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Résumé étendu :  

 
Les métamatériaux sont des structures artificielles avec une microstructure optimisée qui ne sont 

pas trouvés dans la nature, conçus pour avoir des propriétés spéciales qui répondent aux besoins 

dans l'industrie, en particulier l'aérospatiale, le génie maritime et l'industrie automobile. 

L'explosion de l'intérêt pour les métamatériaux, tels que les mousses, les matériaux treillis en 

treillis et le matériau de grille, est due à l'augmentation spectaculaire de la capacité de 

manipulation par rapport aux propriétés et à la résistance mécaniques, aux capacités d'absorption 

des ondes sonores, aux propriétés dispersives des ondes mobiles pour l'isolation thermique et 

acoustique Propriétés. 

Le concept des métamatériaux a d'abord été proposé par Veselago pour le champ d'ondes 

électromagnétiques. Il a prédit que chaque milieu ayant une permittivité négative et une 

perméabilité négative doit avoir un indice de réfraction négatif. Il est sans doute intéressant de 

pouvoir concevoir des métamatériaux pour contrôler, diriger et manipuler les ondes sonores, les 

soi-disant métamatériaux acoustiques. Le contrôle de la propagation des ondes sonores s'effectue 

principalement par des valeurs négatives des paramètres constitutifs: module de masse β, densité 

de masse ρ, rapport de poison et également par chiralité. La densité et le module massique sont 

les analogues des paramètres électromagnétiques, respectivement la permittivité et la perméabilité 

dans les matériaux à indice négatif. 

L'une des caractéristiques les plus intéressantes dans les métamatériaux acoustiques est la 

génération de phénomènes d'atténuation des ondes: dans certains intervalles de fréquence, les 

ondes ne peuvent pas se propager à travers les périodiques mais sont atténuées rapidement et 

complètement au sein des cellules périodiques. La gamme de fréquences correspondante 

constitue l'intervalle de bande de fréquence. 

Par conséquent, de nombreuses activités de recherche ont favorisé la création artificiellement 

d'écarts de bande en construisant des métamatériaux acoustiques avec des valeurs négatives des 

paramètres constitutifs, par exemple en ajoutant des résonateurs locaux dans les structures 

(périodiques): résonateurs à anneaux fendus pour μ négativité, résonateurs Helmholtz Pour un 

module négatif et un résonateur à membrane pour une masse dynamique négative. 

L'objectif général de la thèse est de développer des modèles et des outils pour la prédiction du 

comportement acoustique des structures périodiques et des métamatériaux. Les questions 



scientifiques examinées dans ce travail comprennent l'impact de la dissipation et de 

l'amortissement interne, l'analyse des effets d'échelle dus à la microstructure existante et l'impact 

de grandes déformations sur la propagation des ondes. Le but ultime sera de concevoir et tester 

des matériaux d'architecture et bio-inspirés avec des propriétés dynamiques et acoustiques 

spécifiques aux petites longueurs d'onde, en s'appuyant sur des modèles homogènes de 

continuum. 

L'analyse de la propagation des ondes dans les matériaux périodiques 2D et 3D a été réalisée en 

tenant compte des effets d'échelle microstructurale et du comportement viscoélastique des 

poutres, en s'appuyant sur une méthode d'homogénéisation spécifique des structures discrètes 

pour construire un milieu continu de substitution. Deux stratégies différentes pour 

l'enrichissement du continuum effectif ont été envisagées, soit un milieu micropolaire et un 

milieu du second gradient. L'analyse dynamique de réseaux fibreux aléatoires a également été 

faite en 2D. La propagation des ondes linéaires et non linéaires dans le réseau représenté par 

milieu continu  a été analysée en deux parties successives dans la thèse. 

Notre contribution aborde deux questions importantes: l'impact de l'enrichissement du  continuum 

efficace sur les courbes de dispersion et la propagation des ondes a été analysé pour les matériaux 

de réseau 2D et 3D, en considérant le milieu micropolair et le milieu du second gradient. Cette 

méthodologie a été spécialement appliquée aux méta matériaux montrant un comportement 

auxétique, qui montrent un gap de bande partielle amélioré à basse fréquence. Nous analysons 

dans l'impact de l'amortissement des ondes sur les caractéristiques de dispersion des réseaux 

périodiques, qui sont modélisés sous forme des structures périodiques. La bande de fréquence et 

le taux d'amortissement sont calculés pour différents réseaux répétitifs 2D et 3D, basés sur la 

réponse homogène de l'architecture de réseau initialement discrète, modélisée sous la forme des 

poutres viscoélastiques de Kelvin-Voigt. Trois de ces réseaux (hexagonal réentrant, diamant 

chiral, hexachiral) sont des métamatériaux auxétiques, puisqu'ils présentent un coefficient de 

poisson négatif. Les comportement effectives élastique et visqueuse des structures périodiques 

sont calculées  sur la base de la technique d'homogénéisation discrète. Dans le cas 3D, une 

application sur le textile est présenter en calculant aussi le coefficient de transmission et en 

étudiant l'influence de temps de retardation sur les courbes de dispersions. 

 



Nous analysons, dans une deuxième étape,  la dispersion des ondes élastiques dans des réseaux de 

faisceaux périodiques basés sur des modèles de second gradient obtenus par l 'homogénéisation 

du réseau initialement discret, en s'appuyant sur la méthode asymptotique discrète étendue 

jusqu'au deuxième gradient du déplacement. Les faisceaux de réseau ont un comportement 

viscoélastique décrit par le modèle de Kelvin-Voigt et le modèle de viscoélasticité du second 

gradient homogénéisé reflète à la fois la topologie du réseau initial, l'anisotropie et les 

caractéristiques microstructurales en termes de ses paramètres géométriques et micromécaniques. 

Les modèles de continuum enrichis avec les gradients d'ordre supérieur du déplacement et de la 

vitesse introduisent des paramètres caractéristiques de longueur qui tiennent compte des effets de 

microstructure au niveau mésoscopique. Une étude comparative des relations de dispersion et des 

évolutions du rapport d'amortissement des ondes longitudinales et de cisaillement a été réalisée 

pour quatre réseaux (le réseau de diamant chiral, les réseaux classiques et réentrants et le 

pantographe). Le modèle développé permet d'analyser à la fois les effets de l'amortissement et 

l'échelle de longueur interne à travers les gradients de déplacement du second ordre sur les 

caractéristiques de propagation des ondes. On observe une augmentation importante de la 

fréquence naturelle due aux effets de second ordre. Pour le réseau pantographique, la vitesse de 

phase pour les modes longitudinal et de cisaillement est identique et n'est pas influencée par la 

direction de propagation de l'onde. Les résultats obtenus montrent globalement que le réseau du 

pantographe présente les meilleures caractéristiques acoustiques.  

L'analyse dynamique des milieux fibreux aléatoires a été présenter dans cette contribution. Afin 

de contourner la complexité de l 'exécution de calculs dynamiques à l' échelle microscopique du 

réseau fibreux aléatoire, nous développons et identifions des modèles de "Couple stress" et du 

milieu du seconde gradient comme des milieux continus efficace au niveau mésoscopique des 

fenêtres d 'analyse afin d' analyser les effets de taille de ces réseaux sur leurs propriétés 

dynamiques. Les propriétés mécaniques statiques qui sont à la base de l'analyse dynamique sont 

calculées grâce à des simulations de EF effectuées sur des fenêtres d'analyse soumises à des 

conditions de limites mixtes permettant de capturer les modules efficaces classiques et non 

classiques. Les propriétés acoustiques sont capturées par les diagrammes de dispersion et les 

tracés des phases; Nous analysons l'influence sur les propriétés dynamiques de trois grandes 

quantités d'intérêt, à savoir la longueur de flexion de la fibre, la taille de la fenêtre d'analyse et la 

densité des fibres. 



 La deuxième question importante est l'analyse de la propagation d'ondes non linéaires dans des 

réseaux répétitifs soumis à des changements de configuration sous  grandes charges cinématiques 

appliquées et reflétant des non-linéarités géométriques dans certains cas et dans des autres la non 

linéarité matériel du au fragilité des matériaux. Dans la seconde partie du travail, un schéma 

incrémental pour la mise à jour de la fréquence et de la vitesse de phase en fonction de la 

déformation appliquer au structure a été développé, en considérant successivement des matériaux 

de réseau répétitif 1D, 2D et 3D basant sur la méthode de Linstedt-Poincaré. Il incorpore une 

mise à jour de la fréquence et de la vitesse de phase des ondes de propagation en fonction de la 

densité effective et de l'état de déformation finie du continuum efficace utilisé comme support de 

substitution pour le réseau répétitif initial. La déformation appliquée est montrée avoir des effets 

significatifs sur la fréquence d'onde et la vitesse de phase. L'influence de la densité effective sur 

la relation de dispersion et les diagrammes de bandes sous l'application d'une déformation 

incrémentielle sur la cellule d'unité de réseau est représentée. Un aspect original préconisé dans le 

présent travail est la dérivation de la méthode de perturbation dans un contexte 2D pour des 

structures périodiques non linéaires couvrant des non-linéarités géométriques et matérielles; En 

basse fréquence, la méthode est basée sur les propriétés effectives du milieu continu de 

substitution, en utilisant la méthode d'homogénéisation. En plus haute fréquence, une analyse sur 

la structure périodique est menée en utilisant la méthode de perturbation. Une comparaison entre 

les deux méthodes permet de valider la méthode d'homogénéisation en basse fréquence. 

Nous analysons la propagation d’ondes non linéaires dans des structures périodiques discrètes, en 

considérant successivement des situations 1D, 2D et 3D. L'analyse des ondes est réalisée sur la 

base de la construction de la densité d'énergie de déformation effective des structures périodiques 

dans le régime non linéaire, dont la cinématique intègre la déformation de Green-Lagrange. Le 

milieu continu non linéaire obtenu est du second gradient et il présente deux modes de 

propagation : un mode subsonique évanescent qui disparaît au-delà d’un certain nombre d'onde 

critique et un mode supersonique caractérisé par une augmentation de la fréquence avec le 

nombre d'onde. Dans le cas de faible non-linéarité, un mode supersonique se produit et les 

courbes de dispersion se situent au-dessus de la courbe de dispersion linéaire. Pour une non-

linéarité plus élevée, l'onde passe d'un mode supersonique à un mode subsonique évanescent et 

l’onde ne passe plus pour certaines valeurs du nombre d'onde. Une diminution importante de la 

fréquence se produit pour les modes subsonique et supersonique lorsque la structure devient 



auxétique, les modes longitudinaux et transversaux étant très proches. L'influence des paramètres 

géométriques du réseau sur les relations de dispersion est analysée. 

Nous avons également construit des milieux hyperélastiques par des tests virtuels reposant sur la 

méthode d'homogénéisation à la base de cette thèse et nous avons obtenu différents types 

d'équations de propagation d’onde (équations de Burgers et de Boussinesq) et de solutions (ondes 

de choc, ondes solaires et ondes harmoniques planaires) dont les propriétés acoustiques ont été 

étudiées. 

Nous analysons les propriétés acoustiques des faisceaux microstructurés comprenant un matériau 

de réseau répétitif subissant des changements de configuration conduisant à des non-linéarités 

géométriques. La loi constitutive effective est évaluée successivement comme un continuum non 

linéaire de grade 1D efficace de premier et second ordre, basé sur un schéma incrémentiel 

entraîné par la contrainte écrit sur la cellule de l'unité de référence, en tenant compte des 

changements de la géométrie du réseau. Les équations dynamiques du mouvement sont ensuite 

écrites, conduisant à des relations de dispersion spécifiques. L'équation de Burgers non visqueux 

est obtenue comme équation de propagation d'onde spécifique pour le continuum effectif du 

premier ordre, alors que l'équation de Boussinesq est obtenue en considérant un continuum 

efficace de gradient de déformation. La présence d'un terme d'ordre du second gradient dans 

l'équation non linéaire du mouvement conduit à la présence de deux modes différents: un mode 

subsonique évanescent pour une non-linéarité élevée qui disparaît au-delà de certaines valeurs de 

nombre d'onde et un mode supersonique pour une non-linéarité faible. Cette méthodologie est 

appliquée pour analyser la propagation des ondes au sein de différentes microstructures, y 

compris les hexagones réguliers et réentrants et le motif textile à armure simple. 

La recherche présentée dans cette thèse apporte les contributions originales suivantes : 

• Une méthodologie générale pour analyser les effets de dispersion dans les réseaux de poutres 

périodiques comportant des effets de microstructure, basée sur la construction d'un milieu 

homogénéisé du second gradient ; 

• Analyse de la propagation des ondes dans les milieux architecturés dissipatifs, prenant en 

compte également les effets de microstructure; 

• Calcul des caractéristiques de propagation des ondes dans des milieux fibreux aléatoires basés 

sur des milieux effectifs du second gradient et des milieux effectifs micropolaires ; 



• Analyse de la propagation des ondes des milieux continus non linéaire construit par 

l'homogénéisation de la réponse de réseaux répétitifs non linéaires; 

• Outils d'analyse numérique efficaces pour évaluer les effets de dispersion non linéaire dans les 

réseaux de poutres périodiques ; 

• Méthode générale de perturbation pour les non-linéarités géométriques pour l'analyse de la 

propagation des ondes à des fréquences plus élevées dans des réseaux non linéaires. 
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1.1 Overview 

Metamaterials are artificial structures with an optimized microstructure that are not found in 

nature, designed to have special properties that meets the needs in industry, especially aerospace, 

marine engineering and automotive industry. The explosion of the interest in metamaterials, such 

as foams, lattice truss materials and grid material, is due to the dramatically increased 

manipulation ability over mechanical properties and strength, absorption capacities of sound 

waves, the dispersive properties of traveling wave for thermal and acoustics insulation properties.  

The concept of metamaterials was first proposed by Veselago [1] for the electromagnetic wave 

field. He predicted that each medium with negative permittivity and negative permeability shall 

have a negative refractive index. It is undoubtedly of interest to be able to design metamaterials 

to control, direct, and manipulate sound waves, the so called acoustic metamaterials. Control of 

the propagation of sound waves is mostly accomplished through negative values of constitutive 

parameters: bulk modulus ȕ, mass density ρ, poison ratio and also via chirality. The density and 

bulk modulus are the analogs of electromagnetic parameters, respectively permittivity and 

permeability in negative index materials. 

https://en.wikipedia.org/wiki/Sound_wave
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Bulk_modulus
https://en.wikipedia.org/wiki/Mass_density
https://en.wikipedia.org/wiki/Chirality_%28electromagnetism%29
https://en.wikipedia.org/wiki/Bulk_modulus
https://en.wikipedia.org/wiki/Permittivity
https://en.wikipedia.org/wiki/Permeability_%28electromagnetism%29
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Fig. 1.1 Periodic structure composed of a repetitive unit cell 

One of the most attractive features in acoustic metamaterials is the generation of wave 

attenuation phenomena: within some frequency intervals, waves cannot propagate through the 

periodic but are attenuated quickly and completely within the periodic cells. The corresponding 

frequency range forms the so-called frequency band gap. 

Therefore, a lot of research activities have fostered on creating band gap artificially by 

constructing acoustics metamaterials with negative values of the constitutive parameters, for 

instance by adding local resonators within the (periodic) structures: these include split ring 

resonators for ȝ negativity, Helmholtz resonators for negative modulus and a membrane 

resonator for a negative dynamic mass. These local resonators have significant effect on the 

frequency band gap and allow exploring the desired band gap in the low frequency regime. The 

review article by Hussein et al. [2] presents a thorough history of acoustic metamaterials. In 
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recent years, the synthesis of novel acoustic metamaterials with negative Poisson’s ratio (defined 

as the negative of the ratio between transverse and longitudinal strains in uniaxial elastic loading) 

has been developed. In contrast to conventional materials, these so-called “auxetic” 

metamaterials contract in the transverse directions when compressed uniaxially. The auxetic 

behavior of the structure has significant effect on the absorption energy and also on the band gap. 

It turns out that the constitutive parameters like effective density and bulk modulus can be 

adjusted by modifying the microstructure in man-made materials in order to get partial or full 

band gaps; there also in nature periodic systems that have great ability to adjust and enhance their 

performances and specially the frequency spectrum. The microstructures inspired from nature but 

which are then modified by man to produce repetitive networks has a great potential in acoustics. 

Examples of such natural and artificial periodic networks include fibrous reinforcements, 

repetitive structures used in civil engineering, polymeric foams, trabecular bone, and the 

filamentary network of biological membranes, as illustrated on Fig.1.1. A specific naturally-

occurring periodic system is the hexagonal honeycomb structure constructed by various bee 

species. Honeycomb is one of the most important structures in periodic composites for its ability 

to form complete band gaps [3]. At larger length scales, periodic structures that respond to 

entirely different frequency ranges appear in many engineering structures (railroads, aircraft 

structures, buildings, bridges). Only within the last forty years have researchers began to explore 

the unique system dynamics of these materials in depth [4]. It turns out that the ability to 

completely reflect incident waves at some frequencies (band gaps) while allowing others to 

propagate (pass bands) is a universal feature among periodic materials Fig.1.2. 

 



  

20 

 

 

 
Fig. 1.2 Full Band gap in periodic structures. 

1.2 Motivation of the work 

The general objective of the thesis is to develop models and tools for the prediction of the 

acoustic behavior of periodic structures and metamaterials. The scientific issues considered in 

this work include the impact of dissipation and internal damping, analysis of scale effects due to 

the existing microstructure, and the impact of large deformations on wave propagation. The 

ultimate goal will be to design and test architectured and bio-inspired materials with specific 

dynamic and acoustic properties at small wavelengths, relying on homogenized continuum 

models. 

1.2.1 Effect of damping 

The existing analyses in the literature of the propagation of elastic waves within periodic 

structures and metamaterials mostly deal with non-damped systems, and few works treat damped 

structures [5-7]. The analysis of the dispersion relations for dissipative periodic lattices having 

the attributes of metamaterials is an actual research topic raising the interest of researchers in the 

field of wave propagation phenomena. The effect of damping on the dispersion features is very 

important, as shown in recent studies devoted to composite materials [8-11]. 

Studies of the propagation of elastic waves in damped media started more than 40 years ago with 

an analysis of damping in infinite periodic structures by Mead [12]. From this early period, 

studies considering partial aspects of the effect of viscous damping on the band structure 
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appeared in the specialized literature; see [8] and references therein, without however providing a 

detailed analysis of the effects of damping on the dispersion band structure.  

In a second stage, the impact of damping on the band structure of infinite periodic crystals was 

studied, considering either free wave propagation (for impulsive loading), or time harmonic wave 

propagation (in case of a forced harmonic loading); an overview of the works considering these 

two situations is presented in the recent contribution of Wang et al. [13]. For free wave 

propagation, the wavenumber is a real number indicative of propagating models without taking 

into consideration the geometrical attenuation, while the frequency is a complex number, in 

which the imaginary part measures the attenuation in time due to the presence of damping.  

In [13], the authors analyze the propagation of elastic waves in acoustic metamaterials, and show 

the dispersive and dissipative effect of viscosity on the complex band structure and transmission 

spectra.  

We analyze as a novel aspect the impact of damping on the dispersion features of periodic 

dissipative lattices, taking into addition the impact of an auxetic behavior on wave propagation. 

The band diagram structure and damping ratio shall be evaluated for different repetitive lattices, 

based on the homogenized continuum response of the initially discrete lattice architecture, 

modeled as Kelvin-Voigt viscoelastic beam elements. 

The impact of the microstructure on the dispersion relation will be accounted for by enhancing 

Cauchy continuum in two different ways. A first strategy is the consideration of additional 

rotational degrees of freedom in the context of an effective micropolar continuum obtained by 

homogenization of viscoelastic periodic networks, a second strategy by incorporating additional 

higher-order gradients of the displacements in the context of second gradient continuum. 

1.2.2 Microstructural effects adopting higher order media 

Scale effects due to the presence of a microstructure play an important role in the design 

and acoustic properties of metamaterials. Many advanced theories and models have been 

proposed to study wave propagation problems accounting for non-locality and microstructural 

effects in materials. One category of approaches is multiscale homogenization techniques, which 

compute asymptotically the solutions of the wave equations involving multiple spatial and 

temporal scales, to capture the long-term response of the homogenized response. A lot of  works 

in this direction include contributions of Mindlin [14–16], Aifantis [17–20] in connection with 

the higher-order strain theories, which enhance the classical continuum theories by considering 
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higher order gradients of either the displacement or strain fields, accompanied by internal length 

scales [21, 22]. Different homogenization techniques have been proposed to build continuum 

descriptions of discrete materials [23, 24]; an extended list of references and an overview on 

gradient elasticity theories applied in dynamics can be found in recent works [25–30]. Following 

another strategy, micropolar theories incorporate additional rotational degrees of freedom, and 

have been developed by Eringen and co-workers [31, 32], a subclass of models being the couple-

stress theories [33–36]. No classical theories have proven successful in dynamic problems of 

wave propagation in beams and half-spaces [37–38] by removing singular behaviors (like 

discontinuities or singularities of the fields) inherent to classical theories and showing their 

ability to capture the expected size and wave dispersion effects specific to the simultaneous 

existence of several lengths scales.  

1.2.3 Microstructural effects adopting higher order displacement gradients 

The presence of homogenized models based on classical Cauchy-type elasticity theory is able to 

provide realistic predictions of many effects arising from small scales, amongst of them wave 

dispersion. Classical theories based upon the sole first order displacement gradient lack indeed 

internal length parameters, characteristic of the underlying microstructure. This explains the 

success of gradient-enriched theories in capturing microstructural effect on the macroscopic 

behavior of materials, by including high-order gradients associated to internal lengths 

representative of the microstructure. 

Gradient elasticity theories constitute an extension of the classical equations of elasticity by 

incorporating additional higher-order gradients of the displacements. Many theories based on an 

enrichment of the classical elasticity framework by higher order gradients have been proposed in 

the past to overcome deficiencies of classical elasticity [39-40] and plasticity theories [41] in 

describing both static and dynamic phenomena, including size effects, strain and stress fields in 

the neighborhood of singularities [42-43] and wave dispersion in dynamics [44-45]. 

Much research has been devoted to model static and dynamic problems arising from the various 

developed gradient theories; all obtained results showed an enhanced stiffness concomitant to the 

increase of the gradient coefficients, see e.g. [46] and references therein. Note that different 

homogenization techniques have been proposed to build gradient elasticity continuum models of 

discrete materials [47]. 
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Generalized continuum theories have been shown to offer an attractive alternative for capturing 

dynamic behaviors overlooked by classical elasticity, especially dispersion relations. 

Applications of gradient elasticity in dynamics have fostered extensive research [48-50]. In [51], 

the dynamic behavior of periodic lattice materials is investigated using an equivalent higher-order 

continuum model obtained by the homogenization of the equations of motion. Considering 

dynamic aspects and especially wave propagation phenomena, the impact of the microstructure in 

heterogeneous materials on the dispersive propagation of elastic waves was first recognized and 

the analyzed in seminal paper [52], who proposed several non-local continuum models to capture 

the dispersion relation of planar waves. It has however been proven by experiments that most 

waves are dispersive, that is, each wavenumber travels with a different phase velocity. This 

explains the success of gradient-enriched theories in capturing dynamic behaviors overlooked by 

classical elasticity. 

A detailed comparison between the dispersive characteristics of various simplified models of 

gradient elasticity can be found in [53].  

The analysis of wave propagation in periodic beam networks made of viscoelastic beams of type 

Kelvin-Voigt enriched by second order gradient models, obtained by the homogenization of the 

initially discrete network shall be exposed, relying on the discrete asymptotic method extended 

up to the second gradient of the displacement.  

1.2.4 Wave propagation in random fibrous media 

As mentioned in very recent contributions [54], the dynamics of periodic fiber networks has 

recently raised a lot of interest, whereas the study of wave propagation in random fibrous 

networks has not deserved yet the attention of researchers. Although fibers networks are often 

subjected to dynamical loadings like vibrations, most of the works have indeed been devoted to 

the analysis of their static behavior. We will use generalized continuum theories at an 

intermediate mesoscopic level in order to address the issue of size effects related to the random 

fibrous microstructure; those theories have been extensively used to explain size effects for a 

wide class of materials, but not for random fibrous networks to our knowledge. This constitutes 

one original aspect advocated in the present work. Real materials such as biological membranes 

and tissues often exhibit a number of important length scales, which must be included in any 

realistic model. 
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1.2.5 Effect of the structure nonlinearity on the dispersion curve 

The propagation of elastic waves in a linear framework has deserved a lot of works in the 

literature, whereas only a few authors analyzed so far wave propagation in nonlinear media. The 

incorporation of nonlinear aspects of wave propagation in structures is necessary whenever large 

deformations occur [55-58], but it remains a considerable challenge nowadays. Two types of 

nonlinearities may be present in a broad sense, which can be classified as material nonlinearities 

and geometrical nonlinearities [59]. The propagation of nonlinear waves in periodic structures is 

accompanied by a number of new phenomena that are different and can never be observed for 

linear media. The presence of a nonlinearity in periodic structures results in the dependency of 

the wave propagation, phase and group velocities upon the amplitude of the wave; this 

phenomenon deserves the name amplitude dependent dispersion relation. It opens new 

possibilities for a passive tuning of the dispersion band structure through an amplitude-

dependency of propagating waves, thereby going beyond a mere control of the dynamic and 

acoustic properties of repetitive structures by the design [60] or by application of an external 

stimulus.  

This entails that solutions of the wave propagation equations are much more complex compared 

to harmonic plane solutions of the linear wave equations: nonlinear periodic structures support a 

variety of wave solutions depending on wave amplitude, waves interactions, and the type of 

nonlinearity; one can for instance mention solitary wave solutions for Boussinesq type equation, 

and shallow water waves for Burger's equation [61-67]. 

The effect of a pre-stress or pre-strain on wave propagation in homogeneous anisotropic media 

has raised the interest of many authors but it is still an important challenge to study the effect of 

preexisting finite elastic deformations on wave propagation. The initial deformation must be large 

enough to change the geometry of the medium, since an infinitesimal initial deformation would 

not affect the properties of the material based on the superposition principle valid for small 

deformations. The incremental effective properties of pre-stressed homogeneous media 

undergoing large deformation have been analyzed in [68, 69], wherein the authors put some 

restrictions on strain energy sufficiently enough to allow elastic waves to propagate within the 

material. 

We analyze in this thesis the propagation of nonlinear waves in homogenized periodic nonlinear 

networks, considering successively 1D, 2D and 3D situations based on a homogenized continuum 
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of the initial repetitive network. The obtained nonlinear effective constitutive law of Cauchy type 

shall be enriched by second order gradient terms to account for microstructural effects. This will 

be the basis for analyzing the impact of large deformations on wave propagation. An incremental 

scheme for the update of the frequency and phase velocity of the homogenized medium has been 

developed to compute modifications of the existing band gaps under applied deformation, 

considering successively 1D, 2D and 3D repetitive network materials. 

1.3 Organization of the thesis 

The thesis is divided into two parts, the first part dealing with wave propagation aspects in a 

small strains context, which is then extended to the nonlinear setting. This document is organized 

as follows.  

In Chapter 2, we compute the dispersion relations for dissipative 2D periodic lattices having the 

attributes of metamaterials modeled as viscoelastic beam-lattices taking into account the 

microstructural effects by higher order medium. In Chapter 3, we extend the previous analyses to 

3D viscoelastic periodic structures, and study the impact of wave damping on the dispersion 

features. Chapter 4 deals with the computation of the dispersion of elastic waves in periodic beam 

networks based on second order gradient models obtained by the homogenization of the 

microstructure. The dynamical analysis of random fibrous networks modeled on the basis of 

couple stress and second gradient effective continua is exposed in Chapter 5. 

The second part of the thesis deals with the nonlinear effects on wave propagation.  

The influence of large pre-strain on the propagation of acoustic waves is detailed in Chapter 6, 

whereby an incremental scheme for the update of frequency and phase velocity of the computed 

homogenized medium is developed for 1D, 2D and 3D structures successively. In chapter 7, we 

analyze nonlinear wave propagation in homogenized 2D nonlinear second order gradient 

continuum; a Boussinesq type wave equation is formulated, the solutions of which are 

characterized. Chapter 8isan extension of the method presented in chapter 7 to 3D repetitive 

networks, selecting 3D textile plane weave as an application of the proposed methodology. We 

analyze in Chapter 9 the acoustic properties of microstructured beams including a repetitive 

network undergoing configuration changes leading to geometrical nonlinearities. Finally, we 

conclude the thesis in Chapter 10 by summarizing the achievements and limitations of the work, 

and describe several directions with promising opportunities for continued work. 
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2. Chapter 2:  Micropolar dissipative models for the 

analysis of 2D dispersive waves in periodic lattices 

 

Summary 

 

The computation of the dispersion relations for dissipative periodic lattices having the attributes 
of metamaterials is an actual research topic raising the interest of researchers in the field of 
acoustics and wave propagation phenomena. We analyze in this chapter the impact of wave 
damping on the dispersion features of periodic lattices, which are modeled as beam-lattices. The 
band diagram structure and damping ratio are computed for different repetitive lattices, based on 
the homogenized continuum response of the initially discrete lattice architecture, modeled as 
Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral diamond, 
hexachiral lattice) are auxetic metamaterials, showing negative Poisson’s ratio. The effective 
viscoelastic anisotropic continuum behavior of the lattices is first computed in terms of the 
homogenized stiffness and viscosity matrices, based on the discrete homogenization technique. 
The dynamical equations of motion are obtained for an equivalent homogenized micropolar 
continuum evaluated based on the homogenized properties, and the dispersion relation and 
damping ratio are obtained by inserting an harmonic plane waves Ansatz into these equations. 
The comparison of the acoustic properties obtained in the low frequency range for the four 
considered lattices shows that auxetic lattices attenuate waves at lower frequencies compared to 
the classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of 
harmonic waves over the entire Brillouin zone, and the hexachiral lattice presents better acoustic 
properties than the reentrant hexagonal lattice. The range of validity of the effective continuum 
obtained by the discrete homogenization has been assessed by comparing the frequency band 
structure of this continuum with that obtained by a Floquet-Bloch analysis. 
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2.1 Overview 

Architectured materials, and especially repetitive network materials made of structural elements 

like beams, constitute a wide class of structures having the capacity to filter waves in certain 

directions and frequency range. The dynamic response and wave propagation properties of 

periodic lattices and structures have raised numerous studies especially in aeronautics, for the 

objective of reducing or absorbing vibrations, shock and sound in structural components [1, 2]. 

The mechanical response of such networks has fostered a lot of research activity in the literature, 

but the evaluation of their dynamical and acoustic properties, especially in the high frequency 

domain, remains a scientific challenge [3-9].Materials [10, 11] structures [1, 2], and devices [12] 

exploiting spatial periodicity are involved in a growing number of areas, such as ultralight 

architectured materials [10, 11, 13], phononic crystals [14-22],[8, 5] or acoustic metamaterials [3-

7] and [23-25]. These structures raised in the recent years a considerable interest [26], most of the 

research works concentrating on the conception of materials and structures having a periodic 

microstructure in order to get complete sound propagation in a certain frequency range, called the 

spectral band gap (a frequency band gap in which waves are forbidden irrespective of 

propagation within the structure). Many applications of the propagation of elastic waves deal 

with non-damped systems and structures [27, 28] but up to now few works treat damped 

structures [29-31]. The computation of the dispersion relations for dissipative periodic lattices 

having the attributes of metamaterials is an actual research topic raising the interest of researchers 

in the field of acoustics and wave propagation phenomena. Damping has an important influence 

on the dispersion features, as shown in recent studies devoted to phononic composite materials 

[32-35]. The nature of damping (proportional or not in the case of viscous damping) and its 

intensity can lead to specific phenomena, such as branch inversion (high frequency branches take 

over low frequency branches), branch switching on or off translate the fact that certain dispersive 

branches do not cover the integrality of the first Brillouin zone, and completely or partially 

forbidden branches in certain domains of variation of the wave number [32]. An extension of the 

method initially proposed by Rayleigh [36, 37] has been done in [32] for the analysis of Bloch 

dispersive damped waves in phononic materials in the presence of viscous damping, coined by 

the same previous authors Bloch-Rayleigh perturbation method. One of the advantages of the 

method lies in the fact it relies on the standard non damped dispersion relations, without 
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increasing the order of the eigenvalues problem. Rayleigh method has been used for a wide class 

of non-viscous models [37]. 

We analyze as a novel aspect in this chapter the impact of wave damping on the dispersion 

features of periodic dissipative lattices, considering especially the impact of an auxetic behavior 

on wave propagation. The band diagram structure and damping ratio shall be computed for 

different repetitive lattices, based on the homogenized continuum response of the initially 

discrete lattice architecture, modeled as Kelvin-Voigt viscoelastic beams. We shall show that 

auxetic lattices attenuate waves at lower frequencies compared to the classical non auxetic 

lattices. The impact of the microstructure inherent to the unit cell is assessed through the 

consideration of additional rotational degrees of freedom of the effective micropolar substitution 

continuum. 

Scale effects due to the presence of a microstructure play an important role in the design and 

acoustic properties of metamaterials [38]. The presence of a microstructure gives rise to specific 

mechanical properties and behaviors that cannot be reached with homogeneous materials, like 

negative Poisson’s ratio, associated to a class of materials called auxetic, due to the occurrence of 

one or several negative Poisson’s ratio [39-44], their structure being characterized by a periodical 

network of four or six elastic ligaments. Lakes was the first in [45] to propose such a 

microstructure, in reference to the case of planar isotropic hexachiral networks, consisting of a 

periodic array of rigid rings connected by softer elastic ligaments. Later on, [45] have shown that 

this material has a Poisson coefficient equal to -1, under the assumption that one can neglect the 

axial deformation of the ligaments. Starting from the work of Lakes devoted to the hexachiral 

lattice, a series of contributions from the literature was further devoted to the computation of the 

effective mechanical properties of the hexachiral lattice and variants of it (like the tetrachiral 

lattice) [38] and [45- 47]. The effect of the localized resonant units in these two specific lattices 

can be associated to localized rotational modes at the level of their unit cell. The discrete 

rotations within the lattice lead to rotational degrees of freedom at the scale of the homogenized 

continuum, corresponding to an effective micropolar model. The computation of the 

homogenized effective static properties of such period lattices is the first step towards the 

characterization of their band structure.  

These metamaterials can lead to a nearly complete sound attenuation over a certain frequency 

range, coined the acoustic wave spectral gap or band gap [38]. Acoustic metamaterials may 
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exhibit band gaps at low frequencies associated to resonant elements; in [48], the authors derive 

the dispersion relations and the damping factor for a 1D damped mass-chain. This goes in line 

with the development of sonic crystals presenting such spectral gaps, based on the idea of 

internally resonant structural units leading to negative effective elastic constants [47, 49]. Sonic 

crystals exhibiting stopband have been developed in [26, 7, 47, 49]. More recently, [23] proposed 

a periodic metamaterial with resonant internal units, allowing adjustable band gaps at low 

frequencies; this effect is associated to rotational localized modes of deformation obtained by the 

presence of a chiral like microstructure of the periodic unit cell. In [50], the authors recently 

obtained a band gap structure in periodic tetrachiral material. 

This chapter is organized as follows: we compute in section 2 as a first step the homogenized 

viscous behavior of auxetic lattices giving rise to a micropolar viscoelastic continuum model, 

based on an extension of the discrete homogenization technique for beam-lattices, developed in 

the pure elastic case in [51].  The extension to a viscous behavior of the beam elements of the 

dedicated homogenization method proposed in the present work constitutes a novel aspect in 

comparison to the existing literature. We next introduce the effective constitutive laws into the 

dynamical planar equilibrium equations, and formulate an eigenvalue problem on view of the 

computation of the dispersion relation, relying on the generalized plane wave propagation 

equations (section 3). The analysis of free wave motion in dissipative micropolar models at low 

frequencies is performed in terms of the dispersion relations and damping factor in section 4. The 

evolution of the phase velocity with frequency together with the evolution of the modulus of the 

phase velocity versus the wavenumber for the effective viscous medium is analyzed in section 5. 

The deformation of the hexagonal lattice unit cell versus time is determined in terms of the Eigen 

waves in section 5. We assess the range of validity of the homogenized properties by comparing 

the dispersion curves to those obtained by Bloch’s theorem (section 7). Finally, we conclude in 

section 8 by a summary of the main results and a few perspectives for future developments. 

2.2 Homogenized viscoelastic micropolar behavior of periodic beam lattices 

A summary of the discrete asymptotic homogenization method has been presented in [51]; it 

proceeds in two steps. In a first step, the equilibrium equations for an Euler-Bernoulli beam are 

written at the nodes; a second homogenization step leads to the continuous effective model. The 

discrete homogenization method consists in assuming asymptotic series expansions of node 

displacements, tension, moments and external forces versus a small parameter labeled ε, defined 
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as the ratio of a characteristic length of the basic cell to a characteristic length of the lattice 

structure. Those expansions are then inserted into the equilibrium equation, conveniently 

expressed in weak form. The balance equation of the nodes, the force–displacement relation and 

the moment-rotation relations of the beams are developed by inserting those series expansions 

and using Taylor's expansion of finite differences. The discrete sums are finally converted in the 

limit of a continuous density of beams into Riemann integrals, thereby highlighting continuous 

stress, deformation and velocity of deformation measures. 

The kinematic and static variables for any beam in the lattice are represented in the local 

coordinate system associated to the viscoelastic beam with Bernoulli-Euler kinematics (Fig.2.1). 

 

Fig.2.1 Kinematic and static beam variables. 

2.2.1Expressions of forces 

A few words regarding notations are in order. Vectors and second order tensors are denoted with 

boldface symbols; the tensor product of two vectors is denoted and the inner product of two 

tensors ,A B   is denoted by the dot product .A B . 

The forces at the extremity of the beam can be related to the kinematic variables in the global 

coordinate system as follows 

             p s sF K T U C T U  (2.1) 
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Where K  is the stiffness matrix,  C  the viscosity matrix (evaluated in the Appendix A) and 

 T  the local to global transformation matrix, consisting of two 3x3 rotation matrices R. 

Therefore, based on the framework of viscoelastic Bernoulli beam theory, the efforts and 

moments can be expressed as 
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EN and E
T  are respectively the normal and transverse forces expressed at the extremity node E 

(efforts at the origin node O are opposite), O

z
M  and E

zM are the bending moments about the z 

axis, which is fixed since it is perpendicular to the lattice plane.The vectors ,u u and the scalar 

,  in expressions (2.2) through (2.5) are the displacement, velocity, rotation and rotation rate 

respectively, and e  is the extensional viscosity. Here and in the sequel, the dot over a variable 

denotes a time derivative.   

The material coefficient E is the Young modulus of the beam material; parameters A  and L  are 

the cross-sectional area and length of the beam respectively; I is the quadratic moment of the 

beam. For simplicity reasons, a rectangular section of the beam is considered, with a constant unit 

thickness e =1 and width t. Hence, the cross-sectional area is equal to 2
A t and the quadratic 

moment of the beam is evaluated in bending as
3

12
tI  , and vectors ,b be e  are respectively the 

unit director and transverse unit vector for each beam.  

2.2.2 Main steps of the discrete homogenization method 

The main steps of the discrete homogenization method involved to compute the effective 

anisotropic micropolar 2D viscoelastic continuum are summarized in the sequel in algorithmic 

format.  
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1. Asymptotic expansion of geometrical and kinematic variables for each beam b, in curvilinear 

coordinates denoted  in the sequel: 

- The beam length l
εb=εL

b 

- The beam width tεb=εt
b 

- The nodal displacement: 

       2
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This leads to the relative displacement 
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ib is the shift factor, which belongs to the set  1,0,1  ; it traduces the fact that the end node 

belongs to the next neighboring cell (Fig.2.2). 

- The relative velocity can be obtained similarly as, 
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- The expansion of the nodal microrotation writes (limited to the first order in ) 
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The rotation velocity can be obtained similarly. 

2. Write the asymptotic expansion of forces ,b b
N T

   and moments ( ) ( ),O b E b

z zM M
   (exposed in 

Appendix B). 

3. Write the equilibrium of forces and moments in virtual power form 
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with v  therein a virtual velocity field chosen to vanish on the edges and with w  the virtual 

rotation rate. The force vector Fb decomposes into a normal and a transverse contribution as 

b bN T      b  b bF e e  (2.13) 

It further holds the following relations: 

     
i

( ) ( )


 


v
v v ib

O b E b


 


 


 (2.14) 

0( ( )) ( )w wO b
   

 0( )
0( ) ( )


  


w

w wE b i ib

i

 
    


 

(2.15) 

4. Order the previous equilibrium equation according to the successive powers of  

5. Convert the discrete equilibrium equations after homogenization to continuum self-equilibrium 

equations of forces and moments in the form of Riemann integrals (Appendix C)
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with iS  the stress vector therein decomposed into 
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and with iμ the couple stress vector expressing at two orders 
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6. Constitutive law: the stress and couple stress tensors express versus the kinematic variables as 
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Previous relations can therefore be written as 
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With g the Jacobian of the transformation from Cartesian to curvilinear coordinates and R the 

position vector for any point. 

 

Fig.2.2 Shift factor with respect to the reference lattice. 

Accordingly, the constitutive equations for the equivalent 2D anisotropic micropolar viscoelastic 

continuum write in matrix format as 
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This constitutive law can be further simplified basing on symmetry properties of the studied 

lattices: it has indeed been shown that for centro-symmetrical lattices the pseudo-tensors [Be] and 

[Ce] vanish (similarly, the tensors [Bf] and [Cf] vanish) [51]. A solid which is isotropic with 

respect to coordinate rotations but not with respect to inversions is called noncentro-symmetric (it 

does not have a center of symmetry). The centrosymmetric nature of the lattice leads to an 

important simplification of the stress and couple stress vectors, which write  

ib
1 1 1  (N T )įi i b b

b Br





  b bS S e e  (2.23) 
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(2.24) 

with 1 1,b b
N T and, 2

b
M , respectively, the first order normal and transverse effort and the second 

order moment. 

In this study, four lattices are selected for their expected interesting acoustic properties: the 

hexagonal lattice, the re-entrant lattice (in fact the hexagonal with a negative angle), the diamond 

chiral lattice and the hexachiral lattice, pictured in Fig.2.3. The mechanical and geometrical 

parameters for the four studied lattices are given in Table 1. 
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Fig.2.3 Representative unit cell of the investigated lattices: (a) hexagonal lattice, (b) re-entrant 
lattice  0  c) Diamond chiral lattice d) Hexachiral lattice. 

