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SUMMARY 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by an irreversible loss of 

cognitive functions. In the early phase of the disease, there is evidence that synapse dysfunction 

promotes loss of hippocampus-dependent episodic memories. Strong evidence suggests that the 

oligomeric forms of the amyloid-ß peptide (oAß) are responsible for these synapse dysfunctions. 

Concomitantly, AD is associated to dysregulation of the Hypothalamus-Pituitary-Adrenal (HPA) 

axis as observed in human and mouse models. HPA axis dysregulation in AD produces an increase 

in glucocorticoids (GCs), which bind to glucocorticoid receptors (GRs). We recently showed that 

inhibiting these receptors in an AD transgenic mouse model, the Tg2576 (Tg
+
) mouse, prevented 

early episodic memory and synaptic plasticity deficits (Lanté et al, 2015 

Neuropsychopharmacology). 

In this context, we further assessed the extent of the contribution of GRs to AD physiopathology. 

First, we focussed on the relationship between HPA axis dysregulation and AD early onset in the 

Tg
+
 mice. Dysregulated HPA axis was characterized by increased GC levels at 4 and 6 months of 

age and by loss of GC feedback inhibition in these mice. Secondly, we crossed Tg
+
 mice with 

GRfloxed mice to generate GR
lox/lox

 Tg
+
 double mutant mice, which we characterized 

phenotypically. Even without removing GRs, these mice already exhibited high GRs levels from 

weaning period, exacerbated synaptic deficits, low body weight and low survival rate upon surgery. 

We speculate that, together, presence of the transgene and of the GR floxed allele were too 

detrimental for adequate development of these double-mutant mice. Hence, we discontinued using 

this new mouse model. Instead, to identify the functional relationship between GRs and oAß at 

synapses, we shifted to acute oAß treatment in neurons in vitro and ex-vivo hippocampus slices. In 

neuron cultures, we observed an increase in GR levels in the post synaptic density upon acute oAß 

treatment. Using a specific GR antagonist in presence of oAß on ex-vivo hippocampus slices, we 

observed that the oA-dependent LTP impairment was prevented.  This finding was confirmed by 

reducing GR levels in CA1 neurons using local in vivo injections of Cre-GFP viruses in GR
lox/lox

 

mice and then inducing LTP in presence of oAß. Hereby, we demonstrate that reducing GR function 

prevents the acute oAß effect on LTP. 

In conclusion, our results with the Tg
+
 mice suggest that a neuroendocrine dysregulation occurs 

during the onset of AD pathology. Additionally, we provide evidence for a functional relationship 

between oAß and GRs with GRs at the synapse playing an important role in acute Aß-induced 

synapto-toxicity. 
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RESUME 
 

La maladie d’Alzheimer (MA) est une maladie neurodégénérative caractérisée par une perte 

irréversible des fonctions cognitives. En début de maladie, il a été mis en évidence que la perte de 

fonction des synapses de l’hippocampe engendre la perte de mémoires de type épisodique. Les 

données actuelles suggèrent fortement que les formes oligomériques du peptide ß-amyloïde (oAß), 

qui s’accumulent dans le cerveau des patients, sont toxiques pour la fonction de ces synapses. La 

MA est aussi associée a une dérégulation de l’axe du stress, l’axe hypothalamo-pituito-surrénal 

(HPA), comme observée chez les patients et les modèles animaux de la MA. Cette dérégulation 

engendre une augmentation de la production des glucocorticoïdes (GCs) qui activent les récepteurs 

associés (GRs). Nous avons récemment mis en évidence que l’inhibition de ces GRs dans un modèle 

murin de la maladie, les souris Tg2576 (Tg
+
), prévient les déficits de mémoire épisodique et de 

plasticité synaptique (Lanté et al. Neuropsychopharmaco. 2015). 

Dans ce contexte, nous avons étudié l’étendue de la contribution des GRs dans la 

physiopathologie de la MA. D’abord, nous avons étudié la relation entre la dérégulation de l’axe 

HPA et le début de la pathologie dans les souris Tg
+
. Nous montrons que cette dérégulation était 

caractérisée par des niveaux élevés de GCs à 4 et 6 mois d’âge ainsi que part la perte de la boucle de 

rétroaction négative. Ensuite, nous avons croisé les souris Tg
+
 avec des souris GR floxées pour 

générer des double mutants GR
lox/lox

 Tg
+
, dont nous avons faire la caractérisation phénotypique. 

Alors même que les GRs étaient encore présents, ces double mutants exhibaient des niveaux élevés 

de GCs dès le sevrage, une exacerbation des déficits synaptiques, un poids faible et un taux de survie 

faible lors de chirurgies. Nous concluons, qu’ensemble, la présence du transgène et de l’allèle GR 

floxé sont trop nuisibles pour permettre un développement adéquat des souris double mutantes. Nous 

avons donc décidé de mettre fin à cette lignée de souris. A la place, pour identifier la relation 

fonctionnelle entre les GRs et oAß à la synapse, nous avons utilisé des cultures de neurones et des 

tranches d’hippocampes soumises à un traitement aigu d’oAß. Dans les cultures, ce traitement a 

favorisé une augmentation des niveaux de GRs à la synapse. Dans les tranches, ce traitement a 

provoqué une diminution de la potentialisation à long-terme (LTP), un effet totalement bloqué en 

présence d’un inhibiteur spécifique des GRs. Confirmant ce résultat, nous n’avons pas vu d’effet 

d’oAß sur la LTP sur des tranches de souris GR
lox/lox

 où l’expression génique des GRs dans les 

neurones CA1 de l’hippocampe avait été supprimée par transduction virale Cre-GFP in vivo. La 

réduction de la fonction des GRs prévient donc l’action aigue d’oAß sur la LTP. 

En conclusion, nos résultats avec les souris Tg
+
 suggèrent qu’une dérégulation neuroendocrine 

est présente en début de maladie. Aussi, nous mettons en évidence une relation fonctionnelle entre 

oAß et les GRs à la synapse, les GRs jouant en rôle clé dans la synapto-toxicité induite par oAß. 
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1 Abbreviations 

ACTH: Adrenocorticotropic hormone 

AD: Alzheimer’s disease 

ADAM: A disintegrin and metalloproteases 

AICD: APP intracellular domain 

AMPA: Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate 

Amyloid- /A:  Amyloid  peptide 

A-: Amyloid eta- peptide 

A-myloid eta- peptide 

AP-1: Activated protein -1 

APH1: Anterior pharynx defective homolog 1 

APP /APP: Amyloid precursor protein 

APLP1 and 2: Amyloid- precursor like protein 1 and 2   

APOE: Apolipoprotein E 

AR: Androgen receptor 

AVP: Vasopressin 

BACE1: -site APP-cleaving enzyme 

BDNF: Brain derived neurotrophic factor 

BST: Bed nucleus of stria terminallis 

CA: Cornu ammonis 

cAMP: Cyclic adenosine monophosphate 

CAMKII: Calcium/calmodulin-dependent protein kinase II 

CBG: Cortisol binding globulin 

CD4
+
/CD8

+
: Cluster of differentiation  

CORT: Corticosteroids 

CREB: Cyclic AMP response element binding protein 

CSF: Cerebrospinal fluid 

CTF: C terminal fragment 

DBD: DNA-binding domain 

DG: Dentate gyrus 

DNA: Deoxyribonucleic acid 

EM: Episodic memory 

EphB2: Ephrin-type B2  

EPSC: Excitatory post synaptic current 

EPSP: Excitatory post synaptic potential 

ER: Estrogen receptor

FAD: Familial Alzheimer’s disease 

GABA: Gamma-Aminobutyric acid 

GCs: Glucocorticoids 

GFP: Green fluorescence protein 
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GluA1-4: AMPAR subunits 

GluN / NR1-3: NMDAR subunits 

GR: Glucocorticoid receptor 

GRE: Glucocorticoid response element 

Gsk3: Glycogen synthase kinase-3 

HFS: High frequency stimulation 

HPA: Hypothalamus pituitary adrenal 

HSP: Heat-shock proteins 

KO: Knock-out 

LBD: Ligand-binding domain 

LTD: Long term depression 

LTM: Long term memory 

LTP: Long term potentiation 

MAPK-ERK: Mitogen-activated protein kinases / extracellular signal regulated kinase 

mGluR: Metabotropic glutamate receptors 

MMT: Multiple memory trace 

mPFC: Medial prefrontal cortex 

MR: Mineralocorticoid receptor 

MRI: Magnetic resonance imaging  

MT: Microtubules 

MT5-MMP: Membrane bound metalloproteinase  

MTL: Medial temporal lobe 

MWM: Morris water maze 

nAChR: Nicotinic acetylcholine receptors 

NF-B: Nuclear factor-kappa B 

NFTs: Neurofibrillary tangles 

NMDA: N-methyl-D-aspartate 

NOR: Novel object recognition 

NR3C1: Nuclear receptor subfamily 3 group C membrane 1   

NT: Neurotransmitter 

NTD: N-terminal domain 

oA: Oligomers of amyloid- 

p38MAPK: p38 mitogen activated protein kinase 

PEN2: Presenilin enhancer 2 

PET: Positron emission tomography 

PHF: Paired helically wound filaments 

PMCI: Pre-mild cognitive impairment 

PP2: Protein phosphatase 2 

PR: Progesterone receptor 

PrPc: Prion protein 

PRS: Perceptual representation system 

PSD: Post synaptic density 
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PSEN-1/ PS1: Presenilin 1  

PSEN-2 / PS2: Presenilin 2 

PVN: Paraventricular nucleus 

PVT: Paraventricular thalamus 

RAGE: Receptor for advanced glycation end products 

RNA: Ribonucleic acid 

sAPP: Soluble APP alpha 

SM: Standard model 

SP: Senile Plaques 

STM: Short tern memory 

Tau: Tubulin associated unit 

Tg: Transgene/transgenic 
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2 Introduction 

2.1 Alzheimer’s Disease 

2.1.1 Aging, Dementia and AD 

Aging is a natural process of cognitive impairment in elderly people causing loss of executive 

functions as compared to younger people. A huge number of people in our current population 

are in this group. Eurostats (European statistical Institute) data show 18.9% of the European 

population in 2015 was 65 years and over. With aging, the incidence of neurodegenerative 

diseases like dementia increases. 

Dementia is a chronic syndrome, characterized by a progressive deterioration in intellect, 

including memory, learning, comprehension and judgment (World Alzheimer’s report, 2009). 

46.8 million people worldwide were estimated to have dementia in 2015 and this is set to rise 

to 131.5 million people by 2050 (World Alzheimer report 2015). There are two important 

factual points to note here. First, much of the increase will take place in low and middle 

income countries. Secondly, the total estimated worldwide cost of dementia in 2015 is US $ 

818 billion (World Alzheimer report 2015). This high cost of treatment in lower income 

countries increases the burden of health care management, hence calling for extensive 

research in this field. 

Dementia syndrome is linked to a large number of underlying brain pathologies. Alzheimer’s 

disease (AD), vascular dementia, dementia with Lewy bodies and frontotemporal dementia 

are among the most common (Table 1). AD constitutes the leading cause of dementia in 

persons over 60 years, reaching 6.7% in subjects 75-79 years old and 31.15% in those over 

85 years old (Tromp et al., 2015). 
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Table 1: Characteristic symptoms, neuropathology and proportion of the different types of dementia cases.  

Alzheimer’s disease is the most common form of dementia consisting of nearly 50-75% of dementia cases 

(World Alzheimer Report, 2009). 

 

 

2.1.2 AD and its discovery 

As mentioned above, AD is one of the most common forms of dementia contributing to 

almost 50-75% of cases (see Table 1). According to the Alzheimer’s foundation of America, 

AD is defined as a progressive, degenerative disorder that attacks the brain's nerve cells, or 

neurons, resulting in loss of memory, thinking and language skills, and behavioural changes. 

It was in 1906 that a German physician Alois Alzheimer first described the presence of 

lesions such as senile plaques and neurofibrillary tangles (NFTs) in the brain (Figure 1) of a 

patient Auguste Deter, who was suffering from dementia. Her symptoms included cognitive 

and psychosocial impairments, hallucinations and disorientation (Maurer et al., 1997).  

 

2.1.3 AD neuropathology: 

More than 100 years have passed since Alois Alzheimer’s discovery of neuropathological 

hallmarks of AD. Currently, the pathological features are known to include 1) Senile plaques 
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composed largely of amyloid-ß (A) peptides, 2) intracellular NFTs composed of hyper-

phosphorylated microtubule associated protein tau, 3) dysmorphic synapses and 4) neuronal 

loss (Hardy and Allsop, 1991, Goedert et al., 1991, Palop and Mucke, 2010). 

 

 

Figure 1: Photomicrograph of a section of the amygdala from an Alzheimer’s patient showing the classical 

neuropathological lesions. Modified Bielchowsky silver stain demonstrates two senile plaques consisting of 

extracellular deposits of amyloid surrounded by halo of dystrophic neurites. Some of the pyramidal neurons 

contain neurofibrillary tangles. (Selkoe et al, 1999)  

 

2.1.3.1 Senile plaques 

Senile plaques (also called as neuritic plaques), are spherical lesions, microscopic foci of 

extracellular deposits of A protein that include abundant amyloid fibrils (7-10 nm) 

intermixed with non-fibrillar forms of this peptide (Figure 1). They contain degenerating 

axons and dendrites and intimately surrounded with amyloid deposits. They characteristically 

contain activated microglia within and near the fibrillary amyloid core, as well as reactive 

astrocytes surrounding the core (Perlmutter et al., 1992). Plaques are generally found in the 

limbic and associated cortices. 

Along with the neuritic plaques came the discovery of diffused plaques which were 

amorphous appearing non-fibrillar plaques. These were considered to be diffused “pre-

amyloid” deposits. 
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2.1.3.2 Tau neurofibrillary tangles 

These are intraneuronal cytoplasmic lesions consisting of non-membrane bound bundles of 

paired, helically wound approximately 10nm filaments (PHF), sometimes interspersed with 

straight filaments (Figure 1). Biochemical analysis of neurofibrillary tangles showed that they 

consist of microtubule associated protein tau in its hyperphosphorylated form. These tangles 

generally occur in large numbers in AD brain particularly in entorhinal cortex, hippocampus, 

amygdala and associated cortices of frontal, temporal and parietal lobes. Tau is a highly 

soluble protein with a predominant expression in the neurons (Trojanowski et al., 1989).  A 

large proportion of this protein present in the axon, interacts with microtubules (MTs) 

through its C terminal microtubule-binding domain to promote MT polymerization and 

stabilization (Götz et al., 2013). 

Neurofibrillary tangles can occur in multiple uncommon neurodegenerative diseases (like 

frontotemporal dementia) and in absence of A deposits and neuritic plaques. Therefore, the 

two classical lesions of AD can occur independently of each other.  

 

2.1.4 Two types of AD: 

2.1.4.1 Familial AD  

Familial AD (FAD) causes early onset of AD and account for 1-5% of all cases. FAD onset is 

due to autosomal dominant mutations in the following three genes: Amyloid precursor 

protein (APP), Presenilin 1, Presenilin 2 (PSEN-1 and 2; catalytic subunit of enzyme 

responsible for cleavage of APP to produce A). These mutations shift the APP processing 

towards the amyloidogenic pathway resulting in long, toxic A peptide production (see 

section 1.1.6 below for more details on APP processing). However, there is an exception in 

one of the mutations of APP variant in the population of Iceland that does not increase the A 

peptide load. Instead, this mutation confers protection from AD (Jonsson et al., 2012). 

Several mutations have been identified supporting studies on FAD, with more than 20 

autosomal-dominant APP mutations, ~ 80 mutations in presenilin-1 and 10 mutations in 

presenillin-2 have been linked to AD (Ashe and Zahs, 2010).  
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2.1.4.2 Sporadic AD 

Sporadic AD, which is the more common form of AD, also involves genetic risk factors. This 

form of AD is seen in patients above 60-65 years and hence generally called as late onset AD 

(LOAD). The most common mutation in this context is the 4 allelic variant of the APOE 

gene, which encodes for apolipoprotein E (APOE) (Bertram et al., 2010). This allele is one 

amongst the three alleles (2, 3, 4), which exist for this protein. Approximately 20-25% of 

the population carries at least one copy of APOE 4 allele, which increases the risk of AD by 

~4 fold (as compared to those with the more common APOE 3/3 genotype). On the other 

hand, 2% of the population carries two 4 alleles, imparting a ~12 fold increase risk. Studies 

in mice suggest that APOE regulates A levels in an APOE-isoform dependent manner, such 

that the 4 isoform promotes A build-up whereas the 2 isoform seems to enhance its 

clearance (Genin et al., 2011). In addition, a most recent study suggests that APOE isoforms 

differentially regulate APP transcription (Huang et al., 2017).  

Hence both APP mutations and APOE isoforms can either increase A accumulation, which 

increases the susceptibility towards AD, or reduce its accumulation, which reduces 

susceptibility to AD. Thus, we can conclude that genetic data strongly support an important 

etiological role for A accumulation in AD. 

Along with the widely studied APOE, recent large genome wide association studies 

(GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/ 

MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for LOAD (Kamboh et al., 2012).  BIN1 

stands as the second most important risk locus in LOAD after APOE. Interestingly it is 

known to modulate tau pathology, amongst its other functions including endocytosis, calcium 

homeostasis and apoptosis (Tan et al., 2013).  

Together, these data support the notion that LOAD, although neuropathologically and 

neuroclinically similar to FAD, harbours a complex aetiology. 

 

2.1.5 Environmental risk factors: 

LOAD is also subject to environmental risk factors. Besides age, which is the most evident 

risk factor for LOAD, stress is one of the better known environmental risk factor 

(Sotiropoulos et al., 2011, Wilson et al., 2003) as there is evidence that it accelerates AD (see 

Introduction chapter 1.4 below). Also, a rare haplotype in the gene producing cortisol has 
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been associated with a six fold increased risk for sporadic AD (de Quervain et al., 2004), 

suggesting that genes implicated in stress biology could represent additional genetic risk 

factors. Other non-genetic risk factors, include hypertension (Kehoe, 2003), metabolic 

disorders such as diabetes (Sleegers et al., 2004) and diet (Rothman and Mattson, 2010). 

 

2.1.6 APP and its processing:  

The etiological role for A accumulation in AD is currently questioned due to contradictory 

data obtained from AD patients and mouse models (Musiek and Holtzman, 2015, Herrup, 

2015, Nelson et al., 2009). Nevertheless, sufficient evidence proves that A and its 

aggregates cause synaptic dysfunction and memory impairments, strengthening its role as a 

trigger to initiate AD. To understand better the role of the 4kDa A peptide and its 

production, it is important to first address the functional role of its precursor APP. 

 

2.1.6.1 Function of APP: 

A is a proteolytic product derived from APP (also called APP), which is a type-1 

transmembrane glycoprotein expressed in several cells (e.g. neurons, glia, endothelial cells, 

fibroblasts). There are two other APP-like proteins, APLP1 and APLP2, which seem at least 

partly homologous in function to APP. However, they do not conserve the A region and till 

date no AD related mutation have been identified in these genes. To identify the 

physiological function of APP, different knock-out, knock-in and transgenic studies were 

created (Wolfe and Guénette, 2007). Single APP KO mice are viable, however, show several 

phenotypes, which include long term potentiation (LTP) and memory impairment (Dawson et 

al., 1999, Phinney et al., 1999). These mice do not exhibit any fundamental health problem, 

like early mortality as this may result due to compensatory action of ALPLs. By contrast, the 

double knockout APP-APLP2, APLP1-APLP2 and triple KO APP-APLP1-APLP2 result in 

mortality. Double knock out APP-APLP1 is the only exception that is viable due to the 

presence of essential APLP2 gene (Heber et al., 2000). These studies indicate that the APP 

gene family is vital in developmental stages. Overall, APP has been implicated in cell 

adhesion, cell signalling, protease inhibition and development (Wolfe and Guénette, 2007). 
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In addition, there is heterogeneity of APP which produces three different isoforms APP695, 

APP751 and APP770. This is caused by alternative splicing as well as a variety of 

posttranslational modifications, including the addition of sugars and phosphate groups (Hung 

and Selkoe, 1994, Oltersdorf et al., 1990). The importance of these alternative splicing is 

unknown.  

 

2.1.6.2 APP processing: 

A peptides of 39-43 amino acids are generated from the sequential cleavage of APP. APP 

can be cleaved to produce A at the plasma membrane, the trans-golgi, the endoplasmic 

reticulum and within endosomal-lysosomal systems (Xu et al., 1997, Greenfield et al., 1999). 

The structure of APP includes the A domain with several cleavage sites for secretases 

enzymes. Two well-known pathways compete for the APP substrate, which either leads to 

amyloidogenic (A production) or non-amyloidogenic (no A production) processing of the 

protein. 

In the non-amyloidogenic pathway (Figure 2), the APP is cleaved in the A domain by -

secretases, belonging to the family of membrane glycoproteins called ADAM (a disintegrin 

and metalloproteases) or ADAM 10 and 17, releasing the soluble ectodomain sAPP and the 

C-terminal fragment CTF (Buxbaum et al., 1998, Lammich et al., 1999). It was shown that 

soluble APP harbours numerous neuroprotective functions. These functions include, but are 

not limited to, proliferation, neuroprotection, synaptic plasticity, memory formation, 

neurogenesis and neuritogenesis in cell culture and animal models (Mattson et al., 1993, 

Turner et al., 2003). The subsequent cleavage of CTF by the -secretase produces soluble 

extracellular p3 peptides and the APP intracellular domain (AICD) (De Strooper et al., 1999). 

-secretase is a member of the aspartyl protease family able to regulate intramembrane 

proteolysis for several type 1 integral membrane proteins, including APP, APLPs, Notch, E-

cadherin and many others. Four main components of -secretase have been identified:  

Presenilin, nicastrin, anterior pharynx defective homolog 1 (APH1), and presenilin enhancer 

2 (PEN2) (Steiner et al., 2002, Li et al., 2003). AICD has been reported to interact with 

different proteins and may be involved in several intracellular pathways including apoptosis, 

neuronal growth and has transcriptional activity (Cupers et al., 2001).  
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Figure 2: Scheme of amyloid precursor protein (APP) processing pathways and cleavage products. The 

nonamyloidogenic pathway (upper) involves first cleavage by -secretase to generate sAPP- and C-terminal 

fragment CTF C83 (not shown). The subsequent cleavage of C83 by -secretase generates APP intracellular 

domain (AICD) and a short fragment P3. The amyloidogenic APP processing pathway (middle) involves first 

cleavage by -secretase to generate sAPP and C-terminal fragment C99 (not shown). Subsequent cleavage of 

C99 by -secretase generates A peptides and AICD. In addition, a recent cleavage site of APP by -secretase 

to generate sAPP and a membrane bound CTF. This is further cleaved by - and -secretase to release a long 

A- and a short A- peptide, respectively (Adapted from (Habib et al., 2016)). 

 

On the other hand, the amyloidogenic pathway (Figure 2) involves APP cleavage by -

secretases (also known as BACE1, -site APP-cleaving enzyme), (Hussain et al., 1999, Sinha 

et al., 1999), which releases the soluble ectodomain sAPP  and CTF. Cleavage of CTF by 

-secretases yields A peptides of varying lengths as well as the AICD fragment.  BACE1 

(an aspartic protease), beside cleaving APP and its homologs APLP1 and APLP2, acts on 
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other important substrates involved in brain function and development, such as neuregulin 

and voltage-gated sodium channel (Prox et al., 2012).  

There are two C-terminal variants of A (A1-40 and A1-42) which arise from heterogenous 

proteolysis at the C terminal of A by -secretase. Physiologically, 90% of A produced is 

the shorter A1-40, but A1-42 is more prone to aggregate as fibrils and is the main component 

of amyloid deposits (Selkoe, 2001, Esler and Wolfe, 2001, Cai et al., 1993, Jarrett et al., 

1993). Also, because A1-42 seems to be prone to aggregation and more toxic than the shorter 

A1-40, the ratio of A1-42/A1-40 might predict the severity of AD (Hansson et al., 2007). 

There are also new pathways for APP processing that are emerging. We contributed to the 

characterization of the new  (eta)-secretase pathway (see Results chapter 4), which yields 

novel APP fragments: A- and A- (Willem et al., 2015) (Figure 2). In brief, a higher 

molecular mass carboxy-terminal fragment CTF- is generated by a membrane-bound 

metalloproteinases such as MT5-MMP, which is referred to as -secretase activity. -

secretase cleavage occurs at amino acids 504-505 of APP695, releasing a truncated 

ectodomain. CTF- is further processed by ADAM-10 and BACE1 to generate long and 

short A peptides (termed as A- and A-). These CTF fragments were shown to be 

enriched in dystrophic neurites in AD patients and mouse models. 

 

2.1.6.3  Amyloid cascade hypothesis 

Genetic studies from FAD indicate that different mutations in the APP, PS1, PS2 direct 

towards increasing the A production. In addition, evidence on problems associated with 

clearance of A load led to an imbalance in A levels. These two view points led to the 

hypothesis that A is the causative agent in AD pathology and that neurofibrillary tangles, 

cell loss, vascular damage and dementia follow as a direct result of this deposition. The 

original edition of the amyloid cascade hypothesis was proposed in 1992 by Hardy and 

Higgins (Hardy and Higgins, 1992). 

In brief, it is widely believed that chronic elevation of A1-42 in the brain extracellular fluid 

and inside the neurons slowly leads to oligomerization of the peptide, eventually fibril 

formation and its deposition as diffuse and then mature senile plaques (Figure 3). This is 

followed by a local microglial activation and other various inflammatory processes, which 
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cause oxidative injury to proteins and macromolecules in neurons hence affecting the 

surrounding neuronal tissue. This eventually gives rise to neuronal dysfunction, tangle 

formation and cell death. The hypothesis hence attributed dementia to nerve cell death caused 

by the toxicity of large insoluble amyloid fibrils.  

 

 

Figure 3: Schematic of A assembly process. A assembly starts from the monomer state to oligomers to 

protofibrils and fibrils (adapted from Yamin et al, 2009).  

2.1.6.4 Criticism and modifications to the amyloid hypothesis 

There is accumulating evidence indicating that this hypothesis is not sufficient to explain the 

multifaceted features of the disease as explained by (Herrup, 2015). The main criticism, 

which is very evident, is that a direct correlation between amyloid deposits and dementia 

severity has not been demonstrated, since some patients without amyloid deposition show 

severe memory deficits, while other patients with cortical A deposits have no dementia 

symptoms (Terry et al., 1991, Arriagada et al., 1992, Herrup, 2015).  

Another point, which arose with time, was the role of the soluble A oligomers. As explained 

above, during pathological conditions, A1-42 peptide has a tendency to aggregate forming 

monomers, oligomers (which could include dimers, trimers, tetramers as aggregates) and 

later forming protofibrils and fibrils (simplified illustration in Figure 3). Amongst these 

aggregates, the small soluble A  oligomers (between 10 and 100 kDa) were discovered to be 

toxic and caused synaptic dysfunction and memory impairment (Lambert et al., 1998, Lue et 

al., 1999, Walsh et al., 2002). Hence these findings modified the hypothesis to the ‘oligomer 
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hypothesis’. It was suggested that A oligomers may have complex effects on surrounding 

neurons, microglia and astrocytes, the cumulative effect being to subtly alter synaptic 

function, and thus information storage and retrieval. Memory loss beginning earlier in the 

disease, was attributed to the oligomer-induced disruption of synaptic plasticity (Selkoe, 

2002). The later stages of dementia were attributed to oligomer-induced cellular degeneration 

and death. The effect of amyloid- peptide/oligomers on synaptic plasticity and memory will 

be discussed in detail in Chapter 2. 

One cannot conclude if it is the large, insoluble deposits or small soluble oligomers that 

represent the most prominent neurotoxic entity. Recent research shows that there is a 

dynamic balance between the two entities. The concentration of soluble A oligomers 

determines the size of the amyloid-beta aggregate, while concurrently this aggregate serves as 

a reservoir for the soluble amyloid oligomers (Koffie et al., 2009). 

Also, although amyloid pathology is still generally considered as a key initiation factor in 

AD, we shall briefly mention the important contribution of tau.  Indeed, the high degree of 

tau phosphorylation at early stages of AD as a key molecular signature of neurofibrillary 

degeneration in AD cannot be missed out (Buee et al., 2000). The conversion of 

physiological tau to pathological aggregates is believed to be a multi-faceted process. 

Detachment of tau from microtubules to unbound tau could be facilitated by either tau 

phosphorylation, A-mediated toxicity, oxidative stress, etc (Bramblett et al., 1993, Liu et al., 

2005, King et al., 2006).  In addition, recent research has opened new insights into the role of 

tau at the synapse (as mentioned in 2.2.6.2) and in the nucleus. Thus, in combination with 

amyloid pathology, tau pathology is likely to strongly contribute to neuron dysfunction early 

in AD progression. 

 

2.1.7 Evolution of AD in the brain 

Clinically, the different stages of cognitive symptoms in AD can be divided into three phases: 

Pre-mild cognitive impairment (PMCI), MCI and AD. A long preclinical stage (PMCI) for 

almost 15-20 years before any sign of clinical symptoms has been suggested, followed by 

MCI where NFT and A pathology are increasing along with mild cognitive dysfunction in 

neuroclinical tests. MCI can be amnestic (aMCI) or multi-domain type (amnesic and other 
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cognitive domains), amongst which those with aMCI are at a higher risk to develop AD 

(Petersen, 2003). 

AD neuropathology commences with thinning of cortex during asympotomatic stages 

(Dickerson and Wolk, 2012), proceeding with sequential atrophy in the entorhinal cortex, the 

hippocampus, the neocortex (Killiany et al., 2002, Raz et al., 2004) (Figure 4). In addition, 

quantitative morphological studies of temporal and cortical biopsies show significant loss of 

synapse density in AD patients (Davies et al., 1987) supported by low synaptic density and 

fewer dendritic spines. There is also evidence of a 25% decrease in the presynaptic marker 

synaptophysin in the cortex of MCI or mild AD patients (DeKosky and Scheff, 1990). 

 

 

Figure 4: Gross brain of late stage AD patient.  A). Generalised atrophy, ventricular dilation and medial 

temporal atrophy. B). Close up of hippocampal formation of the same patient, red arrow indicating hippocampal 

atrophy. (Castellani R et al., 2010)    

 

The sequence of appearance of the two neuropathological hallmarks is known to be in a 

reverse order. Amyloid plaques are initiated in the neocortex and later spread to the 

entorhinal cortex and hippocampus (specifically, the CA1 sub region) and subcortical regions 

(Thal et al., 2002a). While NFTs develops sequentially from transentorhinal cortex to 

entorhinal cortex, hippocampus and neocortex (Thal et al., 1998). The hippocampus is one of 

the earliest brain structures to develop neurodegenerative changes. There is evidence showing 

that NFTs develop more profusely than the amyloid plaques in early AD (Arriagada et al., 

1992). It is still under debate to determine which of the pathological features is best 

correlated with the disease state. Clinical studies indicate that NFTs correlate better than 

amyloid plaques with cognition in AD. Since the discovery that soluble A oligomers have 
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the ability to impair synaptic and memory function (Lesne et al., 2006), the idea is now 

changing to consider them along with amyloid plaques in pathological studies. 

Recent advancement in biomarker research has also helped understand the sequence of 

abnormalities as the disease progresses. The earliest marker is that of an increase in 

cerebrospinal fluid (CSF) A42 as shown in the graph below (Figure 5). These changes occur 

in preclinical phase and, by the time, the cognitive impairment is clinically detected, A 

markers have reached a plateau. Subsequently, neuronal injury and neurodegeneration 

predominate. These are shown by CSF tau and cerebral atrophy on MRI. These markers, 

which become abnormal later in the disease, correlate more closely with clinical symptoms. 

 

 

Figure 5: Biomarkers of Alzheimer’s pathological pathway. A is indicated by low CSF A42 or positron 

emission tomography (PET) A imaging. Tau neuronal injury and dysfunction is shown by CSF tau. Cerebral 

atrophy is measured with magnetic resonance imaging (Harrison J et al., 2016). 

2.1.8 Treatments 

AD has till date only a few different treatments targeting specific aspects. The two types of 

pharmacological therapeutics approved by the FDA are acetylcholine esterase inhibitors and 

NMDAR antagonist (memantine). In post-mortem AD brains, it was evident that there was 

cholinergic neuron loss (Whitehouse et al., 1981), although the mechanisms leading to this 

neuron loss remain largely unknown. Hence, to promote cholinergic signalling in early 

symptomatic AD patients, acetylcholine esterase inhibitors (donepezil, rivastigmine, and 

galantamine) have been used for decades to inhibit the acetylcholine degradation and thus 

maintain higher acetylcholine levels in the extracellular space (Zhu et al., 2013). On the other 

hand, memantine, an NMDA (N-methyl-D-aspartate) receptor antagonist is used for late 



 

 

 

29 

 

stage AD treatment. It is also not yet clear mechanistically how blocking NMDA receptors 

benefits the diseased brain, but use of memantine probably counteracts the effects of 

hyperactive excitatory circuits, evidenced in AD patients, and prevents high levels of 

glutamate from weakening synaptic strength. However, these drugs are only mildly effective 

and do not significantly halt cognitive deterioration or restore memory function (Zemek et al., 

2014). 

Other molecular treatments to restore cellular health and to repair circuit and network 

function are under development. Currently, to target high levels of A, several  and -

secretase inhibitors and modulators are used in phase III clinical trials (Citron, 2010), but due 

to severe side effects these clinical trials were aborted (Schor, 2011). Also, active 

immunization against A is under development, but such endeavours have generally not been 

successful (Gilman et al., 2005). Indeed, 99% of the A-targeted phase 3 clinical trials in AD 

have not shown statistically significant benefit on its pre-specified clinical endpoints. These 

negative results have also largely contributed to question the validity of the amyloid 

hypothesis. Most recently, some hope was raised by a more positive outcome of a Biogen 

phase I clinical trial infusing aducanumab in mild AD patients with A pathology as 

measured by positron emission tomography (PET) (Sevigny et al., 2016). The 3 and 

10mg/kg/month doses were effective in reducing brain A levels after 6 months and more so 

at 12 months. Mild positive effects of these doses on clinical outcome were reported, 

encouraging rapid transition to phase III trials.  Because of the difficulties encountered with 

anti-A strategies, there resulted an increase of interest in drug trials directed towards tau 

aggregation (Morris et al., 2011) and APOE (Pedersen and Sigurdsson, 2015). Results of 

clinical trials using these alternative strategies should be disclosed within the next few years. 

Directly targeting the activity of brain networks might also help to restore memory. Phase I 

clinical trials that used deep-brain stimulation techniques to directly manipulate network 

activity in individuals with AD reported positive memory outcomes (Laxton et al., 2010). 

This suggests that the development of non-invasive brain stimulation strategies could be a 

scalable and a safe route to restoring cellular health and network function.  

Still, there is a strong urgency to develop new therapeutic strategies as none so far have 

showed strong benefits in preventing AD occurrence or slowing down AD progression. For 

this to occur, additional efforts are required to better understand the molecular and cellular 

mechanisms driving forward AD pathology. 
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2.2 Memory formation, synaptic plasticity and modulation by A 

AD is a progressive neurodegenerative disease marked by a constellation of cognitive 

disturbances. The earliest form of memory affected in AD is episodic memory and is one of 

the most clinically relevant neurological symptom for AD patients. This form of memory 

helps us to function smoothly in our basic daily activities and to remember critical events. As 

the disease progresses the patient develops other cognitive abnormalities such as apraxia 

(inability to carry voluntary movements), aphasia (loss of ability to speak) and agnosia 

(inability to recognise objects and their use) eventually leading to global cognitive 

impairment. 

 

2.2.1 Different types of memory 

There are mainly two forms of memory depending on the duration of recall: short and long 

term memory (STM and LTM) (Figure 6).  

STM is known to hold a limited amount of information in a very accessible state temporarily 

(Cowan, 2008). STM mainly relies on cortical neuron activity in the lateral prefrontal cortex 

(Squire and Wixted, 2011). This structure is specifically known to perform higher executive 

functions, which include working memory and attention.  

The LTM system is divided into two broad classes: explicit (declarative) memory, which 

requires the conscious recall of data, facts and events, and implicit (non-declarative) memory, 

which is based on non-conscious memory abilities. Implicit memory includes procedural or 

skilled-based kinds of learning and perceptual representation system (PRS) (Squire et al., 

1987). PRS mainly involves priming effects (where one stimulus influences the response of 

the other stimulus) and operant or classical conditioning (which involves pairing of two 

stimuli). Long term memory is stored in the neocortex and distributed in different regions, 

where the area specific processing occurred at the time of learning. 
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Figure 6: Classification of the different memory systems into short and long term storage systems. Long term 

memory is further divided into declarative and non declarative memory. Declarative memory represents explicit 

memory which can be declared and is further classified into semantic and episodic memory. Non declarative 

memory is the memory used in tasks and skills and can be divided in procedural and perceptual representation 

system. (Adapted from Tulving, 1995). 

2.2.1.1 Declarative long term memory 

Declarative memory is subdivided into semantic memory and episodic memory (EM). 

Semantic memory is related to storage of general facts and knowledge, such as the colour of 

fruits or the capital of countries. While EM is a system that enables an individual to encode, 

store, and retrieve information about personal experiences and the temporal and spatial 

contexts of those experiences (first defined by Tulving in 1972).  

 

2.2.2 Memory formation and its stages:  

2.2.2.1 Encoding, Consolidation, Storage and Retrieval 

Memory formation and utilization can be divided into the following stages: Encoding, 

consolidation, storage and retrieval. The critical structures involved in these processes of 

memory involve hippocampus, the amygdala and the adjacent entorhinal, perirhinal and 

parahippocampal cortices, which  make up the medial temporal lobe (MTL) and the 

prefrontal cortex (Squire and Wixted, 2011). 

Encoding is the first stage of memory, and it is crucial for the storage and retrieval of 

voluntary stored information. Encoding begins with perception of sensory inputs that comes 
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from external stimuli. The MTL structures are involved and responsible for transforming 

these sensory inputs to a memory representation (Squire and Wixted, 2011). All these 

neuronal activities converge to the medial temporal lobe and specifically to the hippocampus, 

where they bind to form episodic memory (Figure 7) (Kessels and Kopelman, 2012). After 

binding, they are allocated to areas in the cortex for long-term storage as they are well 

protected from the influence of new incoming memories (Straube, 2012). The type of 

information processing that occurs during the encoding stage determines the quality of 

encoding and recovery of that information.  

 

 

Figure 7: Functional overview of extended hippocampal-diencephalic memory system. Nonintegrated input 

from the association areas (such as spatial or object information) is processed in the parahippocampal and 

perirhinal cortices and then integrated as an “episode” in the entorhinal cortices. Storage then takes place 

through the hippocampi that are connected via the fornices to the mammillary bodies. Subsequently the thalami 

projects to the neocortex where the episodic information is permenantely represented (Kessels and Kopelman, 

2012).  

Consolidation: Encoded memory undergoes consolidation, a process by which short term 

memory trace is transferred to stable long term memory before directing it to neocortical 

areas for long term storage. There are two models of consolidation: the standard model (SM) 

and the multiple memory trace (MMT) (Nadel et al., 2007). The SM model, proposes that 

memory storage initially requires the hippocampus to link the different features of memory 

which are dispersed in several sites in the neocortex. Over time, however, the requirement of 

the hippocampus decreases and the representation of the memory is solely in the neocortex 

(Frankland and Bontempi, 2005) (Figure 8). In contrast, the MMT theory poses that all 



 

 

 

33 

 

memory traces are combined into a multiple-trace representation. In this model, both the 

hippocampus and the neocortex continue to interact with each other and that the hippocampus 

plays a permanent role for the storage and retrieval of the memory. CORT modulate memory 

consolidation of emotionally aroused experiences (McIntyre et al., 2012) and sleep also plays 

an active role in memory consolidation (Straube, 2012). 

 

 

Figure 8: Standard consolidation model. The encoding of perceptual, motor and cognitive information initially 

occurs in the primary and associative cortical areas. The hippocampus integrates external information coming 

from specialized cortical areas and fuses them into a coherent memory trace. Successive reactivation of this 

hippocampal-cortical network leads to progressive strengthening of cortico-cortico connections and over time 

becomes independent of the hippocampus (Frankland and Bontempi, 2005). 

 

Storage and Retrieval 

After the process of consolidation, memories are represented by networks of neurons 

distributed across the neocortex bound together for rapid storage. For retrieval of memory, 

MTL structures are necessary along with the cortical regions (Rugg and Vilberg, 2013). 

During recall of the memory, the representative map in the hippocampus is activated along 

with the other areas in the cortex, which were involved in forming the memory. While MTL 

brain structures are necessary for retrieval of recent episode-based memory associations, over 

time, these associations are expressed and can be recalled independently of the MTL 

structures (Squire and Wixted, 2011).  

During aging, the encoding process seems to be affected, with encoding deficiencies 

predominating over retrieval deficits (Friedman et al., 2007). Patients with AD show deficits 
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in EM from very early stages of the disease. They show performance deficits in encoding, 

storing and retrieval (Pena-Casanova et al., 2012). 

 

2.2.3 Episodic memory is affected in AD 

Episodic memory refers to the conscious recollection of a unique past experience / event in 

terms of “what”, “where” and “when” it happened.  These three components identify a 

particular object or person (memory for what happened), the context or environment in which 

the experience occurred (memory for where it happened) and the time at which the event 

happened (memory for when it happened) (Nyberg et al., 1996, Clayton and Dickinson, 1998, 

Tulving and Markowitsch, 1998). It is the first form of memory, which is affected in 

Alzheimer’s patients (deToledo-Morrell et al., 2007). Recall (free and cued) and 

recognition are considered to provide two different ways to measure episodic memory. 

Recall depends on declarative memory and recognition on declarative and non-declarative 

memory. In a free recall experiment, an individual is given a list of items to study and is 

subsequently asked to recall the items (Arnold and McDermott, 2013), the results of which 

are noted. While in cued recall, the same protocol is followed with the help of cues. With this 

test, one can evaluate hippocampus-dependent memory encoding or consolidation. During a 

recognition experiment, the first phase, called the study phase, a subject is asked to memorize 

a series of items. Later, in the test phase, randomly ordered items, old and new, are presented 

and the individual is scored on his ability to distinguish them. In AD patients, both recall and 

recognition deficits seem to persist, which indicates inability to retrieve information. This 

could also be related to inability to encode target information (Gold and Budson, 2008). 

 

2.2.3.1 Episodic-like object recognition memory in rodents  

It has been challenging to study declarative forms of memory in mice since it is an integrative 

memory for “what”, “where” and “when” component and also it needs to be expressed non-

verbally. Thus, in rodents, the equivalent studies done are hippocampus-dependent spatial 

and contextual memory tests. The most commonly used tasks to study spatial memory in AD 

mouse models are the Morris water maze (MWM), the Barnes Maze also called circular 

platform maze, the continuous and forced-choice spatial alternation task, and the radial arm 

water maze task  (Stewart et al., 2011).  
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 To integrate the component of familiarity of items along with recollection of contextual 

(spatial and/or temporal) information of items, the object recognition test was developed. The 

novel object recognition task measures spontaneous behaviour in rodents as they readily 

approach and explore novel objects (Frick and Gresack, 2003). This widely used task consists 

of a sample trial wherein two identical objects are explored by the mouse, followed by a 

delayed test trial wherein one familiar object presented during the sample test is replaced by a 

novel object (see Figure 9A). Animals with adequate memory spend longer time exploring 

the novel object. The NOR test could be interpreted as the study of the ‘What’ component of 

episodic memory. This task has been widely used for evaluation of memory in AD mouse 

models (Balducci et al., 2010). Two key points confirm that novel object recognition can be 

dependent on hippocampal activity. Firstly, it was noted that hippocampal lesions result in 

impaired object recognition and secondly a 24-hour inter-trial interval between the two 

phases (sample and test) confirms retrieval of long term memory consolidated via 

hippocampal activity (Reed and Squire, 1997). In NOR memory, particularly the dorsal 

hippocampus plays an important role, especially when spatial or contextual information is a 

relevant factor (Goulart et al., 2010). 
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Figure 9: Object recognition tasks. A). Novel object recognition test which consist sample trial where the mouse 

explores for 10 mins two identical objects. After a delay of 24 hours, the mouse is subjected to the 10 min test 

trial, where one familiar object is replaced by a novel object. B). Elaborated episodic-like object recognition 

task, which involves the ‘What’, ‘When’, ‘Where’ components of EM.  This task consists of three 10 min trials 

with a 50-min inter-trial interval. On sample 1, four novel objects are presented in a triangular orientation. On 

sample 2, another 4 objects are presented in another spatial arrangement.  During the test trial, two ‘old familiar’ 

and two ‘recent familiar’ objects are presented as depicted. One amongst the two old familiar object is displaced 

(adapted from (Dere et al., 2005)). 

 

To integrate the other ‘when’ and ‘where’ components of episodic behaviour, the NOR test 

was modified by (Dere et al., 2005). In this context, long-term memory for different objects, 

their spatial location and their order of presentation in an open field would incorporate all the 

components of episodic memory. The protocol included three 10 minute trials of object 

exploration task with a 50 minute inter-trial interval (Figure 9B). In the 1
st
 trial, four novel 

objects were presented in a triangular spatial conformation while in 2
nd

 trial, four different 

objects were presented in another spatial arrangement. During the 3
rd

 trial (test), two ‘old 

familiar’ and two ‘recent familiar’ objects from the previous trials were presented. In this 

test, the mice were able to recognize the previous explored objects, to remember the location 

of the objects which were presented and lastly to discriminate the sequence (old/recent) in 

which the objects were presented. Thus, by changing the parameters to the object recognition 

test, different aspects of memory can be investigated.  

Episodic memory system is supported by the MTL, especially the hippocampus. In AD 

patients, the hippocampus is one of the most severe sites to be affected. Studies have 

indicated evidence of hippocampal atrophy (Figure 4) accompanied by significant loss of 
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synaptic density and dendritic spines leading to memory impairment  (Barnes et al., 2007, 

Scher et al., 2007, Wang et al., 2004).  

 

2.2.4 Hippocampus organization and pathways for memory formation 

The entorhinal cortex serves as a main interface between the hippocampus and neocortex. 

The hippocampus and the entorhinal cortex are connected via pathways which play an 

important role in declarative memory formation. The hippocampus is mainly subdivided into: 

1). The dentate gyrus (DG) which is a tightly packed layer of small granule cells forming a v-

shaped wedge. 2). Cornu Ammonis (CA) which mainly contain densely packed pyramidal 

cells (Hyman and Van Hoesen, 1987), emerge from the DG as: CA4, then CA3, then a very 

narrow transitional zone termed CA2 and then CA1 (refer Figure 10). The CA1 merges with 

the subiculum with projections leading back to the entorhinal cortex completing the circuit.  

The entorhinal cortex contains 5 layers, amongst which Layer II/III contains the cell islands 

consisting of glutamatergic neurons. Layer II projects axons to the hippocampal DG and CA3 

region via the perforant pathway (Stranahan and Mattson, 2010) while Layer III projects 

primarily to the hippocampal CA1. These layers receive inputs from surrounding areas like 

the perirhinal and parahippocampal cortices (as shown in Figure 10) as well as the prefrontal 

cortex. The DG sends projections to the pyramidal cells in the CA3 region through mossy 

fibres. Further, CA3 neurons relay the information to the CA1 neurons via the Schaffer 

collaterals. Lastly, CA1 neurons send back-projections to the deep-layer neurons in the EC 

completing the circuit. 
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Figure 10: Basic anatomy of the hippocampus.The wiring diagram of the hippocampus is presented as a 

trisynaptic loop. The major input is carried by axons of the performant path which convey sensory information 

from neurons in layer II of entorhinal cortex to the dentate gyrus. Perforant path axons make excitatory synaptic 

contact with dendrites of granule cells, which then project through the mossy fibers to the CA3 pyramidal cell 

which, in turn, project to the CA1 pyramidal cells through Scaffer collaterals. The distal apical dendrites of the 

CA1 pyramidal neurons receive a direct input from layer III cells of the entorhinal cortex (Neves G et al., 2012)   

 

2.2.5 Basal synaptic transmission and synaptic plasticity 

A synapse is an entity consisting of the communication point between a pre- and post-

synaptic neurons. It is well established that learning and memory are based on dynamic 

regulation of synaptic connections between neurons. Neurons being highly plastic in their 

connections, organise themselves into groups, handling different type of information in 

response to one’s experience to create new memories. At this point, we can refer to the 

Hebb’s rule, which states that ‘Cells that fire together wire together’ (introduced by Donald 

Hebb in his book ‘The organisation of behaviour’ in 1949). 

Synaptic strength and synaptic plasticity are main molecular events that constitute the 

neurobiological basis of memory formation (Sehgal et al., 2013, Papoutsi et al., 2013). 

