
HAL Id: tel-01548327
https://theses.hal.science/tel-01548327

Submitted on 27 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming-Model Centric Debugging for Multicore
Embedded Systems

Kevin Pouget

To cite this version:
Kevin Pouget. Programming-Model Centric Debugging for Multicore Embedded Systems. Embedded
Systems. Université de Grenoble, 2014. English. �NNT : 2014GRENM008�. �tel-01548327�

https://theses.hal.science/tel-01548327
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Kevin Pouget

Thèse dirigée par Jean-François Méhaut
et codirigée par Luis-Miguel Santana-Ormeno

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Programming-Model
Centric Debugging
for Multicore Embedded Systems

Thèse soutenue publiquement le 3 février 2014,
devant le jury composé de :

M. Noël DE PALMA
Professeur à l’Université Joseph Fourier, Président
M. Radu PRODAN
Associate Professor à l’Université d’Innsbruck, Rapporteur
M. François BODIN
Professeur à l’IRISA, Rapporteur
M. Rainer LEPEURS
Professeur à l’Université RWTH Aachen, Examinateur
M. Jean-François MÉHAUT
Professeur à l’Université Joseph Fourier, Directeur de thèse
M. Luis-Miguel SANTANA-ORMENO
Directeur du centre IDTEC à STMicroelectronics, Co-Directeur de thèse

A C K N O W L E D G M E N T S

Well, there we are, in a few days I’ll defend my PhD thesis. I remember quite well
when in 2004, 10 years ago already, I chose to apply at Toulouse’s IUT to get a two-year
degree. I wasn’t sure I would enjoy longer studies! And again with the Master degree,
I took the “professional” path for the same reason. But after a gap year in England, I
quickly realized that the university benches are actually quite attractive, and I applied
for a PhD candidate position in Grenoble.

I would like to thank warmly my two advisers, Miguel Santana and Jean-François
Méhaut, for that great opportunity they offered me. Miguel thrust me from our very
first phone interview in the backyard of London’s Paddington Hospital, where I worked
at that time. The only doubt he expressed was whether I would be able to stay at the
same place for three years :) The region of Grenoble and the PhD work proved to be
successfully combination, as I even plan to stay here for the next years! Jean-François
also supported me from the beginning of this work, and did a great job helping me
to recognize and put forward the scientific aspect of my work. Thank you both once
again.

Besides, I would like to thank the rest of my thesis committee: Noël de Palma gave
me the honor of chairing the jury; Radu Prodan and François Bodin accepted to review
my dissertation and made insightful remarks about it; and Rainer Leupers accepted to
assess my thesis defense. I am really grateful to you all for the attention you put on my
work.

I also wanted to thank my colleagues, offices-mates and friends, in particular Jan
& Patricia, Giannis, Marcio, Serge, Naweiluo, and the teams at ST and the lab, with
whom I enjoyed talking about science and computer science, but also mountains, flying
machines, hiking and skiing, debugging, bugs and free software . . . I must recognize
that it sometimes spread over work-time, but would I have been more productive
without these chit-chats? I hardly think so!

Finally, I wanted to thank my family, and my step-family, for their support and help
all along the last three decades (almost). That’s amazing you literally spread over the
world during that PhD time: Japan, Brazil and Marquesas Islands while I was here,
playing with bits and bugs :) Last but not least, I wanted to thank my love Marine, who
made me the honor of becoming my wife almost three years ago. Thanks for helping
me during all that time, thank you very much.

iii

Contents

1 introduction 1
1.1 Embedded Systems and MPSoCs . 2
1.2 Embedded Software Verification and Validation 4
1.3 Interactive Debugging of Multicore Embedded Systems 6
1.4 Objectives of this Thesis . 7
1.5 Scientific Context . 7
1.6 Organization of the Thesis . 8

I Debugging Multicore Embedded Systems with Programming Models 9

2 programming and debugging multicore embedded systems 11
Setting the Stage:

Context, Background and Motivations.
2.1 MPSoC Programming: Hardware and Software Terminology 12

2.1.1 Multicore, Manycore and MPSoC Systems 12
2.1.2 Parallel Programming Models . 15
2.1.3 Supportive Environments . 16

2.2 Programming Models and Environments for MPSoC 17
2.2.1 Programming Models . 18
2.2.2 Sthorm Supportive Environments 22
2.2.3 Conclusion . 24

The Disruptive Element
2.3 Debugging MPSoC Applications . 24

2.3.1 Available Tools and Techniques . 25
2.3.2 Debugging Challenges of Model-Based Applications 27

2.4 Conclusion . 29

3 contribution: programming-model centric debugging 33
The Hero

3.1 Model-Centric Debugging Principles . 33
3.1.1 Providing a Structural Representation 34
3.1.2 Monitoring the Application’s Dynamic Behaviors 34
3.1.3 Interacting with the Abstract Machine 34
3.1.4 Open Up to Model and Environment Specific Features 35

3.2 Scope of Applicability . 35
3.3 How does it Apply to Different Programming Models? 36

v

3.3.1 Component Debugging . 37
3.3.2 Dataflow Debugging . 40
3.3.3 Kernel-Based Accelerator Computing Debugging 42

3.4 Conclusion . 44

II Practical Study of Model-Centric Debugging 47

4 building blocks for a model-centric debugger 49
The Adjuvant

4.1 Source-Level Debugger Back-end . 49
4.1.1 GDB Breakpoints . 51
4.1.2 GDB Python Scripting . 52

4.2 Capturing the Abstract-Machine State and its Evolution 54
4.3 Modelling the Application Structure and Dynamic Behavior 57

4.3.1 A Ground Layer for Communicating Tasks 57
4.3.2 Following Dynamic Behaviors . 57

4.4 Interacting with the Abstract Machine . 59
4.4.1 Application Structure . 59
4.4.2 Model-Centric Command-Line Interface Integration 61
4.4.3 Time-base Sequence Diagram . 62

4.5 Evaluation and Conclusion . 62

5 mcgdb, a model-centric debugger for an industrial mpsoc program-
ming environment 65

Resolution Elements
5.1 NPM Component Framework . 65

5.1.1 Component Deployment and Management 66
5.1.2 Communication Interfaces . 67
5.1.3 Message-Based Flow Control . 69

5.2 PEDF Dynamic Dataflow . 70
5.2.1 Graph Reconstruction . 71
5.2.2 Scheduling Monitoring . 73
5.2.3 Filter Execution Flow Control . 74

5.3 OpenCL Kernel Programming . 75
5.3.1 Architecture Representation and Execution Control 78
5.3.2 Execution Visualization . 79
5.3.3 Portage to NVidia Cuda . 81

5.4 Conclusion . 83

6 case studies 85
The Adventures

6.1 Component-Based Feature Tracker . 85
6.1.1 Pyramidal Kanade-Lucas Feature Tracker 86
6.1.2 Application Implementation . 86
6.1.3 Debugger Representation of the Architecture 87

vi

6.1.4 Message-Based Flow Control . 88
6.1.5 Data Transfer Error . 92

6.2 Dataflow H.264 Video Decoder . 94
6.2.1 H.264 Video Decoding . 94
6.2.2 Graph-Based Application Architecture 95
6.2.3 Token-Based Execution Firing . 96
6.2.4 Non-Linear Execution . 96
6.2.5 Token-Based Application State and Information Flow 97
6.2.6 Two-level Debugging . 98

6.3 GPU-Accelerated Scientific Computing 99
6.3.1 OpenCL and BigDFT . 99
6.3.2 Cuda and Specfem 3D Cartesian 106

6.4 Conclusion . 108

III Related Work and Conclusions 111

7 related work 113
Flashbacks

7.1 Low-Level Embedded System Debugging 113
7.2 HPC Application Debugging . 115
7.3 Programming-Model Aware Debugging 118
7.4 Visualization-Assisted Debugging . 121

8 conclusions and perspectives 123
The Final Situation

8.1 Contribution . 124
8.2 Perspectives . 125

Appendices 127

a gdb memory inspection 129

b extended abstract in french 131
b.1 Introduction . 131
b.2 Programmer et débogger les systèmes embarqués multi-cœurs 133
b.3 Contribution : Mise au point centrée sur le modèle de programmation . 134
b.4 Blocs de construction d’un débogueur centrée sur le modèle de program-

mation . 135
b.5 mcGDB, un débogueur centrée sur le modèle pour l’environnement de

programmation d’un MPSoC industriel 136
b.6 Etudes de cas . 137
b.7 Travaux connexes . 137
b.8 Conclusions et Perspectives . 137

Bibliography 140

vii

List of Figures

Figure 1.1 Three Stages for Application Debugging 5
Figure 2.1 Internal Architecture of Sthorm MPSoC System 13
Figure 2.2 Organization of a Programming-Model-Based Application . . 17
Figure 2.3 Component Programming Example. 19
Figure 2.4 Dataflow Graph Example . 20
Figure 2.5 Dynamic Dataflow Graph Example 21
Figure 2.6 Kernel-Based Programming Example. 22
Figure 2.7 PEDF Dataflow Graph Visual Representation of a Simple Module. 23
Figure 2.8 OpenCL as a Standard of Convergence 24
Figure 2.9 KPTrace Trace Analysis Visualization Environment 26
Figure 2.10 Sequence Diagram of a Basic Kernel Execution 31
Figure 3.1 Structural Representation of Interconnected Components. . . . 37
Figure 3.2 Graph of Dataflow Actors and Data Dependency of a Dataflow

Application. 41
Figure 3.3 Tokens Exchanged and Buffered between Dataflow Actors. . . . 41
Figure 3.4 Dataflow Actors in a Deadlock Situation. 42
Figure 3.5 Structural Representation of a Kernel-Based Application. 43
Figure 4.1 Model-Centric Debugging Architecture for an MPSoC Platform 50
Figure 4.2 Diagram Sequence of Breakpoint-Based API Interception 55
Figure 4.3 Simple Graph Representation with GraphViz 61
Figure 4.4 Setting Catchpoints With Command-line Completion 62
Figure 4.5 Time-base Sequence Diagram of the Configuration and Execu-

tion of an Accelerator Kernel. 63
Figure 5.1 State Diagram of NPM Component Debugging. 67
Figure 5.2 NPM Component Communication Interfaces. 68
Figure 5.3 PEDF Dataflow Graph Visual Representation of a Simple Module. 71
Figure 5.4 PEDF Trace-Based Time Chart of Filter Scheduling. 74
Figure 5.5 C and OpenCL Versions of a Simple Computation 77
Figure 5.6 OpenCL Platform Abstraction. 78
Figure 5.7 Time-base Sequence Diagram an OpenCL Kernel Execution. . . 80
Figure 6.1 Feature Tracking Between Two Images. 86
Figure 6.2 PKLT Internal Structures . 86
Figure 6.3 Code Snippet From Component Smooth-And-Sample Source

Code. 89
Figure 6.4 Graph of Dataflow Actors and Data Dependency of a H.264

Video Decoder . 95
Figure 6.5 GPU-Accelerated Scientific Applications from Mont-Blanc Project. 99

viii

Figure 6.6 Excerpt of BigDFT Program/Kernel Structural Representation. 100
Figure 6.7 Two Versions of a Kernel Code. 102
Figure 6.8 Visual Representation of OpenCL Execution Events. 105
Figure 6.9 Visual Representation of Cuda Execution Events. 108
Figure 7.1 Balle et al. ’s Tree-like Aggregators Network for Large-Scale

Debugging. 115
Figure 7.2 Gdebugger interface of OpenCL debugging. 120
Figure 7.3 Jive Visualization of a Java execution. 122
Figure B.1 Architecture d’un débogueur centré sur le modèle pour une

plate-forme MPSoC . 135

List of Tables

Table 2.1 Processor Comparison. 12
Table 4.1 Information Capture Mechanisms Trade-Off 56

ix

A C R O N Y M S

ST STMicroelectronics. 7, 11, 13, 25, 29, 50, 61–63, 74,
94, 109, 125, 133, 137, 139

Sthorm ST Heterogeneous Low Power Many-core. 13, 14, 17,
22–24, 63, 65, 70, 78, 83, 85, 87, 94, 95, 108, 136, 137

mcGDB Model-Centric GDB. 65–67, 69, 70, 72, 73, 75, 78, 79,
81, 85, 86, 91–101, 103–105, 107–109, 136, 137

MPSoC Multi-Processor-System-on-a-Chip. 1–3, 5, 6, 8, 11–
15, 17, 24, 25, 27, 29, 30, 33, 36, 44, 45, 63, 75, 83, 108,
113–115, 123–125, 131–135, 137–139

AMP Asymmetric Multi-Procesor. 13
API Application Programming Interface. 15, 23, 33, 36,

52–55, 61, 63, 70, 75, 79, 81, 82, 114, 116, 120, 121,
126, 130, 140

CBSE Component-Based Software Engineering. 18
CISC Complex Instruction Set Computing. 11
CPU Central Processing Unit. 6, 7, 19, 21, 24, 75, 78, 99,

101, 123

DMA Direct Memory Access. 14, 67, 69, 87, 90, 91, 95
DSP Digital Signal Processor. 1, 11, 24

FIFO First In First Out. 67, 69, 113

GPGPU General-Purpose Graphical Processing Unit. 3, 14,
15, 18, 21, 24, 75, 115, 117, 118, 124, 138

GPU Graphical Processing Unit. 14, 24, 43, 78, 81, 82, 99,
101, 106, 108, 117, 137

HPC High-Performance Computing. 3, 8, 14, 36, 75, 99,
113, 115, 137

IDE Integrated Development Environment. 125, 140
IP Intellectual Property. 14, 113
ISA Instruction Set Architecture. 13

JTAG/TAP Joint Test Action Group/Test Access Port. 114

xi

MMU Memory Management Unit. 114
MPI Message-Passing Interface. 16, 106, 116, 121, 126, 140

NoC Network-on-Chip. 113
NPM Native Programming Model. 23, 24, 65–67, 69, 70,

85, 88

OpenCL Open Computing Language. 16, 21, 23, 24, 29, 55,
65, 75, 78–83, 99–101, 103, 104, 106–108, 120, 121, 130,
136

OS Operating System. 3, 14–17, 21, 51, 66, 113, 114

PEDF Predicated Execution Dataflow. 23, 24, 61, 65, 70, 71,
73–75, 83, 94, 96, 109

RISC Reduced Instruction Set Computing. 11
RTL Register Transfer Level. 74, 83

SIMD Single Instruction Multiple Data. 14, 36, 44, 134
SMP Symmetric Multi-Processor. 13
SoC System-on-Chip. 113
SPMD Single Program Multiple Data. 14

TLM Transaction-Level Modelling. 114

VHDL VHSIC Hardware Description Language. 113

xii

1
I N T R O D U C T I O N

Nowadays, consumer electronics devices become more and more ubiquitous. With the
new generation smartphones, tablets, set-top boxes and hand-held audio/video players,
multimedia embedded systems are spreading at a fast pace, with a constantly growing
demand for computational power.

During the last decade, Multi-Processor-Systems-on-a-Chip (MPSoCs) have been
introduced to the market to answer this demand. These systems-on-a-chip typically fea-
ture general-purpose multicore processors, but also clusters of domain or application-
specific processors (e.g., Digital Signal Processors(DSPs)) or lightweight processing
elements. These processors can have different instruction sets (also known as hetero-
geneous computing), which allows manufacturers to optimize their micro-architecture
to perform specific tasks. Besides, such chip designs allow platforms to offer high
computation performance while maintaining low power consumption.

However, a significant drawback counterbalances the appealing capabilities of MP-
SoCs. Indeed, although multicore heterogeneous programming can provide a solution
to the computational needs, it also increases development, verification and validation
complexity. In the embedded system industry, these aspects are key to maintain a good
time-to-market. Hence, it is crucial for companies to lower as much as possible their
impact.

With respect to the development aspect, programming models provide well-studied
guidelines, communication algorithms and architecture designs to draw application
specifications. In the context of MPSoC programming, relying on such models can
help developers not to reinvent the “parallel computing wheel” and improve development
time. Furthermore, at implementation time, the code implementing these low-level
and platform-specific structures can be bundled into application-independent libraries.
Reusing such libraries also contributes to reduce the time-to-market. In the following,
we refer to these libraries as supportive environments.

However, MPSoC parallelism also exacerbates the challenges of application verifica-
tion and validation. Concurrency in execution flows introduces bugs which could not
exist during a sequential execution, such as deadlocks and race conditions. Besides,
supportive environments can twist and bend the execution flows to follow the program-
ming model directives. Hence, the overall application and runtime libraries complexity
makes it particularly hard to pinpoint problems and understand their root cause.

1

introduction

We continue this chapter with an introduction to embedded systems and MPSoCs
(Section 1.1), then we present the general domain of this thesis: software verification,
validation and debugging (Section 1.2). We carry on in Section 1.3 with an overview the
debugging challenges specific to MPSoCs. After that, we jump to the core of our topic
and present in Section 1.4 the general objectives of this thesis. We finish this chapter
with a description of the scientific context in which we carried out this research work
(Section 1.5) and an outline of the organization of this manuscript (Section 1.6).

1.1 embedded systems and mpsocs

In 1992, the IEEE proposed the following definition of an embedded system:

“ A computer system that is part of a larger system and performs some
of the requirements of that system; for example, a computer system
used in an aircraft or rapid transit system.”

IEEE, 1992

The popularity of such systems has increased at a high pace during the last decade,
in particular with consumer devices that are getting “smarter and smarter”: engine
regulators in the automotive industry, smartphones, hand-held game consoles, set-top
boxes, . . .

In all these devices, a computer sub-system is in charge of at least one part of the
overall requirements. It may be a narrow aspect, like the engine regulator compared
to an entire automotive, or it may be more prominent, such as the new generation
smartphones which nowadays appear similar to general-purpose computers.

All these computer systems share an important characteristic: they operate in con-
strained environments. These constraints can take different aspects: a limited power
supply can entail processor frequency limitations and/or a micro-architecture focused
on energy efficiency rather than raw speed; physical space and chip costs are also part
of the balance, bringing limitations in the memory space size (volatile and non-volatile)
and available input and output systems (screen, keyboard, mouse, etc.).

Aside from these constraints, embedded systems are not that different from their
general-purpose counter-parts: one or multiple processors read data from memory,
execute instructions and write back the result, if any. Hence, application development
for embedded systems appears similar to classic programming, except that developers
must keep into consideration device-specific requirements.

Along that, and similarly to general-purpose computers, another urge emerged in
embedded systems during the last decade: applications require high performance to be
able to provide advanced 3D capabilities or support high-definition video standards.
And to answer this need, embedded system manufacturers began to increase the number
of processors and cores available to software applications. They first augmented the
number of processors on the board, but in recent years, they have started to adopt

2

1.1 embedded systems and mpsocs

a new design: MPSoC. Here, processors are not physically independent from one
another, but rather all integrated on the same chip. This design strongly reduces the
energy consumption of such processors, as well as the heating factor. Inter-processor
communication is also faster, as data remain inside the chip instead of circulating over
the board’s internal interconnection network.

However, an important distinction separates MPSoC parallelism from mainstream
computers: the processors heterogeneity. As embedded systems aim at performing a
very specialized service, they do not require a general-purpose computation power, but
rather a task-specific one. We can illustrate this idea with a mobile-phone featuring 1/ a
digital-signal processor to communicate with the wireless network, 2/ a multimedia
processor to play music and videos, and 3/ a more generic one to run the Operating
System (OS) and user applications.

Orthogonally, MPSoCs have also attracted a new kind of consumers towards em-
bedded systems: High-Performance Computing (HPC) manufacturers. Indeed, the
race for performance of general-purpose computers is facing a strong and tall barrier:
the energy wall. Current HPC computers can provide up to 33 petaflop/s1, at the
energy price of 18MW. Considering the next target of one exaflop per second, a linear
extrapolation of the electric consumption sets the bill around 30 × 18 = 540MW. This
figure is equivalent to the energy produced by a nuclear power plant reactor2. Hence,
emergent HPC solutions are starting to consider energy-efficient processors such as
MPSoCs.

For similar reasons, General-Purpose Graphical Processing Units(GPGPUs), the
processors of high-end graphics card, are also more and more present in HPC. For
instance, the current Top500.org no2 supercomputer (and previously no1), Titan3, is
powered by more than 260,000 Nvidia K20x GPGPU accelerator cores.

We will see in the next chapter (Chapter 2, Section 2.1.1) that these two device
families share similar characteristics, both at the energy level and regarding their
programmability. They mainly differ in the number of processing elements they feature,
and their degree of independence.

From a software perspective, programming such parallel and heterogeneous systems
require new development tools, well-tailored to their particular hardware characteristics.
Hence, academic and industrial researchers study how to adapt existing programming
methodologies to these requirements(e.g., component or dataflow programming) or
develop new ones (e.g., kernel-based accelerator programming). We further discuss
these examples in the following chapter and throughout this document.

1 Tianhe-2 (MilkyWay-2), Top500.org no1 (June 2013), http://www.top500.org/system/177999
2 U.S. Energy Information Administration, http://www.eia.gov/tools/faqs/faq.cfm?id=104&t=3
3 Titan, Top500.org no2 (June 2013) http://www.top500.org/system/177975

3

introduction

In the following section, we introduce the problem complementary to embedded
system programming, that is, how to ensure the correctness of such applications.

1.2 embedded software verification and validation

Verification and validation is a crucial aspect of software development. Indeed, an
application not following its specification is of limited interest. But in some particular
environments, consequences may rise rapidly. In the domain of embedded systems, we
can find numerous examples of life-depending, costly and/or hardly accessible devices:
pace-makers, automotive industry, satellites, . . . For such critical cases, software
elements must provide a high-level of correctness and reliability guarantees.

In different circumstances, such as consumer electronics, the need for correctness
appears more as a business requirement. In the embedded system industry, the time-to-
market is an important constraint for products to be successful. If a company releases
its device before competitors, it has a higher chance of adoption. In parallel to this aspect,
software correctness is also essential to ensure a good user experience. Applications
showing repetitive crashes, lags, or any kind of unexpected behavior will be heavily
criticized by its users.

Verification and validation aims at limiting these artifacts. It is a large research topic,
ranging from static analysis to execution profiling, through provable programming
models, compiler verification and interactive debugging. It encompasses a wide set of
skills and abilities, for both developers fixing their applications and computer scientists
developing the tools and methodologies.

We can distinguish three stages of application debugging techniques: pre-execution,
live and post-mortem, which depend on the moment when the verification is done, as
illustrated with Figure 1.1. Let us explain this distinction with a simple example of a C
code producing a segmentation fault4:

if (*i == NULL) { *i = x; }

Pre-Execution Analysis consists in analyzing the source code to detect potential problem.
In our example, analyzing the possible values of i would highlight that the
variable can only be NULL in the affectation.

Live debugging consists in analyzing the processor and memory state during the execu-
tion. Here, the process would terminate (segmentation fault) on the affectation.
Printing the value of variable i would reveal that its value was NULL .

Post-mortem debugging consists in instrumenting the source-code to gather execution
information. This instrumentation can be implicit, through hardware module or
during compilation, or explicit with tracing statements. In our example, an explicit

4 This example assumes a GCC compiler and Linux kernel; see [WCC+12] for more detailed information
about what can happen with C undefined behaviors and null pointer dereference.

4

1.2 embedded software verification and validation

Live
Debugging

Post-Mortem
Debugging

Pre-Execution
Analysis

Validate the
resultsExecute

Write
code

Figure 1.1: Three Stages for Application Debugging

instrumentation would involve logging the value of i before the assignment,
and parsing the execution trace to spot its invalid value.