Hexachiral and tetrachiral beam networks presenting local resonators at the nodes have been 

studied in [38], relying on micropolar homogenization. The authors compare the results of 

micropolar and second order gradient homogenization analyses, in order to evaluate the domain 

of validity of the beam network model. These structures with a periodic network give rise to an 

auxetic chiral behavior and present band gaps, as shown in [47, 49]. The dynamical equations are 

those of an effective Cosserat continuum and the elastic moduli and inertia terms have been 

obtained for hexachiral and tetrachiral lattices. The effective constitutive equations of the 

network are then used to study the propagation of planar waves [38] along the directions of the 

lines connecting the centers of the network. The static and dynamic properties (frequency band 

gaps) of anti-tetrachiral cellular solids are analyzed in [41]. The homogenization of periodic 

hexachiral and tetrachiral honeycombs is performed based on both micropolar homogenization 
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and a second gradient homogenization scheme in [42]. An analytical model for the computation 

of the effective classical properties of 3D reentrant auxetic materials is developed in [49]. The 

static behavior and wave propagation analysis of rectangular chiral lattices is analyzed in [50], 

based on a 2D orthotropic chiral micropolar theory. Other studies devoted to the homogenization 

of auxetic hexachiral materials have been done in [46]. In [47], the authors proposed a meta-

composite incorporating a 2D hexachiral network with resonant elastic inclusions, in order to 

obtain band gaps at low frequencies. This meta-composite has been analyzed via a numerical 

model in which the ligaments have been modeled by beam like elements and the inclusions by a 

2D finite element model.  

2.3 Dynamical equilibrium and characteristic equation 

Any periodic lattice is approximated by a micropolar continuum model resulting from the 

homogenization process based on the macro-homogeneity condition, as shown in the last 

paragraph, thereby extending to the viscous case the initial work in [51]. The equations of motion 

for any homogenized 2D viscoelastic lattice write in terms of the Cauchy stress components (the 

comma denotes a partial derivative) as: 

*
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(2.25) 

The effective density therein is given in general by  * 1

cell

M

A
  , with M1 the mass of the set of 

lattice beams, Acell being the area of the periodic cell; the micro-inertia terms receives the general 

expression, * 1 
cell

J
I

A
   , with J1 the inertia of the cell [38]; these quantities are next computed 

specifically for all four lattices. 

In the specific case of the hexagonal lattice parameterized by the angle   (for re-entrant lattices, 

it holds   <0) (Fig. 2.3 a, b), one obtains 

   2
cellA 2L cos (1 sin )    (2.26) 

together with the following inertia parameters: 
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(2.27) 
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For the hexachiral lattice, one obtains 

2
cell

2
A L 3

3
  

(2.28) 

and the inertia parameters are computed as  

* *
2

3 (3 3 ) (42 5 3) 3
,

2L 6
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(2.29) 

For the diamond chiral lattice, it holds 2
cellA 8L , and the resulting inertia parameters are 

* * 4
,

L 3

t tL
I

     
(2.30) 

In order to obtain the displacement formulation of the equations of motion, the compatibility 

equations involving the macro strain components are written as follows 

11 1,1 22 2,2 12 1,2 21 2,1 ,   ,   ,u u u u            (2.31) 

The curvatures  

1 ,1 2 ,2 ,к к    (2.32) 

define two additional kinematic quantities that have to be considered together with the 

constitutive equations. 

We recall accounting for the assumption of centrosymmetric unit cells that the general 

constitutive equations of lattices made of viscoelastic Kelvin-Voigt beams is written as 
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(2.33) 

The matrices , , ,e e v vA D A D  are dependent on the specific considered lattice. 

For a harmonic wave propagating along an axis in an infinite planar micro polar medium, the 

generalized displacement field with components ,  ,U V   at a point r  takes the following form 

[58]: 
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(2.34) 

in which , ,U V   are the wave amplitudes,  1 2k ,kk  is the wave vector and Ȝ is a complex 

frequency function (of the wave vector) that permits wave attenuation in time. In the limiting 

case of no damping, it holds  i   , and the usual form of plane waves is recovered.  

Substituting equations (2.34) and (2.33) into the equation of motion (2.25), one obtains an 

equation of wave motion of the form  

1 2   (k ,k , Ȝ) 0
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

 
    
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  

D  

(2.35) 

For a plane wave without attenuation in the x-y plane, the propagation constants along the x and 

y directions are 1 1k  and 2 2k  . For a plane wave without attenuation in the Cartesian 

coordinate system in 2-D, the propagation constants along the x and y directions are

1 1 c ( )oskk    , 2 2 s ( )inkk    . 

Any triad 1 2, ,k k   obtained by solving the eigenvalue problem in (2.35) represents plane wave 

propagation at the frequency Ȝ. 
The eigenvalue problem for Eq. (2.35) yields a characteristic equation of the form: 

6 5 4 3 2      0.                                                                                             a b c d e f             (2.36) 

The roots of Eq. (36) may be expressed as  

2( ) ( ).   ( )  .   ( ) 1s s ns ns sk k k i k         (2.37) 

where s represents the branch number (3 branches corresponding to 3 modes of propagation, RO: 

rotary modes, L: longitudinal modes, S: shear modes). In Eq. (2.36) and (2.37), one identifies the 

natural frequency, the damped frequency and the damping factor as the following quantities 

respectively 

   2 2 2 ( )
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(2.38) 
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Relying on these expressions, we can plot the dispersion curve (a plot of frequency against wave 

number) for the dissipated frequency and the damping ratio versus the wave vector on the edges 

of the irreducible part of the first Brillouin zone (O, A, B), which is defined as the smallest area 

allowing a full representation of  k  , or by changing the direction of wave propagation and the 

wavenumber. The first Brillouin zone for the hexagonal, re-entrant and hexachiral lattices is 

described in details in [52, 53], and in Appendix D for the diamond lattice. Note that for a 

viscous damped system, the natural frequency  ( )ns k  is equal to the un-damped natural 

frequency. 

Table 2-1 Geometrical and mechanical parameters of the four studied lattices 
Type Geometrical parameters of the unit cells Mechanical properties 

Re-entrant  50mm 15 , 1mm, 30l mm t       
1400MPa, 0.3,sE    

31000kg/m   

Hexachiral  50mm 15 , 1mml mm t   
1400MPa, 0.3,sE    

31000kg/m   

Diamond 

chiral 
 50mm 15 , 1mml mm t   

1400MPa, 0.3,sE    

31000kg/m   

Hexagonal   50mm 15 , 1mm, 30l mm t      
1400MPa, 0.3,sE    

31000kg/m   

 

2.4 Dispersion relations and damping ratio for the selected lattices 

The frequency and damping ratio dispersion curves can be obtained for any lattice based on the 

previous methodology after calculating the homogenized micropolar continuum. In this section, 

we shall illustrate this aspect for the classical and re-entrant lattices, the hexachiral and diamond 

chiral lattices, and especially illustrate their higher capacity to absorb and dissipate energy, which 

could be useful for packaging materials, to absorb shocks or to improve the acoustic damping 

properties. An extensive review of the performance and applications of auxetic materials can be 

found in [47]. A preliminary work devoted to the computation of the effective static mechanical 

properties of auxetic lattices has been done in [54]. The abbreviations H, R, D and H-C stand for 

the wordings hexagonal, Re-entrant, Diamond Chiral and Hexachiral respectively. 

http://thesciencedictionary.org/frequency/
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We first evaluate the frequency and damping ratio dispersion curves of the hexagonal and re-

entrant lattices. The first set of results is shown in Fig.2.4: the snapshots therein display the 

frequency band structure and damping ratio for each of the modes (RO, L, S) of the hexagonal 

and re-entrant lattice without damping ( ȝe = 0 ) and with damping (ȝe = 500Mpa.sec and

ȝe = 800Mpa.sec ). 
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Fig.2.4 Damping ratio and frequency band structure for low and high damping situations 
respectively for the classical hexagonal lattice and the reentrant lattice along the edge of the first 

Brillouin zone for the a) Rotary mode, b) Longitudinal mode, c) Shear mode. 

The results in Fig.2.4 show shifts in the frequency band diagrams due to the presence of 

damping, these shift being more pronounced as the viscosity coefficient ȝe  increases. We also 

observe that the damping ratio values increase when the viscosity coefficient ȝe increases across 

the entire Brillouin zone, for all three modes of propagation. These results are in very good 

agreement with those presented in [48, 55] as to the damping ratio and frequency band structure 

(the same result can be observed for the other lattices). It can be seen in Fig. 2.4 that the Rotary 

branch is more sensitive to the viscosity coefficient (damping) ‎and presents a higher value of 

damping, in comparison to the L and S modes (for the 2 lattices). Let recall that the secant slopes 

of the line connecting the origin point O to the point of interest on the curve gives the phase 

velocity. Thus, the two lines starting at point O and with slopes Cl and Ct constitute the best 

approximation to the dispersion curves in the frequency diagram for n  (without damping), for 

each lattice [13]. In the case of a damped medium, a decrease of the slope occurs for each lattice 

(corresponding to a decrease in the frequency), since the phase velocities in a damped medium 

are lower in comparison to the non-damped medium. We present in Fig.2.5 a comparison 
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between the dispersion relation and damping ratio for the classical and reentrant hexagon lattices 

in a damped medium with an extensional viscosityȝe = 500Mpa.sec . 

 

 

 

Fig. 2.5 Frequency band structure and damping ratio in damping situationsȝe = 500Mpa.sec  for 
the a) classical hexagonal, b) the reentrant hexagon lattice along the edge of the first Brillouin 

zone. Red line: Rotary mode - Green line: longitudinal mode - Blue line: shear mode. 

Fig.2.5 shows a partial band gap occurring between the branches; this partial band gap is more 

significant between the R and L modes than between L and S modes for the regular hexagonal 

lattice, while the partial band gap for the re-entrant lattice occurring between R and L modes is 

a) 

b) 
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larger than the band gap in the hexagonal lattices and the opposite situation occurs between L and 

S modes. 

The comparison between both lattices highlights that the reentrant lattice is able to dissipate more 

energy than the hexagonal lattice (Fig.2.5), since the reentrant lattice shows damping frequencies 

lower compared to the hexagonal lattice for each mode.   

We represent in Fig.2.6 a comparison of the damping ratio evolutions and damping frequency 

band structures for the 3 modes of propagations, for the 4 considered lattices (hexagonal, 

reentrant hexagonal, hexachiral and diamond chiral) in the damped medium for an extensional 

viscosityȝe = 500Mpa.sec . The diamond chiral lattice presents the lowest damped frequency in 

the 3 modes; the hexagonal lattice presents the higher damping ratio for the rotary and 

longitudinal mode. We also observe that the re-entrant effect for the hexagonal lattice affects the 

shear mode [52] and this lattice presents a high damping ratio and frequency band structure, close 

to those of the diamond chiral lattice. 

ice. 
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Fig.2.6 Frequency band diagram and damping ratio for the four considered lattices, a) Rotary 
mode, b) Longitudinal mode, c) Shear mode. 

We analyze in Fig.2.7 the influence of the slenderness ratio   on the damping ratio for the four 

studied lattices.  
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Fig. 2.7 Damping ratio for the four considered lattices in a damped mediumȝe = 500Mpa.sec  for 

the three modes of propagation. a) Rotary mode, b) Longitudinal mode, c) Shear mode. 

Results in Fig. 2.7 show that the variation of the slenderness ratio   leads to an important 

change of the damping ratio for the 4 lattices and for the 3 modes of propagation; as the 

slenderness ratio increases, the damping ratio increases and shifts in the frequency band structure 

occur. This can be explained ‎based on the homogenized viscosity matrix: a decrease of the 

slenderness ratio results indeed in an increase of the viscosity matrix. 

c) 
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2.5 Phase velocity in a damped medium 

The phase velocity in a damped medium can be expressed as follows: 

 C up k  (2.39) 

where k  is the wavenumber (the modulus of wave vector), Ȝ the complex frequency and u  is a 

unit vector indicating the direction of wave vector.  

The modulus of the phase velocity is plotted in Fig. 2.8 for the 3 branches (RO, L and S) for the 

direction of propagation 
4

  
 

 and versus the wavenumber k, for two values of the viscosity 

coefficients, e 800Mpa.sec   and e 0  . 
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Fig.2.8 Phase velocity for the three modes for 2 values of µe, a) Hexagonal lattice, b) Hexachiral 
lattice, c) Re-entrant lattice, d) Diamond chiral lattice. 

It can be observed from Fig2.8 that for waves travelling in a damped medium, shifts in the phase 

velocity occur for the three modes, these shifts being more pronounced as the wavenumber is 

increased; they vanish for a specific value of k for which no wave propagation occurs (for the 

hexagonal lattice, the RO mode vanishes for k=7). These shifts in the phase velocity are more 

pronounced for the re-entrant and hexagon lattices; this can be explained due to higher values of 

the damping ratio ζ for the three modes of propagation for these lattices (Fig.2.5), whereas lower 

values are obtained for the two other lattices. For an elastic medium (without damping, µe=0), 

the phase velocity for the 3 modes does not depend on the wavenumber for all studied lattices (as 

we find in Christoffel equation for the undamped medium); it only depends on the direction of 

propagation.  

2.6 Eigenvectors for the classical hexagon lattice 

Inserting the expression of the frequency, (Eq.2.37), in the general form of the expression of 

plane wave (Eq.2.34), we can conclude that the eigenvectors (the wave amplitude) depend on 

time as follows (the expression of the amplitude with respect to V and   are same as for U) 
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with U  therein an eigenvector at initial time, for which a purely elastic response is obtained. We 

introduce the characteristic time of the lattice, defined as
1

:
( ).   ( ) 


s ns


   

; after an elapsed time 

t =5τ, the lattice has returned to equilibrium (it is clear that the lower the characteristic time, the 

faster the unit cell reaches equilibrium).
 

We show in Fig.2.9 the eigenvector of the hexagonal lattice at initial time and at the subsequent 

time t =βτ, for the three edges of the irreducible Brillouin zone. 
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Кespace position               S mode                     L mode                           RO mode 

   O                             

A                               

B                             

Fig.2.9 Eigenwaves of a typical cell are shown in tabular form at instants t=βτ (in red) and t = 0 
(in green). The three rows correspond to the three points O, A and B in k space, while the three 

columns correspond to the three dispersion branches for the hexagonal lattice. 

At point O, the unit cell exhibits only a rigid body translation for the 3 branches; at points A and 

B, the unit cell exhibits both translation and rotation. The first column describes the transverse 

wave motion; the second gives the second branch of the dispersion curve, representing a 

longitudinal wave. In the rotational mode, the Eigenwave exhibits a combined transverse and 

longitudinal motion. 
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2.7 Bloch theorem 

The characteristics of wave propagation within a structure are finally evaluated based on the 

generalized Bloch theorem, in order to investigate the range of validity of the homogenized 

equations in terms of the frequency range. Bloch theorem states that the amplitude of wave 

propagation does not depend on the location of unit cell in the structure and accordingly, the 

characteristics of the periodic structure can be identified by an analysis performed over the 

reference unit cell only. The wavevector k is defined in a reciprocal lattice (also periodical) in the 

wavevector space whose basis vectors *
je are given by: 

*.i j ijY e  

with the symbols 
ij  therein denoting the Kronecker delta function. 

According to Bloch theorem, the displacement of a point P in another cell is obtained by 

translating by a factor n1 the period in direction 1Y , and n2 times in direction 2Y , thus it can be 

written in term of the displacement of the reference unit cell as: 

1 1 2 2( )( ) ( ) ,k n k n
q p q r e

  (2.41) 

2.7.1 Construction of stiffness, mass and viscosity matrices for 2D Bernoulli beams 

The continuum counterpart of the kinematic variables interpolating the discrete kinematics of a 

typical beam element is approximated by 

   
6

1

, ( )
n n

n

u x t a x q t


  

   
6

1

, ( )
n n

n

v x t b x q t


  

The functions  n
a x ,  n

b x therein are the shape functions that satisfy the boundary conditions at 

the end of the beam. We next as a first step evaluate the stiffness and damping matrices based on 

the computation of the elastic and dissipative energies.  

The elastic energy stored in a beam [56, 57] is associated to uniform extensional strain and 

flexion; it can be evaluated separately for each deformation mode. Under extension, the elastic 

strain energy writes 

   
6

n2 2
x n

10 0

a x1 1
EA(ε ) dx EA[ q t ] dx

2 2 x

L L

e

nx x

U
 


 

   
(2.42) 
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The stiffness coefficient (for indices 1 and 4 corresponding to the horizontal displacement 

components) are identified to 

       2
6

n
ij n

1i j 0 0

a x1 1
K = EA  q t EA

q q 2 x 2

L L
ji

nx x

da xda x
dx dx

dx dx 

  
    

   
(2.43) 

Under bending, the elastic stored energy in a Euler-Bernoulli beam is the strain energy expressing 

as (shear deformations are neglected, thus the following kinematic constraint holds,   

2

xx 2

v u yθ v
= θ,ε = = - = -y

x x x x

    
     

 

   
2

n2
z n

10 0

26

2

b x1 1
EI( Ȝ ) dx EI q t dx

2 2 x

L L

f

nx x

U
 

 
  




 


   

(2.44) 

The associated stiffness coefficients (for indices 2, 3, 5 and 6) are 

       2 22 26
jn i

ij n2 2 2
1i j 0 0

b xb x b x1 1
K = EI q t EI dx      

q q 2 x 2 x x

L L

nx x

dx
 

 


  
    


    

(2.45) 

in which E is the Young modulus, A the beam cross section area and I the moment of inertia. The 

dissipated energy due to the damping effects can be written in a form similar to the elastic energy 

[57, 58] and may be evaluated separately for extension and bending effects. Under extension, the 

dissipated energy writes 

   6
22

n nx
e

10 0

e e
da x dq tdε1 1

D = ȝ A dx ȝ A dx        
2 dt 2 dx dt

L L

nx x  

 
 

 
 

 
 
   

(2.46) 

with  e therein the extensional viscosity of the beam. This entails that the viscosity coefficient 

(corresponding to indices 1 and 4) is  

       2
6

ji
ij

1i i 0 0

a xa x1 1
C = ȝeA ȝeA dx

2 2 x x

L L

n n

nx x

a x q t
dx

xq tq  

 
 



  
         

(2.47) 

Similarly, under bending, we obtain the dissipated energy 

    22 6
z

f
10 0

Ȝ1 1
D = ȝ dx ȝeI        e

t
I  

2 2
n

L L

n

nx x

x q t
d

x

b
x

t 

            
   

(2.48) 

This leads to the viscosity coefficients (for indices 2, 3, 5 and 6)  

       2 22 26
jn n i

ij 2 2 2
1i j 0 0

b xb x b x b x1 1
C = ȝeI ȝe I dx

q q 2 x t 2 x x

L L
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 
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   


     


 
   

(2.49) 
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The equations of motion are obtained by applying the Euler-Lagrangian equations without 

external forces: 

,
T U D

t q q q

    
       

 
(2.50) 

This equation of motion can be written for each beam; the equation of motion for the unit cell can 

then be derived in the following form: 

0,  q q qM K C  (2.51) 

where M, K and C are respectively the assembled global mass, global stiffness and global 

dissipated matrices, and , ,q q q  are the acceleration, velocity and nodal displacement vectors. The 

resulting dispersion relations can be conveniently represented by letting k vary along the contour 

of the first Brillouin zone, as described into details in [13]. They are used to quantify the error 

introduced by the homogenized method for both damped and undamped cases, and for the regular 

hexagonal and diamond lattice, considered here as reference examples. 

2.7.2 Wave propagation in hexagonal and hexachiral lattices 

Inserting the generalized equation of plane harmonic waves (2.34) into the equation of motion 

leads to the following equation 

2( ) 0,M K C q N q      (2.52) 

Using Bloch theorem, we can write the relationship between the nodal displacements for the two 

lattices as follows (Fig.2.10) 

 

a) 
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Fig.2.10 Unit cell for a) the regular hexagonal lattice, b) Hexachiral lattice. 
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After introducing these relationships into the equation of motion for each of these two lattices, we 

obtain the final form of the equation of wave propagation within the structure, depending upon 

the wavenumber and complex frequency. 

 

Hexagonal lattice Hexachiral lattice 

1
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The eigenvalue problem for N  and 1N  gives a relation between parameters 1 2( , , )k k   

delivering the dispersion relation for each damped lattice. We shall note that we can restrict the 

values of the wavevector to the edges of the irreducible part of the first Brillouin zone. 

The main purpose for presenting the generalized Bloch theorem is to delineate the validity of the 

homogenized method at low frequency for a damped periodic structure. We show in Fig.2.11 the 

dispersion relation for longitudinal and shear modes (these 2 modes only exists at low frequency) 

b) 
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by applying Bloch’s theorem and the homogenization method, at the edge of the first Brillouin 

zone for both hexagonal and hexachiral lattices for a damped medium with µe = 500 Mpa.sec.  

 

Fig.2.11 Dispersion relation in a damped medium, for the a) Hexagonal lattice, b) Hexachiral 
lattice. Red lineμ longitudinal mode. Green lineμ shear mode. Comparison between Bloch’s 
theorem (dashed line) and homogenization theory (solid line) for two modes of propagation 

Fig.2.11 shows that in the region corresponding to the low frequency range and high wave 

number, the homogenized method is applicable, since the dispersion curves obtained by Bloch 

theorem and by the homogenization method are very close to each other. 

2.8 Conclusion 

We have computed the band diagram structure and damping ratio for different repetitive lattices, 

based on the homogenized continuum response of the initially discrete lattice architecture, 

modeled as Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral 

diamond, hexachiral lattice) are auxetic metamaterials since they show negative Poisson’s ratio.  

The methodology developed in this chapter is general and is applicable to any lattice in the low 

frequency range: the effective viscoelastic anisotropic continuum behavior is first computed in 

terms of the homogenized rigidity and viscosity matrices. In a second step, the dynamical 

equations of motion are written, based on the homogenized properties, and the dispersion relation 

and damping ratio are obtained by inserting harmonic plane wave expressions into these 

equations. The comparison of the acoustic properties of the four lattices has been done 

considering that all lattices share the same beams, with identical microstructural parameters 
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(geometry and mechanical moduli). We have represented the eigenvectors corresponding to the 

different Eigen modes for the hexagonal lattice, and the application of Bloch theorem in 

dissipative medium. 

We have shown that the auxetic lattice attenuates waves at lower frequencies compared to the 

classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of 

harmonic waves over the entire Brillouin zone. The hexachiral lattice shows better acoustic 

properties than the reentrant hexagonal lattice.  

The range of validity of the effective continuum obtained by the discrete homogenization has 

been delimited by comparing the frequency band structure of this continuum with that obtained 

by Bloch theorem.  

The slenderness ratio of the beams is shown to have an important impact on the attenuation 

properties; therefore, the consideration of Timoshenko thick beams constitutes an important 

perspective of this work. The versatility of the developed method enables to explore a wide range 

of 2D and 3D auxetic lattices and more generally metamaterials exhibiting interesting acoustic 

properties in future contributions.  
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Appendix A: expression of the stiffness and damping matrices 

For homogeneous isotropic viscoelastic Bernoulli-Euler beams obeying a Kelvin-Voigt behavior, 

the stiffness and damping matrices are given by  

K=

3 2
3 2

2
2

3 2 3 2

2 2
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0 00 0
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12EI 6EI
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Appendix B: expressions of forces and moments at beam level 
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(B.4) 

Since each beam is self-equilibrated, forces and moments can be recovered at the origin node, 

from the writing the equilibrium equations. Those expressions of the resultant forces and 

moments are next involved in the homogenization of the initially discrete lattice towards an 

equivalent continuum. 

Appendix C: expression of the first and second order stress vectors 

The first and second order stress vectors 1 2,i i
S S and the first and second order couple stress 

vectors express as the following sums over all beams of the reference unit cell  
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Appendix D:  First Brillouin zone for the diamond chiral lattice 

The first Brillouin zone is defined as a primitive unit cell of the reciprocal lattice, and it can be 

constructed as follows: 
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1- Select any lattice point in the reciprocal lattice as the origin and connect it to neighboring 

points. 

2- Construct the perpendicular bisectors of these lines; the region of intersection is the first 

Brillouin zone. 

 

 

Fig.2.12 a) Diamond chiral lattice with the selected primitive unit cell, b) First Brillouin zone in 
the reciprocal lattice. The points O, A, and B and the vectors Y1, Y2 (direct lattice) and b1,b2 

(reciprocal  lattice) are as defined in the Table below. 

The vector basis of the reciprocal lattice (also periodical) in the wavevector space whose basis 

vectors *
je are given by: 

*.i j ijY e  

with the symbols 
ij  therein denoting the Kronecker delta function. 

The Table 2 shows the basis vector of direct and reciprocal diamond chiral lattice and the 

coordinate of the edge of IBC. 

Table 2-2 basis vectors of the direct and reciprocal diamond chiral lattices and coordinates of the 
edge of IBC. L denotes the length of each beam. 

Topology Direct lattice Reciprocal lattice coordinate of the edge of 
IBC 

 
Diamond chiral 

lattice 

1

2

Y = 2 2Li

Y = 2 2Lj
 

 

*
1
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2

1
e = i

2 2L
1

e = j
2 2L

 

 

  1 1 1
O 0,0 ;A 0, ;B ,

2 2 2
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b) 
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3. Chapter 3: Wave propagation in 3D viscoelastic 

auxetic and textile materials by homogenized 

continuum micropolar models 

 

 

Summary 

We extend the work presented in the previous chapter and analyze the impact of wave damping 
on the dispersion features of 3D viscoelastic periodic structures modeled as Kelvin-Voigt 
viscoelastic beam-lattices. The band diagram structure and damping ratio of these lattices are 
computed for different repetitive structures, based on the homogenized micropolar viscoelastic 
response of the effective medium obtained by the homogenization of the initially discrete lattice 
architecture. The employed methodology is herewith exemplified for the cases of the 3D hexagon 
structure, which shows negative Poisson’s ration for reentrant configurations, and the 2D plain 
weave textile structure. The effective viscoelastic anisotropic continuum behavior of both 
structures is first determined in terms of the homogenized stiffness and viscosity matrices, based 
on the discrete homogenization method. The dynamical equations of motion are obtained for an 
equivalent homogenized micropolar continuum evaluated based on the homogenized properties, 
and the dispersion relations and damping ratio are obtained by inserting an harmonic plane waves 
Ansatz into these equations. The 3D reentrant hexagon is an auxetic metamaterial showing 
excellent wave absorption capability, as reflected by the high incidence of partial band gaps. The 
textile plain weave structure shows a complete band gap for low frequencies. Comparing the 
frequency band structure of the effective continuum with that obtained by Floquet-Bloch analysis 
extended to a 3D context shows that the wave propagation characteristics can be directly obtained 
from the homogenized continuum at low frequencies.   
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3.1 Overview 

A large diversity of novel cellular solids and lattice materials have been developed for a wide 

range of engineering applications, due to the fact that such lattice-like materials show an 

enhanced static and dynamic response in comparison to their bulk counterpart. They have 

accordingly raised the interest of many researchers regarding both their static and dynamic 

behavior. Engineering applications using lattice materials include light-weight structures, 

vibration control devices or energy absorption systems. The enhancement of acoustic properties 

is dependent on the bulk material, the relative lattice density and the internal lattice architecture 

[1]. Since it is usually too expensive from a computational viewpoint to analyze the dynamics of 

complete repetitive networks due to the huge number of structural elements, a convenient 

strategy is to represent them as an equivalent homogeneous material, based on a representative 

unit cell (RUC) of the initial network with effective mechanical properties. Suitable 

homogenization schemes are then developed to provide the RUC with an effective behavior 

including information about the microstructure at a continuum level of description.  

A well-known drawback of the classical theory of elasticity lies however in its inability to predict 

in a correct manner the dispersion of waves at very short wavelengths, since it predicts that 

frequency and wave number are linearly related, so that the phase and group velocities of 

propagating waves are independent of the frequency; it thus fails to model the impact of 

microstructural features on the wave dispersion characteristics. This restriction is due especially 

to the lack of internal length scales which are required when the characteristic wavelength of the 

exciting incident field is comparable to some internal characteristic intrinsic length of the 

medium. In such situations, averaging of the individual response of the carriers of the 

microstructure does not make sense, and the axiom of locality becomes invalid.  

Many advanced theories and models have been proposed to study wave propagation problems 

accounting for non-locality and microstructural effects in materials. One category of approaches 

is multiscale homogenization techniques [2], which compute asymptotically the solutions of the 

wave equations involving multiple spatial and temporal scales, to capture the long-term response 

of the homogenized response. Following another route, the mechanics of generalized continua [3-

5] accounts for the non-locality of the elastic fields due to microstructural effects in a 

macroscopic manner, by introducing higher-order strain gradients or additional degrees of 

freedom, like in micropolar and couple stress theories. Pioneering works in this direction include 



  

71 

 

contributions of Mindlin [6–8], Aifantis [9–12]in connection with the higher-order strain 

theories, which enhance the classical continuum theories by considering higher order gradients of 

either the displacement or stain fields, accompanied by internal length scales [13,14]. Different 

homogenization techniques have been proposed to build continuum descriptions of discrete 

materials [15, 16]; an extended list of references and an overview on gradient elasticity theories 

applied in dynamics can be found in recent works [17–22]. 

Following another strategy, micropolar theories incorporate additional rotational degrees of 

freedom, and have been developed by Eringen and co-workers [23, 24], a subclass of models 

being the couple-stress theories [25–28].No classical theories have proven successful in dynamic 

problems of wave propagation in beams and half-spaces [29–31] by removing singular behaviors 

(like discontinuities or singularities of the fields) inherent to classical theories and showing their 

ability to capture the expected size and wave dispersion effects specific to the simultaneous 

existence of several lengths scales. Analytical studies of the dispersive character of such high 

order continua have been initially conducted in depth by Mindlin [6], Eringen and Suhubi [23], 

and more recently by Engelbrecht et al. [32,33], Papargyri-Beskou et al. [34], Fafalis et al. [35] 

and Berezovski et al. [36] for linear elastic solids.  

In this chapter, we analyze the dynamics of periodic network materials relying on dedicated 

homogenization techniques developed to substitute to the initial discrete periodic lattice an 

effective micropolar viscoelastic continuum. The essential objective is to analyze the impact of 

the viscous dissipation and of the microstructural degrees of freedom of the effective medium on 

the wave propagation characteristics. We have selected in this chapter two network materials for 

their expected specific wave propagation characteristics: the 3D hexagonal lattice, having a 

reentrant configuration associated to an auxetic behavior and showing an increase number of 

partial band gaps, and a 2D plain weave textile structure for which two modes of wave 

propagation completely vanish.  

The main originality advocated in the present chapter is the derivation of the Bloch theorem in 

a 3D context for a dissipative viscous periodic lattice; it allows a validation of the dispersion 

relation obtained for the effective continuum in the low frequency range. We study the influence 

of the effective retardation time of the homogenized continuum on the dispersion relations and 

band diagrams, based on the homogenization of the initially discrete repetitive networks. We 
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show a complete attenuation of the first rotary wave for the two studied lattices. The expressions 

of phase and group velocities in damped medium are obtained. 

3.2 Construction of 3D viscoelastic micropolar effective continuum 

The design of periodic elastic materials such as phononic crystals for wave propagation and 

acoustic applications has pushed the technological barriers and has opened a new realm of 

applications in which damping results in the temporal attenuation of the propagating waves. In 

many situations of interest, at least one of the constituents show a dissipative behavior, for 

instance the viscoelastic matrix phase in phononic crystal composites.  

Studies of the propagation of elastic waves in damped media started more than 40 years ago with 

an analysis of damping in infinite periodic structures by Mead [37]. From this early period, 

studies considering partial aspects of the effect of viscous damping on the band structure 

appeared in the specialized literature; see [38] and references therein, without however providing 

a detailed analysis of the effects of damping on the dispersion band structure.  

The overview of the existing literature on wave propagation in phononic crystals and 

metamaterials in presence of viscous damping reveals that works in this field started by 

considering wave propagation with damping in finite structures, see [39-41].The static and 

dynamic properties (frequency band gaps) of anti-tetrachiral cellular solids are analyzed in 

[42]. The homogenization of periodic hexachiral and tetrachiral honeycombs is performed based 

on both micropolar homogenization and a second gradient homogenization scheme in [43]. 

In a second stage, the impact of damping on the band structure of infinite periodic crystals was 

studied, considering either free wave propagation (for impulsive loading), or time harmonic wave 

propagation (in case of forced harmonic loading); an overview of the works considering these 

two situations is presented in the recent contribution of Wang et al. [44]. For free wave 

propagation, the wavenumber is a real number indicative of propagating models, while the 

frequency is a complex number, in which the imaginary part measures the time damping.  

In [44], the authors analyze the propagation of elastic waves in acoustic metamaterials based on 

locally resonant viscoelastic phononic crystals, and show the dispersive and dissipative effect of 

viscosity on the complex band structure and transmission spectra.  
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3.2.1 Expressions of forces 

We consider a homogeneous isotropic viscoelastic 3D beam of Kelvin-Voigt type, slender 

enough so that the shear deformation can be neglected (Euler-Bernoulli beam). Normal and 

transverse efforts as well as moments are exerted on the two beam extremities.  

The forces at the extremity of the beam can be related to the kinematic variables in the global 

coordinate system as follows 

             p s sF K T U C T U  (3.1) 

Where K  is the stiffness matrix [45], C  the viscosity matrix (evaluated in the Appendix A) 

and  T  the local to global transformation matrix, consisting of four 3x3 rotation matrices R. 

Therefore, based on the framework of viscoelastic Bernoulli beam theory, the efforts and 

moments can be expressed as 
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b

x
F , b

y
F  and b

z
F  are respectively the normal and transverse forces expressed at the extremity node 

E (efforts at the origin node O are opposite), E,O

x xM M  the torsion moments about the x axis,

E, ,O O

y y z
M M M  and E

z
M are the bending moments about the y and z axis. 

The vectors , ,u u  and  in (3.2) through (3.10) are the displacement, the velocity, the rotation 

and the rotation rate respectively, and e ,   are the viscosity coefficients in extension and shear. 

The coefficients sE  and sG are the tensile and shear modulus of the beam material respectively.  

Parameters A  and L  are the cross-sectional area and length of the beam respectively; Iy, Iz are 

the quadratic moments of the beam and J is the torsional constant. 

For simplicity reasons, a circular section of the beam is considered (with constant radius r). 

Hence, the cross-sectional area is equal to 2
A r and the quadratic moment of the beam is 

evaluated in bending as 2 4 
y z

I I r and in torsion as 2 2xI r . 

As to notations, vectors and tensors are denoted using boldface symbols. 

Those expressions of the forces and moments in previous expressions (3.2) through (3.10) are 

next involved in the homogenization of the initially discrete lattice towards an equivalent 

micropolar continuum. 

3.2.2 Homogenization steps 

We will use the same methodology for the discrete asymptotic homogenization method presented 

in the chapter 2for 3D structures with elastic beams (for details see [45, 46]). This method 

requires the development of all geometrical variables (length, thickness, width) and kinematic 

variables (displacements, velocity and rotations at the lattices nodes) as Taylor series expansions 

versus a small parameter labeled ε, defined as the ratio of unit cell size to a macroscopic length 

characteristic of the entire lattice. These expansions are thereafter inserted into the equilibrium 

equation of forces and moments, expressed in weak form. After resolution of the unknown 

displacements and rotations in the localization problem posed over the identified reference unit 

cell, the stress and couple-stress tensors are constructed versus their conjugated kinematic 

variables, respectively the strain and curvature tensors, thereby defining the homogenized 

constitutive law [47-48]. 
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In the local coordinate systems attached to each beam, the asymptotic expansion of forces b
xF
 ,

b
yF
 , b

zF
  and moments ( ) ( ) ( ), , ,O b E b E b

x x xM M M
   ( ) ( ) ( ), ,O b E b O b

y y zM M M
   and ( )E b

zM
  are exposed 

in Appendix B.  Finally the homogenization continuum self-equilibrium can be obtained from 

the discrete equilibrium equations using the form of Riemann integrals 
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with iS  the stress vector therein decomposed into 
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and with iμ the couple stress vector decomposed into 
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The Constitutive law: stress and couple stress tensors versus the kinematic variables, 
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and can therefore be written as 
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The constitutive law can further be simplified basing on symmetry properties of the studied 

lattices: it has indeed been shown [49] that for centro-symmetrical lattices the elastic pseudo-

tensor eB    vanish (and similarly its viscous counterpart vB    also vanishes).  

3.3 Dynamical equilibrium and characteristic equation 

In order to obtain the equations of the group and phase velocities as well as the dispersion 

relation and the damping ratio in a damped micropolar medium, we write the dynamical 

equilibrium equations which are based on the constitutive equations of the obtained continuum 

micropolar medium 
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(3.17) 

Here, ,u v  and w  are the components of the acceleration vector and , ,x y z    are the components 

of the rotary acceleration vector. The effective density and micro-inertia therein are given in 

general by *
1 cellM A and *

1   cellI J A , with 1M  and 1J   are, respectively, the mass of the set 

of lattice beams and the inertia of the cell, Acell being the area of the periodic cell.  

In order to obtain the displacement formulation of the equations of motion, the compatibility 

conditions involving the macro strain components are written as follows 
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(3.18) 

and the curvature as 
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In order to obtain the velocity and the gradient of the linear and angular velocities, one has to 

derive the expressions (3.18) and (3.19) versus time. 

In order to compute the acoustic characteristics (i.e., the group and phase velocities, the 

dispersion relation and damping ratio), one adopts for the solution of the dynamical equilibrium 

equation the form of a generalized plane wave. 

For a harmonic wave propagating along an axis in an infinite planar micropolar medium, the 

generalized displacement field with components ( , , , , , )x y zq U V W     at a point r  is assumed 

in the following form (see [50]): 

 
,

.t i
q Qe

 


k r

 

(3.20) 

In (32), ( , , , , , )
x y z

Q U V W    is the amplitude of the wave motion,  1 2 3k ,k ,kk the wave 

vector and Ȝ a complex frequency (function of the wave vector) that permits wave attenuation in 

time. The wave vector k is a complex number: its real part represents the attenuation in a 

Cartesian coordinate system in 3D, and its imaginary part represents the phase constants. 

For a plane wave without attenuation in the Cartesian coordinate system in 3-D, the propagation 

constants along the x, y and z directions are 1 1 sin( )cos( )k ki    , 2 2 sin( )sin( )k i k     

and 3 3 cos( )kk i   . In the following the units of wavenumber is m-1. 

Substituting the generalized plane wave (Eq. (3.20)) in the dynamical equilibrium equations, 

delivers the following algebraic equation: 
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(3.21) 

A relation between 1 2 3, ,k k k  and   is obtained by solving the eigenvalues problem in (3.21) 

which represents plane waves propagating in dissipative medium at the frequency λ. 
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The eigenvalue problem of Eq. (3.21) yields a characteristic equation of order 12 which has 3 of 

their conjugate solutions representing the 3 modes (illustrated in Fig. 3.1): the longitudinal mode 

(designated by L), the vertical shear mode (labeled SV), the horizontal shear mode (SH in short), 

and two arbitrary modes due to the presence of the rotation degree of freedom. In the Cauchy 

medium, we have only 3 modes of propagating (L, SH and SV). 

 

Fig.3.1 Schematic diagram showing (from left to right) the wave propagation modes: the 
longitudinal mode, the shear vertical mode, the horizontal shear mode. 

The roots of the characteristic equation can be expressed in the following form: 

2( ) ( ).   ( )  .   ( ) 1   s s ns ns sk k k i k      (3.22) 

in which s represents the branch number. In equation (3.22), one identifies the natural frequency

  
ns

k , the damped frequency   
ds

k  and the damping factor s , viz, the following quantities 

     2 2 2    ( ) ( ) ,    ( ) 1 , ( )     ns s s ds ns s s s nsk real imag k k real          (3.23) 

These expressions allow plotting the dispersion curve for the dissipated frequency and the 

damping ratio versus the wave vector k, as shall be done later. 

Each eigenvalue of (Eq.3.21) has a corresponding eigenvector that describes the displacement of 

the particles caused by each mode of propagation.  

Due to the presence of damping (viscosity), the eigenvectors can be expressed versus time as 

follows 

   n
s tnU t U e

   (3.24) 

with nU  the nth eigenvector at initial time, for which a pure elastic response is obtained.  
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We introduce the characteristic time of the lattice, 
1

( ).   ( ) s nsk k


 
 ; after an elapsed time 

5t  , the lattice has returned to its equilibrium state. The lower the characteristic time, the 

faster the unit cell reaches equilibrium. 

3.4 Results: dispersion relations and damping ratio evolutions 

The 3D hexagonal lattice, parameterized by the angle  (re-entrant case for 0  ), and a plain 

weave fabric are considered to exemplify the wave propagation phenomena, as illustrated in Fig. 

3.2. They are modeled as periodic network of structural elements modeled as Bernoulli beams. 

For the two lattices, the beams with lengths h, L, Lv are given three distinct retardation times, 

quantities 1 2 3, ,   respectively. 

 

Fig.3.2 Elementary unit cell of, (a) 3D hexagonal lattice (left column), (b) plain weave fabric 
(right column). 

3.4.1 Effective properties of the considered lattices 

We evaluate in Fig.3.3 the effective computed retardation times for the homogenized medium 

versus the corresponding microscopic retardation time of the beams, in case of uniaxial tension in 

x and z directions for both structures. They are evaluated for each deformation model as the ratio 

of the effective viscosity to the effective elastic coefficient from (3.16).  
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Fig.3.3 Retardation times in traction (a) in x-direction for the 3D hexagonal lattice, (b) in z-
direction for the 3D hexagonal lattice, (c) in x-direction for the plain weave, (d) in z-direction for 

the plain weave. 

The inspection of Fig.3.3 shows that the retardation time for the homogenized medium depends 

on the retardation time for each beam for the different solicitations. For the two examples and for 

any type of solicitations, the homogenized retardation time and the beam retardation times are 

proportional. The same results are found for the case of traction in y-direction and for in-plane xy 

shear (results not shown here). 
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In the specific case of 3D hexagonal lattices parameterized by the angle , the area of the 

periodic cell can be expressed as 

   cellA 2 cos θ ( sin θ )L Lv h L   (3.25) 

and the inertia parameters are expressed as 
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(3.26) 

in which   is the bulk density of the beam. 

For the plain weave fabric, the area of the periodic cell can be expressed as: 

 224 cos θA Lv  (3.27) 

and the inertia parameters are 
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3.4.2 Dispersion diagrams 

Based on Eq. (3.23), we represent in Fig. 3.4 the dispersion curves and damping ratio for the 

obtained five types of branches in a general damping situation, for the three considered lattices. 
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Fig.3.4 Dispersion relation and damping ratio evolutions for the 3 lattices with a direction of 
propagation θ=π/6, Ȗ=π/6 for the 5 following modes. (a) A1μ arbitrary wave, (b) Aβμ arbitrary 

wave, (c) longitudinal wave, (d) vertical shear wave and (e) horizontal shear wave. 

