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Chargé de Recherche, Inria, Bordeaux, Examinateur

Christian LAUGIER
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Abstract

This thesis focuses on semi-autonomous wheelchair navigation. We aim to

design a system respecting the following constraints.

– Safety : The system must avoid collisions with objects and especially

with humans present in the scene.

– Usability : People with motor disabilities and elders often have problems

using joysticks and other standard control devices. The use of more so-

phisticated and human-like ways of interacting with the robot must be

addressed to improve the acceptance and comfort for the user. It is also

considered that the user could just be able to move one finger and so

the request of human intervention should be as reduced as possible to

accomplish the navigation task.

– Compliance : The robot must navigate securely among obstacles while

reducing the frustration caused to the user by taking into account his

intentions at different levels ; final destination, preferred path, speed etc.

– Respect of social conventions : When moving, the robot may conside-

rably disturb people around it, especially when its behavior is perceived

as unsocial. It is thus important to produce socially acceptable motion

to reduce disturbances. We will also addresses the issue of determining

those places where the robot should be placed in order become part of an

interacting group.

In this work we propose to estimate the user’s intention in order to reduce

the number of necessary commands to drive a robotic wheelchair and deal

with ambiguous or inaccurate input interfaces. In this way, the wheelchair

can be in charge of some part of the navigation task and alleviate the user

involvement. The proposed system takes into account the user intention in

terms of the final destination and desired speed. At each level, the method

tries to favor the most “reasonable” action according to the inferred user

intention.

The user intention problem is approached by using a model of the user

based on the hypothesis that it is possible to learn typical destinations



(those where the user spends most of his time) and use this information to

enhance the estimation of the destination targeted by the user when he is

driving the robotic wheelchair.

A probabilistic framework is used to model the existent relationship between

the intention of the user and the observed command. The main originality of

the approach relies on modeling the user intentions as typical destinations

and the use of this estimation to check the reliability of a user’s command to

decide how much preeminence it should be assigned by the shared controller

when managing the robot’s speed.

The proposed shared-control navigation system considers the direction of

the commands given by the user, the obstacles detected by the robot and

the inferred destination to correct the robot’s velocity when necessary. This

system is based on the dynamic window approach modified to consider the

input given by the user, his intention, the obstacles and the wheelchair’s

dynamic constraints to compute the appropriate velocity command.

All of the results obtained in this thesis have been implemented and valida-

ted with experiments, using both real and simulated data. Real data have

been obtained on two different scenarios ; one was at INRIA’s entry hall and

the other at the experimental apartment GERHOME.



Résumé

L’objet de cette thèse est la navigation en fauteuil roulant semi-autonome.

Nous cherchons à concevoir un système respectant les contraintes suivantes :

– Sécurité : Le système doit éviter les collisions avec d’autres objets et

surtout avec toute personne présente sur la scène.

– Facilité d’utilisation : les personnes âgées ou avec un handicap moteur

ont souvent des difficultés à utiliser une manette ou d’autres dispositifs de

contrôles standards. Des moyens d’interactions avec le robot, plus sophis-

tiqués et plus proches des interactions humaines, doivent donc être mis en

place afin d’améliorer l’acceptation et le confort de l’usager. On considère

également que l’utilisateur ne doit avoir qu’à bouger un doigt : de cette

manière, la nécessité d’une intervention humaine sera aussi réduite que

possible pour accomplir la tâche de navigation.

– Acquiescement : le robot doit naviguer en toute sécurité parmi les

obstacles, tout en réduisant la possible frustration causée à l’utilisateur

en prenant en compte ses intentions à différents niveaux : destination

finale, chemin préféré, vitesse, etc.

– Respect des Conventions Sociales : en se déplaçant, le robot peut

considérablement déranger les personnes qui se trouvent autour, tout par-

ticulièrement lorsque son comportement est perçu comme associable. Il

est par conséquent important que les mouvements du robot soient sociale-

ment acceptables afin de réduire les possibles gênes. Nous déterminerons

également les lieux o doit être placé le robot afin de s’intégrer au mieux

à un groupe en interaction.

Dans ce travail, nous proposons d’évaluer les intentions de l’utilisateur afin

de réduire le nombre de commandes nécessaires à la conduite d’un fauteuil

roulant robotisé Nous souhaitons prendre en compte toutes les interfaces

d’entrée ambiguës ou imprécises. De cette manière, le fauteuil roulant peut

être responsable d’une partie de la tâche de navigation et alléger l’implica-

tion de l’usager. Le système proposé prend en compte l’intention de l’uti-

lisateur en termes de destination finale et de vitesse souhaitées. A chaque



niveau, la méthode cherche à favoriser l’action la plus “raisonnable” en

fonction des intentions inférées de l’usager.

Ainsi, à partir du panel des destinations types que l’on apprend de l’usa-

ger (c’est à dire les lieux dans lesquels celui-ci passe la plus grande part

de son temps), il est possible de déduire sa destination lorsqu’il conduit

son fauteuil roulant. Une méthode probabiliste est utilisée pour modéliser

la relation entre l’intention de l’usager et la commande observée. L’apport

principal de cette méthode consiste à modeler l’intention de l’usager à partir

de destinations types. Cette information est utilisée pour valider les com-

mandes de l’utilisateur et assigner une importance plus ou moins grande au

système de contrôle partagé qui régule la vitesse du robot.

Le système de contrôle partage prend en compte la direction des commandes

données par l’usager, les obstacles détectés par le robot et la destination

inférée afin de calculer la vitesse du robot la plus appropriée. Ce système se

base sur une adaptation de la méthode dynamic window à la problématique

décrite.

Tous les résultats obtenus dans cette thèse ont été appliqués et validés en

simulation et en conditions réelles. Les mesures ont été effectuées sur deux

scènes : la première située dans le hall d’accueil du laboratoire INRIA et la

seconde dans le département expérimental GERHOME.
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Chapter 1

Introduction

1.1 Motivation

The aging of the world’s population is bringing the need to assist the elderly to

move when they lose the necessary motor skills, strength or visual acuteness to do it by

themselves (Simpson et al., 2008). Mobility limitations are a leading cause of functional

disabilities among adults and it is related to depression and anxiety disorders (Pope

and Tarlov, 1991).

Self-sufficient mobility reduces dependence on caregivers and family members and

it has a considerable effect on social inclusion, self-esteem and vocational opportunities

for both adults and children (Mortenson et al., 2012). As a result of the reduction in

medical dependence, it also plays an essential role in promoting the ”aging in place”

that aims to support daily activities at home as long as possible.

Mobility can be improved by using typical devices including powered and manual

wheelchairs, scooters and walkers. However, there exist a segment of the population

who still find it very demanding or even unfeasible to use those normal devices. This

population includes patients with spasticity 1, tremors, hemiplegia 2 or cognitive deficits.

The development of smart robotic platforms capable of providing an specialized and

intelligent assistance can clearly improve the quality of life of this sector of the popu-

lation.

The PAL project

1. Spasticity is a disease causing stiff or rigid muscles. It may also be called unusual tightness or
increased muscle tone. Reflexes (for example, a knee-jerk reflex) are stronger or exaggerated. The
condition can interfere with walking, movement, or speech.

2. Hemiplegia is the total or partial paralysis of one side of the body that results from disease or
injury to the motor centers of the brain

1



1. INTRODUCTION

The work presented in this thesis has been done as part of the so called PAL project.

The Personally Assisted Living project (PAL) 1 is an INRIA 2 project grouping together

many INRIA research teams. This project proposes to develop technologies and services

to improve the autonomy and quality of life for elderly and fragile persons covering a

broad spectrum of research axis such as: social interaction, intelligent habitat, mobility

assistance, health care and well being.

Fundamental and technological research particularly related to autonomous indoor

vehicles is concerned with the development of mobility assistance devices such as robotic

wheelchairs and walking aids. The large scale nature of the project leads the devel-

opment of other technologies to track the daily activities of people at home such as

sensor and actuators networks, and human-robot interaction technologies to ease the

interaction of the elderly with new technologies.

1.2 Problem Description

Conventional hand-operated wheelchairs provide mobility to persons with physio-

logical impairments but are not very appropriate for someone with a combination of

physical, cognitive or perceptual disability. Powered wheelchairs are less physically de-

manding than hand-operated wheelchairs; however, powered wheelchairs demand cog-

nitive and physical abilities that not all persons possess. For example, a clinical study

in a variety of rehabilitation services reported that between 10 and 40 percent of the

interviewed patients could not use powered wheelchairs because sensory impairments,

motor, or cognitive deficits made driving safely impossible with any of the existent

mechanisms (Fehr et al., 2000). Nowadays, those who are considered unable to safely

and independently maneuver a manual or powered wheelchair are typically seated in a

manual wheelchair and pushed by a caregiver.

When working with a mobility assistance device there are at least two entities to be

considered: the user and the assistance device itself. This kind of problem is referred

as shared control. Researching on human-robot shared control systems is becoming

very important because of the growing number of daily situations where cooperation

between robots and humans is necessary to accomplish a certain task.

The purpose of shared control is to combine the strengths of both the human and

the machine to reduce their weaknesses. Whereas humans excel in global planning

1. https://pal.inria.fr/
2. French: Institut National de Recherche en Informatique et en Automatique, (Institute for Re-

search in Computer Science and Automation).
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and coarse control, local navigation is one of the tasks that is performed better by

robots. In this case, the robotic assistant could avoid embarrassing and potentially

dangerous situations such as collisions with walls, other objects, and other persons in

the environment. On the other hand, wheelchair drivers do not necessarily accept to

give up driving control to the robot.

In order to succeed, each of the entities in a shared controlled system needs to have

certain knowledge about the intention of the other parts. In a user-centered design it is

necessary to reduce the frustration caused by disagreements with the robotic assistant.

This is why the robot has to be aware of the intentions of his user at different levels.

To be well accepted, the movement of the wheelchair must be reliable, safe and

comfortable. The approach discussed in this work has been designed in order to meet

the following requirements:

– Safety: The system must avoid collisions with objects and specially with humans

present in the scene.

– Usability: People with motor disabilities and elders often have problems using

joysticks and other standard control devices. The use of more sophisticated and

human-like ways of interacting with the robot must be addressed to improve the

acceptance and comfort for the user.

– Compliance: The robot must navigate securely among obstacles while reducing

the frustration caused to the user by taking into account his intentions at different

levels; final destination, preferred path, speed etc.

– Respect of social conventions: When moving, the robot may considerably

disturb people around it, especially when its behavior is perceived as unsocial. It

is thus important to produce socially acceptable motion to reduce disturbances.

1.3 System Architecture

In order to meet the requirements mentioned in section 1.2, we created a system

with a modular architecture to address each different objective separately, as shown in

figure 1.1.

The functional modules developed as part of this thesis are shadowed in orange while

the other necessary modules were taken from the open source community (white blocks).

In this diagram we used standard flow chart symbols to represent information that is

stored on disk (blue cylinders), manual data inputs coming from the user (rectangles

with diagonal top), and data from other sources (parallelogram). A brief description

of the essential modules in this thesis are now presented.

3
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Figure 1.1: The navigation system of the robotic wheelchair. Several functional com-
ponents were developed as part of this thesis (orange items) while the other necessary
modules were taken from the open source community (white blocks). In this diagram
we used standard flow chart symbols to represent information that is stored on disk
(blue cylinders), manual data inputs coming from the user (rectangles with diagonal
top), and data from other sources (parallelogram).

– Destination Inference: This functional component estimates the desired des-

tination within the map of the environment among a list of possible predefined

locations in the map. Those locations can be selected by an expert caregiver,

the user, or learned automatically by the system. For each typical destination,

the probability to be the one desired by the user is computed using a Dynamic

Bayesian Network that considers the current position of the wheelchair, the direc-

tion of user’s commands as well as a model of the user’s habits. The destination

with the highest probability value is selected and sent to the navigation module

(Escobedo et al., 2013).

– Meeting Points Estimator: It uses a geometrical model to compute good

places to approach groups of people in social interaction (meeting points). Those

meeting points are a special kind of possible destinations which are not static but

depend on complex social relationships governing human interactions. Whenever

an interaction is detected by the social filter, the related meeting points are

computed and considered by the destination inference as possible options.

– Navigation: The navigation component is built upon the ROS 1 navigation

1. Robot Operating System. http://www.ros.org/
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software architecture presented in (Marder-Eppstein et al., 2010). It computes

the path to the selected/inferred destination and calculates the necessary velocity

to follow the path while avoiding obstacles. The modules that have been modified

to meet the design requirements explained in the Problem Description section are:

– Shared Local Controller: This part of the navigation component is the one

in charge of generating the velocity commands to drive the wheelchair and is

one of the main contributions of the presented work. It is based on the dynamic

window approach DWA (Fox et al., 1997) that performs reactive navigation of

autonomous robots. Opposed to the conventional method our system takes the

intention of the user into account preferring trajectories in the direction of the

user field of view or in the direction of a deliberate order given by the user

using a normal input device as a joystick, a keyboard, etc.

– Social Grid: Receives information from the “social filter” (Rios-Martinez

et al., 2011) that models a social cost or risk of disturbing people in the vicinity

of the robot. The social grid fuses the social cost information with the obstacle

cost information retrieved by the wheelchair’s sensors. Both costs are projected

into a 2D grid representation of the space which is used when scoring the

navigation function that governs the wheelchair’s movement.

1.4 Contributions

The main contributions of the work reported in this thesis are the following:

– We proposed a ”destination inference method”. This is a probabilistic model that

improves the inference of the desired destination by considering the user’s habits

and data coming from a multi-modal user-machine interface.

– We proposed a ”user’s intention driven navigation function” implemented us-

ing a modified version of the Dynamic Window Approach to consider the user’s

intention in the wheelchair’s local velocity control.

– Computing and using ”meeting points as possible destinations” is a very new

research subject exploited in this thesis. We used a geometrical model to extract

good places to join groups of people detected by the wheelchair and then use our

model of user intention to consider those points as possible goals.

– We propose to use a ”multi-modal interface” using the user’s face position and

speech recognition. The safety and usability of the interface is improved by inte-

grating the shared local planner and destination inference to avoid collisions and

reduce the necessary focused attention when the user is driving the wheelchair.
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– The wheelchair’s navigation function was improved by a adding a ”social cost”

that considers the cost of bothering people by interrupting their interactions or

invading their personal space when the wheelchair navigates around.

1.5 Thesis outline

Chapter 2 - State of the Art: This chapter presents the state of the art on

robotic wheelchairs. First of all, a review on different types of architectures is pre-

sented. Several user-wheelchair interfaces will be introduced giving special emphasis

to those that can be improved by means of robotic assistants. An analysis of the

different navigation approaches according to the degree of frailty of the user will be

presented. Finally, we will examine how our proposed method compares to other simi-

lar approaches.

Chapter 3 - Tools for Navigation in Human Populated Environments: In

this chapter, we present the control architecture of our robotic wheelchair. Including

a description on how obstacle information is managed by the navigation system and

our proposal to respect socially defined regions. We also present a method to compute

good places to join a groups of people engaged in a conversation. Finally, a discussion

about the applications and performance of the system is presented.

Chapter 4 - User Intention Aware Navigation: In the first part of this

chapter we will present an introductory discussion about the importance of inferring the

user intended destination when driving the robotic wheelchair. Then our probabilistic

to infer the most probable destination model will be proposed. In the second part of

this chapter we propose a reactive navigation algorithm that considers the input from

the user and the sensors of the robot to compute the necessary velocity commands to

move without collisions while remaining as close as possible to the orders given by the

user.

Chapter 5 - Experiments: In this chapter we present the experiments that were

done during this thesis. We describe the experimental wheelchair, the face-pose and

vocal interfaces. Then the results of the experiments are discussed and commented.

Chapter 6 - Conclusions and perspectives: In this chapter we will present the

conclusions and future work directions to pursuit for the destination inference, shared

controller, meeting points computing and social cost-mapping presented in this thesis.
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Chapter 2

State of the Art

This chapter presents the state of the art on robotic wheelchairs. First of all, a

review on different types of architectures is presented. Several user-wheelchair interfaces

will be introduced emphasising those that can be improved by means of robotic assistants.

An analysis of the different navigation approaches according to the user’s degree of

frailty will be presented. Finally, we will examine how our proposed method compares

to other similar approaches.

2.1 Introduction

Research in mobility assistance devices has earned increasing importance in recent

years. Wheelchairs have been the most important mobility aid for people with motor

disabilities for a long time and there exist a big interest in developing strategies to

make those devices available for a larger group of users and enhance their performance

to be easier and safer.

A robotic wheelchair is a type of mobile robot intended to be used by people with

motor disabilities who are unable to drive a normal electric wheelchair or users who

need some assistance when maneuvering in cluttered areas. Many robotic wheelchairs

are differential robots consisting of two motorized wheels that share the same axis. In

general, at least one free caster wheel is added to improve the stability of the robot.

This type of robotic platform is non-holonomic which means that it can not drive

instantaneously in every direction.

First works on intelligent wheelchairs appeared in the 80’s and many of them have

been proposed in all around the globe since then. Madarasz et al. (1986) from Arizona

State University proposed to use an autonomous robot for the physically disabled.

9
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Figure 2.1: The autonomous wheelchair prototype from Arizona State University (1986)
was the first project that try to use a mobile robot as a wheelchair to assist people with
disabilities.

This robot was equipped with an on-board microcomputer a (128 px x 128 px) digital

camera and a ultrasonic range finder mounted on a tilting base. The platform already

contemplated -theoretically at least- a planning algorithm to give a list of actions to

move between rooms and a visual servoing system that worked at 2Hz to drive the

wheelchair in corridors. The limited perception and computing power as well as the

absence of battery supply made largely constrained the real use of this system.

Robotic wheelchairs have been classified according to different factors as its mechan-

ical design, the input method, the control software, the operating mode etc Simpson

(2005).

– Mechanical Design: It relates to the fabrication of the robotic wheelchair. It

can be made from an autonomous robot with a supplementary seat, a commercial

electric wheelchair with new sensors and computing units, or a manual wheelchair

adapted with sensors, a computer and some actuators.

– Input method: The interface with the user is a very important part to con-

sider when designing the robotic wheelchair. Different interfaces have been pro-

posed ranging from traditional input methods (joysticks, switches, touch screens,

etc.) to more sophisticated devices as voice recognition, face pose control, brain-

computer interfaces (BCI), electro-oculography etc.

10
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– Operating Mode: Systems with different levels of autonomy have been pro-

posed to assist users with different degrees of frailty. Those system range from

full manual control when the user is completely in charge of driving, to fully au-

tonomous robots where the user gives the desired destination and the wheelchair

computes the necessary velocity commands to reach it while avoiding obstacles.

Most of the proposed solutions rely on shared control architectures or semi-

autonomous robots where the control is divided between the robot and the user.

In every case the selected operating mode should be based on the user capabilities.

2.2 Mechanical Design Classification

Many researching groups have used technologies that were originally developed for

mobile robots to create robotic wheelchairs. According to the way they are built, there

are two different types of experimental robotic wheelchairs.

The first type is formed by a standard electric wheelchair connected to a com-

puter and some sensors; e.g. The robotic wheelchair from INRIA-Rennes laboratory

(Pasteau et al., 2013), the RobChair from University of Coimbra (Lopes et al., 2012),

the third VAHM prototype (Grasse et al., 2010), Sharioto from Leuven University (Van-

hooydonck et al., 2010), the SmartChair from University of Pennsylvania (Patel et al.,

2002), Rolland from Bremen University (Lankenau et al., 1998) shown at figure 2.2.

The second type consists of a mobile robot base with an added seat. This type of

platforms has the advantage to be excellent experimental test prototype allowing fast

development and integration with new experimental control and navigation methods;

e.g. our robotic wheelchair at INRIA Rhône-Alpes (Escobedo et al., 2013), the MIT

autonomous wheelchair (Hemachandra et al., 2011), and the first VAHM prototype

(Bourhis and Agostini, 1998) shown at figure 2.3.

2.3 Input Devices

Input or access devices are those instruments used by the user to drive the wheelchair.

Typical electric wheelchairs use a joystick as access device, however, there are many

different dedicated interfaces to be used by patients with diverse illnesses or disability

degree.

