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Abstract1

The task of understanding, 3D reconstruction and analysis of the multiple view geometry related to2

transparent objects is one of the long standing challenging problems in computer vision. In this thesis,3

we look at novel approaches to analyze images of transparent surfaces to deduce their geometric and4

photometric properties.5

At first, we analyze the multiview geometry of the simple case of planar refraction. We show how6

the image of a 3D line is a quartic curve in an image, and thus derive the first imaging model that7

accounts for planar refraction. We use this approach to then derive other properties that involve8

multiple cameras, like fundamental and homography matrices. Finally, we propose approaches to9

estimate the refractive surface parameters and camera poses, given images.10

We then extend our approach to derive algorithms for recovering the geometry of multiple planar11

refractive surfaces from a single image. We propose a simple technique to compute the normal of12

such surfaces given in various scenarios, by equating our setup to an axial camera. We then show that13

the same model could be used to reconstruct reflective surfaces using a piecewise planar assumption.14

We show encouraging 3D reconstruction results, and analyse the accuracy of results obtained using15

this approach.16

We then focus our attention on using both geometric and photometric cues for reconstructing17

transparent 3D surfaces. We show that in the presence of known illumination, we can recover the18

shape of such objects from single or multiple views. The cornerstone of our approach are the Fresnel19

equations, and we both derive and analyze their use for 3D reconstruction. Finally, we show our20

approach could be used to produce high quality reconstructions, and discuss other potential future21

applications.22

Keywords: Computer Vision, Multiple View Geometry, Transparent Surfaces, Photometry, refrac-23

tion, Reflection, Mirrors, Light-path Triangulation, Reconstruction, Fresnel Equations.24
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Introduction26

Image understanding is a long standing fundamental goal of computer vision. The need to make27

sense of images has tremendous potential for use in various industries from robotics to surveillance.28

What makes the problem so hard is the complex interaction between the various physical elements29

of the scene (materials, light etc.) and the fundamental limitations of the camera (perspective30

projection, dynamic range etc.). One of the main components of image understanding is 3D31

reconstruction, and a lot of significant progress has been made in it in the last few decades.32
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44
45

We focus on 3D reconstruction of specular surfaces in this thesis. Surfaces with material properties46

that help them reflect or refract an incoming ray of light in a very narrow solid angle of directions are47

called specular surfaces (Figure 1.1). There are man-made and naturally occuring specular sufaces;48

they are ubiquitous and also widely used in industry. In this chapter, we first give a brief overview of49

3D reconstruction with a bias towards specular surfaces (transparent and reflective). We argue that50

while a lot of progress has been achieved in “generic” 3D reconstruction, specular objects have been51

largely left out because their peculiar appearance does not sit well with most reconstruction algo-52

rithms. However, considering their ubiquitous nature (in fact, the camera lens itself is one example)53

any 3D reconstruction system will have to eventually deal with them, before being deployable on a54

large scale in the real world.55

We look at physical properties of specular surfaces and devise algorithms that utilize these prop-56

erties to reconstruct them from multiple images in the forthcoming chapters. While many existing57

works employ a variety of other sensors for this reconstruction task, we consciously choose to avoid58

them in our works. This is to facilitate a deeper understanding of the physics behind specular image59

formation, combined with an intention to have a wider set of scenarios where our algorithms and60

understanding might prove useful/insightful.61

1.1 3D Reconstruction62

3D reconstruction is the task of creating 3 dimensional models that faithfully comply with a set of63

2D images of the object(s)/scene involved. Several approaches like structure-from-motion (sfm),64

stereo, photometric stereo are popular in the computer vision literature. While sfm and stereo are65

widely used for outdoor scene reconstruction, photometric stereo generally involves indoor scenes66

captured in controlled lighting environments. Current state-of-the-art 3D reconstruction algorithms67

perform remarkably well on both small and large scales. In fact, while reconstruction of entire cities68
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1.1: Different types of specular surfaces, and common applications. Man-made (a) and natural
(b) specular surfaces. Commonly occuring (c) refractive and (d) reflective surfaces. Specular surfaces
used in (e) cameras (f) catadioptrics (g) underwater photography. Figure (a) courtesy Andre Gunther.
(http://www.aguntherphotography.com/great-lakes/chicago/millenium-park-bean.html). Figure (f) cour-
tesy Maxime Lhuiller (http://wwwlasmea.univ-bpclermont.fr/Personnel/Maxime.Lhuillier/Omni3D.html).

4



has been recently attempted on the large scale side, reconstruction of mesostructures and extremely69

challenging objects like hair have also been attempted successfully.70

One of the main obstacles that 3D reconstruction techniques have come across over the years has71

been the interaction of light and various materials, especially when it produces appearance varying72

results across images. In general, 3D reconstruction approaches rely on the Lambertian assumption of73

surface reconstruction. While in sfm and stereo algorithms, this results in the appearance constancy74

assumption (which is the basis of feature detection and matching algorithms), photometric stereo75

directly uses the Lambertian property to determine the relationship between pixel intensities and in-76

cident angle of the light rays from the light source. When the Lambertian surface assumption about77

material property fails, it introduces correspondence issues in sfm and stereo algorithms. Even in78

photometric stereo algorithms where correspondence is a non-issue, the failure of the Lambertian as-79

sumption causes reconstruction problems. To address this issue, various schemes have been proposed80

that take into account increasing generalizations of the Lambertian assumption.81

In the case of specular objects, the Lambertian assumption is not at all valid. In fact, specularities82

have been argued to be characteristic of a specular object, and have been used for object recognition.83

As we show in the next chapter and as is known previously also, the multiple view geometry of specu-84

lar surfaces too is very different from non-specular surfaces. This results in traditional sfm and stereo85

algorithms ignoring specular objects altogether, while traditional photometric stereo approaches have86

to undergo considerable modification before application to specular surfaces. Even 3D sensors like87

the ones used in Kinect perform poorly in the presence of specular surfaces.88

One other challenge for specular objects is the modeling of their appearance. The appearance of89

specular objects not only depends on the material, but also on their shape, the incident illumina-90

tion and the appearance of the scene in which they are placed. This makes it extremely difficult to91

use the appearance model of one specular object for the reconstruction of another. In fact, several92

different BRDF (Bidirectional Reflectance Distribution Function) models have been proposed to re-93

construct different kinds of specular and near-specular surfaces; there are hardly any non-parametric94

approaches.95

To summarize, two main obstacles prevent 3D reconstruction algorithms from being applied to96

specular surfaces and especially transparent surfaces.97

• The Lambertian reflectance assumption is violated. This affects correspondence estimation in98

sfm/stereo approaches, and affects pixel intensity measurements in photometric stereo.99

5



• Specular surface appearance depends on a variety of factors like object shape, incident illu-100

mination and surrounding environment. This results in the inability to produce a specific 3D101

reconstruction algorithm that applies to all specular surfaces.102

In the presence of these problems, it makes sense to look at algorithms that are specifically designed103

for specular surfaces. Our belief is that better image understanding could be obtained by investigating104

approaches that rely on a minimal amount of hardware, and thus we focus on a combination of105

geometry and photometry for specular surface reconstruction in this thesis. In fact, already some106

preivous works sharing our perspective of image understanding can be seen in [117] where the107

authors propose photometric invariants useful for detection and recognition of transparent surfaces108

that are based on geometric properties of smooth surfaces. In the next section, we give a brief history109

of the various approaches employed for reconstruction of specular surfaces to set the context for our110

works. Additionally, we list and briefly outline the various contributions in this thesis.111

1.2 History with a Specularity Bias112

The history of specular object reconstruction is divided in two parts. On one hand, the reconstruction113

(calibration) of catadioptric cameras has been important for image acquisitions of a specific kind114

used in robotics, panorama creation etc. The reconstruction of transparent specular surfaces was first115

initiated in photogrammetry for use in underwater photography [83]. More recently, in computer116

vision transparent object reconstruction has been attempted using physical properties of transparent117

surfaces like their specular property and polarization.118

1.2.1 The Case of Mirrors119

Figure 1.2 shows some catadioptric systems, the first class of mirrors that were used in computer120

vision. Their primary usage was to enhance the field of view of conventional cameras, to obtain121

wide fields of view (FOV) [8]. Using a mirror with a camera required ”calibration” of the mirror,122

which in turn meant knowing the shape parameters and position of the mirror w.r.t the camera. Thus123

calibration implicitly involved 3D reconstruction of the surface, although in a restricted sense since124

the shape model (hyperbolic, parabolic etc.) was already known in these cases. The primary purposes125

of using catadioptric systems was for 1) Panoramic imaging [136] and 2) SLAM applications [69].126
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Figure 1.2: Catadioptric systems are widely used for panoramic image construction and visual SLAM.
Two designs of catadioptric systems are presented in (a) [136] and (b) [69]. (c) A typical image captured
by a catadioptric camera (rectified image shown on the top) [76]

Generic specular surface reconstruction was first proposed in [14], where the authors considered127

reconstructing the surface by observing highlights in stereo images. In general, the first set of recon-128

struction algorithms noted that appearance of specularities in different images could contain clues to129

local shape information [13]. These works were predated by the seminal work of [70], which outlined130

the different photometric invariants related to reflective surfaces. Since specularities are produced by131

illumination reflected off the specular surface, photometric stereo methods [68] were also extended132

to specular surface reconstruction. Finally, since it was realized that motion of specularities contain133

information about local shape [13], a natural extension was to use not just specularities but motion134

of all reflected points on the surface of a mirror for its reconstruction. This lead to a ”shape from135

distortion motion” area of approaches [1; 115; 118].136

Catadioptrics One of the earliest uses of spherical mirrors was demonstrated in [101], where the137

authors used two spheres of known radii, placed at known positions w.r.t the camera in order to138

compute the depth of the world using a single image. This was one of the first uses of a non-single139

viewpoint camera for depth estimation, made easy because of the simplicity of a spherical setup and140

manually measured position estimates. Subsequently, the semilar work of single viewpoint catadiop-141

tric cameras [8] generalized the kind of mirrors that could be used in a catadioptric setup while142

ensuring that the entire system had a single effective viewpoint. Since using such mirrors with cam-143
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eras requires knowledge of their shape and position w.r.t the camera, several ”calibration” algorithms144

were proposed to acquire these parameters [38; 39]. These calibration methods determined the shape145

parameters, given known shape models and constituted one of the first reconstruction algorithms for146

mirrors. The single-viewpoint assumption proved useful because it allowed extending traditional147

multiple view geometry [55] to the case of catadioptric setups.148

This approach was later extended to include non-central viewpoints i.e. camera-mirror setups that149

were not single viewpoint systems. The advantages of such systems included increased control over150

FOVs (Field of View) and general better designing flexibility [134]. Calibrating such cameras could151

now involve specific algorithms that took into account shape models [41] or could take the form of152

general calibration of a system of rays [131]. While the former approaches performed reconstruction,153

the latter just reconstructed rays and the eventual shape of the mirror could be obtained by triangu-154

lation of captured ray directions and incident ray directions in 3D. A recent survey and taxonomy155

of non-central camera calibration can be found in [123]. While many of the previous approaches156

could be restructured to get 3D reconstruction of arbitrarily-shaped mirrors [82; 112; 131], reduc-157

ing the number of 2D-3D correspondences gives an unstable solution [15]. Since it might not be158

practically feasible to get many images using for the same mirror-camera configuration in many gen-159

eral settings, it might be worthwhile looking at how different mirrors might be reconstructed using160

piecewise modeling. We investigate this idea in the fourth chapter.161

Specular Flow Methods When a moving camera observes a specular surface, or when a mirror-162

camera setup moves in the world, the appearance of the specular surface captured by the camera163

changes over time [154]. The optical flow obtained from the multiple images captured in such a164

setup is called specular flow [115]. A part of this problem has been known from a long time as165

Alhazen’s Billiard’s problem [127]. The deviation of specular flow approaches from previous attempts166

at this area was the relaxation of the knowledge of the illumination source [13; 14; 154]. Thus it167

directly retrieved camera motion and mirror shape by just observing reflections off the surface. While168

progress has been made in this field, specular shape from flow algorithms still provide results that169

are below the state-of-the-art when compared to other approaches that assume known illumination170

sources (or known 2d-3d correspondences, because they serve the same functionality in the case of171

mirrors) [16; 17; 82]. Some notable approaches in this direction are [1; 118; 143]. In fact, it is172

useful to note that some of these algorithms are related to non single viewpoint cameras [143]. It173
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might also be worthwhile investigating whether the difficulty in specular flow based approaches is in174

any way connected to the instability of pose estimation of a checkerboard pattern in the presence of175

a generic mirror, when a direct view of the checkerboard pattern is not available [15]. Finally, while176

specular flow approaches exploit the motion information produced in images and their relationship177

to mirror shape and world motion, we restrict the focus in this thesis to static instances of specular178

surface reconstruction approaches. The underlying motivation for us is two-fold179

• We believe that reconstruction of surfaces from static setups has not been given much attention.180

In fact, many of our approaches just require a single view (not to be confused with single image)181

and in some cases, we actually are able to obtain more information about the object shape than182

traditional 3D reconstruction scenarios (with opaque objects).183

• We believe that the understanding obtained from solving and thinking about such setups gives184

us more insights into the general cases of shape from specular flow. More importantly, the185

relationship between specular flow and non-single viewpoint cameras is well worth exploring,186

although in the current thesis this direction is not explored. We however explore related areas187

that might give insights into the nature of this connection.188

1.2.2 The Case of Transparency189

Transparent objects are one of the few categories in which reconstruction methods are still in their190

nascent stage in terms of accuracy, ease of use etc. Traditional shape estimation techniques make191

assumptions that are rendered invalid when the image formation process of transparent objects is192

considered. A recent survey [67] indicates the various approaches used to acquire the shape of trans-193

parent objects. Figure 1.4 lists the various categories which are considered in this survey. In this194

section, we give a brief description of some of these approaches, as well as others used in photogram-195

metry [83].196

Active Methods One of the most accurate object shape acquisition techniques in computer vision is197

structured light projection. Active methods like these use an external stimulus (like projector light)198

to modify the image acquired by the camera, in a way that makes it easier to compute the shape of199

the object of interest. While it is a highly accurate technique in the case of opaque objects, there200
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Figure 1.3: (Left) Transparent surfaces with known 3D structure may be used for 3D reconstruction of
other objects [26] (object reconstructed depthmap in inset). (Middle), (Right) Acquisition of transparent
surfaces is important for realistic rendering [85]

Figure 1.4: The different classes of transparent surfaces as described in [67]
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have only been recent attempts at active “scanning” of transparent surfaces. This is because of the201

presence of optical phenomenon like sub-surface scatterring, interreflections, scattering (in the case of202

participating media) etc. Recent approaches like [91] have extended active techniques to transparent203

surfaces by modeling their surface properties so as to isolate their reflective capabilites from other204

optical phenomenon, and use it for reconstruction.205

Polarization Polarization is a physical property of surfaces that has been used for reconstruction206

purposes. When an unpolarized beam of light is incident on a reflective/refractive surface (not neces-207

sarily a mirror), its reflected and refracted components are partially polarized, if the object is dielec-208

tric. Since the angle of polarization is directly related to the ratio of incident and reflected/refracted209

light through Fresnel equations [36], determining the polarization angle gives useful information210

about the shape of the object. In fact, earlier approaches have used a camera with a linear polarizer211

to determine this angle, and subsequently used it for reconstruction [65]. Recently, many papers212

have used this approach to reconstruct transparent surfaces [88; 89]. This extension normally re-213

quires a relatively sophisticated setup, and both forward and inverse (predicting the shape and com-214

paring it with the image obtained in order to refine the shape) methods have been proposed in this215

area [7; 116]. Other approaches have also been reported in the literature that have used polarization216

to reconstruct metallic mirror-like surfaces [90].217

Shape from X While several of the approaches mentioned earlier (like specular flow) could come218

under the category of shape from X, we choose to put methods that are not directly relevant to this219

thesis, but still related, in this category. Figure 1.3 (middle) gives one such setup [85]. The authors220

propose an entire system which segments and starts with a coarse reconstruction of a transparent221

surface irrespective of its transluscency (several categories in Figure 1.4). This is then refined using222

the several images obtained with various light sources, as shown in the setup (Figure 1.3, middle223

image). Some other approaches ”acquire” the shape of transluscent surfaces, like the ones depicted224

in Figure 1.7. In [52], the authors recover the structure of inhomogeneous media like milk by us-225

ing compressed sensing based algorithms to analyze the images obtained after structured light is226

projected onto a setup consisting of the object of interest immersed in media like water.227
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Photometric Methods Traditional photometric methods employ a static viewpoint (relative position228

of camera and object is fixed), and move the light source to generate varying appearance of the ob-229

ject [145]. While several assumptions about photometric stereo have been relaxed subsequently, the230

first application to specular surfaces was done by [68]. The approach used in this method considered231

a distance light source and a single-view approach in which multiple images under changing illumi-232

nation were obtained. Surface orientations were then recovered using this data. Further extensions233

to this approach were done either using exemplars [61], color [84] using Helmholtz theories [155]234

etc. The general idea in photometric stereo approaches has been to consider specular surfaces as235

surfaces with unique BRDF’s, which means that moving away from the Lambertian assumption is236

necessary [84]. While the previous approaches extend the photometric approach to specular sur-237

faces, they are restricted to mirror like BRDF’s. In the presence of transparent surfaces, additional238

optical phenomena like interreflections, scattering, sub-surface scattering, chromatic aberration are239

involved [91], because of which the photometric data obtained is noisy (with bias). Unfortunately,240

the general approach of photometric stereo does not provide the scope for removing such errors. In241

such a case, several approaches like polarization based approaches [7; 88], or robust specularity esti-242

mation based approaches [148] or physical model based approaches that can detect and remove such243

errors [91] have to be used. Note that while these approaches use light sources in order to estimate244

the shape, some like [91] do not use a BRDF based approach to extract surface normals based on245

the intensity of light image by the camera at a point, and so they can only be related to photometric246

stereo methods by a distance.247

Light-Path Approaches A light-path is defined as the path taken by a ray of light from the point of248

emergence till the time when it reaches the camera [73]. When the scene consists of specular surfaces,249

this path is piecewise-linear 3D, although it may not be planar (this distinction becomes important250

in the fourth chapter). Thus specular surface reconstruction could be alternately defined as recon-251

struction of all the light-paths that pass through the scene and are captured by the camera. While252

not explicitly stating so, several approaches have attempted this in the past, or have light-path recon-253

struction as a reasonably simple extension [3; 17; 82; 112; 131]. One of the major problems with254

this type of approach is that it is inherently local in nature, in the sense that so far, most approaches255

in the literature focus on reconstructing individual light-paths separately and a global algorithm for256

reconstructing all light-paths simultaneously with the shape of the object(s) is missing [73]. The257
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(a) (b)

Figure 1.5: Examples considered in this thesis. Depiction of a (a) reflective sphere, and a (b) refractive
sphere. Note that the refractive sphere represents two refractions. Our goal is to reconstruct the shape of
these specular objects (without assuming a model like a sphere), using information from the surrounding
environment and images.

authors in [73] also impose a limit on the number of bounces (number of piecewise linear segments)258

a light-path can have if its reconstruction should be possible. However, we believe that light-path259

reconstruction is closely related to non-single viewpoint geometry, and reasoning about both can lead260

to solutions to cases where there are more than two bounces inolved per light-path. In fact, we extend261

this limit in some cases in the third and fourth chapter.262

Summary To summarize, there is an extensive literature in specular object reconstruction. While263

many approaches have focused on extending traditional reconstruction methods to the case of spec-264

ular surfaces, the most successful methods currently focus on using algorithms tailor made to the265

characteristics of specular surfaces in order to produce reasonable reconstructions [35]. In the next266

section, we outline the specular reconstruction problem, and give a brief overview of our line of267

reasoning, while presenting our contributions.268
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1.3 The case of specularity269

In this section, we define the quintessential specular surface reconstruction problem considered in270

this thesis. Figure 1.6 depicts the scenario that we consider, partially, while 1.5 gives two examples271

of the kind of images we deal with. A known / unknown 3D point p is reflected/refracted off several272

surfaces, at points vi before being finally imaged as point q at the camera c. This light-path may or273

may not be accompanied by a radiance measurement which in the case of the transparent surface,274

would involve its refractive index relative to the outside medium, apart from the angle of incidence275

of the incoming light ray and the shape (normal) of the object itself. Finally, we can consider a single276

light-path in isolation or multiple light-paths together. Our objectives are many-fold.277

• To derive basic understanding of the interplay between transparency and light-paths. To further278

relate it to the image formation process and the multiple view geometry involved.279

• To use this understanding for the reconstruction of transparent surfaces from multiple images.280

To extend this understanding to general specular surfaces (i.e. mirrors too) and further relate281

them to existing understanding on the specular image formation process.282

• To use additional input (like radiance) readily available without additional equipment (polar-283

izers) in order to investigate the extent to which light-path triangulation [73] may be solved in284

several cases.285

• To identify new problems and scopes of extension of works established in this thesis.286

1.3.1 Reconstruction vs Acquisition287

Figure 1.7 shows several systems aimed at ”acquiring” properties of transparent surfaces. In many288

cases, like the work of [85], the acquisition involves reconstructing the object involved, while in many289

others like [97] only the optical properties of the object are desired. Most methods of acquisition are290

for purposes of using the material in graphics applications [64; 85; 97]. While acquiring properties291

accurately is a hard process, approaches with graphics applications in mind tend to ignore the image292

understanding perspective and employ several additional equipment like a fluorescent dye in the293

case of [64]. However, our argument is that reconstruction based approaches [73; 91] etc. are294
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Figure 1.6: Depiction of the specular surface reconstruction problem from [73]. A known/unknown 3D
point p undergoes 1 or more reflections/refractions before being imaged by a camera c.