Hence, the purpose of verification and validation, and debugging in particular, is
to locate and fix “bugs” from the source code. But before going further, we need to
make explicit the definition of a bug, as the term is rather colloquial. In [Zel05], Zeller
dissected the precise meanings behind it and proposed a more explicit terminology:

1. The programmer creates a defect in the source code, by writing incorrect instruc-
tions.

2. When this defect is executed, it causes an infection, that is, the program state
differs from what the programmer intended.

3. The infection propagates in the program state. It may also be overwritten, masked
or corrected by the application.

4. The infection leads to a failure, that is, an externally observable error or a crash.

In this document, we refer to bugs when the distinction between the different aspects
is not important. We use the notions of errors/crashes or defects to refer to visible
problems and source code problems, respectively.

One component of software verification and validation is still missing before conclud-
ing this section: performance debugging. Indeed, timing and timeliness are important
aspects of the non-functional part of software specification. In the context of MPSoC
development, validating such constraints requires the usage of highly accurate platform
simulators, or better real boards. It can involve different post-mortem techniques, such
as profiling and trace analysis.

This aspect of application debugging is out of the scope of this document, as we
chose to focus on live debugging. Indeed, this debugging technique, and in particular
interactive debugging, severely disrupts the continuity of the execution and hence alters
its time-related behavior. Incidentally, the bug terminology described above is also not
adapted to performance debugging. Therefore, the work we present exclusively targets

5

introduction

functional debugging of MPSoC programming. We present this aspect with more details
in the following section.

1.3 interactive debugging of multicore embedded systems

Interactive debugging consists in exploring, analyzing and understanding how an
application is actually executed by the underlying platform, and confronting it with
what the developer expects from the execution. The point where the two versions
diverge may hide a code defect. Locating this divergence involves and requires a
scientific reasoning: once developers notice an application error, they draw hypotheses
on the infection point and its propagation path. Interactive debugging tools help them
to verify or invalid these hypotheses by allowing program state inspection at different
points of the execution. The tool used for that purpose is commonly known as a
debugger, although this name is not completely meaningful. Indeed, debuggers are not
primarily concerned with finding bugs, but rather helping developers to understand
the details, subtleties and convolutions of the application execution. Debuggers allow
developers to stop the execution under different conditions:

Breakpoint when a processor reaches a specific function, source-code line, assembly
instruction, or memory address,

Watchpoint when the code tries to read or write a particular memory location,

Catchpoint another possibility is to “catch” system events occurring in the application,
such as system calls or Unix signals.

Once the debugger has stopped the execution, it gives the control back to the
developer, who tries to understand the exact application state. In order to do this, the
debugger provides a set of commands to inspect the different memory locations. With
the help of debugging information provided by the compiler (usually embedded in the
binary file), the debugger can display the values of the memory bits in the relevant
format (that is, as an integer, a character, a structure, etc.). These memory bits can come
from different locations: a local variable in the call stack, a global variable, a Central
Processing Unit (CPU) register, a made-up address or a computed value.

However in applications for multicore embedded systems, a showstopper hinders
the road of interactive debugging: supportive environments’ runtime libraries drive an
important part of the execution. From the debugger users’ point of view, this means
that they will not be able to control their applications as seamlessly as for standard
applications (i.e., applications where developers can control and access the entire
source code). Indeed, runtime libraries manipulate the execution flow(s), for instance
to schedule multiple entities on a single processor core or to transmit and process
messages. The semantics of these operations goes beyond the traditional assembly-based
capabilities of current interactive debuggers.

6

1.4 objectives of this thesis

In the following section, we present the general objectives of this thesis in order to
lighten the challenges faced by application developers of multicore embedded systems
and help them to locate the problems in their applications more easily.

1.4 objectives of this thesis

We believe that interactive debugging can provide a substantial help for the develop-
ment and refinement of applications for multicore embedded systems. Indeed, although
high-level programming models simplify application development, they cannot sys-
tematically guarantee the correctness. If some models allow extensive compile-time
verification, such benefits come at the price of strong programming constraints and a
reduced expressiveness. On the other side, models supporting a larger set of algorithms,
and especially dynamic behaviors, usually cannot provide such guarantees.

For these models, interactive debugging stands as an interesting alternative. It offers
the ability to control and monitor application execution with various granularities
(source code, machine instructions, CPU registers, main memory, . . .), which would be
impossible to achieve with other approaches.

However, in its current state, interactive debugging is not adapted yet to debug
applications relying on high-level programming models. Source-level debugging has
evolved to support multiple flows of execution and inspect their memory contexts,
however the semantics of debugging commands has remained the same as for sequential
applications: exclusively based on processor control and symbol handling (breakpoints,
step-by-step execution, printing memory locations/registers/variables, etc.).

Our objective in this thesis is to move the abstraction level of interactive debugging
one step higher in the application representation. Thus, it would meet the abstraction
level used by developers during application design and development, that is, the
representation defined by the programming model.

We expect these improvements to relieve developers from the burden of dealing with
uncontrollable (with current interactive debugging approaches) runtime environments.
In addition to hindering experienced developers in their duties, unfitted debuggers
also discourage junior programmers to use such tools to tackle their problems, because
of the steep learning curve.

Finally, we intend to describe generic guidelines to facilitate and encourage the
development of similar high-level debuggers for different programming models. Indeed,
we believe that having a unified set of high-level debugging tool would help developers
to switch from one model to another more easily.

1.5 scientific context

This thesis was funded by a Cifre ANRT partnership between STMicroelectronics
(ST) and the Lig (Laboratoire d’Informatique de Grenoble) laboratory of the University
of Grenoble, France. The research work was carried out in ST’s IDTec (Integrated

7

introduction

Development Tools Expertise Center) team, whose role is to provide its customers with
development and debugging tools tailored to the company’s embedded boards. This
thesis work, essentially industry-oriented, was directly part of the team’s mission.

The scientific and academic part of the thesis has been carried out in the Nanosim
(Nanosimulations and Embedded Applications for Hybrid Multi-core Architectures)
team of the Lig. Nanosim’s research targets the integration of embedded systems into
HPC environments. In this regard, they are interested in energy-efficient MPSoCs, how
to develop applications for such architectures, and eventually how to refine the code to
exploit the boards’ performance optimally.

1.6 organization of the thesis

The rest of this document is divided into three parts, as follows:

• Part I introduces the tools and methods to develop applications for MPSoC
systems and presents the state-of-the-art of software debugging in this con-
text (Chapter 2). Then, we detail the generic principles of our contribution,
programming-model-centric debugging, and we explain how it applies to differ-
ent programming models used for MPSoC development (Chapter 3).

• Part II presents a practical study of model-centric debugging: we first provide
building blocks for the development of such a debugger (Chapter 4), then we
describe how we transformed our abstract, model-level debugging propositions
into actual tools, to debug applications running in different programming en-
vironments for an industrial MPSoC (Chapter 5). Lastly, we study the benefits
of model-centric debugging in the context of industrial application case-studies
(Chapter 6).

• Part III finally reviews the literature related to the debugging of embedded and
multicore applications (Chapter 7), draws the conclusion and details the future
work of this thesis (Chapter 8).

8

Part I

Debugging Multicore Embedded
Systems with Programming Models

9

2
P R O G R A M M I N G A N D D E B U G G I N G M U LT I C O R E E M B E D D E D
S Y S T E M S

Setting the Stage:
Context, Background and Motivations.

In comparison with general-purpose computers, multicore embedded system archi-
tectures appear to be more diversified. Their task-specific nature blurs away the need
for hardware and software compatibility that we are used to see in general-purpose
computing. Likewise, their environmental constraints, for instance energy limitations
or cost pressure, led to shifts in the design of their internal microarchitecture: instead of
the general-purpose Complex Instruction Set Computing (CISC), 64 bits x86 processors,
embedded systems tend to favor Reduced Instruction Set Computing (RISC) processors,
like ARM processors or ST’s STxP series (see next section for details). Furthermore,
in order to meet applications’ performance expectations with a limited energy con-
sumption, multicore embedded systems started to incorporate specialized hardware
processors such as DSPs or even dedicated circuits [Wol04].

In both general-purpose and embedded computing, programming multicore proces-
sors is well-recognized as a difficult task. In order to gather and reuse the design
and algorithmic knowledge gained over the years, the good practice of relying on
programming models and supportive environments has emerged in parallel application
development. Respectively at design and implementation time, these abstract models
and their coding counter-parts provide developers with well-studied implementation
building-blocks for the development of their parallel applications. They also offload ap-
plication developers from programming the low-level and deeply architecture-specific
aspects of their programs.

However, debugging such multicore applications is notoriously more difficult than
sequential applications, and it gets even worse with MPSoC heterogeneous parallelism.
One reason for the increase of difficulty is that concurrent environments bring new
forms of problems in the bug taxonomy, which do not exist in sequential codes. We can
cite for instance deadlocks or race conditions. The former corresponds to a situation
where a set of tasks are blocked, mutually waiting for data from one another and the
later stands for a data dependency defect, where the infection and failure are only
triggered in specific and non-deterministic task scheduling orders. These conditions,
although still a frequent problem for multicore application programmers, undergone
heavy literature studies during the last decades [LPSZ08]. We will rather focus on less

11

programming and debugging multicore embedded systems

specific problems, such as code that do not follow their specifications, and how to help
developers to better understand the details of the application execution.

In this chapter, we review the key elements required to understand the background
of this thesis. We first detail in Section 2.1 the specifications of the embedded systems
we target, as well as the concepts of programming model and supportive environment.
Then, we illustrate these notions in Section 2.2 with the description of three program-
ming models and present how our target platform supports them. Our latter analyses
and experimentation rely on this programming ecosystem. Finally, in Section 2.2, we
study the current state-of-the-art of MPSoC application debugging. We first explain the
challenges faced while debugging such applications, then we present the tools currently
available and point out their limitations.

2.1 mpsoc programming: hardware and software terminology

In this section, we detail the hardware and software terminology used in this thesis
manuscript. We start at hardware level with a presentation of embedded systems
featuring multicore and manycore processors. Then, from a more general point of view,
we explain our vision of programming models. Finally, we reach the software level and
detail the notion of supportive environments. The concepts of programming models
and environments are frequently used in computer science and software development,
but their exact signification varies among the different communities.

2.1.1 Multicore, Manycore and MPSoC Systems

multicore and heterogeneity

Nowadays, it is well-accepted that the increase of processor’s computing performance
has hit a wall. Currently, there exists a threshold around 20-30nm of lithography resolu-
tion that prevents micro-transistor frequency increase while maintaining an acceptable
heat factor. Table 2.1 presents a comparison of three recent general-purpose and em-
bedded processors, where we can notice the current limits in terms of microprocessor
lithography and frequency.

Lithography Frequency Release date # of cores
Intel Xeon E5-1660 v21 22nm 3.7GHz Q3 2013 6
AMD FX 95902 32nm 4.7GHz Q3 2013 8
ARM Cortex A93 45nm 2GHz 2009 4

Table 2.1: Processor Comparison.
Note 1 http://ark.intel.com/products/75781
Note 2 http://www.amd.com/us/products/desktop/processors/amdfx/pages/

amdfx-model-number-comparison.aspx
Note 3 http://www.arm.com/files/pdf/armcortexa-9processors.pdf

12

2.1 mpsoc programming: hardware and software terminology

To counter the lack of raw performance improvements, processors started to grow
“horizontally”, instead of “vertically”. That is, by increasing the number of cores on a
single processor die. Hence, multicore processors have flourished in personal comput-
ers, which now frequently feature bi, quad or even octo-core processors, as shown in
Table 2.1.

This trend has also reached embedded devices, but with additional constraints such
as reducing costs and energy consumption. Indeed, providing a dedicated processor
for voice processing, another for the video camera, a third one for the user interface,
etc. can improve the overall performance drastically.

However, a sharp distinction separates these two aspects of multi-processing. Per-
sonal workstations usually feature Symmetric Multi-Processor (SMP), whereas embed-
ded system have Asymmetric Multi-Procesor (AMP), or heterogeneous processors (we
use this term in the rest of the document).

In SMP architecture, all the processors have the same micro-architecture, or at least
a common Instruction Set Architecture (ISA) and share the memory address space.
On the other hand, in AMP or heterogeneous multi-processing, the processors are not
uniform and hence cannot share the whole memory space.

Multicore MPSoCs

MPSoC systems can be classified as multicore or manycore processors, depending
of their design goals. Boards targeting multimedia markets will favor designs with
a limited number of cores, well-optimized to the application they will host; whereas
those targeting intensive computation will tend to manycore designs.

ST Heterogeneous Low Power Many-core (Sthorm) is an MPSoC industrial research
platform which was developed in collaboration by ST and CEA [BFFM12, MBF+12].
It was formally known as Platform 2012/P2012 until it recently reached product
maturity. (ST first products featuring a Sthorm subsystem will be available in early
2014.) We will use its design and software ecosystem as a reference design throughout
this document, as the platform has been well-accepted in both academic and industrial
embedded computing communities.

STHORM Fabric

L2

L3 (DRAM)

Cluster 0

L
1

T
C

D
M

Cluster 1

L
1

T
C

D
M

Cluster 2

L
1

T
C

D
M

Cluster 3

L
1

T
C

D
M

ARM Host

FC

Figure 2.1: Internal Architecture of Sthorm MPSoC System

Figure 2.1 presents the internal architecture of Sthorm. The platform design orig-
inated from computing accelerators, with a general-purpose dual-core Arm Cortex

13

programming and debugging multicore embedded systems

A9-MP processor on one side, running a Linux-based OS, and the computing fabric,
which consists of clusters of up to 16 processing elements (i.e., processor cores or
dedicated hardware Intellectual Properties (IPs)) sharing their memory space on the
other side. Figure 2.1 depicts four clusters, however the number can vary according
to the design requirements. Additionally, each cluster can embed dedicated hardware
IPs, specially crafted for a particular operation. We come back to this aspect later on
(Chapter 6, Section 6.2) with an example of a H.264 video decoding application that
exploits this capability.

Within a cluster, the 16 cores communicate through the shared L1 memory bank, and
their execution is coordinated by a cluster controller core. Clusters can communicate
with each other through a shared memory-space in the L2 memory bank; and they
interact with the host processor through the L3 memory bank, interfaced by a Direct
Memory Access (DMA) controller.

As we further detail in Section 2.2 with the description of Sthorm’s programming
models and environments, applications running on the platform can exploit the host
processor as well as all or some of the clusters. Inside a cluster, they can operate on
the cluster controller and/or the processing elements. The programming environments
provided with Sthorm offer developers the ability to choose the model which will be
the most adapted to their requirements.

Sthorm MPSoC can run Single Program Multiple Data (SPMD) codes as its pro-
cessor cores are autonomous and can execute simultaneously the same program at
independent points. This is an interesting capability, in comparison with Graphical
Processing Unit (GPU) processors, whose processor cores run in a lockstep Single
Instruction Multiple Data (SIMD) fashion.

Manycore GPGPUs

Graphics card processors started to open up towards general purpose computing since
the beginning of 2003 [NVi09]. At that time, the HPC community discovered that they
could exploit GPGPU computing power for broader purposes than only rendering
3D and high-definition images on a monitor screen. These processors are massively
parallel, as for example, Nvidia’s Tesla K20X and its 2688 cores, clocked at 732MHz1.

However, we must balance this impressive figure with the fact that GPU cores are
not completely independent from one another. They rather operate in a SIMD fashion,
which means that all the cores (or a subgroup of them—we further expand on this aspect
in Subsection 2.2.1) must execute the same instruction at the same time. Nevertheless,
current GPGPUs are more flexible than antique SIMD computers, as they allow cores
to follow different branches of a conditional test:

if (thread_id % 2)

// do A

1 Nvidia Tesla K20X board specification. http://www.nvidia.fr/content/PDF/kepler/

Tesla-K20X-BD-06397-001-v05.pdf

14

2.1 mpsoc programming: hardware and software terminology

else

// do B

In this situation, all the cores with an odd thread id will execute branch A , while
those with an even thread id will be blocked. Upon branch A completion, the cores
with an even thread id will execute branch B , and the other group will be blocked.
Hence, we can understand with this behavior that GPGPU processors still have a single
instruction pointer, but they can disable instruction treatment upon specific conditions.
The direct drawback of such code is that half of the processing power is lost during the
conditional treatment.

Now that we have presented how MPSoC and GPGPU platforms are organized,
we move forward to the software level and discuss how developers can program
such complex architectures. In the following subsections, we present the notion of
programming model and it embodiment as supportive environments. Programming
models aim at providing developers with a high-level development interface, less
complex and more generic than the underlying architecture.

2.1.2 Parallel Programming Models

Skillicorn and Talia provided in [ST98] an interesting definition for what they call a
model of parallel computation (we refer to it as a programming model):

A model is an abstract machine providing certain operations to the pro-
gramming level above and requiring implementations for each of these
operations on all of the architectures below. It is designed to separate
software-development concerns from effective parallel-execution concerns
and provides both abstraction and stability.

Instead of developing parallel applications based on raw hardware or OS primitives,
developers can base their design and development on programming-model abstract
machines. These high-level machines aim at simplifying software development by
providing developers with well-studied programming abstractions, detached from the
heterogeneity of hardware architecture families.

Programming models define an Application Programming Interface (API) which
provides stability and separation-of-concern. Stability arises from the independence
of the interface from the underlying implementation and hardware. Indeed, applica-
tions can benefit from their respective evolution and improvement without any code
modification. Separation-of-concern allows software programmers to exclusively focus
on the application implementation, whereas another team, specialized in OS and low-
level programming, will be in charge of the abstract machine implementation. In the

15

programming and debugging multicore embedded systems

context of parallel computing, programming models should also facilitate application
decomposition into parallel entities2 that run on distinct processors.

Programming models should also provide a software development methodology, in
order to bridge the gap between the semantic structures of the problem and the actual
structures required to implement and execute it.

In [Vaj11], Vajda distinguished two general families of programming models (or
paradigms): those based on a global state and those that are de-centralized. In the former
family, the program state can be fully characterized at any point in time. In the later,
there is no global state, but rather autonomous and un-synchronized entities, reacting
to requests coming from other components of the system.

These broad families can be divided again and again in sub-families. In the following
section (Section 2.2.1), we will study two de-centralized models, which belong to the
task-based family, and one global state, that belongs to the data-parallel family.

Under this perspective, we can affirm that programming models are key abstractions
for the design of multicore applications. However, as the term “model” implies, at
this stage they only provide conceptual tools. Supportive environments are in charge of
making concrete the programming models’ guidelines.

2.1.3 Supportive Environments

A supportive environment consists of the programming framework instantiating a partic-
ular programming model abstract machine, as well as the runtime system which drives
the application execution on a particular architecture. It corresponds to the second
part of the programming model definition: “. . . requiring implementations of each of these
operations on all of the architectures below.”

As mentioned earlier, parallel programming models need to facilitate application
decomposition, thus their supportive environments are in charge of the mapping and
scheduling of these entities onto the available processors. Hence, they also have to
implement and optimize the communication operations defined by the model.

Supportive environments appear to the application as a high-level programming
interface to the platform and its low-level software. In order to decouple software
developers’ work from environment implementers’, this interface aims at being stable
over the time, for instance through standardization (e.g., Message-Passing Interface
(MPI) [MPI94] or Open Computing Language (OpenCL) [Khr08]). They are often
implemented through reusable libraries and frameworks, and optimized for the target
platforms and execution conditions.

It is important to note that there is no strict boundary between a supportive environ-
ment and the computer OS, especially in the context of embedded computing. Indeed,
as Vajda underlined in [Vaj11], an OS can be seen as the abstraction layer on top of the

2 The names tasks or threads also exist in the literature, but we avoid the latter which can be confused with
OS threads of execution.

16

2.2 programming models and environments for mpsoc

underlying hardware. Hence, it appears similar to a low-level supportive environment.
The key distinction is that the role of OS is more oriented towards hardware resources
sharing and management.

execution of programming-model based applications

Figure 2.2: Organization of a Programming-Model-Based Application

Figure 2.2 presents an overview of the general organization of an application based
on a programming model. We can distinguish three different layers:

1. The application itself, which consists of code written by developers to implement
their algorithms in a given programming model and language.

2. The abstract machine defined by the programming model and implemented by
the supportive environment.

3. The physical machine, abstracted through the OS.

During the execution, the boundary between the application layer and the supportive
environment disappears. The OS is only aware of the surrounding box, the application
binary, and the different processors used by the application (i.e., the threads and
processes it created). Hence, from a “system” point of view, there is no distinction
between an application relying on one programming model or another, or even from
an application exclusively relying on OS primitives.

In the following section, we introduce concrete examples of programming models
and environments. We chose these examples as they are part of Sthorm ecosystem,
and hence offer three alternatives to program a single MPSoC system.

2.2 programming models and environments for mpsoc

Now that we have clarified the notions of programming model and environment, we
exemplify these definitions with three case-studies. These models (Subsection 2.2.1)
and environments (Subsection 2.2.2) are part of Sthorm development toolkit, and
provide alternative ways to exploit the platform. In the remaining of this dissertation,

17

programming and debugging multicore embedded systems

we regularly come back to these models to illustrate how our model-centric debugging
proposal applies to this industrial environment.

2.2.1 Programming Models

In this subsection, we first present Component-Based Software Engineering (CBSE).
Strictly speaking, CBSE is not a programming model, but rather a software development
approach. However, as far as we are concerned in this work on debugging, we assume
we can blur away this distinction. Components are also based on the task model,
however their interconnection network can change over the time.

Then, we continue our examples with dataflow programming, which is another
task-based programming model that focuses on the flow of information between the
tasks.

Finally, we introduce kernel-based accelerator programming, which radically differs
from the two former models. In this data-parallel model, which stemmed from GPGPU
computing, a “host” processor drives the computation, by preparing work to be executed
on accelerator processors.

component programming for mpsoc

In the component programming model [JLL05], the key task decomposition consists
in components providing services to one another. The model and its development
methodology underline that developers should design components as independent
building blocks and favor reusability. Hence, the interface between components should
be defined in a language-independent description file, and each component should
provide an architecture description file, which formally specifies the nature of the
services it offers, as well as those it requires.

Hence (or rather theoretically), developers should be able to develop component-
based applications just by interconnecting the right components with one another. In
practice, the right component may not be readily available, so developers have to build
them themselves.

To express parallelism, components can provide a “special” service, whose interface
definition is provided by the abstract machine: an interface for “runnable” compo-
nents. With regard to the C programming language, we can compare this service to
the int main(char * argv, int argc) function prototype. Similarly, the abstract
machine will request this service execution at the relevant time and on a dedicated
execution context.

Developers can also program dynamic reconfigurations of component interconnec-
tions, for instance to adapt the architecture to different runtime constraints, if the
abstract machine supports it.

18

2.2 programming models and environments for mpsoc

The abstract machine defined by this model is in charge of components’ life-cycle
management: deployment, bindings and, if relevant, mapping and scheduling. It also
handles inter-component communications, which may be as simple as function calls,
but also involve different processors and memory contexts.

Interface not connected

«Runnable» interface

Type 2 interface

Type 1 interface
Horizontal
Splitter

Image
Generator

Split
Processor

Vertical
Splitter

Figure 2.3: Component Programming Example.

Figure 2.3 presents an example of a component-based application. As the names sug-
gest, the purpose of this application mockup is to generate an image, split it horizontally
and process each of the chunks. We can notice that two components (ImageGenerator
and Split Processor) are runnable, and the horizontal and vertical split algorithms
are implemented in two distinct components. These two components perform a similar
task, hence they provide the same interfaces. During the execution, the application
have to reconfigure its architecture to switch from one splitting algorithm to the other.