The acronyms H, R and T used here and in the sequel are abbreviations of the terms regular 

hexagonal, re-entrant lattices and plain wave fabric respectively. Whatever the direction of 

propagation, we see that the location of the branches in the frequency band structure drops with 

the viscosity e , while the damping ratio increases with viscosity. It can be seen in Fig. 3.4(c) 

that the L branch is more sensitive to the viscosity coefficient  and presents a higher value of 

damping, in comparison to the SH and SV modes (for the hexagonal and re-entrant lattices). This 
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can be explained  based on the homogenized viscosity matrix: we find that the first Lamé 

coefficient is greater than  the second one, resulting in a lower damping coefficient for the shear 

modes. This explains the cut-off branches in the longitudinal modes appearing earlier than the 

shear modes   (corresponding to a damping coefficient equal to unity). Comparing the three 

examples, we obtain that the cut-off branch for longitudinal and A2 arbitrary waves (named also 

rotary waves in the literature [51]) occurs earlier for the hexagonal lattice than for the re-entrant 

lattice in a damped medium ( e =200); for the A1 modes, the cut-off branch appears much earlier 

for the textile structure (for a damped medium with a viscosity e =100). 

It is known that [48, 52] the plain weave textile shows very good in-plane mechanical properties 

but it suffers from some weakness in the out-of-plane direction; this behavior can be clearly 

observed from the disappearance of the longitudinal and vertical shear modes in Fig. 3.4(c) and 

4(d). In order to highlight this behavior, the dispersion relation for the textile is pictured in Fig. 

3.5 with a direction of propagation θ=π/6, Ȗ=π/β (in-plane propagation). 

 

Fig.3.5 Dispersion relations evolutions with a direction of propagation θ=π/6, Ȗ=π/β for the plain 
weave textile structure. 

The disappearance of the horizontal shear wave in Fig. 3.5 clearly demonstrates that the plain 

weave textile only shows an in-plane wave propagation behavior. The band structure evaluated 

for the three structures is shown in Fig.3.6 with a direction of propagation θ=π/6, Ȗ=π/6, and for 

an in-plane propagation for the plain weave textile. 
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Fig. 3.6 Frequency band structure, in a damped medium with e =100. (a) regular hexagonal 
lattice at direction θ=π/6, Ȗ=π/6, (b) Textile lattice at direction θ=π/6, Ȗ=π/6, (c) re-entrant lattice 

at direction θ=π/6, Ȗ=π/6 and (d) Textile lattice at direction θ=π/6, Ȗ=π/β. 

As shown in Fig. 3.6, a non-complete band gap occurs for the hexagonal lattice between the 

different branches; the excess in partial band gap exhibited by the re-entrant hexagonal lattice 

shows special acoustics properties for this auxetic metamaterial. The complete band gap 

occurring in the textile structure for a direction of propagation θ=π/6, Ȗ=π/6 highlights the 

possibility to generate new fabric materials with significantly better acoustics properties. This 
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band gap disappears for the in-plane propagation due to the vanishing of modes at certain values 

of the wavelength. 

These results have a validity limited to the low frequencies range, when the homogenized method 

is valid.  

The variation of the dispersion relations for the 2 arbitrary modes with respect to the 

homogenized retardation times xx  are recorded in Fig. 3.7, which shows the band structure for 

two modes of propagations (A2, A1) corresponding to homogenized retardation times 2 ,xx xx    

and 0.5 xx . We observe that the location of the branches in the frequency domain drops with an 

increase of the retardation time and a cut-off branch appears at certain values of k. These trends 

can be explained as follows: for larger retardation time, the total strain under a creep test 

converges towards an asymptotic value in a slower manner, which explains the increase of 

viscosity in Fig.3.7. The damping ratio band structure resembles the shape of the frequency band 

structure, with the position of the curves rising with the increase of the retardation time. 
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Fig.3.7 Frequency band structure for a variation of retardation times. (a) A2 arbitrary mode for 
hexagonal lattice, (b) A1 arbitrary mode for hexagonal lattice, (c) A2 arbitrary mode for Textile, 

(b) A1 arbitrary mode for the plain weave textile. 

We shall note that for the three investigated examples, the global assembled mass matrix for the 

unit cell plays an important role (as important as the stiffness and damping  matrices) on the 

dynamical characteristics.  The total mass of the unit cell increases with the beam density, 

resulting in shifts of the band structure and therefore shifts of the frequency vibrations of the 

structure (this result is not shown here). 

3.5 Phase and group velocities 

The phase velocity is the speed at which the single plane wave propagates within the medium. 

The phase velocity vector, in a direction of wave vector, is defined by: 

 C up k
 

(3.29) 

where k  is the wavenumber (the modulus of wave vector) and u  is a unit vector indicating the 

direction of wave vector. 

The group velocity defines the direction of energy flow within the structure; it represents the 

velocity at which the envelope of a wave packet propagates. 

The group velocity vector in the k-space can be given by: 
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(3.30) 
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The group velocity can be transformed in the Cartesian space by a straightforward manipulation 

of vectors: 

1 2 3
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1 2 3
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(3.31) 

In (3.31), E is a matrix containing the components of the direct lattice basis with respect to the 

Cartesian reference system. The group velocity is therefore the modulus of the group velocity 

vector, which has its own propagation angle. 

The phase and group velocities in the direction of the wave vector can be written in complex 

form as follows: 
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2
( ) ( ) ( )

( ) ( ).   ( )  .   ( ) 1 ( ) ,

( ) ( ).   ( )  .  ( ) 1 ( ) ,
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s i s ns i ns i s

c k k c k i c k

c k k c k i c k

 

 

   

   
 

 

(3.32) 

in which ( )s k is the damping ratio for branch s,   ( )  ( )p

ns nsc k w k k the phase velocity and

 ( )  ( )  ( )g

ns i ns i
c k w k k   the group velocity in a non-dispersive homogeneous medium, 

 ( )nsw k the normal frequency, k the modulus of the wave vector, and ,  1...3ik i   are the 

components of the wave vector .  

The dissipative phase and group velocities are given as follows: 
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w k
c k c k
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w k
c k c k

k




 

 

 

(3.33) 

Let recall that the secant slope of the line connecting the origin point to the point of interest on 

the curve in the dispersion diagram gives the phase velocity, while the tangent to the dispersion 

curve at any point gives the group velocity [53]. 

We note that the group velocity is often lower than the phase velocity; however, in reality the 

group velocity depends on the properties of the damped medium in which the wave propagates. 

In the specific case ( ) ( )p g

s sc k c k , the media is called non dispersive; a media in which 

( ) ( )p g

s sc k c k  is called anomalous, and in the opposite case ( ) ( )p g

s sc k c k , the media is called 

normal dispersive.  
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A relation between the phase and group velocities is obtained after a lengthy calculation starting 

from the dynamical equilibrium equation and the definition of the group velocity. 

We present in Fig.3.8 the modulus of the phase velocity for the 5 branches shown in Fig. 3.4; 2 

values of viscosity e 200   and e 0   are chosen and different directions of the wavevector 

function of the wavenumber k are considered. 

 

Fig. 3.8 Phase velocities for the five wave modes, for e 0   and e 200  , for the three 
investigated examples. (a)regular hexagonal lattice for θ=π/6, Ȗ=π/6, (b)re-entrant lattice for 

θ=π/6, Ȗ=π/6, (c)Textile for θ=π/6, Ȗ=π/6, d)Textile for θ=π/6, Ȗ=π/2. 

It can also be deduced from Fig 3.8 that for waves travelling in a damped medium, shifts in the 

phase velocity occur for the five modes, and these shifts are more pronounced as the wavenumber 

is increased, and they vanish for a certain value of k. 
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We observe that, in the case of an elastic medium (case of no damping, µe=0), the phase velocity 

in the 5 modes does not depend on the wavenumber k (as we find in Christoffel equation for the 

undamped medium): it only depends on the direction of wavevector. One can also observe from 

Fig.3.8, a, c that for a wavenumber k =15, when the cut of branch occurs in some modes, the 

phase velocity tends to zero, indicating no wave propagation. 

For the SH modes, for the three investigated examples, the phase velocity is the same for both the 

damped and undamped medium (no shift in the phase velocity in the two directions when we 

have damping medium). This can be explained as follows: the horizontal shear wave depends on 

the material rigidity and viscosity in the z-direction for the damped medium (they can be 

decoupled from the other modes of propagation), and the vertical component of the effective 

viscosity is small enough so that it does no more influence the phase velocity. 

We shall note that we obtain the components of the phase velocity vector by the relations: 

cos( )sin( ), sin( )sin( ), cos( )p p p p p p

x y zC C C C C C        

with p
C therein the magnitude of the phase velocity vector (presented in Fig. 3.8). To highlight 

the influence of the viscosity coefficient on the group velocity, we evaluate in Figs.3.9, 3.10, and 

3.11each component of the group velocity vector 
1 2 3

, ,
k k k

     
    

 in the k-space, with damping 

 e 200  and without damping  e 0  , for the three modes of wave propagation (L, SV, SH) 

for the hexagonal lattice. For each mode of propagation, we have a set of group velocities. 
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Fig. 3.9 Group velocity for the 3D hexagone (in x-direction)
1k




, for e 0   and e 200  , and 

for three modes of wave propagation. (a) Longitudinal wave, (b) Vertical shear wave and (c) 
Horizontal shear wave. 
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Fig. 3.10 Group velocity for the 3D hexagone (in y-direction)
2k




, for e 0   and e 200  , for 

three modes of wave propagation. (a) Longitudinal wave, (b) Vertical shear wave, and (c) 
Horizontal shear wave. 
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Fig. 3.11 Group velocity for the 3D hexagone (z-direction)
3k




, for e 0   and e 200  , for 

three modes of wave propagation. (a) Longitudinal wave, (b) Vertical shear wave and (c) 

Horizontal shear wave. 

As we mentioned before, the group velocity depends on the phase velocity for the wave 

propagation, so that for each mode, we have a set of group’s velocities as shown in Figs.3.9, 3.10 

and 3.11. We observe that the horizontal shear wave presents the higher values of the group 

velocity for each component. As for the phase velocity, there are shifts in the group velocity for a 
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damped medium ( e 200  ) and these shifts are more pronounced when the wavenumber 

increases (the same behavior is obtained for the other lattices). 

One can conclude from the previous three figures that for an elastic medium, the group velocity 

does not depend on the wavenumber, but it only depends on the direction of the wave vector and 

on the geometrical and mechanical characteristics of the medium. This feature can also be found 

in the expression of the group velocity presented in Lane [54]. 

3.6 Transmission loss properties of the homogenized medium 

The transmission loss properties of the 3D hexagonal lattice and the 2D plain weave fabric are 

next evaluated. An incident plane propagating in the direction θ=π/6, Ȗ=π/6with unit amplitude is 

sent at the boundary for each lattice. The transmission loss is defined by the following formula: 

 10log t iTL u u
 

(3.34) 

where i
u and t

u  are the amplitudes of the incident and transmitted waves respectively. This 

coefficient represents the fraction of incident energy which is transmitted by the structure.  

The transmission loss for both periodic lattices without viscosity ( e 0  ) and with viscosity  

( e 200  ) is represented in Fig.3.12 for the two rotary modes. 

 

 

Fig. 3.12 Transmission loss for the periodic lattices with the 2 arbitrary modes of propagation. (a) 
elastic medium, (b) viscoelastic medium e  =200. 
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It is seen that the transmission loss in the elastic medium increases as the wavenumber is 

increased; this increase in transmission is mostly due to the increase of the frequency in the 

modes. For the viscoelastic medium, the transmission loss decreases as expected, since the 

presence of viscosity implies attenuation of the wave propagation for each mode, and then 

attenuation in the transmitted waves. Beyond a specific value of the wave number, we observe 

that the transmission loss is quite small for the first rotary wave (for the 2 lattices), due to the cut-

off branch which occurs at this value of the wave number. 

We shall note here that the transmission wave is clearly attenuated inside the complete and partial 

band gaps. 

3.7 Bloch theorem 

Wave propagation in three-dimensional dissipated periodic lattices is studied through the 

application of the generalized Bloch theorem, which constitutes an original aspect in this 

contribution. There is to our knowledge no 3D extension of Bloch theorem including viscous 

dissipation [55]. 

Any direct lattice structure in a three-dimensional space can be obtained by translating the unit 

cell along three linear basis vectors ie .The displacement ( )jq w  for a point in the reference unit 

cell (with position jw ) can be expressed as a planar wave with complex frequency   as follow: 

( . . )( ) ,j

t i k w
j jq w q e

   (3.35) 

in which 
jq  is the amplitude of the wave and k the wavevector. The frequency   shall be a 

complex parameter to take into account the temporal attenuation of the medium due to the 

presence of damping (viscosity). The displacement of a point P in another cell, obtained by 

translating by a factor n1 the period in the direction 1e , n2 in the direction 2e and n3 in the 

direction 3e , can be written in term of the displacement of the reference unit cell according to 

Bloch theorem as: 

1 1 2 2 3 3( )( ) ( ) ,k n k n k n
jq p q r e

   (3.36) 

In (3.36) ik represents the complex component of the wavevector k; its real part represents the 

attenuation of a wave when traveling from one unit cell to the neighboring one and its imaginary 

part represents the phase constant. Bloch theorem states that the amplitude of wave propagation 

does not depend on the unit cell location in the structure and accordingly, the characteristics of 
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the periodic structure can be identified by an analysis performed over the unit cell only. Note that 

the wavevector k is defined in a reciprocal lattice (also periodical) in the wavevector space whose 

basis vectors 
jb are given by: 

.j i ijb e   

with the symbols 
ij  therein denoting the Kronecker delta function. 

3.7.1 Evaluation of the mass, stiffness and viscosity matrices 

To obtain the eigenvalue problem and then the dispersion relation, we shall combine the 

dynamical equilibrium equation of the unit cell and the generalized Bloch theorem. 

Each beam of the unit cell is considered as a Euler-Bernoulli beam (neglecting the shear 

deformation) with 6 degrees of freedom at each nodes, that is 3 translations and 3 rotations

 , , , , ,i i i i xi yi ziq u v w    . The continuum counterpart of these kinematic variables 

interpolating the discrete kinematics of a typical beam element is approximated by: 

   
12

1

, . ( ),
n n

n

u x t a x q t



 

   
12

1

, . ( ),
n n

n

v x t b x q t



 

   
12

1

, . ( ),
n n

n

w x t c x q t


  

 

 

 

(3.37) 

     , ,n n na x b x c x are the shape function. 

The kinetic energy per unit thickness of an Euler-Bernoulli beam (without effect of inertia and 

neglecting the torsion) is given by: 

 

2 2 2

0 0 0

12 12 . .

1 1 0

1 1 1

2 2 2

1
( ) ,

2

L L L

L

r s r s r sr s

r s

u v w
T S dx S dx S dx

t t t

S q q a a b b c c dx

  


 

                     

  

  

 
 

 

 

(3.38) 

The potential energy is given by: 



  

97 

 

2 22 2 2

2 2
0 0 0

2 22 212 12

2 2 2 2
1 1 0

1 1 1
,

2 2 2

1
( ) ,

2

L L L

z y

L

s s sr r r
r s z y

r s

u v w
U ES dx EI dx EI dx

x x x

a b ca b c
q q Es EI EI dx

x x x x x x 

                   
    

  
     

  

 
 

 

 

(3.39) 

The dissipated energy is given by: 
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(3.40) 

where L, E, Iy, Iz, S, e  are respectively the length, Young modulus, second moment of area 

with respect to y and z axis, the cross sectional area and the extensional viscosity of the Kelvin-

Voigt viscoelastic beam. 

The equations of motion are obtained by applying the Euler-Lagrangian equations without 

external forces: 

,
T U D

t q q q

    
       

 
 

(3.41) 

This equation of motion can be written for each beam; then the assembled equation of motion for 

the unit cell is derived as: 

0,  q q qM K C  (3.42) 

where M, K and C are respectively the assembled global mass, global stiffness and global 

dissipated matrices and , ,q q q  are the acceleration, velocity and nodal displacement vectors. 

3.7.2 Analysis of wave motion 

After formulating the global equation of motion for the unit cell, we introduce the generalized 

Bloch theorem to investigate the wave propagation inside the dissipated periodic lattice. The 

equation of motion is represented as follows, using a condensed notation: 

2( ) 0,M K C q N q      (3.43) 

 

According to Bloch theorem, the relationships between the nodal displacements write as follows 

(see Fig. 3.13): 
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(3.44) 

 

Fig.3.13 Unit cell for the regular hexagonal 3D lattice. 

Using these relationships, we can write the following transformation: 
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(3.45) 

For any ith node, the nodal displacement vector is given by  , , , , ,i i i i xi yi ziq u v w    . 

Finally, the governing equation of motion takes the form, with matrix N defined in (55): 

1 1
1 2 3

2 2

( , , , ) 0,h
q q

T NT N k k k
q q


   

    
   

 
 

(3.46) 

where Th is the Hermitian transpose of the transformation T. 

The eigenvalue problem for equation (3.46) gives a relation between 1 2 3( , , , )k k k  that represents 

a plane wave propagating at the complex frequency Ȝ. We shall note that we can restrict the 

values of the wavevector to the edges of the irreducible part of the first Brillouin zone. 

We represent in Fig. 3.14 the frequency band structure for the 3D hexagon on the edge of the first 

Brillouin zone with damping ( e 400  ) and without damping ( e 0  ). As previously 
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mentioned, shifts in the frequency occur for a damped medium, which increase with the viscosity 

coefficient.  

 

Fig.3.14 Frequency band structure for a damped and undamped 3D hexagonal lattice. 

We observe in Fig. 3.14 that the entire lattice presents a complete and large bandgap between the 

seventh and eighth branches of the dispersion curves. We note a partial band gap situated 

between the other branches. It is easy to observe from Fig.3.14 that gc 0  when the wave 

frequency approaches the full band gap (the tangent to the dispersion relation is horizontal), 

which means that the energy distributed in the system becomes stationary. 

The results show the presence of other interesting wave phenomena, such as partial and complete 

band gaps, and the veering of modes. Veering consists in two branches coming close to each to 

other without crossing or touching, and it can occur when the coupling coefficient between 

different modes is very weak.  

The main purpose for presenting the generalized Bloch theorem is to delineate the validity of the 

homogenized method at low frequency and the band gap presented by the lattice. We show in 

Fig.3.15 the frequency band structure by applying Bloch’s theorem and the homogenized 

method, at the edge of the first Brillouin zone. 

It can be shown how the three branches starting from the origin O in the homogenized theory 

coincide with those obtained from Bloch theory in the long wavelength limit (O-A-L-H-A 

region) and for a frequency equal to 1 rad/sec. 
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Fig.3.15 Comparison of the frequency band structure between the generalized Bloch theorem 
(blue line) and homogenized theory (red line) along the edge of the first Brillouin zone. 

One can deduce from Fig. 3.15 that the homogenized method is in good agreement with the 

Bloch theorem, since the error is negligible in the low frequency region (below 0.75 rd/s). The 

same results can also be found in the case of the damped medium which shows a shift in the 

dispersion curve (as in Fig. 3.14).One concludes that the wave propagation in dissipative periodic 

lattices can in the range of low frequencies be directly investigated from the dynamics of the 

effective continuum constructed by homogenization. 

3.8 Conclusion 

In this contribution, we have analyzed the impact of wave damping on the dispersion features of 

3D viscoelastic periodic lattices. We analyzed wave propagation in a 3D hexagonal lattice 

presenting a reentrant configuration leading to an auxetic behavior, and in a textile monolayer 

structure selected for its expected excellent wave absorption properties. The band diagram 

structure and damping ratio have been computed for the two repetitive lattices, based on the 

homogenized micropolar viscoelastic response of the effective medium obtained by a 

homogenization method dedicated to networks materials. In a first step, the effective viscoelastic 

anisotropic continuum behavior of the selected lattices has been determined in terms of the 

homogenized stiffness and viscosity matrices. The dispersion relation and damping ratio are 

obtained by inserting a harmonic plane waves Ansatz into the formulated dynamical equations of 

motion.  

From the obtained results and discussions, we can draw the following conclusions: 
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(1) A non-complete band gap (Fig. 3.6) occurs for the hexagonal lattice between the different 

branches; the excess in partial band gap exhibited by the re-entrant hexagonal lattice 

shows special acoustics properties for this auxetic metamaterial. The complete band gap 

occurring in the textile structure for a direction of propagation θ=π/6, Ȗ=π/6 highlights the 

possibility to generate new fabric materials with significantly better acoustic properties. 

This band gap disappears for in-plane wave propagation due to the vanishing of modes at 

specific values of the wave length. 

(2) The location of the branches in the frequency domain drops by increasing the retardation 

time of the homogenized medium and a cut-off branch appears at certain values of 

wavenumber. 

(3) The analytical expressions of the group and phase velocities in a damped medium are 

evaluated. As for the dispersion relation, a shift in the 2 velocities occurs. For an elastic 

medium, the group velocity does not depend on the wavenumber, but it only depends on 

the direction of the wave vector and on the characteristic of the medium. 

(4) The transmission loss decreases because the presence of viscosity entails an attenuation of 

wave propagation for each mode, and thus an attenuation of the transmitted waves. 

Beyond a specific value of the wavenumber, we observe that the transmission loss 

becomes very small for the first rotary wave for the two lattices, due to the cut-off branch 

which occurs at this value of the wavenumber. The transmitted wave is clearly attenuated 

inside the complete and partial band gaps.  

(5) The entire 3D hexagonal lattice presents a complete and large band gap between the 

seventh and eight branches of the dispersion curves, and a partial band gap between the 

other branches. These phenomena occur over the whole range of frequencies. 

(6) The wave propagation characteristics can be directly obtained from the homogenized 

continuum at low frequencies, as shown by comparing the frequency band structure of the 

effective continuum with that obtained by Floquet-Bloch analysis.  
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APPENDIX A: Determination of the viscosity matrix for a Kelvin-Voigt beam type 

 

The viscosity matrix is given by: 
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Eq. (A.1) 
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APPENDIX B: Expressions of forces and moments for a viscoelastic beam 
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4. Chapter 4: Analysis of dispersive waves in repetitive 

lattices based on homogenized second-gradient 

continuum models 

 

Summary 

We analyze the dispersion of elastic waves in periodic beam networks based on second order 
gradient models obtained by the homogenization of the initially discrete network, relying on the 
discrete asymptotic method extended up to the second gradient of the displacement. The lattice 
beams have a viscoelastic behavior described by Kelvin-Voigt model and the homogenized 
second gradient viscoelasticity model reflects both the initial lattice topology, anisotropy and 
microstructural features in terms of its geometrical and micromechanical parameters. The 
continuum models enriched with the higher-order gradients of the displacement and velocity 
introduce characteristic lengths parameters which account for microstructural effects at the 
mesoscopic level. A comparative study of the dispersion relations and damping ratio evolutions 
for the longitudinal and shear waves has been done for four lattices (the chiral diamond lattice, 
the classical and reentrant lattices, and the pantograph). The developed model allows analyzing 
both the effects of damping and internal length scale through the second order displacement 
gradients on the wave propagation characteristics. An important increase of the natural frequency 
due to second order effects is observed. For the pantograph lattice, the phase velocity for the 
longitudinal and shear modes is identical and is not influenced by the direction of wave 
propagation. The obtained results show overall that the pantograph lattice present the best 
acoustic characteristics. 
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4.1 Overview 

New classes of cellular solids and lattice materials have over the last decade found a wide range 

of engineering applications, such as light-weight structures, vibration control devices, systems for 

energy absorption, relying on the fact that such lattice-like materials enhance the static and 

dynamic responses in comparison to their solid counterpart. This improvement of the properties 

depends on the bulk material of the lattice, its relative density, and the internal geometrical 

structure [1] Periodic lattices can be considered as prototype models of many systems whose 

description can be simplified as assemblies of beam elements rigidly connected or joined by 

hinges. The dynamic behavior of such periodic network has raised the interest of many 

researchers, especially due to the use of non-destructive techniques for accessing mechanical 

properties of the investigated material. Due to the prohibitive cost of computing the dynamical 

response of periodic networks including many elements (thus a huge number of d.o.f.), it proves 

more economical to represent the network materials on the macroscale as an equivalent 

homogeneous material obtained from the homogenization over a suitable unit cell consisting of a 

rigid joint network of beams.  

The homogenized moduli contain information about the microstructure, although in an average 

sense. Homogenized models based on classical Cauchy-type elasticity theory are however not 

able to provide realistic predictions of many effects arising from small scale, amongst of them 

wave dispersion. Classical theories based upon the sole first order displacement gradient lack 

indeed internal length parameters, characteristic of the underlying microstructure. This explains 

the success of gradient-enriched theories in capturing microstructural effect on the macroscopic 

behavior of materials, by including high-order gradients associated to internal lengths 

representative of the microstructure. 

Gradient elasticity theories constitute an extension of the classical equations of elasticity by 

incorporating additional higher-order gradients of the displacements. Many theories based on an 

enrichment of the classical elasticity framework by higher order gradients have been proposed in 

the past to overcome deficiencies of classical elasticity [2-4] and plasticity [5-8] theories in 

describing both static and dynamic phenomena, including size effects, strain and stress fields in 

the neighborhood of singularities [9-13] and wave dispersion in dynamics [14-18]. 

Since the early works in the 1960s by [19, 22] there has been an abundant literature devoted to 

the topic, see the review article of [4], which includes an historical perspective. 
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The initial research in this field was devoted to the elaboration of gradient theories without 

paying so much attention to materials or structures that could obey such theories and with little 

consideration of sound physical interpretation of the new phenomena exhibited by these theories.   

Much research has been devoted to model static and dynamic problems arising from the various 

developed gradient theories; all obtained results showed an enhanced stiffness concomitant to the 

increase of the gradient coefficients, see e.g. [23-26] and references therein. Note that different 

homogenization techniques have been proposed to build gradient elasticity continuum models of 

discrete materials [27-29]. 

Generalized continuum theories have been shown to offer an attractive alternative for capturing 

dynamic behaviors overlooked by classical elasticity, especially dispersion relations, [30] and 

references therein. Applications of gradient elasticity in dynamics have fostered extensive 

research [31-33]. In [30] the dynamic behavior of periodic lattice materials is investigated using 

an equivalent higher-order continuum model obtained by the homogenization of the equations of 

motion. Considering dynamic aspects and especially wave propagation phenomena, the impact of 

the microstructure in heterogeneous materials on the dispersive propagation of elastic waves was 

first recognized and analyzed in seminal paper of [20], who proposed several non-local 

continuum models to capture the dispersion relation of planar waves. 

Gradient elasticity models are useful to predict the wave dispersion characteristics in 

heterogeneous or discrete systems, [20, 17, 34, 35]. A thorough analysis of the effects brought 

about by gradient elasticity models can be found e.g. in [13, 32], especially the impact of the 

higher-order inertial terms [4, 5]. A detailed comparison between the dispersive characteristics of 

various simplified models of gradient elasticity can be found in [6]. 

The descriptions of microstructural effects analyzed in wave propagation are in most of the time 

phenomenological in nature, following either the line of micromorphic [36] or second gradient 

continuum models [13] formulated at the macroscale. The phenomenological nature of these 

models entails that the material parameters involved in the wave propagation formulations need 

to be calibrated to experiments, and consequently such models are not predictive. The large 

number of intrinsic parameters to be identified requires a somewhat difficult measurement 

protocol; this issue is addressed especially in [37-39]. 

In order to circumvent this drawback, multiscale methods have been developed to link the 

dispersive aspects of wave propagation to the microstructure of the material. Amongst these, 
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homogenization techniques derive the dynamical macroscopic behavior by upscaling the 

microscopic one, so obtaining a more smeared description of the dispersive wave propagation 

features, but still reflecting in a predictive manner the impact of the underlying material 

microstructure. To circumvent the difficulty tied to the large number of intrinsic parameters, a 

multitude of reduced models with a tractable number of length-scale parameters have been 

proposed, such as static theories of gradient elasticity involving a single length-scale parameter, 

used e.g. to analyze stress singularities in the vicinity of the crack tip [2,14,15,40]. 

One of the biggest challenges of gradient elasticity theories is a physical interpretation of the 

involved length-scale parameters in terms of given microstructure [4]. An overview of the 

existing formulations for both static and dynamic problems can be found in [4]. 

In many studies, gradient elasticity theories have been derived from the continualization of the 

response of a discrete lattice consisting of discrete masses and springs, see for instance an early 

work of [41] or the more recent contribution and overview of [4] including many references. 

Amongst the employed methods, asymptotic homogenization is quite appealing and has 

developed importantly in the field of wave propagation over the last decade, [42-44]. The long 

wave propagation in periodic media based on homogenization has been proposed by [45], 

extending the approach developed by [46-48]. Homogenization in the time domain has also been 

proposed by several authors, see e.g. [10, 49] and references therein, considering the fast and a 

slow time scales.   

Although a wide body of research has been devoted to gradient-enriched theories for both 

elasticity and phenomena described by internal variables, gradient viscoelasticity theories have 

deserved much less interest in the literature. One of the very few models of viscoelastic materials 

with account on length scale effects through strain gradients is by [51], followed by [50], without 

however a clear relation between the introduced length scale and the material’s microstructure in 

this last work. A viscoelasticity theory with a micro-inertia gradient has been advanced [52] to 

analyze the effect of both a gradient enhancement and a viscous behavior on wave dispersion in 

periodic composites.  

First strain gradient materials addressed by [20,21] have further interest due to possibility of 

associating to them higher order inertia terms, such that the kinetic energy depends on the 

velocity gradient. These effects allow to better describe strain singularities at sharp crack tips and 

to capture size effects within the dynamic material behavior (dispersion relations) manifested by 
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real materials such as porous materials, polymer foams [4, 20, 32]. These higher order inertia 

effects will however not be investigated in the present contribution, which focuses on the impact 

of second order gradient effects on the dispersion relations obtained for periodic lattices.  

The outline of the present chapter is as follows: the homogenized viscoelastic behavior of 

repetitive planar lattices consisting of viscoelastic Kelvin-Voigt type beams is determined in 

section 2, based on an equivalence between the writing of the principle of virtual work for the 

lattice and the posited second-gradient continuum. The constitutive relation for general repetitive 

lattices exhibiting arbitrary anisotropy is also expanded in matrix format in section 2, based on 

the introduction of stress and hyperstress vectors reflecting the lattice topology and 

microstructural parameters. The effective constitutive laws are next introduced into the 

dynamical planar equilibrium equations (section 3). The dispersion relations and damping ratio 

evolutions versus the wave number are evaluated for different lattices in section 4, and the phase 

velocity for both longitudinal and shear waves in section 5. In section 6 we present the effect of 

the internal length to the dispersion relation. We conclude in section 7 by a summary of the main 

results and mentioning a few perspectives for future work 

4.2 Homogenized viscoelastic second gradient behavior of periodic beam lattices 

4.2.1 Expressions of forces 

We consider a homogeneous isotropic viscoelastic 2D beam with a Kelvin-Voigt type behavior, 

slender enough so that shear deformation can be neglected. We will describe the deformation of 

the beam as a function of the end displacements, with these kinematic variables changing in time. 

The vector of kinematic degrees of freedom is written as 

 1 1 2 2, , ,q u v u v  

with the two indices1 and 2 denoting the origin and extremity node of each beam respectively, 

and  i iu , v   the two components of the displacement field in a planar situation.   

Here and in the sequel vectors and tensors are denoted using boldface symbols.  Each beam 

within the lattice works in traction-compression under the action of normal forces NO and NE 

(respectively exerted at the two extremity nodes), and in flexion under the action of the transverse 

efforts TO, TE and moments MO, ME, as pictured on Fig. 4.1. 
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Fig. 4.1 Kinematic and static parameters of a beam element. 

Based on the equations of beam theory, one shall first express the efforts and moments 

accounting for the second order displacement gradient, acting at the extremity node of a 

viscoelastic beam in the Cartesian reference basis, as 
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(4.3) 

In these expressions, nodes 1 and 2 respectively refer to the origin and extremity node of each 

beam, L
εb the beam length, 

u  and 


u are the displacement and the displacement velocity 

vectors, respectively, e  the extensional viscosity and b
I
  the quadratic moment of the beam. 

The resultant and moment expressed in (4.1), (4.2), and (4.3) depend upon the relative 

displacement and velocity of the extremity nodes of each beam within the lattice.  

The kinematic and static variables for any beam in the lattice are represented in the local 

coordinate system associated to the viscoelastic beam of the so-called simplified Bernoulli 

model, in the sense that nodal rotations are not considered. 
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4.2.2 Asymptotic development of the kinematic variables 

The beam length L
εb can be expressed as the following asymptotic expansion L

εb=εL
b, and a 

similar expansion holds for the beam width tεb. The small parameter   is the ratio of the unit cell 

size to a characteristic size of the entire lattice.  

For simplicity reasons, a rectangular section of the beam is considered, with a constant unit 

thickness e =1. Hence, the cross-sectional area is equal to the width, .b b b b
S t e t t

      , the 

quadratic moment of the beam is evaluated as 
 3

12

b
t

I



 and the expressions of the bending and 

stretching stiffness can be expressed versus the slenderness parameter  b

b
t

L


  , supposed to 

be the same for all lattice beams. 

The asymptotic expansion of the nodal displacement and velocity, successively quantities 
u  and

ε
d

dt

 
u

u , are written up to the second order versus the small parameter , in curvilinear 

coordinates denoted β in the sequel (it is a vector with two components in 2D), as: 
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Thus, the displacement difference between the extremity and origin node of each beam is 

expressed by a Taylor series development versus  , as 
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The relative velocity can be obtained  similarly as the relative displacement (or taking directly the 

time derivative of (4.8)),  
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with iL  the periodic length, the index  1,2i indicating the considered axis e1 or e2, and i  the 

shift factor (equal to 1 ) for nodes belonging to a neighboring cell, and nil for nodes located 

inside the considered cell. 

The normal and transverse efforts as well as the moment exerted on a given beam of Kelvin-

Voigt element, in (4.1) to (4.3), can be expressed then under 
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4.2.3 Lattice equilibrium equations in virtual power form 

The virtual power over the whole lattice express as a sum of the products of internal forces by 

their conjugated kinematic quantities at each node, as 

 
( )

i i i i

b b

P TV N U


   4.(4.13) 

with iU and iV therein the longitudinal and the transverse components of the virtual velocity 

field, chosen to vanish on the domain edges. The virtual velocity field has the same shape as the 

displacement field computed in the previous subsection; in the sequel, we select a field of simple 

form reducing to the first order term in. 

The discrete equilibrium of the moments is similarly expressed in virtual power form, such that 

after development it is self-equilibrated; thus, equilibrium is then automatically satisfied, 

expressing at the center of each beams as the following equation 
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with the resultant therein, vector b b b b b
N TF e e , lb the beam length and wb the virtual rotation 

rate, selected as the average of the rotation rates of both beam extremity nodes, and assumed to 

be regular enough: 

1

2
b b b
C O Ew w w  (4.15) 

One can decompose the sum in (4.13) as a double summation on the cells of the lattice and on the 

nodes of a reference unit cell: 

i i i i e

c n B c

P TV N U P  (4.16) 

with  the set of lattice cells, � the set of nodes of the elementary cell, and e
P  the virtual power 

of the boundary nodes in an elementary cell, which can be decomposed as 

 e O O O O E E E E

b

P T V N U T V N U     (4.17) 

The cell is equilibrated at each of his node, and the efforts are periodical with a period of length 

equal to the cell width; this means each boundary node n also exists on an opposite edge of the 

unit cell. One can thus write the following self-equilibrium equations: 

 

O E
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(4.19) 

One can thus simplify (4.17) to  

    e E E O E E O

b

P T V V N U U     (4.20) 

Let next develop the expressions of the relative longitudinal and transverse velocities  E OV V , 

 E OU U  in a Taylor series expansion:  
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One obtains in a similar manner the relative longitudinal velocity  
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Finally, after straightforward computations, expression (4.20) becomes 
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The continuous formulation of the virtual power is obtained by passing to the limit in the 

previous discrete sum, assimilating the elementary cell to a small surface element, thus delivering 

the Riemann integral form of the virtual power when 0  : 

2

0
lim

e e

c

P P P d  (4.24) 

with the change of variables 1
dV g d d dV

g
    , denoting therein g the determinant of the 

Jacobian matrix of the transformation:  
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Vector R in (4.25) designates the position vector of any point within the lattice when changing 

from Cartesian to curvilinear coordinates, expressed under the form 
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2Y are the periodicity vectors by which one can generate the whole 

lattice. Thus, the continuum form of the virtual power of internal forces [29] is written as 
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One restricts in the sequel to periodic uniform structures with central symmetry, for which 

expression (4.27) becomes, 
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After developing the quantities, 
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
 into the Cartesian basis, expression (4.28) then becomes 
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(4.29) 

4.2.4 Equivalence with a viscoelastic second order grade continuum 

The previous formulation of the virtual power of internal forces is next linked with the continuum 

form of the constitutive equations of a linear viscoelastic second order grade continuum, in order 

to express the stress and hyperstress tensors together with the continuum equilibrium equations 

they satisfy.  

4.2.4.1 Second order gradient viscoelastic constitutive law 

Let first recall the constitutive law for a homogeneous anisotropic viscoelastic second order grade 

continuum, written in index format: 

         

         
  

  

e e v v

e e v v

viscous partelastic part

viscous partelastic part

A B A B

S B D B D

  

 

                 

                 
 

with , , , , ,ij ijk pq pqr pq pqrS  successively the stress and hyperstress tensors, and their 

conjugated kinematic quantities, namely the first and second displacement gradients and their 

time derivatives, the first and second displacement velocity gradients. The constitutive tensors 

, , , , ,e e e v
ijpq ijkpqr pqrij ijpq ijkpqr pq

v
rij

v
A D B A D B therein are respectively the first and second order 
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elasticity and viscosity coefficients, the coupling moduli, which all depend on the specific 

considered lattices. 

From a general viewpoint, the density of the virtual power of internal forces writes [53]: 

. .
:iP
          
   

 D S D   (4.30) 

involving the second order Cauchy stress , the third order hyperstress tensor S with the 

symmetry ijk ikjS S , and the virtual rate of deformation 
.
D , with the gradient operator 

considered as the vector  i

ix






e

.
 

Considering virtual velocity fields that vanish on the domain boundary   and in the absence of 

body forces and couples, we obtain the following equilibrium equation of the second order grade 

continuum [53] in both tensor and index format: 

 
2

0 0,   1..2kij

kp

p i j
symmetrical

S
k

x x x


                     

 S   (4.31) 

 

This equation can further be developed as the system of two differential equations 

2 2 2 2
k1 k2 k11 k12 k21 k22

1 2 1 1 1 2 2 1 2 2

S S S S
0,   k 1,2

x x x x x x x x x x

      
                  

(4.32) 

We next determine the expression of the stress and hyperstress tensors based on the virtual power 

of internal forces and highlighting the analogy with the expression of the virtual power obtained 

for the initially discrete lattice (4.29):  

  
.

iP dV


      S D  (4.33) 

After expansion, previous expression can be rewritten under the form 

2
. .

i q pq

q p q

P dV
x x x

            
      

    


D D
F H (4.34) 

With the pair of indices         , 1,1 , 2,2 , 1,2p q   here and in the sequel, and introducing the 

following force and hyper force vectors therein:  
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q

q ij i j q iq i
e e e e e      F  (4.35) 

   pq

p q klm k l m p q kqp ke e S e e e e e S e        H S (4.36) 

One can next reconstruct from equations (4.35) and (4.36) the stress and hyperstress tensors, 

successively the second and third order tensors
 

  q

iq i q qe e F e    (4.37) 

  pq

kqp k q p q pS e e e H e e     S  (4.38) 

Introducing therein the following vectors  

1 1 2 2 1 1 2 2, , andb b b b

E E E E E E E ET T N N
    T e T e N e N e  

The components of these vectors include both elastic and viscous contributions, as can be seen 

from (4.10). One can reformulate expression (4.29) under the form 

2

0

. .

lim
q pq

b q p q

P dV
x x x



        
    

  
 F H

u u
(4.39) 

such that 

   
1 1

1
1 1 1 2 2 2θ θ1,2 , cos + cosE Eq L L

g
 

 
   
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T N
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 
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1 1 1 2 2 2θ θsin + sinE E L L
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 
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  
 

F
T N

 

(4.41) 

The scalar g is the determinant of the Jacobian matrix. There not four independent combinations, 

but only three, since one sums on the combination of the crossed derivatives (1, 2) and (2, 1), 

thus 

2 2 22 2 2 2 2
2 211 1 1 1 2

θθ coscos
+

2 2
E E

LL

g

  
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(4.43) 
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T N
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(4.44) 
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This constitutive law can further be simplified basing on symmetry properties of the studied 

lattices: it has indeed been shown [54] that for centro-symmetrical lattices the pseudo-tensors 

eB    and vB    vanishes. This leads to the following important simplified writing 

     

     
  

  

e v

e v

viscous partelastic part

viscous partelastic part

A A

S D D



 

       

       
 

4.2.4.2 Evaluation of the characteristic lengths of the effective second gradient continuum 

In order to identify the internal lengths associated to the different deformation modes (extension 

and in-plane shear in the present 2D case), we rely on the format of the elastic strain energy 

density, including stress and hyperstress contributions 

ij ij ijk ijk

1
W W ,  = σ +S

2
e e

e e ij ijk
, with the strain gradient components ,ijk jk i . 

One can then factor out the successive components of the small strain first order tensor: 

considering for instance the first stress components 11
e , its expression versus the similar strain 

components 11 11
e

a , and 111 111 11,12 2e
S b K b , thus one can isolate the corresponding 

contribution in the energy, 11 11 111 111 1 11

1 1σ +S β
2 2

e e
a b  . One can then identify from 

previous term the internal length in extension in the first direction, the square of which being 

defined as the ratio of the second order modulus to the classical first order modulus, viz 2
1

2b
l

a
. 

In a similar manner, one elaborates the shear energy contribution ( 12  is a first order shear 

modulus) 

12 12 122 122 12 345 2 12

1 1
2

2 2
e e

S b  

leading to the identification of the internal shear length 2 345
2 2

b
l , see [55,56] for more details. 

The viscous characteristic lengths are elaborated in a similar manner, using the dissipated energy 

instead of the elastic energy (we shall not repeat the previous writing), of the form: 
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ij ij ijk ijk

1
W W ,  = σ +S

2
v v

d d ij ijk  , with ,ijk jk i  

4.3 Dynamical equilibrium and characteristic equation 

For any homogenized 2D viscoelastic lattice, the equations of motion for a second gradient 

medium, write in components form as the two following differential equations along the x and y 

directions of a Cartesian coordinates system,  

2 2 2 2
11 12 111 112 121 122

1 2 1 1 1 2 2 2

*

1 2

S S S S

x x x x x x
u

x x x x


      
                

(4.45) 

2 2 2 2
21 22 211 212 221 222

1 2 1 1 1 2 2 2

*

1 2

S S S S

x x x x x x
v

x x x x


      
                

 (4.46) 

Here, u  and v  are the horizontal and vertical components of the acceleration vector. The 

effective density therein is given in general by * 1

cell

M

A
  , with M1 the mass of the set of lattice 

beams, Acell being the area of the periodic cell; these quantities are next computed specifically for 

all four lattices analyzed in this work. 

