Yo U
nu) N 3I+D" )\ yu
then we can write

Yu) (3L-D S Yo U
wu) NN 3THD )\

_(iI—D+D2+SN S —DS+SD* )(’y(;u

Y U

N—-ND+D*N 1I+4+D*4D”+NS

ro(r’)dr';

(4.10)
4.11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

)

By identification of the coefficients, we obtain the so-called Calderon identities [92]

SN:}LI—DQ

1 .
NS:ZI—DQ

DS = SD*
ND = D*N.
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The first two identities ((4.18) and (4.19)) can be used to build a well conditioned system
matrix : by multiplying the hypersingular operator N with the single layer operator S,(or
vice-versa), one can build an operator spectrally equivalent to an identity and thus the

discrete system associated to SN (or N.S) can be well conditioned.

4.1.3 Discretization

Solving integral equations obtained using the above operators, is carried out using nu-
merical techniques. This means that we will actually never face the continuous operator
AV — W but always its discrete version A, a square matrix which entries are given by
the duality product:

[Ali; =< 1, Ap; > (4.22)

with {¢r} = V), and {¢x.} = W] two suitably chosen sets of basis functions. When doing
this discretization as said in previous chapters, one must first ensure that V}, belongs to
the domain of A and that 1] is in the dual of the range of A [94]. Moreover, if A is
to be preconditioned with C™1, the set of basis functions {W;} = W), used to discretize
C~!: W — V to build C~?! should also be chosen carefully : the pairing connecting 1V,

and V}, must be stable [47]. Denoting with G the gram matrix associated to this pairing
[Glij =< 61,9, >, (4.23)
the previous idea can be formalized with the following theorem [47]

Theorem 4.1. Under the assumptions that

< Yy, Apy, >
sup [ < W, Adr > | > calle|| Yir € W (4.24)
$rEVi, || x|
< ¢, C 1y >
wp|¢k ¢k|>%4mnvmew (4.25)
rEVh l|%x]]
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|<?7bkvlpk>|
sup ——————

> callvil| Vo € Wy (4.26)
VeT, Al

and provided that dim(W),) = dim(T},), we have
K(GT'CT'GT'A) < ¢ 4.27)
with ca, co-1, cq and ¢y real constants independent of the mesh parameter h.

This shows that suitable sets of basis functions are also necessary to ensure good pre-
conditioning of a system matrix.
Now that the basic theory on preconditioning is set up, we can present the precondi-

tioning strategy for multilayer domains.

4.2 Preconditioning of Integral Equations associated to Mul-
tilayer Domains

We have previously presented the general strategy for preconditioning an operator A :
V(I') = W(I'), when I is made of a unique surface. We will now show that the same idea
can be extended to multilayer domains by considering a closed domain Q = UY_,(); with

Lipschitz boundary I' = 92 = UN | T"; where I'; = 9€;. The strategy will be the following:

e (i) Since the geometric domain is decomposed into different boundaries I';, we will
first show that if IC15 : Y — X and Ky : X — Y are two compact operators then

K= ( ICO ICOH ) : X @Y — X @Y is a compact operator.
21

e (ii) For our operators, S and N, we will build, using the Calderon identities, an
endomorphism C~'A : V(T') — V/(T') such that C™*A = aZ + K, where K is a
compact operator and « a real constant. This will show that the Calderon identities

(4.18) and (4.19) can be extended to multilayer domains.
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4.2.1 Compactness of the 2 X 2 block operator

The direct sum normed space is the cartesian product of the normed spaces X; X Xs... X Xy
equipped with the norm ||(z1, %2, ..., z,)|| = (X0, [|zi]|%,)"/? [1]. It is denoted with

X1 @ X,...® Xy. In particular, a norm in the space X @Y is given by (||z||%) + ||y|?)"/2.

Proposition 4.3. If C15 : Y — X and K91 : X — Y are two compact operators then

K= ( ICO IC012 ) : X @Y — X &Y is acompact operator.
21

Proof. Let {u,} be a bounded sequence in X @Y : ||u,||xey < ¢ with ¢ a real positive
constant. {u,} = {(zp,y,)} withz,, € X and y,, € Y.

|unl|xey < c

& [[(@n, yn)llxey < ¢

& [lzallk + [lyally <

< {x,} and {y,} are bounded in X and Y respectively (otherwise the above inequality
would not be true).

Using proposition 4.1, as ICy is compact and {y,,} is bounded, the sequence {K12y,}
has a convergent subsequence {12y, }, K12y, m l, € X & Ve > 0 IN such that
Vr > N ||Kpy, — L] <e
Then, consider z, bounded. By proposition 4.1 again, since K5, is compact, {/Co;2,.} has
a convergent subsequence { Ko 2, }, Koy m l, € Y & Ve > 03 N'such that
Vrr' > N || Koz — ||, < e
As a consequence, for the two subsequences {Ki2y,»} and {K9 2.}, we have, Ve >

0 3 N”(= maz(N, N')) such that Vrr’ > N”,

K12y7‘7"_lw||w < eand ||K21$‘m-/—ly| |y < €.
This remains true for ¢ = v/2¢ /2.

Then, for all {u,,} bounded in X @ Y, there exists a subsequence {u,, } = {@ppr, Y }
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such that Ve > 0 IN" such that Vrr’ > N”

| Kty — (é;) lxoy = |[(Kioyrr — lo, Kor@pr — )| | xay
= ([IK12yr — Lallx + [[Konzr — 4 |[5)"2
< ((V2¢/2)* + (V2¢/2)%)'/?
= (262 /4 4 262 /4)'/?
=€
(as V¢’ = v/2¢/2 > 0 IN” such that Vr1' > N”, ||Kio¥e — lo||x < € = v/2¢/2 and
1o — ||y < € = V2¢/2)
And so, V{u,} bounded in X @ Y, there exists a subsequence {Ku,, } that converges in

X &Y & K is compact, by proposition 4.1. O

By induction proposition 4.3 can be extended to N x N block operators since the sum

of two compact operators is compact. We then have the following result:

Proposition 4.4. The block operator K : X1 ® Xs... ® Xy — X1 D Xs... 8 Xy with 0 on
its diagonal and whose off-diagonal blocks IC;;, i # j are compact operators, is a compact

operator.
4.2.2 Calderon identities for multilayers domains

In this paragraph, we show that the Calderon identities (4.18) and (4.19) can be extended to
precondition the operators S : @1 | H(I;)™/2 — @~ H(I,) 2 and N - @, H([,)Y? —
@Y, H(T';)""/2. In the following, the operator Tj; will denote an operator T : X (T;) —

Y (I';), acting between two surfaces I'; and I';.
Proposition 4.5. For the block operators S : @Y, H(I',)™"?* — @Y, H(I',)V* and
N @Y, HT)Y? — @Y, H(T,)~\/? the following equalities holds
1
SN = Z_lI -K (4.28)

NS = iI — K, (4.29)
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with K - @, H(T,)Y? — @Y, H(T\)? and K* - @Y, H(L,) ™"/ — @Y, H(T;) "/
i=1 =1 =1 i=1

two compact operators.

Proof. We only prove (4.28) since the reasoning for (4.29) is the same exchanging S and
N. Let’s decompose the block operators S and A into diagonal blocks (subscript p ) and
non diagonal blocks (subscript np ):
S=5p+Svp
N = Np + Nyp
then

SN = SpNp + SypNp + SpNyp + SypNyp

Since the Green function is analytic away from the origin, S;;, ¢ # j has eigenvalues
which accumulate at zeros and is compact. By proposition 4.4, Syp and Nyp are compact
operators. Moreover, given that the product of two linear operators in which at least one
factor is compact is compact [92, Lemma 2.1.29], we have that SypNp, SypNyp and
SpNyp are compacts.We hence just need to study the term SpNp. Using the Calderon

identity (4.18), we have:

1 1
SiiNis = Z_LI“ — D% & SpNp = Z_LI — Dp?

where Dp is a block diagonal operator whose entries are given by D;; and is therefore

compact. Then
1
SN = 1I- Dp” + SypNp + SpNyp + SvpNyp

1
SNZZI—IC

with IC = Dp? — SypNp — SpNyp — SvpNap. As a consequence, K is compact as a

sum of compact operators. O
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4.3 Application to the Calderon Preconditioning of the EEG
forward problem

In solving the EEG forward problem, many integral formulations have been proposed. In
particular, the symmetric formulation presented in [54], shows a high accuracy with respect
to the other usual BEM formulations, like the double layer, the adjoint double layer [43]
and the isolated skull approach [96]. It is now implemented in many EEG softwares like
[77, 36, 97, 23]. However, different from other integral equations which are by nature of
second kind, the symmetric formulation is a first kind integral equation. This means that the
number of iterations necessary for the iterative solver to solve the matrix system associated
to the problem increases with the mesh refinement parameter. This could prevent the use of
this accurate formulation for high mesh density such as those that can be obtained directly
from MRI data which have hundreds of thousands of unknowns [3]. However, as a part of
his PhD work, Mr. J.E. Ortiz Guzman has proposed a Calderon formula to precondition the
symmetric formulation. The new theory developed in this chapter can be used to rigorously
prove the effectiveness of such an approach which will be briefly reported here for the sake
of the understanding. It should be noted that, while the theory proving the preconditioned
effect is one of the original contributions of this Thesis, the numerical results have been

obtained by Mr. J.E. Ortiz Guzman.

4.3.1 The symmetric formulation for the EEG forward Problem

In order to model the head media, we consider a three layer nested domain Q = | J?_, ©;
whose boundaries OI'; = €2; N §2;,; are Lipschitz and have an outwards pointing normal
77. The external domain is given by 2¢ = (). The considered geometry is depicted in
Figure 4.1. This geometry usually represents the brain, the skull and the scalp [43].

As we dealt with the EEG forward problem in the previous chapters, we recall here only

succinctly the main technical information that is necessary to present the preconditioner.
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Figure 4.1: Geometry under consideration.

For isotropic conductivities, the EEG forward problems reads [91]
oAV =V -j (4.30)

where o is the conductivity and j the current sources. The isotropic conductivity is assumed
to be piecewise homogeneous: in §2;, ¢ = ¢;. Furthermore, following [72], we model the
current sources with dipoles. We then have V - j = ¢; - Vd,., where g is the electric dipole
moment and r; is the position of the dipolar source. The following boundary conditions
[91]:

V],=0Vi<N (4.31a)

[07iVV], =0Vi < N (4.31b)

that enforce the continuity of the potential and of its normal derivative between the different
layers of the domain (2, assure the solvability of (4.30).