”minimalist” in their usage of additional equipment because of the need for application to outdoor295

scenarios where a robot with a camera or a mobile vision platform might not have access to such296

equipment. We believe that our approaches help us better serve these goals because of the following297

reasons.298

• We model the physical nature of reflection/refraction in order to obtain the 3D reconstruction of299

scenes. This is exactly the extension of general 3D reconstruction algorithms (since appearance300

of specular surfaces is reflective/refractive in nature) to the case of specularity.301

• 3D reconstruction of objects considered in this thesis results from an understanding of the302

interactions between light and object material, and their resulting effects on image formation.303

Thus, data acquired from our setups, for example, could be used to understanding the nature304

of interreflections within transparent surfaces.305

• As opposed to acquisition techniques, we restrict our study to specular surfaces. This allows306

us to focus on a particular set of optical phenomenon, while ignoring other complex ones like307

scattering. This isolation enables better understanding.308
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(a) (b)

(c) (d)

Figure 1.7: Acquisition of transparent surfaces [52; 97](Top row) Setups to acquire participating media
(wine) and inhomogeneous media (milk in water). (c) Rendering using acquired material properties. (d)
One of the acquired images, and reconstruction shown in 3 views.
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1.3.2 Physical Modeling vs Light-Path Modeling309

Figure 1.8 shows results from various reconstruction approaches in the literature [73; 88; 91]. These310

reconstruction approaches can also be divided into two parts, based on the ideas and models they use.311

Physical modeling based approaches [68; 88] try to extend non-triangulation based methods (in many312

cases, variational approaches like [128]) to the case of specular surfaces. While such approaches also313

produce encouraging results, we stick to the light-path triangulation perspective for a few reasons.314

• Acquisition Ease As we show in the later chapters, our acquisition setups are generally much315

simpler and data easier to acquire (without additional equipment like polarizers and diffusers)316

than current physical modeling based approaches.317

• Usage of Inputs While being easier on the image acquisition side, we also end up utilizing all318

properties of specular surfaces (like polarization, radiance ratios etc.) that most of the physical319

modeling approaches use. In fact, our models might also be categorized as physical models320

within a light-path framework.321

1.4 Our Contributions322

In the previous sections, we have outlined our reasoning for choosing this perspective for studying323

specular object reconstruction. In this thesis, we make the following contributions to this line of study.324

Chapter 2 In the first part of this thesis, we analyze the multiple view geometry of a refractive325

planar surface. We consider the case when one or multiple cameras in a medium (for example air) are326

looking at a scene in another medium (for example water), with the interface between the two media327

being flat. The case of underwater photography fits this description. Since a perspective projection328

model no longer fits this scenario, at first we derive the forward projection model and related camera329

matrix. We show that 3D lines in a scene map to quartic curves in the image in such a scene. An330

interesting observation about this scenario is that there is a unique image curve for every 3D line in331

the world, assuming a homogenous refractive index. We then derive multiple view quantities like332

the fundamental and homography matrices related to this scene and count arguments for tasks like333

pose estimation of cameras from multiple images. We also show that when the camera is in a heavier334
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(a) (b) (c)

(d) (e) (f)

Figure 1.8: Reconstruction of transparent surfaces. (Top row) Setups to reconstruct transparent ob-
jects ([73; 88; 91] in order). (Bottom row). 3D point cloud, mesh and normal map of the reconstructed
objects produced using the various methods.
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medium, the horizon maps to a conic (”Snell’s window”) which can be decomposed to obtain the335

parameters of the separating interface.336

Chapter 3 Transparent specular objects also modify and re-distribute the light energy incident on337

their surfaces. The governing model of this re-distribution is represented by Fresnel’s equations.338

Using this as our cornerstone, we describe a method that combines both geometric and photometric339

information to do reconstruction of arbitrarily shaped transparent specular surfaces. We show that340

our approach leads to a very uncomplicated acquisition process, while keeping our approach fairly341

simple. First, we analyze several minimal cases for shape reconstruction, and derive novel constraints342

for reconstruction that combine geometric and Fresnel theories about transparent surfaces. Secondly,343

we illustrate the complementary nature of these cues which helps us gain additional information344

about the object, which is otherwise impossible to obtain. Finally, we discuss practical aspects of our345

reconstruction algorithm while presenting reconstruction results on challenging datasets. Our results346

show that high quality reconstructions can be achieved in challenging scenarios.347

Chapter 4 We then extend our understanding of planar refractive geometry to derive algorithms for348

recovering the geometry of multiple planar refractive surfaces from a single image. A typical example349

of such a scenario would be looking through a fishtank, or underwater photography. We propose a350

simple technique to compute the normal of such surfaces given in various scenarios, by equating our351

setup to an axial camera. This allows us to fit RANSAC based approaches like the 8-point algorithm352

for fundamental matrix computation to our case, in a manner similar to axial distortion estimation353

techniques in the computer vision literature. Interestingly, this approach naturally extends to planar354

light-paths within axial systems. To this extent we then show that the same model could be used to355

reconstruct reflective surfaces consisting of multiple parallel planes or axially aligned spheres. We356

show encouraging 3D reconstruction results, and analyze the accuracy of results obtained using this357

approach.358

Conclusion In conclusion, we analyze several different geometric and photometric properties of359

specular transparent surfaces and explore two ends of a reconstruction spectrum: shape specific360

reconstruction and shape independent reconstruction. In both cases, we present several novel theo-361

retical and algorithmic contributions with encouraging results. We show how the perspective of light-362
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path triangulation could be extended for better image understanding of specular surfaces. Potential363

applications include robotics [69] and graphics [85], applications like specular object detection and364

recognition [105; 117].365
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Multi-View Geometry of the Refractive Plane367

2.1 Introduction368

One of the ways in which we can group and study light-paths is to consider grouping light-paths that369

are the projections of a 3D point or line on a camera, after undergoing several reflections, refractions370

or both. In this chapter, we consider the simplest case of such a scenario where the imaging character-371

istics of a camera in one medium looking at a scene in a different medium with a planar, transparent372

interface between the two is studied.373
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The multi-view geometry resulting from opaque scenes is now well understood, for the case of374

perspective projection. To some extent, even the insertion of reflective elements has been studied in375

the area of catadioptrics [130; 132]. The phenomenon of refraction, however, has largely been left376

un-addressed in the vision community.377
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The introduction of refractive elements into a scene changes the multi-view geometry that results393

from the imaging phenomenon. Until recently, the study of this change had been restricted to mul-394

timedia photogrammetry [83] and oceanic engineering [102], where the major perspectives were395

to either neglect the refraction [50; 102], view refraction as an error or aberration to perspective396

imaging [107; 126], or to look at its correction as an iterative optimization problem [83]. In com-397

puter vision, some of the first attempts have come in the recent past [9; 73; 74; 92; 141]. Kutulakos398

et al. [73] investigate the geometry of light-path triangulation, which aims to find conditions and399

algorithms where reconstruction of individual tracks of light is possible. The work of Morris and Ku-400

tulakos [92] looks at refractive stereo. The main idea here is to estimate the normal of the refractive401

surface, given 2D-3D correspondences, irrespective of the refractive index. They argue that under402

the assumption that light is refracted only once, two views are sufficient to reconstruct an arbitrary403
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refractive surface. The work of Nayar et al. [9] concentrates on the estimation of the shape of the ob-404

ject by optimizing a function that minimizes the difference between observed and predicted images,405

based on a suitable parametric model of the object shape, as well as assuming an affine setting. The406

works of Singh et al. [141] and Lavest et al. [74] concentrate on the internal calibration of cameras407

underwater, when a planar refractive surface separates the two media (air and water).408

However, to the best of our knowledge, the epipolar geometry resulting from refraction has not409

been analyzed till now. In the presence of refraction, this geometry not only encodes the relative410

position of the cameras, but also information about the relative refractive index between the two411

media in question, and the geometry of the surface separating the concerned media. In this paper,412

we concentrate on the multi-view relationships induced by a refractive planar surface. We choose to413

deviate from the generic scene assumption of Kutulakos et al [73], which enables us to completely414

describe the epipolar geometry in the presence of refraction. In this respect, our work is closer to415

Barreto & Sturm [130] and Glaeser & Schröcker [44]. In [44], the authors define the equation that416

governs the projection of a 3D point onto an image, while being refracted across a planar surface. We417

follow an approach that is along the lines of [130] in deriving the various multi-view relationships418

in the presence of refractions by a planar surface whereas did so for [130] did so for reflection off419

quadrics (central catadioptric cameras).420

In the following sections, we derive the various multi-view relationships between two views of a421

scene, when a planar transparent surface separates the scene from the camera. The two media are422

assumed to have different refractive indices. First, we define the projection matrix for such cameras423

for lines, where we show that a 3D line is mapped to a quartic curve. Next we derive the fundamental424

matrix between two views, which turns out to be a function of the camera poses and the plane normal425

and refractive index. We then derive an expression for the homography between a scene plane and426

its image on the camera. Finally, we give algorithms for obtaining the relative pose between two427

cameras in specialized cases, by deriving the expression of what is commonly referred to as Snell’s428

Window.429

Background & Notation Consider the scenario where the scene contains a planar transparent re-430

fractive surface, with cameras on one side of the plane and the actual scene, composed of opaque431

objects, on the other side. Let the relative refractive index between the two media on either side of432

the plane be denoted by λ (=
n1

n2

), where n1 is in the medium with cameras). Let us remember that433
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the incident and refracted angles are related by434

sin(θ2) = λ sin(θ1) (2.1)

where θ1 is the incident angle, and θ2 is the refracted angle.435

Images of objects on the opposite side of the cameras are formed after refraction by the surface436

in consideration. We wish to deduce external calibration information about the cameras and the437

geometry of the refracting plane from such images alone. Further along this chapter, we make cer-438

tain assumptions about the geometry of the scene, refractive index etc. to simplify matters. Such439

assumptions will be detailed when necessary.440

In the rest of the chapter, we use the following coordinate system. Let the 3D refractive plane,441

denoted by π =
�

v⊤ d
�⊤

take the values
�

0 0 1 0
�⊤

, which aligns it with the X-Y plane of the442

world coordinate system. Let two cameras P1 and P2 be situated in the following manner443

P1 = R1

�
I −t1

�
(2.2)

P2 = R2

�
I −t2

�
(2.3)

t1 =
�

0 0 −1
�

(2.4)

where R1,R2 are rotation matrices. Here, the position t1 of the first camera is fixed without loss of444

generality. The position t2 of the other camera, is not restricted.445

Now, the only undecided component about the world coordinate system is the location of the X- and446

Y-axes, which can vary upto rotation about the Z-axis. Although this can easily be fixed by assuming447

the first camera’s coordinate axes to be aligned with that of the world, we ignore this unnecessary448

assumption for now. Finally, for the purposes of this chapter, the internal parameters of all cameras449

are assumed to be I3×3,i.e., the cameras are calibrated.450

Now, let us define notations for points. We denote an image point by the variable x, which is a451

3× 1 homogeneous vector defined as x =
�

x y 1
�⊤

. The direction vector for an image point is452

a 4× 1 homogeneous coordinate and is represented by q =
�

q̃3×1 0
�⊤
=
�
(R⊤x̃)⊤ 0

�⊤
, and its453

j th coordinate for the i th camera is represented by qi, j, or by q j when there is only one camera. The454

vector x̃ represents the unit vector corresponding to image point x. Thus ‖q̃‖= 1. A vector formed by455
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collecting elements from another is represented in braces. For example, L1,(6,1,2) represents a vector456

formed by elements 6, 1 and 2 in L1. The Plücker coordinates of a 3D line is denoted by L. Matrices457

are represented using the font M, and vectors are represented as v. bM denotes lifted coordinates458

(bq =
�

q2
1

q1q2 q2
2

q1q3 q2q3 q2
3

�⊤
[63; 130]). Finally, if two vectors are related by a linear459

transformation (q= R⊤x), their lifted coordinates are related by [63; 130]460

bq= D−1S(R⊗R)S⊤bx (2.5)

Henceforth, all derivations are done with q, i.e. the back-projection direction for image point x, while461

noting that the corresponding equations for x can be obtained (if desired) by using Equation 2.5.462

2.2 The Camera Projection Matrix463

The first step in deriving the epipolar geometry needed to describe multi-view relationships is the464

camera matrix. We proceed to derive the camera matrix by first defining the back-projection of a465

point, and then focusing on the condition that it intersects a 3D line.466

2.2.1 Back-projecting a Point467

It has been previously shown that the image of a 3D point after refraction from a plane is the solution468

of a quartic equation that lies within a specified interval [44]. We proceed to show that the image469

of a line after refraction is a quartic curve, and from this projection we derive a description of the470

camera matrix for refraction.471

Consider a 3D point with inhomogeneous coordinates X. An image point x with back-projection472

direction q (both in homogeneous coordinates) represents an image corresponding to X, if the line473

from the camera center in the direction of q passes through X after refraction. After developing the474

refraction equation 2.1 for vectors, we can get the point Q on the refraction plane π, and the direction475
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of the refracted ray R as476

Q=

 
t3q̃− q3t

−q3

!
, R=




q1λ

q2λp
(1−λ2) +λ2q2

3

0




(2.6)

where Q3 = 0. The corresponding Plücker coordinates of the refracted ray can be written as477

L =

 
Q4R1...3− R4Q1...3

Q1...3×R1...3

!
=




−q1q3λ

−q2q3λ

−q3

p
(1−λ2) +λ2q2

3

(q2 t3− q3 t2)
p
(1−λ2) +λ2q2

3

(q3 t1− t3q1)
p
(1−λ2) +λ2q2

3

(q1 t2− q2 t1)q3λ




(2.7)

Now, if L intersects a 3D line, it can be concluded that this 3D line projects onto the points given by478

the locus of q, and hence x. Using this principle, we derive the projection matrix.479

2.2.2 The Refractive Projection Matrix480

Let A,B be two homogenous points on some 3D line L. The Plücker coordinates of this line are481

given as L1 =
�

A4B(1,2,3)− B4A(1,2,3) A(1,2,3)× B(1,2,3)

�⊤
. The back-projection line L in Equation 2.7482

intersects this line iff these two lines satisfy the Klein quadric constraint [108], defined by the matrix483

W =

 
0 I

I 0

!
. This can be developed as follows484

L⊤
1
WL = 0 (2.8)�

L⊤
1,(4,5,6)

L⊤
1,(1,2,3)

�
L = 0 (2.9)

�
L1,(6,1,2)

�⊤


−q3

q2 t3− q3 t2

q3 t1− t3q1



p
(1−λ2) +λ2q2

3 = q3λ
�

L1,(4,5,3)

�⊤



q1

q2

q2 t1− q1 t2


 (2.10)
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Squaring both sides removes the square root. Noting that for two vectors a and b, (a · b)2 = Dba · bb or485

ba ·Dbb where D= diag
�

1 2 1 2 2 1
�

, we get486

�bS(1−λ2+λ2q2
3
)− bTλ2q2

3

�
Dsbq = 0 (2.11)

�
bS(1−λ2) λ2(bS− bT)

� Ds 0

0 Ds

!

︸ ︷︷ ︸
D̄s

 
bq

q2
3
bq

!
= 0 (2.12)

S=
�

L1,(6,1,2)

�⊤



0 0 −1

0 t3 −t2

−t3 0 t1




︸ ︷︷ ︸
ts

,T=
�

L1,(4,5,3)

�⊤



1 0 0

0 1 0

−t2 t1 0




︸ ︷︷ ︸
tt

(2.13)

bS and bT are defined as functions of ts and tt respectively, using Kronecker products and symmetric487

vectorization as defined in Equation 2.5 (See also [63; 130]).488

Observe that equation 2.12. defines a quartic curve in the image coordinates (since the lifted489

coordinates of q and x in Equation 2.5 are related by linear transformations). Note that the camera490

position t1, refractive index λ and R are already absorbed in q. We can thus conclude that a 3D line is491

imaged to a quartic curve in a perspective camera, if seen through a refractive planar surface. Notice492

that the coefficents of the quartic curve in q can be defined as a linear function of bL1. Let493

c = D̄⊤
s

 bS⊤(1−λ2)

λ2(bS− bT)⊤
!

(2.14)

= D̄⊤
s

 
(1−λ2)Ds

−1Ssts ⊗ tsSs

⊤ 0

λ2Ds

−1Ssts ⊗ tsSs

⊤ −λ2Dt

−1Sttt ⊗ ttS
⊤
t

!

︸ ︷︷ ︸
P

 bL1,(6,1,2)

bL1,(4,5,3)

!
(2.15)

Then, equation 2.12 can be written as c⊤

 
q̂

q2
3
q̂

!
= 0. c contains all coefficients of the quartic curve494

that is the image of L1. Equation 2.15 shows that this curve can be computed by applying a projection495

matrix P to the lifted coordinates of the 3D line.496

We have thus derived the projection matrix for a perspective camera viewing a scene separated by497
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(a) (b)

Figure 2.1: (a) shows the projection of a 3D line onto the camera after refraction. (b) shows the back-
projection of a line in the image.

a planar refracted surface. It projects the lifted Plücker coordinates of a line, L1, onto a quartic curve498

in the image space, whose coefficients are elements of the vector c (Figure 2.1a).499

2.3 The Refractive Fundamental Matrix500

In the previous section, we defined the projection matrix for 3D lines. Continuing the same argument,501

we can see that the epipolar curve in the first image is nothing but the projection of a line. This line,502

in turn, is the back-projection of an image point from the second camera. Using the back-projection503

equation 2.7, we get the back-projected ray from the second image as504

L2 =




−q2,1q2,3λ

−q2,2q2,3λ

−q2,3

p
1−λ2(1− q2

2,3)

(q2,2 t2,3− q2,3 t2,2)
p

1−λ2(1− q2
2,3)

(q2,3 t2,1+ t2,3q2,1)
p

1−λ2(1− q2
2,3)

(q2,1q2,3 t2,2− q2,2q2,3 t2,1)λ




(2.16)
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where q2 =
�

q2,1 q2,2 q2,3

�⊤
and t2 =

�
t2,1 t2,2 t2,3

�
are the image point and the position of the505

second camera. Substituting L2 in the place of L1 in Equation 2.15 will give us the desired result, i.e.506

the image of the back-projection line L2, which is nothing else than the epipolar curve associated with507

q2.508

We now express the epipolar constraint, i.e. the constraint that a point q in the first image lies on509

the epipolar curve of q2. To do so, we first observe that510

ÚL2,(6,1,2) = D−1
u
Sutu⊗ tuS

⊤
u
bq2q2

2,3
λ2, tu =



−1 0 0

0 −1 0

t2,2 −t2,1 0


 (2.17)

ÚL2,(4,5,3) = D−1
v
Svtv ⊗ tvS

⊤
v
bq2(1−λ2+ q2

2,3
λ2), tv =




0 t2,3 −t2,2

t2,3 0 t2,1

0 0 −1


 (2.18)

Now, equation 2.15 can be modified to give the following511

 
bq2

bq2q2
2,3

!⊤ 
0 (1−λ2)Λv

λ2Λu λ2Λv

! 
(1−λ2)Λs 0

λ2Λs −λ2Λt

!
D̄s

 
bq
bqq2

3

!
= 0 (2.19)

 
bq2

bq2q2
2,3

!⊤ 
(1−λ2)λ2ΛvΛs −(1−λ2)λ2ΛvΛt

(1−λ2)λ2ΛuΛs+λ
4ΛvΛs −λ4ΛvΛt

!
D̄s

︸ ︷︷ ︸
F

 
bq
bqq2

3

!
= 0 (2.20)

where Λi = D−1
i
Siti ⊗ tiS

⊤
i
.512

Equation 2.20 defines the Fundamental matrix between two perspective cameras, when looking513

across a planar refractive surface. F is a matrix of dimensions 12×12 that relates the lifted coordinates514

in one image to a quartic curve in the other image. In a coordinate system where the refractive plane515

might be in a general position, this matrix is of dimensions 15× 15. It is a function of the relative516

pose between the cameras, as well as the position of the refractive plane and the refractive index. As517

expected, the quantity F

 
bq
bqq2

3

!
represents the epipolar quartic curve in the second image.518
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(a) (b)

Figure 2.2: (a) shows an illustration of the refraction principle. (b) shows an image of “Snell’s Win-
dow”, a conic that represents the horizon of the outside world. Photo courtesy gerb’s photostream,
http://www.flickr.com/photos/gerb/196296131/

2.4 The Refractive Homography Matrix519

In this section, we derive the relationship between a scene plane in 3D, and its image after refraction.520

Unlike the traditional case, we show that in the current scenario, this transformation is represented521

by a family of homographies that map one set of conics to another set.522

Consider a cone of rays emerging from the camera, centered at the camera center, with an axis that523

is aligned with the normal of the refractive plane and an aperture 2θ1. Let us call this the incident524

cone (Figure 2.2a). Since any ray which is part of this cone surface, makes the same incident angle525

with the normal of the refractive plane, all refracted rays from this cone make the same angle with526

the normal of the refractive plane. Thus the refracted rays form a cone centered at the line joining527

the camera center and the plane, collinear with the normal of the refractive plane, with an aperture528

of θ2 = 2sin−1λ sinθ1. Let us call this the refracted cone.529

Since the image is formed by cutting the incident cone with the image plane, and the actual scene530

plane cuts the refracted cone, the 3D homography can be defined as a family of transformations, that531

transform one conic (formed by the scene plane and refracted cone) to another (formed by the image532

plane and the incident cone). This family is a function of θ1.533
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Given a ray q, the point Q and the refracted ray direction R are given by534

Q = (

 
t

1

!
q⊤− q

�
t⊤ 1

�
)π (2.21)

=

 #
q̃× t

�
× −q̃

q̃⊤ 0

!
π (2.22)

=

 
(q̃× t)×v− q̃d

cos(θ1)

!
=

 
(v)×(t)×q̃− q̃d

cos(θ1)

!
(2.23)

R =
�

q1λ q2λ cos(θ2) 0
�⊤

(2.24)

where θ1 is the incident angle and θ2 is the refracted angle, π =
�

v⊤ d
�⊤

(general position of535

the refractive plane) and (·)× represents a skew symmetric matrix that corresponds to a cross product536

with the vector inside parenthesis. The point S where the above line will strike a plane π1 =
�

v⊤
1

d1

�
537

is now given by538

S =
�

RQ⊤−QR⊤
�
π1 (2.25)

=

 
(Q(1,2,3)×R(1,2,3))× cos(θ1)R(1,2,3)

− cos(θ1)R(1,2,3) 0

!
π1 (2.26)

=

 
−(v1)×(Q(1,2,3)×R(1,2,3)) + cos(θ1)R(1,2,3)d1

− cos(θ1)R(1,2,3) · v1

!
(2.27)

=

 
−(v1)×(v)×(t)×q̃×R(1,2,3)+ (v1)×(q̃×R(1,2,3))d + cos(θ1)R(1,2,3)d1

− cos(θ1)R(1,2,3) · v1

!
(2.28)

=



−(v1)×(v)×(t)×+ d

�
v1

�
×

d1I3×3�
0 0 0

�
−v⊤

1



 

q̃×R(1,2,3)

cos(θ1)R(1,2,3)

!
(2.29)

The vector q̃×R(1,2,3) expands to give
�

q2(cos(θ2)− cos(θ1)) q1(cos(θ1)− cos(θ2)) 0
�⊤

. We can539
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isolate the cosines into a separate matrix to get540

S =



−(v1)×(v)×(t)×+ d

�
v1

�
×

d1I3×3�
0 0 0

�
−v⊤

1







q2(cos(θ2)− cos(θ1))

q1(cos(θ1)− cos(θ2))

0

cos(θ1)q1λ

cos(θ1)q2λ

cos(θ1) cos(θ2)




(2.30)

=



−(v1)×(v)×(t)×+ d

�
v1

�
×

d1I3×3�
0 0 0

�
−v⊤

1







0 a 0

−a 0 0

0 0 0

λ cos(θ1) 0 0

0 λ cos(θ1) 0

0 0 cos(θ2)




q̃ (2.31)

541

=




−(v1)×(v)×(t)×

�
a
�
×
+ d

�
v1

�
×

�
a
�
×
+ d1

 
λ cos(θ1)I2×2 0

0⊤ cos(θ2)

!