In order to obtain the displacement formulation of the equations of motion, the compatibility 

equations involving the macro strain components are written as follows 

11 1,1 22 2,2 12 1,2 21 2,1 ,   ,   ,u u u u     

The gradient of deformation is given by its 6 independent components as 

1 1,11 2 2,22 3 1,21 2,12 1,22 2,4 5 6 11 ,   ,   ,  ,,     u u u u u u       

In order to obtain the velocity, and the gradient of velocity, one has to derive the expression there 

above of the displacement and displacement gradient versus time. The deformation, the gradient 

of deformation, the velocity gradient and the second order velocity gradient are used in the 

constitutive equation. 

For a harmonic wave propagating along an axis in an infinite planar second gradient medium, the 

generalized displacement field with components ,  U V  at a point r is assumed in the following 

form [57] 

 
,  

.t i
U U e

 


k r (4.47) 
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 .t i
V V e

 


k r
 (4.48) 

Where ,U V  is the wave amplitude,  1 2k ,kk  the wave vector (each component is a complex 

number), and Ȝ a complex frequency function (function of the wave vector) that permits wave 

attenuation in time. In the limiting case of no damping, it holds Ȝ =±iω, and the usual form of the 

plane wave is recovered. Substituting equations (4.47) and (4.48) in the equation of motion (4.45) 

and (4.46) delivers the following algebraic equation   

1 2 [  (k ,k ,Ȝ)] 0
U

D
V

    
  

(4.49) 

The wave vector k is a complex number: its real part represents the attenuation in the x-y plane, 

and its imaginary part is the phase constants. 

For a plane wave without attenuation in the x-y plane, the propagation constants along the x and 

y directions are 1 1 ( )k cok i s   and 2 2 s ( )inkk i    . 

Any triad 1 2, ,k k    obtained by solving the eigenvalues problem in (4.49) represents plane waves 

propagating at the frequency Ȝ. 
The eigenvalue problem for Eq. (4.49) yields a characteristic equation developed as: 

4 3 2    0a b c d        (4.50) 

The roots of Eq. (4.50) may be expressed in the following form: 

2( ) ( ).   ( )  .   ( ) 1s s ns ns sk k k i k        (4.51) 

in which s represents the branch type, namely l standing for the longitudinal waves and t for the 

shear waves. Two pairs of complex conjugates solutions are obtained, corresponding respectively 

to longitudinal and shear waves.   

In equation (4.51), one identifies the natural frequency   
ns

k , the damped frequency   
ds

k  and 

the damping factor s , viz the following quantities 

   2 2 2 ( )
    ( ) ( ) ,    ( ) 1 , s

ns s s ds ns s s

ns

real
k real imag k k

      


       
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Relying on these expressions, we can plot the dispersion curve for the dissipated frequency and 

the damping ratio versus the wave vector k. 

4.4Application to specific lattices 

In this study, four lattices are selected for their expected interesting acoustic properties:the 

hexagonal lattice, the re-entrant lattice (in fact the hexagonal with a negative angle), the diamond 

chiral lattice and the pantograph, as pictured in Fig.4.2. We first compute the homogenized 

mechanical response of these lattices, as a basis to determine their wave propagation behavior.  

The geometrical and mechanical parameters of the four unit cells are given in Table 4.1. 

 

Fig. 4.2 Representative unit cell of the investigated lattices: (a) Hexagonal lattice, (b) pantograph 
(inextensible beams),(c) Diamond chiral lattice, (d) re-entrant lattice (θ<0). 

 

Table 4-1 Geometrical and mechanical parameters of the four lattices 
Type Geometrical parameters of the unit cells Mechanical properties 

Re-entrant 50mm, 1mm, 30l t      
1400MPa, 0.3,sE    

31000kg/m   
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Pantograph 50mm, 1mm, 90l t      
1400MPa, 0.3,sE    

31000kg/m   

Diamond 

chiral 
50mm, 1mml t   

1400MPa, 0.3,sE    

31000kg/m   

Hexagonal  50mm, 1mml t   
1400MPa, 0.3,sE    

31000kg/m   

 

The effective area and density of these lattices is evaluated in closed form.  

For the hexagonal lattice parameterized by the angle θ, the area is given by

 2
cellA 2L cosθ 1 sinθ  , and the effective density writes

 
* 3

2Lcosθ 1 sin θ
t  


. 

For the diamond chiral lattice, one obtains an area 2
cellA 8L , and the resulting effective density 

is *

L

t  .  

For the pantograph, the area and effective density are successively given by 2
cellA L and

* 4
L

t  . 

4.4.1 Stress and hyperstress tensors for the considered lattices 

The expression of the stress and hyperstress tensors for the investigated lattices made of 

Bernoulli viscoelastic beam of Kelvin-Voigt type is evaluated based on the general methodology 

exposed in section 2. 

4.4.1.1 Hexagonal lattice 

One obtains the Cauchy stress expressing as 

- For the elastic part: 

 
3 1 2 1

1 2 1 3

3

6

e e e e e e e

l l f f

e

e e
e e e e e e e el f

f f l l
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a K a K a K a K

x y y x

U V U VK K
a K a K a K a K

y x x y



          
           

 

- For the viscous part: 
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 
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. . . .
 

Where          1 2 3 1 2; 3 ; 3 ; ; 3e e e e e e e e e v v v v v v

l f l f l f l f l fa K K a K K a K K a K K a K K          and 

 3 3v v v

l f
a K K   

The hyperstress tensor is obtained in its different components as follows  

- For the elastic part: 
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- For the viscous part: 
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Note that for all lattices, the viscous Cauchy stress and hyperstress tensors can be obtained by 

replacing ,e e

l f
K K  in the expression of ,e e

S  by ,v v

l f
K K and taking the velocity instead of the 

displacement. We accordingly do not write explicitly the viscous stress and hyperstress tensors 

(which can be obtained based on this substitution).  

4.4.1.2 Diamond chiral lattice 

The Cauchy stress is expressed, for the elastic part, as 
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The hyperstress tensor writes: 
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4.4.1.3 Re-entrant lattice (θ<0) 
The Cauchy stress is obtained, for the elastic part, as 
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The hyperstress tensor writes: 
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where    1 2; 3e e e e

f l f lc K K c K K    and  3 3e e

f lc K K   

4.4.1.4 Pantograph 

One obtains a vanishing Cauchy stress: 0e v   , so that elasticity only exists for the second 

order contribution. The elastic hyperstress tensor is obtained in terms of its independent 

components as 
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The constitutive equations are then used in the dynamical equilibrium equation of the effective 

second order grade medium to obtain the dispersion, damping ratio and phase velocity responses 

versus the wave vector, for all studied lattices, following the methodology described previously 

in section 3. 

4.4.2 Evaluation of the internal extensional and shear lengths 

The calculated elastic and viscous internal lengths are evaluated for the 4 studied lattices based 

on the general expressions given in previous subsections (Table 4.2). 

Table 4-2 Elastic and viscous internal lengths for the studied lattices 
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As shown in Table 4.2, the elastic and viscous internal lengths for the 4 lattices do not depend on 

the beam mechanical properties ( , eE  ), but only on the geometry through parameters (L, t), 

respectively the beam length and width.  



  

132 

4.4.3 Dispersion relations and damping ratio evolutions 

We firstly evaluate the dispersion relation and damping ratio evolutions of the diamond chiral 

and re-entrant lattices, in order to show the influence of the viscosity coefficient on both the 

frequency band structure and damping ratio. In the following e  is given in MPa.sec.

 

Fig. 4.3 Damping ratio for two values of the damping coefficient µe=10  and =20e  for a) the 
diamond chiral lattice for θ=π/4ν b) the diamond chiral lattice for θ=π/6νc) the re-entrant lattice 

for θ=π/4ν d) the re-entrant lattice for θ=π/6. 

We plot in Fig. 4.3 the damping ratio  versus the wave number for different viscosity 

coefficients e . Fig. 4.4 shows the frequency band structure of the diamond chiral and re-entrant 
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lattice, with damping  e 80   and without damping  e 0  for two directions of wave 

propagation (θ=π/4 and θ=π/6). 

 

Fig. 4.4 Dispersion relation for low and high damping situations for the a) diamond chiral lattice 
for θ=π/4ν b) the re-entrant lattice for θ=π/4ν c) the diamond chiral lattice for θ=π/6 and d) the re-

entrant lattice for θ=π/6 . 

Results show shifts in the frequency band diagrams (the damping frequency decreases) due to the 

presence of damping; these shifts are more important with an increase of the viscosity coefficient 

for the longitudinal and shear modes. This behavior has also an impact on the damping ratio 

diagrams: when the viscosity coefficient increases, the damping ratio increases proportionally to 

achieve a maximum value of unity for the 2 modes. These results are in very good agreement 
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with those found in [57, 58]. The same influence of the viscosity coefficient on the damping ratio 

and frequency band structure can also be observed for the pantograph and the hexagonal lattices 

(see Fig.4.2). The vanishing of certain modes of propagation (for the re-entrant lattice) for a 

certain wavenumber is due to the total dissipation of energy in the presence of damping. There 

are several examples in the literature showing the cut-off phenomenon, by which energy 

completely vanishes: this can be seen e.g. in reference [58] a cut off branch appears when the 

authors increase the viscosity coefficient. In [57, 18] one can see the same cut off phenomenon 

when the viscosity coefficient is increased; the cut off phenomenon also appears in [59]. The 

energy decreases exponentially, this decrease depends on the real part of the complex frequency 

function, which is ( Re( ) n   ); this entails that energy will be dissipated faster when the 

viscosity coefficient is increased (which increases the damping ratio   as shown in Fig. 4.3). One 

can also conclude that the damping ratio and the natural frequency (case of non-damping) for the 

re-entrant lattice has higher values compared to the diamond chiral lattice, thus the diamond 

chiral lattice can filter frequencies more efficiently than the re-entrant lattice. For the diamond 

chiral lattice, longitudinal and shear waves coincide for the considered direction of propagation 

θ=π/4. We represent on Figs 4.5, 4.6 and 4.7 a comparison of the damping ratio and frequency 

band structure for the longitudinal and shear modes for the four studied lattices. 

 

Fig. 4.5 Comparison between dispersion relation versus wave number k for the 4 studied lattices 
with Ө=π/6, for a) longitudinal waves and b) shear waves. 
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Fig. 4.6 Comparison of the damping ratio ζ for the 4 lattices with Ө=π/6, for a) shear waves and 
b) longitudinal waves. 

 

Fig. 4.7 Comparison of the dispersion relation for the 4 lattices in a damped medium (µe=20) for  
: a) Longitudinal waves and b) Shear waves. 

Results in Fig. 4.5 and Fig. 4.6 indicate that the diamond chiral and pantograph lattices present 

low natural frequencies in both longitudinal and shear modes due to the lower intensity of the 

(first order) stress and hyperstress components. The same observation can be made for the re-

entrant lattice in the shear mode, as found in [60], while the re-entrant and the hexagonal lattices 

present the higher damping ratio of all lattices in the 2 modes. 
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In Fig.4.7, it can be observed that the damping frequency for the shear mode of all 4 lattices are 

close to each other, whereas for the longitudinal modes and at low wave number, the diamond 

chiral and pantograph lattices present the lowest damped frequency. By increasing the wave 

number, the damping frequency for the hexagonal and re-entrant lattices tends to zero faster than 

for the diamond chiral and pantograph lattices, due to their higher damping ratio, as shown in 

Fig. 4.6. It can be seen in Fig. 4.6 that the longitudinal branches for the four studied lattices are 

more sensitive to the viscosity coefficient ‎and presents a higher value of damping, in comparison 

to the shear mode. This can be explained ‎based on the first and second order homogenized 

viscosity matrix: we find that the stress and hyperstress components coefficients are greater for 

the longitudinal mode in comparison to the transverse mode ( 11 22 111 222,  S  S  , resulting in a 

lower damping coefficient for the shear modes. This explains that the vanishing of branches 

‎‎(corresponding to a damping coefficient equal to unity) in the longitudinal modes appears earlier 

than for the shear modes, as shown in Fig. 4.7. The same observation holds when comparing the 

longitudinal modes amongst the four lattices. In the sequel, we investigate the effect of the 

direction of the wave propagation, characterized by the angle θ indicating the direction of 

propagation of the wave on the dispersion relation and the damping ratio. 
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Fig. 4.8 Dispersion relationsversus θ for a) longitudinal waves for the diamond chiral lattice, b) 
longitudinal waves for the re-entrant lattice, c) shear waves for the diamond chiral lattice and d) 

shear waves for the re-entrant lattice. 
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Fig. 4.9 Damping ratio versus θ for a) longitudinal waves for the diamond chiral lattice, b) 
longitudinal waves for the re-entrant lattice, c) shear waves for the diamond chiral lattice and d) 

shear waves for the re-entrant lattice. 
Figs. 4.8 and 4.9 show that for the re-entrant lattice the specific value / 2   entails an 

important change in the damping ratio and dispersion relation in the 2 modes (longitudinal and 

shear). This can be clearly observed when we refer to the homogenized elastic and viscous 

matrices, since lower values of the stress and hyperstress components are obtained for the yy-

components; this change of behavior is less important for the diamond chiral lattice due the 

existing symmetries between the different components of stress and hyperstress. In Fig. 4.10, we 

note that the pantograph lattice presents a specific characteristic: for any angle of wave 
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propagation θ, the dispersion relation and the damping ratio are nearly identical and the 2 modes 

are also identical. 

 

Fig. 4.10  a) Dispersion relation for longitudinal and shear wave for pantograph lattice versus θν 
b) damping ratio for longitudinal and shear waves for the pantograph lattice versus θ. 
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Fig. 4.11 Dispersion relation for longitudinal and shear wave for the Cauchy and second grade 
continua: a) diamond chiral lattice; b) re-entrant lattice. 

In Fig. 4.11, we compare the dispersion relations for the Cauchy and second gradient media, for 

the diamond chiral and re-entrant lattices, for the 2 modes. We observe that there is an important 

shift in the natural frequency between Cauchy effective medium and a second order medium; the 

natural frequency is increased by second order effects. This is due to the contribution of the 

second order effective modulus of the entire lattice, given from the hyperstress S, which globally 

increases the effective elastic properties. 

4.4.4 Phase velocity 

The phase velocity in a direction can be written in complex form as follows: 

2( ) ( ).   ( )  .   ( ) 1s s ns ns sc k k c k i c k     (4.52) 

in which ( )s k is the damping ratio for the branch s, 
 ( )

 ( ) ns
ns

k
c k

k


  is the phase velocity in a 

non-dispersive homogeneous medium, with  ( )ns k  the normal frequency and k the modulus of 

the wave vector. The dissipative phase velocity is given as follows: 

2 ( )
( )  ( ) 1 ds

ds ns s

k
c k c k

k

   (4.53) 
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with ( )ds k  the damping frequency. Let recall that the secant slope of the line connecting the 

origin point with the point of interest on the curve in the dispersion diagram gives the phase 

velocity, while the tangent to the dispersion curve at any point gives the group velocity. The 

results in Figs. 4.12 and 4.13 show shifts in the phase velocity due to presence of damping; as the 

viscosity coefficient increases, these shifts are more pronounced.  

 

Fig. 4.12 Phase velocity for the longitudinal and shear wave, for the diamond chiral lattice for a) 
θ=π/4 and b) θ=π/6. 

 

Fig. 4.13 Phase velocities for the two wave modes of the pantograph lattice 
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We also observe for the pantograph lattice that the phase velocity for the longitudinal and shear 

modes is identical and is not influenced by the direction of wave propagation θ; this follows 

logically from the obtained dispersion relations (Fig. 4.10).  

 

Fig. 4.14 Phase velocities for the pantograph and diamond chiral lattices. 

In Fig. 4.14, we represent the phase velocity in longitudinal and shear modes for the diamond 

chiral lattice and pantograph, due to their ability to dissipate more energy and their best acoustic 

characteristics, amongst the 4 lattices (see Fig. 4.2). As shown in Fig. 4.14, the phase velocity in 

the pantograph is less than for the diamond chiral for the longitudinal and shear modes; this 

implies that the pantograph will have the best absorption properties amongst the considered 

lattices since the waves will propagate with lower velocity and will thus be better absorbed. The 

presented results entail that the pantograph lattice exhibits the best acoustic characteristics. 

4.4.5 Effect of internal length on the dispersion relations 

Changing the lattice topology and its geometrical parameters leads to a variation of the 

characteristic lengths associated to the different deformation modes, since the expression of these 

lengths follow from the computed effective moduli. 

We present in Fig. 4.15 the influence of the magnitude of the internal length in extension and 

shear on the natural frequency, for the diamond and reentrant lattices. 
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Fig. 4.15 Dispersion relations for θ= π/6 versus the internal shear length for a) longitudinal waves 
for the diamond chiral lattice, b) shear waves for the diamond chiral lattice, c) Longitudinal 

waves for the re-entrant lattice, d) shear waves for the re-entrant 

We observe (Fig. 4.15) that the internal length in the shear case do not affect the natural 

frequency for the diamond chiral lattice and generate a small shift in the 2 modes. For the re-

entrant lattice, and for the longitudinal mode, it’s found that as we increase the internal shear 

length an important increase of the frequencies occurs. For the shear mode of the same lattice, the 

3 branches coincide. 
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4.5 Conclusion 

This chapter provides an analysis of the dispersion of elastic waves in periodic beam networks 

based on second order gradient models obtained by the homogenization of the initially discrete 

network obtained by the discrete asymptotic method extended up to the second gradient. The 

lattice beams have a viscoelastic behavior described by Kelvin-Voigt model and the 

homogenized second gradient viscoelasticity continuum model which has first and second order 

elasticity coefficients reflecting both the initial lattice topology,  anisotropy and microstructural 

features in terms of geometrical and micromechanical parameters. The continuum models 

enriched with the higher-order gradients of the displacement and velocity introduce characteristic 

lengths parameters which account for microstructural effects at the mesoscopic homogenized 

level. The dynamical equations of motion for the equivalent second order continuum have been 

written to analyze the wave propagation characteristics of four different lattices (the chiral 

diamond, the classical and reentrant lattices, and the pantograph). A comparative study of the 

dispersion relations and damping ratio evolutions for the longitudinal and shear waves has been 

done. The developed model allows analyzing both the effects of damping and internal length 

scale through the second order gradients on the wave propagation characteristics. The developed 

homogenization method is valid in the range of low frequencies.  

We have obtained an important increase of the natural frequency due to second order effects, 

which overall increases the effective elastic and viscous properties. For the pantograph lattice, it 

has been obtained that the phase velocity for the longitudinal and shear modes is identical and is 

not influenced by the direction of wave propagation. Since the phase velocity has the lowest 

value for the pantograph, this lattice has the best absorption properties. The presented results 

entail that the pantograph lattice present overall the best acoustic characteristics amongst the 

studied lattices. 

Future work shall analyze the wave propagation in presence of nonlinear deformation of the 

lattice due to geometrical nonlinearities arising due to the small bending stiffness of the structural 

beam elements. The developed homogenization technique shall further lead to continuum models 

enriched with higher-order inertia terms.  
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5. Chapter 5:  Wave propagation in random fibrous 

networks based on generalized continuum mechanics 

 

Summary 

 

This work is done in the framework of collaboration with Kamel Berkache, a PhD student from 
USTHB University in Alger (Algeria).  
The dynamic analysis of random fibrous networks is a novel topic, which has many applications 
since these networks are very often subjected to dynamical loading conditions such as mechanical 
vibrations. In order to bypass the complexity of performing dynamic computations at the 
microscopic scale of random fibrous network, we develop and identify couple stress and gradient 
models as effective continua at the mesoscopic level of windows of analysis, in order to analyze 
the size effects of such networks on their dynamic properties. The static mechanical properties 
which are at the basis of the dynamical analysis are computed thanks to FE simulations 
performed over windows of analysis subjected to mixed boundary conditions allowing to capture 
the classical and non-classical effective moduli. The acoustic properties are captured by the 
dispersion diagrams and plots of the phase velocities; we analyze the influence on the dynamic 
properties of three main quantities of interest, namely the fiber bending length, the size of the 
window of analysis, and the fibers density. The impact of these parameters is successively 
assessed for the couple stress and strain gradient substitution continua. A comparison of the 
acoustic properties of the two effective media is provided as a summary of the present work. The 
couple stress medium is essentially non dispersive waves in longitudinal mode and dispersive 
waves in shear mode, whereas the strain gradient medium behaves in a dispersive manner for 
both modes. Both media show an increase of the frequency with the fiber bending length. Small 
variations of frequency and partial band gaps occur with fibers density in the affine regime, these 
effects becoming important in the non-affine regime. The effect of window size on the dispersion 
diagram and partial band gaps is weak in both affine and non-affine regimes. In affine regime, the 
influence of the second gradient disappear and no significant effect in the phase velocity. 
Significant shifts in the partial band gaps occur for the strain gradient effective medium in 
comparison to the couple stress continuum.  
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5.1 Overview 

Nature exhibits a large diversity of materials presenting a stochastic fibrous microstructure, 

building highly complex and multi-functional parts. Protein for instance, is frequently found in 

nature in a fibrous form; the most abundant fibrous protein in mammals is collagen, which 

constitutes the major part of tendons and ligaments, and most of the organic matrix in bone and 

dentin. It confers mechanical stability, strength and toughness of these tissues [1]. 

The structural characteristics of random fibrous networks depend upon the properties of the 

fibers, thus their modeling is necessary in order to understand the mechanism of deformation and 

failure on system sub-scale, due to the difficulty of measuring the in situ deformation 

mechanisms of the fibrous microstructure. 

The tradeoff between local axial stretching and bending deformations of the fibers has an 

important impact on the overall mechanical response; especially, the response of the network to 

imposed deformations is likely to be non-affine, the degree of non-affinity being controlled by the 

bending length, a scalar quantity which quantifies the relative importance of the bending to the 

stretching stiffness, as pointed out in [2-4] , who evidenced that the network shifts from the non-

affinely deforming structure to an affinely deforming one by increasing the bending length. [5-6] 

further concluded that the degree of heterogeneity decreases by increasing the network density; 

one of the most important result as to scale effects is that the heterogeneity leads to a strong 

dependency of the apparent moduli on the size of the probed network domain; this has been 

modeled in [3] by evaluating the correlation functions of the tensile modulus versus the window 

size.  

As described in [7], models in the literature developed to simulate the mechanical behavior of 

fibrous networks fall into two main categories, namely phenomenological models and 

micromechanical models. Micromechanical models overcome the shortcomings of the 

phenomenological models, which very often are not able to capture the relation of the fiber 

properties to the model parameters. The primary focus of micromechanically based constitutive 

models of non-woven fibrous networks is the elastic behavior. Cox in [8] was one the first to 

propose a model for the elastic modulus of paper based on the mechanics of the fiber network, 

with all fibers extending from one end of the mat to the other, and assuming stretching of the 

fibers as the dominant deformation mechanism. However, since fibers have a relatively low 



  

152 

 

stiffness and are randomly oriented, bending is an important feature, particularly in the absence of 

a supporting medium [9-10].  

As mentioned in very recent contributions [11-12], the dynamics of periodic fiber networks has 

recently raised a lot of interest, whereas wave propagation in random fibrous networks has not 

deserved yet the attention of researchers. Although fibers networks are often subjected to 

dynamical loadings like vibrations, most of the works have indeed been devoted to the analysis of 

their static behavior. The contribution of [11] seems to be a pioneering work on the wave 

propagation in random fibrous networks in the small strain range. The authors show via 

frequency-domain FE computations performed at the microscopic scale of the entire network that 

the response is non dispersive at long wavelengths, while it becomes dispersive at intermediate 

and short wavelengths. In this last situation, the Bloch modes are highly non-affine (the degree of 

non-affinity is increasing when decreasing the wavelength), most of the deformation localizing 

within the longest fibers of the network.  

In this work, we will use generalized continuum theories at an intermediate mesoscopic level in 

order to address the issue of size effects related to the random fibrous microstructure; those 

theories have been extensively used to explain size effects for a wide class of materials, but not 

for random fibrous networks to our knowledge. This constitutes the main originality advocated in 

the present contribution. Real materials such as biological membranes and tissues often exhibit a 

number of important length scales, which must be included in any realistic model.  

Many advanced theories and models have been proposed to study wave propagation problems 

accounting for non-locality and microstructural effects in materials. One category of approaches 

is multiscale homogenization techniques [13], which aims at computing asymptotically the 

solutions of the wave equations involving multiple spatial and temporal scales, and to capture the 

long-term response of the homogenized response. The mechanics of generalized continua 

accounts for the non-locality of the elastic fields due to microstructural effects in a macroscopic 

manner, by introducing higher-order strain gradients or additional degrees of freedom. An 

overview of the literature on the advanced theories and models proposed to study wave 

propagation problems accounting for non-locality and microstructural effects in materials can be 

found in [12], in which the authors analyze the dynamic properties of periodic textile structures. 
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The two main classes of generalized continuum theories are the higher-grade theories, in which 

the gradients of strains or the higher order gradients of the displacement are incorporated; the 

higher-order theories incorporate additional degrees of freedom and constitute a second class. The 

reader is referred to [14] who proposed a historical overview of generalized continuum theories. 

The development of the non-linear theory of elasticity returns to the seminal work of Cosserat 

brothers that did not get the attention it deserved for a long time. At the beginning of the 1960s, 

prominent authors became interested in Cosserat theories [15-16], and a special case of the 

Cosserat continuum theory was investigated by [17], in which the rotation of the rigid Cosserat 

triad is defined in terms of the displacement gradients, deserving the name of couple stress 

theory. In a recent work,[18-19] identified the couple-stress moduli of vertebral trabecular bone, 

based on a prototype model for the 3D internal architecture, whereby the network of trabecular is 

modeled as a porous material with an idealized periodic structure made of 3D open cubic cells; 

this was followed by a more recent contribution of the same authors [20] devoted to the 

identification of strain gradient models for composite materials, including three-dimensional 

random porous polymer scaffolds, composite reinforced by inclusions, and woven composites. 

In this chapter, we will use the couple stress theory and strain gradient models as a modeling 

framework in order to analyze the size effects at the level of windows of analysis of the random 

fibrous network.  

The chapter is organized as follows: the generation of a random set of fibers in a 2D context 

within windows of analysis is explained in section 2, together with the method used for the 

identification of the couple stress moduli based on the equivalence of strain energy. The influence 

of important parameters characterizing the network on the computed effective mechanical moduli 

of the couple stress medium is studied in section 3, such as the bending length, the density of 

fibers, and the size of the window of analysis. In section 4, we present the second gradient 

homogenized medium of random fibrous network. The acoustic properties of random fibrous 

networks are analyzed based on strain gradient models as an alternative framework in section 5, 

which provides a comparative analysis of the same features obtained by couple stress theory in 

the first part of the chapter. Finally, a summary of the work is exposed in section 6 together with 

perspectives for future work. 
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5.2Identification of 2D continuum equivalent moduli based on couple stress medium 

5.2.1Generation of different RVE's made of random fibrous networks 

In this work, we will consider random structures to be a special class of stochastic fibrous 

networks and classify a random process as one where the events are independent of each other 

and equally likely, according to the criteria identified in [21].  

The generated random network consists of finite fibers distributed with a random orientation, 

each passing through a point distributed according to a Poisson point process in a plane. Many 

fibrous networks are very close to being two-dimensional because the dimensions perpendicular 

to their plane are very small relative to the in-plane dimensions. We consider here systems of 

two-dimensional networks in which the fibers are of uniform length 0L  and are deposited on 

squared regions of dimensions L ; a typical network generated under the above mentioned 

conditions is shown in Fig. 1. Without loss of generality, the thickness in z-direction is set to 

unity. 

 

Fig. 5.1 Typical window of analysis for a random fibrous network 

The mutual interactions of fibers provide the network connectivity; its non-uniformity can be 

captured by the fiber number density N  (defined as the number of fiber centers per unit area) or 

rather the contour density of the network, scalar quantity 0D NL , within different windows of 
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linear size L  occupying a much bigger network. In the sequel, the wording network density shall 

refer to quantity D.  

The cross-links are introduced at all points where fibers intersect, at which the coordination 

number is 4z  ; they are here modeled as ``welded'', so that the fibers are loaded both axially 

and in bending. The angle between intersecting fibers is preserved and leads to a transfer of the 

bending moments between fibers. Numerical computations with ``Welded'' joints type are more 

stable than those with ``Pin'' joints type, as discussed in [6]; nevertheless, simulations show that 

there is no influence of the type of interactions (welded or free) on the effective classical and non-

classical moduli.   

5.2.2 Computation of the effective properties of the couple stress substitution continuum 

Generalized continuum theories have been extensively used to account for size effects. There are 

two classes of generalized continuum theories: the strain gradient theory from the class of higher-

grade continua and the micropolar theory from the class of higher-order continua. 

In the former, the gradient of strain is proposed as an additional deformation measure, while in 

the latter the microrotation gradient is the source of an extra internal energy. 

The development of the non-linear theory of elasticity traces back to the seminal work of the 

Cosserat brothers that did however not get the attention it deserved for a long time. At the 

beginning of the 1960s, several authors interested in [22] theories, and a special case of the 

Cosserat continuum theory has been investigated by [17], in which the rotation of the rigid 

Cosserat triad is defined in terms of the displacement gradients, deserving the name couple stress 

theory. In the micropolar theory, the deformation is described by the displacement vector u and 

an independent rotation vector , whereas in the couple stress theory, the rotation vector    is not 

independent from the displacement vector, since it is given as the antis-symmetric part of the 

displacement gradient, leading in the present 2D context to the expression of the microrotation 

around the z axis as 

1

2

v u

x y


  
    

 (5.1) 

On the basis of couple stress theory in a 2D plane stress situation, the stress tensor has four 

independent components , , ,xx yy xy yx    and the couple stress tensor has two components
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,xz yzm m . The four independent deformation components and the two independent micro-

curvature components ,xz yz  express versus the displacement gradients and the micro-rotation as 

,     ,       ,     ; ,xx yy xy yx xz yz

u v v u

x y x y x y

             
       
     

 (5.2) 

As a result of the kinematic coupling (5.1) in the couple-stress theory, the strain tensor 
ij is 

symmetrical with components defined as      
1

2xy yx

v u

x y
 

  
    

 . 

Ignoring body forces and body moments, the dynamical equilibrium in translation and rotation, 

writes as the set of three equations 

0, 0, 0xy yx yy yzxx xz
xy yx

mm

x y x y x y

    
    

       
     

 (5.3) 

The balance equation of internal bending momentum (5.3) implies the equality of both shear 

stress components
xy yx  . 

Thus, the constitutive equation can be expressed in the following uncoupled form (for a centrally 

symmetric unit cell structure) as 
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 (5.4) 

 

where in the coefficients 
ijA are the classical Cauchy moduli, while coefficients ijD are the 

micropolar moduli relating the two independent non nil couple stress components to the 

corresponding curvatures. The effective Young's moduli can be expressed versus coefficients 
ijA

as: 

2 2
12 12

11 22
22 11

, .x y

A A
E A E A

A A
     

Furthermore, the effective Poisson ratios are computed as: 
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The main purpose of this section is then to determine the effective constitutive constants of the 

couple-stress continuum from the response of random fibrous networks within windows of 

analysis of different sizes (in the sequel, we conveniently use the short cut WOA for window of 

analysis). We design different boundary conditions for the determination of the independent 

components of the constitutive (rigidity) constants over a domain with boundary . In each 

case, we force the WOA to bear a set of specific deformation, as described in [18], and compute 

numerically the total elastic strain energy WOAU  stored in the WOA under the corresponding 

boundary conditions. The numerical procedure used here is similar to the one used in [18] but 

here restricted to a 2D situation: the total strain energy stored in the WOA is equated to the 

energy of an equivalent homogeneous couple-stress continuum, thus it holds the identity 

2WOA couple stress ij ijkl kl ij ijkl kl

V
U U A D          (5.5) 

with V the volume of the WOA. The strain energy stored in the effective homogeneous couple-

stress continuum can be obtained by the prescribed strain/stress fields. 

We define the fiber bending length as the ratio between the axial stiffness to the bending stiffness, 

parameter b f f
l E I E A . The evolution of the classical and couple stress moduli versus the 

fiber bending length
bl  is plotted in logarithmic axes in Fig.5.2 and Fig.5.3, for a constant density 

of fibers. Low values of 
bl  enhance local rotations of the fibers, which do not follow the imposed 

deformation over the boundary of the window of analysis, thus the network responds essentially 

in a non-affine manner; opposite to this, high values of 
bl lead to a rather affine response, while 

intermediate bl  values correspond to the transition regime. The variation of two out of the four 

classical moduli with bl  ( 11A  and 33A ) is shown in Fig. 2; the vertical axis is normalized with the 

tensile rigidity of the fibers, quantity
fE A , and the horizontal axis is normalized by the fiber 

length 0L . In these computations the density is kept constant at 0 75DL  . The values obtained for 

22A  match those reported in Fig. 5.2 for 11A , while 12A  is close to 33A . Note that the variable in the 

horizontal axis is proportional to the aspect ratio of fibers. In Fig.5.2 and Fig.5.3, the acronyms 
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ADR, NADR and TR indicate the affine deformation regime, the non-affine deformation regime 

and the transition regime respectively. 

 

Fig. 5.2 Variation of classical elastic moduli with normalized internal length 0bl L  for a constant 

density 

 

Fig. 5.3 Variation of couple stress moduli with normalized internal length 0bl L  for a constant 

density 

For large 0bl L  values the classical moduli are proportional to
fE A , thus the strain energy is 

stored predominantly in the axial deformation mode of fibers and the deformation field is 

approximately affine. At small 0bl L  ratio, the classical moduli are proportional to the 
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mechanical parameter
0

s

b
f f

l
E A E I

L
  

 
, and accordingly the strain energy is stored 

predominantly in the bending deformation mode of fibers and the deformation is non-affine. 

Fig.5.3 shows the variation of couple stress moduli 11D  and 22D  ; interestingly, the non-classical 

moduli exhibit the same behavior as the classical moduli. Furthermore, the transition from ADR 

to NADR takes place in the same range of 0bl L . The way the local deformation mechanisms in 

each of these two regimes will affect the overall dynamic properties of the network is one 

essential issue analyzed in this contribution. In order to investigate the anisotropic dynamic 

behavior of the networks, we quantify in Fig.5.4 the state of anisotropy for the classical and 

couple stress coefficients. The relative variation of the classical tensile moduli, quantity

11 22

22

:
A A

A
 
 , is defined as the anisotropy measure, in order to quantify the degree of anisotropy 

for the classical part of the constitutive law, as pictured on Fig. 5.4a. 

 

 

 

Fig. 5.4 a) Variation of the anisotropy measure versus window size for the classical moduli and 
for the b) couple stresses moduli 

Fig.4 shows that the network is nearly isotropic, since the previously defined anisotropic measure 

  does not exceed 12%  for the classical modulus and the deviation from isotropy is 5%  for the 

couple stress moduli. We can thus conclude that the generated fibrous networks are nearly 

isotropic (up to statistical fluctuations) for all large enough WOA’s.  

The dynamical response of such fibrous networks can be evaluated either based on computations 

done at the microscopic level [11], or at the scale of the homogenized continuum. The first 

approach however involves huge computations due to the large number of fibers (a few 

a) b) 
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thousands), so we shall instead follow the second route in this contribution, and aim at capturing 

the influence of the microstructure (which controls the dynamic response of the system) by a 

suitable enhancement of Cauchy elasticity, considering successively higher order and higher 

grade effective continua. A justification for the need of such an enhancement of Cauchy 

continuum will be given later on.  

5.3 Wave propagation analysis based on couple stress theory 

In order to set the stage, the dynamical equilibrium equations for the identified effective couple 

stress medium corresponding to the two independent degrees of freedom ,u v  in the present 

planar situation write successively as the two independent equations (using the balance equation 

of momentum to express the following derivative of the shear stress components , ,,  xy x yx y 

which are then inserted back into the balance of linear momentum)  

*
, , , ,

*
, , , ,

,

,

xx x yx y xz xy yz yy

xy x yy y xz xx yz yx

m m u

m m v

  

  

   

   
 (5.6) 

The effective density therein is given in general by * 1

WOA

M

A
  , with M1 the mass of the fibrous 

microstructure, and WOAA   the area of the WOA. Note that we have the reduced the set of initially 

three dynamical equations written in (5.3) to a set of two truly independent dynamical equations. 

Inserting the constitutive law, and adopting a plane harmonic wave Ansatz for the solution of the 

dynamical equilibrium equation, the wave motion equations are further written as: 

 
 

1 1 1 12 2 2 2 4 * 2 2 2A k + A k D k k D k -ρ ω k k βA +A D k D k11 33 11 22 1 2 12 33 22 111 2 1 2 2 2 1 02 2 2 2
1 1 1 1 02 2 2 2 4 2 2 * 2k k 2A +A D k D k A k + A k D k D k k -ρ ω1 2 12 33 22 11 22 33 11 222 1 2 1 1 1 22 2 2 2

U

V

 
        

                
 

 (5.7) 

Nontrivial solution of the last equation exists provided the determinant  1 2, ,w k k  of the matrix 

in the left-hand side of Eq. (5.7) vanishes; the obtained positive roots obtained characterize the 

dispersion relations for planar wave propagation. Two modes of wave propagation exist, namely 

the longitudinal mode (designated by L), and the shear mode (labeled S). The structure of the 

coefficients of the wave motion matrix in (5.7) shows different powers of the wave vector 

components; by comparison, for the Cauchy medium, the frequency and the wavenumber only 

have the same quadratic powers in the wave motion equation, thus the medium is non dispersive. 

The phase and group velocities can be expressed as follows 
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1 2

, ,p g
c c

k k k

    


 



 
 

 (5.8) 

In the case of wave propagation in the longitudinal direction (x direction in the Cartesian basis), 

the dispersive longitudinal and transverse modes have frequencies expressing versus the wave 

number and effective moduli as 

 

 

2 4 2 8 6 6 2 4 4 2 4
11 33 1 11 1 11 1 11 11 1 11 33 1 11 1 11 33 1 33 1

*

2 4 2 8 6 6 2 4 4 2 4
11 33 1 11 1 11 1 11 11 1 11 33 1 11 1 11 33 1 33 1

*

2A +A k k k 4 A k 2 A k 4A k 4 A k k

2A +A k k k 4 A k 2 A k 4A k 4 A k k

l

t

D D D D A A

D D D D A A













      

      
 (5.9) 

Expressions (5.9) show that the two propagation modes are controlled by the components of the 

rigidity matrix in traction along x direction, the shear components along the y direction and the 

couple stress components along the x direction. Nonlinear relations are obtained between 

frequency and wavenumber, and the frequency reaches a plateau for large values of the 

wavenumber. 

For in-plane wave propagation  1 20, 0k k  , the presence of the shear strain components in the 

two tensile stress components ,xx yy   introduces a coupling between the shear and tensile 

effective moduli, which in turn impact wave propagation for the longitudinal and shear modes.  

In the sequel, we shall analyze the influence of internal length bl , density D and window size L on 

wave propagation within the network. We introduce the following non-dimensional parameters: 

k L the dimensionless wave number, 

0
L

E





 the dimensionless frequency, 

,
p g

c c

E E

 

 the dimensionless phase and group  velocities respectively, 

0

l
b

L
the dimensionless internal length, 

, ,E L  the Young modulus, density of fibers and window size respectively. 
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The frequency band structure can be obtained based on the previous methodology, relying on the 

computed effective moduli of the homogenized couple stress continuum. In all subsequent plots, 

the continuous line corresponds to wave propagation in the longitudinal mode, while the dashed 

line corresponds to the shear mode. All frequency band structure is presented for direction of 

propagation 4  . 

5.3.1 Influence of internal length on the dispersion relation and on phase and group 

velocities 

We shall first investigate the effect of the internal bending length bl  on the dispersion relation, 

and evaluate the phase velocity; recall that bl is defined as the ratio of the bending stiffness to the 

axial fiber stiffness. Fig. 5.5 displays the band structure of the random fibrous medium with 

normalized density 100, for different values of lb. Obviously, an increase of the partial band gap 

with frequency occurs between the two modes, until it becomes constant when moving from the 

non-affine deformation regime (at small lb) to the affine deformation regime (at large lb, when the 

macroscopic deformation becomes very close to the microscopic deformation). 

 

Fig. 5.5 Frequency band structure for the random fibrous medium versus wavenumber and 
internal length for an effective density , for the longitudinal and shear modes. Continuous line: 

propagation for the longitudinal mode. Dashed line: shear mode 

We also observe in Fig. 5.5 the stabilization of the shear mode beyond the value 0.8kL   in the 

affine regime (when 0 20bl L  ), noting that the other modes tend to an asymptote beyond certain 
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values of k, based on previous expressions (5.9). The same evolutions of the frequency are 

obtained in [11], in which the authors perform finite element analysis of the dispersion relations 

at the fiber level. 

Fig.5.6 illustrates the evolution of the modulus of phase velocities in the form of polar plots, for 

three different values of internal bending length
bl in order to highlight the effect of this parameter 

on the anisotropic dynamic behavior and the dispersive characteristics of the network. Two 

different values of the wave number are selected in Fig.5.6 in the analysis of the dispersive 

behavior of the couple stress medium.  
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Fig. 5.6 Modulus of the phase velocities for three values of internal bending length for an 
effective density 0 50DL   , for the two modes of propagation, a) 0/ 20bl L  , b) 3

0/ 2.10bl L
  , 

c) 7
0/ 2.10bl L

 . Red line: longitudinal mode for 1.5kL  . Green line: longitudinal mode for

0.5kL  . Orange line: shear mode for 1.5kL  . Blue line: shear mode for 0.5kL   

The anisotropic nature of wave propagation for the longitudinal and shear modes is evidenced by 

the corresponding irregular shape of the phase velocity plot (Fig.5.6), despite the isotropy of the 

static mechanical behavior of the effective couple stress medium previously shown in Fig.5.4. 

Works from the literature show that anisotropy of wave propagation changes with frequency, and 

is not in conflict with the static isotropy of the network.   

Furthermore, Fig. 5.6 shows that the state of anisotropy is not affected by the internal bending 

length and wavenumber.  

In the longitudinal mode, the medium is non-dispersive as shown in Fig.5.6 (there is no change in 

the phase velocity when wavenumber increases), while the shear mode is dispersive (the phase 

velocity increases with wavenumber). This behavior can be explained by the additional rotational 

degree of freedom   of the couple stress theory which leads to a second gradient terms in flexion 

and shear and thus only affects the shear modes, but not the longitudinal mode (which is 

independent from  ). The dispersive behavior of the shear modes in the couple stress theory is 

the basic difference in comparison with Cauchy medium which is non-dispersive for both 

longitudinal and shear modes. 