The fundamental solution associated to (4.30) is [94]

B 1
- Ar|lr — ||

G(r—1") (4.32)
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This is the Green’s function that should be used to derive the operators .S (4.6), D (4.7), D*
(4.8) and N (4.9) in this application scenario.

The symmetric formulation leverages on the existence of a harmonic function u such
thatu =V —wv;/0; in Q; and u = —v;/0; in R*\ §2;, where v; is the solution of (4.30) in an
unbounded medium. This is given by v;(r) = fQ f(r")G(r,r")dr'". The representation the-
orem combined with the boundary conditions (4.31a) and (4.31b) gives rise to two integral
equations [54]. They read:

0;11 (Ui—i-l)l"i - Ul-_l (M)p =D;;1Vicn — 2D Vi + D Vigr — Ui_lsi,i—lpz'—l
(4.33)
+ (07" + 03 Sipi — 071 Sii1pia

(Onvig1)p, — (&ﬂh‘)pi =0;Nii1Viey — (00 + 0i41) NiVi + 001N i1 Vi

i

(4.34)
o Dzi—lpi—l +2D5pi — DZ¢+1pz‘+1-

In the above equations, V; is the unknown potential on the surface I'; and p; is the jump
of its derivative accross the surface I';, p; = o; [IVV] ;- A detailed explanation on the
formulation is provided in [5].

Following the derivation of the integral equations, the numerical solution is obtained
within the usual framework of the boundary element method : each surface I'; of the ge-
ometry is discretized into Ny, triangles {tk}fil and N,, vertices {vk}fj:l On the surface
I'; the unknowns V; is discretized with patch basis functions Py, V; = Zf\h arPy; and the
second unknown p; is expanded with piecewise linear basis functions P, p; = va " b Py;.

The operators matrices we obtain are given by

[Dy;)1 =< Pox, Di;(Py) > (4.35a)
[Sijlt =< Pok, Sij(Fou) > (4.35b)
[Nijl =< Pug, Nij(Pu) > (4.35¢)
(D"l =< Pux, D;(For) > (4.35d)
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Note that the expansion and testing functions { Py, } and { P, } are in the domain and in the
the dual of the range of the operators (4.6), (4.7), (4.8) and (4.9). Finally, we obtain the

following system : Zx = b with Z usually given by

(o1+02)N11 —2D*1 —02N12 D*12 0

—2Dgq1 (0‘1_1+0'2_1)811 Di2 —0'2_1812 0
7 = —0aNaq D*21 (o2+03)Na2 —2D*22 —o3Na3 (436)

D23 —05 821 —2Da22 (02_14-03_1)522 Dos
0 0 —o3N32 D*32 (03+04)N33
and where
[X]gl_l = q (4373)
[x]o1 = by (4.37b)
[b]gk_l = —/ (8nvk+1 — 8nvk) POde (4383)
12
[blox, = / (ak_jlvkﬂ — akflvk) Pydr. (4.38b)
o

We are now equipped to present the application of the Calderon preconditioner the EEG

symmetric formulation.

4.3.2 Calderon Multiplicative Preconditioner

It is evident from (4.33), (4.34) that the integral equation associated to the symmetric
formulation is of first kind. This means that its system matrix (4.36) suffers from ill-
conditioning that can lead to the non-convergence of the employed iterative solver used
to compute the solution [8]. The analysis of the operators carried out in section 4.1.1
shows that the single layer operator S and the hypersingular operator N have a condition
number that increases with the inverse of the mesh length h. Since these operators con-
stitute the diagonal blocks of the system matrix Z, and that the off-diagonal blocks of the

matrix (made of the compact operators D;;, D;*j Sij» Nij cf sections 4.1.1 and 4.2) are
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smoother, the overall condition number of the matrix Z will increase with the mesh re-
finement. However, we have seen in section 4.2 that we can precondition the operators
S EBZL H(Ty)7V? — @fvﬂ H(T;)"? and N : @Z]\il H(T)'? — @f\; H(T;)7'/? us-
ing the Calderon identities (4.28) and (4.29). This property can be exploited to build a left
preconditioner for the symmetric operator Z.

Reorganizing the matrix Z permits to separate the contribution of each block operator.

(01+02)N11  —02Ni2 0 —2D*1q D*12
—02N2;1  (02+03)N22  —03Na3 D*2; —2D%2
7 — 0 —03N3zy  (03+04)N33 0 D32 (4.39)
—2D13 Di» 0 (o7 4031 )S11 -0y 'S1o
D23 —2D22 Das —o5 'Sa1 <02_1+U3_1)S22

Since the conductivity factors are constant, we can say that the mapping properties of the

matrix Z are equivalent to the mapping properties of the following block operator:

! N D*
7 = (D S> (4.40)
Then, multiplying (4.40) with
' = (D* /\/) (4.41)

we obtain:

c'z

:(SN+DD SD*+DS) (4.42)

DN +ND D*D*+ NS
Using the identities (4.28) and (4.29), we can deduce that SN and V'S are well condi-
tioned. The remaining terms, DD, SD*,DS , D*N, and D*D* are compact operators (as
product of operators in which one factor at least is compact). As a consequence, SN + DD
e 0 SD*+DS . .
and D*D* + N'S are compact as well as (D* N+ N'D 0 ) by using proposi-

tion 4.3. It follows that C"Z is well conditionned. In the implementation, we reorganized

the terms in C’ to match those of (4.36). The preconditioner is then given by

ciiSu cieDi c13S12 ciuDio 0 0 0
ca1 D7y N c3Diy  coalNyo 0 0 0
31591 €32D91 3352 c34D2p 35523 c36Da3 0
C = |caDs5 cioNaw cisD3y cualNoo ca5D35 cagNog 0 (4.43)
0 0 53532 Cs4D3p 55533 56 D33
0 0 ce3D3y cealN32 ce5Diy co6N33
0 0 0 0 :
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where the coefficients c;; are constant taking into account the conductivity and are the same
as in (4.36). To abide by theorem 4.1, the proposed Calderon preconditioner is discretized
in the dual of the range of the involved operators (this choice also allows to perform the

matrix multiplication correctly). This means that in (4.43), the operator matrices will be

given by
[Dyjli =< Por, Dvﬁj(ﬁll) > (4.442)
Sl =< Pox, Sij(Por) > (4.44b)
[Nl =< Pug, Nij(Pu) > (4.44c)
[D*;jlu =< Pu, D (Po > (4.44d)

where 150 and ]31 are respectively the dual patch basis functions and the dual pyramid func-
tions, defined on the dual mesh. Dual patch basis functions are the piecewise constant
basis functions defined on the dual mesh. This is also the choice that allows to perform the

desired matrix multiplication. The preconditioned system is then given by
CG'Zx=CG b (4.45)

where C is the matrix that corresponds to the discretization of the proposed preconditioner

C using (4.44) and G is the Gram matrix linking the standard and dual basis functions.

4.3.3 Numerical Results

The new Calderon regularized symmetric formulation proposed in this work has been first
tested on the canonical scenario of three homogeneous and concentric spheres of radii 0.8,
0.9, and 1 respectively. Indeed, in the case of homogeneous nested spheres, an analytical
solution is available as a reference [26, 106], this solution will be denoted with V,. ;. In
these simulations, a single dipole source is placed in (0, 0, 0.5) with a dipole moment of

(0, 0, 1). As a complement to these results, to validate the new formulation on a real case
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scenario, the new formulation has been tested also on a realistic head model obtained from
MRI data.

The first numerical experiments, whose results are plotted in Figure 4.2, shows that the
proposed preconditioner provides the same solution as the unpreconditioned formulation.
On this figure, we can also see that the symmetric formulation provides a more accurate

solution than the double layer and adjoint double layer formulation.

1
10 T T T
—0—Adjoint Double Layer
—A—Double Layer
—©—-Symmetric
= 400t Calderon Symmetric —,
£
L
o
=
)
© AL _
° 10 -
(14
102 © -
1 2 3 4 5 6 7

1/h

Figure 4.2: Relative error with respect to the mesh refinement. the average length of a cell
is given by h.

4.3.3.1 Condition Number Assessments

We performed another set of numerical experiments to check the efficiency of the Calderon
preconditioning technique. We used the same spherical three layers mesh and the source
configuration as in the previous experiment for different level of refinement of the mesh and
we compared the condition number of the system matrix. The results are shown Figure 4.3.
It can be seen that for all levels of refinement, the condition number of the preconditioned
solution stays stable whereas the condition number of the standard symmetric formulation

is increasing with the mesh parameter (as expected).
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Figure 4.3: Condition Number with respect to the mesh refinement.

4.3.3.2 Assessments on a MRI-obtained head model

The last simulation shows the performances of the Calderon preconditioner in a realistic
scenario. The mesh is obtained from MRI data using [77], it models the brain, the skull
and the scalp. The potential is computed in 256 electrodes. Figure 4.4 shows the computed
potential and the electrodes positions. The solution has been computed both with the stan-
dard symmetric formulation and the preconditioned formulation. The obtained potential is
exactly the same as can be seen in Figure 4.5. Figure 4.6 shows the convergence of the
residual error of the iterative solver (conjugate gradient square) with respect to the num-
ber of iterations. It can be seen that the Calderon symmetric approach converges 40 times
faster than the non-preconditionned symmetric approach. This proves the effectiveness of

the proposed Calderon preconditioner.

4.3.4 Discussion

This section proposes a Calderon preconditioner for the symmetric formulation of the EEG
forward problem. the proposed preconditioner allows to accelerate the computation of the

solution. However it should be noted that a trade off should be made between the time
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(a) Head model and EEG elec- (b) Calculated electric potential.

trodes.
Figure 4.4: MRI-obtained head model
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Figure 4.5: Validation of the new formulation via a potential comparison at the EEG elec-
trodes’ position (dipolar source).

necessary to build the proposed Calderon preconditioner and the gain in the computation
of the solution. The size of the matrix associated to the preconditioner is the same as
the size of the system matrix, therefore, the timing for building the whole preconditioned
system is doubled (the gram matrices are block diagonal matrices and their computation

is straightforward). The advantages of such a preconditioner may be more visible if a fast
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Figure 4.6: Convergence of the iterative solver for the preconditionned and not precondi-
tioned symmetric approach

solver is used when building the overall system. Indeed in this case, the time associated
to the building is less important and the crossing point, that is the size of the system from

which it is interesting to use the preconditioned system should be smaller.