Synaptic strength may be defined as the response in amplitude produced in the target neuron 

by the synapses of a connected neuron on initial stimulation. There are mainly two types of 

synapses: electrical and chemical synapses. In the fast acting electrical synapses, 

communication between the neurons occurs via direct ion exchange. In contrast, chemical 

synapses, which represent the majority of synapses in the brain, depend on the release of 

neurotransmitters (NTs) by the pre-synaptic neuron, which will influence NT receptors on the 
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post-synaptic neuron to open ion permeable channels. Basal synaptic strength is evaluated 

when the pre-synapse is stimulated with an unique stimulation pulse, which promotes a one-

time release of NTs via generation of an AP. Synaptic plasticity refers to any up-regulation or 

down-regulation of this basal synaptic strength, involving mechanisms such as modulation of 

neurotransmitter release and changes in number of neurotransmitter receptors (Cortes-

Mendoza et al., 2013). 

There are mainly two forms of synaptic plasticity, which are believed to be implicated in 

memory formation: Long term potentiation (LTP) and long term depression (LTD). LTP is 

induced by a high frequency synaptic stimulation, which results in long lasting increase in 

synaptic strength and is the fundamental process in memory coding. It is most widely studied 

in the hippocampus and also in amygdala and cortex-dependent learning areas in the brain 

(Neves et al., 2008). On the contrary, long term depression (LTD) reduces the synaptic 

strength between neurons in several areas of the brain including the hippocampus. 

 

 

Figure 11: Simplified representative diagram of excitatory glutamatergic chemical synapse.Upstream activation 

(AP generation) potentiates the pre-synaptic neuron (upper brown arrow). This initiates the glutamate to be 

released from the pre-synapse by the vesicles. Glutamate activates the AMPAR present on the post synaptic 

neuron to allow sodium influx. This depolarizes the post-synaptic neuron and activates the NMDAR to allow 

influx of Ca
2+

 and Na
+
 thus transmitting the electric message downstream (brown arrow below). Kainate and 

metabotropic receptors, which also contribute to glutamatergic synaptic transmission, are not presented here for 

simplicity.  
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2.2.5.1 Glutamergic synapse 

Glutamate is the major excitatory neurotransmitter in the nervous system and is particularly 

predominant in the hippocampus. It is involved in fast transmission and found as a part of the 

tripartite synapse which involves communication between pre-and post-synaptic neurons 

along with glial cells. The pre-synaptic release of glutamate and the activation of post 

synaptic glutamate receptors are essential mechanisms involved in LTP at glutamatergic 

synapses (Figure 11). Upon vesicular release, glutamate can act on ionotropic glutamate 

receptors, (AMPA, NMDA and kainate receptors), which are ligand-gated ion channels and 

allow direct ion influx when activated (Dingledine et al., 1999). AMPA stands for (-amino-

3-hydroxy-5-methyl-4-isoxazole-propionate) and NMDA for (N-methyl-D-aspartate). 

Metabotrophic glutamate receptors (mGluR) can also be activated by glutamate which are G-

protein-coupled receptors and modulate secondary messenger pathways. In this chapter, 

focus will be given to AMPA receptors (AMPAR) and NMDA receptors (NMDAR). 

2.2.5.2 Post synaptic density 

Post synaptic density (PSD) refers to the electron-dense region in the postsynaptic 

membranes of excitatory synapses which mainly contain proteins responsible for synaptic 

activity. The biochemical methodology of PSD purification was established in 1970s. In 

brief, initially the synaptosomes were isolated, followed by detergent treatment (Triton X) for 

purification of PSD fractions (Carlin et al., 1980). Due to their resistance to detergents they 

are isolated as detergent –insoluble fractions. From these biochemical PSD fractions, an array 

of structural membrane proteins (e.g. PSD-95 as a scaffolding protein), cytoskeletal proteins 

(e.g. actin and tubulin), receptors (NMDAR, AMPAR), ion channels, signalling molecules 

like calcium/calmodulin dependent protein kinase II (CAMKII) and other enzymes were 

identified (Matus et al., 1982, Chen et al., 2000, Valtschanoff and Weinberg, 2001). This 

receptor/enzymes system plays a major role in synaptic activity and PSDs are thus identified 

as one of the main machineries for synaptic transmission and plasticity.  

 

2.2.5.3 AMPAR and NMDAR 

Within the PSD, one can find the AMPARs, which performs most of the fast-synaptic 

transmission in the brain. They are composed of GluA1-4 subunits (also previously called 
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GluR), which combine to form a heterotetramer (composed of 4 subunits, of more than one 

type). These tetramers can be formed of different subunits conferring different activity and 

channel permeability properties (Kessels and Malinow, 2009). When activated by glutamate, 

AMPAR allow Na
+
 influx. 

NMDARs can be formed from various combinations of GluN1 (previously called NR1), 

GluN2(A-D) (previously called NR2(A-D)), and GluN3(A/B) (previously called NR3(A/B)) 

subunits. The most common form of NMDAR on hippocampal excitatory neurons is the 

heterotetramic combination or GluN1 with GluN2 units (Paoletti and Neyton, 2007). 

Activation of these receptors requires the binding of glutamate to GluN2 and one of the co-

agonists glycine or d-Serine to GluN1. NMDAR activation opens a non-selective ion channel 

through which Ca
2+

 and Na
+
 ions can enter the post synaptic neuron. NMDAR activation 

requires depolarization of the surrounding membrane, which removes Mg
2+

 ions from its 

pore, thus allowing for ion flux through its channel.  This property makes NMDARs ideal 

coincidence detectors, coupling pre-synaptic and post-synaptic activation, and these receptors 

are thus crucial for information flow and memory processing (Nowak et al., 1984).  

Both AMPAR and NMDAR are involved in synaptic plasticity processes of LTP and LTD. 

 

2.2.5.4 Different forms of synaptic plasticity 

2.2.5.4.1 LTP 

LTP was first discovered by (Bliss and Lomo, 1973) and since then has consolidated its 

status as the pre-eminent synaptic model for investigating the molecular basis of memory 

(Figure 12). 

Under rest or low levels of input activity, glutamate neurotransmitter, which is released from 

the presynaptic cell, binds to both AMPAR and NMDAR. At this resting membrane 

potential, the NMDAR is blocked by Mg
2+

, while AMPAR open allowing Na
+
 ions to enter, 

hence only slightly depolarizing the cell. Only when the post-synaptic cell is sufficiently 

depolarized, e.g. by increased stimulation of the presynaptic cell, is the Mg
2+ 

expelled out of 

the NMDAR. Its activation initiates an influx of sodium and calcium ions inside the post 

synaptic neuron. It is this calcium influx, which is thought to initiate LTP (Lynch et al., 

1983). The two-major calcium-responsive signalling pathways activated are CAMKII-

dependent signalling and cyclic adenosine monophosphate (cAMP)-dependent signalling 
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pathway. These molecules, locally phosphorylate non-synaptic AMPAR, which then 

integrate into the post-synaptic membrane, increase Na
+
 influx and further potentiate the 

neuron (Lisman et al., 2012). The other effect of the calcium responsive signalling pathways 

is to alter gene expression in the cell nucleus via transcriptional factors (Alberini et al., 1995). 

Calmodulin activates cyclicAMP response element binding protein (CREB) in the nucleus 

via MAPK-ERK (mitogen-activated protein kinases/ extracellular signal regulated kinase) 

and CAMK kinase pathways (Lisman et al., 2012). 

 CREB subsequently activates immediate early genes, such as c-fos, c-jun, zif268 (a zinc 

finger protein), BDNF (brain derived neurotrophic factor). Activation of these early genes is 

critical for inducing long term changes in plasticity and memory formation (Cortes-Mendoza 

et al., 2013). 

 

Figure 12: A simplified scheme showing the two forms of synaptic plasticity, LTP and LTD. A). Basic 

mechanisms involved in induction of LTP following high frequency stimulation. Activation of AMPARs by 

glutamate depolarizes the postsynaptic neuron which removes the Mg
2+

 block on the NMDAR allowing 

subsequent activation and influx of Ca
2+

. Ca
2+

 along with activation of signalling pathways downstream of the 

receptor, activate a kinases such as CamKII and MAPK/ERK. This leads to rapid incorporation of AMPARs 

into the PSD. Also, these pathways ultimately transmit the signals to the nucleus, where changes in gene 

transcription and translation occur to enhance synaptic strength. Insertion of newly formed AMPAR at synaptic 

sites and formation of new spines occur post LTP. B). LTD is triggered by low frequency stimulation and 

various mechanisms are implicated in this induction. Most notabely, LTD induction activates NMDAR 

receptors, which induce influx of Ca
2+

 activating both kinases and phosphatases leading to AMPAR 

endocytosis. Adapted from  (Sandi, 2011).   
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2.2.5.4.2 LTD 

LTD is the converse process to LTP and results in long lasting decrease in synaptic strength 

(Figure 12). Like LTP, LTD is phenomenon important for memory formation as overall it 

counterbalances the LTP process. An extended low frequency stimulation induces activation 

of NMDAR, possibly via a metabotropic action of these receptors (Nabavi et al., 2013), and 

calcium-dependent molecular mechanisms are triggered by low concentrations of post 

synaptic calcium (Nishiyama et al., 2000). Calcium responsive phosphatases, such as 

calcineurin and protein phosphatase 1 (PP1), and kinases, like Gsk3 (Peineau et al., 2007), 

are implicated as effector molecules in the mechanisms of LTD. The main outcome of this 

LTD induction is internalization of AMPAR, mainly through endocytosis, hence leading to a 

depression of the synaptic strength. Moreover, the activation of G-protein–coupled 

metabotropic glutamate receptor (mGluR) can also induce LTD via reduction of AMPAR 

function (Palmer et al., 1997, Bellone et al., 2008).  

 Using NMDAR antagonists, it was concretely shown that NMDAR are necessary for 

induction of LTP and LTD, while they do not contribute much to baseline transmission 

(Morris et al., 1986). Comparatively, the trafficking of AMPAR through insertion and 

removal within the PSD is involved in post-induction response maintenance. AMPAR also 

move laterally within the plasma membrane during synaptic plasticity. In the context of AD, 

it has been extensively studied that these synaptic processes are impaired by A.  

 

2.2.6 Modulatory action of A on synapse function and plasticity  

 

Figure 13: Bell shaped representation of the relationship between A level and synaptic activity. Intermediate 

levels of A enhance synaptic activity presynaptically, whereas abnormally high or low levels of A impair 

synaptic activity by inducing postsynaptic depression or reducing presynaptic efficacy, respectively (Palop and 

Mucke, 2010),   
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As shown in the above pictorial representation (Figure 13) by (Palop and Mucke, 2010), there 

is evidence that synaptic activity is differentially modulated depending on the APP/A levels. 

Intermediate levels of A potentiate presynaptic terminals, while low levels reduce 

presynaptic efficacy and high levels depress postsynaptic transmission. Abnormally low A 

level in mice deficient in APP, PS1 or BACE1 is associated with synaptic transmission 

deficits (Seabrook et al., 1999, Saura et al., 2004). Due to the extensive research currently 

carried on the pathological effects of high concentration of A, we tend to forget that the 

proteolytic pathway of production of amyloid- is a physiological process. And only when 

net A levels become excessive can this process be regarded as pathological condition. 

2.2.6.1 Physiological conditions 

Normal levels (picomolar range) of A peptide via nicotinic acetylcholine receptors 

(nAChRs) in CA1 (Puzzo et al., 2008) positively increase presynaptic release at hippocampal 

synapses and facilitate LTP (see Figure 14, Figure 15). Parallel evidence indicates that A 

may have a role in controlling synaptic activity. Kamenetz et al. 2003 proved that evoked 

activity of hippocampal neurons in brain slices increased the A secretion at the cell 

membrane. In physiological conditions, this production of A seems to work as a negative 

feedback mechanism to controls synaptic activity. Without such a tight control, synaptic 

activity could become excessive leading to excitotoxicity. There are two evidences 

confirming this function: -secretase inhibition would lead to increased excitatory post 

synaptic current (EPSC) frequency (Kamenetz et al., 2003) and kainate-induced seizures are 

potentiated in APP knockout mice (Steinbach et al., 1998). Together these studies suggest 

that APP processing and presence of A are closely associated with synaptic activity. This 

may serve as a physiological control for guarding against excessive activity and preventing 

increased glutamate release. 

 



 

 

 

45 

 

 

Figure 14: Differential dose-dependent effects of A on LTP in hippocampus. Concentration response curve for 

the effect of A42 on CA1-LTP indicating that the peptide has an enhancing effect with a peak around 200pM, 

whereas it has an opposite detrimental effect above 20nM, The dotted line and the shaded area corresponds to 

the amount of potentiation and the standard error range in vehicle treated slices (Puzzo et al., 2008).  

 

2.2.6.2 Pathological conditions 

Several studies point to abnormal synapse function in presence of elevated levels of A, but a 

consensus has yet to be reached on which mechanisms promote these A-mediated synaptic 

alterations (Figure 15). It is well known that elevated levels of A (in nanomolar 

concentration) influences synaptic plasticity processes i.e. it impairs LTP (Walsh et al., 2002, 

Lambert et al., 1998, Townsend et al., 2006, Shankar et al., 2008) and enhances LTD (Hsieh 

et al., 2006, Shankar et al., 2008, Li et al., 2009). One favoured hypothesis is that 

pathologically elevated A may block neuronal glutamate uptake at the synapses, leading to 

increased glutamate levels at the synaptic cleft (Li et al., 2009). This increase in glutamate 

would activate synaptic NMDARs (Snyder et al., 2005) resulting in desensitization of these 

receptors and further internalization of AMPAR and NMDAR leading towards LTD (Hsieh 

et al., 2006, Almeida et al., 2005). This could also further activate extra- or peri-synaptic 

NMDARs, mGluRs, 7-nAChRs due to increased glutamate spill over. This results in several 

downstream effects activating LTD-related pathways like on calcineurin-STEP-cofilin, 

p38MAPK, and GSK-3 signalling pathway, etc eventually leading to postsynaptic 

depression and dendritic spine loss (Shankar et al., 2007, Shankar et al., 2008, Wang et al., 

2004, Li et al., 2009). A-induced LTD effects could be related to A-induced LTP deficits, 

as blocking of LTD related signalling cascades like mGluR or p38MAPK, prevents A-
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dependent LTP impairment (Lambert et al., 1998, Walsh et al., 2002, Townsend et al., 2006, 

Shankar et al., 2008).   

 

 

Figure 15: Concentration dependent effects of A on synaptic function. At normal physiological levels 

(picomolar levels), A peptides positively regulate presynaptic release probability and facilitate learning and 

LTP. At concentrations lower than normal A shows deficits in presynaptic function. While at high 

concentrations like those seen during pathology there is a decrease in presynaptic release and eventually leads to 

impairment in LTP and facilitates LTD (Wang et al., 2012). 

 

Evidence of A- tau at the synapse: 

There has been recent evidence of an interaction between oligomers of A (oA) and tau at 

the synapse. Tau protein is predominantly present in the axons as they stabilize the 

microtubules. Recently, it is known that in presence of oA, tau translocates to the 

somatodendritic compartments in association with loss of spines and microtubule breakdown 

(Zempel et al., 2010). The presence of tau at the synapses has both physiological and 

pathological significance (Pooler et al., 2014). Recent work using cortical neurons show that 

synaptic activation translocate tau to excitatory synapse, specifically dendritic spines and 

post-synaptic compartment (Frandemiche et al., 2014). They also demonstrated that oA 

induced tau localization to the synapse, and phosphorylation of S404 residue on the tau 

protein is required. It is thus likely that Tau contributes to the A-mediated synapse 

alterations. 
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Caveat using oligomers of A: 

It has been shown that oA of synthetic origin are similar in toxicity to the natural oligomers, 

thus been considered as a model to study the assembly and the toxicity of A peptide and of 

its oligomeric form (Snyder et al., 1994). One main caveat about the oA studies is their 

tendency to aggregate hence occurring in different sizes. At present, it is uncertain as to 

which class amongst the aggregates is important for pathogenesis. Some groups suggest that 

dimers through tetramers are most critical (Shankar et al., 2007, Shankar et al., 2008, 

Townsend et al., 2006), while others suggest higher order oligomers are most important like 

12mers (Lesne et al., 2006). It was demonstrated that monomers and A fibrils do not affect 

LTP (Walsh et al., 2002).  Along with size, there are other factors like pH, temperature, ionic 

strength, which can change the conformation and aggregation size of these oligomers hence 

making it difficult to estimate the good concentration of the oA used in the studies and to 

assign synapse-modulating properties to a specific A species (Stine et al., 2003). 

 

2.2.7 Modulatory action of A on memory  

A levels modulate memory processes in a way similar to how they regulate synaptic 

activity. At intermediate levels, they have a positive effect on memory formation, while as 

the concentration of A increases it can cause memory impairment. There have been multiple 

studies using AD transgenic mice (like Tg2576 mice and other APP mouse models) to study 

memory impairment in the context of abnormal APP processing and elevated A levels. 

Results from these mouse studies demonstrate that a chronic increase of A levels, but also 

possibly an increase of other APP fragments, correlate with spatial and contextual memory 

impairment (Hsiao et al., 1996, Higgins et al., 1994, Sandhu et al., 1991). These results 

indicate the role of APP/ APP processing/ A accumulation on memory processes. On the 

other hand, non-transgenic models of AD (mice/rats) have been used to study acute effect of 

in vivo application of A peptides or oligomers on memory processes. In vivo local injections 

have been mostly carried out using synthetic A25-35 and A1-42 in the intracerebral ventricle 

(icv) or intra-hippocampus. Using this acute model of AD, results have shown that, at 

intermediate concentrations (picomolar), A can enhance learning and memory retention 

(Morley et al., 2010). This has been confirmed by (Puzzo et al., 2008) where infusion of pM 
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concentration of A1-42 improved reference and contextual memory. However, a single icv 

injection of nanomolar concentration of A1-42 impairs memory consolidation within 24 

hours, suggesting that A can also rapidly interfere with synaptic activity necessary for 

stabilization of new memories (Balducci et al., 2010). Whereas, when injected after memory 

consolidation, no such effects were seen indicating that A oligomers affect memory 

consolidation rather than retrieval (Balducci and Forloni, 2014). These results hence confirm 

the bell-shaped relationship between extracellular A and its effect on memory processes. 

 

2.2.8 Putative mechanisms of A actions at synapses 

Elevated extracellular A levels particularly in the form of soluble oligomers can alter 

synaptic transmission and memory processing. However, the mechanism of action of these 

oligomers are currently nuclear. Diverse lines of evidence show that extracellular oligomers 

can bind to pre-and post-synaptic elements on cultured neurons and in the cortex of AD 

patients. Cellular and animal studies have attempted to identify the molecular targets of the 

oligomers and have yielded an array of candidates. A has been reported to interact 

functionally and also sometimes structurally with several distinct types of plasma membrane 

–anchored receptors, including 7 nicotinic acetylcholine receptors (Snyder et al., 2005), 

NMDA and AMPA receptors (Lacor et al., 2007), insulin receptors, RAGE (the receptor for 

advanced glycation end products) (Deane et al., 2003), the prion protein PrPc (Um and 

Strittmatter, 2013), and the Ephrin-type B2 receptor (EphB2) (Lacor et al., 2007). 

The extracellular nature of A assumes that the toxic effects are mediated via membrane-

bound substrate and/or by internalization of A by affected neurons. Examples of such 

plasma membrane substrates are the metabotrophic glutamate receptors (mGluR) and PrPc 

which interact with A at the synapse and these interactions are known to catalyse synaptic 

dysfunction and eventually cell death. Reports of capability of A to make holes in the lipid 

bilayers of membranes could also serve as sites for aberrant entry of Ca
2+

 into cells (Capone 

et al., 2009). 

It is important to reinforce here that when studying the different receptor /transporters, which 

are putative substrates for A, consideration must be given to the form of A used, its 

concentration and its relevance to physiology. Physiological concentrations of A peptides in 
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human brain, and cerebrospinal fluid are in low nanomolar range or below (Schmidt et al., 

2005, Giedraitis et al., 2007). A concentrations in the most pathobiologically relevant sites 

of the AD brain, i.e. within and around the synaptic clefts are unknown and might be higher. 

Also, the binding capacity of monomers to certain receptors will not be the same as binding 

of oligomers. Hence since these questions are unanswered it is currently hard to conclude on 

the molecular mediators of A actions.   

 

2.2.9 Mouse models of AD 

2.2.9.1 Different mouse models  

There are several mouse models of AD, both transgenic (Tg) and non-transgenic, which are 

currently being used to study potential molecular mechanisms related to dysfunctional 

synaptic plasticity and memory impairment. The advantage of using AD transgenic mice is 

that most develop A-related neuropathology in the hippocampus and the cortex, as seen in 

AD patients and typical behaviour phenotypes reminiscent of AD patients, e.g. alterations in 

memory processes are also detectable in these Tg mice. The identification of genetic forms of 

familial AD, involving mutations in APP, has enabled the creation of transgenic mouse 

models of AD. These genetically modified mice produce human APP well above the 

physiological level. They often exhibit high levels of soluble and insoluble forms of A 

peptide, neuropathological features such as neuritic plaques, glial activation, neuritic 

dystrophy but no paired helical filaments (PHF) or neuronal loss. They are generally 

considered to represent the early phase of the disease (Ashe and Zahs, 2010). Another widely 

used type of mouse model, the 3xTg mouse developed by (Oddo et al., 2003), is a triple 

transgenic mouse carrying mutations in APP, PS1 and Tau gene. The development of these 

transgenic mice is mostly based on the genetic form of AD (1-5% of AD patients), as these 

mouse models mainly express mutated forms of human APP and/or PS1 found in these 

genetic forms. As such, they do not concretely mimic AD in its complexity, which is mainly 

represented by sporadic forms of the disease. Well characterized mouse models mimicking 

sporadic AD do not yet exist. Additionally, transgenic models over-expressing APP do not 

only show elevation of A, but also elevation of full-length APP and other fragments of APP 

processing that might interfere with the phenotype observed and provide misleading results. 

Alternatively, the increased use of non-transgenic mice (eg. in vivo injections of peptides) 
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allows to specifically address the mechanisms of action of specific forms of A and help to 

find a new therapeutic approaches (Benilova et al., 2012). 

 

2.2.9.2 Tg2576  

During the thesis, we have used the Tg2576 transgenic mouse developed by (Hsiao et al., 

1996), which over-expresses the Swedish double mutant form of APP695 (K670N-M671L) 

under the hamster PrP promoter, on a background of C57Bl/6 and SJL hybrid mouse strain. 

This is a good APP-derived mouse model which mimic A accumulation in AD patients with 

a good correlation between A deposition, age and cognitive deficits (Stewart et al., 2011).  

 

2.2.9.2.1 A accumulation 

The Tg2576 mice expresses the mutant hAPP at around 5.5 times the level of endogenous 

APP. The A (40 and 42) brain levels increase from 2-4 months of age while plaques 

appear later at 11-12 months of age. It is a good mouse model to study A-related early onset 

of AD as soluble A oligomers are high at 3 months in the Tg
+
 mice as compared to the 

controls (Mustafiz et al., 2011). Other authors describe the mice by showing A42 and A40 

elevation levels at 5 months of age, insoluble A at 7 months and amyloid plaques at 8-9 

months onwards (Kawarabayashi et al., 2004). By 11-13 months, there are plaques in the 

frontal, temporal, entorhinal cortices, hippocampus, pre-subiculum and cerebellum of the 

brain. This model displays modest hyper phosphorylation of Tau but it does not develop 

neurofibrillary tangles. It also does not display neuronal loss even at an advanced age. One 

draw back of this model is that the position of the transgene insertion has never been mapped 

and its influence on nearby genes never studied. It is therefore not clear how this transgene 

insertion might influence mouse behaviour and metabolic processes. Also, survival of this 

model is highly influenced by mouse genetic background (Carlson et al., 1997). Indeed, these 

Tg2576 mice are generated on a hybrid background of C57Bl6 and SJL (Hsiao et al., 1996).  

Carlson et al., 1997 reported that when these Tg
+
 mice are bred to C57Bl/6 for multiple 

generations, the proportion of mice dying prematurely increased and proportion of transgene 

positive mice were significantly reduced. Hence, for generating these mice the mixed 
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background of C57Bl6/SJL is preferred, but the reasons for this background sensitivity 

remain unclear.  

 

2.2.9.2.2 Memory deficits  

 (D'Amelio et al., 2011) characterized the onset of memory loss as early as 3 months of age in 

the Tg2576 mice by showing hippocampus-dependent memory deficits using the contextual 

fear conditioning task. This early memory deficit is interesting, as at this age there are high 

levels of soluble form of A oligomers and complete absence of A plaques. As the 

accumulation of A progressed further into pathology, ability to perform other tasks related 

to hippocampus-dependent spatial and contextual memories were affected (Hsiao et al., 1996, 

Arendash et al., 2001, King et al., 1999). The advantage of Tg2576 is their well-known 

characterization and their extensive usage in diverse behavioural tasks.  

 

2.2.9.3  A local injections 

To overcome the short comings which arise from the transgenic AD mouse model, and to 

study A or Tau effects more specifically, the acute in vivo local infusion model was set up. 

These non-Tg mouse models of AD are obtained by injecting A or tau directly into the brain 

via intra-cerebroventricular (icv) or intra-hippocampal injection (Puzzo et al., 2014, Balducci 

and Forloni, 2014). In the context of A, this model of AD has been advantageous to study 

how the acute A injection impairs specific signalling pathways leading to synaptic and 

memory dysfunctions. In addition, the different oligomeric forms of A can be studied since 

they might exert a different role in synaptic plasticity and memory impairment. The 

disadvantage of using this acute model is non-reproducibility of gradual rise of A over the 

years as in AD patients.  

Both acute A infusion models and transgenic APP models have limitations as they resemble 

some but not all aspects of human AD. When taking into consideration, these two types of 

approaches are, however, still very usefully to identify cellular and molecular processes that 

might be important for AD pathology. Using these tools in the context of this thesis, we have 

addressed the relationship between AD and stress, which has been shown to be a significant 

risk factor for AD (Wilson et al., 2003, Catania et al., 2009).  
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2.3  Stress axis 

2.3.1 Stress  

2.3.1.1 Definition 

It is evident by epidemiological and clinical studies that there is a very strong influence of 

stress in several neurological diseases (de Kloet et al., 2005). Stress can be understood as an 

aversive stimuli that is endowed with the short and long lasting consequence on the 

autonomic, neuroendocrine and /or behaviour profile of the subject. When an organism is 

confronted with a situation that is perceived as a threat, a number of events occur that prepare 

the organism for a response that is typically considered as “fight-or-flight”. These include 

increased heart rate, increased respiration and vigilance. These efforts are energy consuming 

but serve one important function, that is to maintain homeostasis and survival of the organism 

in a constantly changing environment. We need to consider that all stress consequences are 

not of the negative type and that stress can have positive effects for example on improving 

memory, etc. 

 

2.3.1.2 Acute and Chronic stress 

When an organism is exposed to a stressful situation, the brain areas involved in perception 

gathers this information and transits it to the hypothalamus. From there leads two systems, a 

rapidly acting sympatho-adrenomedullar system and the slower hypothalamo-pituitary-

adrenal (HPA) system  (de Kloet et al., 2005). As a result of this, the adrenals produce 

noradrenaline and glucocorticoids (GCs)/corticosteroids (CORT) (corticosterone in rodents, 

and cortisol in humans). These two hormones have peripheral effects preparing the body to 

have sufficient energy to face the challenge. Acute stress is normally an adaptive response of 

the organism to cope with the fluctuations of the environment and hence is essential for 

survival. By contrast, chronic stress is deleterious and leads to various diseases in vulnerable 

individuals. Its adverse effects on the brain and body result from dysregulation of the stress 

axis leading to elevated levels of CORT. 
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2.3.2 Hypothalamus-Pituitary-Adrenal (HPA) axis 

The HPA axis activation occurs in response to circadian signalling pathways (Schibler and 

Sassone-Corsi, 2002) and in presence of a stressor, hence taking the name ‘stress axis’. HPA 

axis is mainly under the excitatory control of the amygdala and inhibitory control of the 

hippocampus. Once the hypothalamus receives the signal of the stimulus, the parvocellular 

neurons within the paraventricular nucleus (PVN) of the hypothalamus release 

corticotrophin-releasing hormone / factor (CRH/CRF) and vasopressin (AVP) into the portal 

vessels. Through these vessels, CRH and vasopressin reach the anterior pituitary. This signal 

further produces adrenocorticotropic hormone (ACTH) which regulates the adrenal cortex to 

release CORT (Figure 16).  

 

 

Figure 16: The HPA axis is under the excitatory control of the amygdala and the inhibitory control of the 

hippocampus.In the hypothalamus, the paraventricular nucleus releases CRF, which is transported to the anterior 

pituitary where it causes the release of ACTH into the blood stream. ACTH stimulates the adrenal cortex to 

synthesize and release glucocorticoids (cortisol (humans) or corticosterone (rodents)). CORT feedback at the 

level of the hippocampus, hypothalamus and pituitary to dampen the excess activation of the HPA axis (Hyman 

et al., 2009). 
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2.3.2.1 CORT release  

There is a rhythmic pattern to the release of CORT. CORT release shows an endogenous 

circadian variation, which is carried out by brief hourly (ultradian) pulses (Lightman and 

Conway-Campbell, 2010) as shown in Figure 17. Pulse amplitudes steeply rise some hours 

before awakening and then slowly diminish again. Recent evidence shows that this pulsatory 

action is necessary for optimal GR transcriptional activity (Lightman and Conway-Campbell, 

2010) to maintain essential body functions in preparation of the active phase. After the 

exposure of the stressful stimulus, CORT levels slowly increase and then normalize after 2 

hours as a result of the negative feedback mechanism at the pituitary and hypothalamus 

(Ulrich-Lai and Herman, 2009).  

 

 

Figure 17: Typical superimposed ultradia (fine line) and circadian (thick line) circulating corticosterone plasma 

level in mice.  MR are constantly activated due to their high affinity in contrary to GR which are activated only 

at secreation peaks (Lightman and Conway-Campbell, 2010). 

 

CORT circulates in the blood in three main forms: protein-bound, “free” CORT or as CORT 

conjugates. “Free” CORT accounts to 5% of the total CORT and is the physiologically active 

form, which can directly target tissues. While the 95% of CORT is protein bound and there 

are two known CORT-binding factors in plasma. These are the high-affinity, low capacity 

2 globulins called transcortin or cortisol binding globulin (CBG) and the low-affinity, high 

capacity protein albumin (Funder, 1990).  

CORT plays a multifunctional role and they regulate a range of physiological systems (see 

Figure 18). It plays a very important role in embryonic lung development and this is evident 

in mice lacking CORT receptors as they die at birth due to lung dysformation (Cole et al., 
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1995). Along with maintaining homeostasis, CORT play major roles in immunological 

system, reproductive system, respiratory system, cardiovascular system, diabetes and many 

more vital systems showing how important CORT is to our body.  

 

 

Figure 18: The major physiological functions of cortisol in the human body.  CNS, central nervous system.     

(Adapted from (Cole, 2006)). 

 

2.3.2.2 Effect of CORT on thymus 

The thymus is the key organ in the immune system, which is responsible for maturation of T 

cells. Elevation of CORT due to chronic stress cause profound atrophy of the thymus 

(Scollay and Shortman, 1983).  T cells especially the immature thymocytes (CD4
+
/CD8

+
) are 

particularly sensitive to apoptosis induced by CORT. CORT plays a significant role in 

development, differentiation, homeostasis and function of the T cell (Sapolsky et al., 2000).  

 

2.3.2.3 ACTH release and its effect on adrenal glands 

The primary positive regulator of CORT synthesis and secretion is the ACTH which is 

released from the anterior pituitary gland. At the adrenal, chronic stress causes cellular 
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hypertrophy and hyperplasia in the zona fasiculata of the adrenal cortex, which causes 

elevated responsiveness to ACTH (Ulrich-Lai et al., 2006). ACTH further stimulates 

adrenocortical cells to synthesize CORT by binding to cell surface of ACTH receptor. cAMP 

is activated which increases the activity of intracellular biosynthetic enzymes which increase 

the formation of steroid hormones (Stewart, 2003). The release of ACTH from the pituitary is 

controlled by CRH produced and secreted by the hypothalamus. 

 

2.3.2.4 Negative feedback control of CORT 

To maintain the homeostasis of the body the HPA axis is under tight regulation by circulating 

CORT. This can be carried out at the level of the hypothalamus (Evanson et al., 2010) and 

pituitary (Cole et al., 2000) as well as upper limbic structures such as hippocampus (Sapolsky 

et al., 1984), paraventricular thalamus (PVT) (Jaferi et al., 2003) and prefrontal cortex (Hill et 

al., 2011).  

 

Figure 19: Time domains of CORT feedback.  Fast CORT feedback occurs within seconds to minutes, and 

likely involves the membrane effects of CORT at the PVN. Delayed feedback controls return the CORT back to 

baseline levels involves the CORT feedback signals at multiple brain regions, including the hippocampus, 

prefrontal cortex and the NTS (nucleus of solitary tract). It is not clear whether delayed feedback mechanism is 

genomic, non-genomic or a combination of both (Herman JP., 2013)  

 

There are two mechanisms of CORT feedback (Figure 19). The first is the fast feedback 

which is most certainly non-genomic and is mediated by inhibitory neurons in part by the 

direct feedback onto the PVN of the hypothalamus and the pituitary (Evanson et al., 2010). 

The second is the delayed feedback which eventually shuts off the HPA axis and returns the 
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system back to baseline. This is known to be mediated via the limbic circuitry including the 

hippocampus (Jacobson and Sapolsky, 1991). It is not clear whether the delayed feedback 

mechanism occurs via genomic, non-genomic action or a combination of both. The signalling 

from the various brain limbic regions are both excitatory and inhibitory. Lesioning of the 

hippocampus or hippocampectomy resulted in CORT production and /or ACTH suggesting 

that this region majorly provides inhibitory input to the PVN (Fendler et al., 1961). The 

outputs coming from the hippocampus to the PVN of the hypothalamus are through indirect 

innervations. In a stressful situation, the hippocampus sends an excitatory glutamatergic 

output to the intermediate synapse of the bed nucleus of stria terminallis (BST). Here, the 

inhibitory GABAergic neurons are activated which inhibit the PVN neurons, which in turn 

shut down the HPA axis response mediated by stress (Herman and Seroogy, 2006). The 

medial prefrontal cortex has also shown to have inhibitory action on the PVN (Diorio et al., 

1993) while signalling from the amygdala activates the HPA axis (Redgate and Fahringer, 

1973).  

In the following section, the two CORT receptors will be introduced and their role in HPA 

axis regulation with respect to the hippocampus and their contribution to synaptic plasticity 

and memory will be discussed.  

 

2.3.3 GRs and MRs 

There are two CORT receptors which have been distinguished in the brain: the 

mineralocorticoid receptor (MR) formerly called Type I receptors and the glucocorticoid 

receptor (GR) Type II receptors  (Reul and de Kloet, 1985). Both these receptors belong to 

family of nuclear receptors, which bind to DNA response elements, thus modulating the 

action of responsive genes (Lu et al, 2009). MRs have high affinity towards the endogenous 

ligand CORT, such that low CORT levels, like between ultradian pulses of hormone (Young 

et al., 2004), are sufficient to bind to and activate MRs (see Figure 17). MRs also bind to 

mineralocorticoids such as adrenal steroid aldosterone with high affinity. MRs are enriched in 

limited number of limbic regions, particularly high expression in hippocampal subfields and 

central amygdala (de Kloet et al., 2005). By contrast, GRs are more ubiquitous than MRs and 

are expressed in the hypothalamus, hippocampus and amygdala, with highest expression in 

the hippocampus (Diorio et al., 1993). They display low affinity for CORT. These receptors 
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are only partially occupied under rest but become gradually activated when hormone levels 

rise, e.g. during an ultradian pulse or after stress (see Figure 17). 

 

2.3.3.1 Gene sequence and structure of the receptors:  

GR is translated from the NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) gene 

located on chromosome 5 and comprises of 9 exons and 11 introns. The protein is encoded 

from the exon 2 to 9, as exon 1 and 9 undergo alternative splicing. There are 2 isoforms of 

GR: the most prevalent GR and GR. GR is majorly expressed and shuttles between the 

cytoplasm and the nucleus depending upon its activation by the ligand, while GR is 

permanently situated in the nucleus and acts as a gene regulator. There are other isoforms, 

which are generated via alternative translation which bind with same affinity to the ligand, 

but have different transcriptional activity. MR are nuclear hormone receptors of the NR3C2 

gene which contain 10 exons with the first 2 exons remaining untranslated (Zennaro et al., 

1995). 

GR and MR are classified members under the nuclear receptors superfamily and steroid 

receptor subfamily. Hence they share a common domain structure (NTD-DBD-LBD) with 

other steroid hormones like progesterone receptor (PR), androgen receptor (AR), estrogen 

receptor (ER) (see Figure 20). Both GR and MR are characterized by a central DNA–binding 

domain (DBD), which functions to target the receptor to specific DNA sequences known as 

glucocorticoid response elements (GREs). As both the receptors have almost identical DBDs, 

they bind to identical GREs. The C-terminal end has a ligand-binding domain (LBD) which 

provides essential property of binding hormone, while the N-terminal part of the receptor, is 

involved in trans-activation of target genes after the receptor complex is bound to DNA.  
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Figure 20: Structure of human GR gene and protein. A). The hGR gene is loacted on chromosome 5 (region 

5q31p) and contains 9 exons of which exon 2 to 8 are translated for GR protein. Exon1 is composed of nine 

alternatives (1A-1H) and remains untranslated as ATG start codon lies with exon 2. B). Strucural comparison of 

GR with the other members of the steroid receptor subfamily from the nucleur recptor superfamily. NTD: N-

terminal domian; DBD, DNA-binding domain; LBD, ligand-binding domain; PR, progesterone receptor; AR, 

androgen receptor; ER, estrogen alpha; and ER, estrogen beta. Percentage identity at the amino acid level is 

related to GR (set at 100%). (Adapted from  (Joëls and Karst, 2012)).  

 

2.3.3.2 Functional role of the receptors: 

There are two mode of action of these receptors: the fast acting/non-genomic membrane 

receptors and the long lasting/genomic nuclear receptors. 

 

2.3.3.2.1 Membrane CORT receptors and their functions 

There is accumulating evidence which implicate mechanisms involving membrane located 

GRs and MRs. The ‘fast’ feedback mechanism is speculated to pass through these membrane 

receptors. Increasing evidence suggest the non-genomic hypothesis of neuronal signalling 

through membrane-associated GRs and MRs (de Kloet et al., 2008). These receptors regulate 

second messenger systems, which can have direct effects on membrane potentials, including 

ion channels that regulate neuronal membrane potential (ffrench-Mullen, 1995). Additionally, 

these membrane receptors can regulate gene transcription through second messenger 

cascades (Kino et al., 2005). Membrane GR regulate dendrite spine growth while MR plays a 
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regulatory role in dendritic spine structure (Liston et al., 2013, Russo et al., 2016). Moreover, 

their implications in memory retention and learning come from the influential relationship 

that they have on spine formation during circadian CORT peaks and troughs. At the 

molecular level, GR was shown to regulate pre- and post-synaptic function (Tasker et al., 

2006) and acutely regulate AMPAR trafficking, hence playing a role in synaptic transmission 

(Conboy and Sandi, 2010). Thus, fast acting membrane associated form of MR and GR have 

multiple roles, with a convergence of functions at synapses and dendritic spines. Recently, 

GR receptors have also been identified in the PSD as well as in dendritic spines, dendrites, 

soma, nuclei and also pre-synaptic terminal regions and glia processes (Johnson et al., 2005). 

It should be noted here that it is still not clear if the GRs and MRs found in the PSD are the 

fast-acting membrane receptors. 

 

2.3.3.2.2 Genomic action of receptors 

In absence of the ligand, GRs and MRs form an inactive cytoplasmic multi-protein complex 

with heat-shock proteins, such as HSP90, HSP70, and HSP56 (see Figure 21 for diagram of 

activation of GRs). In presence of CORT, GRs or MRs are released from the chaperones and 

dimerize and translocate to the nucleus (Trapp et al., 1994).  Here, they bind to specific DNA 

GREs at the promoter site of target genes and controls the rate of gene transcription through 

transactivation. On the other hand, transrepression activity requires the monomeric form of 

GR to interact with other transcriptional factors through protein-protein interaction and 

involves activated protein-1 (AP-1), nuclear factor-kB (NF-kB), and cAMP-responsive 

element binding protein (CREB). GR and MRs also have the ability to heterodimerize in 

tissues co-expressing the two receptors (Trapp et al., 1994). In general, these nuclear 

receptors are necessary for normal cellular activity, and crucial for many central nervous 

system functions, including learning and memory (Roozendaal, 2000). There has also be 

recent discovery of the mitochondrial GR nuclear receptors whose functional role is still not 

discovered. 
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Figure 21: General mechanism of nuclear action of GRs in target cells. CORT enters target cell by passive 

diffusion across the cell membrane. The GR dissociates from its bound form with the chaperones and undergoes 

conformational changes optimal for hormone binding. Upon binding to ligand, GR dimerizes and translocates to 

the nucleus. The activated GR dimer binds to the specific glucocorticoid response element (GRE) and increases 

the rate of transcription. This produces an elevation of protein level in the cell and eventually produce 

physiological adaptations (Adapted from Cole T., 2006) 

 

2.3.4 Techniques to study receptor function 

To understand the mechanism of action of CORT via their receptors GR and MR, there are 

two major techniques: Pharmacological and genetic manipulation studies which are currently 

carried out. These techniques will be reviewed with respect to GR. 

 

2.3.4.1 Different GR agonist and antagonists and their drawbacks 

Synthetically prepared CORT, like prednisone and dexamethasone, are extensively used in 

pharmacological studies as agonists to facilitate understanding the mode of action of CORT. 

For example, dexamethasone, an agonist for cortisol is routinely run on patients to verify the 

proper functioning of the feedback mechanism. Injection of this potent agonist, normally 

triggers the negative feedback mechanism resulting in a reduction of plasma cortisol levels 

within hours (Raff et al., 2014).  

Excessive or chronic exposure to CORT levels increases the vulnerability towards 

psychopathologies like major depressive disorder and neurodegenerative diseases like AD.  

For this reason, full GR antagonists have been currently been used as potential therapeutics in 

clinical research (Wulsin et al., 2010).  Also GR antagonists are mainly used to treat 
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Cushings Syndrome, where patients exhibit abnormally high levels of CORT (van der Lely et 

al., 1991).  

There are two main types of GR antagonists: steroidal and non-steroidal (Cole, 2006). 

Amongst the steroid GR antagonists, the RU486 / mifepristone is the most commonly 

prescribed and has been used in the treatment of some psychiatric disorders (Baulieu, 1997). 

The disadvantage of using RU486 is its lack of specificity to GRs as it cross reacts with PRs 

as well as GR, thus preventing its wide spread use. Also, because of its ability to bind to PR, 

it is used as an abortion pill for treatment of early pregnancy. To circumvent the issue of lack 

of specificity towards GR, there are currently new nonsteroidal GR antagonists (e.g. 

Compound 13; Corcept Therapeutics, USA) being tested, which bind specifically to GRs and 

not PRs (Hunt et al., 2015) (for properties of C13 refer to Table 5 in Material and methods).  

There have also been efforts to generate GR modulators, which do not have complete 

antagonist like actions but act as partial agonist-antagonist (Zalachoras et al., 2013). With this 

approach, only the excessive GRs are inhibited while the basal GRs required for normal 

function are not disturbed. CORT 108297 and CORT 113176 are representatives of a series 

of novel, selective non-steroidal GR modulators developed by Corcept Therapeutics, USA. 

These compounds exhibit excellent affinity for GR with no measurable affinity for other 

nuclear hormone receptors PR, AR (androgen receptor), MR and ER (estrogen receptor) 

(Hunt et al., 2015).  

 

2.3.4.2 Genetic manipulation studies 

In addition to pharmacological studies, a number of studies were carried out on mice in 

which GR was genetically manipulated to determine its role in HPA axis regulation and in 

different behaviours (especially to study depression) (Chourbaji et al., 2008). Mice 

homozygous for GR null allele (GR
-/-

) die shortly after birth as they exhibit a lung 

dysfunction. Hence, there are transgenic mice with decreased GR expression with antisense 

RNA (Pepin et al., 1992) and mice with GR over-expression (Reichardt et al., 2000). Specific 

conditional knock-out mice for GR have also been generated using the Cre/loxP 

recombination system under the control of a rat nestin promoter (GR
NesCre

 mice) (Tronche et 

al., 1999). For this, two mouse lines were generated. In one mouse line, which we call here 

GR
lox/lox

, exon 3 of the GR gene was flanked by loxP sites to promote recombination in 
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presence of cre recombinase. This mouse was crossed with a mouse expressing cre 

recombinase under the nestin (Nes) promoter allowing for cre recombinase expression in all 

neuron and glial cells of the CNS. These mutants lacked the GR in all neurons and glial cells 

throughout the CNS. Analysis of these mutants evidenced over-activation of the HPA axis as 

there was no negative feedback exerted at the PVN via the GRs, and reduced anxiety 

(Tronche et al. 1999).  GR
lox/lox

 mice are perfect for conditional ablation of GRs in area 

specific region by injection of Cre recombinase encoding viruses with neuronal specific 

promoter.  For example, these mice have been used to remove GRs specifically in dopamine 

neurons in vivo to study their roles in addiction and stress (Ambroggi et al., 2009, Barik et al., 

2013). 

 

2.3.5 Role of the hippocampus in stress/HPA axis 

2.3.5.1 Effect of stress on hippocampus: 

Increase in CORT due to chronic stressors can have some deleterious effects on the structural 

and functional integrity of corticosteroid-responsive brain regions especially the 

hippocampus. Adverse stress and administration of CORT cause alterations in hippocampal 

plasticity, including shortening of dendrites, altered neurogenesis and impairment in LTP and 

memory formation (Figure 22). 

 

 

Figure 22: Specific sites of hippocampus indicating areas responsible for synaptic plasticity and regulation of 

HPA axis with respect to the site of GRs. (Rothman and Mattson, 2010) 
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 In rodents, reduction in dendritic spines occurs in the CA3 region after exposure to chronic 

stress (Sousa et al., 2000). Moreover, increased levels of CORT significantly decrease 

neurogenesis in DG, which is a major site of adult neurogenesis (Gould and Tanapat, 1999). 

Lastly, long term elevations in corticosteroid CORT levels can have negative effects on 

neuroplasticity and cell survival (Sapolsky, 1985). There is atrophy of neuronal dendrites 

within the CA1 of the hippocampus followed by deficits in spatial memory after exposure to 

chronic behavioural stressor or administration of CORT. Additionally, the hippocampus is 

playing an important role in inhibiting the activity of the HPA axis and damage to the 

hippocampus could provide a repetitive cycle of increasing the HPA axis dysregulation and 

hippocampal injury (Sapolsky, 1992).  

Overall, CORT has been shown to heavily influence the structure and function of the 

hippocampus. They seem to mediate their regulation via the rapid non-genomic mechanism 

and the long lasting genomic mechanism. These in turn directly affect synaptic transmission, 

plasticity, learning and memory (Popoli et al., 2011). 

 

2.3.5.2 Effect of stress/CORT on synaptic plasticity 

2.3.5.2.1 At intermediate CORT level/stress:  

CORT regulates glutamate transmission by the both genomic and non-genomic actions. It is 

known that CORT enhances rapidly presynaptic glutamate release in the hippocampus, 

amygdala and medial prefrontal cortex (mPFC) (Lowy et al., 1993). CORT also rapidly 

increase the trafficking of AMPARs at the post-synapse via genomic-independent 

mechanisms (Groc et al., 2008). Also, it was shown that activation of MRs leads to lateral 

diffusion of GluA1 and GluA2 subunits to the post synaptic sites, thus increasing the 

frequency of hippocampal AMPAR-mediated current in CA1 neurons (Krugers et al., 2010, 

Groc et al., 2008). These results suggest that rapid effects of GCs should facilitate LTP. 

Genomic actions of CORT have similar effect on glutamate neurotransmission (Yuen and 

Yan, 2009, Yuen et al., 2011). Like the non-genomic effect, genomic actions lead to increase 

in GluA2 containing AMPAR and enhance synaptic transmission (Martin et al., 2009). This 

in turn leads to spine formation, and long term memory formation. In line with these findings, 

genomic mediated effects of GR also regulate calcium signalling in hippocampal neurons 

leading to high frequency LTP. GR-mediated increase in intracellular calcium levels was 
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found to be dependent on activation of NMDARs (Takahashi et al., 2002).  Together, these 

data support an important activity of GRs at synapses, but little is known about the local 

synaptic partners of GRs, which allow for these synapse alterations. 