  

165 

 

5.3.2 Influence of the fiber density on the dispersion relation and on the phase and group 

velocities 

It is well recognized that the dispersion relation and phase velocity depend on the static properties 

of the fibers. In order to assess the effect of the density of fibers on the dispersion diagram, we 

represent in Fig.5.7 the frequency band structure versus wavenumber for different fiber density 

values in both affine and non-affine regimes. 

 

 

Fig. 5.7 Frequency band structure versus wave number for different network densities a) Non 
affine regime, b) Affine regime. 

In the non-affine regime, an increase in frequency and partial band gap width occurs; in contrast 

to this, for affine deformations, the frequency and the width of the partial band gap remain 

constant, and all data converge to a horizontal asymptote (stabilization effect), so that the long 

wavelength speeds of the networks become independent of fiber density. 

a) b) 
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Fig. 5.8 Modulus of phase velocities for three values of density in the affine regime (

0 0/ .02bl L  ) for the two modes of propagation, a) 0 125DL   , b) 0 87.5DL  , c) 0 37.5DL  . 

Red line: longitudinal mode for 1.5kL  . Green line: longitudinal mode for 0.5kL  , Orange line: 
shear mode for 1.5kL  . Blue line: shear mode for 0.5kL   

c) 
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Fig. 5.9 Modulus of phase and group velocities for three values of density in the non-affine 
regime  ( 0

72./ 10bl L
 ) for the two propagation modes, a) 0 125DL   , b) 0 87.5DL  , c) 

0 37.5DL  . Red line: longitudinal mode for 1.5kL  . Green line: longitudinal mode for 0.5kL  , 

Orange line: shear mode for 1.5kL  . Blue line: shear mode for 0.5kL   

The anisotropic behavior for the longitudinal and shear modes is highlighted by the polar plot of 

the modulus of the phase velocity for different values of the network density (Fig.5.8, 5.9), in the 

affine and non-affine regimes, for two values of the wavenumber. We conclude from these plots 

that the anisotropic behavior is the same in both regimes, and it is furthermore independent from 

density. The degree of anisotropy becomes higher for the longitudinal and shear modes when 

moving from the affine to the non-affine regime, whatever the value of density.  

a) b) 

c) 
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In the non-affine regime, the medium remains non-dispersive for the longitudinal modes and 

dispersive for the shear mode when density increases. In the affine regime, the medium moves 

from a dispersive to a non-dispersive response as the density increases: this can be explained by 

the fact that in the affine regime and for increasing density, the macroscopic deformation is close 

to the microscopic deformation, which entails that the medium behaves as an effective Cauchy 

medium showing no influence of the microstructure (no dispersion). 

5.3.3 Influence of window size on acoustic properties 

The evolution of the frequency predicted by the couple stress theory versus window size is 

pictured in Fig. 5.10 in the affine regime (for large
bl ) and non-affine regimes (for small

bl ), for 

the two modes of propagations and for two values of the wave number. 

 

Fig. 5.10 Frequency band structure versus window size for two directions of propagation, a) Non 
affine regime b) Affine regime 

The obtained results (Fig.5.10) show an increase of frequency with window size for both affine 

and non-affine regimes; the width of the partial band gap between modes increases with 

frequency. An increase in frequency occurs due to an increase in the effective couple stress 

modulus  11 22,D D  density when increasing window size (no change of the classical properties 

occurs). 

a) b) 
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The evolution of the network anisotropy and the dispersive character of waves are analyzed from 

the polar plot of the modulus of the phase velocity in Fig. 5.11, 5.12, in both affine and non-

affine regimes. 

 

 

Fig. 5.11 Modulus of the phase and group velocities for three values of the window size in the 
affine regime 0

23.5./ 10bl L
  for the two modes of propagation, a) 0/ 12L L   , b) 0/ 8L L  , c)

0/ 4L L  Red line: longitudinal mode for 1.5kL  . Green line: longitudinal mode for 0.5kL  , 

Orange line: shear mode for 1.5kL  . Blue line: shear mode for 0.5kL   
 

a) 
b) 

c) 
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Fig. 5.12 Modulus of phase and group velocities for three values of window size of in the non-
affine regime ( 0

72./ 10bl L
 ) for the two modes of propagation, a) 0/ 12L L   , b) 0/ 8L L  , c)

0/ 4L L  , Red line: longitudinal mode for 1.5kL  . Green line: longitudinal mode for 0.5kL  . 

Orange line: shear mode for 1.5kL  . Blue line: shear mode for 0.5kL   

Fig.5.11 and 5.12 highlight that the anisotropic behavior for the longitudinal and shear modes 

does not change with the window size in both affine and non-affine regimes. For any window size 

and in both regimes, shear waves are dispersive whereas longitudinal waves are not dispersive for 

reasons mentioned before.  

a) 
b) 

c) 
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It shall be pointed out that there is in fact no unique choice for the effective substitution 

continuum of the initial random fibrous network, since computations performed at the 

microscopic level of the lattice reveal both important local rotations of the individual fibers, as 

well as internal strain gradients. Models based on couple stress type theory do however not give 

realistic predictions of the effective medium properties, such as the dispersion relation (since the 

longitudinal mode is non-dispersive). It has however been proven by experiments that most 

waves are dispersive. Accordingly, we explore in the sequel an alternative modeling strategy, 

considering an enhancement of the Cauchy continuum by higher strain gradients.  

5.4 Identification of 2D continuum equivalent based on second gradient medium 

In classical continuum mechanics, only the first displacement gradient is involved and all the 

higher order displacement gradients are neglected in measuring the deformations of a body. In 

this case, the stress tensor at a material point is linked to the strain tensor through the classical 

elasticity tensor. The second gradient elasticity is a kinematic enhancement of classical elasticity 

taking into account the second gradient of the displacement field.  

The strain gradient theory is next exploited in terms of the strain (first displacement gradient) and 

second gradient of the displacement field which are, respectively, the second and third order 

tensors 

   

   

, ,

, , ,

1 1
:

2 2
1

:
2

ij i j j i

ijk ij k i jk j ik

u u

K u u





     

     

ε u u

K u

 (5.10) 

The classical infinitesimal strain tensor ε therein is the symmetric part of the displacement 

gradient, with three independent components in the present 2D situation. The second gradient of 

the displacement field, tensor K , is symmetric in the last two indices and it has thus six 

independent components, due to the symmetries ,ij ji ijk ikjK K   . In 2D, the displacement 

field is the vector  ,
T

u vu , which entails the following strain tensor in vector format 

1
, ,

2

T

u v u v

x y y x

     
        

ε  (5.11) 

Similarly, the strain gradient tensor writes in vector format from the second gradient of the 

displacement field as 



  

172 

 

2 2 2 2 2 2

2 2 2 2
, , , , ,

u v u v u v

x y y x x y x y

      
          

K  (5.12) 

In the strain-gradient theory of linear elasticity, the constitutive law involves the symmetric 

Cauchy stress tensor ı  and the hyper-stress (or double stress) tensor sı . The tensors ı  and sı  

are related to the strain tensor ε  and the strain gradient  K ε through the following general 

constitutive law for a homogeneous anisotropic second order grade continuum: 

ij ijlm lm ijlmn lmn

s

ijk ijklm lm ijklmn lmn

A M K

M D K

 

 

 

 
 (5.13) 

with
ijlmA therein the classical fourth-order elastic tensor, 

ijklmnD  the sixth-order tensor of elastic 

moduli, and 
ijlmnM  the fifth-order coupling tensor between the first and second order elastic 

responses which does not vanish for non-centrosymmetric microstructures.  

For microstructures exhibiting central symmetry - which we assume here and in the sequel -, the 

fifth-order coupling elastic stiffness tensor M vanishes, so that the previous constitutive law takes 

the simplified form 

ij ijlm lm

s

ijk ijklmn lmn

A

D K

 






 

(5.14) 

 

The stress and hyper-stress for the effective 2D second order grade continuum can be defined in 

vector format as 

, ,

, , , , ,

T

xx yy xy

T
s s s s s s

xxx yyy xyy yxx xxy yxy

  

     

   

   
s

ı

ı
 (5.15) 

The main purpose of this section is to determine the effective constitutive coefficients of the 

strain-gradient continuum from the response of random fiber networks; the short cut SG is 

conveniently used in the sequel to denote the employed effective second gradient continuum.  

We next design a set of boundary conditions for the sequential determination of the components 

of the constitutive (rigidity) constants over various 2D domainswith boundary , as 

explained into ore details in [20]. 

 In each case, we force the WOA to bear a set of specific deformation and deformation gradients, 

as detailed in [20], and compute numerically the total elastic strain energy WOAU stored in the 

window of analysis under the corresponding boundary conditions. Similar to the identification 
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procedure for the couple stress continuum (section 2), the first and second order gradient elastic 

moduli are computed by equating the total strain energy stored in the RVE with the energy of an 

equivalent homogeneous strain-gradient continuum, viz 

2WOA strain gradient ij ijkl kl ijk ijklmn lmn

V
U U A K D K        (5.16) 

The left-hand side in (5.16) is the total elastic strain energy stored in the window of analysis, 

while the right-hand side is the expression of the energy of the postulated effective strain-gradient 

continuum. 

The characteristic lengths are essential parameters for the second gradient continua; we 

generalize the definition of these parameters to an anisotropic continuum in terms of the 

engineering constants. In 3D, the six internal lengths associated to the independent classical 

moduli A୧୨ can be identified by the expressions [19]:  

1

23

1

r r

r

D
l

A

 




 
   
 
  (5.17) 

The previous equation can be simplified in the present 2D context, resulting in three internal 

lengths in tension and shear associated to the independent classical and second order elastic 

moduli as follows: 

11 1
22 2

111 112 212 222 112 122

11 22 33

, ,xx yy xy

D D D D D D
l l l

A A A

      
       
     

 (5.18) 

 

Fig. 5.13 Variation of internal length versus WOA size 
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The computed internal lengths are several times the size of the WOA, as shown on Fig.5.13, 

representing the linear increase of the internal tension and shear lengths versus window size; this 

clearly demonstrates the need for an enriched effective continuum beyond Cauchy continuum, as 

the presently employed second gradient effective medium. 

5.5 Acoustic properties of the second order gradient substitution continuum 

The equations of motion for an effective second gradient continuum are easily obtained; they 

write in components form as the two following differential equations along the x and y directions 

of the Cartesian coordinates system 

 

2 s 2 s 2 s2 s
xy xxy xyx xyyxx xxx

2 2
*

x y x x y x y y
u

         
              

(5.19) 
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          
              

 (5.20) 

The second order time derivatives u  and v  therein are the horizontal and vertical components of 

the acceleration vector. Relying on the plane harmonic wave solutions of the dynamical equations 

leads to a wave motion equation describing the propagation of longitudinal and shear waves, 

written in compact form as: 

 

 

 

1 12 2 4 4 2 2 * 2A k + A k D k D k +D k k -ρ ω k k βA +A11 33 111 122 112 1 2 12 331 2 1 2 2 1 02 2
1 1 02 2 4 4 2 2 * 2k k 2A +A A k + A k D k D k +D k k -ρ ω1 2 12 33 22 33 211 222 2122 1 1 2 2 12 2

U

V

 
      

              
 

 (5.21) 

Nontrivial solutions of the last equation exist if the determinant  1 2, ,w k k  of the matrix on the 

left-hand side Eq. (5.21) vanishes, which shall provide the dispersion relations. We shall next 

investigate the effect of internal bending length bl , fiber density and WOA size on the dispersion 

relation, and compare them with those obtained for the couple stress effective medium. 

5.5.1 Dispersion relations and phase velocity for the second order effective continuum 

versus internal bending length lb. Comparison with the couple stress effective medium 

We evaluate in Fig.5.14 the frequency for the homogenized second gradient medium versus the 

internal bending length bl , and compare with the frequency evaluated for the couple stress 

effective medium. Inspection of Fig. 5.14 shows that the influence of internal bending length is 
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the same for both couple stress and second gradient theories, the partial band gap increasing with 

bl for both models, while the existing small shifts for the L and S modes increase with
bl . 

 

Fig. 5.14 Frequency band structure versus fiber bending length, comparison between second 
gradient and couple stress theories, for wavenumber k=0.5 

The main difference between the couple stress theory and the second order gradient substitution 

media is clearly visible looking at the polar plot of the modulus of the group and phase velocities 

(Fig. 5.15). 

 

Fig. 5.15 Modulus of the phase and group velocities for random fibrous medium for two different 
values of the wavenumber in the SG medium, a) Non-affine regime, b) Affine regime. Red line: 
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longitudinal mode; 1.5kL  . Green line: longitudinal mode; 0.5kL  . Blue line: shear mode; 
1.5kL   .Orange line: shear mode; 0.5kL   

The dispersive behavior of the second gradient medium in the non-affine regime is evidenced by 

the modification of the shape of the plot when changing the wavenumber k. In the affine regime, 

when the macroscopic deformation coincides with the microscopic deformation, the influence of 

the second gradient disappears and no significant effect in the phase velocity is observed when 

increasing k, and the medium behaves as a Cauchy continuum. 

5.5.2 Effect of density and window size on the dispersion relation, phase and group 

velocities for the second gradient medium 

We next investigate the effect of the density and window size on the frequency band structure for 

the second gradient medium, and make a comparison with the couple stress theory in both affine 

and non-affine regimes.  
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Fig. 5.16 Effect of the window size and density on the frequency band structure, a) and c) non 
affine regime, b) and d) affine regime for wavenumber k=0.5. 

Inspection of Fig.5.16 shows the same influence of density and window size on the dispersion 

relation occurs for the second gradient and couple stress models in both regimes; a significant 

increase in frequency for L and S modes occurs when the density or the window size increases 

when moving from couple stress to second gradient effective continuum. The dispersive behavior 

of the second gradient medium and the anisotropic characteristic of the random fibrous medium 

do not change when varying the density or the size of the window of analysis. It is important to 

note that the second gradient effective medium is dispersive for the longitudinal mode which is 

not the case for the effective couple stress model (as mentioned in section 3).  



  

178 

 

 

 

Fig. 5.17 Polar plot of the modulus of the phase velocity for random fibrous media with a 
wavenumber k=1. a) Affine regime. b) Non affine regime, Continuous and dashed lines: phase 

velocity for D=100 and 0 150DL   respectively. c) Affine regime. d) Non affine regime. 

Continuous and dashed lines: phase velocity for 0/ 4L L   and 0/ 14L L   respectively. 

The same effect of the density and WOA size on wave dispersion can also be seen on Fig.5.17; 

the anisotropy of wave propagation does not change when changing density or WOA size. The 
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shape of the phase velocity plot changes with the wavenumber k, thereby reflecting the dispersive 

behavior of the second gradient medium, for any values of window size, density and in both 

affine and non-affine regimes. 

5.6 Conclusion 

The dynamic analysis of random fibrous networks is a novel topic, which has many applications 

in materials science or in the biomedical area, since these networks are very often subjected to 

dynamical loading conditions. In order to bypass the complexity of performing dynamic 

computations at the microscopic scale of the full network, we herewith develop and identify 

couple stress and second gradient models as effective continua at the mesoscopic level of 

windows of analysis of different sizes, in order to investigate the size effects of such networks on 

their dynamic properties. The static mechanical properties which are at the basis of the dynamical 

analysis are computed thanks to FE simulations performed over windows of analysis subjected to 

mixed boundary conditions allowing to capture the classical and non-classical effective moduli. 

The acoustic properties of these networks are captured by the dispersion diagrams and plots of the 

phase and group velocities; we analyze the influence on the dynamic properties of three main 

quantities of interest, namely the fiber bending length, the size of the window of analysis, and the 

fibers density. The impact of these parameters is successively assessed for the couple stress and 

strain gradient substitution continua.  

The influence of internal bending length is the same in both effective theories, the partial band 

gap increasing when increasing the internal bending length bl . Density and window size have the 

same influence on the dispersion relation for both models and in both affine and non-affine 

regimes. A significant increase in frequency for the longitudinal and shear modes occurs when 

density or window size increases when moving from couple stress to second gradient medium. 

The same effect of density and size of the window of analysis on the dispersion diagram is also 

obtained. The anisotropic feature of wave propagation does not change when changing the 

density or the size of window of analysis. The main benefit of using random fibrous networks for 

wave propagation is the possible control of band gap by different parameters, like fiber density, 

window size, and fiber length. In the affine regime, when the macroscopic deformation is very 

close to the microscopic deformation, the influence of the microstructure disappears and no 

significant effect of the microstructure on the phase velocity occurs, thus Cauchy elasticity is 

sufficient. 
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Although the replacement of the initial random network by effective generalized continua is able 

to capture size effects and is more tractable from a numerical point of view, it remains clear that it 

loses some of the details of the microstructure response when waves propagate. Accordingly, 

such mesoscopic models shall be complemented by fully resolved local analyses at the scale of 

the fibers using Bloch’s theorem or suitable extensions of it to better isolate individual 

phenomena associated to the mechanical response of the fibers themselves.  

The influence of large strains developed by random fibrous networks on wave propagation is an 

important aspect encountered in real situations that shall be investigated in future contributions.  
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II. Analysis of nonlinear wave propagation in 

network materials 
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6. Chapter 6:  Wave propagation in pre-deformed 

periodic network materials 

 

Summary 

 

In this chapter we explore the influence of large deformations on the propagation of acoustic 
waves in repetitive network materials. The problem of elastic wave propagation in pre-deformed 
elastic materials and structures is highly interesting in many applications. The development of 
finite deformations within the network induces a preferred anisotropy associated to privileged 
directions into the structure, and leads to a continuous modification of the effective mechanical 
properties, which in turn modifies the wave speed and the width of the existing band gaps. The 
analysis of incremental motions superimposed on large state of deformation uncovers complex 
physical mechanisms which require sophisticated methods. Both theoretical and numerical 
methods are developed in this chapter in order to assess the influence of finite strains developing 
within repetitive networks on the evolution of their band diagrams. An incremental scheme for 
the update of frequency and phase velocity of the computed homogenized medium has been 
developed successively considering 1D, 2Dand 3D structures; it incorporates an update of the 
frequency and phase velocity of the propagating waves versus the effective density and the state 
of finite deformation of the effective continuum used as a substitution medium for the initial 
repetitive network. The applied deformation is shown to have significant effects on the wave 
frequency and phase velocity. The influence of the effective density on the dispersion relation and 
band diagrams under the application of an incremental deformation over the lattice unit cell is 
shown. The effect of the poison ratio on the dispersion relation is well presented and discussed in 
this chapter for 2D and 3D structures. One originality advocated in the present work is the 
derivation of the perturbation method in a 2D context for nonlinear periodic structures covering 
geometrical and material nonlinearities; this extension allows a validation of the dispersion 
relation obtained for the nonlinear effective continuum in the low frequency range when 
neglecting the effect of material nonlinearity. The methodologies and trends obtained in this 
chapter provide insight and guidance on selecting the topology of network materials which may 
give rise to large amplitude-dependent band gap shifts and phase velocity variations. 
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6.1 Overview 

Structures having a periodical distribution of their geometry and material properties of their 

constituents present interesting wave propagation properties, like the existence of frequency band 

gaps, local resonances, responses directionality due to their anisotropy, left-handedness, cloaking, 

or negative acoustic refraction. These unusual acoustic properties are due to material and 

structural heterogeneities  associated to periodic modulations of the stiffness and inertial 

properties, resulting e.g. from modifications of the microstructural configuration. Moreover, the 

field of acoustic metamaterials has raised a considerable interest due to the possibility to tailor 

their microstructure to obtain various interesting effects like local resonances, partial or full band 

gaps, or cloaking, see [1] and references therein. Soft metamaterials have the capability to sustain 

large deformations, and as a consequence offer promising opportunities of adjusting the acoustic 

characteristics through the deformation.  

Amongst these periodic structures, lattice materials are characterized by a regular and periodic 

microstructure that can be idealized as a network of beams or rods; they offer many advantages 

from a structural point of view, since they combine low weight, high stiffness and strength, and 

high energy absorbing capabilities that cannot be realized using homogeneous materials [2-5]. 

Furthermore, the topology and microstructural stiffness of lattice materials can be adjusted to 

fulfill specific requirements like a controlled state of anisotropy and density, or predetermined 

buckling and collapse modes. The continued interest for developing lattice materials has been 

accompanied by recent advances in manufacturing techniques like 3D additive printing, allowing 

the production of lattice materials with perfect control of their microstructure, and at a low cost. 

Such technologies allow exploring a quasi-infinite range of possible microstructures, and have 

raised the need to develop predictive micromechanical models for the analysis of complex 

components made of lattice materials, to avoid repetitive testing.  

The literature devoted to the modeling of such lattice materials most of the time restricts to the 

geometrically linear regime; in many applications however, the design of bending dominated 

lattices exploited for morphing structures [6-8] requires models of lattice materials in the 

nonlinear regime. We presently develop the discrete homogenization method for network 

materials consisting of beam elements advanced in [9], which shall be extended to the nonlinear 

regime in the present contribution. We assume due to the small bending stiffness of the structural 
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beam elements that the nonlinear lattice response is essentially due to the change of the network 

configuration (the orientation and length of the beams change with ongoing deformation). The 

geometrical nonlinear behavior of cellular structures and network materials was extensively 

studied in [10-11], considering the example of foams, using simplified pin jointed model for 

which the bending contribution of the skeleton struts was neglected. The authors in [12] proposed 

another approach where axial, bending and twisting deformations at local level were considered. 

More recently, Janus-Michalska [13] extended the linear model developed in [14-15] to construct 

the stress-strain relation and strain energy function for hyperelastic cellular materials with 

arbitrary symmetry. An alternative approach was proposed by [16] using a computational 

homogenization method to derive a nonlinear constitutive model for lattice materials. 

Many techniques have been developed to predict the mechanical properties of heterogeneous 

structures, and especially lattice materials, thereby bypassing the need to resolve the smallest 

spatial scales. Homogenization methods aim at describing the overall response of heterogeneous 

structures including composites and periodic structural lattices in terms of effective properties, as 

presented in the recent contribution [16] and references therein. 

The incorporation of nonlinear aspects of wave propagation in structures is necessary whenever 

large deformations occur [17-20], but it remains a considerable challenge. Two types of 

nonlinearities may be present in a broad sense, which can be classified as material nonlinearities 

[21-22] and geometrical nonlinearities [23]. This last type of nonlinearity is related to the 

evolution of the microstructure or structure configuration, for instance the change of 

configuration of a repetitive network, and it can be modeled as a succession of incremental 

deformations associated to the modification of the structure geometry [23].The presence of a 

nonlinearity in periodic structures results in amplitude-wave dependency in the dispersion 

relations.; this opens new possibilities for a passive tuning of the dispersion band structure 

through an amplitude-dependency of propagating waves, thereby going beyond a mere control of 

the dynamic and acoustic properties of repetitive structures by the design [24] or by application of 

an external stimulus.  

A nonlinear periodic structure supports a variety of wave solutions depending on wave amplitude, 

waves interactions, and type of nonlinearity, for example solitary wave solutions for Boussinesq 

type equation, harmonic plane wave and discrete breathers[25-31]. In [32] the authors analyze the 

dispersion relations for axial and flexural elastic wave motion in homogeneous beams subjected 
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to finite strains. The authors in [33] study wave dispersion in a one-dimensional nonlinear elastic 

metamaterial; the large elastic deformation provide the nonlinearity in the thin rod, whereas the 

metamaterial behavior is associated with the dynamics of the local resonators. The authors in [34] 

developed a numerical analysis improved by experimental measures to show the evolution of the 

locally resonant band gap, under nonlinear pre-deformation. The authors in [35] demonstrate the 

ability to use deformation to transform phononic band gaps in periodic elastomeric structures. In 

[24], the authors focus on material which constitutive law contains cubic stress–strain 

nonlinearity; while the authors in [36] present an analytical and numerical method have been 

compared to describe the propagation of nonlinear wave within a structure endowed with a square 

stress-strain relationship. 

The effect of pre-stress or pre-strain on wave propagation through homogeneous anisotropic 

media has raised the interest of many authors; the effect of preexisting finite elastic deformations 

on wave propagation has been analyzed in [37, 18] and the effects of incremental deformations 

on a homogeneous continuum medium has been studied in [38-39]. The initial deformation must 

be large enough to change the geometry of the medium, since an infinitesimal initial deformation 

would not affect the properties of the material based on the superposition principle valid for small 

deformations. The incremental effective properties of pre-stressed homogeneous media 

undergoing large deformation have been analyzed in [40, 41], wherein the authors put some 

restrictions on strain energy sufficiently enough to allow elastic waves to propagate within the 

material. 

In [42-46], the authors analyze the propagation of waves in composites consisting of a small 

number of layers (two or three layers) undergoing sufficiently large deformations. 

It is worth mentioning that studies of nonlinear wave propagation in structures essentially deal 

with one-dimensional (1D) systems, whereas the nonlinear wave dynamics in multi-dimensional 

(2D) discrete systems has not been thoroughly investigated so far. 

In this chapter, we analyze the dynamical properties of periodic network materials subjected to 

finite strains, relying on dedicated homogenization techniques developed to substitute to the 

initial discrete periodic lattice an effective Cauchy continuum (relying on Bernoulli beams). An 

incremental scheme for the update of network geometry, mechanical response and frequency is 

set up successively in 1D and 2D situations, based on the effective nonlinear medium obtained by 

homogenization.  
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6.2 Microscopic and mesoscopic nonlinear homogenization problems 

In this work, we rely on the discrete asymptotic homogenization method - abbreviated as DH 

method in the sequel - for beam lattices initially proposed in [9,47-48], which is utilized to 

construct Cauchy effective continuum models of repetitive 2D lattices endowed with translation 

degrees of freedom. The homogenization method relies on the connectivity of the studied 

network materials and the mechanical equilibrium at each node; it allows the treatment of 

elementary cells representative of the entire network, including internal nodes.  

Generally speaking, the discrete homogenization can be described as a mathematical method to 

derive the equivalent continuous medium behavior of a repetitive discrete structure made of 

elementary cells. This technique is inspired by the homogenization of periodic media developed 

since the early eighties [49-50], with continued works in a more recent period [51, 52].More 

recently, Pradel and Sab in [53] applied the discrete homogenization in combination with the 

energy method. The interest of the discrete homogenization method is that it delivers the full 

compliance (or rigidity) matrix of periodic networks, reflecting the sometimes complex 

anisotropy of the equivalent continuum.  

The general idea at the base of the method is the periodic repetition of an elementary cell made of 

beams connected at nodes to define an infinite lattice; it may be explained as follows [9]. 

Consider a finite 2D (surface)or 3D structure, parameterized by a small parameter, defined as 

the ratio between characteristic lengths of the lattice unit cell to a characteristic length of the 

entire network, scalar quantity L (Fig. 6.1). For a large enough lattices, the ratio of the beam 

length, the scalar b
l


, to a macroscopic lattice length constitutes a small parameter versus which 

all geometrical and kinematic variables will be expanded, hence b
l L  . More details relative to 

the lattice parameterization are given in the chapter 1 (case of neglecting the rotation and the 

viscous part). 
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Fig.6.1 Set of repetitive lattices parameterized by a small parameter 

Maintaining the reference area or volume fixed one considers the limit situation of a continuous 

density of unit cells obtained when the small parameter tends to zero. In this limit, a continuum, 

equivalent in a certain sense to the initial lattice, is obtained. To obtain this limit behavior, one 

does mathematically study the equilibrium of the lattice and the dependence of the governing 

equations versus the introduced small parameter. Asymptotic expansions of the nodal position, 

tensions and external forces are written and inserted in the equilibrium equations, preferably 

expressed in weak form. Taylor series expansion of the displacements and possibly rotational 

degrees of freedom are next inserted into these equilibrium equations. The discrete sums are 

finally converted in the limit of a continuous density of beams into Riemann integrals, thereby 

highlighting continuous stress and strain measures. 
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Fig.6.2 Kinematic and static variables for a beam element 

The statics for beams obeying Euler-Bernoulli kinematics (Fig.6.2) is standard, and leads to the 

expressions of the normal and transverse forces given in the Chapter 1. 

6.2.1 Microscopic incremental problem over the lattice 

The analysis is made over the RVE selected as the unit cell, relying on recent results in [54] 

showing that the RVE size has no influence on the predicted homogenized response in the 

nonlinear regime, as long as no bifurcation occurs. The developed DH method leads to an 

algorithm for the computation of the large strains response of the considered networks. The 

method has been exposed into details in [47, 48], thus we shall summarize below the main steps 

leading to the construction of the effective nonlinear Cauchy continuum. 

In a first step, the homogenized constitutive law is evaluated in the linear framework, as 

previously exposed. As a next step, one set up a kinematic driven scheme through which, for each 

load increment, the incremental stress tensor is computed versus the imposed mesoscopic loading 

over the unit cell (transformation gradient).  

We write down the non-linear equilibrium problem associated to the large perturbations of the 

network; the nonlinearity is due to the large displacements, which in turn are responsible for the 

large changes of beam directors orientation and beam lengths. The kinematic quantities that vary 

during the incremental scheme are the beam length 
bl and unit beam director be , both resulting 

from the beam vector b b blB e , successively computed as b bl  B and
b

b
bl


B

e , both pictured in Fig. 
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6.27 in the Appendix A. A kinematically driven scheme is written, based on the incremental 

equilibrium equations in translation and rotation, successively the two following equations 
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(6.2.1) 

with  (E (b)) O (b)R R  v v v  the relative virtual velocity of the two extremity nodes of any beam, 

and w  a virtual rotation velocity.  

For any beam within the reference unit cell Rb B , the beam vector can be evaluated from the 

imposed transformation gradient jG  and the relative position vector between the two extremity 

nodes, as  

   R RE b O bb j jb    B R R G  
(6.2.2) 

The following notations have been introduced:
o

j

j




R

G is the imposed mesoscopic transformation 

gradient over the unit cell, and 
   R RE b O b

R R  is the unknown kinematic relative position which 

is computed incrementally. The variation of the beam length and orientation as well as those of the 

static forces and moments has been evaluated in [47, 48]. The solution for this differenceis obtained 

by solving iteratively the previously written incremental equilibrium problem posed over the RUC, 

based on the modified Newton-Raphson method. 
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This incremental scheme provides an update for the kinematic variables b
n 1B at any time step 

denoted by the integer subscript  n 1 , from their values at previous iteration k within the 

reference unit cell: for a given imposed mesoscopic transformation gradient, the update of the 

position vector is written as  

b b b
n nn 1   B B B

 

with from (2.8) 

   R RE b O bb j jb
n n n   B R R G  

 

 

(6.2.3) 

For a given  and for each imposed transformation gradient , 1,2,3,
o

jb

j
j






R

one has to 

determine the relative position vector    R RE b O b
n nR R in (2.8) at each time step, which entails 

the evaluation of quantities     3, , , , , , ,E b O bb b b b b b

t
n

N T M M
B e e e for any ,B Rb allowing in turn to 

calculate the stress vector and Cauchy stress tensor versus the transformation gradient 
o

j


R

 

applied over the reference unit cell. The mesoscopic incremental equilibrium equations are next 

written at the continuum level of the RUC. 

6.2.2 Mesoscopic equilibrium equations over the reference unit cell 

The discrete incremental equilibrium takes after homogenization and condensation of the nodal 

rotations (by using the equilibrium of moments) a form similar to its continuum counterpart, viz 

i i
R R

b b i(k)

b b B

0    d 0
i 

 

    

       
  


   
B

F v M W S
v

 
(6.2.4) 

with i(k)S the incremental stress vector; previous integral formulation constitutes the incremental 

weak form of the equilibrium (self-equilibrium) posed over the Lagrangian domain   occupied 

by the reference unit cell.  

We next write the incremental constitutive law at the mesoscopic level. Strain-controlled loadings 

are imposed over the unit cell, so one imposes at each increment the discretized version of the 

transformation gradient F  together with its incrementF , specific to each type of loading. In 

view of setting up an incremental scheme for the resolution of the nonlinear mesoscopic BVP 

(acronym for boundary value problem), we write the discretized version of the elastic constitutive 
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equation relating the incremental stress  k
nS to the incremental strain  k

GnE  (the subscript k is an 

iteration counter inside the increment loop) 

     k k kS
n T,n Gn n 1 n n n n

k

K : ,           S E S S S S S  
(6.2.5) 

The Green-Lagrange strain GE  therein is defined by  1
.

2
 TΕ F F - ΙG . For a given elementary 

loading characterized by a continuously varying scalar loading parameter n (incorporated into 

the imposed transformation gradient), the incremental Lagrangian strain GnE is related to the 

increment of the loading parameter n  and transformation gradient nF as [55]: 

         Gn n n n n n n n n n, sym .grad sym .         E F u F F  
(6.2.6) 

together with the elaboration of the incremental transformation gradient  

   n n n n n n nI grad grad grad        F u F u u  (6.2.7) 

The algorithmic material tangent stiffness matrix 
S
T,nK  therein results from the assembly of the 

microscopic tangent stiffness matrices, as exposed in the Appendix A; it is obtained at each 

increment as the sum of three contributions given in the Appendix A 

 
R

S b b b
T,n o,n u,n ,n

b B

K K K K 


    
(6.2.8) 

The updated Kirchhoff stress tensor is next obtained by a push-forward of the incremental 

Lagrangian stress  k
nS  from configuration n (at increment n) to n 1  (at increment n+1), 

elaborated as 

       
 ( k ) kn n

k k1 (k 1) T 1 (k) T 1 T
n 1 n n n n n n n n n 1 n 1 n n 1J . . J . . J . .   
   



   

ı ı

ı F S F F S F F S F  
(6.2.9) 

where  n nJ : det F  is the Jacobean, defined as the determinant of the deformation gradient 

tensor. Kirchhoff stress at increment n 1  is accordingly given from its counterpart at previous 

increment n , tensor  k
n 1Ĳ , based on the initial stress (k)

nS  (the first contribution on the right-hand 

side of (6.2.8)) and the incremental stress 
 k
nı  (the second term on the right-hand side of 

(6.2.8)). Based on (6.2.9), Cauchy stress is updated over the imposed incremental loading as (the 

converged values at both times steps are considered) 
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iter

n 1 n n

n
k

n n
k 1

,



  

  

ı ı ı

ı ı  

(6.2.10) 

With itern  the number of iterations (a function of n). The main steps for the computation of the 

incremental Cauchy stress are shown in Fig. 6.3. 

 

Fig.6.3 Computation of the incremental Cauchy stress 

A dedicated code has been constructed from the proposed algorithm, in order to solve for the 

nodal kinematical unknowns (displacements of each beam) within the repetitive unit cell. The 

code uses an input file the reference unit cell topology and micromechanical properties, and 

delivers as an output the homogenized mechanical properties (classical moduli and Poisson’s 

ratio) and the nonlinear stress-strain response for a given deformation path imposed over the 

RUC.  

In view of the analysis of nonlinear wave propagation, we first express the increment of 

Kirchhoff stress nĲ (denoting the linearized tensor-valued function nĲ ), with n n nJĲ ı versus 

the corresponding increment of the linearized small strain tensor n ngrad   e u  as [55]: 

n n n n n n nJ : grad J :    Ĳ c u c e  
(6.2.11) 

We have introduced in (6.2.11) the increment of the linearized Eulerian strain tensor ne , tensor 

n n: grad  e u and the fourth order tensor nc  of tangent moduli in the actual configuration (the 

symbol (.)  denotes here and in the sequel the infinitesimal variation of any quantity), obtained 
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from the material tangent stiffness tensor 
S
T,nK identified by the DH method by a push-forward, 

expressing in component form by the relation [55] 

1 S
abcd aA bB cC dD T,nABCDc J F F F F K  

(6.2.12) 

A straightforward computation then leads based on (6.2.12) to the expression of the increment of 

Cauchy stress versus the increment of the linearized strain tensor   

 n n n n n: Tr    ı c e e ı
 

 

Fig. 6.4 Incremental Cauchy stress versus linearized strain between steps n and n+1. 
 

(6.2.13) 

This last relation entails that one can write the increment of Cauchy stress as a first order 

approximation based on the tangent Eulerian stiffness tensor nc , augmented by a nonlinear 

corrective term function of the incremental linearized strain ne  (the last term in (6.2.13)), as 

illustrated in Fig.6.4. 

6.3 Effective incremental frequency and phase velocity of a 1D microstructured beam 

The dynamical analysis under large strains is first performed in a 1D context, a situation that can 

be illustrated by a macroscopic beam including a repetitive microstructure.  

In order to set the stage, we rewrite the incremental nonlinear constitutive law (Fig.6.4) (6.2.13) 

in a 1D situation under the form 

 t
n n n nE E e     

(6.3.1) 
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where n  is the incremental Cauchy stress at increment n , nE  the homogenized beam Young’s 

modulus (at increment n), n
n

u
e

x





 the 1D linearized strain with small increment ne , and t
nE  

the corrected incremental Young modulus accounting for the nonlinear correction to the linear 

term n nE e  in (6.3.1), itself depending on the linearized strain increment. Previous incremental 

constitutive law describes the beam response to an imposed increment of deformation gradient, 

itself equal to the small strains increment,       n n nF x gradu x e x     .  

The incremental nonlinear elastic constitutive law written in (6.3.1) is next applied to the analysis 

of wave propagation through a pre-strained nonlinear microstructured beam. Let consider a beam 

incorporating many unit cells repeated by periodicity along the longitudinal direction, responding 

in a nonlinear manner to an imposed incremental strain. All fields in (6.3.1) depend upon the 

variable x  which is the beam axial coordinate; periodicity of the microstructure along x  implies 

that the beam is considered as macro-homogeneous so that the fields experience a smooth 

variation with x .  

Omitting index n, the dynamical incremental equilibrium equation for the continuous 

displacement of the homogenized continuum writes based on (6.3.1) as  

 
2 2

1 12 2
tn n n

n n n n n

u e u
div E E

xt t
   

    
    

   
 

(6.3.2) 

In which 1n   is the effective medium density of the deformed structure for increment 1n  . A 

parameter   is introduced in equation (6.3.2) to enforce the weak nonlinearity through the 

relation t t
n nE E  , which defines a perturbed modulus (the introduced modulus t

nE  is of the 

order of the modulus t
nE ); parameter  facilitates the asymptotic developments in the Linstedt-

Poincaré method [56]. Introducing previous relation into (6.3.2) immediately leads to the 

modified equation of motion 

 
2

1 2
t n n

n n n

e u
E E

x t
  

  
 

   
(6.3.3) 

The first step in the analysis of the nonlinear dispersion relation in the continuum medium is the 

introduction of the dimensionless time t  in the dynamical equation (6.3.3), thus leading to 

the asymptotic expansion of the frequency, effective density and axial displacement, successively 
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1 1 1

0 1
1 1 1

0 1

,

,

,

n n n

n n n

n n nu u u

  

   



  

  

 

 

    
 

 

(6.3.4) 

Substituting expressions (6.3.4) into the weakly nonlinear wave equation (6.3.3) and ordering 

versus the successive powers of the small parameter   produces a set of equation as follows 

   

   

 

2 0 2 020 0 0
1 12 2

2 1 2 121 0 0
1 12 2

2 0 2 0 2 020 0 1 1 0
1 1 1 1 12 2 2

: 0

:

2

n n
n n n

n n
n n n

tn n n
n n n n n n

u u
O E

x

u u
O E

x

u u u
E

x

  


  


    
 

 

 

    

   
 

 
   

 
 

     
 

  

 

 

 

(6.3.5) 

The solution of the  0
O   term equation is well-known and is given by planar harmonic waves of 

frequency 0
1n  , ( 0 0

1 1,n n   is the frequency and the density for increment n respectively, and 

which will later be denoted ,n n  ) viz 

   0 exp cosnu A i kx A kx       
(6.3.6) 

in which k is the wavenumber and A the amplitude. Subsequent substitution of the expression 

(6.3.6) into the  1
O  term results in the equation 

    
2 1 2 1

2* 2 1 1 2
1 12 2

2 costn n
n n n n n n n n n

u u
E E k A kx

x
       

  
   

     
   

 

(6.3.7) 

The linear kernel of order  1
O   is similar to the linear kernel of order  0

O  . Cancelling the 

secular terms (the terms multiplied by  cos kx  ) results in an equation containing the 

incremental angular frequency 1
1n   and the effective incremental Young’s modulus nE : 

 21 1 2
1 12 0t

n n n n n nE k          
(6.3.8) 

Thus, the frequency for the new structure configuration is updated versus the actual tangent 

modulus and density by the relation 

2
1

1 3
2 2

t
n n n

n

n n n

E k 
  



 

   
 

 

(6.3.9) 
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The quantities ,n n   therein are the effective density and angular frequency of the medium at 

increment n, according to the  0
O   equation, 1n  is the density for the new configuration and k 

the wavenumber. The effective incremental phase velocity is given by the following relation 

versus the updated density and tangent modulus: 

1
1 3

2 2

t
n n n

n

n n n

c E
c

c


 



 

   
 

 

(6.3.10) 

Parnell [23] considers the simple case of a composite beam, which has experienced some 

nonlinear deformation; it then behaves incrementally as a linear material; thus, for each 

increment, a linear dynamical problem is considered and the authors do not adopt an incremental 

update for the frequency as in the present contribution (reflected by Eq. (6.3.9)). The effective 

incremental phase velocity of the beam is given by [23]: 

*
*

*
p i
i

E
c


  

(6.3.11) 

in which *

0

i
t

i n

n

E E


 is the sum of all tangent moduli [23]. The extension of this method to 2D 

and 3D structures is possible from a theoretical point of view, but it requires most of the time 

lengthy computations; furthermore, the method used by the last author requires calculating the 

effective density for all increments in order to compute the medium frequency at a given 

increment. In the following the units of wavenumber is m-1. 
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Fig.6.5 Three studied repetitive lattices. a) 2D hexagonal, b) Milton lattice, c) Hexachiral lattice 

The nonlinear phase velocity response of a beam incorporating many hexagonal unit cells 

(pictured in Fig.6.5a), repeated periodically along the longitudinal direction and subjected to a 

nonlinear tensile deformation 
xx

E  is computed based on previous incremental scheme (6.3.9), 

using Parnell method. A comparison of the phase velocity computed by the present incremental 

method and based on Parnell method is presented in Fig.6.6, showing very good agreement 

between both methods, even up to high values of the imposed deformation gradient.  
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Fig.6.6 Dependency of the phase velocity on the deformation. Comparison between the 
incremental scheme and Parnell method [23] for a beam under tension incorporating a hexagonal 

repetitive microstructure  sec
p

c m   

One can notice from the values of the phase velocity an important difference between the linear 

and nonlinear situations under the imposition of a deformation before sending plane waves 

through the structure. We further observe in Fig.6.7 that the imposed compression has a 

significant effect on the incremental phase velocity, which is much more pronounced in traction 

than in compression, due to the fact that Young modulus varies very little under compression 

(Fig. 6.7b). The strong variation of Young modulus under traction (Fig. 6.7b) counterbalances the 

increase of density (Fig. 6.7a) so that the phase velocity in turn increases under a tensile loading 

(Fig. 6.7c). These results entail overall that the dynamical behavior of the material will be 

modified by decreasing the wave velocity, especially by imposing a compressive strain before 

sending the wave into the structure. This feature is especially interesting in situations in which 

dissipation occurs, since compression tends (as dissipation) to increase wave absorption 

phenomena.  
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Fig.6.7 Density (a), Young modulus (b) and phase velocity (c) variations versus the tensile and 
compressive strain for a beam incorporating a hexagonal repetitive microstructure. 

