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Résumé

La diffusion des ondes @ectromagnétiques par une surface rugueuse alé&toire est
de premiée importance dans de nombreuses disciplines et conduit & diverses
applications notamment pour le traitement de surface par t@&léection. Par exemple,
il y a une pratique courante pour obtenir les paraméres géphysiques d'int&é de la
diffusion et / ou des mesures d'émission, en analysant la sensibilitédu comportement
et des me&anismes de diffusion. En connaissant les modes de ré&rodiffusion, on peut
déecter la pré&ence de la rugositéalé&toire indésirable de la surface de réflexion telle
que la réflecteur d'antenne et par conseguent trouver un moyen pour corriger ou
compenser des erreurs de phase. Par conséquent, 1’étude de la diffusion des ondes
dectromagnéiques des surfaces alétoires est ala fois théorique et pratique. La
recherche et le progres, ayant une longue histoire, ce sujet a bien é&é&documentéet est

encore gardéajour.

L'humiditédu sol est peut-&re le paramétre le plus important pour caractéiser les
conditions de surface qui se rapportent al'é&osystéme, les prévisions mé&éorologiques,
les pré&visions climatiques, la productivitéagricole, les inondations et les alertes de
s&heresse pré&oce. Par consé&juent, l'acquisition de la distribution spatiale et
temporelle de I'numiditédu sol de surface al'&helle ala fois locale et globale est trés
critique. La mesure de I'humiditédu sol est difficile. La mesure in situ est en mesure
de fournir une bonne pre&ision de I'humiditédu sol sur des points de réfé&ence, mais
ne représente qu’une petite échelle spatiale due en partie ala forte hé&&ogénatéde la
surface de la terre. Techniquement, les observations in situ ne peuvent pas pleinement,
et en mé@ne temps, caract&iser la variabilitéspatiale et temporelle de I'hnumiditédu sol
ades e&helles utiles. Une maniée efficace consiste adé&luire I'numiditédu sol par
satellite micro-ondes actif. La technique (SAR Synthetic Aperture Radar) est
particulieeement inté&essante pour la té@é&léection de I'humidité du sol a une
resolution fine; elle fournit une mesure de la teneur en humiditédu sol absolue et a
I'avantage d'une couverture a grande échelle et d’un fonctionnement en tout temps.
Par conséguent, les micro-ondes en mode actif, en particulier par SAR, sont
considé&és comme l'un des moyens les plus efficaces pour surveillance de I'humidité

du sol actuellement.



Cette thése porte sur 1’obtention de 1'humidité du sol de surface a partir de
mesures radar. L'organisation de cette thése est la suivante. Le chapitre 1 ouvre la
préentation par une introduction du contexte, de la motivation de cette recherche, et
donne un bref historique des méhodes de déermination de I'numiditédu sol al'aide
de la t@é&léection radar. Le chapitre 2 deerit le principe de micro-ondes de la
té@aléection de I'humiditédu sol. La description de la surface rugueuse de fagn
alé&toire est pré&enté, suivie par les interactions d'ondes éectromagné&iques avec les
mé&lia. En particulier, un modde d'éjuation intérale avanc&(AIEM) est introduit. La
validitédu modée AIEM, qui est adoptécomme modde de travail, se fait par une
large comparaison avec des simulations nume&iques et des données exp&imentales, et
est exposé dans le chapitre 3. Le chapitre 4 analyse les caracté&istiques des
configurations radar bistatique et éudie la sensibilité de la diffusion bistatique a
I'hnumiditédu sol et ala rugositéde surface. Le chapitre 5 pré&ente le cadre de la
déermination de I'hnumiditédu sol apartir de mesures radar en utilisant un réseau de
neurones abase de filtre de Kalman réurrent. La formation du réeau et I'inversion
des données sont déerits. Enfin, le chapitre 6 conclut les travaux de recherche et

suggeére des sujets connexes pour des recherches futures.

Ré&emment, il y a une nette tendance de I'expansion de monostatique abistatique
pour les mesures radar et ceci a attiré de plus en plus dint&& a exploiter
I’information diélectrique du terrain et I'information géométrique. Un modele
théorique a &édéveloppé& pour caracté&iser les meésanismes de diffusion des ondes
dectromagnéiques pour permettre de configurer au mieux les conditions
d’observation bistatique pour déduire la teneur en humidité a partir des coefficients de
diffusion - multi-polarisations ou polarimérique. Parmi les modées théoriques,
I'AIEM a dénontréun éventail beaucoup plus large pour les conditions de rugositéde
surface, par rapport aux moddes classiques, tels que le modée de perturbation, le
modée optique physique, et le modde d'optique géamérique. Pour cette raison,

I'analyse numé&ique dans cette thése de diffusion est basée sur le modée de AIEM.

Chapitre 1 non seulement introduit le contexte de la recherche, mais pré&ente
&jalement les propriéé de I'humiditédu sol et le développement de la méhode de
mesure de I'hnumiditédu sol ala fagn traditionnelle et ala fagn de t&&lé&ection. Les

méhodes traditionnelles de mesure de I'humiditédu sol comprennent la méhode de
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pesee, la mé&hode de sé&hage rapide, la mé&hode de résistance et la réflectomérie
dans le domaine temporel, etc. Ces mehodes peuvent estimer avec preeision
I'hnumiditédu sol; pourtant, ils exigent beaucoup de mains-d'ceuvre et matériaux et ne
peuvent obtenir que l'information de I'numidité du sol sur une tres petite €éhelle
spatiale. Techniquement, des observations in situ ne peuvent pas caractéiser,
pleinement et simultanément, la variabilitéspatiale et temporelle de I'humiditédu sol
ades &helles substantiellement applicables. La technologie de la tdé&lé&ection peut
jouer un rd@e de plus en plus important dans la surveillance de I'humiditédu sol, c’est
parce gu'elle déecte les changements de I'hnumiditédu sol ala fois temporellement et
spatialement, mais aussi elle présente les avantages d'une large porté& de la couverture
et des observations continues. Actuellement, les informations quantitatives sur
I'hnumiditédu sol aune €helle locale ou globale est avéé& trés importantes dans
beaucoup d’applications hydrologiques et météorologiques, y compris la gestion des
ressources en eau, l'irrigation scientifique et 1’estimation des rendements des cultures.
La méhode traditionnelle basée sur le point ne peut pas obtenir les informations sur
I'hnumiditédu sol, ni les changements dynamiques de I'humiditédu sol aune grande
&helle. En revanche, la technologie de té&&léection peut remélier aux insuffisances
des méhodes traditionnelles, et elle est maintenant considéé& comme le moyen le
plus efficace pour la surveillance de I'humiditédu sol dans le temps et dans I'espace,
notamment &de grandes &helles spatiales.

Lapplication des images du satellite de té&éléection pour extraire I'humiditédu
sol a commencéala fin des années 1960. Bien que les observations par satellite ala
bande de I’infrarouge visible-proche, a la bande de I’infrarouge thermique, et a la
bande des micro-ondes ont les réponses diffé&entes al'humiditédu sol, ils peuvent
tous atteindre le but de surveiller I'numiditédu sol. En conclusion, chaque mé&hode a
ses avantages. Les modeles de la bande de I’infrarouge visible-proche peuvent
surveiller I'humiditédu sol aux réolutions plus fines. Cependant, les observations
optiques sont souvent influencées par les nuages et les conditions atmosphé&iques. En
outre, les capteurs optiques ne peuvent pas travailler jour et nuit. La surveillance de
I’infrarouge thermique sur I'humidité du sol a une bonne preeision, mais elle est aussi
vulné&able al'influence des nuages et peut &rouver facilement la saturation du signal

sous I'é@at de la vééation dense. La premiée est une limitation majeure comme



environ la moitiéde la surface terrestre est recouverte par des nuages an‘'importe quel
moment. La t@é&léection passive par micro-ondes utilise la tempéature de brillance
pour estimer I'humidité du sol. 1l peut cartographier I'numidité du sol avec une
résolution temporelle devé et avec une grande preéision. Mais, comme la taille de
I'antenne du capteur passif est limiteée, sa résolution spatiale est trop faible pour qu'il
puisse @re utilisépour certaines applications pratiques, par exemple I'estimation de la
productivitéagricole aune €&helle locale. En revanche, la té@é&léection active par
micro-ondes a des avantages uniques pour la surveillance de I'humiditédu sol car elle
est capable de travailler jour et nuit; capable de péérer les couches de nuages, et elle
est moins affecté& par les conditions atmosphé&iques; elle est directement liee a
I'hnumiditédu sol par permittivitédu sol, et elle peut fournir des observations avec une
résolution spatiale beaucoup plus éevée que les capteurs passifs de micro-ondes. Par
conséguent, nous avons utilisé les observations de t@e&léection active par micro-

ondes pour résupé&er I'humiditédu sol dans cette thése de recherche.

Le problame difficile pour la ré&upé&ation de I'hnumiditédu sol est que la relation
entre I'humiditédu sol et le coefficient de rétrodiffusion n’est pas linéaire. La rugosité,
la couverture vé&yéale, la constante didectrique, les propriéés physiques du sol
(structure, composition, etc.) et les parametres de radar affectent tous la force de
I'é&ho. Les couches de vé&géation ont une éaisseur suffisante pour protéger les
informations de diffusion & partir de la surface du sol, alors, la végéation est
géné&alement considé&é& comme le facteur le plus important qui affecte la préeision
de la ré&upéation de I'humiditédu sol. Pour optimiser I’inversion de I'humidité du sol,
les chercheurs ont recommandé qu'un angle d'incidence faible avec une bande de
longueur d'onde (bande L) puisse minimiser les effets de la rugositéde la surface et de
la végéation. La rugositéde la surface (la hauteur moyenne quadratique s, la longueur
de corrdation | et la fonction d'autocorréation statistique) est un autre facteur
important. Des &udes de sensibilitédes parametres sur les signaux de radar provenant
d'une variééde surfaces de sol indiquent que la contribution de la rugositéde surface
au signal de radar est eguivalente ou méne sup&ieure acelle de I'numiditédu sol. Par
cons&guent, l'une des t&hes les plus difficiles de la t@&léection active par micro-
ondes de I'numiditédu sol est de deéeoupler les effets de I'hnumiditédu sol et la rugosité

de surface. Les chercheurs ont trouvéque l'utilisation du rapport de polarisation peut
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minimiser I'effet de la rugosité Théoriquement, la mé&hode de multi-polarisation peut
am@iorer la pre&ision de ré&upé&ation. Pendant les trente derniges annéss, de
nombreux modées ont &é& développés, qui peuvent quantitativement dérire la
relation entre le coefficient de diffusion et I'humidité du sol. Les modées de la
diffusion de surface les plus couramment utilisés sont divisés en trois categories: les
modédes théoriques, les moddes semi-empiriques et les modées empiriques. Les
modées thériques comprennent principalement le modéde Kirchhoff (par exemple, le
modée de I'optique physique et le modde de I'optique gémérique, ainsi que d'un
petit modde de perturbation), le modée d'é&juation intégrale, et le modde d'&juation
intégrale am@ioré et avancé Les modées empiriques et semi-empiriques se
comportent principalement le modée Oh, le modée Dubois et le modée Shi. Peut-
é@re les modées empiriques et semi-empiriques ne sont pas applicables pour
I’ensemble des données autres que ceux qui sont utilisés dans leur développement. En
raison de sa complexitéet I'exigence d'une connaissance déaillé de la rugositéde la
surface, il est difficile d'inverser I'humiditédu sol en utilisant directement les modées
thériques. Toutefois, ils peuvent &re utilisé pour prédire préeisénent les rendements
de diffusion pour une variéé de profils de surface, qui est tré utile pour la

compréhension du mé&anisme de la diffusion de la surface.

Le chapitre 2 est consacré ala description des surfaces rugueuses de fagn
alétoire. Bien que les propriéés fractales aient &€& &udiés dans le contexte de la
description d'une surface alé&toire, nous avons adoptéune meéhode plus classique, et
plus communément utilis€qui mesure I'é&helle de rugositéhorizontale, et la racine
carréa moyenne (RMS) hauteur, qui représente I'&helle de la rugositéverticale et qui
appelée I’approche. Les fonctions de corré@ation utilisés de maniée courante, ou de
maniere &uivalente, les spectres de puissance pour les surfaces naturelles sont donnés.
Dans ce chapitre, les interactions @ectromagné&iques ondes-matiée sont brievement
discutées au moyen de Electric Field Integral Equation (EFIE) and Magnetic Field
Integral Equation (MFIE) qui sont deux éguations fondamentales qui reégissent les
champs tangentiels de surface apartir de laquelle les champs dispersé& peut &re
déerminé de maniée unique. Il est éalement connu que le modée AIEM a &é

développéen ré&solvant de maniére ité&ative ces deux €gjuations jusqu'au second ordre.
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Cette these de recherche a utilisédes bandes de micro-ondes pour éudier les
caractéistiques du sol. Son meéeanisme est 1’autorotation et la rotation des molécules
de matiée, ainsi que l'interaction entre l'autorotation des @ectrons et des ondes
dectromagné&iques émises, qui deeide le mé&anisme d'interaction intrinsegue entre
les caracté&istiques de la surface et le radar imageur utilisédans le spectre de micro-
ondes. Une image radar refléte l'interaction entre les ondes éectromagné&iques émises
par le radar et les objectifs des caracté&istiques de la surface. Les ondes
dectromagné&iques émises par les capteurs radar rééent les courants &ectriques sur
la surface des cibles. Par le rayonnement, les ondes édectromagnéiques d'incidence et
les cibles de déection interagissent dans la région du champ lointain de I'antenne, qui
produit les ondes éectromagnéiques de diffusion et qui modifie I'amplitude, la
fréguence, la position de phase, le mode de polarisation et d'autres paramétres de
I'é&ho. La qualité d'une onde de diffusion est diffé&ente de celle d'une onde
d'incidence: elle comprend I’information de la structure physique sur les cibles, qui
est un support de l'information cible. Ceci est provoquépar I'effet de modulation des
cibles sur les ondes ¢électromagnétiques d’incidence. L'effet de modulation est
déerminépar les caracté&istiques de la structure physique des cibles. Les diffé&ents
objectifs ont les caracté&istiques de modulation diffé&entes sur la méne onde
d'incidence. La téé&léection de radar extrait les paramétres des caractéistiques des
cibles en fonction de la variance de modulation, c’est-adire, les diffé&entes cibles
affectent diffé&emment les ondes éectromagnéiques. La valeur mesuré basique de
chaque pixel d'une image est une paire de valeurs de tension. Ces valeurs mesurées
indiquent I'impact de l'information de la surface sur I'onde transmise, qui déerit
essentiellement la propagation en espace de Maxwell et 1'équation de I’équation
caractéistique de la diffusion. L'éjuation radar peut montrer les relations entre le

systéme radar, le cible de déection et les signaux reqis.

Certains modées typiques de la diffusion de micro-ondes de la surface sont le
modée Oh, le modée Dubois et I'AIEM (modée avanceé d'&juation intégrale).
Cependant, le modde Oh est desonseillécar il a de grandes erreurs dans la valeur
analogique des données de diffusion de la co-polarisation, mé&ne si elle peut simuler
les caracté&istiques de la diffusion de la polarisation croisée. Le modée Dubois a une

réponse diffé&ente ala situation actuelle (changement de Il'angle d'incidence et la
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constante diéectrique), comme il est une sorte de modée empirique qui manque de
I'appui de la théarie physique. Comme ce que nous avons présentédans les chapitres
pr&élents, I'AIEM (modée avancéd'&uation intérale) a une grande preéeision par
rapport aux simulations et aux mesures sur le terrain et donc il a &&adoptécomme
modée de travail dans cette recherche. L'analyse des caractéistiques du radar par
I’AIEM pourrait nous aider a mieux comprendre les caractéristiques de la

ré&rodiffusion de radar.

Dans le chapitre 3, nous avons validéles prédictions de AIEM par comparaison
avec des simulations numé&iques et des donnés exp&imentales. L'éude de la
diffusion des micro-ondes a de larges applications dans la tdénérie, la
transformation sans fil, la déection de radar etc. Un modde de diffusion de surface
pratique et fiable est né&essaire pour obtenir une bonne compréension du méanisme
de la diffusion de surface. La recherche sur la diffusion des micro-ondes sur une
surface alétoire a &&en cours depuis plus de quarante ans. Pendant les annéss 1960 &
1970, plusieurs modées de diffusion de surface ont &&développés, y compris le petit
modéle de perturbation (SPM) et le modée Kirchhoff. Ces deux modées sont
considé&é& comme les normes pré&minentes dans leur champ d'application. Le SPM
est capable dans la basse fré&uence et les circonstances de petite surface de
perturbation, alors que le modde Kirchhoff est adaptéala haute fré&uence et les
surfaces rugueuses agrande €&helle. Depuis 1990, le Dr A. K. Fung a proposele
modele de 1’équation intégrale (IEM) qui résout d'abord la limitation du champ
d'application. L'IEM original a @&développésur la base de plusieurs approximations
simplificatrices conduisant & la solution d'une paire d'éuations intégrales,
relativement simple, et pourtant assez preeise, gouvernant les courants de surface. Il'y
a eu des progres significatifs dans I'am@&ioration de I'estimation du courant de surface
pour éendre sa region de validité Cependant, dans le modde d'IEM, la dépendance
de la hauteur de la surface sur la phase de la fonction de Green a &é&ignoreg, ce qui

conduit aune erreur importante hors de la direction de ré&rodiffusion.

Le modée AIEM est une extension base sur le physique du modée analytique
IEM. Il montre les am@iorations significatives pour la diffusion unique et les
pré&lictions d'@missivitépour une portee large d'éhelles de rugosit& surtout dans les

regions de rugosité intermédiaires. En plus, la diffusion de multiple-surface se
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convient bien avec les réultats de simulation numé&ique et les mesures de laboratoire
contrdés acquises a partir des surfaces connues. L'AIEM a supprimeé certaines
hypothéses faibles de I'lEM original. Bien que I'AIEM soit théariqguement considéé
pour offrir les prédlictions pré&ises, le niveau de preéision de ses prédictions doit

encore &re confirme

Tout d'abord, nous avons comparé AIEM ades simulations numeé&iques pour la
rérodiffusion et de la diffusion bistatique. Dans la ré&rodiffusion, nous avons compare
AIEM avec le Mé&hode numé&ique 3D des &uations de Maxwell (NMM3D), qui est
une méhode de moment (MoM) appliqué pour calculer diffusion de surface
rugueuse et est adaptépour une application ala fois pour la té&&léection active et
passive. Dans les conditions bistatiques, nous avons comparé I’AIEM avec les
résultats numériques 1’approximation des pentes faibles (SSA) et le MoM dans la
diffusion plane. Les réultats montrent que comparer avec les données de simulations
numeiques, toutes les prélictions sont trés proches les unes des autres, sauf en cas de
grand &énement / angle de diffusion. Nous avons &jalement compareé le modée
AIEM avec des mesures en ré&rodiffusion et en conditions de diffusion bistatique. Le
POLASCAT LCX de I'Université du Michigan a &é& congi avec pour mesurer la
matrice de diffusion de points des cibles distribué ades fré&uences de 1,5, 4,75, 9,5
GHz. Les ensembles de donnés ont é&&mesuré dans deux conditions d’humidité
difféentes, relativement humides et relativement secs. Les surfaces des paramétres de
rugositétels que la RMS, la longueur de corréation et la pente de la RMS ont &é
calculées apartir des profils de hauteur de la surface de mesure. Les ré&ultats
montrent que I'AIEM est en bon accord avec les données mesurées dans tous les cas.
Dans le cas de la diffusion bistatique, les donnés ont &éacquises sur des surfaces
connues fournies par Laboratoire européen de signature micromérique (EMSL). En
comparant avec les données de mesure de ’EMSL, I’ AIEM montre également un bon
accord, bien que les pré&visions de I'AIEM sauf aux grands angles de diffusion et que
la séparation entre les polarisations n’est pas assez importante. De fagon générale, les
pré&visions de AIEM correspondent bien ala fois aux simulations numeé&iques et aux

donnéss exp&imentales.



