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Résumé

La diffusion des ondes é lectromagné tiques par une surface rugueuse alé atoire est de premiè re importance dans de nombreuses disciplines et conduit à diverses applications notamment pour le traitement de surface par té lé dé tection. Par exemple, il y a une pratique courante pour obtenir les paramè tres gé ophysiques d'inté rê t de la diffusion et / ou des mesures d'é mission, en analysant la sensibilité du comportement et des mé canismes de diffusion. En connaissant les modes de ré trodiffusion, on peut dé tecter la pré sence de la rugosité alé atoire indé sirable de la surface de ré flexion telle que la ré flecteur d'antenne et par consé quent trouver un moyen pour corriger ou compenser des erreurs de phase. Par conséquent, l'étude de la diffusion des ondes é lectromagné tiques des surfaces alé atoires est à la fois thé orique et pratique. La recherche et le progrè s, ayant une longue histoire, ce sujet a bien é té documenté et est encore gardé à jour.

L'humidité du sol est peut-ê tre le paramè tre le plus important pour caracté riser les conditions de surface qui se rapportent à l'é cosystè me, les pré visions mé té orologiques, les pré visions climatiques, la productivité agricole, les inondations et les alertes de sé cheresse pré coce. Par consé quent, l'acquisition de la distribution spatiale et temporelle de l'humidité du sol de surface à l'é chelle à la fois locale et globale est trè s critique. La mesure de l'humidité du sol est difficile. La mesure in situ est en mesure de fournir une bonne pré cision de l'humidité du sol sur des points de ré fé rence, mais ne représente qu'une petite échelle spatiale due en partie à la forte hé té rogé né ité de la surface de la terre. Techniquement, les observations in situ ne peuvent pas pleinement, et en mê me temps, caracté riser la variabilité spatiale et temporelle de l'humidité du sol à des é chelles utiles. Une maniè re efficace consiste à dé duire l'humidité du sol par satellite micro-ondes actif. La technique (SAR Synthetic Aperture Radar) est particuliè rement inté ressante pour la té lé dé tection de l'humidité du sol à une ré solution fine; elle fournit une mesure de la teneur en humidité du sol absolue et a l'avantage d'une couverture à grande échelle et d'un fonctionnement en tout temps.

Par consé quent, les micro-ondes en mode actif, en particulier par SAR, sont considé ré es comme l'un des moyens les plus efficaces pour surveillance de l'humidité du sol actuellement. iv Cette thèse porte sur l'obtention de l'humidité du sol de surface à partir de mesures radar. L'organisation de cette thè se est la suivante. Le chapitre 1 ouvre la pré sentation par une introduction du contexte, de la motivation de cette recherche, et donne un bref historique des mé thodes de dé termination de l'humidité du sol à l'aide de la té lé dé tection radar. Le chapitre 2 dé crit le principe de micro-ondes de la té lé dé tection de l'humidité du sol. La description de la surface rugueuse de faç on alé atoire est pré senté e, suivie par les interactions d'ondes é lectromagné tiques avec les mé dia. En particulier, un modè le d'é quation inté grale avancé (AIEM) est introduit. La validité du modè le AIEM, qui est adopté comme modè le de travail, se fait par une large comparaison avec des simulations numé riques et des donné es expé rimentales, et est exposé e dans le chapitre 3. Le chapitre 4 analyse les caracté ristiques des configurations radar bistatique et é tudie la sensibilité de la diffusion bistatique à l'humidité du sol et à la rugosité de surface. Le chapitre 5 pré sente le cadre de la dé termination de l'humidité du sol à partir de mesures radar en utilisant un ré seau de neurones à base de filtre de Kalman ré current. La formation du ré seau et l'inversion des donné es sont dé crits. Enfin, le chapitre 6 conclut les travaux de recherche et suggè re des sujets connexes pour des recherches futures.

Ré cemment, il y a une nette tendance de l'expansion de monostatique à bistatique pour les mesures radar et ceci a attiré de plus en plus d'inté rê t à exploiter l'information diélectrique du terrain et l'information géométrique. Un modèle thé orique a é té dé veloppé , pour caracté riser les mé canismes de diffusion des ondes é lectromagné tiques pour permettre de configurer au mieux les conditions d'observation bistatique pour déduire la teneur en humidité à partir des coefficients de diffusion -multi-polarisations ou polarimé trique. Parmi les modè les thé oriques, l'AIEM a dé montré un é ventail beaucoup plus large pour les conditions de rugosité de surface, par rapport aux modè les classiques, tels que le modè le de perturbation, le modè le optique physique, et le modè le d'optique gé omé trique. Pour cette raison, l'analyse numé rique dans cette thè se de diffusion est basé e sur le modè le de AIEM.

Chapitre 1 non seulement introduit le contexte de la recherche, mais pré sente é galement les proprié té s de l'humidité du sol et le dé veloppement de la mé thode de mesure de l'humidité du sol à la faç on traditionnelle et à la faç on de té lé dé tection. Les mé thodes traditionnelles de mesure de l'humidité du sol comprennent la mé thode de v pesé e, la mé thode de sé chage rapide, la mé thode de ré sistance et la ré flectomé trie dans le domaine temporel, etc. Ces mé thodes peuvent estimer avec pré cision l'humidité du sol; pourtant, ils exigent beaucoup de mains-d'oeuvre et matériaux et ne peuvent obtenir que l'information de l'humidité du sol sur une trè s petite é chelle spatiale. Techniquement, des observations in situ ne peuvent pas caracté riser, pleinement et simultané ment, la variabilité spatiale et temporelle de l'humidité du sol à des é chelles substantiellement applicables. La technologie de la té lé dé tection peut jouer un rôle de plus en plus important dans la surveillance de l'humidité du sol, c'est parce qu'elle dé tecte les changements de l'humidité du sol à la fois temporellement et spatialement, mais aussi elle pré sente les avantages d'une large porté e de la couverture et des observations continues. Actuellement, les informations quantitatives sur l'humidité du sol à une é chelle locale ou globale est avé ré e trè s importantes dans beaucoup d'applications hydrologiques et météorologiques, y compris la gestion des ressources en eau, l'irrigation scientifique et l'estimation des rendements des cultures.

La mé thode traditionnelle basé e sur le point ne peut pas obtenir les informations sur l'humidité du sol, ni les changements dynamiques de l'humidité du sol à une grande é chelle. En revanche, la technologie de té lé dé tection peut remé dier aux insuffisances des mé thodes traditionnelles, et elle est maintenant considé ré e comme le moyen le plus efficace pour la surveillance de l'humidité du sol dans le temps et dans l'espace, notamment à de grandes é chelles spatiales.

L'application des images du satellite de té lé dé tection pour extraire l'humidité du sol a commencé à la fin des anné es 1960. Bien que les observations par satellite à la bande de l'infrarouge visible-proche, à la bande de l'infrarouge thermique, et à la bande des micro-ondes ont les ré ponses diffé rentes à l'humidité du sol, ils peuvent tous atteindre le but de surveiller l'humidité du sol. En conclusion, chaque mé thode a ses avantages. Les modèles de la bande de l'infrarouge visible-proche peuvent surveiller l'humidité du sol aux ré solutions plus fines. Cependant, les observations optiques sont souvent influencé es par les nuages et les conditions atmosphé riques. En outre, les capteurs optiques ne peuvent pas travailler jour et nuit. La surveillance de l'infrarouge thermique sur l'humidité du sol a une bonne pré cision, mais elle est aussi vulné rable à l'influence des nuages et peut é prouver facilement la saturation du signal sous l'é tat de la vé gé tation dense. La premiè re est une limitation majeure comme vi environ la moitié de la surface terrestre est recouverte par des nuages à n'importe quel moment. La té lé dé tection passive par micro-ondes utilise la tempé rature de brillance pour estimer l'humidité du sol. Il peut cartographier l'humidité du sol avec une ré solution temporelle é levé e et avec une grande pré cision. Mais, comme la taille de l'antenne du capteur passif est limité e, sa ré solution spatiale est trop faible pour qu'il puisse ê tre utilisé pour certaines applications pratiques, par exemple l'estimation de la productivité agricole à une é chelle locale. En revanche, la té lé dé tection active par micro-ondes a des avantages uniques pour la surveillance de l'humidité du sol car elle est capable de travailler jour et nuit; capable de pé né trer les couches de nuages, et elle est moins affecté e par les conditions atmosphé riques; elle est directement lié e à l'humidité du sol par permittivité du sol, et elle peut fournir des observations avec une ré solution spatiale beaucoup plus é levé e que les capteurs passifs de micro-ondes. Par consé quent, nous avons utilisé les observations de té lé dé tection active par microondes pour ré cupé rer l'humidité du sol dans cette thè se de recherche.

Le problè me difficile pour la ré cupé ration de l'humidité du sol est que la relation entre l'humidité du sol et le coefficient de rétrodiffusion n'est pas linéaire. La rugosité, la couverture vé gé tale, la constante dié lectrique, les proprié té s physiques du sol (structure, composition, etc.) et les paramè tres de radar affectent tous la force de l'é cho. Les couches de vé gé tation ont une é paisseur suffisante pour proté ger les informations de diffusion à partir de la surface du sol, alors, la vé gé tation est gé né ralement considé ré e comme le facteur le plus important qui affecte la pré cision de la ré cupé ration de l'humidité du sol. Pour optimiser l'inversion de l'humidité du sol, les chercheurs ont recommandé qu'un angle d'incidence faible avec une bande de longueur d'onde (bande L) puisse minimiser les effets de la rugosité de la surface et de la vé gé tation. La rugosité de la surface (la hauteur moyenne quadratique s, la longueur de corré lation l et la fonction d'autocorré lation statistique) est un autre facteur important. Des é tudes de sensibilité des paramè tres sur les signaux de radar provenant d'une varié té de surfaces de sol indiquent que la contribution de la rugosité de surface au signal de radar est é quivalente ou mê me supé rieure à celle de l'humidité du sol. Par consé quent, l'une des tâ ches les plus difficiles de la té lé dé tection active par microondes de l'humidité du sol est de dé coupler les effets de l'humidité du sol et la rugosité de surface. Les chercheurs ont trouvé que l'utilisation du rapport de polarisation peut vii minimiser l'effet de la rugosité . Thé oriquement, la mé thode de multi-polarisation peut amé liorer la pré cision de ré cupé ration. Pendant les trente derniè res anné es, de nombreux modè les ont é té dé veloppé s, qui peuvent quantitativement dé crire la relation entre le coefficient de diffusion et l'humidité du sol. Les modè les de la diffusion de surface les plus couramment utilisé s sont divisé s en trois caté gories: les modè les thé oriques, les modè les semi-empiriques et les modè les empiriques. Les modè les thé oriques comprennent principalement le modè le Kirchhoff (par exemple, le modè le de l'optique physique et le modè le de l'optique gé omé trique, ainsi que d'un petit modè le de perturbation), le modè le d'é quation inté grale, et le modè le d'é quation inté grale amé lioré et avancé . Les modè les empiriques et semi-empiriques se comportent principalement le modè le Oh, le modè le Dubois et le modè le Shi. Peutê tre les modè les empiriques et semi-empiriques ne sont pas applicables pour l'ensemble des données autres que ceux qui sont utilisés dans leur développement. En raison de sa complexité et l'exigence d'une connaissance dé taillé e de la rugosité de la surface, il est difficile d'inverser l'humidité du sol en utilisant directement les modè les thé oriques. Toutefois, ils peuvent ê tre utilisé s pour pré dire pré cisé ment les rendements de diffusion pour une varié té de profils de surface, qui est trè s utile pour la compré hension du mé canisme de la diffusion de la surface.

Le chapitre 2 est consacré à la description des surfaces rugueuses de faç on alé atoire. Bien que les proprié té s fractales aient é té é tudié es dans le contexte de la description d'une surface alé atoire, nous avons adopté une mé thode plus classique, et plus communé ment utilisé qui mesure l'é chelle de rugosité horizontale, et la racine carré e moyenne (RMS) hauteur, qui repré sente l'é chelle de la rugosité verticale et qui appelée l'approche. Les fonctions de corré lation utilisé es de maniè re courante, ou de maniè re é quivalente, les spectres de puissance pour les surfaces naturelles sont donné s.

Dans ce chapitre, les interactions é lectromagné tiques ondes-matiè re sont briè vement discuté es au moyen de Electric Field Integral Equation (EFIE) and Magnetic Field Integral Equation (MFIE) qui sont deux é quations fondamentales qui ré gissent les champs tangentiels de surface à partir de laquelle les champs dispersé s peut ê tre dé terminé de maniè re unique. Il est é galement connu que le modè le AIEM a é té dé veloppé en ré solvant de maniè re ité rative ces deux é quations jusqu'au second ordre. viii Cette thè se de recherche a utilisé des bandes de micro-ondes pour é tudier les caracté ristiques du sol. Son mé canisme est l'autorotation et la rotation des molécules de matiè re, ainsi que l'interaction entre l'autorotation des é lectrons et des ondes é lectromagné tiques é mises, qui dé cide le mé canisme d'interaction intrinsè que entre les caracté ristiques de la surface et le radar imageur utilisé dans le spectre de microondes. Une image radar reflè te l'interaction entre les ondes é lectromagné tiques é mises par le radar et les objectifs des caracté ristiques de la surface. Les ondes é lectromagné tiques é mises par les capteurs radar ré vè lent les courants é lectriques sur la surface des cibles. Par le rayonnement, les ondes é lectromagné tiques d'incidence et les cibles de dé tection interagissent dans la ré gion du champ lointain de l'antenne, qui produit les ondes é lectromagné tiques de diffusion et qui modifie l'amplitude, la fré quence, la position de phase, le mode de polarisation et d'autres paramè tres de l'é cho. La qualité d'une onde de diffusion est diffé rente de celle d'une onde d'incidence: elle comprend l'information de la structure physique sur les cibles, qui est un support de l'information cible. Ceci est provoqué par l'effet de modulation des cibles sur les ondes électromagnétiques d'incidence. L'effet de modulation est dé terminé par les caracté ristiques de la structure physique des cibles. Les diffé rents objectifs ont les caracté ristiques de modulation diffé rentes sur la mê me onde d'incidence. La té lé dé tection de radar extrait les paramè tres des caracté ristiques des cibles en fonction de la variance de modulation, c'est-à -dire, les diffé rentes cibles affectent diffé remment les ondes é lectromagné tiques. La valeur mesuré e basique de chaque pixel d'une image est une paire de valeurs de tension. Ces valeurs mesuré es indiquent l'impact de l'information de la surface sur l'onde transmise, qui dé crit essentiellement la propagation en espace de Maxwell et l'équation de l'équation caracté ristique de la diffusion. L'é quation radar peut montrer les relations entre le systè me radar, le cible de dé tection et les signaux reç us.

Certains modè les typiques de la diffusion de micro-ondes de la surface sont le modè le Oh, le modè le Dubois et l'AIEM (modè le avancé d'é quation inté grale).

Cependant, le modè le Oh est dé conseillé car il a de grandes erreurs dans la valeur analogique des donné es de diffusion de la co-polarisation, mê me si elle peut simuler les caracté ristiques de la diffusion de la polarisation croisé e. Le modè le Dubois a une ré ponse diffé rente à la situation actuelle (changement de l'angle d'incidence et la ix constante dié lectrique), comme il est une sorte de modè le empirique qui manque de l'appui de la thé orie physique. Comme ce que nous avons pré senté dans les chapitres pré cé dents, l'AIEM (modè le avancé d'é quation inté grale) a une grande pré cision par rapport aux simulations et aux mesures sur le terrain et donc il a é té adopté comme modè le de travail dans cette recherche. L'analyse des caracté ristiques du radar par l'AIEM pourrait nous aider à mieux comprendre les caractéristiques de la ré trodiffusion de radar.

Dans le chapitre 3, nous avons validé les pré dictions de AIEM par comparaison avec des simulations numé riques et des donné es expé rimentales. L'é tude de la diffusion des micro-ondes a de larges applications dans la té lé mé trie, la transformation sans fil, la dé tection de radar etc. Un modè le de diffusion de surface pratique et fiable est né cessaire pour obtenir une bonne compré hension du mé canisme de la diffusion de surface. La recherche sur la diffusion des micro-ondes sur une surface alé atoire a é té en cours depuis plus de quarante ans. Pendant les anné es 1960 à 1970, plusieurs modè les de diffusion de surface ont é té dé veloppé s, y compris le petit POLASCAT LCX de l'Université du Michigan a é té conç u avec pour mesurer la matrice de diffusion de points des cibles distribué s à des fré quences de 1,5, 4,75, 9,5 GHz. Les ensembles de donné es ont é té mesuré s dans deux conditions d'humidité diffé rentes, relativement humides et relativement secs. Les surfaces des paramè tres de rugosité tels que la RMS, la longueur de corré lation et la pente de la RMS ont é té calculé es à partir des profils de hauteur de la surface de mesure. Les ré sultats montrent que l'AIEM est en bon accord avec les donné es mesuré es dans tous les cas.