 

2.3.5.2.2 High CORT level/stress 

In conditions of high CORT /high prolonged stress, activation of GRs can have a negative 

effect through activation of NMDAR (Coussens et al., 1997). This action mainly activates the 

extrasynaptic NR2B-containing NMDARs (Yang et al., 2005) and endocytosis of AMPAR, 

leading to exacerbation of LTD and impairment of spatial memory (Howland and Cazakoff, 

2010).  

In line with these observations, several studies investigated the role of GR and MR in GR-

mediated synaptic plasticity (Diamond et al., 1992). In particular, activation of MRs was 

found to enhance hippocampal LTP, whereas saturation of GRs after treatment with high 

doses of CORT attenuated LTP and enhanced LTD  (McEwen and Sapolsky, 1995). 

  

2.3.5.3 Effect of CORT/ stress on memory 

In both humans and rodents, it is well established that stress intensity and memory are known 

to follow an inverted U-shaped relationship, with maximum memory strength at an 

intermediate level of stress. 

CORT-mediated effects engage both GR and MR play a different role in acquisition, storage, 

consolidation and retrieval of information. MRs play a role in the initial phase of memory 

encoding including response to novelty, while GRs are important in memory consolidation 

(Ter Horst et al., 2012). GRs activation affects hippocampal functions thus modulating the 

consolidation of several types of hippocampus-dependent memories, including spatial and 

contextual memories in rodents and declarative memory in humans  (Donley et al., 2005). 

Mild stress during or after learning was shown to have a positive effect on consolidation of 

long term memory (Roozendaal, 2000). However, several studies in mice and humans have 

shown stress exposure or CORT administration shortly before retention testing impairs 

retrieval of memory (de Quervain et al., 1998). These are mainly caused by the action of the 

non-genomic membrane GRs. Hence there is now strong evidence that the timing of the 

stressor and the intensity can have a differential impact on memory retention. Consolidating a 
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strong memory after a salient or stressful event is an adaptive response that is necessary for 

appropriate reactions to similar demands in the future. 

GRs regulate several intracellular signalling pathways known to be required for memory 

consolidation. These include the pathways activated by CREB, MAPK, CamKII and BDNF 

(Chen et al., 2012).  These signalling pathway and GR-mediated action are involved in 

controlling epigenetic modifications that influence long-term memory processes (Finsterwald 

and Alberini, 2014). 

 

2.3.6 GR modulators and their use as therapeutic in AD 

Recent research has used GR modulators in rodent models to check for rescue of principal 

hallmarks of AD phenotypes and have shown promising results (Pineau et al., 2016).  

Report that these GR modulators (CORT 108297 and CORT 113176) reverse the 

hippocampal amyloidogenic pathways induced by icv injection of A25-35 through inhibition 

of BACE1 and increase clearance of A. In addition, they restore synaptic marker levels in 

hippocampus, reverse neuroinflammation and apoptotic processes and restore cognitive 

functions. These results are promising and form the bases of using these GR modulators as 

therapeutics in AD. Overall, these modulators seem to have promising therapeutic potential 

to tackle diseases associated with dysregulated HPA axis and stress related disorders. 

For this thesis, we will now focus on the specific relationship between AD and stress as risk 

factor. 

 

2.4 Link between AD and stress 

2.4.1 Stress is a major environmental risk factor for AD 

The cause and mechanism of development of AD remains unclear. There are multitudes of 

environmental risk factors leading to AD amongst which stress is the most common. Indeed, 

patients who are susceptible to stress are 2.7 times more likely to develop AD than others 

(Wilson et al., 2003, Wilson et al., 2007). This can also be seen in cases where stress lowers 

the age of onset of FAD (Mejia et al., 2003). As mentioned earlier, an increased risk of AD 

arises from mutations affecting CORT production (de Quervain et al., 2004). On the other 

hand, there could be a decreased risk of AD from GR variants cumulating in CORT 
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resistance (van Rossum et al., 2008). Interestingly, in vivo and in vitro studies have shown 

that stress and CORT induce the production of A by neural cells (Green et al., 2006, 

Baglietto-Vargas et al., 2013) whereas stress and CRH promote hyperphosphorylation of tau 

by activation of CRFR1 receptor (Rissman, 2009). Furthermore, CORT was shown to trigger 

APP misprocessing, increased A production, reduced A clearance, tau phosphorylation and 

accumulation and cognitive decline (Jeong et al., 2006).  

Together these data consolidate the link between HPA axis hyperactivity and AD.  Moreover, 

there seems to be an establishment of a viscous circle whereby the pathology increases 

secretion of CORT, which further increases the pathology (Notarianni, 2013).   

  

2.4.2 HPA axis adaptive changes in human AD patients and AD mouse 

models 

An association is recognized between AD and hyperactivity of the HPA axis, but the precise 

role played by HPA axis dysfunction in AD development is undefined. The foremost 

evidence in this context is dysregulation in the negative CORT feedback as well as high 

production of CORT levels as seen in both AD patients and mouse models. This leads to or is 

causal for other stress related molecules in the HPA axis to be involved in modifying 

vulnerability to AD. These include CRH levels, ACTH levels, gene expression level of GR 

and MR in different brain regions known to exert control over the HPA axis. In this chapter, 

focus will be on CORT levels and ACTH levels in AD cases. 

 

2.4.2.1 CORT levels 

Clinical studies have reported that there is an increase in plasma CORT levels in patients with 

early phase of AD  (Rasmuson et al., 2001). Here, it is interesting to note that while AD 

patients show basal hypercortisolemia, their circadian rhythm of CORT variation seems to be 

intact (Giubilei et al., 2001). This contrasts with the continuously elevated levels of CORT 

that are characteristic of other hypercortisolemia states like Cushing’s disease or major 

depression. 

In addition, there is a decreased negative feedback of CORT in AD patients, which is 

confirmed by a low-dose dexamethasone suppression test (Näsman et al., 1995). In AD 
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patients, due to dysregulation of the HPA axis the levels of CORT cannot be reduced. This 

phenotype of hypercortisolemia is also seen in 3xTg mouse model at late stages of the disease 

(Green et al., 2006).   

There are many studies correlating the relationship between plasma CORT levels and clinical 

/cognitive measures of the rate of progression of AD. Of interest was the finding that, 

although AD patients had elevated basal CORT levels, HPA axis dysfunction did not worsen 

with additional cognitive decline (Swanwick et al., 1998). 

 

2.4.2.2 ACTH levels 

CORT levels depend on the upstream secretion of ACTH by the pituitary gland. In AD 

patients, it has been reported that despite high production of CORT there is an absence of 

ACTH drive (Umegaki et al., 2000). This lower or equal level of ACTH could be due to 

several reasons. Primarily, studies revealed that an increased central drive by CRH could 

result in down-regulation of pituitary receptors.  Secondly, there might be a concomitant 

inhibition of corticotrophs due to increased CORT levels and lastly it might be due to an 

increased peripheral sensitivity of the adrenal gland to ACTH (Amsterdam et al., 1989). 

There is also evidence of increased adrenocortical sensitivity to ACTH in AD patients 

(O'Brien et al., 1996). 

 

2.4.2.3 Stress related disorders in AD patients 

Sleep is highly sensitive to stress and sleep disorders are often associated to stress-related 

disorders. Amongst the AD patients, 44% are affected with a sleep disorder and the 

prevalence and severity of the sleep disorders increase with dementia severity (McCurry et 

al., 1999). Their sleep patterns are known to be affected from early stages of AD and 

characterized by short sleep durations and worse sleep qualities (Ju et al., 2014). There is 

known to be a bidirectional relation between amyloid plaque accumulation  and sleep 

disturbances (Ju et al., 2014). There are other sleep disturbances seen in AD which include 

daytime hypersomnia, delayed circadian phase and adverse effects of dementia medication 

such as acetylcholinesterase inhibitors (Dauvilliers, 2007). 
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Stress related psychiatric disorders (like anxiety and depression) have been identified as a 

risk for developing AD (Caraci et al., 2010). Anxiety in dementia is common. The risk of 

developing AD may be 30 times higher amongst people with MCI and anxiety. 

 

2.4.3 Tau and HPA axis 

Clinical data shows that cognitive deficits in AD patients correlate better with NFT than to 

amyloid- profiles (Guillozet et al., 2003). This is also supported by the fact that the 

development of NFTs start earlier in the hippocampus than the amyloid plaques. These 

evidences support the essential role of tau in establishment of AD pathology.  

In vivo data shows that high stress levels increase APP processing towards A formation and 

subsequent abberant hyperphosphorylation of tau protein, NFT formation and eventually 

neuronal loss (Lee et al., 2009). For example, 3xTg mice injected with dexamethasone leads 

to somatodendritic accumulation of tau in the hippocampus, amygdala and cortex (Green et 

al., 2006). Furthermore, the stress related molecule CRH is commonly associated with tau 

phosphorylation and this is confirmed by the fact that deletion of receptor CRFR1 abolishes 

the detrimental effects of tau phosphorylation (Carroll et al., 2011). In addition, a new 

mechanism linking tau processing and stress was recently studied using the P301L tau 

transgenic mouse. In female mice, chronic stress elevated levels of caspase-3-truncated tau 

and insoluble tau aggregates altered expression of chaperones Hsp90, Hsp 70 and Hsp 105 

(Sotiropoulos et al., 2015).  

 

2.4.4 Role of stress/CORT administration on A pathology 

Several studies in transgenic mice indicate that both A production through APP processing 

and amyloid plaque formation are accelerated in response to chronic stress. Social isolation 

for 6 months in the Tg2576 increased A plaques (Dong et al., 2008) and a similar increase 

in extracellular and neuronal A in other transgenic mice were observed as a result of 

immobilization stress (Jeong et al., 2006). Concurrently, in 3xTg AD, chronic stress triggered 

APP misprocessing, which increased A level, tau phosphorylation and accumulation (Green 

et al., 2006). This study further showed that CORT and dexamethasone application in vitro 

also increased A40 and A42 level, implying that CORT can directly affect APP 



 

 

 

70 

 

processing. Collectively, these data strongly implicate that stress or CORT administration is 

linked to A pathology. Yet, the role of GRs in AD pathology remains mostly unknown.  

 

2.4.5 Role of GRs in AD 

Hippocampal GRs and MRs are involved in the basal neuronal function and negative feed-

back regulation of the HPA axis (Sousa et al., 2008). The GC cascade hypothesis relates the 

relationship between CORT and hippocampus with aging. This hypothesis states that CORT 

secreted during periods of stress, desensitize the hippocampus to further CORT exposure, by 

downregulating the GRs (Sapolsky et al., 1984). However, biochemical results from AD 

patients, indicates that GR and MR levels in the hippocampus are maintained. This may be 

possible due to the maintained circadian hypercorticoidism in AD patients (Hartmann et al., 

1996). On the other hand, the single injected A(25-35) acute AD model, demonstrated a 

strong, long lasting activation of the HPA axis associated with a modification of the balance 

between GR and MR expression in the hippocampus, amygdala and hypothalamus. 

Subsequently a disruption of the GR nuclear-cytoplasmic translocation occurred, leading to 

its accumulation in the nucleolus (Brureau et al., 2013).  In vivo studies show that young 

3xTg AD mice exhibit an active HPA axis and higher GR mRNA levels in the hippocampus. 

Moreover, increased CORT levels are sufficient to exacerbate Adeposits and it was shown 

that antagonism of GR could prevent this effect (Baglietto-Vargas et al., 2013). 

Recently, one week of treatment with a novel potent GR modulator CORT 108297 has been 

effectively used to reverse memory deficits, CORT increase, hippocampal synaptic 

impairment and APP misprocessing caused by A toxicity, as tested by acute in vivo A25-35  

injections (Pineau et al., 2016).  

 

2.4.6 Relationship between A oligomers and GRs 

With all the above evidence, it seems clear that GR signalling is altered in AD via increased 

CORT. On the other hand, there is a strong association of A accumulation in manifesting 

AD phenotypes like synaptic dysfunction and memory impairment (see chapter 1.2.7 above). 

But, till date, there is not much evidence functionally linking A oligomers and GRs at 

synapses and confirming the possibility of a combined effect on synaptic plasticity (Figure 
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23). Recently, it was reported that in vivo intra-cerebroventricular A25-35 injections promoted 

accumulation of GRs in the nucleus of CA1 neurons in the hippocampus (Brureau et al., 

2013). This strongly suggests an intricate functional relationship between A and GRs at the 

nucleus, but there remains a paucity of data on the relationship between A and GRs at 

synapses.  

 

 

Figure 23: Link between A and GRs.GR activation is known to act at synapses and is likely to be involved in 

AD due to increased levels of CORT. Simultaneously, A is known to aggregate to oligomeric form and to 

modify synapse function as AD develops. Yet, there is not much data regarding the relationship between GRs 

and A at synapses.  

 

2.4.7 Common link between A and CORT on the glutamatergic system 

In the previous chapters, we described how elevated levels of A and CORT, two phenotypes 

observed in AD, individually modify glutamate synaptic transmission. It is interesting to note 

that their effects in a bell-shaped fashion which is concentration-dependent. This illustrates 

the fine sensitivity of the glutamatergic system to these modulators. Also, when comparing 

the effects of A and CORT/GRs on the hippocampus, they are surprisingly similar as 

summarized in Table 2. This comparative analysis, that I personally made, suggests that there 

might be an intricate relationship between the A and CORT/GRs with important, but yet 

unidentified, implications in hippocampus dysfunction in AD.  
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Table 2: Comparison between effects of high levels of A and stress/ high levels of CORT/GR activation on the 

glutmatergic transmission, synaptic plasticity, dendrites and spines, and hippocampus-dependent memory 

processes. 

 

 

It is within this context that I have pursued my PhD thesis, which focused on identifying the 

physiopathological relationship between AD and the HPA, focusing mostly on GR signalling. 
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3 Objectives 

My first objective was to study in detail the relationship between HPA axis dysregulation and 

early onset of AD phenotypes using the Tg2576 mice (Tg
+
 mice). At 4 month of age in these 

mice, my team had observed high CORT levels and a non-functional negative feedback 

mechanism shown by dexamethasone suppression test indicating a dysregulated HPA axis 

(detailed in (Lanté et al., 2015)).  This led us to investigate the onset and progression of this 

dysregulation and its effect on other HPA axis regulators and peripheral organs at different 

time points in the early symptomatic stage of these mice. In addition, we wanted to quantify 

the level of hippocampal total GRs at 4 months of age, to check if high CORT levels affected 

GRs due to the HPA axis dysregulation or due to accumulation of A peptides and 

oligomers. My team had also previously observed alterations in hippocampal LTD in these 

mice at this same age and a rescue by the GR antagonist RU486 (detailed in (Lanté et al., 

2015)). To place these findings in the context of memory loss in AD they had decided to 

investigate episodic-like memory in these Tg
+
 mice. Lab members had optimized a version of 

the object recognition test that could test episodic-like memory in these mice based on (Dere 

et al. 2005) and had observed a deficit in this type of memory in 4 months old Tg2576 mice. 

In light of the dysregulation of the HPA axis and LTD rescue by GR RU486, we 

hypothesized that GR antagonism might rescue this memory deficit.  

My second objective was to further investigate the specific role of GRs in driving AD 

phenotypes in these Tg
+
 mice by creating double mutant mice, which harboured the APPswe 

transgene and a floxed GR gene (GR
lox/lox

 mice; (Tronche et al., 1999)). This would allow for 

specific ablation of GRs in a spatially and temporally dependent manner.  For this, we would 

cross the Tg
+
 mice with the GR

lox/lox
 mice. Upon obtaining these double mutants, we would 

verify that by injecting an AAV virus expressing Cre recombinase into the CA1 region of the 

hippocampus of these double mutant mice, we could efficiently remove GRs from neurons. 

We would then use these transduced mice to investigate is removing GRs could reverse the 

AD like phenotypes seen previously in the Tg
+
 mice, namely exacerbated CORT levels, 

enhanced LTD and episodic-like memory deficit.  

In collaboration with Dr. Frandemiche, my third and highly-related objective involved 

studying more specifically the functional relationship between oA and GRs at excitatory 

synapses. For this, we would mainly work with in vitro and ex vivo acute application of 
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synthetic oligomers of A (oA). Using a well standardized protocol established by Dr. 

Frandemiche (Frandemiche et al., 2014), we would investigate if oA could modulate GRs at 

synapses in in vitro hippocampal neuron cultures. Moreover, the molecular mechanism 

through which oA acts to modify synapse function remains uncertain. We therefore decided 

to ask if GRs could be involved in these oA-mediated synaptic effects. For this, we would 

use ex vivo hippocampal sections acutely treated with oA to check if GRs could be 

implicated in oA-mediated LTP impairment. Using this ex vivo system, we would block 

GRs either pharmacologically using a specific GR antagonist C13 (provided by CORCEPT 

Therapeutics) or ablate GRs in the CA1 neurons using the in vivo transduction of a virus 

expression cre recombinase in GR
lox/lox 

mice.  

Overall, using different approaches, the main goal of this thesis was to identify the role of 

GRs in early AD-associated dysregulation of HPA axis, hippocampal-dependent memory 

deficits and impaired synaptic activity. I successfully fulfilled some of these objectives to 

highlight the functional role of GR in the physiopathology of AD.  
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4 Materials and Methods: 

4.1 Animal Breeding 

Different strains of mice were used during the thesis project:  

The Tg2576 (Tg
+
) mice harbour the human Swedish mutation (hAPPswe transgene: APP695 

isoform with double mutations at KM670/671NL) and overexpress approximately 5 times 

more APP than their control littermates (Wildtype WT) (Hsiao et al., 1996). The Tg2576 

mice were bred on C57Bl6/SJL hybrid background and are backcrossed to C57BL6 breeders 

before being deposited at Taconics (Carlson et al., 1997). The hemizygous Tg2576 male 

mice, purchased from Taconics, were mated with hybrid Bl6/SJL females and the F1 

generation were used for all experiments. 4 and 6-month old Tg
+
 and WT mice were used for 

dissections of hippocampus, thymus, adrenal glands, estimation of CORT and ACTH levels 

from blood plasma. The Episodic memory behaviour paradigm was also carried on 4-month 

old mice. 

GR
lox/lox 

Bl6 mice (from (Tronche et al., 1999)) have the exon 3 of the GR gene flanked with 

the loxP site and are bred on pure C57Bl6 background.  

Two-month old mice were injected using a stereotaxic apparatus with Cre-GFP or control 

GFP virus in the CA1 region of the hippocampus. Mice were given a recovery period of 4 

weeks to allow sufficient time for recombination followed by electrophysiological 

recordings.  

To study the functional role of glucocorticoid receptors (GRs) in AD, we crossed the GR
lox/lox 

with the Tg2576 to produce GR
lox/lox 

Tg
+
 mice. As mentioned above, the Tg2576 mice were 

bred on Bl6/SJL background and hence it was necessary to bring the GR
lox/lox 

on the same 

background before starting the cross. Multiple crossings were required to finally generate the 

GR
lox/lox

 Tg
+
 mice with their controls GR

lox/lox
 Tg

-
 mice. The details of the cross will be 

explained in the results section of Chapter 2. 

One, 2 and 3-month old mice were used for estimation of plasma CORT levels and 

exacerbated LTD phenotype was verified on 3-month old mice. 2-month old mice were 

stereotaxically injected with control eGFP or Cre-GFP virus. After 4 weeks of recovery 

period, electrophysiological recordings were carried out. Hippocampal sections of eGFP and 

Cre-GFP injection in GR
lox/lox

 Tg
-
 mice were used for GR immunofluorescence. 
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C57Bl/6, 2-month old C57Bl/6 mice (Janvier, France) were used for ex-vivo 

electrophysiological recordings and for in-vivo local injections followed by the Novel Object 

Recognition (NOR) behavioral task.  

Swiss mice, 3-4 weeks old Swiss mice (Janvier, France) were used to test for CHO medium 

enriched in Aη- or Aη-ß peptides purified by size exclusion chromatography (SEC 

fractions) by our collaborators ( for details see (Willem et al., 2015)).  

All experiments were done according to policies on the care and use of laboratory animals of 

European Communities Council Directive (2010/63). The protocols were approved by the 

French Research Ministry following evaluation by a specialized ethics committee (protocol 

number 01141.01). The animals were housed under controlled laboratory conditions with a 

12-h dark light cycle and a temperature of 22 ± 2°C. Mice had free access to standard rodent 

diet and tap water.  

 

4.2 Genotyping 

DNA samples were prepared from tail tips or fingers of less than post-natal day 8 (PND8) of 

individual mice. Each tail tip or finger was placed in Lysis buffer (50mM Tris HCL pH 8, 

100mM EDTA pH 8, 100mM NaCL, 1% SDS) with proteinase K at 1 mg/ml. The samples 

were digested overnight at 56˚C. They were centrifuged at 15,000 X g for 10 minutes to 

remove debris and the supernatant was transferred to new eppendorfs. Saturated NaCL was 

added to lyse the cells and access the genomic DNA. This was incubated for 10 minutes on a 

rocking platform and then centrifuged at 15,000 X g at 4˚C for 10 minutes to get rid of cell 

debris. The supernatant was aspired into a new tube and equal volume of iso-propanol was 

added to precipitate the DNA. After centrifugation, the pellet was washed in 70% EtOH. The 

pellet was air dried and then suspended in 200µl TE (10mM Tris HCl pH 7.5, 1mM EDTA 

pH 8.0) and left overnight at 4˚C. For the PCR reaction, 1µl of diluted DNA was added to 

Master mix (25µl). Oligonucleotide primers (5’-3’) and PCR conditions for hAPPswe 

transgene and GR loxp DNA sequence are described briefly below.  The list of primers used 

are provided in Table 3.  
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Table 3: Primer list for APP transgene and GRloxp PCR 

 

 

For APP transgene amplification, detection of Myosin was used as an internal DNA control 

along with transgene positive and negative samples for controls. In addition to the primers, 

Buffer 5x with MgCl2, dNTPs and Taq polymerase were added to the master mix. PCR was 

performed on Biometra Personal Thermocycler by denaturing DNA at 96˚C for 15 minutes, 

followed by 30 cycles of amplification: 95˚C for 45 seconds, 55˚C for 1 minute, 72˚C for 1 

minute and a final extension step at 72˚C for 5 minutes. PCR samples were stored at 4°C 

until run on a gel. 

Similarly, for GR loxp DNA amplification, the controls used were wildtype (GR
+/+

), 

heterozygous (GR
lox/+

) and homozygous (GR
lox/lox

). The PCR conditions were as follows, 

95˚C for 5 minutes, 35 cycles of amplification: 95˚C for 5 minutes, 60˚C for 45 seconds, 

72˚C for 1 minute and final extension at 72˚C for 5 minutes. PCR samples were stored at 4°C 

until run on gel. 

Following amplification, 10μl of PCR products were run on a 2% agarose gel for Tg2576 and 

1.5% for GR loxp gene and staining with Ethidium bromide. Bands were photographed under 

UV light with a Syngene Camera (Figure 24).  
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Figure 24: Gel picture of PCR bands after amplification. A) The absence or presence of the APP transgene 

marking the animal as WT or Tg
+
. Positive, negative and water control was run along with the samples. Myosin 

band was detected as an internal DNA control. B) Animals were identified as wildtype (GR
+/+

), heterogyzous 

(GR
+/-

) or homozygous (GR
lox/lox

) depending on the number and position of the bands. Positive, negative and 

water control were run simultaneously. 

 

4.3 Dissection of hippocampus, thymus and adrenal glands 

Four and 6-month old WT and Tg
+
 mice were sacrificed by decapitation. The brains were 

quickly collected on ice and the hippocampus were dissected. These were placed in special 

tight locked eppendorfs which were snap freezed in liquid nitrogen followed by storage at  

-80˚C until proteins were extracted. 

Adrenal glands and thymus were dissected, cleaned and weighed as general indices of HPA 

axis tone. For the dissection of the adrenal glands, it was important to remove the fat attached 

to the glands and this was done under a dissecting microscope. Care was taken not to let the 

glands burst or dry. These weights were normalized to the body weights which differed 

between the transgenic and wildtype mice. The weights inter-group were pooled and 

represented in mg/g ± S.E.M.  
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4.4 Biochemical Techniques 

4.4.1 Estimation by ELISA 

4.4.1.1  Plasma corticosterone 

To determine plasma corticosterone levels, blood samples were collected from WT, Tg
+
, 

GR
lox/lox 

Tg
-
, GR

lox/lox 
Tg

+
 mice at different ages during the dark phase (8 pm). Sub-

mandibular blood collection was carried out using microvettes, which are coated with 

Lithium Heparin. After 15 minutes of centrifugation at 1700 X g at 4˚C, plasma samples were 

stored at -80˚C. Plasma corticosterone concentrations were measured using an Enzyme 

Immunoassay (EIA) kit following the manufactures instructions (Enzo Life Science, France). 

Samples were diluted 20 times to fit into the standard graph. The concentration of CORT was 

represented in ng/ml ±S.E.M. 

 

4.4.1.2  ACTH estimation 

Similarly, for ACTH estimation, sub-mandibular blood collection was done from 4 and  

6-month old WT and Tg
+
 mice. Undiluted samples and standards were deposited in duplicate 

on a 96 well plate with the competitor and incubated at 37˚C for 1 hour. After washing and 

30 minutes incubation with the enzyme horseradish peroxidase (HRP), TMB enzyme 

substrate was added. The colorimetric reaction was stopped using the stop solution and then 

read at 450nm. ACTH was measured in pg/ml ±S.E.M.  

 

4.4.2 Extraction of total proteins from hippocampus 

For extraction of total proteins, hippocampus tissue was lysed in cold buffer containing 

20mM HEPES, 0.15mM NaCl, 1% Triton-X100, 1% deoxycholic acid, 1%SDS, pH 7.4 

including phosphatases and protease inhibitors. This was done using a 1ml insulin syringe 

and care was taken not to introduce many air bubbles. Samples were left at 4˚C on the rotor 

for 2 hours and later centrifuged at 1000 X g for 15 minutes. The supernatant was used to 

estimate the amount of protein using Bradford’s reagent and BSA as the standard control. 

The samples were stored at -20°C.  



 

 

 

80 

 

4.4.3 Immunoblotting  

Lysates were re-suspended in loading buffer (50% Sucrose, 6% SDS, 0.18% bromophenol 

blue, 12.5% ß-mercaptoethanol) and were boiled at 90ºC for 5 minutes. Equal amount of 

proteins (50µg for total hippocampal proteins and 5-10 µg for PSD) were resolved on 10% 

SDS gel in denaturing conditions. Since PVDF (polyvinylidene difluoride, Millipore, France) 

membrane is hydrophobic in nature it needs to be activated by soaking for few seconds in 

100% ethanol. Thereafter, transfer of proteins was carried out for 1 hour at 350 mA at 4˚C. 

Blocking of the membrane proteins was carried out with Tris-buffered saline (10mM Tris, 

150mM NaCl, pH 7.4) containing 0.01% Tween-20, 5% non-fat milk for 20-30 minutes at 

room temperature. For GR in particular, membranes were incubated at 4˚C with primary 

antibody against GR (1:1000 dilution, Santa Cruz Biotechnology, anti rabbit) in 1% non-fat 

milk. HRP-conjugated secondary antibody (1:30,000 rabbit, Sigma) with 5% non-fat milk 

was incubated for 1 hour at room temperature. Specific proteins were visualized using 

enhanced chemiluminescence ECL detection system (Biorad, France). The relative levels of 

immunoreactivity were determined using the LAS-3000 imaging system (Fuji, Japan) and 

quantified by densitometry using ImageJ software. Similarly, immunoblotting was carried out 

for other proteins (See Table 4 for details). 

 

Table 4: Details of primary and secondary antibodies used for immunoblotting with their respective conditions. 

 

 

4.4.4 Aβ oligomer (oAβ) preparation 

Recombinant Aβ1-42 peptide (Bachem, Bubendorf, Switzerland) was re-suspended in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to 1 mM until complete re-suspension as described 

in (Stine et al., 2003). This was quickly aliquoted into smaller volumes in cold room followed 
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by vaporisation to dry state under the hood. These aliquots were stored at -80 C. Aβ 

oligomers (oAβ) were prepared from these aliquots by diluting Aβ to 1 mM in DMSO then to 

100 μM in ice-cold HEPES and Bicarbonate-buffered saline solution (HBBSS) with 

immediate vortexing and bath sonication followed by incubation at 4°C for 24 h with mild 

agitation. Final concentration used was 100nM for electrophysiology, biochemical assays and 

behaviour. 1µl of 100 µM oAß were run on 10% SDS gel (as explained above) to verify their 

profiles. The primary antibody used was Beta-amyloid (1:1000, D54D2 rabbit monoclonal 

ab, Cell Signaling). The oAß contained mainly monomers, dimers, trimers and tetramers 

(Figure 25). 

 

 

Figure 25: Profile of the synthetic oAß preparation. 1μl of 100μM stock was run on a 10%SDS gel displaying 

low weight oligomers consisting of monomers, dimers, trimers, few tetramers of synthetic oAß preparation.  
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4.5 Local in vivo ablation of GR in GR
lox/lox 

mice 

 

Figure 26: Summary of the protocol for the Cre-GFP injections in the GR
lox/lox

 mice. A) Timeline of the GR
lox/lox

 

mice showing stereotaxic injections of eGFP or Cre-GFP virus in the CA1 of the hippocampus at 2 months of 

age. This was followed by 4 weeks of recovery time for complete expression of Cre recombinase and ablation of 

GR before performing immunofluorescence staining and electrophysiological recordings. B). Vector map of the 

eGFP control virus wherein Adeno-associated virus serotype 9 (AAV9) was used under human synapsin 

promoter (hSyn). To enhance the expression, woodchuck hepatitis virus posttranscriptional regulatory element 

(WPRE) was introduced and bGH bovine growth hormone as a terminator (Penn Vector Core  Facility, USA).  

C). Vector map of the Cre-GFP virus (Penn Vector Core Facility, USA) indicating production of Cre 

recombinase and GFP as a fused protein specifically in neurons as under hSyn. D). Pictorial representation of 

the working of the Cre-lox system showing loss of GR. 

 

4.5.1 Stereotaxic injections of AAV  

We used 8-9 weeks old GR
lox/lox 

Tg
–
, GR

lox/lox
 Tg

+
 and GR

lox/lox
 mutants in C57Bl6 

background for stereotaxic injections. AAV9.hSyn.HI.eGFP-Cre.WPRE.SV40 (called herein 

CreGFP virus) or AAV9.hSyn.eGFP.WPRE.bGH as the control virus (called herein eGFP 

virus) (Figure 26B and C) (ordered from Penn Vector Core Facility, USA) were injected into 

the CA1 region of the hippocampus by stereotaxic injections (see summary of protocol in 

Figure 4). AAV9 serotype with hSyn promoter was specifically chosen to ensure expression 

of virus in the neurons (Aschauer et al., 2013). Before surgery, mice were assigned to the 4 
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different groups: eGFP injected GR
lox/lox 

Tg
+
 or GR

lox/lox 
Tg

- 
and Cre-GFP injected GR

lox/lox 

Tg
+
 or GR

lox/lox 
Tg

–
. Mice were anesthetized with chloral hydrate 400mg/kg (Restivo et al., 

2009). Use of this anaesthetic was necessary particularly for the GR
lox/lox 

Tg
+
 mice as they 

would get seizures if ketamine-xylazine was injected. The mice were placed in stereotaxic 

frame well fixed between the ear bars. The scalp was incised and retracted and with a scalpel 

blade the skull was scraped to see the bregma clearly. Cannula was placed at the Bregma to 

calculate the co-ordinates for the CA1 area of the hippocampus. Holes were drilled through 

the skull above the hippocampus. A stainless steel cannula (0.1mm in diameter) was inserted 

bilaterally while infusing at a speed of 250nl/min until it reached the CA1 stereotaxic 

coordinates. 500nl of virus (~5.54 x 10
11

 genome copy/ml in PBS without Mg
2+

) was injected 

in the CA1 (A/P: -2.2 M/L: ±1.3 D/V: -1.5) at 100nl/min. Mice were placed on a warm pad 

while they recovered from the surgery and later returned to their home cages. These virus-

injected mice were given a recovery time of 4 weeks for complete cre recombinase 

expression followed by immunofluorescence staining of GR or electrophysiology recordings. 

 

4.5.2 Immunofluorescence staining of GR 

For immunostaining of GR, the protocol was adapted from (Barik et al., 2013). Mice were 

deeply anaesthetized with 400mg/kg chloral hydrate or 436.8mg/kg of pentobarbital 

(Centravet, France) and transcardially perfused with cold phosphate buffer (PB: 0.1 M 

Na2HPO4/NaH2PO4, pH 7.4), followed by 4% PFA in PB. Brains were post-fixed overnight 

in 4% PFA-PB. Free-floating vibratome sections (50 μm) were rinsed twice with PBS (20 

min) and incubated (30 min) in PBS-BT (PBS 0.5% BSA, 0.1% Triton X-100) with 10% 

normal goat serum (NGS). Sections were incubated (4°C) in PBS-BT, 1% NGS, with rabbit 

anti-GR (1:500, Santa Cruz Biotechnology, Santa Cruz, USA) over 2 nights. Sections were 

rinsed in PBS and incubated (2 h) in Cy3-conjugated goat anti-rabbit antibody (1:2000, 

Vector Laboratories, Burlingame, USA). Sections were rinsed and incubated 5 min in DAPI 

to counterstain nuclei. These were then mounted for examination under Olympus Confocal 

microscope. 
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4.5.3 Microscopy and estimation of GR intensity 

eGFP and Cre-GFP infected CA1 cells of the hippocampus were z scanned at 60x zoom 3 

magnification under eGFP, cy3 and dapi lazer. Using Image J and CTCF (corrected total cell 

fluorescence) method (McCloy et al., 2014), the GR intensity per cell was calculated in GFP 

positive and nearby negative cells in both GFP and Cre-GFP virus infected sections. From 

each section, first GFP positive and negative cells were identified, stacked and selected. In 

addition, a small background area was defined near the cells. For all these regions, the area, 

integrated density and mean gray value were measured in the cy3 filter. Further, to calculate 

the corrected total cell fluorescence the following formula was used: 

 

CTCF= (Integrated density) – (Area of selected cell x Mean fluorescence of background 

readings) 

This value was considered as the relative value of the GR intensity per cell. 

 

4.6 Electrophysiology 

4.6.1 Slice preparation  

Hippocampal slices were prepared as described in (Marchetti et al., 2010). Slices (350 or 400 

µm for field recordings) were cut in ice-cold oxygenated (95% O2/ 5%CO2) solution 

containing (in mM): Sucrose 234, KCl 2.5, NaH2PO4 1.25, MgSO4 10, CaCL2 0.5, NaHCO3 

26, glucose 11 (pH 7.4). For recovery, slices were then incubated for one hour in warm (37± 

1 ⁰C) oxygenated standard artificial cerebrospinal fluid (ACSF) containing (in mM): NaCl 

119, KCl 2.5, NaH2PO4 1.25, MgSO4 1.3, CaCL2 2.5, NaHCO3 26, glucose 11 and then 

stored at room temperature. 

Slices were visualized in a chamber on an upright microscope (Slicescope, Scientifica Ltd) 

with IR-DIC illumination and were perfused with oxygenated ACSF.  
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4.6.2 Field recordings by electrophysiology 

Field excitatory post-synaptic potentials (fEPSPs) were recorded in the stratum radiatum of 

the CA1 region (using a glass electrode filled with 1M NaCL and 10mM HEPES, pH 7.4) 

and the stimuli were delivered at to the Schaffer collateral pathway by a monopolar glass 

electrode filled with ACSF (Figure 27).  

 

 

Figure 27: Cross section of the hippocampus showing the synapses formed between the different sub-structures 

of the hippocampus: CA1, CA3 and DG. fEPSP recordings were carried out by stimulating the Schaffer 

collaterals and recording within the CA1 neurons area (modified from (Deng et al., 2010). 

 

To check the health of the sections, the sections were highly stimulated to evoke strong 

fEPSP response (ideally between 0.8- 1 mV). Then for LTP recordings, fEPSP response was 

set to approximately 30% of the maximal fEPSP response (i.e. approx. 0.2-0.3mV).  

 

4.6.2.1  To measure basal synaptic plasticity 

For LTP, a minimum of 20 minutes stable baseline of fEPSP response was first obtained 

followed by an induction of a high frequency stimulation (HFS) protocol consisting of 2 

pulses at 100 Hertz for 1 sec with a 20 sec interval between pulses. fEPSP response was 

further recorded for one hour.  

For LTD experiments, ACSF containing 4m MCaCl2 and 2mM MgSO4 (otherwise identical 

to standard ACSF described above) was used during recording. fEPSP recordings were 
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carried out as explained for LTP with the only difference being the LFS LTD protocol, which 

consisted of 900 pulses at 1 Hertz.  

 

4.6.2.2  For pharmacological studies 

To measure basal synaptic transmission, fEPSPs were recorded in standard ACSF to 

obtain a 20 minutes baseline followed by another 20 minutes of bath application of ACSF 

containing drug (1 µM GR antagonist compound 13 (C13) (for properties see Table 5) or 0.1 

% DMSO vehicle) or 100 nM oAß. The ACSF/drug/oligomers were in re-circulation with a 

peristaltic pump while being continuously aerated with 95% oxygen. For all pharmacological 

studies, the electrodes were placed superficially to maximize exposure to drug or peptides. 

 

Table 5: Properties of Compound 13  (C13) as described in (Hunt et al., 2015) 

 

 

To study the effect of C13 and Aβ oligomers (oAβ) on LTP: 

To check the effect of the GR antagonist C13 on LTP, fEPSPs were recorded to reach a 

stable 20 minutes baseline in 15 ml of 1µM GR antagonist or 0.1% DMSO. Once achieved, 

HFS protocol (as explained above) was applied and responses 1 hour post induction were 

recorded. 

To check the effect of the oAβ on LTP (Figure 28), sections were first recorded for a 20 min 

stable baseline in 15 ml of 0.1% DMSO followed by 20 minute of recordings in 15 ml of 0.1 

% DMSO + 100nM oAβ. Once this was achieved, a HFS protocol was induced. Similarly, to 

check the effect of the GR antagonist and oAβ, 20 minutes baseline was recorded with 15 ml 

of 1µM C13 followed by 15 ml of 1µM C13 + 100nM oAβ and then HFS was induced.  
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Figure 28: Timeline used to check the preventive action of the GR Antagonist C13 on oAβ –mediated effect on 

LTP.  

 

4.6.3 Analysis of fEPSP response: 

For the analysis of fEPSPs, the first third of the fEPSP slope was calculated (see Figure 29) 

in baseline condition (20 minutes prior to induction protocol delivery) and for 60 minutes 

post-induction. The average baseline value was normalized to 100% and all values of the 

experiment were normalized to this baseline average (one minute bins). Experiments were 

pooled per condition and presented as mean ± S.E.M. Statistical analysis was used to 

compare the 20 minutes of baseline with the last 15 minutes of the recordings. Data analysis 

was performed with the clamp fit software (Molecular Devices). 

 

 

Figure 29: Representative fEPSP response in clamp fit software. The slope is marked as the first third of fEPSP 

response. 
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4.7 Behaviour 

4.7.1 Episodic-like object recognition memory 

 

Figure 30: Scheme for What-When-Where object recognition protocol. The test day consisted of a three trial 

procedure (two sample trials and a test trial of 10 min each with 50 min inter-trial interval). 

 

Episodic-like object recognition memory was performed as described in (Dere et al., 2005) 

with minor variations to minimize the stress levels. This task is based on the paradigm that 

episodic memory is the memory of personal experiences and specific events including what 

happened (‘What’ component), location (‘When’ component), and time (‘When’ component). 

Object exploration was assessed in a clear perpex open-field with wall-covered cues 

(30x30x30cm). A set of 4 identical black charger plugs and a set of 4 identical plastic pink 

and green legos were used for this paradigm (See Figure 30). For the habituation, two 

different objects were used to familiarize animals to objects inside the arena.  

The protocol was as follows: After 3 days of handling, animals were familiarized to the 

apparatus during four consecutive days. During this habituation, animals were exposed for 5 

min per day to the open field without objects for the first two days, followed by two days 

where mice were subjected to two objects in the box for 3 daily sessions of 10 min with 50 

min inter-trial interval (ITI). For the test day, the mice were introduced to three trial 

procedure (two sample trials and a test trial of 10 mins each, with 50 mins ITI). During 

Sample 1, mice were exposed to four identical novel objects (coloured legos) in a triangle 

configuration. Following a delay of 50 mins, mice were then introduced to Sample 2, where 
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four new identical objects (adaptor plugs, which are of different colour, shape and texture 

from the previous object) were placed in a square arrangement. After a 50 minutes ITI delay, 

mice were submitted to the test trial. In this, two ‘old’ (coloured legos) and two, ‘recent’ 

(black adapter plugs) were presented from the previous trials. One of the ‘old’ objects was 

spatially displaced (object displaced) during the test trial, whereas one ‘old’ (stationary) and 

the two ‘recent’ objects were presented at the same location at which they were already 

encountered during sample trials. The exploration time was measured for each object during 

this test trial. It is defined as the time spent actively sniffing or interacting with the object at a 

distance no greater than 2 cm. 

Analysis: Using these test trial exploration data, we estimated three components of episodic-

like memory:  

 

What = (exploration time (ET) ‘olds’ - ET ‘recents’)/(ET ‘olds’ + ET ‘recents’) 

When = (ET ‘old stationary’ - ET ‘recents’)/(ET ‘old stationary’ + ET ‘recents’) 

Where = (ET ‘old displaced’ - ET ‘old stationary’)/(ET ‘old displaced’ + ET ‘old 

stationary’).  

A positive discrimination ratio represents a good memory, whereas a negative ratio indicates 

memory impairment. 

 For the RU486 treatment, 40mg/kg was dissolved in water containing a droplet of Tween-20 

and injected twice daily subcutaneously for 4 days and once on the 5
th

 day, one hour before 

performing the behaviour paradigm. The appropriate vehicle solution (H2O/Tween-20) was 

administered appropriately.  
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4.7.2 Novel Object Recognition (NOR) after local in vivo injections  

 

Figure 31: Scheme showing cannula implantation in the CA1 of the hippocampus for local injections of 

drug/peptide followed by Novel Object Recognition behaviour task. 

 

Surgical procedures for cannula implantation: 

Bilateral cannulae (Bilaney Consultants, PlasticsOne) were stereotaxically implanted into the 

CA1 of the hippocampus (coordinates with respect to bregma: -2.2mm anteroposterior (AP), 

± 1.5mm mediolateral (ML), -1.3mm dorsoventral (DV), according to Paxinos and Franklin 

mouse brain atlas (Paxinos and Watson, 2005) in anesthetized C57Bl/6 2-month-old mice 

(11.25 mg/kg of ketamine and 7.5 mg/kg of xylazine, i.p.).  
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Figure 32: Scheme for Novel Object Recognition protocol. 24 hours after last box habituation, 3 

intrahippocampal injections were given to the mice interspaced by 10 mins each. 10 mins after the last injection, 

mice were submitted to 10 mins exploration of 2 identical objects in Sample. 24 hours after, mice were exposed 

to 10 minutes in the test phase, where one familiar object was replaced by a novel object.  

 

Local injections and behaviour: 

After one week of recovery, the mice were handled for 4 days followed by 2 days of box 

habituation, twice per day for 10 minutes in an empty open arena measuring 20X40 cm, 

30cm high. The next day the mice were injected with 0.5µl volume of either vehicle 

(0.0004% DMSO), 100nM oAβ (0.23ng/0.5µl), 1µM GR Antagonist (C13) or 1 µM C13 

+100nM oAβ. For each group, in total 3 local injections were interspaced by 10 minutes, in 

the order as shown in Figure 31. The rate of injection was at 0.2μl/min via cannulae PE50 

tubing (Bilaney, Germany) connected to a 10μl Hamilton syringe pump system. The tubing 

was left in place for 3 minutes at the end of each injection, and the cannulae capped with the 

dummy cannulae to prevent reflux of the injected solutions. 

10 minutes after the last injection the mice were placed in the same arena containing two 

identical objects i.e. named as Sample (Figure 32). 24 hours later, the Test phase was run as 

the mice are reintroduced into the arena containing two objects, one of which is presented 

previously (familiar) and the other which is a novel object. Exploration was recorded for 10 

minutes. Analysis was carried out by an experimenter blinded to the treatment. Sniffing and 

nose pokes towards the objects at a distance of no more than 2 cms were scored as object 

investigation. Results were expressed as discrimination index (DI), i.e. (seconds spent on 

novel- seconds spent on familiar) / (total time spent on objects). Animals with adequate 

memory spent longer time exploring the novel object, hence giving a higher DI. 
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4.8 Statistical analysis 

Statistical analysis was performed using unpaired two-tailed Student's t-test for studies 

involving weights, biochemical and electrophysiological experiments to probe for a 

difference between genotypes (WT; Tg
+
, GR

lox/lox
 Tg

-
, GR

lox/lox
 Tg

+
) or between treatments 

(GR antagonist versus Vehicle or Cre-GFP versus eGFP). Two-way analysis of variance 

(ANOVA) test was used to measure differences in GR intensity per cell in GFP positive and 

negative cells in eGFP and Cre-GFP virus infected sections. This test was also used for effect 

of treatment (vehicle, RU486) or difference in genotype (WT, Tg
+
) for episodic memory 

behaviour. For NOR test, one sample t-test was used to check the difference of sample mean 

from a theoretical mean (chance level). For the electrophysiological experiments involving 

effect of oAβ in presence of GR antagonist or reduction of GR with Cre-GFP, ANOVA test 

could not be carried out as its assumptions for normality and homogeneity of variances could 

not be fulfilled. Hence, approximative Kruskal-Wallis test was used followed by post-hoc 

permutation t-test analysis with False Discovery Rate (FDR) correction.  

All statistical analysis was done using Prism 6 (Graph Pad). All results are expressed as mean 

± S.E.M. P<0.05 was considered to be statistically significant. 
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5 Results 

5.1 Chapter 1 

5.1.1 Aim: Study of HPA axis dysregulation in Tg2576 (Tg
+
) AD mouse 

model 

The early phase of AD is characterized by hippocampus-dependent memory deficits and 

impaired synaptic plasticity. Strong evidence suggests that the oligomeric forms of the 

amyloid-ß peptide (oAß) are responsible for these synapse dysfunctions and subsequent 

memory loss (Shankar et al., 2008, Puzzo et al., 2008). However, the exact cellular 

mechanism contributing to onset of early synaptic failure and memory impairment in AD 

remains unclear. Stress is known as a major risk factor triggering AD (Rothman and Mattson, 

2010). In presence of a stressful stimulus, the HPA axis is triggered and releases CORT 

which further binds to glucocorticoid receptor (GR). There has been multiple evidence 

implicating HPA axis dysfunction in AD, reflected by markedly elevated basal levels of 

circulating cortisol in human patients and mouse models (Näsman et al., 1995, Swanwick et 

al., 1998, Csernansky et al., 2006, Hebda-Bauer et al., 2013, Lanté et al., 2015). Interestingly, 

the HPA axis dysfunction only seemed relevant in the early stages of Alzheimer’s disease 

(Swanwick et al., 1998) as it did not worsen with additional cognitive decline. Hence, in the 

first aim we focussed in detail on the relationship between HPA axis dysregulation and early 

onset of AD using the Tg2576 mice.  

We used the Tg2576 (Hsiao et al., 1996), which is a good mouse model to study the early 

onset of AD with relation to the amyloid-β protein accumulation. This is because at 3-month 

age there is high presence of different soluble oligomers (Mustafiz et al., 2011) and absence 

of tau phosphorylation. My team had previously characterized the onset of memory loss 

starting at 3 months of age in this mouse model (Figure 33) (D'Amelio et al., 2011). At the 4 

month of age time point, my team had observed high levels of CORT and a non-functional 

negative feedback mechanism as shown by the Dex suppression test indicating a dysregulated 

HPA axis (detailed in Lanté et al. 2015). This helped us link the neuroendocrinological 

dysfunction in this early symptomatic AD mouse model. Onset and progression of this 

dysregulation of the HPA axis had however not been investigated in this model.  
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To answer this, we measured CORT levels at 3 months in the Tg
+
 mice, to verify if the HPA 

axis dysregulation had already been triggered at this earlier time point and later at 6 months 

to check if CORT alterations persisted at this more advanced stage of pathology. Further, we 

estimated ACTH levels at 4 and 6 months in the Tg
+
 mice. Analysis of ACTH levels were 

warranted as there was evidence of an absence of increased ACTH drive despite the high 

cortisol levels in AD patients (Umegaki et al., 2000).  

High CORT levels are known to have an effect on peripheral organs like thymus, hence we 

were interested to check thymus weights in the Tg
+
 mice at 4 and 6 months of age. In 

addition, we checked for adrenal glands weights at these time points to correlate it to the 

chronic over production of CORT in the Tg
+
 mice. GRs are highly expressed in the 

hippocampus and negatively regulate the HPA axis (Herman and Cullinan, 1997, Jacobson 

and Sapolsky, 1991, Herman et al., 2005). Additionally, the hippocampus being a key 

structure involved in memory formation, it develops substantial AD neuropathology in the 

early stage of the disease (Braak and Braak, 1991, Thal et al., 2002b). Hence, we also 

estimated the GR protein level in the hippocampus of 4 month Tg
+
 mice. 