Although the component programming model is not widely used yet for embedded
systems, it is well suited to their requirements [Crn04]. Indeed, components allow
the adaption of the application architecture to the runtime constraints such as the
workload, power consumption or available processors. The main reason of their low
popularity appears to be the strong requirements that embedded systems must satisfy,
like timeliness, quality-of-service or predictability, which are not achieved by traditional
component frameworks.

dynamic dataflow programming

Researchers have developed and improved the dataflow programming models since
the 1970s/1980’s, as an alternative to conventional paradigms based on von Neumann
processors [JHRM04]. These models shift the developer focus away from the stream of
instructions executed by the CPU (i.e., executing an instruction and incrementing the
program counter) and push it towards the dependencies between data transformations.
Put another way, this means that an instruction, or a block of instructions, is not
executed when the program counter reaches it as in imperative programming, but
rather when its operands are ready. These models were explicitly designed to exploit
parallel architectures and try to avoid the main bottlenecks of von Neumann hardware:
the global program counter and the global updatable memory.

As dataflow models put an important focus on data dependencies, applications
designed with such models can form a directed graph, allowing verification of mathe-

19

programming and debugging multicore embedded systems

Configuration

Image
Generator

Splitter
1 0

1

 1 {H or V}

Split
Processor

Figure 2.4: Dataflow Graph Example

matical properties. The nodes of the graph, named actors, correspond to the different
data transformations of the application. The inbound arcs represent the data arriving
to the actor (i.e., input parameters of imperative languages) and the outbound arcs
represent the data they generate (i.e., output parameters). Thus, the arcs materialize the
data dependencies. The dataflow models consider the information transmitted over
the actors as immutable, hence the concept of “input/output” parameters of imperative
languages does not exist in this context.

Figure 2.4 presents the graph of a dataflow implementation of our application
mockup, composed of four actors. A configuration actor indicates whether the split
should be horizontal (H) or vertical (V), and figures on the connections indicate how
many tokens each actor expect to send or receive to complete its task.

In [BDT12], Bhattacharyya et al. distinguished two classes of dataflow models: decidable
models and dynamic ones, more general. The former class enforces strong constraints
to developers so that all the scheduling decisions can be made at compile time. This
entails that the compiler can prove application termination, but also guarantees that the
execution will run deadlock-free. It also enables powerful optimization techniques and
helps design validation through static analyses. However, the development constraints
strongly limit the set of implementable algorithms and essentially restrain it to static
problems. Synchronous dataflow [LM87] is a famous example of decidable model.
It is frequently involved in embedded and reliable systems, thanks to the extended
guarantees it provides.

On the other hand, dynamic models are more permissive. In particular, they allow
actors to produce and consume tokens at variable rates, that is, rates not predictable at
compilation time. Multimedia video decoding, and more generally multi-standard or
adaptive signal processing applications frequently require such dynamic processing
capabilities. Bhattacharyya et al. illustrate in [BDT12] how MPEG or MP3 decoding
involve large fluctuations dependent of the stream content.

The abstract machine of dataflow models defines actors, consuming and producing
data from their inbound and outbound interfaces. At runtime, it connects the differ-
ent interfaces and transports data between the actors, according to the dependency
constraints defined in the dataflow graph. This graph may be defined explicitly or
implicitly, depending of the supportive environments.

20

2.2 programming models and environments for mpsoc

Image
Generator

Configuration

Splitter
n + 1

1

 2 {H or V, (int) n}

Split
Processor

Figure 2.5: Dynamic Dataflow Graph Example

We can recognize that the illustration of Figure 2.4 was implicitly based on a decid-
able model, as the emission and reception rate of the actors is fixed. In the graph of
Figure 2.5, we reworked our dataflow application and added a dynamic aspect: now,
the Configuration actor sends a second token indicating in how many chunks the
image should be split (n). Consequently, actors Splitter and Split Processor

respectively send and receive a variable number of tokens (n+1 informally indicates
that the first token will contain the number of tokens— n –that will follow).

kernel-based accelerator programming

In this last subsection, we present the programming model behind the OpenCL [Khr08,
TS12] standard (and incidentally close to Nvidia Cuda’s3). OpenCL aims at supporting
“heterogeneous computing on cross-vendor and cross-platform hardware [...], from simple
embedded microcontrolers to general purpose CPUs [...], up to massively-parallel GPGPU
hardware pipelines, all without reworking code.” As the primary target of this programming
model are accelerators and GPGPUs, its design took into account to the absence of
outstanding OS managing the accelerator processors. For the same reasons, the model
does not assume shared memory between the main CPU (the host) and the accelerators.

In this model, the host-side of the application prepares the work that the accelerators
will execute in parallel. It consists of subroutines (kernels), optimized and compiled
on-the-fly for the target processor architecture. Likewise, memory units (buffers) are
dynamically allocated and transferred from/to the accelerator memory space upon
request from host. Kernel execution is also triggered from the host, which specifies the
number and arrangement of the processors executing the kernel. The host pushes all
these operations into a command queue that can be configured to process operations
in-order, which means that the host pushes the requests in the logical order and the
accelerator will process them in the same order; or they can be set out-of-order, which
means that the accelerator will process the requests as soon as possible. In this case,
the host can indicate operation dependencies through execution markers. Typically, this
mode allows computation-communication overlap exploitation.

We can distinguish four classes of entities in kernel-based applications:

3 Cuda Parallel Computing webpage, http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.
html

21

programming and debugging multicore embedded systems

Devices A computer system may feature multiple accelerators, independent from one
another. Hence, a device corresponds to an entity able to run parallel kernels.

Command Queues The command interface between the main processor and an accel-
erator device. It receives operation requests from the application, which are
processed by the accelerator device.

Kernels The parametrizable code that is executed on accelerator devices. It is compara-
ble to C functions.

Memory Buffers Memory areas in the accelerator devices’ address space. They can be
read-only, write-only, or read-write. It is comparable to C pointers to dynamically
allocated memory.

The abstract machine defined by the kernel-based accelerator programming model is
in charge of providing information about the accelerators available on the platform and
executing the different operations pushed into the command queue. In also triggers
parallel kernel executions into the relevant accelerator execution context.

Figure 2.6 illustrates the last variation of our mockup application. ImageGenerator ,
Image Splitter and Split Processor are accelerator kernels, and Image and
Splitted Image 1..n are buffers instantiated in the accelerator memory space. The

host side of the application should first request the instantiation of the Image buffer,
set it as output parameter of kernel Image Generator and trigger its execution. And
so on and so forth with the execution of the other kernels.

Split
Processor

Image
SplitterImage

Generator

 in

 out

 in
 out

Image
Image
Split 1

Figure 2.6: Kernel-Based Programming Example.

In the following subsection, we present how these three programming models are
provided in Sthorm development toolkit.

2.2.2 Sthorm Supportive Environments

In this subsection, we introduce the supportive environments implemented by Sthorm
for component, dataflow and kernel-based programming. We will study these environ-
ments with more details in Chapter 5 and Chapter 6 where we explain how to debug
applications developed from these environments.

22

2.2 programming models and environments for mpsoc

native programming model (npm)

Native Programming Model (NPM) is a component-based programming environment
developed to exploit Sthorm architecture at a low level. It offers a highly optimized
framework providing guidelines for the implementation of application components,
pattern-based communication components and a deployment API for the host side. In
order to exploit the processors of the platform efficiently, NPM supports the concept of
runnable components. Such components have to implement a specific interface, which
will be triggered by the framework in a dedicated processor. The components will then
be able to execute parallel code on the available processors of their cluster, based on
the fork/join model [Lea00]. We will only consider the component aspect of NPM.

predicated execution dataflow (pedf)

Predicated Execution Dataflow (PEDF) is a framework for dynamic hybrid dataflow
programming, designed to exploit Sthorm heterogeneous architecture. It provides a
structure dataflow model, similar to what was presented in [JHRM04]. PEDF also origi-
nates from dynamic dataflow modelling [BDT12], so it does not enforce any constraint in
actors’ sending and receiving rates. Besides, it offers advanced scheduling capabilities,
allowing the modification of the dataflow graph behavior during its execution (based
on a set of predicates) or run some parts of the graph at different rates. It is based on
the C++ language to benefit from the existing tool-chain (the compilation suite, but
also the platform simulators). Figure 2.7 illustrates a PEDF graph of a simple module,
composed of two filters and a controller.

AModule

controller
filter_1

filter_2 external
output

external
input

Figure 2.7: PEDF Dataflow Graph Visual Representation of a Simple Module.

open computing language (opencl)

OpenCL is the combination of a standardized API and a programming language,
close to the C language [Khr08]. It aims at offering an open, royalty-free, efficient
and portable (cross-vendor and cross-platform hardware [TS12], but not in terms of

23

programming and debugging multicore embedded systems

performance) interface for heterogeneous computing. OpenCL can be used to program
GPGPUs, but also DSPs, CPUs or MPSoC processors.

Sthorm provides an implementation of OpenCL, which is presented as a standard-
oriented alternative to the other programming environments (NPM components and
PEDF dataflow). Paulin also highlighted in [Pau13] that Sthorm’s OpenCL environment
stands at the convergence of two criteria: more parallelism than multicore CPUs and
more programmability than GPUs. Figure 2.8 highlights this positioning.

Multi-core CPU GPUMany-core

Rogue
STHORM

More programmabilityMore parallelism

Cortex-A9 Midgard-T6xx

Cortex-A15

B
as
ed

o
n
[P
au

1
3
]

Figure 2.8: OpenCL as a Standard of Convergence

2.2.3 Conclusion

During application design and development, programming models and supportive
environments provide developers with efficient tools for exploiting MPSoC systems.
However a key step is still missing in this organization: application verification and val-
idation. The implementation of such applications always holds a significant complexity,
and hence, ensuring the correctness of the code is a difficult task.

In the following section, we highlight the challenges faced by developers during the
debugging of MPSoC applications, the effect of runtime environments and the tools
available to detect and locate application defects.

The Disruptive Element

2.3 debugging mpsoc applications

In the previous sections, we have seen that MPSoCs offer powerful computing envi-
ronments, yet their complex hardware architectures requisite developers to rely on

24

2.3 debugging mpsoc applications

programming models and supportive environments for an efficient application design
and development. These programming models and environments also tend to make
the debugging activity more complex, by adding intermediate layers in the applica-
tion execution. Indeed, it appears that the development of supportive environment
frequently neglects the debugging phase of the application life-cycle.

We start this section with an overview of the tools and techniques available today
to developers for application debugging and present the advantages of interactive
debugging. Then, we highlight the key debugging challenges developers face during
MPSoC application development, for each of our three recurring models. Finally, we
draw our conclusions regarding the abilities of current solutions.

2.3.1 Available Tools and Techniques

In the introduction of this document (Chapter 1, Section 1.2), we distinguished three
stages of application debugging. In the following, we present two pre-execution
approaches—pen-and-paper code study and static/formal analysis—and a post-mortem
one—trace analysis. We point out some of their deficiencies, then we underline how
live/interactive debugging overcomes these different problems.

Pen-and-Paper Code Study is one of the primary steps of application verification and
validation. It requires a very good understanding of the application execution,
and with a broader view, of the entire computer. It also allows high-level algo-
rithmic analysis [CLRS09], such as complexity estimations, termination proof,
etc. However in complex applications, developers cannot always control or even
know the entire range of input parameters, so they may not be able to analyze
exhaustively the set of execution states.

Static and Formal Analysis [Ölv11] may be exhaustive under certain conditions, such
as strongly constrained and formally-defined programming languages, models
and applications. In such cases, it provides the best guarantees, thanks to the
mathematical models proving the correctness. However, the benefits for codes
not matching these criteria are limited, which is the case for most dynamic
applications.

Trace Analysis [KWK10] provides information gathered almost transparently from ac-
tual application executions. Data are collected from trace-points, statically or
dynamically inserted in the code. The trace processing is done offline, post-
mortem, either manually, through data mining [LCBT+12] or graphically with
visualization tools (Figure 2.9 illustrates KPTrace4, ST’s trace visualization en-
vironment). However, trace analysis allows no interactivity and the information
they collect is not exhaustive. Indeed, only a predefined number of trace-points
are active during a given execution, and the more there are active tracepoints in
an execution, the more intrusive the tracing is. On the other hand, the lack of
interactivity can be an advantage for long-running executions.

4 Dynamic system tracing with KPTrace — STLinux, http://www.stlinux.com/devel/traceprofile/

kptrace

25

programming and debugging multicore embedded systems

Figure 2.9: KPTrace Trace Analysis Visualization Environment

Interactive debugging allows developers to carry out their debugging experimen-
tation under a different perspective, orthogonal to the approaches presented so far.
Namely, it provides an interactive interface which allows developers to precisely control
each step of the execution flow and to display the content of reachable memory regions
(stack, heap, processor registers, etc.). Here are its main properties:

Interactive The control offered by the debugger is fully interactive, which means that
developers can draw and verify different bug explanation hypotheses without
necessarily rebuilding or re-executing the application. They can leverage a large
set of features (breakpoints, step-by-step, watchpoints, etc.) to stop the execution
and investigate the application state.

Transparent for the Execution The debugger control is virtually transparent for the appli-
cation, so developers can execute their code normally until an erratic situation
occurs. After the first application execution stops, the time-related behaviors will
be altered (e.g., inputs and outputs, scheduling decisions, timeouts, etc.). However,
the rest of the execution conditions remains unaffected.

Exhaustive Once the application has been stopped, developers are free to examine
the entire5 execution context, that is, processor registers and local and global
variables.

In the context of applications based on programming model, this last item is subject
to caution and is further discussed in the following sections. Indeed, the programming-
model abstract machine holds a significant part of the application state, and current
debuggers do not provide support for accessing it.

5 Under the assumption that the debugger has access to the corresponding debug information and that the
application binary was not overly optimized.

26

2.3 debugging mpsoc applications

2.3.2 Debugging Challenges of Model-Based Applications

Interactive debugging is a complex activity where developers try to figure out where
the actual code’s behavior diverges from expectations. In order to do that, they must
have a complete and precise control over the application execution. In the following, we
stress out some important debugging challenges introduced by MPSoC programming
models and environments. These aspects are key to offer an optimal application control,
yet, as we point out, they are not addressed by current interactive debugging tools.

component applications

Component application debugging faces the problem of the importance of inter-com-
ponent communications, as well as the graph structure of the architecture that can
change depending on applications’ runtime constraints.

Dynamic Architecture Components are standalone computation entities interconnected
through their interfaces. They are dynamically instantiated and bound to other
components. Hence, the application architecture can change over time, according
to execution requirements.

Source-level interactive debugging is not able to present most of these dynamic
aspects. The similarities between threads and components may allow debuggers
to list the live components, however no information about the interconnection
network will be available.

Component Interactions During their lifespan, components offer services to the rest of
the system through provided and required interfaces. Component execution is
driven by the events received on each of these interfaces.

The notion of interconnection does not exist in source-level interactive debugging,
so developers have to manually figure out the current component bindings and
play subtly with breakpoints in order to follow the execution flow through an
interface call.

Information Flow A component-based application can be composed of a various number
of components, which apply transformations to the information stream. In this
case, developers must figure out the path followed by the suspicious pieces of
information to understand the application state.

Source-level debugging only provides details about the current processor and
memory state.

dynamic dataflow applications

The difficulties of dynamic dataflow application debugging come from the fine-grain
actor network and the importance of inter-actor communications.

Graph-Based Application Architecture The architecture of the application depends on
its data-dependency graph. However, source-level debugging can only offer a

27

programming and debugging multicore embedded systems

sequential—or multi-sequential if the runtime environment is parallel—view of
the source code instruction stream. All the arcs of the graph are unavailable to
developers.

Token-Based Application State The validity of a dataflow algorithm depends on the cor-
rect dispatching of data tokens. As in the theoretical models, nodes are stateless,
the set of tokens present in the application holds the entire execution state. Thus,
it is important for developers to have the ability to query the debugger about
these tokens. This concept does not appear at language level and thus source-level
debugging cannot provide such information.

Token-Based Execution Firing The execution of a dataflow actor can only start when the
required input tokens have been generated. This concept does not exist in the von
Neumann model, where the execution of a statement is only conditioned by the
path followed by the program counter.

Non-Linear Execution Steps When a dataflow assignment instruction is executed, the
actors waiting for this data become executable. Semantically, this forks the
execution flow, which follows not only its normal (that is, sequential) stream but
also the different outgoing arcs of the node.

Information Flow Dataflow applications can be composed of numerous actors, which
successively apply a specific transformation to their incoming data. In order
to understand the current value of a token, developers have to figure out the
exact sequence of transformations undergone by this token. More concretely, this
implies that the debugger should record the different token values over their
processing steps.

kernel-based applications

As kernel-based programming is clearly apart from the two former models, the chal-
lenges of these applications are also more distinct. Here, the difficulties arise from the
importance of the interactions with the abstract machine and its internal state.

Internal State Kernel-based applications are executed both in the general-purpose pro-
cessor and in the accelerator. As these two sides do not share memory, the
abstract machine implemented by the environment holds an important part of
the application state: list and state of instantiated buffers and kernels, state of the
execution queue, etc.

Source-level debugging considers the supportive environment as a black box.
Hence, developers cannot access or query any of these information.

Calling Conventions In kernel-based applications, developers must programmatically
configure the abstract machine to execute kernels. (We can compare that to the
C calling conventions, where, at assembly level, function parameters and return
address are pushed in the stack before jumping to the address of the function’s
first instruction.)

In this case, developers must manually figure out (or guess) how the abstract
machine was configured to execute a given kernel.

28

2.4 conclusion

Operation History Kernel-based applications must frequently interact with the underly-
ing abstract machine in order to prepare and trigger kernel execution, instantiate,
read and write memory buffers, etc. Hence, developers should have an easy access
to this history, in order to better understand how the application has reached its
current state.

To illustrate the complexity of the interactions between the application and kernel-
based programming abstract machine, Figure 2.10 presents a schematic representation of
the OpenCL operations required to execute a kernel with a memory buffer parameter. It
is inspired from UML sequence diagrams and reads similarly. Column “ :Application ”
corresponds to the operations executed by the host, and the other entities are part of
the abstract machine. We can count a minimum of ten operations. The equivalent
computation written in plain C would not have required much more than three lines of
code (the body of the main function):

void process (int * buffer);

int main () {
int * buffer = malloc (...);

*buffer = ...;

process(buffer).

}

2.4 conclusion

In this chapter, we reviewed the background of MPSoC programming and debugging.
We first presented MPSoC architectures and introduced different programming models
able to exploit their inner characteristics. Indeed, developing applications making
the best use of MPSoC’s multicore processors and unique designs requires advanced
algorithmic concepts, combined with efficient runtime libraries. To meet these re-
quirements, we presented three alternative programming models and environments:
component-based programming, dataflow programming and kernel-based accelerator
programming.

However, from a verification-and-validation perspective, programming models split
into two categories: either they enforce strong constraints through static program-
ming and can offer interesting correctness guarantees; or they are less restrictive
and cannot provide any verification help. As this thesis work was carried out in a
multimedia-oriented division of ST, we focused on the latter category. Indeed, multi-
media programming often requires dynamic programming capabilities. For instance in
video decoding or image processing, the execution may depend on the content of the
media.

We presented different debugging tools and techniques: pen-and-paper code study,
static and formal analysis and trace analysis, and compared them against interactive

29

programming and debugging multicore embedded systems

debugging. Through this comparison, we highlighted that interactive debugging pro-
vides a compelling approach, which allows developers to interact with the application
and inspect the different execution paths and program states.

However, we stressed out that source-level interactive debugging is not sufficient for
efficiently tackling applications that rely on a programming model. Indeed, the models,
and more concretely their supportive environments, introduce high-level abstractions in
the applications structure, which are not represented nor taken into account by current
tools operating at source-level.

In the following chapter, we present our contribution to answer these challenges:
programming-model-centric interactive debugging. We first detail the general and
generic principles, then we explain how we applied these principles to our three MPSoC
programming models.

30

2.4 conclusion

:A
p

p
lic

a
ti

o
n

E
xp

lic
it

e
e

xe
cu

ti
o

n

C
o

n
te

xt

e
n

q
u

e
u

e
 N

D
 k

e
rn

e
l

cr
e

a
te

co
n

te
xt

n
o

ti
fy

co
m

p
le

te
Im

p
lic

it
e

e
xe

cu
ti

o
n

C
o

m
p

u
ta

ti
o

n

P
ro

g
ra

m

cr
e

a
te

 m
e

m
o

ry
 o

b
je

ct
(b

u
ff

e
r,

 i
m

a
g

e
,

..
.)

K
e

rn
e

l

b
u

ild
 p

ro
g

ra
m

tr
a

n
sf

e
r

d
a

ta

cr
e

a
te

 k
e

rn
e

l

cr
e

a
te

 p
ro

g
ra

m
fr

o
m

 s
o

u
rc

e w
a

it
 f

in
is

h

d
a

ta

re
la

ti
o

n

se
n

d
 o

rd
e

r

se
t

p
a

ra
m

e
te

rs

:R
u

n
ti

m
e

:C
o

m
p

ile
r

cr
ea

te
 p

ro
gr

am
 f

ro
m

 b
in

ar
y

 .

:D
M

A

P
ro

g
ra

m

e
xe

cu
te

 k
e

rn
e

l

 B
u

ff
e

r

K
e

rn
e

l

cr
e

a
te

[O
O

O
]

q
u

e
u

e

K
e

rn
e

l

C
o

m
m

a
n

d
Q

u
e

u
e

:F
ab

ri
c

C
o

n
tr

o
lle

r

n
o

ti
fy

co
m

p
le

te

tr
a

n
sf

e
r

d
a

ta

In
it

ia
liz

a
ti

o
n

e
n

q
u

e
u

e
 b

u
ff

e
r

n
o

ti
fy

fi
n

is
h

sy
n

cr
o

re
tu

rn

M
e

m
o

ry
O

b
je

ct

im
p

lic
it

e
co

n
tr

o
l

P
ro

g
ra

m
*

:G
P

U

 B
u

ff
e

r

F
ab

ri
c

M
e

m
o

ry

Figure 2.10: Sequence Diagram of a Basic Kernel Execution

31

3
C O N T R I B U T I O N : P R O G R A M M I N G - M O D E L C E N T R I C
D E B U G G I N G

The Hero

Although MPSoC systems provide a powerful computing environment, their per-
formance appears difficult to exploit without advanced and high-level programming
models. At implementation time, supportive environments such as middleware frame-
works or runtime libraries materialize programming-model guidelines. The interactions
between the application and the underlying frameworks are defined by the API, based
on the programming model’s abstract machine interface.

At the same time, the complexity of these environments hinders the verification and
validation process. Indeed, they abstract away the simple and generic representations
provided by the hardware platform: instead of a set of von Neumann processors,
executing sequential streams of instructions, applications are now defined with high-
level structures.

In this chapter, we present our contribution to lighten the difficulties of interactive
debugging of such applications. In the first section (Section 3.1), we explain the
principles of programming-model centric debugging. Then, in Section 3.2, we delimit
its scope of applicability. Finally, in Section 3.3, we study how these generic principles
can be applied to our three MPSoC programming models.

3.1 model-centric debugging principles

Our contribution consists of a set of functionalities that a debugger should implement
in order to offer a programming-model centric vision of multicore application debugging.
With this approach, we expect to provide developers with more efficient tools to
debug their applications. Instead of working with system abstractions like threads
and processes, they will interact with the very entities and communication operations
defined by the programming model abstract machine of their application.

Our approach relies on detecting and handling of the key programming-model
related operations of the execution. Debuggers should interpret these operations to be
able to follow the abstract-machine state evolution. This would enable them to provide
accurate and high-level information and control mechanisms to debug applications
based on programming model.

33

contribution: programming-model centric debugging

3.1.1 Providing a Structural Representation

The application architecture is an important aspect of the state, that debuggers should
monitor and represent. It can be static or dynamic. In the latter case, the architecture
can vary over the time, so it is crucial that debuggers follow its evolution in order to
provide an accurate view of the current deployment.