−v⊤
1

 
λ cos(θ1)I2×2 0

0⊤ cos(θ2)

!




q̃ (2.32)

(2.33)

∼ Hθ1
x (2.34)

with542

Hθ1
=




−(v1)×(v)×(t)×
�

a
�
×
+ d

�
v1

�
×

�
a
�
×
+ d1

 
λ cos(θ1)I2×2 0

0⊤ cos(θ2)

!

−v⊤1

 
λ cos(θ1)I2×2 0

0⊤ cos(θ2)

!




R⊤ (2.35)

a = cos(θ2)− cos(θ1) (2.36)

a =
�

0 0 a
�⊤

(2.37)
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Equation 2.35 shows how the homography matrix can be expressed as a function of the incident and543

refracted angles. From the above expression, it is clear that there exists a family of homographies544

that are linear in the cosines of these angles, which fully represent the projection of a plane onto545

the image. Although the above expression can be further developed to obtain an expression in lifted546

coordinates that is independent of these angles, i.e., a homography that applies to all points of the547

image and scene plane, we omit the derivation here because of space constraints.548

2.5 Exploiting Snell’s Window549

Till now, we have discussed the general case of planar refraction, which is applicable to any scene550

irrespective of the relative refractive index. Of particular importance, is a special case, when the551

camera is in a denser medium and looking outward into a lighter medium. This amounts to a relative552

refractive index that is > 1 (as per our current convention). In this case, it is possible to image the553

peripheral rays: rays that make an angle of π/2 with the refractive surface normal after refraction,554

and hence are parallel to the refracting surface. The importance of these rays is that any ray with an555

incident angle greater than the incident angle of these rays is reflected back into the denser medium.556

This set of rays thus captures the periphery of the world on the other side of the surface, which in the557

case of underwater imagery is the horizon (Figure 2.2b).558

2.5.1 The Image of Snell’s Window559

Consider a point x that is on the image of this periphery. Since after refraction the ray from this point560

is parallel to the refractive surface, the refracted angle is π

2
, which means561

1−λ2+λ2(π⊤q)2 = 0 (2.38)
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where q =
�
(R⊤x̃)⊤ 0

�⊤
, with x̃ being the unit vector of image point x in the camera coordinate562

system. Let us develop these equations further.563

q⊤ππ⊤q = 1−
1

λ2
(2.39)

x̃⊤R⊤vv⊤Rx̃ = 1−
1

λ2
(2.40)

1

‖x2‖x
⊤R⊤vv⊤Rx = 1−

1

λ2
(2.41)

x⊤R⊤vv⊤Rx = x⊤I3×3x(1−
1

λ2
) (2.42)

x⊤
�
R⊤vv⊤R− (1− 1

λ2 )I3×3

�
x = 0 (2.43)

which shows that the periphery is a conic in image coordinates. The term R⊤v represents the refractive564

plane normal in the camera coordinate system. One of the main advantages of Equation 2.43 is that565

one of the conic’s eigenvectors is the normal of the refractive plane.566

�
R⊤vv⊤R− (1− 1

λ2 )I3×3

��
R⊤v

�
=

1

λ2
R⊤v (2.44)

since v⊤v= 1.567

In fact, it is easy to show that the eigenvalues of the above matrix are 1

λ2 ,−1+ 1

λ2 ,−1+ 1

λ2 . Thus the568

important property of the eigenvalues and eigenvectors of the above matrix is that the only positive569

eigenvalue is the square inverse of the relative refractive index, while the corresponding eigenvector is the570

normal of the refractive plane in the camera coordinate system. Thus we have shown that the image571

of the horizon after refraction from a planar scene is a conic, and that using a simple SVD based572

algorithm it is possible to recover both the plane normal and the relative refractive index from a573

single image.574

2.5.2 Relative Pose Computation575

Given that we can estimate the plane normal (in the camera coordinate system), and the refractive576

index, we now show how to compute the relative pose of a second camera with respect to the first.577

Let us first note that since both the cameras see the same refractive surface, estimating the normal of578
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the plane in the camera coordinate systems of both cameras can help estimating the rotation between579

them upto a rotation about the normal itself. Additionally, we can set the perpendicular distance from580

the camera center of one of the cameras to the refractive plane to 1, so as to set the scale of the581

scene. Since we have chosen a world coordinate system where the plane normal is aligned with the582

Z-axis, there are 4 unknowns that remain to be computed, namely the rotation about the Z-axis and583

the translation parameters.584

In order to solve for these parameters, let us start by observing the fundamental matrix equa-585

tion (2.20). Observe that the image points (rays) are a function of the unknown rotation matrix of586

the second camera, which is of the form R=




cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1


. Thus, the vector

�
bq2 bq2q2

2,3

�⊤
587

is quadratic in the elements of the rotation matrix R. Equation (2.20) thus gives constraints on α and588

t2. Thus, 4 point-correspondences should be sufficient for a solution, although we have not been able589

to obtain a solution using either minimal solution packages or empirically.590

2.6 Discussion and Conclusion591

In this chapter, we have defined the epipolar geometry for scenes where a single plane separates two592

media with different refractive indices. The camera(s) are in one media, while the object(s) being593

observed are on the other side. Such scenarios occur often in underwater vision. We have shown594

that for the case when the camera is in a denser medium, it is even possible to estimate the refractive595

index and the refractive surface geometry from a single image, by observing the so-called “Snell’s596

Window”. Further, we have shown a method to compute the relative pose between two cameras in597

such a scenario.598

The contributions of this work are theoretical, and of conceptual value. Our main motivation for599

this work has been to explicitly model the geometry behind imaging in such scenarios. Apart from600

the theoretical value of the results we have shown thus far, what is also important is that using the601

results of this chapter, it is actually possible now to measure the deviation of the standard perspective602

model in areas like underwater imagery. This is of importance while modeling errors in observation603

using a perspective model.604
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3605

Photogeometric Reconstruction of Transparent606

Objects607

3.1 Introduction608

In the previous chapter we looked at the multiple view geometry associated with a plane. While we609

presented approaches that recover the geometry of the scene and camera using a purely geometric610

fashion, a practical reconstruction algorithm has to contend with scene illumination effects also in611

dealing with transparent refractive surfaces. Also while we derived multiview constraints relating to a612

plane modeling transparent surfaces in a piecewise planar approach using the constraints we derived613

is not easily achieved. To this extent, in this chapter we try to derive an image based approach to614

reconstruct general reflective and transparent surfaces that combines both geometric and photometric615
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information.616
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635

Image-based reconstruction of transparent objects has gathered interest in the last few years [25;636

64; 73; 88; 89; 91; 93]. Several cues and approaches have been proposed for this task. They could637

be broadly classified as approaches that rely on physical (material) properties of transparent objects,638

and approaches that try to extend traditional shape acquisition approaches to the case of transparent639

objects. Among the approaches relying on material properties, geometric and photometric cues are640

the most prominent inputs to reconstruction algorithms.641

Transparent objects referred to in the recent computer vision literature could be categorized into642

two kinds: specular and transluscent. Specular transparent objects are those whose surfaces exhibit643

specular reflection and refraction: for every ray of light incident on the surface, one refracted ray644

and one reflected ray is emitted. Transluscent surfaces generally do not observe this property, they645

emit multiple reflected/refracted rays for every incident ray. In this chapter, we focus on specular646
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transparent objects. For such objects, geometric cues are an important source of information. A647

popular type of approach is based on the so-called light-path triangulation principle [73]. Roughly648

speaking, one acquires images of a reference object with known shape, seen through the transparent649

object or reflected by it. Using camera calibration information, known relative position(s) of reference650

object and camera, and matches between the reference object and the camera images, one may651

recover the “light paths” associated with such matches by techniques akin to structure-from-motion652

and multi-view geometry, provided sufficiently many images in different positions are acquired. A653

light path refers here to a sequence of straight line segments that connect an object point and its654

image, where successive segments are the result of reflections/refractions in the transparent object’s655

surface(s). Let us consider an object point emitting light in “all” directions. Underlying the light path656

triangulation approach is the assumption that only light emitted in a single direction, eventually hits657

the image plane of the camera, after undergoing reflections/refractions in the transparent object. This658

in turn relies on assuming an infinitesimal camera aperture. Also, in some cases there may be multiple659

light paths associated with a single object point, but it is assumed that a single one is observable by660

the camera.661

Similar works use specular highlights produced by transparent/specular objects and the geometric662

cues these provide on the object surface. While specular highlights are sometimes referred to as pho-663

tometric cues, we rather consider them as geometric ones – photometric analysis is usually restricted664

to identifying highlights, after which only geometric information is used. This is similar to light path665

triangulation and similar methods, where photometric information is used to determine matches but666

is then discarded from further processing.667

In our work, we fully combine photometric and geometric information for the reconstruction of668

transparent objects. By photometric information, we mean the intensity values of image pixels and669

the irradiance values of points of the reference object whose reflections/refractions are imaged by670

the camera (in practice, we use screens as reference objects). Let us come back to light paths, as671

defined just above. In addition to modeling the geometric path light follows from an object point until672

its image point, we also model the photometric changes occurring along this path. In particular, real673

objects are neither perfect mirrors nor perfectly transparent: hence, each reflection/refraction causes674

a loss of irradiance. More precisely, light hitting a refractice surface gets partly reflected, partly675

refracted. For specific surface materials, theoretic models exist for how much light gets reflected676

and how much refracted. This depends on the refractive indices of the media in which the light677
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(a) (b)

Figure 3.1: (a) Description of the general theory behind our approach. While the acquisition is similar
to that of Kutulakos et al [73], we also include radiance in our measurements (depicted by the changing
color of rays while they travel from the illuminant to the camera pixel). (b) Our setup to “acquire” the
shape of transparent objects consists simply of a CRT monitor as light source and a camera looking at
light reflected / refracted off the object.

travels as well as on the incidence angle between light path and surface normal. Hence, modeling678

and measuring this phenomenon brings about information on the shape of the transparent object;679

importantly, this information is complementary to the information given by purely geometric input to680

light path triangulation. In essence: consider a scenario where the available information (number of681

images) is insufficient to provide a unique solution for the surface shape using light path triangulation.682

In other words, there are multiple surface shapes that reflect/refract light rays emitted from object683

points in a way that they hit the matching image points. However, when tracing light paths and in684

addition, tracing the loss of irradiance along the paths due to reflection/refraction and comparing685

this against measured image intensities, then one gets one additional constraint per match that may686

allow to uncover a unique solution for our reconstruction problem.687

We present an approach that combines the merits of utilizing both geometric and photometric cues.688

Our approach is along the same lines as [73], with one important difference. For every “light-path”689

that we capture, we record both geometric information (position and direction of light rays captured690

by and originating from light source, depending on requirement) and radiometric information (radi-691

ance of light at the beginning and end of each light-path). We show that our approach benefits from692

the following advantages because it uses a combination of cues:693
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Figure 3.2: (a) Depiction of a the phenomenon of specular reflection and refraction. A single ray of light
incident on the surface of a transparent object is partly reflected and partly refracted. Both rays contain
a fraction of energy of the incident ray, but different polarizations. (b) Reflection coefficients computed
using Fresnel equations. Courtesy [36] (c) Probabilities of orientation of electric fields on incidence (blue,
unpolarized), after reflection (black) and refraction (red) off a surface. Unpolarized light becomes par-
tially polarized after a single bounce. Angles are computed in a plane perpendicular to direction of ray
propagation.

1. It is able to extend the minimal case scenarios of reconstructions beyond those proposed in694

Kutulakos et al. [73]. Thus we reduce the number of views required for reconstruction.695

2. We show that it is possible to reconstruct objects in the presence of significant amounts of inter-696

reflections, caustics and other phenomena that would normally prove a hindrance to geometry697

based approaches.698

The rest of the chapter is structured as follows. Section 3.2 places previous works in perspective.699

Section 3.3 outlines the underlying theory and minimal solutions for our approach, and discuss some700

practical problems to be countered. Section 3.6 shows results for various cases. Finally, Section 3.7701

presents an overall summary of our approach, points to future directions of research and presents702

potential applications.703
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Notation: In the rest of the chapter, we use the following convention. Bold symbols like E de-704

note vectors with direction and magnitude, while Ê denotes its corresponding (unit) direction and E,705

its magnitude. Subscripts Es are either used to denote the components of a vector in a correspond-706

ing direction (in which case Es is the magnitude of the component), or in case of scalars, used to707

differentiate variables referring to the same physical phenomenon or variable.708

3.2 Related Work709

In the past, several approaches have used either geometric or photometric cues to reconstruct trans-710

parent surfaces. Geometric approaches typically measure the deviation from perspective imaging711

produced by a refractive transparent object, and recover the shape as a solution that explains the712

observation. In [73], the authors present a minimal case study of the conditions in which refractive713

surfaces can be reconstructed. They re-cast transparent object reconstruction as the task of recon-714

structing the path of each individual ray of light that is captured by a camera after refraction through715

a transparent surface. They show that individually, it is impossible to reconstruct the entire trajectory716

of a ray of light after it has undergone more than 2 refractions. Earlier approaches have focussed717

on parameterizing the object to be reconstructed and then obtaining its parameters by explaining718

the distortion it produces in several cameras [9]. Other examples of shape recovery from distortion719

analysis include the more recent work by [91], which analyzes the specific case of a single dynamic720

transparent surface that distorts a known background and is observed by multiple cameras. The ob-721

ject surface is reconstructed using a modified stereo reconstruction approach that uses a new distance722

function. Finally, some recent approaches have also looked at learning based solutions that minimize723

a certain criterion of optimality [32; 140].724

Apart from geometry, photometric information also turns out to be very important in the case of725

transparent objects since they simultaneously reflect and refract light. In fact, since they reflect light726

like a specular surface, in principle, any method for specular object reconstruction (like traditional727

photometric stereo) may be applied. Many recent photometric approaches have tried to reconstruct728

transparent surfaces by studying their specularities. While [148] provides a low cost approach to729

reconstruction by studying specular highlights, [91] shows how to reconstruct transparent surfaces730

with inhomogeneous refractive interiors, by measuring highlights multiple times to remove extrane-731

ous effects like scattering, interreflections etc. One important aspect of photometry is polarization.732
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When unpolarized light is reflected or transmitted across a refractive surface, it gets partially polar-733

ized. This degree of polarization is connected to the shape of the object, and several authors have734

attempted to explore this connection. In [65] the authors measure the polarization angle using mul-735

tiple images from a single view taken with different orientations of a polarizer. They then use Fresnel736

theory to derive a relationship between measured polarization state and the angle of reflection. An-737

other approach involving polarization is presented in [88]. Here, the authors start from an initial738

guess for the shape of the object involved, and using a technique called polarization ray tracing, they739

predict the polarization information for that shape, and arrive at the correct shape by minimizing the740

difference between observed and predicted states.741

Since refractive objects present a challenging reconstruction problem, many authors have resorted742

to using active approaches for reconstructions. Methods like fluorescent immersion range scan-743

ning [64] and tomographic reconstructions present alternate approaches that are of practical value744

when objects are of manageable size.745

3.3 Physical Modeling746

Consider a ray of light traveling in space in a direction represented by the vector î. Suppose this ray747

strikes a refractive medium as shown in Figure 3.2a (inset). This ray is accompanied by an electric748

field, whose oscillation direction we denote by the vector Ê. The radiant energy of this ray is related749

to the magnitude of its Poynting vector [60], which is also proportional to the square of the maximum750

amplitude of its electric field751

Iin ∝ E2 (3.1)

where E denotes the maximum amplitude of the electric field [60]. When such a ray falls on the752

boundary of a refractive medium, part of this energy is transmitted, and the rest is reflected (assuming753

no absorption by the media). Our contention is that the ratio of irradiance of the transmitted or754

reflected rays with respect to the incident ray contains information about the 3D structure of the755

surface. The ratio of these energies can be computed using Fresnel equations relative to the plane of756

refraction, the plane that contains the incident ray, the normal and the refracted ray.757

Let us denote the normal of this plane as π̂, and subsequently divide the electric field into two758

components (directions): one that is perpendicular to this plane (Ês) and the other that is parallel to759

42



this plane (Êp). (∴ E2 = E2
s
+ E2

p
). Thus given incident angle θ1 and refracted angle θ2 (Figure 3.2a760

(inset)), and refractive indices (n1, n2), the following equations describe the phenomenon761

n1 sin(θ1) = n2 sin(θ2) (3.2)

Rs =
sin2(θ1− θ2)

sin2(θ1+ θ2)
(3.3)

Rp =
tan2(θ1− θ2)

tan2(θ1+ θ2)
(3.4)

Ts =
4sin2(θ2) cos2(θ1)

sin2(θ1+ θ2)
(3.5)

Tp =
4sin2(θ2) cos2(θ1)

sin2(θ1+ θ2) cos2(θ1− θ2)
(3.6)

Ir l ∝ E2
s
Rs + E2

p
Rp (3.7)

Ir r ∝ E2
s
Ts + E2

p
Tp (3.8)

Equations (3.3)-(3.4) are called Fresnel equations [36; 60].762

Polarization A single light ray’s electric field could be oriented in any direction that is perpendicular763

to the direction of ray propagation. The above equations show that transmitted and reflected energies764

depend on this direction. However, since a camera is a light integration device, it records information765

from several such rays in a range of directions at each pixel. This helps us integrate out the bias766

of a single ray towards a particular direction. However, we assume that the illuminant that we use767

generates light rays that are not biased towards any electric field orientation (unpolarized light).768

For unpolarized light, the values of Es and Ep can be written as Es = E cos(φ) and Ep = E sin(φ),769

where φ is the angle made by the E vector with π̂. We use the term polarization angle to refer to φ770

in this chapter. In the next section, we analyze the change in irradiance captured by a camera when771

light bounces (reflects or refracts) off a surface once and twice, since it is known that geometrically772

it is impossible to reconstruct more than two bounces, when reconstructing each light-path individu-773

ally [73]. With photometry too, reconstruction of light-paths with two bounces is not possible without774

using Fresnel equations.775
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I Image Intensity.

Il Intensity after reflection.

Ir Intensity after refraction.
3Il r l Image intensity after 3 bounces. (reflection, refractin, re-

flection).
k Il l r...r Intensity after k bounces of reflections and/or refractions.

ρ(φ) Polarization angle probability.

Single Bounce Notations

π Plane of refraction.

θ1 Angle of incidence.

θ2 Angle of reflection/refraction, depending on case.

E Electric field vector accompanying light ray.

E Electric field magnitude accompanying light ray. ‖E‖
Es, Ep Magnitude of components of E perpendicular and parallel

to plane.

φ Angle made by electric field with π.

Rs, Ts Reflection/Transmission coefficient for E along the vector

π.

Rp, Tp Reflection/Transmission coefficient for E perpendicular to

π.

Note that Es = E cos(φ), Ep = E sin(φ)

Table 3.1: Single Bounce Notations
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Double Bounce Notations (First Bounce)
1π Plane of refraction.
1θ1 Angle of incidence.
1θ2 Angle of reflection/refraction, depending on case.
1E Electric field vector accompanying light ray.
1E Electric field magnitude accompanying light ray.
1φ Angle made by electric field with π1.

1Rs,
1Ts Reflection/Transmission coefficient for E1 along vector π1

1Rp, 1Tp Reflection/Transmission coefficient for E1 perpendicular to π1

Double Bounce Notations (Second Bounce)
2π Plane of refraction.
2θ1 Angle of incidence.
2θ2 Angle of reflection/refraction, depending on case.
2E Electric field vector accompanying light ray.
2E Electric field magnitude accompanying light ray.
2φ Angle made by electric field with π2.