Dans le cas de la diffusion bistatique, les donné es ont é té acquises sur des surfaces connues fournies par Laboratoire europé en de signature micromé trique (EMSL). En comparant avec les données de mesure de l'EMSL, l'AIEM montre également un bon accord, bien que les pré visions de l'AIEM sauf aux grands angles de diffusion et que la séparation entre les polarisations n'est pas assez importante. De façon générale, les pré visions de AIEM correspondent bien à la fois aux simulations numé riques et aux donné es expé rimentales.

xi Le systè me traditionnel de radar actif dé tecte presque entiè rement l'humidité du sol basée sur les coefficients de rétrodiffusion. Pourtant, le réglage de l'émetteur et le ré cepteur dans la mê me direction pré sente les inconvé nients apparents thé oriques, car seul le signal provenant de la direction d'inverse peut être obtenue. L'un des problè mes critiques dans l'estimation des paramè tres de surface à partir des signaux radar de ré trodiffusion est que les paramè tres de surface, y compris la rugosité statistique de surface (la hauteur moyenne quadratique s et la longueur de corré lation l) et la constante dié lectrique sont fortement couplé s sous un certain ensemble de paramè tres de radar (fré quence, l'angle d'incidence et la polarisation). Ce fait entrave considé rablement la capacité de dé tection des micro-ondes de l'humidité du sol, mê me pour les surfaces nues. Ainsi, il est inté ressant de comprendre les caracté ristiques de la diffusion bi-statique (qui sont beaucoup moins comprises par rapport à la ré trodiffusion) afin de trouver une configuration d'é metteur-ré cepteur approprié e pour dé coupler, à un niveau optimal, la rugosité de surface et la constante dié lectrique.

Mais, dans la configuration bi-statique, il existe de nombreux scé narios à ê tre conç us.

Alors, il est essentiel de mener une analyse de sensibilité des paramè tres pour dé terminer une configuration optimale qui peut maximiser le contenu de l'information des paramè tres d'inté rê t tout en minimisant la contribution des paramè tres indé sirables.

Par consé quent, l'estimation de l'humidité du sol dans un mode bi-statique a attiré une attention croissante au cours des derniè res anné es. Dans certaines é tudes, les chercheurs ont trouvé que, en comparaison avec l'observation mono-statique traditionnelle, l'utilisation des géométries bi-statique peut obtenir plus d'informations pour ré cupé rer l'humidité du sol. Mais, la litté rature limité e est disponible pour la dé tection de l'humidité du sol avec la configuration bi-statique. Ainsi, plus de travail doit ê tre effectué pour explorer les comportements de diffusion bi-statique avec les paramètres du sol dans les diverses conditions de sol, il s'agit à la fois de l'intérêt thé orique et pratique. Plusieurs facteurs influent sur la caracté risation de la rugosité du sol. En plus de longueur de corré lation et de la hauteur moyenne quadratique (hauteur RMS), la fonction d'autocorré lation de surface (ACF) a aussi une influence importante. Dans les situations pratiques, les ACFs sont difficiles à dé terminer. En consé quence, l'effet des ACFs est gé né ralement ignoré e ou simplement supposé a priori pour simplifier le problè me d'inversion dans le processus d'inversion. Alors, xii comment supprimer l'effet des ACFs pour l'estimation de l'humidité du sol plus fiable est aussi un dé fi attrayant.

Dans le chapitre 4, nous avons effectué une analyse de sensibilité des paramè tres pour la diffusion bistatique d'une surface rugueuse. La diffusion radar d'une surface de sol nu rugueuse alé atoirement est complexe et est dé terminé e par l'humidité du sol et la rugosité de surface d'une maniè re fortement non liné aire. Dé coupler les effets de l'humidité du sol et de la rugosité de surface est essentielle si l'inversion de l'humidité du sol est l'intérêt majeur. Utiliser uniquement la rétrodiffusion est difficile, sinon impossible, car seul le signal provenant de l'arriè re est disponible. Par consé quent, l'estimation de l'humidité du sol dans un mode bistatique a attiré une attention considé rable ces derniè res anné es. Pour obtenir une meilleure compré hension des caracté ristiques de diffusion bistatique, et trouver les configurations approprié es, voire optimales, nous avons é tudié la ré ponse radar bistatique de l'humidité du sol et de la rugosité de surface des surfaces de sol nu dans la bande L en utilisant le modè le AIEM. Les ré sultats montrent que la sensibilité la plus é levé e de diffusion radar à l'humidité du sol peut ê tre obtenue en configurant l'observation bistatique par rapport à l'observation monostatique à partir duquel seuls les coefficients de ré trodiffusion peuvent ê tre obtenus. Dans un mode bistatique, les coefficients de diffusion de polarisation VV sont gé né ralement plus sensibles à l'humidité du sol que celles de polarisation HH. Contrairement à l'utilisation d'un seul coefficient polarisé ou simple diffusion angulaire, l'influence de la fonction de corrélation, qui est un effet indé sirable, peut ê tre considé rablement supprimé par une combinaison de doubles polarisation ou de double mesures angulaires. Par rapport aux ré sultats en simple polarisation ou en donné es combiné es de double polarisation, il semble que la combinaison de double mesures angulaires ré alise l'estimation de l'humidité du sol la plus fiable car elle permet de supprimer l'influence de la rugosité de surface, tout en maintenant une bonne sensibilité à l'humidité du sol. Il est é galement important à noter que la région vers l'avant est préférable indépendamment de la fonction de corré lation, une caracté ristique tout à fait attrayante et utile. De plus, il apparaî t que plus la diffé rence entre les angles croî t, plus la sensibilité des mesures angulaires à l'humidité du sol augmente. Il convient de noter que, bien que les configurations de radar bistatique montrent un grand potentiel pour la surveillance de l'humidité du sol, xiii les limitations imposé es par la fenê tre angulaire é troite et le niveau faible de signal dans ces configurations hors-plan sont susceptibles de rendre l'utilisation de ces configurations difficiles. Enfin, en raison de la complexité gé omé trique de la configuration bistatique, ainsi que la diversité des conditions de surface, des é tudes thé oriques et expé rimentales complé mentaires devraient ê tre mené es pour confirmer la meilleure configuration bistatique pour la dé tection de l'humidité du sol dans le futur.

Dans le chapitre 5, nous avons analysé la ré ponse en ré trodiffusion radar de l'humidité du sol et, pour tester les donné es ré elles, dé veloppé une mé thode pour extraire l'humidité du sol à partir des donné es du ALOS-2 (Advanced Land Observing Satellite-2). Cependant, la ré cupé ration de l'humidité du sol à partir de donné es SAR est complexe, car elle est profondé ment affecté e par la rugosité de la surface, la couverture vé gé tale et la texture du sol, entre autres facteurs. Le modè le AIEM a é té de nouveau utilisé pour simuler les caracté ristiques de diffusion radar de la surface du sol pour analyser les effets de couplage des paramè tres de surface, y compris la hauteur de RMS, la longueur de corré lation, l'humidité du sol, ainsi que les paramè tres du systè me radar, y compris l'angle d'incidence et de polarisation.

De la sensibilité des coefficients de ré trodiffusion à l'humidité du sol sous diffé rentes fré quences, nous voyons que le changement des coefficients de ré trodiffusion est plus importante dans la bande L quand les changements d'humidité du sol varient. Nous observons que la sensibilité des signaux de ré trodiffusion à l'humidité du sol est é levé e lorsque l'angle d'incidence est relativement faible dans la polarisation VV. La sensibilité des signaux de ré trodiffusion à l'humidité du sol diminue à mesure que la hauteur de RMS augmente. Par ailleurs, on constate que l'influence de la longueur de corré lation des signaux de ré trodiffusion est nettement infé rieure à celle de la hauteur RMS.

Un modè le de donné es permet une mise en correspondance de l'espace de mesure à l'espace des paramètres. Comme nous l'avons vu dans les chapitres précédents, la diffusion radar de par une surface rugueuse est un processus complexe, et les paramè tres de surface sont fortement couplé s. Pour ré soudre les problè mes de recherche multidimensionnelle, la mé thode de ré seau neuronal à base de filtre xiv récurrent de Kalman a été développé en raison de sa capacité à s'adapter à des dimensions gé ophysiques é levé es, de sa robustesse au bruit et surtout sa capacité à gé rer la cartographie non liné aire. Pour l'essentiel, l'opé ration peut ê tre divisé en deux phases. La premiè re phase est la formation de ré seau -pour construire la fonction de mappage. Nous avons utilisé le modè le AIEM pour gé né rer la base de donné es d'apprentissage en configurant les paramètres de radar (fréquence, angle d'incidence, polarisation) et les paramè tres de surface (l'humidité du sol, hauteur RMS, fonction de corré lation, et la longueur de corré lation). Aprè s avoir terminé la formation du ré seau, nous procé dons à la deuxiè me phase qui est le fonctionnement du ré seau neuronal, à savoir, la ré cupé ration de l'humidité du sol. En utilisant la base de donné es gé né ré e pour former le ré seau de neurones à base de filtres de Kalman, nous avons vé rifié les ré sultats avec les donné es simulé es à l'exception des donné es d'apprentissage. Les ré sultats montrent que la pré cision sur l'humidité du sol et sur la hauteur RMS est meilleure que celle de la longueur de corré lation, et est gé né ralement satisfaisante.

Il s'agit maintenant de tester le processus sur des données réelles. La zone d'étude est le delta du fleuve Jaune (YRD), l'un des plus grands deltas en Chine formé s par les limons du fleuve Jaune dans la province du Shandong, en Chine. Dans le temps, la riviè re Huang He coulait dans le nord du Jiangsu dans la mer Huanghai et cela pendant prè s de 700 ans. Le delta du fleuve Jaune, est situé dans la province du Shandong de 13 ° 21'-38 ° 12 'N et 118 ° 07'-119 ° 10'E, avec une superficie de 5450 km². Dans cette étude, nous avons utilisé deux ensembles d'images de niveau 1.0 ALOS-2, une a é té acquis le 13 Novembre 2014, et l'autre le 20 Dé cembre 2014. La fré quence du ALOS-2 est de 1,2 GHz et la largeur d'observation est de 25 km avec une ré solution de 3 mè tres dans le mode "spotlight". Les deux images é taient toutes deux situé es dans la zone YRD, avec une zone substantielle de recouvrement. Nous avons choisi une ré gion de sol nu pour tester notre mé thode. Aprè s l'application de la mé thode d'inversion dé veloppé e en utilisant les deux donné es ALOS-2, nous avons obtenu la variation relative de l'humidité du sol de la zone de recherche. D'aprè s les ré sultats, nous pouvons voir que la distribution spatiale de la variation de l'humidité du sol est relativement uniforme. Dans la plupart de la ré gion, l'humidité du sol a é té assé ché e. Le relativement plus important changement relatif d'humidité du sol a eu lieu dans la limite sud de la zone. La limite é tait humide sans doute en raison de sa xv proximité de la mer. De faç on gé né rale, la ré partition spatiale de la variation de l'humidité du sol est raisonnable, ce qui dé montre l'efficacité de la mé thode.

Nous tirons les conclusions dans le chapitre 6. Dans cette thè se, nous pré sentons une analyse systé matique des diffusions radar bistatiques de surface rugueuse alé atoire basé e sur un mode AIEM thé orique, modè le bien connu. Par la suite, une analyse de sensibilité a é té effectué e pour explorer les processus complexes et le couplage non liné aire des interactions onde-matiè re, dont la teneur en humidité du sol est l'un inté rê t majeur. Puis nous procé dons à l'inversion du problè me -la ré cupé ration de l'humidité du sol à partir de mesures radar. Le dé ficit en utilisant uniquement des coefficients de ré trodiffusion, dans la mesure où la dé termination de l'humidité du sol est principalement concerné e, a é té mis en é vidence et sa compensation par le biais de mesures de diffusion bistatique est discuté e. Des é tudes futures sont alors suggé ré es.

Publications durant la thèse :

Liu, Y., Chen Soil moisture, which is also called the soil water content, is one of the surface parameters which has been widely used in various environmental applications, including weather and climate forecasting, agricultural productivity predictions, flood monitoring, and drought early warning [START_REF] Entekhabi | SMAP Handbook Soil Moisture Active Passive, Mapping Soil Moisture Freeze/Thaw from Space[END_REF][START_REF] Miralles | El Niño-La Niña cycle and recent trends in continental evaporation[END_REF][START_REF] Taylor | Afternoon rain more likely over drier soils[END_REF]Zeng et al., 2016a). It plays a significant role in numerous hydrological-related processes. Many studies have proved that soil moisture observations at large scales are very useful in hydrology, meteorology, climatology, and agriculture [START_REF] Bi | Comparison of soil moisture in GLDAS model simulations and in-situ observations over the Tibetan Plateau[END_REF][START_REF] Koster | Regions of strong coupling between soil moisture and precipitation[END_REF][START_REF] Jung | Recent decline in the global land evapotranspiration trend due to limited moisture supply[END_REF]. Therefore, acquiring the temporal and spatial distribution of surface soil moisture at both local and global scales is essentially critical.

Traditional methods of soil moisture measurement include the weighing method, rapid drying method, resistance method and time domain reflectometry, etc. These methods can accurately estimate the soil moisture; however, they require a lot of manpower and materials and can only obtain soil moisture information over a very small spatial scale [START_REF] Tian | Methods for monitoring soil moisture using remote sensing technique[END_REF]. Currently, hydrological and meteorological stations can provide only sparse spatial points of soil moisture information, which cannot fully characterize the spatial and temporal variability of soil moisture and also cannot effectively investigate its impact on environmental change [START_REF] Li | Study on methods of monitoring soil moisture by remote sensing in semi-arid areas[END_REF].

Technically, in situ observations are not able to fully, and simultaneously, characterize the spatial and temporal variability of soil moisture at substantially applicable scales [START_REF] Zeng | Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[END_REF].

Remote sensing technology plays an increasingly important role in soil moisture monitoring. Not only can it detect changes in soil moisture both temporally and spatially, but also it has the advantages of a wide range of coverage and continuous observations [START_REF] Zhang | Soil moisture retrieval from multiresource remotely sensed images over a wheat area[END_REF]. Currently, quantitative information on soil moisture at a local or global scale has proved to be of palpable importance in many hydrological and meteorological applications, including management of water resources, scientific irrigation and estimation of crop yields. The traditional pointbased method cannot obtain soil moisture information as well as the dynamic changes in soil moisture at a large scale [START_REF] Shao | Soil Physics[END_REF]. In contrast, remote sensing technology can make up for the shortcomings of the traditional methods, and it is now considered to be the most effective means for soil moisture monitoring in both time and space, especially at large spatial scales.

Properties of soil moisture

Soil layers, in the direction of the cross section, can be divided into three layers:

the surface soil, the subsoil and parent material. The colour of topsoil humus layers is deeper, and this layer is richer in flora and fauna conversion of organic matter, therefore crop farming is carried out on this layer. The colour of the subsoil layer is lighter, and it contains less organic matter. The parent material is mainly composed of rock after weathering inorganic composition. Climate, topography, vegetation and time will affect the physical and chemical properties of soil. Soil is composed of solids (minerals and organic matter particles), liquids (soil moisture), and gases (air).

Mechanical soil composition refers to the proportions in each soil of different grain sizes (sand, silt and clay), or so-called soil texture. Soil porosity is composed of part of the common air and soil moisture. Soil moisture content can use different means of expression, as shown below.

Volumetric water content

Volumetric water content mv, also known as the volumetric moisture content, is the unit of soil moisture volume, which can be expressed as the percentage:

/ wt mv v v (1.1)
where and represent the volume of water in the soil and the total volume of soil (units: ), respectively. Care must be taken that it is not the volume of solid soil particles.

The quality of the water content

The quality of the water content mg, also known as the weight moisture content, is the ratio of soil moisture quality and the weight of the soil after drying:

/ ws mg m m (1.2)
where represents the soil moisture quality (units: g) and represents the weight of the soil after drying. The relationship between the volumetric water content and the weight moisture content can be described as:

/ bg mv m (1.3)
where is the soil bulk density, also called the bulk density (units: g/ ).

Relative water content

Relative water content (RWC) is the ratio of the soil moisture content and field capacity, which represents the soil water saturation level.