Even those users that can drive by means of a joystick could be assisted by a robotic

wheelchair to perform some difficult or repetitive maneuvers as corridor following or

traversing a door and almost every other access device is also suitable to be improved
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(a) INRIA-Rennes wheelchair
(France).

(b) VAHM Third generation,
University of Metz (France).

(c) Sharioto, Leuven University
(Belgium).

(d) SmartChair, University of
Pennsylvania, (USA).

(e) ROLLAND, Bremen Uni-
versity (Germany).

Figure 2.2: Robotic wheelchairs built from standard electric wheelchairs with added
sensors and computing units.
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(a) INRIA Rhône-Alpes
robotic wheelchair (France).

(b) MIT robotic wheelchair
(USA).

(c) First generation VAHM,
University of Metz (France).

Figure 2.3: Wheelchairs built from autonomous robots with added seats.

by some kind of robotic assistance. In this section we will present some of the most

common access devices used by robotic wheelchairs in order to understand how different

users could be assisted by the robotic device.

2.3.1 Continuous Input Devices

In this kind of input devices the control signal is continuously measured, interpreted

and used to drive the vehicle. The user can make small adjustments to both the speed

and direction of the wheelchair, however, he has to do it constantly (in the same way as

the driver of a car) to properly control the movement of the device which is sometimes

difficult and tiring. Some input devices of this type are the joystick, head control, finger

control, touch pads, etc.

– Joystick: The joystick is the most common continuous input device. The normal

joystick consists of a stick attached to a gimbal and is operated using the hands.

Other type of joysticks can be operated by movements of the head, chin, or tongue.

This device measures the angular displacement of the gimbal with respect to the

repose position and maps it into a desired linear and angular velocities (Fig. 2.4).

– Head Control: The user pushes the left side of the head support to go left, the

right side to go right and pushes back to go forward. In order to back up the

user must activate a switch and then push the head support straight back. The

user must activate the switch again to move forward. This can be an important
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(a) Hand-operated joystick (b) A joystick operated with
the chin.

Figure 2.4: The joystick is the most common access method or input interface with an
electric wheelchair.

Figure 2.5: In a typical head control the user pushes the head support in the desired
direction to control the wheelchair.

drawback if the user is in a situation where several back and forward movements

are needed to get through a doorway or enter an elevator etc (Fig. 2.5).

– Finger Control: It consists of a small square box with a hole in the top of it. To

drive the chair, the user places one finger through the hole on the top of the box

and moves the finger in the direction they want the power wheelchair to move.

This system is basically the same principle as a joystick but the user only moves

a finger instead of the joystick (Fig. 2.6(a)).

– Touch-Pad Control: Allows the user to drive the power wheelchair with only

one finger. Because touch pads are also proportional, the user can determine and

control the speed of the wheelchair while moving simply by a small movement of

the finger (Fig. 2.6(b)).

2.3.2 Discrete Input

This type of interfaces send a signal just at a discrete time, as a result, the inter-

action with the user is slower than with continuous input devices, and the number of
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(a) Finger control. (b) Touchpad control.

Figure 2.6: These types of input devices can be operated by users who can only move
one finger.

possible commands is also significantly reduced. They are normally designed to be used

by users with very severe disabilities.

– Sip and puff: Are designed for those users who aren’t able to use any part of

their body to operate a control device on their power wheelchair. Sip and puff

systems are non-proportional drives and require quite a bit of practice by the user

to get good at driving. Generally, the user will sip a specific number of times to

indicate a direction, and puff to confirm the choice and activate the movement of

the wheelchair. It is common for an auxiliary display to be used with sip-and-puff

to provide feedback to the user (Fig. 2.7(a)).

– Switches: An array of switches can be used for the directional input of a

wheelchair. The switches are usually mounted visibly on a board and activated

by the user’s hand. This digital system might be an option for users who have

some control of a hand but can’t maintain the constant control needed to operate

a joystick. Switches are also indicated for individuals who have good control over

an anatomic site not usually used to control a wheelchair. An individual with a

disability might, for example, have better motor control over a foot rather than

a hand. An array of large switches mounted to the footrest could then be used

as a direction input (Fig. 2.7(b)).

2.3.3 User-Machine Interfaces Used by Robotic Wheelchairs

In addition to the typical input devices mentioned before, many robotic wheelchair

research is based on the development and testing of new input methods with the purpose

of helping a larger group of patients or making the driving experience easier or more
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(a) Sip and puff. (b) Switches.

Figure 2.7: Different discrete access methods used in commercial electric wheelchairs.

intuitive.

Inaccurate or slow interfaces such as brain-computer, or electro-oculography based

systems can be used thanks to the obstacle avoidance and intelligent assistance provided

by robotic wheelchairs. This kind of interfaces could be the only form of communication

for certain patients as those affected by tetraplegia or other sever motor disabilities

therefore there is a huge interest in its development.

New interfaces can also be used to increase the comfort and usability of the wheelchair.

Those new kind of human-machine interfaces can allow to interact with the wheelchair

in a more natural and human-like way. This is the case of systems that use interfaces

as voice control, gesture recognition, face pose recognition or eye trackers.

Brain Control Interfaces (BCI)

This is one alternative way to control robotic wheelchairs that have been proposed

in the literature. Brain Control Interfaces are based on the decoding of the electrical

brain activity, to perform the communication between the robot and the user and they

are well adapted for paraplegic patients. The recording of brain activity is typically

obtained using electroencephalographic systems.

Electroencephalography consists on placing electrodes on the scalp with a conduc-

tive gel or paste to measure the electrical activity of the brain. The number of electrodes

depends on the application and they can be mounted on a cap for convenience of use.

Then, the recorded signal is filtered and digitalized to be used by the computer.

There are two general ways of decoding the generated electrical brain signal:

– Signal Classification: It uses a classification process that analyses the features

in order to find a matching command, which will be used to generate an action

in response to the command.

– Event Related Potential (ERP): It generates an stimulus in order to elicit
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specific response patterns in the human brain activity. This is the case of the

P300 evoked potential that is one of the most used BCI signals. It is a natural and

involuntary response of the brain to rare or infrequent stimuli. In this paradigm

a random sequence of stimuli is presented to the user who is only interested in

one of them. Around 300 milliseconds after the target is presented, a positive

potential peak is recorded in the EEG signal.

(a) (Iturrate et al., 2009) (b) (Rebsamen et al., 2010) (c) Robchair, University
of Coimbra (Portugal).

Figure 2.8: Brain-computer Interfaces used to drive robotic wheelchairs

Iturrate et al. (2009) describes a brain-actuated wheelchair that relies on a P300

based BCI and autonomous navigation. During operation, the subject looks to a screen

that shows a real-time virtual reconstruction of the scenario, the user then focuses

his attention on the spatial area to reach. A visual stimulation process elicits the

neurological phenomenon and the EEG signal processing detects the target area. This

target area represents a location that is given to the autonomous navigation system,

which drives the wheelchair to the desired place while avoiding collisions with the

obstacles detected by a laser scanner. A P300 BCI was also used in (Rebsamen et al.,

2010). In this case the user selects a destination amongst a list of predefined locations

that is shown to him on a screen. In the example of figure 2.8(b) the user selects the

destination (TV) in the menu on the laptop monitor, items are flashed randomly and

if the user focuses his attention on an item, the EEG signal will present a peak around

300 ms after the target has been flashed, which determines the destination. Then the

wheelchair follows a guiding path to it.

The RobChair wheelchair from University of Coimbra (Lopes et al., 2012) uses also

a P300 BCI to drive a robotic wheelchair. The stimulus is created by enlightening a

marker displayed to the user on a screen (Fig. 2.8(c)). The user provides the sparse

commands such as: stop, go forward, large turn left, small turn left, etc. And they fuse

this data with the results of a vector field histogram local planner to perform obstacle
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avoidance.

Gaze Direction and Face Pose Recognition

Systems that rely in the position of the face could ease the driving task given that

it is a natural human behavior to look where we are going, however, the use of this type

of interfaces is difficult due to the existence of involuntary movements and the reduced

accuracy of the detection methods. Face direction interfaces normally use image based

face trackers where some features are used to measure the direction of the face. Methods

that detect the position of the face using 3D point-cloud cameras have been developed

in recent years and some of them have reported good results (Murphy-Chutorian and

Trivedi, 2009),(Fanelli et al., 2011).

Other methods try to detect the gaze direction by using electro-oculography or

image based eye trackers. Electro-oculography detects changes in the potential between

the front and back part of the eye to measure the movement and estimate the gazing

point. Methods based on image processing track the position of the eye in a given

video sequence and estimates the gaze direction given that they know the position of

the camera in front of the user.

The WATSON wheelchair from the Nara Institute of Sciences and Technology in

Japan (Matsumoto et al., 2001) used an stereo camera to estimate the position of the

user’s face and gaze. The user is supposed to drive the wheelchair by looking where he

wants to go, and can start and stop by shaking his head. The system also estimates

whether the user is concentrated on the operation based on the relationship between

the head and gaze movement. The wheelchair is operated in full manual mode.

The Intelligent Wheelchair System project from the University of Osaka (Kuno

et al., 2003) uses two cameras to control the navigation. The first one is used to

perform a facial recognition of the user to determine the direction to follow, and the

second one is designed to follow a target while avoiding obstacles detected with a set of

proximity sensors. In (Hashimoto et al., 2009) it was presented a method for controlling

an electric wheelchair using a hands-free manipulation interface based on the electro-

oculography and electromyography biopotential signals. They detect gestures as jaw

closure, wrinkled forehead, and look left and right to control the wheelchair without

assistance from the robotic wheelchair.

In (Banerjee et al., 2010) a wheelchair controlled by a 2D face pose recognition

system is presented. The user is completely in charge of driving the wheelchair by

moving his face without any assistance from the robotic controller. In (Berjon et al.,

2011) the direction of the movement is controlled by moving the face up, down, left

and right to move forward, back, left and right. They do not propose any obstacle
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avoidance provided by the robotic controller.

Voice Control

Voice control has long been desired as a control mechanism for wheelchairs but it

is very difficult to implement within a standard power wheelchair because of the low

bandwidth of the voice signal. Speech recognition is used in works such as (Simpson

and Levine, 2002), (Murai et al., 2009), (Ruzaij and Poonguzhali, 2012). In (Simpson

and Levine, 2002) the NavChair platform used vocal commands as (go forward, go

back, turn left and right), the performance of the system is improved by using obstacle

avoidance based on the vector field histogram method, the authors reported good results

when comparing against not assisted use of the vocal command. In (Murai et al., 2009)

the wheelchair has two possible driving modes: follow a wall and get into an elevator.

The user switches between modes using the voice control and drives using commands

such as ”Turn right 90 degree”, ”go forward” etc. The method presented in (Ruzaij

and Poonguzhali, 2012) employs speech recognition to control the movement of the

wheelchair in different directions (back, forward, left, right) without assistance.

In (Berjon et al., 2011) the Google Speech Recognition Service and Microsoft SAPI

are used in combination with a 2D face tracking to control a mobile robot. The speech

recognition is used to switch between modes. In the first mode the user directs the robot

using “execute backwards, forward, left and right” commands, while in the second mode

the direction of the movement is controlled by moving the face up, down, left and right

similar as a joystick, again no further assistance is provided by the robotic controller.

Voice recognition is employed in (Kollar et al., 2010) to select the desired navigation

task or destination using high level commands as (follow me, go to the kitchen, etc)

and then the robot executes the task autonomously.

2.4 Operating Modes

Systems with different levels of autonomy have been proposed to help users with

different degrees of frailty. Those robotic wheelchairs can be classified in four different

categories as:

– Manually controlled wheelchairs.

– Shared controlled wheelchairs with collision avoidance.

– Semi-autonomous wheelchairs.

– Robotic wheelchairs with fully autonomous navigation.
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2.4.1 Manual Control

This is the simplest way of controlling a mobile robot (from a computing complexity

perspective). The user controls directly the robot’s translational and rotational veloci-

ties, such as driving a powered wheelchair with a joystick. The robot task is thus only

to execute the translational and rotational velocities ordered by the user. In manual

control, all the responsibility of platform safety, obstacle avoidance, and path planning

to the destination is let in charge of the human user.

2.4.2 Shared Control

Even if there is no formal definition to distinguish between shared control and semi-

autonomous control; we will assume the following difference them. In shared control

the user gives commands continuously so the assisting device should be able to modify

them at a similar frequency to avoid obstacles. In semi-autonomous mode the user just

gives sparse directional commands whenever he wants to change his trajectory while

the robot performs the full navigation task to move in the selected direction until the

user gives another directional command.

Shared control is presented in situations in which the assisting device combines the

control input coming from the robot and the user in order to accomplish a given task.

Those methods do not normally require a pre-built map or any specific alterations to

the environment, however, they require more thinking effort and focus from the user.

A shared control system has to consider the human in the loop problem and given

the complexity of the human being; it is difficult to be modeled properly. In Fig. 2.4.2,

we present the shared control paradigm where both the robotic wheelchair and the user

collaborate to accomplish the navigation task. The robot has a predefined model of

both the world and the user and the amount of correcting actions taken by the robot

will depend on those models. The user contributes to the controlling task by perceiving

the results of the actions taken by the shared controller through his senses and applying

a regulatory input signal according to his intentions.

The ROLLAND wheelchair from the University of Bremen (Lankenau et al., 1998)

uses a neural network based control and a camera. The wheelchair is equipped with a

ring of sonar sensors and internal sensors to measure the speed and steering angle. This

wheelchair reads the user commands from the joystick and checks them for safety. If

there are no close obstacles in that direction the commands are passed to the actuators.

If an obstacle comes close, the driving wizard reduces the speed of the wheelchair

proportionally to the distance to the closest obstacle.
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Figure 2.9: Shared control paradigm: Both the robotic wheelchair and the user collab-
orate to accomplish the navigation task. The robot has a predefined model of both the
world and the user that will produce the desired level of autonomy to the user. The user
contributes to the controlling task by perceiving the results of the actions taken by the
shared controller through his senses and applying a regulatory input signal according
to his intentions.

The SmartChair project from the University of Pennsylvania (Patel et al., 2002)

uses an omni directional camera and a laser range finder to control the navigation of the

wheelchair. The wheelchair is able to move through a doorway and perform obstacle

avoidance while the user is in charge of the planning and velocity control most of the

time.

The NavChair project developed by the University of Michigan (Simpson, 2005)

employs three operating modes: general obstacle avoidance, door passage, and auto-

matic wall following. It is equipped with a joystick and a belt of sonars. They use the

vector field histogram method to look for the best direction of travel according to the

obstacles and the direction pointed by the joystick.

The wheelchair developed at INRIA-Rennes (France) uses a single camera and vi-

sual servoing to follow a corridor without any previous knowledge of the environment.

The non-holonomic constraints of the wheelchair are taken into account by the servo

controller (Pasteau et al., 2013).
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2.4.3 Semi-Autonomous Control

Many works consider semi-autonomous control solutions as those where the user

takes care of the high level path planning and the robot of the velocity control. The

user just points out to the place he wants the robot to go. This concept refers to the

fact that the robot is autonomous on a given short path, requiring then a new input

from the user regarding the next goal direction. In these situations, an intermediate

controller has to plan a path from the current robot location to the nearby goal and

compute the velocity commands.

The RobChair project (Lopes et al., 2010), (Lopes et al., 2012) presents a semi-

autonomous approach to drive the wheelchair using discrete human-machine interfaces.

The controller is able to share the information provided by the local motion planning

level with the commands issued sparsely by the user. The local planner is based on

the Vector Field Histogram algorithm. Every time a new obstacle is detected, the local

planner is activated. Obstacle detection is carried out using a laser range finder located

at the front of the robot. They present a Fuzzy Shared-Controller that takes the user

command and the velocities computed by the Vector Field Histogram algorithm to get

the final linear and angular velocities sent to the wheelchair.

The Sharioto wheelchair from Leuven University (Vanacker et al., 2007), uses a

semi-autonomous system to help the subject to drive with a noninvasive brain interface.

The subject’s steering intentions are estimated from electroencephalogram signals and

passed through to the control system before being sent to the wheelchair motors. To

filter out the commands given by the user, the wheelchair detects corridor crossings

and assigns a probability value to each possible command (LEFT,RIGHT,BACK and

FORWARD) according to the direction of the opening. Obstacle avoidance is performed

by the wheelchair between crossings.

The biba robot from ETH Zurich, (Perrin et al., 2010) presents a semi-autonomous

navigation strategy designed for low throughput interfaces. A mobile robot (e.g. intelli-

gent wheelchair) proposes the most probable action, as analyzed from the environment,

to a human user who can either accept or reject the proposition. In the case of refusal,

the robot will propose another action, until both entities agree on what needs to be

done. In an unknown environment, the robotic system first extracts features so as to

recognize places of interest where a human-robot interaction should take place (e.g.

crossings). Based on the local topology, relevant actions are then proposed, the user

providing answers by means of a button or a brain-computer interface (BCI).
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2.4.4 Autonomous Control

Robotic wheelchairs with fully autonomous navigation are designed so that the user

gives a final destination and supervises as the wheelchair is in charge of the complete

navigation task. This kind of system requires to have a map of the environment. Fur-

thermore, the robot has to localize itself within the map given the sensory readings.

The goals and robot positions are then described in a global coordinate system. Re-

ceiving the order to go to a specific location, the robot first plans its path through the

environment and then moves.

In the late 90’s Bourhis and Pino (1996) proposed an autonomous navigation system

able to plan a path in a map and execute the full trajectory to arrive to the destination.

A big drawback was that the wheelchair just followed blindly the computed path and

it did not perform obstacle avoidance. The user could just stop the execution of the

path if he detected any trouble while the wheelchair was executing the trajectory which

could be annoying or even dangerous.

Modern autonomous navigation methods where also used in (Wang and Chen, 2011)

to solve the obstacle avoidance problem while following the path they used the lane

curvature method (Simmons, 1998). The authors claimed to have a good response to

avoid obstacles quickly, however the navigation method had some troubles when turning

or passing through narrow doorways. The user interacts with the wheelchair by using

a touch-screen and selecting his desired destination in the map of the environment that

is displayed to him. Again, once the execution of the trajectory is started; it is no

possible for the user to make adjustments in the velocity control.

Fully autonomous methods that have been proposed up to the moment does not

consider the possibility of an eventual adjustment in the path made by the user. This

lack of controllability can be frustrating for the user which is why we think that semi-

autonomous or shared controlled navigation systems can be easier to accept in real

situations.

2.5 User Intention Estimation

The estimation of the user objective destination is a key point in many shared con-

trol and semi-autonomous navigation systems because it allows the automatic controller

to adjust its actions to the desire of its user.

Some methods to perform an implicit estimation of the user intention from joystick

commands have been proposed in (Demeester et al., 2006), (Demeester et al., 2009).
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They model the user intention as a set of possible trajectories. A probability distribu-

tion is maintained over the set of trajectories and the most likely one is selected within

a Bayesian framework.

In (Taha et al., 2008) a learned Partially Observable Markov Decision Process

(POMDP) is used to estimate the user intended destination in a topological map of

the environment. Places of interest are selected as those locations in the environment

where the user spends comparatively most of his time. The user drives the wheelchair

from one spatial location to another while the robotic device avoids obstacles in the

middle. This method uses corridor crossings to define sub-goal points that are used to

update the POMDP, given a determined sequence of visited sub-goals the system will

be more certain about the user’s final goal.

In (Perrin et al., 2010) a local reasoning system is used to get an initial probability

distribution over the actions the robot could execute (in crossings), so as to engage a

dialog with its user. Given the recognized topology, this probability distribution relates

each possible action with the type of crossing detected to filter-out unlikely actions.

2.6 Human Aware Navigation

Human aware navigation is receiving an increasing attention in robotics community,

this area of research appears once that robots navigate in human environments and

safety solutions are not enough; now the main concern is related to produce solutions

which also have to be understandable and acceptable by human beings.

A proposal of human aware navigation was presented in (Sisbot et al., 2007), where

a motion planner takes explicitly into account its human partners. The authors intro-

duced the criterion of visibility, which is based on the idea that the comfort increases

when the robot is in the field of view of a person. Other work, (Tranberg Hansen et al.,

2009), introduced an adaptive system which detects whether a person seeks to interact

with the robot based on the person’s pose and position. That system was presented as

a basis for human aware navigation. Their results showed that the system was able to

navigate based in past interaction experiences and to adapt to different behaviors.