Le systéne traditionnel de radar actif déecte presque entigement I'numiditédu
sol basée sur les coefficients de rétrodiffusion. Pourtant, le réglage de 1’émetteur et le
regepteur dans la mé&ne direction préente les inconveénients apparents thériques, car
seul le signal provenant de la direction d’inverse peut étre obtenue. L'un des
problémes critiques dans I'estimation des parametres de surface apartir des signaux
radar de rérodiffusion est que les paramétres de surface, y compris la rugosité
statistique de surface (la hauteur moyenne quadratique s et la longueur de corréation 1)
et la constante didectrique sont fortement couplé sous un certain ensemble de
parametres de radar (fréguence, I'angle d'incidence et la polarisation). Ce fait entrave
considéablement la capacitéde déection des micro-ondes de I'humiditédu sol, mé&ne
pour les surfaces nues. Ainsi, il est inté&essant de comprendre les caractéistiques de la
diffusion bi-statique (qui sont beaucoup moins comprises par rapport a la
ré&rodiffusion) afin de trouver une configuration d'émetteur-ré&epteur approprié pour
dé&oupler, &un niveau optimal, la rugositéde surface et la constante diéectrique.
Mais, dans la configuration bi-statique, il existe de nombreux scénarios aére conqis.
Alors, il est essentiel de mener une analyse de sensibilité des paraméres pour
déerminer une configuration optimale qui peut maximiser le contenu de I'information

des paramétres d'int&& tout en minimisant la contribution des parameétres indésirables.

Par conséguent, I'estimation de I'hnumiditédu sol dans un mode bi-statique a attiré
une attention croissante au cours des derniéres années. Dans certaines éudes, les
chercheurs ont trouvé que, en comparaison avec l'observation mono-statique
traditionnelle, I’utilisation des géométries bi-statique peut obtenir plus d'informations
pour réeupé&er I'humiditédu sol. Mais, la litté&ature limité& est disponible pour la
déection de I'humiditédu sol avec la configuration bi-statique. Ainsi, plus de travail
doit &re effectuépour explorer les comportements de diffusion bi-statique avec les
parametres du sol dans les diverses conditions de sol, il s’agit a la fois de l'intérét
thérique et pratique. Plusieurs facteurs influent sur la caracté&isation de la rugosité
du sol. En plus de longueur de corrdation et de la hauteur moyenne quadratique
(hauteur RMS), la fonction d'autocorréation de surface (ACF) a aussi une influence
importante. Dans les situations pratiques, les ACFs sont difficiles adé&erminer. En
conséguence, l'effet des ACFs est géné&alement ignorée ou simplement supposé€a

priori pour simplifier le probléne d'inversion dans le processus d'inversion. Alors,
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comment supprimer I'effet des ACFs pour I'estimation de I'humiditédu sol plus fiable

est aussi un d€i attrayant.

Dans le chapitre 4, nous avons effectuéune analyse de sensibilitédes parametres
pour la diffusion bistatique d’une surface rugueuse. La diffusion radar d’une surface
de sol nu rugueuse alé&toirement est complexe et est déerminé par I'humiditédu sol
et la rugositéde surface d'une maniee fortement non lin&ire. Dé&oupler les effets de
I'hnumiditédu sol et de la rugositéde surface est essentielle si I'inversion de I'humidité
du sol est I’intérét majeur. Utiliser uniquement la rétrodiffusion est difficile, sinon
impossible, car seul le signal provenant de l'arriée est disponible. Par consé&juent,
I'estimation de I'humidité du sol dans un mode bistatique a attiré une attention
considé&able ces derniées années. Pour obtenir une meilleure compréhension des
caracté&istiques de diffusion bistatique, et trouver les configurations approprié€es,
voire optimales, nous avons éudi€la réonse radar bistatique de I'humiditédu sol et
de la rugositéde surface des surfaces de sol nu dans la bande L en utilisant le modée
AIEM. Les résultats montrent que la sensibilitéla plus éeveé de diffusion radar &
I'hnumiditédu sol peut &re obtenue en configurant lI'observation bistatique par rapport
al'observation monostatique apartir duquel seuls les coefficients de rérodiffusion
peuvent &re obtenus. Dans un mode bistatique, les coefficients de diffusion de
polarisation VV sont géné&alement plus sensibles al'humiditédu sol que celles de
polarisation HH. Contrairement al'utilisation d'un seul coefficient polariséou simple
diffusion angulaire, I’influence de la fonction de corrélation, qui est un effet
indé&sirable, peut &re considé&ablement supprimé& par une combinaison de doubles
polarisation ou de double mesures angulaires. Par rapport aux résultats en simple
polarisation ou en donné&s combinés de double polarisation, il semble que la
combinaison de double mesures angulaires r&lise I'estimation de I'humiditédu sol la
plus fiable car elle permet de supprimer l'influence de la rugositéde surface, tout en
maintenant une bonne sensibilité al'humiditédu sol. 1l est &alement important a
noter que la région vers 1’avant est préférable indépendamment de la fonction de
corréation, une caracteistique tout afait attrayante et utile. De plus, il appara® que
plus la diffé&ence entre les angles cro, plus la sensibilitédes mesures angulaires a
I'hnumiditédu sol augmente. Il convient de noter que, bien que les configurations de

radar bistatique montrent un grand potentiel pour la surveillance de I'humiditédu sol,
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les limitations imposées par la fen&re angulaire éroite et le niveau faible de signal
dans ces configurations hors-plan sont susceptibles de rendre l'utilisation de ces
configurations difficiles. Enfin, en raison de la complexité géamérique de la
configuration bistatique, ainsi que la diversitédes conditions de surface, des éudes
thériques et exp&imentales complénmentaires devraient &re menés pour confirmer
la meilleure configuration bistatique pour la déection de I'humiditédu sol dans le

futur.

Dans le chapitre 5, nous avons analysé la réonse en rérodiffusion radar de
I'hnumiditédu sol et, pour tester les donné&s reéelles, développé une méhode pour
extraire I'humiditédu sol apartir des données du ALOS-2 (Advanced Land Observing
Satellite-2). Cependant, la réeupé&ation de I'numiditédu sol apartir de donné&s SAR
est complexe, car elle est profondénent affecté& par la rugositéde la surface, la
couverture vegé&ale et la texture du sol, entre autres facteurs. Le modde AIEM a &é
de nouveau utilisépour simuler les caracté&istiques de diffusion radar de la surface du
sol pour analyser les effets de couplage des paramétres de surface, y compris la
hauteur de RMS, la longueur de corrdation, I'humidité du sol, ainsi que les
paramétres du systéme radar, y compris l'angle d'incidence et de polarisation.

De la sensibilité des coefficients de rérodiffusion & I'humidité du sol sous
diffé&entes fréguences, nous voyons que le changement des coefficients de
ré&rodiffusion est plus importante dans la bande L quand les changements d’humidité
du sol varient. Nous observons que la sensibilité des signaux de rérodiffusion a
I'hnumiditédu sol est deveé lorsque I'angle d'incidence est relativement faible dans la
polarisation VV. La sensibilité des signaux de rérodiffusion & I'humidité du sol
diminue amesure que la hauteur de RMS augmente. Par ailleurs, on constate que
I'influence de la longueur de corréation des signaux de ré&rodiffusion est nettement

inf&ieure acelle de la hauteur RMS.

Un modée de donnéss permet une mise en correspondance de I'espace de mesure
a I’espace des parametres. Comme nous l'avons vu dans les chapitres précédents, la
diffusion radar de par une surface rugueuse est un processus complexe, et les
parameéires de surface sont fortement couplé. Pour réoudre les problémes de

recherche multidimensionnelle, la mé&hode de r&eau neuronal a base de filtre
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récurrent de Kalman a ¢été¢ développé en raison de sa capacité a s’adapter a des
dimensions géophysiques @evees, de sa robustesse au bruit et surtout sa capacitéa
géer la cartographie non linéire. Pour I'essentiel, I'op&ation peut &re diviséen deux
phases. La premiée phase est la formation de ré&eau - pour construire la fonction de
mappage. Nous avons utilisé le modde AIEM pour généer la base de donnés
d’apprentissage en configurant les parametres de radar (fréquence, angle d'incidence,
polarisation) et les paramétres de surface (I'numiditédu sol, hauteur RMS, fonction de
corrdation, et la longueur de corréation). Aprés avoir terminéla formation du réseau,
nous proceons ala deuxiane phase qui est le fonctionnement du réseau neuronal, a
savoir, la ré&upé&ation de I'hnumiditédu sol. En utilisant la base de donné&s gen&é&
pour former le réseau de neurones abase de filtres de Kalman, nous avons ve&ifi€les
résultats avec les données simulés al'exception des données d'apprentissage. Les
résultats montrent que la preeision sur I'numiditédu sol et sur la hauteur RMS est

meilleure que celle de la longueur de corrdation, et est gén&alement satisfaisante.

Il s’agit maintenant de tester le processus sur des données réelles. La zone d'étude
est le delta du fleuve Jaune (YRD), I'un des plus grands deltas en Chine formé&s par les
limons du fleuve Jaune dans la province du Shandong, en Chine. Dans le temps, la
riviegee Huang He coulait dans le nord du Jiangsu dans la mer Huanghai et cela
pendant pres de 700 ans. Le delta du fleuve Jaune, est situédans la province du
Shandong de 13 ©21'-38 <12 'N et 118 =07'-119 <10'E, avec une superficie de 5450
km?2. Dans cette ¢tude, nous avons utilis¢é deux ensembles d’images de niveau 1.0
ALOS-2, une a &éacquis le 13 Novembre 2014, et l'autre le 20 Dé&embre 2014. La
fréguence du ALOS-2 est de 1,2 GHz et la largeur d'observation est de 25 km avec
une réolution de 3 metres dans le mode "spotlight™. Les deux images éaient toutes
deux situees dans la zone YRD, avec une zone substantielle de recouvrement. Nous
avons choisi une re&gion de sol nu pour tester notre meéhode. Apres I'application de la
méhode d'inversion développé& en utilisant les deux donné&s ALOS-2, nous avons
obtenu la variation relative de I'humiditédu sol de la zone de recherche. D'aprés les
résultats, nous pouvons voir que la distribution spatiale de la variation de I'humidité
du sol est relativement uniforme. Dans la plupart de la r&gion, I'numiditédu sol a &é
asseeheée. Le relativement plus important changement relatif d'humiditédu sol a eu

lieu dans la limite sud de la zone. La limite &ait humide sans doute en raison de sa
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proximité de la mer. De fag@n géné&ale, la répartition spatiale de la variation de

I'hnumiditédu sol est raisonnable, ce qui démontre I'efficacitéde la méhode.

Nous tirons les conclusions dans le chapitre 6. Dans cette these, nous présentons
une analyse systénatique des diffusions radar bistatiques de surface rugueuse
alé&toire basé sur un mode AIEM théorique, modée bien connu. Par la suite, une
analyse de sensibilitéa é&é effectué pour explorer les processus complexes et le
couplage non lin&ire des interactions onde-matiee, dont la teneur en humiditédu sol
est I'un int&& majeur. Puis nous procé&lons al'inversion du probléme - la résup&ation
de I'humiditédu sol apartir de mesures radar. Le déficit en utilisant uniqguement des
coefficients de ré&rodiffusion, dans la mesure oulla dé&ermination de I'humiditédu sol
est principalement concernés, a &€mis en €idence et sa compensation par le biais de

mesures de diffusion bistatique est discutée. Des éudes futures sont alors sugg&éss.
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Chapter 1 Introduction

1.1 Background

Soil moisture, which is also called the soil water content, is one of the surface
parameters which has been widely used in various environmental applications,
including weather and climate forecasting, agricultural productivity predictions, flood
monitoring, and drought early warning (Entekhabi et al., 2014; Miralles et al., 2014;
Taylor et al., 2012; Zeng et al., 2016a). It plays a significant role in numerous
hydrological-related processes. Many studies have proved that soil moisture
observations at large scales are very useful in hydrology, meteorology, climatology,
and agriculture (Bi et al., 2016; Koster et al., 2004; Jung et al., 2010). Therefore,
acquiring the temporal and spatial distribution of surface soil moisture at both local

and global scales is essentially critical.

Traditional methods of soil moisture measurement include the weighing method,
rapid drying method, resistance method and time domain reflectometry, etc. These
methods can accurately estimate the soil moisture; however, they require a lot of
manpower and materials and can only obtain soil moisture information over a very
small spatial scale (Tian et al., 1991). Currently, hydrological and meteorological
stations can provide only sparse spatial points of soil moisture information, which
cannot fully characterize the spatial and temporal variability of soil moisture and also
cannot effectively investigate its impact on environmental change (Li et al., 2010).
Technically, in situ observations are not able to fully, and simultaneously, characterize
the spatial and temporal variability of soil moisture at substantially applicable scales
(Zeng et al., 2015b).

Remote sensing technology plays an increasingly important role in soil moisture
monitoring. Not only can it detect changes in soil moisture both temporally and
spatially, but also it has the advantages of a wide range of coverage and continuous
observations (Zhang et al., 2010). Currently, quantitative information on soil moisture
at a local or global scale has proved to be of palpable importance in many

hydrological and meteorological applications, including management of water
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resources, scientific irrigation and estimation of crop yields. The traditional point-
based method cannot obtain soil moisture information as well as the dynamic changes
in soil moisture at a large scale (Shao et al., 2006). In contrast, remote sensing
technology can make up for the shortcomings of the traditional methods, and it is now
considered to be the most effective means for soil moisture monitoring in both time

and space, especially at large spatial scales.

1.2 Properties of soil moisture

Soil layers, in the direction of the cross section, can be divided into three layers:
the surface soil, the subsoil and parent material. The colour of topsoil humus layers is
deeper, and this layer is richer in flora and fauna conversion of organic matter,
therefore crop farming is carried out on this layer. The colour of the subsoil layer is
lighter, and it contains less organic matter. The parent material is mainly composed of
rock after weathering inorganic composition. Climate, topography, vegetation and
time will affect the physical and chemical properties of soil. Soil is composed of
solids (minerals and organic matter particles), liquids (soil moisture), and gases (air).
Mechanical soil composition refers to the proportions in each soil of different grain
sizes (sand, silt and clay), or so-called soil texture. Soil porosity is composed of part
of the common air and soil moisture. Soil moisture content can use different means of

expression, as shown below.

1.2.1 Volumetric water content

Volumetric water content mv, also known as the volumetric moisture content, is

the unit of soil moisture volume, which can be expressed as the percentage:

my =uv, /v, (1.2

where v, and v; represent the volume of water in the soil and the total volume of soil
(units: cm3), respectively. Care must be taken that it is not the volume of solid soil

particles.



1.2.2 The quality of the water content

The quality of the water content mg, also known as the weight moisture content, is

the ratio of soil moisture quality and the weight of the soil after drying:
mg =m, | m, 1.2)

where m,, represents the soil moisture quality (units: g) and m, represents the weight
of the soil after drying. The relationship between the volumetric water content and the

weight moisture content can be described as:
mv = p, [ m, (1.3)
where p,, is the soil bulk density, also called the bulk density (units: g/cm?3).

1.2.3 Relative water content

Relative water content (RWC) is the ratio of the soil moisture content and field

capacity, which represents the soil water saturation level.

RWC = soil moisture content / field capacity * 100% . (1.4)

In agricultural and hydrological studies, the field capacity represents the soil

moisture after irrigation over two days.

1.3 Remote sensing of soil moisture

Application of remote sensing satellite images to extract soil moisture began in the
late 1960s. Although satellite observations at the visible-near infrared band, thermal
infrared band, and microwave band have different responses to soil moisture, they all

can achieve the purpose of monitoring soil moisture (Wang and Qu, 2009).

1.3.1 Visible-near infrared remote sensing of soil moisture

With the visible-near infrared band, soil moisture detection is based on the
characteristics of the vegetation reflectance spectra. According to the imaging
mechanism of remote sensing and object spectrum characteristics, dry soils have a

high reflectivity: soil reflectivity will decrease as the soil becomes wetter. The main



indices used to detect soil moisture are divided into two categories: the remote
sensing index method and the temperature-vegetation index spatial characteristics

method.

1.3.1.1 Remote sensing index method

Under stable temperature and light conditions, soil moisture is the major factor
that affects vegetation growth. Studies have shown that vegetation indices, such as the
vegetation condition index (VCI) (Kogan, 1998), can reflect water shortage in crops,
and thus can be closely related to soil moisture. In addition to soil moisture, air
temperature and rainfall and other environmental factors also affect the vegetation
index, therefore it cannot fully reflect any water shortages. However, combined with
the vegetation temperature canopy (TC) and the normalized difference vegetation
index (NDVI), soil moisture information can be extracted under vegetation cover. The
vegetation supply water index (VSWI) is defined as the ratio of NDVI to TC. As the
soil becomes drier, then NDVI decreases, TC increases, and VSWI decreases; in
contrast, when the soil gets wetter, then NDVI increases, TC decreases, and VSWI
increases. According to this principle, any soil drought under an area of vegetation
coverage can be detected (Carlson et al., 1994). In addition, some remote sensing
humidity indices, such as the normalized difference water index (NDWI), and the
normalized difference moisture index (NDMI) (Gao, 1997), can also extract humidity

information.

1.3.1.2 The temperature-vegetation index spatial characteristics method

In 1985, Goward et al. (1985) proposed the temperature-vegetation index spatial
characteristics method. In most cases, the NDV1 and surface temperature (Ts) have a
negative correlation: the greater the inclination, the lower the soil moisture. Studies
have shown that the temperature-vegetation index (TVX) method has a great potential
for monitoring the regional soil moisture (Goward et al., 2002). In addition, Sandholt
et al. (2002) have developed a simplified temperature vegetation dryness index (TVDI)
which is directly related to the soil moisture and, also, does not rely on secondary data.



1.3.2 Thermal infrared remote sensing of soil moisture

Thermal infrared remote sensing of soil moisture, which is based mainly on the
soil surface emissivity and temperature, uses two main methods: the thermal inertia

method and the plant evapotranspiration and water stress index method.

1.3.2.1 Thermal inertia method

Soil thermal inertia is a kind of soil thermal property. The change of soil
temperature is caused by internal factors and, as the thermal inertia of soil is less than
that of water, so soil with a higher moisture content will have a greater thermal inertia.
Therefore, thermal inertia and soil moisture are closely related. By establishing the
relationship between the soil thermal inertia and remote sensing data, as well as the
relationship between soil moisture and thermal inertia, then a model used to describe
the relationship between soil moisture and remote sensing data can be established
(Lasne et al., 2004).