/ * 100%

RWC soil moisture content field capacity

.

(1.4)

In agricultural and hydrological studies, the field capacity represents the soil moisture after irrigation over two days.

Remote sensing of soil moisture

Application of remote sensing satellite images to extract soil moisture began in the late 1960s. Although satellite observations at the visible-near infrared band, thermal infrared band, and microwave band have different responses to soil moisture, they all can achieve the purpose of monitoring soil moisture [START_REF] Wang | Satellite remote sensing applications for surface soil moisture monitoring: A review[END_REF].

Visible-near infrared remote sensing of soil moisture

With the visible-near infrared band, soil moisture detection is based on the characteristics of the vegetation reflectance spectra. According to the imaging mechanism of remote sensing and object spectrum characteristics, dry soils have a high reflectivity: soil reflectivity will decrease as the soil becomes wetter. The main indices used to detect soil moisture are divided into two categories: the remote sensing index method and the temperature-vegetation index spatial characteristics method.

Remote sensing index method

Under stable temperature and light conditions, soil moisture is the major factor that affects vegetation growth. Studies have shown that vegetation indices, such as the vegetation condition index (VCI) [START_REF] Kogan | Global drought and flood-watch from NOAA polar-orbiting satellites[END_REF], can reflect water shortage in crops, and thus can be closely related to soil moisture. In addition to soil moisture, air temperature and rainfall and other environmental factors also affect the vegetation index, therefore it cannot fully reflect any water shortages. However, combined with the vegetation temperature canopy (TC) and the normalized difference vegetation index (NDVI), soil moisture information can be extracted under vegetation cover. The vegetation supply water index (VSWI) is defined as the ratio of NDVI to TC. As the soil becomes drier, then NDVI decreases, TC increases, and VSWI decreases; in contrast, when the soil gets wetter, then NDVI increases, TC decreases, and VSWI increases. According to this principle, any soil drought under an area of vegetation coverage can be detected [START_REF] Carlson | A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[END_REF]. In addition, some remote sensing humidity indices, such as the normalized difference water index (NDWI), and the normalized difference moisture index (NDMI) [START_REF] Gao | NDWIa normalized difference water index for remote sensing of vegetation liquid water from space[END_REF], can also extract humidity information.

The temperature-vegetation index spatial characteristics method

In 1985, [START_REF] Goward | Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape[END_REF] proposed the temperature-vegetation index spatial characteristics method. In most cases, the NDVI and surface temperature (Ts) have a negative correlation: the greater the inclination, the lower the soil moisture. Studies have shown that the temperature-vegetation index (TVX) method has a great potential for monitoring the regional soil moisture [START_REF] Goward | Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model[END_REF]. In addition, [START_REF] Sandholt | A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[END_REF] have developed a simplified temperature vegetation dryness index (TVDI)

which is directly related to the soil moisture and, also, does not rely on secondary data.

Thermal infrared remote sensing of soil moisture

Thermal infrared remote sensing of soil moisture, which is based mainly on the soil surface emissivity and temperature, uses two main methods: the thermal inertia method and the plant evapotranspiration and water stress index method.

Thermal inertia method

Soil thermal inertia is a kind of soil thermal property. The change of soil temperature is caused by internal factors and, as the thermal inertia of soil is less than that of water, so soil with a higher moisture content will have a greater thermal inertia.

Therefore, thermal inertia and soil moisture are closely related. By establishing the relationship between the soil thermal inertia and remote sensing data, as well as the relationship between soil moisture and thermal inertia, then a model used to describe the relationship between soil moisture and remote sensing data can be established [START_REF] Lasne | A phase signature for detecting wet subsurface structures using polarimetric L-band SAR[END_REF].

Plant evapotranspiration and plant water stress index method

Plant evapotranspiration consists of two parts: evaporation and transpiration.

Evaporation is the plant's surface moisture being diffused into the atmosphere.

Transpiration is the diffusion of soil moisture into the atmosphere through the plants.

The basic principle of the plant evapotranspiration and plant water stress index method is that there is a relationship between the canopy temperature and plants, a relationship that can be used to extract soil moisture data. The vegetation water stress index (VWSI) and the crop water stress index (CWSI) reflect soil moisture information at the range of the plants' root area [START_REF] Jackson | Canopy temperature as a crop water stress indicator[END_REF]. Based on the energy balance, by use of the surface albedo, surface radiation temperature and weather station data, and a combination of canopy temperature, temperature difference and aerodynamic resistance, the actual evapotranspiration and potential evapotranspiration can be obtained. Then the soil moisture can be estimated. This method is physically-based, which can overcome the limitations of empirical models.

Microwave remote sensing of soil moisture 1.3.3.1 Passive microwave remote sensing of soil moisture

The physical basis of using passive microwave remote sensing for soil moisture monitoring is that microwave brightness temperature is highly related to the soil dielectric constant, which is mainly determined by soil moisture [START_REF] Zeng | A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data[END_REF].

The current spaceborne passive microwave satellites/sensors for soil moisture measurements mainly include the Soil Moisture and Ocean Salinity (SMOS) satellite [START_REF] De Jeu | Parameterization of the Land Parameter Retrieval Model for L-Band Observations Using the NAFE'05 Data Set[END_REF][START_REF] Kerr | The SMOS soil moisture retrieval algorithm[END_REF][START_REF] Saleh | Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE'05 Experiment)[END_REF][START_REF] Wigneron | L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[END_REF], the Fengyun-3 (FY3) [START_REF] Shi | Physically based estimation of bare-surface soil moisture with the passive radiometers[END_REF][START_REF] Parinussa | Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite[END_REF], the Advanced Microwave Scanning Radiometer 2 (AMSR2) [START_REF] Koike | Development of an Advanced Microwave Scanning Radiometer (AMSR-E) algorithm of soil moisture and vegetation water content[END_REF][START_REF] Njoku | Vegetation and surface roughness effects on AMSR-E land observations[END_REF][START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF]Zeng et al., 2015a), and the Soil Moisture Active Passive (SMAP) satellite [START_REF] Entekhabi | The soil moisture active passive (SMAP) mission[END_REF][START_REF] Entekhabi | SMAP Handbook Soil Moisture Active Passive, Mapping Soil Moisture Freeze/Thaw from Space[END_REF]Zeng et al., 2016a). Overall, retrieving soil moisture from passive microwave brightness temperature mainly consists of two parts: the first part is use of a radiative transfer model to link the brightness temperature and the soil dielectric constant. The second part is use of a dielectric mixing model to link the soil permittivity and soil moisture. Overall, the current inversion algorithms can be divided into four categories. First is the single-channel algorithm (SCA) that uses only single polarized brightness temperature measurements along with lots of auxiliary data to retrieval soil moisture [START_REF] Jackson | Measuring surface soil moisture using passive microwave remote sensing[END_REF]Zeng et al., 2016a). The second is the multi-parameter iterative inversion algorithm, which can estimate several parameters simultaneously (e.g. soil moisture, vegetation optical depth and surface temperature) [START_REF] Kerr | The SMOS soil moisture retrieval algorithm[END_REF]. The third is the polarization-index algorithm which uses the polarization index to estimate soil moisture [START_REF] Njoku | Vegetation and surface roughness effects on AMSR-E land observations[END_REF]. The fourth is the intelligent inversion algorithm, e.g. neural network and genetic algorithm (Santi et al., 2012;[START_REF] Wigneron | Retrieving near-surface soil moisture from microwave 106 radiometric observations: current status and future plans[END_REF].

Active microwave remote sensing of soil moisture

Microwave signals can not only penetrate clouds, but also can penetrate vegetation and soil to some extent. The bare soil's backscattering coefficients receive by the active microwave sensors (e.g. radar) have a strong correlation with soil moisture [START_REF] Baghdadi | Evaluation of radar backscattering models IEM, Oh, and Dubois for SAR data in X-band over bare soils[END_REF]Zribi et al., 2014a). In addition, the backscattering signals are also affected by many other factors, such as vegetation cover, surface roughness, and soil texture [START_REF] Barrett | Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques[END_REF][START_REF] Kornelsen | Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications[END_REF]. The key to improving the retrieval accuracy of soil moisture is to remove effectively the effects of surface roughness and vegetation cover [START_REF] Bryant | Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture[END_REF].

Over the past decades, researchers have achieved great success in terms of soil moisture inversion for areas of bare soil or sparse vegetation cover. Many models have been developed for soil moisture inversion or prediction of the scattering returns for a variety of surface profiles. The empirical or semi-empirical models mainly include the Oh model [START_REF] Oh | An empirical model and an inversion technique for radar scattering from bare soil surfaces[END_REF], the Dubois model [START_REF] Dubois | Measuring soil moisture with imaging radars[END_REF], and the Shi model [START_REF] Shi | Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR 104 image data[END_REF]. The theoretical models mainly include the physical optic model (POM), the geometric optic model (GOM), the small perturbation model (SPM), the Integral Equation Model (IEM) [START_REF] Fung | Backscattering from a randomly rough dielectric surface[END_REF], and the advanced integral equation model (AIEM) [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[END_REF].

The Oh model was developed based on the multiband fully polarimetric scatterometer data. The Oh model can be applied to a wide range of soil roughness.

Especially when the RMS height s of the soil surface is in the range of 0.1 cm to 0.6 cm and the correlation length l is in the range of 2.6 cm to 19.7 cm, then the model predictions are more consistent with the actual measurements. However, a lot of ground observation data with limited surface condition information has been used to build the Oh model, thus its universality needs more in-depth analysis and verification.

The Dubois model was developed based on multi-band and multi-polarization scatterometer data. When the ks is less than 2.5 (k is the wave number, s is the RMS height), the incident angle is larger than 30°, and soil volumetric water content is less than 35%, the Dubois model has a good accuracy. However, when the ks is larger than 2.5, the Dubois model can no longer describe the radar backscatter of a rough surface.

Based on the IEM model, [START_REF] Shi | Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR 104 image data[END_REF] analysed the effects of different soil parameters (soil roughness and soil dielectric constant) on the scattering signals, then they built the relationship between backscattering coefficients and soil moisture at the L-band. In the Shi model, the surface roughness spectrum which affects the scattering coefficient has also been involved. [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[END_REF][START_REF] Wu | A study of an AIEM model for bistatic scattering from randomly rough surfaces[END_REF]. It has been the model most often chosen as the forward model to simulate the scattering coefficients of bare soil surfaces with various ground conditions in many previous studies [START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF][START_REF] Pierdicca | Radar bistatic configurations for soil moisture retrieval: a simulation study[END_REF].

Summary of remote sensing methods

In conclusion, each method has its advantages. Visible-near infrared band models can monitor soil moisture at finer resolutions. However, optical observations are often influenced by clouds and atmospheric conditions. Also, the optical sensors cannot work all day and night. The thermal infrared monitoring of soil moisture has a good accuracy, but it is also vulnerable to the influence of clouds and may experience signal saturation easily under the condition of heavy vegetation. The former is a major limitation since about half of the land surface is covered by clouds at any one time (Zeng et al., 2015a). Passive microwave remote sensing uses brightness temperature to estimate soil moisture. It can map soil moisture with high temporal resolution and high accuracy. However, since the antenna size of the passive sensor is limited, its spatial resolution is too low for it to be used for some practical applications such as agricultural productivity estimation at a local scale [START_REF] Kornelsen | Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications[END_REF].

In contrast, active microwave remote sensing has unique advantages for soil moisture monitoring as it: (a) is capable of working both day and night, (b) is able to penetrate cloud layers, and is less affected by atmospheric conditions, (c) is directly related to soil moisture through soil permittivity, and (d) can provide observations with much higher spatial resolution than passive microwave sensors. Therefore, we used active microwave remote sensing observations to retrieve soil moisture in this dissertation research.

Research status of active remote sensing of soil moisture

Estimating soil moisture from active microwave remote sensing began with Ulaby's experiments [START_REF] Rao | Estimation of soil moisture and surface roughness parameters from backscattering coefficient[END_REF]. The challenging issue for soil moisture retrieval is that the relationship between soil moisture and the backward scattering coefficient is not linear. Roughness, vegetation cover, dielectric constant, soil physical properties (structure, composition, etc.) and radar parameters all affect the strength of the echo. Vegetation layers have a thickness sufficient to shield the scattering information from the soil surface, thus, vegetation is usually considered to be the most important factor that affects the retrieval accuracy of soil moisture [START_REF] Srivastava | Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data[END_REF].When the wavelength is long (e.g. L-band), the influence of the vegetation on backscattering signals becomes weak [START_REF] Baghdadi | Soil moisture estimation using multiincidence and multi-polarization ASAR data[END_REF]. Short wavelengths (e.g.

X-band, 3 cm) reflect information from the vegetation canopy, while long wavelengths (e.g. L-band, 24 cm) can penetrate the canopy and obtain echo signals reflected from the soil surface. Medium wavelengths (e.g. C-band, 6 cm) reflect both from the soil and the vegetation canopy. Brown et al. (1988) have found that the Cband can also penetrate vegetation when the vegetation water content is not high. For optimum soil moisture inversion, [START_REF] Ulaby | Radar remote sensing and surface scattering and emission theory[END_REF] have recommended that a low incidence angle with a long-wave band (L-band) can minimize the effects from surface roughness and vegetation

The surface roughness (root mean square height s, correlation length l and autocorrelation function of statistical expression) is another important factor.

Parameter sensitivity studies on radar signals from a variety of soil surfaces indicate that the contribution of surface roughness to the radar signal is equivalent or even larger than that of soil moisture [START_REF] Lin | Soil moisture estimation over grass-covered areas using AIRSAR[END_REF]. Therefore, one of the most challenging tasks in active microwave remote sensing of soil moisture is to decouple the effects of soil moisture and surface roughness. [START_REF] Ulaby | Optimum radar parameters for mapping soil moisture[END_REF] have found that when the incident angle is greater than 60º , the echo signals received by the sensor will increase with the same soil surface roughness. In addition, the surface roughness is difficult to measure, and the measurement of large areas is also difficult and expensive. [START_REF] Rahman | Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data[END_REF] put forward the most commonly used soil roughness measurement tool: needle cross-sectional plate, what also finds it hard to describe surface roughness accurately. Subsurface rock fragments also have some impact on the backscatter coefficient, but they cannot be measured [START_REF] Jackson | Measuring surface soil moisture using passive microwave remote sensing[END_REF].

Due to the strong coupling of soil moisture and surface roughness, many researchers are working on the optimal radar configuration for soil moisture retrieval. [START_REF] Rao | Estimation of soil moisture and surface roughness parameters from backscattering coefficient[END_REF] found that multi-frequency radar data is more suitable for soil moisture estimation than single-frequency radar data. [START_REF] Srivastava | Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data[END_REF] and [START_REF] Baghdadi | Soil moisture estimation using multiincidence and multi-polarization ASAR data[END_REF] found that combining the low and high incident angle of SAR data (C-band) can get better results in inversion of soil moisture than using a single incidence angle. [START_REF] Holah | Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields[END_REF] claim that a low incident angle (20º -37º ) is more suitable for soil moisture retrieval. The vertical (VV) polarization has the highest sensitivity to soil moisture, followed by horizontal (HH) polarization, while cross (HV and VH) polarization is relatively insensitive to soil moisture. [START_REF] Shi | A parameterized multifrequency-polarization surface emission model[END_REF] found that the use of the polarization ratio can minimize the effect of roughness. Theoretically, the multi-polarization method can improve retrieval accuracy. However, some studies have shown a contrary result. For example, [START_REF] Baghdadi | Soil moisture estimation using multiincidence and multi-polarization ASAR data[END_REF] found that the retrieval accuracy of soil moisture is not improved by using the dual polarization (HH / HV) compared to using a single polarization. In the past thirty years, many models 

Outline of the dissertation research

This dissertation focuses on the retrieval of surface soil moisture from radar measurements. The organization of this dissertation is as follows. Chapter 1 introduces the research background and motivation, and gives a brief history of soil moisture remote sensing using radar. Chapter 2 describes the principles of microwave remote sensing of soil moisture. A description of the randomly rough surface is presented, followed by the electromagnetic wave interactions with the media. In Chapter 6 concludes the research results and suggests related topics worth future study.

Chapter 2 Electromagnetic wave scattering from rough surfaces

Electromagnetic wave scattering from a randomly rough surface is of palpable importance in many fields of disciplines and bears itself in various applications spanning from surface treatment to remote sensing of terrain and sea [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF]Fung and Chen, 2009;Spizzichino and Beckman, 1963;Tsang and Kong, 2001;[START_REF] Ulaby | Radar remote sensing and surface scattering and emission theory[END_REF]Voronovich, 1994). For example, in microwave remote sensing of terrain, it has been a common practice to retrieve, by analysing the sensitivity of the scattering behaviour and mechanisms, the geophysical parameters of interest from the scattering and/or emission measurements [START_REF] Chen | Model analysis of bistatic scattering from randomly rough surfaces[END_REF][START_REF] Johnson | Polarization features in bistatic scattering from rough surfaces[END_REF].