In (Chung and Huang, 2010) was proposed a Spatial Behavior Cognition Model (SBCM)

to describe the spatial effects existing between human-human and human-environment.

SBCM was used to learn and predict behaviors of pedestrians in a particular environ-

ment and to help a service robot to take navigation decisions. Technique in (Sehestedt

et al., 2010) proposed an on-line method to learn generally occurring motion patterns

in an office environment with a mobile robot. Navigation is realized by using these
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patterns, in form of sampled hidden Markov model (HMM), along with a probabilistic

road map based path planning algorithm. Socially acceptable motion is achieved by

minimizing social distractions, such as going through someone else working space.

The work presented in (Lam et al., 2011) proposed rules that a single robot should

obey in order to achieve not only a safe but also a least disturbance motion in a human

populated environment. Rules define sensitive zones for both humans and robots,

depending either on their security regions or the psychological feeling of humans.

Personal space, o-space and their relation to comfort were addressed in (Rios-

Martinez, 2013), where a risk based navigation was extended to include risk due to

discomfort. Human movement is supposed to be known by learning of typical trajec-

tories in a particular environment.

2.7 Approaching Humans

Carton et al. (2012) investigated what abilities robots will need to successfully

retrieve missing information from humans. Socially-aware navigation is employed to

request help from human passing by. An approach based on Bezier curves is imple-

mented as a nonlinear optimization problem with the objective to find a velocity profile

for the Bezier path under constraints enhancing social acceptance. Experiments were

realized where the robot approaches a static human at different velocities and angles.

In (Yamaoka et al., 2009) and (Yamaoka et al., 2010) different formations were used

to control the position of the robot when it presents information to humans. They

established a model for information-presenting robots to properly adjust their position.

The model consisted in four constraints to establish the interaction space: proximity

to a listener, proximity to an object, listeners field of view, and presenters field of view.

The model was implemented for a humanoid robot with a motion-capturing system.

In (Althaus et al., 2004) the authors proposed a method for a robot to join a

group of people engaged in conversation. The results of the implementation and the

experiments conducted with their platform show a human-like behavior as judged by

humans. Robot just wants to preserve the formation of the group and doesn’t know

explicitly where the o-space is located.

Shi et al. (2011) studied natural human interaction at the moment of initiating

conversation in a shopkeeper scenario where a salesperson meets a customer. Then

they use the observed spatial formation and participation state to model the behavior

of initiating a conversation between a robot and a human.
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2.8 Discussion and Thesis Positioning

If a truly user-machine integrated system is to be developed, the type of cooperation

between user and machine must always consider the possible input coming from the user

to navigate, while the wheelchair avoids dangerous obstacles on the ground. To achieve

this level of user-machine integration the machine should predict the user intention

with only minimal corrective input from the user.

The fundamental component of this kind of systems is intention recognition. Many

platforms have already been devised in the past to help people in their daily maneuver-

ing tasks; Bremen Autonomous Wheelchair, Sharioto, RobChair, VAHM, Wheelesley,

and Navchair. The developed architectures consist of different algorithms that each

realize a specific assistance behavior, such as ”avoid an obstacle” , ”follow a corridor”

or ”pass through a door”. In many cases, different levels of shared control are defined,

ranging from full operator control to full computer control. The operational mode is

normally selected by the user manually.

The probabilistic user intention model presented in this thesis is similar to the one

presented in (Demeester et al., 2006) where the user intention was modeled as a set of

possible trajectories. However, in this thesis the user intention is modeled at a higher

level as a set of possible destinations. This difference leads to a considerable reduction

in the computation complexity of the Bayesian Network.

The work presented in (Taha et al., 2008) is interesting for us because they proposed

a method to infer the intended destination using Partially Observable Markov Decision

Process, however, the POMDP has to be computed off-line and the navigation of the

wheelchair is performed only following the corridor from one local goal to the next

and no obstacle avoidance is performed in between. We do believe, that in order to

be practical for the user, the wheelchair has to provide a method to navigate without

colliding with obstacles in the environment.

While many of the other presented systems use a vector field histogram method

to perform reactive navigation (Simpson, 2005), (Lopes et al., 2010), we propose a

modified version of the dynamic window approach which is new and it has the advantage

of providing reliable and fast performance and allows to consider the intention of the

user at different levels, as the goal, the computed path and the current input command.

The navigation of our robotic wheelchair is improved by adding the respect of personal

and interaction spaces.

The use of natural interfaces can improve the usability of the robotic wheelchair.

Many of the works presented in the literature have tried to use a face pose recognition
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system to drive the wheelchair (Banerjee et al., 2010), (Berjon et al., 2011),(Wei and

Hu, 2011) but only a few have tried to use it with obstacle avoidance (Simpson and

Levine, 2002), (Kuno et al., 2003). We established a semi-autonomous navigation mode

where the position of the face is used to detect the user’s desired destination while the

robot is in charge of the path planning and velocity control. The usability of the face

pose interface was extended by using speech recognition. This could be considered as a

drawback, because of the use of two different interfaces can be confusing for the user,

however, using the voice and face gestures is a natural way of interacting which indeed

makes the system easier to use.

Even though, we didn’t use a BCI or an electro-oculography interface as those

presented in (Tanaka et al., 2005), (Rebsamen et al., 2010), (Lopes et al., 2012) or

(Hashimoto et al., 2009) our approach was tested also using an intentionally limited

interface (keyboard) to give commands similar to those obtained by typical BCI inter-

faces as ”FORWARD”, ”BACK”, ”LEFT” and ”RIGHT”. The results obtained using

this method are encouraging to use the system with this kind of interface in future

works.

The socially-aware navigation method presented here, differs to the one presented in

(Sisbot et al., 2007) because our assumption of discomfort is, in some way, the opposite

of the visibility criterion: the field of view (in front of the human) shows the point of

interest of a person then, if the robot enters to it, the activity of the person will be

interrupted decreasing the comfort function.
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Chapter 3

Tools for Navigation in Human

Populated Environments

In this chapter we present the control architecture of the wheelchair navigation

system and the related necessary tools to navigate in human populated environments.

An introduction to the different functional modules used by the wheelchair as the A*

path planner to compute the path given a destination (Hart et al., 1968), the social

filter (Rios-Martinez, 2013) to avoid disrupting social formations and to compute good

places for joining groups of people in the environment. Those tools were integrated and

used to perform the autonomous navigation of the robotic wheelchair during this thesis.

Finally, the simulation results and a discussion on the performance of the system is

presented.

3.1 Introduction

Mobile robots and specially service robots have to interact with people regularly,

therefore, they must follow behavior rules similar to those governing human-human

interaction. It is even more important in the case of a robotic wheelchair, because its

user may be held responsible for the inappropriate behavior of the robot.

People generally perceive robots as human-like, even when the robots are non-

anthropomorphic (Kirby et al., 2009). When such robots does not behave according

to what is socially expected, breakdowns in human-robot interaction occur (Mutlu and

Forlizzi, 2008). Those situations can be annoying for people around the robot, or even

worst, they can produce accidents that could be prevented.

Traditional robot navigation algorithms treat all the detected objects as the same
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type of obstacles to be avoided, however, in this thesis we claim that robots should

treat nearby people in an special way to be socially accepted. Given that the field of

human aware navigation is very extensive, we will address two particular cases of this

subject.

– Respecting personal and interaction spaces: The first case responds to

the idea that people can be upset if they are approached at a distance that is

considered to be too close. The discomfort experienced by the person is related to

the distance at which he is approached. This idea was formalized as the concept

of personal space, proposed by Hall (Hall, 1969), which characterizes the space

around a human being in terms of comfort to social activity. Similarly, sociologist

have studied the space respected by a group of people interacting (such as having

a conversation) have been described using the concept of interaction space.

– Approaching humans in a socially acceptable way: The second case is

a new research field that addresses the issue of determining those places where

someone should place himself in order to attract the attention and become part

of an interacting group -known as meeting points.

The system proposed in this thesis (Fig. 3.1) aims to integrate methods that have

successfully been used in mobile robotics (white and grey blocks) to enhance the perfor-

mance of the robotic wheelchair while adding some functional modules (orange blocks)

to overcome the previously presented limitations. Now we will explain briefly the func-

tion of each of the modules that will be discussed during this chapter.

– Global and Local Occupancy Grids: The obstacles perceived by the robotic

wheelchair are represented using 2D occupancy grids. An “occupancy grid” is

a representation that uses a multidimensional (typically 2D or 3D) division of

the space into cells, where each cell stores a probabilistic estimate of its state

(Elfes, 1989). One possible classification of the state is as occupied, free or not

observed. In this work we use the practical open source software implementation

documented in (Marder-Eppstein et al., 2010) where the robot maintains two

different occupancy grids. The global occupancy grid is used only when the

robot has a pre-built map of the full (global) environment where the robot is

supposed to operate while the local occupancy grid is centered on the robot’s

reference frame and is updated every time that new information is retrieved by

the sensors.

– Path Planner: Throughout this work we will be referring to the path planner as

the functional module that computes a free path connecting the robot’s starting

location with the desired destination given a map of the environment. Its search
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Figure 3.1: The navigation system of the robotic wheelchair. In this section we will
explain the functional modules developed as part of this thesis (orange). The com-
ponents of the system in gray will be explained as they are important for the overall
functioning of the system but they were taken from the open source community or they
are previous works developed at our research team.

area is discrete and represented by a the global occupancy grid. This module uses

the A* search algorithm (Hart et al., 1968) and the software was taken from the

open source ROS 1 community and integrated with the wheelchair’s navigation

system.

– Trajectory Controller: Also known as Local Planner, contrary to path planner,

where the problem is to find a complete path from the initial position to the goal

in a known environment, many real world applications for autonomous navigation

in dynamic environment are based on reactive collision avoidance techniques also

know as trajectory control or local path planning. This functional module is in

charge to compute at each time-step the next appropriate angular and linear ve-

locities (v, ω) to navigate towards the goal while avoiding obstacles. This module

1. ROS: Robot Operating System, http://wiki.ros.org/navfn
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will be presented in Sec. 4.3.2.

– Social Filter: Integrates constraints inspired by social conventions in order

to evaluate the risk of disturbance and take it into account when making the

autonomous navigation planning (Rios-Martinez et al., 2011).

– Social Cost Grid: This functional module was developed as part of the current

thesis, it receives information from the social filter and adequate this data to be

used in a similar way as the local and global occupancy grids to be used by the

path planner and the trajectory controller.

– Meeting Points Estimator: It uses a geometrical model to compute good

places to approach groups of people in social interaction (meeting points). Those

meeting points are a special kind of possible destinations which are not static but

depend on complex social relationships governing human interactions. Whenever

an interaction is detected by the social filter, the related meeting points are

computed and considered by the destination inference as possible options (Rios-

Martinez, 2013).

– Robot Localization: This component is used to determine the robot’s position

with respect to a given fixed frame. Our wheelchair uses the Advance Montecarlo

Localization Method that matches data from the laser range finder with a given

map to estimate the position of the robot in the map (Thrun et al., 2005).

– Velocity Controller: It receives the velocity commands given by the trajectory

controller in the format of pairs (v, ω) and computes the necessary speed of the

left and right wheels to achieve the required velocity. This controller is based on

the model of a differential drive vehicle.

In the following sections we will present in detail how the system deals with personal

and interaction spaces and how they are represented as occupancy grids to be used by

standard planning algorithms. Then we will present the method to compute adequate

meeting points that will be used in the next chapter by the user intentions algorithm.

Finally, a presentation about the other required modules integrated in the wheelchair

platform as well as simulation results will be presented.

3.2 Social Cost Mapping

Many planning algorithms use occupancy grids as its basic data structure to rep-

resent the state of the world. Practical implementations of such algorithms typically

used in robot navigation systems (in this work A* and dynamic window) consider oc-

cupancy grids with three possible values for every cell: {free, occupied and unknown}
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(Marder-Eppstein et al., 2010).

Our method to take the personal and interaction spaces into account when the robot

moves is based on the Social Filter presented by Rios-Martinez (2013). It implements

constraints inspired by social conventions to evaluate the disturbance caused by the

robot when it moves near to humans. This measurement can then be considered by

the robot’s planning algorithm.

In this section, we will first introduce the occupancy cost-map method used to

manage obstacles. Then we will present the mathematical models used to represent

the personal and interaction spaces.

3.2.1 Introduction to Occupancy Cost Mapping

Sensor processing to detect obstacles around the robot is a very important part of

any navigation system. Given that sensor data are not perfect, the obstacle detection

can be erroneous and report non-existent obstacles or missing objects that should be

detected.

Many current sensor processing methods rely on 2D occupancy cost grids to infer

obstacles from geometric information provided by range sensors (lasers, 3D cameras,

etc). Laser range-finders are largely used in robotics due to its high accuracy and it is

the type of sensors used by the robotic wheelchair used during this thesis.

Definition 1 The occupancy grid is a space representation that employs a multidimen-

sional (typically 2D or 3D) array of space into cells, where each cell stores a probabilistic

estimate of its state (Hart et al., 1968).

The occupancy grid representation we use is updated whenever new information is

sensed. If the sensor detects an object, the corresponding cell in the map are marked

as occupied while the cells between the sensor and the obstacle are considered to be

free. Unexplored regions, e.g. those behind the obstacle, are marked as unknown as

shown in Fig. 3.2.

Occupancy information is used to create safe plans for the navigation system. There-

fore each cell has an associated cost value (OccCos) that is used for scoring purposes by

the path planner and trajectory controllers. The data structure used to keep the values

of the occupancy grid is an array of 8 bits integers which allows to have occupancy

cost values between 0 and 255. We will now explain each of the possible cost values

associated to each cell type.

– Unknown Space: (255) Means that the robot does not have information about

the state of this cell because it is not in its field of view and is outside the map.
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Figure 3.2: 2D occupancy grid generated by the robotic wheelchair, the yellow dots are
laser impacts. The corresponding cells are marked as an obstacle (black squares). The
gray cells are non-observed.

This value can be used by the path planning for example to avoid generating

paths along unexplored regions.

– Occupied Space: (254) Means that there is an actual (workspace) obstacle in

this cell. If the robot’s center were in that cell, the robot would obviously be in

collision.

– Inscribed Space: (253) Means that a cell is less than the robot’s inscribed

radius (Fig. 3.3) away from an occupied cell. So the robot is certainly in collision

with some obstacle if the robot center is in a cell that is at or above the inscribed

cost.

– Circumscribed Space: (252 to 1) If the robot center lies in a cell further than

the robot’s inscribed radius but closer than the circumscribed radius, then the

planner should depend on the orientation of the robot to decide whether it collides

with an obstacle or not. Cells marked with this value might not be a real obstacle,

but some user-preference, to avoid passing too close to a given region.

– Free Space: (0) It means that there is nothing that should keep the robot from

going across this cell.

All the cells in the grid are assigned a state between free space and inscribed space

depending on their distance from an occupied cell. This process is called “inflation”

and it is performed in two dimensions to propagate costs from occupied cells to a user-
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(a) (b)

Figure 3.3: Inflation is the process of propagating cost values out from occupied cells
(red) that decrease with distance. Cells in the inscribed region are assigned a uniformly
high cost (inscribed cost), after which an exponential decay function (Eq. 3.2) is applied
that will cause the cost to drop off out to the inflation radius used for the cost map.

specified inflation radius. Cells that are less than one inscribed radius of the robot

away from an obstacle are assigned a uniformly high cost, after which an exponential

decay function (Eq. 3.1) is applied that will cause the cost to drop off out to the user

defined inflation radius of the cost map.

Cc = (Lc− 1) ∗ exp−Cs∗(d−r) (3.1)

Where, (Cc) means circumscribed cost, (Lc) is the lethal cost value. (d) is the

distance from the cell to the closest obstacle and (r) is the inscribed radius of the

robot. (Cs) Is the cost scale parameter that allows to control how fast the function

decays. (rinf ) is the inflated radius defined by the user and (rinsc) is the robot’s

inscribed radius as shown in figure 3.3. To summarize, a cell in the occupancy cost grid

35



3. TOOLS FOR NAVIGATION IN HUMAN POPULATED
ENVIRONMENTS

can have any of the following cost values.

OccCost =



255 if Unknown Space

254 if Occupied Space

253 if Inscribed Space

(Lc− 1) ∗ exp−Cs∗(d−r) if rinsc < d < rinf

0 if d > rinf

(3.2)

3.2.2 Personal Space

Definition 2 The Personal Space is an area that individual humans actively maintain

around themselves and is related to the space in which individuals tend to direct the

majority of their actions (Hayduk, 1978). This selective use of space derives from the

way human organisms are built. Limbs, for example, can be used effectively only within

a highly circumscribed space-bubble stretching mainly in front and to the sides of a

person’s body.

The geometrical representation selected for our system was presented in (Rios-

Martinez, 2013). The model (Fig. 3.4) is based on the measures of personal and inti-

mate zone defined in (Hall, 1969) and consists of two Gaussian functions as expressed

in Gf and Gb (Eq. 3.5) both of them centered in the position of the person. This

model is similar tom that presented by (Laga and Amaoka, 2009), but it uses the body

orientation as main feature instead of face orientation.

The model reflects the fact that the disturbance for someone is bigger in positions

closer to the person than in the borders and it is stronger in front of him than in the

back. The values of the Gaussian functions represent the risk of disturbance associated

to each point in the space around the pedestrian.

The discomfort caused around a person due to the invasion of his personal space

is modeled by evaluating a two-dimensional Gaussian function of covariance matrix Σ

and centered in the local reference frame of the person, for each point P around the

person:

G(P ) = e−
1
2
P tΣ−1P (3.3)

Where, P is a point in R2 and Σ is a diagonal covariance matrix defined as:

Σ =

(
σ2
x 0

0 σ2
y

)
(3.4)
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The appropriate shape of the personal space is obtained by selecting the same

values for σx in both Gf and Gb but different values for σy, being the one of Gf the

double of the value for Gb. The points C and P are defined in the person’s reference

frame, where the x axis is in the direction of the person’s sightline and the y direction

respects the right hand rule. The traversability cost of a given point around the person

P = (xlocal, ylocal) will be expressed as:

psCost(P ) =

{
Gf (P ) if xlocal ≥ 0

Gb(P ) if xlocal < 0
(3.5)

Where xlocal is the x component of the P point with respect to the person body.

Fig. 3.4 shows an example of personal space for a human, the approximated shape is

shown in the left where the Gaussian values are projected in the plane of the ground,

observe in the right the high risk of disturbance at the center and front. The disturbance

has a maximum value of one in the position of the person and a minimum value of zero

in his public zone.

Figure 3.4: Personal space calculated by Social Filter Module. Left: top view, right:
side view. The height of the Gaussian means Risk of disturbance then maximum
disturbance is located at human position.

3.2.3 Interaction Space

Definition 3 The interaction space is the joint area reserved by a group of two or more

people sharing the same focus of cognitive and visual attention during a conversation.

Only the members of the group are allowed to access this space and other people tend

to respect it (Kendon, 2010).

The interaction space was called o-space by Kendon (1976) because in many cases
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its shape is similar to that letter. It varies depending on body size, posture, position

and orientation of participants during the joint activity.

Definition 4 A F-formation is a term used to designate the system of spatial orien-

tation, arrangement and postural behavior that people create and maintain in order

to keep their interaction space. F-formations are distinctive of people who come con-

jointly to accomplish a joint activity; those formations are typically associated with the

occurrence of small conversational gatherings. (Ciolek and Kendon, 1980).

For the specific case of two people interactions, some particular F-formations have

been identified as being peculiarly frequent; Ciolek and Kendon (1980) suggested that

almost 98% of two-people stationary encounters take one of those forms. Those for-

mations are called according to the shape described by the participant’s bodies as: H-

formation, L-formation, V-formation, C-formation, N-formation, I-formation (Fig. 3.5).

(a) H-Shape
(Vis-a-vis)

(b) L-Shape (c) V-Shape

(d) C-Shape (e) N-Shape (f) I-Shape

Figure 3.5: Most typical F-formation types.

Four of the mentioned formations were implemented in the “social filter” 1: Vis-a-

vis, L-Shape, C-Shape and V-Shape. This geometrical model considers the participant’s

body position and orientation, the model is different for each type of formation.