Debuggers should provide developers with catchpoints (i.e., operation breakpoints)
on these architecture-modification operations.

They should also capture and represent the relationship between the different entities,
in particular when the model explicitly defines such connections. Otherwise, different
metrics can be evaluated to estimate the entities’ affinities, such as their communication
frequency or the underlying processor topology, if entities are pinned to a particular
core. The set of entities and inter-connections forms a graph (directed or not) that can
help developers to detect unexpected situations, for instance by studying the graph
shape or the dynamic of inter-entity exchanges.

3.1.2 Monitoring the Application’s Dynamic Behaviors

The different entities of a parallel application usually collaborate in order to complete
their task. Hence, debuggers should provide information about these interactions.
Namely, they should interpret communication and synchronization events and rep-
resent them with respect to the graph structure of the application. They should also
be aware of the pattern and the semantics of communication operations in order
to precisely interpret their behavior. For instance, communication patterns can be
one-to-one, one-to-many, global or local barriers, etc. The semantics of the link can
be First-In-First-Out (FIFO) or implementation specific. This last case might require
further cooperation with the supportive environment, as discussed in the following
chapter (Chapter 4, Section 4.2).

Debugger should also allow developers to stop the execution based on these interac-
tions.

3.1.3 Interacting with the Abstract Machine

Parallel programming models should facilitate application decomposition, hence a
programming-model centric debugger should be able to distinguish and identify these
different entities. It should also provide indications about their inner state, like their
schedulability or outstanding communication events.

A modification of an entity state may indicate a turnaround in the execution, so
debuggers should provide watchpoints (i.e., state-modification breakpoints) for such
events. These watchpoints would allow developers to reach different time and space
locations of the execution more easily.

34

3.2 scope of applicability

Two-level Debugging

Finally, as the instructions of any application are eventually written in a standard
programming language and executed by the processor like traditional code1, language-
based and low-level debugging commands should still be available. Indeed, although
some bugs may lay in the programming-model related aspects of the application, there
is a chance that the problems are hidden deep down in the language instructions. So,
memory and processor inspection, breakpoints and watchpoints (maybe entity-specific)
and other step-by-step execution control primitives should be directly available.

3.1.4 Open Up to Model and Environment Specific Features

Different programming models do not provide the same functionalities, not do they
require the same debugging capabilities. Therefore, programming-model centric debug-
gers should adapt their debugging features to the specifics of the programming models
and environments they are targeting. At this stage we can only provide hints about
such features, but Section 3.3 and later Chapter 6 provide more detailed examples.

• Debuggers can follow messages transmitted from entity to entity, either based
on a model-defined routing table for the entity being considered, or through
user-provided tables;

• Debuggers can check user-defined constraints on the graph topology, on message
payload, paths, etc., and stop the execution in case of violation.

More advanced features can also be designed thanks to the strong programming-
model knowledge achieved by the debugger:

• Debuggers can detect deadlock situations with loops in the graph of blocking
communications;

• If the debugger supports non-stop debugging [SPA+08], “smart” breakpoints can
stop the tasks trying to communicate with tasks already stopped by the debugger,
in order to limit the intrusiveness.

In the following section, we delimit the scope of applicability of this approach.

3.2 scope of applicability

Model-centric debugging can be applied to various kinds of targets. Its primary
objective is task-based programming models for multicore processors. Indeed, such
tasks should communicate with each other and form, implicitly or explicitly, a graph.
They should also be executable in parallel. Component and dataflow programming
perfectly fit in this area.

1 We assume compiled languages here, but the rationals are similar for interpreted languages.

35

contribution: programming-model centric debugging

However, the scope of application is broader than that, as we demonstrate later in
this chapter with kernel-based programming. Any programming model defining an
abstract machine complex enough may benefit from this approach. And, as explained
in the previous chapter, the notion of abstract machine is loosely defined, on purpose.
Thus, model-based debugging can be applied on top of any API, provided that someone
devotes time to its implementation.

We can exemplify this last point with a video decoder, where a model-centric
debugger could recognize the different modules (e.g., sound decoder, beginning/end
of a frame, the error channel, etc.). This would help developers to understand more
rapidly the current state of the execution: decoding frame N, previous frame dropped,
error channel empty, etc.

On the other hand, it is important to note that we only focused on a particular
aspect of multicore computing: analyzing the cooperation between entities running in
parallel. We do not address the problem of debugging a large number tasks, neither the
time-related challenges of concurrent executions.

The main reason for that is that we believe that interactive debuggers are not suitable
for this kind of problems. Indeed, for the former aspect, the quantity of information
developers can understand at each step of the execution limits the possibilities of
interactive debugging. If thousands of tasks are running concurrently, developers
cannot go through all of them and verify that their state matches their expectations.
Designing tools offering such capabilities is another research topic. Instead, they should
try to narrow the problem down to a minimum size, both in term of number of parallel
executions and processing time. Time-related issues are well-studies, although not yet
solved. Limiting the intrusivity of interactive debugging, and furthermore improving it
for such problems is yet another independent research topic.

For similar reasons, we do not target SIMD parallel computing. For such applications,
a simple alternative would consist in running the code sequentially and use traditional
debugging tools (or model-centric, if applicable).

Finally, the industrial context of this thesis set an additional constraint to the scope,
which was that the work should focus on applications scaled for the companies’
embedded boards. This implied embedded multicore MPSoC platforms, but not
large-scale, HPC-like computers.

Now that we have delimited the scope of applicability, we present, in the next section,
how the principles of model-centric debugging apply to our three programming models.

3.3 how does it apply to different programming models?

The principles of model-centric debugging presented in Section 3.1 are generic and
independent of a particular programming model. In this section, we explain how
we specialized and applied these principles to our three MPSoC programming mod-
els. For each of them, we highlight different benefits of model-centric debugging:
dynamic architecture reconfiguration and message exchange of component-based ap-

36

3.3 how does it apply to different programming models?

plications, graph-based architecture and flow of data inside dataflow applications and
the interactions between kernel-based applications and the abstract machine.

3.3.1 Component Debugging

In this subsection, we describe how model-centric debugging can be applied to comp-
onent-based programming. This work was published in [PSMMM12]. It validated the
first steps of this thesis.

providing a structural representation

In component-based software engineering, the main entity division consists in com-
ponents, as the name suggests. The description of a component consists in a list of
provided services that the component implements. The description also specifies the
list of required services. These service interfaces must be connected to the matching
provided interfaces of another component before the execution. Component interfaces
have a precise type (like C function prototypes), in order to guarantee the consistency
of inter-component exchanges. Optimally, these types are architecture independent.

✓ A model-based debugger must be able to exhibit these abstractions: through a
representation based on directed graphs, components can be depicted as nodes. Each
node can have incoming and outgoing arcs, corresponding respectively to required and
provided interfaces. Figure 3.1(a) shows a diagram of a simple structural representation.
It contains unconnected required interfaces, which may indicate that the application is
not in a runnable state. (The component abstract machine may allow optional interfaces,
but this is out of the scope of this document.) Besides, a component description may
provide names for the interfaces. This information can further improve user’s debug-
ging experience by simplifying the interactions between the developer and the debugger.

(a) (b) with routing table for message-based flow control.

Figure 3.1: Structural Representation of Interconnected Components.

Component frameworks can also provide predefined interfaces, called system inter-
faces (as other interfaces, they can be either provided or required). We will cite only one
example which may appear in any framework targeting multicore systems: the runnable

37

contribution: programming-model centric debugging

service. Components can implement this provided interface in order to be executed on a
dedicated processor core.

✓ Model-centric debuggers can be aware of such system services and handle them
appropriately. In the case of the runnable interface, this implies that the debugger
should detect:

• the operation triggering the component execution ,

• the beginning of the component execution and the memory and processor contexts
it is bound to,

• any operation blocking or diverting the execution flow away from the component,

• and finally, the end of the service execution.

These events, exemplified in the component case-study analysis (Chapter 6, Sec-
tion 6.1), improve the accuracy of the application’s structural representation.

monitoring application dynamic behaviors

We presented above how model-centric debugging leverages component structures and
interface connections. However, it is important to note that this graph network may
vary over the execution timespan. Indeed, the application can chose to deploy new
components or re-wire the interconnection network, to adapt its architecture to runtime
constraints.

✓ In this case, a model-centric debugger should detect these abstract machine op-
erations, and reflect the modifications on the graph presented to the user. In order
to improve the control over the execution flow, the debugger should also provide
catchpoints for this operations. For instance, this would allow developers to stop the
execution when a connection is created between components A and B, or the first time
a particular interface is disconnected. Similarly, component life-cycle events discussed
above can offer interesting execution catchpoints.

Another aspect of application dynamic behavior is the information exchanged be-
tween the components. This information is two-fold. First, the service request: one
component invoking another one, through an interface call. The Second, the interface
call data—that is, the parameters and return values.

✓ In this regard, model-centric debuggers should handle both of these two aspects.
Interface calls are similar to “native” function calls, though more complex. Indeed,
they may involve multiple framework-implementation-dependent function calls that
developers cannot understand (because, for instance, the framework implementation
is a black box). Bypassing this roadblock would involve, first, understanding which
component is currently connected to the other side of the interface, and second, locating
where the service is actually implemented. This second step is not complicated, but
nevertheless, the overall operation disrupts developers from their bug tracking activity.
Furthermore, in case of multicore environments, the two components involved in the

38

3.3 how does it apply to different programming models?

interface call may not be running in the same memory and execution context. Following
such remote function calls is even more difficult for developers.

Regarding the interface call data, we can imagine more advanced mechanisms, such
as the concept of message-based flow control, where a message corresponds to the
information transmitted during an interface call. This mechanism allows developers
to set breakpoints on messages, instead of memory locations. To enable this feature,
messages have a unique identifier and can be listed, either all at once, per component or
per link. Given a message identifier, one can set a permanent or temporary breakpoint
which will stop the execution the next time the message is handled.

Coupled with a stamping mechanism, either generic or defined by the developer,
the model-centric debugger will be able to give further information about the message
history. A generic stamp contains the component name and a unique identifier, as well
as the interface name and direction (message sent or received). The stamp list will
inform the developer about the route followed by a message over the components.

In some cases, such as pipeline-shaped application architectures, developers may be
able to identify routing patterns within their components. In this situation, they can
provide routing tables to the debugger based, for instance, on component and interface
names, but also according to the current application architecture and memory state.

We can illustrate the concept of message-based flow control as follows: consider
a streaming application which applies a set of transformation to frame data. Each
transformation is implemented in a dedicated component (Component A , B and C),
as in to Figure 3.1(b).

If the debugger does not have routing information about the application components,
new messages will be generated each time a communication occurs:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

We can read that Component A first sent a message to Component B . Then, Compo -
nent B sent a message to Component C .

Now, if the developer could provide a simple routing table expressing that Compo -
nent B transmits the incoming messages towards Component C , then the debugger

could simplify the history information and better indicate the route followed by the
message:

39

contribution: programming-model centric debugging

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

To complete this application study, the following subsection will tackle the question
of model-centric debugging in the context of dataflow-based programming.

3.3.2 Dataflow Debugging

The principle of dataflow computing strongly emphasized the importance of data
dependencies, even more than the data processing itself. Hence, a model-centric
debugger for dataflow programming should address both aspects. In the first part
of this subsection, we study how the debugger should leverage data dependencies to
provide a structural representation of the application; then, in the second part, we focus
on actor execution to monitor application dynamic behaviors.

This work was published in [PLCSM13b, PLCSM13a].

providing a structural representation

A dataflow application consists of a set of actors, applying transformations on flows of
incoming data and generating one or multiple outgoing data flows. The constraints
governing the data flow rates depend on the dataflow flavor choice, and does not affect
the design of the model-centric debugger in a significant way2. Besides, similarly to
component-based applications, dataflow actors and data dependencies form a graph
structure. However, data dependencies usually cannot be dynamically reconnected.
Likewise, the concept of component interfaces does not fit in this model, as data
dependencies (data types) are simpler than component interfaces (function prototypes)

✓ Hence, we can use similar techniques to provide a structural representation of the
application: mapping actors onto graph nodes, and data dependencies onto directed
arcs.

An important distinction between dataflow actors and components lies in the level of
implementation: a component should provide an “entire” service, whereas a dataflow
actor should only implement a particular data transformation. Hence, this implies that
dataflow graphs will be more complex.

✓ To cope with this aspect, the model-centric debugger should be able to present the
dataflow architecture as a proper graph. Figure 3.2—part of the dataflow case-study of
Chapter 6, Section 6.2—illustrates a possible representation of a dataflow graph.

2 Such variations are rather considered at implementation time, presented in Chapter 5.

40

3.3 how does it apply to different programming models?

front

pred

front_controller

bh

imvp

pred_controller

red

pipe

ipred

hwcfg

3 ipf

20

Figure 3.2: Graph of Dataflow Actors and Data Dependency of a Dataflow Application.

monitoring application dynamic behaviors

In dataflow applications, the principal dynamic behaviors consist in the data tokens
transmitted between the actors. Indeed, their availability, or absence, will trigger or
block actors execution. Put another way, dataflow tokens control the scheduling of
actors’ execution. Hence, a model-centric debugger should pay special attention to
these entities.

✓ Message-based flow control, presented with component debugging (Section 3.3.1),
can be useful for dataflow debugging as well. Dataflow links are more complex than
component interface calls, as they can buffer tokens, until they are effectively required
at destination. As an example, Figure 3.3 schematizes an actor, Actor 1, sending tokens
to another actor, Actor 2. Actor 2 does not consume the tokens at the same rate as
Actor 1 produces them, and therefore, the data link buffers the tokens.

If a developer wants to stop the execution when the last token (B* , which is identical
to B) arrives at Actor 2, he needs to stop the execution each time a token is received,
determine if it is the right one (that is, distinguish B from B* , maybe by remembering
that the previous token should have been C instead of A). This kind of task can be
entirely automatized in a model-centric debugger.

Figure 3.3: Tokens Exchanged and Buffered between Dataflow Actors.

In addition, model-centric debuggers can provide various token counters to its users:
Figure 3.2 contains two numbers, between actors hwcfg , pipe and ipf . These
numbers indicate how many tokens are currently buffered in the link. If the value is too
high, this may indicate a problem in the sender or receiver implementation. Likewise,
debuggers can provide counters on actors’ data dependencies. Either manually or

41

contribution: programming-model centric debugging

through conditional breakpoints, this can help developers to detect irregularities in the
actors’ sending or receiving rates (for instance, two interfaces must send messages in a
lockstep fashion, or twice as fast, etc.)

Model-centric debuggers can also use data-tokens to simplify the problem of non-
linear execution steps — presented earlier with the dataflow debugging challenges
(Chapter 2, Section 2.3.2). Indeed, the execution flow forks stem from the token emitted
during the dataflow assignment. Hence, setting a double breakpoint, one right after
the assignment and the other one on the token itself will resolve the problem.

Finally, the knowledge gained with the dataflow graph and actors’ send and receive
operations allows designing more complex features, such as deadlock detection: when
there is a loop in the directed dataflow graph, a deadlock may arise. Figure 3.4 presents
such situations, with multiple cycles:

1. hwcfg → pipe → ipred → hwcfg

2. hwcfg → pipe → ipred → ipf → hwcfg

3. hwcfg → pipe → ipf → hwcfg

Then, if all the actors of the loop wait for a data token from a previous actor, the
situation is blocked as none of them can escape the blocking operation. The actors and
links highlighted in bold red (item 3 above) are in this situation.

hwcfg pipe

ipred

ipf

Figure 3.4: Dataflow Actors in a Deadlock Situation.

Now that we have presented how model-centric debugging can be applied to data-
flow programming, the following subsection will explore how it fits into kernel-based
applications.

3.3.3 Kernel-Based Accelerator Computing Debugging

Our last programming-model case-study differs from the previous ones, in the sense
that it is not based on the task paradigm. Hence, the structural representation of the
application does not hold the same importance. In the following paragraphs, we briefly
sketch an example of structural representation for model-centric debugging, then we
go on and analyze the question of debugging the interactions between the application
and the abstract machine.

42

3.3 how does it apply to different programming models?

providing a structural representation

The kernel-based programming model specifies various execution entities, such as the
devices, command queues, kernels and buffers. It also has the peculiarity of assuming a
particular execution architecture, based on accelerator and GPU architectures, with sets
of execution platforms (devices) which do not share memory, neither with one another
nor with the main processor. Hence, the structural representation of kernel-based
applications mainly consists in the following hierarchy, as illustrated with the graph
representation in Figure 3.5(a):

Computer → Devices → Command Queues → {Kernels, Buffers}
However, this organization is mainly involved in the configuration phase of the

application. During the computation phases, kernels and buffers are the only active
entities. Thus, the structural representation should focus on them, as presented in
Figure 3.5(b). Kernel-based computing does not define any strong relationship between
kernels and buffers. Hence, Figure 3.5(b) was sketched using usage metrics: the more a
buffer is used as a kernel parameter, the thicker their connection arrow.

Computer

Device 1:
Sthorm Fabric

Device 2:
GPU

Device 3:
CPU

Kernels Buffers Command Queue

Kernel 1 Kernel 2 Buffer 1 Buffer 2

(a) Full-Scale View

Kernel 1

Buffer 1

4

Buffer 2

2

Kernel 2

5

Buffer 3

3

(b) Focused View

Figure 3.5: Structural Representation of a Kernel-Based Application.

interactions with the abstract machine

Because kernel-based applications are divided in two parts, the model’s abstract
machine plays the role of the middleman between the main processor context and the
accelerator one. Furthermore, the accelerator context is “headless”, hence all the piloting
work is done through the host-side interface of the abstract machine.

✓ In a model-centric debugger, we expect the tools to help developers to better follow
and understand the sequence of these operations. Indeed, as the entire state of the
accelerator device is held by the abstract machine, developers cannot access or query
any of this information in a classic source-level debugger.

A model-centric debugger for kernel-based programming models can dynamically
draw a sequence diagram, by interpreting the different interactions between the appli-
cation and the abstract machine. This diagram will help them to figure out the current
state of the execution more easily. Indeed, developers can quickly review which kernels
were last executed, or deduce the state of a buffer after its last operations (e.g., part of a
kernel execution, transferred to the host memory, released, . . .).

43

contribution: programming-model centric debugging

Finally, a model-centric debugger can also provide potential error hints to program-
mers. In particular, in the case of memory buffers, some operation sequences are likely
to hide a defect: a buffer read or written twice in a row, a read-only buffer set as kernel
parameter before its initialization, or conversely, write-only buffer not read after a
kernel execution, etc.

3.4 conclusion

In this chapter, we presented our contribution to improve developer experience during
the debugging of parallel applications based on MPSoC programming models. We
first stated the generic principles of model-centric debugging, which spread in three
directions:

1. providing a structural representation of the application,

2. monitoring the application’s dynamic behaviors,

3. allowing developers to interact with the abstract and actual machines.

Through these three axes, we defined the requirements for designing a high-level
debugger, well-fitted to tackle the debugging of application based on programming
models.

We also demarcated the scope of applicability of model-centric debugging: primarily,
multicore applications relying on programming models guidelines and supportive
environments. We also noted that this is not a hard limit, as model-centric debugging
can be applied to any kind of abstract machine, provided that its interface is stable
enough.

On the other side of the scope, we explained that model-centric debugging is not
suited for large-scale application deployments, as it would overflow developers with
more information that they could handle. We also noted that, for similar reasons, model-
centric debugging would not provide great help in solving problems of applications
based on data-parallelism (SIMD).

Next, we studied how model-centric debugging applies to our three MPSoC program-
ming models. We highlighted that component and dataflow debugging can directly
benefit from the structural representation, thanks to their task-based aspect. In the
same mindset, model-centric debugging nicely fits into their communication operations,
and we describe how messages and tokens can improve the controlability of such
applications. Finally, we noted that model-centric principles also apply to more distinct
models, such as kernel-based accelerator programming. We noted that the interest
of the structural representation is not as valuable as in the other models. However
the nature of the interactions between the application and the abstract machine opens
doors for designing interesting model-centric debugging features such as sequence
diagrams of the different interactions.

Extending debuggers with application-specific debugger knowledge was discussed
in [MCS+06], where the authors indicated that debugger scripts “often want to create

44

3.4 conclusion

a redundant model of the execution” and “need to define problem-specific commands.” We
share these convictions, however the approach described in the article only considers
“per-application” script extensions (e.g., following items pushed in and out of a priority
queue). In our context of embedded and multicore programming, we believe that
the extended debugger knowledge should better target programming models and
environments. Indeed, this programming level offers a high-level interface to the
application, well-suited for building debugger extension, and also has the important
advantage of being shared among multiple applications.

In the following part, we carry out a practical study of model-centric debugging,
from debugger design and implementation to case-studies of industrial application
debugging. This debugging framework is an integral constituent of our contribution,
as it provides a unified environment for debugging MPSoC applications based on any
of the three programming models we studied.

45

Part II

Practical Study of Model-Centric
Debugging

47

4
B U I L D I N G B L O C K S F O R A M O D E L - C E N T R I C D E B U G G E R

The Adjuvant

In this chapter, we detail the implementation of the key building blocks of a model-
centric debugger, based on the directions drawn in the previous chapter, Section 3.1.
Figure 4.1 presents the different layers of the architecture of our model-centric debugger
implementation. The two bottom layers are the usual debugging entities: the execution
platform (the debuggee), which runs the application, and a source-level debugger.

In Chapter 2, we presented the bottom part of the figure, the execution platform,
hence now we continue with the upper layers. We start in Section 4.1 with the middle
part and present the source-level debugging functionalities required to implement
a model-centric debugger. Then we continue with the top part of the figure, which
corresponds to the programming-model centric debugger itself. We divided its imple-
mentation study into three axes:

1. the debugger needs to capture the information required to follow the evolution
of the abstract machine state. In the figure, this corresponds to the pink arrows
connecting the upper layer, the source-level debugger and the execution platform
(Section 4.2).

2. the debugger needs to define internal structures reflecting the abstract machine
organization, and update them according to the evolution of the machine state.
These structures are depicted in the schema with the three interconnected entities
(Section 4.3).

3. the debugger must provide a high-level user-interface, allowing developers to
efficiently interact with the abstract machine. Most of commands provided
through this interface are parameterized by the current state of the internal
representation. This interface is represented by the user on top of the diagram.
(Section 4.4).

4.1 source-level debugger back-end

We noted in the previous chapter (Chapter 3, Section 3.1.3) that it was important for a
model-centric debugger to be able to operate at two levels, with source-level debugging
capabilities. This requirement led us to decide to implement our prototype as an

49

building blocks for a model-centric debugger

Figure 4.1: Model-Centric Debugging Architecture for an MPSoC Platform

extension of an existing source-level debugger. This way, all the low-level functionalities
are natively available to application developers, and we can directly leverage this
technology for the implementation of our tool.

Hence, our prototype debugger relies on GDB, the free debugger of the Gnu project
[Gnu13]. GDB has a wide user community, in both general and embedded computing.
We decided to base our work on this tool because of its advanced process inspection
and control capabilities and to simplify user and product handovers (ST’s IDTec team
already provides its customers with GDB-based products [GADP+10]). Moreover,
recent versions of GDB export Python bindings, which allow an easy and efficient
development of extensions.

In the following, we present the two main GDB capabilities our implementation relies
on: internal breakpoints and Python scripting. A third aspect, memory inspection, is
presented in Appendix A.

50

4.1 source-level debugger back-end

4.1.1 GDB Breakpoints

A “break-point” is a debugger operation which breaks the execution flow at a given
point. More formally, a “point” is a memory location, for instance a function address,
a source-code line (the debugger looks up the corresponding assembly instruction
address in the debug information) or a user-provided memory address. “Breaking
the execution flow” means that, if one of the processors hits a breakpointed address,
the debugger will give the control back the its user interface, allowing developers to
interact with the application in the current memory context.