Another example is that by knowing the backscattering patterns, one may be able to detect the presence of the undesired random roughness of a reflective surface such as antenna reflector and, thus, accordingly devise a means to correct or to compensate the phase errors with respect to the phase centre. Therefore, it has been important both theoretically and practically to study the electromagnetic wave scattering from the random surfaces.

In order to tackle the complex and sometimes intricate mathematical derivations and yet to retain a high level of accuracy beyond conventional models [notably, Kirchhoff and small perturbation method (SPM)], the integral equation model (IEM) has been developed by (Chen et al., 1992;[START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF][START_REF] Fung | Backscattering from a randomly rough dielectric surface[END_REF] under certain physical-justified assumptions. One among these assumptions was to use a simplified Green's function by dropping off the phase term associated with the random surface height. Doing so might have a more profoundly critical impact among all of these assumptions: While greatly alleviating the burden of mathematical derivations, it unavoidably degrades the model accuracy to a certain extent, depending upon the surface properties and observation geometry. Nevertheless, the IEM model proves to perform very well in backscattering and offers to seamlessly bridge the gap between the Kirchhoff and SPM models. Driven by the need of predicting bistatic scattering and microwave emissivity, much effort has been devoted to further improving IEM accuracy [START_REF] Chen | Note on the multiple scattering in an IEM model[END_REF][START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[END_REF]Du, 2008;Fung et al., 2002;Fung and Chen, 2004;Li et al., 2002;Li and Fung, 1991;[START_REF] Wu | A transition model for the reflection coefficient in surface scattering[END_REF][START_REF] Wu | A study of an AIEM model for bistatic scattering from randomly rough surfaces[END_REF]Wu and Chen, 2004;) by removing some of the assumptions that were imposed for the purposes of mathematical simplicity during the course of derivation. This has been done by re-deriving the expressions, though this required excessive and tedious manipulations. Another step forward was the introduction of a transition function into the Fresnel reflection coefficients to take spatial dependencies into account, removing the restrictions on the limits of surface roughness and permittivity [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF]Fung et al., 2002). The improved and updated IEM model, called Advanced IEM (AIEM) has proven to work perfectly for a broad range of surface dielectric and geometric parameters [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF]Chen, 2009, 2004;Fung et al., 2002).

Description of randomly rough surfaces

The reflection of electromagnetic waves from a planar interface between two media, as matter of fact, is well known via reflection law and Snell's law. The reflected wave, being specularly directed, is dependent on the incident wavelength, incident angle, and electrical properties of the media. Waves from a rough surface are much more complicated in the sense that the reflected energy is distributed in all directions (though some favour certain directions more than others): its directional pattern is determined by the properties of the rough surface. The roughness of the surface can be characterized as periodically, randomly or quasi-periodically randomly rough. For natural surfaces, however, periodically rough surfaces are most often encountered.

A good example of a quasi-periodically randomly rough surface is a surface formed by wind erosion, saltation of snow particles, and deposition of surface (known as a Sastrugi surface) which is frequently found in polar regions. Wind-blown grubby sand dunes, which cover a vast area on Earth, present yet another interesting surface in view of electromagnetic wave scattering. Mathematically, the Sastrugi surface may be given as a superposition of "ridges and grooves":

(2.1)

where the amplitude coefficient is assumed to have a uniform random distribution in with mean height . The position ( ) may be assumed to have a

Poisson random distribution and is determined by the ridge density (number of ridges per unit length). Notice in particular that for purposes of simulation, the total surface length is of finite in both directions. The "ridge" function can be of the form:

(2.2) where is the shape function that specifies the ridges' shape, is the rectangular function, and defines the width and length of the ridge, respectively.

Other classes of naturally occurring surfaces, such as terrain and sea, are best and, perhaps, only can be modelled by random processes. The two classical approaches commonly used to model natural surfaces, fractal and statistical approaches, are here treated.

Fractal approach

It has been proved that fractal geometry provides a sound and reliable description of natural surfaces [START_REF] Li | Numerical simulation of conical diffraction of tapered electromagnetic waves from random rough surfaces and applications to passive remote sensing[END_REF][START_REF] Xu | Analysis of Microwave Emission of Exponentially Correlated Rough Soil Surfaces from 1. 4 GHz to 36. 5 GHz[END_REF][START_REF] Xu | Fourth stokes parameter in polarimetric passive remote sensing from two-layer rough surfaces[END_REF]. However, in order to apply fractal geometry to remote sensing, it is mandatory to devise a fractal model for the surface that allows for a possibly approximate evaluation of the scattered electromagnetic field. A viable fractal model for surface description is the fractional Brownian motion (fBm) model. By definition, an isotropic surface z(x,y) belongs to the class of fBm if:

(2.3)
where H is the Hurst coefficient, T is the topothesy.

. (2.4)

Hence, an fBm surface is characterized by stationary Gaussian distributed height increments, while the surface is not stationary. Its description relies on only the two parameters, H and T. Incidentally, we note that different choices can be made for the set of parameters representing the fBm surface [START_REF] Li | Numerical simulation of conical diffraction of tapered electromagnetic waves from random rough surfaces and applications to passive remote sensing[END_REF][START_REF] Xu | Analysis of Microwave Emission of Exponentially Correlated Rough Soil Surfaces from 1. 4 GHz to 36. 5 GHz[END_REF][START_REF] Xu | Fourth stokes parameter in polarimetric passive remote sensing from two-layer rough surfaces[END_REF].

For instance, the fractal dimension D and the standard deviation s of the height increments at unitary displacement can be used without any restriction on the following analysis. In fact, D and s are related to H and T such that:

.

(2.5)

Once the surface has been described by means of an fBm random process, it is not straightforward to obtain the corresponding evaluation of the scattered field. This is because fulfilment of the model hypotheses (Agnon and Stiassnie, 1991;Ewe et al., 2001;Franceschetti et al., 1999;Macelloni et al., 2000), mathematical developments (Agnon and Stiassnie, 1991;Ewe et al., 2001;Franceschetti et al., 1999;Macelloni et al., 2000), limits of validity (Agnon and Stiassnie, 1991;Franceschetti et al., 1999;Macelloni et al., 2000), and related issues need to be addressed. In particular, we stress that a surface satisfying Eq. ( 2.3) for any small value of the distance t would be not differentiable in any point, and its root mean square (RMS) slope would be infinite. On the other hand, a surface satisfying Eq. ( 2.3) for any large value of the distance would suffer from the infinite variance problem (infrared catastrophe).

Fortunately, real natural surfaces satisfy Eq. (2.3) only in a limited (although wide) range of t values (or, equivalently, of spatial frequencies). In addition, whenever a scattering problem is in order, the range of distances t to be considered is limited on one side by the illuminated patch size (pixel size), and on the other by the incident electromagnetic wavelength l (values of t much smaller than l need not be considered).

Therefore, band limited fBm surfaces must be used (Agnon and Stiassnie, 1991;Ewe et al., 2001;Franceschetti et al., 1999;Li et al., 2002;Macelloni et al., 2000;[START_REF] Wu | A study of an AIEM model for bistatic scattering from randomly rough surfaces[END_REF], and hence lower and upper cut-off frequencies must be introduced. Limits of validity of scattering models obviously depend on such cut-off frequencies (Agnon and Stiassnie, 1991;Franceschetti et al., 1999). However, we here want to stress again that these latter parameters are often not related to surface properties, but rather to illumination (illuminated patch size, wavelength), and therefore they are known a

priori.

An example of a fractal random surface is illustrated below.

(2.6)

where z is a band-limited generalized Weierstrass surface with fractal dimension D=s+1;

: is a fundamental wave number;

: is a normalized coefficient such that z has an RMS height such that:

;

(2.7)

: is a random phase uniformly distributed over and independent of ; and : is a random phase with mean and some kind of distribution depending on what type of rough surfaces.

The autocovariance function is:

(2.8)

where E (.) = expectation operator and .

After some mathematical manipulation, we arrive at (2.9) where (2.10) and is the Bessel function of order m.

By noting , we may rewrite as:

1 2( 2) 22 0 0 1 2( 2) 2 01 ( , ) C ( ) 2 ( 1) ( ) (2 )cos 2 ( f f N sn zn n N s n m m n n nm b JK b J K S m m C (2.11)
By considering the finite antenna beam-width, a Gaussian beam of the form is introduced to account for finite footprint, where and .

Therefore,

22 22 1 2( 2) /2 22 0 0 1 /2 2( 2) 2 01 ( , ) C ( ) 2 ( 1) ( ) (2 )cos 2 ( ) f n f n N sn R zn n N R s n m m n n nm b e J K b e J K S m m C . (2.12)
The corresponding roughness spectra is:

(2.13) where is a modified Bessel function of order e.

For sea surfaces, one possible choice of the random phase is 

approach

Though fractal properties were investigated in the context of describing a random surface, we adopted more classical, and more commonly used, roughness parameters:

the correlation length and the RMS height. The correlation length measures the horizontal roughness scale. The RMS height describes the vertical roughness scale.

The ratio of RMS height to correlation length is related to surface RMS slope.

Assuming a randomly rough surface and a real stationary process with zero mean and standard deviation , then

(2.15)

where and follows a Gaussian distribution such that:

. (2.16)

For an isotropic surface, we have . In what follows, the isotropic surface is treated unless otherwise specified.

For the surface scattering problem, the joint probability density function between two points on the surface is of interest, and is:

.

(2.17)

The correlation function appearing in Esq. (2.15) and (2.17) is defined by:

(2.18) where ; and L is the surface length.

The surface spectrum and correlation function are related by the Wiener-Khintchine Theorem, which states that the spectrum of a wide-sense stationary random process of zero mean and its autocorrelation function form a Fourier transform pair:

.

(2.19)

For an isotropic surface, the autocorrelation function is independent of direction and dependent only on lag distance . The relation reduces to:

(2.20)

where is zero th order Bessel function.

In reality, surface length L is finite, leading to a cut-off spectrum given by:

(2.21)

where is defined similar to that of Eq. (2.8). The corresponding measured height variance and correlation length are, respectively, calculated by the following equations:

(2.22) 21 For simplicity, but without loss of generality, we have only discussed the isotropic surface. Note that for an isotropic surface, . In general, the correlation length is directionally dependent for anisotropic surfaces such as the sea. When the correlation function drops from 1 (the maximum value) to , the corresponding value of is called the correlation length , that is . 

Surface spectrum and correlation function

This subsection gives commonly used surface correlation functions and their surface spectra. For natural surfaces, because of their formation mechanisms, a distinct correlation function may be presented that best describes its correlation properties. The following pairs of equations illustrate three commonly used functions:

Gaussian, Lorentzian (better known as Exponential), and Exponential-like. To achieve a clear separation between a Gaussian shape around the origin and an Exponential elsewhere, it is necessary to choose . When is small, the correlation length will be approximately equal to L. The transition region from Exponential to Gaussian is proportional to the value, which controls the actual shape of the correlation function.

Roughness parameters

In the statistical sense, is a random variable due to spatially and temporally varying properties such that (2.27)

where is "truth", and is an error term.

In practice, the "truth" is never obtainable, nor measurable. Statistically, and may be assumed to be, as they usually are, uncorrelated, such that is an unbiased estimate of , i.e.:

(2.28)

where E denotes statistical mean, and is the variance of .

It turns out that to estimate the correlation length, we need to know the correlation function . For natural surfaces, the RMS height and the correlation length typically depend on the measured length.

The variance of estimate correlation function is:

(2.29) where is the profile length used to estimate .

The variance of estimate RMS height is:

.

(2.30)

It is evident that both variances are strongly dependent on the shape of the correlation function. The RMS height and correlation length increase with the measurement trace length.

Electromagnetic wave-media interactions

Electric field integral equation (EFIE) and magnetic field integral equation (MFIE)

Referring to Fig. 2.2, considering a plane wave impinges onto a dielectric rough surface which scatters waves up into the incident plane and down into the lower medium, with the electric and magnetic fields been written as:

(2.31a)

(2.31b) where ; denotes the incident wave; is the unit polarization vector; 0 E is the amplitude of the incident electric field, and is the intrinsic impedance of the upper medium, respectively. The position vector is and the wavenumber vectors in the incident and scattering directions are defined as follows, respectively:

; (2.32a) e . (2.32b)
For linearly polarized horizontally polarized and vertically polarized waves, the polarization vector for incident (i) and scattering (s) waves, respectively, is defined as:

.

(2.33) The total electric and magnetic fields according to the Stratton-Chu Formula may be expressed [START_REF] Ulaby | Radar remote sensing and surface scattering and emission theory[END_REF]Tsang and Kong, 2001) as:

(2.34a)

(2.34b)
where is Green's function, is the unit normal vector pointing to the scattering region, and the integration is performed over the rough surface .

The total field is the sum of the incident field, which is known, and the scattered field, which is unknown and is to be determined. For a source-free region as in our case, it is expressed mathematically (Ewe et al., 2001) as:

(2.35a)

(2.35b) where .

Far-zone scattered field and scattering coefficients

Equation (2.34) states the Huygens' Principle (Tsang and Kong., 2001): The field solution in a given volume ' V is completely determined by the tangential fields specified over the surface ' S enclosing ' V . From Eq. (2.35), to find the surface fields one has to solve the pair of Fredholm integral equations of the second kind. For a rough surface with an irregular boundary, the completely analytic solution is almost prohibitive. Instead, an approximate estimate of the surface tangential fields is usually, and preferably, adopted by taking the vector product with the unit surface normal on both sides of Equations (2.35a) and (2.35b) and, after some reformulations (Macelloni et al., 2000), by using an iterative scheme to find the estimates.

Once the surface tangential field estimates are made available, the scattered field for q polarization at far-zone distance R is readily calculated by making use of the Stratton-Chu formula (see Fig. 2):

(2.36)

where .

Once the scattered field is solved, the scattering coefficient with q polarization is calculated as [START_REF] Ulaby | Radar remote sensing and surface scattering and emission theory[END_REF]:

(2.37)

where is the range from surface to observation point and is the illuminated area of overlap, confined by transmitting and receiving antenna beam patterns over the surface.

The advanced IEM model

In IEM and AIEM modelling [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF][START_REF] Fung | Backscattering from a randomly rough dielectric surface[END_REF], the estimation of surface fields is the sum of the Kirchhoff field and the complementary field, or:

(2.38a)

(2.38b)
where the Kirchhoff fields can be expressed as:

(2.39a)

(2.39b) and the complementary surface fields, which correct the Kirchhoff estimates, are written as:

(2.40a)

(2.40b)

(2.41a)

.

(2.41b)

In the above expressions, we make use of a local coordinate defined by [ ] as seen in Fig. 2.3 [START_REF] Ulaby | Radar remote sensing and surface scattering and emission theory[END_REF][START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF]. The unknown electric and magnetic fields that appear inside the integrals above are expressed as:

(2.42a)

(2.42b) (2.43a) (2.43b)
where is the intrinsic impedance of the lower medium, the wave transmitted region. Note that Eq. (2.42) and (2.43) involve Green's functions and their gradients in the upper and lower mediums , respectively.

By substituting the Kirchhoff surface fields in Eq. (2.39a) and (2.39b) into Eq.

(2.42) and (2.43), the estimates of the complementary fields of Eq. (2.40) and (2.41) can be obtained. This may be seen as a second iteration of seeking the solution of the integral equations governing the surface fields using Kirchhoff fields as initial guesses, which is indeed a very good choice for fast convergence

Corresponding to the Kirchhoff and the complementary surface fields in Eq (2.39) and (2.40), the far-zone scattered field may be also expressed as a sum of the Kirchhoff and the complementary scattered fields [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF][START_REF] Fung | Backscattering from a randomly rough dielectric surface[END_REF]:

s k c qp qp qp E E E (2.44)
where the Kirchhoff field is given by (2.45)

with the phase term .

The complementary scattered field, propagating upward and downward, may be written as:

.

(2.46)

The Kirchhoff field coefficients appearing in Eq. (2.45) can be explicitly written into the following form:

(2.47a)

(2.47b) (2.47c) (2.47d)
where .