2Rs,
2Ts Reflection/Transmission coefficient for E2 along vector π2

2Rp, 2Tp Reflection/Transmission coefficient for E2 perpendicular to π2

Table 3.2: Double Bounce Notations
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3.4 Theory of Bounces776

In this section, we develop relations between reflected or transmitted light energy and its relation to777

the 3D structure of the transparent object. For convenience, we hereafter denote an ensemble of rays778

traveling in the same direction in the same position in space but with different polarization angles, as779

a single ray. We further use the symbol I to represent the irradiance of such an ensemble as measured780

by a camera. All notations used in this chapter, are summarized in tables 3.1 and 3.2.781

3.4.1 Case 1: Single Bounce782

Consider a ray î back-projected from a CCD pixel of a camera. Assume that this back-projected783

ray reflects off a transparent surface once, before hitting any number of illuminant points Xm (one784

illuminant per image) in space. Figure (reference) depicts this scenario. In such a case, the average785

irradiance of reflected components can be expressed as786

Ir l = RsE
2

1

π

∫ π
2

− π
2

cos2(φ)dφ + RpE2
1

π

∫ π
2

− π
2

sin2(φ) (3.9)

=
1

2
(RsE

2+ RpE2) (3.10)

=
Rs + Rp

2
(E2) (3.11)

=
Rs + Rp

2
Iin (3.12)

where Iin represents the radiance of the ray emitted from one point Xm. Rs and Rp are defined in787

equations 3.3 and 3.4. If the light is partially polarized, then φ varies within a range (l, u) depending788

on the degree of polarization. Also, since all directions are not present in equal probability, the789

irradiance equation has to be modified to790

Ir l = RsE
2

∫ u

l

cos2(φ)ρ(φ)dφ + RpE2

∫ u

l

sin2(φ)ρ(φ) (3.13)
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where φ is the probability distribution function with
∫ u

l
ρ(φ) = 1. The transmitted energy Ir r also791

has a similar formulation, following from equation (3.8). Notice that equations (3.3)-(3.4) can be792

used to show that light rays after reflection / refraction are partially polarized [60]. We now list the793

two main triangulation results of the single bounce case. The problem of triangulation is to estimate794

the point(s) at which every light-path intersects the transparent surface along with the normal at795

that point, given 2D-3D correspondences. We use the notation of [73] to represent the triangulation796

problems (< 1, 2, 3> means 1 view, 2 bounces and 3 3D correspondences per light-path). Both the797

problems mentioned below have been earlier shown to be tractable with lesser information [73].798

Result 1: < 1,1, 1> Triangulation Consider any point at depth dk from the camera center along799

î. This point is associated with a unique normal n̂k such that the reflected ray passes through the800

point Xm. In the case of refraction, this point is associated with a set of normal-refractive index pairs801

that allow the refracted ray to pass through Xm. However, it is also associated with a radiance ratio802

Iα = Ir l/Iin =
2

Rs+Rp
(or Iα = Ir r/Iin) which is a function of the reflection (refraction) angle and the803

relative refractive index
n1

n2

. Thus when the refractive index is known we have one variable dk and804

one constraint Iα. Thus, < 1,1, 1> Triangulation is tractable.805

Result 2: < 1,1, 2> Triangulation In this case, we need two observations (X1,X2) to compute the806

value of the incident ray direction, similar to [73]. Unlike them however, even when light is only807

reflected off a transparent object surface, equation (3.12) can be used to solve for relative refractive808

index
n1

n2

.809

3.4.2 Case 2: Double Bounce810

When light bounces off a transparent dielectric surface, it is partially polarized. If the outgoing light’s811

electric field is parametrized by the angle ψ then we have812

ρ(ψ)l =

p
RsRp

|(Rp − Rs) cos2(ψ) + Rs|
1

π
(3.14)

ρ(ψ)r =

p
TsTp

|(Tp − Ts) cos2(ψ) + Ts|
1

π
(3.15)
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where the limits are (l = −π
2
, u = π

2
) (See Appendix (Section .2). Thus, in the case of a second813

bounce, the incident light is already partially polarized. In this case, we use equation 3.13 to derive814

the irradiance measured as a function of the radiance emitted by the illuminant. This irradiance is815

given as816

2Il l = E2
1

2

�
(2Rs

1Rp +
1Rs

2Rp) sin
2(α) + (1Rs

2Rs +
1Rp

2Rp) cos2(α)
�

(3.16)

where α is the angle between the normals to the two planes of refraction/reflection. (Please refer to817

the Appendix (Section .2) for a proof).818

Result 3: < 2,2, 2> Triangulation Consider two cameras looking at a transparent object, which819

refracts light from a known illuminant twice. Further assume that for each camera, two measurements820

were made per light ray. This corresponds to the case < 2, 2, 2> as per the convention of [73]. Since821

equations (3.14, 3.15) give us one extra constraint per light ray, it is now possible to solve for the 3D822

structure of the transparent object given known refractive index.823

Result 4: < 3,2, 2> Triangulation It is known that this problem is tractable in the case of known824

refractive index. However, it is now possible to solve for this case even with unknown refractive825

index, since all the radiance ratios obtained have to be consistent with both the light-path geometry826

and photometric observations.827

A table containing the minimal scenarios for transparent objects that can now be solved with the828

help of irradiance measurements is shown in Table 3.3. It is interesting to note that transparent829

objects have lesser minimal requirements for reconstruction than mirror like objects. While in this830

section we have presented a counting argument to solving single and double bounce cases, we will831

detail the characteristics of the solutions that can be obtained in the next section. Specifically, we832

analyze the solution space for both cases and present some practical aspects of data acquisition.833

3.5 Methods of Solutions834

Understanding the physics behind the radiance of a single ray of light captured by a camera gives us835

the radiometric tools needed to reconstruct a light-path. In this section, we use this understanding836
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One reference point. (M = 1)

K = 1 K = 2 K ≥ 3

N = 1
p

N = 2
p ×∗

Two or more reference points. (M ≥ 1)

K = 1 K = 2 K ≥ 3

N = 1
p ×∗

N = 2
p ×∗ p

N = 3
p ×∗ p ×

N ≥ 4
p ×∗ p ×∗

Table 3.3: Tractable triangulation problems. Updated from [73]. The asterik symbol represents the fact
that even in the case of only reflection, the relative refracitve index can be computed.

to derive the solution space of depths and normals that could explain the geometric and photometric837

characteristics of a light-ray observed by a camera.838

3.5.1 Single Reflection or Refraction839

The category of single bounce cases pertains to the scenario where a light-path is composed of two840

line segments. This could mean that the light ray associated with the light-path underwent refraction841

or reflection. In this section, we deal with the case of reflections, i.e. the camera acquires images of842

the monitor, reflected in the object to be reconstructed. The case of refraction is analogous.843

Let us now consider a single pixel and the acquired intensity Il . The pixel’s line of sight is known844

by calibration. Let d be the depth of the object along this line of sight, P be the intersection point845

of the object surface and the line of sight, and n the surface normal at that point. Further, given the846

matching (cf. above), we know the point X on the monitor whose reflection is seen in the pixel.847

Our goal is to compute the depth d. We do so by first computing the incident angle θ1 between the848

surface normal and the incident light ray, from which it is trivial to compute d.849

Since our setup is radiometrically calibrated, we have, from (equations (3.3,3.4)):850

Il =
sin2(θ1− θ2)

2 sin2(θ1+ θ2)

�
1+

cos2(θ1+ θ2)

cos2(θ1− θ2)

�
I
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Let r =
Il

Iin
; we then get the equation851

r =
sin2(θ1− θ2)

2sin2(θ1+ θ2)

�
1+

cos2(θ1+ θ2)

cos2(θ1− θ2)

�

Note that although we are considering the case of reflection here, the refracted angle θ2 neverthe-852

less appears in the equation, due to the “light fall-off” caused by the object’s refractive property.853

In the following let us denote s1 = sin(θ1) and c1 = cos(θ1). Further, we use λ =
n1

n2

as the relative854

refractive index, D = 1 − λ2s2
1

and c2 = ±
p

1− s2
2 = ±

p
1−λ2s2

1 = ±
p

D. Thus, from the above855

equation, we get856

r =
Rs + Rp

2

=
sin2(θ1− θ2) + cos2(θ1+ θ2) tan2(θ1− θ2)

2 sin2(θ1+ θ2)

=

�
s1c2− c1s2

	2
+
�

c1c2− s1s2

	2 {t1−t2}2
{1+t1 t2}2

2
�
s1c2+ c1s2

	2
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p
D−λc1s1

©2
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±c1

p
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1

©2

n
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s1p
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o2

n
1±t1n

s1p
D

o2

2
¦
±s1

p
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©2
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±s1

p
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©2
+ s2

1

¦
±c1

p
D−λs2

1

©2

§p
D∓λc1
c1
p

D

ª2

¨
c1
p
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1

c1
p

D

«2

2
¦
±s1

p
D+λc1s1
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=

¦
±s1

p
D−λc1s1

©2
+ s2

1

¦
±c1

p
D−λs2

1

©2
§ p

D∓λc1

c1

p
D±λs2

1

ª2

2
¦
±s1

p
D+λc1s1

©2

=

¦
±s1

p
D−λc1s1

©2 ¦
c1

p
D±λs2

1

©2
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1

¦
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p
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1
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857

=

¦
±c1s1(1−λ2s2

1
)∓λ2c1s3

1
+λs1

p
D(s2

1
− c2

1
)
©2
+ s2

1

¦
±c1(1−λ2s2

1
)±λ2c1s2

1
−λ
p

D
©2

2
¦
±c1s1(1−λ2s2

1)±λ2c1s3
1 +λs1

p
D
©2

=

¦
±c1s1(1− 2λ2s2

1
) +λs1

p
D(s2

1
− c2

1
)
©2
+ s2

1

¦
±c1−λ

p
D
©2

2
¦
±c1s1+λs1

p
D
©2

=
c2

1
(1− 2λ2s2

1
)2+λ2(2s2

1
− 1)2(1−λ2s2

1
) + c2

1
+λ2(1−λ2s2

1
)± 2λc1

p
D((1− 2λ2s2

1
)(2s2

1
− 1)− 1)

2c2
1 + 2λ2(1−λ2s2

1)± 4λc1

p
D

=
1− s2

1
(n4+ 4λ2+ 1) + 4λ2s4

1
(λ2+ 1)− 4λ4s6

1
± 2λc1

p
D(−1+ s2

1
(λ2+ 1)− 2λ2s4

1
)

n2+ 1− s2
1(λ

4+ 1)± 2λc1

p
D

We put the terms including
p

D on one side of the equation and the rest on the other:858

±2λc1

p
D
¦

r + 1− s2
1
(λ2+ 1) + 2λ2s4

1

©

= 1− s2
1
(λ4+ 4λ2+ 1) + 4λ2s4

1
(λ2+ 1)− 4λ4s6

1
− r
¦
λ2+ 1− s2

1
(λ4+ 1)

©

After squaring both sides of the equations and bringing them back together, we get:859

0 = −r2(λ2 − 1)2((λ2 + 1)s2
1 − 1)2

+r
¦

8λ4(λ2 + 1)2s8
1 − 8λ2(λ2 + 1)(λ4 + 4λ2 + 1)s6

1 + 2(λ8 + 12λ6 + 30λ4 + 12λ2 + 1)s4
1 − 2(λ6 + 14λ4 + 13λ2 + 2)s2

1 + 10λ2 + 2
©

−4λ4(λ2 − 1)2s8
1 + 4λ2(n6 − 3λ4 −λ2 + 1)s6

1 − (λ
8 − 4λ6 + 18λ4 − 4λ2 − 1)s4

1 − 2(5λ4 + 2λ2 − 1)s2
1 + 4λ2 − 1

Finally, rearranging the terms with respect to s1, one obtains the following constraint in θ1860

s8
1

¦
4λ4

�
2r(λ2+ 1)2− (λ2− 1)2

�©

+s6
1

¦
4λ2

�
(λ6− 3λ4−λ2+ 1)− 2r(λ2+ 1)(λ4+ 4λ2+ 1)

�©

+s4
1

¦
2r(λ8+ 12λ6+ 30λ4+ 12λ2+ 1)− r2(λ4− 1)2− (λ8− 4λ6+ 18λ4− 4λ2− 1)

©

+s2
1

¦
2r2(λ2− 1)2(λ2+ 1)− 2r(λ6+ 14λ4+ 13λ2+ 2)− 2(5λ4+ 2λ2− 1)

©

+
¦

2r(5λ2+ 1)− r2(λ2− 1)2+ 4λ2− 1
©
= 0 (3.17)

Here, λ =
n1

n2

and s1 = sinθ1.861
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We observe that this is a quartic polynomial in sin2 θ1, i.e. the computation of θ1 can be considered862

as being (close to) a closed-form solution.863

Given an estimate for θ1, the depth d can be computed by triangulating the incident and reflected864

rays (since camera centre and 3D correspondence are known, and knowledge of θ1 gives normal and865

reflected ray directions) Among the up to 8 possible real solutions for θ1, at most 4 will correspond866

to a positive depth, i.e. a surface point in front of the camera. Finding a unique θ1 and thus depth,867

is made possible in most practical circumstances, as follows. First, the absolute value of θ1 must be868

below 90◦. Second, θ1 is typically (much) larger than 30◦, due to the practical setup which requires869

that the camera have both a reflected and a direct view of the monitor. Consider the graph of r as a870

function of θ1 for the refractive index of water (n2 = 1.33), in figure (ref figure here) (here, both the871

camera and the monitor, are in air, i.e. n1 = 1). One observes that for the values of r associated with872

θ1 ∈ (30◦, 90◦), there is a unique θ1 producing these values. To be precise, θ1 is unique up to sign,873

but only the positive solution corresponds to a depth/point in front of the camera.874

Let us summarize the above findings. From images acquired with a completely static setup, we are875

able to compute the depth of the transparent object, for each pixel in which a reflection is visible.876

To do so, we need to know the refractive index of the object’s material. A unique solution for depth877

is possible in a large range of practical conditions. In case these are not fulfilled, one may still use878

bounds on the object depth to get a unique solution.879

3.5.2 Double Bounce880

In this section we consider the problem of solving for the depth of surfaces in the presence of two881

bounces. We first analyse the simplest case, when a rectangular slab separates the camera and the882

reference. To further simplify the case, we consider the camera plane, the reference planes and the883

planes of the slab to be parallel. Hence the problem reduces to the estimation of the two ”depths”884

of the slab’s planes. Figure 3.3 illustrates this case and the associated coordinate system in which885

we operate. Note that like opaque objects, each point on the surface of the slab produces one image886

point. However, unlike opaque objects, the correspondence between image points of a particular887

surface point in C1 and C2 cannot be computed since the surface point does not have an ”appearance”888

but simply transfers a fraction of the appearance of its background. In fact, every back-projected889

image point from C1 or C2 intersects the slab surface at two points and hence has two ”depths”890
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Figure 3.3: Figure representing the simplest double bounce case. Two cameras look at a rectangular
glass slab at the CRT monitor placed at two positions, producing overall 4 images. Note that in 3D the
intersection point Nk might not actually exist for all values of dk.
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associated with it. Since there are two depth values associated with every ray, and no correspondence891

information is available between cameras, we need two views to achieve minimal requirements for892

a solution. We also need two monitor positions because we need to know the final refracted ray’s893

position and direction.894

In Figure 3.3, consider a ray with direction i1
1

from camera C1. This ray intersects the slab twice895

before ending up on monitor pixel X1, with final refracted ray y1
1
. Because of the presence of parallel896

slabs, we have i1
1
= y1

1
. This light-path also contains two intersection points with the rectangular slab,897

1T 1
1

and 2T 1
1

. In order to reconstruct this light-path, we hypothesize the positions of these intersection898

points. We then verify the hypothesis using camera C2. The verification is done in two stages. In the899

first stage we verify the validity of the light-path produced in C2 because of the normal and depth900

values obtained using the first light-path. In the second stage, we verify whether the light-paths901

satisfy their photometric constraints (using Fresnel equations). Note that although there is a 2D set902

of values for (1T 1
1

, 2T 1
1
), not all values satisfy the Fresnel equations for the first light-path itself.903

We model the different light-path hypotheses using two parameters d1
k

and 1θ 1
k
. While d1

k
models904

the depth of the point 1T 1
1

from the point C1 in the direction of i1
1
, 1θ 1

k
models the angle between i1

1
and905

the normal for the first bounce, nk. Note that using an angle formulation is possible in this case since906

we know the plane of refraction Π1, as it contains C1, X1 and i1
1
. Also, generating normal hypotheses907

in this plane ensures that the point 2T 1
1

exists. The remaining parameters used in our derivation are908

expressed in Figure 3.3.909

Firstly, we look at the geometric constraint. This involves identifying the conditions for the refracted910

ray from C2 to intersect its corresponding ray from Xk along i2
k
. To do this, we need to derive the values911

of nk, dk and the direction of the middle segment of both light-paths. We define nk and the middle912

segment m1
k

as913

nk = i1
1

cos(1θ 1
k
) + j1

1
sin(1θ 1

k
) (3.18)

1θ 1′

k
= sin−1(λ sin(1θ 1

k
)) (3.19)

m̄1
k
= nk cos(1θ 1′

k
) +λ(i1

1
− nk cos(1θ 1

k
)) (3.20)

= i1
1

cos(1θ 1
k
) cos(1θ 1′

k
) +λi1

1
sin2(1θ 1

k
) + j1

1
sin(1θ 1

k
) cos(1θ 1′

k
)−

j1
1

sin(1θ 1′

k
) cos(1θ 1

k
) (3.21)

= i1
1

cos(1θ 1
k
− 1θ 1′

k
) + j1

1
sin(1θ 1

k
− 1θ 1′

k
) (3.22)
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where m1
k
=

m̄1
k

‖m̄1
k
‖
. Now, the first segment of the light-path of C2, and its angle with normal nk, 1θ 2

k
can914

be defined as915

i2
k
=

C1+ dki1
1
− C2

‖C1+ d1
k
i1
1 − C2‖

=
ī2
k

‖ī2
k
‖

(3.23)

1θ 2
k
= cos−1(nk · i2

k
) (3.24)

In a similar manner to the approach described for m1
k
, we can derive the equation for m2

k
as916

m̄2
k
= nk cos(1θ 2′

k
) +λ(i2

k
− nk cos(1θ 2

k
)) (3.25)

= nk

Æ
(1−λ2 sin2(1θ 2

k
)) +λ(i2

k
− nk(nk · i2

k
)) (3.26)

= nk

p
(1−λ2) +λ2(nk · i2

k
)2+λ(i2

k
− nk(nk · i2

k
)) (3.27)

Finally, we can define the geometric constraint as the condition that the two rays X2 + αī2
k

and C2 +917

γi2
k
+ βm̄2

k
intersect (where γ is ‖d1

k
i1
1
+ C1− C2‖). In other words918

C2+ γi2
k
+ βm̄2

k
= X2+αī2

k
(3.28)

(C2− X2)× ī2
k
+ 0+ βm̄2

k
× ī2

k
= 0 (3.29)

(C2− X2)× ī2
k
= −βm̄2

k
× ī2

k
(3.30)

The above constraint really specifies that for a valid set of parameters the planes given by (X2−C2), i2
k

919

and nk, i2
k

are one and the same. By using equation (3.25), we get920
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(C2− X2)× ī2
k
= −β

#
nk × ī2

k
cos(1θ 2′

k
) +

λ(0− nk × ī2
k

cos(1θ 2
k
))
�

(3.31)

= −β(nk × ī2
k
)(cos(1θ 2′

k
)− cos(1θ 2

k
)) (3.32)

((C2− X2)× ī2
k
)× (nk × ī2

k
) = 0 (3.33)

#
(C2− X2)× (C1− C2)︸ ︷︷ ︸

a

+d1
k
(C2− X2)× i1

1︸ ︷︷ ︸
b

�

×
#

cos(1θ 1
k
) i1

1
× (C1− C2)︸ ︷︷ ︸

x

+

sin(1θ 1
k
) j1

1
× (C1− C2)︸ ︷︷ ︸

y

+d1
k

sin(1θ 1
k
) ( j1

1
× i1

1
)︸ ︷︷ ︸

z

�
= 0 (using equations (3.23 & 3.18)) (3.34)

Note that vectors a, b, x , y, z are all known quantities. We can further simplify this to remove the921

effect of 1θ 1
k

using the following steps922

a× x cos(1θ 1
k
) + b× x d1

k
cos(1θ 1

k
) + a× y sin(1θ 1

k
) +

b× y d1
k

sin(1θ 1
k
) + a× z d1

k
sin(1θ 1

k
) + b× z(d1

k
)2 sin(1θ 1

k
) = 0 (3.35)

b× x
#
a× x

#
a× y + b× y d1

k
+ a× z d1

k
+ b× z(d1

k
)2
��

sin(1θ 1
k
) = 0 (3.36)

b× x
#
a× x

#
a× y + b× y d1

k
+ a× z d1

k
+ b× z(d1

k
)2
��

= 0 (3.37)

This is a 2nd degree equation in d1
k

with two solutions. The two solutions can easily be disambiguated923

by computing the value for 1θ 1
k

using equation (3.35) (by solving for tan(1θ 1
k
)). Further, observe that924

since y1
1
= i1

1
and y2

k
= i2

k
, the angles of the first bounce for the second light-path (1θ 2

k
, 1θ 2′

k
) are the925

same as the angles for the second bounce (in reverse because of reciprocal relative refractive indices).926

The photometric constraint computed using Fresnel equations can be given as927

Ir r =
1

2
(1Ts

2Ts +
1Tp

2Tp)Iin (3.38)

r =
Ir r

Iin

=
1

2
(1Ts

2Ts +
1Tp

2Tp) (3.39)
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Denoting s1 = sin(1θ 2
k
), s2 = sin(1θ 2′

k
) = λs1 (where λ =

n1

n2

), and c1 = cos(1θ 2
k
) and c2 =

p
1− s2

2 =928 p
1−λ2s2

1 =
p

D (where D = 1−λ2s2
1
), we get929

1Ts =
4 sin2(1θ 2′

k
) cos2(1θ 2

k
)

sin2(1θ 2
k
+ 1θ 2′

k
)

(3.40)

=
4λ2s2

1
c2

1

(s1c2+ s2c1)
2

(3.41)

=
4λ2s2

1
c2

1

(λs1c1± s1

p
D)2
=

4λ2s2
1
c2

1

λ2s2
1c2

1 + s2
1 D± 2λs2

1c1

p
D

(3.42)

=
4λ2c2

1

λ2c2
1 + D± 2λc1

p
D
=

4λ2c2
1

(λc1±
p

D)2
(3.43)

2Ts =
4 sin2(1θ 2

k
) cos2(1θ 2′

k
)

sin2(1θ 2
k
+ 1θ 2′

k
)

(3.44)

=
4(1−λ2s2

1
)

λ2c2
1 + D± 2λc1

p
D
=

4D

(λc1±
p

D)2
(3.45)

930

1Tp =
4 sin2(1θ 2′

k
) cos2(1θ 2

k
)

sin2(1θ 2
k
+ 1θ 2′

k
) cos2(1θ 2

k
− 1θ 2′

k
)

(3.46)

=
4λ2c2

1

(λc1±
p

D)2(c1c2+ s1s2)
2

(3.47)

=
4λ2c2

1

(λc1±
p

D)2(c2
1 c2

2 + s2
1s2

2 + 2s1s2c1c2)
(3.48)