Under the hood, a “breakpointed address” is an illegal instruction written at the given
memory location (the debugger takes care to backup the original instruction before-
hand). The execution of this illegal instruction triggers a processor fault whose handling
depends of the OS. For instance, Linux kernel can be configured to send a signal
(SIGTRAP) to the process’ debugger. Upon receiving this signal, the debugger recog-
nizes the breakpointed address and switches to its interactive mode. Continuing the
execution involves switching back and forth between the debugger and the application
execution contexts, in order to actually execute the breakpointed instruction, but also
ensuring that no processor misses the breakpoint stop at the same time. Sidwell et al.
explained in [SPA+08] these challenges.

Conditional breakpoints improve breakpointing with conditional expression testing. It
is important to note that these conditions do not change the low-level aspects presented
above. It only conditions whether, upon a breakpoint hit, the debugger gives the
control back to the user-interface or silently continues the execution. For instance in a C
application:

(gdb) break main if argc == 3

At the beginning of the main function, this conditional breakpoint will only give
the control to the user if the process has 3 arguments. But in all cases, the execution
will be stopped and the debugger will internally check the condition.

Internal Breakpoints are a special class of breakpoints, which are not set by the debug-
ger user, but by the debugger itself, for internal purposes. They allow the debugger
to perform specific internal actions. In Linux-based environments, GDB uses some of
them to monitor the dynamic linker (−1), threads (-2 and -3), Posix longjump (-4 and
-5) or handle C++ exception (-6):

51

building blocks for a model-centric debugger

(gdb) maintenance info breakpoints

Num Type Disp Enb Address What

-1 shlib events keep y 0x302e80f7a0 <_dl_debug_state>

-2 thread events keep y 0x302f406ad0 <__nptl_create_event>

-3 thread events keep y 0x302f406ae0 <__nptl_death_event>

-4 longjmp master keep n 0x302f40dc90 <siglongjmp>

-5 longjmp master keep n 0x302ec35b13 <__longjmp+51>

-6 exception master keep n 0x303040fa90

To further explain internal breakpoints, we can look at the two thread-event break-
points. They are both internal to the glibc threading library (the NPTL here, [Mol03]),
as shown by the nptl prefix. The first event (nptl create event) is triggered—
that is, the function is executed—by the threading library when a new thread is created.
Upon the breakpoint hit, GDB queries further information about the thread and regis-
ters it to its thread list. Finally, the second event, (nptl death event) is triggered by
the library when the thread has completed its task. GDB knows that it can remove it
from the thread list. During the processing of these events, GDB displays the following
messages in the console. They are the only notifications of these breakpoints. Our
former work [PPCJ10] further explain this process:

[New Thread 0x7fffddff6700 (LWP 18539)]

...

[Thread 0x7fffddff6700 (LWP 18539) exited]

4.1.2 GDB Python Scripting

Python scripting has been present in GDB since its version 7.0 in 2009. It allows
extending GDB behavior through an external API, instead of writing C code. This
modularity has multiple benefits:

Stable The API only exports stable functionalities, backward compatible over future
releases. This is in opposition with the internal C code, for which no stability
guarantees are provided. Hence, an extension developed in C may break after
any new release and must be verified each time.

Focused/documented The Python API was designed with the explicit goal of allowing
user scripting. Hence, it provides a focused set of functionalities and hides GDB’s
internal complexity. In addition, all the elements of the API are documented and
accessible online1.

1 Debugging with GDB– Python API, http://sourceware.org/gdb/current/onlinedocs/gdb/

Python-API.html

52

4.1 source-level debugger back-end

Efficient development Python is a widely used programming language, fully flavored2

and used for large-scaled development such as the YouTube website. This is
invaluable in comparison with GDB’s original scripting capabilities which could
only automate repetitive console command-lines.

External Python extension can be distributed independently from GDB, without requir-
ing a software recompilation. In comparison, C improvements must be distributed
either as source-code patches or through pre-compiled binaries.

On the downside of GDB’ Python API, we can remark its youth. Indeed, at the
beginning of this thesis work (early 2011), it was only a few years old, and some API
bindings were found missing (we discuss in the next paragraph how we solved that
issue).

Extending GDB’s Python API In the previous paragraph we praised Python develop-
ment and disregarded the C side. However, it is important to note that only extensions
can be developed in Python; all the core, low-level and maybe performance-critical
work must be done in C. In particular, the bindings between GDB internals and Python
environments must also be written in this language.

In order to implement our model-centric debugger in Python, we extended GDB
Python interface to support all of our needs. In particular, we contributed the following
patches:

• allow Python to detect that multiple breakpoints were hit when the execution
stops3,

• add a “getter” to retrieve the process— inferior in GDB parlance—currently
selected4,

• add Python notifications when a process exits5, or when a shared-library is
loaded6,

• and finally, the most important patch of the serie was the introduction of the
concept of finish breakpoint7, crucial to our implementation design. We describe
its rationals in the following section.

All of these patches were documented, tested against regressions and reviewed by
GDB maintainers. (The review process looks at code correctness, coding style, docu-
mentation quality, etc.) After cycles of updates/reviews, the patches met expectations
and hence were accepted for inclusion in the official code-base. Committing these
patches in the GNU repository meant that, from the next version onwards, the official
GDB releases would include our improvements. Furthermore, it also implies that,
thanks to the non-regression tests, the community would ensure that the functionalities
keep working as expected along the time.

2 Python Success Stories, http://www.python.org/about/success/
3 https://www.sourceware.org/ml/gdb-cvs/2011-09/msg00085.html

4 https://www.sourceware.org/ml/gdb-cvs/2011-09/msg00086.html

5 https://www.sourceware.org/ml/gdb-cvs/2011-10/msg00019.html

6 https://www.sourceware.org/ml/gdb-cvs/2011-10/msg00034.html

7 https://www.sourceware.org/ml/gdb-cvs/2011-12/msg00230.html

53

building blocks for a model-centric debugger

In the following sections, we discuss the core of our model-centric debugger imple-
mentation, starting with the mechanisms used to capture the state of abstract machines.

4.2 capturing the abstract-machine state and its evolution

In order to monitor the state of the abstract machine running the application, the
debugger needs to hook each of the operations affecting its state. In this section, we
present the capture mechanism we implemented and analyze its efficiency. Then, we
compare it against two alternative mechanisms and finally summarize their respective
interests.

API Interception with Breakpoints and Debug Information

The information-capture mechanism we implemented for our debugger prototype
relies on debugger-internal breakpoints set on the state-modifying operations of the
environment API (e.g., function symbols in C-based languages). Internal breakpoints
are transparent for the user, who is not notified of the brief execution stop. When
they are triggered, the debugger parses operation arguments with the help of the
API definition and architecture calling conventions. Then, it decides to continue the
execution or gives the control back to the user interface. Figure 4.2 presents a sequence
diagram of these interactions. The concept of finish breakpoint was introduced in GDB
Python API to programmatically catch the return point of a function. This allows the
interception of output and updated parameters. If further information is required, and
if application source-code and debug information (e.g., Dwarf structures [Fre10]) are
available, the debugger can use this knowledge to intercept implementation-specific
knowledge about the abstract machine and better represent its state.

Evaluation The key benefit of this approach is that is does not require any additional
debugging support from the application or from the programming-model supportive
environment. Furthermore, the debugger can be developed with no cooperation with
the supportive environment team. In the context of prototype development, this is a
significant advantage

The portability of this mechanism depends on whether the debugger relies or not on
source-code hooks, in addition to API interception. If it does not happen, the debugger
might be version/vendor independent. Otherwise there is a strong dependency between
the debugger and the supportive environment which limits the portability.

However, the main drawback of that approach is that the internal breakpoints
may slow down application execution. This is particularly true for data exchange
breakpoints, which can be triggered very frequently in a communication-intensive
application. We further discuss this point in the concluding remarks in Section 4.5.

54

4.2 capturing the abstract-machine state and its evolution

Breakpoint-Based API Interception

Figure 4.2: Diagram Sequence of Breakpoint-Based API Interception

Alternative Mechanisms

In order to build a more resilient debugger, different approaches can be considered.

API Interception with a Preloaded Library If the key objective of the debugger is
to be portable across multiple environment versions and vendors, the debugger can
preload a debugging library in the application memory space. The OpenCL debugger
Gremedy Gdebugger [Gra10] and the SystemC one [RGDR08], presented respectively
in Sections 7.3 and 7.1 rely on a similar capture mechanism.

In this case, the preloaded library implements debugging stubs for all the state-
modifying operations of the environment API. These stubs collect the information
required to follow the evolution of the abstract machine, and then redirect the execution
flow towards the original environment function.

As breakpoints are only triggered when the debugger and the library need to
exchange information, the execution speed is virtually unaffected. It also has a very
good portability over different supportive environment versions and vendors as the
capture mechanism only relies on the API definition. However, the amount of capturable
information is limited to the parameters carried over the environment API. Although it
is not exhaustive, the OpenCL and SystemC debuggers show that it can be sufficient.

55

building blocks for a model-centric debugger

Specialized Debug Module If there is no portability requirement, a specialized debug
module inside the supportive environment code, can maximize the amount of cap-
turable information. Thread debugging in Gnu/Linux systems [Mol03] relies on this
design, with the debug module generically named libthread db (See Subsection 4.1.1
and [PPCJ10]).

This capture mechanism involves a strong collaboration between the environment
and the debugger, and hence between their respective development teams. In this
mechanism, the environment debug module prepares and provides the information
about the abstract machine to the debugger. As the environment implements the
abstract machine, it has access to all the relevant internal states. Thus it is the most
suitable location to gather these details.

Summary

Table 4.1 summarizes the benefits and drawbacks of these capture mechanisms against
the following criteria:

Amount of Capturable Information How much abstract machine state information can be
captured?

Execution Overhead How is the execution slowed down by internal breakpoints?

Cooperation Between Debugger and Environment Does the debugger team need to coop-
erate with the environment developers to implement the debugging support?

Portability Can we use the debugger with another environment version or vendor?

Breakpoints
and Debug
Information

Preloaded
Library

Specialized
Debug
Library

Capturable Information High Limited to API Full

Execution Overhead Significant Limited Limited

Cooperation btw. Debug and Env. None Low Strong

Portability Variable Very Good
Vendor
Specific

Table 4.1: Information Capture Mechanisms Trade-Off

56

4.3 modelling the application structure and dynamic behavior

Once a capture mechanism has been chosen for the implementation of the debugger,
the next step consists in creating a representation for the programming-model abstract
machine, and animating it according to execution events.

4.3 modelling the application structure and dynamic behavior

In this section, we present the data structures and mechanisms we developed to
represent the application architecture and follow the evolution of the programming
model’s abstract machine.

4.3.1 A Ground Layer for Communicating Tasks

In order to offer a generic ground layer for the representation of application relying on a
communicating-task model, we designed a set of classes, presented below. These classes,
schematized in the upper layer of Figure 4.1, can be extended to fit programming models
requirements. They consist in entity objects holding connection endpoints bound
together through links . Entities can exchange messages over these links :

Entity objects represent the different tasks of the programming model. They are
usually schedulable and bound to an execution context of the execution platform.
They hold the list of Endpoint objects associated with the task they reflect.

Endpoint and Link objects represent the relationship between the tasks of the model.
They can transfer Message objects from one entity to another, according to the
abstract machine specification.

Message objects are transmitted between Entity objects. They are usually not associ-
ated with a particular object of the environment; they only reflect the logic of the
abstract machine operations (e.g., message transmitted to a link, message received
by its target, . . .).

Developers of new model-centric debuggers can derive and specialize this abstraction
layer to fit the representation of their communicating tasks models, as we do in the
following chapter for component and dataflow programming.

On the other side, models like kernel-based accelerator programming are too different
from communicating-tasks models and cannot directly benefit from this work. However,
in the case of kernel-based programming, the application structure is less complex (no
notion of graph, interface connection or messages) and hence easier to model.

4.3.2 Following Dynamic Behaviors

Once we had modelled the application structure in the debugger, the next step consisted
in updating the representation according to the evolution of the abstract machine state.
We presented in the previous section the low-level aspects of this task.

57

building blocks for a model-centric debugger

At the representation layer, we attach a Python function to internal breakpoints set at
supportive environment functions entry point and, if necessary, exit points. Consider
for instance the following dataflow code snippet. Functions next() and send(...)

are provided by the dataflow environment to send and receive data tokens, respectively:

flg = ctlr.next()

...

out_1.send(treat(cnt))

Different steps are required to follow the state of the abstract machine during their
execution:

1. set a breakpoint on the function call,

2. wait for the breakpoint hit. Upon this event,

a) identify the source actor (here the actor executing the code),

b) the target (out 1 , connected to the data dependency of the same name),

c) and the token value (the result of treat(cnt));

d) create a message (token) object with the content found at the previous step,
and push it into the relevant data link,

e) continuing the execution*.

* The function is non blocking and does not return any answer, so it is not necessary
to wait for the function to complete.

Regarding function next() , the steps are similar, except that the message object
already exists and the function call is can block until a message is available:

1. set a breakpoint, wait for its hit and identify the source and target,

a) set the actor/interface state to “ blocked ”.

b) if relevant, check for deadlocks (see Paragraph 3.3.2 in the previous chapter)

2. set a finish breakpoint at the exit point and wait for its hit. Upon that,

a) pop a token for the corresponding data link and push it into the target actor

b) (internally, verify that the token content is identical to the return value)

c) set the actor state to “ working ”.

Model-Centric Catchpoints In addition to these operations, the internal breakpoints
can also check for model-centric catchpoints. For instance, after the nth token sent over
a given interface, or with a specific payload, etc.

GDB Python breakpoint interface looks as follows (its is based on Python class
inheritance):

58

4.4 interacting with the abstract machine

class MyBreakpoint(gdb.Breakpoint):

def __init__(self):

gdb.Breakpoint.__init__(self, "function", internal=True)

def stop(self):

return True or False # according to requirements

Hence, stopping or continuing transparently the execution simply consists in re-
turning a boolean flag. Our framework provides a more advanced class, named
FunctionBreakpoint that model centric debugger have to extend:

class FunctionBreakpoint:

def __init__(self, spec) # automatically internal

def prepare_before(self) # returns (stop, finish, data)

def prepare_after(self, data) # return stop

These “function breakpoints” are initialized with the specification (name or address)
of the function they target. When the execution hits the entry-point breakpoint, the
debugger calls the method prepare before . This method should return a triplet,
indicating (1) if the execution must be stopped, (2) if the finish breakpoint must be set,
and (3) some data to provide to the second callback. If asked with boolean (2) method
prepare after , is called when the execution hits the exit-point of the function, with

the data parameter (3).

In the next section, we move out of the debugger internals and present how we built
the interface between the model-centric debugger and its users.

4.4 interacting with the abstract machine

Programming model-centric debugging tries to raise interactive debugging to the level
of the model’s abstract machine. Hence, interacting with the abstract machine should
be as easy as it is with the hardware machine. The examples presented below are only
for illustration purpose. We borrowed them from the following chapters where they
are thoroughly explained.

4.4.1 Application Structure

Once the debugger has internally modelled the application structure and can dynam-
ically capture its evolution, it needs to present it to the user. We can distinguish
three alternative ways for this presentation, varying in terms of user comfort versus
environment complexity:

59

building blocks for a model-centric debugger

Pure Command-Line Interface The command-line is GDB’s main and almost8 exclusive
native user interface. This is the simplest and most portable interface, which can be
used in any debugging environment. This mode only accepts textual information, hence
all the structural elements have to be flatted down. As an example, the interconnection
of Figure 4.3(b) between filters pipe , ipred and ipf , part of module pred , can be
listed as follows:

(gdb) info filters pred pipe ipred ipf +interfaces

#8 pred (module)

Owner pipe

Owner ipred

Owner ipf

#11 pipe

Ownee pred

Pipe2AddLumaMB_out PedfArrayStreamOut<LumaMB_t> [> #12]

LumaCBF_out PedfArrayStreamOut<LumaCBF_t> [> #14]

#12 ipred

Ownee pred

Pipe2AddLumaMB_in PedfBaseDataStream [< #11]

LumaResNotNull_out PedfArrayStreamOut<LumaCBF_t> [> #14]

#14 ipf

Ownee pred

LumaResNotNull_in PedfBaseDataStream [< #12]

LumaCBF_in PedfBaseDataStream [< #11]

The implementation of these listings follows naturally from the data structures
presented in the previous section. This textual representation was sufficient for our
study of component programming, however it rapidly shown its limits with the complex
graphs of dataflow programming.

Command-Line and Static Image The second alternative involves delegating the graph
rendering to a dedicate tool. We used for this purpose GraphViz9 and its graph
description language, DOT. Figure 4.3 highlights how the structure of the previous
paragraph is described in DOT (4.3(a)) and the image generated from this description
(4.3(b)). Figure 3.2 corresponds to a more complex graph, rendered with the same tool.

Our debugger implementation generates DOT description files, then defers the
rendering and displaying of the image to system tools. This means that people in
charge of deploying the debugger can easily adapt these last steps the their environment.
However, the drawback of this approach is that the graph viewer offers no interactivity,
and graph manipulation falls back to the command-line interface. An improvement for
that is discussed in the following subsection, with command-line completion.

8 We let apart the TUI (Text User Interface), which would have required fuzzy ASCII art drawing for our
purposes.

9 Graph Visualization Software, http://www.graphviz.org/

60

4.4 interacting with the abstract machine

digraph G {
rankdir = LR;

subgraph cluster_top_pred {
label = pred

pred_pipe [label="pipe"];

pred_ipred [label="ipred"];

pred_ipf [label="ipf"];

}

pred_pipe->top_pred_ipred;

pred_pipe->top_pred_ipf;

pred_ipred->top_pred_ipf;

}

(a) source code

pred

pipe
ipred

ipf

(b) graph structure

Figure 4.3: Simple Graph Representation with GraphViz

Integrated Graphical Interface The last alternative would consist in extending one of
GDB’s graphical interfaces. In particular, Eclipse CDT (C/C++ Development Tools)
and its DSF (Debugger Services Framework) appear as an interesting solution. In this
case, developers could use the different parts of the graph to query the application state
or set catchpoints, similarly to setting a breakpoint by clicking on a source-code line.

Our current implementation did not focus on such a integrated graphical interface,
however it is part of future development work. Indeed, ST IDTec team plans to
integrated model-centric debugging within its development tool, STWorkbench10 .

4.4.2 Model-Centric Command-Line Interface Integration

In order to build the user-interface of our model-centric debugger, we leveraged GDB
Python command-line extension capabilities. GDB’s Python API allows extensions to
offer context-aware command completion, which reinforces the feeling that the abstract
machine environment is well integrated in the debugger.

The listing in Figure 4.411 presents how command-line completion benefits from the
graph knowledge:

➀ the completion proposes the names of PEDF H.264 filters. Filter pipe will be
selected.

➁ the completion lists the possibles catchpoints. We want to stop on the next
outgoing token: catch send to .

10 STWorkbench Integrated Development Tool — http://www.st.com/web/en/catalog/tools/PF250516

11 The keyword filter is a synonym of actor in PEDF dataflow dialect.

61

building blocks for a model-centric debugger

(gdb) filter <TAB> ➀

bh red imvp pipe hwcfg ipred ipf

(gdb) filter pipe catch <TAB> ➁

work send_to receive_from

(gdb) filter pipe catch send_to <TAB> ➂

ipred ipf

Figure 4.4: Setting Catchpoints With Command-line Completion

➂ the completion takes the context into account (catching token outgoing from filter
pipe) and suggests the two possible endpoints, filters ipred and ipf .

4.4.3 Time-base Sequence Diagram

The last part of the developer-debugger interactions consists in drawing time-base
sequence diagrams to describe how the application interacts with the abstract machine.
For our prototype implementation, we decided to emphasize the visual aspect of the
diagram and directly aimed at graphical tools. We chose to rely on an ST internal
data-viewer named TChartLite. TChartLite is part of STWorkbench, an Eclipse
environment customized to ST boards, and already used for data visualization in
tools like KPTrace12. Figure 4.5 illustrates how we used TChartLite to represent the
configuration and execution of an accelerator kernel.

To preserve the command-line nature of our debugger, we decided to decouple as
much as possible the debugger implementation from the viewer, running in STWork-
bench. Hence, the information required for the visualization are streamed into a
unidirectional pipe (for instance in Unix environments, named piped, Unix or network
sockets). All the control logic remains in the debugger, and STWorkbench passively
manages the visualization work.

As noted earlier, the entire model-centric logic could also be integrated into a
graphical debugger environment, but this is out of the scope of this thesis.

4.5 evaluation and conclusion

In this chapter, we presented how we developed our model-centric debugger as an
extension of source-level debugging. We explained that we chose GDB for it is a
powerful and popular free debugger. However, as we illustrated in Figure 4.1, any
source-level debugger can be used for this purpose. We expect only a few capabilities

12 Dynamic system tracing with KPTrace — STLinux, http://www.stlinux.com/devel/traceprofile/

kptrace/

62

4.5 evaluation and conclusion

Figure 4.5: Time-base Sequence Diagram of the Configuration and Execution of an
Accelerator Kernel.

from this debugger, materialized with the vertical arrows of the figure. First and
foremost, it has to be extensible, e.g., through a scripting API or directly in its code base.
Secondly, regarding the interactions with the platform, the debugger must allow setting
user-transparent breakpoints and examining the different memory spaces (variables,
registers, . . .).

We explained that the capture mechanism of our tool relies on such internal break-
points to intercept API function calls. However, this approach can slow down applica-
tions’ execution. In order to cope with this problem, our debugger allows developers to
temporarily disable data-exchange breakpoints, until the execution reaches the “critical
part” of the code. Architecture modification operations usually do not rely on the
same breakpoints so they can still be used. Source code entity-specific breakpoints and
watchpoints can also help reaching the suspicious area faster. Alternatively, we could
also change the capture mechanism to a more efficient one.

Another limitation of our implementation is the implicit requirement that the un-
derlying source-level debugger must have access to the entire memory-space of the
application. The development of our debugger was done in the context of applications
running under MPSoC platform simulators, hence this requirement was easy to meet.
In different situations, such as debugging a heterogeneous application running on a
real-board, it might be more difficult to find a suitable source-level debugger.

In the following chapter, we study how we interpreted and implemented the model-
centric principles drawn in Chapter 3 in the context of the programming environment
of Sthorm, ST’s MPSoC platform.

63

5
MCGDB, A MODEL-CENTRIC DEBUGGER FOR AN INDUSTRIAL MPSOC
PROGRAMMING ENVIRONMENT

Resolution Elements

In the previous chapter, we detailed the key software blocks of a model-centric
debugger. In this chapter, we continue this practical study with the presentation of
Model-Centric GDB (mcGDB), our model-centric debugger prototype. For each of
our three programming models, we come back on the programming environment
descriptions of Chapter 2, Section 2.2.2, and detail the associated debugging features.

We first discuss in Section 5.1 Sthorm’s component framework, with an emphasize
on the dynamic aspect of component deployment and management, as well as inter-
component communications and following the flow of messages.

Then we dig into Sthorm’s dataflow framework in Section 5.2 and highlight how the
graph structure is graphically presented to developers. We also discuss PEDF specific
scheduling capabilities and how mcGDB can represent them and control the execution
flow.

Lastly, we focus on OpenCL kernel programming in Section 5.3 and how we can
debug it. In this environment, we insist on how we represent the application dynamic
behavior through a graphical sequence-diagram-like representation of the interactions.
We also discuss how we extended mcGDB’s OpenCL module to support NVidia Cuda,
a similar yet commercial competitor programming environment.