1.3.2.2 Plant evapotranspiration and plant water stress index method

Plant evapotranspiration consists of two parts: evaporation and transpiration.
Evaporation is the plant’s surface moisture being diffused into the atmosphere.

Transpiration is the diffusion of soil moisture into the atmosphere through the plants.

The basic principle of the plant evapotranspiration and plant water stress index
method is that there is a relationship between the canopy temperature and plants, a
relationship that can be used to extract soil moisture data. The vegetation water stress
index (VWSI) and the crop water stress index (CWSI) reflect soil moisture
information at the range of the plants’ root area (Jackson et al., 1981). Based on the
energy balance, by use of the surface albedo, surface radiation temperature and
weather station data, and a combination of canopy temperature, temperature
difference and aerodynamic resistance, the actual evapotranspiration and potential
evapotranspiration can be obtained. Then the soil moisture can be estimated. This

method is physically-based, which can overcome the limitations of empirical models.



1.3.3 Microwave remote sensing of soil moisture

1.3.3.1 Passive microwave remote sensing of soil moisture

The physical basis of using passive microwave remote sensing for soil moisture
monitoring is that microwave brightness temperature is highly related to the soil
dielectric constant, which is mainly determined by soil moisture (Zeng et al., 2014).
The current spaceborne passive microwave satellites/sensors for soil moisture
measurements mainly include the Soil Moisture and Ocean Salinity (SMOS) satellite
(de Jeu et al., 2009; Kerr et al., 2012; Saleh et al., 2009; Wigneron et al., 2007), the
Fengyun-3 (FY3) (Shi et al., 2006; Parinussa et al., 2014), the Advanced Microwave
Scanning Radiometer 2 (AMSR2) (Koike et al., 2004; Njoku and Chan, 2006; Owe et
al., 2008; Zeng et al., 2015a), and the Soil Moisture Active Passive (SMAP) satellite
(Entekhabi et al., 2010, 2014; Zeng et al., 2016a). Overall, retrieving soil moisture
from passive microwave brightness temperature mainly consists of two parts: the first
part is use of a radiative transfer model to link the brightness temperature and the soil
dielectric constant. The second part is use of a dielectric mixing model to link the soil
permittivity and soil moisture. Overall, the current inversion algorithms can be
divided into four categories. First is the single-channel algorithm (SCA) that uses only
single polarized brightness temperature measurements along with lots of auxiliary
data to retrieval soil moisture (Jackson, 1993; Zeng et al., 2016a). The second is the
multi-parameter iterative inversion algorithm, which can estimate several parameters
simultaneously (e.g. soil moisture, vegetation optical depth and surface temperature)
(Kerr et al., 2012). The third is the polarization-index algorithm which uses the
polarization index to estimate soil moisture (Njoku and Chan, 2006). The fourth is the
intelligent inversion algorithm, e.g. neural network and genetic algorithm (Santi et al.,
2012; Wigneron et al., 2003).

1.3.3.2 Active microwave remote sensing of soil moisture

Microwave signals can not only penetrate clouds, but also can penetrate
vegetation and soil to some extent. The bare soil’s backscattering coefficients receive
by the active microwave sensors (e.g. radar) have a strong correlation with soil
moisture (Baghdadi et al., 2011; Zribi et al., 2014a). In addition, the backscattering
signals are also affected by many other factors, such as vegetation cover, surface
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roughness, and soil texture (Barrett et al., 2009; Kornelsen and Coulibaly, 2013). The
key to improving the retrieval accuracy of soil moisture is to remove effectively the

effects of surface roughness and vegetation cover (Bryant et al., 2007).

Over the past decades, researchers have achieved great success in terms of soil
moisture inversion for areas of bare soil or sparse vegetation cover. Many models
have been developed for soil moisture inversion or prediction of the scattering returns
for a variety of surface profiles. The empirical or semi-empirical models mainly
include the Oh model (Oh et al., 1992), the Dubois model (Dubois et al., 1995), and
the Shi model (Shi et al., 1997). The theoretical models mainly include the physical
optic model (POM), the geometric optic model (GOM), the small perturbation model
(SPM), the Integral Equation Model (IEM) (Fung et al., 1992), and the advanced
integral equation model (AIEM) (Chen et al., 2003).

The Oh model was developed based on the multiband fully polarimetric
scatterometer data. The Oh model can be applied to a wide range of soil roughness.
Especially when the RMS height s of the soil surface is in the range of 0.1 cm to 0.6
cm and the correlation length | is in the range of 2.6 cm to 19.7 cm, then the model
predictions are more consistent with the actual measurements. However, a lot of
ground observation data with limited surface condition information has been used to
build the Oh model, thus its universality needs more in-depth analysis and verification.

The Dubois model was developed based on multi-band and multi-polarization
scatterometer data. When the ks is less than 2.5 (k is the wave number, s is the RMS
height), the incident angle is larger than 30< and soil volumetric water content is less
than 35%, the Dubois model has a good accuracy. However, when the ks is larger than
2.5, the Dubois model can no longer describe the radar backscatter of a rough surface.
Based on the IEM model, Shi et al. (1997) analysed the effects of different soil
parameters (soil roughness and soil dielectric constant) on the scattering signals, then
they built the relationship between backscattering coefficients and soil moisture at the
L-band. In the Shi model, the surface roughness spectrum which affects the scattering

coefficient has also been involved.

The Kirchhoff approximation model includes the GOM model and the POM

model. The GOM model assumes that when the soil surface RMS height s is larger,
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scattering is completely incoherent. The scattering coefficient is calculated by using
the stationary-phase approximation method. The GOM model is suitable for large
surface roughness. The POM model assumes that when the RMS height s is small,
there is a coherent scattering. When the ks=0, it obtained pure coherent reflection.
Under that situation, the POM model uses an approximation analog method to
simulate the scattering characteristics of target objects. The POM model is suitable for
medium surface roughness. When the surface becomes smooth, the Kirchhoff model
is no longer applicable. The SPM model is suitable for relatively smooth, and a
smaller correlation length surfaces. The IEM model is a theoretical model based on a
microwave radiation transfer equation. It can simulate the real situation of soil
backscatter value in a large surface roughness range. IEM shows both a high
simulation accuracy and easier operation in practical applications. The AIEM is
extended from the IEM, but its prediction accuracy is much improved compared to the
original IEM (Chen et al., 2003; Wu et al., 2008). It has been the model most often
chosen as the forward model to simulate the scattering coefficients of bare soil
surfaces with various ground conditions in many previous studies (Brogioni et al.,
2010; Pierdicca et al., 2008).

1.3.4 Summary of remote sensing methods

In conclusion, each method has its advantages. Visible-near infrared band models
can monitor soil moisture at finer resolutions. However, optical observations are often
influenced by clouds and atmospheric conditions. Also, the optical sensors cannot
work all day and night. The thermal infrared monitoring of soil moisture has a good
accuracy, but it is also vulnerable to the influence of clouds and may experience
signal saturation easily under the condition of heavy vegetation. The former is a major
limitation since about half of the land surface is covered by clouds at any one time
(Zeng et al., 2015a). Passive microwave remote sensing uses brightness temperature
to estimate soil moisture. It can map soil moisture with high temporal resolution and
high accuracy. However, since the antenna size of the passive sensor is limited, its
spatial resolution is too low for it to be used for some practical applications such as
agricultural productivity estimation at a local scale (Kornelsen and Coulibaly, 2013).
In contrast, active microwave remote sensing has unique advantages for soil moisture

monitoring as it: (a) is capable of working both day and night, (b) is able to penetrate
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cloud layers, and is less affected by atmospheric conditions, (c) is directly related to
soil moisture through soil permittivity, and (d) can provide observations with much
higher spatial resolution than passive microwave sensors. Therefore, we used active
microwave remote sensing observations to retrieve soil moisture in this dissertation

research.

1.4 Research status of active remote sensing of soil

moisture

Estimating soil moisture from active microwave remote sensing began with
Ulaby’s experiments (Rao et al., 1993). The challenging issue for soil moisture
retrieval is that the relationship between soil moisture and the backward scattering
coefficient is not linear. Roughness, vegetation cover, dielectric constant, soil physical
properties (structure, composition, etc.) and radar parameters all affect the strength of
the echo. Vegetation layers have a thickness sufficient to shield the scattering
information from the soil surface, thus, vegetation is usually considered to be the most
important factor that affects the retrieval accuracy of soil moisture (Srivastava et al.,
2009).When the wavelength is long (e.g. L-band), the influence of the vegetation on
backscattering signals becomes weak (Baghdadi et al., 2006). Short wavelengths (e.g.
X-band, 3 cm) reflect information from the vegetation canopy, while long
wavelengths (e.g. L-band, 24 cm) can penetrate the canopy and obtain echo signals
reflected from the soil surface. Medium wavelengths (e.g. C-band, 6 cm) reflect both
from the soil and the vegetation canopy. Brown et al. (1988) have found that the C-
band can also penetrate vegetation when the vegetation water content is not high. For
optimum soil moisture inversion, Ulaby et al. (1982) have recommended that a low
incidence angle with a long-wave band (L-band) can minimize the effects from

surface roughness and vegetation

The surface roughness (root mean square height s, correlation length | and
autocorrelation function of statistical expression) is another important factor.
Parameter sensitivity studies on radar signals from a variety of soil surfaces indicate
that the contribution of surface roughness to the radar signal is equivalent or even
larger than that of soil moisture (Lin et al., 1994). Therefore, one of the most

challenging tasks in active microwave remote sensing of soil moisture is to decouple
9



the effects of soil moisture and surface roughness. Ulaby and Batlivala (1976) have
found that when the incident angle is greater than 60<the echo signals received by the
sensor will increase with the same soil surface roughness. In addition, the surface
roughness is difficult to measure, and the measurement of large areas is also difficult
and expensive. Rahman et al. (2008) put forward the most commonly used soil
roughness measurement tool: needle cross-sectional plate, what also finds it hard to
describe surface roughness accurately. Subsurface rock fragments also have some
impact on the backscatter coefficient, but they cannot be measured (Jackson, 1993).
Due to the strong coupling of soil moisture and surface roughness, many researchers
are working on the optimal radar configuration for soil moisture retrieval. Rao et al.
(1993) found that multi-frequency radar data is more suitable for soil moisture
estimation than single-frequency radar data. Srivastava et al. (2009) and Baghdadi et
al. (2006) found that combining the low and high incident angle of SAR data (C-band)

can get better results in inversion of soil moisture than using a single incidence angle.

Holah et al. (2005) claim that a low incident angle (20937< is more suitable for
soil moisture retrieval. The vertical (VV) polarization has the highest sensitivity to
soil moisture, followed by horizontal (HH) polarization, while cross (HV and VH)
polarization is relatively insensitive to soil moisture. Chen et al. (2005) found that the
use of the polarization ratio can minimize the effect of roughness. Theoretically, the
multi-polarization method can improve retrieval accuracy. However, some studies
have shown a contrary result. For example, Baghdadi et al. (2006) found that the
retrieval accuracy of soil moisture is not improved by using the dual polarization (HH
/ HV) compared to using a single polarization. In the past thirty years, many models
have been developed which can quantitatively describe the relationship between the
scattering coefficient and soil moisture. The most commonly used surface scattering
models are divided into three categories: theoretical models, semi-empirical models,
and empirical models. The theoretical models mainly include the Kirchhoff model
(e.g. physical optics model and geometrical optics model as well as a small
perturbation model), the integral equation model, and the improved advanced integral
equation model. The empirical and semi-empirical models mainly include the Oh,
Dubois and Shi models. Empirical and semi-empirical models may not be applicable

for data sets other than those used in their development. Due to its complexity and the
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requirement of a detailed knowledge of the surface roughness, it is difficult to invert
soil moisture directly using the theoretical models. However, they can be used to
predict accurately the scattering returns for a variety of surface profiles, which is very
helpful for understanding the surface scattering mechanism.

1.5 Flow chart and outline of the dissertation research

1.5.1 The flow chart of the dissertation research

In this dissertation research, firstly | validated the AIEM model, which was
adopted as our working model. The validation was made by extensive comparison
with numerical simulations and experimental measurements. Results showed that
AIEM predictions matched well with both the numerical simulations and
experimental data. With the confirmed confidence, we conducted sensitivity analysis
of radar scattering to soil moisture and surface roughness by using the AIEM. First,
we investigated the bistatic radar response of soil moisture and surface roughness of
bare soil surfaces. To better explore the potential of bistatic scattering for soil
moisture sensing, we investigated the sensitivity of single polarized scattering, the
combination of dual polarized scattering, and the combination of dual angular
scattering, to soil moisture and surface roughness, respectively. Then, the AIEM
model was again used to simulate the radar backscattering characteristics of the soil
surface. A recurrent Kalman filter-based neural network method was developed to
retrieve soil moisture without any auxiliary data. Finally, we selected a bare soil
region to test our method. After applying the developed inversion method by using the
two ALOS-2 data, we obtained the relative soil moisture change of the research area.

A flow chart of the dissertation research is shown below.
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Figure 1.1 Flow chart of the dissertation research.

1.5.2 Outline of the dissertation research

This dissertation focuses on the retrieval of surface soil moisture from radar
measurements. The organization of this dissertation is as follows. Chapter 1
introduces the research background and motivation, and gives a brief history of soil
moisture remote sensing using radar. Chapter 2 describes the principles of microwave
remote sensing of soil moisture. A description of the randomly rough surface is
presented, followed by the electromagnetic wave interactions with the media. In
particular, an advanced integral equation model (AIEM) is introduced. Chapter 3
elucidates the validity of the AIEM model by extensive comparison with numerical
simulations and experimental data. Chapter 4 analyses the characteristics of the
bistatic radar configurations and dissects the sensitivity of bistatic scattering to soil
moisture and surface roughness of soil surfaces. Chapter 5 presents a framework of
soil moisture retrieval from radar measurements using a recurrent Kalman filter-based
neural network. The network training and data inversion are described in detail.

Chapter 6 concludes the research results and suggests related topics worth future study.
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Chapter 2 Electromagnetic wave scattering

from rough surfaces

Electromagnetic wave scattering from a randomly rough surface is of palpable
importance in many fields of disciplines and bears itself in various applications
spanning from surface treatment to remote sensing of terrain and sea (Fung, 1994;
Fung and Chen, 2009; Spizzichino and Beckman, 1963; Tsang and Kong, 2001; Ulaby
et al., 1982; Voronovich, 1994). For example, in microwave remote sensing of terrain,
it has been a common practice to retrieve, by analysing the sensitivity of the scattering
behaviour and mechanisms, the geophysical parameters of interest from the scattering
and/or emission measurements (Chen et al., 2015; Johnson and Ouellette, 2014).
Another example is that by knowing the backscattering patterns, one may be able to
detect the presence of the undesired random roughness of a reflective surface such as
antenna reflector and, thus, accordingly devise a means to correct or to compensate
the phase errors with respect to the phase centre. Therefore, it has been important both
theoretically and practically to study the electromagnetic wave scattering from the

random surfaces.

In order to tackle the complex and sometimes intricate mathematical derivations
and yet to retain a high level of accuracy beyond conventional models [notably,
Kirchhoff and small perturbation method (SPM)], the integral equation model (IEM)
has been developed by (Chen et al., 1992; Fung, 1994; Fung et al., 1992) under
certain physical-justified assumptions. One among these assumptions was to use a
simplified Green’s function by dropping off the phase term associated with the
random surface height. Doing so might have a more profoundly critical impact among
all of these assumptions: While greatly alleviating the burden of mathematical
derivations, it unavoidably degrades the model accuracy to a certain extent, depending
upon the surface properties and observation geometry. Nevertheless, the IEM model
proves to perform very well in backscattering and offers to seamlessly bridge the gap
between the Kirchhoff and SPM models. Driven by the need of predicting bistatic
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scattering and microwave emissivity, much effort has been devoted to further
improving IEM accuracy (Chen et al., 2000, 2003; Du, 2008; Fung et al., 2002; Fung
and Chen, 2004; Li et al., 2002; Li and Fung, 1991; Wu et al., 2001, 2008; Wu and
Chen, 2004;) by removing some of the assumptions that were imposed for the
purposes of mathematical simplicity during the course of derivation. This has been
done by re-deriving the expressions, though this required excessive and tedious
manipulations. Another step forward was the introduction of a transition function into
the Fresnel reflection coefficients to take spatial dependencies into account, removing
the restrictions on the limits of surface roughness and permittivity (Fung, 1994; Fung
et al., 2002). The improved and updated IEM model, called Advanced IEM (AIEM)
has proven to work perfectly for a broad range of surface dielectric and geometric
parameters (Fung and Chen, 2009, 2004; Fung et al., 2002).

2.1. Description of randomly rough surfaces

The reflection of electromagnetic waves from a planar interface between two
media, as matter of fact, is well known via reflection law and Snell’s law. The
reflected wave, being specularly directed, is dependent on the incident wavelength,
incident angle, and electrical properties of the media. Waves from a rough surface are
much more complicated in the sense that the reflected energy is distributed in all
directions (though some favour certain directions more than others): its directional
pattern is determined by the properties of the rough surface. The roughness of the
surface can be characterized as periodically, randomly or quasi-periodically randomly
rough. For natural surfaces, however, periodically rough surfaces are most often

encountered.

A good example of a quasi-periodically randomly rough surface is a surface
formed by wind erosion, saltation of snow particles, and deposition of surface (known
as a Sastrugi surface) which is frequently found in polar regions. Wind-blown grubby
sand dunes, which cover a vast area on Earth, present yet another interesting surface
in view of electromagnetic wave scattering. Mathematically, the Sastrugi surface may

be given as a superposition of “ridges and grooves”:

oo oo
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Mm=—00 N=—00 (21)
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where the amplitude coefficient o is assumed to have a uniform random distribution

in [h,(1+5%)] with mean height &,. The position (z ,y ) may be assumed to have a

Poisson random distribution and is determined by the ridge density (number of ridges
per unit length). Notice in particular that for purposes of simulation, the total surface

length is of finite L in both directions. The “ridge” function ((z,y) can be of the form:

((z,y) = p(:z:)rect(x/ € rect(y / t,) (2.2)

where p(-) is the shape function that specifies the ridges’ shape, rect(-) is the

rectangular function, and €0, defines the width and length of the ridge, respectively.

Other classes of naturally occurring surfaces, such as terrain and sea, are best and,
perhaps, only can be modelled by random processes. The two classical approaches
commonly used to model natural surfaces, fractal and statistical approaches, are here
treated.