Lastly, we confirmed memory deficits in the Tg
+
 mice at this 4 months time point. My team 

had optimized a memory task based on recognition of objects (see material and methods 

section for details), which allows for probing episodic-like memory in mice. This task was 

chosen as it was deemed fully relevant to study AD pathology as the first clinical sign of 

memory loss in the disorder is generally loss of hippocampus-dependent episodic memories 

(deToledo-Morrell et al., 2007, Salmon and Bondi, 2009). In light of HPA axis impairment 

and excessive CORT levels observed in the Tg2576 mice, we questioned if these episodic-

like memory deficits could be rescued using a GR antagonist. 
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Figure 33: Timeline of Tg2576 mouse neuropathology showing gradual increase of Aβ oligomers starting at the 

early stage (3-4 months) and developing plaques only at a later age. This is also accompanied by early memory 

deficits first observed at 3 months of age. In our study, we focus on the early stage of AD, particularly at 4 

months as our lab has characterised high CORT levels, episodic-like memory deficit and synaptic dysregulation 

at this age. We also checked some phenotypes and measured organs and hormones related to HPA axis at earlier 

time points and at a later age with more advanced pathology. 

Following up on previous results from the team, the objectives of this aim were as follow: 

 

 To estimate CORT levels at 3 and 6 months in the Tg
+
 mice 

 To estimate ACTH levels at 4 and 6 months in the Tg
+
 mice 

 Global effect of HPA axis dysregulation on thymus and adrenal glands weights at 4 

months age 

 Effect of dysregulated HPA axis on total GRs in the hippocampus at 4 months age 

 Check episodic memory test in the Tg
+
 mice and its rescue by GR antagonist. 

 

5.1.1.1 Comparison of CORT levels in WT and Tg
+
 male mice at 3 and 6-month of age 

We demonstrated chronically elevated levels of circulating CORT in Tg
+ 

mice at 4 months, 

establishing an association between early onset AD and HPA axis dysregulation. This 

difference in CORT levels was only during the active phase (20:00) (Lanté et al., 2015). 

Hence, to dissect out in more detail the time point of the trigger and the extent of this 

dysregulation, we measured CORT levels during the active phase in 3 and 6-month old Tg
+
 

mice using ELISA method. At 3 months, there was no difference seen in the CORT levels 

between the WT and Tg
+ 

mice (WT: 128ng/ml ± 18,21; Tg
+
: 110.19 ng/ml ± 16.38; p> 0.05) 

Figure 34, while at 6 months, the levels of CORT were higher in the Tg
+
 mice (WT: 

152ng/ml ± 9.0; Tg
+
: 210.7 ng/ml ± 22.43; p< 0.05) (Figure 34). This suggests that, in this 
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AD mouse model, hypercortisolemia begins after 3 months and persist even at 6 months of 

age. 

 

 

Figure 34: Comparison of plasma CORT levels in WT and Tg
+
 mice at 3, 4 and 6 months. A) Corticosterone 

levels (ng/ml) were measured by ELISA at the dark phase (20:00) in 3 months WT and Tg
+
 mice. B) Similarly 

CORT was measured at 4 months and C) at 6 months in WT and Tg
+ 

mice. All data plotted Mean ± S.E.M. (*) p 

< 0.05; (***) p < 0.001. 

 

5.1.1.2 Comparison of plasma ACTH levels in WT and Tg
+
 male mice at 4 and 6 months 

Secretion of CORT depends on the upstream secretion of ACTH by the pituitary gland. 

Observing excess levels of CORT at 4 and 6 months of age, we attempted to determine if this 

dysregulation would be related to ACTH levels. At 4 months, there was no change in plasma 

ACTH levels between Tg
+ 

and WT mice (WT: 37.66 ± 6.36 pg/ml; Tg
+
: 39.00 ± 4.07). In 

contrast, at 6 months there was a significant decrease in plasma ACTH levels observed in the 

Tg
+
 mice (WT: 20.98 ± 3.80 pg/ml; Tg

+
: 9.52 ± 1.50 pg/ml; p<0.01) (Figure 35). This result 

suggests that in presence of high CORT levels, at 4 months, ACTH levels do not change 

whereas at 6 months ACTH levels decrease in Tg
+
 mice. This decreased ACTH levels 

occurring after CORT increase in the Tg
+
 is in concord with previous clinical studies from 

Umegaki et al., 2000, who report an absence of increased ACTH drive in early AD pathology 

in patients, and with Nasman et al., 1995, where lower levels of plasma ACTH levels were 

seen in the early phase of AD. 



 

 

 

97 

 

 

 

Figure 35: Comparison of plasma ACTH levels in WT and Tg
+
 mice at 4 and 6 months of age. A) ACTH levels 

(pg/ml) were measured by ELISA at the dark phase (20:00) in 4 months WT and Tg
+
 mice. B). Similarly, 

ACTH levels were measured from 6 months WT and Tg
+
 mice.  All data plotted Mean ± S.E.M. (*) p < 0.05. 

5.1.1.3 Comparison of body, thymus and adrenal gland weights between WT and Tg
+
 

male mice at 4 and 6 month of age 

To further characterise the effect of high plasma CORT levels in this AD model, we 

investigated the peripheral organs in relation to the HPA axis. In this regard, we measured the 

weights of adrenal glands, the site of CORT production, at 4 and 6 month of age. In order to 

avoid the variations in the body weight linked to the genotype, the weight of the animals were 

recorded at the time of dissection and used as a normalisation factor. The ratios were 

expressed as mg of organ/ weight of animal in grams. 
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Figure 36: Comparison of body weights, thymus and adrenal gland weights of WT and Tg
+
 male mice at 4 and 6 

month of age. A) and B) represent body weights in grams. C) and D) represent thymus weights normalized to 

body weight (mg/g). E) And F) represent adrenal gland weights normalized to body weight (mg/g).  All data 

plotted mean ± S.E.M (*) p < 0.05; (**) p<0.01; (***) p < 0.001.  

  



 

 

 

99 

 

Animals were weighed at 4 and 6 months of age and at both these times points the Tg
+
 mice 

were significantly smaller in weight as compared to their age matched WT mice ((4 months 

WT: 30.27 ± 0.48g; Tg
+
: 26.62 ± 0.5g; p < 0.0001), 6 months WT: 29.59 ± 0.86g; Tg

+
: 27.05 

± 0.88g; p < 0.05)) (Figure 36 A and B). However, neither at 4 nor at 6 months, did we find 

any significant difference in weight of the adrenal glands between the WT and Tg
+
  mice 

(Figure 36 C and D).  One of the remarkable effects of state of stress is the action of the 

CORT on the immune system. Hence, we also studied the thymus, which is the central organ 

involved in immunity.  

Figure 36 E and F reports that, at 4 months, there was no significant difference between the 

mean thymus weight of the WT and Tg
+
 mice (WT: 1.01 ± 0.08 mg/g; Tg

+
: 1.10 ± 0.11 

mg/g), while at 6 months the average Tg
+
 thymus weight was significantly lower than the 

corresponding age matched WT mice (WT: 1.23 ± 0.07 mg/g; Tg
+
: 0.94 ± 0.10 mg/g; 

p<0.05). Together, these results suggest that high CORT levels, seen at 4 and 6 months in 

Tg
+
 mice, do not affect the weight of the adrenal glands, but affects thymus weight at 6 

months.  

 

5.1.1.4 Quantification of GR by immunoblotting from hippocampal total protein extract 

in 4 months male Tg
+
 and WT mice. 

On continuing our analysis of the effect of high CORT at different levels in the HPA axis, we 

next focused our attention to the hippocampal GR levels. CORT levels are maintained to 

homeostasis through the negative feedback mechanism regulated by various structures of the 

HPA axis. Besides tight regulation at the pituitary and the hypothalamus, the CORT levels 

are also negatively regulated by the hippocampus, the main structure of interest in our 

laboratory. Since the feedback mechanism is dysregulated in the Tg
+
 mice at 4 months as 

shown by the Dexamethasone suppression test (Lanté et al., 2015), we speculated that this 

dysregulation would influence the hippocampal GR levels and hence we measured GR levels 

in hippocampal total proteins. Surprisingly, at 4 months, the total hippocampal GR levels 

(normalised to the endogenous actin control) were unchanged between the WT and Tg
+
 mice 

(WT: 1.06 ± 0.09; Tg
+
: 1.03 ± 0.10, Figure 37). This data demonstrates that despite high 

CORT levels and a non-functional feedback loop, the total GR protein levels in the 

hippocampus remained unchanged. 
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Figure 37: Quantification of GR by immunoblotting from hippocampal total proteins in 4 months male WT and 

Tg
+
 mice.  A). Representative western blot of GR and actin proteins in WT and Tg

+
 mice. B). Graphical 

representation of relative intensity of GR and actin in total proteins from 4 months old WT and Tg
+
. All data 

plotted mean ± S.E.M  (*) p < 0.05.  

 

5.1.1.5 Rescue of episodic memory deficits in 4 month Tg
+
 male mice with GR antagonist 

RU486 treatment. 

We next moved from molecular level to a more integrative level of memory processes. We 

had proof that this early stage of pathology in the Tg
+
 mice was associated to changes in 

synaptic plasticity, like enhanced LTD and memory deficits in the contextual fear 

conditioning task (D'Amelio et al., 2011). To increase the relevance of our findings in the 

context of AD, we focussed our investigation on memory deficits by analysis of episodic-like 

memory, the first type of memory to be affected in AD patients (deToledo-Morrell et al., 

2007, Salmon and Bondi, 2009). To specifically assess this type of memory in Tg
+
 mice, my 

team had previously optimized an elaborated version of the object recognition test, which can 

probe for the ‘What’, ‘When’, ‘Where’ components of episodic memory (Dere et al., 2005). 

Exploration time for all objects was recorded and a discrimination ratio was calculated during 

the test trial. We observed that mice from both genotypes display a similar total exploration 

time during the 10 minute test trial (WT: 63.56 ± 5.73s; Tg
+
: 59.62 ± 6.11 s; p>0.05, data not 

shown). We evaluated discrimination ratios for the ‘What’, ‘When’, and ‘Where’ components 

of episodic memory. For the ‘What’ and the ‘When’ components the positive discrimination 

ratio for the two genotypes did not differ (‘What’ WT: 0,327 ± 0,028; Tg
+
: 0,242 ± 0.046, 

‘When’ WT: 0.259 ± 0.037; Tg
+
: 0.255 ± 0.048) (Figure 38). However, for the ‘Where’ 

component, while WT control animals (untreated/ vehicle-treated mice) displayed a positive 
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discrimination, Tg
+
 group displayed a marked negative discrimination ratio, significantly 

different from the WT (WT: 0.126 ± 0.033; Tg
+
: -0.059 ± 0.068; p<0.001) (Figure 38).  This 

data indicated that the WT mice displayed a good episodic memory in this refined object 

recognition paradigm, while the Tg
+
 mice failed to process the ‘Where’ component (which 

integrates all the aspects of episodic memory i.e. object, time and location). 

 

 

Figure 38: Four-month old Tg
+
 mice display episodic memory deficits which were rescued by blocking 

glucocorticoid receptors. A) Scheme of the episodic memory paradigm including the what-when-where 

components. B) Episodic memory in 4-month old untreated/vehicle treated WT (white bars), in 4 day in-vivo 

RU486 treated WT (dotted bars), in untreated/vehicle treated Tg
+
 (black bars) and in 4 days in-vivo RU486 

treated Tg
+
 (hashed black bars) mice. Discrimination ratios for each component of episodic-like memory are 

indicated. (**) p<0.01; n= number of mice.  

 

Since there was clear dysregulation of the HPA axis and memory deficits in the Tg
+
 mice at 4 

months, we were interested to check if blocking the GRs using its antagonist could rescue the 

memory deficit. WT and Tg
+
 mice received twice daily sub-chronic (4 days) injections of GR 

antagonist RU486 before being exposed to the episodic memory paradigm. Figure 5, reports 

that RU486 did not significantly alter episodic memory in wildtype littermates, while it fully 

rescued the deficit in the ‘Where’ component of the episodic memory, which was seen in the 

Tg
+
 mice (Tg

+
/Tg

+
vehicle: 0.095 ± 0.06; Tg

+
RU486: 0.18 ±0.06; p<0.01) (see Figure 38). 

Hence, together these data suggest that GR activity is involved in impairment of episodic 

memory formation in these early symptomatic mice. 

 

Part of these data were included in Lanté et al. 2015, for which I contributed as co-author (see 

full publication PDF in Annexe). 
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5.2 Chapter 2 

5.2.1 Aim 2: To check the specific role of GRs in AD like phenotypes in 

GR
lox/lox

 Tg
+
 mice. 

As explained above and as published in Lanté et al 2015, promising results suggest that GRs 

activity might contribute to early AD onset phenotypes like episodic memory and synaptic 

deficits. Indeed, both these phenotypes were rescued in the Tg
+
 mice after chronic treatment 

with RU486, a commonly used GR antagonist. However, the major disadvantage of this 

antagonist is its unspecific binding affinity towards progesterone receptor (Baulieu, 1997). 

Hence, to confirm these data, the need for a more specific method to block GRs was required.  

To address this, we crossed the Tg
+
 mice (harbouring the hAPPswe transgene) with 

GRfloxed mice (Tronche et al., 1999) to generate GR
lox/lox

 Tg
+
 mice and their control 

GR
lox/lox

 Tg
-
. We anticipated that at 4 months the GR

lox/lox
 Tg

+
 double mutant mice would 

exhibit phenotypes we had previously characterised in single mutant Tg
+
 mice i.e. increased 

CORT levels, exacerbated LTD and episodic like memory deficits. Then, using a Cre 

recombinase virus, we would have the possibility to remove the GRs from the CA1 neurons 

of the hippocampus in vivo and investigate if loss of GR would prevent the occurrence of 

these AD phenotypes.  

Hence, by generating this conditional ablation model of GR, we could specifically address its 

role in the occurrence of AD phenotypes in this Tg
+
 AD mouse model.  

The objectives in this aim were: 

 To generate the GR
lox/lox 

Tg
+
 mice 

 To characterise the GR
lox/lox 

Tg
+
 for survival rate, size and body weight 

 To validate for AD phenotypes i.e. high CORT levels, exacerbated LTD phenotype 

before removing GR. 

 To remove GR by Cre-GFP virus in the CA1 region of the hippocampus and to check 

for prevention of AD phenotypes. 
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5.2.1.1 Generation of the GR
lox/lox 

Tg
+
 mice 

To generate the GR
lox/lox

 Tg
+
 mice we crossed the GR

lox/lox
 mice with the Tg

+
 mice. The main 

goal of the breeding was to have all the animals with the GR floxed allele and half of these 

animals would be positive for the transgene. Due to the difference in background strains 

between the Tg
+
 and GR

lox/lox
 mice, several crossings were required.  

 

 

Figure 39: Summary of the GR
lox/lox

 Tg
+
 mice breeding. The first step (1) involved crossing the GR

lox/lox
 which is 

in the C57Bl6 background with a WT mouse of the SJL background to obtain a GR
lox/+

 in mixed C57Bl6/ SJL 

background. Second step (2) involved crossing the GR
lox/+

 obtained in the mixed background with the Tg
+
 

mouse to obtain GR
lox/+

 Tg
+ 

double mutants. In parallel, we also crossed GR
lox/+

 (C57Bl6/SJL) amongst each 

other to obtain GR
lox/lox

 (C57Bl6/SJL) (blue U arrow). In the third step (3), the GR
lox/lox

 (C57Bl6/SJL) was 

crossed with the GR
lox/+

 Tg
+
 to have all the mice with the GR

lox/lox
 (homozygous for GR

lox/lox
) and half of the 

mice transgenic for the APPswe transgene (Tg
+
).  
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The crossings were divided into 3 main steps (see Figure 39): 

 To bring the GR
lox/lox

 mouse in C57Bl6/SJL background, which is the Tg
+
 background 

used in Lanté et al. 2015. 

 To cross heterozygous GR
lox/+

 in mixed background with Tg
+
 mice 

 To obtain mice homozygous GR
lox/lox

 Tg
+
 and their respective control (GR

lox/lox
 Tg

-
) 

 

The Tg2576 mice are bred in the C57Bl6/SJL background (Hsiao et al., 1996, Lanté et al., 

2015) and hence it was important to bring the GR
lox/lox 

mice originally in the pure C57Bl6 

background to the mixed C57Bl6/SJL background. Secondly, we mated this heterozygous 

GR
lox/+

 mouse with a male Tg
+
 mouse to obtain GR

lox/+
Tg

+
 mice. It is important to note here 

that for the mating, we introduced the transgene via the male mouse to avoid the effects of 

high CORT production during maternal care. The last step in this breeding was to obtain a 

homozygous GR floxed mice with the transgene (GR
lox/lox

Tg
+
). It took three generations of 

breeders to obtain this double mutant mouse and the probability was only 4% (i.e. 7 out of 

148 GR
lox/lox 

mice were Tg
+
). 
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5.2.1.2 Basic characterization of the GR
lox/lox 

Tg 
+
 mice 

 On obtaining the double mutant mice, several aspects were characterized by comparison 

between the GR
lox/lox 

Tg 
+
 (double mutant) and its control, the GR

lox/lox 
Tg 

-
 (single mutant), 

namely the survival percentage, weight and size of the mouse. 

 

 

Figure 40: Basic characterization of GR
lox/lox

 Tg
+
 mice: A) Survival percentage of GR

lox/lox 
Tg 

+
 mice as 

compared to their controls B) Comparison of body weights of Tg 
+
 and WT male mice at 1 month of age. C) 

Photo of the GR
lox/lox 

Tg 
+
 and GR

lox/lox 
Tg

-
 mice at the time of weaning to show size difference. D) Body 

weights of GR
lox/lox 

Tg 
+
 and GR

lox/lox 
Tg 

-
 male mice from 4 weeks to 8 weeks. All data plotted mean ± S.E.M 

(*) p < 0.05; (**) p<0.01; (***) p < 0.001. 

 

On obtaining the double mutant mice, it quickly became apparent that survival of these mice 

was low (See Figure 40A) and they looked weaker as compared to their controls. As shown 

using a Kaplan-Meier survival curve, the survival rate of these mice decreased to 50% within 

12 weeks’ time (p<0.05). This could probably be due to the C57Bl6 background 

incompatibility with the transgene leading to high lethality. It is known that breeding the 

Tg2576 mice into the mixed C57Bl6/SJL background allows for better long-term survival as 

the SJL alleles protect against the lethal effects of the APP over-expression  (Carlson et al., 
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1997). While working on the single Tg
+
 mice in the mixed C57Bl6/SJL background, we had 

previously observed that there already exhibited a body weight difference at 1 month as 

compared to their WT control (see Figure 40B). Similarly, this weight difference was 

observed in GR
lox/lox

 Tg
+
 double mutants (4 weeks, GR

lox/lox 
Tg

-
: 15.3 ± 1.1g; GR

lox/lox 
Tg

+
: 

10.9 ± 0.8g; p<0.01 and 8 weeks, GR
lox/lox

 Tg
-
:23.12 ± 0.47 g; GR

lox/lox 
Tg

+
: 20.17 ± 0.65g; 

p<0.01) when compared to their controls (Figure 40 D). The variation in size between the 

littermates is exemplified in the photo above (Figure 40C).  To summarize this data, the 

GR
lox/lox 

Tg
+
 double mutant mice showed low survival rate, were weaker in health and had 

smaller body weight as compared to their controls.  

 

5.2.1.3 Verification of AD like phenotypes in GR
lox/lox

 Tg
+
 as seen in Tg

+
 mice. 

Before proceeding to ablation of GR from the CA1 with Cre recombinase in the GR
lox/lox

 Tg
+
 

mice, it was important to verify if these double mutants still exhibited the Tg
+
 phenotypes i.e. 

increased CORT levels and exacerbated LTD as compared to their control GR
lox/lox

 Tg
-
 mice.  
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5.2.1.4 Increased CORT levels  

 

Figure 41: Comparison of CORT levels in Tg
+
 and GR

lox/lox
 Tg

+
 mice. A) Plasma corticosterone levels (ng/ml) 

were measured by ELISA at the dark phase (20:00) in 3, 4 and 6 months WT and Tg
+
 mice (as in figure 1 of 

chapter 1). B) Plasma corticosterone levels (ng/ml) were measured by ELISA at the dark phase (20H00) in 1, 2 

and 3 month GR
lox/lox 

Tg
-
 mice and GR

lox/lox 
Tg

+
 mice. All data plotted Mean ± S.E.M. (*) p < 0.05; (**) p<0.01; 

(***) p < 0.001. 

 

In Tg
+
 single mutant mice, we had observed increased CORT levels at 4 and 6 months of age, 

but not at 3 months (Figure 34 chapter 1 and reproduced here in Figure 41A for ease of 

comparison with double mutant data).  Due to the high mortality of the GR
lox/lox

 Tg
+
 mice, we 

had to shift the latest time point of measuring CORT from 4 months to 3 months. Unlike the 

Tg
+
 mice, increased CORT levels was already seen at 3 month in the GR

lox/lox
 Tg

+
 mice as 
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compared to GR
lox/lox

 Tg
-
 (GR

lox/lox
 Tg

-
: 132.5 ± 10.76 ng/ml; GR

lox/lox
 Tg

+
: 187.7 ± 22.20 

ng/ml; p<0,05). To identify how early this elevation of CORT occurred, we measured the 

CORT levels at earlier time points of 1 and 2 months.  Surprisingly, at 2 months the GR
lox/lox

 

Tg
+
 mice showed increase CORT levels as compared to the GR

lox/lox
 Tg

-
 mice (GR

lox/lox
 Tg

-
: 

92.81 ± 14.61 ng/ml; GR
lox/lox

 Tg
+
:162.8 ± 21.47 ng/ml; p<0,05). Similarly, this difference 

was also seen in 1 month old mice (GR
lox/lox

 Tg
-
: 65.31 ± 8.0 ng/ml; GR

lox/lox
 Tg

+
: 106.7 ± 9.4 

ng/ml p<0,01) (Figure 41 B, C, D).  

 

5.2.1.5 Exacerbated LTD phenotype 

 

Figure 42: Comparison of LFS-LTD in Tg
+
 and GR

lox/lox 
Tg

+
 A) Summary graph (as percentage of fEPSP 

baseline) electrically induced LFS-LTD (arrow) is enhanced at the CA3-CA1 synapse in the 4-month old Tg
+
 

mice (N=3 mice, n=9 slices) compared to the wild type littermate mice (N=3, n=8). B) Summary graph of 

electrically induced LFS- LTD (arrow) is enhanced in 3-month old GR
lox/lox 

Tg
+
 (N=6, n=13) mice compared to 

GR
lox/lox 

Tg 
–
 (N=5, n=13) mice. All data plotted mean ± S.E.M. (*) p < 0.05. 

 

We have previously demonstrated that, at 3 and 4 months, the Tg
+
 mice displayed an 

exacerbation of the LTD in at the CA3-CA1 synapses (Figure 42 left) (D'Amelio et al., 2011, 

Lanté et al., 2015). We were expecting to see a similar phenotype in the GR
lox/lox

 Tg
+
 mice. 

We indeed observed an increased LTD phenotype in 3-month-old GR
lox/lox

 Tg
+
 mice (49.27 ± 

2.841) as compared to GR
lox/lox

 Tg
-
 (60.34 ± 4.102) (p <0,05 Figure 42 right). It was however 

noticed that the GR
lox/lox

 Tg
–
 mice showed a higher LTD  (40%) compared to WT control 

(20%) (comparison of GR
lox/lox

 Tg
–
 LTD in Figure 42B and WT LTD in Figure 42A). Also, it 

was noticed that the double mutants exhibited slightly stronger LTD (Figure 42B, 49% 
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response remaining) than single Tg
+
 mutant (Figure 42A, 66% response remaining), 

suggesting exacerbation of LTD phenotype. However, as these two sets of LTD data were not 

obtained within the same timeframe, statistical comparison would be inappropriate. 

Nonetheless, we decided to continue using the double mutant mice for stereotaxic injections 

with an AAV virus encoding a Cre-recombinase/GFP fusion protein (Cre-GFP virus) to 

proceed to local in vivo ablation of the GR gene (see Material and Methods section (Figure 

26) for details on in vivo ablation procedure.  

 

5.2.1.6 Stereotaxic injections with Cre-GFP in GR
lox/lox

 Tg
+
 mice to ablate GR gene in 

CA1 neurons in vivo 

To validate the Cre-Lox system for GR ablation, it was important to standardize the 

concentration of the Cre-GFP virus and the time of recombination after stereotaxic injection 

for complete expression of the Cre recombinase. CA1 cells transduced in vivo with diluted 

Cre-GFP of titre value 5 x 10
12

 had a morphology peculiar to apoptotic cells (data not 

shown). To avoid this, Cre-GFP was diluted to titre of 5 x 10
11

 and CA1 neurons were 

transduced in vivo. Animals were left alive for 4 weeks to allow for sufficient recombination. 

Identical in vivo transduction was performed using the control AAV virus expressing only 

GFP (eGFP virus). Immunofluorescence images of GR protein after Cre-GFP or eGFP 

injections will be shown later in Chapter 3, Figure 47). 

When injecting the Cre-GFP virus in the CA1 of the hippocampus of GR
lox/lox

 Tg
+
 mice and 

control GR
lox/lox

 Tg 
-
 mice, we encountered an additional problem with the survival rate after 

surgery especially for the GR
lox/lox

 Tg
+
 mice which were transduced with Cre-GFP (most 

relevant group for our study). As shown in Figure 43, we noted that, in all the four groups, a 

fraction of mice were, dying upon surgery, as can be sometimes observed for such heavy 

cranial surgeries. Yet it was clear that the double mutant GR
lox/lox

 Tg
+
 group was particularly 

sensitive to this surgery in combination with the Cre-GFP virus exhibited increased death 

(see Figure 43).   
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Figure 43: Deaths of animals upon surgery for stereotaxic injection. Prominent numbers of deaths were 

observed amongst the groups especially for GR
lox/lox 

Tg 
+
 mice injected with Cre-GFP. 

 

Although it had taken us a year to obtain these double mutant mice, their exacerbated CORT 

and LTD phenotypes as well as their low survival during surgery prompted us to abort the 

use of this strategy to explore the role of GRs in AD.  This was a hard decision to take, but 

we were worried that: 1) it would be difficult to obtain sufficient mice with GR ablation in 

the CA1 in this double mutant background with this increase mortality after surgery, and 2) 

future phenotypical and mechanistic data that we would obtain in this context could not be 

correctly interpreted considering the exacerbated phenotypes that appear very early in the life 

of the mouse and that might not specifically be linked to APP fragment accumulation (e.g. 

weight, CORT levels).  Instead, in collaboration with Dr Frandemiche and using the tools we 

have developed during this thesis and in the lab, we decided to address the functional 

relationship between A oligomers and GRs focussing on the acute actions of A at synapses 

(see next chapter). 
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5.3 Chapter 3 

5.3.1 Aim 3: To investigate if Aß oligomers act via GRs to promote their 

acute synaptic effects at hippocampal synapses.  

We established a link between enhanced CORT signalling via GRs and its contribution to 

early AD phenotypes using the Tg2576 mouse model, as described above. Strong evidence 

suggests that the oligomeric forms of the amyloid-ß peptide (oAß) are causal to development 

of AD pathology (Selkoe, 2002). These oligomeric forms are known to target excitatory 

synapses where they diminish synaptic functions and cause memory impairment (Walsh et 

al., 2002, Townsend et al., 2006, Shankar et al., 2007, Selkoe, 2008). However, the functional 

relationship between GRs and amyloid-β oligomers (oAβ) at the synapses remained mostly 

unexplored. 

GRs are present in the cytoplasm in their inactive form and when activated in presence of the 

CORT ligand they translocate to the nucleus for transcriptional activity. Recently, GRs were 

however also found in PSDs of synapses as well as in dendritic spines (Johnson et al., 2005). 

It is not clear if these represent membrane GRs, which are known for their fast non-genomic 

action. Recently, it was reported that in-vivo intra-cerebroventricular Aß25-35 injections in rat 

promoted accumulation of GRs in the nucleus of the CA1 neurons in the hippocampus 

(Brureau et al., 2013). This strongly suggested an intricate functional relationship between 

Aß and GRs at the nucleus, but there remained a paucity of data on the effects of Aβ on the 

GRs present at the synapses. 

There are numerous evidences in literature proposing amyloid-β oligomers as key mediators 

of synaptic dysfunction. These oligomers (extracted from patients or synthetically prepared 

peptides) were shown to acutely impair hippocampal LTP in the hippocampus (Puzzo et al., 

2008, Shankar et al., 2008, Townsend et al., 2006, Dineley et al., 2010) and to increase 

hippocampal LTD (Shankar et al., 2008, Li et al., 2009). The molecular mechanism through 

which oAβ acts to promote synaptic alterations remains uncertain. Interactions have been 

reported with several receptors such as glutamatergic, nicotinic acetylcholine receptors and 

PrPc (Yamin, 2009, Dineley et al., 2001, Laurén et al., 2009, De Strooper and Karran, 2016), 

but a consensus still needs to emerge on this issue. In this context, we were interested to 

check if the LTP impairment caused by oAβ occurred via GRs. 
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We specifically tackled three questions. In collaboration with Dr Frandemiche, we used acute 

oAβ treatment on hippocampal neuron cultures in vitro followed by biochemical analysis to 

ask if  could modulate GR levels at synapses. We also used ex-vivo hippocampal 

sections acutely treated with oA to check if GRs are implicated in oAß-mediated LTP 

impairment. In this ex-vivo context, we either blocked GRs with a specific GR antagonist or 

first ablated GRs in the CA1 neurons in vivo using the GR
lox/lox 

mice described in the 

previous chapter. Finally, we further extended our research by moving from the synapses to a 

more integrated level of memory processing. To do this, we set up a protocol to assess how 

acute oAβ intra-hippocampal injections could modulate hippocampus-dependent memory 

deficits.  

 

5.3.1.1 Effect of oAß on levels of GR in PSD 

In collaboration with Dr. Frandemiche we showed that oAß can modulate GRs within the 

PSD. We have evidence that acute exposure (30 mins) of 100nM oAß on in vitro 

hippocampal neuron cultures (14-15 DIV) increased the GR levels at the synapses, precisely 

at the PSDs (see Figure 44, oAß: 1.8 times more than control; p<0.01). With this data, we 

established a relationship between acute oAß and GRs at the PSD.  

 

 

Figure 44: Effect of oAß on the GR levels in the post synaptic density. A). Representative western blot image of 

GR levels in PSD in control and after 100 nM oAß- treated hippocampal neurons. B). Graphical representation 

of GR level in PSD in control and oAß treated neurons. All data plotted mean ± S.E.M. (**) p<0.01. 
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5.3.1.2 Effect of GR Antagonist compound 13 (C13) on synaptic transmission and LTP 

To understand better the relationship of GR in acute oAß-mediated synaptic effects, we took 

to a pharmacological approach of exogenously adding specific GR antagonist compound 13 

(C13; CORCEPT Therapeutics, USA, see characteristics in Table 5 in Materials and 

Methods) (Hunt et al., 2015) and 100 nM synthetic oAß as prepared in (Stine et al., 2003, 

Frandemiche et al., 2014). 

We first studied the effect of C13 on basal synaptic transmission and synaptic plasticity per 

se as effects of this compound on these measures had not been described before. These data 

were necessary for correct interpretation of C13 effects on LTP with oA. We used ex vivo 

hippocampal slices and exogenously perfused 1µM C13 or 0.1% DMSO (Vehicle) in ACSF. 

 

 

Figure 45: Effect of C13 on basal synaptic transmission and LTP. A). Basal field excitatory postsynaptic 

potentials (fEPSPs) were recorded followed by exposure to 1µM C13 (n=20 mice, N=23 slices) or 0.1% DMSO 

(n=26 mice, N=32 slices) in ACSF to check for effects of C13 on basal synaptic transmission. B) Summary 

graph (as percentage of fEPSP baseline) of electrically induced LTP (HFS, arrow) in presence of 1µM C13 

(n=10 mice, N=15 slices) or 0.1% DMSO (n=11 mice, N=13 slices). Quantification of LTP magnitudes (as % of 

baseline) calculated 45-60 minutes post HFS (Bottom Right). All data plotted mean ± S.E.M.  

In  
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Figure 45A and B, there seems to be little influence of C13 (1M) or DMSO (0.1%) on the 

fEPSPs, although statistical analysis (see Table 6 below in this chapter) evidenced a small 

(5%), but significant, alteration of fEPSP response after application of these compounds. This 

is likely due to slight perturbation of response due to the application procedure rather than a 

drug/vehicle specific effect. As this alteration of fEPSP response was very small, it did not 

prevent us from investigating the effect of GR antagonist on LTP. There was no difference in 

LTP response in presence of GR antagonist (Figure 45B; DMSO: 155.3 ± 6.1; C13: 148 ± 

6.77). Hence, these findings suggested that inhibiting GRs with its antagonist C13 at 1µM 

concentration did not affect basal synaptic transmission nor LTP. We could then proceed to 

the use of this compound in presence of oA. 

 

5.3.1.3 Effect of C13 on LTP impairment caused by oAß 

Strong evidence shows that different forms of Aß (dimers and oligomers both synthetically 

prepared and from patients) causes LTP impairment when tested on hippocampal slices 

(Puzzo et al., 2008, Shankar et al., 2008). We questioned if this LTP impairment occurs via 

the GRs.  

To begin, we observed the expected oAß effect on LTP in the control DMSO condition as 

seen in Figure 46A.  Indeed, statistical analysis on the last 15 minutes of LTP demonstrated a 

significant oAß effect (DMSO: 155.3 ± 6.1; DMSO + oAβ: 130.7 ± 1.5; p < 0.05 unpaired t-

test). Interestingly, with co-application of 1M C13, this acute oAß effect on LTP was not 

seen (Figure 46 C; C13: 148.0 ± 6.77; C13 + oAß: 147.9 ± 2.27; unpaired t-test). Hence, 

upon comparison of the graphs of oAβ effect with or without inhibiting GRs (Figure 46 E and 

F), we could conclude blocking GRs completely occludes oAß effects on LTP (p < 0.001, 

unpaired t-test). 

To statistically analyse all the groups together (Figure 46 G), we performed the 

Approximative Kruskal-Wallis test followed by post-hoc analysis by permutation t-test with 

false discovery rate correction. Using this grouped comparison, it was evident that oAß 

effects on LTP were prevented by blocking GRs.  
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Figure 46: Effect of acute oAß and C13 on LTP. A)  Left, Summary graph (as percentage of fEPSP baseline) of 

electrically induced LTP (HFS, arrow) in DMSO (n=11 mice, N=13 slices) versus DMSO + 100nM oAß (n=9, 

N=10). B). Left, Summary graph of HFS induced LTP in 1µM C13 (n=10, N=15) compared to 1µM C13 

+100nM oAß (n=8, N=8). C) Left, Summary graph of HFS induced LTP in 0.1% DMSO + 100nM oAß (n=9, 

N=13) compared to 1µM C13 + 100nM oAß (n=8, N=8). (D, E, F) Average LTP magnitudes calculated from 

the corresponding graphs of last 15 minutes of recordings (as percentage of baseline). All data plotted mean ± 

S.E.M. (*) p < 0.05; (**) p<0.01; (****) p<0.0001, by unpaired two tailed t-test. G). Global analysis of average 

LTP magnitudes of all groups. All data plotted mean ± S.E.M. (*) p < 0.05, by Approximative Kruskal-Wallis 

test followed by post-hoc analysis by permutation t-test with false discovery rate correction. 
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5.3.1.4 Quantification of GR reduction in the CA1 of the GR
lox/lox 

Tg
-
 mice upon in vivo 

Cre-GFP transduction 

To confirm the data obtained by pharmacological block of GR, the Cre-Lox system was used 

to specifically ablate GRs in CA1 neurons in vivo. Two-month old GR
lox/lox

 mice were 

transduced either with the Cre-GFP virus or with the control eGFP virus in the CA1 region of 

the hippocampus by stereotaxic surgery. The Cre recombinase recognizes the Lox p sequence 

and cleaves the exon 3 of the GR gene hence producing a non-functional protein (see diagram 

in Figure 26 of material and methods chapter). These mice were left to recover for 4 weeks 

after surgery for complete Cre recombinase expression. 

 

 

Figure 47: Expression of Cre-GFP and reduction of nuclear GR expression in CA1 of GR
lox/lox

mice  A). 

Confocal images of GR immunofluorescence of CA1 cells of mice injected with eGFP (upper panel) or Cre-

GFP virus (lower panel). DAPI staining was used as a nuclear marker. B). Intensity of nuclear GR per cell (n=3 

mice) calculated by corrected total cell fluorescence (CTCF) method using IMAGE J.  Statistical analysis 

(****) p < 0.0001 two-way ANOVA and post hoc Tukey’s multiple comparison test (negative and positive Cre-

GFP cells). All data plotted mean ± S.E.M. 

 

To verify if the Cre-Lox system was functional and that the GR protein was efficiently 

removed after Cre recombination using our in vivo procedure, immunofluorescence staining 

was carried out on eGFP and Cre-GFP transduced hippocampal sections. Sequential images 

of the CA1 neurons were taken on a confocal microscope at 180x total magnification. The 

intensities were measured by Image J and the corrected total cell florescence (CTCF) 

technique was used to calculate GR intensity per cell as explained in materials and methods. 

Figure 47 A represents the images of GR immunofluorescence of the control EGFP positive 

and their neighbouring negative cells (upper panel) and CRE-GFP positive and neighbouring 
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negative cells (lower panel). As expected, we noticed a strong reduction of GR expression in 

the Cre-GFP positive compared to neighbour negative cells (P < 0.0001, Figure 47B),  while 

there was no significant difference between the eGFP positive and negative cells. 

Quantitatively, the in vivo conditional ablation of the GR gene reduced the nuclear GR 

protein by approximately 90%.  This indicates that our in vivo procedure worked well to 

decrease the GR levels in the CA1 neurons of the hippocampus. 

 

5.3.1.5 Effect of GR reduction in CA1 on LTP 

After successful confirmation of reduction in GR expression upon CRE-GFP injections, the 

next step was to investigate the effect of GR reduction on LTP. Field recordings of high 

frequency stimulation (HFS) induced LTP were performed on EGFP and Cre-GFP 

transduced CA1 neurons (Figure 48 A). Only slices with strong EGFP expression within the 

CA1 pyramidal layer were selected for LTP recordings. There was no difference in the post-

LTP responses between the CRE-GFP and EGFP groups (Figure 48B, eGFP:185.8 ± 11.22%; 

Cre-GFP: 178.8 ± 15.46%).  Hence we conclude that reducing GR in the CA1 region of the 

hippocampus does not affect LTP. 
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Figure 48: Effect of GR reduction on LTP. A). Representative images of eGFP and Cre-GFP transduced cells in 

the CA1 region under 10x. B). Summary graph (as percentage of fEPSP baseline) of HFS induced LTP in eGFP 

(n=8, N=8) and Cre-GFP (n=9, N=10) sections. C). Average LTP magnitude calculated from graph of last 15 

minutes of recordings (as percentage of baseline). All data plotted mean ± S.E.M.  
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5.3.1.6 Effect of GR reduction in CA1 neurons on the LTP impairment caused by oA 

Using pharmacological approach of inhibiting GRs we demonstrated that the oAß-mediated 

LTP impairment was prevented. On a similar line, we checked the acute oAß effect on LTP 

after reducing GRs levels in CA1 neurons in vivo. The effect of soluble oAß in inhibiting 

HFS-induced LTP has been well established and we confirmed this by adding 100nM oAß on 

control eGFP sections (eGFP: 185.8 ± 11.22%; oAß +eGFP: 139.4 ± 4.91%; p < 0.001 

unpaired t-test) (Figure 49A). However, this oAß effect was not seen in GR reduced Cre-GFP 

sections as shown in Figure 49B (Cre-GFP: 178.8 ± 15.46%; oAß + Cre-GFP: 164.9 ± 

4.39%; unpaired t-test). To clearly see the difference of the oAß effect with or without GR, 

the graphs were represented together. There was statistical significant difference between the 

oAß + eGFP and oAß + Cre-GFP groups (oAß + eGFP: 139.4 ± 4.91%; oAß +Cre-GFP: 

164.9 ± 4.39%; p<0.01, unpaired t-test) (Figure 8C and see table below).  

For analysis of all groups together (see Figure 49 C), we performed the Approximative 

Kruskal-Wallis test followed by post-hoc analysis by permutation t-test with false discovery 

rate correction (see table below). These results indicate two key points, 1). Acute exposure to 

oAß significantly impaired LTP in the control eGFP sections (p<0.05). 2). Upon reducing 

GRs in the CA1 region, this oAß-mediated LTP impairment was not observed (p<0.05). 

These results indicate that reducing GR expression prevents acute oAß effects on LTP.  
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Figure 49: Effect of acute oAß on eGFP- and Cre-GFP-transduced adult hippocampal sections. A). Left, 

Summary graph (as percentage of fEPSP baseline) of electrically induced LTP (HFS, arrow) in eGFP 

transduced slices without (eGFP; n=8, N=8) or with 100nM oAß (eGFP + 100nM oAß; n=8, N=8). B). Left, 

Summary graph of HFS induced LTP in slices transduced with Cre-GFP without (n=9, N=10) or with 100nM 

oAß (Cre-GFP+100nM oAß; n=6, N=8). C) Left, Summary graph of HFS induced LTP in eGFP + 100nM oAß 

(n=8, N=8) compared to Cre-GFP + 100nM oAß (n=6, N=8). (D, E, F) Average LTP magnitudes calculated 

from graphs of last 15 minutes of recordings (as percentage of baseline). All data plotted mean ± S.E.M. (*) p < 

0.05; (**) p<0.01; by unpaired two tailed t-test. G). Global analysis of average LTP magnitudes of all groups. 

All data plotted mean ± S.E.M. (*) p < 0.05, by Approximative Kruskal-Wallis test followed by post-hoc 

analysis by permutation t-test with false discovery rate correction. 
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Collectively, both the pharmacological approach of GR inhibition and the genetic ablation of 

GR indicate that oAβ relies on GRs for it synaptic effect on LTP.  

 

5.3.1.7 NOR test after oAß local injections 

After establishing the implication of GRs in the oAß effect on LTP, we were interested to 

check their functional relationship at an integrative level of memory. In collaboration with 

Dr. Bethus, we opted to check for Novel Object Recognition Test (NOR), since this is 

hippocampus-dependent memory test. It is widely used for evaluating memory in AD mouse 

model and is based on spontaneous animal behaviour without the need of any stressor 

element.  

It was first important to optimize a protocol with which one would observe that acute oA 

intra-hippocampal injections could cause an immediate memory deficit phenotype, as no such 

protocol was available in the team. This type of approach was already published, albeit with 

differences by other investigators. Indeed, a study by Balducci et al., 2010 showed that single 

icv injection of nanomolar concentration of A during learning in the object recognition task 

impaired memory consolidation within 24 hours of testing and hence we decided to use 

similar time points. For the concentration of the oA, we purposefully remained in the 

similar condition of electrophysiology but injected twice 100nM with a 10 minute interval. 

 

 

Figure 50: Discrimination ratio for oA versus vehicle mice. oA treated mice display a decreased  

discrimination ratio for the novel object as compared to the vehicle group using the novel object recognition 

test. Data plotted mean ± S.E.M. (*) p < 0.05 
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We obtained a small difference in the discrimination ratio of the novel object in the oA 

treated animals as compared to the vehicle. Using one sample t-test, we proved that the 

discrimination ratio for the vehicle group was statistically significant from the chance level 

(Vehicle: 0.22; chance level: 0; p<0.05) while not for the oA group (oA: 0.11; chance 

level: 0; p>0.05, see Figure 50). With this, we could interpret that, while the vehicle treated 

animals could discriminate the novel object, oA treated animals could not suggesting 

memory impairment. We need to repeat more experiments to confirm this memory deficit, 

after which we will test if the GR antagonist C13 could prevent this oAß-mediated memory 

deficit. 

  



Table 1: Table for unpublished data from Chapter 3 
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5.4 Chapter 4  

In addition to studying Aß and its relationship to GRs at synapses, I participated in a 

collaborative study with Dr Willem and Dr Haass, Ludwig-Maximilians University Munich, 

DZNE, Munich, Germany). These collaborators had discovered the existence of a new APP 

pathway that generates new types of peptides that they called Aη- or Aη-ß.  Nothing was 

known about how these peptides modulated brain functions (Willem et al., 2015). We 

therefore investigated, if these peptides (Aη- or Aη-ß) could impact basic synaptic 

transmission and LTP.  

 

5.4.1 Discovery of -secretase APP processing pathway 

In brief, a new physiological cleavage of the APP by the η-secretase at amino acid 504-505, 

produces a new C terminal fragment (CTF) called CTF-η of molecular mass 30 kilodaltons. 

This is further processed by secretase and ß-secretase to release A-η long and short 

peptides (termed Aη- or Aη-ß), respectively (see in Annexe supplementary fig 1 of Willem 

et al., 2015). Since these cleavage products were seen to be enriched in dystrophic neurites in 

human AD brains, we verified if they interfered with neuronal function like oAß and hence 

checked their effect on synaptic transmission and LTP.  

 

5.4.2 Aim 4: Effect of CHO derived Aη- and Aη-ß peptides on LTP 

To validate the potential effect of Aη peptides on synaptic transmission and LTP, Dr Willem 

produced CHO cells expressing cDNAs encoding either Aη- or Aη-ß sequences. He 

collected the medium of these cells and purified fractions enriched in these peptides by size-

exclusion chromatography (SEC) (see below in Annexe (Willem et al., 2015) for full details). 

After general rounds of optimization to use these types of samples on ex vivo hippocampal 

slices, we could investigate how these media enriched with either peptide would modulate 

synapse function. These media were applied to hippocampal slices of 3-4 week old Swiss 

mice.  To study basic synaptic transmission, we waited for a 20 minute baseline in standard 

ACSF and then applied either control medium (CHO) or medium enriched in either peptide 
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(CHO Aη-; CHO Aη-ß) for another 20 minutes. We did not observe significant alterations 

of basic synaptic transmission in presence of these media (Figure 51). 

 

 

Figure 51: Effect of Aη- (n=4) or Aη-ß (n=4) on baseline activity at the CA3-CA1 synapse. A) SEC fractions 

containing Aη-were diluted (1:15) in ACSF and were perfused on mouse hippocampal slices after obtaining a 

15 min baseline. Baseline recordings were carried out thereafter for the next 15 minutes. B). Similar protocol 

was followed for SEC fractions containing Aη-ß. These results are published in (Willem et al., 2015). 

 

 We next checked if these media could modulate LTP.  We first obtained a stable fEPSP 

baseline and applied the medium for 20 minutes before LTP induction. We then applied an 

HFS protocol (2x100Hz at 20 sec inter-stimulus interval) and monitored LTP for another 

hour. 
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Figure 52: Aη-impairs LTP. A) Summary graph (as percentage of fEPSP baseline) of electrically induced 

LTP in presence of Aη-peptide n=9) or B). Aη-ß peptiden=7) or C). control ACSF n=15) compared to 

conditioned media from untransfected cells (CHO; n=13). D). Average LTP magnitudes calculated from graphs 

of last 15 minutes of recordings (as percentage of baseline). All data plotted mean ± S.E.M. (*) p < 0.05; by 

unpaired two tailed t-test. These results are published in (Willem et al., 2015). 

 

We observed that Aη- but not Aη-ß lowered LTP magnitude. Thus, these results show that 

this novel η- secretase processing of APP produces Aη- peptide, which harbours synapse 

modulating properties. 

In this study, we also collaborated with Drs Busche and Konnerth Technische Universität 

München, Munich, Germany) who demonstrated that this Aη- peptide also modulates 

hippocampal calcium transients in vivo (Willem et al., 2015).   

Together these data strongly suggest a neuromodulatory and possibly pathological role of this 

newly discovered APP peptide in the brain.   
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6 Discussion and Perspectives 

 

HPA axis dysregulation in early onset of AD and its effects  

In Chapter 1, we have used the early-symptomatic AD mouse model Tg
+
, which chronically 

over-expresses APP leading to an accumulation of A and APP derived products in the brain. 

Here, we show that, at the onset of functional and behavioural symptoms (4 months), these 

mice show an increased production of CORT and a dysregulated feedback mechanism. It is 

important to note here that these mice produce high CORT levels without any exposure to 

external stressors. A similar phenotype has been evidenced in early 3xTg mice, which have 

an over-activated central HPA axis (Hebda-Bauer et al., 2013). The etiology of this 

dysfunction of the HPA axis in these models is not known and hence to address this we 

studied the different hormones and organs implicated in the HPA axis in the Tg
+
 model. 