We next analyze the impact of the unit cell geometry of the beam microstructure on the effective 

incremental phase velocity versus the imposed deformation xxE , itself built from the imposed 

transformation gradient xxF .We plot in Fig. 6.8 the evolution of the phase velocity for the 

hexagonal, re-entrant and Milton lattices shown in Fig. 6.5.  
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Fig.6.8 Phase velocity under traction versus the applied tensile deformation for the hexagonal, re-
entrant and Milton lattices. 

Higher values of the phase velocity are obtained for the re-entrant configuration, while the lowest 

values occur for the Milton lattice; such effects of the unit cell topology are essentially attributed 

to the (tangent) rigidity matrix and to the effective density of the considered microstructure.  

We next extend the dynamical nonlinear analysis to planar waves for 2D network materials.  

6.4 Incremental dispersion relation and phase velocity in a 2D homogenized medium 

In a 2D context, the constitutive law governing the evolution of the homogenized network 

material subjected to large deformation gradients writes relying on the developments at the end of 

section 2 and as an extension of Eq. (6.3.3)  

 
xx xx

t
yy n n yy

xy xyn n

e

c c e

e





   
         
   
   

 

 

(6.4.1) 

where nc is the tangent stiffness matrix of the effective continuum at increment n  introduced at 

the end of section 2 (Eq. 6.2.12 and 6.2.13), t
nc  the corrected tangent stiffness matrix, and 

xx

yy

xy n





 
 
 
 
 

xx

yy

xy n

e

e

e

 
 
 
 
 

are successively the vectors condensing the three independent components of the 

Cauchy stress tensor ı  and small strain tensor  1
:

2
T  e u u , itself built as the symmetrical 

part of the gradient of the displacement field, vector u .  



  

203 

 

Introducing as for the 1D case the perturbation parameter   in the relation ˆt t
n nc c  , which 

defines a perturbed modulus ˆt
nc , leads to the incremental equation of motion in tensor format as 

   
2 2

1 12 2
ˆtn n

n n n n n ndiv c c div
t t

   
   

     
 

u uı ε  
 

(6.4.2) 

The tangent stiffness matrices ,  t
n nc c therein are considered as constant between increments n and

1n  , and *
1n   is as in the 1D case the effective network density for increment 1n  . 

Using the same methodology as in the previous 1D context, and restricting to Centro-symmetrical 

structures for which the coupling coefficients vanish (the following components of the rigidity 

matrix vanish, 13 23 31 32 12 210,a a a a a a     ), we express the nonlinear frequency for the new 

configuration (resulting from the applied gradient of deformation) in an incremental scheme 

versus the effective density of the medium as: 
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(6.4.3) 

where 1
l

n  and 1
t

n   are the frequencies for the longitudinal and shear modes respectively, n  is 

the frequency of the increment n and the coefficients ija  are the components of the incremental 

stiffness matrix. 

The expression of the phase velocity is given by pc
k


 , where :k  k  is the modulus of the 

wavevector written as the complex number 1 2k ik k ; the real part 1k represents the attenuation 

in the x-y plane, and 2k  is the imaginary part of the phase constant. 

For a plane wave without attenuation in the x-y plane, the propagation wave number constants 

along the x and y directions are 1 k cok = s(θ) and 2 ksik = n(θ) , with the angle   indicating the 

direction of wave propagation with respect to the x axis of the Cartesian basis. We shall note that 
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the phase velocity does not depend on the wavenumber, but only on the direction of wave 

propagation. 

We shall plot the dispersion relation by restricting the values of the wave vector to the edges of 

the irreducible part of the first Brillouin zone (O, A, B). 

In order to exemplify the methodology of the incremental dispersion relation, the longitudinal and 

shear frequencies are identified in a first step for the hexagonal lattice; the response of this lattice 

is computed under a compression in y direction, in order to highlight the variation of the band gap 

when passing from a regular configuration to a re-entrant one – for which the structure is auxetic, 

and under simple shear. 

In order to investigate the evolution versus strain of the incremental dispersion relation and of the 

band gap for the hexagonal structure (changing from a regular to an auxetic configuration under a 

compressive load), we plot in Fig.6.9 the dispersion relation for both longitudinal and shear 

modes under varying compressive and shear loads.  

 

Fig.6.9 Dispersion relation for the hexagonal lattice under compression (left) and shear (right). 
Solid line: longitudinal mode, dashed line: shear mode. 

A variation of the load (compression or shear) significantly alters the dynamical response of the 

structure (Fig.6.9); especially, the frequency of the dynamical response under compression 

increases significantly, even for small load changes.  
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We observe in the initial configuration (no applied deformation gradient) a maximum band gap 

about 14.46 rad/sec, which increases to 85.12 rad/sec when moving from the regular to the re-

entrant configuration (the hexagonal lattice becomes re-entrant when loaded under a compression 

strain of 0.5yyE  ). This effect becomes more pronounced as the compression deformation level 

is increased. A similar increase is also observed under simple shear, although less pronounced.  

The same effects are observed for the hexagonal lattice under an incremental shear load, since the 

band gap increases from 14.46 rad/sec to 54.2 rad/sec for a shear strain of 0.275 (expressed in 

percentage of the initial value). The comparison with the compression loading situation shows 

that the band gap is larger in comparison to shear; this can be assessed by comparing the 

thickness of the band gap for the hexagonal lattice under a compression strain equal to 0.25 and a 

shear strain equal to 0.275. The increase of the band gap width from the regular hexagon to the 

re-entrant configuration is characteristic of the special acoustics properties presented by auxetic 

metamaterials [57]. These results are in good agreements with [58], in which the authors compare 

the dynamical properties between the hexagonal and the re-entrant lattices. 

In order to highlight the non-isotropic dynamical behavior of re-entrant hexagonal configurations 

and the impact of anisotropy on the dispersive characteristics, we plot the phase velocity for the 

hexagonal lattice submitted to a gradient of deformation corresponding to compression (Fig. 

6.10) and shear (Fig. 6.11) successively. 
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Fig. 6.10 Phase velocity in the longitudinal (red) and shear (blue) modes for the hexagonal lattice 
for different compression loads (here measured positively).a)  0yyE   , b) 0.25yyE  , c)

0.5yyE   
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Fig. 6.11 Phase velocity plot for the hexagonal lattice for the longitudinal and shear modes for 
different shear loads.a) 0xyE  , b) 0.15xyE  , c) 0.275xyE  . 

The regular hexagonal lattice has an initial isotropic behavior for both the longitudinal and shear 

modes (in the low frequency range), as indicated in Fig.6.10 and Fig.6.11 by the corresponding 

circular phase velocity plot in snapshot a) in the absence of deformation. It is also interesting to 

observe that the low frequency behavior (for longitudinal and shear modes) for the regular 

hexagonal is non-dispersive. An anisotropic behavior appears when moving from the regular to 

the re-entrant configuration, which becomes significantly close to the re-entrant configuration 

(for 0.5yyE  ). The degree of anisotropy becomes higher as the level of compression increases, 

due to the modification of the lattice geometry; the anisotropic behavior of the re-entrant lattice is 

markedly visible from the irregular shape of the phase velocity plot for the longitudinal and 

shears modes [58]. 

The study of wave propagation in auxetic materials is an important topic [59], and especially the 

evolution of the dispersion relations in the large deformations regime is quite interesting. We 

shall illustrate this aspect in the present work by studying the effective wave propagation within 

the hexachiral structure, the dynamical behavior of which is computed under incremental uniaxial 

and biaxial applied loads.  

In order to investigate the evolution of the dispersion relation and the bandgap under an 

incremental deformation gradient, we plot in Fig.6.12 the dispersion relation for the hexachiral 

network submitted to uniaxial and biaxial loads, for the longitudinal and shear modes. 

c) 
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The remarkable previous effects of the imposed gradient of deformation on the dispersion relation 

are also observed (Fig.6.12): an increase of the incremental load results in shifts in the dispersion 

relation, for both biaxial and uniaxial loads. It is also apparent from Fig.6.12 that both types of 

loads have the same influence on the dispersion relation and band gaps for the longitudinal and 

shear propagation modes. The wave propagation modes for the longitudinal and shear modes are 

very close, as shown in Fig.6.12; this can be attributed to the symmetry of the stiffness matrix for 

the hexachiral lattice (the responses in x and y direction are similar). 

 

Fig.6.12 Dispersion relation for the hexachiral lattice under biaxial loads (left) and uniaxial loads 
(right). The solid line corresponds to the longitudinal mode, the dashed line to the shear mode. 

The phase velocity plot for the hexachiral lattice submitted to an equibiaxial deformation gradient 

(Fig.6.13) highlight its isotropic behavior as well as the non-dispersive nature of wave 

propagation. The phase velocities for the hexachiral lattice obtained for the longitudinal and shear 

modes are very close to each other (Fig.6.13). 
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Fig. 6.13 Phase velocity for the hexachiral lattice for the longitudinal and shear modes for three 
different biaxial load levels,a) 0xx yyE E   , b) 0.1xx yyE E  , c) 0.3xx yyE E  . 

Fig.6.14 illustrates that the hexachiral lattice shows a nearly isotropic behavior for both the 

longitudinal and shear modes according to the corresponding circular phase velocity plot in the 

initial configuration (no deformation is applied). An anisotropic behavior (small degree of 

anisotropy) appears when applying an axial deformation. The lower degree of anisotropy in 

comparison to the hexagonal lattice (Fig.6.11) is due to the smaller modification of the hexachiral 

lattice geometry under an axial deformation. 

c) 
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Fig. 6.14 Phase velocity for the hexachiral lattice for the longitudinal and shear modes for three 
different axial load levels.a) 0xxE  , b) 0.1xxE  , c) 0.3xxE  . 

6.5 Extension of the method for 3D homogenized media 

Starting from the writing of the dynamical equilibrium equation for a 3D Cauchy medium, we use 

the Lindstedt-Poincaré based on the asymptotic expansion of the frequency, effective density and 

displacement components, viz the following expansions (which are inserted into the dynamical 

equilibrium equations, as done previously in the 1D case) 

 

a) b) 

c) 
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(6.5.1) 

After introducing the non dimensionless time t  , we obtain the incremental frequency for 

each mode as follows: 
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(6.5.2) 

where l , SV and SH are the longitudinal, vertical shear and horizontal shear modes 

respectively for the new configuration, * and *
0  are the density of the new and initial 

contribution, and 
ija  are the coefficients of the tangent stiffness matrix resulting from the 

imposed incremental gradient of deformation.  

We plot in Fig.6.15, the evolution of the dispersion relation for the hexagonal 3D submitted to an 

incremental load along the x axis. 

 



  

212 

 

 

Fig.6.15 Incremental dispersion relation under an incremental axial load for the 3D hexagonal 
lattice. The solid line corresponds to the longitudinal mode, the dashed line to the vertical shear 

mode and the dotted line to the horizontal shear mode. 

As expected, as the applied load is increased, a shift in the three modes of propagation occurs, 

and the width of partial band gap between the modes also increases (Fig.6.15). 

The maximum width of the partial band gap occurs between the longitudinal mode and vertical 

shear mode increases from 28.93 rad/sec at the initial case to 95.02 rad/sec after an applied 

traction of 0.175 deformation. 

In the sequel the red line corresponds to the longitudinal mode, the blue one corresponds to the 

vertical shear mode and the green one to the horizontal shear mode. 

We can be clearly observed from the Fig.6.16 the anisotropic behavior of the 3D non-regular 

hexagonal lattices from the variation of the components of phase velocity under the axial 

incremental deformation. 
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Fig. 6.16 phase velocity  for different axial load for the 3D hexagonal lattice.a)  0xxE   , b) 

0.05xxE  , c) 0.15xxE  , d) 0.175xxE  . 

The anisotropy of the 3D hexagonal lattice in the initial state ( 0xxE  ) is due to the 

nonsymmetrical geometry (different dimensions of the unit cell along directions x, y and z), this 

anisotropic is more pronounces as we increase the level of the applied deformation. 

6.5.2 Effective dynamical response of 3D auxetics 

Fig.6.17 shows a representative unit cell of the 3D re-entrant honeycomb and pyramid shaped 

configuration. 
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Fig.6.17 proposed geometric description of the investigated 3D lattices: (a) 3D re-entrant lattice 
proposed and (b) pyramid shaped unit cell proposed by Zheng et al., 2011. 

The evolution of the frequency versus the incremental deformation gradient (traction in x 

direction) for the pyramid and the re-entrant 3D lattices is illustrated in Fig.6.18 and Fig. 6.19, for 

two directions of wave propagation (χ is the angle between the wavevector and z axis while   the 

angle in the xy plane). 

 

Fig. 6.18  Incremental dispersion relation under an incremental axial load (x direction) for the 
pyramid lattice for different values of the wave number. a) Propagation in direction χ=π/6νӨ=π/6, 

b) in plane propagation χ=π/βνӨ=π/4. 
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Fig.6.19 Incremental dispersion relation under an incremental axial load (x direction) for the 3D 
re-entrant lattice, a) direction of propagation χ=π/6νӨ=π/6, b) in plane propagation χ=π/βνӨ=π/4. 

Increase in the gradient of deformation entails an increase of the partial band gap between L and 

SV modes, SV and SH modes, in the direction of propagation χ=π/6ν Ө=π/6 as one can observe in 

Fig.6.(18,19). The frequency increases when the applied gradient of deformation is increased. 

The pyramid lattice shows very good in-plane mechanical properties but it suffers from some 

weakness in the out-of-plane direction and that can be clearly observed in the case of in-plane 

propagation (χ=π/β), how the longitudinal and vertical shear wave are very higher than the 

horizontal shear mode. However the weakness properties of the 3D re-entrant lattice under shear 

solicitation results two lower modes of propagation, vertical and horizontal shear modes as shown 

Fig.6.19 for in plane propagation (χ=π/β). 

It is interesting based on previous results to note that the dynamical behavior of such periodic 

materials can be improved by imposing an incremental load (gradient of deformation) before 

sending any wave through the structure, sue to the increase of the band gaps and decrease in the 

phase velocity, as shown previously on Fig. 6.8. 

Fig. 6.20 and Fig. 6.21 illustrate the anisotropic behavior and its evolution for the two auxetic 

structures (pyramids and 3D re-entrant): the degree of anisotropy increases when increasing the 

level of the applied deformation in extension. 
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Fig. 6.20 phase velocity for different axial load for the pyramids structure,)  0xxE   , b) 

0.05xxE  , c) 0.1xxE  , d) 0.175xxE  . 
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Fig. 6.21 Phase velocity in the longitudinal mode for different axial loads for the 3D re-entrant 
structure.a)  0xxE   , b) 0.05xxE  , c) 0.1xxE  , d) 0.175xxE  . 

6.6. Effect of Poisson’s ratio and density on the frequency band diagram 

We investigate the effect of Poisson’s ratio and density on the frequency band structure for the 

2D hexagon under uniaxial compression and the 3D pyramid under a uniaxial tensile loading. 

Note that the variation of Poisson’s ratio is presently obtained from the deformation of the 

structure under the imposed kinematic loading (Fig. 6.22). 
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Fig.6.22 Influence of the Poisson ratio and density on the frequency band structure for the 2D 
hexagon under compression. Continuous (resp. dashed) lines corresponds to edge A of Brillouin 

zone (resp. edge B). Blue lineμ evolution of density versus Poisson’s ratio.  

When the hexagonal passing from its regular form to re-entrant configuration (passing from 

positive values of poison ratio to negative values), the density of the material increases, while a 

shift in the shear mode and a rise in the longitudinal mode occur, providing an increase in the 

width of partial band gap. 
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Fig.6.23 Influence of Poisson’s ratio and density on the frequency band structure for the γD 
pyramid under compression. Continuous line corresponds to edge A of Brillouin zone while the 

dashed line corresponds to the edge B. 

Results on Fig.6.23 indicate significant effects of a change of Poisson’s ratio on the three modes 

of propagation: a small rise in the 3 modes is observed, while a significant shift in the density 

occurs. 

The effective incremental frequency of such pre-strained structures are applicable only in the low 

frequency domain, when the wavelength of the propagated wave is much greater than the 

characteristic length of the representative volume elementary (RVE). At higher frequencies, the 

effective medium suitable for low frequencies is no more representative, thus one shall have 

recourse to perturbation method. The extension of the perturbation method to incorporate the 

effect of a large pre-deformation of the structure is the object of the next section.  

6.7 Nonlinear dispersion relation based on the perturbation method 

Thus far we have only considered the behavior of the material at low frequencies, a domain in 

which it makes sense to have recourse to the homogenized effective medium. At higher 

frequencies, the effective homogenized medium is no more representative of wave propagation 

phenomena within the lattice, thus one has to assess the range of validity of the effective medium 

via a suitable generalization of Bloch analysis to finite strains.   

Bloch analysis has been solved so far in the linear setting, allowing the study of wave propagation 

in an infinite perfectly periodic linear medium, without the recourse to an effective medium 
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approach, and which is suitable for a comparison of the dispersion analysis obtained by the 

asymptotic theory. 

Each beam of the unit cell is considered as a Bernoulli beam including three degrees of freedom 

at each node, namely two translations and one rotation, condensed into the vector of kinematic 

degrees of freedom  , ,i i ziu v iq . The continuum counterpart of these kinematic variables 

interpolating the discrete kinematics of a typical beam element is approximated by (x denotes the 

curvilinear abscissa along any beam): 

   
6

1

, ( )
n n

n

u x t a x q t



 

   
6

1

, ( )
n n

n

v x t b x q t



 

   
6

1

, ( )
z n n

n

x t c x q t


  

 

 

 

(6.7.1) 

The scalar function (x), (x), ( )n n na b c x therein are the shape function. 

The kinetic and potential energies per unit thickness of a Bernoulli beam taking into account the 

large deformation according to the Cauchy-Green tensor relation in the extensional mode only 

(without effect of inertia and torsion) is given by: 
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The potential energy is given by: 
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(6.7.3) 

in which ,  ,  ,  ,L E Iz S  are successively the length, Young modulus, second moment of area with 

respect to the z-axis and the cross-sectional area of a generic beam within the network unit cell. 



  

221 

 

Once the element shape functions are constructed, it is straightforward to calculate the linear and 

nonlinear stiffness and mass matrices after application of the Euler-Lagrange operator to write the 

nonlinear dynamical equations of motion.  

The Euler-Lagrange equations of motion are obtained without external forces: 

0,
T U

t q q
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(6.7.4) 

This equation of motion can be written for each beam; the assembled equation of motion for the 

unit cell is then derived in the following form: 

2 3 0q pMq + Kq + K q K q  (6.7.5) 

The matrix M and K are respectively the linear mass and stiffness matrix of the beam, and the 

nonlinear stiffness matrices ( pK , qK ) therein weakly contribute to the response of the system. 

The quadratic terms pK  do in (6.7.5) not contribute to the dispersion relation according to the 

first order perturbation theory, thus only the effect of the cubic terms qK  on the system will be 

considered. The incremental equation of motion for the pre-stress medium (an incremental 

gradient of deformation is applied to the structure) is given by 

    3 0
t t
n nn n n      

NL

M M q K Κ q K q  
(6.7.6) 

where ,n nM K are the assembled mass and stiffness matrices at increment n; similar to the 1D 

situation treated previously, ,
t tt t
n nn n  M M K K  in (6.7.6) are the assembled incremental mass 

and stiffness matrices respectively (this last matrix has been computed in section 2 based on 

discrete homogenization), depending on the form and magnitude of the gradient of deformation 

applied to the structure, which can be calculated in the same manner as in the initial configuration 

(no applied deformation), but for different lengths and directions of the lattice beams, 


NLNLK K is the nonlinear stiffness matrix (cubic terms) arising from the nonlinear stress-strain 

relationship (we use in subsequent applications Cauchy-Green tensor in the extension mode 

only), and  is a small parameter used to quantify the degree of nonlinearity.  

The first step in the analysis of the nonlinear dispersion relation is the introduction of the non 

dimensionless time t  , followed by the asymptotic expansion of the frequency and 

displacement 
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Those expansions are then substituted into the equation of motion (5.6) to yield ordered equations 

versus the small parameter   
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(6.7.

8) 

The perturbation method is applied to equation at order  0
O   and results in a set of equations 

describing the linear dispersion relation for the initial medium. Imposition of the wave 

propagation equation at first order  0
O   and using Bloch’s theorem allows a reduction of the 

dimensions of the global equations of motion. By imposing a plane harmonic wave to the 

resulting equation of motion, we obtain the dispersion relations that describes the linear plane 

wave propagate within the initial structure. Two types of nonlinearities are included in the 

 1
O   term: 

 A geometrical nonlinearity due to use the Cauchy-Green strain in the potential energy 

(extension case only)  30NL

n nK q  . 

 An incremental nonlinearity related to the evolution of the structure configuration (change 

in area, shape and position of the beam) under large gradients of applied deformation, 

corresponding to the term 0t

n nK q   . 

The removal of secular terms of the order  1
O   results in an incremental dispersion relation 

which is corrected by the geometrical nonlinear stiffness matrix ( )n q
NLK , underpinning the 

nonlinear dispersion relation by the wave amplitude. After removing the secular term, we obtain 

the following equation for the frequency 1
n : 
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Nontrivial solutions of (5.9) exists only for a vanishing determinant, viz   1 0, , 0n n A  D ,  

thus leading to a relation between 1
n  and 0

n . 

In the case of a mere geometrical nonlinearity [24], the  1
O   equation (6.7.8) becomes: 
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This equation yields a standard eigenvalue problem, with eigenvalues 
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eigenvectors i . The index i therein and in subsequent relations represents the ith branch of the 

dispersion relation. The corrected frequency 1
n  is then given by: 
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Finally, the frequency i

n is given by the relation 
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(6.7.12) 

In order to illustrate previous formulation, the effect of a pre-strain on a structure made of 

repetitive hexagonal cells (Fig.6.5) undergoing an incremental gradient of deformation 

(compression solicitation) will be studied. The dispersion relation for the pre-strained structure 

has been analyzed in Fig.6.24 without the effect of geometrical nonlinearities (thus we have 

neglected the term  30NL

n nK q , as done in the homogenization method presented in section 2), 

considering the propagation of the longitudinal and shear waves within the structure along the 

edge of the first irreducible Brillouin zone. We compare for each propagation mode the results 

obtained by the homogenized theory (solid line) and the perturbation method (dashed line). The 

structure undergoes a compressive strain in the y-direction. In subsequent figures, the red line 
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corresponds to the initial configuration, the green line to the configuration obtained by the 

application of 30% deformation in y-direction, while the blue line corresponds to the band 

diagram for an imposed deformation of 50% (in y-direction).  

 

Fig.6.24 Dispersion relation for the hexagonal lattice under compression for the longitudinal 
mode (left) and the shear mode (right) for the 2D hexagon. Comparison between perturbation 

method (dashed line) and homogenization theory (solid line) for three loading 

Fig.6.24 highlights that the homogenized theory reproduces the perturbation method for the two 

modes of propagations (longitudinal and shear) along the edge of the first Brillouin zone. The two 

modes describe non-dispersive waves, since the frequency is directly proportional to the 

wavenumber. We can conclude that, in the low frequency range (for both longitudinal and shear 

modes), the dynamical properties of the pre-stressed material can be investigated directly from 

the homogenized effective medium. 

Fig.6.25 depicts the incremental dispersion diagram relying on the perturbation method, taking 

into consideration the geometrical nonlinearity ( ( )q
NLK ), for low (dotted line) and high (dashed 

line) amplitude wave excitations. In comparison, the solid line corresponds to the absence of 

geometrical nonlinearity. In the longitudinal mode, a small shift occurs in the dispersion relation 

as the wave amplitude increases, whereas the shift is more pronounced for the shear mode. For 

the two modes, the effect of the geometrical nonlinearity becomes weaker when an incremental 

compressive loading is applied to the structure; this behavior is caused by the inverse 
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proportional relation between the corrected frequency i
n  and the frequency 0i

n for the initial 

contribution, as reflected in relation (6.7.12): as the initial frequency 0
n  increases, the influence 

of the geometrical nonlinearity becomes weaker. 

 

Fig.6.25 Dispersion relation for the hexagonal lattice under compression for longitudinal mode 
(left) and shear mode (right). (Dotted line) and without geometrical nonlinearity (solid line). Red 

line: initial configuration. Green line: 30% deformation gradient in y-direction. Blue line: 
gradient of deformation of 50% in y-direction. 

We next investigate the evolution of the band gap and of the geometrical nonlinearity on the 

dispersion relation; Fig. 6.26 highlights the weak effect of the geometrical nonlinearity on the 

dispersion relation, even for large values of the wave amplitude. We observe a small shift in the 

band gap (a partial band gap exists between the longitudinal and shear modes when moving from 

low to high amplitudes). In the initial non perturbed configuration, a drop of w= 1 rd/s in the band 

gap occurs for higher amplitudes. A new configuration is obtained after applying a compression 

deformation 30%yyE  and a drop of 3.8 rd/sec occurs in the band gap, while this drop decreases 

to 3.08 rd/sec after increasing the deformation up to 50%yyE  . In both cases of low and high 

amplitudes, Fig. 6.26 shows that the band gap between modes increases, when the regular 

hexagon is deformed to a re-entrant configuration for a strain level 50%yyE  .   

correction de légende:
Dotted: low amplitude NL
Dasche : high amplitude NL
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Fig.6.26 Incremental dispersion relation. Low wave amplitude (left) and high wave amplitude 
(right). Longitudinal mode (solid lines) and shear mode (dashed line). Red line: initial 

configuration. Green line: 30% deformation gradient in y-direction. Blue line: gradient of 
deformation of 50% in y-direction. 

For higher amplitudes, the frequency of the shear mode rises above the frequency of the 

longitudinal mode, due to the lower values of the initial frequency in the shear mode. 

6. 8 Conclusion 

We analyze in this chapter the influence of large deformations on the propagation of acoustic 

waves in repetitive network materials. An incremental scheme for the update of the frequency and 

phase velocity of the homogenized medium has been developed, considering successively 1D, 2D 

and 3D repetitive network materials. The constructed scheme relies on the computation of the 

effective tangent stiffness accounting for the variation of the lattice geometry due to the 

kinematic loading imposed over the unit cell. Starting from the writing of the dynamical 

equilibrium equation for a Cauchy continuum, we write in the spirit of Lindstedt-Poincaré 

method the asymptotic expansions of the frequency, effective density and displacement 

components, leading to update formula for the frequency and phase velocity of waves 

propagating through the network, as the lattice configuration changes under the imposed 

kinematic loading over the unit cell. Especially, the frequency of propagating waves depends on 

the geometrically nonlinear stiffness matrix of the nonlinear network. The influence of the state 

of nonlinear deformation within the effective continuum is reflected by the dependency of the 

angular frequency and phase velocity versus the tangent modulus associated to the new lattice 
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configuration. Based on this incremental scheme, we have highlighted significant effects of the 

deformation on the frequency and phase velocity of the wave. The variation of the effective 

density has an important impact on the dispersion relation (it modifies both the width of band 

gaps and the phase velocity of waves) and band diagrams under the application of a finite state of 

deformation over the lattice. 
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Appendix A: computation of the tangent stiffness matrix for the DH scheme 

 

We shall consider lattices which are much softer in bending in comparison to tension, so that we 

shall presently address geometrical nonlinearities, which are traduced by changes of beam 

orientation and length, pictured on Fig. 6.27 

 

Fig. 6.27 Variation of beam orientation (left) and length (right) 
 

These variations are obtained after straightforward computations as follows:  

    
 

1 2b b b b b b b b b. . / l ,   . . / l

b b bl . . . / l

         

   

e C A B e B B e B C A B

B I C A B

 

 

(A1) 

In (B1), we have introduced the projection operators P  and C  expressing as 

  1b b b b: ,   :
2

       
 

P I e e C I e e  
 

(A2) 

In the present large strains regime, since the beam length is changing, one has to expand it versus 

the asymptotic parameter   as all other kinematic variables (these expansions are not repeated in 

this subsection),  

b b b 2 b p b
0 1 2 pl l l l l         (A3) 

The induced perturbation of the resulting efforts and moments is then obtained as 
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(A4) 

Insertion of the expressions (A1) and (A4) together into the incremental equilibrium (6.2.9) entails  

the identification of the total tangent stiffness matrix 

 
R

S b b b
T,n o,n u,n ,n

b B

K K K K 


    
(A5) 

with o uK ,K ,K  therein respectively the linear stiffness, the initial displacement stiffness and initial 

stress stiffness expressed in closed form in the sequel. 

The linear stiffness matrix writes 

 
 

 
 

 
b

b b b b b b bS s z s z
o,n 3 33 3b b b
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   

e e e e e e  

(A6) 

The initial displacement stiffness receives the expression 
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The stress stiffness receives the expression     
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7. Chapter 7:  Wave propagation analysis in nonlinear 

periodic networks based on second order gradient 

nonlinear constitutive models 

 

Summary 

 

The general objective of this chapter is the analysis of wave propagation phenomena within 
architecture media, relying on an effective substitution continuum obtained by homogenization. 
The proposed methodology is quite general and applicable to any 2D repetitive network of beam-
like structural elements, considering beams undergoing large transformations. Based on the 
writing of the equations of motion of a nonlinear second order gradient continuum, we analyze 
the nonlinear wave propagation in the obtained homogenized nonlinear second order gradient 
continuum. The resulting wave equations are of Boussinesq type, the solution of which being 
elliptic functions. The influence of the degree of nonlinearity on the dispersion relations is 
analyzed, highlighting subsonic and supersonic modes propagating respectively with a velocity 
lower (resp. higher) than the velocity of linear non-dispersive waves. Subsonic and supersonic 
modes correspond respectively to regimes of high and low nonlinearity characterized by the so-
called universal constant s. The existing anisotropy of wave propagation becomes more marked 
when the degree of linearity increases.  
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7.1 Overview 

Periodic cellular networks have been the object of extensive investigations. From the early 

sixties, a growing attention has been paid to the study of the mechanical properties of periodic 

networks due to the great advantage (static and dynamic) presented from their spatial periodicity 

[1-4] for instance, the presence of frequency bandgaps. 

A lot of attention has been paid to wave bandgaps in periodic networks [5]; within some 

frequency interval, waves cannot propagate through the network, but are attenuated quickly [5]. 

The location and width of the existing bandgaps depend on the network topology and on the 

direction of wave propagation. The propagation of elastic waves in a linear framework has 

deserved a wide body of works [6-11], whereas only a few authors analyzed so far wave 

propagation in nonlinear media. The incorporation of nonlinear aspects of wave propagation in 

structures is necessary whenever large deformations occur [12-15], but it remains a considerable 

challenge. Two types of nonlinearities may be present in a broad sense, which can be classified as 

material nonlinearities [16-17] and geometrical nonlinearities [18]. The propagation of nonlinear 

waves in periodic structures is accompanied by a number of new phenomena that are different 

and can never be observed for linear media. 

The presence of a nonlinearity in periodic structures results in the dependency of the wave 

propagation, phase and group velocities upon the amplitude of the wave; this phenomenon 

deserves the name amplitude dependent dispersion relation. It opens new possibilities for a 

passive tuning of the dispersion band structure through an amplitude-dependency of propagating 

waves, thereby going beyond a mere control of the dynamic and acoustic properties of repetitive 

structures by the design [17] or by application of an external stimulus.  

This entails that solutions of the wave propagation equations are much more complex compared 

to harmonic plane solutions of the linear wave equations: nonlinear periodic structures support a 

variety of wave solutions depending on wave amplitude, waves interactions, and the type of 

nonlinearity, one can for instance mention solitary wave solutions for Boussinesq type equation, 

and shallow water waves for Burger's equation [19-25]. 

The study of nonlinear elastic waves has been limited so far in the literature to classical Cauchy-

type elasticity theory, which relies on the sole first order displacement gradient. Models based on 

Cauchy-type theory do not give realistic predictions on the properties of the medium such as the 

dispersion relation, since the Cauchy effective medium lacks internal length parameters. The 
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Cauchy medium is non-dispersive, which means that waves propagate independently of the 

wavenumber [26]. It has however been proven by experiments that most waves are dispersive, 

that is, each wavenumber travels with a different phase velocity [27-28]. This explains the 

success of gradient-enriched theories in capturing dynamic behaviors overlooked by classical 

elasticity. In order to circumvent this drawback, an energetic method has been developed in this 

chapter to link the dispersive aspects of wave propagation to gradient elasticity theories in a 

nonlinear effective medium obtained by the homogenization of the underlying network 

microstructure. We shall focus in this chapter to the hexagonal lattice.  

7.2 Energy of the 2D extensible hexagonal lattice for the dynamic analysis 

7.2.1 Analytical expression of the energy of the homogenized hexagonal lattice 

In order to set the stage, we first express the forces and moment exerted on a beam element (i-j, 

i+1- j+1) within the network, Fig. 7.1 in the nonlinear framework, considering only the first order 

expansion of the Taylor series of the trigonometric functions [29]: 

 

Fig.7.1 Kinematics of a beam element within the repetitive network. 
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In those expressions, S is the beam cross section, L the beam length, Iz the quadratic moment of 

the beam,
2

12
z

EI
GS

L
  the shear rigidity, c  the rotation of the central node of the beam, and 

,b be e are respectively the beam director and the transverse unit vector. The 2D displacement 

vector U  in expressions (7.1) through (7.3) is parameterized by a curvilinear coordinate denoted 

s= (s1, s2), with components ( , ) U  along the unit vectors ,b be e . The symbol  .  refers to 

the variation of any quantity  .  between both beam extremities.  

Those expressions are written in a general case and exhibit a nonlinear elastic dependency of the 

forces and moment with respect to the kinematic variables. In order to apply the asymptotic 

homogenization method, some simplifications are made. We consider that all beams are initially 

rectilinear, so that no initial deformations and initial curvatures are present, implying that the 

corresponding kinematic variable vanishes in the expression of the normal force (the 

coupling between tension and bending is accordingly neglected). 

Based on these general expressions of the forces and moments, the expression of the internal 

deformation energy of a single beam element is obtained, written in the local coordinates ( , ) 

attached to the beam as 

       
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(7.4) 

Introducing therein the extensional rigidity l

b

ES
K

L
, the flexural rigidity f

b

EI
K

L
, and the shear 

rigidity 3

12
c

b

EI
K

L
, with bL  the beam length. Expression (7.4) include extensional, flexural and 

shears contributions to the energy.  

Based on [30] and using Eq. (7.4), one can evaluate the continuous energy density of a hexagonal 

lattice made of extensible beams pictured in Fig.7 2.  

c
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Fig.7.2 Unit cell of the 2D hexagonal lattice 

The unit cell of the 2D hexagonal lattice has three beams shown on Fig. 7.2, linking together the 

pair of nodes (i, j-1)-(i, j),  (i, j)-(i-1, j+1) and (i, j)-(i+1, j+1), have shear rigidities denoted 

1 2
,c cK K  and 

3cK , flexural rigidities denoted 
1 2
,f fK K  and 

3f
K , extensional rigidities denoted 

1 2
,l lK K  and 

3l
K . We further make the assumption that the three beams have equal rigidities for 

each deformation mode. 

Expanding the finite differences in (7.4) up to the second order gradient of the continuous 

displacement field leads to a nonlinear second order effective continuum. After development, the 

energy density of the homogenized hexagonal lattice can be written in closed form versus of the 

slenderness ratio   and the angle   as (see the Appendix A): 
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(7.5) 

We next analyze one-dimensional and two-dimensional wave propagation within such repetitive 

networks, based on the constructed effective continuum based on (7.5), as will be done in the next 

section.  

7.2.2 Dynamical equilibrium equation 

For extensible beams, developments of Appendix A show that the energy density of a nonlinear 

second gradient medium takes the general form: 

1 2 3  Ws Ws Ws Ws (7.6) 

where 1Ws  and 2Ws  are the first and second order contributions of the strain energy density in 

small strains, and 3Ws  is the contribution of the strain energy density accounting for the 

occurrence of large strains.  

The strain energy density entails the first order Piola-Kirchhoff stress in component form as 

follows: 

 1 3 


   

ij

i

j

Ws Ws

u
x


(7.7) 

The second order hyperstress follows similarly as: 

 2

2

2




 
  

ijk

ij

k

Ws
S

u

x

(7.8) 
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The equations of motion for a second gradient medium along the 
jx  directions then write in index 

form as follows: 

2
ij ijk

j j
j

k

*u ,    i,j, k
S

x x x
1,2

  
     




(7.9) 

The effective density therein is given in general by * 1

cell

M

A
  , with 1M the mass of the set of 

lattice beams within the unit cell and cellA the area of the periodic unit cell in 2D.  

From Eq. (7.9), we obtain two differential equations that describe the propagation of longitudinal 

waves polarized in the direction of incident wave, and of shear waves polarized in a direction 

perpendicular to the direction of the incident wave.  

Throughout this work, one considers the material behavior at low frequencies, so equivalently 

when the wavelength of the wave is greater than the unit cell size, a range of frequencies in which 

it makes sense to have recourse to the homogenized effective medium. In order to show the 

validity of the homogenization method at low frequency, we compare the results obtained in the 

linear case to those given by Bloch theorem (for more detail see [10]). 

 

 

Fig.7.3 Dispersion relation for the hexagonal structure in the linear case (low frequency). Blue 
lineμ longitudinal mode. Red lineμ shear mode. Comparison between Bloch’s theorem (dashed 

line) and homogenization theory (solid line) for both longitudinal and shear modes 
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Fig. 7.3 shows that in the low frequency range (only the longitudinal and shear modes exist), the 

homogenized method is applicable, since the dispersion curves obtained by Bloch theorem and by 

the homogenization method are very close to each other; this justifies the validity of the proposed 

homogenized method at low frequency. 

7.3 Wave propagation in a one dimensional nonlinear elastic micro structured beam 

We study the propagation of longitudinal waves in a one dimensional continuum micro structured 

beam incorporating many hexagonal unit cells repeated by periodicity along the longitudinal 

direction; there is one unit cell in the thickness direction. The beam is submitted to a uniaxial 

loading state ( 0xx   and 0xx  ). 

From expression (7.5) of the continuum strain energy, we obtain the specific expressions of the 

first order Piola-Kirchhoff stress and hyperstress tensors, based on the general definitions 

introduced in Eq. (7.7) and (7.8). Inserting these expressions into the equation of motion (7.9), we 

obtain the homogenized nonlinear wave equation: 

2 2 4 2
*

1 2 32 2 4 2

u u u u u
E E E

x x x x t
    

  
    

(7.10) 

where u is the longitudinal displacement, 1E  the linear effective modulus derived from the linear 

part of the energy density, 2E the nonlinear effective modulus characteristic of the large 

deformation behavior and 3E  the second order effective modulus, characterizing the second order 

gradient behavior. These moduli are expressed versus the microstructural lattice parameters in 

Appendix B. The equation of motion (7.10) describes the quasi-static (dispersive) behavior of 

waves propagating within the periodic lattice. Let note that the term of the second order modulus 

in (7.10) is always negative; this means that the presence of a microstructure results in positive 

dispersion, so that increasing the wavenumber leads to increase the phase velocity. 

Wave equation (7.10) represents a Boussinesq-type equation; an analogous mathematical model 

has been essentially formulated and studied for shallow water waves, to describe wave 

propagation in fluid [31]. The general properties of Boussinesq and Boussinesq-type equations 

have been intensively studied, including nonlinear effects in the dynamics of solids [32-33]; 

solutions of equations of this type have been studied in [34-39]. 

We shall note that Eq. (7.10) can be integrated using elliptic functions; single elliptical wave 

solutions for this equation are well known in the literature [40]. A set of elliptic functions 
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depending on the degree of nonlinearity are presented explicitly in [41]; they are described by a 

universal coefficient s which does not depend on the mechanical properties of the material, but 

takes into account the shape, period and velocity of waves. Parameter s can be considered as a 

quantitative measure of how much the nonlinearity mode differs from the linear situation.  

We shall next derive an explicit analytical stationary solution of the governing wave equation 

(7.10). 

Using the change of variable z x t
k


  , where   is the frequency and k the wavenumber; we 

transform equation (7.10) into the ordinary differential equation for the new non-dimensional 

strain of the wave function [41]




u

N
z

: 

2
2

2
0

N
a N b N c

z


   


(7.11) 

where

2

2
2

3 3

1
,

2

lE
Eka b

E E


   and c is an integration constant. 

The initial condition writes as in [41]: 

, 0 for 0
2


  


A N

N z
z

 (7.12) 

1

0
0N dz   

(7.13) 

with A the strain amplitude. The physical meaning of Eq. (7.13) is that the displacement cannot 

grow infinitively and this condition leads to the determination of constant c. 

The solution of Eq. (7.11) can then be expressed as [41]: 

 
2

2 0( ) ,
( )2 22 1 ( )

kA As
N z sn z s

E s
K s

     
 

(7.14) 

where s is the so-called universal constant, the modulus of the elliptic functions, describing the 

degree of nonlinearity ( 0 1s  ). This parameter accounts for the period, shape, and velocity of 

the waves. Generally, it may be considered as a quantitative measure of the intensity of the 

nonlinear effects and of how much the nonlinear motion differs from the linear motion. For low 

values of s, there is a small effect of the nonlinearity on the constitutive law and thus the structure 
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behaves approximately in a linear manner. As s increases, the influence of the nonlinearity on the 

constitutive law increases. In (7.14), sn (.) is the elliptic Jacobin sine, K(s), E(s) are the complete 

elliptic integrals of first and second kind respectively and 0k  is the propagation constant related 

to the wavenumber k as follows: 

  02
k k

K s


 (7.15) 

The strain amplitude can be calculated from the following equation  

  2
0

( )3 1 ( )
b AE s

K s k


  (7.16) 

In the limiting case 0s   (which corresponds to the linear case), the solution of (7.14) is 

reduced to the harmonic plane wave solution, 

     cos sin
2 2

A A
N z kz u kz

k
     with 0k k  

In the opposite case, that is when 1s  , Eq. (7.14) describes a localized solitary strain wave with 

the non-dimensional strain given by 

       2
0 0

0

sech tanh
2

    
A A

N z k z u z k z
k

. 