2.1.1 Fractal approach

It has been proved that fractal geometry provides a sound and reliable description
of natural surfaces (Li et al., 1994; Xu et al., 2010, 2012). However, in order to apply
fractal geometry to remote sensing, it is mandatory to devise a fractal model for the
surface that allows for a possibly approximate evaluation of the scattered
electromagnetic field. A viable fractal model for surface description is the fractional
Brownian motion (fBm) model. By definition, an isotropic surface z(x,y) belongs to

the class of fBm if:
_ 1 E 52
P{a(z,y) — 2(z"y") <&} = W f exp{————"——=d¢

opi-H)_2H

e (2.3)

where H is the Hurst coefficient, T is the topothesy.

r=Nla-aV -y (2.4)

Hence, an fBm surface is characterized by stationary Gaussian distributed height
increments, while the surface is not stationary. Its description relies on only the two
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parameters, H and T. Incidentally, we note that different choices can be made for the
set of parameters representing the fBm surface (Li et al., 1994; Xu et al., 2010, 2012).
For instance, the fractal dimension D and the standard deviation s of the height
increments at unitary displacement can be used without any restriction on the
following analysis. In fact, D and s are related to H and T such that:

D=3-H
s = T

(2.5)

Once the surface has been described by means of an fBm random process, it is not
straightforward to obtain the corresponding evaluation of the scattered field. This is
because fulfilment of the model hypotheses (Agnon and Stiassnie, 1991; Ewe et al.,
2001; Franceschetti et al., 1999; Macelloni et al., 2000), mathematical developments
(Agnon and Stiassnie, 1991; Ewe et al., 2001; Franceschetti et al., 1999; Macelloni et
al., 2000), limits of validity (Agnon and Stiassnie, 1991; Franceschetti et al., 1999;
Macelloni et al., 2000), and related issues need to be addressed. In particular, we
stress that a surface satisfying Eq. (2.3) for any small value of the distance t would be
not differentiable in any point, and its root mean square (RMS) slope would be
infinite. On the other hand, a surface satisfying Eq. (2.3) for any large value of the
distance 7 would suffer from the infinite variance problem (infrared catastrophe).
Fortunately, real natural surfaces satisfy Eqg. (2.3) only in a limited (although wide)
range of t values (or, equivalently, of spatial frequencies). In addition, whenever a
scattering problem is in order, the range of distances t to be considered is limited on
one side by the illuminated patch size (pixel size), and on the other by the incident
electromagnetic wavelength I (values of t much smaller than | need not be considered).
Therefore, band limited fBm surfaces must be used (Agnon and Stiassnie, 1991; Ewe
et al., 2001; Franceschetti et al., 1999; Li et al., 2002; Macelloni et al., 2000; Wu et al.,
2008), and hence lower and upper cut-off frequencies must be introduced. Limits of
validity of scattering models obviously depend on such cut-off frequencies (Agnon
and Stiassnie, 1991; Franceschetti et al., 1999). However, we here want to stress again
that these latter parameters are often not related to surface properties, but rather to
illumination (illuminated patch size, wavelength), and therefore they are known a

priori.

An example of a fractal random surface is illustrated below.

16



zy—aCZb banb”:L’cosﬁ +ysing))+a,]; b>11<s5<2
n=0 (26)

where z is a band-limited generalized Weierstrass surface with fractal dimension
D=s+1,

K, : is a fundamental wave number;

C :isanormalized coefficient such that z has an RMS height o such that:

1/2
21— 52|

C’ =
1— b?Nf(572)

; (2.7)

«, : Is a random phase uniformly distributed over |-, 7| and independent of 3 ;

n

and

3. is a random phase with mean 3 and some kind of distribution depending on

what type of rough surfaces.

The autocovariance function is:

Nl

Z b2 cos K (EcosB 4 (sin )
n=0 (2.8)

212
¢.(60)=E|TC

where E (.) = expectation operator and K, = K b".

After some mathematical manipulation, we arrive at

oo

N1 ‘ ‘ B
({‘z(p7¢) — 122 Z p2As—2n Z Jm(Knp)s(m)ejm(é+7r/2—ﬁn
n=0 =—00

(2.9)

1

where S(m) = o)
s

P, (¥, )e™ " dyp, (2.10)

andJ (-) is the Bessel function of order m.
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By noting J (K p)=(-1"J (K, p), We may rewrite ¢ as:

Ny—1 2(s—2)n
¢.(p0) = mo?c?| 3 °

Jo (Knp)
=0 (2.11)

fol x —
+ ) BT (=)™, (K, p)S(2m) cos 2m(¢ — B,
n=0

m=1

By considering the finite antenna beam-width, a Gaussian beam of the form ¢/2/A.”

is introduced to account for finite footprint, where R =eA ;e >0and A = IQ(—W

n

Therefore,

N1 9059
f b2(s 2) 2R

9 € Jo (K, p)
"= . (212

Nf—l ~o _
+ )0 B2 RN Ly (K, p)S(2m) cos 2m(¢ — B,)
n=0

m=1

¢ (p,¢) = mo*C?

Z

The corresponding roughness spectra is:

0 27

1 — 1K p cos(op—
WE.®) =~ [ [ €. (p. o)k 0 Ddodp
0 0

22 | NyLios—2n  _RAKL+K?)
g C b 2 2
= ) Z 2 Rne 2 [O(RnKnK) +
n=0
N,-1 RAK4EK?) 3
4mb?2nRZe 2 > 8@2m)cos2m(® — )1, (R’K,K)
n=0 m=1 (213)

where I () is a modified Bessel function of order e.

For sea surfaces, one possible choice of the random phase is

3, = mean wind direction, and

¥, = B, — B, with probability density function

2e
n

Y

cos—2
2

b

= (2.14)

P,)=gy, rect
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with

B 2% 121 e,) . | +1 12 0 = Int In(K, / K;)
In = al+2,) . " n+1 r In(b) - and
K, = 9Py
s =3.63 rad/cm
where

g: gravitational acceleration=981 cm/ s? ;

p,,- Water density; and

7. surface tension.

2.1.2 o—( approach

Though fractal properties were investigated in the context of describing a random
surface, we adopted more classical, and more commonly used, roughness parameters:
the correlation length and the RMS height. The correlation length measures the
horizontal roughness scale. The RMS height describes the vertical roughness scale.

The ratio of RMS height to correlation length is related to surface RMS slope.

Assuming a randomly rough surface z(z,y) and a real stationary process with zero

mean and standard deviation ¢, then

(smy)ea+r,y+7,)=pl(r,7,) (2.15)

where o2 = <z2>— <z>2 and z follows a Gaussian distribution such that:

p(z) = Lefzz/%2 . (2.16)

2mo

For an isotropic surface, we haver =7 =r. In what follows, the isotropic

surface is treated unless otherwise specified.

For the surface scattering problem, the joint probability density function between

two points on the surface is of interest, and is:
19



y _ exp{=(z" — paz't 2?) / (20°(1 — p*)}
p(z,2") = 271_02\/1 — . (2.17)

The correlation function p(r,.7 ) < p(7.¢) appearing in Esq. (2.15) and (2.17) is
defined by:

= % f 2r+71)d (2.18)
0

where r = /2% + y?; and L is the surface length.

The surface spectrum and correlation function are related by the Wiener-
Khintchine Theorem, which states that the spectrum of a wide-sense stationary
random process of zero mean and its autocorrelation function form a Fourier

transform pair:

2T oo . o
Wike) = [ [ plr.g)ehm==0r dr dg (2.19)

For an isotropic surface, the autocorrelation function p(7,¢) is independent of
direction ¢and dependent only on lag distance 7. The relation reduces to:

W(K) = - p(r)J o (Kr)r dr (2.20)

0

where J, is zero™ order Bessel function.
In reality, surface length L is finite, leading to a cut-off spectrum given by:

0 L, 0<K<2r/L

W (K)=
w0 K, /K" | 2rn/L<K<o

(2.21)

where K is defined similar to that of Eq. (2.8). The corresponding measured height

variance and correlation length are, respectively, calculated by the following

equations:

n—1 (2.22)



For simplicity, but without loss of generality, we have only discussed the isotropic

surface. Note that for an isotropic surface, p(r,¢) = p(7). In general, the correlation
length ¢ is directionally dependent for anisotropic surfaces such as the sea. When the
correlation function drops from 1 (the maximum value) toe™!, the corresponding
value of 7 is called the correlation length ¢, that isp(¢) = e7!. Fig. 2.1 illustrates the

correlation function as a function of lag distance 7. The standard deviation and

correlation length are called the intrinsic surface parameters under the o — ¢ model.

1
|
1
1 > T
1

: |

Figure 2.1 Correlation function and correlation length L.

2.2 Surface spectrum and correlation function

This subsection gives commonly used surface correlation functions and their
surface spectra. For natural surfaces, because of their formation mechanisms, a
distinct correlation function may be presented that best describes its correlation
properties. The following pairs of equations illustrate three commonly used functions:

Gaussian, Lorentzian (better known as Exponential), and Exponential-like.

Gaussian function

plr) =" (2.23a)
W(K) = Le K (2.23b)
™
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Lorentzian (Exponential) function

o(r) = eI (2.24a)
W(K) = 1 (2.24b)
(1 + K20?)
1.5-Power
plr) = ———— (2.254)

L+ /07

i) — LK) (2.25b)
2107 (1.5)

Exponential-like function

plr) = expl=r(l =) /1 (2.262)
(1 L2 24+m 3+m

(n) — Ze| e _— Y, 1,—

W (K)‘%{L] rin+2, R kL) (o 06p)

where L, = (zL) / (z 4+ mL), ,F(a,b,c;z) is the hypergeometric function, and 7 > z.

To achieve a clear separation between a Gaussian shape around the origin and an
Exponential elsewhere, it is necessary to choose L >> z. When z is small, the
correlation length will be approximately equal to L. The transition region from
Exponential to Gaussian is proportional to the z value, which controls the actual

shape of the correlation function.

2.3 Roughness parameters

In the statistical sense, y = {o,¢} is a random variable due to spatially and

temporally varying properties such that

y=y,+vy, (2.27)

where y, is “truth”, and y, is an error term.
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In practice, the “truth” is never obtainable, nor measurable. Statistically, y, and y,
may be assumed to be, as they usually are, uncorrelated, such that y is an unbiased
estimate of y,, i.e.:

E(y) = B(y,), ¥y, ~ -/ (0,0%) (2.28)

where E denotes statistical mean, and o is the variance of y, .

It turns out that to estimate the correlation length, we need to know the correlation

function p. For natural surfaces, the RMS height and the correlation length typically

depend on the measured length.
The variance of estimate correlation function 2 is:

varlp(Q)] = = [[715(O) + ol ~ e + Q) ~ Ap(pEnlE + C) + 202l

L, (2.29)
where L, is the profile length used to estimate p.

The variance of estimate RMS height o is:
var(6) = fo T pe)dE (2.30)

It is evident that both variances are strongly dependent on the shape of the correlation
function. The RMS height and correlation length increase with the measurement trace

length.
2.4 Electromagnetic wave-media interactions

2.4.1 Electric field integral equation (EFIE) and magnetic field
integral equation (MFIE)

Referring to Fig. 2.2, considering a plane wave impinges onto a dielectric rough
surface which scatters waves up into the incident plane and down into the lower

medium, with the electric and magnetic fields been written as:
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E' = PE, exp[—j(_; ?)] (2.31a)
H =—k xE' (2.31b)

where j =+/—1; i denotes the incident wave; pis the unit polarization vector; E is
the amplitude of the incident electric field, and 77 is the intrinsic impedance of the

upper medium, respectively. The position vector is 7 =23+ yy+ 22 and the

wavenumber vectors in the incident and scattering directions are defined as follows,
respectively:
EZ. = k;kt = 1k, + gkiy + 2k, ;k,, = ksin0, cosgbl.,kl.y = ksinf,sin¢,, k. = kcos?,

127

; (2.32a)

eks ko = ik, + gk, + 2k ik, = ksinf cosd k= ksinf sing k= kcosf, . (2.32b)

For linearly polarized horizontally polarized and vertically polarized waves, the

polarization vector p for incident (i) and scattering (s) waves, respectively, is defined

as:
ﬁi = —Tsing, + ycose,
0, = AZ. X l%l = —(2cosf, cos¢, + ycosl, sing, + zsinb)) (2.33)
As zéz—jsingbs%—g}cos@ '
v, = 0 = ﬁs X I%S = Zcost, cosp, + ycosl, sing, — Zsinf,
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Figure 2.2 Wave scattering geometry

The total electric and magnetic fields according to the Stratton-Chu Formula may
be expressed (Ulaby et al., 1982; Tsang and Kong, 2001) as:

E(F) = f, ds{iwnliv < AEIGET) + [ - B GEF )+ x B < V67,7 (2.342)

HF) = ﬁS'dS'{fiws[ﬁ X EFGE ) + [ H(r V' GEF) i x Hir) x VG, 7 | (2.34D)
where G is Green’s function, n is the unit normal vector pointing to the scattering

region, and the integration is performed over the rough surface §'.

The total field is the sum of the incident field, which is known, and the scattered
field, which is unknown and is to be determined. For a source-free region as in our

case, it is expressed mathematically (Ewe et al., 2001) as:

B) = TE(7) - %ﬁd&”{iw[ﬁ < 16 ~ [ % B]x V'G [ EIV'G'} 2350

ﬁ(?) — Tﬁi(?) + %ﬁdﬁ"{iws[ﬁ X E‘]G + [0 x [_ﬂ xV'G +[n- FI]V'G} (2.35b)

0,7 ¢S

where T =(1-Q /47r) ', Q=
2m,r €S’
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2.4.2 Far-zone scattered field and scattering coefficients

Equation (2.34) states the Huygens’ Principle (Tsang and Kong., 2001): The field
solution in a given volume V' is completely determined by the tangential fields
specified over the surface S' enclosing V'. From Eqg. (2.35), to find the surface fields
one has to solve the pair of Fredholm integral equations of the second kind. For a
rough surface with an irregular boundary, the completely analytic solution is almost
prohibitive. Instead, an approximate estimate of the surface tangential fields is usually,
and preferably, adopted by taking the vector product with the unit surface normal on
both sides of Equations (2.35a) and (2.35b) and, after some reformulations (Macelloni
et al., 2000), by using an iterative scheme to find the estimates.

Once the surface tangential field estimates are made available, the scattered field
for ¢ polarization at far-zone distance R is readily calculated by making use of the

Stratton-Chu formula (see Fig. 2):
B = (CEof[(j x k(i E )+ g (iox )] explj(kk, - 7)]ds (2.36)

Jk; .
where C = — " exp(—jk.R).
" p(—jkR)

Once the scattered field is solved, the scattering coefficient with q polarization is
calculated as (Ulaby et al., 1982):

o 47rR29%e{<‘E;2>} o)

" A cosQ%e{‘Ei‘z}

where Ris the range from surface to observation point and 4 is the illuminated area of

overlap, confined by transmitting and receiving antenna beam patterns over the

surface.

2.5 The advanced IEM model

In IEM and AIEM modelling (Fung, 1994; Fung et al., 1992), the estimation of

surface fields is the sum of the Kirchhoff field and the complementary field, or:

(ixE)=(xE,), +(@xE), (2.38a)

(AxH)=(ixH,) +(AxH) (2.38h)
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where the Kirchhoff fields can be expressed as:

-

(WX E,), = ax[(1=R)p+ (R, + R)(p-1)i)E' (2.39a)
m(ivx H), =i x b x[(1+ R)p + (R, + R,)(p - 1)]E' (2.39b)

and the complementary surface fields, which correct the Kirchhoff estimates, are

written as:
~ " 1. = g0 ~ 2 3./
(i E,), = ——liix [a-R)@ds +ix [(1+R,)E,ds
~(R, + R x D) xt)-nx [(& - @us ]
(2.40a)
(Ax B,), = —i[ﬁ x [+ R)Gds' +0x [~ R, ds
+(R, + Rt -1 x | (@, — €, s |
’ J@-a. (2.40b)
~ 7 o 1., A ~ = !
(i x H,), = it x [+ RS +0x [(1— R, ds
~(R, + R)it i x [(3, - 3,5 ]
(2.41a)
(Ax H,), = ﬁm x [~ R)%ds +ix [+ R, de
HR, + B x D) x D)7 x [[(92, — %35 ]
(2.41b)

In the above expressions, we make use of a local coordinate defined by [A?.,f,ci] as

seen in Fig. 2.3 (Ulaby et al., 1982; Fung, 1994).
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Figure 2.3 Geometry of scattering from a rough surface, where , respectively,

represent the upward re-radiation and downward re-radiation, going through the upper

medium and the lower medium.

The unknown electric and magnetic fields that appear inside the integrals above
are expressed as:

@ = jhn(ix H )G — (i x E)x V'G - (- E )V'G (2.42a)

’ ’ o (2.42b)

&, = Lk, (A x H )G, — (i x B)x V'G, — (i B )V'G]
& (2.433)

9, = i x B)G, — (i x ) x V'G, — L (3, )V'G,
i Hy (2.43b)

where 1), is the intrinsic impedance of the lower medium, the wave transmitted
region. Note that Eq. (2.42) and (2.43) involve Green’s functions G,G, and their

gradients in the upper and lower mediums VG,V G,, respectively.

By substituting the Kirchhoff surface fields in Eq. (2.39a) and (2.39b) into Eq.
(2.42) and (2.43), the estimates of the complementary fields of Eqg. (2.40) and (2.41)

can be obtained. This may be seen as a second iteration of seeking the solution of the
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integral equations governing the surface fields using Kirchhoff fields as initial guesses,
which is indeed a very good choice for fast convergence

Corresponding to the Kirchhoff and the complementary surface fields in Eq (2.39)
and (2.40), the far-zone scattered field may be also expressed as a sum of the

Kirchhoff and the complementary scattered fields (Fung, 1994; Fung et al., 1992):

By = By + B, (2.44)

where the Kirchhoff field is given by
Ef = CE, f £, exp{j®}dudy (2.45)

with the phase term @ = H(k, ~k)- i,

The complementary scattered field, propagating upward and downward, may be

written as:

CE,
87°

E,;p _ {gqpej[‘f’ﬁks'“kﬁ] + @qpeﬂ'[‘l’n”s"”’k%'r]}dudvdmdyd:r/dy/

(2.46)
The Kirchhoff field coefficients f appearing in Eqg. (2.45) can be explicitly

written into the following form:

(R, + B0 D)l )i k) = (- d)(h, k) = 6, DGR (9.47a)
fo =10—=R)b, - (Axd)—(L+ R)h, - (Axh)k,

(R, B,) - (b - £)(i ) = (- )@, )+ (0 ) R)lsy (9 47h)
(R, + B0 )b, ) k) = ()5, )+ (0 D) (9.47¢)

~(Ry + B,)(h, - d)[(h, - d) (- k) = - ), ) = (0, DGR (0.47q)

— 2 2
where 5t = V1T 2% T2

The complementary scattered field is contributed from the re-radiated fields that
may propagate through medium 1 and medium 2, represented by upwardly moving

and downwardly moving waves. The propagators § ,& may be decomposed into the

upward components designated by §*,&

. ,,and the downward components designated
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by 3~

a’

¢, mathematically appearing as the absolute terms in Eq. (2.14), physically

denoting the change of propagation velocity at different media. The explicit

expressions of the complementary field coefficients are given below:

s;(u,z;):_[l;fv (14R)C, + 1;qu](1_Rv)c2+ LR 4R,
i : ; (2.48a)
1+ R 1+ R 1+ R
e R e e (e A
& (u0) = [ LT Rt (1+R,U)Cu—[1+—R”](1—Rv)CQt—[1+—R”](1+RU)Cgt
= = 45 (2.48b)
<17R’U>€T 1_RU 1_Rv .
= (1-R,)C,, - i (1+R,)Cy, — v (1-R,)C,
o b (S AL Y (R
i i i (2.480)
1+ R 1+ R 1+R '
- iqih (l—R,L)C4 ,;h (1+R,)C; - iqih (1—Rh)06
1+ R R R
&) - —| LD <1+Rh>cl,+[11 h]<1—Rh>cm T (14 m)C,
% % Tty (2.48d)
1+RL 'LLT' 1_RL 1_RL .
LB 1o S m e [ 1)
3, (u,0) = I_R](1+R)B1+[1_R](1—R)B2 {1 Bl(1+R)B,
+q. +gq, q
1+}Zz 1+}1§ 1+R (2.48¢)
+[—iqi ](1 R)B4+ ](1+R)B [ e ](13)36
&= (u,0) = — (Lt R)p, (1+R)B1t+[1+RJ<1—R)B%+[1+R](1+R)B3t
K 4 s (2.48f)
[(L=R)e, 1-R 1-R '
e (1-R)B, + o (1+R)B;, + v (1-R)B,
= (u,0) = tR (1-R)B, - tR (1+R)B, - tR (1-R)B,
1—2 1—2 1—2 (2.489)
+[—iqi ](1+R)B4+[ . ](13)3 +[ . ](1+R)B6
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(I—R)s

R e L L - B e T
*q, *q, *q,m,
(1+R)p 1+ R 1+R - (2.480)
r NEEia. it
_ o (1+R)B,, o (1-R)B,, [iqtgr](l—s—R)Bm

For self-contained and easy reference, the coefficients C, B, C, B, appearing in Eq.
(2.48) are given in Appendix 2.A. Note that the coefficients C, B, for the lower or

transmitted medium have the same forms as Cand B, with ¢ simply being replaced

by g, .