4 months represents the onset of the increase in CORT levels in the AD Tg
+
 mouse model. I 

contributed to show that the plasma CORT levels (during active phase) in Tg
+
 mice, while 

still normal at 3 months, significantly increases at 4 months and persist even at 6 months of 

age. This increase in CORT suggests hyperactivity of the HPA axis in agreement with what 

has been seen in AD patients (Elgh et al., 2006) and in other transgenic AD mouse models  

(Hebda-Bauer et al., 2013). My team obtained other results regarding CORT regulation at the 

4 months’ time-point in this model. They also showed that the circadian plasma level 

variations of CORT are preserved in these mice (Figure 1 of (Lanté et al., 2015)), suggesting 

that aspect of HPA axis regulation is still intact. They also showed that this CORT level 

difference between Tg
+
 and WT mice is remarkable only during the active phase (20:00), and 

not the rest phase (8:00). This suggests that basal maintenance of GC levels (levels that 

would activate MRs) is maintained in these mice. Finally, they observed a dysregulation in 

the negative feedback mechanism, as evidenced by the Dexamethasone Suppression Test. 

After Dexamethasone injections, CORT levels remained elevated in Tg
+
 mice instead of 

returning to basal levels as observed in the WT (Lanté et al., 2015).  

Report of high presence of different soluble oligomers observed in 4 month Tg
+
 mice 

(Mustafiz et al., 2011) can help us predict a correlation between progressive increase of A 

oligomers evident during this early phase and onset of HPA axis dysregulation, but direct 

implication of A in this phenotype was not addressed concretely. 
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High CORT levels in the Tg
+
 mice at 6 months of age decrease the weight of the thymus 

glands. It is well known that in chronic stress profound atrophy of the thymus is seen, hence 

indicating that chronic elevation of CORT in the Tg
+
 mice mimic this metabolic phenotype of 

chronic stress (Scollay and Shortman, 1983).  

 

Decrease in ACTH levels in the Tg
+
 mice at 6 months and the dissociation with CORT 

production 

Having observed this hypercortisolemia in the Tg
+
 mice at 4 months of age, we attempted to 

determine whether this deregulation would be related to the ACTH. Our results show that at 4 

months, during the awakening phase, the plasma concentrations of ACTH is not different 

from that of WT, while at 6 months ACTH levels decreased in the Tg
+
 mice. This decrease is 

consistent with clinical data in patients with early AD onset, which show low ACTH levels or 

absence of increased ACTH drive (Umegaki et al., 2000, Näsman et al., 1995). Concurrently, 

reports have shown that adrenal sensitivity to ACTH enhanced in AD due to HPA axis 

hyperactivity (O'Brien et al., 1996). This might be one reason as to why we don’t see increase 

in adrenal gland weight in the Tg
+
 mice in spite of high production of CORT.  In addition, 

low levels of ACTH in the Tg
+
 mice or in AD patients could be associated to an increased 

central drive by CRH. This could be due to downregulation of the pituitary receptors or due 

to increased sensitivity of the adrenal gland to ACTH (as seen in the Gr
NesCre

 mice (Tronche 

et al., 1999), but we have not tested these hypotheses.  

On merging the CORT and ACTH data, we see that there is a divergence between the two i.e. 

the high levels of CORT are not due to high levels of ACTH. But this divergence is not 

uncommon, and has been seen in AD patients and mouse models (Bornstein et al., 2008, 

Tronche et al., 1999). There are numerous studies which have indicated large number of 

factors for example neuropeptides, neurotransmitters, growth factors, etc. capable of 

modulating GC release independently of pituitary ACTH (Ehrhart-Bornstein et al., 1998) (see 

Figure 53).  
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Figure 53: Possible pathways contributing to the dissociation of ACTH and GC levels. Adrenal secretion of GCs 

is dependent on pituitary ACTH release, which is triggered by hypothalamic CRH release. However, there are 

certain cases, GC production is dissociated from ACTH levels. This can be due to altered sensitivity of the 

adrenal cortex to ACTH, through the ACTH receptor. In addition, ACTH-independent stimuli influence the 

adrenal GC synthesis and release. These include innervation of the gland and neuropeptides released from 

neurons and adrenomedullary cells, interaction with the immune system through release of cytokines, release of 

paracrine factors and adipocyte derived factors. In addition, GC levels are regulated by GC metabolism in the 

liver (Bornstein et al., 2008).  

 

 

Effect of HPA axis dysregulation on GRs in the hippocampus 

Normally, when CORT levels are high, the auto-regulatory system of the steroid receptor 

works to decrease their numbers to bring the system back to homeostasis. This is also 

explained by the GC cascade hypothesis, perhaps as an adaptation to prevent GC-induced 

damage (Sapolsky et al., 1984). 

We demonstrate that total GR levels (which include cytoplasmic, nucleic, and membrane 

GRs) do not change in the hippocampus of the Tg
+ 

and WT mice at 4 months of age. These 

results are consistent with data from AD patients which show that GR levels are maintained. 

This is believed to be due to the unaltered circadian rhythm of cortisol secretion, which may 

be a factor for maintaining the hippocampal GR numbers (Seckl et al., 1993, Wetzel et al., 

1995). 

Our results do not match those from the 3-4-month-old 3xTg AD mouse models, which show 

early activated HPA axis characterised by elevated mRNA levels of GR in the CA3 and DG 

sub-regions of the hippocampus (Hebda-Bauer et al., 2013).  However, these results cannot 

be compared adequately as the AD mouse models are different and the GRs are studied in 
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different tissue preparations (CA3/DG vs total hippocampus) and using different protocols 

(mRNA vs protein). 

Knowing that GRs are multifunctional receptors, they have different roles depending on their 

location i.e. nucleus, cytoplasm and the membrane. Hence to further understand their role at 

the synapses, Dr Frandemiche in the team isolated hippocampal PSDs of 4 months of Tg
+
 

mice and quantified GR levels. She observed a decrease in GR expression at the PSD of the 

Tg
+
 mice (data not shown), which could be related to the lesser number of neurons/synapses 

present due to chronic exposure of CORT in the hippocampus. 

A separate study could be conducted to isolate GRs from the nucleus and cytoplasm of the 

Tg
+
 and WT mice. This would give additional information on the activity of these receptors, 

which could be expressed as a ratio of nuclear: cytoplasmic GRs.  

 

Episodic memory deficit in 4 month Tg
+
 mice and rescue by sub-chronic GR antagonist 

treatment 

We provide evidence of an early impairment in episodic-like memory in four-month-old Tg
+
 

mice, correlating this phenotype to early A oligomer aggregation but prior to plaque 

formation (Hsiao et al., 1996). This study is important as there are few studies which have 

tested episodic-like memory in AD mouse models and only at more advanced stages of AD 

(Baglietto –Vargas., 2013; Davis., et al. 2013; Good et al., 2007). This type of elaborated 

behavioral paradigm is very useful as it encompasses the “what”, “when” and “where” 

components of human episodic memory. Hence, it could be more readily used in pre-clinical 

studies to provide more adequate relevance while testing for new therapies for AD.   

We also proved that a four-day treatment of sub-chronic antagonism of GR (with RU486) 

was sufficient to rescue memory impairment. In addition, my team obtained interesting 

results showing that exacerbated LTD in the Tg
+
 mice were also rescued by RU486 but only 

after 4 days of sub-chronic treatment and not acutely or after 2 days (Lante et al., 2015). This 

suggests that in vivo RU486 treatment might involve the GR-dependent genomic effects 

which may be necessary to reset a homeostatic balance of CORT signalling in Tg
+
 mice. This 

sub-chronic RU486 treatment is also serving as an advantage to avoid the side effects of 

prolonged GR blockage (Morgan and Laufgraben, 2013) and hence, these results are more 

promising than the previous study, which reports that at an advanced AD pathological state, 3 

weeks of RU486 GR antagonist could reverse the memory impairment (Baglietto-Vargas et 
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al., 2013). It is important to point that despite the number of hippocampal GR not changing 

between the Tg
+
 and the WT, the GR antagonist could rescue the early AD episodic-like 

memory deficits. Probably, the GR activity and sensitivity is high in the hippocampus due to 

either hypercortisolemia condition or its interaction with the amyloid- peptides. Hence, 

inhibition of this excess GR activity could rescue the memory deficit by RU486. Since we are 

aware of the unspecific binding of RU486 on progesterone receptors, it would be important to 

repeat with the more specific GR antagonist C13.  

In conclusion, as shown in the summary Figure 54, there is a dysregulation of the HPA axis 

as seen with high CORT levels and the non-functional feedback mechanism. ACTH levels 

are decreased at 6 months of age and there is a dissociation between the ACTH and CORT 

levels. GR levels in the Tg
+
 in the hippocampus were not changed despite the high levels of 

CORT. This excessive GR activity is involved in the episodic-like memory deficits and can 

be rescued with short GR antagonist treatment. 
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Figure 54: Summary of HPA axis alterations in Tg2576 AD mouse model.  High levels of CORT are produced 

at 4 and 6 months. There is a dysregulation of the negative feedback mechanism using the Dexamethasone 

suppression test (black cross). No change in adrenal gland weight at 4 and 6 month. Decrease in thymus weight 

at 6 months. Total hippocampal GRs do not change at 4 months in the Tg
+
 mice. All these are in comparison to 

the same aged WT mice. 

 

Severe phenotypes seen upon breeding the Tg
+
 and GR

lox/lox
 mice 

To have a clearer idea of the functional role of GR in AD in the hippocampus, especially the 

CA1, we decided to generate the conditional ablation model of GR within the AD Tg2576 

model by crossing the Tg
+
 with the GR

lox/lox
 mice. This model was viewed as a novel AD 

model, which would make it easier to manipulate the GRs in vivo in specific regions of the 

brain. Hence in Chapter 2, we generated the double mutant GR
lox/lox

 Tg
+
 mice to understand 

better the role of GR specific activity in early AD onset phenotypes like episodic-like 

memory and synaptic deficits. These mice harboured the hAPPswe transgene along with the 

GR floxed gene.  
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We had to wait till the third generation to obtain the double mutant mice and thus the entire 

breeding process took around a year. This made us speculate that maybe the transgene and 

the GR
lox/lox

 allele were in close proximity making their crossing over less probable. There 

was a difference in size and body weight between the GR
lox/lox

 Tg
+
 and its control, suggesting 

abnormal development. In addition, the double mutant mice had a low survival rate, which 

indicates that harbouring dual mutation leads to increased lethality. These double mutant 

mice exhibited exacerbated phenotypes like high CORT levels from weaning period and 

exacerbated LTD phenotype. Despite these drawbacks, we injected the Cre-GFP virus by 

stereotaxic method to reduce the GR levels in vivo in the hippocampus. However, the number 

of deaths increased after these injections making it difficult to continue using these mice.  

Similarly, a review by Sigmund also highlighted the several problems faced while using 

transgenic mice (Sigmund, 2000). The major problem is the genetic heterogeneity among the 

different mice strains, because each transgenic founder mice is different from every other 

founder. The second issue specifically related to transgenic mice is the position effect. Due to 

random nature of the transgene insertion, each resultant founder contains the transgene at a 

different site in the genome. These can profoundly affect transgene expression and therefore 

the observed phenotype. This is due to presence of transcriptional regulatory elements near 

the site of insertion of the transgene, which could change the normal transcription of the 

transgene. 

However, in our case, we are not sure of the exact cause for these exacerbated phenotypes 

and increased deaths in the double mutant mice, but speculate on the two points mentioned 

below: 

 There could be a genetic incompatibility of the hAPPswe transgene in the hybrid 

background as suggested already by Carlson et al., 2007, and not due to the 

expression of the transgene or oligomers aggregation per se.  

 The position of the transgene is not known and could insert into important genes 

disrupting some basal functions (explained as above). Also, the interaction of the 

GR
lox/lox

 allele and the transgene could lead to developmental issues. 

 

Unfortunately, due to the uncertainty of obtaining enough mice to obtain pertinent results 

with these double mutant mice within the time remaining of the thesis, it was decided to stop 

using these mice.  
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Development of congenic mice could be a safer idea to reach our goal of creating double 

mutant mice harbouring both AD phenotype and GR
lox/lox

. A congenic strain is one that is 

genetically identical to a control strain except for the single region of one chromosome i.e. 

the inserted transgene. Although the generation of congenic mice is simple it is time 

consuming. It is important to note that at least six generations of backcross breeding are 

required before the genetic background is statistically > 99% homogenous.  

There have been additional disadvantages associated specifically with AD transgenic mouse 

models and Saito et al., 2014 well identifies these artifacts. There is over-production of A 

but also over-production of APP itself and other APP fragments like CTF- and AICD, 

which themselves harbour bioactivities.  To address these questions in particular, Saito et al., 

2014 produced 3 knock-in APP mice on C57Bl/6 background, which have humanized A 

sequence and familial AD-associated mutations into the endogenous mouse APP locus. There 

are advantages with these mice as they are made on pure C57Bl/6 background and not on a 

mixed one. In addition, one of the three KI mice is their negative control, which is very 

relevant as it makes the mice suitable to study only the high production of A42:40 ratio and 

not the other APP processing fragments. These mice could be an alternative to the Tg
+
 mice 

we used in our study, which seem to be overly sensitive due to their mixed background. Also, 

since the GR
lox/lox 

are originally from the pure C57/Bl6 background, there would be less 

chances of genetic incompatibility when crossing with these new KI mice.  

 

Relationship between A oligomers and GR 

In Chapter 3, we correlate the relationship between A oligomers and GRs at the molecular 

and cellular levels. In the literature, there is very little evidence about a functional interaction 

of A and GRs at the synapses. Brureau et al., 2013 have shown that A(25-35) intra-

cerebroventricular injections to the CA1 increased the concentration of GR in the nucleus. 

This data suggest that nuclear GR are affected by A, but there is a paucity of data explaining 

the relation of oA and GRs at the synapses. 

In the team, Dr Frandemiche has shown that A1-42 requires GRs to mediate some of its 

effects on synapses. She had previously shown that upon acute treatment of 100nM oA on 

primary cortical neurons, synaptic proteins like PSD-95, Actin and GluA1 are upregulated in 

the PSDs (Frandemiche et al., 2014). Similarly, using hippocampal neurons cultures, we 
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observed an increase in these synaptic proteins with acute treatment of 30 minutes of 100nM 

A (data not shown). In addition, she observed that inhibiting GRs with the Compound 13 or 

RU486 prevented some of these effects, especially A-dependent recruitment of PSD95 to 

the PSD (data not shown). Together with Dr Frandemiche, we also provide novel data that a 

similar preparation and concentration of oA treatment increases the GR levels in the PSD of 

cultured hippocampal neurons (Figure 44). Collectively, these data suggest a functional 

relationship between A and GR at excitatory synapses. We need to further investigate if 

there is a direct physical interaction between the two. However, due to the sticky nature of 

oAß, it would be difficult to perform interaction studies between the A and GRs like 

analysis of GR binding using fluorescence polarisation assay or by FRET. Also, functionally, 

both CORT and A act on the glutamatergic system and hence we could check if specific 

action of AMPAR and/or NMDAR are involved in their interaction. There are further 

prospects of speculation on the involvement of ERK intracellular signalling and other 

secondary messenger systems in their interaction (Chen et al., 2012).  

The next question is to understand the role of the elevated GRs in the PSDs. Till date, GRs 

are identified in the PSD as well as dendritic spines of the amygdala (Johnson et al., 2005). It 

is not clear if the GRs present in PSD are same as membrane GRs (mGRs). Recent findings 

have shown that mGRs are located in synapses and surrounding space of rapidly plastic 

dendritic spines and their activation leads to rapid changes in spine size and number, while 

mMRs are linked to receptor trafficking and regulation of synaptic transmission (Prager et al., 

2010). Collectively, mMR and mGR mediate rapid regulation of synaptic structure and 

function is central for learning and memory. However, for the moment, we cannot conclude 

as to the functional role of the A-mediated increase of GRs within the PSD. 

 

Role of GRs on LTP 

It is well known that, in presence of high dose of CORT/ stress, there is reduction of LTP in 

the different regions of the hippocampus. On similar lines, using pharmacological agents like 

GR and MR agonists/ antagonists, it was shown that activation of MRs produce LTP 

enhancement, which was abolished by pre-injections of MR antagonist RU318, while 

activation of GRs produces a potent suppression in LTP which was prevented by pre-

treatment with GR antagonist RU486 (Pavlides et al., 1995). These studies demonstrate that 

GRs within the hippocampus negatively modulate hippocampal LTP. 
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We, however, observed that blocking GRs using the highly selective GR antagonist C13 at 

1M, did not modify basal synaptic transmission and LTP. In our ex vivo conditions, which 

mimics absence of stress, the CORT occupation of GR and MR should be approximately 

10% and 90%, respectively (Reul and de Kloet, 1985). We could presume that in this context, 

if MR mediates a positive effect on LTP, then blocking of GR during non-stress conditions 

should be insufficient to alter hippocampal function. In contrast to this prediction, 

behavioural experiments on adrenalectomised rats given MR agonist aldosterone performed 

well on Y maze, while intact rats injected with the GR antagonist RU555 performed poorly 

(Conrad et al., 1999). This data shows that preventing GR activation, even in the presence of 

functional MRs, impair hippocampal function. To investigate further, we could increase the 

concentration of C13, if 1M was too low to reveal the actual effect of GR on LTP per se. 

But a lack of effect of C13 per se at this concentration was ideal to further study its effect on 

A-mediated LTP impairment as it avoided introduction of confounding variables for linear 

interpretation of the results.  

 

GR antagonist prevents A effects on LTP  

Frandemiche et al., 2014 demonstrates that synaptic activation in the presence of oA did not 

lead to the expected increased levels of PSD95 or GluA1 in the PSD fraction in cultured 

neurons (data not shown). This prevented the long-lasting modification of synaptic strength, 

which is also validated with exhaustive ex vivo data show that oA acutely impairs LTP in 

hippocampus slices (Shankar et al., 2007, Townsend et al., 2006, Walsh et al., 2002). We 

report similar results, which show that 100nM oA impair LTP in the CA1 of the 

hippocampus. This preparation of oA mainly consists of a mixture of monomers, dimers, 

trimers (majorly) and some tetramers and oligomers (as prepared in Frandemiche et al., 

2014), so we cannot conclude as to exactly which species of A mediates this LTP 

impairment in this experiment. My team has, however, also observed this LTP deficit using a 

preparation consisting of only dimers of A (data not shown) (Willem et al. 2015) and others 

have not seen effects of monomeric A on LTP (Selkoe, 2008), suggesting that dimers and 

higher oligomers may be the main mediators of this A-induced synaptic modulation. 
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There are multiple interacting partners/receptors involved with A and their contribution to 

this synaptic impairment is not conclusive. For example, AMPAR, NMDAR, nAchR, etc are 

interacting partners of A, and are involved in LTP effects.  

As we had uncovered a functional relationship between A and GRs at synapse in cultured 

hippocampal neurons (Frandemiche’s work), we had speculated that GRs might be involved 

in this A-mediated LTP impairment. Using C13 as a specific GR antagonist, the acute effect 

of A-dependent LTP impairment was completely prevented. These suggest that A relies on 

GRs to mediate its LTP impairment. Using this pharmacological approach, we inhibit GRs 

for an acute time period ranging between 20-40 minutes. It is most likely that in this time 

frame non-genomic actions are predominant via the membrane GRs, but could also include 

the genomic effect. We cannot distinguish between these two possibilities at present, but 

favour a non-genomic action due to the short timeline of the experiment. 

In future work, we are very interested to see if GRs are involved in the A-mediated effect on 

LTD. If, by inhibiting GRs, we could also prevent the A-mediated LTD exacerbation, it 

would confirm that the two well-known A effects on synaptic plasticity happens via the 

GRs. If this were not the case, then it would suggest that different mediators are necessary for 

A to independently mediate its effects on LTP and LTD processes.  

 

Comparison between the pharmacological treatment of GR antagonist versus genetic 

ablation of GR using the GR
lox/lox

 mice on acute A effect  

Using the GR floxed animals, after 4 weeks of Cre-GFP recombinase, we confirmed 

reduction of nuclear GRs by 90% (we are not sure about the membrane GRs as only nuclear 

GRs were quantified). In both the cases, that is with pharmacological inhibition of GR and 

with genetic ablation of GR, we can see that the acute A effect on LTP impairment is 

prevented. There is better prevention of the A effect in the pharmacological studies (Figure 

46) as compared to the GRs ablated genetically (Figure 49). This is not surprising as this 

could be due to a more uniformity of action of the antagonist, leading to complete block of 

GRs, while with virus induced genetic ablation, the loss of GR function is not complete 

remaining in non-transduced neurons.  
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Acute Ao impairs recognition memory 

Within the last months of the thesis, we were interested to provide more pertinence to our 

findings ex vivo by also studying this acute A-GR functional interaction at the integrative 

level of memory processes. We observed memory impairment in the oA group, as they 

could not discriminate between the novel and the familiar object using the NOR test. Though 

the A effect on memory impairment was very small, we got a statistical difference within 

the individual groups. For future experiments, we need to repeat this experiment to assure the 

oA-mediated object recognition memory impairment and to further validate the preventive 

effect of the GR antagonist. In addition, it would also be interesting to repeat this experiment 

with the Cre-lox system in the GR
lox/lox

 mice. 

 

Novel data showing Aη- impairs LTP 

In collaboration with Drs Willem and Haas, we show interesting results on the newly 

discovered APP fragments Aη- and Aη-ß for their neuromodulatory action on synaptic 

transmission and LTP. These fragments were seen to be enriched in dystrophic neurites in 

human AD brains, indicating its potential contribution to AD pathology.  We found that Aη-

, but not Aη-ß, negatively impairs LTP (Willem et al., 2015). In addition, in this study, 

work done by Drs Busche and Konnerth demonstrated that Aη-also modulates calcium 

transients in vivo. Together, these results are very interesting since they demonstrate that Aη-

has synapse modulatory properties like the extensively studied Aß. For future experiments, 

it will be interesting to continue to identify exactly how Aη- mediates its synaptic effects. 

Firstly, we could check the effect of Aη- peptide on LTD by field recordings. Together with 

the LTP data, we would hence conclude on the effect of Aη- on post-synaptic plasticity. We 

could also use whole cell patch clamp technique to check the effect of Aη- on AMPAR and 

NMDAR currents, both major actors of LTP and LTD. Another interesting experiment would 

be to check the dose-response curve of different concentrations of Aη- and its effect on 

synaptic plasticity. These studies on synaptic activity could eventually be extrapolated to 

studying the effects of this peptide on hippocampus-dependent memory processing, 

especially the well elaborated episodic-like memory test standardized in our lab. This would 

provide crucial new information on the role of Aη- in the brain.  
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7 Conclusion 

 

AD is a complex neurodegenerative disorder, which is perceived to commence with a gradual 

decline in synapse function leading to memory impairment before spreading through the 

brain to provoke global cognitive deficits. It is a multifactorial disease involving strong 

evidence of genetic dependence and important risk factors like stress, diet and other lifestyle 

conditions. There are only few therapeutics in the market for AD but none of them have been 

effective in controlling the progression of the disease. Hence our studies focus on the early 

onset of AD in mice to be able to identify the causative elements and to reverse typical AD-

like phenotypes screening for potential drug treatments. 

Our study is relevant as it tries to uncover the molecular mechanisms underlying stress as an 

important risk factor in AD. Research in this thesis extends our understanding of the role of 

GR in AD physiopathology. In vivo studies using the Tg2576 mouse model helps us establish 

the relationship of early onset of AD with dysregulation of the HPA axis. Lab members and 

myself have produced results regarding the early-symptomatic stage of the Tg2576 mice, 

which help us conclude that plasma CORT levels increase early in disease progression in this 

model. Along with hypercortisolemia, there persisted a dysfunction in the negative feedback 

mechanism which prevented CORT to reach normal levels. Our results also show that this 

dysregulation in the HPA axis is correlated with decreasing ACTH levels at a slightly later 

stage of the disease. Data from peripheral tissues like thymus gland show decreased weight in 

the Tg
+ 

mice, while adrenal gland weight remains constant. The total hippocampal GR levels 

did not change despite the increased CORT levels. Finally, we also checked for episodic-like 

memory deficits, which is the earliest form of memory impairment in AD patients. We 

reported that there was a deficit in episodic-like memory in 4 month Tg
+
 mice and this could 

be rescued with short GR antagonist treatment. A part of these results have been published in  

(Lanté et al., 2015), to which I have contributed. 

To further understand the functional role of GR in AD in the hippocampus, we decided to 

generate the conditional ablation model of GR by crossing the Tg
+
 with the GR

lox/lox
 mice. 

Unfortunately, we could not conclude much from these mice due to genetic and background 

problems encountered while breeding and to the increased death toll during stereotaxic 

surgery. Instead, we moved on to correlate the acute functional relationship between oA  

and GRs at excitatory synapses. To address this, we shifted to an acute model of oA using 
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both hippocampal neurons in culture and ex vivo hippocampal sections. First, results in 

collaboration with Dr Frandemiche prove that oA modulates GRs levels within the PSD, 

supporting the hypothesis that there is indeed a functional relationship between A and GR at 

excitatory synapses.  

We further went on to prove that GRs are necessary for oA-mediated impairment of LTP 

using two different approaches. Initially, we proved that pharmacologically blocking GRs 

with a specific antagonist was sufficient to prevent oA-induced LTP impairment. To 

confirm these results, we also used the genetic model of GR ablation involving the GR
lox/lox

 

mice. We successfully proved that upon reduction of GR levels using the Cre virus, we could 

prevent this impairment. Collectively, both the pharmacological approach of GR inhibition 

and the genetic ablation of GR strongly indicate that oA relies on GRs for its synaptic effect 

on LTP. These data are currently being prepared for submission of a manuscript where I will 

be first author. 

During my thesis, I also had the opportunity to briefly collaborate with Drs Willem and 

Haass (LMU, Germany). Specifically, I tested if the newly discovered APP fragments 

Aand Acould modulate synapse transmission and LTP using field 

electrophysiology. We found that A, but not A, negatively impacts LTP. This 

contribution was rewarded by co-authorship on the Willem et al. 2015, a Nature publication 

that was highlighted in the press worldwide.   

In conclusion, using several types of approaches, my main work provided results that 

provided new insights of how the stress pathway is implicated AD aetiology. I hope that 

these published and soon-to-be published results will prompt other scientists to fully 

elucidate how the HPA axis, and especially GRs, is implicated in AD. Future work on this 

topic could promote new therapeutic developments for this devastating disease.  
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8 Personal Accomplishments 

After successfully completing my Master’s degree, I got the opportunity to work as a Project 

Junior Research Fellow at a premier research institute in India. This was my first step into the 

world of scientific research and exposure to advanced equipment and technology. My hands-

on experience in various techniques and my specialization in Neurobiology gave me the 

opportunity to do my PhD through the prestigious Labex SIGNALIFE program in France. 

I specifically chose the laboratory of Dr. Hélène Marie as it specialized in my field of interest 

and additionally had the latest equipment to conduct high end research in electrophysiology, 

behavioural studies and molecular biology. Herein started my metamorphosis from a naive 

student to an experienced doctorate fellow. Initially, with good guidance, I started to 

familiarize myself to the systematic approach towards animal breeding, recording and 

documentation. Simultaneously, I also learnt to perform elaborated behavioural paradigms 

related to study AD associated episodic-like memory. Advanced training in the field of 

electrophysiology helped me tremendously to answer a majority of questions related to my 

thesis. It was the first time here that I started recording from live neurons of the 

hippocampus, which was very exciting. Using this technique, I was able to participate in a 

collaboration which carried out novel research in the field of Alzheimer’s disease and was 

rewarded by an authorship in a Nature paper.  By the end of the first year, I was familiar with 

most of the techniques, which I would require to complete my PhD project. Appropriate 

awareness on animal ethics ensured that I worked with empathy and the safety precautions 

taught to me for handling virus injections made me feel safe and assured.  

Over a period of time I realized that I was converting my bookish knowledge to actual 

practical hands-on research. My exposure to stereotaxic injections slowly helped me become 

more patient while performing experiments. With all this training, I started organizing and 

managing myself better by planning the rotation of different experiments to maximize the 

time spent in the lab. Overall experience and knowledge that I gained using several 

techniques also started to improve my confidence. The opportunity to attend several 

conferences updated me to the latest research in AD and improved my scientific thinking. 

This motivated me and gave me more ideas related to my area of research. Regular lab 

meetings and several conferences/ meetings were grounds of opportunity to present my work 

and these boosted my confidence and made me open to share my ideas and experiences with 

others more clearly.  

The downside was that we had some unforeseen issues with generating the double mutant 

mice. This situation was ably handled by my mentor and this helped me learn to overcome 

failures and take them in my stride.  At the end of the 3.5 years, I feel that I have been 

transformed both at the scientific as well as the personal level for which I am grateful to my 

lab. 
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9 Annexe 
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Subchronic Glucocorticoid Receptor Inhibition Rescues Early
Episodic Memory and Synaptic Plasticity Deficits in a Mouse
Model of Alzheimer’s Disease

Fabien Lanté1,2, Magda Chafai1,3, Elisabeth Fabienne Raymond1,3, Ana Rita Salgueiro Pereira1,3,
Xavier Mouska1, Scherazad Kootar1, Jacques Barik1, Ingrid Bethus1 and Hélène Marie*,1

1Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia

Antipolis, UMR 7275, Valbonne, France

The early phase of Alzheimer’s disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic

plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the

elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction

remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of

episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined

biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the

pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in

this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo

treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of

N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate

receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral

deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a

contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid

receptor targeting strategies could be beneficial to delay AD onset.

Neuropsychopharmacology advance online publication, 18 February 2015; doi:10.1038/npp.2015.25
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia in aging human populations, but only low-efficacy
palliative treatments are currently available. The hippocam-
pus and the type of memory it encodes (ie episodic memory)
are affected very early in all forms of AD (deToledo-Morrell
et al, 2007; Salmon and Bondi, 2009). Since the discovery of
Ab as the main constituent of senile plaques observed in AD
patient brains and the cloning of the amyloid precursor
protein (APP), there has been an intense effort to understand
how APP misprocessing and Ab affect hippocampal function.

There is now a strong evidence that Ab accumulation into
soluble oligomers in this structure is most probably one of
the main triggers of the pathology leading to early synaptic
failure and subsequent memory loss (Palop and Mucke, 2010;
Shankar et al, 2008). However, the exact cellular mechanism
contributing to the onset of synaptic failure and memory loss
in AD remains unclear.

Preclinical and clinical data suggest that stress is an
important environmental risk factor leading to AD
(Rothman and Mattson, 2010). Indeed, patients with a high
level of distress proneness are 2.7 times more likely to
develop AD, and this trait is also associated with a faster
progression of the disease (Wilson et al, 2003, 2007). This is
in line with the observations that major stressful events
lower the age of onset of familial AD (Mejia et al, 2003). In
various preclinical AD models, stress worsens deficits in
hippocampus-dependent spatial learning (Catania et al,
2009; Cuadrado-Tejedor et al, 2012; Dong et al, 2004;
Jeong et al, 2006; Srivareerat et al, 2009; Tran et al, 2010).
These deleterious effects are in part caused by an
accelerated accumulation of Ab under stressing conditions
(Catania et al, 2009; Cuadrado-Tejedor et al, 2012; Dong
et al, 2004; Green et al, 2006; Jeong et al, 2006; Srivareerat
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et al, 2009). Stress triggers the release of glucocorticoid
hormones (CORT), the major output of the hypothalamo-
pituitary-adrenal axis (HPA). CORT acts via two related
receptors, the mineralocorticoid (MR) and the glucocorti-
coid receptors (GR). GR has a low affinity for CORT and is
thus believed to be a key player under elevated CORT levels,
although a role of MR cannot be excluded. Both AD patients
and AD mouse models display a dysregulated HPA axis,
marked by a mild hypercortisolemia that is apparent early
during the pathology (Csernansky et al, 2006; Elgh et al,
2006; Hebda-Bauer et al, 2013; Nasman et al, 1995;
Rasmuson et al, 2001; Weiner et al, 1997). Increased CORT
levels are sufficient to exacerbate Ab deposits, and a recent
study suggested that antagonism of GR could prevent this
effect (Baglietto-Vargas et al, 2013). Albeit this increasing
evidence for a synergistic relationship between dysregulated
HPA function and AD pathogenesis, its cellular under-
pinnings remain poorly understood.

Using chronic Ab infusion in adult rat brains, the group
of Alkadhi suggested a relationship between Ab, in vivo
synaptic plasticity and chronic psychosocial stress, showing
that this type of stress exacerbates Ab-induced alterations in
hippocampal long-term potentiation (LTP) and long-term
depression (LTD; Tran et al, 2011a, 2011b). These data
argue for a role of stress signaling in AD-related synaptic
dysfunction, but there are currently no other reports
addressing this point in more detail. Importantly, there is
paucity of data regarding the contribution of CORT
signaling to AD-related hippocampal synapse failure ie,
weakening of synaptic communication, a phenotype which
is believed to drive the onset of memory loss in AD as we
and others have shown previously (D’Amelio et al, 2011;
Selkoe, 2002). Identifying how a dysregulation of CORT
signaling contributes to synaptic failure in AD is of
importance as CORT has a prominent role in shaping
hippocampal synaptic plasticity (Chaouloff and Groc, 2011).

Here, we used the Tg2576 transgenic AD mouse model,
which displays AD-like Ab accumulation as oligomers with
late formation of plaques in memory-encoding areas
(hippocampus and neocortex) during aging (Hsiao et al,
1996). We previously demonstrated that onset of cognitive
deficits in this model correlated with low levels of synaptic
AMPA receptors and a stronger LTD of AMPAR responses
in hippocampal CA1 neurons (D’Amelio et al, 2011). We
now further characterize these memory and synaptic deficits
in the early symptomatic phase of this model and provide
strong evidence for a role of dysregulated HPA activity to
these deficits. Our results define enhanced CORT signaling,
via GRs, as a contributing factor to both early synaptic
failure and episodic memory loss in this mouse model.

MATERIALS AND METHODS

Mice

Hemizygous Tg2576 mice carrying the human Swedish
mutation (hAPPswe transgenene: human APP695 with
double mutations at KM670/671NL) are hybrids between
C57BL6 and SLJ provided by Taconic Biosciences (D’Amelio
et al, 2011; Hsiao et al, 1996). Tg2576 and wild-type (WT)
littermates were used for all experiments. The original
transgenic mouse was developed using B6SJLF2 zygotes

(Hsiao et al, 1996). The mouse is a hybrid between C57BL6
and SLJ (Hsiao et al, 1996) and back-crossed to C57BL/6
mice for two generations (Carlson et al, 1997) before being
deposited at Taconic Biosciences. Hemizygous males were
back-crossed with C57BL/6NTac for derivation at Taconic
Biosciences and the colony is maintained by mating
hemizygous male mice with B6SJL/F1 female mice (Taconic
Model 1349). These hemizygous mice are not congenic or
co-isogenic mice, as they contain mixed genetic back-
grounds of C57BL/6 and SJL mice. The hemizygous and WT
littermates may be different in alleles near the transgene site
because the original mouse and breeder mice were back-
crossed to C57BL/6 mice. Thus we cannot rule out the
possibility that the phenotypic difference between Tg and
WT mice could be because of the allelic difference instead of
the transgene (Wolfer et al, 2002). Four-month old Tg2576
mice were used, except for in Figures 1c and 3e where
1-month old mice were used. For behavioral, plasma
corticosterone levels, dexamethasone suppression test, and
RU486 experiments, only male mice were used (see
Supplementary Materials and Methods for additional details
on animal care).

Plasma CORT Measurements and Dexamethasone
Suppression Test

To determine plasma CORT levels, blood was collected from
the submandibular vein without anesthesia (see
Supplementary Materials and Methods for details). For
circadian plasma CORT measurements, blood was collected
at the onset of the light resting phase (0800 hours) and the
dark active phase (2000 hours) in the same animal. After
15 min of centrifugation at 2000� g, at 4 1C, plasma samples
were stored at � 80 1C. Plasma corticosterone concentrations
were measured using an Enzyme Immunoassay (EIA) kit
following the manufacturer’s instructions (Enzo Life Science,
France). For the dexamethasone suppression test, dexa-
methasone 21-phosphate disodium salt (0,05 mg/kg; Sigma-
Aldrich, France) dissolved in saline (NaCl, 0.9%) or vehicle
(saline) were injected intraperitoneally in WT and Tg2576
mice at 1200 hours. Blood was collected at 1800 hours and
plasma corticosterone levels were assessed using the EIA kit.

RU486 Treatment

RU486 (40 mg/kg) was dissolved in DMSO for electro-
physiology experiments or in water containing a droplet of
Tween-20 for behavioral experiments and injected
twice daily subcutaneously in the interscapular region of
mice 2 days or 4 days before they were killed.
The appropriate vehicle solution (H2O/Tween-20) was
administered accordingly. For ex vivo electrophysiological
experiments, RU486 (0.5 mM) or DMSO (vehicle) was
directly applied to the slices via the bath perfusion
throughout the recording.

Object Recognition Paradigm

The episodic-like object recognition protocol was per-
formed essentially as described previously (Dere et al, 2005)
with minor variations in the protocol to minimize stress
levels (see Supplementary Materials and Methods for
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details). This task is based on the paradigm that episodic
memory is the memory of personal experiences and specific
events including what happened (‘What’ component),
location (‘Where’ component) and time (‘When’ compo-
nent). A schematic description of the procedure is shown in
Figure 2a. Using these test trial exploration data, we
estimated three components of episodic-like memory:
What¼ (exploration time (ET) ‘olds’� ET ‘recents’)/(ET
‘olds’þ ET ‘recents’); When¼ (ET ‘old stationary’� ET
‘recents’)/(ET ‘old stationary’þ ET ‘recents’); Where¼ (ET
‘old displaced’� ET ‘old stationary’)/(ET ‘old displaced’þ
ET ‘old stationary’; see Supplementary Materials and
Methods for details).

Electrophysiology

Hippocampal slices were prepared as described previously
(see Supplementary Materials and Methods for details).
Field excitatory post-synaptic potentials (fEPSPs) were
recorded in the stratum radiatum of the CA1 region and
stimuli delivered to the Schaeffer Collateral Pathway by a

monopolar glass electrode filled with ACSF (see
Supplementary Materials and Methods for details). LTP
was induced using a TBS protocol: 10 bursts at 5 Hz
repeated 10 times in 15 s intervals. Each burst consisted of
four pulses of 100 Hz (see Supplementary Materials and
Methods for details of analysis procedure). LTD was
induced with a low frequency stimulation (LFS) protocol
of 900 pulses at 1 Hz. To induce NMDAR-dependent LTD,
slices were superfused with standard ACSF containing
NMDA (20 mM) for 2.5 min. To induce mGluR-dependent
LTD, slices were superfused with standard ACSF containing
DHPG ((S)-3,5-Dihydroxyphenylglycine; 100 mM or 50 mM)
for 15 min in the presence of the NMDAR antagonist D,L-
APV ((2R)-amino-5-phosphonovaleric acid, 100 mM)
throughout the recordings. Whole-cell voltage-clamp
recordings were made from CA1 pyramidal cells (see
Supplementary Materials and Methods for details).
NMDA-evoked currents were recorded with an Mg2þ -free
ASCF containing DNQX (20 mM) and picrotoxin (50 mM) at
different holding potentials from � 60 mV to þ 40 mV with
20 mV step increments. An average of current over ten

Figure 1 Four-month old Tg2576 mice display alterations in corticosterone signaling (a) Plasma corticosterone levels (ng/ml) were measured by ELISA at
the onset of the light/resting (0800 hours) and dark/awake (2000 hours) phases in 4-month old male WT (white bars) and Tg2576 (black bars) mice.
Tg2576 mice display significantly elevated levels of corticosterone at the onset of the dark phase compared with WT. (b and c) Plasma corticosterone levels
(ng/ml) were measured by ELISA 6 hours after in vivo injection of dexamethasone (Dex) at 0,05 mg/kg or saline (b) in 4-month old WT (white) and Tg2576
(black) mice; (c) in 1-month old WT (white) and Tg2576 (black) mice. One-month old WT and Tg2576 mice, and 4-month old WT mice display the
expected decrease in corticosterone levels after Dex injection, whereas 4-month old Tg2576 mice do not. *po0.05; ***po0.001, ****po0.0001, n.s.,
non-significant. n¼ number of mice. See Supplementary Table 1 for the statistics details.
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sweeps was calculated per holding potential, which was then
normalized to the value obtained at � 60 mV (representing
� 1 on graphs). The data were pooled by condition and
represented as mean±SEM. Data analysis was performed
with the clampfit software (Molecular devices).

Statistical Analysis

For Dex tests and electrophysiological recordings, statistics
were performed with an unpaired two-tailed Student’s t-test to
probe for a difference between genotype (WT, Tg2576). A two-
way analysis of variance (ANOVA) was used to test for an
effect of treatment (vehicle, RU486) or genotype (WT, Tg2576)
on behavior and electrophysiology data and repeated mea-
sures two-way ANOVAs were used to test for an effect of phase
of the day (light phase, dark phase) or genotype (WT, Tg2576)
on corticosterone measurements. Post hoc analysis was
conducted with Bonferroni’s comparison. All the statistical
analyses were done with using Prism 6 (Graph Pad). All
numerical data are presented as mean±SEM. po0.05 was
considered to be statistically significant. See Supplementary
Data for full statistics Supplementary Tables 1, 2, and 3.

RESULTS

Four-Month Old Tg2576 Mice Display Alterations in
HPA Axis Function

In many species, plasma CORT levels are subjected to
circadian rhythmicity that is key for maintaining normal

homeostasis. Dysregulation of this pattern of secretion has
been described in several disease states (Lightman and
Conway-Campbell, 2010). Therefore, we first investigated
the integrity of the HPA axis in 4-month old Tg2576 mice
and WT littermates. We assayed nadir CORT plasma levels
at the onset of the light phase (0800 hours, resting period
for rodents) and peak levels at the onset of the dark phase
(2000 hours, active period for rodents). Both genotypes
displayed the expected circadian elevation in CORT levels at
the onset of the dark phase (Figure 1a, Supplementary
Table 1). We observed that, although morning CORT levels
did not significantly differ between the two genotypes,
Tg2576 mice displayed significantly higher levels of plasma
CORT in the evening at the onset of the active phase
(Figure 1a, Supplementary Table 1). These data indicate that
a clear HPA axis dysregulation occurs at an early stage of
AD pathogenesis in Tg2576 mouse model. To get further
insights into this dysregulation, we sought to determine if
there were modifications in the feedback loops that regulate
CORT secretion. Thus, we submitted the 4-month old
Tg2576 mice and WT littermates to the commonly
employed dexamethasone (Dex) suppression test. Injection
of this potent selective glucocorticoid receptor agonist
triggers a negative feedback mechanism resulting in a
reduction in plasma CORT levels within hours. As expected,
we observed a marked reduction in plasma CORT levels in
WT mice 6 hours after Dex injection when compared with
the saline-injected controls (Figure 1b, Supple-
mentary Table 1). In striking contrast, Dex did not

Figure 2 Four-month old Tg2576 mice display episodic memory deficits, a behavioral phenotype which is rescued by blocking glucocorticoid receptors.
(a) Schema of the What–When–Where object recognition protocol. (b) Episodic-like memory in 4-month old untreated/vehicle-treated WT (white bars),
in 4-day in vivo RU486-treated WT (dotted bars), in untreated/vehicle-treated Tg2576 (black bars) and in 4-day in vivo RU486-treated Tg2576 (hashed black
bars) mice. Discrimination ratios for each component of episodic-like memory are indicated. **po0.01; n¼ number of mice. See Supplementary Table 1 for
the statistics details.
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significantly alter CORT levels in Tg2576 mice (Figure 1b,
Supplementary Table 1), suggesting pronounced disruption
of the GR-dependent feedback mechanism of HPA axis
regulation. We then examined the age dependency
of this dysregulation in 1-month old mice. At this age, the
Dex suppression test was normal in Tg2576 mice (Figure 1c,
Supplementary Table 1), consistent with observations that,
at this age, no cognitive deficits have been evidenced and
little to no Ab accumulation is present in these mutant mice
(D’Amelio et al, 2011; Hsiao et al, 1996; Mustafiz et al,
2011). This suggests that HPA axis deregulation is owing to
chronic misprocessing of APP and accumulation of APP-
derived peptides and not because of the over-expression of
hAPPswe per se. Together, these data demonstrate that, at 4
months of age, the homeostasis of the HPA axis is
compromised in these transgenic mice, leading to chroni-
cally elevated levels of circulating CORT.

Four-Month Old Tg2576 Mice Display Episodic Memory
Deficits, which can be Reversed by Glucocorticoid
Receptor Antagonism

To assess AD-related cognitive decline, we evaluated
episodic memory in 4-month old WT and Tg2576 mice.
Previous analyses of cognitive function in these mice at this
age focused on other types of hippocampus-dependent
memory tasks, such as the Morris water maze or contextual
fear conditioning (D’Amelio et al, 2011; Stewart et al, 2011).
These tasks, however, do not test for episodic memory,
which is the first type of memory that is affected in AD
patients (deToledo-Morrell et al, 2007; Salmon and Bondi,
2009). To specifically assess this type of memory in our
mice, we used an elaborated version of the object
recognition (OR) task, which can probe for the ‘What’,
‘When’, and ‘Where’ components of episodic memory (Dere
et al, 2005). Exploration time for objects and discrimination
ratio were evaluated during the test trial (Figure 2a). We
observed that mice from both genotypes display a similar
total exploration time during the 10 min test trial
(WT¼ 63.56±5.73 s; Tg2576¼ 59.62±6.11 s; p40.05, data
not shown). These data argue against any alterations in
general locomotion or anxiety-like behavior in Tg2576 mice
at this age, which could have compromised the outcome of
this behavioral test. We calculated the discrimination ratios
for the ‘What’, ‘When’, and ‘Where’ components of episodic
memory. For the ‘What’ and ‘When’ components, the
positive discrimination ratio for the two genotypes did not
differ (see Figure 2b and Supplementary Table 1). However,
for the ‘Where’ component, although WT control animals
(untreated/vehicle-treated mice) displayed a positive
discrimination ratio, Tg2576 mice (untreated/vehicle-trea-
ted) displayed a marked negative discrimination ratio,
significantly different from WT Figure 2b and Supple-
mentary Table 1). These data demonstrate that, while WT
mice displayed a good episodic memory in this
refined object recognition paradigm, the Tg2576 mice failed
to process the ‘Where’ component of this task, which
represents in itself the full integration of the episodic
memory (object, time, and location).

In light of these data and the clear deregulation of the
HPA axis, we next examined whether there was a correlation
between excess CORT signaling and memory deficits. To

reach this goal, we hypothesized that blocking GRs could
rescue this memory deficit, as these receptors are abundant
in the hippocampus. It is indeed reasonable to speculate
that, as CORT is chronically elevated, the GRs became over-
active in the Tg2576 mice. WT or Tg2576 mice received
twice daily subchronic (4 days) injections of the commonly
employed GR antagonist, RU486, before being assessed in
the episodic memory paradigm. Figure 2b reports discri-
mination ratios for the ‘What’, ‘When’, and ‘Where’
components of episodic memory in RU486-treated mice
compared with the control mice (untreated/vehicle treated;
see also Supplementary Table 1). Pharmacological blockade
of GRs by RU486 treatment did not significantly alter
episodic memory in WT, although a trend towards lower
memory for the ‘What’ and ‘When’ components was
apparent (Figure 2b, Supplementary Table 1). RU486,
however, fully rescued the deficit in the ‘Where’ component
of episodic memory in Tg2576 mice, as RU486-treated
Tg2576 mice performed, as well as WT mice (Figure 2b,
Supplementary Table 1). Together these data suggests that
abnormally-elevated CORT levels trigger GRs over-activa-
tion, which in turn impairs episodic memory formation in
these early symptomatic mice.

NMDAR-Dependent LTD is Abnormally Enhanced in 4-
Month Old Tg2576 Mice, whereas mGluR-Dependent
LTD and LTP Remain Intact

To further characterize the cellular underpinnings of this
memory deficit, we investigated synaptic plasticity in 4-
month old WT and Tg2576 mice. We performed field
electrophysiology in the CA1 area of ex vivo hippocampal
slices. Schaeffer collaterals were stimulated to evoke fEPSPs
at the CA3-CA1 synapses. Using this technique, we
previously reported that electrically induced LTP of the
AMPAR response remained intact, whereas LTD was
enhanced in the 3-month old Tg2576 mice (D’Amelio
et al, 2011). We now confirm these phenotypes at 4 months
of age (Figure 3a and b).