4.4 Conclusion

In this chapter we have shown that the Calderon identities traditionally used in high fre-
quency problems such as in preconditioning the Electric Field Integral Equation can be used
in static propblems. The chapter also contributes to prove theoretically that these identi-
ties can be extended to multilayers media. The application scenario, in the framework of
solving the EEG forward problem demonstrates the efficiency of the proposed multilayer
Calderon preconditioner. Future work intends to apply the multilayer Calderon identities

to high frequency problems dealing with multi-compartments media.
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Chapter 5

Wire Integral Equations :
Preconditioning and Modelling of the
White Matter Fiber

A Calderon preconditioner is introduced for the wire Electric Field Integral Equation.
The idea of modelling wires with 1-D curves is extended to the brain. The chapter hence
also presents a new integral equation for the EEG forward problem to take into account

the anisotropy of the white matter fibers.

In modelling structures made of thin wires, the Electric Field Integral Equation (EFIE)
[33] can be simplified into a one dimensional integral assuming that the current is constant
in the azimuthal direction and that it flows parallel to the wire axis. The obtained equation
inherits the properties of the surface EFIE. It is ill-conditioned both with respect to the fre-
quency [22] (this phenomena is known as “low-frequency breakdown™), and with the mesh
parameter (“‘dense discretization breakdown”) since the two operators that compose the
EFIE have singular values that accumulates at zeros and at infinity [70]. Quasi-helmholtz
projectors, presented in [7], can be used to solve the low frequency breakdown for surface
meshes. The idea was very recently and successfully extended to 1-D structures in [87].
To handle the ill-conditioning due to the mesh refinement in 2-D structures a multiplicative

Calderon preconditioner have been proposed in [6]. The resulting integral equation has a
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condition number that is constant with the mesh refinement. As said in the previous chap-
ter, the idea behind Calderon preconditioning is to build an operator spectrally equivalent
to an identity using operators of “opposite derivative strength”. However, for thin wires,
it can be shown that the usual Calderon preconditioning technique cannot be applied [14].
The rational behind this failure is that the spectral properties of the EFIE operator in 1D are
not the same as in 2D. It can be shown that the 1-D EFIE operator has a spectral behavior
that is equivalent to the Laplacian’s one, see for example [14]. In other words, by losing
one dimension, the EFIE operator gained one derivative order. After setting up definitions,
we begin this chapter by studying the spectral properties of the wire EFIE. Special atten-
tion will be drawn to open curves. Indeed, in this case, using simply operators of “opposite
order” is not sufficient anymore to build a system matrix whose condition number is stable
with the mesh refinement parameter[63]. Taking into account the spectral properties of the
1-D EFIE operators in closed and open curves, a new Calderon preconditioning strategy is
proposed. This Calderon preconditioner also takes care of the extremities effect. To build
it, we used the modified single layer and hypersingular operators proposed by [51]. We
show that our preconditioner can achieves a growth of the condition number of the wire

EFIE in the order of O(log(h)) where h is the mesh parameter instead of O(h?).

5.1 Background on the wire EFIE

Let S denote the interface of a Perfect Electric Conductor (PEC) and n its outwards point-
ing normal. The considered geometry and notations are shown in Figure 5.1. When illu-
minated by an incident electromagnetic field, the continuity of the tangential component of

the total electric field gives the following equation
n(r) x E5(r) = —n(r) x E'(r) (5.1)

where E' is the incident electric field and E* is the scattered field. Using Maxwell’s equa-

tions the scattered field can be expressed in terms of scalar potential (1), vector potential
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(A) and angular frequency (w)

E°=—jwA—-VV. (5.2)
Using the Lorentz gauge
V- A+ jwueV =0, (5.3)
we obtain
E = —jwA— L VV. A (5.4)
WiLe

Figure 5.1: Description of the geometry for deriving the EFIE in the general case

Given that the vector potential is the solution of the Helmholtz equation (see [33] for

example), we can express it using the associated Green’s function,
A(r) = u/ G(r — ') J*(r')dr’ (5.5)
s

where J* are the surface currents created by the incident field and where the Green’s func-

tion is given by (1.18)

" dalr|

G(r) (5.6)

This allows to obtain the scattered field given the surface currents. The obtained integral

equation is known as the EFIE. Here, we assume that the considered PEC object can be

87



modelled by a thin wire. Under the assumption that the radius of the wire is small enough
with respect to the wave length, (a < 0.01\), the current can be assumed to vary only along
the wire direction. This means that the structure can be simplified in a three dimensional
curve. We denote this curve with I" and by () the tangent to the curve in 7. The curvilinear

abscissa will be denoted with ¢ (hence i(r) depends only on ¢ and we simplify the notation

~

as t(r) = #(t) = t). The geometry is described Figure 5.2. Since we assume that the

current is oriented along the wire J*(r) = %ﬁgr) with a the radius of the wire. Then using

(5.4), the tangential component of the scattered electric field, denoted E;, can be rewritten

as
o o N L o N (%
E} = —jwpu G(r—r')do dt’'— VV. G(r—r')db dt’ (5.7)
rJo 2T we rJo 2m
j 2 ](t,)i
< Ej = — {jw,u + —VV} / / G(r —r')dd———dt'. (5.8)
WE rJo 27
The EFIE for thin wire now reads
‘ ' It
E, = [jw,u + LVV} /K(r —r') (*) dt’ (5.9)
we r AT

where E! is the tangential component of the incident electric field, and where K (r) is the

kernel of the EFIE operator given by

K 1 2m e—ij(r—r) "
with
R(r—1') = +/(t —t)2+ p2 + a2 — 2pacos(d — 6) (3.11)

in the cylindrical coordinate system described in Figure 5.2, (r = (p, 0, 1)) if the wire is
straight or simply

R(r—1') =|r —1'|| (5.12)
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in general. Assuming that a is very small, K (r — r’) can be simplified to get the so-called

reduced kernel [33]:

K ) e—ikllr—r']] (5.13)
(r—1)= —-—7 .
|| — /]|
Two operators appear in the wire EFIE; the single layer operator
Sf(r)= /K(r — 1) f(t"dt, (5.14)
r
and the hypersingular operator
Nfr)= V/K(r — 1)V f(tdt'. (5.15)
r

Boundary conditions enforce that the current vanishes at the extremities of the wire (if I is
open). They read
I(or)y=o0 (5.16)

Remark 5.1. In the context of boundary element methods, the observation point r’ will

be the point in which the testing function is evaluated. For the singular terms, the reduced

eikllt—t']]

kernel then becomes K, (r — r') = -

. It is well-known that 1/7 is not an integrable

function in one dimension. This is circumvented by placing the testing functions inside the

eikV (t—t")2+a?

center of the wire. In this way, the reduced kernel becomes K, (r — r') = e
- a

But this term does not contain singularity. From this point, it becomes self-evident that the
EFIE operator in 1D with the reduced kernel cannot behave as the EFIE operator when the

support of the operators is a smooth 2D manifold.

Remark 5.2. The low frequency breakdown of the EFIE can easily be seen by writing the

EFIE operator such that
T=Ta+T) = jwusS + N (5.17)
wite

where it is manifests that the two operators 74 and 7, scale differently with the frequency

f=w/2m.
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Figure 5.2: Notations for the cylindrical coordinates in case of a thin wire

In order to assess the spectral behavior of the wire EFIE operator, the following section

analyses the spectral behaviour of those two operators for the two different kernels.

5.2 Analysis of the Spectral Behaviour

By computing the eigenvalues of the EFIE operator, [15] showed that the mapping proper-
ties of the EFIE operator with reduced kernel are approximately the same as the mapping

properties of —jwuZ + ﬁi—i thatis to say 7 ~ +jwuZ + w%eA, where A is the Laplacian

operator. We seek to elaborate this result rigorously.

We begin by studying the operators defined with the reduced kernel. The first of our
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operator is S that reads

Sf(r)= /FG<I‘, ') f(x")dr'
1

e—ij(r,r’) Ny
1 1 . 1 [ e dkRE—") _q
S - d / . / d /
Am Jr R(r — r’)f(r) r A Jr R(r —71’) J)dr

The second term on the right hand side of the above equation is continuous and has con-
tinuous derivatives. Therefore, it is a compact operator and it will not influence the mapping
properties of the S operator. We therefore restrict our study to the term S; = fr ﬁ f(rhdr'.

Let G]_(r) — m,
Definition 5.1. We define the Fourier transform F of a function f by F [f(z)] = f(£) =
f_Jr;C f(x)e 7% dx and its inverse F ! [f(g)} — % fj;o f(ﬁ)ejfxdf.

Let’s consider an infinite straight wire along the z—axis. In this case, S is given by

oo 1 / /
SE) = [ gt

&8 7(z) = % « £(2)

where * denotes the convolution. Then,

Sif(z) = F! [f {ﬁ} F[f(Z)]}

Let’s denote with ( the eigen values of the operator S;. To define the spectrum of S; we

are looking for ¢ such that

Sif=¢f
o [F[as] e e
& F | | FUC) = F 17(:)
1
el
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This shows that the eigen values of the operator S; are given by the Fourier transform
of its kernel (the Green’s function). Actually, this reasoning can be generalized to integral
operators defined with a kernel. We will apply it to the remaining operators in the following
of the discussion.