With the scattered fields calculated, we perform ensemble averaging to compute
the scattered power and the scattering coefficient. To gain more physical insights into
the field interactions that produce the average power, the following expression for the
incoherent average power is written as a sum of three terms: the Kirchhoff power, the
cross power due by the Kirchhoff field and the complementary power:

By =By ) - (8, )(E0) = (B e ) - (£,,)(5))
voel (£, B = (B, )y )|+ (B2 ) = (85, )y )
=P, +F, +F, (2.49)

where < > denotes the ensemble average over the randomly rough surface z(z,y) and *

is the complex conjugation operator. The final expression of the scattering coefficient
under the AIEM model, a relatively compact form, is given by:

o0

5 _k12 2(1.2 2 o n 2 ) 3
o 7?exp[—0 (kl.z+ksz)]zﬂ|fqp| WOk, — k. ky, — k)

a» st i)
n=1

(2.50)
where

(qu = (ksz + k’iz)n fqp eXp(—O'Qk. k )

2 8z

1 n
+Z{g;;(_kix’_kiy)(ksz - kiz) exp[—oQ(ki - kz'z(ksz - kzz))]

+g‘(;;r (_ksm’_ksy)(ksz + kzz)n Cxp[_JQ(kiQ;z - kiz(ksz - k@z))}

+y‘(;p_(_ksa:’_ksy)(ksz - kzz)n eXp[_UZ(kiQZ + kiz(ksz o kzz))]

—I_&(; (_k’ix’ _kiy)(ksz - ktz)n exp[_UQ(kEz - ktz(ksz - ktz))]
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+&, (<ky,. =k, )k, + k)" exp[—o?(k2 + k,(k, — k.))]
+&];(_k817’ _ksy)(ksz + ktz)n eXp[_O—Q(thZ - kﬁz(ksz - k7z))]

+&, (ko= )k, — k)" expl=0?(k + ky (k,, — F,)]} (2.51)

tz

and W(k, —k

1’

k,, —k,) is the surface roughness spectrum of the surface related to

the »™ power of the surface correlation function by the two-dimensional Fourier
transform, assuming the surface height is Gaussian distribution.

The Fresnel reflection coefficient for a homogenous rough surface is dependent on
the local incidence angle, which is determined by the incident direction and surface
unit normal. The Fresnel reflection coefficients for horizontally and vertically

polarized waves are, respectively:

R _ p,k; cos 6, — 'U’Oktz
h )
1,k; cosb; + puok,

(2.52a)

R — gk, — €k, cos b, (2.52b)

v )
gk, cost, + ek,

where
ktz - ﬁ/?)({ktz} + ]j/// {ktz} (2.52C)
with
) ; S T/2
DAk, } = 7 Re{k?} — kP sin® 0, + \/(”/?f{kf} — k7 sin® 9,,;) + (%h{kf}) ] (2524)
and
1 5 5 1/2
Inlk,} = —E'—(%{kf} — ksin? 6 ) + \/(m,l{kf} — ksin?0, )+ (3{k?}) ] 2520
52e

In modelling the wave scattering, it is a common practice, in order to remove the
spatial dependence of the reflection coefficient, to approximate the local incident
angle either by the incident angle for a slightly rough surface or otherwise by the
specular angle. Such approximation, however, leads to an unpredictable error for the
local incident angle, which is random in nature across the rough surface. A transition
model was proposed by Ulaby et al. (Fung et al., 2002) to fix such a deficiency. It is

necessary to generalize the transition function so that the local angle variation is
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accounted for. This is important for a scattering model to cover a wider range of
surface roughness. Recalling that the scattering coefficient may be decomposed into

three terms, recognized as the Kirchhoff, cross, and complementary terms:

o _ _k ke ¢
%0 = % % * % _The transition model took two extremes of the form (Fung et al.,
2002):
R(T)=R,(0,)+[R(0,)-R,(0), (2.53)

where ¢, is the incidence angle and ¢, is the specular angle, and realized that the

transition function is defined as:

S
v o=1--L (2.548.)
P So
p
with
Tonlp
5, = — L0 (2.54b)
ovlr,=n,0)
o¢ _
§° = lim 2 5H5O (2.54c)
ko—0 o°
pp| R,=R,(0)

Note that Alim 0 =a+b+c, limo¢

o Jm o, = ¢, with the coefficients q,,¢, corresponding to
T —

the Kirchhoff, cross and complementary terms, respectively. Under the framework of

the AIEM model, the three terms are given in Appendix 2B.
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Chapter 3 Comparison of AIEM with
numerical simulations and experimental

data

3.1 Motivation

The study of microwave scattering has wide applications in telemetry, wireless
transform, radar detection and so on. A practical and reliable surface scattering model
is required to obtain a good understanding of the surface scattering mechanism.
Research into microwave scattering on a random surface has been going on for over
forty years. During the years 1960 to 1970, several surface scattering models were
developed, including the Small Perturbation Model (SPM) and the Kirchhoff Model.
These two models are considered as the preeminent standards within their scope of
application. The SPM is capable in the low-frequency and the small-surface-
perturbation circumstances, whereas the Kirchhoff model is suitable for high-

frequency and large-scale rough surfaces.

Since 1990, Dr A. K. Fung has proposed the Integral Equation Model (IEM)
which first solves the limitation of the application scope (Fung 1994). The original
IEM was developed based on several simplifying approximations leading to a
relatively simple, and yet reasonably accurate, solution of a pair of integral equations
governing the surface currents. There has been significant progress in improving the
surface current estimate in order to extent its region of validity. For example, the
Fresnel reflection coefficients have been generalized by replacing them with a
transition reflection coefficient. This allows the argument of the Fresnel reflection
coefficients to change from the incident angle to the specular angle as the operating
frequency and surface roughness changes from small to large values. However, in the
IEM model, the surface height dependence on the phase of the Green’s function was

ignored, leading to a significant error away from the backscattering direction.

The advanced IEM model (AIEM) is a physically-based extension of the IEM

analytical model. It shows significant improvements for single scattering and
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emissivity predictions for a wide range of roughness scales, particularly in the
intermediate roughness regions (Chen et al., 2003). Furthermore, multiple-surface
scattering agrees well with numerical simulation results and controlled laboratory

measurements acquired from known surfaces.

The AIEM removed some weak assumptions from the original IEM (Shi et al.,
2005). In the expressions of the multiple (Chen et al., 2000) and the single scattering
(Chen et al., 2003) terms, the absolute phase terms in the surface Green’s function and

its gradient were kept, but were rederived by the complementary field.

Although the AIEM is theoretically considered to provide accurate predictions, the
accuracy level of its predictions need to be further confirmed. In this research, the
AIEM was adopted for analysing the backscattering and the bistatic scattering
characteristics of the rough surface, analysis which is covered in the next two chapters.
It is very necessary to validate the accuracy of AIEM to draw more reliable
conclusions. Thus, in this chapter, we investigate how the AIEM predictions were

validated by comparison with numerical simulations and experimental data.

3.2 Comparison with numerical simulations

The Numerical Maxwell Model based on 3-D simulations of Maxwell equations
(NMM3D) is a single physical model over a wide frequency range with a single set of
physical parameters of RMS height and correlation function (Chen et al., 2014; Huang
and Tsang, 2012). It has the advantage of high accuracy of the simulation results
(Huang et al., 2010).

3.2.1 Comparison with NMM3D for backscattering

The NMM3D method applies a moment-based algorithm to calculate rough
surface scattering. It can be applied in both active and passive remote sensing. When
it is applied in the active remote sensing case, NMM3D provides bistatic scattering
coefficients and the backscattering coefficients. It provides emissivity when it is
applied in the passive remote sensing case, where it can also be used to calculate
brightness temperature. Recently, we tried to actualize a near-field precondition to

further speed up the convergence as well as simulation time. Although the
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computation is complex, look-up tables (LUT) were pre-computed for both

backscattering coefficients and emissivity.

3211For £=1
1 4
Surface roughness plays a significant role in microwave remote sensing of soil.
We set our experiments in four different surface roughness conditions, varying from
rough to smooth. We first set the RMS height and the correlation length ratio to 1/4.

These results are shown in Figs. 3.1 and 3.2. Obviously, all the three predictions are
quite close to each other, especially at VVV polarization.
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Figure 3.1 Comparison of backscattering coefficients between AIEM and NMM3D for
horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a)

er=15-j3.5, (b) er=22-j4, and (c) er=30-j4.5.

In the HH polarization, we can observe that as the dielectric constant increases,
the AIEM backscattering coefficient appears to a little bit higher than the NMM3D
backscattering coefficient. In addition, as the dielectric constant increases, the
divergence of the AIEM and the NMM3D backscattering coefficient becomes larger.
The most obviously difference between the two models is around the places where the
RMS height is from 0.042A to 0.063.
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Figure 3.2 The same as Fig. 3.1 but for vertical polarization.

In the VV polarization, at a large dielectric constant there is essentially no
difference between the two models, as was expected. However, results from the AIEM
model are also a little bit higher that the NMM3D model, as it was in the HH case.
Furthermore, the difference between the two models becomes larger as the RMS
height increases. Overall, the two models are in good agreement with each other,
especially when the dielectric constant is large and the RMS height is small.
3212For f=1

17

In the second part, all the settings are the same as in the first part expect the soil
roughness is smoother than for the case illustrated in Figs. 3.1 and 3.2. We can see
from Fig. 3.3 that the backscattering coefficients predicted by AIEM are also higher
than those predicted by NMM3D. When the soil moisture is higher, the difference

between the two models increases.
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Figure 3.3 Comparison of backscattering coefficients between AIEM and NMM3D for
horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a)

er=15-j3.5, (b) er=22-j4, and (c) er=30-j4.5.
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Figure 3.4 The same as Fig. 3.3 but for vertical polarization.

Also it is clear that in Figure 3.4, in the transition model, more consistencies can
be found in the vertical polarization case than in the horizontal polarization case. With
the decrease of the surface roughness, the behaviour follows perfectly, as we observed

in Fig. 3.2, but the conformance has grown slightly.

3213For -1
[ 10

In the third experiment, the surface roughness was smoothed further. As seen in
Fig. 3.5, the trends by three predictions are similar to those in Figs. 3.1 and 3.3. With
increase of the RMS height, the divergence between the two models disappears.
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Figure 3.5 Comparison of backscattering coefficients between AIEM and NMM3D for
horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a)

er=15-j3.5, (b) er=22-j4, and (c) er=30-j4.5.
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Figure 3.6 The same as Fig. 3.5 but for vertical polarization.

Like shown in Figs 3.6, similar behaviour can be observed in Figs. 3.2 and 3.4.
With the decreases in surface roughness, agreement between the AIEM and the
NMM3D increased. As the RMS height rose, the divergence decreased in the low soil

moisture situation (a), which is opposite from the results for the situations (b) and (c).

3214For -1
[ 15

As shown in Figure 3.7 and Figure 3.5, in the fourth part of the comparison
between the AIEM and the NMM3D, we can conclude that, in HH polarization, the
difference between the two models increases with decreasing surface roughness. In
general, the AIEM model and the NMM3D show a good consensus in the HH
polarizations. In VV polarizations, when the RMS height is less than 0.084A,
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especially in the case of low surface roughness, the two models have an excellent

agreement.
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Figure 3.7 Comparison of backscattering coefficients between AIEM and NMM3D for
horizontal polarization for an exponentially correlated surface with incident angle of 40°: (a)

er=15-j3.5, (b) er=22-j4, and (c) er=30-j4.5.
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Figure 3.8 The same as Fig. 3.7 but for vertical polarization.

3.2.2 Comparison with MoM and SSA for bistatic scattering

To illustrate the accuracy of bistatic scattering coefficients predicted by AIEM,
comparisons were made between numerical methods and other physical surface

scattering models. Results of these comparisons are offered in this section.

The Fresnel reflection coefficient is a function of the surface permittivity and
surface local incidence angle. In modelling the wave scattering, it is significant to
reproduce the spatial dependence. Wu et al. (2001) have proposed a transition model

to fix its deficiency in bistatic scattering.
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Comparison of the prediction of scattering coefficients in the scattering plane
from the AIEM model with numerical results from the SSA (Small Slope
Approximation) and from the MoM (method of moment) methods are shown in Figs.
3.9. and 3.10. A Gaussian correlated surface with complex dielectric constant 4-j1 is

used. A moderate rough surface with parameters k6=0.5 and kI=3.0 was set. The
incident angle is 30<
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Figure 3.9 Comparison of bistatic scattering coefficients between AIEM and numerical
results of MoM and SSA for a Gaussian correlated surface with er=4-j1, ko=0.5, kl=3.0, and

incident angle of 30°: (a) horizontal polarization and (b) vertical polarization.

In Fig. 3.9 we can observe that all the three predictions agree very well with each
other except at larger backscattering angles. The largest divergence of the three
models appears around the point where the scattering angle varies from 20°to 40<
There is dip in specular direction shown by MoM and SSA, but not by AIEM. In HH
polarization, the AIEM backscattering coefficient is higher than the MOM and the
SSA at scattering angles from -60°to -20< The predictions at V'V polarization have a

better agreement between the three models.
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Figure 3.10 Comparison of bistatic scattering coefficients between AIEM model and
numerical results of MoM and SSA for a Gaussian correlated surface with er=4-j1, ko=1.0,

kl=6.0, and incident angle of 30°: (a) horizontal polarization and (b) vertical polarization.

Compared with Fig. 3.9, the results shown in Fig. 3.10 has a different setting of
ko=1.0, kI=6.0, which means rougher surface conditions. The rougher surface
roughness slightly decreases the divergence between the three models. Generally, the
three models are quite close to each other.

3.3. Comparisons with measurement data

3.3.1 Comparison with UM data for backscattering

The University of Michigan's LCX POLASCAT scatter meter (Tassoudji et al.,
1989) was designed with the capability of measuring the scattering matrix of point or
distributed targets at the L, C, and X bands (with centre frequencies at 1.5, 4.75, and
9.5 GHz, respectively). To verify the validity of the AIEM model, we compared the
AIEM backscattering coefficients with measurement data provided by the LCX
POLASCAT. These experiments were under three kinds of the frequencies at the L, C,
and X bands (the frequencies at 1.5, 4.75, 9.5GHz, respectively) and three kinds of the

surface roughness. These conditions are shown below.
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3.3.1.1 For Surface 1 (S1)

In the first part, we validated the AIEM under moderate surface roughness
conditions. In this case, the RMS height o was 0.4 cm, and the correlation length | was
8.4 cm. Three different frequencies (1.5, 4.75, and 9.5 GHz) were examined in this
part. Each was measured under two different moisture conditions, wet and dry,

relatively.
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Figure 3.11 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=0.4 cm and 1=8.4 cm at 1.5 GHz:

(a) dry soil (er=7.99-j2.02), and (b) wet soil (er=15.57-j3.71).

In Fig. 3.11 we can observe that, for dry soils at HH polarization, as the incident
angle varies from 20°to 30<excellent agreement between measurement and AIEM
can be seen. The maximal error appears at the low incident angle. In the dry condition,
backscattering coefficients at HH polarization are smaller than the measurement data.
However, the backscattering coefficients at VV polarization are larger than the
measurement data. In the wet soil condition, the comparison results show a good

agreement, better than in the dry soil condition.
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Figure 3.12 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 0=0.4 cm and [=8.4

cm at 4.75 GHz: (a) dry soil (¢er=8.77-j1.04), and (b) wet soil (er=15.42-j2.15).

We can see that results with the C band are similar with the L band results like
shown in Figure 3.12. The largest divergence also appears at 10< but the error is,
obviously, smaller. In the dry condition at HH polarization, the measurement data is
larger than the HH AIEM data, but smaller than the VVV AIEM data. The predictions
of AIEM in the wet soil condition also present a better accuracy than at the dry
surface condition.
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X band:
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Figure 3.13 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=0.4 cm and 1=8.4 cm at 9.5 GHz:

(a) dry soil (er=5.70-j1.32), and (b) wet soil (er=12.31-j3.55).

Fig. 3.13 displays the comparisons at the X band. In the dry condition, the VV
polarization shows a good agreement when the incident angle is less than 60< In HH
polarization, the large divergence occurs when the incident angle is between 30<and
70< In the wet condition, the divergence stayed between 1dB to 3dB when the

incident angle was less than 60< In sum, we can conclude the model agrees well at
the X band.
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3.3.1.2 For Surface 2 (S2)

In the second part, we decreased the soil roughness to illustrate the effect of soil
roughness on the accuracy of the AIEM.
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Figure 3.14 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=0.32 cm and 1=9.9 cm at 1.5

GHz: (a) dry soil (er=5.85-j1.46), and (b) wet soil (er=14.43-j3.47).

Compared the Figure 3.14 with the Fig. 3.11, the divergence increases with the
incident coefficient at 30 <in the dry condition at both HH and V'V polarizations. With
the decrease of surface roughness, the error increases in the dry condition. In the wet
condition, change of surface roughness does not cause obvious differences between
AIEM predictions and the measurement data.
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Figure 3.15 Comparison of backscattering coefficients between AIEM and UM

measurements for an exponentially correlated surface with 6=0.32 cm and 1=9.9 cm at 4.75
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GHz: (a) dry soil (er=6.66-j0.68), and (b) wet soil (er=14.47-j1.99).

As shown in Figure 3.15, at the C band, with the decrease of surface roughness,
the divergence between the measurements and the AIEM increased in the dry
condition compared to results shown in Fig. 3.12, especially in the HH polarization.