CA1 AMPAR LTD can be induced by activation of NMDA
receptors (NMDARs) or by activation of group I metabo-
tropic glutamate receptors (mGluRs; Luscher and Huber,
2010; Malenka and Bear, 2004). We therefore next asked
which type of LTD is primarily affected in Tg2576 mice at
this age, by recording NMDA-induced and DHPG-induced
chemical LTD, to assess NMDARs- and mGluRs-dependent
LTD, respectively. NMDA application generated an
NMDAR-dependent LTD in both genotypes, but this LTD
was significantly exacerbated in Tg2576 mice when
compared with the WT mice (Figure 3c). In contrast,
mGluR-dependent LTD, induced by the application of
100 mM of DHPG, was similar in both genotypes
(Figure 3d). This lack of difference in Tg2576 mice was
not owing to saturation of the mGluR-dependent LTD as
use of lower DHPG concentrations (50 mM) resulted in
similar LTD magnitudes in WT and Tg2576 mice (data not
shown—WT: 59.68±7.3%; Tg2576: 65.34±3.92%, po0.05).

To correlate this specific NMDAR-dependent LTD with
chronic misprocessing of APP and accumulation of APP-
derived peptides and not to over-expression of hAPPswe
per se, we recorded NMDA-induced LTD in 1-month old
mice. At this age, Tg2576 and WT mice exhibit comparable
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NMDA-induced LTD (Figure 3e). A summary graph of these
electrophysiology data is presented in Figure 3f. Together,
these results demonstrate that the episodic memory deficit

observed in the 4-month old Tg2576 mice correlates with a
pathologically enhanced NMDAR-dependent LTD in CA1
pyramidal neurons.

Figure 3 NMDAR-dependent LTD is enhanced at the CA3-CA1 synapse in 4-month old Tg2576 mice compared with the 4-month old WT littermates,
whereas mGLuR-dependent LTD and LTP remain intact. Traces in a–e show sample fEPSPs pre- (black) and post- (gray) LTP or LTD induction. (a)
Summary graphs of electrically induced LTP (theta burst stimulation (TBS), arrow) in 4-month old WT (n¼ 3 mice, N¼ 8 slices) and Tg2576 (n¼ 3, N¼ 9)
mice as percentage of fEPSP baseline. (b) Summary graphs of electrically induced LTD (low frequency stimulation (LFS), arrow) displayed in 4-month old
WT (n¼ 5, N¼ 8) and Tg2576 (n¼ 4, N¼ 8) mice. (c) Summary graphs of NMDAR-dependent LTD (induced by the application of NMDA 20 mM/2.5 min)
displayed in 4-month old WT (n¼ 4, N¼ 10) and Tg2576 (n¼ 4, N¼ 9) mice. (d) Summary graphs of mGluR-dependent LTD (induced by the application
of DHPG 100 mM/15 min) displayed in 4-month old WT (n¼ 4, N¼ 10) and Tg2576 (n¼ 4, N¼ 12) mice. (e) Summary graphs of NMDAR-dependent
LTD (induced by application of NMDA 20mM/2.5 min) displayed in 1-month old WT (n¼ 4, N¼ 12) and Tg2576 (n¼ 4, N¼ 12) mice. (f) Average LTP or
LTD magnitudes calculated from graphs in a–e in last 10 min of recordings (as percentage of baseline). *po0,05; **po0,01. See Supplementary Table 2 for
the statistics details.
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Four-Month Old Tg2576 Mice Display Abnormally High
NMDAR Currents

NMDAR-dependent LTD requires activation of synaptic
NMDARs. To determine whether this transmission could
be perturbed in 4-month old Tg2576 mice, we analyzed
NMDAR currents of CA1 pyramidal neurons. We measured
the current-voltage relationship of evoked synaptic NMDAR-
mediated excitatory post-synaptic currents (EPSCs) in CA1
pyramidal neurons by whole-cell voltage clamp recordings.
The amplitude of evoked NMDAR EPSCs was significantly
enhanced in Tg2576 mice compared with that of WT at the
various membrane potentials (Vm) tested (Figure 4).

Four Days of in vivo RU486 Treatment is Necessary to
Reverse the NMDAR-dependent LTD Phenotype in
4-Month Old Tg2576 Mice

In light of the reversal of episodic memory defect observed
in Tg2576 mice following subchronic RU486 treatment
(Figure 2), we next tested whether this therapeutic effect
resulted in the normalization of excessive NMDAR-depen-
dent LTD, hence providing a cellular basis for this evident
behavioral phenotype. Indeed, we observed that the LTD
induced by NMDA application was significantly reduced in
RU486-treated Tg2576 mice compared to vehicle-treated
Tg2576 mice (Figure 5a), returning to WT values (see
summary graph in Figure 5c and Supplementary Table 3 for
statistical analysis). Vehicle- and RU486-treated WT mice
exhibited identical pattern of NMDA-induced LTD
(Supplementary Figure S1A). These data suggest that the
dose of RU486 employed is sufficient to normalize excessive
CORT signaling in CA1 neurons of Tg2576 mice, without
altering the physiological LTD process as observed in WT
mice.

To address the time dependency required for this cellular
rescue, we tested whether direct in vitro application or

shorter (two days) in vivo administration of RU486 were
effective. None of these two treatments could reverse the
pathologically enhanced LTD observed in Tg2576 mice
(Supplementary Figure S2; see also summary graph in
Figure 5c). These data demonstrate that several days of
RU486 treatment is necessary to successfully reverse this
synaptic plasticity alteration.

Electrically Induced LTD and NMDAR Currents are
Normalized by 4 Days of in vivo RU486 Treatment in
Tg2576 Mice

We also tested the rescue potential of this 4-day in vivo
RU486 treatment on electrically induced LTD. As for
NMDA-induced LTD, the enhanced LFS-induced LTD we
observed in Tg2576 mice (Figure 3b) was rescued by this
treatment (Figure 5b), returning to WT levels (Figure 5c
and Supplementary Table 3 for statistical analysis). Again,
RU486 administration did not significantly alter LFS-
induced LTD in WT mice (Supplementary Figure S1B). A
summary graph of the rescue experiments attempted on the
LTD phenotypes in Tg2576 mice and in WT littermates is
provided in Figure 5c.

Finally, we tested if this 4-day in vivo RU486 treatment
could normalize the excess of NMDAR current exhibited by
Tg2576 mice (Figure 4). Whole-cell patch clamp recordings
of CA1 pyramidal neurons from vehicle-treated and RU486-
treated Tg2576 mice demonstrated that RU486 administra-
tion could significantly reduce NMDAR currents (Figure 5d),
bringing them back to WT levels (Figure 5d: dashed line).

DISCUSSION

In recent years, numerous studies examined the relation-
ship between CORT signaling and AD pathology, especially
Ab, with noticeable emphasis on behavioral and biochem-
ical aspects of the disease. The major finding of this work is
a precise pharmacological dissection of the changes in
synaptic plasticity that occur at an early stage of the
pathology with strong evidence for a central role of CORT in
this process. We had previously reported normal LTP and
enhanced LTD in CA1 neurons in this early symptomatic
phase (D’Amelio et al, 2011). We now demonstrate that this
enhanced synaptic depression selectively depends on
NMDAR transmission, whereas mGluR contribution re-
mains spared. Using whole-cell patch clamp recordings, we
could attribute this phenotype to enhanced NMDAR EPSCs.
These results are in agreement with the role played by
NMDARs in this type of LTD (Malenka and Bear, 2004).
Importantly, we demonstrate that the synaptic alterations
are rescued by subchronic in vivo administration of the GR
antagonist, RU486.

In vivo stress protocols, as well as in vitro and in vivo
CORT application in rodents, mainly by recruiting GRs,
which are abundant in the hippocampus, were shown to
enhance both CA1 NMDAR- and mGluR-dependent LTD
(Chaouloff and Groc, 2011). These protocols were also
shown to either increase or decrease CA1 LTP depending on
the CORT doses tested or the type of stress studied (acute or
chronic; Chaouloff and Groc, 2011). Yet, only NMDAR-
dependent LTD is affected in our model. It is therefore

Figure 4 NMDAR currents are higher in CA1 of 4-month old Tg2576
mice compared with the WT. Current (I, normalized to NMDA EPSC
amplitude at � 60 mV) to Voltage (Vm) relationships of NMDA currents in
CA1 pyramidal neurons in 4-month old WT (n¼ 7 mice, N¼ 10/8 cells)
and Tg2576 (n¼ 5, N¼ 8) mice. Sample EPSCs are shown at Vm from
� 60 mV to þ 40 mV. *po0,05; **po0,01. See Supplementary Table 2
for the statistics details.
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unlikely that the AD-related synaptic plasticity phenotype is
simply because of the elevated CORT, but more probably
owing to an intricate synergy between chronic APP
misprocessing and increasing CORT levels, to which
NMDAR-dependent LTD is particularly sensitive. The fact
that we could fully reverse this aberrant synaptic phenotype
with 4 days, and not 2 days, in vivo RU486 treatment
supports the idea that GR-dependent genomic effects must
be necessary to reset a homeostatic balance of CORT
signaling in Tg2576 mice. In line with this idea, altering GR
expression has been shown to modulate the hippocampal
expression of several glutamate receptors and to trigger
cognitive dysfunction (Wei et al, 2007), reinforcing the link
between CORT/GR, glutamatergic plasticity and altered
behaviors. We cannot at present exclude additional
implication of the progesterone receptor in the rescue of
the synaptic phenotype since this receptor is also blocked
by this compound (Baulieu, 1997). This issue will in the
future benefit from the generation of double GR KO/Tg2576
mice. Nevertheless, other recently published data strongly
argue for a specific GR-mediated beneficial effect of RU486

on the rescue of behavioral and biochemical phenotypes in
another AD mouse model with more advanced neurode-
generation (Baglietto-Vargas et al, 2013).

In a previous publication, we had reported a caspase- and
calcineurin-dependent pathological mechanism leading to
lower levels of synaptic AMPAR in the hippocampus of
these early symptomatic mice (D’Amelio et al, 2011). As
both caspase and calcineurin have been implicated in
hippocampal NMDAR-dependent LTD (Li et al, 2010b;
Mulkey et al, 1994), they could also contribute to the
enhanced LTD we further studied here. It will be important,
in future studies, to identify the interplay between this
previously identified pathological mechanism and the novel
CORT-dependent mechanism we report now. These two
cellular pathways are certainly not mutually exclusive
and could in fact be intimately linked as a study in
AD and several studies in immunology research suggest
(Distelhorst, 2002; Li et al, 2010a).

Copious information is available on the mnemonic
deficits displayed by aged animal models of AD (Ashe and
Zahs, 2010; Stewart et al, 2011). Here, we provide solid

Figure 5 Four days of in vivo RU486 treatment reverses the LTD and NMDAR phenotypes at the CA3-CA1 synapse in 4-month old Tg2576 mice.
Summary graphs (as percentage of fEPSP baseline) of a NMDAR-dependent LTD (induced by application of NMDA 20 mM/2.5 min) after 4 days of vehicle
(n¼ 4 mice, N¼ 8 slices) or RU486 (n¼ 4, N¼ 10) treatment; (b) electrically induced LTD (low frequency stimulation (LFS), arrow) after 4 days of vehicle
(n¼ 4 mice, N¼ 7 slices) or RU486 (n¼ 5, N¼ 11) treatment; Traces in a and b show sample fEPSPs pre- (black) and post- (gray) LTD induction. (c)
Average LTD magnitudes calculated from graphs in 5a and 5b, and Supplementary Figures 1 and 2 in last 10 min of recordings (as percentage of baseline). (d)
NMDAR currents are normalized by four days of in vivo RU486 treatment in Tg2576 mice. Current (I, normalized to NMDAR EPSC amplitude at � 60 mV)
to Voltage (Vm) relationships of NMDAR currents in CA1 pyramidal neurons in 4-month old Tg2576 mice after 4 days of vehicle (n¼ 4 mice, N¼ 9 cells) or
RU486 (n¼ 4 mice, N¼ 11 cells) treatment. Dashed line represents WT I/V relationship of Figure 4. Sample EPSCs are shown at Vm from � 60 mV
to þ 40 mV. *po0,05; **po0,01. Student’s t-test statistical results are shown with the asterisks. See Supplementary Table 3 for the statistics details and
two-way ANOVAs statistics.

RU486 rescues Alzheimer’s disease early deficits
L Fabien et al

8

Neuropsychopharmacology



evidence for an early impairment in episodic memory in 4-
month old Tg2576 mice, correlating with early aggregation
of Ab into oligomers, but before plaque formation (Hsiao
et al, 1996; Mustafiz et al, 2011). To our knowledge, this is
the first report of perturbation in this type of memory in the
early phase of AD in AD mice, as few other studies tested
this mnemonic deficit at more advanced stages of the
pathology (Baglietto-Vargas et al, 2013; Davis et al, 2013;
Good et al, 2007). In light of the impaired HPA axis
feedback and the key role played by CORT in facilitating the
consolidation of emotionally-charged memories (McGaugh
and Roozendaal, 2002), it was crucial to monitor episodic
memories in minimized stress conditions as presented here.
We can therefore attribute the observed memory deficit to a
prolonged dysregulation of the HPA axis accompanied by
APP misprocessing and not to acute changes in CORT levels
induced by the design of the behavioral paradigm. A 4 days
subchronic antagonism of GR was sufficient to have fully
beneficial outcomes on memory impairment, corroborating
a recent study in older 3xTg mice with more advanced AD
pathology, which employed a chronic infusion of GR
antagonist for 3 weeks (Baglietto-Vargas et al, 2013). This
shorter daily treatment holds the advantage of minimizing
the possible side effects of prolonged GR blockade (Morgan
and Laufgraben, 2013).

As described in other preclinical and clinical studies
(Csernansky et al, 2006; Hebda-Bauer et al, 2013; Nasman
et al, 1995; Rasmuson et al, 2001), we report an altered
circadian rhythm of the HPA axis early in our mouse model.
Whether this results from a dysregulation of the pulsatile
ultradian pattern of CORT secretion is however yet to be
demonstrated. Ultradian hormone pulsatility is inherent
within the HPA axis as a result of negative feedback (Walker
et al, 2010). The lack of responding of 4-month old Tg2576
mice to the Dex suppression test clearly argues for a strong
impairment of this loop owing to the altered APP
processing, hence indicating that ultradian rhythm may
also be compromised. The Dex suppression test was normal
in 1-month old mice, suggesting that the dysregulation
occurs slowly, may be depending on Ab accumulation,
before senile plaque and without tau alterations (Hsiao et al,
1996; Mustafiz et al, 2011).

Although, the presented data and the work from other
labs now provide convincing behavioral, biochemical, and
electrophysiological evidence that CORT and Ab are
intimately linked (Rothman and Mattson, 2010), which
one of CORT or Ab accumulation occurs first in our model
remains to be fully elucidated. Nevertheless, our data
demonstrate that RU486 treatment readily reverses episodic
memory and pathologically enhanced LTD present in the
early symptomatic phase in our mouse model, thus strongly
arguing for a pathological synergistic interaction between
chronic APP misprocessing and HPA axis dysregulation.
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g-Secretase processing of APP inhibits neuronal
activity in the hippocampus
Michael Willem1, Sabina Tahirovic2, Marc Aurel Busche3,4,5, Saak V. Ovsepian2, Magda Chafai6, Scherazad Kootar6,
Daniel Hornburg7, Lewis D. B. Evans8, Steven Moore8, Anna Daria1, Heike Hampel1, Veronika Müller1, Camilla Giudici1,
Brigitte Nuscher1, Andrea Wenninger-Weinzierl2, Elisabeth Kremmer2,5,9, Michael T. Heneka10,11, Dietmar R. Thal12,
Vilmantas Giedraitis13, Lars Lannfelt13, Ulrike Müller14, Frederick J. Livesey8, Felix Meissner7, Jochen Herms2,
Arthur Konnerth4,5, Hélène Marie6 & Christian Haass1,2,5

Alzheimer disease (AD) is characterized by the accumulation of
amyloid plaques, which are predominantly composed of amyloid-b
peptide1. Two principal physiological pathways either prevent or
promote amyloid-b generation from its precursor, b-amyloid pre-
cursor protein (APP), in a competitive manner1. Although APP
processing has been studied in great detail, unknown proteolytic
events seem to hinder stoichiometric analyses of APP metabolism
in vivo2. Here we describe a new physiological APP processing
pathway, which generates proteolytic fragments capable of inhib-
iting neuronal activity within the hippocampus. We identify higher
molecular mass carboxy-terminal fragments (CTFs) of APP,
termed CTF-g, in addition to the long-known CTF-a and CTF-b
fragments generated by the a- and b-secretases ADAM10 (a disin-
tegrin and metalloproteinase 10) and BACE1 (b-site APP cleaving
enzyme 1), respectively. CTF-g generation is mediated in part by
membrane-bound matrix metalloproteinases such as MT5-MMP,
referred to as g-secretase activity. g-Secretase cleavage occurs
primarily at amino acids 504–505 of APP695, releasing a truncated
ectodomain. After shedding of this ectodomain, CTF-g is further
processed by ADAM10 and BACE1 to release long and short Ag
peptides (termed Ag-a and Ag-b). CTFs produced by g-secretase
are enriched in dystrophic neurites in an AD mouse model and in
human AD brains. Genetic and pharmacological inhibition of
BACE1 activity results in robust accumulation of CTF-g and
Ag-a. In mice treated with a potent BACE1 inhibitor, hippocampal
long-term potentiation was reduced. Notably, when recombinant
or synthetic Ag-a was applied on hippocampal slices ex vivo, long-
term potentiation was lowered. Furthermore, in vivo single-cell
two-photon calcium imaging showed that hippocampal neuronal
activity was attenuated by Ag-a. These findings not only dem-
onstrate a major functionally relevant APP processing pathway,
but may also indicate potential translational relevance for thera-
peutic strategies targeting APP processing.
To identify new proteolytic pathways of APP, we searched for CTFs
other than those giving rise to P3 fragment (CTF-a) or amyloid-b
(CTF-b)3–5. A new CTF with an approximate molecular mass of
30 kilodaltons (kDa) was revealed, which was recognized by an antibody
to the C terminus of APP (Y188) and was absent in the brains of APP-
knockout mice6 (Fig. 1a and Supplementary Table 1). The molecular
mass of the novel CTF suggests an additional physiological cleavage of
APP amino-terminal to the known cleavage sites of b- and a-secre-
tases, which we named accordingly g-cleavage of APP (Extended Data

Fig. 1). In the soluble fraction, we detected the N-terminal cleavage
product (sAPP-g; Extended Data Fig. 2), with a molecular mass of
approximately 80 kDa that distinguishes it from alternative
N-terminal APP fragments described previously7–9. In addition, we
observed lower molecular mass soluble peptides (Ag), which presum-
ably derived from processing of CTF-g by BACE1 (Ag-b) or
ADAM10 (Ag-a), or alternatively from sAPP-a/b cleavage
(Fig. 1b). Ag was identified in the soluble fraction of mouse brains
as several closely spaced peptides by antibody M3.2 (Fig. 1b), dem-
onstrating that some of these fragments contain the N-terminal part
of the amyloid-b domain and probably end at the a-secretase cleavage
site. Ag fragments were further validated by antibody 9478D directed
against an epitope N-terminal to the amyloid-b domain (Fig. 1b).
Consistent with g-secretase cleavage of APP in wild-type mice, we
observed increased CTF-g and Ag production in brain homogenates
of APPPS1-21 transgenic mice10 (Fig. 1c, d). Furthermore, antibody
192swe selectively identified the Ag-b species ending at the BACE1
cleavage site (Fig. 1d). Consistent with increased BACE1 cleavage of
Swedish mutant APP, only minor amounts of Ag-a were detected in
this mouse model with antibody 2D8 (Fig. 1d). Physiological g-secre-
tase processing was further confirmed in cerebrospinal fluid (CSF)
from humans with and without the Swedish mutation (APPswe)
(Fig. 1e). Fivefold higher Ag than amyloid-b levels were observed
in human CSF (5.33 6 1.39 times (mean 6 s.d.) higher Ag than amy-
loid-b estimated by 2D8 blot signals; n 5 7, P . 0.0001, Student’s
t-test). Using antibody 192swe, Ag-b was selectively detected in the
CSF of patients with the Swedish mutation, whereas antibodies 2E9
and 2D8 detected Ag-a in all analysed samples (Fig. 1e). Moreover,
while these peptides are generated byg-secretase cleavage N-terminal
to the amyloid-b domain, they do not reach the c-secretase site (see
mass spectrometric analysis in Fig. 1f), demonstrating that they are
different to the previously described N-terminally extended amyloid-
b variants11,12. Membrane-bound matrix metalloproteinases such as
MT1-MMP and MT5-MMP (also known as MMP14 and MMP24,
respectively) were shown to cleave APP in vitro at a site consistent
with the molecular mass of g-secretase processing products13,14. We
therefore produced a neo-epitope-specific antibody (10A8; Extended
Data Fig. 2) to identify the g-secretase cleavage site. Antibody 10A8
detected a protein corresponding to sAPP-g with an approximate
molecular mass of 80 kDa in mouse brain lysates, which was absent
in the APP-knockout mouse brain (Extended Data Fig. 2). Thus,
g-secretase cleavage of APP may occur in vivo at least in part at amino
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acids 504–505 of APP695. To determine the N- and C-terminal cleav-
age sites of Ag peptides, we performed immunoprecipitation with
antibodies 9476M, 9478D, 2D8 and 2E9 (Extended Data Fig. 3a, b).
Isolated Ag peptides were digested with three different proteases to
produce several overlapping peptides, and analysed by mass spectro-
metry. We identified several peptides covering the entire sequence
between the cleavage site N504–M505 of APP695 starting with the
sequence MISEPRISY after the g-secretase cleavage site (Fig. 1f).
Mass spectrometry also supports the C-terminal cleavages at the b-
and a-secretase sites. After immunoprecipitation with 2D8, frag-
ments of the amyloid-b domain were also observed in smaller
amounts alongside the novel Ag peptides (Fig. 1f and Extended
Data Fig. 3c). As the g-secretase cleavage site at amino acid 505 of
APP is consistent with the previously described in vitro cleavage sites
of APP695 by MT1-MMP and MT5-MMP (refs 13, 14), we investi-
gated brains from MT5-MMP- and MT1-MMP-knockout mice15,16

(Extended Data Fig. 4). Whereas MT1-MMP knockout had no
marked effect on Ag-a levels (Extended Data Fig. 4b), the generation
of Ag-a was reduced in brains from MT5-MMP-knockout mice
(Extended Data Fig. 4c). Furthermore, after MT5-MMP overexpres-
sion in murine N2a cells, a selective increase in Ag-a peptide of
approximately 16 kDa was observed (data not shown). Thus, MT5-
MMP displays g-secretase activity in intact mouse brains, although
the contribution of other g-secretases must be considered.

While investigating protease inhibitors capable of blocking
g-secretase, we observed that pharmacological BACE1 inhibition led

to a pronounced accumulation of the long Ag-a species in Chinese
hamster ovary (CHO) 7PA2 cells (Fig. 2a). This indicates that after
blockade of b-secretase activity, processing by a-secretase leads to
enhanced production of the long Ag-a species at the expense of the
shorter BACE1-generated Ag-b. Similarly, BACE1 inhibition also
led to an accumulation of endogenous CTF-g and enhanced produc-
tion of endogenous Ag-a in primary mouse hippocampal neurons
(Fig. 2b, c), as well as human neurons differentiated from embryonic
pluripotent stem cells (H9 cells17; Fig. 2d–g). Furthermore, in
human neurons we not only detected a 65% increase (Fig. 2g) in the
slightly longer Ag-a species after BACE inhibition, but also a con-
comitant decrease in Ag-b peptides (Fig. 2e, top). Importantly,
g-secretase processing significantly exceeded amyloidogenic proces-
sing (9.5 6 1.87 times Ag compared to amyloid-b estimated for
human neurons; n 5 8, P . 0.001, Student’s t-test). Pharmacological
intervention with a BACE1 inhibitor in vivo caused a clear and time-
dependent increase in CTF-g and Ag-a levels in APPV717I transgenic
mice18 (Fig. 2h), which was fully reversible within 24 h after admin-
istration. In agreement, increased CTF-g and Ag-a levels were also
observed in a BACE1-knockout mouse19 in vivo (Fig. 2i).

To identify a potential contribution ofg-secretase processing to AD
pathology, immunohistochemical analyses were performed with
brains derived from six-month-old APPPS1-21 (ref. 20) mice
(Extended Data Fig. 5a). This revealed co-labelling of antibody Y188
with antibody 2E9 in dystrophic neurites. No signal for Ag peptides
was obtained in plaque cores in which aggregated amyloid-b was
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Figure 1 | A novel APP proteolytic processing pathway. a, A 30-kDa APP
CTF-g is detected in the brains of adult and postnatal mice (P10, postnatal day
10). APP-FL, full-length APP; KO, knockout; WT, wild type. b, Ag was
detected in the soluble (sol.) fraction of adult and P10 mice by antibody M3.2
and 9478D (antibody 9478D may not be sensitive enough to detect the lower
Ag levels in adult brain). c, Higher levels of CTF-g are observed in APPPS1-21
mouse brains as compared to wild-type in the membrane (mem.) fraction.
Short and long exposures indicated. Background bands are indicated by

asterisks. d, Soluble extracts of APPPS1-21 mouse brains contained Ag species,
as detected by 2E9 antibody. Ag-bswe was selectively detected by antibody
192swe. e, Ag and amyloid-b (Ab) were readily detectable in human CSF by
antibody 2D8. Antibody 2E9 allowed the detection of Ag in all samples,
whereas 192swe specifically detected Ag-bswe. f, Mass spectrometric analysis of
Ag. Peptide intensities were summed per amino acid residue and plotted in
relation to each other.
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detected by 6E10 staining (Extended Data Fig. 5a). Similar data were
obtained in human AD brains (Extended Data Fig. 6). To verify accu-
mulation of CTF-g in dystrophic neurites, we used laser capture
microdissection (LCM). Western blot analysis revealed not only
CTF-b and CTF-a, but also CTF-g within the halo, but not within
the plaque core area or regions devoid of plaques (Extended Data
Fig. 5b). As expected, amyloid-b was observed within the plaque core
as well as in the surrounding halo (Extended Data Fig. 5b).

Since the cleavage products of g-secretase APP processing accu-
mulate after BACE1 inhibition and are enriched in dystrophic neur-
ites, we examined whether soluble Ag peptides interfere with neuronal
function, similar to soluble amyloid-b oligomers1. Long-term poten-
tiation (LTP) is considered as a synaptic correlate of memory, and is
widely used as a model for investigating the neurotoxic effects of
amyloid-b oligomers on synaptic function21–23. A single oral dose of
the BACE1 inhibitor SCH1682496 increased the CTF-g levels, and
almost doubled the Ag-a level in soluble brain extracts prepared from
animals 3 h after treatment (Extended Data Fig. 7). This was accom-
panied by a significant reduction of hippocampal LTP (Fig. 3a, b).
These findings may suggest an involvement of Ag-a in LTP deficit

under acute blockade of b-secretase activity. To validate the potential
effects of Ag peptides on synaptic transmission and plasticity directly,
we expressed Ag-b and Ag-a in CHO cells (Fig. 3c). Concentrated
conditioned media was further enriched for Ag by size-exclusion
chromatography (SEC) and applied to hippocampal slices before
LTP induction in CA1 pyramidal neurons. Neither Ag-b nor Ag-a
influenced the baseline synaptic transmission (Extended Data Fig. 8).
Comparison of LTP 60 min after its induction in the presence of Ag-b or
Ag-awith control conditions (Fig. 3d–g) revealed that Ag-a lowered the
LTP to a degree comparable to synthetic amyloid-b dimers23 (Extended
Data Fig. 9a, b), while truncated Ag-b had no effect (Fig. 3e, g). In
support of this observation, synthetic Ag-a reduced LTP to a similar
extent at a concentration of 100 nM (Extended Data Fig. 9c, d). To
examine the direct effects of Ag peptides on neuronal activity in vivo,
we used two-photon calcium imaging at single-cell resolution24,25.
Figure 4a–d illustrates results from experiments in which the activity
of neurons in the CA1 pyramidal cell layer was monitored before and
after superfusion of the exposed hippocampus with Ag peptides or the
respective control peptides. Ag-a strongly suppressed the activity of
hippocampal neurons in vivo, an effect not observed with Ag-b or the
control peptide (Fig. 4a–d and Extended Data Fig. 10). By using local
application of synthetic Ag-a to hippocampal neurons, we demonstrate
that the inhibitory effect of Ag-a on neurons was readily reversible after

kDa

sAPP-α/β

sAPP-α

sAPP-β

98

98

98Short exp.
Long exp.

2E9
Aη-α
Aη-β

2D8
Aη-α

Aη-α

Aβ

kDa

16

16

4

16

4

kDa

105

34

16

7

64

50

APP-FL

CTF-η

CTF-β
CTF-α

BACE1

β-Actin

34

16

7
4

7PA2

Control BI  

Control BI  Control BI  

Control BI  Control BI  Control BI  

Aη-β Aη-α

34

16

7

4

kDa
2D8

Aη-α

Aβ

2E9

Aη-α
Aη-β

22C11
APP-FL

BACE1

Y188
CTF-η

CTF-β
CTF-α

β-Actin

98

64

34

16

7

50

kDa
22C11
sAPP-α/β

sAPP-α

sAPP-β

M3.2
Aη-α

Aη-α

Aβ

98

98

98

16

4

16

4

Short exp.
Long exp.

kDa

22C11
sAPP-α/β

2D8
sAPP-α

18957
sAPP-β

2D8
Aη-α

98

34

16

7
34

16
7

16

7
4

98

98

98

kDa

Vehicle BI

*

*

22C11
APP-FL

2D8
CTF-η
CTF-β
Y188
CTF-η
CTF-β
CTF-α

34

16

7
4

98

34

16

7

16

7
4

98

98

98

Control
kDa 22C11

sAPP-α/β

2D8
sAPP-α

192wt
sAPP-β
M3.2
Aη-α

A8717
APP-FL

CTF-η

CTF-β
CTF-α
M3.2

CTF-η
CTF-β

Supernatant

Sol.

Sol.

0

50

100

150

200

250

Control
BI

A
η-

α 
(M

3
.2

) 
(%

)

***

a b c

d e f

g

h i

Human neurons (sup.) Human neurons (sup.)Human neurons (lys.)

Hippocampal neurons (lys.)Hippocampal neurons (sup.)

Mem.

Mem.

Bace1–/–

24 h8 h5 h24 h8 h5 h

Peptides

Figure 2 | Inhibition of BACE1 results in increased levels of CTF-g and Ag-a.
a, Conditioned media from 7PA2 cells treated with or without a BACE1
inhibitor (BI) was co-migrated with synthetic Ag-b and Ag-a peptides and
immunoblotted with 2D8 and 2E9 antibodies. b–f, After BACE inhibition in
mouse hippocampal neurons and human neurons, a reduction of sAPP-b was
accompanied by a strong increase in endogenous Ag-a and CTF-g levels.
Lys., lysate; sup., supernatant. g, Quantification of intensities for 2D8 signals
in e (n 5 8; ***P , 0.001, Student’s t-test). h, BACE1 inhibition in vivo
resulted in enhanced production of Ag-a species in APPV717I mice.
Background bands are indicated by asterisks. i, Western blot analysis of soluble
extracts of P10 Bace12/2 mouse brains revealed a marked increase in Ag-a
peptides as compared to controls.

DMSO    SCH1682496 

DMSO  
SCH1682496 

CHO 
CHO Aη-α

Control 

CHO

Control CHO Aη-αCHO CHO Aη-β

C
on

tro
l

C
H
O
 A

η-α

Aη-α

C
H
O

C
H
O
 A

η-β

Aη-β
Aη-α

Aη-β
Aη-α

Aη-β

0
.5

 m
V

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
)

10 mS

0
.5

 m
V

10 mS

300

200

100

HFS

0

0–10 10 20 30 40

0–20 20

Time (min)

Time (min)

40 60

0–20 20

Time (min)
40 60

0–20 20

Time (min)
40 60

300

400

200

100

300

400

200

100

300

400

200

100

200

150

100

0

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
) 200

150

100

*

*
*

2D8 2E9 9478D

34

kDa

16

7

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
)

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
)

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
)

fE
P

S
P

 s
lo

p
e
 (
%

 b
a
s
e
lin

e
)

CHO 

CHO 

supernatant

CHO Aη-β

D
M

SO

SC
H
16

82
49

6

a b c

d e

f g

Figure 3 | Ag-a impairs hippocampal LTP. a, Pharmacological BACE1
inhibition with SCH1682496 lowers hippocampal LTP. DMSO, dimethyl-
sulfoxide; fEPSP, field excitatory postsynaptic potential; HFS, high-frequency
stimulation. b, Representative fEPSPs recorded in CA1 area before and 45 min
after tetanization of Schaffer collaterals (top), with summary plot of the
effects of the inhibitor (SCH1682496) and vehicle (DMSO) on fEPSP slopes in
all examined groups in a (n 5 9). c, Soluble Ag-a and Ag-b peptides were
expressed in CHO cells and blotted with 2D8, 2E9 and 9478D antibodies.
d–f, Ag-a (n 5 9) (d), but not Ag-b (n 5 7) (e), conditioned media
from untransfected cells (CHO; n 5 13) or artificial cerebrospinal fluid (ACSF)
(control; n 5 15) (f) significantly inhibited LTP. g, Summary graph of LTP
magnitudes calculated 45–60 min after high-frequency stimulation from
graphs in d–f with statistical analysis (*P ,0.05; one-way analysis of varaince
(ANOVA) and post hoc Bonferroni test); error bars represent s.e.m. For each
condition, sample fEPSP traces pre-LTP (black) and 45–60 min post-LTP
(grey) induction are shown (top).

LETTER RESEARCH

0 0 M O N T H 2 0 1 5 | V O L 0 0 0 | N A T U R E | 3

G2015 Macmillan Publishers Limited. All rights reserved



washout (Fig. 4e). A summary of the results from all experiments is
shown in Fig. 4f, g.

We have identified a new APP processing pathway that exceeds
amyloidogenic processing. Similar to amyloid-b production26, the
alternative proteolytic processing pathway occurs under physiological
conditions but may be altered during AD pathogenesis. Accumulation
ofg-secretase27 and CTF-gwithin dystrophic neurites in close vicinity to
neuritic plaques may also support its potential contribution to AD patho-
logy. However, all APP and presenilin-associated familial AD mutations
affect amyloid-b production and aggregation (reviewed in ref. 26),
whereas the Icelandic mutation APPA673T prevents AD and dementia
by moderately reducing amyloid-b production28. Indeed, the Swedish
mutation decreased Ag-a by strongly enhancing BACE1-mediated
APP processing. However, g-secretase accumulation27 and its activity
near amyloid plaques may suggest that g-secretase stimulation by amy-
loid-b could be a downstream effector within the amyloid cascade.
Although Ag may be involved in the modulation of neuronal activity
and synaptic plasticity, the differential bioactivity of recombinant Ag-a
and Ag-b is currently unclear. One may speculate that the longer Ag-a
peptide is more stable owing to unknown post-translational modifica-
tions. This would be consistent with our observation that, in contrast to
cell-produced Ag-b, 100 nM of synthetic Ag-b inhibits LTP (data not
shown). Finally, it is important to note that low-n amyloid-b oligomer
preparations from 7PA2 supernatants contain considerable amounts of
Ag (data not shown). Thus, the previously observed inhibition of LTP
with such fractions may also be attributed to the presence of Ag. Our
findings may also be considered in the context of continuing clinical trials
with BACE1 inhibitors. Together with the identification of numerous

brain-specific BACE1 substrates29,30, our data indicate that therapeutic
inhibition of BACE1 activity requires careful titration to prevent
unwanted adverse effects at several levels.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Cell culture. Mycoplasm-free CHO and 7PA2 (ref. 31) cells (gift from E. Koo)
were grown in DMEM/F12 (Thermo Scientific) supplemented with 10% FCS
(Thermo Scientific) plus penicillin/streptomycin and non-essential amino acids
(PAA) in a humid incubator with 5% CO2 at a temperature of 37 uC. For inhibitor
treatment, cell culture medium was replaced with fresh, pre-warmed serum free
medium (OPTIMEM; Thermo Scientific) supplemented with inhibitors or DMSO
as vehicle control. Treatment was initiated when cells reached 90–100% con-
fluency and conditioned media were collected after 20–24 h. Supernatants were
cleared by centrifugation (10 min, 5,500g at 4 uC). To obtain cell lysates, cell
monolayers were washed once with ice-cold PBS and detached in 1 ml PBS using
a cell scraper. The cell suspension was pelleted by centrifugation (5 min, 1,000g at
4 uC) and lysed with RIPA buffer (20 mM sodium citrate, pH 6.4, 1 mM EDTA, 1%
Triton X-100 in ddH2O) supplemented with Protease Inhibitor Cocktail (Sigma-
Aldrich). The protein concentration of lysates was determined using the Uptima
BC Assay Protein Quantitation kit (Interchim).
Primary cell culture. Hippocampal neurons were isolated from embryonic day 18
CD rats (Charles River) as described previously32. Dissociated neurons were plated
at 17,700 cells cm22 onto 6-cm dishes coated with poly-L-lysine (1 mg ml21;
Sigma) and cultured in Neurobasal medium supplemented with 2% B27 and
0.5 mM L-glutamine (all from Invitrogen). Hippocampal cultures were maintained
in a humidified 5% CO2 incubator at 37 uC. For inhibitor treatment, DIV16 culture
medium was replaced with fresh, pre-equilibrated N2 medium (supplemented
with 20% of 4 days conditioned N2 medium from pure primary cultured astro-
cytes) to which inhibitors or DMSO as vehicle control were added.
Generation and BACE1 inhibition of cerebral cortex neurons induced from
human embryonic stem cells. Cell lines in this study were H9 ES (WiCell
Research Institute)33. Pluripotent cells were cultured on mouse embryonic
fibroblasts (GlobalStem) in DMEM/F12 containing 20% (v/v) KSR, 100mm
non-essential amino acids, 100mM 2-mercaptoethanol, 50 U ml21 penicillin and
50 mg ml21 streptomycin (Life Technologies) and 10 ng ml21 FGF2. Directed
differentiation of human embryonic stem cells to cerebral cortex neurons was
carried out as described17,34. Human neurons (75 days after induction) were
treated with 1mM b-secretase inhibitor LY2886721 (Selleck) dissolved in
DMSO (20 mM stock). Vehicle-only control assays were performed using
DMSO. The compound was applied twice at 48-h intervals. Extracellular media
was collected before drug addition and at subsequent 48-h intervals. Neurons were
collected after 4 days of treatment using 0.5 mM EDTA in PBS.
Transgenic mice, animal care and animal handling. Bace12/2 and APPPS1-21
mice were described before10,19 and were bred for this study in a Bl6C57/J back-
ground. All treatments were approved by the local committee for animal use and
were performed in accordance to state and federal regulations (license number
KVR-I/221-TA116/09). Mice had access to pre-filtered sterile water and standard
mouse chow (Ssniff Ms-H, Ssniff Spezialdiäten GmbH, Soest, Germany) ad libi-
tum and were housed under a reversed day–night rhythm in IVC System Type II
L-cages (528 cm2) equipped with solid floors and a layer of bedding, in accordance
to local legislation on animal welfare.
BACE1 inhibitor treatment. Randomized APPV717I (ref. 18) mice were treated
with vehicle or with the inhibitor RO5508887 provided by Hoffmann-La Roche35.
The groups of treated mice were blinded to the examiner and uncoded at the end of
the experiments. Three-month-old heterozygous female transgenic mice in mixed
FVB/N 3 C57Bl/6J background expressing human APPV717I (ref. 18) were used
for BACE1 inhibition studies. Gavage mediated administration of BACE1 inhib-
itor (90 mg kg21, 14.06 ml kg21) or vehicle (14.06 ml kg21) was performed once35.
The BACE1 inhibitor was diluted in 5% ethanol (Merck) and 10% solutol (Sigma-
Aldrich) in sterile water (Baxter). Animals were sacrificed after 5, 8 and 24 h. Mice
were anaesthetized with 3.5 ml per gram body weight of a mixture of ketamine
(115 mg ml21 ketamine hydrochloride, Eurovet), xylazin 2% (23.32 mg ml21 xyla-
zine hydrochloride, VMD Arendonk), atropine (0.50 mg ml21 atropine sulphate,
Sterop) and saline (8:5:2:5, v/v/v/v). For brain preparation, mice were flushed
trans-cardially with ice-cold saline (3.5 ml min21, 3 min). The brain was removed
from the cranium and dissected into left and right hemiforebrain, brainstem,
cerebellum and olfactory bulb. The brain structures were promptly immersed in
liquid nitrogen and stored at 280 uC. Different tissues (kidneys, spleen, liver,
stomach, gut, lungs and heart) were examined and checked for gross abnormal-
ities. No obvious abnormalities were observed in any of the treatment groups.
Preparation of protein extracts from brain. Brains were removed from the
cranium and dissected into left and right hemispheres. Brain tissue was snap-
frozen in liquid nitrogen and stored at 280 uC. Soluble proteins were extracted
with DEA buffer (50 mM NaCl, 0,2% diethylamine, pH 10, plus protease
inhibitor (P8340, Sigma-Aldrich))36, membrane proteins were extracted with
RIPA buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM
EGTA,1% NP-40,1% sodium deoxycholate, 2.5 mM sodium pyrophosphate

plus protease inhibitor) or applying a membrane preparation protocol as
described before37.
Protein analysis. Proteins were separated under denaturing conditions using
discontinuous SDS–PAGE. Equal amounts of proteins denatured in Laemmli
buffer were loaded onto the gel and 10ml of the SeeBlue Plus2 Prestained
Standard (Invitrogen) served as molecular mass marker. Electrophoresis was per-
formed in Tris-glycine buffer (25 mM Tris, 190 mM glycine in ddH2O) using the
Mini-PROTEAN system (BIORAD) on activated PVDF membranes. Low
molecular mass proteins (,16 kDa) were separated using precast gradient
Tricine Protein Gels (10–20%, 1 mm, Novex) in Tris-tricine buffer using the
XCell SureLock Mini-Cell system (Novex). After separation by SDS–PAGE, pro-
teins were transferred onto membranes using the tank/wet Mini Trans-Blot cell
system (BIORAD). CTFs, Ag and amyloid-b were detected after transfer on
Nitrocellulose membranes (Protran BA85; GE Healthcare), while other proteins
were blotted on PVDF (Immobilon-P, Merck Millipore). As size markers for Ag
synthetic peptides Ag-b (92 amino acids; 1-MISEPRISYGNDALMPSLTETKT
TVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVDARPAADRGLTT
RPGSGLTNIKTEEISEVKM-92) and the slightly longer Ag-a (108 amino acids;
1-MISEPRISYGNDALMPSLTETKTTVELLPVNGEFSLDDLQPWHSFGADSV
PANTENEVEPVDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEFRHDSG
YEVHHQK-108) were obtained from Peptide Speciality Laboratories. After com-
pletion of the transfer and before blocking, proteins transferred to nitrocellulose
membranes were additionally denatured by boiling the membrane in PBS
(140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, 2.7 mM KCl in ddH2O,
pH 7.4) for 5 min. After cooling to room temperature, nitrocellulose membranes
as well as the PVDF membranes were blocked in I-Block solution (0.2% Tropix
I-Block (Applied Biosystems), 0.1% Tween20 in PBS) for 1 h at room temperature
or overnight at 4 uC (with agitation). Transferred proteins were detected using
immunodetection and enhanced chemiluminescence (ECL). First, blocked mem-
branes were incubated with primary antibodies diluted in I-Block solution over-
night at 4 uC (with agitation). After removal of the antibody, membranes were
washed three times in TBS-T buffer (10 min each, at room temperature, with
agitation; 140 mM NaCl, 2.68 mM KCl, 24.76 mM Tris, 0.3% Triton X-100 in
ddH2O, pH 7.6) and subsequently incubated with a horseradish-peroxidase-
coupled secondary antibody (obtained from Promega or Santa Cruz). Secon-
dary antibodies were diluted in I-Block solution and membranes were incubated
for 1 h at room temperature (with agitation) followed by three washes in TBS-T.
For ECL detection, membranes were incubated with horseradish peroxidase sub-
strate (ECL, GE Healthcare or ECL Plus, Thermo Scientific) for 1 min at room
temperature and signals were captured with X-ray films (Super RX Medical
X-Ray, Fujifilm), which were subsequently developed using an automated film
developer (CAWOMAT 2000 IR, CAWO). Quantitation of protein was con-
ducted using ImageJ software. Ratios were obtained from signals on the same
film for Ag over amyloid-b. Quantitative data were analysed statistically by using
a two-tailed Student’s t-test.
Molecular cloning and transfection. For the expression of Ag-a and Ag-b in
CHO cells, the complementary DNAs of the respective fragments were amplified
by PCR and subcloned into the pSecTag2A (Invitrogen) vector that features an
N-terminal secretion signal. CHO cells were cultured in DMEM with 10% FCS
and non-essential amino acids. Transfections were carried out using Lipofecta-
mine 2000 (Invitrogen) according to the manufacturer’s instructions.
Mass spectrometry analysis of samples. Beads with immunoprecipitated pep-
tides were resuspended in ddH2O and reduced with 10 mM dithiothreitol followed
by alkylation with 55 mM 2-chloroacetamide. Samples were divided into three
parts and digested with either 1mg of trypsin (1.2 M urea, 0.4 M thiourea and
50 mM ammonium bicarbonate), LysC (5 M urea, 1.7 M thiourea and 50 mM
ammonium bicarbonate) or chymotrypsin (0.3 M urea, 0.1 M thiourea and
50 mM ammonium bicarbonate). To increase the sequence coverage further, par-
tially cleaved peptides were generated by digesting for 5, 10, 20, 40, 60, 120, 180 and
720 min. Samples from all time points of a respective protease were pooled and
desalted on stage tips38.

For liquid chromatography–tandem mass spectrometry (LC–MS/MS), peptides
were separated on a Thermo Scientific EASY-nLC 1000 HPLC system (Thermo
Fisher Scientific) and in-house packed columns (75mm inner diameter, 20 cm
length, 1.9mm C18 particles (Dr. Maisch GmbH). The peptide mixture was loaded
in buffer A (0.5% formic acid) and separated with a gradient from 10% to 60%
buffer B (80% acetonitrile, 0.5% formic acid) within 40 min at 250 nl min21 at a
column temperature of 50 uC. A Quadrupole Orbitrap mass spectrometer39 (Q
Exactive, Thermo Fisher Scientific) was coupled to the HPLC system via a nano
electrospray source. We used data-dependent acquisition with a survey scan range
of 300 to 1,650 m/z, at a resolution of 60,000 m/z and selected up to five most
abundant features with a charge state $2 for HCD fragmentation40 at a normal-
ized collision energy of 27 and a resolution of 15,000 at m/z 200. To limit repeated
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sequencing, dynamic exclusion of sequenced peptides was set to 20 s. Thresholds
for ion injection time and ion target values were set to 20 ms and 3 3 106 for the
survey scans, and 120 ms and 1 3 105 for the MS/MS scans. Data were acquired
using the Xcalibur software (Thermo Scientific).
Data analysis. To process mass spectrometry raw files, we used the MaxQuant
software (v1.5.2.16)41. We used the Andromeda search engine42, which is inte-
grated into MaxQuant, to search MS/MS spectra against the APP695 and 247
common contaminating proteins42. We set enzyme specificity to unspecific to
detect novel cleavage sites and set a peptide search length from 7 to 40 amino
acids. A false discovery rate cutoff of 1% was applied at the peptide level. For data
visualization we used R43. Identified peptides were mapped to APP695. To display
quantitative evidence for overlapping peptides, intensities of identified peptides
were summed and plotted per amino acid residue. The data of the individual
immunoprecipitation and mass spectrometry analyses are depicted in Extended
Data Fig. 3.
Human CSF samples. Human CSF samples collected at the Department of
Neurology Outpatient unit for neurodegenerative disease (KBFZ) of the
University of Bonn were obtained by lumbar puncture at position L3, centrifuged
and divided in small aliquots. For further analysis, samples were stored at 280 uC.
Turbid or blood-contaminated samples were excluded from analysis. Use of these
samples for research purposes has been consented by all patients according to the
ethical committee requirements of the University of Bonn Ethical committee and
approval number 279/10. For the analysis of APPswe carriers with antibodies
192swe (ref. 44) lumbar CSF was obtained from family members. Tubes with
CSF were stored at 270 uC until analysis. The clinical diagnosis of probable AD
was based on NINCDS-ADRDA criteria45. The diagnosis of AD was confirmed by
neuropathological examination of the brain of one deceased mutation-carrier46,47.
This study was approved by research ethics committee at the Uppsala University
Hospital (Dnr 048-2005).
Neuropathology and immunohistochemistry. Use of brain samples for research
purposes has been consented by all patients according to the ethical committee
requirements of the University of Ulm Ethical committee and approval number
54/08. Braak-NFT stages48, and CERAD49 scores for neuritic plaques were used to
determine the degree of AD pathology according to the NIA-AA guidelines50.
Consecutive paraffin sections from the human medial lobe were stained with
22C11, 9476M and 9478D. Primary antibodies were detected with biotinylated
anti-mouse and anti-rabbit IgG secondary antibodies and visualized with avidin-
biotin-complex (ABC-Kit, Vector Laboratories) and diaminobenzidine-HCl
(DAB). The sections were counterstained with haematoxylin. Positive and nega-
tive controls were performed. 9476M and 9478D stainings were assessed in 10
control and 10 AD patient cases.