Reminding that the Green’s function G (r,7") = m is not integrable, we will not
be able to perform the testing of the equation of the self terms in the usual manner, see also
remark 5.1. In [33], this testing is performed in the centre of the wire. In this situation, the

kernel of the operators is given by

1
Cn= e (5.19)

To obtain this, it is sufficient to replace in (5.11) the observation point r = (p, 6, z) with
(0,0, z) while the source point, (where the currents are), lies on the surface of the wire, i.e

r’ = (a,#', 7). The Fourier transform of (5.19) is given by
F[Gri(2)] = 2K, (2a€) (5.20)

where K denotes the modified Bessel function of second kind of zero order. The spectral
index 1/h is equivalent to the Fourier variable £ and we are interested in the behaviour

when h — 0 i.e when £ — oo. The asymptotic expansion of K gives [2]

N 1 9 —225 )
Ko (2a8) ~ [ 70¢€ (1 T T6ac T 20(16ag)2 T 31(16a) T (5:21)

If a < & when & — oo, Ky(2a*¢) goes exponentially to 0. As a consequence, S is

compact operator. If a < h = %, Ky (2a€) is constant for all £, that is independent of the
mesh refinement parameter. In this condition, we expect S to be an identity.
We have N’ = VV - S. Let’s decompose it as we did for S,
N=VV-S§

< N(f(r)=VV- /F G(r,r") f(r")dr'

vy. L a1y [ g
AR e LA e e
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Figure 5.3: Graph of the modified Bessel Function of second kind of order zero, K,

The same reasoning as in (5.18) holds for the second term of the right hand side in the
above equation, since there is no singularity, it is compact. Denote with N; the singular
part of N, Ny f(r) = VV - [L. G(r, ") f(r")dr’". Therefore, on the considered infinite wire,

the Fourier transform of the kernel of IV; is given by £2F [G,1(2)], When & — oo,

e 25
€ Ko (2a8) 5\/ <1+16a5 (16a5) T 360 * ) (5:23)

which means that if a oc h, E&2F [G,1(2)] & 2. It follows that the maximum eigen value

of N will increase proportionally to 1/h%. This means that N will be an operator of order
-+2, in other words, equivalent to a Laplacian.

We now repeat the previous reasoning with the full kernel

I , 1 2w —]kR(r r)d9 524
(r—r)—g/ Rr—o) " (5.24)

It has been established that the singularity of this kernel is a logarithmic one [16], [53]. On

the infinite wire this gives

K(2) = K (2) — log (J2]) (5.25)
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Where K is a continuous function with bounded derivatives. In this situation, S becomes

Sf(z) = / (K\(z — #) —log (|2 — #|) — f(<)d2’

Ta

= [ K= = [og(ls =) (s

T

(5.26)

Where the first term on the left is compact. We then just need to study [, log (|z — 2'|) £ f(2')d=".

Given that F [log(|z])] = —27mv.06 — £, [100, 2.5], we get that the Fourier transform of

L
the kernel of the singular part of S is proportional to

@ (5.27)

which means that S is in the general case an operator of order —1. Multiplying by £2, we
deduce that V is an operator of order +1. However, if a is in the order of & then S will be
equivalent to an identity while N will be equivalent to an operator of order +2.

Summarizing, using the reduced kernel, on an infinite wire, assuming that a < h, S
maps from H~Y/2(T') to H~Y(T) and N : HY?(I') — H~%?2(T'). Observing that the
singularity appearing at the extremities of the wire are not present if the wire is infinite, or
that we can pull-back the real axis to a loop, this result can be extended to closed structures.
If ' is open, the Sobolev spaces to consider are slightly different. Indeed, the boundary
condition (5.16) that enforces the current to vanish at the extremities of the wire make that
the domain of 7 must be H'/2(I") which is the space of distributions whose extension by
zeros over a closed domain belongs to H'/2. Formally, for all Sobolev space of fractional
order s,

H*(0) = {f € H*(R) : suppf C O}
where O denotes the closure of the set O. We also have the following duality relations

H*(0)' = H(0)
(5.28)

~

H(0) = (0
Note that in case of closed domains, H**(0) = H**(0).
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5.2.1 Discretization of the EFIE

To solve (5.9) numerically using the boundary element method (as described in [33]), we

discretize I into N, segments {s;,} 1, and N, vertices {v; }1*,. We use as basis and testing

functions oriented hat basis functions A, = {Ag(r)} whose support 1, are the segments

5k = (Vk, Vg41) and Sp41 = (Vpp1, Vpy2) defined by

with zi(r) = ||r — v

p

\

Zk(r)i(r) ifr e sy
Ly,
1-— .
Mt(r) ifr € sp
)
0 elsewhere

(5.29)

, the distance to the first extremity of the segment, and [, = ||vg41 —

vg||, the length of the segment s;. We use uniform meshes, so that [, = h, the mesh

parameter, for all k. The boundary condition that states that there is no current flowing

outside the wire at the extremities is enforced by placing no basis function on those points.

Figure 5.4 presents the geometric definitions and the hat basis functions.

Figure 5.4: Hat functions A, used to discretize the unknown and to test the wire EFIE

We define the duality product as < f|g >= [i. f(r) - g(r)dr. Testing and expanding the

unknown with the hat functions, the EFIE equation becomes

Zx=Db

with Z the impedance matrix whose entries are given by [33]

2y = / A () - { {—jwu — LVV} / K(r,r")
Mm CU,LLE MUn
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dr’} dr

(5.30)

(5.31)



Lon = Za + Zo (5.32)

where
A (1
Za = jwp / A (1) - / K(m')ﬂdr'dr (5.33)
Hm Hn 47T
and
] ) /
Ty = ——— -VV .- K(r,r")——=dr'dr.
whe S,

Using integration by part and the fact that the function \; vanishes at the extremities of the

segment,

. Al
Zo =2 [ V- Am(r)V / K(r, )22 gy,
w’LLE Hm Hn 47T

The divergence can be put inside the integrand leading

Z@Z—L / V. )‘( ))dr'dr

WLE

<:>Z¢:—$ VA, /Krr <)d’dr (5.34)
€

In the presented numerical result, we used the reduced kernel (5.13). The singularity ex-
traction is carried out as in [33]. For the self terms in Z4 and Z,, the testing is done in
the center of the wire. In this situation, ||r — 7’|| = /(t — /)2 4+ a® and semi-analytical
integration can be done. We always assume that a << h, (we fixed a = 107%h,,,;,, were
homin 18 the smallest mesh parameter of all the numerical experiments). Elsewhere, the in-

tegration is performed using Gaussian quadrature. The right hand side of (5.30) is given by

b= / Am(7) - E'(r)dr (5.35)
Hm

and x is the unknown vector that contains the expansion coefficients of I(r')¢ in terms of
hat functions. Future investigations should include numerical results on the full kernel to

check the theoretical developments and draw conclusions.
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5.2.2 Numerical Results

A first test was performed to check that our implementation of the EFIE is correct in the
case of a thin straight dipole; since in this case the analytical solution is known [10]. The
impinging field has a frequency of 70.5M H z. The radius of the wire is set to 1 x 10~*m and
its length is 2 m. The current obtained using numerical and analytical approach are shown
in Figure 5.5. It can be seen that our solution matches the analytical solution. The relative
error between the computed currents and the theoretical currents is 3%. A similar test was
done in the case of a loop antenna and we obtained a relative error of 0.1% with respect to
the analytical solution in computing the radiated far field whose radiation pattern in shown
Figure 5.6. We also checked that the relative error for both situations was decreasing when

refining the mesh.

Current in a Half-Wavelength Dipole

0.012

T
—— Numerical Solution
— Analytical Solution

=
=
=
-]
T
|

0.004 [ 7

Current Amplitude
=
=
(=2
(=)
T
.

0.002 b

0 I | |
-1 -0.5 0 0.5 1

Curvilinear Abscissa

Figure 5.5: Simulated current and reference solution on a half-wavelength dipole antenna.

To confirm the results of the previous section, the condition number of the EFIE op-
erator 7 as well as the condition number of S and N, respectively denoted with kpr;z,
ks an ks are studied in the case of the two previous geometries. We see, as expected, in
Figure 5.7 that the condition number of 7 and N is increasing as well as the condition

number of S is the case of the straight wire. Both in the case of the straight wire and
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Figure 5.6: Radiation pattern of the loop antenna.

the loop, the condition numbers of the EFIE operator and of A/ grow like 1/h2. This is
checked figure 5.8 where we plot the square root of the curves of Figure 5.7 have been
rectified. However, the condition number of the S behaves differently in the case of the
loop and the straight wire. For the loop it seems to be an identity (its condition number
is stable with the mesh refinement) while in the case of the straight wire, the condition
number increases with the mesh refinement. When studying the behavior of its minimum
and maximum eigen value, Figure 5.10, we see that its maximum singular values is stable
with the mesh refinement while its minimum singular value decreases exponentially. This
behavior is typical for compact operator, as expected. In the same fashion, the study of the
singular values of the operator /" is conformed to what is expected: the maximum value of

N grows like 1/h? while its minimum is stable as can be seen Figure 5.9.

5.3 Proposed Calderon Preconditioner

In this section, we propose a Calderon preconditioner for the EFIE operator in the case

of thin wires. The Calderon preconditioner is built by seeking to construct an operator
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Figure 5.7: Condition Number of 7, S and N versus the spectral index 1/h for a straight
antenna (a) and a loop antenna (b).
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Figure 5.8: Condition Number of 7, S and N versus the spectral index 1/h for a straight
antenna.

spectrally equivalent to an identity, as explained in Chapter 4. We show that the presented
strategy allows to have a condition number that grows only with log(h) instead of /2 in the

case of open strutures. Numerical results corroborate the theoretical developments.

5.3.1 Theoretical Developments

Recall from section 5.2 that the condition number of 7 is controlled by the condition num-

ber of N. As a consequence, we seek to build an operator spectrally equivalent to the
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Figure 5.9: Maximum and minimum singular values of A with respect to the spectral index
1/h for a straight antenna.
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Figure 5.10: Maximum and minimum singular values of & with respect to the spectral
index 1/h for a straight antenna.

inverse of NV. Such an inverse will be of order —2. Lets call N this operator. Applying
it to the EFIE operator (without taking into account the factors showing the dependency to
the frequency), we obtain
N'T =NT'S+N W
SNIT=NT'S+1I
Since S is of order 0, N 'S will be of order —2. It is then a smoothing operator and is

therefore compact. It follows that both N ~'S and Z have a bounded maximum singular
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values. Since the singular values of a compact operator accumulate at zero, both the max-
imum and minimum singular value of N ~*7 will be bounded. As a consequence, N 17T
is well conditioned.

In two dimensions, the usual operators we deal with are [51]
Vf(r)=— / log(|r —r'|) f(r")dr', V: f[‘l/Q(F) — Hl/Q(F) (5.36)
r
and

WF(r) = d% /F log(|r — T’|)%f(7”')d'r”, W HY(T) — HYA(T) (5.37)

We have the following norm equivalence [63]

<u, Vu >=||f||5-1(T) VYue H 2 (5.38)

<, Wu >=||f|[j2(T) Yove H/ (5.39)

We can show that
<x,VV-r>=<V .2,V -x>= ||:L’||I§1(F)
and as a consequence of (5.39)
<z, W >=||z]|5: - (5.40)

Therefore, W? is equivalent to A" and v/’ = W. (This can also easily be seen by looking
at the symbol of the operators : the symbol of A is oy = &2 and the symbol of W is
ow = & therefore oyy2 = €2 = o). The equivalence V/N' = W means that an efficient
preconditioner for 7 can be obtained by building the inverse of W.