Compression solitary waves can exist when A<0, and for A>0, dilatation solitary waves (tension 

wave) will be obtained. 

It may be possible to develop an asymptotic solution for the nonlinear wave equation (7.10) in the 

case of a weak nonlinearity, corresponding to low values of s. The asymptotic development based 

on the Lidstedt-Poincaré method is explained in detail in [42], and the comparison of the 

asymptotic development with the exact solution is presented in [41, 43]; the agreement is 

acceptable up to quite high values of the universal constant s. 

We shall in the sequel consider the following non-dimensional system parameters: k L is the 

dimensionless wavenumber, 0L

E





 the dimensionless frequency, 
pv

E



 and 
gv

E



 the 

dimensionless phase and group velocities respectively, with parameters ,E   and L  therein the 

Young modulus, the density and length of the beam respectively. 
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We represent in Fig.7.4 the dispersion relation for different values of the nonlinear parameter s 

for the re-entrant hexagon lattice (case 0  ). In the sequel, vp and vp0 are the phase velocities in 

the nonlinear and linear effective medium respectively.  

 

 

Fig. 7.4 Dispersion relation for different values of s for the hexagonal re-entrant lattice
6

 
 . 

For a weak nonlinearity, a supersonic mode occurs and the dispersion curves lie above the linear 

dispersion curve (v = v0). For a higher nonlinearity, the waves change from a supersonic to an 

evanescent subsonic mode at approximately s=0.7 and the dispersion curve drops below the linear 

curve and the frequency vanish for certain values of k (each depending on parameter s) (see 

Appendix C for more details). 

In a nonlinear situation, the second order gradient anisotropic continuum has two propagation 

modes (subsonic and supersonic), whereas Cauchy or micropolar continua only have supersonic 

modes, for which an increase of the frequency with the wavenumber occurs. 

One can observe from Fig. 7.5 that the group velocity tends to zero when the wave frequency of 

all evanescent subsonic modes approaches their higher value. The vanishing of mode occurs 

when
gv  , which means that the strong ellipticity condition is not satisfied [44] (instability 

occurs for high values of s). In the supersonic mode, as the wavenumber k increases, the 

accumulated energy in the medium (increasing in the group velocity) leads to an increase in the 

dispersion relation. 
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Fig. 7.5 Group velocities for different values of s for re-entrant hexagon with
6

 
  . 

The phase velocity is plotted in Fig.7.6 versus the wavenumber for different values of s. 

 

 

Fig.7.6 Variation of the phase velocity for different values of s. 
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A relation between the phase and group velocities is obtained after a lengthy calculation starting 

from the dynamical equilibrium equation and the definition of the group velocity. 

It can be seen from Fig.7.6 that for a weak nonlinearity, the phase velocity vp exceeds its 

linearized value vp0 and describes a supersonic mode; for a higher nonlinearity, the wave changes 

from a supersonic to subsonic mode (approximately for s=0.7). 

7.4 Sensitivity analysis for wave propagation in 2D nonlinear periodic hexagonal networks 

The constitutive law will be formulated from the strain energy density evaluated for the 

hexagonal lattice in a 2D Cartesian plane (the same continualization method as in 1D is used); 

thereby, a nonlinear wave equation in 2D can be deduced based on the dynamical equilibrium 

equation; these equations will however not be written here. The methodology for determining the 

acoustic characteristics (the dispersion relation and the phase and group velocities) for periodical 

uniform 2D lattices is the same as for the previous 1D situation. One can extend the solution of 

the 1D wave equation, expression (7.14), to a 2D context adopting the same form of the non-

dimensional strain N in the y direction, but considering now two different strain amplitudes

0 0,A B : 

 

 

2
20 0 0

2
20 0 0

( ) ,
( )2 22 1 ( )

( ) ,
( )2 22 1 ( )

A A s k u
N z sn z s

E s z
K s

B B s k v
M z sn z s

E s z
K s

       

       

(7.17) 

introducing in (7.17) the variable
pz x y v t   . 

Nontrivial solutions of the equation of motion exist (inserting the displacements from (7.17) into 

the equation of motion) if the determinant of the obtained equation vanishes; the positive roots 

characterize the dispersion relations for planar wave propagation for different values of s. Two 

modes of propagation exist, namely the longitudinal mode (designated by L) and the shear mode 

(labeled T). The direction of wave propagation denotes the orientation of the wave vector with 

respect to the x axis in the Cartesian basis.  

We shall next analyze the effect of the angle   which parameterizes the hexagonal lattice (Fig. 

7.2) and the slenderness ratio (namely the ratio of the beam thickness to beam length) on the 

frequency band structure. We firstly present the evolution of the frequency versus   for two 



  

248 

 

different values of the wavenumber and for both the subsonic (for s=0.1) and supersonic modes 

(for s=0.99), in order to investigate the role of the chosen topology on the dynamical properties at 

the level of the computed effective continuum. 

 

 

Fig.7.7 Frequency band structure versus angle, for the supersonic mode s=0.1 and subsonic mode 
s=0.99, for the longitudinal and shear modes. a) k=1 - direction of propagation equal to π/4, b)  

k=1 - direction of propagation equal to π/β. 

We observe in Fig.7.7 that   has a significant effect on the frequency band structure: the 

transition from negative values of   (re-entrant case) to positive values leads to an important 

increase in the frequency (for the two directions of wave propagation) for both subsonic and 

supersonic modes, and the longitudinal and shear modes move apart from each other. Inspections 

of Fig.7.7 shows that negative values of    are recommended for the hexagonal lattice, since both 

longitudinal and shear modes coincide for such auxetic lattices. The difference between the 

longitudinal and shear modes results from the difference between their deformation energy. 

By varying parameter s from weak to high nonlinearity, one can show that the stress and 

hyperstress components coefficients are always greater for the longitudinal mode in comparison 

to the transverse mode due to the inequalities ( 11 22 111 222,  S  S  ), resulting in a lower 

dispersion relation for the shear mode. 

We next analyze the impact of the slenderness ratio (the ratio of the beam thickness to its length) 

on the frequency band structure for subsonic and supersonic modes (for both cases of weak and 

high nonlinearities). 
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Fig.7.8 Frequency band structure versus the angle   and the slenderness ratio for a direction of 
propagation equal to π/β and a wavenumber k =1, a) Supersonic mode s=0.1, b) Subsonic mode 

s=0.8. Continuous line: longitudinal mode; dashed line: shear mode. 

We observe from Fig.7.8 that the frequency increases when passing from the re-entrant 

configuration to the regular one for the specific angle 16
  , for both longitudinal and shear 

modes, and for both the subsonic and supersonic modes. Beyond this specific value of , a 

decrease in frequency occurs for the supersonic and subsonic modes. For both modes, the 

pi/6



  

250 

 

frequency increases when the slenderness ratio increases, but this influence on the dispersion 

relation is less pronounced compared with the influence of .  

The evolution of the dispersion relation for different values of s and two values of   and   is 

illustrated in Fig.7.9. 

 

Fig. 7.9 Frequency band structure versus the degree of nonlinearity s, for a direction of 

propagation π/4 and a wavenumber k =1μa) dashed line: 6
    , continuous line: 6

   , b) 

dashed line: 1
5  , continuous line: 1

50  . Green line: longitudinal mode. Red line: shear 

mode. 

Inspection of Fig.7.9 shows that the limit (s=0.7) of the transition between the subsonic and 

supersonic modes does not change with parameters   and . Values smaller (resp. larger) than 

0.7 characterize the domain of validity of the supersonic (resp. subsonic) modes; these results are 

in very good arguments with those obtained in Fig.7.4. As expected, when passing from the re-

entrant configuration to the regular hexagonal lattice, a pronounced shift occurs in the dispersion 

relation; the same evolution is also observed by increasing the slenderness ratio  . 
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Fig. 7.10 Frequency band structure versus wave amplitude, for a direction of propagation π/β and 
a wavenumber k =1, a) subsonic mode, s=0,999, b) supersonic mode, s=0.1. Continuous line: 

longitudinal mode - dashed line: shear mode.Green line: 0 5A   - Red line: 0 1.A 
 

Results in Fig.7.10.a and Fig.7.10.b for different values of s demonstrate that the dispersion 

curves rise when increasing the wave amplitude, for both longitudinal and shear modes. These 

results are in very good agreement with those obtained in [17], where the authors demonstrate the 

dependency of the dispersion curves on the wave amplitude in the nonlinear effective medium. 

7.5 Anisotropic behavior of the hexagonal lattice based on the nonlinear effective media 

In order to highlight the rather anisotropic behavior of the re-entrant version of the hexagonal 

lattice as well as the non-dispersive propagation in the linear case, we plot in Fig.7.11 the phase 

velocity for both classical and reentrant configurations; we first consider linear wave propagation, 

obtained from the nonlinear wave Eq. (7.10) by neglecting the nonlinear elastic moduli E2 and E3. 
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Fig. 7.11 Phase velocity of the hexagonal lattice in the linear effective medium for different 

configurations, a) 6
   , b) 0   and c) 6

    . Green line: longitudinal mode – Red line: 

shear mode. 

As illustrated in Fig.7.11, the regular hexagon  6
   behaves as an isotropic lattice for both 

the longitudinal and shear modes. For 0   (corresponding to the square lattice), we observe an 

isotropic behavior in the shear mode and an anisotropic behavior for the longitudinal mode. For 

the re-entrant configuration  6
   , the lattice behaves in an anisotropic manner for both 

modes. The independence of the phase velocity upon the wavenumber and frequency 

demonstrates the non-dispersive nature of the effective Cauchy medium for linear waves. 

a) b) 

c) 



  

253 

 

We next analyze similar results for nonlinear waves; the phase velocity for the nonlinear effective 

medium is represented in Fig.7.12 for both supersonic (s=0.1) and subsonic modes (s=0.8). 

 

 

 

Fig. 7.12 Phase velocity for the hexagonal lattice in the nonlinear effective medium with,a) 

6
   and s=0.1, b) 6

    and s=0.1,  c) 6
   and s=0.8 , d) 6

    and s=0.8. 

Continuous line: k=1, Dotted line: k=4. Green line: longitudinal mode - Red line: shear mode. 

Regardless the value of , the hexagonal lattice shows an anisotropic behavior for the nonlinear 

effective medium, for both longitudinal and shear modes, and for both the supersonic and 

a) 
b) 

c) d) 
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subsonic modes, due to the asymmetric form  , xx yy xxx yyyS S   of the nonlinear strain energy 

density. Differences in the shape of the phase velocity plots when increasing the wavenumber 

from k=1 to k=4 indicates the dispersive behavior of the nonlinear effective medium. 

7.6 Conclusion 

We have analyzed in the present chapter the propagation of nonlinear waves in homogenized 

periodic nonlinear hexagonal networks, considering successively 1D and 2D situations. The main 

originality of this work is the derivation of the nonlinear wave equation from the homogenization 

of the initial repetitive network.  

Wave analysis is performed on the basis of the expression of the identified effective strain energy 

density in the nonlinear regime. The obtained nonlinear second order gradient continuum has two 

propagation modes: an evanescent subsonic mode that disappears after a certain wavenumber and 

a supersonic mode characterized by an increase of the frequency with the wavenumber. For a 

weak nonlinearity, a supersonic mode occurs and the nonlinear dispersion curves lie above the 

linear dispersion curve. For a higher nonlinearity, the wave changes from a supersonic to an 

evanescent subsonic mode and the dispersion curves drops below the linear case and the 

frequency vanishes at certain values of the wavenumber. An important decrease in the frequency 

occurs for both subsonic and supersonic modes when the lattice becomes auxetic (negative 

Poisson’s ratio), and the longitudinal and shear modes become then very close to each other.  

The present methodology shall be extended in future works to analyze nonlinear wave 

propagation phenomena in other types of repetitive networks and microstructured media.  

 

Appendix A: Evaluation of the strain energy density of the hexagonal lattice 

The expression of the internal deformation energy is written as 
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Based on (A.1), the strain energy of the structure can be expanded as follows: 
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Here and in the sequel, indices 1, 2 and 3 refer respectively to the first, second and third beam. 

One denotes separately the contributions to the strain energy associated to each beam: the energy 

in extension writes 
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The contribution to the energy in flexion writes 
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The contribution to the energy in shear writes 
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(A.5) 

 

The three beams have here identical rigidities. 

Using different finite difference schemes and a Bernoulli kinematic assumption (for more details 

see [30]), the previous expressions of W1, W2 and W3 simplify to  
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and 
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As a summary of previous computations, the total energy of the hexagonal unit cell writes 

accordingly as 

1 2 3W W W W  (A.9) 

This entails the energy density by dividing W, in (A.9) by the area of the elementary unit cell, 

that is 22 cos 1 sinS L , viz 

2 1 2 3
2 cos 1 sin

1
/W S W W W

L
 (A.10) 

The transition is next made from the local basis (attached to the beam) to the Cartesian basis: the 

local components 1 2 3 1 2, , , ,i i i i i
j j j j j and 3

i
j  project along the two components

 
 
 

u

v
. After 

development of equation (A.10), one obtains the energy density expressed in Cartesian 

coordinates (for more details, see [30]). In the 1D situation, one obtains after development the 

expression of the energy density given in equation (7.9). 

 

Appendix B: Elastic moduli 1 2,E E  and 3E  in the nonlinear wave equation 

The elastic moduli 1 2,E E  and 3E involved in the nonlinear wave propagation equation (7.10) are 

given respectively versus the lattice microstructural parameters after straightforward 

computations as follows: 
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Appendix C: instability analysis based on Legendre-Hadamard ellipticity condition 

The condition of strong ellipticity will be used for the wave propagation problem; this condition 

implies that the modes of propagation of a dynamical equilibrium equation exist so that zero 

propagation speeds are ruled out. The Hadamard inequality for the strong ellipticity condition is 

equivalent to the following two independent inequalities, which result from similar inequalities 

written in a general context in [44] and specialized here to the 1D case: 
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with    1 2,W F W F  the strain energy for the first and second order continuum respectively, and 

1F    the transformation gradient in the present 1D context.  

As explained in [44], the loss of the strong ellipticity for the first order gradient continuum 

(ignoring microstructural effects) leads to the existence of a critical value cF , such that
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. This condition characterizes the existence of discontinuous strain gradients in 

the equilibrium solutions of elastic solids whose strain energy density is the macroscopic energy 

density  1W F , so discarding microstructural effects described by the second order gradient 

energy density  2W F . For certain forms of  2W F , the strong ellipticity condition is restored 

fort the second order gradient contribution, so that it holds the additional inequality 
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For the specific expression of the strain energy in 1D previously obtained in equation (7.5), 

incorporating the linear, nonlinear and second gradient parts, and for a high nonlinearity (s close 

to 1), the nonlinear parts of the constitutive law become dominant, so that the two previous 

derivatives become: 
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The second derivative in (C.3) is negative for 
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in which case the strong ellipticity condition is not satisfied, despite that the second order 

derivative in (C.4) is always positive; this implies the instability of the propagation of wave and 

the appearance of a vanishing propagation speed   0 0p
g k c     . Previous loss of 

ellipticity condition entails the existence of a specific wave number ck  associated to the 

vanishing frequency, satisfying the condition  ,cF f k , with the function of frequency and 

wave number  ,f k  such that ellipticity is lost for the critical value of the transformation 

gradient cF . 

This accordingly explains the vanishing of subsonic modes beyond certain values of the wave 

number k, observed on Fig.7.4. Note the stabilizing effect of the second order gradient energy 

density when combined with the first order gradient contribution.  

For small values of s (close to 0), the influence of the nonlinearity is weak, and the constitutive 

law of the structures is dictated by the linear parts only; the previous second order derivatives in 

(C.1) become (the nonlinear modulus 2E  is neglected in (C.3): 
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Both quantities in (C.5) and (C.6) are accordingly always positive, which demonstrates the 

propagation of supersonic modes obtained in Fig 7.4 for low values of s (the propagation velocity 

does not vanish). 
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8. Chapter 8: Nonlinear dynamical analysis in 3D textiles 

based on second order gradient homogenized media 

 

Summary 

 

We expose in this chapter an extension of the method presented in the chapter 7 to 3D repetitive 
network, we have chosen the 3D textile plane weave as an application, noted that the proposed 
methodology is quite general and applicable to any 3D repetitive network of beam-like structural 
elements, considering beams undergoing large transformations. Based on the writing of the 
equations of motion of a nonlinear second order gradient continuum, we analyze the nonlinear 
wave propagation in the obtained homogenized nonlinear second order gradient continuum. The 
resulting wave equations are of Boussinesq type, the solution of which being elliptic functions. 
The influence of the degree of nonlinearity on the dispersion relations is analyzed, highlighting 
subsonic and supersonic modes propagating respectively with a velocity lower (resp. higher) than 
the velocity of linear non-dispersive waves. The three modes of propagation (longitudinal, 
vertical and horizontal shear) are compared in terms of dispersion relations, phase and group 
velocity diagrams. The existing anisotropy of wave propagation becomes more marked when the 
degree of linearity increases. The horizontal and vertical shear modes disappear successively 
when increasing the wavenumber.   
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8.1 Extensible energy of plain wave fabric 

Although the methodology exposed in the present work is quite general and can be applied to any 

3D repetitive architectured material, we shall consider being specific plain weave textile pattern, 

pictured in Fig.8.1. 

The general methodology for determining the linear and nonlinear energy density of 3D 

structures is summarized in algorithmic format in the next subsection.  

 

Fig.8.1 Schematic representation of a 2D plain weave fabric (left) and the chosen unit cell (right). 

The evaluation of the energy density for any repetitive beam network is based on the summation 

of the energy contributions associated to each beam within the identified unit cell of the repetitive 

lattice. It relies on the following steps:  

a) For each beam b, one writes the expressions of forces and moments exerted on the beam 

extremities in the nonlinear framework of 3D Bernoulli beams (we neglect the twisting 

moment), considering a large displacement large rotations framework  
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  respectively the beam tensile, shear and 

flexion rigidity, c  the rotation of the central node of the beam, U  a three-dimensional 

displacement field parameterized by a curvilinear coordinate denoted s = (s1,s2,s3), with 

components ( , , )U u v w . 

Where E, A, L and I are respectively the Young modulus, the cross section area, the length and 

the quadratic moment of the considered beam. 

For simplicity reasons, we consider that all beams are initially rectilinear, so that no initial 

deformations or initial curvatures are present, implying that the corresponding kinematics 

variables ,c c  are nil in the expression of the normal force (i.e. neglect the coupling between 

tension and bending). 

The expression of the internal deformation energy (see Appendix A) decomposes into extension, 

flexion and shear contributions expressing as follows;: 
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We presently keep a discrete form of the energy; the transition to the continuous energy density is 

achieved following the steps explained in the Appendix B.  

b) Development of previous expressions using different finite difference schemes and a Bernoulli 

kinematic assumption. 
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with s therein the curvilinear abscissa along the beam. 

c) The transition is next made from the local basis attached to the beam (curvilinear 

coordinates) to the Cartesian global basis; one then obtains the expression of the total 

deformation energy for the unit cell of the network (for more details, see Appendix A and 

chapter 7) 

d) The energy density is finally evaluated by dividing the total energy, elaborated as the sum 

of the energies of all beams within the unit cell in the Cartesian basis, by the area of the 

elementary unit cell that is  2 2 S = 4 a Lcos , considering the more specific plain weave unit cell. 

It accordingly holds in full generality the decomposition of the energy density of the unit cell into 

three contributions reflecting successively the linear part of the first order elasticity, the linear 

part of the second order elasticity and the nonlinear part associated to first order elasticity, viz 
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/ linear SG nonlinearW S W W W  

The constitutive law can then easily be obtained; it includes both classical elasticity and second 

order elasticity, reflected by the existence of the stress and hyperstress tensors computed from the 

homogenized strain energy density: the first order Piola-Kirchhoff stress is given in component 

form as the sum of a linear term and a nonlinear contribution: 

 linear nonlinear L NL

ij ij ij
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j

W W

u
x

  
 

  
     

The second order hyperstress tensor follows similarly as the partial derivative of the second 

gradient part of the energy density versus the strain gradient tensor: 
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where  , , 1,2,3i j k  , and it only includes a linear contribution. This entails overall that the 

nonlinearity in the effective constitutive law is only included in the first order response, 

encapsulated in the first order Cauchy stress-strain relation.  

8.2 Wave propagation in linear and nonlinear 3D homogenized media 

The equations of motion of a second gradient medium along the 
jx directions are written in index 

form based on the previous identification of the Cauchy stress and hyperstress tensors as follows: 

L NL 2
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In previous equations, u i are the components of the acceleration vector, and the effective density 

is given in general by * 1

cell

M

A
  , with M1 the mass of the set of lattice beams, Acell being the area 

of the periodic unit cell. For the considered plain weave textile structure, the effective density is 

computed as: 
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where   is the density of the beam. 

We obtain from Eq. (8.1) three differential equations that describe the propagation of longitudinal 

waves polarized in the direction of the incident wave, and of two shear waves polarized in a 

perpendicular direction, namely vertical shear waves in the same plane and horizontal shear 

waves propagating in a plane perpendicular to the direction of propagation (Fig.8.2). The three 

propagations modes are coupled via the kinematics parameters of the rigidity matrices.  

 

 

Fig.8.2 a) Direction of propagation in 3D space defined by the two angular variables  , b) 
Schematic diagram showing (from left to right) the wave propagation modes: the longitudinal 

mode, the shear vertical mode and the horizontal shear mode. 

In the Eq. (8.1), the first term reflecting the sole effect of Cauchy type elasticity describes a non-

dispersive (so called quasi-static) behavior of the homogenized (Cauchy) medium. The second 

term describes the nonlinear physical and geometrical effect; it affects the dispersive behavior of 

the medium. The introduction of second gradient terms in Eq. (8.1) brings an essential change in 

the behavior of the medium from non-dispersive to dispersive. 

a) 

b) 
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8.2.1 Wave propagation in the linear effective medium 

We start our dynamical analysis by the linear case, so that one neglects the nonlinear contribution 

of Cauchy elasticity in Eq. (8.1), viz 0NL

ij  . 

In order to compute the dispersion relation, phase and group velocities from the dynamical 

equation of motion, one adopts for the solution of the dynamical equilibrium Eq. (8.1) the form of 

a generalized plane wave. For a harmonic wave propagating along an axis in an infinite planar 

medium, the generalized displacement field with components ( , , )q U V W  at a point r  is 

assumed in the following form  

 
, ( , , )

w ti
q Q e Q U V W


 

kr

 
(8.3) 

where Q  is the vector of the wave amplitude, k the wave vector and w the frequency. 

Substituting the generalized plane wave Eq. (8.3) in the dynamical equilibrium equations delivers 

the wave equation motion on the following algebraic equation: 

  , 1,[  ( ) 03 ]2,

U

D Vk k k

W



 
    
 
  

 
(8.4) 

Nontrivial solutions of the dynamic equation exist if the determinant  , 1, 2, 3k k k  of Eq. (8.4) 

vanishes; the positive roots characterize the dispersion relations representing plane waves 

propagation within the structures. In the following the units of wavenumber is m-1. We show in 

Fig.8.3 the dispersion relation, phase and group velocities in the longitudinal direction (e1 

direction). 
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Fig.8.3 a) Dispersion relation, b) phase velocity, c) group velocity, in the longitudinal direction 
(e1). The red line corresponds to the longitudinal mode; the green line corresponds to vertical 

shear while the blue one corresponds to horizontal shear mode.  

One can observe in Fig.8.3a that frequency increases nonlinearly with the wavenumber k, thus 

demonstrating dispersive effects for the second order effective medium. This feature is further 

attested by the difference between the phase and group velocities (Fig.8.3b and Fig.8.3c). 

Without the effect of second order gradient continuum, the obtained effective medium is non-

dispersive; due to the proportionality of the frequency to the wavenumber k in this situation, the 

phase and group velocities become equal. 

Fig.8.4 shows the evolution of the frequency and the phase velocity versus the wavenumber in the 

two planes (e1, e2) and (e1, e3). As expected, the frequency and the phase velocity increase with 

the wavenumber. It has been shown recently that the plain weave textile shows very good in-

plane mechanical properties, but suffers from some weakness in the out-of-plane direction; this 

behavior can be clearly observed from the weak values of the horizontal shear mode for waves 

propagating in the (e1,e2) plane (Fig.8.4a and Fig.8.4b). 

The dispersion relation for the textile with a direction of propagation in the plane (e1, e3) is 

pictured in Fig.8.4c and Fig.8.4d. One can observe that the horizontal shear mode is higher 

compared to the longitudinal and vertical shear modes. 
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Fig.8.4 Dispersion relation and b) phase velocity for the textile plain weave structure for wave 
propagation in (e1,e2) plane,  c) Dispersion relation and d) Phase velocity for wave propagation 
in the plane (e1,e3). The red surface; longitudinal mode; green surface: vertical shear mode; blue 

surface: horizontal shear mode. 

8.2.2   Wave motion in the nonlinear 3D homogenized medium 

The equations of motion derived from Eq. (8.1) are the equations of a nonlinear second order 

gradient medium(such that 0NL

ij  ), representing a 3D Boussinesq-type equation, which differs 
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from the classical elasticity theory by the additional terms corresponding to the second order 

gradient continuum and the nonlinearity contribution of the beam energy at large strains. After 

insertion of the effective constitutive law for the stress and hyperstress tensors, the equation of 

motion (1) for the 1D situation representative of a microstructured beam deforming along its axis 

in tension and compression only takes the form  

2 2 4 2
*

1 2 32 2 4 2
 

u u u u u
E E E

x x x x t
    

  
      

(8.5) 

with x the axial coordinate, and the homogenized moduli 1 2 3, ,E E E  therein given versus the 

microstructural parameters of the unit cell by 
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with ,a lk k the flexural rigidities of the beams with length a and L respectively (see Fig.8.1), and

,a lK K the tensile rigidities of the beams with length a and L respectively. Conversely, neglecting 

these terms delivers the conventional 3D Cauchy medium equations. Due to nonlinearity terms in 

(8.5), the harmonic plane Ansatz is not a solution of this nonlinear wave equation, but one shall 

instead resort to elliptic functions as shown in the sequel.  

The extension of the 1D equation (8.5) to 3D networks exhibiting deformation modes in different 

directions relies on the computation of the energy density by the continualization techniques 

exposed in previous section 2. The three differential equations of motion are similar in form to 

Eq. (8.5), and they show couplings between longitudinal waves, horizontal shear waves and 

vertical shear waves, through the kinematics parameters of the rigidity matrices. 

An explicit analytical stationary solution of the governing nonlinear wave Eq.(8.5) is obtained, 

using the change of variable 1 2 3   z k x k y k w t  , where   is the angular frequency, k1, 

k2 and k3 are the wavenumber in the x, y, z directions respectively (explain in detail in the 

chapter 7).  

The general solution of the dynamical equilibrium equation (8.5) can be written as follows 
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where s is the universal constant which describes the degree of nonlinearity ( 0 1s   ), sn(.) the 

elliptic Jacobin sine, K(s) and E(s) are the complete elliptic integrals of the first and second kind 

respectively, A, B and C the amplitudes of the waves in the x, y, z directions respectively.  

Compression solitary waves can exist if  ,   , 0A B C  , whereas for  ,   , 0A B C  , dilatation 

(longitudinal or tension) solitary waves will be realized. 

Nontrivial solution of the dynamic equation exists if only the determinant  , 1, 2, 3w k k k  of the 

Eq. (8.1) is zero; the positive roots characterize the dispersion relations of longitudinal, vertical 

and horizontal shear waves. 

The methodology exposed so far for solving the nonlinear wave Eq. (8.5) is quite general; it will 

be applied to be more specific to the plain wave textile pattern in the sequel.   

8.2.2.1 Dispersion relations and group and phase velocities evolutions for plain weave 

The dispersion relations, phase and group velocities are evaluated in the 3 directions of the 

Cartesian basis  1 2 3, ,e e e  in order to show the influence of the universal constant s (degree of 

nonlinearity) on the three propagation modes (L: longitudinal mode, SV: vertical shear mode, SH: 

horizontal shear mode). 

We plot in Fig.8.5 the dispersion relation versus the wavenumber k for different values of the 

universal constant and for the three propagation modes (L, SV, SH). 
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Fig.8.5 Dispersion relation for different values of s along the   direction. Longitudinal (red), 
Vertical Shear (green) and Horizontal Shear (blue) modes. Solid lines: s=0.95, dotted lines: 

s=0.999, dashed lines: s=0.1, bold lines: s=0.4.Black line: dispersion relation in the linear case. 

Two sets of modes can be observed (Fig.8.5): an evanescent subsonic modes for higher 

nonlinearity for which the wave velocity is lower than that in the linear case (corresponding to a 

nil value of the s parameter), and supersonic modes for weak nonlinearity, with waves 

propagating at higher velocity compared to the linear case. Inspection of the deformation energy 

in the present large strains regime (previous equation in step d) shows that the energy for wave 

propagation in the longitudinal direction is greater than for the two other propagation modes, thus 

resulting in a higher dispersion relation and phase velocity for the longitudinal mode (for both 

cases subsonic and supersonic). As for the linear case, one can observe from the dispersion 

relation in Fig.8.5 a higher value of the longitudinal and vertical shear modes (and a lower value 

for horizontal shear). 

The same results are obtained for wave propagation along 2e  direction due to the geometrical 

symmetry of the studied textile. Similar shapes as in Fig.8.5 are obtained, in case of wave 

propagation in the vertical 3e  direction, but the longitudinal wave shows the lowest dispersion 

relation. 
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Fig.8.6 Phase velocity versus wavenumber k for different values of s along the   direction. 
Longitudinal (red), Vertical Shear (green) and Horizontal Shear (blue) modes. Solid lines: s=0.95, 

dotted lines: s=0.999, dashed lines: s=0.1, bold lines: s=0.4. 

It can be seen from Fig.8.6 that for weak nonlinearity, the phase velocity increases, corresponding 

to a supersonic mode; for each propagation mode (L, SV, SH), the phase velocity exceeds the 

velocity obtained for the linear case, while for a higher nonlinearity, the wave passes from the 

supersonic to the subsonic mode and the phase velocity decreases, vanishing for specific values 

of the wavenumber k. For the same reason as discussed before, waves propagate with the highest 

phase velocity for the longitudinal mode.Fig.8.6 also shows that SH and SV modes vanish early 

compared to the longitudinal mode, itself vanishing for a quite high value of the wavenumber k. 

We shall note that the same results are obtained in the 1e  direction, while in 3e  direction, a 

permutation between the mode occurs, and the highest phase velocity occurs for the SH mode. 

We evaluate in the sequel the group velocity gC  versus the wavenumber k, in order to relate the 

dispersion relations obtained in Fig.8.5 to the flow of energy within the effective medium. One 

can observe from Fig.8.7 that the group velocity tends to zero when the wave angular frequency 

of all evanescent subsonic modes approaches its maximum value. The vanishing of mode occurs 

when gC  , which means that the total energy of the medium is completely dissipated and no 

flow of energy occurs any more. In the supersonic mode, as the wavenumber k increases, the 
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accumulated energy increases in the medium (the group velocity increases), which entails an 

increase in the dispersion relation. Higher values of the group velocity in the longitudinal mode 

lead to higher energy flow (this constitutes a definition of the group velocity) in the medium and 

then to higher dispersion relations. 

 

Fig.8.7 Group velocity versus wavenumber k for different values of s along the   direction. 
Longitudinal (red), Vertical Shear (green) and Horizontal Shear (blue) modes. Solid lines: s=0.95, 

dotted lines: s=0.999, dashed lines: s=0.1, bold lines: s=0.4. 

In the sequel, the dispersion relation, the phase and group velocities of the investigated 

continuum are pictured in Fig.8.8 for in-plane propagation in planes  1 2,e e  and  1 3,e e  to 

confirm the results obtained previously. 
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Fig.8.8 Dispersion relation, a) supersonic modes for two values of s=0.1 and s=0.4, b) evanescent 
modes for s=0.95 and s=0.999, for wave propagation in the   plane, c) supersonic modes for two 
values of s=0.1 and s=0.4, d)evanescent modes for s=0.95 and s=0.999 for wave propagation in 

the  1 3,e e  plane. 

Fig.8.8 reveals that the studied continuum presents two sets of dispersion relations: dispersive 

modes described by the subsonic modes vanishing beyond a specific wavenumber for the three 

modes of propagation (L, SV, SH) (Fig.8.8b and Fig.8.8d), and supersonic modes in which the 

frequency increase by the increasing of the wavenumber (Fig.8.8a and Fig.8.8c). 
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It can be observed from Fig.8.8 that the longitudinal mode for both cases (supersonic and 

subsonic) moves from high values for the in-plane propagation  1 2,e e to lower values for 

propagation in the  1 3,e e  plane. This result supports previous discussion, based on the very good 

in-plane mechanical properties of the plain weave textile, but with weak out-of-plane properties. 

The same results are obtained for propagation in  1 2,e e plane, due to the geometrical symmetry 

of the investigated textile structure. 

It is further instructive to compare different effective continua in terms of the dispersion relations. 

In comparison with the present second order gradient continuum, the classical continuum is not 

dispersive since the frequency is directly proportional to the wavenumber k. For the nonlinear 

micropolar or Cauchy medium, only the supersonic mode occurs, and the dispersion relation lies 

above the linear case. When the effect of nonlinearity is neglected (restricting to small strain 

energy), the solution of Eq.(8.1) consists of planar harmonic waves, and three non-dispersive 

modes propagate within the material with a frequency increasing with the wavenumber (Fig 8.3, 

8.4). 

We show in Fig.8.9 the evolution of the phase velocity for a wave propagation in both  1 2,e e  

and  1 3,e e planes and for the three propagations modes (L, SV, SH). 
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Fig.8.9 Phase velocity versus wavenumber, with different values of s, a) supersonic mode for 
s=0.1 and s=0.4 with wave propagate in  plane, b) subsonic mode for s=0.95 and s=0.999 with 

wave propagation in  plane, c) supersonic mode for s=0.1 and s=0.4 with wave propagation in the 

 1 3,e e plane, d) subsonic mode for s=0.95 and s=0.999 with wave propagation in  1 2,e e plane. 

The shape of the phase velocity in Fig.8.9 reflects the dispersion relation obtained in Fig.8.8. Two 

sets of modes are obtained: supersonic modes (Fig.8.9a and Fig.8.9c) and evanescent subsonic 

modes (Fig.8.9b and Fig.8.9d respectively), corresponding respectively to low and high values of 

the nonlinearity parameter. It clearly appears that the subsonic modes vanish beyond certain 

values of the wave numbers 1 2k ,k  in the  1 2,e e plane, and for 1 3k ,k  in  1 3,e e  plane for higher 



  

280 

 

nonlinearities, while the frequency of the supersonic modes increase due to the accumulation of 

energy with the wavenumber. The difference between the phase velocity considering the different 

propagation cases and the transition of the phase velocity in the longitudinal mode from higher 

values to lower values are aspects that have been discussed before. 

The evolutions of the group velocity versus the wavenumber in the two planes of propagation are 

investigated in Figs (8.10 and 8.11). We shall note that the group velocity depends on the phase 

velocity, so for each propagation modes we have s sets of group velocity. 

The passage from positive to negative values of the group velocity in Fig.8.10-8.11 b,d, reflects 

the evolution of subsonic mode at which the frequency achieves its maximum value and then 

disappears when gC  , traducing the disappearance of the mode (no more energy can flow).   

In the other cases shown in Fig.8.10-8.11 a,c, the increase of the group velocity in comparison to 

the linear situation describes the supersonic modes. 
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Fig. 8.10 Group velocity versus wavenumber, for different values of s, in plane propagation, a) 

supersonic modes for
1gc

k





 , b)  subsonic modes for 
1gc

k





c) supersonic modes for 

2gc
k





 , d)  subsonic modes for 
2gc

k





 

 



  

282 

 

 

Fig. 8.11 Group velocity versus wavenumber, for different values of s, in plane propagation  , a) 

supersonic modes for
1gc

k





 , b)  subsonic modes for 
1gc

k





c) supersonic modes for 

3gc
k





 , d)  subsonic modes for 
3gc

k





 

In order to highlight the general dynamical behavior of the plain weave fabric, we consider an 

incident wave in the 3D Cartesian basis with direction of propagation ,
4 4

    , 

 1 0, 2 0, 3 0k k k   . The dispersion relation, in Fig. 8.12, shows the highest values of the SH 

mode in comparison to the two others modes. In certain situation, a disappearance of these two 

latter modes occurs, due to the lower shear behavior of plain weave textile in the out-of-plane 

direction. 
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Fig.8.12 a) Dispersion relation, b) phase velocity, c) group velocity, for different values of s in 
3D space propagation. 

8.3Anisotropic and dispersive behavior of the second gradient medium for 3D plain weave 

The analysis of anisotropy and dispersive effects for the 3D textile is first done in the linear case 

regardless of the material and geometrical nonlinear aspects. We plot in Fig.8.13 the phase 

velocity for two values of the wavenumber, k=1(solid line) and k=3 (dashed line). 
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Fig. 8.13 Phase velocity in a 3D linear textile versus   with 2
   , for a) L mode, b) SV 

mode, c) SH mode. The continuous line corresponds to k=1, the dashed line to k=3. 

The irregular form of the shape of the phase velocity in the three modes shown in Fig.8.13 

highlights the anisotropic behavior of the 3D textile. The increase of wavenumber k entails the 

increase of the phase velocity shown in Fig.8.13, leading to the dispersive behavior exhibited by 

the second order gradient continuum. Regardless the value of the angle  , the same responses can 

also be observed. 

In order to highlight the non-isotropic behavior of the nonlinear 3D textile configurations, their 

dispersive characteristics as well as the influence of the degree of nonlinearity s on these features, 

we plot in Fig. 8.14, Fig.8.15 and Fig.8.16 the phase velocity (propagation in the x-y plane) for 

low, medium and high values of the wavenumber: k=1, k=1.5 and k=3. 
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Fig. 8.14 Phase velocity versus  with 2
   for k=1 for four values of degree of nonlinearity, 

a) s=0.999, b) s=0.95, c) s=0.4  and d) s=0.1. Red curve: longitudinal mode, green curve: vertical 
shear mode, Blue curve: horizontal shear mode. 

One can observe from Fig.8.14 that for small values of k, the three propagation modes (L, SV and 

SH) exist whatever the values of the degree of nonlinearity s (for weak or higher nonlinearity). 

We can relate the existence of the 3 modes (at this value of k=1) to Fig.8.5 showing the presence 

of the dispersion relation for the four values of s (when k=1). The irregular shape of the phase 

velocity for the four chosen values of s demonstrates the anisotropic behavior of the medium as to 

wave propagation aspects. A significant change occurs in the degree of anisotropy for the 

longitudinal and shears modes when passing from weak to high nonlinearity. 
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Fig. 8.15 Phase velocity versus  with 2
   for k=1.5 lying at the interface between subsonic 

and supersonic modes for 4 values of the degree of nonlinearity, a) s=0.999, b) s=0.95, c) s=0.4 
and d) s=0.1. 

The shape change of the phase velocity when passing from k=1 to k=1.5 involve the dispersive 

behavior for the second gradient medium. For k=1.5 (Fig. 8.15), we observe the disappearance of 

the horizontal shear mode for the higher nonlinearity case (s=0,999 and s=0.995), whereas the 

three modes do coexist for the weak nonlinearity case; this behavior also appears from inspection 

of Fig.8.5.  
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Fig. 8.16 Phase velocity plots versus  with 2
   for k=3 in the supersonic mode for 4 values 

of the degree of nonlinearity, a) s=0.999, b) s=0.95, c) s=0.4 and d) s=0.1. 

As expected, as the wavenumber increases (k=3), another propagation mode disappears, namely 

the SV modes (Fig.8.16). The dispersive behavior of the medium leads to changes in the shape 

and values of the phase velocity plots. One can also note that all 3 propagation modes disappear 

as the wave number further increases for a high nonlinearity (s=0.999, s =0.95), whereas they do 

exist for a weak nonlinearity and for any wavenumber. 

One shall note that the anisotropic behavior for the 3D textile doesn't change with the 

wavenumber k, but this anisotropic is less significant in the situation of weak nonlinearity. 
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The relative shapes of the iso-frequency contours for the textile (in plane propagation  1 2,e e ) for 

low and high nonlinearity situations and for low and high wave amplitudes are compared in 

Fig.8.17. 

 

 

Fig.8.17 Dispersion iso-frequency contour for the textile structure for supersonic and subsonic 
modes, a) low amplitude wave, b) high amplitude wave. 

We can conclude that moving from a weak to high nonlinearity and from low to high wave 

amplitudes, the degree of anti-symmetry of the textile increases, as shown by the irregular shape 

of the iso-frequency plots in Fig.8.17. 
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It has to be noted that the validity of previous analyses is limited to low frequency elastic wave 

propagation (corresponding to long wavelengths),for which one is entitled to use an equivalent 

homogeneous model to describe the actual heterogeneous medium and study wave propagation 

within the material. A nonlinear second gradient homogenized continuum has been constructed 

by homogenization of the initial repetitive network material, which provides suitable results when 

the size of the heterogeneities is lower enough in comparison to the size of the representative 

volume element (RVE). 

8.4 Conclusion 

The general objective of this chapter is the analysis of wave propagation phenomena within 

architectured media, relying on an effective substitution continuum obtained by homogenization. 

The proposed methodology is quite general and applicable to any 3D repetitive network of beam-

like structural elements, considering beams within the network undergoing large displacements 

and large rotations. Based on the writing of the equations of motion, we have analyzed nonlinear 

wave propagation in the obtained homogenized nonlinear second order gradient continuum. The 

resulting wave equations are of Boussinesq type, with solution identified as elliptic functions. 

The influence of the degree of nonlinearity on the dispersion relations has been analyzed, 

highlighting subsonic and supersonic modes propagating respectively with a velocity lower (resp. 

higher) than the velocity of linear non-dispersive waves. Subsonic and supersonic modes 

correspond respectively to regimes of high and low nonlinearity characterized by the so-called 

universal constant. The wave propagation analysis has been done in a systematic manner, leading 

to a rich sets of results providing a comparison between longitudinal and shear waves.  

Important results of these analyses include a more marked anisotropy when the degree of 

nonlinearity increases and the disappearance of the horizontal and vertical shear modes when the 

wavenumber increases.  

Although the considered second order substitution medium proves convenient to simplify the 

initial microstructure, it certainly brings simplifications in wave propagation analysis, so that the 

present study shall be complemented in future works by fully resolved finite element 

computations of wave propagation over the whole lattice within the identified unit cell.  