The complementary scattered field is contributed from the re-radiated fields that may propagate through medium 1 and medium 2, represented by upwardly moving and downwardly moving waves. The propagators may be decomposed into the upward components designated by and the downward components designated by , mathematically appearing as the absolute terms in Eq. (2.14), physically denoting the change of propagation velocity at different media. The explicit expressions of the complementary field coefficients are given below:

(2.48a)

(2.48b) (2.48c) (2.48d) (2.48e) (2.48f) (2.48g) . (2.48h)
For self-contained and easy reference, the coefficients , , appearing in Eq.

(2.48) are given in Appendix 2.A. Note that the coefficients for the lower or transmitted medium have the same forms as and , with simply being replaced by t q .

With the scattered fields calculated, we perform ensemble averaging to compute the scattered power and the scattering coefficient. To gain more physical insights into the field interactions that produce the average power, the following expression for the incoherent average power is written as a sum of three terms: the Kirchhoff power, the cross power due by the Kirchhoff field and the complementary power:

(2.49)

where < > denotes the ensemble average over the randomly rough surface and * is the complex conjugation operator. The final expression of the scattering coefficient under the AIEM model, a relatively compact form, is given by:

( In modelling the wave scattering, it is a common practice, in order to remove the spatial dependence of the reflection coefficient, to approximate the local incident angle either by the incident angle for a slightly rough surface or otherwise by the specular angle. Such approximation, however, leads to an unpredictable error for the local incident angle, which is random in nature across the rough surface. A transition model was proposed by Ulaby et al. (Fung et al., 2002) to fix such a deficiency. It is necessary to generalize the transition function so that the local angle variation is accounted for. This is important for a scattering model to cover a wider range of surface roughness. Recalling that the scattering coefficient may be decomposed into three terms, recognized as the Kirchhoff, cross, and complementary terms:

. The transition model took two extremes of the form (Fung et al., 2002):

(2.53)

where is the incidence angle and is the specular angle, and realized that the transition function is defined as:

(2.54a) with ;

(2.54b) .

(2.54c)

Note that , , with the coefficients , corresponding to the Kirchhoff, cross and complementary terms, respectively. Under the framework of the AIEM model, the three terms are given in Appendix 2B.

Chapter 3 Comparison of AIEM with numerical simulations and experimental data

Motivation

The study of microwave scattering has wide applications in telemetry, wireless transform, radar detection and so on. A practical and reliable surface scattering model is required to obtain a good understanding of the surface scattering mechanism.

Research into microwave scattering on a random surface has been going on for over forty years. During the years 1960 to 1970, several surface scattering models were developed, including the Small Perturbation Model (SPM) and the Kirchhoff Model.

These two models are considered as the preeminent standards within their scope of application. The SPM is capable in the low-frequency and the small-surfaceperturbation circumstances, whereas the Kirchhoff model is suitable for highfrequency and large-scale rough surfaces.

Since 1990, Dr A. K. Fung has proposed the Integral Equation Model (IEM) which first solves the limitation of the application scope [START_REF] Fung | Microwave Scattering and Emission Models and Their Applications[END_REF]). The original IEM was developed based on several simplifying approximations leading to a relatively simple, and yet reasonably accurate, solution of a pair of integral equations governing the surface currents. There has been significant progress in improving the surface current estimate in order to extent its region of validity. For example, the Fresnel reflection coefficients have been generalized by replacing them with a transition reflection coefficient. This allows the argument of the Fresnel reflection coefficients to change from the incident angle to the specular angle as the operating frequency and surface roughness changes from small to large values. However, in the IEM model, the surface height dependence on the phase of the Green's function was ignored, leading to a significant error away from the backscattering direction.

The advanced IEM model (AIEM) is a physically-based extension of the IEM analytical model. It shows significant improvements for single scattering and emissivity predictions for a wide range of roughness scales, particularly in the intermediate roughness regions [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[END_REF]. Furthermore, multiple-surface scattering agrees well with numerical simulation results and controlled laboratory measurements acquired from known surfaces.

The AIEM removed some weak assumptions from the original IEM [START_REF] Shi | A parameterized multifrequency-polarization surface emission model[END_REF]. In the expressions of the multiple [START_REF] Chen | Note on the multiple scattering in an IEM model[END_REF] and the single scattering [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[END_REF] terms, the absolute phase terms in the surface Green's function and its gradient were kept, but were rederived by the complementary field.

Although the AIEM is theoretically considered to provide accurate predictions, the accuracy level of its predictions need to be further confirmed. In this research, the AIEM was adopted for analysing the backscattering and the bistatic scattering characteristics of the rough surface, analysis which is covered in the next two chapters.

It is very necessary to validate the accuracy of AIEM to draw more reliable conclusions. Thus, in this chapter, we investigate how the AIEM predictions were validated by comparison with numerical simulations and experimental data.

Comparison with numerical simulations

The Numerical Maxwell Model based on 3-D simulations of Maxwell equations (NMM3D) is a single physical model over a wide frequency range with a single set of physical parameters of RMS height and correlation function [START_REF] Chen | Polarimetric simulations of SAR at L-band over bare soil using scattering matrices of random rough surfaces from numerical three-dimensional solutions of Maxwell equations[END_REF][START_REF] Huang | Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in threedimensional simulations using a hybrid UV/PBTG/SMCG method[END_REF]. It has the advantage of high accuracy of the simulation results [START_REF] Huang | Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at Lband for SMAP applications based on numerical solutions of Maxwell equations in three-dimensional simulations[END_REF].

Comparison with NMM3D for backscattering

The NMM3D method applies a moment-based algorithm to calculate rough surface scattering. It can be applied in both active and passive remote sensing. When it is applied in the active remote sensing case, NMM3D provides bistatic scattering coefficients and the backscattering coefficients. It provides emissivity when it is applied in the passive remote sensing case, where it can also be used to calculate brightness temperature. Recently, we tried to actualize a near-field precondition to further speed up the convergence as well as simulation time. Although the computation is complex, look-up tables (LUT) were pre-computed for both backscattering coefficients and emissivity.

For

1 4 s l
Surface roughness plays a significant role in microwave remote sensing of soil.

We set our experiments in four different surface roughness conditions, varying from rough to smooth. We first set the RMS height and the correlation length ratio to 1/4. In the HH polarization, we can observe that as the dielectric constant increases, the AIEM backscattering coefficient appears to a little bit higher than the NMM3D backscattering coefficient. In addition, as the dielectric constant increases, the divergence of the AIEM and the NMM3D backscattering coefficient becomes larger.

The most obviously difference between the two models is around the places where the RMS height is from 0.042λ to 0.063λ. In the VV polarization, at a large dielectric constant there is essentially no difference between the two models, as was expected. However, results from the AIEM model are also a little bit higher that the NMM3D model, as it was in the HH case.

Furthermore, the difference between the two models becomes larger as the RMS height increases. Overall, the two models are in good agreement with each other, especially when the dielectric constant is large and the RMS height is small.

For

1 7 s l
In the second part, all the settings are the same as in the first part expect the soil roughness is smoother than for the case illustrated in Figs. 3.1 and 3.2. We can see from Fig. 3.3 that the backscattering coefficients predicted by AIEM are also higher than those predicted by NMM3D. When the soil moisture is higher, the difference between the two models increases. Also it is clear that in Figure 3.4, in the transition model, more consistencies can be found in the vertical polarization case than in the horizontal polarization case. With the decrease of the surface roughness, the behaviour follows perfectly, as we observed in Fig. 3.2, but the conformance has grown slightly.

For

1 10 s l
In the third experiment, the surface roughness was smoothed further. As seen in With the decreases in surface roughness, agreement between the AIEM and the NMM3D increased. As the RMS height rose, the divergence decreased in the low soil moisture situation (a), which is opposite from the results for the situations (b) and (c). 

For

Comparison with MoM and SSA for bistatic scattering

To illustrate the accuracy of bistatic scattering coefficients predicted by AIEM, comparisons were made between numerical methods and other physical surface scattering models. Results of these comparisons are offered in this section.

The Fresnel reflection coefficient is a function of the surface permittivity and surface local incidence angle. In modelling the wave scattering, it is significant to reproduce the spatial dependence. [START_REF] Wu | A transition model for the reflection coefficient in surface scattering[END_REF] have proposed a transition model to fix its deficiency in bistatic scattering. In Fig. 3.9 we can observe that all the three predictions agree very well with each other except at larger backscattering angles. The largest divergence of the three models appears around the point where the scattering angle varies from 20° to 40°.

There is dip in specular direction shown by MoM and SSA, but not by AIEM. In HH polarization, the AIEM backscattering coefficient is higher than the MOM and the SSA at scattering angles from -60° to -20°. The predictions at VV polarization have a better agreement between the three models. Compared with Fig. 3.9, the results shown in Fig. 3.10 has a different setting of kσ=1.0, kl=6.0, which means rougher surface conditions. The rougher surface roughness slightly decreases the divergence between the three models. Generally, the three models are quite close to each other.

Comparisons with measurement data

Comparison with UM data for backscattering

The University of Michigan's LCX POLASCAT scatter meter [START_REF] Tassoudji | Design consideration and implementation of the LCX polarimetric scatterometer[END_REF] was designed with the capability of measuring the scattering matrix of point or distributed targets at the L, C, and X bands (with centre frequencies at 1.5, 4.75, and 9.5 GHz, respectively). To verify the validity of the AIEM model, we compared the AIEM backscattering coefficients with measurement data provided by the LCX POLASCAT. These experiments were under three kinds of the frequencies at the L, C, and X bands (the frequencies at 1.5, 4.75, 9.5GHz, respectively) and three kinds of the surface roughness. These conditions are shown below. 

For Surface 1 (S1)

In the first part, we validated the AIEM under moderate surface roughness conditions. In this case, the RMS height σ was 0.4 cm, and the correlation length l was 8.4 cm. Three different frequencies (1.5, 4.75, and 9.5 GHz) were examined in this part. Each was measured under two different moisture conditions, wet and dry, relatively.

L band:

(a) (b) In Fig. 3.11 we can observe that, for dry soils at HH polarization, as the incident angle varies from 20° to 30° excellent agreement between measurement and AIEM can be seen. The maximal error appears at the low incident angle. In the dry condition, backscattering coefficients at HH polarization are smaller than the measurement data.

However, the backscattering coefficients at VV polarization are larger than the measurement data. In the wet soil condition, the comparison results show a good agreement, better than in the dry soil condition. We can see that results with the C band are similar with the L band results like shown in Figure 3.12. The largest divergence also appears at 10°, but the error is, obviously, smaller. In the dry condition at HH polarization, the measurement data is larger than the HH AIEM data, but smaller than the VV AIEM data. The predictions of AIEM in the wet soil condition also present a better accuracy than at the dry surface condition. Fig. 3.13 displays the comparisons at the X band. In the dry condition, the VV polarization shows a good agreement when the incident angle is less than 60°. In HH polarization, the large divergence occurs when the incident angle is between 30° and 70°. In the wet condition, the divergence stayed between 1dB to 3dB when the incident angle was less than 60°. In sum, we can conclude the model agrees well at the X band. Incident angle (degree)

For Surface 2 (S2)

In the second part, we decreased the soil roughness to illustrate the effect of soil roughness on the accuracy of the AIEM.

L band:

( As shown in Figure 3.15, at the C band, with the decrease of surface roughness, the divergence between the measurements and the AIEM increased in the dry condition compared to results shown in Fig. 3.12, especially in the HH polarization.

However, in the wet condition the difference between the AIEM and the measurement data did not change a lot compared with results shown in Fig. 3.12. measurements for an exponentially correlated surface with σ=0.32 cm and l=9.9 cm at 9.5

GHz: (a) dry soil (εr=4.26-j0.76), and (b) wet soil (εr=12.64-j3.69).

In the above illustrations, we have shown the effect of decreasing the soil roughness on the accuracy of AIEM. As shown in Fig. 3.16, at the X band, in the dry condition, the divergence increased as the incident angle increased. It is obvious that the results from the wet condition agree better with measurement data than do those from the dry condition. Incident angle (degree)

For Surface 3 (S3)

In the third part we continue comparing the AIEM predictions with the measurement data. In this case, the RMS height σ is 1.12 cm and the correlation length l is 8.4 cm, which corresponds to the roughest surface among the three experiments.

L band:

(a) (b)

Figure 3.17 Comparison of backscattering coefficients between AIEM and UM measurements for an exponentially correlated surface with σ=1.12 cm and l=8.4 cm at 1.5

GHz: (a) dry soil (εr=7.70-j1.95), and (b) wet soil (εr=15.34-j3.66).

At the L band, the best agreement of HH polarization and the largest disagreement of VV polarization all occurred in the dry condition. This can be seen in Fig. 3.17(a).

The largest error also followed by the incident angle equal to 10 degrees. measurements for an exponentially correlated surface with σ=1.12 cm and l=8.4 cm at 4.75

GHz: (a) dry soil (εr=8.50-j1.00), and (b) wet soil (εr=15.23-j2.12).

In Figure 3.18 we can observe that under the surface condition 3, we continuous comparing the AIEM predictions with the measurement data. In vertical polarization, the accuracy decreased with the increase of the incident angle. Compare with the dry soil, the accuracy is large when the soil moisture is large both in vertical and horizontal polarizations. measurements for an exponentially correlated surface with σ=1.12 cm and l=8.4 cm at 9.5

GHz: (a) dry soil (εr=6.07-j1.46), and (b) wet soil (εr=13.14-j3.85).

In the Figure 3.19 we can conclude that in this experiment in X band, the divergence of the AIEM data and the measurement data increases with the surface roughness. Also the accuracy is increasing with the incident angle. The error between the different soil moisture conditions is very little.

Conclusions

For the same set of the surfaces, different measurements over a wider frequency are compared to the model predictions. There are three different fields examined in this part. Each was measured under the dry and the wet soil conditions, respectively. It is of interest to know that different soil roughness will cause different results, but the trends are always similar with the same frequency. One peculiar point is that there is a jump in the measurements at the L band when the incident angle is 10°. This phenomenon does not show for the case at the X band. Overall, the AIEM predictions matched well with the POLASCAT measurement data. 

Comparison with EMSL data for bistatic scattering

The bistatic scattering measurement data used here was acquired by the European Microwave Signature Laboratory (EMSL). The EMSL is a facility which provides unique measurement capabilities in the field of microwave remote sensing and Radio Frequency (RF) compatibility. While the laboratory was originally designed to perform wide-band polarimetric radar measurements, it has been successfully used in many other research fields such as antenna measurements, material testing through microwaves, and detection of buried objects. An experimental data set for the purpose of this comparison was adopted for a Gaussian correlated surface with σ=0.4 cm and l=6 cm. The scattering coefficient was measured at the incident angle of 20°; the dielectric constant was ε r =5.5-j2.1; and the frequencies used were 11 GHz and 13 GHz, resulting in two different roughness scales with the same surface slope. Fig. 3.20 shows the bistatic scattering behaviour from the AIEM and EMSL data at 11 GHz. The AIEM agrees well with the measurement data except at scattering angles near 20°. Measurements at the frequency of 13 GHz are presented in Fig. 3.21, where similar results can be observed.

The bistatic scattering coefficients predicted by AIEM are a little bit higher than the EMSL data. At the frequency of 13 GHz, the AIEM model shows a better accuracy than for 11 GHz shown in Fig. 3.20. 

Conclusions

A practical and reliable surface scattering model is required to achieve a good understanding of the surface scattering mechanism. To demonstrate the applicability of the AIEM, which is considered to have a much wider valid range for surface roughness conditions as compared to conventional models such as SPM and the geometric optics model, we validated the AIEM by comparison with numerical simulations and experimental data. In the first part, we compared AIEM with numerical simulations for both backscattering and bistatic scattering. For the backscattering, we compared AIEM with the 3D Numerical Method of Maxwell's equations (NMM3D). Under four different surface roughness conditions, the AIEM showed good agreement with the NMM3D, especially at VV polarization. In the bistatic conditions, we compared AIEM with the numerical results of SSA and the MoM in the scattering plane. The results showed that, compared with the numerical simulations data, all the predictions were quite close to each other except at a large scattering angle.

In the second part, we compared the AIEM predictions with measurement data in the backscattering and bistatic scattering conditions. The University of Michigan's LCX POLASCAT data was adopted in the backscattering comparison part under three kinds of surface roughness. The data sets were measured under two different moisture conditions, namely relatively wet and relatively dry. The surface roughness parameters, such as the RMS height, correlation length, and RMS slope, were calculated from the measured surface height profiles. The results show that the AIEM is generally in good agreement with the measured data in all cases. In bistatic scattering, data was acquired over known randomly rough surfaces by the European Microwave Signature Laboratory. When compared with this EMSL measurement data, AIEM also showed a good agreement although the predictions of the AIEM were on the high side at large scattering angles and there was not enough separation between the polarizations, especially when the scattering angle varied from 30 to 50 degrees.