Let’s first consider the case of closed curves. If T is closed, 7 : H'/?(T') — H~3/%(T),
W HY2(T) — HY2()and V : H-Y2(I') — H'Y?(T). In this case, we have the
standard Calderon identities [95]

1
VW = ZIHW(F) - K3, (5.41)
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1
WY = ZIH_W(F) — K} (5.42)

with Kp and K7, the double layer and adjoint double layer operators in 2D which are
compact. The two equations (5.41) and (5.42) mean that V is a good preconditioner for VW

and vice versa. In particular, VAV < YW?V < T (r) and

where K = VSV is a smoothing operator of order —2, compact. Therefore VTV is a well
conditioned operator.

In the case of open curves, the duality relation between the Sobolev spaces degenerates
into (5.28), that depends on the extensibility of the considered Sobolev spaces by zero.
As a consequence, the identities (5.41) and (5.42) do not hold and the operator spectrally
equivalent to the inverse of WV is not given by V anymore. Preconditioning WV with V in
this case leads to a condition number that still grows with log(1/h) [63], and would not
work for preconditioning 7. In this situation, boundary effects must be taken into account,
as those operators present a singularity in 1/ V/d, where d is the distance to the end point
of the curve [65]. Rokhlin in [52] proposed a numerical algorithm to build the inverse of
W and V. It is only recently that [51] introduced explicit inverse of WV and V of for open

curves. On 'y = (—1,1) € R, they introduced the following modified operators

V)= /F log(%)ﬂr’)dr’, Vi HV2(Ty) — HY*(Ty) (5.44)

— d M(r,r") . d — ~
WE(r) = - /FO log(ﬁ)%ﬂr')dr', W HYV(Ty) — H Y4(Iy,). (5.45)
with
M(z,y) = % <(m — )2+ (V1—22++/1— y2)2) (5.46)
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They derived the following Calderon identities

VW =Ty p,) (5.47a)
WY =T o, (5.47b)
VW = Ty, (5.47¢)
WYV =Ty vory (5.47d)

Confirming their results, [48] showed that these identities can be extended to a general
curve I' and can be used for preconditioning W, W, VorVona general curve. Slightly
abusing, we keep the same notation for all the operators defined on I'y and I'. The latter
can be obtained using appropriate parametrization and lifting from I'y to I

We showed, (5.40) that if we can precondition V' then we can precondition 7 in a close
curve. If we do the same in an open curve, using the modified single layer operator, V we
obtain:

VTV = VSV + VNV. (5.48)

While ]78 17 is still a smooth operator, we have:

B2 2 B2 Y B2y S BV (5.49)

and we actually do not end-up with an identity, indeed, HY 2(T) is a proper subspace of
H'2(I") [63]. In the same paper, the authors show that it is the difference between the
H'Y2(T') and H'/2(T) that prevents to build a stable system matrix when preconditioning
on an open curve ¥V with V. The same situation is obtained here when preconditioning 7
with V and thus we can expect the same result : the proposed preconditioner should provide
a system matrix whose condition number grows with log(1/h). Numerical experiments

confirm this result. On-going work seeks to rigorously proof it.
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5.3.2 Discretization of the Preconditioning Operators

As explained in Chapter 4, paragraph 4.1.3, the discretization of the operators is also an
important step in preconditioning. We recall that the pairing between the basis used to
discretize the preconditioned operator and the preconditioner must be stable. In our case,
denoting with ®;, = {¢;} the set of basis functions used to discretize V and Vand A, =

{\;} the set of basis functions used to discretize 7T (as in paragraph 5.2.1) we must have:

< O, fr >
sup m 2 C]\[H)\kH V)\k € Ah (550)
PLEP ||>‘k||
(and, of course, dim(®;,) = dim(Ay)). Since we want to discretize V : H-V/2(I') —
H=Y2(T), ®, c H-Y2(T'). We select @, to be the set of (one-dimensional) dual patch

basis functions, indeed, [48] showed that this choice of functions provides a stable pairing

with Aj,. Denote with v; the mid-point of the segment s;,

[Viviga] ifi #1, N, — 1
{si} =1 [v11] ifi=1

[VNs—lva] ifi = NS -1
are the dual cell. Then the dual patch basis functions are defined as
lifr € s

¢i(r) =
0 elsewhere

. The dual mesh and the dual patches basis functions are shown in Figure5.11.

Figure 5.11: Dual mesh and dual patch basis functions ¢ used to discretize V and V. Hat
functions A, are shown in grey.

The stiffness matrix associated to ) and V are then respectively V and V such that

Vi = (Vor, ;) (5.51)

104



and

We denote with G the Gram matrix that links the two discrete basis F}, and ®,. Its entries
are given by

Then, in case of closed curves, the Calderon preconditioned system read
VG 'ZG'Vy =VG™'b (5.54)

and the unknown x is given by

x =G 'Vy (5.55)

In the following, we denote with Z,, the preconditioned system matrix, Z, = VG 1ZG™ 1V,

5.3.3 Numerical Results

We present several experiments that show the performances of the proposed Calderon pre-
conditioner. In particular, we study the spectrum and the condition number of the precon-
ditioned system matrix Z. for both open and close wire.The frequency is set to 125 MHz
and the mesh parameter / varies from 0.1 to 7.10~* m.

In the case of a single loop, Figure 5.12 shows that the proposed Calderon precondi-
tioner, (VG 1) achieves a stable condition number as expected by the theory. In the case of
an open curve, Figure 5.13 shows that preconditioning the EFIE matrix with the standard
operator ) is inefficient whereas the condition number of the EFIE matrix the provided by
the proposed Calderon preconditioner (using 17) is nearly stable with the mesh refinement
parameter. It provides a condition number that grows with log(1/h), as can be seen in Fig-
ure 5.13b, where the scale has been changed to a linear scale and the curve rectified.This

result is in accordance with the previous discussion. Indeed, the proposed preconditioner
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Figure 5.12: Condition Number of the EFIE matrix Z and of the EFIE matrix precondi-
tioned with V when the geometry is a loop, it can be observed that the condition number
of the preconditioned matrix is independent of the spectral index parameter 1/h.

can only limit the growth of the maximum value to O(log(1/h)) while the minimum sin-
gular value remains constant with h. This two properties are verified in Figure 5.14, where

the maximum and minimum singular values are plotted for different values of the mesh

parameter h.

—O0— EFIE without preconditioner 10
—— EFIE with the proposed preconditioner
EFIE preconditened with the standard operator V
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Figure 5.13: Condition Number of the EFIE matrix Z and of the EFIE matrix precondi-
tioned with V and V for a straight antenna (a). Figure (b) displays the condition number
kz, of the EFIE matrix preconditioned with V in linear scale. It can be seen that the pre-
conditioner is not optimal but limits the growth of the condition number to a logarithmic
one.
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Figure 5.14: Maximum and minimum singular values of the preconditioned system with
respect to the spectral index .

5.4 A New Integral Equation for the EEG Forward Prob-
lem that Models the White Matter fibers

Starting from the idea that for cylindrical and thin structure, the 3D geometry can be sim-
plified in a one-dimensional curve, we developed a new integral formulation for the EEG
forward problem. Indeed, several studies showed the influence of the anisotropic proper-
ties of the brain while performing source imaging due to the presence of fibers in the white
matter [11], [41], [42], [102], [104]. The anisotropic conductivity tensor can be derived
from the diffusion tensor MRI data (see for example [58] and references therein). Indeed
it has been shown [98] that the water diffusion tensor is linearly linked to the conductivity
tensor. Therefore, for each voxel of the magnetic resonance image, it is possible to estimate
the conductivity tensor. This information can be directly used in finite element methods to
compute the solution to the EEG forward problem. The information on the water diffusion
tensor can also be exploited to obtain the white matter fiber geometry through a tractogra-
phy process [66]. This results in a set of one dimensional curves that represent the white

matter fibers. This treatment is expected to lower the computational burden since only the
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layer surrounding the fiber and the fibers themselves have to be discretized. We assume
that the head media is represented with only one layer denoted €2 and contains N fibers f.
The boundary of the domain (2 is denoted with 0€) and its normal n is pointing outwards.
The isotropic conductivity of this layer is denoted o, while the anisotropic conductivity of
the fibers is denoted by o7.

We start from the EEG forward problem that reads
V.-oVV =V-J (5.56)

where, as usual, V' is the unknown potential, J are the source currents and & the conductiv-

ity tensor.

Add and remove cAV to (5.56), with c € R,

V-oVV +cV-VV —cV-VV =V.J (5.57a)
V-(cg—c)VV+cV-VV=V-J (5.57b)

cAV =V -J-=V-(6—¢cl)VV (5.57¢)

cAV = -V -[(6—c)VV — J] (5.57d)

AV =-V. F _CCIVV = %J] (5.57¢)

The equation (5.57e) is the Poisson’s equation with a source term equal to —f = —V -

[(6 —¢l) VV — J] /e Tts solution is given by the representation theorem [70]
Viry= [ G(r,/)o,vV(dr' — [ 9,G(r,»")V (" )dr' + / G(r,r") f(r")dr" (5.58)
o0 o0 Q

where (G is the Green’s function associated to the Poisson equation, i.e.

1 1

" dn || =]

G(r,1") (5.59)

Taking the trace 7, and given that the conormal derivative of the potential is continuous

at the boundary,

Vi(r)—1/2V(r) = — - oG (r,r" YV (r")dr' + /Q G(r,") f(r")dr" ¥r e 0Q (5.60)
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Replacing f with its expression and introducing ¥ = (7 —cI)6 ' and J, = 6VV , we
have

%CV(T‘) =—c [ O,G(r,7" )V (r')dr +/G r )W xS (r') — J(r)] dr' Vr € 09
20

1
& 50\/ =—c [ 0,G(r, T’)V(r')dr'—i-/ G(r, 7"V [x ()] dr'—/ G(r, " \NV'-J(r")dr'
o9 Q 0

(5.61)

The constant ¢ can be chosen as we want. Let’s take ¢ = o, the conductivity of the

medium surrounding the fibers. Then, (5.61) amounts to

1 al

5""‘/ = —0y , oL.G(r, 7YV (r')dr +Z/ (r, ")V - [xJy ()] alr’—/Q G(r,? )V J(r") dr’
(5.62)

Since oy is isotropic and o is constant along the fiber, we get

X = (01 — op)/oyl = kI, where o; is the conductivity along the fibers. Then, (5.62)

becomes

%abV:—ab aﬂ@G(rr dr-l—Z/Grr VeV /Grr W T (') dr!