However, in the wet condition the difference between the AIEM and the measurement

data did not change a lot compared with results shown in Fig. 3.12.
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X band:
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Figure 3.16 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=0.32 cm and 1=9.9 cm at 9.5

GHz: (a) dry soil (er=4.26-j0.76), and (b) wet soil (er=12.64-j3.69).

In the above illustrations, we have shown the effect of decreasing the soil
roughness on the accuracy of AIEM. As shown in Fig. 3.16, at the X band, in the dry
condition, the divergence increased as the incident angle increased. It is obvious that
the results from the wet condition agree better with measurement data than do those
from the dry condition.
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3.3.1.3 For Surface 3 (S3)

In the third part we continue comparing the AIEM predictions with the
measurement data. In this case, the RMS height ¢ is 1.12 cm and the correlation

length | is 8.4 cm, which corresponds to the roughest surface among the three
experiments.
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Figure 3.17 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 0=1.12 cm and 1=8.4 cm at 1.5

GHz: (a) dry soil (er=7.70-j1.95), and (b) wet soil (er=15.34-j3.66).

At the L band, the best agreement of HH polarization and the largest disagreement
of VV polarization all occurred in the dry condition. This can be seen in Fig. 3.17(a).

The largest error also followed by the incident angle equal to 10 degrees.

49



C band:
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Figure 3.18 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=1.12 cm and 1=8.4 cm at 4.75

GHz: (a) dry soil (er=8.50-j1.00), and (b) wet soil (er=15.23-j2.12).

In Figure 3.18 we can observe that under the surface condition 3, we continuous
comparing the AIEM predictions with the measurement data. In vertical polarization,
the accuracy decreased with the increase of the incident angle. Compare with the dry
soil, the accuracy is large when the soil moisture is large both in vertical and
horizontal polarizations.
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X band:
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Figure 3.19 Comparison of backscattering coefficients between AIEM and UM
measurements for an exponentially correlated surface with 6=1.12 cm and 1=8.4 cm at 9.5

GHz: (a) dry soil (er=6.07-j1.46), and (b) wet soil (er=13.14-j3.85).

In the Figure 3.19 we can conclude that in this experiment in X band, the
divergence of the AIEM data and the measurement data increases with the surface
roughness. Also the accuracy is increasing with the incident angle. The error between

the different soil moisture conditions is very little.

3.3.1.4 Conclusions

For the same set of the surfaces, different measurements over a wider frequency
are compared to the model predictions. There are three different fields examined in
this part. Each was measured under the dry and the wet soil conditions, respectively. It
is of interest to know that different soil roughness will cause different results, but the
trends are always similar with the same frequency. One peculiar point is that there is a
jump in the measurements at the L band when the incident angle is 10< This
phenomenon does not show for the case at the X band. Overall, the AIEM predictions
matched well with the POLASCAT measurement data.
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3.3.2 Comparison with EMSL data for bistatic scattering

The bistatic scattering measurement data used here was acquired by the European
Microwave Signature Laboratory (EMSL). The EMSL is a facility which provides
unique measurement capabilities in the field of microwave remote sensing and Radio
Frequency (RF) compatibility. While the laboratory was originally designed to
perform wide-band polarimetric radar measurements, it has been successfully used in
many other research fields such as antenna measurements, material testing through
microwaves, and detection of buried objects.

—AIEM (HH) 2 Measured (HH) —AIEM (VV) X Measured (VV)

15

Bistatic scattering coefficient (dB)

_15 T T T T
0 10 20 30 40 50

Scattering angle (degree)

Figure 3.20 Comparison of bistatic scattering coefficients between AIEM and EMSL
measurements for a Gaussian correlated surface with er=5.5-j2.1, 0=0.4 cm, 1=6 cm, and

incident angle of 20° at 11 GHz.
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Figure 3.21 Comparison of bistatic scattering coefficients between AIEM and EMSL
measurements for a Gaussian correlated surface with er=5.5-j2.1, 0=0.4 cm, 1=6 cm, and

incident angle of 20° at 13 GHz.

An experimental data set for the purpose of this comparison was adopted for a
Gaussian correlated surface with 6=0.4 cm and I=6 cm. The scattering coefficient was
measured at the incident angle of 20< the dielectric constant was ¢=5.5-j2.1; and the
frequencies used were 11 GHz and 13 GHz, resulting in two different roughness
scales with the same surface slope. Fig. 3.20 shows the bistatic scattering behaviour
from the AIEM and EMSL data at 11 GHz. The AIEM agrees well with the
measurement data except at scattering angles near 20< Measurements at the
frequency of 13 GHz are presented in Fig. 3.21, where similar results can be observed.
The bistatic scattering coefficients predicted by AIEM are a little bit higher than the
EMSL data. At the frequency of 13 GHz, the AIEM model shows a better accuracy
than for 11 GHz shown in Fig. 3.20.
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3.4 Conclusions

A practical and reliable surface scattering model is required to achieve a good
understanding of the surface scattering mechanism. To demonstrate the applicability
of the AIEM, which is considered to have a much wider valid range for surface
roughness conditions as compared to conventional models such as SPM and the
geometric optics model, we validated the AIEM by comparison with numerical
simulations and experimental data. In the first part, we compared AIEM with
numerical simulations for both backscattering and bistatic scattering. For the
backscattering, we compared AIEM with the 3D Numerical Method of Maxwell’s
equations (NMM3D). Under four different surface roughness conditions, the AIEM
showed good agreement with the NMM3D, especially at VV polarization. In the
bistatic conditions, we compared AIEM with the numerical results of SSA and the
MoM in the scattering plane. The results showed that, compared with the numerical
simulations data, all the predictions were quite close to each other except at a large

scattering angle.

In the second part, we compared the AIEM predictions with measurement data in
the backscattering and bistatic scattering conditions. The University of Michigan’s
LCX POLASCAT data was adopted in the backscattering comparison part under three
kinds of surface roughness. The data sets were measured under two different moisture
conditions, namely relatively wet and relatively dry. The surface roughness
parameters, such as the RMS height, correlation length, and RMS slope, were
calculated from the measured surface height profiles. The results show that the AIEM
is generally in good agreement with the measured data in all cases. In bistatic
scattering, data was acquired over known randomly rough surfaces by the European
Microwave Signature Laboratory. When compared with this EMSL measurement data,
AIEM also showed a good agreement although the predictions of the AIEM were on
the high side at large scattering angles and there was not enough separation between

the polarizations, especially when the scattering angle varied from 30 to 50 degrees.

In sum, the AIEM model matches well with both the numerical simulations and
experimental data. Thus it is proven that the AIEM has a high level of accuracy in

both the backscattering and bistatic scattering simulations over a wide valid range of
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surface roughness conditions and soil moisture conditions. For this reason, the
numerical analysis of scattering behaviour in this research, as outlined in the next two

chapters, was based on the AIEM.

55



Chapter 4 Sensitivity analysis of bistatic
scattering to soil moisture and surface

roughness of rough soils

4.1 Motivation

Soil moisture plays a significant role in the surface energy balance at the soil-
atmosphere interface. A good knowledge of the spatiotemporal dynamics of soil
moisture has proven to be particularly important in various environmental
applications (Brocca et al., 2012; Miralles et al., 2011). On account of its strong
sensitivity to the soil permittivity, active microwave remote sensing has a good
physical basis for soil moisture estimation. Synthetic Aperture Radar (SAR) is
particularly attractive for remote sensing of soil moisture at finer resolutions; it
provides a measure of the absolute soil moisture contents that are spatially averaged,
and it has the advantages of large-scale coverage and all-weather operation.
Consequently, active microwave remote sensing, especially SAR, is considered as one
of the most effective means for surface soil moisture monitoring in the present day
(Baghdadi et al., 2016; El Hajj et al., 2016; Zribi et al., 2014b).

The traditional active radar system detects soil moisture almost entirely based on
the backscattering coefficients. However, setting the transmitter and receiver in the
same direction has apparent theoretical drawbacks, because only the signal from the
backward direction can be obtained. One of the critical issues in estimation of surface
parameters from radar backscattering signals is that the surface parameters, including
statistical surface roughness (root-mean-square height s and correlation length I) and
dielectric constant are strongly coupled under a certain set of radar parameters
(frequency, incidence angle, and polarization) (Chen et al., 2001). This fact greatly
hinders the capability of microwave sensing of soil moisture even for bare surfaces.
Thus, it is of interest to understand the characteristics of bistatic scattering (which are
much less understood as compared to backscattering) in order to find out an
appropriate transmitter-receiver configuration for decoupling, to an optimal level, the

surface roughness and dielectric constant. However, in bistatic configuration, there are
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numerous scenarios to be designed. Hence, it is essential to conduct a parameter
sensitivity analysis to determine an optimal configuration which can maximize the
information content of the parameters of interest while minimizing the contribution of

undesired parameters.

Accordingly, estimating soil moisture in a bistatic mode has attracted increasing
attention in the last few years. In some of the studies (e.g. Pierdicca et al., 2008; M.
Brogioni et al., 2010), the researchers have found that, in comparison with traditional
monostatic observation, using bistatic geometries can obtain more information to
retrieve soil moisture. However, limited literature is available for purposes of soil
moisture sensing with bistatic configuration. Hence, more work should be carried out
to fully explore bistatic scattering behaviours with soil parameters under diverse

ground conditions, which is of both theoretical and practical interest.

Several factors affect soil roughness characterization. In addition to correlation
length and root-mean-square height (RMS height), the surface auto correlation
function (ACF) also has an important influence (Davidson et al., 2000). In practical
situations, the ACFs are hard to determine. Consequently, the effect of the ACFs is
usually ignored or simply assumed a priori (e.g. Gaussian or Exponential) to simplify
the inversion problem in the inversion process (Joseph et al., 2010; Shi et al., 2006).
Therefore, how to suppress the effect of the ACFs for more reliable soil moisture

estimation is also an attractive challenge.

The objective of this chapter is to describe our search for the optimal bistatic
observation configuration for soil moisture estimation. To achieve this purpose, in this
study, we investigated the sensitivity of bistatic scattering to soil moisture and surface
roughness of bare soil surfaces. The AIEM was selected as the working model.
Furthermore, in this study, we focused on the L-band (i.e. 1.26 GHz) as it shows good
sensitivity to soil moisture, and the effects of vegetation and atmosphere can be
minimized. The potential of both polarized and angular scattering coefficients, and

their combinations for soil moisture sensing, were evaluated in detail.
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4.2 Method

We investigated the bistatic scattering behaviour of soil moisture and surface
roughness of bare soil surfaces. We generated our database by using the AIEM. For
better understanding of the bistatic scattering characteristics of bare soil surfaces, we
adopted single polarized simulations, a combination of dual polarized simulations,
and a combination of dual angular simulations. To explore the sensitivity of bistatic
scattering to soil moisture, we applied a defined sensitivity index (Brogioni et al.,
2010).

Fig. 4.1 shows the bistatic scattering geometry. The incident angle 6 . represents
the transmitter’s angle, which is not necessarily co-located with the receiver. The
scattering angle © _ varies from 0°to 90 The scattering azimuth angle ¢ _ flexibly

changes from 0°to 360< The incident azimuth angle is 0

Transmitter

-

/
™, A
.

},ﬁi Qe cei\;er
= 2 £

Figure 4.1 Geometry of bistatic scattering.

4.2.1 Random rough autocorrelation functions

The surface roughness is one of the main factors that affect the scattering of radar

signals. A surface can be decomposed to a number of small-scale geometries.
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Normally, we describe the small-scale geometry by the correlation length in the
horizontal direction and the RMS height in the vertical direction. However, in
addition to its correlation length and RMS height, the surface roughness is also
characterized by an autocorrelation function (ACF). ACFs describe the interconnect
degree between two points on the ground. In this study, we used three common
correlation functions, namely the Gaussian, the 1.5-Power and the Exponential, to
analyse the effect of ACFs on the bistatic scattering. These three ACFs can be

expressed as:

l. Gaussian
22 2 2 172
: (k2 + k21
W (k. k. _ s W o
(m zy) ™ P 4n (49)
I1. 1.5-Power
1.5n—1
oy = SPEEHR) 2 TR+ )
o 27 - 21" 11(1.5n) (4.10)
I11. Exponential
kR
" _ tw - e 15
W (kw“’kzy) - 2 1+ 2 ) (4.11)

21N n
where ], is the n®® order Bessel function, and L' is the gamma function.

4.2.2 Sensitivity index

The sensitivity index used in our study is used to describe the sensitivity of the
bistatic scattering coefficients to soil moisture as well as the surface roughness. The

sensitivity index is defined below (Brogioni et al., 2010):
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where Ao and Ao represent the change of the absolute scattering
sm roughness

coefficient caused by the change of soil moisture and surface roughness, respectively.

0
I, 1S the sensitivity index, and its value is from 0 to 1. When the Ao is far

roughness

0
less than Ao m’ then the I, is close to 1, which means the sensitivity of the bistatic

. . . : . . 0
scattering signals to soil moisture reaches its maximum. Where Ao om and

0
represent the change of absolute scattering coefficient caused by the

roughness

change of soil moisture and surface roughness, respectively. I, is the sensitivity

0
index, and its value is from 0 to 1. When the Ao

0
is far less than Ao __, then
roughness sm
the I, is close to 1 which means the sensitivity of bistatic scattering signals to soil
moisture reaches maximum. When I, is close to 0, that means the sensitivity is down

to the minimum.

4.3 Results and discussions

In order to explore the response and sensitivity of bistatic scattering to soil
moisture and surface roughness, we conducted an analysis in three parts, described in
Sections 4.3.2 to 4.3.4. In addition, we fixed the correlation length (I=1) in all cases
owing to its lesser effect on the scattering coefficients as compared to the soil
moisture and RMS height (Pierdicca et al., 2008). Furthermore, in the study, we
focussed on the L-band (i.e. 1.26 GHz) as it shows good sensitivity to soil moisture,

and the effects of vegetation and atmosphere can be minimized (Zeng et al., 2016b).

In the first part, we investigated the sensitivity of the co-polarized scattering to
soil moisture and surface roughness. Firstly we investigated the changes in the bistatic
pattern caused by soil moisture alone, with roughness remaining constant. Then, the
converse was shown, where roughness changed while soil moisture remained constant.
Last, a sensitivity index of soil moisture was developed based on the previous two

steps. In the second part, we adopted a new scattering coefficient group (i.e.
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combination of dual polarized simulations) to explore the sensitivity of the bistatic
scattering to soil moisture and surface roughness. In the third part, we used a dual

angle group to analyse the bistatic scattering characteristics.

4.3.1 Choice of polarization

Firstly, we investigated the sensitivity of HH and VV polarized scattering
coefficients to soil moisture. The maximum bistatic scattering values (dB) of the co-
polarization caused by the change of soil moisture are presented in Fig. 4.2. From Fig.
4.2 we can see that when the soil moisture changes by 2%, from wet to dry conditions,
the radar responses are different. In the dry conditions, the radar signal varies much
more than it does in the wet conditions. In addition, the differences between the HH

and VV polarized scattering coefficients are larger for the rougher surface (s=\/5).
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Figure 4.2 Variations of HH and VV polarized scattering coefficients with soil moisture for

i=40°, I=A/2, and Exponential ACF (in the left s=A/5, in the right s=A/20).
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Meanwhile, we can see in Figure 4.2, we change the RMS height s from left figure
to right figure, with cause an oblivious difference result between the two figures.
However, in Figure 4.3, we also change the correlation length | , the differences
between the left and right figure is minor. So that compare with Figure 4.2 and Figure
4.3, we can find out the RMS height s is more sensitive to the soil moisture change

than the correlation length 1.

In general, the bistatic scattering signals of VV polarization were found to be
more sensitive to soil moisture than those of the HH polarization. The bistatic
scattering signals of RMS height s also were found to be more sensitive to soil
moisture than the correlation length I. Therefore, the following parts we all set the

correlation length fixed and focus on the VV polarization.
4.3.2 Single polarized simulations

4.3.2.1 Sensitivity of HH and VV polarized scattering coefficient to soil

moisture

As shown in Fig. 4.4, we investigated the bistatic sensitivity of different soil
moisture levels of 5%, 25%, and 45%. In this case, the surface roughness was set as
s=M20, I=M2 with Exponential ACF (corresponding to a smooth surface), and the
incident angle was 40< We can observe that with the increase of soil moisture, the
scattering coefficients in the forward direction and the backward direction all
increased. In the relatively dry conditions, the change of the scattering coefficients

was larger than in the wet conditions.

62



0.5 10 0.5

. 20 0 -20
-30 | -30
-0.5 0 0.5

e,
=)
P,
-
S
=)
th

sind sin
sin0 sing

o
th

sind sing
=]

e ¥ [

s 2 =

-0.5 -0.5

-0.5 0 0.5 -0.5 0 0.5

smﬂscosq)s sinﬂstnsq)s smﬂscosnps
0 0 N
0.5 -10 0.5 10 0.5 10
s o ==
g = ) 20 g ' 20 3 0 0
E g €
s 30 = 30 = 30
-0.5 -0.5 -0.5
40 -40 40
50 50 50
-0.5 0 0.5 0.5 0 0.5 -0.5 0 0.5

smﬂscompS smﬂscosnps smﬂsmsqmS

Figure 4.4 Bistatic scattering hemispherical plots of different soil moisture levels under
smooth soil roughness conditions. The first row shows the HH polarization; the second row
shows the VV polarization, all in dB. From left to right the soil moisture level is 5%, 25%, and

45%, respectively. All: L band (1.26 GHz), s=A/20, [=A/2, 8i=40°, Exponential ACF.

As shown in Fig. 4.5, we investigated the bistatic scattering response at different
soil moisture levels (5%, 25%, and 45%). The difference between results illustrated in
Fig. 4.4 and Fig. 4.5 is that in Fig. 4.4, the experiments were conducted under a
smooth surface roughness condition, but in Fig. 4.5, the experiments were conducted
under a rough surface roughness condition (s=A/5, I=\/2). Results show that, for both
HH and VYV polarizations, the scattering coefficient in the forward direction and the
backward direction all increase with an increase in soil moisture. In general, the
results of Fig. 4.5 are similar as those of Fig. 4.4, expect for increased scattering

signals over the whole upper half space due to the rougher surface.
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Figure 4.5 Bistatic scattering hemispherical plots of different soil moisture under rough
soil roughness conditions. The first row shows the HH polarization; the second row shows
the VV polarization, all in dB. From left to right the soil moisture level is 5%, 25%, and 45%,
respectively. All: L band (1.26 GHz), s=A/5, I=A/2, 6i=40°, Exponential ACF.

4.3.2.2 Sensitivity of HH and VV polarized scattering coefficient to soil

roughness

We next investigated the bistatic scattering response with different RMS height
(i.e. s=M20, s=M/10, and s=A/5), shown in Figure 4.6. In this case, the soil moisture
was set as mv=5% (corresponding to a dry soil condition), I=A/2 with Exponential
ACF, and the incident angle was 40< Results show that, for both HH and VV
polarizations, the scattering coefficient in the forward direction and the backward
direction all increased with the increase of the soil roughness. Different from the
results shown in Figs. 4.4 and 4.5 where the scattering signals were nearly saturated
under the wet soil condition, in this case the scattering coefficient does not reach
saturation from the smooth surface to the rough surface.
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Figure 4.6 Bistatic scattering hemispherical plots of different soil roughness in dry soil
moisture conditions. The first row shows the HH polarization; the second row shows the VV
polarization, all in dB. From left to right the RMS height is s=A/20, s=A/10, and s=A/5,
respectively. All: L band (1.26 GHz), mv=5%, I=A/2, 6i=40°, Exponential ACE.