In sum, the AIEM model matches well with both the numerical simulations and experimental data. Thus it is proven that the AIEM has a high level of accuracy in both the backscattering and bistatic scattering simulations over a wide valid range of Chapter 4 Sensitivity analysis of bistatic scattering to soil moisture and surface roughness of rough soils

Motivation

Soil moisture plays a significant role in the surface energy balance at the soilatmosphere interface. A good knowledge of the spatiotemporal dynamics of soil moisture has proven to be particularly important in various environmental applications [START_REF] Brocca | Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall-runoff modeling[END_REF][START_REF] Miralles | Global land-surface evaporation estimated from satellite-based observations[END_REF]. On account of its strong sensitivity to the soil permittivity, active microwave remote sensing has a good physical basis for soil moisture estimation. Synthetic Aperture Radar (SAR) is particularly attractive for remote sensing of soil moisture at finer resolutions; it provides a measure of the absolute soil moisture contents that are spatially averaged,

and it has the advantages of large-scale coverage and all-weather operation.

Consequently, active microwave remote sensing, especially SAR, is considered as one of the most effective means for surface soil moisture monitoring in the present day [START_REF] Baghdadi | Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands[END_REF][START_REF] El Hajj | Soil moisture retrieval over irrigated grassland using X-band SAR data[END_REF][START_REF] Zribi | Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter[END_REF].

The traditional active radar system detects soil moisture almost entirely based on the backscattering coefficients. However, setting the transmitter and receiver in the same direction has apparent theoretical drawbacks, because only the signal from the backward direction can be obtained. One of the critical issues in estimation of surface parameters from radar backscattering signals is that the surface parameters, including statistical surface roughness (root-mean-square height s and correlation length l) and dielectric constant are strongly coupled under a certain set of radar parameters (frequency, incidence angle, and polarization) [START_REF] Chen | A model-based inversion of rough soil surface parameters from radar measurements[END_REF]. This fact greatly hinders the capability of microwave sensing of soil moisture even for bare surfaces.

Thus, it is of interest to understand the characteristics of bistatic scattering (which are much less understood as compared to backscattering) in order to find out an appropriate transmitter-receiver configuration for decoupling, to an optimal level, the surface roughness and dielectric constant. However, in bistatic configuration, there are numerous scenarios to be designed. Hence, it is essential to conduct a parameter sensitivity analysis to determine an optimal configuration which can maximize the information content of the parameters of interest while minimizing the contribution of undesired parameters.

Accordingly, estimating soil moisture in a bistatic mode has attracted increasing attention in the last few years. In some of the studies (e.g. [START_REF] Pierdicca | Radar bistatic configurations for soil moisture retrieval: a simulation study[END_REF][START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF], the researchers have found that, in comparison with traditional monostatic observation, using bistatic geometries can obtain more information to retrieve soil moisture. However, limited literature is available for purposes of soil moisture sensing with bistatic configuration. Hence, more work should be carried out to fully explore bistatic scattering behaviours with soil parameters under diverse ground conditions, which is of both theoretical and practical interest.

Several factors affect soil roughness characterization. In addition to correlation length and root-mean-square height (RMS height), the surface auto correlation function (ACF) also has an important influence [START_REF] Davidson | On the characterization of agricultural soil roughness for radar remote sensing studies[END_REF]. In practical situations, the ACFs are hard to determine. Consequently, the effect of the ACFs is usually ignored or simply assumed a priori (e.g. Gaussian or Exponential) to simplify the inversion problem in the inversion process [START_REF] Joseph | Effects of corn on C-and L-band radar backscatter: A correction method for soil moisture retrieval[END_REF][START_REF] Shi | Physically based estimation of bare-surface soil moisture with the passive radiometers[END_REF].

Therefore, how to suppress the effect of the ACFs for more reliable soil moisture estimation is also an attractive challenge.

The objective of this chapter is to describe our search for the optimal bistatic observation configuration for soil moisture estimation. To achieve this purpose, in this study, we investigated the sensitivity of bistatic scattering to soil moisture and surface roughness of bare soil surfaces. The AIEM was selected as the working model.

Furthermore, in this study, we focused on the L-band (i.e. 1.26 GHz) as it shows good sensitivity to soil moisture, and the effects of vegetation and atmosphere can be minimized. The potential of both polarized and angular scattering coefficients, and their combinations for soil moisture sensing, were evaluated in detail.

Method

We investigated the bistatic scattering behaviour of soil moisture and surface roughness of bare soil surfaces. We generated our database by using the AIEM. For better understanding of the bistatic scattering characteristics of bare soil surfaces, we adopted single polarized simulations, a combination of dual polarized simulations, and a combination of dual angular simulations. To explore the sensitivity of bistatic scattering to soil moisture, we applied a defined sensitivity index [START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF]. 

Random rough autocorrelation functions

The surface roughness is one of the main factors that affect the scattering of radar signals. A surface can be decomposed to a number of small-scale geometries.

59 Normally, we describe the small-scale geometry by the correlation length in the horizontal direction and the RMS height in the vertical direction. However, in addition to its correlation length and RMS height, the surface roughness is also characterized by an autocorrelation function (ACF). ACFs describe the interconnect degree between two points on the ground. In this study, we used three common correlation functions, namely the Gaussian, the 1.5-Power and the Exponential, to analyse the effect of ACFs on the bistatic scattering. These three ACFs can be expressed as: where is the order Bessel function, and is the gamma function.

I. Gaussian

Sensitivity index

The sensitivity index used in our study is used to describe the sensitivity of the bistatic scattering coefficients to soil moisture as well as the surface roughness. The sensitivity index is defined below [START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF]: 

Results and discussions

In order to explore the response and sensitivity of bistatic scattering to soil moisture and surface roughness, we conducted an analysis in three parts, described in Sections 4.3.2 to 4.3.4. In addition, we fixed the correlation length (l=λ) in all cases owing to its lesser effect on the scattering coefficients as compared to the soil moisture and RMS height [START_REF] Pierdicca | Radar bistatic configurations for soil moisture retrieval: a simulation study[END_REF]. Furthermore, in the study, we focussed on the L-band (i.e. 1.26 GHz) as it shows good sensitivity to soil moisture, and the effects of vegetation and atmosphere can be minimized [START_REF] Zeng | Radar response of off-specular bistatic scattering to soil moisture and surface roughness at L-band[END_REF].

In the first part, we investigated the sensitivity of the co-polarized scattering to soil moisture and surface roughness. Firstly we investigated the changes in the bistatic pattern caused by soil moisture alone, with roughness remaining constant. Then, the converse was shown, where roughness changed while soil moisture remained constant.

Last, a sensitivity index of soil moisture was developed based on the previous two steps. In the second part, we adopted a new scattering coefficient group (i.e. combination of dual polarized simulations) to explore the sensitivity of the bistatic scattering to soil moisture and surface roughness. In the third part, we used a dual angle group to analyse the bistatic scattering characteristics. 4

Choice of polarization

.2 we can see that when the soil moisture changes by 2%, from wet to dry conditions, the radar responses are different. In the dry conditions, the radar signal varies much more than it does in the wet conditions. In addition, the differences between the HH and VV polarized scattering coefficients are larger for the rougher surface (s=λ/5). In general, the bistatic scattering signals of VV polarization were found to be more sensitive to soil moisture than those of the HH polarization. The bistatic scattering signals of RMS height s also were found to be more sensitive to soil moisture than the correlation length l. Therefore, the following parts we all set the correlation length fixed and focus on the VV polarization.

Single polarized simulations

Sensitivity of HH and VV polarized scattering coefficient to soil moisture

As shown in Fig. 4.4, we investigated the bistatic sensitivity of different soil moisture levels of 5%, 25%, and 45%. In this case, the surface roughness was set as s=λ/20, l=λ/2 with Exponential ACF (corresponding to a smooth surface), and the incident angle was 40°. We can observe that with the increase of soil moisture, the scattering coefficients in the forward direction and the backward direction all increased. In the relatively dry conditions, the change of the scattering coefficients was larger than in the wet conditions. As shown in Fig. 4.5, we investigated the bistatic scattering response at different soil moisture levels (5%, 25%, and 45%). The difference between results illustrated in 

Analysis of sensitivity index of soil moisture

As previously discussed in Section 4.2.1, we obtained a sensitivity index of soil moisture. The results are shown in Fig. 4.10. We can observe that, for both HH and VV polarizations, the area that is most sensitive to soil moisture is in the forward direction. However, the general pattern of the sensitivity index is different with the different ACFs. This indicates that the influence of the ACF cannot be ignored when using single polarized scattering coefficients for soil moisture estimation. In previous studies, some researchers [START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF]Zeng et al., 2016) adopted a combination of dual polarized simulations to investigate the radar response of bistatic scattering to soil moisture and surface roughness. To further investigate the potential of combining dual polarized measurements for soil moisture estimation, a sensitive analysis similar to that illustrated in Fig. 4.8, but for the ratio σ 0 HH /σ 0 VV (i.e. All: L band (1.26 GHz), l=λ/2, θi=40°. The colorbar is in dB.

Dual angular simulations of sensitivity index

In this part, we obtained the sensitivity index of soil moisture ( = σ (△SM) / ( σ (△SM) + σ (△Roughness))). These results are shown in Fig. 4.13. Here we see that the most sensitive area is in the forward direction.

Moreover, using the combined dual polarized measurements suppressed the influence of the ACFs. Although the index is high, we should note that the scattering coefficient changes by the soil moisture are not large, as can be seen in Fig. 4.10. In previous studies, [START_REF] Zeng | Radar response of off-specular bistatic scattering to soil moisture and surface roughness at L-band[END_REF] found that a combination of dual angular measurements shows good sensitivity to soil moisture, while the influence from the ACF is well suppressed. In order to find the optimal bistatic angular combination for soil moisture sensing, we conducted four groups of combined dual angle which were as follows: θ =20° and θ =30°, θ =20° and θ =40°, θ =20° and θ =50°, and θ =20° and θ =60°. An example of the combination of dual angular scattering is the ratio σ θ σ θ .

In addition, from Sections 4.3.1 and 4.3.2, we found that the bistatic scattering signals of VV polarization were more sensitive to soil moisture than those of the HH polarization. Therefore the following parts all focus on the VV polarization. Fig. 4.14

shows that when the soil moisture changes from 5% to 45% in VV polarization, the forward direction is more sensitive to changes in soil moisture. We can see that the patterns of bistatic scattering as soil moisture changes are nearly the same under the three kinds of ACF. Moreover, it can be observed that as the difference of the dual angle increases, the sensitivity of the combined angular measurements to soil moisture also increases.

Dual angular simulations of soil roughness

In this part, we investigated the response of dual angular simulations to the soil roughness. Here we changed the RMS height from λ/5 to λ/20 while keeping the remaining parameters fixed (soil moisture=25%, l=λ/2). Results are shown in Fig. 4.15. It can be easily seen that the influences of the ACF on the dual angular simulation were well suppressed. This indicates that the combined scattering measurements can be approximately treated as independent of the ACFs. From Fig.

4

.15 we can see that, compared to the soil moisture, the bistatic scattering responses are less sensitive to the surface roughness, which is useful information for soil moisture estimation. Furthermore, it can be seen that as the difference of the dual angle increases, the sensitivity of combined angular measurements to surface roughness is almost the same or even decreases. 

Dual angular simulations of sensitivity index

In Sections 4.3.4.1 and 4.3.4.2 we investigated the sensitivity of bistatic scattering to soil moisture and soil roughness, respectively. As we stated in the beginning, the aim of this study is to predict the suitable bistatic radar configuration for soil moisture the three ACFs on the bistatic scattering coefficients are further suppressed. This indicates that, in our experiments, the 20° and 60° group is the most suitable angular combination compared with the other three groups.

Conclusions

Remote sensing of soil moisture in a bistatic mode has attracted increasing attention in recent years. Systematic simulation of bistatic scattering behaviours from a rough surface offers physical insights into designing bistatic radar configurationes and field campaigns. The research reported in this chapter investigated the radar response of bistatic scattering to soil moisture and surface roughness by using the AIEM. In order to find the optimal bistatic configuration for soil moisture estimation, we adopt a sensitivity index. The results show that the VV polarized scattering coefficient is more sensitive to soil moisture than that of the HH polarized scattering coefficient. The most sensitive area to soil moisture under a bistatic configuration is in the forward direction. Compared to the results from single polarized and combined dual polarized data, the combination of dual angular observation proves to be a good choice for soil moisture estimation since it suppresses the influence of thee ACF while maintaining a good sensitivity to soil moisture. Furthermore, it seems that as the difference of the dual angle increases, the sensitivity of combined angular measurements to the soil moisture also increases. As we introduced in the previous chapters, the AIEM has high accuracy compared to simulations and field measurements and thus was adopted as a working model in this research. Analysing the radar characteristics by AIEM could help us better understand the radar backscattering features.

In the research reported in this chapter, we analysed the radar backscattering response of soil moisture and, to test with real-world data, developed a method for retrieving soil moisture from Advanced Land Observing Satellite-2 (ALOS-2) imagery. However, retrieval of soil moisture from SAR data is not as straightforward as it might be, since it is profoundly affected by surface roughness, vegetation cover, and soil texture, among other factors. The AIEM was again used to simulate the radar scattering characteristics of the soil surface to analyse the coupling effects of the surface parameters, including the RMS height, correlation length, and soil moisture as well as the radar system parameters, including the incident angle and polarization.

Furthermore, in order to retrieval soil moisture from SAR images, we developed a recurrent Kalman filter-based neural network and tested this method by using the ALOS-2 data. The details are described below.

Sensitivity analysis of forward model parameters

To gain a good understanding of the surface scattering mechanism, we analysed the backscattering properties of bare surfaces by using the AIEM. The surface roughness is usually described with the correlation function and two parameters: rootmean-square (RMS) height (s) and the correlation length (l). In this section, our investigation of the radar response of backscattering coefficients to the geophysical parameters (e.g. soil moisture, RMS height and correlation length) and radar system parameters (e.g. frequency and incident angle) is discussed.

Scattering signal changes by various of frequencies

In this part, the radar response of backscattering signals to soil moisture at different frequencies is investigated. Results are shown in Fig. 5.1. In this case using the Exponential ACF the incident angle is 40°, the RMS height is 1 cm, the correlation length is 5 cm, and the soil moisture changes from 1% to 50%. 

Scattering signal changes by various of RMS height

In this section and the next section, we present the backscattering behaviour of various surface roughness conditions. In order to evaluate the impact of the RMS In Fig. 5.3, all the curves have a similar trend at both HH and VV polarizations.

With increase of the soil moisture, the backscattering coefficient increased under different RMS heights. It can also be observed that when the RMS height increased, the differences of the backscattering coefficient became smaller.

Scattering signal changes by various of correlation length

Fig. 5.4 illustrates the effect of different correlation lengthes on the backscattering coefficient as soil moisture increases. In this case, we set the frequency at 1.26 GHz, RMS height equal to 1 cm with Exponential ACF, and soil moisture changes from 1% to 50%. The general trends were found to be similar for both HH and VV polarizations. We can see that large correlation length caused few differences for the backscattering coefficient; when the correlation length was greater than 3 cm, the curves became almost indistinguishable. Thus, we can conclude that the sensitivity of the backscattering coefficients to the correlation length is larger when the correlation length is smalleer. 

Methodology

The retrieval method

In this research, we used a retrieval method based on a dynamic learning neural network and the AIEM to build the relationship between the soil moisture, surface roughness and the backscattering coefficient. Inversion methods commonly used, such as those discussed above, have been developed to extract only a single parameter.

However, the return signals from a natural soil surface are affected simultaneously by many surface parameters, such as RMS height, correlation length, and dielectric constant of soil. To solve the problems of multidimensional retrieval, a recurrent Kalman filter-based neural network method was developed due to its ability to adapt the high geophysical dimensions, its robustness to noise in realistic remote sensors, and, most importantly, is capability of handling nonlinear mapping. Essentially, the operation could be divided into two phases. The first phase was network trainingto build the mapping function. We used the AIEM model to generate a training database by configuring radar parameters (i.e. frequency, incident angle, and polarization) and setting surface parameters (i.e. soil moisture, RMS height, correlation function, and correlation length) confined in a practical range. After completing the network training, we proceeded to the second phase, relevant neural network operations, namely the retrieval of soil moisture. By using the generated database to train the Kalman filter-based neural network, we obtained the relationship between the backscattering coefficients and the soil moisture, correlation length and RMS height. For the retrieval process in this work, the outputs of the neural network were the roughness parameters (correlation length and the RMS height) and the soil moisture. The inputs of the neural network were the backscattering coefficients at both HH and VV polarizations (σ andσ ). Furthermore, we verified the retrieval results with simulated data, which were not included in the training database. Finally, we applied our method to SAR images to retrieve the soil moisture.

roughness parameters, i.e. l (the correlation length) and s (the RMS height). The range of each parameter used to generate training database is shown in Table 5.1. First, we used the 5000 of the samples generated from Table 5.1 to train the neural network and then retrieve the soil moisture. Second, we used the remaining 1000 samples, which are not included in the training database, to validate the retrieval results. Results are shown in Fig. 5.7. We can see from Fig. 5.7 that the correlation between the estimated soil moisture and simulated soil moisture is 0.998, which means that the accuracy of the soil moisture retrievals is very high. The results of the RMS height retrievals are similar. However, the correlation between the estimated correlation length and simulated correlation length is far from satisfactory. The same problem also emerges in the multi-incident angle case. 