Given the positions of pedestrians H1 = (x1, y1) and H2 = (x2, y2) in the global

reference frame and their respective orientations φ1 and φ2 around the normal to that

1. Social Filter is a functional module used in this thesis that integrates constraints
inspired by social conventions in order to evaluate the risk of disturbance and take it into
account when making the autonomous navigation planning (Rios-Martinez et al., 2011).
model (Rios-Martinez, 2013)
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plane 3.6 the interaction space is represented by a two-dimensional Gaussian function

with covariance matrix S and centered in C(xc, yc), then for each point P = (x, y)

around the center we have:

intCost(P ) = e−
1
2

(P−C)tS−1(P−C) (3.6)

Where S is a diagonal covariance matrix defined as:

S =

(
σ2
x 0

0 σ2
y

)
(3.7)

Rios presented a selection of σx and σy values to modulate the shape of the inter-

action space according to the type of detected formation. In this work we use those

values, but we will not explain how they were derived.

Formation σx σy

Vis-a-vis DH/3 2DH/3

L-Shape DH/2 Di

C-Shape DH/4 Di/3

V-Shape DH/3 2Di

DH is the euclidean distance between the two persons, Di is the orthogonal distance

from the line joining H1 and H2 and the intersection of the sight lines of both persons. 1

Groups of More Than Two People When more than two people are in a con-

versation they exhibit a formation with a circular shape with center coinciding with

that of the inner space of the group. This form is more obvious when the number

of participants grows. The corresponding geometric model of this interaction space is

known as o-space because of its circular shape. When a group of more than two people

is detected in the scene, the interaction space’s center is located at a point C. This

point is calculated based on the positions of the group members using:

C =
1

n

n∑
1

Pi (3.8)

Where, n is the number of people in the group and Pi is the position of the ith person.

As in the other cases a two-dimensional Gaussian is used to estimate the risk of

disturbance around the group. The Gaussian is centered in C and the standard devia-

tion for both dimensions is (σx = sd, σy = sd). The value sd is defined as the minimum

1. Those terms will be explained in detail in section 3.3.
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(a) Vis-a-vis (b) L-Shape

(c) Vis-a-vis (side view) (d) L-Shape (side view)

Figure 3.6: Example of the elements in the geometrical o-space model for a vis-a-vis
and a L-shape formation.

Figure 3.7: Interaction space computed by the Social Filter functional module for
different formations. The maximum risk of disturbance is located at the o-space center,
the disturbance is represented by the height of the Gaussian functions (blue regions).
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distance from P i to C. Therefore, for each point P = (x, y) around the center we have

a social cost called intCost defined as:

intCost(P ) = e−
1
2

(P−C)tS−1(P−C) (3.9)

where, S is a diagonal covariance matrix defined in Eq. 3.7.

An example situation with a detected group of four people is shown at Fig. 3.7

(Group > 2). Also a C-shape and a Vis-a-vis formations were detected in the scene.

3.2.4 Representing Social Spaces as Cost Grids

The social cost data computed previously is projected on the 2D occupancy grid

used by the path planner and the local planner in the following way.

Two different thresholds are applied to project the values of both personal space

and interaction space as shown in Fig. 3.8. Cells in the occupancy grid with personal

or interaction space values higher than the threshold are marked as occupied zones so

the planners will avoid passing through those regions, while regions with lower values

are marked as free space.

socialCost(P ) =

{
Occupied if psCost(P ) > TPS ∨ intCost(P ) > TIS

Free otherwise

(3.10)

Where TPS is the threshold applied to the personal space cost and TIS is the thresh-

old applied to the interaction space cost. The value of those thresholds was set by

experimentation in the developed software. The final grid is created by computing the

maximum value between the occupancy cost and the social cost. 1

gridCost(P ) = max[socialCost(P ), occCost(P )] (3.11)

Occupied regions computed by the social filter are then combined with the occu-

pancy grid created with the robot’s laser range finder and the map of the environment.

In order to consider the size of the wheelchair, regions marked as occupied are inflated

by the size of an inflation radius proportional to the size of the robotic wheelchair

(Fig. 3.8(b)). In order to avoid collisions or invading the personal space, the center of

the robot should never get inside this inflated area.

1. In the implemented software we used the numerical value of 254 as occupied while 0 represents
free space.
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(a) (b)

Figure 3.8: Threshold applied to the Gaussian functions delivered by the social filter to
created the occupancy-cost grid. (b) The inflated area (green) considers the dimensions
of the wheelchair. In order to guarantee a path free of collisions the center of the
wheelchair should never be inside this area.

Figure 3.9: Projection of both p-space and o-space on the occupancy grid used by the
planning algorithm. The Gaussian in the middle represents the value of the interaction
space, which is projected on the occupancy grid as occupied space (blue area) and then
inflated to consider the size of the robot (green area).

3.3 Meeting Points Computing

Meeting points are defined as those places where the robotic wheelchair should be

placed to attract the attention and/or become part of an interacting group. According

to the theory presented by (Rios-Martinez, 2013) those points are located in an area,

roughly coincident with the o-space of an interaction where the robot can share the

space in an equitable way with the other humans already present.

Fig. 3.10 shows different types of social formations and the positions where the

meeting points should be located. Fig. 3.10(a) represents a vis-a-vis or frontal formation
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(a) For a vis-vis formation. (b) For a v-shape formation.

Figure 3.10: Geometrical placement of meeting points in different social formations.
The location of those meeting points depends on the focus of attention defined by the
orientation of the bodies φ.

where two humans H1 and H2 are talking face to face. In this case two meeting points

are placed on the line perpendicular to the H12 line that joins H1 and H2. the points

are located at a distance DH/2 from the center of the o-space. DH is the distance

between the two persons.

In the case of a v-shape formation Fig. 3.10(b) a meeting point is placed on the line

formed by Vi and H12. Vi is the intersection of the two visual axis of both persons in

the interaction. The computed meeting points are used by the inference algorithm as

possible destinations as it will be described later.

3.4 Navigation System

The wheelchair navigation system takes data from sensors, odometry, a navigation

goal and the input from the user and outputs velocity commands that are sent to the

mobile base. The low-level architecture of this system, consists of many components

that must work together. The major components of the navigation system are presented

next.

3.4.1 Trajectory Control

In dynamic environments it is not possible to have a perfect estimation of the

future world’s state and consequently the results of path planning get poor in the

distant future. Therefore, the navigation system needs to include a functional module
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(a) Lateral view. (b) Top view.

Figure 3.11: The resulting meeting points for a vis-vis formation (black markers). If
the robot reaches that position, a group of three will be formed.

that reacts to changes in the environment. Those systems are usually called reactive

approaches.

The problem addressed by reactive approaches is the computation of only the next

command velocity of the robot (v, ω), where v is the velocity’s linear component and ω

is the angular part. The approach is based on the definition of a function to specify a

“cost” for the possible controls or movements in terms of clearance with the surrounding

obstacles and direction of the desired goal.

At each time step, the algorithm looks for the minimum cost control to be exe-

cuted. To make the computation fast enough and allow the robot to be reactive to the

changes in the environment, only the local information during a short period of time is

considered 1. The trajectory controller used by our robotic wheelchair will be further

described in Sec. 4.3.

3.4.2 A* Path Planning

The path planning problem consists in finding the minimum cost path that connects

two points given a map of the environment. A simple example is shown in Fig. 3.12:

The starting point is called P0, the final one is PN and obstacles are represented by

1. This is the reason why it is also called local planner
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black squares. The search area is discrete and represented by a grid in this example.

However, different discretization alternatives can be used.

When computing the path, each square on the grid is related to an item of a list

with status: free or occupied. The path is formed by those cells that allows to move

from the starting point to the final one without hitting obstacles in the middle.

Once the path is found, the moving entity moves from the center of one square to

the center of the next one until the target is reached. These center points are normally

called nodes.

Figure 3.12: Path planning general problem description. The green cell P0 is the
starting point, the red one PN is the desired ending point. Black cells are the obstacles
while white/gray cells are free space.

The autonomous navigation system of the robotic wheelchair presented in this thesis

relies on the A* path planning algorithm. Therefore an introduction to this algorithm

will be presented in this section.

The A* method solves the path planning problem in an optimum way. It was first

presented in (Hart et al., 1968) and is the most widely-known form of best-first search

algorithms (Russell and Norvig, 2010). It has been successfully implemented as part of

many autonomous navigation systems (Marder-Eppstein et al., 2010), (Konolige et al.,

2011).

This planner works well for fully observable problems where the states of the world

(the map) is well known, discrete and static. This is a very unlikely situation in real

world conditions, that is why this technique needs to be combined with other methods

(i.e. the dynamic methods listed in section 4.3) to work in dynamic environments. The

method has three main subroutines:

– Search initialization (Algorithm 1).

– Main Loop (Algorithm 2).
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– Trace the path

The method uses the following cost function f to score the cells in the map:

f(Pi) = g(Pi) + h(Pi) (3.12)

where:

– Pi : Is the cell that needs to be scored.

– g : Is the cost to move from the starting point P0 to a given cell Pi on the grid

following the path generated to arrive there. The g cost is computed along a

specific path to a given cell and is the sum of the g value of its parent cell plus

the cost of moving from the parent to the current cell.

– h : Is the value of the used heuristic to estimate the cost of moving from the

given cell Pi to the final destination, point PN . The reason why it is called

like that is because we really do not know the actual distance until we find the

path. The h value can be estimated in a variety of ways as the direct distance

between two points or the Manhattan distance (which are some of the more used

heuristics). The closer our estimate h is to the actual remaining distance, the

faster the algorithm will converge to the goal. If this distance is overestimated,

however, there is no guarantee to find the shortest path.

Algorithm 1 A* Search Initialization

OpenList[0]← P0

for Pi ∈ AdjacentNodes(P0) do
if Pi is Free then

Pi.parent = P0

Pi.g = 0
Pi.f = f(Pi)
OpenList[i]← Pi

end if
end for
ClosedList[0]← OpenList[0]
MainLoop()

Definition 5 The open list contains cells that could fall along the path, but maybe not,

and they need to be checked out.

Definition 6 The closed list contains cells that will be certainly part of the path.

The A* searching begins at the starting point P0, then P0 is added to the ”open list”

Fig. 3.13(a). The cells adjacent to the starting point (ignoring those with obstacles)
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are also added to the open list. For each of these cells, the point P0 is saved as the

“parent” in the list (represented by white arrows in Fig. 3.13(b)). This is important

when we want to trace back the resulting path (explained later). Drop the starting

square P0 from the open list and add it to the “closed list” Fig. 3.13(c).

(a) The green cell in the center
is the starting point it is sur-
rounded by a pink border to
represent that it is already in
the closed list.

(b) All of the adjacent cells
(pink) are now in the open list
of cells to be checked. Each
cell has a white arrow that
points back to its parent node,
which in this case is the start-
ing cell.

(c) Starting point is added to
the closed list (blue border)

Figure 3.13: A* algorithm: Initializing the search.

– From the remaining cells in the open list select the one with the lowest total cost

f to continue the search. The selected cell will be the “parent” of the new cells

added to the open list Fig. 3.14(a).

– Drop the new parent from the open list and add it to the closed list Fig. 3.14(b).

– Check all of the adjacent squares. Ignoring those that are on the closed list or

occupied by obstacles, add squares to the open list if they are not on the open

list already.

– If an adjacent cell is already on the open list, check to see if the new parent gives

a better path score g Eq. 3.12 to that cell. In other words, check to see if the g

score for that cell is lower if we use the current cell to get there. If the g cost

of the new path is lower, change the parent of the adjacent cell. If not, don’t do

anything.

– If a change was done, recalculate both the f and g scores of the modified cell.

– The process is repeated until the target square is added to the closed list Fig. 3.14(g),

in which case the path has been found, or it fails to find the target square and

the open list is empty. In this case, there is no path.

To finally determine the path, just start at the end node and go backwards moving

from one square to its parent, following the arrows. This will eventually arrive to the

starting square. Moving from the starting square to the destination is simply a matter

47



3. TOOLS FOR NAVIGATION IN HUMAN POPULATED
ENVIRONMENTS

(a) The node with the best
cost f (yellow) is selected to
be the parent of the next
nodes of the open list.

(b) Add the cell to the closed
list (blue) and move to the
next best scored node.

(c) The neighbors of the node
with the best score (yellow) are
added to the open list (pink)

(d) The search continues fol-
lowing always the node with
the next best score.

(e) The search continues. (f) Even if the goal is already
in the open list, the algorithm
will continue the search.

(g) The target square is
added to the closed list (Fin-
ish).

Figure 3.14: A* algorithm (Main loop example). The process finishes when the target
square (red) is added to the closed list (blue boundary) (g), in which case the path has
been found, or it fails to find the target square and the open list is empty. In this case,
there is no path.
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Algorithm 2 A* Main Loop

while OpenList is not empty do
for P ∈ OpenList do

Pbest = P node with the lowest f value in OpenList
ClosedList← Pbest

Remove Pbest from OpenList
for Padj ∈ AdjacentNodes(Pbest) do

if (Padj /∈ ClosedList) ∨ (Padj.status = Free) then
OpenList← Padj

end if
if g(Padj) < Padj.g then

Padj.parent = Pbest, Padj.g = g(Padj), Padj.f = f(Padj)
end if

end for
if Pbest = Goal then TracePath()
end if

end for
Error, the path could not be found

end while

of moving from the center of each square (the node) to the center of the next square

on the path, until reaching the target.

3.4.3 Wheelchair’s Self Localization

This system is used to answer the so called localization problem that consists on

determining the robot’s position with respect to a given fixed frame or with respect

to known locations in the environment in order to navigate effectively and achieve

destinations.

The most common and basic method for performing localization is through dead-

reckoning that integrates the velocity history of the robot over time to determine the

change in position from the starting location. Unfortunately, pure dead-reckoning meth-

ods are prone to errors that grow without bound over time, so some additional method

is necessary to periodically correct the robot position.

Our wheelchair uses the Advance Montecarlo Localization Method (Thrun et al.,

2001) that matches data from the laser range finder with a given map to estimate

the position of the robot. The additional localization information is combined with

dead-reckoning to probabilistically update the robot position.

The Advanced Monte Carlo Localization (AMCL) is a specialization of the Monte
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(a) (b) (c)

(d) (e)

Figure 3.15: A* algorithm (trace the path). To determine the path, just start at the
end node and go backwards moving from one square to its parent, following the arrows.

Carlo Localization algorithm that was introduced by Thrun (Thrun et al., 2001). This

algorithm uses a particle filter to track the pose of a robot against a known map.

given a map of the environment. It estimates the position and orientation of the robot

as it moves and senses the environment. A particle filter is used to represent the

distribution of likely states, with each particle representing a hypothesis of where the

robot is located.

The algorithm typically starts with a uniform random distribution of particles over

the configuration space, meaning the robot has no information about where it is and

assumes it is equally likely to be at any point in space. Whenever the robot moves, it

shifts the particles to predict its new state after the movement. Whenever the robot

senses something, the particles are re-sampled based on recursive Bayesian estimation,

according to how well the actual sensed data correlate with the predicted state. Ulti-

mately, the particles should converge towards the actual pose of the robot. For further

information please refer to (Thrun et al., 2001) and (Thrun et al., 2005).

3.4.4 Velocity Controller

For the experiments we conducted during this thesis, a differential-drive mobile

robot was used (see section 5.1.1 for details). Therefore we will focus our overview on

this type of robotic platform.
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Figure 3.16: Advance Montecarlo Localization. Given a map of the environment, the
position of the robot is modeled as a set of particles (red arrows) representing each of
the possible robot states. The state with the highest likelihood is taken as the current
position of the robot (where the wheelchair is actually located).

Definition 7 A differential-drive robot consists of two motorized wheels that share the

same axis. The robot’s referential center lies on the middle point between the two wheels

Fig. 3.17. Such a robotic platform has some constraint concerning the motion, as it can

not drive instantaneously in every direction (non-holonomic motion: it can not move

laterally).

The velocity of any mobile robot can be expressed by a combination of its linear

velocity v and angular velocity ω which combination is commonly known as a twist.

Given a differential-drive mobile robot as depicted in Fig 3.17, the wheel speeds

(vR and vL) are related to the linear (v) and rotational (ω) velocities as described in

equation 3.13.

v =
r(vR + vL)

2
, (3.13a)

ω =
r(vR − vL)

2b
, (3.13b)

where r is the wheel radius and 2b the distance between the wheels.
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Figure 3.17: Differential-drive model showing the important geometrical characteris-
tics of the robot, the reference axes and the different robot velocities. XR , YR and
ZR corresponds to the robot referential system; v, ω are the robot translational and
rotational velocities. 2b is the distance between the two wheels and r the radius of each
wheel.

3.5 Simulation Results

The navigation system was tested in a simulated environment based on the INRIA’s

hall environment described in section 5.1.2. The map of the environment was previously

generated from laser data and position and orientation of people in the scene is provided

by the simulator. In the example scenario there are two persons and our simulated

robotic wheelchair. The wheelchair moves using previously described navigation system

using the developed social grid.

In Fig. 3.18 we present a comparison between the behavior of the wheelchair in-

cluding the social grid and without it. The detected occupied regions or social spaces

are marked in blue while the resulting inflated areas are shown in green. In the scene,

there are two persons in the middle of the map in a interaction (facing each other).

The first sequence (Figs.3.18(a) and 3.18(b)) shows the resulting path computed

by the wheelchair’s path planner. The path passes in between the persons because

they are considered as any other obstacle and the available free space between them is

big enough for the wheelchair to pass. However, the same path planner can produce

socially acceptable paths when including the social grid plug-in developed as part of
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(a) (b)

(c) (d)

Figure 3.18: Comparison between the standard 2D occupancy grid provided in ROS
(a), (b) and the one improved with social spaces (c), (d).

this thesis. This is shown in the second sequence (Figs. 3.18(c) and 3.18(d)) where the

wheelchair is shown following a path that respects the interaction space between the

persons.

In Fig. 3.19 we present two cases using the social grid. In the first example (Fig. 3.19(a))

the persons are looking front to front so the interaction zone between them is marked

as occupied and the computed path avoids the invasion of the interaction space as

described before. In the second case the simulated persons are located at the same dis-

tance but they are looking back to back which frees the space in between so the robot

now computes an straight path because there is no social interaction to be avoided.

3.6 Discussion

Autonomous navigation techniques for robots moving among humans must be aware

of social aspects of human interactions. A common expectation when humans and

robots share the same physical spaces, is that they must follow the same social conven-

tions when managing the space around. For example, robots must respect proximity

constraints but also respect people interacting -as humans do. The work presented in
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(a) When no interaction is detected the space
between the two persons is free.

(b) When the persons are in a vis a vis for-
mation, the interaction space between them is
respected.

Figure 3.19: Path planning using the social occupancy grid. The robot is asked to go
to the destination marked with a red arrow, it then plan a path avoiding the occluded
areas (green). The A* path planner used is an open-source implementation provided
as part of the ROS navigation stack (Open-Source-Robotics-Foundation, 2014).

this chapter addressed that issue in two general directions; avoid disrupting interactions

and joining groups in a socially acceptable way.

The first case was based on the minimization of the estimated discomfort generated

by paths followed by the robot, so the robot avoids disrupting conversations. Although

the method used in this thesis is helpful to prevent possible embarrassing and even

dangerous situations; this model of social spaces is static so it will be important to

integrate methods that consider the movements of the persons when detecting a possible

interaction, one idea for future implementations should be to use dynamically adapted

representations as the one presented in (Papadakis et al., 2013).

The second case consisted in computing where the robot should place itself when

approaching humans. The geometrical model presented here, gave us some first insights

in the understanding of people’s reaction when the robotic wheelchair approaches them,

however it could be further extended to consider the dynamic evolution of the group

once the robot becomes a part of the group. The estimation of meeting points is an

important part of our system because it is used to infer the desired destination of the

wheelchair user in section 4.2.4.

The social interactions were successfully implemented as a cost-grid that can be

used with the popular open source ROS navigation software which makes it easier to

be tested by other people interested in reproducing the experiments of this thesis. The
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modular architecture of the wheelchair navigation system allowed us to use the path

planner provided in this navigation software without modifications.