As shown in Fig. 4.7, we investigated the bistatic scattering response at different
levels of soil roughness in a manner similar to the situation illustrated in Fig. 4.6
except under wet rather than the dry soil conditions. A similar bistatic scattering
behaviour can be observed in Fig. 4.7. However, under the relatively wet soil
conditions, the changes in the scattering coefficient caused by the surface roughness

are not as large as those of the scattering coefficient under the dry soil conditions.
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Figure 4.7 Bistatic scattering hemispherical plots of different soil roughness under wet
soil conditions. The first row shows the HH polarization; the second row shows the VV
polarization, all in dB. From left to right the RMS height is s=A/20, s=A/10, and s=A/5,
respectively. All: L band (1.26 GHz), mv=45%, I=1/2, 6i=40°, Exponential ACF.

4.3.2.3 Sensitivity of single polarized scattering coefficient to soil
moisture and soil roughness

Firstly, we investigated the changes in absolute values of the scattering
coefficients caused by changes in soil moisture (A o op - |o op (mv=45%)-
o pp(mv:S%)|), as shown in Fig. 4.8. It can be clearly seen that with the change of

soil moisture, the bistatic scattering pattern is nearly the same under the different
ACFs. For HH polarizations, the bistatic scattering signal changes a lot in the
backward directions. For VV polarizations, the most sensitive region for soil moisture

is in the forward direction.
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Figure 4.8 Bistatic scattering hemispherical plots of variations of 3}y and oy with soil
moisture ranging from 5% to 45%. The first row shows the HH polarization; the second row
shows the VV polarization, all in dB. Gaussian, 1.5-Power and Exponential ACF results are

shown from left to right, respectively. All: L band (1.26 GHz), RMS height s=A/10, I=1/2,
0i=40°.
As shown in Figure 4.9, we investigated the changes in absolute values of the

scattering coefficients caused by changes in soil roughness (Ao —_— lo op (s=M5)-

o b (s=M/20))). It can be seen that when the soil roughness changes, the bistatic

scattering pattern is different under different ACFs. This is more evident with the
Gaussian correlated surface than with the Exponential or the 1.5-Power correlated
surface in this case. For HH polarizations, the bistatic scattering signal changes a lot
in the backward directions. For VV polarizations, the bistatic scattering signal is not

sensitive to the change of soil roughness especially in the forward direction.
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Figure 4.9 Bistatic scattering hemispherical plots of variations of g3y and oy, with soil

roughness change from with RMS height from s=A/5 to s=A/20. The first row shows the HH

polarization; the second row shows the VV polarization, all in dB. Gaussian, 1.5-Power and

Exponential ACF results are shown from left to right, respectively. All: L band (1.26 GHz),

mv=0.25, I=A/2, 6i=40°.

4.3.2.4 Analysis of sensitivity index of soil moisture

As previously discussed in Section 4.2.1, we obtained a sensitivity index of soil

moisture. The results are shown in Fig. 4.10. We can observe that, for both HH and

VV polarizations, the area that is most sensitive to soil moisture is in the forward

direction. However, the general pattern of the sensitivity index is different with the

different ACFs. This indicates that the influence of the ACF cannot be ignored when

using single polarized scattering coefficients for soil moisture estimation.
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Figure 4.10 Bistatic scattering hemispherical plots of sensitivity index of soil moisture.
The first row shows the HH polarization; the second row shows the VV polarization, all in dB.
Gaussian, 1.5-Power and Exponential ACF results are shown from left to right, respectively.

All: L band (1.26 GHz), I=A/2, 6i=40°.
4.3.3 Combination of dual polarized simulations

4.3.3.1 Dual polarized simulations of soil moisture

In previous studies, some researchers (Brogioni et al., 2010; Zeng et al., 2016)
adopted a combination of dual polarized simulations to investigate the radar response
of bistatic scattering to soil moisture and surface roughness. To further investigate the
potential of combining dual polarized measurements for soil moisture estimation, a
sensitive analysis similar to that illustrated in Fig. 4.8, but for the ratio 6®4n/c vy (i.€.
= |Ao

6°un-c°vv in dB), was conducted such that (Ao (Mv=45%)-/A

HH/VV HH/VV

- (mv=5%)|. These results are shown in Fig. 4.11 where it can be seen that the

scattering coefficient is very sensitive to the soil moisture in both the backward and
forward directions. Moreover, the bistatic scattering pattern is very similar under
different ACFs.
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Figure 4.11 Bistatic scattering hemispherical plots of variations of g (dB) — oy (dB)
with soil moisture ranging from 5% to 45%. Gaussian, 1.5-Power and Exponential ACF

results are shown from left to right, respectively. All: L band (1.26 GHz), I=A/2, 6i=40°. The

colorbar is in dB.

4.3.3.2 Dual polarized simulations of surface roughness
Similar to the results shown in Fig. 4.10, we also investigated the variations of

c’w (dB)-6’un (dB) with surface roughness ranging from A/20 to A/5 (O HH/VV -

|o HH/VV (s=M5) -0 HH/VV (s=M20)). These results are shown in Fig. 4.12. It can be

clearly observed that the scattering coefficients are not sensitive to the surface
roughness in the forward direction. In addition, the influence of ACFs on the dual

polarized simulation are well suppressed.
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Figure 4.12 Bistatic scattering hemispherical plots of s variations of
oy (dB) — oy (dB) with surface roughness ranging from 1/20 to A/5. Gaussian,
1.5-Power and Exponential ACF results are show from left to right, respectively.

All: L band (1.26 GHz), I=A/2, 8i=40°. The colorbar is in dB.

70



4.3.3.3 Dual angular simulations of sensitivity index

In this part, we obtained the sensitivity index of soil moisture (indexsy,= O HH/VV

(ASM) / (o (ASM) +o (ARoughness))). These results are shown in

HH/VV HH/VV
Fig. 4.13. Here we see that the most sensitive area is in the forward direction.
Moreover, using the combined dual polarized measurements suppressed the influence
of the ACFs. Although the index is high, we should note that the scattering coefficient

changes by the soil moisture are not large, as can be seen in Fig. 4.10.

1 = 1

- y- - - 1
5 ( 0.8 0.5 f 08 0.5 f‘ 0.8
| 0.6 1 0.6 0.6
| 0.4 i | 0.4 ) i 0.4
0.5 \L 0.2 0.3 1 02 0.3 &E} 02
y I‘. N - I‘-‘ I\_.
. = . -
-0.5 0 0.5 -0.5 0 0.5

sml?lst:nsq:v5 smﬂscnsq)! smﬁlsmsq:ns

=
2l

0

sind sing

umﬁxumq:-
=

nt“nlan
=

=
Zl

=]
¥

=
zl

Figure 4.13 Bistatic scattering hemispherical plots of sensitivity of a3, (dB) — oy (dB) to
soil moisture. Gaussian, 1.5-Power and Exponential ACF results are shown from left to right,

respectively. All: L band (1.26 GHz), I=1/2, 6i=40°.
4.3.4 Dual angular simulations analysis

4.3.4.1 Dual angular simulations of soil moisture

In previous studies, Zeng et al. (2016b) found that a combination of dual angular
measurements shows good sensitivity to soil moisture, while the influence from the
ACEF is well suppressed. In order to find the optimal bistatic angular combination for

soil moisture sensing, we conducted four groups of combined dual angle which were
as follows: 6 i:20°and 0 ;=309 0 i:20°and 0 =409 0 i:20°and 0 =509 and

6 ,=20®and 6 .=60< An example of the combination of dual angular scattering is the

) 0
ratio & vVv,6 i=20i/0 vVv,8 i=30i'

In addition, from Sections 4.3.1 and 4.3.2, we found that the bistatic scattering

signals of VV polarization were more sensitive to soil moisture than those of the HH
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polarization. Therefore the following parts all focus on the VV polarization. Fig. 4.14
shows that when the soil moisture changes from 5% to 45% in VV polarization, the

forward direction is more sensitive to changes in soil moisture.
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Figure 4.14 Bistatic scattering hemispherical plots of variations of cgv_eil/cgv,eiz with

soil moisture ranging from 5% to 45%. Gaussian, 1.5-Power and Exponential ACF receptivity

results are shown from left to right, respectively. All: s=A4/10, I=A/2. The colorbar is in dB.

We can see that the patterns of bistatic scattering as soil moisture changes are

nearly the same under the three kinds of ACF. Moreover, it can be observed that as the
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difference of the dual angle increases, the sensitivity of the combined angular

measurements to soil moisture also increases.

4.3.4.2 Dual angular simulations of soil roughness

In this part, we investigated the response of dual angular simulations to the soil
roughness. Here we changed the RMS height from A/5 to A/20 while keeping the
remaining parameters fixed (soil moisture=25%, I=A/2). Results are shown in Fig.
4.15. It can be easily seen that the influences of the ACF on the dual angular
simulation were well suppressed. This indicates that the combined scattering
measurements can be approximately treated as independent of the ACFs. From Fig.
4.15 we can see that, compared to the soil moisture, the bistatic scattering responses
are less sensitive to the surface roughness, which is useful information for soil
moisture estimation. Furthermore, it can be seen that as the difference of the dual
angle increases, the sensitivity of combined angular measurements to surface

roughness is almost the same or even decreases.
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Figure 4.15 Bistatic scattering hemispherical plots of variations of 03\,,9“ /agv_eiz with

RMS height ranging from A/5 to A/20. Gaussian, 1.5-Power and Exponential ACF receptivity
results are shown from left to right, respectively. All: soil moisture=25%, I=A/2. The colorbar

is in dB.

4.3.4.3 Dual angular simulations of sensitivity index

In Sections 4.3.4.1 and 4.3.4.2 we investigated the sensitivity of bistatic scattering
to soil moisture and soil roughness, respectively. As we stated in the beginning, the

aim of this study is to predict the suitable bistatic radar configuration for soil moisture
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retrieval. So we adopted the sensitivity index in our study. The results are shown in
Fig. 4.16.
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Figure 4.16 Bistatic scattering hemispherical plots of sensitivity of gy g, /Yy, to soil
moisture ranging between 5% and 45%. Gaussian, 1.5-Power and Exponential ACF

receptivity results are shown from left to right, respectively. All: I=A/2. The colorbar is in dB.

From Fig. 4.16, we can observe that the bistatic patterns of different combinations
are generally similar. It is clearly shown that, in the forward region, there are large
areas where the value is close to 1. In addition, with the increase of the difference
between the two incident angles, the sensitive area becomes larger, and the effects of
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the three ACFs on the bistatic scattering coefficients are further suppressed. This
indicates that, in our experiments, the 20°and 60group is the most suitable angular

combination compared with the other three groups.

4.4 Conclusions

Remote sensing of soil moisture in a bistatic mode has attracted increasing
attention in recent years. Systematic simulation of bistatic scattering behaviours from
a rough surface offers physical insights into designing bistatic radar configurationes
and field campaigns. The research reported in this chapter investigated the radar
response of bistatic scattering to soil moisture and surface roughness by using the
AIEM. In order to find the optimal bistatic configuration for soil moisture estimation,
we adopt a sensitivity index. The results show that the VV polarized scattering
coefficient is more sensitive to soil moisture than that of the HH polarized scattering
coefficient. The most sensitive area to soil moisture under a bistatic configuration is in
the forward direction. Compared to the results from single polarized and combined
dual polarized data, the combination of dual angular observation proves to be a good
choice for soil moisture estimation since it suppresses the influence of thee ACF while
maintaining a good sensitivity to soil moisture. Furthermore, it seems that as the
difference of the dual angle increases, the sensitivity of combined angular

measurements to the soil moisture also increases.
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Chapter 5 Development of a recurrent
Kalman filter-based neural network for soil
moisture retrieval using ALOS-2 satellite

data

5.1. Motivation

Radar remote sensing is a kind of active microwave remote sensing technology for
detecting and ranging. It uses radio electromagnetic waves, which applies to the
microwave spectrum: The usage range is between 1 cm and 100 cm. The earliest radar
system of this type was used for military research to detect hard targets (usually a
metal point target). While these radar systems couldn’t produce images, following
radar remote sensing systems of earth observation were able to rank surface features
and landforms as detecting targets. Real aperture radar (RAR) is the earliest imaging
radar system and its azimuth resolution is limited by antenna size. With deeper
explorations through theoretical research, signal processing, antenna design, and the
development of computer software and hardware, the synthetic aperture radar (SAR)
was developed, which gradually replaced RAR. SAR is a kind of high-resolution
coherent combination imaging radar. It combines pulse compression technology with
synthetic aperture technology through information processing technology. Specifically,
this means that it uses space borne aircraft and precession of planes to create synthetic
apertures. SAR takes advantage of various antenna echo signals for various positions
during flight to make large-aperture antenna systems with finer resolution (Argenti et
al., 2013; Moreira et al., 2013).

This dissertation research used microwave bands to study soil features. Its
mechanism was self-rotation and rotation of molecules of matter, and the interaction
between self-rotation of electron and transmitted electromagnetic waves which
decides the inherent interaction mechanism between surface features and the imaging
radar used in the microwave spectrum. A radar image reflects the interaction between

electromagnetic waves transmitted by radar and surface feature objectives. The
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electromagnetic waves transmitted by the radar sensors reveal electrical currents on
the surface of targets. Through radiation, incidence electromagnetic waves and
detecting targets interact in the far-field region of the antenna, which produces
scattering electromagnetic waves and which changes amplitude, frequency, phase
position, polarization mode and other parameters of echo. The quality of a scattering
wave is different from that of an incidence wave: It includes physical structure
information about targets, which is a carrier of target information. This is caused by
the modulation effect of targets on incidence electromagnetic waves. The modulation
effect is decided by the physical structure features of targets. Different targets have
different modulation features on the same incidence wave. Radar remote sensing
extracts feature parameters of detecting targets according to modulation feature
variance, i.e. that different targets affect electromagnetic waves differently. The basic
measured value of each pixel for an image is a pair of voltage values. These measured
values indicate the impact of surface information on the transmitted wave, which
essentially describes Maxwell space spread and the equation of scattering
characteristic equation. The radar equation can show the relationships among radar

system, detecting target and received signals.

Some typical surface microwave scattering models are the Oh model, the Dubois
model and the AIEM. However, the Oh model is not recommended as it has large
errors in the analogue value of co-polarization scattering data, although it can
simulate the cross-polarization scattering characteristics. The Dubois model has a
different response to the actual situation (change of incident angle and the dielectric
constant) because it is a kind of empirical model that lacks physical theory support.
As we introduced in the previous chapters, the AIEM has high accuracy compared to
simulations and field measurements and thus was adopted as a working model in this
research. Analysing the radar characteristics by AIEM could help us better understand

the radar backscattering features.

In the research reported in this chapter, we analysed the radar backscattering
response of soil moisture and, to test with real-world data, developed a method for
retrieving soil moisture from Advanced Land Observing Satellite-2 (ALOS-2)
imagery. However, retrieval of soil moisture from SAR data is not as straightforward

as it might be, since it is profoundly affected by surface roughness, vegetation cover,
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and soil texture, among other factors. The AIEM was again used to simulate the radar
scattering characteristics of the soil surface to analyse the coupling effects of the
surface parameters, including the RMS height, correlation length, and soil moisture as
well as the radar system parameters, including the incident angle and polarization.
Furthermore, in order to retrieval soil moisture from SAR images, we developed a
recurrent Kalman filter-based neural network and tested this method by using the
ALQOS-2 data. The details are described below.

5.2 Sensitivity analysis of forward model parameters

To gain a good understanding of the surface scattering mechanism, we analysed
the backscattering properties of bare surfaces by using the AIEM. The surface
roughness is usually described with the correlation function and two parameters: root-
mean-square (RMS) height (s) and the correlation length (I). In this section, our
investigation of the radar response of backscattering coefficients to the geophysical
parameters (e.g. soil moisture, RMS height and correlation length) and radar system

parameters (e.g. frequency and incident angle) is discussed.

5.2.1. Scattering signal changes by various of frequencies

In this part, the radar response of backscattering signals to soil moisture at
different frequencies is investigated. Results are shown in Fig. 5.1. In this case using
the Exponential ACF the incident angle is 40< the RMS height is 1 cm, the
correlation length is 5 cm, and the soil moisture changes from 1% to 50%.
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Figure 5.1 Backscattering behaviour of different frequencies with HH and VV

polarizations for s=1 cm, I=5 cm, 0i=40°, Exponential ACF.
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As can be seen from Fig. 5.1, the backscattering coefficient changed the most with
the changes of soil moisture at the L-band (i.e. 1.26 GHz). As the soil moisture
increased, the backscattering coefficient monotonically increased. To sum up, the
backscattering coefficient at 1.26 GHz shows the most sensitivity to soil moisture
than at other frequencies. Thus, we fixed the frequency as 1.26 GHz in the following

parts.

5.2.2. Scattering signal changes by various of angles

The different SARs usually configure diverse observation angles. The same SAR
may also observe the target with different incident angles. Even in one radar image
the incident angle along the direction of the distance also can be different.

In this part, we analysed the relationship between the backscattering coefficient
and the incident angle as the soil moisture changed.
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Figure 5.2 Backscattering behaviour of different incident angles with HH and VV
polarizations for L band (1.26 GHz), s=1 cm, I=5 cm, Exponential ACFE.

We can see from Fig. 5.2 that when the soil moisture changed from 1% to 20%,
the backscattering coefficient appears as a different trend, as a change of incident
angle. When the incident angle was less than 60 degrees, the backscattering
coefficient increased as the soil moisture increased at both HH and V'V polarizations.
Thus, generally, the backscattering coefficient is larger when the incident angle is
smaller.
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5.2.3. Scattering signal changes by various of RMS height

In this section and the next section, we present the backscattering behaviour of
various surface roughness conditions. In order to evaluate the impact of the RMS
height on backscattering signals, we set the RMS height to five different levels: s=0.1,
0.5, 1, 1.5, and 2 cm while fixing the frequency at 1.26 GHz, correlation length equal
to 5 cm with Exponential ACF, and soil moisture changes from 1% to 50%. Results
are shown in Fig. 5.3.
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Figure 5.3 Backscattering behaviour of different RMS height with HH and VV
polarizations for L band (1.26 GHz), I=5 cm, 0i=40°, Exponential ACF.

In Fig. 5.3, all the curves have a similar trend at both HH and VV polarizations.
With increase of the soil moisture, the backscattering coefficient increased under
different RMS heights. It can also be observed that when the RMS height increased,
the differences of the backscattering coefficient became smaller.

5.2.4 Scattering signal changes by various of correlation
length

Fig. 5.4 illustrates the effect of different correlation lengthes on the backscattering
coefficient as soil moisture increases. In this case, we set the frequency at 1.26 GHz,
RMS height equal to 1 cm with Exponential ACF, and soil moisture changes from 1%
to 50%. The general trends were found to be similar for both HH and VV
polarizations. We can see that large correlation length caused few differences for the
backscattering coefficient; when the correlation length was greater than 3 cm, the
curves became almost indistinguishable. Thus, we can conclude that the sensitivity of
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the backscattering coefficients to the correlation length is larger when the correlation
length is smalleer.
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Figure 5.4 Backscattering behaviour of different correlation length with HH and VV
polarizations for L band (1.26 GHz), s=1 cm, 68i=40°, Exponential ACF.