(5.63)

Taking the gradient of (5.58), we obtain on the fibers, a second equation

Jo(k—=1)=a,VV ==V [ 0.G(r,\V dr+ZV GrrkVJ()d
ig) P

— V/ G(r, 7" )V' - J(r") dr’
Q
(5.64)
As a consequence, we end-up with two integral equations for the two unknowns V" and J,,.

To solve these two equations, we will use the boundary element method.
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5.4.1 Discretization of the Equations

The geometry presented here is made of a surface (0€2) and fibers (Uf-ifl f3), that we model

with cylinders as in [74]. The surface is tessellated into N, triangles {#;}2*, while the fibers

are discretized into N, smaller cylinder {c;}2*,. We assume that the fibers are thin enough

(their radius is in the order of the micrometer, while their length is overall comprised be-

tween 10 cm and some millimetres [72]) so that the current J,, only flows along the fibers’

axis. To take into account this supposition, the expansion functions for .J, will be the hat

functions A, defined in (5.29). The potential on the surface is discretized with patch basis

functions P, as defined in chapter 2. We hence have

and

Equation (5.63) is tested on the surface while (5.64) is tested on the fibers
arising is
Zx =r

with
a a] ;=9
X = where

assuming a dipolar source, V - J = ¢.V§,,,

u [u]; = / Pijq-VG(ro,r)/oydr
r = where b

v V], = / V- Aq - VG(ro,r) oy dr.

and

(D s
Z‘(N D3>
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where

Ub/ Pu(T‘)/ Py (r"0,G(ryr")dr'dr  ifi #j
[D] _ ti t;

17 1
O'b§/ POQZ-(r)dr ifi=y
t

)

[N],; = / %Ai(r) / Py(r")0.G(r,r")dr' dr
[S;l,; = / Pu(r / G(r, ")\ () dr'dr

| [D}]ij:/ /Grr XA ) dr

Note that the integral on the small cylinder c; are volume integrals. They read

v I
r)dr = (2,0 z,0 dzdfd (5.66)
/ dr [0,a] Y O€[—m,m] dr p ( p)p P

Assuming that the current is not varying along the radius, and the azimuthal direction,

N\

d N N
/Ci%)\i(r)g(r)dr—wa/dr)\l(z)g(z)dz (5.67)

5.4.2 Numerical Results

The reference solution for all the presented numerical experiments is a finite element
method computed with a commercial software, on a very refined mesh. It was also checked
that in case of isotropic conductivities, the solution provided by the software gives a relative
error smaller than 0.01% with respect to the analytical solution of [26].

We first verify that the proposed solution is able to handle the presence of one fiber
in the head. The layer representing the head has an isotropic conductivity of 0.33, it is
represented by a sphere of radius 1. To emphasize the anisotropic property of the wire, the
conductivity along the fiber is set 100 times higher than the conductivity of the media that
surrounds it. The fiber is a cylinder of radius 0.05, oriented along the z—axis; it is centered
in (0, 0, 0) and its length is 1.

Figure 5.15 shows that when increasing the number of unknowns, the relative error

of the proposed method with respect to the reference solution decreases, confirming the
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correctness of the approach. When we do not take into account the presence of the fiber,

the relative error increases with the number of unknowns.

0.065

—0— .
0.06} Proposed solution |

0.055}

0.045 1

Relative Error

0.04}
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0.031

0.025 1 L 1 L 1
100 200 300 400 500 600 700

Number of Vertices in the Mesh

Figure 5.15: Relative error when increasing the number of unknowns with respect to a
FEM solution in the presence of one fiber.

Another experiment was carried out in which 12 cylinders are put in the head media.
The conductivity of the brain is set to 1 while the conductivity tensor of the fibers is set
10 times higher in the direction of the fibers, as it is commonly admitted to be the case
in the white matter fibers [104]. The fibers have a radius of 0.05. The source is a dipole,
positioned in the centre of the sphere and whose moment is [1, 0, 1]. Figure 5.16a shows the
geometry. In this situation again, the proposed solution provides an accurate solution with
arelative error in the range of the first simulation (where there was only one fiber). We can

also see in Figure 5.16b that the relative error decreases with the number of unknowns
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(a) The white sphere represents the dipole. The colors (b) Relative error when increasing the number of un-
show the amplitude of the current on the wires. knowns with respect to a FEM solution in the pres-
ence of 12 fibers.

Figure 5.16: Simulation with 12 fibers in a one layer spherical head mesh.

5.5 Discussion

This section presents an integral formulation for handling white matter fiber anisotropy.
The proposed formulation is valid in a single layer domain containing three dimensional
curves. The size of the matrix depends on the size of the mesh used to model the ex-
ternal layer (containing N, vertices) and the size of the mesh representing the fibers (/V;
cylinders). Two integral equations are needed for finding the potential and the generated
currents in the fibers. The size of the matrix is then O ((N, + N,)?). The proposed for-
mulation has only been tested in simple cases and time estimates showed that the longest
time is spent in computing the terms [Dj‘]” Indeed these terms necessitates volumetric
integral on the cylinders. In our implementation, only the integral along the fiber was done
analytically. Efficient implementation and integration rules should be developed in order

to assess correctly the timings with respect to the size of matrices.

5.6 Conclusion

This chapter presented an analysis of the spectral behaviour of wire EFIE. This analysis

allowed to build a Calderon preconditioner for this equation. However the obtained pre-
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conditioner depends on the geometry of the antenna. For closed structure, the proposed
solution provides a constant condition number. For open structures, the Calderon solution
is not satisfying since it does not allow to build a matrix spectrally equivalent to the in-
verse of the hypersingular operator involved. This is due to the property of the considered
Sobolev spaces. It still provides a condition number that only grows logarithmically. The
numerical experiments presented confirm the theoretical developments. The last part of
the chapter introduced a wire integral formulation for dielectric media, namely the head.
The formulation can take into account the white matter fiber anisotropy using one dimen-
sional basis functions. It would however gained by being extended to multi-layered head

geometry.
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Chapter 6

A Fast Direct Solver for the EEG
Forward Problem

This chapter studies the impact of a fast direct solver for the EEG forward problem.
Such a solver enables to store the inverse of the system matrix in O(N'°) instead of O(N?)
in the case of pure direct solver (where N is the number of unknowns in the system). The
time complexity of the algorithm is found to be O(N?). Since the solution of the EEG
inverse problem requires many solutions of the EEG forward problem, the advantage of
a fast direct solver can be seen both in computing the solution of the inverse and in the
forward EEG problem. This chapter presents preliminary results on the impact of the use

of such a solver in forward modelling.

6.1 Introduction

Accurate solutions of the EEG forward problem necessitate high mesh density and the
resulting system has a high number of unknowns [3]. Without any direct fast solving tech-
nique, only iterative solvers can be used to compute the solution of the EEG forward prob-
lem. Denoting with N the number of unknowns and & the number of iterations needed to
achieve the desired accuracy, the cost of such a solution is in the order of & x N2. More-
over, since solving the EEG inverse problem requires many solutions of the EEG forward

problem, the cost of solving the inverse problem is directly proportional to the cost of the
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forward solution. There exist however many techniques such as multigrid, FFT, or Fast
Multiple Methods (FMM) that can accelerate the obtention of the solution i.e., obtain the
solution with a cost of O(N log(/N)). To solve the system, these techniques use iterative
solvers which build a sequence of vectors that converge to the solution. This approach has
been successfully applied to EEG in [55] for example. On the other hand, direct fast solvers
provide an alternative to obtain the solution. Instead of iteratively approximating the so-
lution, these fast solvers approximate the inverse of the system matrix. As a consequence,
they are deterministic and they have a great advantage when multiple right hand side vec-
tors are present, which is the case when building the leadfield matrix of the EEG inverse
problem. This chapter introduces a fast direct solver for solving the EEG forward problem.
The proposed fast solver is kernel free and achieves a complexity of O(N'-%). The numeri-
cal experiments presents preliminary and promising results, for the use of direct fast solver

in the context of EEG.

6.2 Inversion of Block Separable Matrices
In order to solve the following system
Ax =b, (6.1)

a fast direct solver seeks to construct an approximation S of A1, the inverse of the matrix
A, such that

IA"1 =S| < (6.2)
The approximate solution X is then simply obtained by matrix multiplication
x = Sh. (6.3)

The matrix S can be builtin a sparse format allowing for fast matrix vector multiplication.

In fast direct solver, S is built by exploiting low rank approximation. The possibility of
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leveraging on this approximation is due to the physical property underlying the building of

the system matrix.

6.2.1 Validity of Low Rank Approximation in the EEG Forward Prob-
lem

We seek to apply fast direct solver technique to the EEG forward problem when solved with
boundary integral equations. In solving Poisson’s problem (which governs the isotropic
EEG forward problem)

Ap=f (6.4)
with the boundary element method, we make use of the fundamental solution given by

Gr—r1')= ! (6.5)

dre v
Figure 6.1 shows the graph of this function. It can been seen that the decay is extremely
fast away from the origin. Actually this corresponds to the analyticity of the fundamental
solutions away from the origin. This means that there is a loss of information over the

distance.

(b)

Figure 6.1: Graph of the fundamental solution for the Laplace operator with a source in the
center. The graphs have been truncated since the peak goes to infinity.

In the boundary element method, the system matrix that is built to numerically solve
(6.4) is given by
[Z],; = (fi, Df;) (6.6)
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where D is an integral operator whose kernel is given by G as in (6.5) and { f;} is the set

of testing functions. The solution is then obtained by solving the following system
Zx =D. (6.7)

Given the analyticity of G(r) away from the sources, we can expect that the eigenvalues of
the off diagonal sublocks of the matrix Z will decay rapidly. This actually means that these
off diagonal blocks will have a low (numerical) rank. This can be visualized by referring to
Figure 6.2. We see that the interaction between the sources placed in the red square (in the
origin) and the observation points placed in the black square, (away from the origin), has an
amplitude that varies slowly; while the self interaction of the sources has a rapidly varying
amplitude. These interactions are obtained hierarchically and a low rank approximation
algorithm is applied to the blocks corresponding to the far interactions. This is the main

concept behind the studied fast direct solver.