We conclude this chapter in Section 5.4 with an overview of the common and
diverging aspects of these three implementation and elements of work estimation for
adapting mcGDB to other programming environments.

5.1 npm component framework

In this section, we come back on NPM, Sthorm’s component programming environ-
ment. We continue the NPM introduction of Chapter 2, Section 2.2.2 and further explain
its component deployment and management interface, as well as inter-component com-
munication. For each of these aspects, we present the debugging features we developed.
This implementation study was part of publication [PSMMM12].

65

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

5.1.1 Component Deployment and Management

The deployment of runnable NPM components is done in two phases, from the host
side of the application. A component is first instantiated on a given cluster ➀. At this
stage, the application can configure it and connect its different interfaces. Then, the
application triggers the component execution (run method ➁), once or several times,
and finally destroys ➂ the component instances, to release their memory.

int NPM_instantiate (const char* name, int target_cluster,

void ** instance); ➀

void NPM_runRTMComponent (void * instance); ➁

int NPM_destroy (void * instance); ➂

✓ mcGDB catches the events corresponding to these functions and allows developers
to stop the execution at these points:

(gdb) component [ID|name] catch {instantiate|run|destroy}

We name the components according to the file in which they were compiled (pa-
rameter name in ➀), and the instances are identified by a unique number. mcGDB
also interprets the indication about the target cluster (parameter target cluster) and
displays it in the user interface. We chose to represent the host part of the application
as a normal component to unify the handling of the different entities.

During the debugging session, components can be in three different execution states,
as illustrated in the state diagram in Figure 5.1:

No execution context The component has been instantiated and not yet destroyed, but it
is not currently running.

Running The component is executing its run method and currently scheduled into an
execution context.

Asleep The component is inside its run method but currently unscheduled.

Handling asleep components demands an additional attention, as their processor context
is stored inside the abstract machine memory, rather than inside the OS memory. Our
previous work [PPCJ10] and [VMD04] detail how to locate and switch between SystemC
user threads, based on XPG4 ucontext functions1.

If we focus on the implementation of the NPM runRTMComponent hook ➁, we can
foresee with the function prototype that two steps will required to capture all the
information about the event. First, we need to set a breakpoint at the function entry

1 See /usr/include/ucontext.h for further details.

66

5.1 npm component framework

Inexistant

instantiate

destroy

No Execution
Context

run

finish

Running

unschedule

schedule

Asleep

Figure 5.1: State Diagram of NPM Component Debugging.

point, in order to capture the component name, target cluster and the address of the
component instance handle (*instance). After that, we must release the execution
flow and wait for the function completion. If the function returns successfully (i.e.,
return code is 0), then we can record the actual instance handle (**instance).

NPM allows developers to bind components at runtime from the host, with prede-
fined communication mechanisms. A “DMA controller” link ➃ transfers data from the
host to the fabric (i.e., to the components); whereas a First In First Out (FIFO)-buffer
link ➄ transfers data between two components, either using shared memory inside a
cluster or inter-cluster communication mechanisms:

int NPM_instantiateDMAPullBuffer (NPM_DMAPullBuffer_t * bufferId,

void * consumerComp, char * consumerInputItf, ...); ➃

...

int NPM_instantiateFIFOBuffer (NPM_fifoBuffer_t * bufferId,

void * producerComp, char * producerOutputItf,

void * consumerComp, char * consumerInputItf, ...); ➄

✓ Upon such events, mcGDB detects that the abstract machine is about to connect
two components, and updates its internal representation accordingly. In the current
version of implementation, this is also the occasion for mcGDB to discover component
interfaces.

For instance, a DMA pull binding ➃ connects the consumer interface (consumer -
InputItf) of the component consumerComp to the pseudo-interface bufferId of

the host component. Parameter consumerInputItf corresponds to the name of the
interface. Developers will be able to refer to this name during the debugging session.
The same idea applies to DMA push (not shown here) and FIFO bindings ➄.

It is also possible to catch further details about the link configuration such as the
buffer size and location, or the access pattern. The target cluster information discovered
at component instantiation gives a hint about the algorithm (shared or distributed
memory) selected by the framework to implement the FIFO bindings.

5.1.2 Communication Interfaces

As mentioned above, NPM components communicate through Pull and Push prede-
fined interfaces. The Pull interface allows the reception a full data buffer, whereas

67

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

the Push interface provides empty buffers and sending mechanisms. The following
excerpt presents the definition of Pull and Push interfaces, written with Mind2

architecture description language:

interface npm.buffer.PullBuffer {
/* Informs the communication component that is should

start to fetch the buffer that will be returned by

the subsequent call to the pull method. */

void fetchNextBuffer();

/* Returns a buffer from which data can be read. This

method may be blocking until a buffer is available. */

void * pull (); ➅

/* Releases a previously pulled buffer. */

void release(void * buffer);

...

}

interface npm.buffer.PushBuffer {
/* Returns a buffer into which data can be produced. */

void * getBuffer();

/* Push a previously returned buffer. */

void push (void * buffer); ➆

/* Wait for the termination of every ongoing transfers

of previously pushed or sent buffers. */

void waitTransfers();

...

}

Component 1

PushBuffer

PullBuffer

Component 2

Host
Pseudo-Component

FIFO Link

DMA Link

PullBuffer

DMAPush

Figure 5.2: NPM Component Communication Interfaces.

Figure 5.2 presents the interconnection of two components and the host-side of the
application.

2 MIND - OW2 Consortium http://mind.ow2.org/

68

5.1 npm component framework

✓ In mcGDB, we consider the Pull and Push interfaces as communication endpoints
and model DMA controllers and FIFO-buffer links as inter-component links. In both
interfaces, we elected the methods responsible for messages departure and arrival,
namely PullBuffer pull ➅ and PushBuffer push ➆.

These primitives give mcGDB the ability to detect communication events, hence
allowing developers to control the execution based on the messages sent and received
by the components. Hence, developers can set catchpoints on component interfaces ➇.
They can also achieved a finer control grain with condition checking, such as filters on
the message payload or target. Lastly, a message counter is incremented every time a
message the interface transmits a message.

(gdb) component [ID|name] interface name {next|catch_all} ➇

5.1.3 Message-Based Flow Control

In this last subsection on the implementation of mcGDB’s NPM component module,
we detail how we implemented the message-based flow control capabilities presented
in Chapter 3, Section 3.3.1.

We built this message-based flow control of mcGDB upon NPM Push and Pull

interfaces, in the continuation of what we presented in the previous subsection.

In the debugger code, we implemented the message management logic inside the
endpoint classes. Hence, when a component calls a PushBuffer push method,

mcGDB invokes the corresponding Python method. In this case, we read information
about the message (i.e., the buffer) and push it into the link object connected to this
endpoint.

At some point, the component on the other side will call its PullBuffer pull

method to receive the message. If this occurs before the message was sent, the component
execution will be blocked. On the debugger side, the entry breakpoint will be hit, but
the exit one will be delayed until the message actually arrives. When the exit breakpoint
is triggered, mcGDB knows that a message arrived.

All the NPM links operate on a FIFO mode. Hence, mcGDB’s link objects just push
and pop messages from a queue to represent the message exchanges.

mcGDB’s interface offers the following commands for message handling:

(gdb) message {enable|disable}-tracking ➈

(gdb) info component [ID|name] +messages ➉

(gdb) info links [ID] +messages ➊

(gdb) info message [ID]* ➋

69

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

(gdb) message forget ((ID)*|all) ➌

(gdb) message {follow|unfollow} (ID)* ➍

First of all, message tracking must be activated with command ➈. Then, commands
➉ and ➊ list the messages contained in a given component or a given link, whereas
command ➋ list them all. Command ➌ hides a message from the listings, and command
➍ tells the debugger to stop the execution each time a given message is processed (i.e.,
received or sent).

However, this last command ➍ is of limited use in the current situation: messages
can only move from one component to another (that would trigger two stops). Hence,
the following step in the debugger development consisted in allowing components to
transmit messages.

To this purpose, we design an overlay API, that developers can implement to inform
mcGDB about component routing schema:

class ComponentOverlay:

def consume_message(self, endpoint, msg)

def produce_message(self, endpoint)

def get_messages(self)

During the component application initialization, mcGDB looks up component over-
lays (currently with name comparison). In case of success, it will replace its generic
message methods by the ones from the overlay. They will be called in the following
order:

1. consume message is called when the component receives a message from a given
endpoint. It can store it internally, mark it and/or delete it,

2. get messages should return the list of messages held in the component,

3. produce message either generates a new message by reading/decoding the
memory or re-send one it stored earlier. It can access the graph structure and in
particular the message outgoing endpoint.

This aspect is further discussed and exemplified in NPM case study, in Chapter 6,
Section 6.1.4.

We continue this implementation study with Sthorm dataflow programming envi-
ronment, PEDF.

5.2 pedf dynamic dataflow

In this section, we first present how we built the dataflow graph of Figure 5.3 with
PEDF and detail the debugging features associated with each of the steps. Then, we
come back on PEDF scheduling capabilities and filters’ execution. This implementation
study was part of publications [PLCSM13a, PLCSM13b].

70

5.2 pedf dynamic dataflow

AModule

controller
filter_1

filter_2 external
output

external
input

Figure 5.3: PEDF Dataflow Graph Visual Representation of a Simple Module.

5.2.1 Graph Reconstruction

PEDF dataflow graph is built with Mind3 architecture compilation tool-chain, aug-
mented with PEDF annotations. Mind provides a description language to specify
filter’s architecture and interfaces. Its compiler generates a C++ version of the architec-
ture, based on PEDF and platform-specific templates. PEDF defines three classes of
entities:

Filter It is a computing entity, corresponding directly to the actors of the dataflow
model. Filters have inbound and outbound data links. The code of a filter is
written in a subset of the C language which will be eventually synthesized into a
hardware accelerator.

Controller There is one controller per module, which is responsible for the scheduling
of the module’s filters (i.e., registering filters for execution to the runtime system),
according to the application algorithm. A controller runs on a cluster controller
core of the fabric.

Module It corresponds to a sub-graph of filters and a controller. Like filters, modules
have inbound and outbound data links, corresponding to the unconnected arcs of
the inner graph. Thus, modules can be hierarchically interconnected.

The following code snippet, from which Figure 5.3 was generated, presents the
definition of module AModule . It contains a controller and two filters, and it defines
two external connections. The filter definition is presented afterwards. In the last lines
of the module definition, we can see how the different connections are bound together.

@Module

composite AModule {
contains as controller {

3 This is a corner-case usage of Mind, which primarily targets component programming. Here, it is mainly
used for is architecture description and deployment capabilities

71

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

output U32 as cmd_out_1;

output U32 as cmd_out_2;

source ctrl_source.c;

}

// External connections

input U32 as module_in;

output U32 as module_out;

// Sub-components

contains AFilter as filter_1;

contains AFilter as filter_2;

// Connections

binds controller.cmd_out_1 to filter_1.cmd_in;

binds controller.cmd_out_2 to filter_2.cmd_in;

binds this.module_in to filter_1.an_input;

binds filter_1.an_output to filter_2.an_input;

binds filter_2.an_output to this.module_out;

}

Filters filter 1 and filter 2 are both defined by the primitive type AFilter

presented below. They have private and attribute data, as well as an input and an
output data dependencies. They also have a control input dependency.

@Filter

primitive AFilter {
data stddefs.h:U32 a_private_data;

attribute stddefs.h:U32 an_attribute;

source the_source.c;

input stddefs.h:U32 as an_input;

input stddefs.h:U8 as cmd_in;

output stddefs.h:U32 as an_output;

}

✓ In mcGDB, this graph structure is dynamically reconstructed during the initializa-
tion phase of the framework. To this purpose, we extended the generic definitions of
entities, links and endpoints presented in Chapter 4, Section 4.3.

72

5.2 pedf dynamic dataflow

Entities We extended the Entity class to support PEDF’s filter, module and controller
definitions. A parent class implements the module definition with its different
dependency links, and two sub-classes define the filters and controllers, with
attributes specifying if the actor is running, currently scheduled, a pointer to its
execution context and another to its PEDF C++ object instance.

Endpoints and Links In the implementation of mcGDB, we distinguished three kinds of
inter-entity links and endpoints:

Data streams transmit data tokens between filters,

Control streams transmits control tokens between a filter and a controller,

Ownership links materialize the owner relationship between modules and filters
or controllers. They do not transmit information.

Additionally, to correctly support data streams modelling, we implemented a
concept of link bridges, which helps building the module interconnection (i.e., the
“external” links of Figure 5.3).

In the current version of the implementation, mcGDB uses PEDF internal C++ classes
to perform the graph reconstruction. We set a breakpoint at the end of the graph
initialization, and parse the different objects to discover the application architecture.

During the debugging session, mcGDB presents the dataflow graph upon user
request. Besides, graph information will be provided to developers through most of the
dataflow-related functionalities of the debugger. Auto-completion capabilities make it
straightforward for developers to use filter and connection names while they are typing
their commands.

5.2.2 Scheduling Monitoring

Module controllers are responsible for triggering the execution of the filters of their
module. Filter execution model is based on execution steps. For each step:

1. The controller decides which filter must be executed: ACTOR START(name) .

2. The WORK method of filters scheduled for execution is started.

3. The controller can wait for the actual beginning of the execution: WAIT FOR -
ACTOR INIT() .

4. The controller can request filters to stop their execution at the end of this step:
ACTOR SYNC(name) .

5. The controller can wait for the actual end of the step: WAIT FOR ACTOR SYNC() .

(NB: START and SYNC commands can be merged into a single ACTOR FIRE command).

This scheduling capability is not part of the common dataflow models, although it
shares some similarities with control tokens, with the exception that the deterministic
property is lost.

✓ mcGDB captures this information, so that developers can quickly review which
filters are ready to be executed, not scheduled, or have already finished the step.

73

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

Developers can also request an execution stop at the beginning or end of a step, or
when a controller schedules a filter for execution:

(gdb) controller [name|ID] catch_next {FIRE|WAIT_INIT|WAIT_SYNC|...}
(gdb) filter [name|ID] catch_next {SCHEDULE|WORK}

We also initiated a joint-work on a live visual representation of PEDF execution,
in cooperation with ST’s PEDF tools development team. Figure 5.4 shows how their
visualization environment displays a trace-based (i.e., post-mortem) PEDF execution.
Hence, our first goal is to connect this environment with our model-centric debugger,
so that it can provide a live visualization of the execution. In a second step, we expect
to improve this time chart with additional model information, such as the data and
control tokens exchanged by the different entities.

Figure 5.4: PEDF Trace-Based Time Chart of Filter Scheduling.

5.2.3 Filter Execution Flow Control

PEDF filters implement the core data processing tasks of the application. They are
intended to be synthesized into hardware accelerators, and for this reason, strong con-
straints have been defined for their implementation. In particular, the use of a restricted
subset of the C language, which permits a direct transformation to Register Transfer
Level (RTL) circuits. Filters must define a WORK method, implementing one step of the
processing. They can access their private data, attributes and connections with the name
specified in the architecture definition, prefixed by pedf.data. , pedf.attribute.

and pedf.io. , respectively.

With respect to the dataflow part, the data exchanges are transparent to the devel-
opers. In the previous example, a filter can read (respectively write) its data with

74

5.3 opencl kernel programming

pedf.io.an input[n] = d; where n is the highest unread (respectively unwritten)
index. (This array notation corresponds to the structure model of dataflow mentioned
earlier.)

✓ In mcGDB development, we focused on the flow-of-token aspect, which is key to
the dataflow model. Namely, we enabled the possibility of following a token through a
dependency by intercepting the indexes of the token pushed in and out of the link. As
the model and the implementation ensure that the data order is preserved, we can stop
the execution at the right location in a deterministic way:

(gdb) filter [name|ID] catch_next WORK

(gdb) filter [name|ID] interface [name|ID] {next|break}
(gdb) filter [name|ID] {info|follow} last_token

Internally, PEDF relies on C++ operator overloading to implement its communication
mechanisms based on square brackets. Hence, we had to set breakpoints at the entry
and exit points of these function to capture token emission and reception:

template<class ArrayStream , class T >

class PedfTokenSelector {
T &operator=(const T &val) { ... }

}

template<class T >

class PedfArrayStreamOut : public PedfBaseDataStream {
T &operator[](int idx) { ... }

}

In the following section, we study our last programming environment, OpenCL,
which lies at the boundary between MPSoC embedded computing and HPC.

5.3 opencl kernel programming

As we noted in our study of model-centric debugging for kernel-based programming
(Chapter 3, Section 3.3.3), we do not consider the accelerator side of the application,
but only its CPU/host code. We introduce in the Related Work chapter (Chapter 7)
complementary tools which explicitly target GPGPU kernel debugging.

Hence, mcGDB’s debugging support relies exclusively on OpenCL’s C API. This
scope limitation allowed us to develop a capture mechanism independent of the vendor
library implementing the standard.

75

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

void checkStatus(int * ptr, char * msg) {
if(ptr == 0) exit(-1);

}

void simple_sum (int * a, int * b, int * c) {
c = *a + *b;

}

void main() {
int *a = malloc(sizeof(int));

checkStatus(a, "Couldn’t allocate a");

*a = 5;

int * b = malloc(sizeof(int));

checkStatus(b, "Couldn’t allocate b");

*b = 10;

int * c = malloc(sizeof(int));

checkStatus(c, "Couldn’t allocate c");

simple_sum(a, b, c);

printf("c: %d n" , c);

// free ...

}

(a) C version

76

5.3 opencl kernel programming

cl_context ctx = /* ... */;

cl_command_queue commandQueue = /* ... */;

cl_kernel k_simple_sum = /* OpenCL version of simple_sum. */ ;

int a = 5, b = 10, c;

cl_mem d_a, d_b, d_c;

/* Allocate the buffers of the GPU. */

d_a = clCreateBuffer(cxt, CL_MEM_READ_ONLY, sizeof(int), NULL, &err);

checkStatus(err, "clCreateBuffer d_data failed");

d_b = clCreateBuffer(ctx, CL_MEM_READ_ONLY, sizeof(int), NULL, &err);

checkStatus(err, "clCreateBuffer d_data failed");

d_c = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY, sizeof(int), NULL, &err);

checkStatus(err, "clCreateBuffer d_data failed");

/* Push the values to the GPU memory. */

err = clEnqueueWriteBuffer(commandQueue, d_a, CL_TRUE, 0,

sizeof (int), &a, 0, NULL, NULL);

checkStatus(err, "clEnqueueWriteBuffer d_data failed");

err = clEnqueueWriteBuffer(commandQueue, d_b, CL_TRUE, 0,

sizeof (int), &b, 0, NULL, NULL);

checkStatus(err, "clEnqueueWriteBuffer d_data failed");

/* Set the kernel parameters. */

err = clSetKernelArg(k_simple_sum, 0, sizeof(cl_mem), (void *) &d_a);

checkStatus(err, "clSetKernelArg d_a");

err = clSetKernelArg(k_simple_sum, 1, sizeof(cl_mem), (void *) &d_b);

checkStatus(err, "clSetKernelArg d_b");

err = clSetKernelArg(k_simple_sum, 2, sizeof(cl_mem), (void *) &d_c);

checkStatus(err, "clSetKernelArg d_c");

/* Trigger the kernel execution. */

size_t global_work_size[] = 1;

err = clEnqueueNDRangeKernel(commandQueue, k_simple_sum, 1, NULL,

global_work_size, NULL, 0, NULL, NULL);

checkStatus(err, "clEnqueueNDRangeKernel do_simple_sum failed");

/* Get the result back. */

err = clEnqueueReadBuffer(commandQueue, d_c, CL_TRUE, 0, sizeof(int),

&c, 0, NULL, NULL);

checkStatus(err, "clEnqueueReadBuffer d_sum failed");

printf ("sum: %d" , c); // then free ...

(b) OpenCL version

Figure 5.5: C and OpenCL Versions of a Simple Computation

77

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

We can see with the code length and density that the OpenCL version of the code
would be more difficult to understand and therefore to debug.

In the following, we present how we implemented mcGDB’s debugging support for
OpenCL applications. We start with an overview of the architecture representation
and the control of the execution, then we present with more details our execution
visualization environment.

5.3.1 Architecture Representation and Execution Control

OpenCL relies on a platform abstraction, as presented in Figure 5.6. In Figure 5.6(a),
we can distinguish the host side of the application, running on the CPU, as well as
compute devices. This could be a GPU card, or Sthorm computing fabric. In the
context of Sthorm, OpenCL compute units correspond to a fabric cluster, composed of
eight processing elements. However in mcGDB, we did not focus on this side of the
execution.

Figure 5.6(b) present the UML4 representation of OpenCL data types and their
relationships: a Platform contains devices (DeviceID); the application can deploy
program binaries (Program) containing kernels (Kernel) on a device; it must also
create memory objects (MemObject), such as buffers (Buffer) or images (Image),
bound to device contexts (Context). OpenCL provides command queue structures
(CommandQueue) to drive the accelerator execution (memory transfers, kernel execu-
tions, . . .). Command queue can generate runtime events (Event) providing informa-
tion about the queue processing.

By Björn König, Wikimedia Foundation,

Licence CC-by-sa 3.0/de

(a) platform architecture

�

�

�

�

�
����

�

�

�����

�������

�

���������

�
����

�

�

��������

����������
����������

�

� ������

�

�������

�

������

�

�

��������

�

����
� ������������ � �����

�

� T
ak
en

fr
o
m

O
p
en
C
L
v1
.1

sp
ec
ifi
ca
ti
o
n
[K

h
r0
8
]

(b) UML class diagram

Figure 5.6: OpenCL Platform Abstraction.

4 Unified Modeling Language http://www.uml.org/

78

5.3 opencl kernel programming

✓ In mcGDB’s current implementation, we mainly focused on detecting OpenCL
kernels and buffers, as well as the operation pushed into the command queue. We
let apart platform, device and context distinctions, as our development environments
have a single accelerator. Taking them into consideration would only involve additional
commands in the same spirit.

To that purpose, we hooked the relevant functions of OpenCL API and implemented
the correspond information capture mechanisms:

cl_program clCreateProgramWithSource (context, ..const char ** str); ➀

cl_kernel clCreateKernel (program, const char * kernel_name, ..)); ➁

cl_int clSetKernelArg (kernel, arg_index,..., const void * arg_val); ➂

cl_int clEnqueueNDRangeKernel (command_queue, kernel, work_dim); ➃

cl_mem clCreateBuffer (context, ..size_t size, void * host_ptr, ..); ➄

cl_int clEnqueueReadBuffer (command_queue,

cl_mem buffer, ..., void * ptr, ...); ➅

From the debugger event generated by the execution of these functions, we capture
a graph of object instances, the relationship between them their logical state. Hence,
mcGDB can provide developers with details such as where a kernel was created ➆,
from which program, and the same for programs and buffers ➇ (from functions ➀, ➁

and ➄, respectively). When the application enqueues a kernel execution ➃, they can
list of parameters set to this kernel ➆ (from function ➂), and link them, if relevant, to
the corresponding buffer object ➇.

(gdb) info programs

(gdb) info kernels [name|ID] {+where|+params} ➆

(gdb) info buffers [ID] {+where|+params} ➇

Regarding the execution control, developers can set catchpoints on kernel opera-
tions ➈ or memory transfers ➉.

(gdb) kernel [name|ID] catch {all|enqueue|set_arg|...} ➈

(gdb) buffer [ID] catch {all|transfer|read|write|set_arg|...} ➉

In the following subsection, we discuss the execution visualization environments we
designed for mcGDB’s OpenCL debugging module.