=
4λ2

(λc1±
p

D)2(c2
2 + t2

1s2
2 + 2t1s2c2)

(3.49)

=
4λ2

(λc1±
p

D)2(D+λ2 t2
1s2

1 ± 2λt1s1

p
D)

(3.50)

=
4λ2

(λc1±
p

D)2(λt1s1±
p

D)2
(3.51)

=
4λ2c2

1

(λc1±
p

D)2(λs2
1 ± c1

p
D)2

(3.52)
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2Tp =
4 sin2(1θ 2

k
) cos2(1θ 2′

k
)

sin2(1θ 2
k
+ 1θ 2′

k
) cos2(1θ 2

k
− 1θ 2′

k
)

(3.53)

=
4c2

2

(λc1±
p

D)2(c2
1 c2

2 + s2
1s2

2 + 2s1s2c1c2)
(3.54)

=
4

(λc1±
p

D)2(c2
1 + s2

1 t2
2 + 2s1 t2c2)

(3.55)

=
4

(λc1±
p

D)2(c1+ s1 t2)
2
=

4

(λc1±
p

D)2(c1±
λs2

1p
D
)2

(3.56)

=
4D

(λc1±
p

D)2(c1

p
D±λs2

1)
2

(3.57)

Putting all these terms in equation (3.39) we get931

r =
8λ2c2

1
D

(λc1±
p

D)4
+

8λ2c2
1
D

(λc1±
p

D)4(c1

p
D±λs2

1)
4

(3.58)

Let us develop each of these terms before combining them into one set of equations932

(λc1±
p

D)4 = (λ2c2
1
+ D± 2

p
Dλc1)

2 (3.59)

= λ4c4
1
+ D2+ 4λ2Dc2

1
+ 2λ2c2

1
D± 4λc1D

p
D± 4λ3c3

1

p
D (3.60)

= λ4c4
1
+ D2+ 6λ2Dc2

1︸ ︷︷ ︸
A

±
p

D 4λc1(D+λ
2c2

1
)︸ ︷︷ ︸

B

(3.61)

(c1

p
D±λs2

1
)4 = (c2

1
D+λ2s4

1
± 2λs2

1
c1

p
D)2 (3.62)

= c4
1
D2+λ4s8

1
+ 4λ2s4

1
c2

1
D+ 2λ2c2

1
s4
1
D± 4λs2

1
c3

1
D
p

D± 4λ3s6
1
c1

p
D(3.63)

= c4
1
D2+λ4s8

1
+ 6λ2s4

1
c2

1
D︸ ︷︷ ︸

C

±
p

D 4λs2
1
c1(c

2
1
D+λ2s4

1
)︸ ︷︷ ︸

E

(3.64)

(λc1±
p

D)4(c1

p
D±λs2

1
)4 = AC + BED±

p
D(AE + BC) (3.65)

Substituting equation (3.65, 3.63) in equation 3.58, and cross-multiplying, we get933

r(AC + BED±
p

D(AE + BC)) = 8λ2c2
1
D(1+ C ±

p
DE) (3.66)

58



We now isolate terms with
p

D on one side and then square both sides to get934

#
±
p

D(rAE + rBC − 8λ2c2
1
DE)

�2
=
#
8λ2c2

1
D+ 8λ2c2

1
DC − rAC − rBED

�2
(3.67)

D(rAE + rBC − 8λ2c2
1
DE)2 = (8λ2c2

1
D+ 8λ2c2

1
DC − rAC − rBED)2 (3.68)

In the above equation, the only troublesome term is c1 since its definition in terms of the variable s1935

involves a square root. However, if all the terms of c1 are of even powers, this problem does not arise.936

In order to check this fact, we first expand the different terms in R.H.S and L.H.S.937

AE =
#
λ4c4

1
+ D2+ 6λ2Dc2

1

�#
4λs2

1
c1(c

2
1
D+λ2s4

1
)
�

(3.69)

= 4λs2
1
c1

#
λ4c4

1
+ D2+ 6λ2Dc2

1

�#
c2

1
D+λ2s4

1

�
(3.70)

BC =
#
4λc1(D+λ

2c2
1
)
�#

c4
1
D2+λ4s8

1
+ 6λ2s4

1
c2

1
D
�

(3.71)

= 4λc1

#
D+λ2c2

1

�#
c4

1
D2+λ4s8

1
+ 6λ2s4

1
c2

1
D
�

(3.72)

8λ2c2
1
DE = 32λ3s2

1
c3

1

#
c2

1
D+λ2s4

1

�
(3.73)

AC =
#
λ4c4

1
+ D2+ 6λ2Dc2

1

�#
c4

1
D2+λ4s8

1
+ 6λ2s4

1
c2

1
D
�

(3.74)
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Observe that the R.H.S terms (equations (3.70, 3.72, 3.73)) all have odd powers of c1 and the L.H.S938

terms (equations (3.74, 3.76, 3.77)) all have even powers of c1. Thus squaring each side would939

produce terms that are all even powers of c1. Also, observe that the term A is of degree 4 in s1, B is940

of degree 3, C of 8, D of 2 and E of 7. So both the R. H. S and L. H. S in the equation (3.68) are of941

degree 24.Thus we get a 24 degree equation in s1 and degree 12 in s2
1
. Thus we get 12 solutions for942

s1 since we only consider positive roots.943

Note also, that many of the variables involved in the general case of double bounce are pre-944

determined here because of the simplicity of the case. For example, the condition y1
1
= i1

1
is not945

true in general. Also, we assume that the entire light-path lies on a single plane, which is not true946

in the general case. Thus, it is easier to show that a unique solution may be obtained empirically.947

Figure 3.4 simulates the value of radiance ratio for the space spanned by the two incident angles948
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Figure 3.4: Radiance ratio values plotted for various pairs of incident angles. There is no appreciable
difference because of a non-zero angle between the two planes of refraction in the double bounce case.
Isocontours for various values of radiance ratio are plotted. Note that they are all curves. Note also that
their intersection with the curve curresponding to θ2 = θ

′
1 (case of parallel planes) is a single point.

along a light path. It shows that given refractive index, the values of incident angles that correspond949

to a particular radiance ratio lie on a curve in this space. A similar case occurs for refractive double950

bounce.951

3.5.3 Practical considerations952

The above theory shows that the irradiance of a final light ray in a light-path contains information953

that could be used to reconstruct the entire light-path. In this section we describe important elements954

of our experiments to collect radiance measurements for reconstruction. Our experiments consist of955

three parts. 1) We use an illuminant with known geometry to emit unpolarized light in a desired set956

of directions. 2) Light from the illuminant interacts with the transparent object, and reflects / refracts957

off its surface towards the camera after one or two bounces. 3) The camera then captures both the958

direction and radiance of some reflected / refracted light rays, which is used for reconstruction.959

We use Canon and Nikon DSLRs for our experiments. Since we need to capture the position and960

radiance of an individual light ray, we adopt the pin-hole model for the camera (smallest aperture).961

Although using the smallest aperture does not guarantee a single ray for every direction, the cone962

of rays captured by the camera at each CCD pixel can be approximated by a thin cylinder if the963
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focal length is large, or the objects are far away. As for the focal length, there is a tradeoff between964

large depth-of-field and imaging the pixels of the monitor. We would like to minimize blur because965

it confuses radiance measurements, but on the other hand we would like to capture each pixel of966

the monitor on 1 or more pixels on the camera CCD (this leads to a simpler illumination model for967

the monitor pixel). We arrived on an acceptable range of focal lengths by trial and error. Finally, for968

each captured ray, we compute the corresponding pixel on the monitor from which the ray originated969

using standard methods [5].970

Unpolarized illuminant In our experiments, we use a flat CRT monitor (LCD montiors emit polar-971

ized light), whose pose is computed with respect to an internally calibrated camera [129]. This is972

motivated by our need to measure the illumination and the geometry of our illuminant. We capture973

the light emitted by each pixel of the monitor in several directions in 3D, and fit a smooth model974

to this data in order to accurately measure radiance of the illumination incident on the transparent975

objects.976

Interreflections A common problem with measuring illumination reflected / refracted off specular977

transparent objects is interreflections. They not only corrupt the radiance measurement, but also pose978

a problem to correspondence estimation. In order to remove the effect of interreflections, we use the979

algorithm of Nayar et al. [99]. Instead of using a projector to light the scene, we use the CRT monitor.980

We project low frequency checkerboard patterns that are shifted cyclically, and use it to compute the981

direct and global components of the scene. Figure 3.10 shows a result for one typical scenario.982

Calibration We internally calibrate the camera in order to compute the direction of the captured983

rays. We also externally calibrate the monitor w.r.t the camera. We use the monitor as the reference984

frame of the coordinate system, which is beneficial in the case of multiple cameras. For irradiance985

measurement, we first extract an unprocessed image from the RAW files using dcraw 1. We then986

remove the global component of this image, and then extract direct irradiance measurements. Note987

that all images shown in the results section are extracted from RAW files.988

1Command : dcraw -r 1 1 1 1 -D 0 -H 1 -q 3 -4 -v for Canon cameras. We drop the -D option for

Nikon cameras.
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Correspondence Acquiring correspondence between pixels on the monitor and pixels on the cam-989

era that correspond to the same light-path becomes slightly cumbersome when transparent objects990

are involved [4]. In order to overcome this, we first remove global components from images used for991

correspondence by applying the theory of [99] to these binary images, and then use a graph based992

approach to enforce spatial smoothness in the image while extracting correspondences. We use gray993

codes for robustness to intensity measurement errors, and in our experience the global component994

removed images are easier to process for correspondences than images which contain both direct and995

global components.996

3.5.4 Estimating CRT Illumination Model997

In this section, we give a slightly more detailed description of how we calibrate the illumination of the998

CRT monitor that we use in our experiments. This is essential since without an accurate calibration,999

we will not obtain accurate ratios of radiances. Throughout this section we assume a flat CRT monitor1000

screen. Our experiments use a flat CRT monitor screen with a resolution of 768× 1024 pixels.1001

Consider a camera viewing the monitor screen, with no object in between (Figure 3.5). Also1002

consider that the pose of the camera w.r.t the monitor plane is known, and that several such images1003

have been captured with the camera at different positions w.r.t the monitor (with pose known in each1004

case, in a common coordinate system).1005

Consider the j th pixel on the monitor screen. Let it have a maximum radiance of I j, captured when1006

the camera looks directly at the screen (camera plane parallel to monitor plane). In other poses,1007

when the camera captures its image, this pixel contributes to 1 or several pixels on the CCD. Also, its1008

contribution to each CCD pixel might be partial (with other monitor pixels also contributing to the1009

same CCD pixel) or whole (no other contributions to that CCD pixel). Thus, a CCD pixel receives1010

a percentage H( j) of a monitor pixel’s radiance. Note that in this aspect of the model, we deviate1011

from the pin-hole model towards a model where each ray is represented as a cylinder, as shown in1012

Figure 3.5.1013

Also, when a camera CCD pixel imaging part of the monitor is back-projected into world coor-1014

dinates, the back-projected ray lands on the monitor screen at an angle w.r.t to the normal of the1015

monitor plane. Let this angle be called θ j for each monitor pixel (actually more than one CCD pixels1016

might back-project onto the j th pixel, but since all these pixels will be in a small neighborhood, it is1017
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Figure 3.5: Illustration depicting various elements of the illumination model. Two camera pixels are
back-projected, while a pin-hole model (used for geometric calibration) assumes a back-projected ray, the
illumination model assumes a back-projected cylinder. This cylinder strikes pixel j on the monitor and
captures H( j) percent of its illumination in the direction θ .
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reasonable to assume they will make the same angle with the monitor normal).1018

Finally, if the pixel j has a finite area A j, then the radiance captured by the back-projected ray and1019

hence the camera is proportional to cos(θ j) because of the change in the solid angle subtended by the1020

pixel.1021

Putting all this together, we can explain the radiance observed at camera CCD pixel l in pose k as1022

Il =

N j∑
m=1

Im cos(θ k
m
)H(mk)ρ(θ k

m
) (3.78)

where N j is the bunch of pixels that project onto pixel l. Finally, if we assume Im and θm to be1023

constant over a small neighborhood and we assume the camera zooms in on the monitor pixels so1024

that 1 monitor pixel projects onto several CCD pixels, we get.1025

Il = H( jk)I j cos(θ k
j
)ρ(θ k

j
) (3.79)

In the above equations, all the variables are known except ρ(θ k
j
) which explains the varying amount1026

of radiance emitted by the j th monitor pixel at angle θ k
j

w.r.t to the monitor plane normal. Note that1027

by construction, this function is assumed to be symmetric about the normal.1028

The value of H( jk) is computed using the homography between the image of the monitor and the1029

monitor pixels themselves (which is known by calibration). For each CCD pixel, we generate several1030

equally spaced points within the unit area of the pixel, and transfer them to monitor pixel coordinates1031

using the homography. We determine the value of H( jk) based on how many of the generated points1032

fall within the boundaries of the monitor pixel j. θ k
j

is computed trivially using the camera pose w.r.t1033

monitor plane.1034

Figure 3.6 shows the variation of ρ with θ for 6 different pixels on the monitor. Notice how the1035

function has a quadratic fall-off with angle. We fit a quadratic curve to this function and use its1036

parameters in our depth estimation algorithm.1037
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(a)

(b) (c)

Figure 3.6: Illumination calibration experiment (a) 8 Camera poses w.r.t. CRT monitor plane, used to
measure ρ (b) 6 Pixels on the monitor for which ρ values vs θ are plotted in (c). Observe the quadratic
nature of ρ.
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Figure 3.7: Images of datasets included in this supplementary material, and some images of their acqui-
sition setup
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3.6 Experiments and Results1038

In the previous sections, we showed that radiance ratios could be used to reconstruct transparent1039

surfaces, which can help in reducing the number of measurements required for reconstruction. We1040

also list some practical aspects that are relevant to acquiring image data. In this section, we show1041

results of three experiments. The first two experiments demonstrate the accuracy of 3D reconstruction1042

using our method. The third and fourth experiment show our results on extremely complex scenarios,1043

and we show that just the application of what we theorize above can give surprisingly good results.1044

Experiment 1: Synthetic dataset Figure 3.9 shows various results for single bounce reconstruction1045

of a sample sinusoidal object when the 3D correspondence is noisy. We compare with two light-path1046

triangulation approaches, one in which the 3D correspondences along a light-path are close to each1047

other and the object (LP-1), and one in which they are far (LP-2). In both cases, noise is added to1048

the farthest 3D correspondence. While one case (LP-1) is sensitive to noise, the second case (LP-2)1049

is robust but impractical. Our approach however, gives a reliable normal map even if the depth is1050

slightly perturbed (compared to LP-2). Note that noise percentage is calculated as ratio of distance1051

between noisy and ground truth data and distance of ground truth and object. Other results w.r.t1052

camera noise and refractive index mismatch are present in the supplementary materials.1053

Experiment 2: “Water Sequence” Figure 3.10 (Left column) shows some images acquired in order1054

to reconstruct the surface of water in a plastic bowl. The bowl is around 10 cms in diameter, and is1055

placed about 2.5 meters from the camera. This is a scene with a very simple 3D structure (a plane)1056

and given the smooth surface of the bowl, it also has minimal (but not negligible) interreflections and1057

caustics.1058

Because of the planar nature of the scene, we compute correspondence by simply computing a1059

homography between the reflected image and the direct image of a photograph displayed on the1060

monitor. This homography, adjusted for the internal calibration of the camera and the aspect ratio of1061

the pixels on the monitor, can now be used to compute the normal of the plane [129].1062

After computing the direct image, we use the homography to compute the ratio of directly observed1063

and reflected radiances. Finally, we hypothesize and test individual pixels for various values of depth,1064

and record the value that best fits the radiance ratio. Figure 3.10 shows our result (the ripples in1065
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Figure 3.8: Simulation results for photometric error and refractive index mis. We simulated a curved ob-
ject, and captured radiometric information from a camera according to Fresnel theories. We then added
noise to this data (left), or used a slightly different refractive index (right) to reconstruct the surface. No-
tice that for noise, although the noise was added to the radiometric information that was recorded, the
radiance ratio is considerable stable w.r.t the noise (since the denominator in the radiance ratio, which is
the illuminant, has a high value). This results in the reconstructions being reasonably stable. However,
when the refractive index is changed, depending on the angle of incidence and the depth-normal rela-
tionship, the reconstruction accuracy changes. While here we list the worst possible scenario, when the
camera is close to the object, moving the camera further away like in the case of our datasets consider-
ably strengthens the robustness of our results. Notice also, that in case we underestimate the refractive
index the depth variation of the surface remains more or less intact, while its mean distance from camera
increases. Thus, even with an underestimate it is possible to get reasonable results.
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Figure 3.9: Comparison of simulations between our approach and [73]. In LP-1, corresponding 3D
points are normally close to the object, which results in increased error in triangulation and normal esti-
mation. Note that in the same scenario, we have much better normal information because of photometric
information. While LP-2 is robust because correspondences are far away, its highly impractical since use
of LCD’s for correspondence is problematic (because of light fall-off, scattering etc.). Details in text.

the reconstruction are just quantized depth values). An alternate result was one obtained by using1066

the algorithm of [129], which uses the knowledge that the object is planar, while our approach1067

estimates per pixel depth. Comparison of the results gives us a mean squared error of around 0.1 cms1068

(we omit correspondence errors while computing this measure), which shows the accuracy of our1069

reconstruction.1070
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Figure 3.10: (Left Column) Two of 25 images used to compute the direct and global images [99] to re-
move the effect of interreflections and caustics on radiance measurement. (Middle Left Column) Direct
and Global (scaled) components. (Middle Right Column) Difference between the “direct” component and
an image taken with a white pattern shown on the monitor. Bottom image is the difference. (Right Col-
umn) Correspondence map, Depth map and Reconstructed mesh of “Water” sequence.

Experiment 3: “Wine Glass Sequence” This sequence is very challenging for approaches that use1071

projected texture for reconstruction because of the large interreflections and caustics present in the1072

scene. Note how global components of the image are present even in places where there is no direct1073

light (Figure 3.10, red square). For approaches that typically only use geometric methods [73; 91],1074

the subsurface scattering might throw off correspondence measurements. This can heavily influence1075

reconstruction accuracy. On the other hand, robust measurement of the position and direction of light1076

incident on the glasses from the monitor requires a large set of images to be captured while moving1077

the monitor over, say, an optical bench. In our approach, however, both these errors are avoided1078

because we use a single measurement per pixel for reconstruction, and use direct components of1079

the images we capture. Again, like in the case of the “Water Sequence” we hypothesize various1080

depth values along each back-projected pixel, and test their validity using computed radiance ratios.1081

Figure 3.11 shows depth and normal maps computed using our approach. Notice again how we1082

obtain smooth maps even though no smoothness constraints are imposed on the results.1083
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Figure 3.11: (Left top) Normal map of “Fanta bottle” sequence. (insets) Note the fine details cap-
tured as a result of radiance ratios. (Centre top) Depth map. Blacker colors are closer to camera. (Right
top) Two views of the 3D reconstruction, with lighting to highlight shape variations. Phenomenon like
scratches on the bottle, inhomegenous refractive index, violation of single bounce through occlusion are
some bad effects, but still reliable reconstructions are achieved. Note that since camera is placed far from
the object and monitor, large changes in depth cause small changes in angle. This explains some of the
“rough”-ness of the reconstruction. Note also that no smoothing or. optimization is applied for this re-
construction. (Left bottom) Normal map of “Wine glass” sequence. (Left-centre bottom) Depth map.
(Right-centre bottom) Depth map produced if no interreflection removal is performed. Notice the lack of
depth variation in one of the glasses (compared using insets with blue borders). Some frequency artifacts
can be seen (red inset) due to interreflection removal. (Right bottom) Depth difference between the two
cases. Best viewed in color.
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Figure 3.12: Normal map and Depth maps for the cokebottle and fanta sequences.
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Experiment 4: “Fanta Bottle Sequence” This sequence highlights the ability of our approach to1084

capture details of a surface. The scene captured consists of a Fanta bottle filled with water. The1085

absence of any large interreflections in this scene results in a very detailed reconstruction as shown in1086

Figure 3.11. Note that optimizing depth and normal simultaneously would serve to remove the arte-1087

facts seen in the figure, especially enforcing the depth-normal consistency (differentiation of depth1088

gives normal).1089

3.6.1 Potential Applications1090

In the previous section, we showed how using radiance measurements we can extract the shape of1091

transparent objects with minimal measurements even in challenging scenarios. Now we apply the1092

same theory inversely to the problem of calibrating the radiometric response of the camera.1093

Radiometric calibration is the process of extracting the function that maps image intensities to1094

physical responses of the CCD pixels to incoming light. In short, it maps intensities to irradiances.1095

Earlier methods on radiometric calibration [87] focused on obtaining multiple images at varying1096

exposures in order to obtain ratios of intensities that are a function of the ratio of exposure times and1097

the radiometric calibration. Given ratio of exposure times and intensities, one could fit a non-linear1098

model to intensities that would make their ratios converge to exposure ratios [87]. However, this1099

requires several images to compute the ratios, and is limited since camera exposure times only have1100

discrete levels of increments.1101

However, we could use an image from a scene like the “Water Sequence” where the object is known1102

to be planar, in order to obtain radiance ratios that are related to the depth of the water surface. Such1103

a scene consists of minimal interreflections and scattering, and so intensity ratios from radiometrically1104

uncalibrated images are a function of the nonlinear radiometric responce of the camera only. Since1105

we can compute the depth of the scene using purely geometric approaches [129], we can also obtain1106

a set of “desired” intensity ratios. Moreover, since depth varies continuously, so do the intensity ratios1107

and thus we get more data from a single image than from multiple images with different exposure.1108

This could potentially be used to radiometrically calibrate the camera.1109
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3.7 Discussion and Conclusion1110