The results of not fixing the incident angle

In this part, we generated the training database by not setting the incident angle as a constant value, and then we tested the retrieval results. First, we define the range of each parameter used to generate the training database, see Table 5.2. We generated a total of 30,000 samples for training from our data. Second, we determined the input and the output of the DLNN, which depends on the application. In our case, the tested ALOS-2 SAR images have an incident angle varying from 38 to 43 degrees, so we set the incident angles to be the same as our data. The frequency was set to the L band (1.25 GHz), also the same as our test data. The outputs were the correlation length, the RMS height, and the soil moisture. 

ALOS-2 data

The Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2) is a follow-on mission from the "Daichi" (ALOS). The ALOS satellite had contributed to cartography, regional observation, disaster monitoring, and resource surveys since its launch in 2006. ALOS-2 succeeded this mission with enhanced capabilities. In our study, we used two Level 1.0 ALOS-2 images: one was obtained on 13 November 2014, and the other was obtained on 20 December 2014. The frequency of the ALOS-2 data is 1.2 GHz, and the observation band is 25 km with 3-meter resolution in the "spotlight mode". The observation mode and basic information of these ALOS-2 images are shown in Table 5.4 and Table 5.5, respectively. Both images were located in the YRD area and have a substantial area of overlap. We selected a bare soil region, shown in Fig. 5.12, to test our method. 

Results and discussions

After applying the developed inversion method by using data from the two ALOS-2 images, we obtained the relative soil moisture changes within the research area. Fig.

5

.13 shows the soil moisture changes in the research area nearly one month. From the results, we can see that the spatial distribution of the soil moisture change is relatively uniform. In most of the area, the soil moisture was drying up. The relatively larger changes of soil moisture occurred in the southern boundary. The boundary was wet down, presumably due to its closeness to the sea. In general, the spatial distribution of the soil moisture variation was reasonable, demonstrating the effectiveness of our method. 

Conclusions

This chapter presents our developed framework for soil moisture retrieval from radar measurements using a recurrent Kalman filter-based neural network. The network training and data inversion steps are described in detail. By using a generated database to train the Kalman filter-based neural network, we verified the retrieval results with the simulated data (excluding the training data). Results showed that the accuracy of the soil moisture and RMS height estimates was better than that of the correlation length, but all were generally satisfactory. Then it came to testing with real-world data. The relative soil moisture content was derived from ALOS-2 data by using the developed recurrent Kalman filter-based neural network. Overall, the spatial distribution of the soil moisture variation was reasonable, which demonstrated the effectiveness of our method. In a future stage, we will collect measurement data to validate our method.

Chapter 6 Conclusions and perspectives

Soil moisture is a crucial link between the land surface and the atmosphere, which directly affects the energy and hydrology exchange between the earth's surface and Finally, in order to retrieval soil moisture from SAR images, we developed a recurrent Kalman filter-based neural network and tested this method in the Yellow River Delta (YRD) area by using ALOS-2 satellite data.

Main conclusions

The main conclusions of this dissertation research are as follows.

(1) Extensive experimental data and numerical simulation data were both used to fully evaluate the reliability of the AIEM. Firstly, we compared AIEM with numerical simulations for both backscattering and bistatic scattering. In the backscattering, we compared AIEM with the NMM3D; in the bistatic conditions, we compared AIEM with the numerical results of SSA and the MoM in the scattering plane. The results

show that, when compared with the numerical simulations, all the predictions were quite close to each other except at a large incident/scattering angle. There is a dip at specular direction shown by MoM and SSA, but not by AIEM. Then, we compared AIEM with the experimental measurement data, also in both the backscattering and bistatic scattering conditions. We can conclude that in the backscattering condition, the AIEM is generally in good agreement with the measured data at all cases, though it predicts the backscattering coefficients more accurately in the wet soil condition than in the dry soil condition. In the bistatic scattering condition, compared with the EMSL measurement data, AIEM also showed a good agreement although the predictions of the AIEM were on the high side at large scattering angles and there is not enough separation between the polarizations. In sum, the AIEM model matches well with both the numerical simulations and experimental data.

(2) Through a parameter sensitivity analysis for bistatic scattering of the rough surface, we obtained several findings. We investigated the bistatic radar response of soil moisture and surface roughness of bare soil surfaces at the L-band by using the AIEM model. The results show that higher sensitivity of radar scattering to the soil moisture can be achieved by configuring the bistatic observation rather than using the monostatic observation, from which only backscattering coefficients can be obtained.

In a bistatic mode, the scattering coefficients of VV polarization are generally more sensitive to soil moisture than those of HH polarization. Unlike using only a single polarized or single angular scattering coefficient, the influence correlation function (an undesirable effect) can be considerably suppressed by a combination of dual polarized or dual angular measurements. Compared to the results of single polarized or combined dual polarized data, it seems that a combination of dual angular measurements achieved the most reliable soil moisture estimation since it could suppress the influence of surface roughness while maintaining a reasonably good sensitivity to soil moisture. Equally important to note is that the forward region is preferable for soil moisture sensing regardless of the type of correlation function: this is a quite attractive featureuseful and usable. Furthermore, it seems that as the difference between the dual angle increases, the sensitivity of the combined angular measurements to the soil moisture increases. It should be noted that although the outof-plane bistatic radar configurations show great potential for soil moisture monitoring, the limitations imposed by the narrow angular window of maximum moisture sensitivity and the low signal level in these out-of-plane configurations would likely make the use of these configurations challenging.

(3) We analysed the radar backscattering response of soil moisture and, to test the real world, developed a method for retrieving soil moisture from ALOS-2 satellite image data. From the sensitivity of backscattering coefficients to soil moisture under different frequencies, we found that the changes in the backscattering coefficients were larger in the L-band as soil moisture changed. We observed that the sensitivity of backscattering signals to soil moisture was high when the incident angle was relatively small at VV polarization. The sensitivity of backscattering signals to soil moisture decreased as the RMS height increased. Besides, we found that the influence of the correlation length on backscattering signals is much less than that of the RMS height. For the purposes of estimating soil moisture and solving the problems of multidimensional retrieval, a recurrent Kalman filter-based neural network method was developed, due to its ability to adapt the high geophysical dimensions. Essentially, the operation could be divided into two phases. The first phase was network training.

We used the AIEM model to generate a training database by configuring radar parameters and setting surface parameters confined to the eligible research area. After completing the network training, we proceeded to the second phase, neural network operation. By using the generated database to train the Kalman filter-based neural network, we verified the retrieval results with the simulated data (excluding the training data). Results showed that the accuracy of the soil moisture and the RMS height estimations was better than that for the correlation length, and all were generally satisfactory. We also selected a bare soil region of the Yellow River Delta area to test our method. After applying the developed inversion method by using data from two ALOS-2 images, we obtained the relative soil moisture changes over the research area. From the results, we could see that the spatial distribution of the soil moisture changes was relatively uniform. In general, the spatial distribution of the soil moisture variation was reasonable, demonstrating the effectiveness of our method.

Perspectives

In this dissertation research, we developed a systematic analysis of bistatic radar scattering from randomly rough surfaces based on the AIEM which was fully validated by using both numerical simulations and experimental measurements.

Subsequently, sensitivity analysis was carried out to explore the complex process and nonlinear coupling of wave-matter interactions, of which the soil moisture content is the major interest. Then moving forward from that problem, we proceeded to the 

Résumé en anglais

Electromagnetic waves scattering from a randomly rough surface is of palpable importance in many fields of disciplines and bears itself in various applications spanned from surface treatment to remote sensing of terrain and sea. By knowing the backscattering patterns, one may detect the presence of the undesired random roughness of the reflection surface such as antenna reflector and accordingly devise a means to correct or compensate the phase errors. Therefore, it has been both theoretically and practically necessary to study the electromagnetic wave scattering from the random surfaces. This dissertation focuses on the retrieval of surface soil moisture from radar measurements. The description of the randomly rough surface is presented, followed by the electromagnetic wave interactions with the media. In particular, an advanced integral equation model (AIEM) is introduced. The validity of the AIEM model, which is adopted as a working model, is made by extensive comparison with numerical simulations and experimental data. Also analyzes the characteristics of the bistatic radar configurations and dissects the sensitivity of bistatic scattering to soil moisture and surface roughness of soil surfaces. Meanwhile presents a framework of soil moisture retrieval from radar measurements using a recurrent Kalman filter-based neural network. The network training and data inversion are described in detail.

  modè le de perturbation (SPM) et le modè le Kirchhoff. Ces deux modè les sont considé ré s comme les normes pré é minentes dans leur champ d'application. Le SPM est capable dans la basse fré quence et les circonstances de petite surface de perturbation, alors que le modè le Kirchhoff est adapté à la haute fré quence et les surfaces rugueuses à grande é chelle. Depuis 1990, le Dr A. K. Fung a proposé le modèle de l'équation intégrale (IEM) qui résout d'abord la limitation du champ d'application. L'IEM original a é té dé veloppé sur la base de plusieurs approximations simplificatrices conduisant à la solution d'une paire d'é quations inté grales, relativement simple, et pourtant assez pré cise, gouvernant les courants de surface. Il y a eu des progrè s significatifs dans l'amé lioration de l'estimation du courant de surface pour é tendre sa ré gion de validité . Cependant, dans le modè le d'IEM, la dé pendance de la hauteur de la surface sur la phase de la fonction de Green a é té ignoré e, ce qui conduit à une erreur importante hors de la direction de ré trodiffusion. Le modè le AIEM est une extension base sur le physique du modè le analytique IEM. Il montre les amé liorations significatives pour la diffusion unique et les pré dictions d'é missivité pour une porté e large d'é chelles de rugosité , surtout dans les ré gions de rugosité intermé diaires. En plus, la diffusion de multiple-surface se x convient bien avec les ré sultats de simulation numé rique et les mesures de laboratoire contrôlé es acquises à partir des surfaces connues. L'AIEM a supprimé certaines hypothè ses faibles de l'IEM original. Bien que l'AIEM soit thé oriquement considé ré pour offrir les pré dictions pré cises, le niveau de pré cision de ses pré dictions doit encore ê tre confirmé . Tout d'abord, nous avons comparé AIEM à des simulations numé riques pour la ré trodiffusion et de la diffusion bistatique. Dans la ré trodiffusion, nous avons comparé AIEM avec le Mé thode numé rique 3D des é quations de Maxwell (NMM3D), qui est une mé thode de moment (MoM) appliqué e pour calculer diffusion de surface rugueuse et est adapté pour une application à la fois pour la té lé dé tection active et passive. Dans les conditions bistatiques, nous avons comparé l'AIEM avec les résultats numériques l'approximation des pentes faibles (SSA) et le MoM dans la diffusion plane. Les ré sultats montrent que comparer avec les donné es de simulations numé riques, toutes les pré dictions sont trè s proches les unes des autres, sauf en cas de grand é vé nement / angle de diffusion. Nous avons é galement comparé le modè le AIEM avec des mesures en ré trodiffusion et en conditions de diffusion bistatique. Le
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 11 Figure 1.1 Flow chart of the dissertation research.

  particular, an advanced integral equation model (AIEM) is introduced. Chapter 3 elucidates the validity of the AIEM model by extensive comparison with numerical simulations and experimental data. Chapter 4 analyses the characteristics of the bistatic radar configurations and dissects the sensitivity of bistatic scattering to soil moisture and surface roughness of soil surfaces. Chapter 5 presents a framework of soil moisture retrieval from radar measurements using a recurrent Kalman filter-based neural network. The network training and data inversion are described in detail.

  Fig. 2.1 illustrates the correlation function as a function of lag distance . The standard deviation and correlation length are called the intrinsic surface parameters under the model.
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 21 Figure 2.1 Correlation function and correlation length l.
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 22 Figure 2.2 Wave scattering geometry
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 23 Figure 2.3 Geometry of scattering from a rough surface, where , respectively, represent the upward re-radiation and downward re-radiation, going through the upper medium and the lower medium.
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 31 Figure 3.1 Comparison of backscattering coefficients between AIEM and NMM3D for horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a) εr=15-j3.5, (b) εr=22-j4, and (c) εr=30-j4.5.
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 3334 Figure 3.3 Comparison of backscattering coefficients between AIEM and NMM3D for horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a) εr=15-j3.5, (b) εr=22-j4, and (c) εr=30-j4.5.
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 33536 Fig. 3.5, the trends by three predictions are similar to those in Figs. 3.1 and 3.3. With increase of the RMS height, the divergence between the two models disappears.
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 3738 Figure 3.7 Comparison of backscattering coefficients between AIEM and NMM3D for horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a) εr=15-j3.5, (b) εr=22-j4, and (c) εr=30-j4.5.
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 39 Figure 3.9 Comparison of bistatic scattering coefficients between AIEM and numerical results of MoM and SSA for a Gaussian correlated surface with εr=4-j1, kσ=0.5, kl=3.0, and incident angle of 30°: (a) horizontal polarization and (b) vertical polarization.
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 3 Figure 3.10 Comparison of bistatic scattering coefficients between AIEM model and numerical results of MoM and SSA for a Gaussian correlated surface with εr=4-j1, kσ=1.0, kl=6.0, and incident angle of 30°: (a) horizontal polarization and (b) vertical polarization.
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 3 Figure 3.11 Comparison of backscattering coefficients between AIEM and UM measurements for an exponentially correlated surface with σ=0.4 cm and l=8.4 cm at 1.5 GHz: (a) dry soil (εr=7.99-j2.02), and (b) wet soil (εr=15.57-j3.71).
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 3 Figure 3.12 Comparison of backscattering coefficients between AIEM and UM measurements for an exponentially correlated surface with σ=0.4 cm and l=8.4 cm at 4.75 GHz: (a) dry soil (εr=8.77-j1.04), and (b) wet soil (εr=15.42-j2.15).
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 3 Figure 3.13 Comparison of backscattering coefficients between AIEM and UM measurements for an exponentially correlated surface with σ=0.4 cm and l=8.4 cm at 9.5 GHz: (a) dry soil (εr=5.70-j1.32), and (b) wet soil (εr=12.31-j3.55).
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 33 Figure 3.14 Comparison of backscattering coefficients between AIEM and UM measurements for an exponentially correlated surface with σ=0.32 cm and l=9.9 cm at 1.5 GHz: (a) dry soil (εr=5.85-j1.46), and (b) wet soil (εr=14.43-j3.47).
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 3 Figure 3.16 Comparison of backscattering coefficients between AIEM and UM
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 3 Figure 3.18 Comparison of backscattering coefficients between AIEM and UM
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 3 Figure 3.19 Comparison of backscattering coefficients between AIEM and UM
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 33 Figure 3.20 Comparison of bistatic scattering coefficients between AIEM and EMSL measurements for a Gaussian correlated surface with εr=5.5-j2.1, σ=0.4 cm, l=6 cm, and incident angle of 20° at 11 GHz.

Fig. 4 .

 4 Fig. 4.1 shows the bistatic scattering geometry. The incident angle θ represents the transmitter's angle, which is not necessarily co-located with the receiver. The scattering angle θ varies from 0° to 90°. The scattering azimuth angle φ flexibly changes from 0° to 360°. The incident azimuth angle is 0°.
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 41 Figure 4.1 Geometry of bistatic scattering.

  of the absolute scattering coefficient caused by the change of soil moisture and surface roughness, respectively. is the sensitivity index, and its value is from 0 to 1. When the σ is far less than σ , then the is close to 1, which means the sensitivity of the bistatic scattering signals to soil moisture reaches its maximum. Where σ and σ represent the change of absolute scattering coefficient caused by the change of soil moisture and surface roughness, respectively. is the sensitivity index, and its value is from 0 to 1. When the σ is far less than σ , then the is close to 1 which means the sensitivity of bistatic scattering signals to soil moisture reaches maximum. When is close to 0, that means the sensitivity is down to the minimum.