Although we have just presented how the wheelchair’s autonomous navigation sys-

tem was improved by adding the respect of social conventions it has not been presented

how it considers the input and intention of the user while driving. This problem will

be addressed in the following section.
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Chapter 4

User Intention Aware Navigation

This chapter we will present and discuss the central part of this thesis. In the first

part of this chapter -section 4.1- we will present an introductory discussion about the im-

portance of inferring the user intended destination when driving the robotic wheelchair.

In section 4.2 a probabilistic inference model is proposed and an autonomous naviga-

tion system is used to drive the robot towards the inferred destination. Some simulation

examples are provided and the results are discussed at the end of the section. In section

4.3 we propose a reactive navigation algorithm that considers the input from the user

and the sensors of the robot to compute the necessary velocity commands to move with-

out collisions. Some simulation results are then presented and finally, the advantages

and limitations of the method are explained.

4.1 Introduction

People with motor disabilities often have difficulties using joysticks and other stan-

dard input devices. The assistance provided by a robotic wheelchair can clearly improve

the user experience when performing complicated driving tasks. In order to have an ap-

propriate user-robot interaction it is necessary that each of them have some knowledge

about the intentions of the other.

Intention recognition has been distinguished as one of the grand challenges facing

intelligent human-robot interaction (Burke et al., 2004). This problem arises in multi-

agent systems when two or more entities cooperate to achieve a certain task as the

problem of driving a robotic wheelchair.

Humans usually perform complex intention recognition tasks to ease the way they

interact with each other. For example, when humans are having a conversation they
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try to predict how it will evolve in the future and which can be the reaction of the

other person. Another example is people walking in groups who try to coordinate their

movements by predicting the intention of each other. Intention recognition is a way

to avoid or diminish the need for reliable and extensive communication in situations

where coordination and cooperation is necessary (Tahboub, 2006).

In this work we propose to recognize the intention of the user in order to reduce the

number of necessary commands to drive a robotic wheelchair and improve its response

when the input given by user is ambiguous or inaccurate. In this way, the wheelchair

can be in charge of some part of the navigation task and reduce the effort applied by

the user.

To improve the user experience and diminish frustration, the robot should not only

navigate securely among obstacles but also take into account the user intention at

different levels as the final destination, the preferred path, the speed etc. At each level,

the wheelchair should favor the most “reasonable” action according to the inferred

intention.

In this chapter, we present two different approaches to enhance the navigation of the

wheelchair and reduce the effort invested by the user. We will first present our model to

infer the user desired destination by considering the direction of his commands and his

habits. After inferring the destination the robot moves autonomously towards it. We

will then describe a shared local controller that computes appropriate motor commands

in combination with human input.

Both the user destination inference and the shared local controller are integrated

to the wheelchair’s platform as depicted in figure 4.1.

– Destination Inference: This functional module estimates the desired destina-

tion within the map of the environment among a list of potential choices. The

list of possible destinations can be previously selected by an expert caregiver, the

user, or learned automatically by the system. We propose a method to perform

the inference of the desired destination using a Dynamic Bayesian Network that

considers the current position of the wheelchair and direction of the commands

given by the user. The destination with the highest probability value is selected

and sent to the navigation module which is then fully in charge to drive the

robotic wheelchair to the destination.

– Shared Local Controller: This part of the navigation subsystem is the one in

charge of generating the appropriate velocity control to drive the wheelchair to the

desired destination. It is based on a reactive navigation method called dynamic

window (Fox et al., 1997). Unlike other conventional reactive navigation systems,
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Figure 4.1: In this section we will present the destination inference and shared local
controller subsystems -red blocks- of the robotic wheelchair. Both of blocks consider
the input from the user. (In this figure we used general flow-chart symbols as cylinders
for data-storage, squares for functional blocks and squares with a diagonal top to depict
user entries).

our method considers the intention of the user and it will favor the generation of

trajectories in the direction of the commands given by the user using the input

device (joystick, a keyboard, etc).

4.2 Destination Inference Subsystem

In this section we present our method for inferring the user desired destination

while driving the robotic wheelchair. The method is proposed to work in a known

indoor environment as the user’s office or home. The automated wheelchair receives

the direction of the command given by the user, estimates the most probable destination

among a predefined list and navigates autonomously to that place meaning that the

robot is in charge of planning a path and compute the necessary speed to move towards

the goal.

It is considered that the user could just be able to move one finger and so the

destination should be inferred even when the user gives a simple command as pressing a

key in a keyboard. Human intervention should be reduced to accomplish the navigation

task but safety and comfort should always be guaranteed. In chapter 5 we will show
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results using other interfaces as voice-command and face-pose recognition.

To deal with the uncertainty inherent to the intention recognition problem we use

probabilistic reasoning. The model selected to represent the intention of the user is a

Dynamic Bayesian Network that considers the set of possible destinations and takes

as evidence the commands given by the user trough the input device and the current

position of the robot to infer the intended destination. The inference is improved by

adding some knowledge about the habits of the user in the form of a probability table

that encodes how frequently the user visits each of the destinations.

Definition 8 Possible destinations are the set of places where the user could desire to

go in a given setting; it will be defined by the union of typical destinations, points of

interest and meeting points present in the environment.

Definition 9 Typical destination are places where the user spends most of his time

during the day. They can be learned automatically or set by the user or an expert

caregiver.

Definition 10 A point of interest is a specific location or facility that someone may

find useful or interesting in a given place such as a building, or any other public place.

Definition 11 Meeting points are those socially acceptable locations to join a group of

people engaged in a conversation. These points are computed using a geometrical model

based on measurements done in social sciences (described in chapter 3).

Definition 12 A high-level input is an order given by the user that does not control

directly the velocity of the robotic wheelchair, but rather, gives information at a higher

level of abstraction (e.g. the destination, a desired operation mode, the travel direction

etc). This kind of commands can be given at a much lower rate than low-level input.

Definition 13 A low-level input commands is a signal sent by the user to the robot

through any standard interface (presented in section 2.3). It gives explicitly the linear

and angular velocities (v, ω) necessary to drive the wheelchair. When the user is in

charge of the complete navigation task (manual mode) he will be constantly giving low-

level input commands to the robot.

4.2.1 Dynamic Bayesian Network to Infer the User Desired Destina-

tion

The Dynamic Bayesian Network (DBN), illustrated in Fig. 4.2, is used to infer

the user desired destination; a random variable Dt is used to represent the set of
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Figure 4.2: The Bayesian Network used to estimate the current user intended des-
tination Dt. At each time step t, the posterior probability is updated by using the
current position Xt and current command Ct. Dt also depends on the value of the last
estimation Dt−1 to take into account the history of given commands. Prior knowledge
is expressed as the probability of going from each starting position X0 to any of the
possible destinations D0. Hidden variables are in blue and observable states are dashed
circles.

possible destinations. We use the notationDt, Ct, Xt to indicate the value of the random

variables D,C,X at discrete time t.

Whenever the user gives a new input command Ct, the posterior probability is up-

dated taking the current position Xt and current command Ct as evidence values. The

link between Dt and Dt−1 is used to model the dependency of the current estimation

with the previous history of input commands. The initial state of the system is repre-

sented in the DBN as the probability of going from a starting position X0 to any of the

possible destinations D0. This is the part of the model that considers the user’s habits.

The joint probability distribution that corresponds to the graph (Fig. 4.2) is:

P (D0:t, C1:t, X0:t) = P (X0) P (D0|X0)
∏
k=1:t

[P (Dk|Dk−1)P (Ck|Dk, Xk) P (Xk)] (4.1)

Where,

– D: This is a random variable that represents the set of possible destinations in

a given environment D ∈ {d(1), d(2), ..., d(i), ..., d(N)}. where d(i) is the position

(x, y) of each typical destination in the current scenario (as it is shown in Fig. 4.3).
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– C: This variable represents the command given by the user to express his desired

travel direction. This direction is centered on the user’s local frame.

– X: This is the position of the wheelchair in a 2D plane with respect to the

reference frame of the map. This position is discrete and its domain is defined

by a grid whose size is according to the map of the environment.

At each time step t we want to infer which is the probability that the user intended

destination at time t is d(i) knowing the history of commands and positions. This is

expressed as the inference question P (Dt = d(i)|C1:t, X0:t) which can be recursively

computed using Bayes Rule as:

P (D
(i)
t |C1:t, X0:t) =ηP (Xt)P (Ct|Xt, D

(i)
t )·∑

j

[P (D
(i)
t |D

(j)
t−1)P (D

(j)
t−1|C1:t−1, X0:t−1)]; for t > 1

(4.2)

Here, we are using the notation D
(i)
t to indicate the argument Dt = d(i) defined

before. η is a normalizing constant used to make probabilities sum up to 1.

η =
1∑

i P (D
(i)
t |C1:t, X0:t)

(4.3)

The term P (D
(j)
t−1|C1:t−1, X0:t−1) is obtained from the result of the previous itera-

tion. In the particular case when t = 1 it takes its value from the initial probability

table:

P (D
(j)
t−1|C1:t−1, X0:t−1) = P (D

(j)
0 |X0); for t = 1 (4.4)

It is assumed that the position of the wheelchair Xt (Eq. 4.2) is a fully observable

measurement given by the localization system. Therefore the probability distribution is

a Dirac function centered on the measurement value leading to P (Xt) = 1. Therefore,

this term has no effect on the final result and the equation can be simplified as follows:

P (D
(i)
t |C1:t, X0:t) =η P (Ct|Xt, D

(i)
t )·∑

j

[P (D
(i)
t |D

(j)
t−1)P (D

(j)
t−1|C1:t−1, X0:t−1)]; for t > 1

(4.5)

The term P (Ct|Xt, D
(i)
t ) will be referred to as the command model, P (D

(i)
t |D

(j)
t−1)
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Figure 4.3: Command model. The probability value for a given command Ct is
proportional to the angle a(i) between the sight-line and each typical destination d(i)

in the environment.

is the transition model and P (D0|X0) is the initial probability model. We will

now explain each of those terms.

4.2.1.1 Command Model

The command model estimates where the user will point to, assuming that we know

which is his destination. The probability value for a given command Ct is proportional

to the angle a(i) between the line in the direction of the command and each typical

destination d(i) in the environment as depicted in Fig 4.3.

P (Ct|Xt, D
(i)
t ) represents the probability that a command Ct will be sent by the

user when he is located at position Xt and his destination is d(i) at current time t.

Under the assumption that the user will try to give commands directed straight

forward to the destination position as shown in Fig. 4.3. P (Ct|Xt, D
(i)
t ) is computed

as a normal distribution.

P (Ct|Xt, D
(i)
t ) =

1

σ
√

2π
exp− 1

2
(
ai
σ

)2 (4.6)

The ai term is the angle between the command and the destination, the value of

the standard deviation σ depends on the type of interface.
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4.2.1.2 Transition Model

P (D
(i)
t |D

(j)
t−1) expresses the probability that the user intended destination changes

over the time t. This term will bring some robustness against involuntary commands,

therefore, it is very important when using the face pose interface presented in section

5.2.1. Large values of this term will lead to slow responses whenever the user changes

his intended destination.

P (D
(i)
t |D

(j)
t−1) =

{
(gain− 1)/(N + gain− 1) if D

(i)
t = D

(j)
t−1

1/(N + gain− 1) otherwise
(4.7)

where:

– N : This is the number of possible goals in the environment.

– gain: This term expresses how important the previous estimation will be with

respect to the new data. This term has to be adjusted depending on the input

device.

4.2.1.3 Initial Probability Model

The initial probability P (D0|X0) uses prior information about the user habits. If

there is no previous knowledge, a uniform distribution will be assumed. However, if

the user is in a known environment, the most frequented places can be extracted by

observation so that this probability distribution will be learned from the environment.

In the presented approach we defined those typical destinations from previous obser-

vations of the experimental scenario. The probability P (D0|X0) is a probability table

set by counting the number of times that a destination is visited departing from any of

the other important places in the environment. This value could also be set manually

by the user or the caregiver. This table will be different for each scenario, one example

is presented in figure 4.4 that leads to the probability table shown at figure 4.4(c).

4.2.1.4 Goal Selection

Finally, the destination inference module selects the goal with the maximum pos-

terior probability. It performs exact inference using the equation:

dsel = arg max
d(i)

P (Dt = d(i)|Ct, Xt) (4.8)

The selected destination is then sent to the autonomous navigation system if its

probability value is bigger than a given threshold φ, which was fixed by experimentation.
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dwheelchair =

{
dsel if P (Dt = dsel|Ct, Xt) >= φ

null otherwise
(4.9)

4.2.2 Simulation Results

The user intentions model was integrated in the architecture of our simulated

wheelchair as illustrated in figure 4.1. The simulation environment was constructed

using real data collected on the GERHOME experimental apartment. Real elderly

people, aged from 64 to 85 years old, have been observed in the experimental site dur-

ing an average period of time of 4 hours. The collected data include the 36 video streams

and data provided by 24 environmental sensors can be accessed on the web-page of the

Gerhome project. 1

The map of the apartment was built using laser data and it is shown in figure 4.4.

White zones in the map of the environment represent free space, black are occupied

regions and gray zones are not known regions.

Possible destinations were extracted from real data by tracking people in the scene

and marking places where they spent most of his time. In the figure 4.4 the points

corresponding to possible destinations are marked with circles. Each destination has

an associated probability value P (D0|X0) shown in table 4.4(c). In practice, those

elements with value equal to 0 are replaced with a very small value ε.

In the example situation, the user is asked to control the wheelchair only by pointing

(for simulations we use a keyboard) in the direction of his intended destination (the

direction is marked with a red arrow). The user can stop the wheelchair at any time

by sending a “STOP” signal. The possible destinations are marked with red spheres

with a size proportional to the computed posterior probability.

In the first example (Fig. 4.5(a)) the user is asked to drive the wheelchair from the

door d(10) to the left table d(1) , while in the second example (Fig. 4.5(d)) he has to go

to the bedroom on the right d(9). Notice that for the given starting point X0 = d(10)

both d(1) and d(9) have similarly high initial probability values.

In the first case, when the user points to the left and sends the initial command

(GO), the probabilities get updated with the new information. As the system is more

confident that the user wants to go to the left table, thus the wheelchair takes it as

the desired destination. The same situation happens when the user points to the right

and, in this case, the wheelchair starts moving towards the right bedroom.

1. Data available at www.sop.inria.fr/members/Francois.Bremond/topicsText/gerhomeProject.html.
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(a) (b)

(c)

Figure 4.4: The GERHOME simulated environment. (a) Simulation in STAGE. (b)
Map of the environment with the typical destinations marked with circles. The size
of the circles represents the value of the initial probability distribution for the given
starting point X0 = d(10), here we can see that according to the table the destination
with the highest initial probability is d(1) followed by d(9). (c) Initial probability table.
In practice, those elements with value equal to 0 are replaced with a very small value
ε.
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(a) Pointing left example. (b) Pointing left example. (c) Pointing left example.

(d) Pointing right example. (e) Pointing right example. (f) Pointing right example.

Figure 4.5: Moving towards a typical destination. In this example the user commands
the wheelchair to go from the door d(10) to the table in the left d(1) or the bedroom to his
right d(9). In the starting state the destinations have a similar prior probability value
((a), (d)). When the user sends the initial GO signal, the probabilities are updated
according to the direction pointed by the user and the best destination is sent to the
robot ((b), (e)). The robot moves autonomously towards the goal ((c),(f)).

The navigation subsystem is in charge of planning the path to the desired destination

and avoiding obstacles (see Fig. 4.1).

4.2.3 Limitations of the System.

When the user moves in a trajectory that does not correspond to his normal habits;

for example, moving from the door d(10) to the sink d(7) in the GERHOME scenario.

In this case, the initial probability is low.

In the example test shown in figure 4.6 the wheelchair is initially located at the door

d(10), the user points to the left and sends the initial order (GO). Due to the high prior

probability to go to the table d(1), the wheelchair takes it as the most likely solution.

This first guess turns out to be an error, in response, the user sends a new command

which again is erroneous so the user has to give more commands (in this case up to 6)
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(a) As the algorithm rewards more typical des-
tinations, the first guess is the table d(1).

(b) The user notice the error and gives another
command.

(c) The probabilities are updated and a new
destination is selected.

(d) Arriving to the destination

Figure 4.6: The user is asked to move the wheelchair from the door d(10) to the sink
d(7) (which is not a frequent destination according to the user’s habits). To deal with
this kind of situations the user will have to give more than one command but anyway
the number of necessary commands to arrive to a given destination will be reduced.

before the wheelchair arrives to the desired destination.

This situation can be frustrating for the user, however, the idea of the proposed

approach is to help the user accurately most of the times and even if the will have to

correct a bad inference by giving more than one command. In the end the number of

necessary commands to arrive to a destination will be reduced.

As the wheelchair is in charge of the full planning task, the user is relieved of this
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workload of driving himself. However, it also means that the user can not make small

adjustments in the trajectory when moving towards the goal. That can be a severe

limitation of the system that we will try to correct in section 4.3.2.

4.2.4 Extension of the System to Consider Dynamic Destinations

We have just described how to infer the user’s intended destination among a list

of static goals, now we will explain our proposal to extend the system to consider new

destinations that appear in the scene. The application described here consists in joining

groups of people engaged in a conversation by sending the wheelchair to the detected

meeting points.

The meeting points computed in section 3.3 are added to the list of possible des-

tinations and they are considered when inferring the user intention. This system is

expected to be used with a multi-modal interface to enrich the available data to im-

prove the initial guess. The vocal command is used to indicate the start of a navigation

task. It will be similar to the initial command -GO- used in previous section, however,

now we will consider two possible orders GO and JOIN. The GO command is modeled

to be more ambiguous and it adds less information to the inference which in turn will

depend on the user’s habits and pointed direction as explained in section 4.2. However,

the JOIN verb expresses more explicitly the user desire to join a group, therefore it

adds new contextual information that will be considered by the inference system.

A new random variable V0 is added to the network as shown in figure 4.7. This

variable represents the possible value of the initial vocal command.

The variable D now represents both the static destinations and the meeting points.

The domain of the D variable (denoted as ΩD) is defined as the union between the set

of static destinations ΩS and the set of meeting points ΩM .

ΩD = ΩS ∨ ΩM (4.10)

Where,

– ΩD is the domain of the D variable.

– ΩS = {d(1), d(2), ..., d(N)} is the set of static destinations.

– ΩM = {d(N+1), d(N+2), ..., d(N+M)} is the set of M meeting points.
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Figure 4.7: The Dynamic Bayesian Network used to estimate the current user intended
destination Dt. The initial state of the DBN depends on the starting position X0 and
initial vocal command V0. At each time step t, the posterior probability is updated by
using the current position Xt and current command Ct. Dt also depends on the value
of the last estimation Dt−1 to take into account the history of given commands.

The joint probability distribution that corresponds to the graph (Fig. 4.7) is:

P (D0:t, C1:t, X0:t, V0) = P (X0) P (V0) P (D0|X0, V0)
∏
k=1:t

[P (Dk|Dk−1)P (Ck|Dk, Xk) P (Xk)]

(4.11)

Where,

– Xt is the position of the wheelchair in a 2D plane with respect to the map reference

frame. This position is discrete and its domain is defined by a grid whose size is

according to the map of the environment. It is assumed that the position of the

wheelchair Xt is a fully observable measurement given by the localization system.

– V0 is the starting vocal command. This variable can take two possible values

{GO, JOIN}.
– Dt is a random variable that represents the user desired destination at time t. This

is a discrete variable whose domain is defined as the set of possible destinations

in a given environment.

– Ct represents the direction signaled by the user at time t. This direction is

centered on the user’s local frame.
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At each time step t we want to infer P (Dt = d(i)|C1:t, X0:t, V0). Using Bayes rule

we find that it can be recursively computed as:

P (D
(i)
t |C1:t, X0:t, V0) = ηP (Xt) P (Ct|Xt, D

(i)
t )∗∑

j

[P (D
(i)
t |D

(j)
t−1)P (D

(j)
t−1|C1:t−1, X0:t−1, V0)] (4.12)

Once again the notation D
(i)
t is used to express Dt = d(i) and η is a normalizing

constant used to make probabilities sum up to 1.