Reconstruction of transparent objects remains a challenging problem because of the lack of cues that1111

are normally available for other objects. In this paper, we showed the existence of an approach that1112

combines two of the more widely available cues, namely geometric and photometric cues. We showed1113

how this leads to simplified acquisition, a decently robust algorithm, new minimal solutions, and1114

presented challenging scenarios where our approach yielded accurate reconstructions. Applications1115

of our approach lie in valdiating outputs of light manipulation/inference tasks like light-transport1116

matrix estimation and interreflection removal apart from reconstruction and radiometric calibration1117

of cameras.1118
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41119

Reconstructing Planar Light-Paths1120

4.1 Introduction1121

In the second chapter, we considered the case of a camera looking at a scene in a different medium1122

through a planar interface. A generalization of this scenario would be a camera observing a scene1123

through multiple refractive planes (e.g. underwater imaging), which results in distortions and gives1124

the illusion of the scene being closer and magnified. While 3D reconstruction in such scenarios1125

has been analyzed in multi-media photogrammetry [62; 114; 125], such imaging setups have been1126

relatively unaddressed in the computer vision community until recently. Calibrating such a system1127

with multiple layers with unknown layer orientation, distances and refractive indices remains an open1128

and challenging problem.1129
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The fact that such systems do not correspond to a single viewpoint system is known (see, for1130

example, [141]). However, we show that the underlying geometry of rays in such systems actually1131

corresponds to an axial camera. This realization, which has been missing from previous works to the1132

best of our knowledge, allows us to handle multiple layers in a unified way and results in practical1133

and robust algorithms. In fact, we generalize one step further and look at the category of systems1134

with axial light-paths. We observe that in axial systems, light-paths are planar in nature. This1135

observation allows us to collect both mirror and transparent object based systems into a common1136

class of axial systems with planar light-paths. In such systems, we show that it is possible to1137

determine the unknown orientation of the axis independently of the number of layers of refraction1138

or the mirror structure or the refractive indices.1139
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1166
1167

This results in considerable simplification of the calibration problem via a two-step process, where1168

the axis is computed first. Without such a simplification, calibration is difficult to achieve. Secondly,1169

we show that axis estimation can be mapped to the classical relative orientation problem (essential1170

matrix estimation) for which excellent solutions (e.g. 5-point algorithm [103]) already exist. In fact,1171

calibration can be done using a single plane similar to [137]. We then discuss several cases in which1172

the computed axis estimate might be used to recover the other uknown parameters of each light-path.1173

Our primary contributions are as follows.1174

• We show that the geometry of rays in flat refraction systems corresponds to an axial camera,1175

leading to a unified theory for calibrating such systems with multiple layers.1176

• By demonstrating the equivalence with classical essential matrix estimation, we propose effi-1177

cient and robust algorithms for calibration using planar as well as nonplanar objects.1178

• We extend the same theory for flat refraction to the case of flat and spherical reflection. In fact1179

we show that some of these cases are analogous.1180

• We derive theoretical upper bounds of the approximation involved when these models do not1181

fit the actual data, in the case of normal estimation.1182
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Figure 4.1: (Top Left) Flat and Spherical reflective geometry with 1 layer. (Top Middle) The entire
light-path for each pixel lies on a plane and all planes intersect in a common axis passing through the
camera center. (Top Right) Once this axis is computed, analysis can be done on the plane of reflection
to estimate plane distance and centre / radius of sphere. (Bottom Left) Flat refractive geometry with n

layers. (Bottom Middle) The entire light-path for each pixel lies on a plane and all planes intersect in a
common axis passing through the camera center. (Bottom Right) After computing the axis, analysis can
be done on the plane of refraction to estimate layer thickness and refractive indices.
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4.1.1 Related Work1183

Maas [83] considered a three layer system assuming that the image plane is parallel to the refractive1184

interfaces. His approach corrects for the radial shift of the projected 3D points using optimization.1185

Treibitz et al. [141] consider a single refraction with known refractive index in an underwater imag-1186

ing scenario. They assume the distance of the interface as the single unknown parameter (when the1187

camera is internally calibrated) and perform calibration using known depth of a planar checkerboard.1188

The image plane is parallel to the interface in their setup as well. In contrast, we (a) do not assume1189

that the refractive interfaces are frontoparallel, (b) handle multiple layers with unknown layer dis-1190

tances, (c) consider known/unknown refractive indices, and (d) do not assume known pose of the1191

calibrating object. We only assume that the camera is internally calibrated.1192

3D reconstruction under reflections/refractions has been explored in [22; 26; 73; 92; 124] either1193

for reconstructing the scene or the medium itself. Chen et al. [22] captured two images, with and1194

without a thick glass slab for 3D reconstruction. Both images are required to estimate the orientation1195

of the slab and an additional image to obtain the refractive index. We show that a single set of 2D-3D1196

correspondences from a single photo allows estimating medium thickness as well as refractive index.1197

Other works assume known vertical direction [26] or require several images for calibration [92].1198

Steger and Kutulakos [73] showed that light-path triangulation becomes degenerate when the entire1199

light-path lies on a plane, which is the case here. Their goal is to compute the shape of the refractive1200

medium, and they consider each light-path independently. In contrast, we have partial knowledge1201

of shape, and light-paths can be parameterized. Thus, we can use information from multiple light-1202

paths to obtain the refractive index. For two refractions (air-medium-air), our analysis is consistent1203

with [73] in that the distance to the medium cannot be estimated. However, we show theoretically1204

that if all refractive indices are different, light paths are not degenerate for any number of layers.1205

Non-Central/Axial Cameras Pless [109] proposed algorithms for relative motion estimation for1206

calibrated noncentral cameras. Chari and Sturm [23] showed the existence of geometric entities such1207

as fundamental matrix considering refraction. Generic camera calibration algorithms [131] have been1208

proposed to calibrate non-central cameras. Li et al. [77] analyzed the degeneracies in axial cameras1209

for motion estimation. Ramalingam et al. [111] proposed a general framework for calibrating axial1210

cameras using three checkerboards. Their parameterization considers a general axial system and does1211
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not consider the explicit case of a pin-hole camera observing refractive/reflective surfaces, while also1212

involving two rotations/translations. In contrast, we consider the specific case of an axial system1213

passing through the camera center, allowing calibration from a single plane. Models based on radial1214

distortion for calibration assume known center of distortion [139] or model each distortion circle1215

separately [137]. We use a global model with fewer parameters for flat refractive systems.1216

4.2 Plane of Reflection / Refraction Constraint1217

Axial Camera: An axial camera is defined as a camera that captures an axial system of rays with1218

the axis passing through the camera center. While the axial nature of many catadioptric systems is1219

already well known [113], we show that an N -layer flat refraction system, with n being the normal of1220

the flat layer(s), corresponds to an axial camera. The axis is defined as the line parallel to n passing1221

through the camera center (origin) and let â be its direction vector. Let Π be the plane of refraction1222

(POR) containing the axis and a given camera ray. The normal n lies on Π. From Snell’s law, the1223

incoming ray, the normal and the refracted ray lie on the same plane at the point of refraction. Since1224

the refracted ray from one layer is the incident ray for the next layer (with the same normal), hence,1225

by induction, the entire light-path should lie on Π and all the refracted rays should intersect the axis.1226

Thus, all outgoing rays intersect the axis and the system is axial. Suppose we consider one such1227

light-path, with its first ray direction being denoted by l. Let this light-path eventually pass through1228

the 3D point RX+ t (where X is known to us R and t are not). This 3D point RX+ t should also lie on1229

Π. Thus, the plane of refraction constraint for each 3D point can be written as1230

POR Constraint : (RX+ t)⊤(â× l) = 0, (4.1)

where (â× l) is the normal to POR. Note that the POR constraint is independent of the number of1231

layers N , their thicknesses dk, and the refractive indices µk. It only depends on the axis and pose1232

parameters. It is also independent of the nature of specularity, i.e. it applies to both reflection and1233

refraction. Also, note that this independence means that light-paths with different numbers of bounces1234

could be clubbed together in the POR constraint in order to estimate the axis and pose parameters.1235

This fact is illustrated in Figure 4.2.1236
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Figure 4.2: Figure showing two light-paths for the plane reflective, the spherical reflective and the flat
refractive case. The red and blue light-paths bounce off different surfaces and different numbers of times.
However, they can all be clubbed into the same POR constraint to estimate R and tA⊥ .

4.2.1 Axis Computation1237

Let M(:) be the vector formed by stacking the colums of a matrix M and let ⊗ denote the kronecker1238

product. Let [â]× be the 3× 3 skew-symmetric matrix obtained from 3-vector â. The POR constraint1239

can be re-written as1240

l⊤(â× (RX+ t)) = l⊤EX+ l⊤s= 0, (4.2)
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where E= [â]×R and s= â× t. Note that s⊤â= 0 and thus the full translation t cannot be estimated1241

using POR constraints. The component of t in the direction of the axis, tA, vanishes in s. Thus, we1242

have 7 degrees of freedom that can be recovered: 2 for the axis, 3 for rotation and 2 for translation.1243

11-point Linear Algorithm : Stacking equations for 11 (Xi, li) correspondences, we get a linear1244

system1245 


(X1⊤⊗ l1⊤) l1⊤

...
...

(X11⊤⊗ l11⊤) l11⊤




︸ ︷︷ ︸
B


E(:)

s


 = 0, (4.3)

where B is an 11× 12 matrix whose rank in general is 11. Let B = UΣV⊤ be the SVD of B. The1246

solution is given by the right null singular vector of B (last column of V ). The scale factor is obtained1247

by setting the norm of E to one.1248

8-point Algorithm : Notice the striking similarity between our E matrix ([â]×R) and the essential1249

matrix [55] for relative motion between two perspective cameras ([t]×R). This implies that we can1250

map the axis estimation to the 5-point algorithm for essential matrix computation [103]. Given 81251

correspondences, we obtain an 8× 12 matrix B as above. Let V4
i=1

be the right null singular vectors1252

of B. The solution lies in a four dimensional subspace1253


E(:)

s


 = λ1V1+λ2V2+λ3V3+λ4V4, (4.4)

where the λi ’s are unknown scalars. λ4 can be set to 1 since the solution can be recovered only upto1254

a scale factor anyhow. The ’E’ part of the solution is1255

E(:) = λ1V1(1 : 9) +λ2V2(1 : 9) +λ3V3(1 : 9) +V4(1 : 9), (4.5)

where Vi(1 : 9) denote the first 9 elements of Vi. Now the λi ’s can be computed using the solution1256

in [103] by providing the above subspace vectors for E.1257

After recovering E and s, the axis is computed as the left null singular vector of E (since â⊤E = 0).1258
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The sign ambiguity in the axis is resolved by letting it point away from the camera. The translation1259

orthogonal to the axis, tA⊥ , can be obtained as s × â. Four solutions for R are recovered from E1260

as in [103]. The correct solution can be recovered along with the other unknown parameters like1261

layer thickness by analyzing the feasibility of different light-path setups as shown in Sections 4.61262

Interestingly, the axis estimation is similar to the center of distortion estimation for central cameras1263

in [54] and our 8pt algorithm can be applied.1264

The axis computation approach mentioned thus far is really a partial calibration of the axial cam-1265

era setup mentioned earlier. While the 8pt algorithm requires generic 3D points in order to give1266

unique solutions, it would be useful to find an alternate approach that could work with planar 3D1267

correspondences for a variety of reasons like ease of capture, fewer images etc..1268

Planar Grid Calibration We now show that calibration can also be done using a single planar grid,1269

which is useful in practice. We describe an 8pt algorithm as follows. Without loss of generality,1270

assume the plane is aligned with the x y plane (Xi
z
= 0). Substituting in the coplanarity equation 4.2,1271

the columns 7, 8, 9 of B matrix reduce to zero. Let B′ be the reduced 8× 9 matrix, whose rank is 8.1272

Thus, there is a single right null singular vector, contrary to the above case for the original full 8×121273

matrix B. This singular vector directly gives the first two columns of E, along with s. The last column1274

of E is recovered using Demazure constraints [29] and det(E) = 0 constraint, as follows.1275

Let E =




e1 e4 x

e2 e5 y

e3 e6 z


, where the ei ’s are estimated as above and x , y, z are unknown. Setting1276

det(E) = 0 gives a linear equation in x , y, z which can be written as1277

xe2e6− xe3e5− ye1e6+ ye3e4+ ze1e5− ze2e4 = 0 (4.6)

using which x can be obtained in terms of y and z as1278

x = ((e1e6− e3e4)y + (e2e4− e1e5)z)/(e2e6− e3e5) (4.7)

Let1279

K = e2
1
+ e2

2
+ e2

3
+ e2

4
+ e2

5
+ e2

6
+ x2+ y2+ z2 (4.8)
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The Demazure constraints arise from the form of E (= [.]×R) [29], and give the following nine1280

equations1281

x(2e2
1
+ 2e2

4
+ 2x2)− xK + y(2e1e2+ 2e4e5+ 2x y)

+z(2e1e3+ 2e4e6+ 2xz) = 0 (4.9)

y(2e2
2
+ 2e2

5
+ 2y2)− yK + x(2e1e2+ 2e4e5+ 2x y)

+z(2e2e3+ 2e5e6+ 2yz) = 0 (4.10)

z(2e2
3
+ 2e2

6
+ 2z2)− zK + x(2e1e3+ 2e4e6+ 2xz)

+y(2e2e3+ 2e6e6+ 2yz) = 0 (4.11)

e1(e
2
1
+ e2

4
+ x2)− e1K + e2(e1e2+ e4e5+ x y) + e3(e1e3+ e4e6+ x y) = 0 (4.12)

e4(e
2
1
+ e2

4
+ x2)− e4K + e5(e1e2+ e4e5+ x y) + e6(e1e3+ e4e6+ x y) = 0 (4.13)

e2(e
2
2
+ e2

5
+ y2)− e5K + e1(e1e2+ e4e5+ x y) + e3(e2e3+ e5e6+ yz) = 0 (4.14)

e4(e
2
2
+ e2

5
+ y2)− e5K + e4(e1e2+ e4e5+ x y) + e6(e2e3+ e5e6+ yz) = 0 (4.15)

e4(e
2
3
+ e2

6
+ z2)− e6K + e1(e1e3+ e4e6+ xz) + e2(e2e3+ e5e6+ yz) = 0 (4.16)

e4(e
2
3
+ e2

6
+ z2)− e6K + e4(e1e3+ e4e6+ xz) + e5(e2e3+ e5e6+ yz) = 0 (4.17)

Note that the first three equations have cubic terms of x , y, z while the next six equations have1282

quadratic terms. We can choose any two of these six quadratic equations. Let us choose the first1283

two of the six quadratic equations and denote them as EQ2 and EQ3. Substituting x equation (4.7)1284

we get two equations of the following form1285

EQ2 : k11 y2+ k12 yz + k13z2+ k14 = 0, (4.18)

EQ3 : k21 y2+ k22 yz + k23z2+ k24 = 0 (4.19)

where the ki j depend on the ei ’s and are known coefficients. We can eliminate y2 from the above two1286

equations to get y in terms of z1287

y =
k21(k13z2+ k14)− k11(k23z2+ k24)

k11k22z − k12k21z
(4.20)
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Substituting y back into EQ3 gives a fourth degree equation in z1288

g1z4+ g2z2+ g3 = 0 (4.21)

where1289

g1 = k11(k
2
11

k2
23
− k11k12k22k23− 2k11k13k21k23+ k11k13k2

22
+ k2

12
k21k23−

k12k13k21k22+ k2
13

k2
21
) (4.22)

g2 = k11(k11k14k2
22
+ 2k13k14k2

21
+ k2

12
k21k24+ 2k2

11
k23k24− k11k12k22k24−

2k11k13k21k24− 2k11k14k21k23− k12k14k21k22) (4.23)

g3 = k11(k11k24− k14k21)
2 (4.24)

Note that since the above equation has only z4 and z2 terms, we can substitute γ = z2 and get1290

a quadratic equation in γ. In our experiments, we see that there are two real solutions and two1291

imaginary solutions for z, where the real solutions differ in sign. Thus, we obtain a pair of E matrices1292

which differ in the sign of their last column. Each pair of obtained rotation matrices also have the1293

same property. The correct rotation matrix is chosen by checking for the determinant value of one1294

(The determinant of incorrect rotation matrices equals -1, corresponding to a reflection).1295

Summary We showed that multiple flat refractive layers correspond to an axial system, and that1296

in such a system all light-paths are planar in nature. We presented two approaches to compute the1297

axis and some parameters of the transformation between object and camera coordinate systems. The1298

major advantage in axial systems is that the resulting light-paths can be analyzed in 2D rather than1299

3D, and this reduces the complexity of the problems considerably. This is done by projecting all1300

3D quantities of a single light-path onto its POR. In the next sections, we will use this property to1301

analyze 3 kinds of axial systems: planar refractive, planar reflective and spherical reflective systems.1302

Before we proceed, however, we analyze the error bounds of our approach. This is done in two1303

steps. In the first step we show simulation results that measure the noise resilience of our 8pt and1304

11pt algorithms, since a theoretical analysis turns out to be highly complex. We show that the 8pt1305

algorithm gives encouraging bounded estimates of the axis and pose parameters. Given a bounded1306

axis estimate, we then analyze the accuracy of computing the POR normal. It requires propagating an1307
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Figure 4.3: Comparison of 11pt algorithm, 8pt algorithm and using all points in a least squares fashion
for estimation of axis, rotation and tA⊥ using POR constraints.

error estimate through a cross product, and we derive the error bounds on the propagated quantity.1308

While we will see that propagating this error through the remaining solutions to be presented in this1309

chapter is difficult, knowledge of this error could provide useful information to produce more robust1310

algorithms in the future.1311

4.2.2 Simulations1312

We present simulations for estimating the axis with Gaussian noise (variance σ2 pixels) in feature1313

points for Case 1 and Case 2, shown in Figure 4.3. We assume a camera with FOV of 45◦ and1314

resolution 10002 pixels. The scene is set by choosing d0 = 300 units, d1 = 450 units, µ1 = 1.51315

and µ2 = 1, where the variables d0, d1 represent the perpendicular distance between the camera1316

center and the two layers of refraction, while the variables µ1,µ2 represent relative refractive index.1317

We perform 100 trials for each noise setting, and plot the average error in axis, rotation and tA⊥ in1318

Figure 4.3. For each trial, the axis is randomly generated in a cone of half-angle 45◦ around the1319

camera’s optical axis. 100 3D points are randomly generated along with R and t so that they lie1320

within [d0, 2d0] after the last layer. For each trial, a RANSAC based framework is employed for both1321

11pt and 8pt algorithms using 200 iterations to choose the best solution using the POR error. Rotation1322

error is defined as the minimum angle of rotation required to go from the estimated rotation to the1323
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true rotation. Similarly, axis error is defined as the angle between the estimated and the true axis.1324

The translation error is computed as the norm of the translation error vector and is normalized using1325

the corresponding layer thickness.1326

Degenerate case Notice that when l‖n, the POR constraint cannot be used. This is an inherent1327

degenerate case in all axial systems. It also induces a computational bottleneck since light-paths that1328

are close to the line parallel to the axis and passing through the camera center are unreliable for axis1329

computation. As expected, the 8pt algorithm performs significantly better than the 11pt algorithm as1330

well as using all points in a least squares fashion.1331

4.2.3 Error Bound: Pairwise computation1332

We showed earlier how the POR constraint could be used to obtain axis and partial pose parameters.1333

Once the axis is computed, the POR normal corresponding to a particular image ray l can be computed1334

as l× â. Note that because of errors, the computed value of the axis âδ might be different from the1335

ground truth â. Assuming no error in l, we would like to know the error in the computation of the1336

normal of POR Π.1337

To start the derivation, let us observe that both the quantities l× â and l× âδ lie in the plane that1338

is perpendicular to l. Let us call this plane Θ, while noting that this is not the plane of reflection or1339

refraction. Now let us list the other vectors that lie in this plane.1340

l× (â× l) → l · (l× (â× l)) = 0 (4.25)

âδ − (l · âδ)l →
#
âδ − (l · âδ)l

�
· l= 0, (‖l‖= 1) (4.26)

Let us also note that the second vector in the equations above is perpendicular to l× âδ while the first1341

vector is clearly perpendicular to l× â. Proving the first claim is trivial.1342

#
âδ − (l · âδ)l

�
· (l× âδ) = (âδ) · (l× âδ)︸ ︷︷ ︸

= 0

−(l · âδ) (l · (l× âδ))︸ ︷︷ ︸
= 0

(4.27)

= 0 (4.28)
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Thus, we finally get the means to measure the angle between the two cross products.1343

∠(l× â, l× âδ) = ∠(l× (l× â), âδ − (l · âδ)l) (4.29)

A measure of this angle is given by the dot product of the two vectors.1344

(l× â)× l = â− l(l · â) (4.30)

(l× (â× l)) ·
#
âδ − (l · âδ)l

�
= (â− l(l · â)) ·

#
âδ − (l · âδ)l

�
(4.31)

= â · âδ − (l · âδ)(l · â)
−(l · âδ)(l · â) + (l · âδ)(l · â) (4.32)

= â · âδ − (l · âδ)(l · â) (4.33)

= cos(δ)− (l · âδ)(l · â) (4.34)

≈ 1− (l · âδ)(l · â) (4.35)

where ≈ denotes the fact that cos(δ) is approximately equal to 1 for small values of δ. In the above1345

equation, vectors have not been normalized, and so the actual value of the cosine will be given as1346

cos(∠(l× â, l× âδ)) =
cos(δ)− (l · âδ)(l · â)p
1− (l · â)2

p
1− (l · âδ)2

(4.36)

≈
1− (l · âδ)(l · â)p

1− (l · â)2
p

1− (l · âδ)2
(4.37)

So far we have derived an equation to find the cosine of the angle between l × â and l × âδ. The1347

next step is to bound this angle by indirectly bounding the cosine value. To do this let us observe that1348

cosine and sine are monotonic functions in the domain 0 < θ < π/2. Thus assuming that the angle1349

between l and â is θ , we need to bound the value of l× âδ. Observe that this assumption can be used1350

to re-write equation 4.36 as1351

cos(∠(l× â, l× âδ)) =
cos(δ)− cos(θ ) cos(θδ)

sin(θ ) sin(θδ)
(4.38)

Now, observe that θδ can lie in the range, θ − δ < θδ < θ + δ. Also observe that in the extreme1352

88



cases the above equation takes the value of 1, which means that the minimum angle between the two1353

vectors is 0. In order, to find the maximum value of the angle, we differentiate the above equation1354

w.r.t θδ and equate it to 0.1355

∂

∂ θδ
cos(∠(l× â, l× âδ)) = 0 (4.39)