Firstly, we investigated

  the sensitivity of HH and VV polarized scattering coefficients to soil moisture. The maximum bistatic scattering values (dB) of the copolarization caused by the change of soil moisture are presented in Fig. 4.2. From Fig.
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 42 Figure 4.2 Variations of HH and VV polarized scattering coefficients with soil moisture for =40°, l=λ/2, and Exponential ACF (in the left s=λ/5, in the right s=λ/20).
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 43 Figure 4.3 Variations of HH and VV polarized scattering coefficients with soil moisture for =40°, s=λ/10, and Exponential ACF (in the left l=λ/4, in right l=λ).
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 44 Figure 4.4 Bistatic scattering hemispherical plots of different soil moisture levels under smooth soil roughness conditions. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. From left to right the soil moisture level is 5%, 25%, and 45%, respectively. All: L band (1.26 GHz), s=λ/20, l=λ/2, θi=40°, Exponential ACF.
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 4 Fig. 4.4 and Fig. 4.5 is that in Fig. 4.4, the experiments were conducted under a smooth surface roughness condition, but in Fig. 4.5, the experiments were conducted under a rough surface roughness condition (s=λ/5, l=λ/2). Results show that, for both HH and VV polarizations, the scattering coefficient in the forward direction and the backward direction all increase with an increase in soil moisture. In general, the results of Fig. 4.5 are similar as those of Fig. 4.4, expect for increased scattering signals over the whole upper half space due to the rougher surface.

Figure 4 . 5

 45 Figure 4.5 Bistatic scattering hemispherical plots of different soil moisture under rough soil roughness conditions. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. From left to right the soil moisture level is 5%, 25%, and 45%, respectively. All: L band (1.26 GHz), s=λ/5, l=λ/2, θi=40°, Exponential ACF.
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 46 Figure 4.6 Bistatic scattering hemispherical plots of different soil roughness in dry soil moisture conditions. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. From left to right the RMS height is s=λ/20, s=λ/10, and s=λ/5, respectively. All: L band (1.26 GHz), mv=5%, l=λ/2, θi=40°, Exponential ACF.

Figure 4 . 7

 47 Figure 4.7 Bistatic scattering hemispherical plots of different soil roughness under wet soil conditions. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. From left to right the RMS height is s=λ/20, s=λ/10, and s=λ/5, respectively. All: L band (1.26 GHz), mv=45%, l=λ/2, θi=40°, Exponential ACF.
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 48 Figure 4.8 Bistatic scattering hemispherical plots of variations of and with soil moisture ranging from 5% to 45%. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz), RMS height s=λ/10, l=λ/2, θi=40°.
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 49 Figure 4.9 Bistatic scattering hemispherical plots of variations of and with soil roughness change from with RMS height from s=λ/5 to s=λ/20. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz), mv=0.25, l=λ/2, θi=40°.
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 4 Figure 4.10 Bistatic scattering hemispherical plots of sensitivity index of soil moisture. The first row shows the HH polarization; the second row shows the VV polarization, all in dB. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz), l=λ/2, θi=40°.

  |. These results are shown in Fig.4.11 where it can be seen that the scattering coefficient is very sensitive to the soil moisture in both the backward and forward directions. Moreover, the bistatic scattering pattern is very similar under different ACFs.

Figure 4 .

 4 Figure 4.11 Bistatic scattering hemispherical plots of variations of with soil moisture ranging from 5% to 45%. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz), l=λ/2, θi=40°. The colorbar is in dB.

Figure 4 .

 4 Figure 4.12 Bistatic scattering hemispherical plots of s variations of with surface roughness ranging from λ/20 to λ/5. Gaussian, 1.5-Power and Exponential ACF results are show from left to right, respectively.

Figure 4 .

 4 Figure 4.13 Bistatic scattering hemispherical plots of sensitivity of to soil moisture. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz), l=λ/2, θi=40°.

Figure 4 .

 4 Figure 4.14 Bistatic scattering hemispherical plots of variations of with soil moisture ranging from 5% to 45%. Gaussian, 1.5-Power and Exponential ACF receptivity results are shown from left to right, respectively. All: s=λ/10, l=λ/2. The colorbar is in dB.

Figure 4 .

 4 Figure 4.15 Bistatic scattering hemispherical plots of variations of with RMS height ranging from λ/5 to λ/20. Gaussian, 1.5-Power and Exponential ACF receptivity results are shown from left to right, respectively. All: soil moisture=25%, l=λ/2. The colorbar is in dB.

  electromagnetic waves transmitted by the radar sensors reveal electrical currents on the surface of targets. Through radiation, incidence electromagnetic waves and detecting targets interact in the far-field region of the antenna, which produces scattering electromagnetic waves and which changes amplitude, frequency, phase position, polarization mode and other parameters of echo. The quality of a scattering wave is different from that of an incidence wave: It includes physical structure information about targets, which is a carrier of target information. This is caused by the modulation effect of targets on incidence electromagnetic waves. The modulation effect is decided by the physical structure features of targets. Different targets have different modulation features on the same incidence wave. Radar remote sensing extracts feature parameters of detecting targets according to modulation feature variance, i.e. that different targets affect electromagnetic waves differently. The basic measured value of each pixel for an image is a pair of voltage values. These measured values indicate the impact of surface information on the transmitted wave, which essentially describes Maxwell space spread and the equation of scattering characteristic equation. The radar equation can show the relationships among radar system, detecting target and received signals. Some typical surface microwave scattering models are the Oh model, the Dubois model and the AIEM. However, the Oh model is not recommended as it has large errors in the analogue value of co-polarization scattering data, although it can simulate the cross-polarization scattering characteristics. The Dubois model has a different response to the actual situation (change of incident angle and the dielectric constant) because it is a kind of empirical model that lacks physical theory support.

Figure 5 . 1

 51 Figure 5.1 Backscattering behaviour of different frequencies with HH and VV polarizations for s=1 cm, l=5 cm, θi=40°, Exponential ACF.

  height on backscattering signals, we set the RMS height to five different levels: s=0.1, 0.5, 1, 1.5, and 2 cm while fixing the frequency at 1.26 GHz, correlation length equal to 5 cm with Exponential ACF, and soil moisture changes from 1% to 50%. Results are shown in Fig. 5.3.
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 53 Figure 5.3 Backscattering behaviour of different RMS height with HH and VV polarizations for L band (1.26 GHz), l=5 cm, θi=40°, Exponential ACF.
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 54 Figure 5.4 Backscattering behaviour of different correlation length with HH and VV polarizations for L band (1.26 GHz), s=1 cm, θi=40°, Exponential ACF.

  Figure 5.5 Flowchart of the recurrent Kalman filter-based neural network method.

Figure 5 . 7

 57 Figure 5.7 The comparison results of the estimated and simulated soil moisture from DLNN for the single incident angle case.
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 58 Figure 5.8 Comparison results of the estimated and the simulated RMS height (left) and correlation length (right) from DLNN for the single incident angle case.

  Figure 5.9 The comparison results of the estimated and the simulated soil moisture from DLNN for the multiple incident angle case.
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 5 Figure 5.10 Comparison results of the estimated and the simulated RMS height (left) and correlation length (right) from DLNN for the multiple incident angle case.

Figure 5 .

 5 Figure 5.12 The research area cut from the overlapping area of the two ALOS-2 images.

Figure 5 .

 5 Figure 5.13 The soil moisture changes derived from the two ALOS-2 images.

  the atmospheric cycle. Active microwave remote sensing, especially SAR, is particularly attractive for remote sensing of soil moisture since it provides a measure of the absolute soil moisture content that are spatially averaged. It also has the advantages of large-scale coverage and all-weather operation. Therefore, in this dissertation research, we mainly focussed on sensitivity analysis and estimation of soil moisture from radar responses. In addition, a practical and reliable surface scattering model is often required to obtain a good understanding of the surface scattering mechanism. Thus, this dissertation research started from a study of the theoretical surface scattering model. We validated a well-established model, the AIEM, by extensive comparison with numerical simulations and experimental data. Then, based on the AIEM, we investigated in detail the sensitivity of bistatic scattering and backscattering to soil moisture and surface roughness of soil surfaces, respectively.

  de la diffusion des ondes é lectromagné tiques par une surface rugueuse alé atoire est de premiè re importance dans de nombreuses disciplines et conduit à diverses applications notamment pour le traitement des surfaces par té lé dé tection. En connaissant les modes de ré trodiffusion, on peut dé tecter la pré sence de la rugosité alé atoire indé sirable de la surface de ré flection telle que le ré flecteur d'antenne et par consé quent trouver un moyen de corriger ou compenser les erreurs de phase. Cette thèse porte sur l'obtention de l'humidité du sol de surface à partir de mesures radar. La description de la surface rugueuse de faç on alé atoire est pré senté e, suivie par les interactions d'ondes é lectromagné tiques avec les mé dia. En particulier, un modè le d'é quation inté grale avancé (AIEM) est introduit. La validité du modè le AIEM, qui est adopté comme modè le de travail, se fait par une large comparaison avec des simulations numé riques et des donné es expé rimentales. On analyse é galement les caracté ristiques des configurations radar bistatique et on é tudie la sensibilité de la diffusion bistatique à l'humidité du sol et à la rugosité de surface et, dans le mê me temps, le cadre de la dé termination de l'humidité du sol à partir de mesures radar utilisant un ré seau de neurones à base de filtres de Kalman ré currents est pré senté . La formation du ré seau et l'inversion des donné es sont dé crits.
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  The scattering coefficient is calculated by using the stationary-phase approximation method. The GOM model is suitable for large surface roughness. The POM model assumes that when the RMS height s is small, there is a coherent scattering. When the ks=0, it obtained pure coherent reflection.Under that situation, the POM model uses an approximation analog method to simulate the scattering characteristics of target objects. The POM model is suitable for medium surface roughness. When the surface becomes smooth, the Kirchhoff model is no longer applicable. The SPM model is suitable for relatively smooth, and a smaller correlation length surfaces. The IEM model is a theoretical model based on a microwave radiation transfer equation. It can simulate the real situation of soil

The Kirchhoff approximation model includes the GOM model and the POM model. The GOM model assumes that when the soil surface RMS height s is larger, scattering is completely incoherent.

backscatter value in a large surface roughness range. IEM shows both a high simulation accuracy and easier operation in practical applications. The AIEM is extended from the IEM, but its prediction accuracy is much improved compared to the original IEM

Table 5 .

 5 1 The range of each parameter used to generate the training database for the single incident angle case

  Table 5.3 Climatic conditions of the YRD

		Annual mean		12.3
		Extreme high		41.9
	Temperature(°C)	Extreme low		-23.3
		Degree-days(>0°C)	4783.5
		Degree-days(>0°C)	4183
	Annual radiation (MJ.	)	5146-5411
	Annual sunshine time(h)		2682
	Frost-free season(d)		210
	Annual mean precipitation(mm)	542.3-842
	Evaporation(mm)		1962

Table 5

 5 

	Observation mode	Spotlight
	Polarization	HH,HV
	Frequency	1.2GHz
	Time	2014.12.06 15:54
	latitude	37.032-37.762
	longitude	118.616-119.559
	Observation mode	Spotlight
	Polarization	HH,HV
	Frequency	1.2 GHz

.5 The basic information of the two ALSO-2 images used in this study Time 2014.11.13 16:01 The locations of the ALOS-2 data latitude 37.253-37.964 longitude 118.392-119.269
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surface roughness conditions and soil moisture conditions. For this reason, the numerical analysis of scattering behaviour in this research, as outlined in the next two chapters, was based on the AIEM. retrieval. So we adopted the sensitivity index in our study. The results are shown in From Fig. 4.16, we can observe that the bistatic patterns of different combinations are generally similar. It is clearly shown that, in the forward region, there are large areas where the value is close to 1. In addition, with the increase of the difference between the two incident angles, the sensitive area becomes larger, and the effects of during flight to make large-aperture antenna systems with finer resolution [START_REF] Argenti | A tutorial on speckle reduction in synthetic aperture radar images[END_REF][START_REF] Moreira | A tutorial on synthetic aperture radar[END_REF].

This dissertation research used microwave bands to study soil features. Its mechanism was self-rotation and rotation of molecules of matter, and the interaction between self-rotation of electron and transmitted electromagnetic waves which decides the inherent interaction mechanism between surface features and the imaging radar used in the microwave spectrum. A radar image reflects the interaction between electromagnetic waves transmitted by radar and surface feature objectives. The

As can be seen from Fig. 5.1, the backscattering coefficient changed the most with the changes of soil moisture at the L-band (i.e. 1.26 GHz). As the soil moisture increased, the backscattering coefficient monotonically increased. To sum up, the backscattering coefficient at 1.26 GHz shows the most sensitivity to soil moisture than at other frequencies. Thus, we fixed the frequency as 1.26 GHz in the following parts.

Scattering signal changes by various of angles

The different SARs usually configure diverse observation angles. The same SAR may also observe the target with different incident angles. Even in one radar image the incident angle along the direction of the distance also can be different.

In this part, we analysed the relationship between the backscattering coefficient and the incident angle as the soil moisture changed. We can see from Fig. 5.2 that when the soil moisture changed from 1% to 20%, the backscattering coefficient appears as a different trend, as a change of incident angle. When the incident angle was less than 60 degrees, the backscattering coefficient increased as the soil moisture increased at both HH and VV polarizations.

Thus, generally, the backscattering coefficient is larger when the incident angle is smaller.

Generation of DLNN training data using AIEM

Dynamic learning neural network

Tzeng et al. (1994) proposed a dynamic learning neural network (DLNN) to reduce the drawbacks of the slow learning process that was inherently associated with the above training schemes. A dynamic learning neural network has the advantages of greatly reduced training times and increased accuracy. This has been demonstrated in many applications [START_REF] Chen | Retrieval of surface parameters using dynamic learning neural network[END_REF]. A neural network has the advantage of inverting the surface parameters effectively [START_REF] Dawson | Inversion of Surface Parameters Using Fast Learning Neural Networks[END_REF][START_REF] Tsang | Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model[END_REF].

The objective of our study was to simultaneously retrieve surface roughness and soil moisture, as shown in Fig. 5.6, so we exploited the Kalman filter-based dynamic learning algorithm [START_REF] Tzeng | A dynamic learning neural network for remote sensing applications[END_REF]. The Kalman filter theory is a procedure that recursively estimates the minimum mean square [START_REF] Brown | Introduction to Random Signals and Applied Kalman Filtering[END_REF]. 

The results of fixing the incident angle

Parameters which needed to be estimated included surface roughness in both the horizontal and vertical scales (i.e. RMS height and correlation length) and the dielectric constant which, in turn, were related to other geophysical quantities of interest such as the moisture content of the soil. The co-polarized backscattering coefficients were used as the inputs of the inversion scheme.

The training of a neural network begins by defining the network inputs and outputs that are controlled by the type of applications. For the inversion problem shown in this work, the output of the network should be the soil moisture and the two The Yellow River Delta is located in the temperate zone and is characterized by a monsoon climate. It is rich in natural resources, such as crude oil, natural gas, chemical industry and crude salt. Of primary importance are the mechanical and chemical industries, food processing, the pulp industry, electricity and biology. Details of YRD's climatic conditions are shown in Table 5.3. inversion problemretrieval of soil moisture from radar measurements. Future work would proceed in the following aspects.

(1) Although this dissertation research focuses on estimation of soil moisture from radar responses based on a high-precision theoretical model (i.e. the AIEM), all the research was only carried out in the bare soil surface situation. The retrieval of soil moisture in vegetated areas needs to be studied in the future.

(2) In this dissertation research we develop a recurrent Kalman filter-based neural network method to retrieve the soil moisture. This method successfully settles the problem that the surface parameters are strongly coupled and the relationship between them is nonlinear. The retrieved change of soil moisture estimates present a reasonable spatial distribution. However, this method should be tested with measurement data to further demonstrate its effectiveness. Currently new data acquisition is in progress to do this.

(3) The optimal bistatic configuration for soil moisture sensing was investigated in this study. We found that the combination of dual angular measurements achieved the most reliable soil moisture estimation since it could suppress the influence of surface roughness while maintaining a reasonably good sensitivity to soil moisture. However, on account of the geometric complexity of bistatic configuration, as well as the diversity of surface conditions, more extensive theoretical and experimental studies should be conducted to find the optimal bistatic angle range for soil moisture sensing by considering the signal-to-noise ratio (SNR) limitation.

Appendix I Coefficients B and C

In this appendix, we give the explicit expressions of the upward and downward reradiation coefficients used in Eq. ( 18a)-(18d).