10fy

n I L
-10 -5 0 5 10

Figure 6.2: Schematic description of the block interaction in building the system matrix.
The sources are represented by the red square while the observation points lie in the black
square.

6.2.2 Hierarchical Partitioning

The hierarchical division in blocks of the system matrix Z is achieved with an octree. For
didactic purpose we present how to build such a division with a quadtree. In handling 3D

structures, this is achieved with an octree but the principle remains the same.

118



A tree is obtain by recursive partitioning of the index vector of the mesh data. The
number of level L in the tree is given by the number of time the operation is performed.
The integers [ = 1,...L labels the levels of the tree. The root of the tree is the full set
of indices. Let I; be the initial set of indices, I; = 1,2, ..., N where N is the number of
elements. At each level, a subdivision of the sets of indices is performed. The process of
subdivion is continued for each interval until it contains a fixed number of elements n. A
node that cannot be split further is called a leaf of the tree. In a quad tree, a non-leaf node
7 has four children, o1, 09, 03 and o4 such that I, = I, U I,, U I,, UI,,; 7 is called
the parent of oy, 09, 03 and 04. These notions are illustrated Figure 6.3 that shows the
numbering of the indices in a fully populated tree. Note that the geometry usually does not
provide ordered indices. A mapping from the ordered indices obtained using hierarchical

partitioning to the indices in the geometry should be created.

6.2.3 Block separation of the System Matrix

With the previous notations, the system matrix Z can be separated into submatrices Z;; =
Zj, 1, The matrix is hierchically separated in blocks, with off diagonal blocks of rank r

when

e For each leaf nodes, 7 # 7/, the matrix Z, ,» admits the decomposition

ZT,T/ = UT ZT,T’ VT’
(6.8)
nxn nXr rxr rxn
e For the other non diagonal terms, at the levels [ = 1, ..., L — 1, the decompostion of
the submatrix , Z - is done with respect to its children:
’Z/Ul,a’l g017aé %O’l,O’é %0’170'4,1
ZT L= gag,ai %G‘g,o‘é gag,a’s %02,02 (69)
7 ZO’3,0'/1 ZO’3,O’§ ZUs,O’é Zag,crf1

ZU4,U’1 ZG‘4,U£ Zo’4,aé Zoz;,afl
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Figure 6.3: Two levels of a quad tree, showing the root of the tree, [, its children /5, I3, I4
and the leaf nodes {/ i}fif,. A partition of the indices is presented (b).

such that _
ZT,T’ - UT ZT,T’ VT’
(6.10)
4r x 4r dr xr rxr rxdr
At the first level, the matrix Z can thus be efficiently represented with
zH o 0 0 ul o 0 0 oz z® zZW viD o 0
4| 0o z% o o || o ul) o 0 zg) o oz :%1) o v o
0 o z{ o 0 o Ul o z z0 o D 0 o v
0 0 oz 0 0 o ul® z®»  zZl) oz o 0 0 0

—DW + 19182 NSAVA)
Using the previously presented tree, this means that

L
Z=DW ¢ Z ubOTOVO (6.12)
=1
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and it is sufficient for storing the matrix to know the diagonal blocks D, = Z(I,, I,) for
each leaf node, the basis for the columns Ug), the basis for the row Vg) and the interaction
between the children T\, This decomposition is typical of Hierarchically Off Diagonal

Low Rank matrices (HODLR) [62].

6.2.4 HODLR Matrix Construction

It is well known that the optimal approximation of rank r K/r of a matrix A is given by the

Singular Value Decomposition(SVD). In other words
mm<||A—Z(r||) —||A - A]| =0,y (6.13)

where A, is given by the truncated SVD of A. This is the procedure we would like to use to

build the basis U and V. However, direct application of the algorithm is expensive. For this

reason, we opted for the the method described in [62] to build the required factorization.
We seek to build the factorization with a rank r approximation of the off-diagonal

blocks of the matrix Z. We are looking for the factorisation of Z, ,,, 7 # 7' such that:

2w =7, =USV, (6.14)

We begin presenting the general procedure to obtain the approximate factorization of matrix

of rank 7. Denote with Z,, g this matrix block. The procedure is decomposed into six steps:
1. Build a random matrix €2 of size N x r
2. Sample the range of Z, g by forming
Y =7,59
3. Orthonormalize the columns of Y, which can be done using QR-decomposition. This
means, we need to find Q and R such that

Y = QR

121



By doing this we obtain an orthonormal basis for range of Z, 3.
4. Compute B = Q,"Z, 5, an 7 x N matrix.
5. Compute the SVD of B = UX,4V,
6. Get U, = Q,U

After this procedure, we built the factorization of rank r of the matrix block Z, s =
U,X.3V,. However this procedure necessitates to know the rank r of Z, 3 in advance.
Error estimates are necessary to select its optimal value. Moreover, the process described
is carried out in the context of low rank approximation, this means that the rank of Z,, s is
not exactly . Oversampling is necessary (build r + p random vector in the beginning) to
decrease the probability of failure. In our approach, we select p = 5.

To build the hierarchical decomposition of Z as in (6.12), we simply need to apply
the previous algorithm recursively, starting from the first (coarsest) level of the tree. The
diagonal blocks D) are not rank deficient and they need to be extracted by computing the

difference between Z and its off-diagonal blocks. The procedure is detailed in [62].

6.2.5 Inversion of the HODLR Matrix

Now that the hierarchical structure of the matrix Z is known, we can build its inverse

efficiently. The key point is the Woodbury formula [46]:
(D+UTV) '=D'-D'U(T'+VD'U) VD™ (6.15)

At the level L, the hierarchical decomposition of Z is given by

L
7Z=DW 4+ Z uOTOyvO

=1

L
&7 =DW (I +DO Y UU)T(”VU))

=1

(6.16)
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If we build the matrix U® = D" ™U®), then
-1
Z =DW (I +UWTEVE 43" INJ(“T”)V(”> (6.17)
=1
Denoting with Z(X) the matrix given by I + UEVTE V), then (6.17) becomes
-1
7 = DW (i(m +y ﬁ(l)T(l)V(1)> (6.18)
=1
And the process can be continued for each level of the tree, by factorizing out Z® at each

level and updating U® = Z® "U®. We then obtain the following factorization of Z

7 = DWWz zI-) 7@z (6.19)

The solution to equation (6.7) (and any system Zx = b where Z is a HODLR matrix) can

then simply be obtained by

r=7W"z@"  gl-)lzO @) (6.20)

that is by recursively applying the inverse of Z". Note that D) is a block diagonal matrix
of rank 7 and as a consequence computing its inverse depends only on the size of these
blocks, that is the size of the clusters in the leaves of the tree. The inverses Z07 =

~ -1
(I + U(Z)T(l)V(l)) are obtained by direct application of the Woodbury formula (6.15)

6.3 Numerical Results

We applied the presented algorithm to the EEG forward problem solved using the double
layer formulation. However since the presented algorithm is kernel free, this choice could
be different.

We rapidly recall the double layer formulation and the associated system matrix for

solving the EEG forward problem 1.8 using boundary element method. This formulation
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has been presented in Chapter 3, for more details the reader is also referred to [54]. Con-

sider a layered domain () = UfilQi whose interfaces are given by I'; = dq, N 0q,,. With
these notations, the double layer formulation reads
o; +0; al
ur, = ZTZH@y - Z(Uj+1 — 0;)Di;¢r, (6.21)
j=1
where D is the double layer operator:
DY(r) = / U(r"omG(r — r)dr', D - HY*(I') — HY*(I) (6.22)
r

and vr, is the potential computed on I'; generated by the dipolar source in an infinite
medium. The unknown potential on the interface I'; is given by ¢r,. Using the bound-
ary element methods, after discretization of the geometry into NV triangles and expansion

of the unknown with piecewise constant basis functions { Py, }2\*,, the system that arises is

Zx=Db (6.23)
with .
0; T 05 o .
—— (R Ryy) ifi =
[Z];; = (6.24)
— (O'j.H — O'j) <P02‘, DijPOj> Otherwise,
and

[0]; = (Pos, vy,)- (6.25)

The vector x contains the expansion coefficients.

6.3.1 Relative Error and Low Rank Approximation

The first numerical experiments was performed in a three layered sphere. It aimed at check-
ing that low rank approximation was valid for solving the EEG forward problem. The lay-
ered sphere contains 500 cells per layer. The obtained solution for high rank (r = 200) is
exactly the same as the solution provided by the standard double layer formulation without

any fast direct solving techniques as can be seen Figure 6.4.
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Figure 6.4: Comparison of the solution obtained with and without fast solver in the case
where a high approximation rank was selected.

In a second experiment, using the same mesh, the rank was gradually decreased from
700 to 5 and the obtained solution was compared to the analytical solution presented in
[106]. For each choice of rank approximation, the relative error was computed. The results
are shown in Figure 6.5. It can be observed that from rank 700 to 90, the relative error
is stable. This is in agreement with the assumption that the system matrix could actually
be approximated with a low numerical rank matrix. The figure displays also the necessary
memory for storing the HODLR decomposition of the matrix with respect to the chosen
rank. To summarize this experiment shows that by approximating the system matrix with
the proposed fast solver, the needs in memory can easily be decreased while keeping the

same accuracy.

6.3.2 Memory and Complexity of the Solver

To apply the described fast solver, it is necessary to estimate the optimal rank 7, that mini-
mizes the cost of the storing the matrix and that does not change the accuracy of the method.
To this aim, we repeated the previous experiments for two other meshes, a coarser mesh

with 320 cells per layer and a denser mesh with 1280 cells per layer. The results are shown
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Figure 6.5: Relative error of the solution obtained with the fast solver for different rank
approximations and associated memory requirements for storing the inverse.

in Figure 6.6. First note that, the denser the mesh, the more accurate the solution. This
experiments aimed at estimating the optimal rank for our problem. For each mesh we se-
lected as optimal the lowest rank for which the relative error is equal or smaller than the
relative error given by the highest rank. In this numerical experiment we also paid atten-
tion to the the memory needed to store the HODLR matrices as shown in Figure 6.7 and
the time for performing the inversion, displayed Figure 6.8. The results for the selected
rank are shown in table 6.1 (the experiment was performed for a fourth mesh with 888
cells per interface in order to confirm the results, but for clarity purposes in the figures the
associated curve is not shown). In table 6.2, we show the time that a conjugate gradient
(CGS) solver needs to solve the same problem. For a single RHS vector and the meshes
employed, it cannot be expected that the presented algorithm will be faster, since the time
for building the HODLR matrix is much longer than the time needed to get the solution
with CGS. However the direct inversion, once the HODLR matrix is obtained, is very fast
compared to the time needed to compute the solution with the CGS.