⇒
cos(θ ) sin(θδ)

sin(θ ) sin(θδ)
−
(cos(δ)− cos(θ ) cos(θδ)) sin(θ ) cos(θδ)

sin2(θ ) sin2(θδ)
= 0 (4.40)

⇒
cos(θ )

sin(θ )
−
(cos(δ) cos(θδ)− cos(θ ) cos2(θδ))

sin(θ ) sin2(θδ)
= 0 (4.41)

⇒
cos(θ )

sin(θ )
−
(cos(δ) cos(θδ)− cos(θ ) + cos(θ ) sin2(θδ))

sin(θ ) sin2(θδ)
= 0 (4.42)

⇒
cos(θ )

sin(θ )
−
(cos(δ) cos(θδ)− cos(θ ))

sin(θ ) sin2(θδ)
−

cos(θ )

sin(θ )
= 0 (4.43)

1356

⇒ cos(δ) cos(θδ) = cos(θ ) (4.44)

⇒ cos(θδ) =
cos(θ )

cos(δ)
(4.45)

Substituting this value back in equation 4.36 we get the maximum value of the sine of this angle as1357

min
θδ

cos(∠(l× â, l× âδ)) =

p
cos2(δ)− cos2(θ )

sin(θ )
(4.46)

=

p
sin2(θ )− sin2(δ)

sin(θ )
(4.47)

max
θδ

sin(∠(l× â, l× âδ) =

È
1−
(sin2(θ )− sin2(δ))

sin2(θ )
(4.48)

=
sin(δ)

sin(θ )
(4.49)

≈
δ

sin(θ )
(4.50)
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Figure 4.4: This figure presents the simulation results that confirm the bounds of our approximation
theory. Two random 3D unit vectors were taken, and one of them was perturbed with several varying de-
grees. The resulting cross product of the two vectors was compared with the ground truth cross product,
and the angle between them was measured. In the above figure, each colored dot represents the varying
result plotted versus the ground truth angle between the two vectors. The curve that represents the theo-
retical bound is plotted to show the validity of our theory.
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Finally, we get the angle bounds as1358

0≤ ∠(l× â, l× âδ)≤ sin−1(
δ

sin(θ )
) (4.51)

To summarize, we have bounded the angle between the vectors l× â and l× âδ where δ is the angular1359

error in computation of the axis and consequently, the angle between these two vectors represents1360

the angle between the ground truth normal of the POR and the estimated normal. Figure 4.4 shows1361

simulation results that confirm our theory. Note that the above derivation is useful in another sense.1362

When the checkerboard pose is known in the camera coordinate system, a closed form solution to the1363

problem of normal estimation in the case of planar reflection or refraction can be obtained using cross1364

products. In such a case, the error in the estimated normal is bounded in the same way as mentioned1365

here. We know look at several individual cases of reflection/refraction to solve for the remaining1366

light-path parameters.1367

4.3 General Flat Refractive Geometry1368

Consider the general setup for flat refractive geometry as shown in Figure 4.5, where a perspective1369

camera observes a known calibration object via N flat refraction layers. We work in the camera1370

coordinate system with the camera center at the origin. Let n denote the common surface normal1371

to all layers and [di,µi] be the thickness and refractive index of the i th medium respectively. d01372

represents the distance between the camera and the first layer. Let [Xi]K
i=1

denote K 3D points on1373

the object which are known in the object coordinate system and let [R, t] be the unknown rigid1374

transformation of these points.1375

4.3.1 Flat Refraction Constraint1376

Let [li
0
, li

1
, . . . , li

n
] denote the direction vectors of each segment of the corresponding light-path. (For1377

simplicity, we drop the superscript i for now) We assume that the internal camera calibration has1378

been done offline and hence we know the camera ray li
0

for each 3D point Xi. The last refracted ray1379

direction ln should coincide with the line joining the transformed 3D point RX+ t and the refraction1380

point pn on the last layer. Thus, the following Flat Refraction Constraint (FRC) should be satisfied.1381
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Figure 4.5: Flat refractive geometry with N layers, reproduced here for clarity.
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FRC : (RX+ t− pn)× ln = 0, (4.52)

Our goal is to estimate the unknown calibration parameters n, [dk]
N−1
k=0

, [µk]
N
k=0

as well as the un-1382

known pose [R, t] given K 2D-3D correspondences [li
0
,Xi]K

i=1
.1383

From Snell’s law, µi sin(θi) = µi+1 sin(θi+1), where θi is the angle between li and n. This can be1384

written in vector form as1385

li+1 = ai+1li + bi+1n, (4.53)

where ai+1 = µi/µi+1 and1386

bi+1 =
−µil

⊤
i
n−

p
µ2

i (l
⊤
i n)2− (µ2

i −µ2
i+1)l

⊤
i li

µi+1

(4.54)

Since Snell’s law only depends on the ratio of the refractive indices, we assume µ0 = 1 without loss1387

of generality. We first derive the FRC for a single layer and a single 3D point X. The refraction point1388

p1 equals −d0l0/(l
⊤
0
n). Substituting in 4.52, and using equation 4.531389

(RX+ t)× (a1l0+ b1n) + b1d0(l0× n)/(l⊤
0
n) = 0, (4.55)

After substituting for a1 and b1, using equation 4.54 and removing the square root term in b1, we get1390

an equation with second order terms of R, t and µi and sixth order terms of n. Thus, directly solving1391

the FRC is quite difficult. More importantly, the complexity of the FRC equation increases with each1392

additional layer and due to the square root term in each bi. Thus, in order to solve this problem1393

efficiently, we need to analyze the geometry of underlying rays to derive simpler constraints. While1394

the POR constraint (Section 4.2) allows us to estimate the normal n, we use the framework outlined1395

above to show how the geometry of the rays could be used to estimate 5 out of 6 pose parameters1396

independently of di ’s and µi ’s (Section 4.6).1397

4.4 General Planar Reflective Geometry1398

We now derive a constraint similar to the one proposed in Section 4.3. Consider the general setup1399

for flat reflective geometry as shown in Figure 4.1, where a perspective camera observes a known1400
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calibration object after N reflections off parallel reflective surfaces. We work in the camera coordinate1401

system with the camera center at the origin. Let n denote the common surface normal to all layers1402

and [dk]
N−1
k=0

be the perpendicular distance between each successive layer and the next. d0 represents1403

the distance between the camera and the first layer. Let [X]K
i=1

denote K 3D points on the object1404

which are known in the object coordinate system and let [R, t] be the rigid transformation of these1405

points.1406

4.4.1 Plane Reflective Constraint1407

As in Section 4.3.1, we denote light-path direction vectors by li
k
. The last reflected ray l should be1408

parallel to the line joining the transformed 3D point RX+ t and the reflection point p on the last layer.1409

Thus, the equivalent to equation 4.52 is the Plane Reflection Constraint (PRC)1410

PRC : (RX+ t− p)× l= 0, (4.56)

We already outlined our approach to estimate the axis and partial translation parametsr in Section 4.21411

In this case, our goal is to estimate the parameters n, [dk]
N−1
k=0

and the unknown pose parameter tA1412

given K 2D-3D correspondences [li
0
,Xi]K

i=1
.1413

Using the laws of reflection, we can write the relationship between two consecutive segments of a1414

light-path as1415

lk+1 = ak+1lk + bk+1n, (4.57)

where ak+1 = −1 and bk+1 = 2(l⊤
k
n). Substituting this in equation 4.56, we get the following con-1416

straint for PRC of one layer (with p1 = −d0l0/(l
⊤
0
n))1417

(RX+ t− p1)× l1 = 0, (4.58)

(RX+ t− p1)× (2(l⊤0 n)n− l0) = 0, (4.59)

(RX+ t)× (2(l⊤
0
n)n− l0) + d0/(l

⊤
0
n)2(l⊤

0
n)(l0× n) = 0, (4.60)

(RX+ t)× (2(l⊤
0
n)n− l0) + 2d0Π̂ = 0 (4.61)

where Π̂ is the direction vector of the POR. When R, n and tA⊥ are known, notice that the above1418

equation is linear in unknown quantities d0 and α. Also note that recursively expanding the definition1419
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of lk+1 would give us the following1420

lk+1 = −lk + 2(l⊤
k
n)n (4.62)

= −(−lk−1+ 2(l⊤
k−1

n)n) + 2(−l⊤
k−1

n+ 2(l⊤
k−1

n))n, ∵ n⊤n= 1 (4.63)

= lk−1 (4.64)

This means that there are only 2 independent PRC equations in this case. This is understandable1421

since reflection is a symmetric property (the incident ray is a reflection of the reflected ray) and in1422

the absence of additional parameters like refractive index in the case of refraction, the degrees of1423

freedom are reduced. Now, consider the case of two bounces. Since p2 = −d1l1/(l
⊤
1
n)− d0l0/(l

⊤
0
n)1424

and l2 = l0, the PRC equation reduces to1425

(RX+ t+

1∑
k=0

dklk/(l
⊤
k
n))× l0 = 0 (4.65)

Notice that the term d0 vanishes in the above equation and so we are left with 2 unknowns d1 and α.1426

However, once we solve for d1 and α, we can solve for d0 by using the following equation1427

(RX+ t− p2) = γl0 (4.66)

Finally, for N bounces the PRC equation can be solved to obtain the perpendicular distance between1428

every alternate pair of mirrors (1 & 2, 3 & 4, . . ., where mirror 1 records the first bounce of a back-1429

projected ray from the camera). For the other pairs, we could use a generalized version of the above1430

equation. Thus, we need K >= N/2 correspondences to get the required number of independent1431

equations to solve in the linear least squares sense.1432

Degeneracy Note that in the case of planar reflections, there is a unique case of degeneracy. If1433

all the light-paths are produced by reflection in each mirror of the system, then the entire system1434

becomes single viewpoint. Such a system has infinitely many axes passing through it, and hence the1435

POR constraint would not apply. Thus, for planar reflection, it is necessary that different light-paths1436

have different numbers of bounces or intercept sets of different mirrors.1437
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4.5 General Spherical Reflective Geometry1438

In Section 4.4, we looked at the case of general plane reflective geometry. In this case, the equations1439

turn out to be linear in unknowns like the translation component tA and the perpendicular distances1440

[dk]
N−1
k=0

. We now consider the case of general spherical reflective geometry, when a camera looks at1441

many axially-aligned spheres with different radii [rk]
N−1
k=0

with centres with distances [dk]
N−1
k=0

between1442

consecutive spheres. d0 represents the centre of the first sphere in the order chosen. Figure 4.21443

illustrates one example of such a scenario.1444

4.5.1 Spherical Reflective Constraint1445

As in earlier sections, the constraint we impose for any light-path is that the last segment be in the1446

same direction as the vector from the last point p and the transformed 3D points RX+ t.1447

SRC : (RX+ t− p)× l= 0, (4.67)

The main difference between the above equation and PRC, however, lies in the fact that the term1448

lN is no longer a known quantity given the axis n. Thus, this case is similar to FRC in the event1449

that refractive indices were unknown. As earlier, we can express the relationship between direction1450

vectors of two consecutive segments of a light-path as (Section 4.3.1)1451

lk+1 = ak+1lk + bk+1n, (4.68)
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Figure 4.6: Figure depicting the case of the k+ 1th bounce off a sphere. Considering the values of rk+1,
sk, lk are known, the point pk+1 is still one of two points that can only be obtained by solving a quadratic
equation (line-circle intersection). Note that nk+1 and eventually lk+1 depend directly on pk and thus in-
directly on n and unknowns rk+1, d0...k+1

where ak+1, bk+1 are highly complex terms. To illustrate the level of difficulty, consider Figure 4.6.1452

Given lk,pk, sk and rk+1, the following equations could be used to derive the values of ak+1 and bk+1.1453

lk+1 = 2(l⊤
k
nk+1)nk+1− lk (4.69)

nk+1 =
pk+1− sk

rk+1

(4.70)

pk+1 = pk + βk+1lk (4.71)

βk+1 = l⊤
k
sk − p⊤k lk −

Æ
(l⊤

k
sk − p⊤k lk)

2+ 2p⊤
k
sk − s⊤k sk + r2

k+1
− p⊤

k
pk (4.72)

sk = −
k+1∑
j=0

d jn (4.73)

where we get βk+1 by solving the quadratic equation ‖pk + βk+1lk − sk‖2 = r2
k+1

. Note that βk+1 itself1454

contains both bilinear terms and square root terms of lk and n, while lk+1 is quadratic in βk+1. Since1455

we found this set of equations highly difficult to untangle, we now present the minimal case of a1456

single bounce off one sphere. In this case p1 reduces to 0 since it is the camera centre, s0 = −d0n,1457
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and the rest of the unknowns are given as1458

β1 = −d0l⊤
0
n−

p
d2

0(l
⊤
0 n)2− d2

0 + r2
1 (4.74)

p1 = β1l0 (4.75)

n1 = (β1l0+ d0n)/r1 (4.76)

l1 = 2(β1+ d0l⊤
0
n)n1/r1− l0 (4.77)

= 2(β1+ d0l⊤
0
n)(β1l0+ d0n)/r1− l0 (4.78)

Note that after computing the axes parameters as described earlier, the unknowns in the above equa-1459

tion are d0 and r1.1460

Summary We have shown 3 possible scenarios in the previous section where planar axial light-1461

paths could be solved simultaneously, and the framework in which we will solve them. Our approach1462

essentially consists of two steps. In the first step, we use the axial nature of this configuration in1463

order to derive most of the pose parameters relating the observed 3D points to the camera coordinate1464

system. In the second step, we then establish the remaining parameters of the pose and light-path1465

configuration by noting that the vector in the direction from the last bounce on the light-path towards1466

the corresponding 3D point should be the same as the direction of the last segment of the light-path1467

(equations FRC, PRC and SRC). Notice that while PRC is readily solvable for any number of bounces,1468

solutions of FRC and SRC are restricted by the knowledge of refractive indices (FRC) and the sphere1469

location, radius and general inter-connectedness of the light-path parameters (SRC). It is worthy1470

noting here that the sphere is the simplest case of a quadric surface, and any other surface like a1471

paraboloid or a higher order surface would only increase the amount of unknowns and render SRC1472

even more complicated and less solvable.1473

4.6 Solving for Light-Paths1474

In the previous section, we set the framework for recovering the light-path configuration from indi-1475

vidual observations. In this section, we solve for the remaining unknown parameters using FRC and1476

SRC. Note that PRC has already been solved (equations 4.65,4.66). We first consider solving FRC1477
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Figure 4.7: Three cases of refraction considered in this chapter. In each case we consider 4 variations:
known/unknown refractive indices with known pose parameters, and known/unknown refractive indices
with unknown pose parameters

in 3 different cases as shown in Figure 4.7, when the refractive indices are known and unknown.1478

These three cases correspond to the most practical situations that arise, for example, when a camera1479

looks through a fishtank or in underwater photography. We then look at the case of SRC for single1480

and double bounces. Later we show that while both PRC and SRC might represent restricted scenar-1481

ios of reconstruction, their applicability extends to more general cases since many smooth reflective1482

surfaces could be approximately modeled as sets of planes or spheres. Before proceeding with the1483

derivations, we first transform the coordinate system that we work in, for the sake of convenience.1484

Coordinate Transformations : We first apply the computed R and tA⊥ to the 3D points X. Let1485

Xc = RX+ tA⊥ . With known axis, the analysis can be done in 2D on the plane of refraction (POR) itself1486

as shown in Figure 4.7. Let tA = αA, where α is the unknown translation magnitude along the axis.1487

Let [z2,z1] denote an orthogonal coordinate system on the POR. We choose z1 along the axis. For a1488

given camera ray l0, let z2 = z1 × (z1 × l0) be the orthogonal direction. The projection of Xc on POR1489

is given by u= [ux , uy], where ux = z⊤
2
Xc and uy = z⊤

1
Xc. Similarly, the direction vector li of each ray1490

on the light-path of l0 can be represented by a 2D vector vpi on POR, whose components are given by1491

z⊤
2
vi and z⊤

1
vi. Let ci = vp⊤

i
z1 and zp = [0;1] be a unit 2D vector.1492
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4.6.1 Layer Thickness1493

We first assume known refractive indices. Section 4.2.1 showed how to compute the axis A, rotation R1494

and translation tA⊥ orthogonal to the axis. When µi ’s are known, the ray directions for the entire light-1495

path v0(i), . . . ,vn(i) can be pre-computed using the estimated A. The remaining unknowns are the1496

layer thickness di ’s and the translation tA along the axis, which can be computed linearly as described1497

below.1498

4.6.2 Linear System for N Layers1499

For each correspondence, the FRC for N layer system on its plane of refraction is given by1500

vpn× (u+αzp − qn) = 0. (4.79)

This is because the last refracted ray vpn should coincide with the line joining the transformed 3D1501

point u+αzp and the refraction point qn on the last layer. qn =
∑n−1

i=0
−divpi/ci. Substituting, we get1502

vpn×
h

vp0

c0

. . .
vpn−1

cn−1

zp

i




d0

...

dn−1

α



= −vpn× u. (4.80)

Thus, each correspondence gives one linear equation in di ’s and α. By stacking K > n correspon-1503

dences, the resulting linear system can be solved to obtain di ’s and α for n layers. After estimating1504

α, the translation t is given by tA⊥ + αA. However, if µi = µn for any i, vpi‖vpn and di cannot be1505

estimated. In addition, if µi = µ j, only the combined layer thickness di + d j can be estimated, since1506

the corresponding constraints in the linear system become equal. Now we analyze some special cases.1507

Case 1 (Single Refraction) For a single layer, we have two unknowns d0 and α and the FRC is given1508

by1509

vp1×
h

vp0/c0 zp

id0

α


 = −vp1× u, vp1 = a1vp0+ b1n (4.81)
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where a1 = 1/µ1. Using K ≥ 2 correspondences, a least squares solution can be obtained.1510

Case 2 (Two Refractions) µ0 = µ2 This is a common scenario when looking through a refractive1511

medium such as a thick glass slab. Here d0, d1 and α are unknowns. Since µ0 = µ2, vp2‖vp0 and the1512

FRC reduces to1513

vp0×
h

vp1/c1 zp

id1

α


 = −vp0× u (4.82)

Thus, we can only estimate the thickness d1 of the medium, but not its distance d0. This is consistent1514

with the analysis shown in [73].1515

Case 3 (Two Refractions) µ0 6= µ2 Now v2 and v0 are not parallel and the FRC is given by1516

vp2×
h

vp0/c0 vp1/c1 zp

i



d0

d1

α


 = −vp2× u (4.83)

Thus, we can estimate the distance d0 as well.1517

4.6.3 Unknown Refractive Indices1518

In this section, we describe in detail the analytical solutions to compute the layer thickness and trans-1519

lation along the axis when the refractive indices are unknown. We apply the same coordinate trans-1520

formations as described earlier. Note that on the plane of refraction, the normal n of the refracting1521

layers is given by n= [0;−1].1522

Case 1: Single Refraction We have three unknowns d0,µ1 and α. When µ′
i
s are unknown, ray1523

directions cannot be pre-computed and FRC needs to be written in terms of camera rays as follows1524

(α1vp0+ b1z1)× (u+αzp + d0vp0/c0) = 0 (4.84)
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Since the camera ray vp0 is known, we can normalize it. Let vp0 = [v
x ; v y]. From 4.54,1525

b1 =
v y −

p
µ2

1+ (v
y)2− 1

µ1

(4.85)

Using a1 and b1, vp1 can be obtained. Substituting vp1 and vp0 in the FRC equation 4.811526

(d0v x − v yux)
p
µ2

1+ (v
y)2− 1+ v x v y(α− d0− v y) = 0 (4.86)

Removing the square root term, we get1527

(d0v x − v yux)2(γ+ (v y)2− 1) = (v x v y(α− d0− uy))2 (4.87)

where γ= µ2
1
. γ can be obtained as a function of d0 and α.1528

γ=
(v x v y(α− d0− uy))2

(d0v x − v yux)2
− (v y)2+ 1 (4.88)

Let [EQ i]
3
i=1

be the 3 equations for 3 correspondences. Using EQ1, γ can be obtained as a function of1529

d0 and α as above. Substituting γ in EQ2 and EQ3 makes them cubic in d0 and quadratic in α. We get1530

the following form for EQ2 and EQ31531

EQ2 : k11α
2(k12d2

0
+ k13d0+ k14) + k15α(k16d3

0
+ k17d2

0
+ k18d0+ k19) +

(k31d3
0
+ k32d2

0
+ k33d0+ k34) = 0 (4.89)

EQ3 : k21α
2(k22d2

0
+ k23d0+ k24) + k25α(k26d3

0
+ k27d2

0
+ k28d0+ k29) +

(k41d3
0
+ k42d2

0
+ k43d0+ k44) = 0 (4.90)

where ki j depends on known quantities. α2 can be eliminated between EQ2 and EQ3 by1532

EQ4 = k21k22EQ2− k11k12EQ3. (4.91)

The resulting EQ4 is linear in α and cubic in d0, using which α can be obtained as a cubic function1533

of d0. Substituting α in EQ3 and simplifying, results in a 6th degree equation in the single unknown1534
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d0. Solving it results in 6 solutions. The correct solution in practice is always found by enforcing1535

d0 > 0,α > d0 and µ1 > 0. However, we have been unable to prove theoretically that this solution is1536

unique.1537

Case 2: Two Refractions, µ2 = µ0 In this case, we have four unknowns d0, d1,µ1 and α. However,1538

d0 cannot be estimated as shown in a similar case with known refractive index, earlier. The resulting1539

FRC turns out to be independent of d0. For this case, the FRC is given by1540

vp0× (u+αzp − q2) = 0 (4.92)

since vp2 is parallel to vp0. The refraction point q2 is given by1541

q2 = q1− d1vp1/(vp⊤
1
n) (4.93)

vp1 is given by1542

vp1 = a1vp0+ b1n, (4.94)

where a1 = 1/µ1. Since the camera ray vp0 is known, we can normalize it. Let vp0 = [v
x ; v y].1543

From 4.92,1544

b1 =
v y −

p
µ2

1+ (v
y)2− 1

µ1

(4.95)

Using a1 and b1, vp1 and q2 can be obtained. Substituting vp1 and vp0 in the FRC equation 4.921545