η =
1∑

i P (D
(i)
t |C1:t, X0:t, V0)

(4.13)

The term P (D
(j)
t−1|C1:t−1, X0:t−1, V0) is obtained from the result of the previous

iteration. In the particular case when t = 1 it takes its value from the initial probability

model.

P (D
(j)
t−1|C1:t−1, X0:t−1, V0) = P (D

(j)
0 |X0, V0); for t = 1 (4.14)

It is assumed that the position of the wheelchair Xt and the vocal command V0

are fully observable measurements, therefore, their probability distributions are Dirac

functions centered on the measurement value leading to P (Xt) = 1, P (V0) = 1, there-

fore, those terms do not affect the final result and the equation can be simplified as

follows:

P (D
(i)
t |C1:t, X0:t, V0) = ηP (Ct|Xt, D

(i)
t )∗∑

j

[P (D
(i)
t |D

(j)
t−1)P (D

(j)
t−1|C1:t−1, X0:t−1, V0)] (4.15)

The “command model” P (Ct|Xt, D
(i)
t ) and the “transition model” P (D

(i)
t |D

(j)
t−1) are

exactly the same as explained in sections 4.2.1.1 and 4.2.1.2 respectively, so they will

not longer be explained.

The “initial probability model” P (D0|X0, V0) now has two different modalities ac-

cording to the values of the initial vocal command. When V0 = GO it is the same as
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the term P (D0|X0) term presented in section 4.2.1.3.

P (D
(i)
0 |X0, V0 = GO) ≡ P (D

(i)
0 |X0) (4.16)

When V0 = JOIN the meeting points get an evenly distributed high probability

while all the others get low values. the non-normalized distribution is expressed in

Eq. 4.17.

P (D
(i)
0 |X0, V0 = JOIN) =

{
α/M if d(i) ∈ Ωm

(1− α)/N otherwise
(4.17)

In our tests we used α = 0.9.

The proposed approach was designed considering the scenario shown in Fig. 4.4. We

use again the prior probability table learned for our simulated scenario (Fig. 4.4(c)).

The user can start the test at any location of the experimental scenario, he drives

the wheelchair by pointing towards his desired destination and giving the JOIN or

GO command he starts the navigation task. In the example situation illustrated in

figure 4.8, the user is pointing in the direction of the arrow (blue) and there are two

people in the middle of the simulated INRIA-hall. The task of the wheelchair is to

navigate towards the goal that gets the highest posterior probability.

When the user gives the signal to start the movement (GO or JOIN) the prior prob-

abilities are loaded and the posterior probability is computed considering the direction

of his face, the probability for each goal is depicted in figures 4.8 and 4.9 as the size

of the sphere. The goal with the highest posterior probability is sent to the navigation

module, the wheelchair plans the path and computes the necessary velocity to reach

the destination while avoiding obstacles.

The destination inference method considers both the meeting points defined by the

two persons in vis-a-vis formation. In the first case 4.8 the user gives a JOIN order.

Given the strong context related to this verb the probabilities are computed in such a

way that the meeting points get a higher probability value than all the other possible

destinations. The information acquired between the pointed direction and the initial

order JOIN is enough for the system to infer where to go.

In the second case 4.9 the user gives a GO order which does not give as much

contextual information as the JOIN command, so the probability distribution is more

evenly distributed, therefore, the destination that gets the maximum probability value

is mainly defined by the direction in which the user is looking.
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Figure 4.8: In this example; even if the pointed direction is ambiguous between d(9)

and d(11), when the user sends the JOIN initial order, the probabilities are computed
in such a way that those destinations defined by a group of people get a higher value.

Figure 4.9: The GO initial order does not give as much contextual information as
the verb JOIN; therefore, the destination that gets the maximum probability is mainly
defined by the direction pointed by the user.
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4.2.5 Discussion

In this section we presented two methods to infer the desired destination of the user

and how it was integrated with the autonomous navigation system of the wheelchair.

Both methods were designed to improve both the usability and the compliance of the

wheelchair.

The first method considered only static destinations and we presented the idea of

inferring the desired destination considering the habits of the user and the direction

of the commands given by the user. This method considers that the set of possible

destinations where a user is likely to go during the day is reduced and this can be used

to simplify the problem of inferring the intention of the user.

This probabilistic reasoning method allows to consider the inherent uncertainty in

the estimation task, even if the system is not certain about the intention of the user

it can still favor the most “reasonable” actions when presented with an ambiguous

command.

The main contribution of the second approach is to consider moving destinations

defined by meeting points. This extension uses information from different inputs - voice

and face position-, to reduce ambiguities in the inference model.

Real tests will be presented in chapter 5.

4.3 Shared Local Controller

We just presented a way to infer the most probable destination and then the

wheelchair moves autonomously towards that destination. In this section we will present

a method to consider the intention of the user also in the computation of the adequate

velocity commands to move to the destination.

The intention of the user has to be considered because otherwise it is very awkward

for him when the trajectories planned by the robot differs from what he expected. This

is a quite frequent situation when using a fully autonomous navigation system, since

human interpretation of the environment often differs from that of the robot. This

undesirable behavior may be so annoying that with time the user could stop using the

system.

To increase the compliance and acceptability of the system, the navigation strategy

should be shared between the robot and the human. The shared controller presented

in this section takes as input directional commands from the user and is based on

the dynamic window approach to avoid obstacles while moving closely to the last user
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command. We selected this method due to its reliability, low computational cost and

its capability of producing a soft movement.

A brief introduction about the dynamic window controller will be presented, then

a modified version of the algorithm considering the input from the user is described.

Finally, some simulation results and the performance of the proposed idea will be

discussed.

4.3.1 The Dynamic Window Approach

The dynamic window controller (Fox et al., 1997) presents a way to select appro-

priate velocity commands (v, ω) to navigate safely among obstacles. The instantaneous

linear v and angular ω velocities of the robot are directly chosen in the velocity space

bounded by some constraints imposed by the obstacles in the environment and the

physical characteristics of the robot.

Different constraints over the robot’s velocities are used to reduce the size of the

search space; it considers that the robot moves in circular trajectories, the robot’s

physical constraints define the maximum possible velocities (Vp), reachable velocities

or dynamic window (Vd) are those velocities that can be reached within a short time

interval given the limits in linear and angular accelerations and the admissible velocities

(Va) consider only safe trajectories.

The resulting search space (V r) is defined as:

Vr = Vp ∩ Va ∩ Vd (4.18)

In Fig. 4.10(a) we show a situation of a robot moving in a corridor, the footprint

of the robot is represented by the rectangle while obstacles are marked as gray areas.

The trajectories generated by the dynamic window method are the constant curvature

green arcs and for this example the trajectory with the best value of the cost function

(explained later) is shown in red. The terms of equation 4.18 will be now further

explained.

Circular Trajectories Constraint:

The robot is considered to move with constant linear and angular velocities (v, ω)

during each control loop which results in a 2D search space. This assumption is valid

when the period of the control loop is small so that the robot’s acceleration is consider

to be null during the full cycle. As a result the robot is modeled following circular

trajectories with a constant curvature c = ω/v as those in the example situation of

figure 4.10(a).
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(a) The blue rectangle is the footprint of the robot, green
arcs are possible trajectories and the red one is the one
with the highest value of the objective function for the
given situation.

(b) The velocity search space for the presented scenario. The dynamic window Vd is
centered on the current velocity (vc, ωc) and its size is regulated by the characteristics of
the robot as the maximum acceleration and obstacles in the environments (gray regions).
Turning with high angular velocities would lead to collisions with the walls so those
speeds are excluded from the search space. Trajectories with low angular velocity (going
straight to the front ) are accepted as the opening of the corridor is in front of the robot.

Figure 4.10: Trajectories produced by the dynamic window algorithm and the corre-
sponding velocity search space.
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Figure 4.11: The cost function dist(v, ω) considers the minimum distance before col-
liding with an obstacle over the sampled trajectory.

Possible Velocities Constraint (Vp) This set is defined by the robot’s physical

constraints. It is defined as the maximum linear and angular velocities that the robot

can exert. There is no need to consider velocities out of this set because the robot will

not be able to execute them anyway.

Vp = {(v, ω)|v ∈ [vmin, vmax] ∧ ωin[−ωmax, ωmax]} (4.19)

Admissible Velocities Constraint (Va):

The number of possible admissible velocities are constrained by the obstacles near

the robot. The set of velocities (v, ω) which allow the robot to stop before colliding with

an obstacle is denoted Va. The maximum admissible velocity, over a given curvature,

depends on the distance dist(v, ω) to the nearest obstacle over that curvature as shown

in Fig. 4.11. The set of admissible velocities (Va) is then defined by:

Va =

{
(v, ω)|v ≤

√
2 ∗ dist(v, ω) ∗ v̇max and ω ≤

√
2 ∗ dist(v, ω) ∗ ω̇max

c

}
(4.20)

where, v̇max and ω̇max are the maximum translational and rotational accelerations

respectively; c is the curvature of the trajectory as it was previously described.

In the example figure 4.10(b), it can be observed that turning with high angular
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velocities could lead to collisions with the walls, so those speeds are excluded from the

search space (gray areas C and B. On the other hand, straight trajectories (with low

angular velocity and large linear speed) are accepted inside the search space (green

region) given that the opening of the corridor is in front of the robot.

Reachable Velocities Constraint (Dynamic Window) (Vd):

This set defines the dynamic window that constraints the search space to those

velocities that the robot can achieve during the next control loop. The dynamic window

is centered around the current velocity and its size depends on the accelerations that

can be applied. It is expressed as:

Vd = {(v, ω)|v ∈ [vc − v̇max ∗∆t, vc + v̇max ∗∆t] ∧

ω ∈ [ωc − ω̇max ∗∆t, ωc + ω̇max ∗∆t]} (4.21)

where, Vd is the dynamic window, vc and ωc are the current translational and

rotational velocities, v̇max and ω̇max are the maximum linear and angular accelerations

and ∆t is the duration of the control loop.

4.3.1.1 Cost Function

The objective function includes a measurement that quantifies the progress towards

the goal, the forward velocity of the robot and the distance to the next obstacle on the

trajectory. By combining them, we obtain a trade-off between how fast the robot will

reach the goal and how safe the drive will be.

The objective function is defined as:

G(v, ω) = σ ∗ (α ∗ heading(v, ω) + β ∗ dist(v, ω) + γ ∗ vel(v, ω)) (4.22)

where,

– heading is a measure of progress towards the goal location. It is maximal if the

robot moves directly towards the target:

heading = 180− θ (4.23)

θ is the angle of the target point relative to the robot’s heading direction as shown

in figure 4.12.

– dist is the distance to the closest obstacle on the trajectory (curvature) as it is
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Figure 4.12: The heading cost reinforces trajectories that moves directly towards the
goal. The angle θ is relative to the robot’s heading direction in the last point of the
simulated trajectory and the goal.

shown in Figure 4.11. If no obstacle is on the curvature this value is set to a large

constant.

– vel is the forward velocity of the robot normalized on the maximum velocity vmax.

This term reinforces fast movements.

vel(v, ω) = v/vmax (4.24)

– α, β, γ are weighting factors. To normalize all three components of the objective

function to [0, 1].

– σ smooths the weighted sum of the three components and results in more side-

clearance from obstacles

The combination of translational and rotational velocity is chosen within the dy-

namic window by maximizing the objective function as follows:

(vbest, ωbest) = arg max
(v,ω)

G(v, ω) (4.25)

In a more recent work Marder-Eppstein et al. (2010) modified the dynamic window

cost function by replacing the heading and vel terms with two navigation functions

defined as the distance to the shortest unobstructed path to the goal pDist(v, ω) and

the distance to the goal gDist(v, ω). Thus they were able to eliminate the local minima

problems present in many obstacle avoidance schemes. The obstacles were represented

in a grid which assigns a occupancy cost to each cell in the grid as it is presented in
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section 3.2.1.

Gr(v, ω) = α ∗ pDist(v, ω) + β ∗ gDist(v, ω) + γ ∗ occCost(v, ω) (4.26)

where,

– gDist(v, ω) is the distance to the goal from the endpoint of the trajectory (Fig. 4.13).

– pDist(v, ω) is the distance to path from the endpoint of the trajectory, when no

path is available this term will be equal to 0 (Fig. 4.13).

– occCost(v, ω) is the maximum obstacle cost along the trajectory. This value is

taken from the occupancy grid used to represent obstacles around the robot as

presented in section 3.2.1 (Fig. 4.13).

– α is a weighting factor that controls how close the robot should stay to the path.

– β is the weighting factor for how much the controller should attempt to reach the

goal. It also controls speed.

– γ is the weighting factor to specify how much the controller should attempt to

avoid obstacles.

Using this modified cost function the best trajectory selected at each control cycle

is the one with the lowest value (Eq. 4.27). Note that this equation is different to

equation 4.25 because the best trajectory is the one with the minimum value.

(vbest, ωbest) = arg min
(v,ω)

Gr(v, ω) (4.27)

The dynamic window approach has been used to perform autonomous navigation

in indoor environments with good and consistent practical results (Fox et al., 1997).

Marder-Eppstein et al. (2010) allowed a robot to complete 26.2 miles of autonomous

navigation in a real office environment when using the dynamic window approach to-

gether with an A* path planning.

4.3.2 User Intention Aware Dynamic Window

Unlike a normal mobile robot, a robotic wheelchair will always be ridden by a

human. It makes highly important to consider the orders given by the user when

selecting the appropriate velocity commands, otherwise, the loss of control can not

only cause frustration to the user but also be dangerous since it avoids to correct

possible errors made by the robot.

One limitation of the dynamic window controller previously presented is that it does

not take into account the possible input from the user. In our proposed solution, the
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Figure 4.13: The cost function proposed by (Marder-Eppstein et al., 2010). It takes
into account the distance to the global path, the distance to the goal and distance
to obstacles to score a trajectory. The function pDist measures the distance to the
global path from the end point of the trajectory in map cells or meters, gDist is the
distance to the goal from the endpoint of the trajectory. The occCost function returns
the maximum obstacle cost along the trajectory.

user will indicate his desired direction of travel by using the input device at discrete

time. Then the wheelchair performs the low level control (computing the necessary

velocity commands) to avoid obstacles or to keep the wheelchair moving in the desired

direction.

4.3.2.1 Mapping from directional orders to speed commands

In manual driving, when the user sends an order through the input device there is

always a direct mapping between the magnitude of the input signal and the resulting

velocity applied to the wheelchair.

As it was introduced in section 2.3 wheelchair drivers can use many different type

of interfaces. However, the input received from all of them is always mapped into a

corresponding value of the instantaneous linear and angular velocity.

In this work we implemented a mapping function that translates the direction

pointed by the user to a (vuser, ωuser) velocity command that is then used by the

local planner.

First consider the example of a joystick (Fig.4.14) in which the deflection of the

handle translates directly to some linear and angular velocities. The joystick handle

position is represented in a Cartesian coordinate system, with two axis, x and y, which
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Figure 4.14: The position of the joystick gimball is translated to a velocity command
(vuser, ωuser).

vary between −1 and 1. These (x, y) coordinates can be used to determine the distance

(d) of the handle to the central (resting) position of the joystick (0, 0) and an angle θ

relating to the x− axis of the reference frame. Then the angular and linear velocities

indicated by the user (vuser, ωuser) are computed as:

ωuser = k1 θ (4.28)

vuser = k2 d (4.29)

Where, the angle θ is measured in relation to the x-axis; when θ is undefined , e.g.

when (x, y) = (0, 0), the wheelchair stops (vuser = 0, ωuser = 0). Otherwise, the θ

angle is mapped to a given value of the angular speed ω. The distance d is measured

from the center of the reference frame to the (x, y) position of the joystick handle. The

constants k1 and k2 are gain values.

When using the position of the head to drive the wheelchair (Fig.4.15), the linear

velocity will have a constant value vc, while the user can decide the angular velocity

according to the position of his face θ.

ωuser = k1 θ (4.30)

vuser = vc (4.31)
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Figure 4.15: The position of the head is translated to a velocity command (vuser, ωuser).

Figure 4.16: The cost term diff(v, ω) is added to the dynamic window cost function
in order to take into account the input from the user.

4.3.2.2 Modified cost function

The input from the user is considered as a term in the dynamic window cost function.

Gs(v, ω) = ηu ∗ diff(v, ω) + ηr ∗Gr(v, ω) (4.32)

The constants ηu and ηr modulate the priority given to the user input and the robot

input on the final result. Gr was defined in Eq. 4.26 and the cost function diff(v, ω)

measures the difference between the command given by the user and the sampled v, ω

values. It is defined by the following square difference:

diff(v, ω) =
√

(vuser − v)2 + (ωuser − ω)2 (4.33)

The value of the cost function (Eq. 4.32) needs to be minimized (so the semantics
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are that a trajectory with a lower score is preferable to one with a higher one).

(vbest, ωbest) = arg min
(v,ω)

Gs(v, ω) (4.34)

When the system does not receive a goal, the system will rely completely on the

user to perform the planning but it can still provide some obstacle avoidance, in this

case the objective function of the shared controller will be reduced to:

Gs(v, ω) = ηu ∗ diff(v, ω) + ηr ∗ occCost(v, ω) (4.35)

Where the term occCost(v, ω) is the maximum obstacle cost along the simulated

trajectory. This value is taken from the occupancy grid used to represent obstacles

around the robot as presented in section 3.2.1 (Fig. 4.16)

4.3.3 Simulation Results

In order to test the algorithm we used the same simulated scenario presented in

section 4.2.2. In Fig. 4.17 the blue rectangle represents the footprint of the wheelchair,

the green areas represent the obstacles detected using the on-board laser and the red

arrow represents when the user sends an input command. For this simulation the only

possible commands are forward, backward, left and right, given that many wheelchair

interfaces give just this reduced set of possible commands. The idea is to complement

the ability of the user to move with a reduced set of instructions. The simulated

trajectories are marked as circular or straight lines.

The first example represents the case where the user gives a ”FORWARD” command

(pressing a key, or with vocal commands), so the simulated wheelchair starts moving

in that direction until it detects the two green obstacles in the middle. Then as the

input given by the user gets invalidated, the wheelchair starts searching for another

safe trajectory (arcs in Fig. 4.17(b)). The trajectory with the best score is selected so

the wheelchair is able to avoid the collision without any intervention of the user once

the wheelchair avoids the obstacle it continues moving with the velocity selected by the

user.

When the user wants to dock in front of a table or another piece of furniture, it is

desired that the wheelchair starts decreasing its speed autonomously. This is presented

in the simulation (Figure 4.18) so the user gives a straight forward command to the

couches in the simulated scenario and the wheelchair moves accordingly. When the

couch is detected by the laser the wheelchair starts searching a safe velocity command
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(a) The user sends a “go for-
ward” command.

(b) the robot detects an obstacle
and starts looking for a trajec-
tory to avoid it while remaining
as close as possible to the user
command.

(c) Once the obstacle was
avoided the wheelchair will
keep moving in according to the
last user command.

Figure 4.17: Avoiding an obstacle

which in this case results in reducing the speed. As the wheelchair gets closer to the

couches it slows down more and more until it finally stops in front the obstacle.

In this situation the wheelchair will keep trying to move until the user actually

sends a stop command (red circle in Figure 4.18(c)).

(a) The robot detects the ob-
stacles in front looks for a way
to avoid it.

(b) Given the weight of the user
command (straight), the best
trajectory is found to be in the
same direction but with smaller
linear velocity (Docking behav-
ior).

(c) Finally the user gives a stop
command because he wants to
stay there (red dot).

Figure 4.18: Docking Case.

Lets say that the user makes a mistake and gives a command to turn when the

wheelchair is between two very close obstacles as shown in Fig. 4.19(a), in this case

the wheelchair will try to find a safe way to turn in the selected direction but as any

trajectory is found the wheelchair will just ignore the command and stay still. In this
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situation; it will be responsibility of the human user to realize that the only way to

move is going backwards and give the necessary order to the wheelchair. When the

wheelchair receives the ”BACK” command it will then move accordingly.

(a) Not safe command: when
the user gives a command
that cannot be executed the
wheelchair does not move.

(b) Safe command: the user
sends a valid command and the
robot starts moving.

(c) Trajectory followed by the
robot going backwards.

Figure 4.19: Thanks to the algorithm the robot will not move until it receives a
valid/safe command.