5.3 Methodology

5.3.1 The retrieval method

In this research, we used a retrieval method based on a dynamic learning neural
network and the AIEM to build the relationship between the soil moisture, surface
roughness and the backscattering coefficient. Inversion methods commonly used,
such as those discussed above, have been developed to extract only a single parameter.
However, the return signals from a natural soil surface are affected simultaneously by
many surface parameters, such as RMS height, correlation length, and dielectric
constant of soil. To solve the problems of multidimensional retrieval, a recurrent
Kalman filter-based neural network method was developed due to its ability to adapt
the high geophysical dimensions, its robustness to noise in realistic remote sensors,
and, most importantly, is capability of handling nonlinear mapping. Fig. 5.5 shows a

flowchart of this recurrent Kalman filter-based neural network method.
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Figure 5.5 Flowchart of the recurrent Kalman filter-based neural network method.

Essentially, the operation could be divided into two phases. The first phase was
network training — to build the mapping function. We used the AIEM model to
generate a training database by configuring radar parameters (i.e. frequency, incident
angle, and polarization) and setting surface parameters (i.e. soil moisture, RMS height,
correlation function, and correlation length) confined in a practical range. After
completing the network training, we proceeded to the second phase, relevant neural
network operations, namely the retrieval of soil moisture. By using the generated
database to train the Kalman filter-based neural network, we obtained the relationship
between the backscattering coefficients and the soil moisture, correlation length and
RMS height. For the retrieval process in this work, the outputs of the neural network
were the roughness parameters (correlation length and the RMS height) and the soil
moisture. The inputs of the neural network were the backscattering coefficients at

0 0
both HH and V'V polarizations (o hh ando VV). Furthermore, we verified the retrieval

results with simulated data, which were not included in the training database. Finally,
we applied our method to SAR images to retrieve the soil moisture.
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5.3.2 Generation of DLNN training data using AIEM

5.3.2.1 Dynamic learning neural network

Tzeng et al. (1994) proposed a dynamic learning neural network (DLNN) to
reduce the drawbacks of the slow learning process that was inherently associated with
the above training schemes. A dynamic learning neural network has the advantages of
greatly reduced training times and increased accuracy. This has been demonstrated in
many applications (Chen et al., 1995). A neural network has the advantage of
inverting the surface parameters effectively (Dawson et al., 1992; Tsang et al., 1992).
The objective of our study was to simultaneously retrieve surface roughness and soil
moisture, as shown in Fig. 5.6, so we exploited the Kalman filter-based dynamic
learning algorithm (Tzeng et al., 1994). The Kalman filter theory is a procedure that

recursively estimates the minimum mean square (Brown and Hwang, 1983).

M D.L. Soil moisture mv

N.N RMS height s

M ’ Correlation length [

Figure 5.6 Input and output of the neural network for the inversion process.

5.3.2.2 The results of fixing the incident angle

Parameters which needed to be estimated included surface roughness in both the
horizontal and vertical scales (i.e. RMS height and correlation length) and the
dielectric constant which, in turn, were related to other geophysical quantities of
interest such as the moisture content of the soil. The co-polarized backscattering

coefficients were used as the inputs of the inversion scheme.

The training of a neural network begins by defining the network inputs and
outputs that are controlled by the type of applications. For the inversion problem

shown in this work, the output of the network should be the soil moisture and the two
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roughness parameters, i.e. | (the correlation length) and s (the RMS height). The range

of each parameter used to generate training database is shown in Table 5.1.

Table 5.1 The range of each parameter used to generate the training database for the

single incident angle case
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Figure 5.7 The comparison results of the estimated and simulated soil moisture from

DLNN for the single incident angle case.

First, we used the 5000 of the samples generated from Table 5.1 to train the neural
network and then retrieve the soil moisture. Second, we used the remaining 1000
samples, which are not included in the training database, to validate the retrieval
results. Results are shown in Fig. 5.7. We can see from Fig. 5.7 that the correlation
between the estimated soil moisture and simulated soil moisture is 0.998, which
means that the accuracy of the soil moisture retrievals is very high. The results of the
RMS height retrievals are similar. However, the correlation between the estimated
correlation length and simulated correlation length is far from satisfactory. The same

problem also emerges in the multi-incident angle case.
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Figure 5.8 Comparison results of the estimated and the simulated RMS height (left) and

correlation length (right) from DLNN for the single incident angle case.

5.3.2.2 The results of not fixing the incident angle

In this part, we generated the training database by not setting the incident angle as
a constant value, and then we tested the retrieval results. First, we define the range of
each parameter used to generate the training database, see Table 5.2. We generated a
total of 30,000 samples for training from our data. Second, we determined the input
and the output of the DLNN, which depends on the application. In our case, the tested
ALOS-2 SAR images have an incident angle varying from 38 to 43 degrees, so we set
the incident angles to be the same as our data. The frequency was set to the L band
(1.25 GHz), also the same as our test data. The outputs were the correlation length,
the RMS height, and the soil moisture.
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Table 5.2 The range of each parameter used to generate the training database for the

multiple incident angle case
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Figure 5.9 The comparison results of the estimated and the simulated soil moisture from

DLNN for the multiple incident angle case.
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Figure 5.10 Comparison results of the estimated and the simulated RMS height (left) and

correlation length (right) from DLNN for the multiple incident angle case.
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5.4 Mapping of soil moisture change

5.4.1 Research area

The study area was the Yellow River Delta (YRD), located in Shandong Province
from 13°21'-38°12" N and 118°07’-119°10’E, with an area of 5450 km? is one of the
largest deltas in China. It was formed by silt from the Yellow River. In the historical
period, the Huang He River flowed through North Jiangsu into the Huanghai Sea for
nearly 700 years. The location of the Yellow River Delta is shown in Fig. 5.11.

Figure 5.11 The location of the Yellow River Delta, Shandong Province, China.

The Yellow River Delta is located in the temperate zone and is characterized by a
monsoon climate. It is rich in natural resources, such as crude oil, natural gas,
chemical industry and crude salt. Of primary importance are the mechanical and
chemical industries, food processing, the pulp industry, electricity and biology. Details
of YRD’s climatic conditions are shown in Table 5.3.
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Table 5.3 Climatic conditions of the YRD

Annual mean 12.3
Extreme high 41.9
Temperature(<C) Extreme low -23.3
Degree-days(>0<C) 4783.5
Degree-days(>0<C) 4183
Annual radiation (MJ.m™2) 5146-5411
Annual sunshine time(h) 2682
Frost-free season(d) 210
Annual mean precipitation(mm) 542.3-842
Evaporation(mm) 1962

5.4.2 ALOS-2 data

The Advanced Land Observing Satellite-2 “DAICHI-2” (ALOS-2) is a follow-on
mission from the “Daichi” (ALOS). The ALOS satellite had contributed to
cartography, regional observation, disaster monitoring, and resource surveys since its
launch in 2006. ALOS-2 succeeded this mission with enhanced capabilities. In our
study, we used two Level 1.0 ALOS-2 images: one was obtained on 13 November
2014, and the other was obtained on 20 December 2014. The frequency of the ALOS-
2 data is 1.2 GHz, and the observation band is 25 km with 3-meter resolution in the
“spotlight mode”. The observation mode and basic information of these ALOS-2
images are shown in Table 5.4 and Table 5.5, respectively. Both images were located
in the YRD area and have a substantial area of overlap. We selected a bare soil region,
shown in Fig. 5.12, to test our method.
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Table 5.4 The observation mode of the ALOS-2 data

Observation mode
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Table 5.5 The basic information of the two ALSO-2 images used in this study

Time
latitude

longitude

Observation mode

Polarization

Frequency

Time

latitude

longitude
Observation mode
Polarization

Frequency

2014.11.13 16:01
37.253-37.964

118.392-119.269

Spotlight
HH,HV

1.2GHz

2014.12.06 15:54
37.032-37.762
118.616-119.559
Spotlight
HH,HV
1.2 GHz

The locations of the ALOS-2 data
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Figure 5.12 The research area cut from the overlapping area of the two ALOS-2 images.

5.4.3 Results and discussions

After applying the developed inversion method by using data from the two ALOS-
2 images, we obtained the relative soil moisture changes within the research area. Fig.
5.13 shows the soil moisture changes in the research area nearly one month. From the
results, we can see that the spatial distribution of the soil moisture change is relatively
uniform. In most of the area, the soil moisture was drying up. The relatively larger
changes of soil moisture occurred in the southern boundary. The boundary was wet
down, presumably due to its closeness to the sea. In general, the spatial distribution of
the soil moisture variation was reasonable, demonstrating the effectiveness of our

method.
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Figure 5.13 The soil moisture changes derived from the two ALOS-2 images.

5.5 Conclusions

This chapter presents our developed framework for soil moisture retrieval from
radar measurements using a recurrent Kalman filter-based neural network. The
network training and data inversion steps are described in detail. By using a generated
database to train the Kalman filter-based neural network, we verified the retrieval
results with the simulated data (excluding the training data). Results showed that the
accuracy of the soil moisture and RMS height estimates was better than that of the
correlation length, but all were generally satisfactory. Then it came to testing with
real-world data. The relative soil moisture content was derived from ALOS-2 data by
using the developed recurrent Kalman filter-based neural network. Overall, the spatial
distribution of the soil moisture variation was reasonable, which demonstrated the
effectiveness of our method. In a future stage, we will collect measurement data to

validate our method.

92



Chapter 6 Conclusions and perspectives

Soil moisture is a crucial link between the land surface and the atmosphere, which
directly affects the energy and hydrology exchange between the earth’s surface and
the atmospheric cycle. Active microwave remote sensing, especially SAR, is
particularly attractive for remote sensing of soil moisture since it provides a measure
of the absolute soil moisture content that are spatially averaged. It also has the
advantages of large-scale coverage and all-weather operation. Therefore, in this
dissertation research, we mainly focussed on sensitivity analysis and estimation of soil
moisture from radar responses. In addition, a practical and reliable surface scattering
model is often required to obtain a good understanding of the surface scattering
mechanism. Thus, this dissertation research started from a study of the theoretical
surface scattering model. We validated a well-established model, the AIEM, by
extensive comparison with numerical simulations and experimental data. Then, based
on the AIEM, we investigated in detail the sensitivity of bistatic scattering and
backscattering to soil moisture and surface roughness of soil surfaces, respectively.
Finally, in order to retrieval soil moisture from SAR images, we developed a recurrent
Kalman filter-based neural network and tested this method in the Yellow River Delta
(YRD) area by using ALOS-2 satellite data.

6.1 Main conclusions
The main conclusions of this dissertation research are as follows.

(1) Extensive experimental data and numerical simulation data were both used to
fully evaluate the reliability of the AIEM. Firstly, we compared AIEM with numerical
simulations for both backscattering and bistatic scattering. In the backscattering, we
compared AIEM with the NMM3D; in the bistatic conditions, we compared AIEM
with the numerical results of SSA and the MoM in the scattering plane. The results
show that, when compared with the numerical simulations, all the predictions were
quite close to each other except at a large incident/scattering angle. There is a dip at
specular direction shown by MoM and SSA, but not by AIEM. Then, we compared
AIEM with the experimental measurement data, also in both the backscattering and

bistatic scattering conditions. We can conclude that in the backscattering condition,
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the AIEM is generally in good agreement with the measured data at all cases, though
it predicts the backscattering coefficients more accurately in the wet soil condition
than in the dry soil condition. In the bistatic scattering condition, compared with the
EMSL measurement data, AIEM also showed a good agreement although the
predictions of the AIEM were on the high side at large scattering angles and there is
not enough separation between the polarizations. In sum, the AIEM model matches

well with both the numerical simulations and experimental data.

(2) Through a parameter sensitivity analysis for bistatic scattering of the rough
surface, we obtained several findings. We investigated the bistatic radar response of
soil moisture and surface roughness of bare soil surfaces at the L-band by using the
AIEM model. The results show that higher sensitivity of radar scattering to the soil
moisture can be achieved by configuring the bistatic observation rather than using the
monostatic observation, from which only backscattering coefficients can be obtained.
In a bistatic mode, the scattering coefficients of VV polarization are generally more
sensitive to soil moisture than those of HH polarization. Unlike using only a single
polarized or single angular scattering coefficient, the influence correlation function
(an undesirable effect) can be considerably suppressed by a combination of dual
polarized or dual angular measurements. Compared to the results of single polarized
or combined dual polarized data, it seems that a combination of dual angular
measurements achieved the most reliable soil moisture estimation since it could
suppress the influence of surface roughness while maintaining a reasonably good
sensitivity to soil moisture. Equally important to note is that the forward region is
preferable for soil moisture sensing regardless of the type of correlation function: this
is a quite attractive feature — useful and usable. Furthermore, it seems that as the
difference between the dual angle increases, the sensitivity of the combined angular
measurements to the soil moisture increases. It should be noted that although the out-
of-plane bistatic radar configurations show great potential for soil moisture
monitoring, the limitations imposed by the narrow angular window of maximum
moisture sensitivity and the low signal level in these out-of-plane configurations
would likely make the use of these configurations challenging.

(3) We analysed the radar backscattering response of soil moisture and, to test the

real world, developed a method for retrieving soil moisture from ALOS-2 satellite
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image data. From the sensitivity of backscattering coefficients to soil moisture under
different frequencies, we found that the changes in the backscattering coefficients
were larger in the L-band as soil moisture changed. We observed that the sensitivity of
backscattering signals to soil moisture was high when the incident angle was
relatively small at VV polarization. The sensitivity of backscattering signals to soil
moisture decreased as the RMS height increased. Besides, we found that the influence
of the correlation length on backscattering signals is much less than that of the RMS
height. For the purposes of estimating soil moisture and solving the problems of
multidimensional retrieval, a recurrent Kalman filter-based neural network method
was developed, due to its ability to adapt the high geophysical dimensions. Essentially,
the operation could be divided into two phases. The first phase was network training.
We used the AIEM model to generate a training database by configuring radar
parameters and setting surface parameters confined to the eligible research area. After
completing the network training, we proceeded to the second phase, neural network
operation. By using the generated database to train the Kalman filter-based neural
network, we verified the retrieval results with the simulated data (excluding the
training data). Results showed that the accuracy of the soil moisture and the RMS
height estimations was better than that for the correlation length, and all were
generally satisfactory. We also selected a bare soil region of the Yellow River Delta
area to test our method. After applying the developed inversion method by using data
from two ALOS-2 images, we obtained the relative soil moisture changes over the
research area. From the results, we could see that the spatial distribution of the soil
moisture changes was relatively uniform. In general, the spatial distribution of the soil

moisture variation was reasonable, demonstrating the effectiveness of our method.

6.2 Perspectives

In this dissertation research, we developed a systematic analysis of bistatic radar
scattering from randomly rough surfaces based on the AIEM which was fully
validated by using both numerical simulations and experimental measurements.
Subsequently, sensitivity analysis was carried out to explore the complex process and
nonlinear coupling of wave-matter interactions, of which the soil moisture content is

the major interest. Then moving forward from that problem, we proceeded to the
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inversion problem — retrieval of soil moisture from radar measurements. Future work

would proceed in the following aspects.

(1) Although this dissertation research focuses on estimation of soil moisture from
radar responses based on a high-precision theoretical model (i.e. the AIEM), all the
research was only carried out in the bare soil surface situation. The retrieval of soil

moisture in vegetated areas needs to be studied in the future.

(2) In this dissertation research we develop a recurrent Kalman filter-based neural
network method to retrieve the soil moisture. This method successfully settles the
problem that the surface parameters are strongly coupled and the relationship between
them is nonlinear. The retrieved change of soil moisture estimates present a
reasonable spatial distribution. However, this method should be tested with
measurement data to further demonstrate its effectiveness. Currently new data

acquisition is in progress to do this.

(3) The optimal bistatic configuration for soil moisture sensing was investigated in
this study. We found that the combination of dual angular measurements achieved the
most reliable soil moisture estimation since it could suppress the influence of surface
roughness while maintaining a reasonably good sensitivity to soil moisture. However,
on account of the geometric complexity of bistatic configuration, as well as the
diversity of surface conditions, more extensive theoretical and experimental studies
should be conducted to find the optimal bistatic angle range for soil moisture sensing

by considering the signal-to-noise ratio (SNR) limitation.
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Appendix

| Coefficients B and C

In this appendix, we give the explicit expressions of the upward and downward re-
radiation coefficients used in Eq. (18a)-(18d).
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[l Coefficients a, b, ¢ in the Transition Function

Under the framework of the AIEM model, the three terms are:
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Résumeé

L’étude de la diffusion des ondes électromagnétiques par une surface rugueuse aléatoire est
de premiére importance dans de nombreuses disciplines et conduit a diverses applications
notamment pour le traitement des surfaces par télédétection. En connaissant les modes de
rétrodiffusion, on peut détecter la présence de la rugosité aléatoire indésirable de la surface de
réflection telle que le réflecteur d'antenne et par conséquent trouver un moyen de corriger ou
compenser les erreurs de phase. Cette thése porte sur 1’obtention de I'humidité du sol de
surface a partir de mesures radar. La description de la surface rugueuse de fagon aléatoire est
présentée, suivie par les interactions d'ondes électromagnétiques avec les média. En
particulier, un modéle d'équation intégrale avancé (AIEM) est introduit. La validité du mod¢le
AIEM, qui est adopté comme modéle de travail, se fait par une large comparaison avec des
simulations numériques et des données expérimentales. On analyse également les
caractéristiques des configurations radar bistatique et on étudie la sensibilité de la diffusion
bistatique a I'humidité du sol et a la rugosité de surface et, dans le méme temps, le cadre de la
détermination de I'humidité du sol a partir de mesures radar utilisant un réseau de neurones
abase de filtres de Kalman récurrents est présenté. La formation du réseau et l'inversion des
données sont décrits.

Résumé en anglais

Electromagnetic waves scattering from a randomly rough surface is of palpable
importance in many fields of disciplines and bears itself in various applications
spanned from surface treatment to remote sensing of terrain and sea. By knowing the
backscattering patterns, one may detect the presence of the undesired random
roughness of the reflection surface such as antenna reflector and accordingly devise a
means to correct or compensate the phase errors. Therefore, it has been both
theoretically and practically necessary to study the electromagnetic wave scattering
from the random surfaces. This dissertation focuses on the retrieval of surface soil
moisture from radar measurements. The description of the randomly rough surface is
presented, followed by the electromagnetic wave interactions with the media. In
particular, an advanced integral equation model (AIEM) is introduced. The validity of
the AIEM model, which is adopted as a working model, is made by extensive
comparison with numerical simulations and experimental data. Also analyzes the
characteristics of the bistatic radar configurations and dissects the sensitivity of
bistatic scattering to soil moisture and surface roughness of soil surfaces. Meanwhile
presents a framework of soil moisture retrieval from radar measurements using a
recurrent Kalman filter-based neural network. The network training and data
inversion are described in detail.
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