Wave analysis in repetitive network materials prone to geometrical nonlinearities shall be given 

special interest in future developments relying on the identification of hyperelastic models based 

on adequate homogenization schemes.  
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Appendix A: Expressions of the deformation energy of each beam in large strains 

12

1
extension flexion shear

i

W W W W


  
i i i

 (A.1) 

such as 

0flexionW  

       

 

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1
1 1 1 1

1 1
1

2
2 2 2

1 1 1 1 1 1 1 1 1 3 6 11

2 2 2

1 1

2 2

1 1

2 2

       



       
   

 


                

  

i i i i i i i i

i i

j j j j j j j j
k k k k k k k k

j j
k k

extension l extension extension extension

extension la

W k u u u u v v w w W W W
L

W k u u u
a

     

       

1 1 1

1 1 1 1

1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1

2
2 2 2

2 2 2 2 2 2 12

2 2 2

4 4 4 4 4 4 4 4 4

1 1

2 2

  

   

     
  

       
   

           

             

i i i i i i

i i i i i i i i

j j j j j j
k k k k k k

j j j j j j j j
k k k k k k k k

extension

extension la

u v v w w W

W k u u u u v v w w
a

       

 

1 1 1 1 1 1 1 1

1 1 1

1 1 1 1
1 1 1 1

1 1
1 1

2

10

2
2 2 2

5 5 5 5 5 5 5 5 5 9

7 7 7 7 7

1 1

2 2

1 1

2 2

       

   

   
   

 
 



              

   

i i i i i i i i

i i i i

j j j j j j j j
k k k k k k k k

j j j j
k k k k

extension

extension la extension

extension la

W

W k u u u u v v w w W
a

W k u u u u
a

     1 1 1 1 1

1 1
1 1

2
2 2 2

7 7 7 7 8
   
 

 

          
i i i i

j j j j
k k k k

extensionv v w w W

 

      

     

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 1 1 1
1 1 1

2

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

1 1

2 2 2

1 1

2 2 2

i i i i i i i i

i i i i i i

j j j j j j j j
k k k k k k k k

j j j j j j
k k k k k k

cL z z z z

shear

cL y y y

L
k v v u u

W

L
k w w u u

   

  

       

     

       
   

     
  

           

       

      

1 1

1 1 1 1

1 1
1

1 1 1 1 1 1 1 1
1 1 1 1

1

3

62

111

2

2 2 2 2 2 2 2 2

2

2 2

1 1

2 2 2

1

2

i i

i i i i i i i i

i

j j
k k

j j j j j j j j
k k k k k k k k

j
k

shear

shear

sheary

ca z z z z

shear

ca

W

W

W

a
k v v u u

W

k w w



   

 

   

 


       
   



 
  
   

          

           

       1 1 1 1

1 1 1 1 1 1 1
1 1 1 1

122

2 2 2 2 2 2

1

2 2
i i i i i i i

j j j j j j j
k k k k k k k

shear

y y y y

W

a
u u      

      
   

 
 
   

             

      

     

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 1 1 1 1
1 1 1 1

2

4 4 4 4 4 4 4 4

4

4 4 4 4 4 4 4 4

1 1

2 2 2

1 1

2 2 2

   

   

       
   

      
   

           

      

i i i i i i i i

i i i i i i i

j j j j j j j j
k k k k k k k k

j j j j j j j
k k k k k k k k

ca z z z z

shear

ca y y y y

a
k v v u u

W

a
k w w u u

   

    1

102



 
 
   

   
      

i

j

shearW  



  

291 

 

      

     

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1
1 1 1 1

2

5 5 5 4 5 4 5 5

5

5 5 5 5 5 4 5 5

1 1

2 2 2

1 1

2 2 2

       

      

   
   

   
   

           

      

i i i i i i i i

i i i i i i i

j j j j j j j j
k k k k k k k k

j j j j j j j j
k k k k k k k k

ca z z z z

shear

ca y y y y

a
k v v u u

W

a
k w w u u

   

    

      

   

1

1 1 1 1 1 1 1 1

1 1 1 1

1

1 1 1 1
1 1 1 1

1 1
1 1

92

2

7 7 7 7 7 4 7 7

7

7 7 7 7

1 1

2 2 2

1

2 2



       

   

   
   

 
 

 
 
   

   
      

           

   

i

i i i i i i i i

i i i i

j j j j j j j j
k k k k k k k k

j j j j
k k k k

shear

ca z z z z

shear

ca y y

W

a
k v v u u

W

a
k w w

   

    1 1 1 1

1 1
1 1

82

7 7 7 7

1

2
   
 

 

 
 
   

           
i i i i

j j j j
k k k k

shear

y y

W

u u  

 

Using a finite difference scheme, one can next write 
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Appendix B: Transition from curvilinear to Cartesian coordinates 

 

It holds for each beam the kinematic relations 

1 3 6 11

1 3 6 11

1 3 6 11

u u u u w

v v v v v

w w w w u

   
    
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This entails the first and second derivatives 
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with  1..12i  the index of the beam, 1,2,3N  indicates the space dimension; in the present 

3D context so N 3 , 
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And  
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The same expansion holds for 
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9. Chapter 9: Nonlinear wave propagation analysis in 

hyperelastic 1D continuum materials constructed by 

homogenization 

 

Summary 

 

We analyze in this chapter the acoustic properties of microstructured beams including a repetitive 
network material undergoing configuration changes leading to geometrical nonlinearities. The 
effective constitutive law is evaluated successively as an effective first and second order 
nonlinear grade 1D continuum, based on a strain driven incremental scheme written over the 
reference unit cell, taking into account the changes of the lattice geometry. The dynamical 
equations of motion are next written, leading to specific dispersion relations. The inviscid 
Burgers equation is obtained as a specific wave propagation equation for the first order effective 
continuum, while the Boussinesq equations obtained when considering a strain gradient effective 
continuum. The presence of second gradient order term in the nonlinear equation of motion leads 
to the presence of two different modes: an evanescent subsonic mode for high nonlinearity that 
vanishes after certain values of wave number k, and a supersonic mode in case of a weak 
nonlinearity. This methodology is applied to different microstructures, including the regular and 
reentrant hexagon, and plain weave.  
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9.1 Overview 

The analysis of wave propagation in hyperelastic media depends initially on the type of 

constitutive law. When considering microstructured solids, the effective constitutive law written 

in the large strains range reflects the impact of the microstructure, and can be obtained thanks to 

suitable homogenization schemes.  

In recent years, different materials have been analyzed in the context of anisotropic finite-strain 

elasticity. These include composites, foam-like structures, 2D and 3D textile preforms and 

synthetic solids. Cellular solids, by contrast to compact materials, are two or three dimensional 

bodies divided into cells, the walls of which are made of a solid material capable of undertaking 

large elastic deformations without plastic failure or fracture. There are numerous examples of 

such network structures, including repetitive large scale deployable structures like antenna, 3D 

textiles, cellular materials and especially auxetic structures having excellent damping and impact 

absorption capabilities.  

We shall employ the discrete asymptotic homogenization technique [1-5] which is perfectly 

suited to the discrete architecture of different types of networks, and which is extended to the 

nonlinear range in the present work. Due to the very small bending rigidity of the beams building 

such networks, it is reasonable to assume that the nonlinear response is essentially due to the 

change of the network configuration (the orientation and length of the beams change with 

ongoing deformation), thus we shall mostly account for geometrical nonlinearities at the 

microlevel. The geometrical nonlinear behavior of cellular structures and network materials was 

extensively studied by [6, 7], considering the example of foams, using simplified pin jointed 

model for which the bending contribution of the skeleton struts was neglected. Wang and Cuitino 

[8] proposed another approach where axial, bending and twisting deformations at local level were 

considered. One study based on an homogenization technique was given in [9]. Linear effective 

models to analyze structures on the basis of a beam model were presented in [10, 11], in which 

stretching and simultaneous bending occur. More recently, Janus-Michalska [12] extended this 

linear model to construct the stress-strain relation and strain energy function for the hyperelastic 

cellular material with arbitrary symmetry. An alternative approach was proposed by Vigliotti et 

al. [13] using a computational homogenization to derive a nonlinear constitutive model for lattice 

materials.  
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A novel procedure for predicting the effective nonlinear elastic responses of repetitive lattices in 

the framework of the mechanics of micropolar continua through a combined linear and nonlinear 

discrete homogenization scheme shall be presented briefly (the reader is refereed to [14, 15] for 

more details). The nonlinear stress-strain response will be computed incrementally for 2D 

structures subjected to different loading cases (uniaxial, biaxial, simple shear), taking into 

consideration changes of the structure geometry. The predictive nature of the employed 

homogenization technique allows the identification of a strain energy density for hyperelastic 

models of the structure at the mesoscopic level. The identified hyperelastic constitutive models 

will then be involved in the analysis of wave propagation in repetitive network materials 

represented by the constructed effective substitution medium.  

A lot of attention has been paid to the propagation of elastic of elastic waves in linear framework 

[16-19], whereas a few authors analyzed so far wave propagation in nonlinear media. The 

propagation of elastic waves in nonlinear composite materials is accompanied by a number of 

new phenomena such as amplitude dependent dispersion relations, or the occurrence of subsonic 

and supersonic modes that can never be observed in homogeneous linear media [20-23]. These 

features entail that the solutions of the wave propagation equations are more complex compared 

to the linear case, and they depend on the form of the dynamical equilibrium equations derived 

from the constitutive law. For example, the solitary surface waves discovered by John Scott 

Russell [24] in 1834 have been developed as solution of the Boussinesq equation [25], the 

Korteweg & de Vries (KdV) equation [27], the Benjamin-Bona-Mahony (BBM) equation [26], 

the Camassa-Holm (CH) equation [28]. The shock displacement wave can be used for nonlinear 

dynamical problems in the form of Burger’s equationν as an alternative, the perturbation method 

can be used for certain kinds of constitutive laws [29]. 

The study of nonlinear elastic waves has been limited so far in the literature to classical Cauchy-

type elasticity theory, which relies on the sole first order displacement gradient. Models based on 

Cauchy-type theory do however not give realistic predictions of the medium properties, such as 

the dispersion relation, since the Cauchy effective medium lacks internal length parameters. The 

Cauchy medium is non-dispersive, which means that waves propagate independently of the 

wavenumber. It has however been proven by experiments that most waves are dispersive, that is, 

each wavenumber travels with a different phase velocity [30-31]. 
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The outline of this chapter is as follows: section 2 is devoted to the description of the discrete 

homogenization method in a large strains context, at both microscopic and mesoscopic scales. 

The homogenization technique and the expression of forces and moments in the framework of 2D 

Euler-Bernoulli beams are exposed. The algorithm used for the incremental procedure for the 

update of variables at the lattice level accounting for the evolution of the network geometry will 

be described. In section 3, virtual simulations based on the developed discrete homogenization 

technique will be used for the calibration of a strain energy density of a hyperelastic model for 

three different lattices, leading to two different forms of the strain energy density function. Wave 

propagation analysis will be done in section 4, based on the identified strain energy hyperelastic 

functions. In section we study the effect of the linear second gradient terms on the dynamical 

behavior of the hyperelastic medium. Dispersive analysis of the three hyperelastic models is 

presented in section 6. We conclude by a summary of the work and perspectives of developments 

in section 7.  

9.2 Incremental scheme for the computation of the effective hyperelastic effective models 

The adopted computational method of the effective nonlinear response of lattice materials relies 

on a two steps methodology: the ground state effective moduli are first evaluated in the initial 

small strains regime, followed by an the evaluation of the nonlinear subsequent response, based 

on the update of the lattice configuration (geometry) as it is subjected to an increased kinematic 

loading imposed over the identified unit cell.   

The discrete asymptotic technique (abbreviated in the sequel as DH) requires the development of 

all kinematic and static variables as Taylor series; the beam length bl and width bt  ,the kinematic 

variables, namely the displacement nu  and the rotation at the lattices nodes n  are expanded 

versus the small parameter  , defined as the ratio of a characteristic length of the basic cell to a 

characteristic length of the lattice structure. Those expansions are then inserted into the 

equilibrium equation, conveniently expressed in weak form. The balance equation of the nodes, 

forces-displacement relations and the moment-rotation relations of the beams are developed by 

inserting those series expansions and by using Taylor’s expansion of finite differences.  

The normal and transverse forces and the moment at the beam extremities are successively 

expressed versus the kinematical nodal variables as  
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 (9.1) 

with zI the quadratic moment of the beam, b b, e e  respectively the unit director and transverse 

unit vectors for each beam. The truss under consideration is made of beams and is completely 

defined by the initial positions of the nodes and their connectivity. Each beam links two nodes 

and is oriented so that it has an origin node O(b) , an end node E(b) , and a central node C(b) , Fig. 

9.1. The shift parameter   traduces the fact that the end node belongs to the next neighbouring 

cell. Each extremity node has two displacements in the two principal directions and one rotation 

in plane  i, j , as pictured in Fig.9.1 together with the efforts and moments. 

The homogenization is the periodic network is done towards a Cauchy continuum at the 

mesoscopic level, whereby the nodal rotations are condensed and finally expressed versus the 

deformation applied over the unit cell, using the equilibrium equations. Details related to the 

main elements of the asymptotic homogenisation technique considering the micropolar 

framework can be found in [1, 5]. 
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Fig.9.1 Kinematic and static parameters of a lattice beam 

 

The general form of the constitutive equations of linear Cauchy elasticity relates the Cauchy 

stress tensor to the strain tensor, written in matrix format as follows 

   s   ı K ε  (9.2) 

This form of the continuum constitutive law can presently be identified from the expressions of 

the homogenised stress tensor 

 s

i1
1 i
g

 
 

 


K ε

Rı S  
(9.3) 

The corresponding expression of the stress vector is 

      
R R

i i b b 3 b b ib b b b b ib
1 s 1 s 1 1 t1

b B b B

E E N T  

 

             S S U e e U e e e e  (9.4) 

with b
1N , b

t1T  respectively, the first and second order terms according the power of  homogenized 

continuous functions.  

9.2.1 Large strains effective response of network materials 

We next expose the extension of the previous DH method to the nonlinear regime, in order to 

account for the large changes of configuration of the networks. The basic idea is to update the 

lattice geometry at each new increment of the external load applied to the unit cell boundary, 

from which a linearized elastic computation will be done over the same load increment. Since 

details of the method have been presented in [14, 15], we only recall the main thrust of the 
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method in the present contribution. The main steps of the DH method leading to the nonlinear 

response of the homogenized continuum are written in algorithmic format in Box 1. Note that 

although the main source of nonlinearities at microscopic level is the modification of the network 

geometry, the obtained constitutive law is a nonlinear relation between stress and strain.  

A dedicated code has been constructed from the proposed algorithm to solve for the nodal 

kinematical unknowns (displacements) of each beam within the repetitive unit cell. The code is 

written in symbolic language uses an input file including the initial reference unit cell topology 

and mechanical properties, and delivers as an output the homogenized mechanical response in 

both the linear and nonlinear regimes (the classical moduli). 

 

For each kinematic increments
 k
GnE ; 

For each iteration k inside the increment loop; 

1. Compute the effective mechanical properties in the linear regime based on the linear 

discrete homogenization framework [1, 5]. 

2. Define the incrementally imposed strain applied over the RUC. 

3. Compute the incremental Second Piola-Kirchhoff stress tensor [14, 15] 

   k kS
n T,n GnK :  S E

 4. Check convergence at iteration k; if it is attained, go to next step. 

5. Compute the incremental deformation gradient and its Jacobean. 

6. Update Cauchy stress at increment ( n 1 )  by a push forward of its Lagrangian 

counterpart from n  to n 1  

          
 ( k ) kn n

k k k1 (k) T 1 (k) T 1 T
n 1 n n n n n n n n n n n n nJ . . J . . J . .  




     

ı ı

ı F S S F F S F F S F  

7. Update the network configuration from n  to n 1 . 

8. Repeat steps 1-7 up to the maximum applied strain and curvature over the unit cell.  

Box.1. Algorithm for the nonlinear discrete homogenization of repetitive lattices. 
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9.3 Identification of a hyperelastic strain energy density for the hexagonal lattice, the re-

entrant lattice and plain weave textile 

Since the DH method is predictive, it can be conceived as a virtual testing method (instead of 

doing real measurements, which can be costly) to provide a database of uniaxial loading response 

to identify a strain energy density for an assumed hyperelastic effective homogeneous material. 

We shall calibrate a strain energy function of two preselected hyperelastic models for the three 

investigated lattices (Fig.9.2). In the present 1D context of microstructured beams operating 

under pure tensile loadings, the sole degree of freedom is the scalar displacement along the beam, 

variable ( )u x , with a spatial gradient denoted by the scalar quantity ,xu  (the comma denotes the 

partial derivative).  

The following two forms of the hyperelastic function  W W F are selected, depending upon 

the transformation gradient ,1 xF u  in the present 1D situation, representative of classical 

elastic Cauchy materials, which are coined Form1 and Form2 here and in the sequel:  

 Form1: The strain energy density takes the form [24] 

   2 4

, ,
, 2 4

x x

x

u u
W Au B C    

 Form2: The strain energy density takes the form  

   2 3

, ,
, 2 3

x x

x

u u
W Au B C    

Note that there is no unique choice of the mesoscopic (homogenized) constitutive law; observe 

that the adopted choice of the strain energy density there above means that we restrict the 

mesoscopic stress (the second Piola-Kirchhoff stress) to be at most a quadratic function of the 

Lagrangian strain (its conjugated strain).   

The constitutive law can be derived from the form taken by the strain energy density of the 

hyperelastic model; the first Piola-Kirchhoff stress tensor is computed as the partial derivative 

W
T

F





 (9.5) 

In a 1D context, all stress measures coincide, so especially it holds the identity 

   T x x  (9.6) 
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We shall in the sequel consider different suitable forms of the constitutive law written in terms of 

nonlinear relations between the first Piola-Kirchhoff stress and the transformation gradient. We 

shall also as a matter of simplification of notations omit the x dependency. Note that the strain 

energy density can easily be expressed versus the stretch, due to the relation F  . 

The material parameters are identified based on a combination of virtual tensile test performed 

over the unit cell of the three considered lattices; their identification proceeds from the 

minimization of the following function with respect to the set of material parameters A,B,C  

   1/22DH

A,B, C
Min T A,B,C : T T   

 

The function  T A,B,C there above is built as the quadratic measure of the error between the 

DH stress component DHT and its analytical counterpart, obtained from the hyperelastic potential.  

The material constants of the model are identified from a least square method (9 sampling points 

are used), relying on uniaxial tension as the kinematic loading imposed over the lattice unit cell.  

the function Lsqcurvefit in the Optimization Toolbox of MATLAB has been used [14, 15] to 

identify the coefficients (A, B and C) of the strain energy density for these three lattices (Fig. 

9.2) based on the incremental scheme developed in section 9.2; they are listed in Table 9.1. 

Table 9-1 Coefficients of the three forms of the hyperelastic strain energy potential 
 Form 1 Form2 

A B C A B C 

Hexagonal -0.1 40.1 1469.3 0.0604 22.218 316.5386 

Re-entrant -0.4939 244.775 10220.08 0.0999 156.3594 1896.04 

Plain weave -0.0929 124.129 330.3384 0.0103 116.0903 101.9276 

 

Fig.9.2 Three investigated lattices: a) classical hexagonal lattice, b) re-entrant hexagonal lattice 
and c) textile plane weave. 
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We shall in the next section rely on the two different forms of the strain energy density to analyze 

nonlinear wave propagation. 

9.4 Analysis of nonlinear wave propagation in the homogenized hyperelastic continua 

Different types of nonlinear wave propagation equations are considered in this work: harmonic 

plane waves based on the perturbation method [29], solitary waves for the Boussinesq type 

equation [32], or shock waves for Burger's equation.  

We shall consider the following non-dimensional system parameters: 

k L the dimensionless wave number, 

0
L

E





the dimensionless frequency, 

,
p g

c c

E E

 

the dimensionless phase and group  velocities respectively, 

, ,E L the Young modulus, density and length of the beam structures respectively. 

We first evaluate the constitutive law for the two forms of the previously identified strain energy 

functions.  

9.4.1 Wave propagation analysis for the form 1 of the hyperelastic effective medium energy 

Considering first form1 of the nonlinear strain energy without the second gradient terms, we can 

write the dynamical equilibrium equation as: 

j
j

ij *u
x


 

   
 (9.8) 

Inserting the constitutive law into the dynamical equilibrium, Eq.8, leads to 

  22 2
* *

2

3
,x ,

2

x

Linear part Non Linear part

u u u
u B 3C

A Bu
u

x

Cu

x x x
         

           

       
 

(9.9) 

The first step in the analysis of the nonlinear dispersion relation in the continuum medium is the 

introduction of the dimensionless time t  and the parameter Ȟ to enforce the non-linearity in 

the dynamical equation, C C , thus leading to the asymptotic expansion of frequency and 

axial displacement (here truncated to the first order), successively 
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0 1

0 1

,

,u u u

  


 

 
 (9.10) 

Substituting those asymptotic developments (Eq.9.10) into the nonlinear wave equation and 

ordering versus the successive powers of the small parameter   produces a set of equation as 

follows: 

 

 

2 2
0 * 20 0

02 2

22 22 2
1 * 2 * 0 0 01 1

0 0 0 12 2 2 2

: 0

: 2 3

u u
O B

x

u u uu u
O B C

xx x

  


     
 

 
 

 

               

 (9.11) 

The first order equation at order  0O   describes linear wave propagation in the effective (linear) 

medium.  

We take the plane harmonic wave as a solution of the  1O   equation: 

   0 exp cosu A i kx A kx      (9.12) 

in which k is the wavenumber and A the wave amplitude. Subsequent substitution of the 

expression of wave solution into the  1
O  term results in the partial differential equation 

     
2 2

1 * 2 * 3 41 1
0 0 12 2

3
: 2 cos cos

4

u u
O B A k x CA k k x

x
       


 

     
 

 (9.13) 

Removing the secular terms (those factor of  cos kx  ) leads to the algebraic equation 

2 4
* 3 4

0 1 1 *
0

3 3
2 0

4 8

C A k
A CA k   

 
      (9.14) 

where 1  is the corrected frequency based on the nonlinear terms. The frequency is then updated 

versus the wave amplitude as follows: 

2 4

0 *
0

3

8

CA k 
 

   (9.15) 

The dispersion relation for the three investigated lattices involves an amplitude-dependent 

frequency in the context of a nonlinear effective medium, based on Eq.9.15. 

Fig.9.3 illustrates the dispersion relation based on Eq.9.15 for the classical and reentrant 

hexagonal networks and the textile plane weave structure. 
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Fig.9.3 Linear (red) and nonlinear (green) dispersion curves for a) the hexagonal network, b) the 
re-entrant network and c) the textile plane weave. 

Dispersion shifts occur for the longitudinal wave through the introduction of the nonlinear parts 

represented by the corrected frequency 1 ; this behavior can be observed for the three 

investigated lattices. 

9.4.2 Wave propagation analysis for form2 of the hyperelastic energy 

Recall that the strain energy density is selected as a cubic function of the linearized strain 

   2 3

, ,
, 2 3

x x

x

u u
W Au B C    (9.16) 
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which entails the following expression of the first Piola-Kirchhoff stress 

2
, ,x xA Bu Cu     (9.17) 

The dynamical equilibrium equation based on this constitutive law writes: 

 2
,x

2 2
* *

2

x

2

,

Linear part Non Linear part

A Bu Cu

x

u u u
u B 3C u

x x x
 

       
           

         
 

(9.18) 

Note that for this type of equation, harmonic plane waves cannot be considered as solution, due to 

the non-vanishing of the secular term. 

Using the change of variable y x t
k


   and 

u
f

y





 after a simple transformation, the 

differential equation derived from the wave equation writes as follows: 

2 2 22 2
* *

2 2 2

Linear part Non Linear part

u u u u f f
B 3C B 3Cf 0

y y y y y yk k
 

         
                   

                             
 

(9.19) 

Eq. (9.19) is of inviscid Burger's type, a fundamental partial differential equation occurring in 

various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas 

dynamics, traffic flow. The inviscid Burgers' equation is a conservation equation, more generally 

a first order quasi-linear hyperbolic equation. Shock waves are solution of the above equation; 

mathematically, a shock wave type solution can be obtained by the integration of the solitary 

wave (Fig.9.4). 

The solution of the dynamical equilibrium equation can then be expressed in terms of the 

displacement as  

     
2

2( ) , ,
( )2 2 1 ( )

A A s
u y f y dy sn h s dy

E s
K s

 
 

      
 

 

 (9.20) 

in which function f(y) describes solitary waves propagation and u(y) shock waves, where s is the 

universal constant describing the degree of nonlinearity ( 0 1s  ), sn(.) the elliptic Jacobin sine, 

and K(s), E(s) are the complete elliptic integrals of the first and second kind respectively, 

0

2

k
h y and 0k is the propagation constant related to the wavenumber k as follows: 

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Nonlinear_acoustics
https://en.wikipedia.org/wiki/Gas_dynamics
https://en.wikipedia.org/wiki/Gas_dynamics
https://en.wikipedia.org/wiki/Traffic_flow
https://en.wikipedia.org/wiki/Conservation_law
https://en.wikipedia.org/wiki/Hyperbolic_equation
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  02
k k

K s




 
(9.21) 

.  

Fig.9.4 (a) Shape of the solitary strain wave and (b) Shock wave 

The strain amplitude can be calculated from the following equation  

  2
0

3( )3 1 ( )
C AE s

K s k


   (9.22) 

In the limiting case 0s  (which corresponds to the linear situation), the solution of Eq.(9.20) is 

reduced to the harmonic plane wave, 

     cos sin
2 2

A A
f y ky u ky

k
     , with 0k k  

In the opposite case, when 1s  , the solution (9.20) describes a localized solitary strain wave 

with 

       2
0 0

0

sech tanh
2

A A
f y k y u y k y

k
     . 
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Fig.9.5 Dispersion relation with different values of parameter s based on Burger's equation for a) 
the hexagonal lattice, b) the re-entrant lattice and c) textile plane weave. 

Compression solitary waves can exist if A<0, whereas dilatation solitary waves (tension waves) 

will be obtained for A>0. From the results, we expect based on the definition of shock waves the 

occurrence of a set of supersonic modes, describing the propagation of waves with a velocity 

higher than the linear velocity (the velocity of non-dispersive waves); this phenomenon can 

indeed be observed in Fig.9.5 for the three investigated lattices. When moving from a weak 

nonlinearity (for low values of s) to a high nonlinearity (at high values of s), an important shift in 

the frequency band structure occurs. The influence of the nonlinearity is more pronounced in the 

hexagonal lattice and the textile structure in comparison to the re-entrant lattice, due to the 

presence of a large gap between the linear mode and the nonlinear modes in these two 

configurations. 
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Fig.9.6 shows the frequency for the supersonic longitudinal mode for the three lattices versus the 

degree of nonlinearity s. 

 

Fig.9.6 Frequency band structure versus the degree of nonlinearity s for the hexagonal lattice (in 
red), the re-entrant lattice (in green) and textile plane weave (in blue). 

It appears from Fig.9.6 that for all values of parameter s between 0 and 1, the supersonic mode 

always occurs; these results are in very good arguments with those obtained in Fig. 9.5. 

9.5 Effect of the second gradient terms on wave propagation for the hyperelastic medium 

We shall in the sequel consider the linear second gradient effective rigidity into the strain energy 

in order to study their impact on the propagation of nonlinear waves.   

The form1 and form2 of the nonlinear constitutive laws accounting for the second gradient terms 

can be written respectively as follows: 

3
, , ,,
x x xx

A Bu Cu S u      (9.23) 

2
, , ,,
x x xx

A Bu Cu S u      (9.24) 

where A,B,C  are the same coefficients written in Table 9.1, and   accounts for the second 

gradient terms calculated in details in [33] (see Table 9.2). 

Table 9-2 Coefficients of the second order terms for the three investigated structures 
 Hexagonal Re-entrant Plain weave 

  701.48 25.98 4.4 
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9.5.1 Wave propagation analysis for form1 with additional second gradient terms 

The dynamical equilibrium equation for the second gradient effective medium can be written as 

follows: 

2
*

2

S

x x
u 

 
 

 (9.25) 

Inserting the constitutive law (Eq.9.23) into the dynamical equilibrium, Eq.25, further leads to 

 3 2
,x ,x ,x

2

22 2 4
* *

2 2 4

Linear part Second gradient partNon Linear part

A Bu u u u u
u B 3C u

x x

Cu

xx x x
            

          
                  

 
(9.26) 

Using the same perturbation method described in 9.4.1 leads to the following equations: 

 

 

2 2
0 * 20 0 0

02 2

22 22 2
1 * 2 * 0 0 01 1 1

0 0 0 12 2

4

4

24 2

4

: 0

: 2 3

u u u
O B

x

u u uu u u
O B C

xx x

x

x

  


    



 
 









 
  

 

               

 (9.27) 

The first order equation at order  0O   describes linear wave propagation in the effective 

medium with second gradient terms which the plane harmonic wave is solution. 

The second order equation at order  1
O  delivers a relation between the corrected frequency 1  

and the linear frequency 0 (the same as expression (9.15)). 

Fig.9.7 illustrates the dispersion relation for the classical and reentrant hexagon networks and the 

textile plane weave structure with and without second order terms, in order to investigate its 

impact on the dispersion relation for both the linear and nonlinear media. 
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Fig.9.7 Linear (red) and nonlinear (green) dispersion curves with (continuous) and without 
(dashed line) second gradient terms. 

Dispersion shifts occur for longitudinal waves due to the nonlinear terms introduced in the wave 

equation, accounted for by the corrected frequency 1 ; this behavior can be observed for the three 

investigated lattices. The influence of the second gradient term is more pronounced for the 

hexagonal lattice in both linear and nonlinear cases due to the higher values of  . Furthermore, 

inspection of Fig.9.7 reveals that the classical continuum is not dispersive since the frequency is 

proportional to the wavenumber k (dashed red lines). 
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9.5.2 Wave propagation analysis for form2 with second gradient terms 

The equation of motion based on the constitutive law for the second order medium (9.24) writes 

as follows: 

2 2 4 2
*

2 2 4 2
2

u u u u u
B C

x x x x t
     

  
    

 (9.28) 

The problem under consideration in the PDE (9.28) represents a Boussinesq-type equation: an 

analogous mathematical model has been essentially studied for shallow water waves to describe 

the internal wave in the layered of fluid [25]. The general character of Boussinesq and 

Boussinesq-type equations has been intensively studied including nonlinear effects in the 

dynamics of solids in [34, 35]; solutions of equations of this type have been studied in [36-40]. 

Using the change of variable z x t
k


  , where   is the frequency and k the wavenumber, and 

after a simple transformation, the PDE (9.28) is transformed into an ordinary differential equation 

(ODE in short) for the new non-dimensional strain of the wave function, function   u
N z

z





: 

2
2

2
0

N
a N b N c

z


   


 (9.29) 

The derivative of the ODE (29) leads to Korteweg de Vries wave propagation equation; its 

solution is of the solitary wave type: 

   
2

2 0 ,
( )2 22 1 ( )

kA As
N z sn z s

E s
K s

     
 

 (9.30) 

It may be possible to write an asymptotic solution for the Eq. (29) in the case of a weak 

nonlinearity (low values of s). The asymptotic development based on the Linstedt-Poincaré 

method is explained into details in [41]. The comparison of the asymptotic development and the 

exact solution is done in [42], showing a very good agreement up to quite high values of the 

universal constant s. 

The presence of second gradient order terms in the nonlinear equation of motion leads to the 

presence of two different modes: an evanescent subsonic mode for high values of s (high 

nonlinearity) that vanishes beyond certain values of the wave number k, and a supersonic mode 

for low values of s corresponding to weak nonlinearity. 
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Fig.9.8 Dispersion relation with different values of s based on Boussinesq type equation for a) the 
hexagonal lattice, b) Re-entrant lattice and c) Textile Plane weave lattice. 

The dispersion relations are pictured in Fig.9.8 for different values of the nonlinear parameter s 

for the hexagonal network. In the sequel, parameters v and v0 refer to the phase velocities in the 

nonlinear and linear medium respectively. 

For a weak nonlinearity, a supersonic mode occurs and the dispersion curves lie above the linear 

dispersion curve (when v = v0). For a higher nonlinearity, the waves changes from a supersonic to 

an evanescent subsonic mode and the dispersion curves drops below the linear case, and further 

vanishes for certain values of k. The supersonic and subsonic modes are observed for the three 

networks, with variation in the dispersion curve, especially the vanishing of the subsonic mode 

for the hexagonal lattice appears earlier in comparison to the two other lattices. 
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In the nonlinear case, the introduction of the second order gradient parameters leads to two 

propagation modes (subsonic and supersonic), whereas only the supersonic modes occur for a 

pure Cauchy continuum. 

Fig.9.9 shows the evolution of the frequency with the degree of nonlinearity s for the hexagon 

lattice, the re-entrant lattice and the textile plane weave pattern. 

 

Fig.9.9 Evolution of the frequency of the longitudinal mode versus parameter s for the hexagonal 
network (red), the re-entrant network (green) and plain weave textile (blue). 

Fig.9.9 makes clearly apparent that the limit of the supersonic mode depends on the type of 

network. The s-limits of the supersonic mode are 0.78, 0.9 and 0.99 for the classical hexagon, the 

re-entrant hexagon and the textile structure respectively. For values of s smaller than these limits, 

the supersonic mode occurs; when s exceeds these limits, there is a transition from the supersonic 

mode to the evanescent subsonic mode. It is further apparent from Fig.9. 9 that the evanescent 

subsonic mode occurs for a higher value of the degree of nonlinearity for the textile plane weave. 

9.6 Dispersion analysis for the first and second order gradient hyperelastic models 

In order to highlight the dispersive behavior of the nonlinear effective medium, we plot in 

Fig.9.10 the phase and group velocities in the longitudinal mode for the hexagonal (red line) 

network; the re-entrant network (blue line) and textile plane weave (green line). In the following, 

results for the phase velocity (corresponding to the continuous line) and the group velocity 

(corresponding to the dashed line) are shown. 
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Fig.9.10 Evolution of the phase and group velocities of the longitudinal mode for the three 
investigated lattices. 

Fig.9.10 shows that the low frequency behavior (for longitudinal mode) for the three investigated 

lattices is dispersive, due to the noticeable difference between the phase and group velocities in 

the effective nonlinear medium. Form1 and Form2 of the constitutive law lead to a variation 

between the phase and group velocities, which become more pronounced as the wave number is 

increased. 

 



  

317 

 

9.7 Conclusion 

We analyzed in this chapter nonlinear wave propagation occurring within microstructured beams 

including a repetitive network undergoing configuration changes under pure tensile loadings, 

leading to geometrical nonlinearities. Three types of repetitive microstructures have been 

considered in order to exemplify the analysis of (nonlinear) wave propagation: the hexagonal 

network, its re-entrant version, and plain wave textile.  

The effective nonlinear constitutive law have been identified from a micromechanical scheme in 

terms of the strain energy density expressed as a nonlinear function of the small strain tensor; first 

and second order grade 1D homogenized continuum have been thereby identified in the nonlinear 

range, based on a strain driven incremental scheme written over a reference unit cell taking into 

account the variation of the lattice geometry. The coefficients of the selected constitutive models 

have been identified for three specific network materials based on the proposed homogenization 

scheme.  

The dynamical equations of motion have been next written for two different forms of the 

constitutive law - successively discarding and including second order terms - originating from the 

selected strain energy density, leading to specific dispersion relations. The inviscid Burgers 

equation is obtained as a specific wave propagation equation for the first order effective 

continuum, whereas Boussinesq equation emerges when adopting a nonlinear strain gradient 

effective continuum. The presence of second gradient order terms in the nonlinear equation of 

motion leads to the presence of two different modes: an evanescent subsonic mode for a high 

nonlinearity, vanishing beyond a given value of the wavenumber k, and a supersonic mode for a 

weak nonlinearity.  

The generalization of such nonlinear wave propagation analyses to 2D situations will be 

performed in future work, based on suitable hyperelastic constitutive laws obtained from the 

homogenization of the existing microstructure. 
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10. Chapter 10: Conclusion and perspectives 

 

10.1 Summary 

The analysis of wave propagation within 2D and 3D periodic network materials has been done, 

taking into account microstructural scale effects and a viscoelastic behavior of the network, 

relying on a homogenization method specific to discrete structures to construct substitution media 

of the initial discrete network. Two different strategies for the enrichment of the effective 

continuum have been considered, namely micropolar and second order gradient continua. The 

dynamic analysis of random fibrous networks is also presented for 2D case. The propagation of 

linear and nonlinear waves within the network represented by the substitution continuum has 

been analyzed in two successive parts of the document.  

Our contribution focuses on two important issues: the impact of the enrichment of the effective 

continuum on the dispersion relations has been analyzed for 2D and 3D network materials, 

considering micropolar and second gradient effective continua. This methodology has been 

especially applied to metamaterials showing an auxetic behavior, which show an enhanced partial 

band gap at low frequency. The second important issue is the analysis of nonlinear wave 

propagation within repetitive networks undergoing configuration changes under large applied 

kinematic loadings, and reflecting geometrical nonlinearities. In the second part of the work, an 

incremental scheme for the update of the frequency and phase velocity of the homogenized 

medium has been developed, considering successively 1D, 2D and 3D repetitive network 

materials. We have furthermore constructed hyperelastic media by virtual tests relying on the 

homogenization method at the basis of this thesis, and obtained different types of wave 

propagation equations (Burgers and Boussinesq equation) and solutions (shock waves, solitary 

waves, and harmonic planar waves), the acoustic properties of which has been studied.  

10.2 Research contributions 

The research presented in this dissertation provides the following original contributions: 
 

 A general methodology to analyze dispersion effects in network materials showing 
microstructural effects, based on the construction of second order gradient effective 
medium; 

 Wave propagation analysis in dissipative networks also accounting for microstructural 
effects; 
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 Computation of wave propagation characteristics in random fibrous media based on 
second order gradient and micropolar effective continua; 

 Wave propagation analysis in nonlinear elastic continua constructed by the 
homogenization of the response of nonlinear repetitive networks;  

 Efficient and general computational analysis tools for assessing nonlinear dispersion 
effects in repetitive network materials; 

 A general perturbation method accounting for geometrical nonlinearities for analyzing 
wave propagation at higher frequencies in network media with a nonlinear constitutive 
law. 

The analyses performed in this work and the principal obtained results are summarized in the 

synthetic diagram below, relying on a classification based on two main aspects: the type of 

effective continuum associated to microstructural effects and the impact of the strain 

amplitude (small vs. large deformations). 

 

Fig.10.1Impact of deformation and microstructure on wave propagation, E denotes the strain 

10.3 Recommendations for future work 

In terms of perspectives, we have established a platform of models and simulation tools for the 

prediction of the acoustic properties of network materials. The same tools can easily be extended 



  

323 

 

to composite materials made of such repetitive networks as the reinforcement embedded into a 

softer elastic or viscoelastic matrix.  

Although the research presented here offers in our opinion significant advancements in linear and 

nonlinear dispersion analyses, there are a number of exciting opportunities available for further 

exploration. The tools and investigations presented have brought dispersion analysis in 

microstructured solids showing internal lengths and / or nonlinear effects to the point of 

experiment design and implementation to tests the obtained numerical predictions. Several 

fundamental theoretical investigations and possible experimental sets up are discussed next as 

potential options for future work. 

10.3.1 Experimental investigation of wave dispersion and attenuation 

It remains to validate the predictions of the simulations by suitable experiments; this shall be 

done with regards to two main aspects: 

- Measurements of band diagrams; 

- Measurements of the transmission loss factor.  

There are several existing experimental set up to measure the transmission loss factor due to the 

tortuosity of the tested microstructures and / or the internal damping due to the viscoelastic 

material behavior. We envisage designing an experimental set up allowing to measure the 

acoustic properties of structures submitted to stationary waves (Kundt tube) tested in situ under 

uniaxial or even biaxial loading conditions. In parallel to this, we shall attempt to extend Biot’s 

model to higher gradient continuum models for porous microstructures to have at hand a suitable 

modeling framework to interpret the obtained measurements.    

Regarding nonlinear aspects, the design of sensitive nonlinear network materials should be at the 

forefront of future experimental analyses.  

10.3.2 Wave propagation in generalized continua constructed by homogenization 

In many situations, second gradient media are not sufficient to account for microstructural effects, 

especially in situations for which a microstructure is present at different (more than one) scale 

levels; this is true for both cases of network materials and composites. We shall accordingly 

extend the class of constructed generalized continua to micro stretch, micro dilatation and 

micromorphic continua, constructed by suitable homogenization method, either from analytical or 

numerical inspiration. Micromorphic effective continua are further prone to lead to full band gaps 
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at low frequencies; it will accordingly be of interest to develop micro stretch and micromorphic 

continua of microstructured solids in order to compute their band diagram.  

10.3.3 Elaboration of a rationale for the design of metamaterials 

Beyond this aspect, elaboration of design rules of metamaterials giving rise to significant band 

gaps requires the elaboration of a suitable methodology combining homogenization schemes and 

topology optimization. Especially, the construction of proper higher order schemes (second order 

gradient effective models) that does not depend on the microstructure remains a challenging task. 

In many cases, second gradient effects are quite limited and conceiving microstructures for which 

boundary layer effects (associated to second order gradients) are significant in comparison to the 

unit cell size remains challenging. We have merely focused on a specific class of metamaterials, 

namely auxetic, but it is clear that the family of conceivable metamaterials is much wider. Large 

deformations give rise to instabilities inducing band gaps, as preliminary results in this work have 

shown. The conception of microstructures with a state of anisotropy varying with the imposed 

deformation and prone to such instabilities leading to negative tensile or bulk moduli remains a 

challenging perspective.  

10.3.4 Impact of disorder and defects on acoustic properties 

In this work, we have considered perfectly periodic structures, in the absence of defects. It is 

nevertheless clear that the presence of disorder like topological fluctuations (encountered e.g. in 

biological membranes), or damage and microcraks will alter both the static and dynamic 

properties in such imperfect networks; this remains a challenging task to be addressed in the 

future. Some wok has been recently initiated in this direction with the group of Dr. S. Phani (Dpt 

of Mechanical Engineering, UBC, Vancouver) in order to investigate from theoretical and 

experimental point of view the impact of existing cracks on wave propagation features.   

10.3.5 Dynamic homogenization 

The prediction of the acoustic properties based on the homogenized continuum is only descriptive 

of the low frequency dynamic behavior of heterogeneous periodic media, in conditions when the 

scale separation between the displacements and the unit cell size holds true. In the regime of 

higher frequencies, this scale separation is lost and the inertia associated with the local motion 

become quite significant (the effect of inertia can be neglected for low frequency) for that the 

proposed homogenized method cannot be applied.  
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The dynamic homogenization taking into accounts micro-inertia effects and space-time 

interactions for heterogeneous periodic media under dynamic loading and covering the higher 

frequency regime remains one of the most challenging issues to be addressed in the future. 
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