This method will not correct the direction of travel unless it is really necessary. As

it can be seen in the example presented in Figure 4.20(b) even if the obstacle to the

right is close, the wheelchair is able to simulate that it can pass along the obstacle

without changing the direction of the trip so it just keeps moving. In this situation the

user is able to go from the elevator to the right door of the INRIA entry-hall with only

one command.

Application to Following a Person While Avoiding Obstacles

Assistance technologies focus their efforts on providing reliable solutions to help

people in the everyday life. One of the key requirements of a mobility assistance system

is the ability to follow a caregiver or a companion person. The environment should be

modeled in such a way the robot can avoid obstacles and pursue the user at the same

time.

The modified version of the dynamic window was tested in order to follow a person

while avoiding obstacles. The implementation is the same as explained before but in

this case the input does not come from the user of the wheelchair, but from a follower

controller that tries to stay close to the target person.

The idea is that the robot should just correct the input when it simulates a possible

collision in the near future (if there is any obstacle between the target and the robot).

In the example shown in Fig. 4.21 the target person is marked as a red spot, when
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(a) The user sends a ”forward”
command

(b) The robot detects a near
obstacle but the trajectory is
safe so it keeps moving in the
requested direction.

(c) the robot detects an obsta-
cle which invalidates the tra-
jectory given by the user so
it searches a better option to
avoid the collision

Figure 4.20: The system only corrects the command given by the user when it is
necessary. In the scene, detected obstacles are represented by green zones, the command
given by the user is a red arrow and the trajectory followed by the robot is the red line.

the person asks to start following him the wheelchair moves trying to keep as close

as possible. However, if a possible collision is detected because there is an obstacle

between the robot and the target, the robot uses the modified dynamic window cost

function to compute new commands that avoid the obstacle while trying to remain

close to the tracked person.

4.3.4 Discussion

In this section we presented the simulated results of our method to mix the input

from the user and the wheelchair. This method was designed taking into account the

use of discrete interfaces as the sip-and-puff, keyboard, BCI or even a vocal interface.

This approach can improve the usability of the robotic wheelchair by itself, specially

for users that cannot control the robotic wheelchair using interfaces with more degrees

of freedom as a joystick. The system can even be adapted to be used in other tasks

such as following a caregiver while avoiding obstacles as it was previously presented.

When the shared trajectory controller is used to drive the robotic wheelchair, three

different behaviors can be observed.

The command given by the user is safe: If the command given by the user is

safe then the wheelchair will not make any correction and it will move following the last

command until it reaches an obstacle or the user gives a new command. (Fig. 4.22(a)).

The command given by the user leads to a possible collision: When the
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(a) The user activates the ”FOL-
LOWING” mode.

(b) The wheelchair starts following
the target person (red).

(c) If an obstacle is detected between
the target person and the wheelchair
it will look for a path that can avoid
the collision.

(d) when the obstacle is avoided the
wheelchair keeps moving in the direc-
tion of the target.

(e) The final paths followed by the
target and the wheelchair are shown
in red, black respectively.

Figure 4.21: Using the shared local controller to follow a person. The target person
is shown with a red marker, the generated trajectories are the shown as colored arcs
(red=good score, green=bad score, black=not valid).
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(a) Safe command. (b) Avoiding obstacle.

(c) Docking.

Figure 4.22: Possible behaviors when using the shared trajectory controller without
the destination inference system.

wheelchair detects a possible collision with an obstacle, two different behaviors can

happen:

– Avoiding obstacle behavior: The wheelchair will try to avoid the obstacle

by searching in the dynamic window a better trajectory that does not lead to

collisions (Fig. 4.22(b)).

– Docking behavior: The other possible situation is that any command in the

dynamic window can avoid the collision with the obstacle then the speed will

start decreasing to stop in front to the obstacle (Fig. 4.22(c)).

The proposed shared trajectory controller was developed to give the user the possi-

bility to drive the wheelchair with more freedom, however, by using only the proposed

shared trajectory controller without inferring the final destination, the user is in charge

of the proper planning to arrive to his desired destination.

The amount of help provided by the shared trajectory controller can be varied using

the parameters ηu and ηr in Eq. 4.32. Our ongoing work is testing the results when

using the probability value given by the destination inference system as modulation
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term as follows:

Gs(v, ω) = (1− P ) ∗ diff(v, ω) + P ∗Gr(v, ω) (4.36)

In this case the modulation parameter P would be the probability computed using

our destination inference method for the given goal. The use of the P term allows

an automatic adjusting of the amount of assistance provided by the system. Practical

experiments will be presented in chapter 5 where the system will be tested also with a

multi-modal interface that combines face-tracking system and voice control.
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Chapter 5

Experiments

In this chapter we present the experiments and results that were done as part of

this thesis. We describe the experimental wheelchair and our proposed multi-modal

interface using face-pose and speech recognition. One of the major difficulties that was

faced during our research was the acquisition of data coming from real sensors. This

chapter also presents how we acquired the data to model the typical destinations based

on observations gathered on two different experimental scenarios.

5.1 Experimental Setup

Experiments were made in two different scenarios with available tracking data of

people moving around. This condition is necessary in order to extract the typical

destinations and initial probability table. The locations are the INRIA entry hall and

the French experimental apartment GERHOME.

5.1.1 The Experimental Robotic Wheelchair

The method was evaluated in the real platform presented in Fig. 5.1. The robotic

wheelchair is equipped with one laser range-finder and two 3D point cloud cameras.

The laser data is used to build the map of the environment and detect obstacles in a 2D

plane. One of the 3D cameras is used to detect and track people around the wheelchair

which is necessary to consider the personal and interaction spaces in the costmap. The

other camera is used to get the position of the user’s face to drive the wheelchair.

The software architecture was developed using the middle-ware ROS (Robot Oper-

ating System). The software architecture provided by ROS allows a decoupled operation

of the different components. Each component will be responsible of providing a certain

91



5. EXPERIMENTS

(a) The robotic wheelchair
used during this thesis.

(b) The mobile base includes all the electronic components and the com-
puter in charge of the low level control.

(c) Footprint of the robotic base, the coordinates are
in millimeters with respect to the center of the base.

Figure 5.1: The INRIA Rhône-Alpes robotic wheelchair.
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functionality and thus it can be wrapped in a node. To exchange data with other nodes

it publishes/subscribes to topics or request/reply services.

5.1.2 INRIA-hall

(a) (b)

(c)

Figure 5.2: INRIA hall experimental scenario. (a) The lines in the figure represent
some of the trajectories normally followed by people. Typical destinations (end of a
trajectory) are marked with circles. (b) Typical destinations at INRIA Rhône-Alpes
hall. (c) The map of the scenario used by the navigation system.

The scenario where we made most of our tests was the INRIA-Rhône Alpes Entry

Hall. The map of the hall was built using laser data and it is shown in figure 5.2. White

zones in the map of the environment represent free space, black are occupied regions

and gray zones are not known regions.

Possible destinations were extracted from real data by tracking people in the scene
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and marking those places where a trajectory starts or finishes. The tracking was per-

formed on video-sequences from a camera located above the experimental scenario. 1.

In Fig. 5.2 the points corresponding to possible destinations are marked with red circles

(reception, two doors, two couches, elevator, stairs). Each destination has an associated

probability value P (D0|X0) shown in Fig. 5.3. In practice those elements with value

equal to 0 are replaced with a very small value ε.

(a) Values for the initial probability distribution. In practice those those elements
with value equal to 0 are replaced with a very small value ε.

(b) The size of the spheres represents the value of
the initial probability distribution for the given start-
ing point X0 = d(8), here we can see that according
to the table the destination with the highest initial
probability is d(6) with a value of 0.435.

Figure 5.3: Initial probability distribution obtained by observing the human activity
at INRIA’s entry hall.

1. The video database can be found at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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5.1.3 Gerhome

GERHOME is an experimental apartment furnished and instrumented to evaluate

solutions aiming to improve the quality of life of the elderly. This apartment is located

in the CSTB (Scientific Center of Technical Building) at Sophia Antipolis in France.

This experimental site looks like a typical apartment of an elderly person: 41m2 with

an entrance, a living-room, a bedroom, a bathroom, and a kitchen.

Different sensors are distributed around the apartment to collect data. Through

analysis of these data, it is possible to recognize and describe the daily activities of the

elderly at home. Figure 5.4 shows a map of the apartment with the different type of

sensors available such as temperature, presence, humidity, video cameras, etc.

Real elderly people, aged from 64 to 85 years old, have been observed in the exper-

imental site during an average period of time of 4 hours. The collected data include

the 36 video streams and data provided by 24 environmental sensors. 1

Figure 5.4: The Gerhome platform. The map and the list of sensors distributed in the
building is presented.

The environmental sensors provide data when an event occurs. For instance the

contact sensor determines an opening and closing events for various devices (e.g. cup-

boards, drawers, fridge, closets). The provided data is stored in an XML file as shown

in figure 5.5 with the following format:

– TimeStamp: represents the moment when the data was provided (YYMMDD-

HHMMSS.MS).

– SensorClass: represents the class of information provided by the sensor (e.g.

contact, presence, electrical, pressure and water).

– SensorLocation: represents the location of the sensor (e.g. upper cupboard).

– SensorValue: the value provided by the sensor (e.g. “On” if the sensor is activated

1. Data available at www.sop.inria.fr/members/Francois.Bremond/topicsText/gerhomeProject.html.
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and “Off” if the sensor is deactivated).

– SensorID: single sensor identifier which is transmitting the data.

(a) (b) (c) (d)

(e) The log-file with the detected events.

Figure 5.5: An example of video sequence and the corresponding events detected by
the sensors at Gerhome apartment.

By using this data we can count the number of times the user visits each of the

typical destinations in the home and use this data to built the initial probability table

used by the destination inference system.

5.2 User-Robot Interfaces

Typical user interfaces for steering robots range from keyboards, over keypads to

joysticks. However disabled and elderly people may have difficulties using them. Dedi-

cated user interfaces were developed, such as sip-and-puff systems, single switches, eye

tracking systems, etc., described in section 2.3. Our experimental platform was tested

using typical input devices as a keyboard and a joystick, but the main research was

done using the face pose recognition system and voice control, as it was considered to

be a more human-like way of interaction.

5.2.1 Face Pose Estimation System

The user can control the robotic wheelchair by using the movements of his face.

A face tracking system that estimates the direction of the face from a 3D point-cloud

(Fig. 5.6). The identification of the face pose is done by a random forest classifier

(Fanelli et al. (2011) and Goebel (2014)) which takes as input the 3D data from the
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Kinect sensor and gives the estimated position of the face. To improve the results of the

3D tracking the systems uses also a 2D RGB image to detect the face and fix a region

of interest in the 3D point cloud. This system is robust enough to track the user’s face

even under low-light conditions, however, it tends to fail under direct sun-light because

the infrared technology of the 3D camera receives high interference on such conditions.

(a) The 2D RGB image is used
to detect the face and fix a region
of interest in the 3D point cloud.

(b) Angles measured by the face pose esti-
mation system.

Figure 5.6: 3D point cloud image of the user’s face is used to estimate its direction.

The system is able to recognize pitch and yaw head’s angles accurately, however it

can give large errors for roll angle measurements. Yaw face’s angle can be measured for

movements in the range [−45◦, 45◦], pitch ∈ [−30◦, 30◦] and roll ∈ [−6◦, 6◦] (Fig. 5.7).

Figure 5.7: Face pose recognizer output angles. Yaw face’s angle can be measured for
movements in the range [−45◦, 45◦], pitch ∈ [−30◦, 30◦] and roll ∈ [−6◦, 6◦]
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The face pose recognizer system computes the geometric transformation between

the camera reference frame and the head reference frame. We assume that the camera

will have a fixed position with respect to the wheelchair’s reference frame, therefore,

we can compute the relative position between the user’s head and the wheelchair’s

reference frame that is used by the navigation system. In figure 5.8 it is shown the

resulting head reference frame with respect to the wheelchair’s reference frame as it is

computed by the system. The yaw angle between both frames is mapped to control

the angular velocity of the wheelchair while the pitch can be used to give other orders

as brake or go. Those two angles will respect the following convention. If the user is

looking to the left the yaw angle will be negative and if the user is looking down the

pitch angle will be negative.

(a) The user is looking to
the left, it results in a neg-
ative yaw angle.

(b) The user is looking to
the right, it results in a
positive yaw angle.

(c) The user is looking up,
it results in a positive pitch
angle.

(d) The user is looking
down, it results in a neg-
ative pitch angle.

Figure 5.8: The face pose recognizer system publishes a transformation between the
camera reference frame and the head reference frame. Assuming that the camera
will have a fixed position with respect to the wheelchair’s reference frame, it can be
computed the transformation between the head pose and the wheelchair’s pose.
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(a) (Frontal view of the wheelchair) Somebody
asks the user to look to to the left.

(b) (User’s face and map used by the wheelchair)
The user moves his face to look what he was
asked to.

(c) (Frontal view of the wheelchair) The
wheelchair turns to be in a more comfortable
position for the user.

(d) (User’s face and map used by the wheelchair)
The wheelchair stays aligned with the driver’s
face.

Figure 5.9: The user receives some indications to look around while the wheelchair is
in turning mode. The wheelchair turns around according to the user’s face position. It
is a comfortable way of acting as long as it does not hit obstacles.

5.2.1.1 Turning in place

In the example situation 5.9 the user is driving the wheelchair using the face-pose

interface. This allows the user to use his hands for other tasks as carrying a book

or opening a door. In this case the user is getting some information from another

person indicating to look towards some place while the wheelchair adjusts its direction

accordingly.

In another example situation the user drives in an unknown environment (the li-

brary at INRIA), as there are no previously recognized destinations, the wheelchair just

performs obstacle avoidance using the shared trajectory controller (without path plan-

ning). In this test the user drives the wheelchair by showing his desired travel direction

with the face. The wheelchair performs obstacle avoidance using the presented shared
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local controller. Stop and Go commands are performed through the speech recognition

system Fig. 5.10.

(a) (b)

(c) (d)

Figure 5.10: In this test the user drives the wheelchair by showing his desired travel
direction with the face. The wheelchair performs obstacle avoidance using the presented
shared local controller. Stop and Go commands are performed through the speech
recognition system. The full video can be accessed at http://youtu.be/O3IPISn7waw.

5.2.2 Voice Recognition

The voice interface is used to fulfill some lack in functionality that the face pose in-

terface can not supply. We tested two different voice recognition systems; Pocketsphinx

from Carnegie Mellon University and the Google speech recognition API.

– Pocketsphinx: This voice recognition system was developed at Carnegie Mellon

University and described in (Huggins-Daines et al., 2006). The system allows to

specify a set of syntactic rules (or grammar) which constrains the ordering of

words within a sentence. This grammar enhances the speech recognition quality

by reducing the hypothesis space. In general a small vocabulary makes speech

recognition more accurate, therefore a dictionary that focuses in a very small fixed

set of tasks was considered (go, brake, faster, slower, autonomous, manual). The
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Figure 5.11: Driving the wheelchair using vocal commands, we see the map show-
ing the wheelchair and the list of vocal commands recognized by the speech rec-
ognizer. The video corresponding to this image sequence can be watched at
http://youtu.be/w5VMVrXhzfg.

code and examples to use can be found at (Carnegie-Mellon-University, 2014)

web-page.

– Google Speech Recognition API: This is a service delivered from the provider

cloud (Schalkwyk et al., 2010). This voice recognition system is capable of han-

dling any query that the Google search engine can handle. the voice of the person

has to be recorded in an audio file, then that audio file has to be sent to the Google

Speech Recognition Service and it will return a string containing, in plain text,

the spoken words contained in the audio file. One drawback is that it can be slow

and it is dependent on the availability of an Internet connection. However, one

of the main advantages of this service is that the available vocabulary queries is

very large and it is available in different languages.

The user can control the linear velocity of the wheelchair by giving orders as faster,

slower, full speed or stop. He can change the direction with the back and forward

commands and he can ask the wheelchair to start moving with the move and go orders.

An optional modality implemented in our wheelchair allows the user to use the left

and right orders to control the angular velocity when the face pose tracker is not

101



5. EXPERIMENTS

present. In the figure 5.12 we show an example of the possible vocal commands to drive

the wheelchair. It is also shown the map and detected obstacles in the environment

(orange)) as well as the footprint of the wheelchair (red rectangle). The wheelchair will

move according to the given vocal command as long as it does not hit any obstacle.

Figure 5.12: Driving the wheelchair using vocal commands, we see the map show-
ing the wheelchair and the list of vocal commands recognized by the speech rec-
ognizer. The video corresponding to this image sequence can be watched at
http://youtu.be/w5VMVrXhzfg.

5.2.3 3D Human Tracker

The multiplicity in shape, as well as the complexity of configuration the human

body can achieve requires complex sensors to be tracked accurately. Color cameras are

amongst the most effective sensors, even if the information are limited to the image

plane (McKenna et al., 2000). Lately the development of technology and availability of

comparatively affordable RGB-D sensors, adequate to perceive 3D structures, opened

the possibility to extend the range image-based recognition (Shotton et al., 2011). It is

then reasonable to choose such sensors to capture people positions (Spinello and Arras,

2011).

The availability of a software library for user skeleton detection simplifies the prob-

lem of detecting human shapes using the RGB-D data from the Kinect sensor. For
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the version 1.5 of OpenNI library (used to track the person), the user had to execute

a particular calibration routine (called ψ pose) to be detected. This constricted the

usability of the software for multiple people perception. In version 1.5, however, the

users can be perceived using a user generator that does not require any calibration at

all. The output of this component is a set of people position estimation. In figure 5.13

we can observe the 3D point cloud used by the OpenNI skeleton tracker to estimate the

position of the tracked user. The resulting skeleton is a list of links defining the parts

of the user body (arms, legs, torso, etc.). The position of humans detected is given in

the camera’s reference frame.

(a) The 3D Pointcloud

(b) The depth image and the resulting skeleton of the tracked
persons.

Figure 5.13: The OpenNI skeleton tracker uses a 3D point cloud to estimate the position
(referent to the camera) of the tracked user.
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5.2.3.1 Arm Gesture Recognition

Arm gesture was another interface that was contemplated during this study. It

consisted in detecting th position of the user hands to drive the wheelchair (figure 5.14).

Remotely driving the wheelchair by using the hands could be a useful way to interact

with the robot to ask it to get closer for example when the user wants to get off from

bed.

The arm detection is performed using the kinect skeleton tracker of the OpenNI

library described in section 5.2.3.

(a) (b)

(c)

Figure 5.14: The skeleton tracker can be used to drive the wheelchair using ges-
tures. In the scene our experimental robotic wheelchair is driven using hand-
gestures. The video corresponding to this image sequence can be watched at
http://youtu.be/w5VMVrXhzfg.

5.2.4 Keyboard

During experiments in simulation we used a keyboard interface to control the

wheelchair. By using 5 keys we can send a front, back, left, right and stop signals used

by the user to drive the wheelchair. To emulate the use of a vocal interface we use some

other keys to give orders such as ”GO”, ”JOIN”, ”FASTER”, and ”SLOWER”. This

interface is used to test the performance of the methods when using a low-bandwidth
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discrete interface given that a future application could be centered on the use of a brain

computer interface which normally gives the same quantity and type of orders.

5.3 Multimodal Control using Face Pose and Speech Recog-

nition

The wheelchair can be controlled in semi-autonomous mode employing the user

intention prediction module or in manual mode. In manual mode the user controls

the wheelchair’s angular speed by moving his face. The linear speed is controlled with

vocal commands as explained in section 5.2.2.

In semi-autonomous mode; the user shows the direction to his desired destination

by looking towards it. The user intention module computes the destination with the

highest posterior probability, depicted in Fig. 5.17 (a) as the biggest circle. The navi-

gation module receives the map of the environment, the list of humans present in the

scene and the currently estimated goal to compute the necessary trajectory to the goal

as it is shown there.

When moving the user does not have to worry about the necessary planning to avoid

obstacles because the autonomous navigation system is in charge of that, however, he

can stop or start the wheelchair by using the speech recognition system.

The main function of the speech interface is to switch between manual and semi-

autonomous modes by saying the “manual” and “autonomous” vocal commands.

– Autonomous: The wheelchair computes the most likely intended destination of

the user and navigates autonomously towards it.