For double immunofluorescence analysis of APPPS1-21 brain sections,
6-month-old mice were killed by CO2 inhalation according to animal handling
laws. Brains were dissected and fixed with 4% paraformaldehyde in 0.1 M PBS,
pH 7.4 for 48 h. For immunohistochemistry, 25-mm-thick sagittal mouse brain
cryosections were treated with 10 mM sodium citrate, pH 6 at 95 uC for 20 min,
washed with 0.5% Triton X-100 in PBS, blocked with 5% goat serum (Invitrogen)
and 0.5% Triton X-100 in PBS for 1 h and subsequently incubated overnight with
primary antibodies diluted in blocking solution. Primary antibodies were used as
listed in Supplementary Table 1. DAPI was used to counterstain nuclei. Signals
were visualized using fluorescently labelled secondary antibodies. Confocal images
were acquired using a Plan-Apochromat 253/0.8 oil differential interference con-
trast objective on a LSM 710 confocal microscope (Zeiss) in sequential scanning
mode using ZEN 2011 software package (black edition, Zeiss).
LCM of plaque enriched brain material. For laser capture microdissection of
plaque cores and halos, 10-, 11-, 14-, 16- and 24-month-old transgenic APPPS1-21
mice were used according to a previously published protocol51 with slight mod-
ifications. Mice brains were dissected and immediately frozen on crushed dry ice.
Ten-micrometre-thick sagittal sections were cut using a Microm HM 560 cryostat
(Thermo Scientific), mounted on frame slides containing a 1.4mm polyethylene
terephthalate membrane (Leica Microsystems) and subsequently stained or stored
at 280 uC for later usage. Staining was performed as follows: brain sections were
thawed briefly at room temperature, fixed with 75% ethanol for 1 min, stained with
0.05% Thioflavin-S for 5 min, washed with 75% ethanol and dried at room tem-
perature. LCM was performed on the same day using a laser dissection microscope
(Leica, LMD 7000) with the following settings: excitation wavelength 495 nm, laser
power 30, aperture 5, speed 6 and pulse frequency 119. From each animal, at least
800 plaque cores and halos, dissected from 12 brain sections were cut using a 633

magnification objective, collected in 0.5 ml caps (Leica Microsystem) and subse-
quently pooled for protein analysis. Areas containing no plaques were cut using a
103 magnification objective and were used as controls. Protein lysates were done
essentially as described above using RIPA with 0.1% SDS.

Slice preparation and electrophysiological recordings applying Ag peptides in
vitro. Transverse hippocampal slices (350mm) were prepared from P20–30 Swiss
mice following standard procedures52. Slices were cut in ice-cold oxygenated
(95% O2, 5% CO2) solution containing 206 mM sucrose, 2.8 mM KCl, 1.25 mM
NaH2PO4, 2 mM MgSO4, 1 mM MgCl2, 1 mM CaCl2, 26 mM NaHCO3, 0.4 mM
sodium ascorbate and 10 mM glucose, pH 7.4. For recovery (1 h), slices were
incubated at 27 uC in oxygenated standard ACSF containing: 124 mM NaCl,
2.8 mM KCl, 1.25 mM NaH2PO4, 2 mM MgSO4, 3.6 mM CaCl2, 26 mM NaHCO3,
0.4 mM sodium ascorbate, 10 mM glucose (pH 7.4)53. Slices were inspected in a
chamber on an upright microscope (Slicescope, Scientifica Ltd) with infrared
differential interference contrast illumination, and were perfused with the oxyge-
nated ACSF at 27 6 1 uC. fEPSPs were recorded in the stratum radiatum of the
CA1 region using a glass electrode (filled with 1 M NaCl, 10 mM HEPES, pH 7.4)
and the stimuli (30% of maximal fEPSP) were delivered to the Schaeffer Collateral
pathway by a monopolar glass electrode (filled with ACSF). Electrodes were
specifically placed just below the surface of the slice to maximize the exposure
to circulating peptides. A minimum of 15–20 min stable baseline was first
obtained in standard ACSF followed by another 15–20 min of bath application
of ACSF containing SEC fractions (CHO, Ag-a or Ag-b; 1/15 dilution, inter-
leaved recordings) using re-circulation with a peristaltic pump at 2.5–3 ml min21

while being continuously aerated with 95% oxygen. No alterations in fEPSP
baseline responses were observed after incubation with the SEC fractions
(Extended Data Fig. 8). In the continuous presence of ACSF/SEC solution, LTP
was induced using a high-frequency stimulation protocol with two pulses of
100 Hz for 1 s with a 20 s interval between pulses, and recorded for 1 h. Control
recordings (no application of SEC fractions) were obtained in an interleaved
fashion in which ACSF was re-circulated using an identical procedure. For
LTP analysis, the first third of the fEPSP slope was calculated in baseline condition
(15–20 min before induction of LTP) and compared to that after LTP induction
(60 min after tetanization of Schaffer collaterals). The average baseline value was
normalized to 100% and all values of the experiment were normalized to this
baseline average (1-min bins). Experimental data were pooled per condition and
presented as mean 6 s.e.m. Data analysis was performed with the Clampfit soft-
ware (Molecular Devices). The test samples were blinded to the investigator and
uncoded at the end of the experiments. Statistical analysis was performed using
GraphPad (Prism 6) with the last 15 min of the recordings compared to measure-
ments of 15–20 min of baseline, using a two-tailed Student’s t-test for statistical
analysis on two samples or one-way ANOVA and post hoc Bonferroni test for
statistical analysis on three and more samples, with P , 0.05 taken as statistically
significant. No power analysis was done to estimate sample size, and there was no
randomization.
Electrophysiological recordings of the effects of BACE1 inhibitor in vitro.
BACE1 inhibitor (100 mg kg21, single gavage) or vehicle-treated mice (12 weeks
old) were deeply anaesthetized with isoflurane (1% in O2) and decapitated with
brains rapidly extracted and placed for 5–6 min in ice-cold bubbled (95% O2, 5%
CO2) slicing solution (in mM): 75 sucrose, 85 NaCl, 2.5 KCl, 1.25 NaH2PO4,
25 NaHCO3, 0.5 CaCl2, 4 MgCl2, 25 glucose, pH 7.4. Coronal slices (400mm)
containing the hippocampus were cut (VT1200S; Leica) and transferred into a
warming chamber (35 uC) filled with bubbled solution of the same composition,
except sucrose was omitted and NaCl increased to 125 mM (30 min). This was
followed by the transfer of slices into recording ACSF (in mM): 125 NaCl, 2.5 KCl,
1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 2 MgCl2, 25 glucose. Recordings of fEPSP
were made from the hippocampal CA1 area. A glass bipolar stimulating electrode
was placed in the stratum radiatum of CA2–CA3 subfields to stimulate Schaffer
collaterals with 0.2 ms current pulses at 0.033 Hz (A-360, WPI), with evoked
responses recorded in the stratum radiatum of CA1 area. Incrementing current
pulses (0.2 mA) were used for obtaining stimulus-response relationship graphs.
Stable baseline and LTP recordings were made using one-half of the maximal
stimulus intensities; LTP was induced by high-frequency stimulation of Schaffer
collaterals with 10 trains of 10 pulses at 100 Hz applied, with 2-s inter-train
intervals. Signals were filtered at 5 kHz, digitally sampled at 10 kHz and stored
for offline analysis. The relative slope and peak amplitude of evoked fEPSPs were
measured using FitMaster (HEKA Electronics). The groups of treated mice were
blinded to the investigator and uncoded at the end of the experiments. A one-way
ANOVA and post hoc Bonferroni test have been used for statistical analysis, with
P , 0.05 taken as statistically significant.
In vivo two-photon Ca21 imaging. All experimental procedures were in com-
pliance with institutional animal welfare guidelines and were approved by the state
government of Bavaria, Germany. The animal preparation procedure was similar
to that described previously25. In brief, C57Bl/6 mice (male or female, ,P40)
were anaesthetized with isoflurane (1–1.5%) and placed onto a warming plate
(37–38 uC). The skin was removed and a custom-made recording chamber
was glued to the exposed skull. A craniotomy (,1 mm) was made over the
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hippocampus (2.5 mm posterior to bregma, 2.2 mm lateral to the midline) and a
small portion of the overlying cortical tissue was carefully removed by aspiration.
The animal was placed under a microscope on a warm heating plate (37–38 uC)
and kept anaesthetized with low-levels of isoflurane (,0.8%). Respiratory and
pulse rates were continuously monitored. The recording chamber was perfused
with warm normal Ringer’s solution containing 125 mM NaCl, 4.5 mM KCl,
26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2 and 20 mM
glucose (pH 7.4 when bubbled with 95% O2 and 5% CO2). The exposed CA1
region of the hippocampus was then stained with fluo-8AM (AAT Bioquest;
0.6 mM) using the multi-cell bolus loading technique54.

In vivo imaging was performed with a custom-built two-photon microscope
equipped with a Ti:sapphire laser system (Coherent; laser wavelength 925 nm), a
resonant scanner and a Pockel’s cell for laser intensity modulation. Full-frame
images were acquired at 30 Hz using a water-immersion objective (Nikon; 403,
0.8 numerical aperture). Data acquisition was controlled using custom-written
software based on LabVIEW (National Instruments). Image analysis was per-
formed off-line by using custom routines in LabVIEW and Igor Pro
(Wavemetrics). Cellular regions of interest were drawn around individual somata,
and then relative fluorescence change (DF/F) versus time traces were generated for
each region of interest. Ca21 transients were identified as changes in DF/F that
were three times larger than the s.d. of the noise band.

To assess the effects of Ag peptides on neuronal activity in vivo, the peptides or
the respective controls (SEC fractions obtained from untransfected CHO cells or a
synthetic peptide (46 amino acids; 1-ADSVPANTENEVEPVDARPAADRGL
TTRPGSGLTNIKTEEISEVKM-46) of a middle part of Ag were added to the
normal Ringer’s solution used for perfusion of the recording chamber (bath-
application technique; 45–60 min each wash-in). In a subset of experiments, syn-
thetic Ag-a (92 amino acids; 1-MISEPRISYGNDALMPSLTETKTTVELLPV
NGEFSLDDLQPWHSFGADSVPANTENEVEPVDARPAADRGLTTRPGSGLT
NIKTEEISEVKM-92) was applied locally by gentle pressure injection through a
glass pipette that was placed close to the neurons of interest (local application
technique; 40 s each pressure injection).

The samples were blinded to the investigator and uncoded at the end of the
experiments. Statistical analysis was performed using SPSS. The statistical meth-
ods used were the Student’s t-test and the Fisher’s exact test. P , 0.05 was con-
sidered statistically significant.
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Extended Data Figure 1 | Schematic presentation of the g-secretase processing pathway. Schematic representation of the g-secretase pathway (left) as
compared to the amyloidogenic pathway (right). Antibodies used in this study are indicated.

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved



Extended Data Figure 2 | g-Secretase cleavage at Met505 of APP695. MMP
proteins can cleave human APP695 at the indicated position (arrow) between
amino acids N504 and M505 in the N-terminal domain. The epitope for
the neo-epitope-specific antibody 10A8 is indicated (grey line). sAPP-g was
specifically detected in diethylamine (DEA; 0.2% diethylamine in 50 mM NaCl,
pH 10) extracts of P10 wild-type mouse brain using antibody 10A8, but
was absent in APP-knockout brains. Of note, antibody 10A8 failed to detect
sAPP-a/b, confirming its selectivity for the g-cleavage site.
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Extended Data Figure 3 | Mass spectrometry analysis of Ag peptides.
a, b, After removal of sAPP-a from conditioned media of CHO 7PA2 cells using
appropriate centricon filters, the flow-through was used to isolate Ag peptides
by immunoprecipitation. Synthetic peptides (1 ng per lane) were loaded to
indicate the respective sizes of Ag-a and Ag-b. Ag peptides were captured
with antibodies 9476M and 9478D directed against the putative N-terminal
epitopes (Supplementary Table 1), 2E9 against a middle domain of Ag
and 2D8 (which also immunoprecipitates amyloid-b). 2D8 detection
(a) revealed that all antibodies captured peptides positive for the N-terminal
part of the amyloid-b domain in a molecular mass range of synthetic Ag-a

between 12 and 16 kDa. The same samples analysed with 2E9 (b) confirmed the
presence of Ag in all samples, with the lowest levels when precipitated with
9476M. Note that unlike 2D8 antibody, 2E9 allows the additional detection
of Ag-b. (Asterisks denote IgG.) c, A heat map of peptides identified after
analytic proteolysis by mass spectrometry analysis, with 7PA2 supernatants
immunoprecipitated with 2D8, 2E9, 9476M and 9478D antibodies. Arrows
indicate peptides that start exactly with the amino acid sequence C-terminal of
the respective cleavage sites of the g-secretase, b-secretase or a-secretase site.
Chy, chymotrypsin; LysC, protease LysC; tryp, trypsin.
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Extended Data Figure 4 | MT5-MMP displays g-secretase activity in brain.
a–c, MT1-MMP2/2 and MT5-MMP2/2 (also known as Mmp142/2 and
Mmp242/2, respectively) mice were analysed for changes in g-secretase
activity. Membrane and soluble proteins from P10 mouse brains were analysed.
a, In RIPA lysates, no changes in APP and BACE1 levels were detected in
knockout brains. MT1- and MT5-MMP were selectively knocked out as shown

by the lack of signals in western blots. Calnexin served as a loading control.
Soluble Ag levels, detected by antibodies 9478D and M3.2 (Ag-a) were
unchanged in MT1-MMP2/2 mouse brains (b), but reduced in MT5-MMP2/2

mouse brains (c). Total levels of secreted APP (22C11), sAPP-a or sAPP-bwere
unchanged (b, c).
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Extended Data Figure 5 | Accumulation of CTF-g in dystrophic neurites.
a, Immunohistological stainings of cortical sections of 6-month-old APPPS1-21
transgenic mice (n 5 3) revealed 6E10-positive amyloid-b plaque cores
(encircled) surrounded by dystrophic neurites positive for 2E9 (white
arrowheads, top) and 9476M (white arrowheads, middle). Y188 (bottom panel)
staining co-localized with 2E9-positive signal (yellow arrowheads, bottom).
Nuclei were counterstained with DAPI. Scale bar, 10 mm. b, Accumulation of
CTF-g fragment in dystrophic neurites of 14-month and 24-month-old
APPPS1-21 mice. Western blot analysis of material obtained by LCM of

APPPS1-21 brain sections (n 5 5) bearing thioflavin-S-positive amyloid-b
plaque core (P) and the surrounding amyloid-b plaque halo (H). As a control
(C), brain areas devoid of plaques were used. While amyloid-b was readily
detected by antibody 2D8 in lysates containing plaque-enriched material and
halo regions (fractions P and H; bottom), CTF-g was selectively detected in
the lysates prepared from the region enriched in dystrophic neurites (H; top),
but not detected in plaque or control regions (P or C). As expected,
CTF-b/a species are also enriched in dystrophic neurites (H).
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Extended Data Figure 6 | Dystrophic neurites in AD brains are positive
for Ag-epitope antibodies. a–f, Immunohistochemistry with 22C11
(a, b), 9478D (c, d) and 9476M (e, f) antibodies in the human hippocampus
(CA1-subiculum region) of a control case (a, c, e) and an AD case (b, d, f).

Immuno-positive signals were observed with 22C11 (a), 9478D (c) and 9476M
(e) antibodies in the somata and neuropils of a normal and AD brain. In AD
brains, these antibodies decorate dystrophic neurites (b, d, f, denoted
by arrowheads). Scale bar, 30 mm. NP, neuritic plaque.
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Extended Data Figure 7 | Increased Ag levels after acute treatment with a
BACE1 inhibitor. a, In membrane lysates of brains obtained from animals
treated with BACE1 inhibitor (BI, 100 mg kg21 SCH1682496), an increase in
CTF-g was observed, which was paralleled by a strong reduction of CTF-b,
while CTF-a was unchanged. APP-FL and BACE1 signals remained

unchanged (asterisk indicates background band). Calnexin served as a loading
control. b, In the soluble fraction, BACE1 inhibition resulted in enhanced Ag-a
levels and reduced sAPP-b levels, indicating efficient BACE1 inhibition.
c, Production of Ag-a species, which was detected by antibody M3.2, revealed a
95.4% increase after BACE1 inhibition. n 5 3; P , 0.01, Student’s t-test.
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Extended Data Figure 8 | Ag-a and Ag-b derived from CHO cells did not
influence baseline activity at the hippocampal CA3–CA1 synapse. Soluble
Ag-a and Ag-b peptides were expressed in CHO cells and collected in
OPTIMEM medium. a, b, SEC fractions containing Ag were diluted (1:15) in
ACSF for the treatment of hippocampal slices and LTP measurements. Ag-a or

Ag-b SEC fractions were perfused over mouse hippocampal slices after
obtaining a 15-min stable baseline of a fEPSP at the CA3–CA1 synapse. The
baseline remained unchanged for another 15 min when slices were incubated
with CHO-cell-derived recombinant Ag-a (a) or Ag-b (b).
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Extended Data Figure 9 | AbS26C dimers and synthetic Ag-a impair
hippocampal LTP. a, In line with previous findings23, AbS26C cross-linked
dimers (containing cysteine instead of serine at residue 26; 100 nM final; JPT
Peptide Technologies; diluted in 25 ml re-circulating ACSF) reduced LTP as
compared to interleaved control LTP recordings in 25 ml re-circulating
ACSF. b, Illustrated is the average LTP magnitude (at 45–60 min after LTP
induction) normalized to pre-LTP baseline values (100%) in untreated and

treated conditions (***P , 0.001; Student’s t-test). c, Treatment with synthetic
Ag-a (100 nM final; Peptide Speciality Laboratories; diluted in 25 ml
re-circulating ACSF) reduced LTP as compared to interleaved control LTP
recordings in 25 ml re-circulating ACSF. d, Illustrated is the average LTP
magnitude (at 45–60 min post-LTP induction) normalized to pre-LTP baseline
values (100%) in treated and untreated conditions (*P , 0.05; Student’s t-test).
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Extended Data Figure 10 | Ag-a decreases the frequencies of neuronal calcium transients in vivo. a–f, Histograms showing in each panel the corresponding
distributions of calcium transients before (control) and during subsequent exposure of Ag peptides (b, c, e, f) and controls (a, d).

RESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved



 

 

 

171 

 

10 References 

Alberini, C. M., Ghirardi, M., Huang, Y. Y., Nguyen, P. V. and Kandel, E. R. (1995) 'A molecular 
switch for the consolidation of long-term memory: cAMP-inducible gene expression', 
Ann N Y Acad Sci, 758, pp. 261-86. 

Almeida, C. G., Tampellini, D., Takahashi, R. H., Greengard, P., Lin, M. T., Snyder, E. M. and 
Gouras, G. K. (2005) 'Beta-amyloid accumulation in APP mutant neurons reduces 
PSD-95 and GluR1 in synapses', Neurobiol Dis, 20(2), pp. 187-98. 

Ambroggi, F., Turiault, M., Milet, A., Deroche-Gamonet, V., Parnaudeau, S., Balado, E., Barik, 
J., van der Veen, R., Maroteaux, G., Lemberger, T., Schütz, G., Lazar, M., Marinelli, 
M., Piazza, P. V. and Tronche, F. (2009) 'Stress and addiction: glucocorticoid receptor 
in dopaminoceptive neurons facilitates cocaine seeking', Nat Neurosci, 12(3), pp. 
247-9. 

Amsterdam, J. D., Maislin, G., Berwish, N., Phillips, J. and Winokur, A. (1989) 'Enhanced 
adrenocortical sensitivity to submaximal doses of cosyntropin (alpha1-24-
corticotropin) in depressed patients', Arch Gen Psychiatry, 46(6), pp. 550-4. 

Arendash, G. W., Gordon, M. N., Diamond, D. M., Austin, L. A., Hatcher, J. M., Jantzen, P., 
DiCarlo, G., Wilcock, D. and Morgan, D. (2001) 'Behavioral assessment of Alzheimer's 
transgenic mice following long-term Abeta vaccination: task specificity and 
correlations between Abeta deposition and spatial memory', DNA Cell Biol, 20(11), 
pp. 737-44. 

Arnold, K. M. and McDermott, K. B. (2013) 'Free recall enhances subsequent learning', 
Psychon Bull Rev, 20(3), pp. 507-13. 

Arriagada, P. V., Marzloff, K. and Hyman, B. T. (1992) 'Distribution of Alzheimer-type 
pathologic changes in nondemented elderly individuals matches the pattern in 
Alzheimer's disease', Neurology, 42(9), pp. 1681-8. 

Aschauer, D. F., Kreuz, S. and Rumpel, S. (2013) 'Analysis of transduction efficiency, tropism 
and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain', PLoS 
One, 8(9), pp. e76310. 

Ashe, K. H. and Zahs, K. R. (2010) 'Probing the biology of Alzheimer's disease in mice', 
Neuron, 66(5), pp. 631-45. 

Baglietto-Vargas, D., Medeiros, R., Martinez-Coria, H., LaFerla, F. M. and Green, K. N. (2013) 
'Mifepristone alters amyloid precursor protein processing to preclude amyloid beta 
and also reduces tau pathology', Biol Psychiatry, 74(5), pp. 357-66. 

Balducci, C., Beeg, M., Stravalaci, M., Bastone, A., Sclip, A., Biasini, E., Tapella, L., Colombo, 
L., Manzoni, C., Borsello, T., Chiesa, R., Gobbi, M., Salmona, M. and Forloni, G. (2010) 
'Synthetic amyloid-beta oligomers impair long-term memory independently of 
cellular prion protein', Proc Natl Acad Sci U S A, 107(5), pp. 2295-300. 

Balducci, C. and Forloni, G. (2014) 'In vivo application of beta amyloid oligomers: a simple 
tool to evaluate mechanisms of action and new therapeutic approaches', Curr Pharm 
Des, 20(15), pp. 2491-505. 

Barik, J., Marti, F., Morel, C., Fernandez, S. P., Lanteri, C., Godeheu, G., Tassin, J. P., 
Mombereau, C., Faure, P. and Tronche, F. (2013) 'Chronic stress triggers social 
aversion via glucocorticoid receptor in dopaminoceptive neurons', Science, 
339(6117), pp. 332-5. 



 

 

 

172 

 

Barnes, J., Lewis, E. B., Scahill, R. I., Bartlett, J. W., Frost, C., Schott, J. M., Rossor, M. N. and 
Fox, N. C. (2007) 'Automated measurement of hippocampal atrophy using fluid-
registered serial MRI in AD and controls', J Comput Assist Tomogr, 31(4), pp. 581-7. 

Baulieu, E. E. (1997) 'RU 486 (mifepristone). A short overview of its mechanisms of action 
and clinical uses at the end of 1996', Ann N Y Acad Sci, 828, pp. 47-58. 

Bellone, C., Luscher, C. and Mameli, M. (2008) 'Mechanisms of synaptic depression triggered 
by metabotropic glutamate receptors', Cell Mol Life Sci, 65(18), pp. 2913-23. 

Benilova, I., Karran, E. and De Strooper, B. (2012) 'The toxic Abeta oligomer and Alzheimer's 
disease: an emperor in need of clothes', Nat Neurosci, 15(3), pp. 349-57. 

Bertram, L., Lill, C. M. and Tanzi, R. E. (2010) 'The genetics of Alzheimer disease: back to the 
future', Neuron, 68(2), pp. 270-81. 

Bliss, T. V. and Lomo, T. (1973) 'Long-lasting potentiation of synaptic transmission in the 
dentate area of the anaesthetized rabbit following stimulation of the perforant 
path', J Physiol, 232(2), pp. 331-56. 

Bornstein, S. R., Engeland, W. C., Ehrhart-Bornstein, M. and Herman, J. P. (2008) 
'Dissociation of ACTH and glucocorticoids', Trends Endocrinol Metab, 19(5), pp. 175-
80. 

Braak, H. and Braak, E. (1991) 'Neuropathological stageing of Alzheimer-related changes', 
Acta Neuropathol, 82(4), pp. 239-59. 

Bramblett, G. T., Goedert, M., Jakes, R., Merrick, S. E., Trojanowski, J. Q. and Lee, V. M. 
(1993) 'Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates 
development and contributes to reduced microtubule binding', Neuron, 10(6), pp. 
1089-99. 

Brureau, A., Zussy, C., Delair, B., Ogier, C., Ixart, G., Maurice, T. and Givalois, L. (2013) 
'Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer's 
disease rat model', Neurobiol Aging, 34(5), pp. 1426-39. 

Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. and Hof, P. R. (2000) 'Tau protein 
isoforms, phosphorylation and role in neurodegenerative disorders', Brain Res Brain 
Res Rev, 33(1), pp. 95-130. 

Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., 
Castner, B. J., Cerretti, D. P. and Black, R. A. (1998) 'Evidence that tumor necrosis 
factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of 
the Alzheimer amyloid protein precursor', J Biol Chem, 273(43), pp. 27765-7. 

Cai, X. D., Golde, T. E. and Younkin, S. G. (1993) 'Release of excess amyloid beta protein from 
a mutant amyloid beta protein precursor', Science, 259(5094), pp. 514-6. 

Capone, R., Quiroz, F. G., Prangkio, P., Saluja, I., Sauer, A. M., Bautista, M. R., Turner, R. S., 
Yang, J. and Mayer, M. (2009) 'Amyloid-beta-induced ion flux in artificial lipid 
bilayers and neuronal cells: resolving a controversy', Neurotox Res, 16(1), pp. 1-13. 

Caraci, F., Copani, A., Nicoletti, F. and Drago, F. (2010) 'Depression and Alzheimer's disease: 
neurobiological links and common pharmacological targets', Eur J Pharmacol, 626(1), 
pp. 64-71. 

Carlin, R. K., Grab, D. J., Cohen, R. S. and Siekevitz, P. (1980) 'Isolation and characterization 
of postsynaptic densities from various brain regions: enrichment of different types of 
postsynaptic densities', J Cell Biol, 86(3), pp. 831-45. 



 

 

 

173 

 

Carlson, G. A., Borchelt, D. R., Dake, A., Turner, S., Danielson, V., Coffin, J. D., Eckman, C., 
Meiners, J., Nilsen, S. P., Younkin, S. G. and Hsiao, K. K. (1997) 'Genetic modification 
of the phenotypes produced by amyloid precursor protein overexpression in 
transgenic mice', Hum Mol Genet, 6(11), pp. 1951-9. 

Carroll, J. C., Iba, M., Bangasser, D. A., Valentino, R. J., James, M. J., Brunden, K. R., Lee, V. 
M. and Trojanowski, J. Q. (2011) 'Chronic stress exacerbates tau pathology, 
neurodegeneration, and cognitive performance through a corticotropin-releasing 
factor receptor-dependent mechanism in a transgenic mouse model of tauopathy', J 
Neurosci, 31(40), pp. 14436-49. 

Catania, C., Sotiropoulos, I., Silva, R., Onofri, C., Breen, K. C., Sousa, N. and Almeida, O. F. 
(2009) 'The amyloidogenic potential and behavioral correlates of stress', Mol 
Psychiatry, 14(1), pp. 95-105. 

Chen, D. Y., Bambah-Mukku, D., Pollonini, G. and Alberini, C. M. (2012) 'Glucocorticoid 
receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory 
consolidation', Nat Neurosci, 15(12), pp. 1707-14. 

Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., 
Bredt, D. S. and Nicoll, R. A. (2000) 'Stargazin regulates synaptic targeting of AMPA 
receptors by two distinct mechanisms', Nature, 408(6815), pp. 936-43. 

Chourbaji, S., Vogt, M. A. and Gass, P. (2008) 'Mice that under- or overexpress 
glucocorticoid receptors as models for depression or posttraumatic stress disorder', 
Prog Brain Res, 167, pp. 65-77. 

Citron, M. (2010) 'Alzheimer's disease: strategies for disease modification', Nat Rev Drug 
Discov, 9(5), pp. 387-98. 

Clayton, N. S. and Dickinson, A. (1998) 'Episodic-like memory during cache recovery by scrub 
jays', Nature, 395(6699), pp. 272-4. 

Cole, M. A., Kim, P. J., Kalman, B. A. and Spencer, R. L. (2000) 'Dexamethasone suppression 
of corticosteroid secretion: evaluation of the site of action by receptor measures and 
functional studies', Psychoneuroendocrinology, 25(2), pp. 151-67. 

Cole, T. J. (2006) 'Glucocorticoid action and the development of selective glucocorticoid 
receptor ligands', Biotechnol Annu Rev, 12, pp. 269-300. 

Cole, T. J., Blendy, J. A., Monaghan, A. P., Krieglstein, K., Schmid, W., Aguzzi, A., Fantuzzi, G., 
Hummler, E., Unsicker, K. and Schutz, G. (1995) 'Targeted disruption of the 
glucocorticoid receptor gene blocks adrenergic chromaffin cell development and 
severely retards lung maturation', Genes Dev, 9(13), pp. 1608-21. 

Conboy, L. and Sandi, C. (2010) 'Stress at learning facilitates memory formation by 
regulating AMPA receptor trafficking through a glucocorticoid action', 
Neuropsychopharmacology, 35(3), pp. 674-85. 

Conrad, C. D., Lupien, S. J. and McEwen, B. S. (1999) 'Support for a bimodal role for type II 
adrenal steroid receptors in spatial memory', Neurobiol Learn Mem, 72(1), pp. 39-46. 

Cortes-Mendoza, J., Diaz de Leon-Guerrero, S., Pedraza-Alva, G. and Perez-Martinez, L. 
(2013) 'Shaping synaptic plasticity: the role of activity-mediated epigenetic 
regulation on gene transcription', Int J Dev Neurosci, 31(6), pp. 359-69. 

Coussens, C. M., Kerr, D. S. and Abraham, W. C. (1997) 'Glucocorticoid receptor activation 
lowers the threshold for NMDA-receptor-dependent homosynaptic long-term 



 

 

 

174 

 

depression in the hippocampus through activation of voltage-dependent calcium 
channels', J Neurophysiol, 78(1), pp. 1-9. 

Cowan, N. (2008) 'What are the differences between long-term, short-term, and working 
memory?', Prog Brain Res, 169, pp. 323-38. 

Csernansky, J. G., Dong, H., Fagan, A. M., Wang, L., Xiong, C., Holtzman, D. M. and Morris, J. 
C. (2006) 'Plasma cortisol and progression of dementia in subjects with Alzheimer-
type dementia', Am J Psychiatry, 163(12), pp. 2164-9. 

Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. and De Strooper, B. (2001) 'The amyloid 
precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is 
rapidly degraded but distributes partially in a nuclear fraction of neurones in 
culture', J Neurochem, 78(5), pp. 1168-78. 

D'Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De 
Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari-Teule, M., Marie, 
H. and Cecconi, F. (2011) 'Caspase-3 triggers early synaptic dysfunction in a mouse 
model of Alzheimer's disease', Nat Neurosci, 14(1), pp. 69-76. 

Dauvilliers, Y. (2007) 'Insomnia in patients with neurodegenerative conditions', Sleep Med, 8 
Suppl 4, pp. S27-34. 

Davies, C. A., Mann, D. M., Sumpter, P. Q. and Yates, P. O. (1987) 'A quantitative 
morphometric analysis of the neuronal and synaptic content of the frontal and 
temporal cortex in patients with Alzheimer's disease', J Neurol Sci, 78(2), pp. 151-64. 

Dawson, G. R., Seabrook, G. R., Zheng, H., Smith, D. W., Graham, S., O'Dowd, G., Bowery, B. 
J., Boyce, S., Trumbauer, M. E., Chen, H. Y., Van der Ploeg, L. H. and Sirinathsinghji, D. 
J. (1999) 'Age-related cognitive deficits, impaired long-term potentiation and 
reduction in synaptic marker density in mice lacking the beta-amyloid precursor 
protein', Neuroscience, 90(1), pp. 1-13. 

de Kloet, E. R., Joels, M. and Holsboer, F. (2005) 'Stress and the brain: from adaptation to 
disease', Nat Rev Neurosci, 6(6), pp. 463-75. 

de Kloet, E. R., Karst, H. and Joels, M. (2008) 'Corticosteroid hormones in the central stress 
response: quick-and-slow', Front Neuroendocrinol, 29(2), pp. 268-72. 

de Quervain, D. J., Poirier, R., Wollmer, M. A., Grimaldi, L. M., Tsolaki, M., Streffer, J. R., 
Hock, C., Nitsch, R. M., Mohajeri, M. H. and Papassotiropoulos, A. (2004) 
'Glucocorticoid-related genetic susceptibility for Alzheimer's disease', Hum Mol 
Genet, 13(1), pp. 47-52. 

de Quervain, D. J., Roozendaal, B. and McGaugh, J. L. (1998) 'Stress and glucocorticoids 
impair retrieval of long-term spatial memory', Nature, 394(6695), pp. 787-90. 

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, 
E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., Goate, A. and Kopan, R. (1999) 'A 
presenilin-1-dependent gamma-secretase-like protease mediates release of Notch 
intracellular domain', Nature, 398(6727), pp. 518-22. 

De Strooper, B. and Karran, E. (2016) 'The Cellular Phase of Alzheimer's Disease', Cell, 
164(4), pp. 603-15. 

Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., 
Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., 
Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, 



 

 

 

175 

 

D. and Zlokovic, B. (2003) 'RAGE mediates amyloid-beta peptide transport across the 
blood-brain barrier and accumulation in brain', Nat Med, 9(7), pp. 907-13. 

DeKosky, S. T. and Scheff, S. W. (1990) 'Synapse loss in frontal cortex biopsies in Alzheimer's 
disease: correlation with cognitive severity', Ann Neurol, 27(5), pp. 457-64. 

Deng, W., Aimone, J. B. and Gage, F. H. (2010) 'New neurons and new memories: how does 
adult hippocampal neurogenesis affect learning and memory?', Nat Rev Neurosci, 
11(5), pp. 339-50. 

Dere, E., Huston, J. P. and De Souza Silva, M. A. (2005) 'Episodic-like memory in mice: 
simultaneous assessment of object, place and temporal order memory', Brain Res 
Brain Res Protoc, 16(1-3), pp. 10-9. 

deToledo-Morrell, L., Stoub, T. R. and Wang, C. (2007) 'Hippocampal atrophy and 
disconnection in incipient and mild Alzheimer's disease', Prog Brain Res, 163, pp. 
741-53. 

Diamond, D. M., Bennett, M. C., Fleshner, M. and Rose, G. M. (1992) 'Inverted-U 
relationship between the level of peripheral corticosterone and the magnitude of 
hippocampal primed burst potentiation', Hippocampus, 2(4), pp. 421-30. 

Dickerson, B. C. and Wolk, D. A. (2012) 'MRI cortical thickness biomarker predicts AD-like 
CSF and cognitive decline in normal adults', Neurology, 78(2), pp. 84-90. 

Dineley, K. T., Kayed, R., Neugebauer, V., Fu, Y., Zhang, W., Reese, L. C. and Taglialatela, G. 
(2010) 'Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-
dependent fashion in mice', J Neurosci Res, 88(13), pp. 2923-32. 

Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H. and Sweatt, J. D. (2001) 'Beta-
amyloid activates the mitogen-activated protein kinase cascade via hippocampal 
alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to 
Alzheimer's disease', J Neurosci, 21(12), pp. 4125-33. 

Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F. (1999) 'The glutamate receptor ion 
channels', Pharmacol Rev, 51(1), pp. 7-61. 

Diorio, D., Viau, V. and Meaney, M. J. (1993) 'The role of the medial prefrontal cortex 
(cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to 
stress', J Neurosci, 13(9), pp. 3839-47. 

Dong, H., Yuede, C. M., Yoo, H. S., Martin, M. V., Deal, C., Mace, A. G. and Csernansky, J. G. 
(2008) 'Corticosterone and related receptor expression are associated with increased 
beta-amyloid plaques in isolated Tg2576 mice', Neuroscience, 155(1), pp. 154-63. 

Donley, M. P., Schulkin, J. and Rosen, J. B. (2005) 'Glucocorticoid receptor antagonism in the 
basolateral amygdala and ventral hippocampus interferes with long-term memory of 
contextual fear', Behav Brain Res, 164(2), pp. 197-205. 

Ehrhart-Bornstein, M., Hinson, J. P., Bornstein, S. R., Scherbaum, W. A. and Vinson, G. P. 
(1998) 'Intraadrenal interactions in the regulation of adrenocortical steroidogenesis', 
Endocr Rev, 19(2), pp. 101-43. 

Elgh, E., Lindqvist Astot, A., Fagerlund, M., Eriksson, S., Olsson, T. and Näsman, B. (2006) 
'Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in 
Alzheimer's disease', Biol Psychiatry, 59(2), pp. 155-61. 

Esler, W. P. and Wolfe, M. S. (2001) 'A portrait of Alzheimer secretases--new features and 
familiar faces', Science, 293(5534), pp. 1449-54. 



 

 

 

176 

 

Evanson, N. K., Tasker, J. G., Hill, M. N., Hillard, C. J. and Herman, J. P. (2010) 'Fast feedback 
inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid 
signaling', Endocrinology, 151(10), pp. 4811-9. 

Fendler, K., Karmos, G. and Telegdy, G. (1961) 'The effect of hippocampal lesion on 
pituitary-adrenal function', Acta Physiol Acad Sci Hung, 20, pp. 293-7. 

ffrench-Mullen, J. M. (1995) 'Cortisol inhibition of calcium currents in guinea pig 
hippocampal CA1 neurons via G-protein-coupled activation of protein kinase C', J 
Neurosci, 15(1 Pt 2), pp. 903-11. 

Finsterwald, C. and Alberini, C. M. (2014) 'Stress and glucocorticoid receptor-dependent 
mechanisms in long-term memory: from adaptive responses to psychopathologies', 
Neurobiol Learn Mem, 112, pp. 17-29. 

Frandemiche, M. L., De Seranno, S., Rush, T., Borel, E., Elie, A., Arnal, I., Lanté, F. and 
Buisson, A. (2014) 'Activity-dependent tau protein translocation to excitatory 
synapse is disrupted by exposure to amyloid-beta oligomers', J Neurosci, 34(17), pp. 
6084-97. 

Frankland, P. W. and Bontempi, B. (2005) 'The organization of recent and remote 
memories', Nat Rev Neurosci, 6(2), pp. 119-30. 

Frick, K. M. and Gresack, J. E. (2003) 'Sex differences in the behavioral response to spatial 
and object novelty in adult C57BL/6 mice', Behav Neurosci, 117(6), pp. 1283-91. 

Friedman, D., Nessler, D. and Johnson, R., Jr. (2007) 'Memory encoding and retrieval in the 
aging brain', Clin EEG Neurosci, 38(1), pp. 2-7. 

Funder, J. W. (1990) 'Corticosteroid receptors and renal 11 beta-hydroxysteroid 
dehydrogenase activity', Semin Nephrol, 10(4), pp. 311-9. 

Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., Bullido, M. J., 
Engelborghs, S., De Deyn, P., Berr, C., Pasquier, F., Dubois, B., Tognoni, G., Fiévet, N., 
Brouwers, N., Bettens, K., Arosio, B., Coto, E., Del Zompo, M., Mateo, I., Epelbaum, J., 
Frank-Garcia, A., Helisalmi, S., Porcellini, E., Pilotto, A., Forti, P., Ferri, R., Scarpini, E., 
Siciliano, G., Solfrizzi, V., Sorbi, S., Spalletta, G., Valdivieso, F., Vepsäläinen, S., 
Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossù, P., Hanon, O., 
Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Licastro, F., Soininen, H., Dartigues, 
J. F., Kamboh, M. I., Van Broeckhoven, C., Lambert, J. C., Amouyel, P. and Campion, 
D. (2011) 'APOE and Alzheimer disease: a major gene with semi-dominant 
inheritance', Mol Psychiatry, 16(9), pp. 903-7. 

Giedraitis, V., Sundelöf, J., Irizarry, M. C., Gårevik, N., Hyman, B. T., Wahlund, L. O., 
Ingelsson, M. and Lannfelt, L. (2007) 'The normal equilibrium between CSF and 
plasma amyloid beta levels is disrupted in Alzheimer's disease', Neurosci Lett, 427(3), 
pp. 127-31. 

Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., Eisner, L., Kirby, L., 
Rovira, M. B., Forette, F. and Orgogozo, J. M. (2005) 'Clinical effects of Abeta 
immunization (AN1792) in patients with AD in an interrupted trial', Neurology, 64(9), 
pp. 1553-62. 

Giubilei, F., Patacchioli, F. R., Antonini, G., Sepe Monti, M., Tisei, P., Bastianello, S., 
Monnazzi, P. and Angelucci, L. (2001) 'Altered circadian cortisol secretion in 
Alzheimer's disease: clinical and neuroradiological aspects', J Neurosci Res, 66(2), pp. 
262-5. 



 

 

 

177 

 

Goedert, M., Sisodia, S. S. and Price, D. L. (1991) 'Neurofibrillary tangles and beta-amyloid 
deposits in Alzheimer's disease', Curr Opin Neurobiol, 1(3), pp. 441-7. 

Gold, C. A. and Budson, A. E. (2008) 'Memory loss in Alzheimer's disease: implications for 
development of therapeutics', Expert Rev Neurother, 8(12), pp. 1879-91. 

Goulart, B. K., de Lima, M. N., de Farias, C. B., Reolon, G. K., Almeida, V. R., Quevedo, J., 
Kapczinski, F., Schroder, N. and Roesler, R. (2010) 'Ketamine impairs recognition 
memory consolidation and prevents learning-induced increase in hippocampal brain-
derived neurotrophic factor levels', Neuroscience, 167(4), pp. 969-73. 

Gould, E. and Tanapat, P. (1999) 'Stress and hippocampal neurogenesis', Biol Psychiatry, 
46(11), pp. 1472-9. 

Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L. and LaFerla, F. M. (2006) 
'Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of 
Alzheimer's disease', J Neurosci, 26(35), pp. 9047-56. 

Greenfield, J. P., Tsai, J., Gouras, G. K., Hai, B., Thinakaran, G., Checler, F., Sisodia, S. S., 
Greengard, P. and Xu, H. (1999) 'Endoplasmic reticulum and trans-Golgi network 
generate distinct populations of Alzheimer beta-amyloid peptides', Proc Natl Acad 
Sci U S A, 96(2), pp. 742-7. 

Groc, L., Choquet, D. and Chaouloff, F. (2008) 'The stress hormone corticosterone conditions 
AMPAR surface trafficking and synaptic potentiation', Nat Neurosci, 11(8), pp. 868-
70. 

Guillozet, A. L., Weintraub, S., Mash, D. C. and Mesulam, M. M. (2003) 'Neurofibrillary 
tangles, amyloid, and memory in aging and mild cognitive impairment', Arch Neurol, 
60(5), pp. 729-36. 

Götz, J., Xia, D., Leinenga, G., Chew, Y. L. and Nicholas, H. (2013) 'What Renders TAU Toxic', 
Front Neurol, 4, pp. 72. 

Habib, A., Sawmiller, D. and Tan, J. (2016) 'Restoring Soluble Amyloid Precursor Protein α 
Functions as a Potential Treatment for Alzheimer's Disease', J Neurosci Res. 

Hansson, O., Zetterberg, H., Buchhave, P., Andreasson, U., Londos, E., Minthon, L. and 
Blennow, K. (2007) 'Prediction of Alzheimer's disease using the CSF 
Abeta42/Abeta40 ratio in patients with mild cognitive impairment', Dement Geriatr 
Cogn Disord, 23(5), pp. 316-20. 

Hardy, J. and Allsop, D. (1991) 'Amyloid deposition as the central event in the aetiology of 
Alzheimer's disease', Trends Pharmacol Sci, 12(10), pp. 383-8. 

Hardy, J. A. and Higgins, G. A. (1992) 'Alzheimer's disease: the amyloid cascade hypothesis', 
Science, 256(5054), pp. 184-5. 

Hartmann, A., Krumrey, K., Vogl, L., Dirlich, G., Holsboer, F. and Heuser-Link, M. (1996) 
'Changes in late auditory evoked potentials induced by corticotropin-releasing 
hormone and corticotropin fragment 4-9 in male controls', Neuropsychobiology, 
33(2), pp. 90-6. 

Hebda-Bauer, E. K., Simmons, T. A., Sugg, A., Ural, E., Stewart, J. A., Beals, J. L., Wei, Q., 
Watson, S. J. and Akil, H. (2013) '3xTg-AD mice exhibit an activated central stress axis 
during early-stage pathology', J Alzheimers Dis, 33(2), pp. 407-22. 

Heber, S., Herms, J., Gajic, V., Hainfellner, J., Aguzzi, A., Rülicke, T., von Kretzschmar, H., von 
Koch, C., Sisodia, S., Tremml, P., Lipp, H. P., Wolfer, D. P. and Müller, U. (2000) 'Mice 



 

 

 

178 

 

with combined gene knock-outs reveal essential and partially redundant functions of 
amyloid precursor protein family members', J Neurosci, 20(21), pp. 7951-63. 

Herman, J. P. and Cullinan, W. E. (1997) 'Neurocircuitry of stress: central control of the 
hypothalamo-pituitary-adrenocortical axis', Trends Neurosci, 20(2), pp. 78-84. 

Herman, J. P., Ostrander, M. M., Mueller, N. K. and Figueiredo, H. (2005) 'Limbic system 
mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis', Prog 
Neuropsychopharmacol Biol Psychiatry, 29(8), pp. 1201-13. 

Herman, J. P. and Seroogy, K. (2006) 'Hypothalamic-pituitary-adrenal axis, glucocorticoids, 
and neurologic disease', Neurol Clin, 24(3), pp. 461-81, vi. 

Herrup, K. (2015) 'The case for rejecting the amyloid cascade hypothesis', Nat Neurosci, 
18(6), pp. 794-9. 

Higgins, L. S., Holtzman, D. M., Rabin, J., Mobley, W. C. and Cordell, B. (1994) 'Transgenic 
mouse brain histopathology resembles early Alzheimer's disease', Ann Neurol, 35(5), 
pp. 598-607. 

Hill, M. N., Hillard, C. J. and McEwen, B. S. (2011) 'Alterations in corticolimbic dendritic 
morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice 
parallel the effects of chronic stress', Cereb Cortex, 21(9), pp. 2056-64. 

Howland, J. G. and Cazakoff, B. N. (2010) 'Effects of acute stress and GluN2B-containing 
NMDA receptor antagonism on object and object-place recognition memory', 
Neurobiol Learn Mem, 93(2), pp. 261-7. 

Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. and Cole, G. 
(1996) 'Correlative memory deficits, Abeta elevation, and amyloid plaques in 
transgenic mice', Science, 274(5284), pp. 99-102. 

Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S. and Malinow, R. (2006) 
'AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine 
loss', Neuron, 52(5), pp. 831-43. 

Huang, Y. A., Zhou, B., Wernig, M. and Südhof, T. C. (2017) 'ApoE2, ApoE3, and ApoE4 
Differentially Stimulate APP Transcription and Aβ Secretion', Cell, 168(3), pp. 427-
441.e21. 

Hung, A. Y. and Selkoe, D. J. (1994) 'Selective ectodomain phosphorylation and regulated 
cleavage of beta-amyloid precursor protein', EMBO J, 13(3), pp. 534-42. 

Hunt, H. J., Belanoff, J. K., Golding, E., Gourdet, B., Phillips, T., Swift, D., Thomas, J., Unitt, J. 
F. and Walters, I. (2015) '1H-Pyrazolo[3,4-g]hexahydro-isoquinolines as potent GR 
antagonists with reduced hERG inhibition and an improved pharmacokinetic profile', 
Bioorg Med Chem Lett, 25(24), pp. 5720-5. 

Hussain, I., Powell, D., Howlett, D. R., Tew, D. G., Meek, T. D., Chapman, C., Gloger, I. S., 
Murphy, K. E., Southan, C. D., Ryan, D. M., Smith, T. S., Simmons, D. L., Walsh, F. S., 
Dingwall, C. and Christie, G. (1999) 'Identification of a novel aspartic protease (Asp 2) 
as beta-secretase', Mol Cell Neurosci, 14(6), pp. 419-27. 

Hyman, B. T. and Van Hoesen, G. W. (1987) 'Neuron numbers in Alzheimer's disease: cell-
specific pathology', Neurobiol Aging, 8(6), pp. 555-6. 