(d1v x −αv x + v yux − v xuy)
p
µ2

1+ (v
y)2− 1+ d1v x v y = 0 (4.96)

Removing the square root term, we get1546

(d1v x −αv x + v yux − v xuy)2(γ+ (v y)2− 1) = (d1v x v y)2 (4.97)

where γ= µ2
1
. Once again, γ can be obtained as a function of d1 and α.1547

γ=
(d1v x v y)2

(d1v x −αv x + v yux − v xuy)2
− (v y)2+ 1 (4.98)
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Similar to Case 1, let [EQ i]
3
i=1

be the 3 equations for 3 correspondences. Using EQ1, γ can be obtained1548

as a function of d1 and α as above. Substituting γ in EQ2 and EQ3 makes them cubic in d1 and fourth1549

degree in α. We found it difficult to solve in Matlab, due to the large number of terms. Therefore, we1550

used an automatic generator of Gröbner basis solver [72] to obtain the final equation. It results in a1551

6th degree equation.1552

Case 3: Two Refractions, µ2 6= µ0 In this case, we have five unknowns d0, d1,µ1,µ2 and α. How-1553

ever, this case is extremely difficult to solve and we were unable to get an analytical solution. As1554

shown, in this case the FRC will result in an equation in the above five unknowns, with fourth degree1555

terms of each unknown. Thus, it is clear that more than two layers or multi-layer systems are quite1556

difficult to solve for analytically and require a good initial guess for non-linear refinement, when1557

refractive indices are unknown.1558

For this case, the FRC is given by1559

vp2× (u+αzp − q2) (4.99)

since vp2 is not parallel to vp0. vp2 is given by1560

vp2 = a2vp1+ b2n= a2a1vp0+ (a2 b1+ b2)n (4.100)

where a2 = µ1/µ2 and1561

b2 =

Ç
µ2

1

# v y

µ1

− v y−
p
µ2

1+(v
y )2−1

µ1

�2−µ2
1+µ

2
2−µ1

# v y

µ1

− v y−
p
µ2

1+(v
y )2−1

µ1

�

µ2

(4.101)

Using a1, b1, a2, b2, we can obtain vp2 and q2. Substituting in FRC equation 4.99, we get1562

k1

p
D1+ k2

p
D1D2+ k3

p
D2 = 0, (4.102)
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where1563

k1 = v x v y(d0−α+ d1− uy) (4.103)

k2 = ux v y − d0v x (4.104)

k3 = −d1v x v y (4.105)

D1 = µ2
1
+ (v y)2− 1 (4.106)

D2 = µ2
2
+ (v y)2− 1 (4.107)

Removing the square root terms, we get1564

(k2
1
D1+ k2

3
D2− k2

2
D1D2)

2− 4k2
1
k2

3
D1D2 = 0 (4.108)

which is a 4th degree equation in four unknowns d0, d1,µ1 and α. The above equation has up to 4th
1565

degree terms of each of the unknowns. We were not able to get a polynomial equation in a single1566

unknown using 5 correspondences. Thus, multi-layer systems require a good initial guess when µi ’s1567

are unknown. Figure 6 shows the pose and calibration estimates for real data (Figure 5) assuming1568

unknown µ1 for water, which was recovered as 1.296 (relative error 2.55%).1569

4.6.4 Single Bounce SRC1570

In this section, we look at solving the SRC equation 4.67 for the case of a single sphere. Note that in1571

this case n = [0;−1] and thus vp⊤
0
n = −c0, where, as noted earlier ci = vp⊤

0
z1. To reiterate, the SRC1572

equation for a single sphere can be written as1573

vp1× (u+αzp − q1) = 0 (4.109)
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Re-writing equations 4.74-4.78 using the 2D convention presented earlier, we get1574

β1 = d0c0−
p

d2
0 c2

0 − d2
0 + r2

1 = d0c0−
p

D (4.110)

q1 = β1vp0 (4.111)

n1 = (β1vp0+ d0n)/r2
1

(4.112)

vp1 = 2(β1− d0c0)n1/r
2
1
− vp0 (4.113)

= 2(−
p

D)(β1vp0+ d0n0)/r
2
1
− vp0 (from equation 4.110) (4.114)

= 2(−
p

Dβ1vp0− d0

p
Dn)/r2

1
− vp0 (4.115)

= 2(−
p

Dβ1− 1/2r2
1
)/r2

1


v x

v y


− 2(

p
Dd0)/r2

1


 0

−1


 (4.116)

after expanding for vp0 and n. Expanding the second term, we get1575

u+αzp − q1 =


 ux − β1v x

uy +α− β1v y


 (4.117)

Finally, substituting in the SRC equation we get1576

(−β1

p
D− 1/2r2

1
)(v xuy + v xα− v yux)−

p
Dd0(u

x − β1v y) = 0 (4.118)

The above equation is linear in α and so we obtain α in terms of the other unknowns d0 and r1 as1577

(note that β1 is expressed in terms of d0 and r1)1578

α=
(β1

p
D+ 1/2r2

1
)(v yux − v xuy)− (

p
Dd0)(u

x − β1v x)

v x(−β1

p
D− 1/2r2

1 )
(4.119)

Using another correspondence, we get another equation similar to equation 4.118 but with different1579

coefficients. Unfortunately, substituting the value for α in the new equation results in binomial terms1580

of higher degree in the unkowns d0, r1. We found it difficult to solve it in both Matlab and using1581

Gröbner Bases. We also tried other representations (using polar coordinaes, for example) but were1582

unable to deduce a solution for this case. Note that a higher number of spheres or shapes with more1583

complexity will contain more unknowns, and hence will be more complicated than the equations1584
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presented here.1585

4.6.5 Single SRC With Known Pose1586

Notice that in equation 4.118 there is only one term α that is related to the relative position between1587

camera and 3D correspondences. Also, note that it is easy to isolate terms with r since mostly they are1588

only contained in the term D. We used 2 correspondences to solve for r in terms of d, which results in1589

four 4th degree equations involving only the sphere center. Thus we get 16 possible sphere centres,1590

and for each solution of d, 4 values for r for a total of 64 solutions. Disambiguating could be done by1591

observing some general rules like d > 0, r > 0, d > r and using a 3rd or more correspondences.1592

4.6.6 Solving Planar Reflection With Known Pose1593

Similar to the spherical case, we can also solve the planar reflection scenario in the presence of known1594

relative poses between camera and 3D correspondences. In such a case, the POR constraint has only1595

1 unknown in the plane normal, and hence can be solved using 2 correspondences. As for the PRC,1596

there is a reduction of only one variable α, and so the solution is more or less the same as described1597

earlier.1598

Summary We have shown that, for planar light-paths, it is possible to exploit the axial property to1599

compute the relative pose of 3D correspondences and the optical system and hence reconstruct the1600

light-paths in various scenarios. We divide the problem into two parts. In the first part, we find the1601

axis direction and part of the pose parameters using the POR constraints. In the second part, for1602

individual cases we use the refraction or reflection constraints to compute the remaining pose and1603

light-path parameters. In certain cases, we also showed that reconstruction was not possible. Finally,1604

we showed that when the relative pose is known, we can reconstruct single planar and spherical1605

reflection using 2 correspondences. Table 4.1 shows the various cases handled in this chapter.1606
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Flat Refraction Problems Plane and Spherical Reflection Problems

Known Pose Unknown Pose

Case 1
p
(2)/
p
(2)

p
(2)/
p
(3)

Case 2
p
(2)/
p
(2)

p
(2)/
p
(3)

Case 3
p
(3)/
p p

(3)/×
Case N

p
(N)/× p

(N)/×

Known Pose Unknown Pose

PRC 1 layer
p
(2)

p
(2)

PRC 2 layers
p
(2)

p
(2)

PRC N layers
p
(N)

p
(N)

SRC 1 layer
p
(2) ×

Table 4.1: Table showing tractable flat refraction problems and plane and spherical reflective problems.
Each box in flat refraction indicates whether a particular scenario is solvable with / without knowledge of
refractive indices. The numbers in the brackets indicate the number of correspondences involved in each
minimal solution

Figure 4.8: Error in axis, rotation, translation and layer thickness using a planar calibration grid for dif-
ferent noise values, averaged over 100 trials. Rotation and translation errors using a central approxima-
tion (CA) are also shown.

4.7 Results1607

In this section, we present results for various simulations that confirm our theories, as well as real1608

results and comparisons for flat refraction.1609

4.7.1 Simulations1610

Now we present simulations for the complete calibration and pose estimation process, using the1611

earlier settings. The 8pt algorithm is used since it works better. In the RANSAC framework, after1612
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Figure 4.9: Rotation, translation and reprojection error using our algorithm versus using a central ap-
proximation (CA) for Case 1 and Case 2. The right most plot shows the estimated tz for Case 2 over all
100 trials for σ = 1 pixel. CA estimates the object to be closer to the camera than in reality.

estimating the axis, the best set of 8 points are used to computed α and di ’s in a least square fashion1613

as described earlier. Since there are 4 solutions for R from E matrix, we get 4 solutions for α and di ’s.1614

The correct solution is found by enforcing α >
∑

di and di > 0∀i. We also compute the pose obtained1615

using a central (perspective) approximation from the given 2D-3D correspondences (referred by CA).1616

Figures 4.8 shows error plots for pose and calibration parameters and the final reprojection error for1617

different noise levels, averaged over 100 trials. These plots show that correct calibration and pose1618

parameters can be obtained using our algorithm. Notice the large translation and reprojection error,1619

and smaller estimated tz when using a central approximation (CA) in Figure 4.8. This is expected1620

because when looking through a denser refractive medium, objects appear closer to the camera. Note1621

that the error due to noise in CA is insignificant compared to the error due to incorrect modeling.1622

4.7.2 Real Results1623

We show real results using a water tank of dimensions 508× 260× 300mm3. We use a Canon Rebel1624

XT camera having resolution of 3456 × 2304 pixels with a 18 − 55 mm zoom lens. The camera1625

was internally calibrated offline. Figure 4.10 shows a photo of a scene consisting of three checker-1626

boards, captured by looking through the water tank (facing 260mm side of tank). In order to obtain1627

ground truth, we took another photo in air, using which the poses of the of checkerboards were1628

computed. The resulting 3D points in the coordinate system of the left checkerboard are shown in1629
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Figure 4.10: (Left) Setup. (Middle) Photo captured by looking through a water tank. Projected 3D
points are overlayed by applying pose estimated using CA (green) and our algorithm (red).(Right) Recon-
structed 3D points.

N θx ,θy ,θz (deg) t x , t y , tz (mm) d1(mm)

GT 131.38, 1.22, 84.07 -237.58, -128.85, 455.80 260

CA 144 130.24, 1.42, 83.84 -217.71, -120.73, 372.14 -

Ours1,2 144 131.38, 1.26, 84.12 -237.11, -128.16, 453.12 255.69

Ours1,3 48 131.40, 1.36, 84.03 -239.76, -129.26, 456.34 272.81

Ours4 144 131.37, 1.26, 84.12 -236.46, -127.86, 449.70 262.39

Table 4.2: Estimates of pose and water-tank thickness d1 for real data shown in Figure 4.10 using cen-
tral approximation (CA) and our algorithm. GT denotes ground truth and N denotes number of 2D-3D
correspondences. Conditions: 1 Assuming µ1 = 1.33. 2 All Planes. 3 Left Plane Only. 4 All Planes, un-
known µ1.

Figure 4.10(Right). We detect corners in the captured photo and run our algorithm (Case 2) to esti-1630

mate the calibration and pose parameters. The estimated thickness of the tank using our algorithm1631

was 255.69mm, resulting in a relative error of 1.66%. Notice the large error in tz in the central ap-1632

proximation (Table 4.2), also evident from projected points in Figure 4.10. Interestingly, the central1633

approximation can recover the rotation well enough.1634
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4.8 Discussion1635

We have analyzed the geometry of a perspective camera imaging through multiple flat refractive1636

layers. We developed a theory for calibration and extended it to the case of planar and spherical1637

reflections, which can be directly used in applications such as 3D reconstruction [9]. We presented1638

a comprehensive analysis under unknown layer distances and orientation, and known/unknown re-1639

fractive indices. Since calibration can be done using a single planar grid, the proposed algorithms1640

are useful in practical scenarios such as underwater imaging. Multiple planar grids can be used to1641

increase the calibration accuracy similar to calibration of perspective cameras. Our proposed 8-point1642

algorithm for axis computation can be used for other axial setups such as catadioptric cameras, as1643

well as to compute the distortion center for fish-eye cameras. Developing a minimal solution for1644

calibrating flat refractive geometry remains an interesting future work.1645
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51646

Conclusion and Future Work1647

In this chapter we conclude this thesis on shape estimation for specular surfaces. We first summarize1648

the main contributions of our work and then discuss possible future directions.1649

5.1 Summary and Discussion1650

Shape estimation for specular surfaces can be considered one of the last frontiers of the shape esti-1651

mation problem, since for most other objects reasonably accurate algorithms exist under appropriate1652

conditions. Because of this fact, in this thesis, we have looked at different approaches to the specular1653

shape estimation problem. While centering around the light-path triangulation framework, we try to1654

use different conditions and inputs to derive the following algorithms for shape estimation1655

• In Chapter 2, we derive the multiple view geometry of flat refraction. We consider the case1656

where the camera and scene are in different medium, separated by a flat transparent refrac-1657
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tive surface. We analyze the multiple view geometry setup arising from such a scenario, and1658

present useful representations for the camera projection matrix, the fundamental matrix and1659

the homography matrix. We also show some conditions under which the normal to this surface1660

might be easily estimated. The underlying philosophy of this approach was to gain a geometric1661

understanding of image formation under flat refraction, and our work shows that under such1662

circumstances it is beneficial to group the light-paths corresponding to the image of a 3D line1663

into one entity in order to analyze the situation.1664

• In Chapter 3, we explore the idea of adding photometric information to the light-path trian-1665

gulation framework. While the resulting geometric analysis framework remains similar to that1666

of [73], we show that addition of this information results in reducing the minimal require-1667

ments of reconstruction. We divide our analysis into single bounce and double bounce cases,1668

and show encouraging results and comparisons on the single bounce case. We also theoretically1669

analyze the conditions under which double bounce reconstruction might be possible. However1670

at present practical problems limit our ability to produce accurate results.1671

• In Chapter 4, we analyze a different grouping of light-paths, when the underlying system of1672

rays captured by the camera is axial in nature. We show that under many circumstances like1673

refraction across parallel flat layers, such a system produces planar light-paths. We analyze1674

the properties arising from this planarity and demonstrate the possibility of going beyond the1675

limitations propounded in [73] in some cases. While encouraging results are presented on1676

real scenarios like viewing across parallel refractive layers, we also derive unique insights into1677

some specular reflective setups. Comparisons with a central approximation approach show the1678

benefits of our methods.1679

To summarize, there is a lot of potential in light-path analysis for shape estimation of specular1680

surfaces. While we presented 3 approaches with encouraging results, we believe there is a lot of1681

scope for future work in this area.1682
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5.2 Future Work1683

As discussed in each of the chapters, there is large room for improvements. Based on this, we list a1684

few potential future directions for shape estimation and discuss some potential applications.1685

• One of the potential drawbacks of the phenomenon of specular refraction / reflection is that1686

given all the parameters like knowledge of 3D points, specular surface geometry and camera1687

poses and intrinsics, it is difficult to analytically derive the projection of a selected 3D point onto1688

the image. Primarily, this problem occurs due to the piece-wise linear nature of the light-path1689

associated with that 3D point. While a few approaches have been presented in the past [3],1690

applications like shape estimation or ray tracing would benefit from more research in this area.1691

While analytical formulae generally tend to be of high order, methods like Gröbner basis could1692

be used for arriving at hitherto unknown solutions. Of course, presence of such analytical1693

solutions would also help in designing new optimization based reconstruction approaches for1694

specular surfaces.1695

• While a lot of research has been devoted to the geometry related to specular surfaces, little1696

has been done in other areas like appearance based analysis of transparency [75]. Especially1697

in problems like robot navigation, such appearance based approaches are essential to isolate1698

transparent objects for further geometric analysis if required. In fact, exploration of the rela-1699

tionship between appearance and geometry of a specular surface has found early interest [70],1700

and might be of immense use for shape estimation problems.1701

• One of the major bottlenecks to multiview reconstruction of specular surfaces is the correspon-1702

dence problem. While it is impossible to estimate the correspondence between the location of1703

the image of a 3D point on the surface of a specular object in two camera views, an analysis of1704

simple circumstances (like points on a sphere or quadric) might provide better information for1705

both reconstruction and specular flow problems. The fact that many everyday specular objects’1706

shape can be describe in terms of such simple primitives highlights the potential applications of1707

such a theory.1708

In summary, in this thesis we have presented multiple approaches to shape estimation of specular1709

surfaces. In the future, we hope that our work will find useful applications in the fields of reconstruc-1710

tion, ray tracing and general image understanding of specular surfaces.1711
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.1 Partial Polarization2034

When unpolarized light with electric field magnitude || falls on a dielectric transparent object at an2035

angle θ1 and is refracted at an angle θ2, the reflected and transmitted portions of light are partially po-2036

larized. Given refractive indices n1 and n2, let us compute the perpendicular and parallel components2037

of the reflected ray. A similar derivation can be obtained for the transmitted ray.2038

‖E1‖ cos(ψ) = k
p

Rs‖E‖ cos(φ) (1)

‖E1‖ sin(ψ) = k
p

Rp‖E‖ sin(φ) (2)

tan(ψ) =

È
Rp

Rs

tan(φ) (3)

ψ = tan−1(

È
Rp

Rs

tan(φ)) = g(φ) (4)

where k is the normalizing factor to make sure both sides are components of unit vectors, φ denotes2039

the angle between the electric field and its parallel component, and ψ denotes the same angle for the2040

reflected ray. Since the incoming light is unpolarized, the probability of any φ occuring is ρ(φ) = 1

π
.2041
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Thus denoting λ =

q
Rp

Rs
, the probability of ψ can be computed using a variable transformation.2042

ρ(ψ) =
1

|g ′(φ)|ρ(φ) (5)

g ′(φ) =
1

1+λ2 tan2(φ)
(λ sec2(φ)) (6)

=
1

1+λ2 tan2(φ)
(λ(1+ tan2(φ))) (7)

=
1

1+ tan2(ψ)

λ2+ tan2(ψ)

λ
(see 3) (8)

=
λ2+ tan2(ψ)

λ(1+ tan2(ψ))
=
λ2− 1+ sec2(ψ)

λ sec2(ψ)
(9)

1

|g ′(ψ)| =
λ sec2(ψ)

|λ2− 1+ sec2(ψ)| (10)

=
λ

|(λ2− 1) cos2(ψ) + 1| (11)

This Finally, this gives ρ(ψ) in the case of both reflection and transmission, as2043

ρ(ψ)l =

p
RsRp

|(Rp − Rs) cos2(ψ) + Rs|
1

π
(12)

ρ(ψ)r =

p
TsTp

|(Tp − Ts) cos2(ψ) + Ts|
1

π
(13)

Notice that Rp = 0 at Brewster’s angle, which makes ρ(ψ) = 0 for all angles except ψ = 0 (where2044

denominator reduces to Rp, and so ρ(0) is undefined). This agrees with the theory that reflected2045

light is linearly polarized perpendicular to the plane of refraction. When this reflected or transmitted2046

light reaches a second refractive surface, the Fresnel equations apply on the basis of a new plane of2047

refraction which is different from the previous one. Thus the new electric field E2 is a rotated version2048

of the electric field associated with the reflected or transmitted light E1. Fortunately, this just results2049

in a shift in angle space, so ψ′ = ψ− α where α is the angle between the two planes of refractions.2050

This follows immediately from the fact that the two planes of refraction contain the transmitted or2051

reflected ray, and hence thier normals must lie in a plane perpendicular to the direction of propagation2052
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of the ray.2053

.2 Second Bounce Radiance Ratio2054

Following equation 3.13, we now determine the radiance ratio for the case when two reflections2055

occur. The other cases for any combination of two bounces follows the same pattern. In order to2056

compute the radiance ratio after the first bounce, first we need to compute the intensity of a single2057

ray after the first bounce.2058

1‖E‖=
p

1RsE
2 cos(φ) + 1RpE2 sin(φ) (14)

Since tan(φ) =

q
1Rs
1Rp

tan(ψ), we can modify the above equation by noting2059

cos2(φ) =

1Rp cos2(ψ)

1Rp cos2(ψ) + 1Rs sin2(ψ)
(15)

sin2(φ) =
1Rs sin2(ψ)

1Rp cos2(ψ) + 1Rs sin2(ψ)
(16)

Thus, we get2060

1‖E‖= 1E = E

s
1Rs

1Rp

1Rp cos2(ψ) + 1Rs sin2(ψ)
(17)

1E2 = E2

1Rp

k2 cos2(ψ) + sin2(ψ)
(18)
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Substituting 1E2 for E2 in equation 3.13, we get the intensity for second bounce as2061

2Il l =
1E2

∫ u

l

(2Rs cos2(ψ) + 2Rp sin2(ψ))ρ(ψ)dψ (19)

= E2 1Rp
2Rp

∫ u

l

cos2(ψ)l2+ sin2(ψ)

k2 cos2(ψ) + sin2(ψ)
ρ(ψ)dψ (20)

= E2 1Rp
2Rp

1

2

�
(2Rs

1Rp +
1Rs

2Rp) sin
2(α) + (1Rs

2Rs +
1Rp

2Rp) cos2(α)

1Rp
2Rp

�
(21)

= E2
1

2

�
(2Rs

1Rp +
1Rs

2Rp) sin
2(α) + (1Rs

2Rs +
1Rp

2Rp) cos2(α)
�

(22)

where k =

q
1Rp

1Rs
and l =

q
2Rs
2Rp

2062

Coordinate transformation After a light ray passes through the first bounce, the angle its elec-2063

tric field makes with the 1π is ψ. However, when it strikes the second surface in plane of reflec-2064

tion/refraction 2π, the angle made with 2π is no longer ψ. Since 1π and 2π are normal vectors2065

perpendicular to the middle segment of the light path, they lie in the plane that contains the electric2066

field 2E. Thus, this ray makes an angle ψ−α with 2π, where α is the angle between 1π and 2π.2067
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