– Manual: The linear speed of the wheelchair is regulated using vocal commands

while the angular speed is controlled by moving the face. No obstacle avoidance

or path planning is provided by the wheelchair.

The speech recognition system is used in combination with the face pose estimator

to provide different operation modes as detailed in Table 5.1

5.3.1 Test 1: Driving with Destination Inference Method vs Driving

without Assistance

To evaluate the performance of the method, four different persons were asked to

drive the wheelchair in manual and autonomous modes. The wheelchair could be

controlled in autonomous mode where the desired destination is inferred by the system

and then the wheelchair navigates autonomously to reach it, or in manual mode where
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Table 5.1: Vocal commands and associated driving behaviors in manual and au-
tonomous modes.

Autonomous Mode

go + face direction Computes the most probable
destination in that direction
and navigates autonomously
against it.

one brake + face direction Stops the wheelchair and
keeps turning in the same
position.

brake (2 times) Stops completely the
wheelchair.

Manual Mode

go + face direction Moves the wheelchair with
a constant linear speed;
the angular speed is
proportional to the face
direction.

faster Increases the linear speed

slower Decreases the linear speed

one brake + face direction Stops the wheelchair and
keeps turning in the same
position.

brake (2 times) Stops completely the
wheelchair.
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the user drives the wheelchair without assistance. To switch between these two modes,

we use the voice recognition system.

The user is asked to start the movement from one of the labeled destinations shown

in Fig. 5.2(a) and visit a list of targets e.g (go to the reception, then go to the right

door and then come back).

Figure 5.15: Using face pose to estimate the user’s desired destination. (Video at
http://goo.gl/VvtezQ).

Every command and computed intent was stored at each time step. This allows to

compare the output of the estimation with the actual intention of the human. Second,

when driving towards the destination, global measures such as the total time needed,

the total distance traveled and the followed trajectory were logged to quantify the

performance.

In Fig. 5.16 some of the resulting trajectories are presented, the first thing that

can be noticed is the improved performance accomplished when using the user inten-

tion estimation algorithm. This avoids abrupt modifications in the trajectory due to

involuntary changes in the direction of the face produced when the user is exploring

the surroundings. The time when executing the task was also improved as shown in

the following table. The most important fact to be noticed is that collisions were com-

pletely avoided when using the user intention algorithm, on the other hand, in manual

mode some collisions were produced.

5.4 Destination Inference with Dynamic Destinations

In the example situation (Fig. 5.15), the user is looking to his left so that it is more

probable that he is aiming to go to the coaches located in that direction or to join the

group. The direction of his face is computed as explained in section 5.2.1.

107



5. EXPERIMENTS

Figure 5.16: Some samples of the logged trajectories are presented. (a) and (c) show
the results when using the assistance of the user intention estimation system. (b) and
(d) were achieved by driving the wheelchair using the face without any assistance. Here
we can observe the oscillations in the trajectory due to involuntary changes in the face
direction produced when observing the surroundings.

Typical destinations are marked in the map and whenever a new command is read

from the face control, the user estimation module computes the one with the highest

posterior probability. The navigation module receives the map of the environment, the

currently computed goal and the list of people present in the scene to compute the

necessary trajectory to the goal.

In the example there are two persons talking between them and they are positioned
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Table 5.2: Performance metrics when driving the wheelchair with and without assis-
tance

Semi-autonomous mode Time [s] Distance [m] Num. of
collisions

User 1 32.1 24.4 0
User 2 34.5 25.8 0
User 3 35.3 26.2 0
User 4 32.5 25.1 0

Manual Mode Time [s] Distance [m] Num. of
collisions

User 1 54.0 28.2 0
User 2 68.3 29.3 0
User 3 75.4 29.4 1
User 4 63.2 27.0 1

in the middle of the path between the wheelchair and the current estimated goal.

Even if the user is pointing to the goal located in the other side of the two persons

he does not have to worry about the necessary planning and commands to avoid in-

terrupting the conversation because the autonomous navigation system is in charge of

that.

Data was gathered on two distinct levels. First, every command sent by interfaces

was logged, as well as the intent of the subject at that time. This allows to compare

the output of the classifier with the actual intention of the human on the individual

command level. Second, when driving towards the goal position, global measures such

as the total time needed, the total distance traveled and the followed trajectory were

logged to quantify the task performance.

In case of an error, for example when the inferred destination can not be reached

because it is occupied or there is not enough evidence to decide which destination is

better, the system will ask for help and wait for the user to give a new command as

shown in Fig. 5.19.

In the case of an ambiguous destination, the wheelchair will present the two goals

with higher probability to the user who will disambiguate by giving a new command.

The direction of the new command is used and the probabilities are updated. If the

new destination is not occluded then, the wheelchair will start moving.
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Figure 5.17: Experimental Evaluation, the user is asked to go from d(7) to d(1) using
the user intentions system. (a) As the destination with the highest prior probability
from d(7) is d(5) in the beginning of the test the results are biased to that side that is
why d(3) is initially chosen as the most likely goal. (b) As the user keeps looking to the
left all the destinations in that direction become more likely. (c) When the wheelchair
has enough evidence, it changes the desired destination to d(1). (d) The user arrives to
his desired destination, the spot in the middle of the trajectory marks the place were
the change of destination was produced.
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Figure 5.18: Example of an experimental scenario where some typical destinations and
meeting points have been detected. In the intended application, the user points in the
direction of his desired destination and use a vocal command to order the wheelchair
to move.

(a) (b) (c) (d)

Figure 5.19: Error handling. When the system detects an error in the inferred desti-
nation (it is blocked or there is not enough evidence to decide) (a) it asks for help to
the user (b). The user gives a new command (c) and if the new destination is valid it
will move towards it.
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5.5 Caregiver Following

The wheelchair was adapted with the capability of following a caregiver or com-

panion person. To track a person we used the OpenNI skeleton tracker described in

section 5.2.3. The movement of the wheelchair is computed by a PID controller that

takes as input the distance from the wheelchair to the user and outputs a velocity con-

trol that tries to reduce this distance. This command is then checked using our shared

control presented in section 4.3.2 in order to perform obstacle avoidance.

In figure 5.20 we show a scene of the robotic wheelchair following the user. This

is an important characteristic that a robotic wheelchair should pursuit to ease the job

not only for the user but also for the medical staff an his family.

(a) (b)

(c) (d)

Figure 5.20: A scene of the robotic wheelchair following the user. This is an important
characteristic that a robotic wheelchair should pursuit to ease the job not only for the
user but also for the medical staff an his family.
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5.6 Discussion

The new application of the wheelchair system with more natural and easy-to-use

human machine interfaces was one of the main contributions. Human aware navigation,

path planning and obstacle avoidance are performed by the robotic wheelchair while

the user is just concerned with “looking where he wants to go”.

This system was improved by using the user intention estimation algorithm, because

it avoids abrupt modifications in the trajectory due to involuntary face movements pro-

duced when the user is exploring the surroundings. The time when executing the task

was also improved because the user does not have to waste time in increasing/decreasing

the linear speed with a vocal command.

The most important fact to be noticed is that collisions were completely avoided

when using the user intention algorithm, on the other hand, in manual mode some

collisions were produced.

A more sophisticated/accurate user intention algorithm combining maybe machine

learning techniques is desired in order to add the capability to be autonomously adapted

to the user disability.
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Chapter 6

Conclusions and perspectives

The principal objectives of this thesis were to improve the compliance, usability of

a robotic wheelchair by estimating the user intention and to improve the comfort for

people around the wheelchair by respecting typical social conventions.

The modular architecture of the wheelchair navigation system granted the capability

to use functional modules provided by the open source community as the A* path

planner, the AMCL self-localization, etc. This design promoted the improvement of

several already-existent methods to the particular needs stated as design requirements.

The destination inference algorithm was used to translate simple input commands

(travel direction) into high level orders (the desired destination). This reduces the

necessary time to learn how to drive the wheelchair and lessen the user involvement

while driving.

The algorithm was tested in experimental environments, however, it will be neces-

sary to try it under real-life situations and real users in order to prove conclusively the

benefits of the system. To work in a non-supervised environment, the user’s intention

algorithm must be extended and perform an on-line learning to add new important

places and user’s habits updating the initial probability model described.

One of the main issues of the destination inference method is the decrease of freedom

in the number of possible movements that the user can perform. This problem can be

solved while still keeping the obstacle avoidance advantages when using the proposed

shared velocity controller alone and drive the wheelchair in a shared control mode. In

that mode the user is in charge to indicate the travel direction to the wheelchair while

it will compute the necessary speed commands to avoid obstacles.
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6.1 Meeting Points Computing

The estimation of meeting points is an important part of our system because it is

used to infer the desired destination of the wheelchair user. The geometrical model to

approach humans gave us some first insights in the understanding of people’s reaction

when the robotic wheelchair approaches groups of people, however it should be extended

to consider the dynamic evolution of the group once the robot joins it.

6.2 Multimodal Interface

We proposed the use of a multi-modal interface using speech recognition and face

movements. The destination inference module was used to avoid abrupt changes in the

trajectory due to involuntary face movements. It also can solve the problem of driving

the wheelchair against obstacles due to the natural human behavior of looking towards

risky zones.

6.3 Respect of Social Conventions

Autonomous navigation techniques for robots moving among humans must be aware

of social aspects of human interactions. The work presented in this thesis addressed

that problem by using methods which take into account social conventions to improve

the wheelchair’s navigation system. Although the method used as part of this thesis is

helpful to prevent possible embarrassing and even dangerous situations; the employed

models of social spaces are static. It will be important to integrate methods that

consider the movements of the persons and nearby objects to estimate the interactions

in a dynamic way.

The social defined regions were successfully implemented as a cost-grid that can be

employed and tested by the interested reader using the open source ROS navigation

stack to reproduce the experiments of this thesis.

6.4 Final Remarks

As a final remark, smart wheelchairs are excellent test benches to study robot con-

trol architectures, human-robot interaction, shared control and novel access devices.

However, there are still several barriers to overcome before smart wheelchairs can be-

come widely used by real patients. It is necessary to improve the sensing system to
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have an inexpensive device able to detect obstacles and drop-offs over a wide range

of operating conditions and surface materials. Up to the moment smart wheelchairs

are designed to navigate in modified indoor environments where access to drop-offs is

restricted.
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Appendix

A.1 Introductory Concepts of Probability

Due to the lack of information or noise in the physical world every mathematical

model of a real system is in some way incomplete. This incompleteness in the mathe-

matical models produce that the outcome is up to some level uncertain. Probability is

one of the most important mathematical tools used in robotics. Probabilistic reasoning

proposes a way to deal with the inherent uncertainty of the world.

A.1.1 Logic, Probability and Reasoning under Uncertainty

Traditional logic reasoning can be classified in deductive and plausible reasoning.

Definition 14 Deductive reasoning allows reasoning under the logical consequence

of events. Logical propositions are either true or false, implying true or false conse-

quences Jaynes (2003).

Definition 15 In plausible reasoning, each logical proposition has an attached de-

gree of plausibility, with bounds not plausible, meaning the proposition is false, and

completely plausible indicating the proposition is true.

When plausibility values are near limits (not plausible or completely plausible),

plausible reasoning is similar to deductive reasoning. Jaynes (2003) proposed applying

probabilities as plausibility values. This method supplies the rigid theoretical formal-

ization of Probability Theory.
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Definition 16 A logical proposition is an statement with a precise meaning and

specific logical type (true or false). Logical propositions are denoted by small letters,

and they can be combined, applying logical operators, to obtain new propositions.

As an example if the proposition a means “The robot is at the office”, and proposi-

tion b is “The robot is going to the kitchen”, a new proposition a ∧ b (the conjunction

of a and b) would have the meaning “The robot is at the office and is going to the

kitchen”. It is also possible to express the disjunction of propositions a and b, which

results in a new proposition a∨ b meaning “The robot is at the office or is going to the

kitchen”. The negation of a proposition, as in ¬a, is another proposition with opposite

logical type “The robot is not at the office”.

Propositions can also mean that a variable has an associated value, as in proposition

v meaning “The current robot speed is 3.0m/s”. We can say that, if the robot speed

is indicated by a variable V , v means [V = 3.0]. This kind of proposition is used

extensively when programming a robot and leads to the definition of a discrete variable.

Definition 17 A discrete variable V is then defined as a set of n logical propositions,

one for each possible value in the domain Dv = v1, v2, . . . vn. These logical propositions

are then mutually exclusive and exhaustive.

vi ∧ vj = false, fori 6= j; (A.1)

vi ∨ vj ∨ . . . vn = true (A.2)

Where, n denotes the cardinality of a variable.

A variable can only be assigned values in its domain, and only one value at a time.

Variables are usually denoted by names beginning with capital letters, while the values

in its domains are denoted by small letters. As each possible value in the domain is

associated with a logical proposition, there is no ambiguity in this notation: value vj

is equivalent to the proposition V = vj .

A.1.2 Probability of a Proposition

Sometimes, we do not know if a particular proposition x is true or not, but we still

have reasons (eg prior knowledge or evidence) that make us believe that one of those

values is more likely than the other. We express this using the notation P (x|π) which

is read ”the conditional probability of x given our former knowledge π”. Since -under
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the subjective interpretation- probabilities are always estimated on the basis of former

knowledge, it does not make sense to simply write P (x) or probability of x. That said,

we will systematically omit the specification of former knowledge π, but it should be

noted that this is only a notational shortcut. Let X denote a random variable and x

denote a specific value that X might take on. If the space of all values that X can take

on is discrete, we write

p(X = x) (A.3)

A.1.3 Probability Theorems

They are mathematical identities used to manipulate proposition probabilities in

order to perform inference.

A.1.3.1 The Product Rule

The product rule relates the probability of the logical product x∧y to the individual

probabilities of x and y :

P (x, y) = P (x)P (x|y) = P (x)P (x|y) (A.4)

A.1.3.2 The Normalization Rule

The normalization rule expresses the relationship between the probability of a

proposition and that of its negation.

P (x) + P (¬x) = 1 (A.5)

A.1.3.3 The Sum Rule

Just as in classical logic it is possible to construct every possible logical expression

using only negation and conjunction, two identities -the product and the normalization

rules- are used to derive all possible probabilistic computations. One of the rules which

is possible to obtain from A.4 and A.5 is the sum rule:

P (x+ y|z) = P (x|z) + P (y|z)− P (x, y|z) (A.6)
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A.1.4 Theorem of Total Probability

This theorem follows from the definition of conditional probability and the axioms

of probability measures, the discrete case is referred as:

p(x) =
∑
y

p(x|y)p(y) (A.7)

A.1.5 The Bayes Rule

Equally important is Bayes rule, which relates conditionals of the type p(x|y) to

their ’inverse,’ p(y|x). The rule, as stated here, requires p(y) > 0:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x p(y|x)p(x)

(A.8)

Bayes rule plays a predominant role in probabilistic robotics. If x is a quantity that

we would like to infer from y, the probability p(x) will be referred to as prior probability

distribution, and y is called the data (e.g., a sensor measurement). The distribution

p(x) summarizes the knowledge we have regarding X prior to incorporating the data

y. The probability p(x|y) is called the posterior probability distribution over X. As

(Eq A.8) suggests, Bayes rule provides a convenient way to compute a posterior p(x|y)

using the inverse conditional probability p(y|x) along with the prior probability p(x).

In other words, if we are interested in inferring a quantity x from sensor data y, Bayes

rule allows us to do so through the inverse probability, which specifies the probability

of data y assuming that x was the case.

An important observation is that the denominator of Bayes rule, p(y), does not

depend on x. Thus, the factor p(y)−1 in (Eq. A.8) will be the same for any value x in

the posterior p(x|y). For this reason, p(y)−1 is often written as a normalizer variable,

and generically denoted η:

p(x|y) = η p(y|x) p(x) (A.9)

A.1.6 Conditioning on Other Variables

In many cases it is perfectly fine to condition any of the rules of probability theory

on arbitrary other random variables, such as the variable Z. For example, conditioning
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Bayes rule on Z = z gives us:

p(x|y, z) =
p(y|x, z) p(x|z)

p(y|z)
(A.10)

Similarly, we can condition the rule for combining probabilities of independent ran-

dom variables on other variables z:

p(x, y|z) = p(x|z) p(y|z) (A.11)

Such a relation is known as conditional independence. Conditional independence

plays an important role in probabilistic robotics. It applies whenever a variable y carries

no information about a variable x if another variable value z is known. Conditional

independence does not imply (absolute) independence. The converse is also in general

untrue: absolute independence does not imply conditional independence. In special

cases, however, conditional and absolute independence may coincide.

Background knowledge about the meaning and scope of a proposition also called

preliminary knowledge, is usually expressed by small Greek letters. They condition the

assigned probability: P (a|π) stands for the plausibility that proposition a is true, know-

ing the preliminary knowledge summarized by π. The plausibility that the variable X

has a value xi is then expressed using a probability value P ([X = xi]|π) or, identically,

P (xi|π). It is also possible to write P (X|π), as the plausibility of variable X being

equal to each value in the domain DX : in other words, the probability distribution

over values for variable X.

A.1.6.1 Internal Variables

When designing a system to control a robot, input variables are associated with

perceptions (in other words, measures from sensors), as output variables are related to

actuators. Except for very simple behaviors it is very difficult and not always possible

to establish a direct relationship between input and output variables for a robot control

system.

As an additional complication, sensors usually are not able to supply all the infor-

mation necessary about the environment: processing as well as fusion of information

from several sensors is often necessary. Some level of abstraction based on the sensor

measures is unavoidable, and it is usually achieved by employing internal variables,

called states. Internal variables fulfill several functions, for example they describe envi-

ronment features, reason and deduce internal decisions, and express behavior-inherent
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quantities.

A.1.6.2 Conditional Independence of Variables

edited In order to model complex behavior, internal variables are essential. As the

number of variables in the control system increases (observation, motor and internal

variables), it becomes critical to consider variable dependencies. In a complete model, it

is assumed that all variables depend on each other, but in practical situations, especially

with a very large number of variables, considering all possible dependencies between

variables implies infeasible complexity. In these situations, conditional independence

can be useful to reduce the problem complexity. In reality, two variables can be in-

dependent, but conditioned by a third variable. A practical example is when several

sensors, identical or not, measure the same phenomenon. A basic assumption widely

considered is that sensor readings depend only on the phenomenon being measured,

and no dependence between the sensor readings is considered once the phenomenon is

given. Whenever it is possible and reasonable, conditional independence is be applied

to reduce intricacy in joint distributions.

A.1.7 Recursive Calculation

At each time step, states prediction and estimation depend on all past time states

and this implies that number of calculations would increase with time. However, in a

Bayes filter, it is possible to reuse last time step calculations.

States prediction calculation at a time step t uses states estimation at time t?1.

Recursive calculation consists in the following steps:

– Initially finding the expression for prediction question.

– Then, for all other questions asked to the filter, find the expression in relation to

the prediction question.

– Last step consists in rewriting prediction expression in a way that the estima-

tion expression of previous time step can be used, which proves that recursive

calculation is possible.

A.1.8 State Filtering

probabilistic questions for Bayes filters the name comes from the fact that its pur-

pose is to filter out observation noise in order to estimate the system state. It is done

using expression A.12 , which is conceptually divided in two steps: a) prediction which
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projects the current belief state one time step into the future; and b) update, which

improves the estimation by integrating the last obtained observation:

P (St|O1:t) =
1

Z
P (Ot|St)

∑
St−1

[P (St|St−1)P (St−1|O1:t−1)] (A.12)

Prediction is the most computationally expensive step, typically, this operation

involves iterating through the N possible transitions for every state, hence, its time

complexity is O(N2). However, the complexity of the prediction step may be reduced

by imposing constraints on the structure of the transition matrix.

A.1.9 Bayesian Networks

Bayesian Networks, first introduced by Pearl (1988), have emerged as a primary

method for dealing with probabilistic and uncertain information.

It is a directed acyclic graph encoding assumptions of conditional independence.

Nodes in the Bayesian Network represent stochastic variables whereas arcs represent

causal dependence. The network defines a joint (conditional) probability distribution

(CPD) where the probability of an assignment to the stochastic variables is given by

the product of the probabilities of each node. The probability distribution for each

node is conditioned on its predecessors in the graph (Russell and Norvig, 2010).
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