5.3.2 Execution Visualization

We presented at the beginning of this section (Figure 5.5(b)) that an OpenCL code is
dense and harder to read than its C counterpart. Hence, understanding and debugging

79

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

such codes is more difficult than usual. To limit this effect, we design a model-aware
execution visualization environment to improve interactive debugging. Our goal here
was to represent graphically the interactions between the application and the supportive
environment, so that developers can quickly review what is happening during the
application.

Figure 5.7 is a screenshot of the environment as it was at the end of the execution
of Figure 5.5(b). In the chart, the time goes from left to right, with events successively
added to the plot. We can read, chronologically:

• three buffers were created. Color red means that they are not initialized.

• buffers 0 and 1 were populated. Their color changed from red to orange.

• buffers 0, 1 and 2 were set as kernel parameters

• kernel do simple sum was triggered. The arrows on the yellow box indicate that
the kernel may be interacted with the buffers. Buffer 0 and 1 are read-only, hence
their content could not change. Buffer 2 is write-only, so the kernel execution
should have populated it (hence the color change)

• the content of buffer 2 is read from the host. The green color indicates that the
content has been saved.

Figure 5.7: Time-base Sequence Diagram an OpenCL Kernel Execution.

We already presented the generic building blocs for the implementation of this
visualization tools in the previous chapter, Section 4.4.3. The part specific to OpenCL
consisted in gathering event information (i.e., name of the function, buffer and kernels
involved, . . .) within the model-centric capture mechanisms. On the visualization side,
it consisted in coding the graph updates for all the events we considered. For instance,

80

5.3 opencl kernel programming

a memory transfer event creates a link between the runtime and the corresponding
buffer object, as well as changing its state.

In the last part of this section about mcGDB’s OpenCL module implementation, we
present how we adapted the OpenCL module code to support another kernel-based
programming model, NVidia Cuda.

5.3.3 Portage to NVidia Cuda

NVidia Cuda is a kernel-based programming environment for NVidia GPU proces-
sors. It relies on a programming model very close to OpenCL, hence it allows us to
demonstrate that, for a given programming model, only a minimal engineering effort
is required to adapt the debugger to support one environment or another5.

To highlight the similarities and distinctions between both environments, we go
through the main functions used to capture OpenCL abstract machine state updates
and present how they translate in Cuda environment. One important distinction
between these environments is that Cuda relies on its own (pre-)compiler. Hence, some
of our debugging hooks were constructed by analyzing intermediate compilation files.
Cuda compiler version 5.5.0 supports it with nvcc ’s --keep flag.

Kernel Creation and Execution

OpenCL relies on the following functions to create and execute kernels:

cl_kernel clCreateKernel(..., const char * name, ...)

cl_int clSetKernelArg(cl_kernel kernel, cl_uint arg_index, ...)

cl_int clEnqueueNDRangeKernel(cl_kernel kernel, cl_uint work_dim, ...)

Cuda kernels are not explicitly instantiated in the code, but rather included as
standard functions. However, the compiler appears to generate “device stubs”, in
charge of triggering the kernel execution on the GPU. These stubs share a common
prefix, device stub , followed by the C++-mangled name of the kernel. With the
help of GDB symbol lists, we can extract the kernel names and use function breakpoints
to get execution notification:

(gdb) info functions __device_stub__

All functions matching regular expression "__device_stub__" :

5 In this work, we only considered the runtime Cuda API. Its driver API is open for future work.

81

mcgdb, a model-centric debugger for an industrial mpsoc programming
environment

File hello.cudafe1.stub.c :

void __device_stub__Z4helloworldPcPi(char*, int*);

This function call event also allows us to capture the parameters of the kernel execution.
The last key information regarding the kernel execution is the number of GPU cores
required to run the kernel. In the original source code, this setting is passed to the
kernel in a Cuda-specific syntax:

helloworld<<<dimGrid, dimBlock>>>(ad, bd);

The analysis of intermediate files reveals that thus particular function call is rewritten
into the following C code:

(cudaConfigureCall(dimGrid, dimBlock)) ? ((void) 0) : helloword(ad, bd);

Setting a breakpoint on function cudaConfigureCall allows us to capture the
information we required, but also detect configuration failures6.

Memory Object Management

OpenCL memory objects are managed with the following families of functions:

cl_mem clCreateBuffer(size_t size, void * host_ptr, ...)

cl_int clEnqueueReadBuffer(cl_mem buffer, ...);

cl_int clReleaseMemObject(cl_mem memobj)

They translate seamlessly into Cuda API:

cudaError_t cudaMalloc (void ** devPtr, size_t size)

cudaError_t cudaMemcpy (void * dst, void * src, enum cudaMemcpyKind kind)

cudaError_t cudaFree (void *devPtr)

These few adaptions of the OpenCL debugger were sufficient to have a working
prototype of a model-centric Cuda debugging, as we present in Chapter 6, Section 6.3.2,
with Cuda-base scientific computing case study.

6 In this case, there is no obvious way to link the failure with the kernel that was supposed to run.

82

5.4 conclusion

In the last section of this chapter, we draw our conclusions on the implementation of
model-centric debugging on MPSoC programming environments, and on the workload
it requires to port a debugger implementation toward another environment.

5.4 conclusion

In this chapter, we studied how to implement the model-centric debugging principles
defined in Chapter 3. We went through three distinct programming models and their
MPSoC supportive environments and highlighted the axes we followed to adapt the
model-level propositions into actual debugging commands.

To conclude the implementation chapter, we wanted to come back to the question of
how generic this implementation is, or conversely, how difficult would it be port the
implementation to another programming model and environment.

The answer to that question is that the closer the programming models are, the easier
it is. Consider first dataflow and component programming. Both models are based
task, connected through a more-or-less variable graph structure. Hence, an important
part of the model analysis and debugger implementation will be shared.

Now, consider dataflow and kernel programming. The models share very few
properties. Hence, only the completely generic parts of the debugger will be shared,
that is, event breakpoints, user-interface constructs, etc.

Finally, let us consider a last example, two supportive environments implementing the
kernel-based accelerator programming model: OpenCL and NVidia Cuda. Although
these environments are developed and maintained by independent (and competing)
companies, the adaptation of our OpenCL debugger and execution visualizer to support
the key functionalities of Cuda was carried out in less that a day.

Another aspect of the portability question concerns the execution platform. In the
current implementation, we only considered the functional simulators of Sthorm, as
neither the more accurate ones nor the actual board where available. However in the
future work, and in particular for PEDF, we plan to extend the debugger to support
multiple execution platforms. Indeed, as most of the implementation of the debugger
is platform agnostic, model-centric debugging could be use monitor and verify the
execution of PEDF application with hardware or RTL filters. Developers would not
be able to control the internal parts of the filters execution, but the majority of the
debugging features would remain unaffected.

In the following chapter, we develop three case-study illustration to highlight the
functionalities and usage of our model-centric debugger.

83

6
C A S E S T U D I E S

The Adventures

In this chapter, we exercise mcGDB and demonstrate the various abilities of model
centric debugging, in the context of real-life case studies. We start in Section 6.1 with
an example of a debugging session of a component-based feature tracker. This feature
tracker is part of an augmented reality application running on Sthorm. Then in
Section 6.2, we use mcGDB to study the execution of a dataflow implementation of
the H.264 video decoding standard. The last section of this chapter, Section 6.3, goes
through two scientific applications relying on the kernel computing. These applications
are part of the European project Mont-Blanc1. We first highlight the debugger
representation of a material physics density-functional-theory solver for electronic
structures calculations (Subsection 6.3.1), then we detail a debugging session of a 3D
seismic wave propagation simulator in Subsection 6.3.2.

The time frame of the thesis work did not allow us to provide development teams
with our tool from the beginning of application development, which would have been
the best conditions to highlight the benefits of model-centric debugging. Nevertheless,
this chapter presents an alternative yet important use-case, which takes place during
the maintenance part of the application life-cycle. In this use-case, we assume that
developers do not have an extended knowledge about the application (e.g., because of
team switch-overs, lack of documentation, etc.), and mcGDB is used to discover and
understand the dynamic aspects of the application execution. In Section 6.1.5, though,
we describe how we understood an unsolved bug in the component feature tracker.

6.1 component-based feature tracker

This section presents a case study which illustrates the abilities of mcGDB’s component
module. We use an application executing the pyramidal implementation of the Kanade-
Lucas feature tracker (PKLT) based on NPM components and running on the x86/Posix
simulator of Sthorm.

1 Mont Blanc Project, European Approach Towards Energy Efficient High Performance http://www.

montblanc-project.eu/

85

case studies

Figure 6.1: Feature Tracking Between Two Images.

6.1.1 Pyramidal Kanade-Lucas Feature Tracker

Feature tracking consists in identifying interesting points (features) in an initial image
and following their motion in the subsequent images (tracking). Figure 6.1 presents a
visual representation of several features tracked from the left image to the right one.
Bouguet explained the algorithm in [Bou00], which is divided into two parts. First, the
images are sub-sampled, with different ratios, to create a pyramidal representation, as
shown in Figure 6.2(a). The bottom of the pyramid is the largest image, the top is the
smallest. Then, the feature tracking is applied iteratively to the different levels of the
pyramid.

The remainder of this section starts with an overview of the application implementa-
tion. Then, it details how mcGDB presents the information of the current architecture to
the developer. Finally, it explains how we leveraged mcGDB to detect a communication
bug in the application implementation.

6.1.2 Application Implementation

The scenario that we considered in this case study consists of a PKLT feature track-
ing between two images with, for the sake of simplicity, a two-level pyramid. The
application is implemented with two types of components and the host-side task:

(a) image pyramid (b) component architecture

Figure 6.2: PKLT Internal Structures

86

6.1 component-based feature tracker

SmoothAndSample is in charge of creating a new pyramid level. It receives the n − 1th

level image as input and returns the nth level image.

IterOpticalFlowCalc performs a feature tracking between two images. It expects a
previous and next images in input, as well as the features of the previous level. It
returns the new feature tracks.

Host side is in charge of the coordination of the components and programs the DMA
controller to transfer the images back and forth between the components.

Both components execute their core algorithm on up to sixteen shared-memory
cores of a Sthorm cluster. Figure 6.2(b) presents a schematic representation of this
architecture.

6.1.3 Debugger Representation of the Architecture

In order to see the live deployment state of the application, developers need to stop the
execution at an interesting location. For instance when the first component execution is
triggered, that is, with the run event. The console output extract below also shows the
framework initialization, (i.e., when the host component is instantiated), as well as
the instantiation of the SmoothAndSample component.

(gdb) component catch run

Catching components ‘run’ events

(gdb) run

...

[New component instantiated #1 Host[31272]]

...

[New component instantiated #2 Component[SmoothAndSample]]

...

[Stopped on ‘run’ method of #2 Component[SmoothAndSample]]

Then developers can list the currently known components, along with their interfaces
(info components +itf). There are two components in the console extract below, the
host and a SmoothAndSample component. Developers can also list the inter-bindings,

per component (info connections) or per link (info links). They will notice that
the components are connected through two interfaces (the DMA links).

(gdb) info components +itf

#1 Host[31272]

Name Id

DMAPush/0x8050f7c

DMAPush/0x8050fbc

...

87

case studies

* #2 Component[SmoothAndSampleProcessor]

Name Type

srcPullBuffer (PullBuffer)

dstPushBuffer (PushBuffer)

...

(gdb) info connections

Interface Link Remote Itf. Remote Component

#1 Host[31272]

DMAPush/0x... DMALinksrcPullBuffer #2 Component[SmoothAnd...]

DMAPull/0x... DMALinkdstPushBuffer #2 Component[SmoothAnd...]

...

#2 Component[SmoothAndSampleProcessor]

srcPullBuffer DMALink DMAPush/0x... #1 Host[31272]

dstPullBuffer DMALink DMAPull/0x... #1 Host[31272]

...

(gdb) info links

Link Interface Component

#1 DMALink

DMAPush/0x8050f7c #1 Host[31272]

PullBuffer/srcPullBuffer #2 Component[SmoothAnd...]

#2 DMALink

DMAPull/0x8050fbc #1 Host[31272]

PushBuffer/dstPushBuffer #2 Component[SmoothAnd...]

...

In the following, we continue with the debugger representation of the messages
exchanged over the different PKLT components.

6.1.4 Message-Based Flow Control

In the previous chapter (Section 5.1.3), we described the implementation mechanisms
behind message-based flow control. In this subsection, we come back on this aspect
and highlight how it can be used for PKLT debugging.

As an example, let us consider a message sent (we omit all the information about the
receive operation) by the SmoothAndSample component to the host, as shown in the
code snippet of Figure 6.32:

• we set a breakpoint at the beginning of this code (gdb) component 2 catch run

• and wait for the debugger to reach it (gdb) continue

2 CALL(itf, method) is a NPM preprocessor macro, which takes as first parameter the name of an
interface of the component, and as second parameter the name of the method to call. It returns the method
itself, so the methods parameters should be placed in following.

88

6.1 component-based feature tracker

/* Copy the first block to compute and output */

PRIVATE.src = CALL(srcPullBuffer, pull)();

PRIVATE.dst = CALL(dstTmpPushBuffer,getBuffer)(); ➀

CALL(srcPullBuffer, fetchNextBuffer)();

// Processing Loop

for (i = 1; i <= iterations; i++) {
NPM_dup_job(PRIVATE.nbProcs, METH(HorizontalFilter), NULL); ➁

/* Transmit computed data while processing */

CALL(dstTmpPushBuffer, push)(PRIVATE.dst); ➂

/* Copy the next block to compute */

if (i == iterations) { // if last iteration

...

} else {
PRIVATE.src = CALL(srcPullBuffer, pull)();

PRIVATE.dst = CALL(dstTmpPushBuffer, getBuffer)();

}

CALL(srcPullBuffer, release)(PRIVATE.src);

CALL(srcPullBuffer, fetchNextBuffer)();

}

Figure 6.3: Code Snippet From Component Smooth-And-Sample Source Code.

89

case studies

• we enable message debugging: (gdb) message enable-tracking

• . . . and continue the execution line-by-line. At line ➀, the debugger detects that the
component owns a new message:

(gdb) next

PRIVATE.dst = CALL(dstTmpPushBuffer, getBuffer)();

[Message #1 created in #2 Component[SmoothAndSampleProcessor]

(gdb) info component 2 +messages

#1 Message created by #2 Component[SmoothAndSampleProcessor

• then we continue the execution until line ➂ (buffer PRIVATE.dst is populated inside
the function call at line ➁, according to the content of buffer PRIVATE.src)

• at line ➂, the component pushed the message through its dstTmpPushBuffer interface:

(gdb) next

CALL(dstTmpPushBuffer, push)(PRIVATE.dst);

[Message #1 sent by #2 Component[SmoothAnd...] to #1 Host[...]

(gdb) info component 2 +messages

No message.

(gdb) info links 4 +messages

#4 DMALink

DMAPull/0x8050ffc #1 Host[31272]

PushBuffer/dstTmpPushBuffer #2 Component[SmoothAndSample...]

#1 Message sent through #2 Component[Smoo...]/dstTmpPushBuffer

• now, we tell the debugger to follow the message and continue the execution,

(gdb) message 1 follow

(gdb) continue

...

[Message #1 received by #1 Host[31272]]

/* Wait asynchronous events */

NPM_waitRTMComponent(&smoothAndSampleProcessor.rtmComp);

• the debugger stopped the execution at the end of the component run, when it is sure
that the DMA has finished the data transfer:

(gdb) info message 1

Message 1 created by #2 Component[SmoothAndSampleProcessor]

sent through dstTmpPushBuffer

90

6.1 component-based feature tracker

received by #1 Host[31272]

on interface DMAPush/0x8050ffc

• finally, we can query additional information about the interface. This shows that the
DMA wrote the messages into buffer p tmp out .

(gdb) info component 1 +itf DMAPush/0x8050ffc

#1 Host[31272]

Name Id

DMAPush/0x8050ffc

Configured at npm_pklt.c:127:

err = NPM_instantiateDMAPushBuffer(

&smoothAndSampleProcessor.dstTmpPushBuffer,

smoothAndSampleProcessor.rtmComp.appComp.comp,

"dstTmpPushBuffer", (void*) p_tmp_out,

dstImgWidth*nbProcs*sizeof(unsigned char) , 2);

To finish this subsection, we illustrate the idea of user-defined routing table.

User-Defined Routing Table

We have seen in Figure 6.3 that component SmoothAndSample receives messages,
transforms them and sends them back to another interface. However, mcGDB cannot
detect on its own that the messages reaching and leaving the component are connected.
Hence, as the persons in charge of PKLT debugging, we provided the following class to
mcGDB:

class MySmoothAndSampleComponent:

...

def do_consume_message(self, endpoint, msg): ➃

if endpoint.name == "srcPullBuffer" :

self.lastSrc = msg

if endpoint.name == "srcTmpPullBuffer" :

self.lastTmp = msg

msg.checkpoint("%s <- %s" % (self, endpoint.name))

def do_produce_message(self, endpoint): ➄

if endpoint.name == "dstTmpPushBuffer" :

msg = self.lastSrc

elif endpoint.name == "dstPushBuffer" :

msg = self.lastTmp

else:

91

case studies

return None

self.src = None

msg.checkpoint("%s -> %s" % (self, endpoint.name))

return msg

def get_messages(self): ➅

return (self.lastSrc, self.lastTmp)

This class specifies how to list the message it owns ➅ and what to do when messages
arrive ➃ in the SmoothAndSample component, when it leaves ➄. We can see that the
two latter methods respectively save and return a message, based on the name of the
endpoint involved. They also log a comment in the message checkpoint queue.

Eventually, when a message will have transited back and forth between the host and
the component, mcGDB will be able to display the following information:

(gdb) info message 1

Message #1 created by #1 Host[31272]

a. sent through interface DMAPush/0x8050f7c

b. received by #2 Component[SmoothAndSampleProcessor]

on interface srcPullBuffer

c. sent through interface dstTmpPushBuffer

d. received by #1 Host[31272]

on interface DMAPull/0x8050ffc

In the next subsection, we conclude this component debugging case study with a
description of how we used mcGDB to discover the location of a data transfer error in
the application.

6.1.5 Data Transfer Error

During the validation process of the application, the test suite reported that the features
reaching or leaving the bottom of the images coming from some cameras were not
correctly tracked.

In order to understand how this bug was localized, we need to detail the algorithm of
the SmoothAndSample component. This component is in charge of creating a new level
of the image pyramid. It receives the input image line by line from its srcPullBuffer

interface, applies a first “horizontal” parallel filter and sends it temporarily to the
host through the dstTmpPushBuffer interface3, to limit its memory usage. Then the

3 The temporary interfaces we removed from the console output extracts in the previous sections to simplify
readability.

92

6.1 component-based feature tracker

temporary image is retrieved again from interface srcTmpPullBuffer , and a column
by column “vertical” parallel filter is applied. The columns of the output image are
pushed to interface dstPushBuffer right after they have been processed.

The srcPullBuffer and dstTmpPushBuffer interfaces in the first part of the algo-
rithm, and the srcTmpPullBuffer and dstPushBuffer interfaces in the second part
are respectively supposed to be invoked in a lock-step fashion. All the data incoming
in the source interface are processed and sent to interface destination .

In order to verify this assumption, we set a breakpoint on component destroy

events and executed the application until the first component destruction:

(gdb) component catch destroy

Catching components ‘destroy ’ events

(gdb) run

...

[Stopped on ‘destroy ’ event of #2 Component[SmoothAndSample]]

Then, we asked mcGDB to list the message counters of the component interfaces, and
noticed that the figures did not follow the expectations. Each interface was supposed
to process 35 messages, but interface dstTmpPushBuffer received one unexpected
message, whereas dstPushBuffer was lacking one.

(gdb) info components +counts

~ #2 CommComponent[SmoothAndSampleProcessor]

srcPullBuffer #35 msgs

dstTmpPushBuffer #36 msgs

srcTmpPullBuffer #35 msgs

dstPushBuffer #34 msgs

Once this condition was noticed, it was straightforward to locate and fix the default
in the code: the image size is divided evenly between the processors and, when the size
cannot be entirely divided, the remainder part is processed in sequence. In our scenario,
the bug was located in this remainder handling: the last message was sent to the
temporary interface (dstTmpPushBuffer) instead of the final one (dstPushBuffer):

/* Compute last lines if necessary. */

if(tmp_size > 0){
...

/* Transmit the last lines computer. */

CALL(srcTmpPullBuffer, release)(...);

93

case studies

CALL(dstTmpPullBuffer, push)(...);

}

This bug would have been tricky to detect without a model-centric debugger. First,
the developers would have had to investigate both of the components, as there was no
obvious way to guess the faulty component. Then, only a precise code reading, maybe
with the step-by-step capabilities of a source-level debugger, would have highlighted
the issue.

In the following section, we describe the debugging of a dataflow implementation of
a H.264 video decoder.

6.2 dataflow h.264 video decoder

This section presents a case study which illustrates our approach in the context of a ST
application: a H.264 video decoder [WSBL03] designed with PEDF to exploit Sthorm
heterogeneous computing fabric. In the following, we introduce the video standard,
then we come back on the challenges highlighted in Chapter 2, Section 2.3.2 and explain
how each point is addressed by mcGDB.

6.2.1 H.264 Video Decoding

H.264/AVC (Advanced Video Coding) [WSBL03] is a 2003 video coding standard
approved by the ITU-T4 and the ISO/IEC MPEG (Moving Picture Experts Group)5. It
aims at supporting diverse application areas, such as broadcast over cable, satellite;
optical and magnetic storage; conversational services over ethernet, wireless and
mobile networks, etc. Hence, the video standard should offer both flexibility and
customizability to address such broad needs. Besides, it also provides approximately a
50% bit rate saving in comparison with prior standards, for an equivalent perceptual
quality.

As for the previous ITU-T and ISO/IEC video standards, the scope of H.264 is
limited to the central decoder. This means that the standard sets restrictions on the
bitstream and its syntax, but software vendors are free to optimize the other parts of
the process (pre-processing, encoding and post-processing/error recovery) according
to their specific requirements.

In this case-study, we only consider this H.264 central decoder, which was developed
to validate PEDF design.

4 International Telecommunication Union, Telecommunication Standardization Sector. http://www.itu.
int/en/ITU-T

5 The Moving Picture Experts Group website, http://mpeg.chiariglione.org/

94

6.2 dataflow h.264 video decoder

6.2.2 Graph-Based Application Architecture

front

pred

front_controller

bh

imvp

pred_controller

red

pipe

ipred

hwcfg

3 ipf

20

Figure 6.4: Graph of Dataflow Actors and Data Dependency of a H.264 Video Decoder

During the design of the Sthorm H.264 decoder application, developers put a
special focus on the module/filter decomposition. Indeed, as filters are intended to be
synthesized into hardware accelerators, it was important to optimize their architecture
and interactions. The graph in Figure 6.4 presents a graphical representation of
tha application’s dataflow architecture. It is composed of two modules, front and
pred . Each module contains a controller (the green rectangular boxes) and a set

of filters (the round boxes). The arrows connecting the different entities materialize
data-dependencies. We can distinguish three different types: plain-line arrows are pure
data links between hardware filters, whereas dotted and dashed arrows correspond to
control links, which may be assisted by DMA controllers (the dashed lines).

As we mentioned earlier, this graph is a key element of the application architec-
ture. Thus, it is available through most of the dataflow-related commands. See for
instance the command ➀ in the next subsection, where filter and interface names where
suggested by the auto-completion mechanism.

In the current implementation of mcGDB, the graph is plotted with GraphViz6 Dot
format and displayed with the system’s default image visualizer. However, a debugger
with a graphical interface could provide a more interactive view where the graph
elements could be directly used to interact with the debugger.