The previous experiment allowed to highlight the complexity of the solver. In com-
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Figure 6.6: Relative error of the solution computed with the fast solver with respect to the
analytical solution for different rank approximation and three different meshes.
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Figure 6.7: Memory requirements for building the HODLR matrix in computing the solu-
tion computed with the fast solver with respect to the analytical solution for different rank
approximation and three different meshes.

paring the memory requirements with respect to the number of unknowns for the optimal
ranks, we observe that it is in the order of O(N'%). This is shown in Figure 6.9 where the
data of table 6.1 is plotted with respect to the number of unknowns. The gain with respect

to storing directly the inverse of the matrix is confirmed by Figure 6.9. The curve showing

the computation of the necessary memory 2/3 displays a linear behavior.
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Figure 6.8: Time necessitated for building the HODLR matrix in computing the solution
computed with the fast solver with respect to the analytical solution for different rank ap-
proximation and three different meshes.

Number of unknowns | Optimal rank | Memory (kB) | Building Time (s) | Solving Time (s)
960 60 25004 27 0.077
1500 80 42320 76 0.13
2664 150 104204 909 0.37
3840 180 163916 4482 0.76

Table 6.1: Selected rank and associated memory requirements for storing the HODLR
matrix and the time necessary to build it for four meshes.

Number of unknowns | Time cgs (s)
960 0.12
1500 0.32
2664 1.51
3840 3.62

Table 6.2: Time for solving the EEG forward problem with the double layer formulation
and CGS.

6.4 Conclusion

This chapter presented a fast direct solver for the EEG forward problem. It confirmed
that low rank approximation was valid for solving the EEG forward problem and therefore
shows that fast direct solvers are of high interest in the context of EEG. The numerical

results show a memory cost of O(N'%) for the building of the HODLR matrix with the
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Figure 6.9: Memory needs for building the HODLR matrix with respect to the number of
unknowns (a). The second graph, on the right (b) displays the same curve rectified for a
linear scale.

proposed algorithm. The time needed to build such a matrix has also been shown. It has
been observed that for the small meshes for which the experiments were carried out, using
a conjugate gradient algorithm is faster (since in this case it is not necessary to build the
intermediate HODLR matrix). The gain in time could only be seen for denser mesh but
this would necessitate to build, in a faster manner, the interaction matrix, for example with
an Adaptive Cross Approximation (ACA) algorithm. However, the numerical experiments
showed that there is a clear advantage in using the presented fast direct solver in terms
of memory and time necessary to obtain the solution once the HODLR composition is
known. The preliminary work presented in this chapter aimed at introducing fast direct
solvers in the context the EEG source reconstruction. Future investigations will include the
implementation of a fast direct solver with linear complexity. The work seeks to impact

real time brain imaging with EEG in particular in the field of brain computer interfaces.
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Chapter 7

Conclusion and Future Work

This manuscript gathers three years of doctoral work on 1-, 2- and 3-D integral equations
for the modelling of the EEG forward problem. It started by recalling how from Maxwell’s
equation it is possible to derive the EEG forward problem. The treatment goes on by
presenting the boundary element method, the numerical technique that we chose to tackle
this specific electromagnetic problem. Indeed this technique permits to discretize only the
interface of media with different dielectric properties. As such, it is expected to decrease
the computational burden with respect to finite element method. It also has the advantage
of intrinsically presenting high accuracy.

In order to tackle the weakness of the existing integral formulations for solving the EEG
forward problem, namely the lack of anisotropy in their approach, two new integral formu-
lations were presented. The first proposed integral formulation leverages on an indirect
approach to build a harmonic function in each compartment of the head that has a different
conductivity tensor. This approach even if it requires two unknowns per surface has the
advantage that it can naturally deals with non nested geometries. This leads to the ability to
handle, through volume meshes, any inhomogeneous and anisotropic conductivity profile.
The proposed implementation naturally simplifies the geometry into surface mesh when the
conductivity is isotropic. In this chapter, we also took into account the mapping properties

of the operators by obtaining the system matrix with a mixed discretization. The efficiency
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of this type of discretization in solving the EEG forward problem was also assessed and
resulted to be favourable with respect to standard Galerkin discretization.

The second proposed formulation exploits the one-dimensionality of the white matter
fibers to take its anisotropy into account. Currently the formulation handles only fibers in
one layer. But the numerical results are satisfying and show that the simplification of the
fiber in one dimension curve seems to be correct.

Primary to the introduction of this second formulation, a spectral analysis of the wire
EFIE was proposed. This led to the development of a new Calderon preconditioner for this
equation. A Calderon preconditioning technique was also studied in the context of EEG.
The novelty here was to show that the Calderon identities in 2D and homogeneous media
often used in high frequency problems can be extended to multilayer media. This approach
was applied to the EEG symmetric formulation to confirm the theoretical developments.

A last chapter presented preliminary results on the application of a fast direct solver in
solving the EEG forward Problem. Using hierarchical partitioning of the system matrix,

we showed substantial acceleration of the solution of the forward problem.

The material presented in this manuscript opens several paths for future investigation:

e First of all, the assessment of the effects of the mixed discretization in the EEG
inverse problem could be extended to multiple sources localization. This comparison

could include the newly proposed formulations.

e Moreover, the proposed formulation for the modelling of the white matter fiber can
be extended to multilayer media to become more realistic. A merging of the two
proposed formulations can also be considered given the indirect nature of the new

surface anisotropic formulation.
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e The treatment on the spectral properties of the EFIE can be extended to theoretically
and rigorously prove the logarithmic behaviour of the condition number of the pro-
posed preconditioned system matrix. Moreover, since it is shown that this equation
is equivalent to a Laplacian operator, another efficient way to precondition it may be

to efficiently build the inverse of the Laplacian directly.

e Preconditioners for the EEG symmetric formulation can be useful to develop accurate
and fast solution of the EEG forward problem. Obtaining accurate solutions rapidly
is a considerable advantage if one is to develop real time applications. This solution
can then be merged with fast solver and utilized for example in inverse source based
BCI. In this context, it would also be of interest to develop a fast solver for the new

integral formulations.

e The technique for preconditioning multilayer integral equations could also be em-

ployed in the context of high frequency problems with multilayer dielectric media.

e The application of the fast solver employed in Chapter 4 could be used in the frame-
work of solving the EEG inverse problem. Such a tool could enable higher resolution

and faster EEG brain source reconstruction.
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Résumé

de potentiel fournies par un électroencéphalographie (EEG) nécessite de
résoudre le probléme cannu sous le nom de « probléme inverse de I'EEG
». La solution de ce probleme dépend de la solufion du « probléme direct
de I'EEG », qui fournit a partir de sources de courant connues, le pofentiel
mesuré au niveau des électrodes. Pour des modéles de téte réels, ce pro-
bléme ne peut éfre résolut que de maniére numérique. En particulier, les
équations intégrales de surfaces requierent uniquement la discrétisation
des interfaces entre les différents comparfiments constituant le milieu
cérébral. Cependant, les formulatfions intégrales existant actuellement ne
prennent pas en comptent I'anisotropie du milieu. Le fravail présenté dans
cette these infroduit deux nouvelles formulations intégrales permeftant
de palier a cefte faiblesse. Une formulafion indirecte capable de prendre
en compfe I'anisotropie du cerveau est proposée. Elle est discrétisée a
I'aide de fonctions conformes aux propriétés specirales des opérateurs
impliqués. L'effet de cette discréfisation de type mixe lors de la recons-
truction des sources cérébrales est aussi éfudié. La seconde formulation se
concentre sur I'anisofropie due a la mafiére blanche. Calculer rapidement
la solution du systéme numérique obtenu est aussi frés désirable. Le
travail est ainsi complémenté d'une preuve de I'applicabilité des stratégies
de précondifionnement de type Calderon pour les milieux mulficouches.
Le théoréme proposé est appliqué dans le contexte de la résolufion du
probléme direct de I'EEG. Un préconditionneur de type Calderon est aussi
introduit pour I'équation intégrale du champ électrique (EFIE] dans le cas de
structures unidimensionnelles. Finalement, des résultats préliminaires sur
I'impact d'un solveur rapide direct lors de la résolution rapide du probléme
direct de I'EEG sont présentés.

Mots-clés : EEG, méthode des éléments de frontiére, probléme direct,
équations intégrales, préconditionement
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Ahstract

Electroencephalography (EEG) is a very useful tool for characterizing
epileptic sources. Brain source imaging with EEG necessitates to solve
the so-called EEG inverse problem. Its solution depends on the solution
of the EEG forward problem that provides from known current sources
the potential measured at the elecfrodes posifions. For realistic head
shapes, this problem can be solved with different numerical techniques.
In particular surface infegral equations necessitates fo discretize only
the inferfaces between the brain compartments. However, the existing
formulations do not fake into account the anisotropy of the media. The work
presented in this thesis infroduces two new integral formulations fo tackle
this weakness. An indirect formulation that can handle brain anisotropies
is proposed. It is discretized with basis functions conform fo the mapping
properties of the involved operators. The effect of this mixed discretization
on brain source reconsfruction is also studied. The second formulafion
focuses on the white matter fiber anisotropy. Obtaining the solution to
the obtained numerical system rapidly is also highly desirable. The work is
hence complemented with a proof of the preconditioning effect of Calderon
strategies for multilayered media. The proposed theorem is applied in the
context of solving the EEG forward problem. A Calderon preconditioner
is also introduced for the wire electric field integral equation. Finally,
preliminary results on the impact of a fast direct solver in solving the EEG
forward problem are presented.

Keywords : EEG, Boundary Element Method, Forward Problem, Infegral
Equations, Preconditioning
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