Jacobson, L. and Sapolsky, R. (1991) 'The role of the hippocampus in feedback regulation of 
the hypothalamic-pituitary-adrenocortical axis', Endocr Rev, 12(2), pp. 118-34. 



 

 

 

179 

 

Jaferi, A., Nowak, N. and Bhatnagar, S. (2003) 'Negative feedback functions in chronically 
stressed rats: role of the posterior paraventricular thalamus', Physiol Behav, 78(3), 
pp. 365-73. 

Jarrett, J. T., Berger, E. P. and Lansbury, P. T., Jr. (1993) 'The C-terminus of the beta protein 
is critical in amyloidogenesis', Ann N Y Acad Sci, 695, pp. 144-8. 

Jeong, Y. H., Park, C. H., Yoo, J., Shin, K. Y., Ahn, S. M., Kim, H. S., Lee, S. H., Emson, P. C. and 
Suh, Y. H. (2006) 'Chronic stress accelerates learning and memory impairments and 
increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer's 
disease model', Faseb j, 20(6), pp. 729-31. 

Johnson, L. R., Farb, C., Morrison, J. H., McEwen, B. S. and LeDoux, J. E. (2005) 'Localization 
of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala', 
Neuroscience, 136(1), pp. 289-99. 

Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, 
H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., 
Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., 
Jönsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., 
Thorsteinsdottir, U., Watts, R. J. and Stefansson, K. (2012) 'A mutation in APP 
protects against Alzheimer's disease and age-related cognitive decline', Nature, 
488(7409), pp. 96-9. 

Joëls, M. and Karst, H. (2012) 'Corticosteroid effects on calcium signaling in limbic neurons', 
Cell Calcium, 51(3-4), pp. 277-83. 

Ju, Y. E., Lucey, B. P. and Holtzman, D. M. (2014) 'Sleep and Alzheimer disease pathology--a 
bidirectional relationship', Nat Rev Neurol, 10(2), pp. 115-9. 

Kamboh, M. I., Demirci, F. Y., Wang, X., Minster, R. L., Carrasquillo, M. M., Pankratz, V. S., 
Younkin, S. G., Saykin, A. J., Jun, G., Baldwin, C., Logue, M. W., Buros, J., Farrer, L., 
Pericak-Vance, M. A., Haines, J. L., Sweet, R. A., Ganguli, M., Feingold, E., Dekosky, S. 
T., Lopez, O. L., Barmada, M. M. and Initiative, A. s. D. N. (2012) 'Genome-wide 
association study of Alzheimer's disease', Transl Psychiatry, 2, pp. e117. 

Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S. and 
Malinow, R. (2003) 'APP processing and synaptic function', Neuron, 37(6), pp. 925-
37. 

Kawarabayashi, T., Shoji, M., Younkin, L. H., Wen-Lang, L., Dickson, D. W., Murakami, T., 
Matsubara, E., Abe, K., Ashe, K. H. and Younkin, S. G. (2004) 'Dimeric amyloid beta 
protein rapidly accumulates in lipid rafts followed by apolipoprotein E and 
phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's 
disease', J Neurosci, 24(15), pp. 3801-9. 

Kehoe, P. G. (2003) 'The renin-angiotensin-aldosterone system and Alzheimer s disease?', J 
Renin Angiotensin Aldosterone Syst, 4(2), pp. 80-93. 

Kessels, H. W. and Malinow, R. (2009) 'Synaptic AMPA receptor plasticity and behavior', 
Neuron, 61(3), pp. 340-50. 

Kessels, R. P. and Kopelman, M. D. (2012) 'Context memory in Korsakoff's syndrome', 
Neuropsychol Rev, 22(2), pp. 117-31. 

Killiany, R. J., Hyman, B. T., Gomez-Isla, T., Moss, M. B., Kikinis, R., Jolesz, F., Tanzi, R., Jones, 
K. and Albert, M. S. (2002) 'MRI measures of entorhinal cortex vs hippocampus in 
preclinical AD', Neurology, 58(8), pp. 1188-96. 



 

 

 

180 

 

King, D. L., Arendash, G. W., Crawford, F., Sterk, T., Menendez, J. and Mullan, M. J. (1999) 
'Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic 
mouse model for Alzheimer's disease', Behav Brain Res, 103(2), pp. 145-62. 

King, M. E., Kan, H. M., Baas, P. W., Erisir, A., Glabe, C. G. and Bloom, G. S. (2006) 'Tau-
dependent microtubule disassembly initiated by prefibrillar beta-amyloid', J Cell Biol, 
175(4), pp. 541-6. 

Kino, T., Kozasa, T. and Chrousos, G. P. (2005) 'Statin-induced blockade of prenylation alters 
nucleocytoplasmic shuttling of GTP-binding proteins gamma2 and beta2 and 
enhances their suppressive effect on glucocorticoid receptor transcriptional activity', 
Eur J Clin Invest, 35(8), pp. 508-13. 

Koffie, R. M., Meyer-Luehmann, M., Hashimoto, T., Adams, K. W., Mielke, M. L., Garcia-
Alloza, M., Micheva, K. D., Smith, S. J., Kim, M. L., Lee, V. M., Hyman, B. T. and Spires-
Jones, T. L. (2009) 'Oligomeric amyloid beta associates with postsynaptic densities 
and correlates with excitatory synapse loss near senile plaques', Proc Natl Acad Sci U 
S A, 106(10), pp. 4012-7. 

Krugers, H. J., Hoogenraad, C. C. and Groc, L. (2010) 'Stress hormones and AMPA receptor 
trafficking in synaptic plasticity and memory', Nat Rev Neurosci, 11(10), pp. 675-81. 

Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., Viola, K. 
L. and Klein, W. L. (2007) 'Abeta oligomer-induced aberrations in synapse 
composition, shape, and density provide a molecular basis for loss of connectivity in 
Alzheimer's disease', J Neurosci, 27(4), pp. 796-807. 

Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. 
E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A. 
and Klein, W. L. (1998) 'Diffusible, nonfibrillar ligands derived from Abeta1-42 are 
potent central nervous system neurotoxins', Proc Natl Acad Sci U S A, 95(11), pp. 
6448-53. 

Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and 
Fahrenholz, F. (1999) 'Constitutive and regulated alpha-secretase cleavage of 
Alzheimer's amyloid precursor protein by a disintegrin metalloprotease', Proc Natl 
Acad Sci U S A, 96(7), pp. 3922-7. 

Lanté, F., Chafai, M., Raymond, E. F., Pereira, A. R., Mouska, X., Kootar, S., Barik, J., Bethus, I. 
and Marie, H. (2015) 'Subchronic glucocorticoid receptor inhibition rescues early 
episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's 
disease', Neuropsychopharmacology, 40(7), pp. 1772-81. 

Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. and Strittmatter, S. M. (2009) 'Cellular 
prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers', 
Nature, 457(7233), pp. 1128-32. 

Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Zumsteg, D., Wennberg, R., Keren, R., 
Wherrett, J., Naglie, G., Hamani, C., Smith, G. S. and Lozano, A. M. (2010) 'A phase I 
trial of deep brain stimulation of memory circuits in Alzheimer's disease', Ann 
Neurol, 68(4), pp. 521-34. 

Lee, K. W., Kim, J. B., Seo, J. S., Kim, T. K., Im, J. Y., Baek, I. S., Kim, K. S., Lee, J. K. and Han, P. 
L. (2009) 'Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 
mice via generation of metabolic oxidative stress', J Neurochem, 108(1), pp. 165-75. 



 

 

 

181 

 

Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M. and Ashe, 
K. H. (2006) 'A specific amyloid-beta protein assembly in the brain impairs memory', 
Nature, 440(7082), pp. 352-7. 

Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M. and Selkoe, D. (2009) 
'Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term 
depression by disrupting neuronal glutamate uptake', Neuron, 62(6), pp. 788-801. 

Li, T., Ma, G., Cai, H., Price, D. L. and Wong, P. C. (2003) 'Nicastrin is required for assembly of 
presenilin/gamma-secretase complexes to mediate Notch signaling and for 
processing and trafficking of beta-amyloid precursor protein in mammals', J 
Neurosci, 23(8), pp. 3272-7. 

Lightman, S. L. and Conway-Campbell, B. L. (2010) 'The crucial role of pulsatile activity of the 
HPA axis for continuous dynamic equilibration', Nat Rev Neurosci, 11(10), pp. 710-8. 

Lisman, J., Yasuda, R. and Raghavachari, S. (2012) 'Mechanisms of CaMKII action in long-
term potentiation', Nat Rev Neurosci, 13(3), pp. 169-82. 

Liston, C., Cichon, J. M., Jeanneteau, F., Jia, Z., Chao, M. V. and Gan, W. B. (2013) 'Circadian 
glucocorticoid oscillations promote learning-dependent synapse formation and 
maintenance', Nat Neurosci, 16(6), pp. 698-705. 

Liu, Q., Lee, H. G., Honda, K., Siedlak, S. L., Harris, P. L., Cash, A. D., Zhu, X., Avila, J., 
Nunomura, A., Takeda, A., Smith, M. A. and Perry, G. (2005) 'Tau modifiers as 
therapeutic targets for Alzheimer's disease', Biochim Biophys Acta, 1739(2-3), pp. 
211-5. 

Lowy, M. T., Gault, L. and Yamamoto, B. K. (1993) 'Adrenalectomy attenuates stress-induced 
elevations in extracellular glutamate concentrations in the hippocampus', J 
Neurochem, 61(5), pp. 1957-60. 

Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, 
R. E. and Rogers, J. (1999) 'Soluble amyloid beta peptide concentration as a predictor 
of synaptic change in Alzheimer's disease', Am J Pathol, 155(3), pp. 853-62. 

Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. and Schottler, F. (1983) 'Intracellular 
injections of EGTA block induction of hippocampal long-term potentiation', Nature, 
305(5936), pp. 719-21. 

Marchetti, C., Tafi, E., Middei, S., Rubinacci, M. A., Restivo, L., Ammassari-Teule, M. and 
Marie, H. (2010) 'Synaptic adaptations of CA1 pyramidal neurons induced by a highly 
effective combinational antidepressant therapy', Biol Psychiatry, 67(2), pp. 146-54. 

Martin, S., Henley, J. M., Holman, D., Zhou, M., Wiegert, O., van Spronsen, M., Joels, M., 
Hoogenraad, C. C. and Krugers, H. J. (2009) 'Corticosterone alters AMPAR mobility 
and facilitates bidirectional synaptic plasticity', PLoS One, 4(3), pp. e4714. 

Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I. and Rydel, R. E. (1993) 
'Evidence for excitoprotective and intraneuronal calcium-regulating roles for 
secreted forms of the beta-amyloid precursor protein', Neuron, 10(2), pp. 243-54. 

Matus, A., Ackermann, M., Pehling, G., Byers, H. R. and Fujiwara, K. (1982) 'High actin 
concentrations in brain dendritic spines and postsynaptic densities', Proc Natl Acad 
Sci U S A, 79(23), pp. 7590-4. 

Maurer, K., Volk, S. and Gerbaldo, H. (1997) 'Auguste D and Alzheimer's disease', Lancet, 
349(9064), pp. 1546-9. 



 

 

 

182 

 

McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A. and Burgess, A. (2014) 'Partial 
inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events', Cell 
Cycle, 13(9), pp. 1400-12. 

McCurry, S. M., Logsdon, R. G., Teri, L., Gibbons, L. E., Kukull, W. A., Bowen, J. D., 
McCormick, W. C. and Larson, E. B. (1999) 'Characteristics of sleep disturbance in 
community-dwelling Alzheimer's disease patients', J Geriatr Psychiatry Neurol, 12(2), 
pp. 53-9. 

McEwen, B. S. and Sapolsky, R. M. (1995) 'Stress and cognitive function', Curr Opin 
Neurobiol, 5(2), pp. 205-16. 

McIntyre, C. K., McGaugh, J. L. and Williams, C. L. (2012) 'Interacting brain systems 
modulate memory consolidation', Neurosci Biobehav Rev, 36(7), pp. 1750-62. 

Mejia, S., Giraldo, M., Pineda, D., Ardila, A. and Lopera, F. (2003) 'Nongenetic factors as 
modifiers of the age of onset of familial Alzheimer's disease', Int Psychogeriatr, 
15(4), pp. 337-49. 

Morgan, F. H. and Laufgraben, M. J. (2013) 'Mifepristone for management of Cushing's 
syndrome', Pharmacotherapy, 33(3), pp. 319-29. 

Morley, J. E., Farr, S. A., Banks, W. A., Johnson, S. N., Yamada, K. A. and Xu, L. (2010) 'A 
physiological role for amyloid-beta protein:enhancement of learning and memory', J 
Alzheimers Dis, 19(2), pp. 441-9. 

Morris, M., Maeda, S., Vossel, K. and Mucke, L. (2011) 'The many faces of tau', Neuron, 
70(3), pp. 410-26. 

Morris, R. G., Anderson, E., Lynch, G. S. and Baudry, M. (1986) 'Selective impairment of 
learning and blockade of long-term potentiation by an N-methyl-D-aspartate 
receptor antagonist, AP5', Nature, 319(6056), pp. 774-6. 

Musiek, E. S. and Holtzman, D. M. (2015) 'Three dimensions of the amyloid hypothesis: time, 
space and 'wingmen'', Nat Neurosci, 18(6), pp. 800-6. 

Mustafiz, T., Portelius, E., Gustavsson, M. K., Hölttä, M., Zetterberg, H., Blennow, K., 
Nordberg, A. and Lithner, C. U. (2011) 'Characterization of the brain β-amyloid 
isoform pattern at different ages of Tg2576 mice', Neurodegener Dis, 8(5), pp. 352-
63. 

Nabavi, S., Kessels, H. W., Alfonso, S., Aow, J., Fox, R. and Malinow, R. (2013) 'Metabotropic 
NMDA receptor function is required for NMDA receptor-dependent long-term 
depression', Proc Natl Acad Sci U S A, 110(10), pp. 4027-32. 

Nadel, L., Campbell, J. and Ryan, L. (2007) 'Autobiographical memory retrieval and 
hippocampal activation as a function of repetition and the passage of time', Neural 
Plast, 2007, pp. 90472. 

Nelson, P. T., Braak, H. and Markesbery, W. R. (2009) 'Neuropathology and cognitive 
impairment in Alzheimer disease: a complex but coherent relationship', J 
Neuropathol Exp Neurol, 68(1), pp. 1-14. 

Neves, G., Cooke, S. F. and Bliss, T. V. (2008) 'Synaptic plasticity, memory and the 
hippocampus: a neural network approach to causality', Nat Rev Neurosci, 9(1), pp. 
65-75. 

Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M. and Kato, K. (2000) 'Calcium stores 
regulate the polarity and input specificity of synaptic modification', Nature, 
408(6812), pp. 584-8. 



 

 

 

183 

 

Notarianni, E. (2013) 'Hypercortisolemia and glucocorticoid receptor-signaling insufficiency 
in Alzheimer's disease initiation and development', Curr Alzheimer Res, 10(7), pp. 
714-31. 

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A. (1984) 'Magnesium 
gates glutamate-activated channels in mouse central neurones', Nature, 307(5950), 
pp. 462-5. 

Nyberg, L., McIntosh, A. R., Cabeza, R., Habib, R., Houle, S. and Tulving, E. (1996) 'General 
and specific brain regions involved in encoding and retrieval of events: what, where, 
and when', Proc Natl Acad Sci U S A, 93(20), pp. 11280-5. 

Näsman, B., Olsson, T., Viitanen, M. and Carlström, K. (1995) 'A subtle disturbance in the 
feedback regulation of the hypothalamic-pituitary-adrenal axis in the early phase of 
Alzheimer's disease', Psychoneuroendocrinology, 20(2), pp. 211-20. 

O'Brien, J. T., Ames, D., Schweitzer, I., Mastwyk, M. and Colman, P. (1996) 'Enhanced 
adrenal sensitivity to adrenocorticotrophic hormone (ACTH) is evidence of HPA axis 
hyperactivity in Alzheimer's disease', Psychol Med, 26(1), pp. 7-14. 

Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., 
Mattson, M. P., Akbari, Y. and LaFerla, F. M. (2003) 'Triple-transgenic model of 
Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic 
dysfunction', Neuron, 39(3), pp. 409-21. 

Oltersdorf, T., Ward, P. J., Henriksson, T., Beattie, E. C., Neve, R., Lieberburg, I. and Fritz, L. C. 
(1990) 'The Alzheimer amyloid precursor protein. Identification of a stable 
intermediate in the biosynthetic/degradative pathway', J Biol Chem, 265(8), pp. 
4492-7. 

Palmer, M. J., Irving, A. J., Seabrook, G. R., Jane, D. E. and Collingridge, G. L. (1997) 'The 
group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region 
of the hippocampus', Neuropharmacology, 36(11-12), pp. 1517-32. 

Palop, J. J. and Mucke, L. (2010) 'Amyloid-beta-induced neuronal dysfunction in Alzheimer's 
disease: from synapses toward neural networks', Nat Neurosci, 13(7), pp. 812-8. 

Paoletti, P. and Neyton, J. (2007) 'NMDA receptor subunits: function and pharmacology', 
Curr Opin Pharmacol, 7(1), pp. 39-47. 

Papoutsi, A., Sidiropoulou, K., Cutsuridis, V. and Poirazi, P. (2013) 'Induction and modulation 
of persistent activity in a layer V PFC microcircuit model', Front Neural Circuits, 7, pp. 
161. 

Pavlides, C., Watanabe, Y., Magariños, A. M. and McEwen, B. S. (1995) 'Opposing roles of 
type I and type II adrenal steroid receptors in hippocampal long-term potentiation', 
Neuroscience, 68(2), pp. 387-94. 

Pedersen, J. T. and Sigurdsson, E. M. (2015) 'Tau immunotherapy for Alzheimer's disease', 
Trends Mol Med, 21(6), pp. 394-402. 

Peineau, S., Taghibiglou, C., Bradley, C., Wong, T. P., Liu, L., Lu, J., Lo, E., Wu, D., Saule, E., 
Bouschet, T., Matthews, P., Isaac, J. T., Bortolotto, Z. A., Wang, Y. T. and Collingridge, 
G. L. (2007) 'LTP inhibits LTD in the hippocampus via regulation of GSK3beta', 
Neuron, 53(5), pp. 703-17. 

Pena-Casanova, J., Sanchez-Benavides, G., de Sola, S., Manero-Borras, R. M. and Casals-Coll, 
M. (2012) 'Neuropsychology of Alzheimer's disease', Arch Med Res, 43(8), pp. 686-
93. 



 

 

 

184 

 

Pepin, M. C., Pothier, F. and Barden, N. (1992) 'Impaired type II glucocorticoid-receptor 
function in mice bearing antisense RNA transgene', Nature, 355(6362), pp. 725-8. 

Perlmutter, L. S., Scott, S. A., Barrón, E. and Chui, H. C. (1992) 'MHC class II-positive 
microglia in human brain: association with Alzheimer lesions', J Neurosci Res, 33(4), 
pp. 549-58. 

Petersen, R. C. (2003) 'Mild cognitive impairment clinical trials', Nat Rev Drug Discov, 2(8), 
pp. 646-53. 

Phinney, A. L., Deller, T., Stalder, M., Calhoun, M. E., Frotscher, M., Sommer, B., Staufenbiel, 
M. and Jucker, M. (1999) 'Cerebral amyloid induces aberrant axonal sprouting and 
ectopic terminal formation in amyloid precursor protein transgenic mice', J Neurosci, 
19(19), pp. 8552-9. 

Pineau, F., Canet, G., Desrumaux, C., Hunt, H., Chevallier, N., Ollivier, M., Belanoff, J. K. and 
Givalois, L. (2016) 'New selective glucocorticoid receptor modulators reverse 
amyloid-β peptide-induced hippocampus toxicity', Neurobiol Aging, 45, pp. 109-22. 

Pooler, A. M., Noble, W. and Hanger, D. P. (2014) 'A role for tau at the synapse in 
Alzheimer's disease pathogenesis', Neuropharmacology, 76 Pt A, pp. 1-8. 

Popoli, M., Yan, Z., McEwen, B. S. and Sanacora, G. (2011) 'The stressed synapse: the impact 
of stress and glucocorticoids on glutamate transmission', Nat Rev Neurosci, 13(1), 
pp. 22-37. 

Prox, J., Rittger, A. and Saftig, P. (2012) 'Physiological functions of the amyloid precursor 
protein secretases ADAM10, BACE1, and presenilin', Exp Brain Res, 217(3-4), pp. 331-
41. 

Puzzo, D., Lee, L., Palmeri, A., Calabrese, G. and Arancio, O. (2014) 'Behavioral assays with 
mouse models of Alzheimer's disease: practical considerations and guidelines', 
Biochem Pharmacol, 88(4), pp. 450-67. 

Puzzo, D., Privitera, L., Leznik, E., Fà, M., Staniszewski, A., Palmeri, A. and Arancio, O. (2008) 
'Picomolar amyloid-beta positively modulates synaptic plasticity and memory in 
hippocampus', J Neurosci, 28(53), pp. 14537-45. 

Raff, H., Sharma, S. T. and Nieman, L. K. (2014) 'Physiological basis for the etiology, 
diagnosis, and treatment of adrenal disorders: Cushing's syndrome, adrenal 
insufficiency, and congenital adrenal hyperplasia', Compr Physiol, 4(2), pp. 739-69. 

Rasmuson, S., Andrew, R., Nasman, B., Seckl, J. R., Walker, B. R. and Olsson, T. (2001) 
'Increased glucocorticoid production and altered cortisol metabolism in women with 
mild to moderate Alzheimer's disease', Biol Psychiatry, 49(6), pp. 547-52. 

Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M. and Acker, J. D. (2004) 'Differential aging 
of the medial temporal lobe: a study of a five-year change', Neurology, 62(3), pp. 
433-8. 

Redgate, E. S. and Fahringer, E. E. (1973) 'A comparison of the pituitary adrenal activity 
elicited by electrical stimulation of preoptic, amygdaloid and hypothalamic sites in 
the rat brain', Neuroendocrinology, 12(6), pp. 334-43. 

Reed, J. M. and Squire, L. R. (1997) 'Impaired recognition memory in patients with lesions 
limited to the hippocampal formation', Behav Neurosci, 111(4), pp. 667-75. 

Reichardt, H. M., Umland, T., Bauer, A., Kretz, O. and Schutz, G. (2000) 'Mice with an 
increased glucocorticoid receptor gene dosage show enhanced resistance to stress 
and endotoxic shock', Mol Cell Biol, 20(23), pp. 9009-17. 



 

 

 

185 

 

Restivo, L., Tafi, E., Ammassari-Teule, M. and Marie, H. (2009) 'Viral-mediated expression of 
a constitutively active form of CREB in hippocampal neurons increases memory', 
Hippocampus, 19(3), pp. 228-34. 

Reul, J. M. and de Kloet, E. R. (1985) 'Two receptor systems for corticosterone in rat brain: 
microdistribution and differential occupation', Endocrinology, 117(6), pp. 2505-11. 

Rissman, R. A. (2009) 'Stress-induced tau phosphorylation: functional neuroplasticity or 
neuronal vulnerability?', J Alzheimers Dis, 18(2), pp. 453-7. 

Roozendaal, B. (2000) '1999 Curt P. Richter award. Glucocorticoids and the regulation of 
memory consolidation', Psychoneuroendocrinology, 25(3), pp. 213-38. 

Rothman, S. M. and Mattson, M. P. (2010) 'Adverse stress, hippocampal networks, and 
Alzheimer's disease', Neuromolecular Med, 12(1), pp. 56-70. 

Rugg, M. D. and Vilberg, K. L. (2013) 'Brain networks underlying episodic memory retrieval', 
Curr Opin Neurobiol, 23(2), pp. 255-60. 

Russo, M. F., Ah Loy, S. R., Battle, A. R. and Johnson, L. R. (2016) 'Membrane Associated 
Synaptic Mineralocorticoid and Glucocorticoid Receptors Are Rapid Regulators of 
Dendritic Spines', Front Cell Neurosci, 10, pp. 161. 

Salmon, D. P. and Bondi, M. W. (2009) 'Neuropsychological assessment of dementia', Annu 
Rev Psychol, 60, pp. 257-82. 

Sandhu, F. A., Salim, M. and Zain, S. B. (1991) 'Expression of the human beta-amyloid 
protein of Alzheimer's disease specifically in the brains of transgenic mice', J Biol 
Chem, 266(32), pp. 21331-4. 

Sandi, C. (2011) 'Glucocorticoids act on glutamatergic pathways to affect memory 
processes', Trends Neurosci, 34(4), pp. 165-76. 

Sapolsky, R. M. (1985) 'Glucocorticoid toxicity in the hippocampus: temporal aspects of 
neuronal vulnerability', Brain Res, 359(1-2), pp. 300-5. 

Sapolsky, R. M. (1992) 'Do glucocorticoid concentrations rise with age in the rat?', Neurobiol 
Aging, 13(1), pp. 171-4. 

Sapolsky, R. M., Krey, L. C. and McEwen, B. S. (1984) 'Glucocorticoid-sensitive hippocampal 
neurons are involved in terminating the adrenocortical stress response', Proc Natl 
Acad Sci U S A, 81(19), pp. 6174-7. 

Sapolsky, R. M., Romero, L. M. and Munck, A. U. (2000) 'How do glucocorticoids influence 
stress responses? Integrating permissive, suppressive, stimulatory, and preparative 
actions', Endocr Rev, 21(1), pp. 55-89. 

Saura, C. A., Choi, S. Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B. S., 
Chattarji, S., Kelleher, R. J., 3rd, Kandel, E. R., Duff, K., Kirkwood, A. and Shen, J. 
(2004) 'Loss of presenilin function causes impairments of memory and synaptic 
plasticity followed by age-dependent neurodegeneration', Neuron, 42(1), pp. 23-36. 

Scher, A. I., Xu, Y., Korf, E. S., White, L. R., Scheltens, P., Toga, A. W., Thompson, P. M., 
Hartley, S. W., Witter, M. P., Valentino, D. J. and Launer, L. J. (2007) 'Hippocampal 
shape analysis in Alzheimer's disease: a population-based study', Neuroimage, 36(1), 
pp. 8-18. 

Schibler, U. and Sassone-Corsi, P. (2002) 'A web of circadian pacemakers', Cell, 111(7), pp. 
919-22. 

Schmidt, S. D., Nixon, R. A. and Mathews, P. M. (2005) 'ELISA method for measurement of 
amyloid-beta levels', Methods Mol Biol, 299, pp. 279-97. 



 

 

 

186 

 

Schor, N. F. (2011) 'What the halted phase III gamma-secretase inhibitor trial may (or may 
not) be telling us', Ann Neurol, 69(2), pp. 237-9. 

Scollay, R. and Shortman, K. (1983) 'Thymocyte subpopulations: an experimental review, 
including flow cytometric cross-correlations between the major murine thymocyte 
markers', Thymus, 5(5-6), pp. 245-95. 

Seabrook, G. R., Smith, D. W., Bowery, B. J., Easter, A., Reynolds, T., Fitzjohn, S. M., Morton, 
R. A., Zheng, H., Dawson, G. R., Sirinathsinghji, D. J., Davies, C. H., Collingridge, G. L. 
and Hill, R. G. (1999) 'Mechanisms contributing to the deficits in hippocampal 
synaptic plasticity in mice lacking amyloid precursor protein', Neuropharmacology, 
38(3), pp. 349-59. 

Seckl, J. R., French, K. L., O'Donnell, D., Meaney, M. J., Nair, N. P., Yates, C. M. and Fink, G. 
(1993) 'Glucocorticoid receptor gene expression is unaltered in hippocampal 
neurons in Alzheimer's disease', Brain Res Mol Brain Res, 18(3), pp. 239-45. 

Sehgal, M., Song, C., Ehlers, V. L. and Moyer, J. R., Jr. (2013) 'Learning to learn - intrinsic 
plasticity as a metaplasticity mechanism for memory formation', Neurobiol Learn 
Mem, 105, pp. 186-99. 

Selkoe, D. J. (2001) 'Presenilin, Notch, and the genesis and treatment of Alzheimer's 
disease', Proc Natl Acad Sci U S A, 98(20), pp. 11039-41. 

Selkoe, D. J. (2002) 'Alzheimer's disease is a synaptic failure', Science, 298(5594), pp. 789-91. 
Selkoe, D. J. (2008) 'Soluble oligomers of the amyloid beta-protein impair synaptic plasticity 

and behavior', Behav Brain Res, 192(1), pp. 106-13. 
Sevigny, J., Chiao, P., Bussière, T., Weinreb, P. H., Williams, L., Maier, M., Dunstan, R., 

Salloway, S., Chen, T., Ling, Y., O'Gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., 
Brennan, M. S., Quintero-Monzon, O., Scannevin, R. H., Arnold, H. M., Engber, T., 
Rhodes, K., Ferrero, J., Hang, Y., Mikulskis, A., Grimm, J., Hock, C., Nitsch, R. M. and 
Sandrock, A. (2016) 'The antibody aducanumab reduces Aβ plaques in Alzheimer's 
disease', Nature, 537(7618), pp. 50-6. 

Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J. and Sabatini, B. 
L. (2007) 'Natural oligomers of the Alzheimer amyloid-beta protein induce reversible 
synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling 
pathway', J Neurosci, 27(11), pp. 2866-75. 

Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. 
M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. 
L. and Selkoe, D. J. (2008) 'Amyloid-beta protein dimers isolated directly from 
Alzheimer's brains impair synaptic plasticity and memory', Nat Med, 14(8), pp. 837-
42. 

Sigmund, C. D. (2000) 'Viewpoint: are studies in genetically altered mice out of control?', 
Arterioscler Thromb Vasc Biol, 20(6), pp. 1425-9. 

Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, 
H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., 
Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., 
Suomensaari, S. M., Wang, S., Walker, D., Zhao, J., McConlogue, L. and John, V. 
(1999) 'Purification and cloning of amyloid precursor protein beta-secretase from 
human brain', Nature, 402(6761), pp. 537-40. 



 

 

 

187 

 

Sleegers, K., Roks, G., Theuns, J., Aulchenko, Y. S., Rademakers, R., Cruts, M., van Gool, W. 
A., Van Broeckhoven, C., Heutink, P., Oostra, B. A., van Swieten, J. C. and van Duijn, 
C. M. (2004) 'Familial clustering and genetic risk for dementia in a genetically 
isolated Dutch population', Brain, 127(Pt 7), pp. 1641-9. 

Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. 
W., Lombroso, P. J., Gouras, G. K. and Greengard, P. (2005) 'Regulation of NMDA 
receptor trafficking by amyloid-beta', Nat Neurosci, 8(8), pp. 1051-8. 

Snyder, S. W., Ladror, U. S., Wade, W. S., Wang, G. T., Barrett, L. W., Matayoshi, E. D., 
Huffaker, H. J., Krafft, G. A. and Holzman, T. F. (1994) 'Amyloid-beta aggregation: 
selective inhibition of aggregation in mixtures of amyloid with different chain 
lengths', Biophys J, 67(3), pp. 1216-28. 

Sotiropoulos, I., Catania, C., Pinto, L. G., Silva, R., Pollerberg, G. E., Takashima, A., Sousa, N. 
and Almeida, O. F. (2011) 'Stress acts cumulatively to precipitate Alzheimer's 
disease-like tau pathology and cognitive deficits', J Neurosci, 31(21), pp. 7840-7. 

Sotiropoulos, I., Silva, J., Kimura, T., Rodrigues, A. J., Costa, P., Almeida, O. F., Sousa, N. and 
Takashima, A. (2015) 'Female hippocampus vulnerability to environmental stress, a 
precipitating factor in Tau aggregation pathology', J Alzheimers Dis, 43(3), pp. 763-
74. 

Sousa, N., Cerqueira, J. J. and Almeida, O. F. (2008) 'Corticosteroid receptors and 
neuroplasticity', Brain Res Rev, 57(2), pp. 561-70. 

Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F. and Paula-Barbosa, M. M. (2000) 
'Reorganization of the morphology of hippocampal neurites and synapses after 
stress-induced damage correlates with behavioral improvement', Neuroscience, 
97(2), pp. 253-66. 

Squire, L. R., Shimamura, A. P. and Graf, P. (1987) 'Strength and duration of priming effects 
in normal subjects and amnesic patients', Neuropsychologia, 25(1b), pp. 195-210. 

Squire, L. R. and Wixted, J. T. (2011) 'The cognitive neuroscience of human memory since 
H.M', Annu Rev Neurosci, 34, pp. 259-88. 

Steinbach, J. P., Muller, U., Leist, M., Li, Z. W., Nicotera, P. and Aguzzi, A. (1998) 
'Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice', Cell 
Death Differ, 5(10), pp. 858-66. 

Steiner, H., Winkler, E., Edbauer, D., Prokop, S., Basset, G., Yamasaki, A., Kostka, M. and 
Haass, C. (2002) 'PEN-2 is an integral component of the gamma-secretase complex 
required for coordinated expression of presenilin and nicastrin', J Biol Chem, 277(42), 
pp. 39062-5. 

Stewart, S., Cacucci, F. and Lever, C. (2011) 'Which memory task for my mouse? A 
systematic review of spatial memory performance in the Tg2576 Alzheimer's mouse 
model', J Alzheimers Dis, 26(1), pp. 105-26. 

Stine, W. B., Dahlgren, K. N., Krafft, G. A. and LaDu, M. J. (2003) 'In vitro characterization of 
conditions for amyloid-beta peptide oligomerization and fibrillogenesis', J Biol Chem, 
278(13), pp. 11612-22. 

Stranahan, A. M. and Mattson, M. P. (2010) 'Selective vulnerability of neurons in layer II of 
the entorhinal cortex during aging and Alzheimer's disease', Neural Plast, 2010, pp. 
108190. 



 

 

 

188 

 

Straube, B. (2012) 'An overview of the neuro-cognitive processes involved in the encoding, 
consolidation, and retrieval of true and false memories', Behav Brain Funct, 8, pp. 
35. 

Swanwick, G. R., Kirby, M., Bruce, I., Buggy, F., Coen, R. F., Coakley, D. and Lawlor, B. A. 
(1998) 'Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer's disease: lack 
of association between longitudinal and cross-sectional findings', Am J Psychiatry, 
155(2), pp. 286-9. 

Takahashi, T., Kimoto, T., Tanabe, N., Hattori, T. A., Yasumatsu, N. and Kawato, S. (2002) 
'Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ 
elevation in cultured rat hippocampal neurons', J Neurochem, 83(6), pp. 1441-51. 

Tan, M. S., Yu, J. T. and Tan, L. (2013) 'Bridging integrator 1 (BIN1): form, function, and 
Alzheimer's disease', Trends Mol Med, 19(10), pp. 594-603. 

Tasker, J. G., Di, S. and Malcher-Lopes, R. (2006) 'Minireview: rapid glucocorticoid signaling 
via membrane-associated receptors', Endocrinology, 147(12), pp. 5549-56. 

Ter Horst, J. P., Carobrez, A. P., van der Mark, M. H., de Kloet, E. R. and Oitzl, M. S. (2012) 
'Sex differences in fear memory and extinction of mice with forebrain-specific 
disruption of the mineralocorticoid receptor', Eur J Neurosci, 36(8), pp. 3096-102. 

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A. and 
Katzman, R. (1991) 'Physical basis of cognitive alterations in Alzheimer's disease: 
synapse loss is the major correlate of cognitive impairment', Ann Neurol, 30(4), pp. 
572-80. 

Thal, D. R., Arendt, T., Waldmann, G., Holzer, M., Zedlick, D., Rub, U. and Schober, R. (1998) 
'Progression of neurofibrillary changes and PHF-tau in end-stage Alzheimer's disease 
is different from plaque and cortical microglial pathology', Neurobiol Aging, 19(6), 
pp. 517-25. 

Thal, D. R., Rub, U., Orantes, M. and Braak, H. (2002a) 'Phases of A beta-deposition in the 
human brain and its relevance for the development of AD', Neurology, 58(12), pp. 
1791-800. 

Thal, D. R., Rüb, U., Orantes, M. and Braak, H. (2002b) 'Phases of A beta-deposition in the 
human brain and its relevance for the development of AD', Neurology, 58(12), pp. 
1791-800. 

Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. and Selkoe, D. J. (2006) 'Effects of 
secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a 
potent role for trimers', J Physiol, 572(Pt 2), pp. 477-92. 

Trapp, T., Rupprecht, R., Castren, M., Reul, J. M. and Holsboer, F. (1994) 'Heterodimerization 
between mineralocorticoid and glucocorticoid receptor: a new principle of 
glucocorticoid action in the CNS', Neuron, 13(6), pp. 1457-62. 

Trojanowski, J. Q., Schuck, T., Schmidt, M. L. and Lee, V. M. (1989) 'Distribution of tau 
proteins in the normal human central and peripheral nervous system', J Histochem 
Cytochem, 37(2), pp. 209-15. 

Tromp, D., Dufour, A., Lithfous, S., Pebayle, T. and Després, O. (2015) 'Episodic memory in 
normal aging and Alzheimer disease: Insights from imaging and behavioral studies', 
Ageing Res Rev, 24(Pt B), pp. 232-62. 



 

 

 

189 

 

Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R. and 
Schütz, G. (1999) 'Disruption of the glucocorticoid receptor gene in the nervous 
system results in reduced anxiety', Nat Genet, 23(1), pp. 99-103. 

Tulving, E. and Markowitsch, H. J. (1998) 'Episodic and declarative memory: role of the 
hippocampus', Hippocampus, 8(3), pp. 198-204. 

Turner, P. R., O'Connor, K., Tate, W. P. and Abraham, W. C. (2003) 'Roles of amyloid 
precursor protein and its fragments in regulating neural activity, plasticity and 
memory', Prog Neurobiol, 70(1), pp. 1-32. 

Ulrich-Lai, Y. M., Figueiredo, H. F., Ostrander, M. M., Choi, D. C., Engeland, W. C. and 
Herman, J. P. (2006) 'Chronic stress induces adrenal hyperplasia and hypertrophy in 
a subregion-specific manner', Am J Physiol Endocrinol Metab, 291(5), pp. E965-73. 

Ulrich-Lai, Y. M. and Herman, J. P. (2009) 'Neural regulation of endocrine and autonomic 
stress responses', Nat Rev Neurosci, 10(6), pp. 397-409. 

Um, J. W. and Strittmatter, S. M. (2013) 'Amyloid-beta induced signaling by cellular prion 
protein and Fyn kinase in Alzheimer disease', Prion, 7(1), pp. 37-41. 

Umegaki, H., Ikari, H., Nakahata, H., Endo, H., Suzuki, Y., Ogawa, O., Nakamura, A., 
Yamamoto, T. and Iguchi, A. (2000) 'Plasma cortisol levels in elderly female subjects 
with Alzheimer's disease: a cross-sectional and longitudinal study', Brain Res, 881(2), 
pp. 241-3. 

Valtschanoff, J. G. and Weinberg, R. J. (2001) 'Laminar organization of the NMDA receptor 
complex within the postsynaptic density', J Neurosci, 21(4), pp. 1211-7. 

van der Lely, A. J., Foeken, K., van der Mast, R. C. and Lamberts, S. W. (1991) 'Rapid reversal 
of acute psychosis in the Cushing syndrome with the cortisol-receptor antagonist 
mifepristone (RU 486)', Ann Intern Med, 114(2), pp. 143-4. 

van Rossum, E. F., de Jong, F. J., Koper, J. W., Uitterlinden, A. G., Prins, N. D., van Dijk, E. J., 
Koudstaal, P. J., Hofman, A., de Jong, F. H., Lamberts, S. W. and Breteler, M. M. 
(2008) 'Glucocorticoid receptor variant and risk of dementia and white matter 
lesions', Neurobiol Aging, 29(5), pp. 716-23. 

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. 
and Selkoe, D. J. (2002) 'Naturally secreted oligomers of amyloid beta protein 
potently inhibit hippocampal long-term potentiation in vivo', Nature, 416(6880), pp. 
535-9. 

Wang, H., Megill, A., He, K., Kirkwood, A. and Lee, H. K. (2012) 'Consequences of inhibiting 
amyloid precursor protein processing enzymes on synaptic function and plasticity', 
Neural Plast, 2012, pp. 272374. 

Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J. and Anwyl, R. (2004) 'Block of long-term 
potentiation by naturally secreted and synthetic amyloid beta-peptide in 
hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, 
cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as 
metabotropic glutamate receptor type 5', J Neurosci, 24(13), pp. 3370-8. 

Wetzel, D. M., Bohn, M. C., Kazee, A. M. and Hamill, R. W. (1995) 'Glucocorticoid receptor 
mRNA in Alzheimer's diseased hippocampus', Brain Res, 679(1), pp. 72-81. 

Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T. and DeLong, M. R. (1981) 'Alzheimer 
disease: evidence for selective loss of cholinergic neurons in the nucleus basalis', Ann 
Neurol, 10(2), pp. 122-6. 



 

 

 

190 

 

Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., 
Evans, L. D., Moore, S., Daria, A., Hampel, H., Müller, V., Giudici, C., Nuscher, B., 
Wenninger-Weinzierl, A., Kremmer, E., Heneka, M. T., Thal, D. R., Giedraitis, V., 
Lannfelt, L., Müller, U., Livesey, F. J., Meissner, F., Herms, J., Konnerth, A., Marie, H. 
and Haass, C. (2015) 'η-Secretase processing of APP inhibits neuronal activity in the 
hippocampus', Nature, 526(7573), pp. 443-7. 

Wilson, R. S., Evans, D. A., Bienias, J. L., Mendes de Leon, C. F., Schneider, J. A. and Bennett, 
D. A. (2003) 'Proneness to psychological distress is associated with risk of Alzheimer's 
disease', Neurology, 61(11), pp. 1479-85. 

Wilson, R. S., Schneider, J. A., Boyle, P. A., Arnold, S. E., Tang, Y. and Bennett, D. A. (2007) 
'Chronic distress and incidence of mild cognitive impairment', Neurology, 68(24), pp. 
2085-92. 

Wolfe, M. S. and Guénette, S. Y. (2007) 'APP at a glance', J Cell Sci, 120(Pt 18), pp. 3157-61. 
Wulsin, A. C., Herman, J. P. and Solomon, M. B. (2010) 'Mifepristone decreases depression-

like behavior and modulates neuroendocrine and central hypothalamic-pituitary-
adrenocortical axis responsiveness to stress', Psychoneuroendocrinology, 35(7), pp. 
1100-12. 

Xu, H., Sweeney, D., Wang, R., Thinakaran, G., Lo, A. C., Sisodia, S. S., Greengard, P. and 
Gandy, S. (1997) 'Generation of Alzheimer beta-amyloid protein in the trans-Golgi 
network in the apparent absence of vesicle formation', Proc Natl Acad Sci U S A, 
94(8), pp. 3748-52. 

Yamin, G. (2009) 'NMDA receptor-dependent signaling pathways that underlie amyloid 
beta-protein disruption of LTP in the hippocampus', J Neurosci Res, 87(8), pp. 1729-
36. 

Yang, C. H., Huang, C. C. and Hsu, K. S. (2005) 'Behavioral stress enhances hippocampal CA1 
long-term depression through the blockade of the glutamate uptake', J Neurosci, 
25(17), pp. 4288-93. 

Young, E. A., Abelson, J. and Lightman, S. L. (2004) 'Cortisol pulsatility and its role in stress 
regulation and health', Front Neuroendocrinol, 25(2), pp. 69-76. 

Yuen, E. Y., Liu, W., Karatsoreos, I. N., Ren, Y., Feng, J., McEwen, B. S. and Yan, Z. (2011) 
'Mechanisms for acute stress-induced enhancement of glutamatergic transmission 
and working memory', Mol Psychiatry, 16(2), pp. 156-70. 

Yuen, E. Y. and Yan, Z. (2009) 'Dopamine D4 receptors regulate AMPA receptor trafficking 
and glutamatergic transmission in GABAergic interneurons of prefrontal cortex', J 
Neurosci, 29(2), pp. 550-62. 

Zalachoras, I., Houtman, R., Atucha, E., Devos, R., Tijssen, A. M., Hu, P., Lockey, P. M., 
Datson, N. A., Belanoff, J. K., Lucassen, P. J., Joëls, M., de Kloet, E. R., Roozendaal, B., 
Hunt, H. and Meijer, O. C. (2013) 'Differential targeting of brain stress circuits with a 
selective glucocorticoid receptor modulator', Proc Natl Acad Sci U S A, 110(19), pp. 
7910-5. 

Zemek, F., Drtinova, L., Nepovimova, E., Sepsova, V., Korabecny, J., Klimes, J. and Kuca, K. 
(2014) 'Outcomes of Alzheimer's disease therapy with acetylcholinesterase inhibitors 
and memantine', Expert Opin Drug Saf, 13(6), pp. 759-74. 

Zempel, H., Thies, E., Mandelkow, E. and Mandelkow, E. M. (2010) 'Abeta oligomers cause 
localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau 



 

 

 

191 

 

phosphorylation, and destruction of microtubules and spines', J Neurosci, 30(36), pp. 
11938-50. 

Zennaro, M. C., Keightley, M. C., Kotelevtsev, Y., Conway, G. S., Soubrier, F. and Fuller, P. J. 
(1995) 'Human mineralocorticoid receptor genomic structure and identification of 
expressed isoforms', J Biol Chem, 270(36), pp. 21016-20. 

Zhu, C. W., Livote, E. E., Scarmeas, N., Albert, M., Brandt, J., Blacker, D., Sano, M. and Stern, 
Y. (2013) 'Long-term associations between cholinesterase inhibitors and memantine 
use and health outcomes among patients with Alzheimer's disease', Alzheimers 
Dement, 9(6), pp. 733-40. 

  



 

 

 

192 

 

 

  



 

 

 

193 

 

  



 

 

 

194 

 

 

RESUME 

La maladie d’Alzheimer (MA) est une maladie neurodégénérative caractérisée par une 

perte irréversible des fonctions cognitives. En début de maladie, il a été mis en évidence que la 

perte de fonction des synapses de l’hippocampe engendre la perte de mémoires de type 

épisodique. Les données actuelles suggèrent fortement que les formes oligomériques du 

peptide-amyloïde (oA), qui s’accumulent dans le cerveau des patients, sont toxiques pour la 

fonction de ces synapses. La MA est aussi associée a une dérégulation de l’axe du stress, l’axe 

hypothalamo-pituito-surrénal (HPA), comme observée chez les patients et les modèles animaux 

de la MA. Cette dérégulation engendre une augmentation de la production des glucocorticoïdes 

(GCs) qui activent les récepteurs associés (GRs). Nous avons récemment mis en évidence que 

l’inhibition de ces GRs dans un modèle murin de la maladie, les souris Tg2576 (Tg
+
), prévient 

les déficits de mémoire épisodique et de plasticité synaptique (Lanté et al. 

Neuropsychopharmaco. 2015). 

Dans ce contexte, nous avons étudié l’étendue de la contribution des GRs dans la 

physiopathologie de la MA. D’abord, nous avons étudié la relation entre la dérégulation de 

l’axe HPA et le début de la pathologie dans les souris Tg
+
. Nous montrons que cette 

dérégulation était caractérisée par des niveaux élevés de GCs à 4 et 6 mois d’âge ainsi que part 

la perte de la boucle de rétroaction négative. Ensuite, nous avons croisé les souris Tg
+
 avec des 

souris GR floxées pour générer des double mutants GR
lox/lox

 Tg
+
, dont nous avons faire la 

caractérisation phénotypique. Alors même que les GRs étaient encore présents, ces double 

mutants exhibaient des niveaux élevés de GCs dès le sevrage, une exacerbation des déficits 

synaptiques, un poids faible et un taux de survie faible lors de chirurgies. Nous concluons, 

qu’ensemble, la présence du transgène et de l’allèle GR floxé sont trop nuisibles pour 

permettre un développement adéquat des souris double mutantes. Nous avons donc décidé de 

mettre fin à cette lignée de souris. A la place, pour identifier la relation fonctionnelle entre les 

GRs et oA à la synapse, nous avons utilisé des cultures de neurones et des tranches 

d’hippocampes soumises à un traitement aigu d’oA Dans les cultures, ce traitement a 

favorisé une augmentation des niveaux de GRs à la synapse. Dans les tranches, ce traitement a 

provoqué une diminution de la potentialisation à long-terme (LTP), un effet totalement bloqué 

en présence d’un inhibiteur spécifique des GRs. Confirmant ce résultat, nous n’avons pas vu 

d’effet d’oA sur la LTP sur des tranches de souris GR
lox/lox

 où l’expression génique des GRs 

dans les neurones CA1 de l’hippocampe avait été supprimée par transduction virale Cre-GFP 

in vivo. La réduction de la fonction des GRs prévient donc l’action aigue d’oA sur la LTP. 

En conclusion, nos résultats avec les souris Tg
+
 suggèrent qu’une dérégulation 

neuroendocrine est présente en début de maladie. Aussi, nous mettons en évidence une relation 

fonctionnelle entre oAß et les GRs à la synapse, les GRs jouant en rôle clé dans la synapto-

toxicité induite par oAß. 
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