6 http://www.graphviz.org/

95

case studies

6.2.3 Token-Based Execution Firing

As we described in the previous chapter (Section 5.2.2), PEDF dataflow model differs
from the traditional models, in the sense that the execution of an actor is first of all
conditioned by the triggering of a fire event by its module controller.

Developers can control it with the following catchpoint command. In this case, the
execution will be stopped when the WORK method of Filter pipe is triggered:

(gdb) filter pipe catch work

Developers can also set a catchpoint stopping the execution when a filter has received
a given amount of tokens:

(gdb) filter ipred catch Pipe_in=1, Hwcfg_in=1 ➀

(gdb) filter ipred catch *in=1 ➁

These two commands stop the execution as soon as Filter ipred has received a token
in both of its two inbound data links, Pipe in and Hwcfg in . The first command ➀

shows the explicit way, interface by interface, whereas the second one ➁ applies the
condition to all the inbound interfaces.

6.2.4 Non-Linear Execution

During step-by-step execution of filter code, developers must pay a special attention
on the dataflow assignments. Indeed, these instructions may enable and trigger the
execution of other filters, dependent on this data. To accommodate with this eventuality,
mcGDB provides the step both command, which inserts a “double” breakpoint, at
both ends of the link:

(gdb) list

220 // push add2dBlock to ipf

221 pedf.io.Add2Dblock_ipf_out[...] = ...;

(gdb) step_both

[Temporary breakpoint inserted after input interface

‘ipf::Add2Dblock_ipred_in’]

[Temporary breakpoint inserted after output interface

‘ipred::Add2Dblock_ipf_out‘]

...

[Stopped after receiving token from ‘ipf::Add2Dblock_ipred_in’]

(gdb) continue

96

6.2 dataflow h.264 video decoder

...

[Stopped after sending token on ‘ipred::Add2Dblock_MB_out‘]

In this console output extract, the execution was stopped right before the execution
of a dataflow assignment (line 221), where a token is sent though filter ipred ’s
Add2Dblock ipf out interface. The command step both instructs mcGDB to stop

both ends of the execution. The execution flow first reaches the ipf filter, on the other
side of the data dependency. Then the developer asks to continue the execution and
finally the second stop occurs, right after the assignment. The order of these two stops
is implementation and architecture dependent.

6.2.5 Token-Based Application State and Information Flow

The fluency of the token flow in the overall application is an important concern for
correctness and performance. If two filters connected by a data-dependency do not
produce and consume tokens at the same rate, the application may stall because of link
over/underflow. It can also lead to erratic results if the synchronization of multiple
interfaces is not respected.

As an example, the graph presented in Figure 3.2 shows that the link pipe → ipf

currently holds 20 tokens, which may indicate a problem in the sending or receiving
rate. Link hwcfg → pipe contains three tokens, and all the other links are empty.
If requested, mcGDB can record and display the content of the tokens (this feature
requires a significant quantity of memory and thus has to be explicitly enabled):

(gdb) iface hwcfg::pipe_MbType_out record

...

(gdb) iface hwcfg::pipe_MbType_out print

#1 (U16) 5

#2 (U16) 10

#3 (U16) 15

In this example, only three messages were recorded, but a communication-intensive
filter may quickly generate a large number of tokens, impossible to record efficiently
and useless for developers.

Filters can also exhibit clear patterns in their communication behavior. This character-
istic can be exploited by mcGDB to improve the details provided to developers. Indeed,
this allows following a token over several components. However, this behavior depends
of the filter implementation and hence, mcGDB cannot figure it out automatically. The
developer has to configure it manually.

For instance, filter red acts as a splitter: it receives data from filter bh , processes
it and sends the data it generated to all of its outbound interfaces. The developer can
inform mcGDB about it with the following command:

97

case studies

(gdb) filter red configure splitter

To better illustrate this feature, let place ourselves in a more concrete situation. Let us
consider that there is an observable error at some point of the execution. With the help
of the mechanisms previously described, the developer stops the execution as close as
possible to the error trigger. For instance in filter pipe , after receiving a token from
interface Red2PipeCbMB in :

(gdb) filter pipe catch Red2PipeCbMB_in

...

[Stopped after receiving token from ‘pipe::Red2PipeCbMB_in ’]

At this point, the developer ensures that the situation is actually erroneous and
tries to understand where the fault came from. The information about the token path
becomes useful:

(gdb) filter pipe info last_token

#1 red -> pipe (CbCrMB_t){Add=0x145D,...} ➂

#2 bh -> red (U32) 127 },, ➃

We can see that the last token was received from filter red (step ➂), with a given
value ({Add=0x145D,...}). If this value is incorrect, it means that the error arrived
from filter red . Step ➃ helps understanding the conditions in which this token was
produced: after receiving an integer token (127) from Filter bh . To complete this
information, further details about the filter state can be recorded, such as attribute
values.

Recording token contents may appear excessive when querying the content of a
single link (it could be directly read from the framework memory), however it becomes
mandatory when we want to follow its path over multiple actors.

6.2.6 Two-level Debugging

We are aware that model-centric and dataflow-centric debugging may not be enough to
locate and understand all the possible problems which can occur during the execution
of a dataflow application. For this reason, a traditional, full-flavored GDB is always
available during the debugging session. mcGDB extension only handles the dataflow-
specific commands, and the underlying GDB manages the rest of the debugging
environment. This means that when the execution is stopped, as in a previous example,
the developer can ask mcGDB to display the last token received and then use GDB to
analyze its C structure and inner content:

98

6.3 gpu-accelerated scientific computing

...

[Stopped after receiving token from ‘pipe::Red2PipeCbMB_in ’]

(gdb) filter print last_token

$1 = (CbCrMB_t){Addr=0x145D, ...}
(gdb) print $1

$2 = { Addr = 0x145D,

InterNotIntra = 1,

Izz = 168460492, ... }

In the following section, we finish this case-study chapter with two scientific applica-
tions accelerated through OpenCL and Cuda programming.

6.3 gpu-accelerated scientific computing

In this last section, we slightly drift apart from embedded computing and get closer
to GPU-based HPC scientific computing. We first discuss OpenCL debugging in
the context of density functional calculations (Figure 6.5(a)). Then, we present the
first steps the portage of mcGDB’s OpenCL module towards Cuda programming
environment and illustrate the results with a geo-dynamic wave propagation simulator
(Figure 6.5(b)).

(a) BigDFT density functional theory solver (b) Specfem 3D wave propagation simulator

Figure 6.5: GPU-Accelerated Scientific Applications from Mont-Blanc Project.

6.3.1 OpenCL and BigDFT

BigDFT [GOD+09, GVO+11] is a free project implementing density functional theory
based on Daubechies wavelets. In this domain of physics and chemistry, scientists
are interested by electronic structures calculations of systems with a large number
of electrons. However, systems with only hundreds of atoms already require huge
computational power. Hence, BigDFT developers first sought for high performance in
multi-CPU HPC platforms, but then realized that hybrid GPU-CPU architectures offer
a very low price/performance ratio, more attracting for intensive scientific computation.
They presented in 2009 [GOD+09] a first version for NVidia cards based on Cuda,

99

case studies

Program #1 (0x3aec5e0)

Program #5 (0x3ad7e00)

Program #10 (0x11872f0)

Kernel #1 magicfiltergrow1dKernel_d

Kernel #2 magicfiltergrow_denKernel_d Kernel #20 anashrink1dKernel_d

Kernel #3 magicfiltergrowshrink1dKernel_d

Kernel #4 magicfiltergrow_potKernel_d

...

Kernel #39 axpyKernel_d

Kernel #21 ana1dKernel_d

Kernel #22 ana_blockKernel_d

Kernel #38 axpy_offsetKernel_d

Kernel #40 scalKernel_d

Kernel #41 reductionKernel_d

...

Figure 6.6: Excerpt of BigDFT Program/Kernel Structural Representation.

then a new version in 2011 [GVO+11], more complete, optimized and cross-platform,
written with OpenCL.

In the following paragraphs, we study this OpenCL implementation (version 1.7-r24),
and more particularly the function in charge of local partial density computation. We
first introduce the structural representation of the application, then we present how
the execution control mechanisms can be used. We finally illustrate the visualization
capabilities of mcGDB.

structural representation

The main elements of BigDFT’s OpenCL structure are the kernels and programs, as
the application only uses one execution context and one command queue. Figure 6.6
shows an excerpt of the debugger representation of three programs, respectively in
charge of computing potential energy (magicfilter*), wavelet analysis (ana*) and
linear algebra operations (reduction, scaling and summation). This information is also
available in text mode, with the following command:

(gdb) info programs +kernels

Developers can query mcGDB about further kernel and/or program details, such as
the location (stack trace) where they were created ➀, how many times they were used
➁, or their OpenCL handle ➂:

(gdb) info kernels 41 +where +use_count +handle

Kernel #41 reductionKernel_d

Creation stack: ➀

#0 0x0912a13 in create_reduction_kernels (...) at Reduction.c:1365

#1 0x0900a10 in create_kernels (...) at OpenCL_wrappers.c:95

#2 0x0902744 in ocl_create_command_queue_id_ (...) at OpenCL_wra...

Use count: 0 ➁

Handle: 0x3aea590 ➂

100

6.3 gpu-accelerated scientific computing

In this example we can see that kernel reductionKernel d was selected through its
unique identifier (#41). However, kernel can also be selected with a name prefix, or
through a handle look up. This last capability can be valuable to developers maintaining
applications they do know not very well.

For example in BigDFT reduction module, we can find codes similar to the following
function:

void axpy_generic(cl_kernel kernel, ...) {
...

ciErrNum = clEnqueueNDRangeKernel (command_queue, kernel, ...);

}

A source-level debugger would not be able to provide any relevant information:

(gdb) print kernel

$1 = (cl_kernel) 0x3ae9d50

(gdb) print *kernel

$2 = <incomplete type>

Indeed, the OpenCL standard does not specify the content of the object handlers, and
in our case, the vendors chose not to provide debug information for them. However,
mcGDB keeps track of these handlers and can directly provide developers with more
useful details:

(gdb) info kernels +handle=0x3ae9d50 +where

#39 axpyKernel_d

#0 0x091293d in create_reduction_kernels (...) at Reduction.c:1361

...

Handle: 0x3ae9d50

Coming back on kernel reductionKernel d , developers may also need information
about the source code that was used to generate this kernel. OpenCL offers the
possibility to use precompiled binary code, or compile on-the-fly OpenCL-C code.
BigDFT relies on this latter option, and takes the chance to pre-optimize the code for
the execution platform (the device type in this case—CPU or GPU and number of
available work groups). Figure 6.7 presents these two version of the code: Figure 6.7(a)
is the C version of the kernel code, as it reads in BigDFT source code. We can remark
that it is not straightforward to read, because of the string concatenations, new-line
markers and dynamic code constructs. On the other hand, Figure 6.7(b) presents the
source code actually provided to OpenCL, and bound by mcGDB to the kernel entity
representation.

101

case studies

size _t max_wgs = infos->MAX_WORK_GROUP_SIZE;

size_t cutoff = infos->DEVICE_TYPE == CL_DEVICE_TYPE_CPU ? 4 : 64 ;

program << "__kernl void reduction_Kernel_d(uint n,\\n\
__global double *y, __global const double *x,\\n\

__local volatile double *tmp) {\\n\
size_t i = get_local_id(0);\\n\
size_t g = get_group_id(0)*" << max_wgs * 2 << "+i;\\n\
if (g + " << max_wgs << " < n) {\\n\
tt = x[g + " << max_wgs << "];\\n\
tmp[i + " << max_wgs << "] = tt * tt;\\n\

} else\\n\
tmp[i + " << max_wgs << "] = 0.0;\\n\

barrier(CLK_LOCAL_MEM_FENCE); //... \\n\";
do {
max_wgs /= 2;

program << "if (i < " << max_wgs << ")\\n\
tmp[i] = tmp[i] + tmp[i + " << max_wgs << "];\\n\

barrier(CLK_LOCAL_MEM_FENCE);\\n\";
} while (max_wgs >= cutoff);

(a) C generator code

(gdb) info kernels 41 +code

#41 reductionKernel_d

----------------8<-------------

__kernel void reduction_Kernel_d (uint n, ...) {
size_t i = get_local_id(0);

size_t g = get_group_id(0) * 2048 + i;

double tt;

if (g + 1024 < n) {
tt = x[g + 1024];

tmp[i + 1024] = tt * tt;

} else

tmp[i + 1024] = 0.0;

barrier(CLK_LOCAL_MEM_FENCE); //...

if (i < 512) tmp[i] = tmp[i] + tmp[i + 512];

barrier(CLK_LOCAL_MEM_FENCE);

if (i < 256) tmp[i] = tmp[i] + tmp[i + 256];

barrier(CLK_LOCAL_MEM_FENCE); //...

}

(b) final OpenCL C version.

Figure 6.7: Two Versions of a Kernel Code.
102

6.3 gpu-accelerated scientific computing

The last OpenCL structural elements consist in the memory objects. Similarly to
kernels, mcGDB memorizes their creation parameters (read/write, etc.) and creation
stack trace, however one distinction is that they do not have “official” names. Hence,
we choose to parse the name of the variable where the handler is stored. In order to
be generic, we allowed the name to be picked up at different places of the stack. For
instance, some BigDFT’s buffers are created with the following function call:

void FC_FUNC_(ocl_create_read_write_buffer,OCL_CREATE_READ_WRITE_...)

(bigdft_context *context, cl_uint *size, cl_mem *buff_ptr) {
cl_int ciErrNum = CL_SUCCESS;

*buff_ptr = clCreateBuffer((*context)->context, CL_MEM_READ_WRITE,

*size, NULL, &ciErrNum);

...

}

In this case, buff ptr is a meaningless name. The actual buffer name lies one step
above in the call stack. Indeed, as the code is mainly written in Fortran, function
ocl create read write buffer is only a Fortran to C wrapper. Here, the buffer

name can be find as the third parameter in the caller code:

call ocl_create_read_write_buffer(GPU%context, wfd%nvctr_c * 8,

GPU%psi_c_i);

As this information is application specific, it has to be provided by the debugger user,
for instance through a Python configuration file:

try_buffer_name(Events.CREATE_BUFFER, "ocl_create_read_write_buffer" ,

depth=2, param=3)

Hence, with the help of this configuration information, we can provide developers
with a more useful buffer list:

(gdb) info buffers +handle

1 GPU%psi_c (RW)

Handle: 0x3b531a0

...

4 GPU%work3 (RW)

Handle: 0x4a91910

5 GPU%d (RW)

Handle: 0x511c8c0

...

103

case studies

9 GPU%keyv_c (RO)

Handle: 0x5e34880

...

Now that we have presented how to display the structural aspects of the application,
let us detail how to control the application execution.

execution control

As we presented in Chapter 5, Section 5.3.1, mcGDB’s execution control commands are
mainly based on kernel and buffer handling. Hence, once kernels have been created,
developers can set catchpoints on their command queue submissions:

(gdb) kernel reductionKernel_d catch enqueue

Catchpoint set on kernel #41 ’reductionKernel_d’ enqueue events.

(gdb) continue

...

Caught kernel ‘reductionKernel_d’ enqueue event.

At this point, developers can query the parameters associated with the kernel:

(gdb) info kernels +name=reductionKernel_d +key+params

#41 reductionKernel_d

Arg 0: (cl_uint) 250 Arg 1: Buffer #4 GPU%work3

Arg 2: Buffer #5 GPU%d Arg 3: 0

We can notice here that OpenCL buffer arguments are converted to their debugger
entity. Then, if we are interested in following buffer #4 usage, we can set a catchpoint
on the buffer and wait for the next execution stop:

(gdb) buffer 4 catch all

Catchpoint set on Buffer #5 GPU%work3 for all usages.

(gdb) continue

...

Caught buffer #4 usage.

To conclude this subsection on OpenCL and BigDFT debugging, we present how
mcGDB helps visualizing the execution process.

104

6.3 gpu-accelerated scientific computing

execution visualization

In the previous paragraphs, we presented different elements of BigDFT execution,
and in particular the parameters associated with kernel uncompress coarseKernel d

execution. Figure 6.8(a) shows how mcGDB visualization engine depicts these events.
In left-hand side of the figure, we can distinguish four entities: the runtime application,
one kernel and two buffers. All the other kernels and buffers were hidden when we
selected kernel uncompress coarseKernel d , to improve the readability.

Figure 6.8(b) presents the execution of the following BigDFT function, which creates
and populates a memory buffer:

void FC_FUNC_(ocl_pin_write_buffer_async,OCL_PIN_WRITE_BUFFER_ASYNC)

(bigdft_context *context, bigdft_command_queue *cq,...) {
cl_int ciErrNum = CL_SUCCESS;

*buff_ptr = clCreateBuffer((*context)->context, ...);

oclErrorCheck(ciErrNum, "Failed to pin write buffer!");

clEnqueueMapBuffer((*cq)->command_queue, ...);

oclErrorCheck(ciErrNum, "Failed to map pinned write buffer (async) ");

}

(a) a kernel execution

(b) a buffer allocation and writing

Figure 6.8: Visual Representation of OpenCL Execution Events.

105

case studies

6.3.2 Cuda and Specfem 3D Cartesian

In this last subsection, we study a free seismic wave propagation simulator, Specfem
3D [KME09], in its Cartesian flavor7. . Specfem 3D simulates seismic wave propa-
gation at the local or regional scale based upon spectral-element method (SEM), with
very good accuracy and convergence properties. Its current version (v2.1 of July 2013)
supports graphics card GPU acceleration through NVidia Cuda. This comes in addition
to the MPI support implemented to enable parallel computing. Specfem 3D code base
is written in Fortran2003 (except the Cuda parts) and fully conforms to the standard.

structural representation

In Cuda, we distinguished only two set of entities for the structural representation,
kernels and memory buffers. As the kernels symbols are directly parsed from the
application binary (and not dynamically instanced as in OpenCL), they available since
the very beginning of the execution (this version of Specfem 3D defines 36 kernels):

(gdb) start

Temporary breakpoint 1 at 0x4fc1b4 : file program_specfem3D.f90 :30

Starting program: examples/Mount_StHelens/bin/xspecfem3D

[Thread debugging using libthread_db enabled]

[New kernel get_maximum_kernel]

[New kernel get_maximum_vector_kernel]

[New kernel compute_add_sources_acoustic_kernel]

[New kernel add_sources_ac_SIM_TYPE_2_OR_3_kernel]

...

Temporary breakpoint 1 , xspecfem3d () at program_specfem3D.f90:30

30 call init()

(gdb) info kernels

#1 get_maximum_kernel

#2 get_maximum_vector_kernel

#3 compute_add_sources_acoustic_kernel

#4 add_sources_ac_SIM_TYPE_2_OR_3_kernel

...

Specfem 3D GPU buffers are allocated at different parts of the application, so we
will only focus on the first set. During the initialization of the code, Cuda buffers are
allocated for the mesh structure representation:

(gdb) list ../cuda/prepare_mesh_constants_cuda.cu:210

209 // mesh

7 Specfem3d Cartesian — CIG http://www.geodynamics.org/cig/software/specfem3d

106

6.3 gpu-accelerated scientific computing

210 print_CUDA_error_if_any(cudaMalloc((void**) &mp->d_xix, ...), ...);

211 print_CUDA_error_if_any(cudaMalloc((void**) &mp->d_xiy, ...), ...);

When these functions are executed, mcGDB detects the buffer creation and captures
the memory pointer returned by the function, as well as the buffer name (&mp->d xix

and &mp->d xiy here).

However, the second set of buffers is created though a helper function:

// copies integer array from CPU host to GPU device

void

copy_todevice_int(void ** d_array_addr_ptr, int * h_array, int size) {
print_CUDA_error_if_any(cudaMalloc((void**)d_array_addr_ptr,...),...);

print_CUDA_error_if_any(cudaMemcpy((int*) * d_array_addr_ptr,h_array,

... ,cudaMemcpyHostToDevice),...);

}

In this case, developers can provide a configuration hint to mcGDB, similar to what
was done with OpenCL:

try_buffer_name(Events.CREATE_BUFFER, "copy_todevice_int" ,

depth=2, param=1)

mcGDB will then be able to provide a more intuitive name (&mp->d ibool instead
of a pointer address):

249 copy_todevice_int((void**) &mp->d_ibool,h_ibool,...);

(gdb) continue

[New buffer &mp->d_ibool]

In the following paragraphs, we present how to control the execution of this Cuda
application.

execution control and visualization

mcGDB’s Cuda module offers the same control and visualization capabilities as the
OpenCL module. Hence, developers can set catchpoints on kernel execution and buffer
usage:

107

case studies

(gdb) kernel 1 catch execute

Catchpoint set on kernel #1 ‘get_maximum_kernel’ execute events.

(gdb) buffer 1 catch memset

Catchpoint set on buffer #1 memset events.

Additionally, developers can also request execution catchpoints with combination of
buffer and kernel events (here, the execution will stop only if kernel #2 is executed
with buffer #34 as parameter):

(gdb) kernel 2 catch execute +with_buffer=34

Catchpoint set on kernel #1 ‘get_maximum_vector_kernel‘ execute events

with buffer #34 &d_max

(gdb) continue

...

Caught kernel #1 ‘get_maximum_vector_kernel’ execute event.

In ../cuda/check_fields_cuda.cu:163:

959 get_maximum_vector_kernel<<<grid,thds>>>(mp->d_displ,size,d_max);

As we can see in Figure 6.9, Cuda also benefits from OpenCL visualization engine.

Figure 6.9: Visual Representation of Cuda Execution Events.

6.4 conclusion

In this chapter, we highlighted how our contribution, a model-centric debugging
approach, and its GDB-based implementation mcGDB, can be used for interactive
debugging of applications based on MPSoC programming models. We presented
four use-cases: first, an augmented-reality feature tracker (PKLT) developed with
components and a H.264 video decoder module written with an dataflow framework.
These applications target Sthorm, our reference MPSoC system. Next, we studied
two scientific computing applications accelerated with GPU processors. These two
applications were written with two different programming environments, based on the
same programming model, kernel-based accelerator programming.

108

6.4 conclusion

As we could only have access to established applications (Specfem 3D and BigDFT
are for than 10 years old, PKLT and the H.264 video decoder were developed by
different division teams at ST), we chose to present an alternative yet important use-
case of model-centric debugging, where mcGDB is used by developers unfamiliar
with the details of the applications. This use-case corresponds for instance to the
maintenance part of the application life-cycle, or when a developer starts working on
an under-documented project.

In the following months, further usage studies will be conducted at ST, as part of
the product development of our prototype. In particular, the PEDF aspect of the tool
is directly related to IDTec team’s mission, and hence will be soon integrated in their
development and debugging environment. This will give application developers an
easy access to mcGDB and allow us to gather their feedback.

With this illustration of our contribution in mind, we continue in the next chapter
with a study of the related work. In this context, we compare how other research work
compare, complement or could benefit from model-centric debugging.

109

Part III

Related Work and Conclusions

111

7
R E L AT E D W O R K

In the previous chapters, we presented and experimented our contribution, an im-
provement of MPSoC application interactive debugging. This improvement aims at
incorporating in debuggers information from the programming models and environ-
ments used to develop MPSoC applications. application. But how does this proposal
compare to existing work?

Flashbacks

In this chapter, we review the scientific literature related to this thesis contribution.
We start in Section 7.1 with the publications related to low-level debugging of embedded
systems. Then in Section 7.2 we come back to the context of general-purpose computing
and study the literature about HPC application debugging. Finally, we discuss the
work more related to programming-model and visualization-assisted debugging in
Sections 7.3 and 7.4, respectively.

7.1 low-level embedded system debugging

Verifying the correctness of embedded systems involves a larger set of abstraction level
than on general-purpose computing. Indeed, in addition to the usual application level,
manufacturers may have to design dedicated hardware platforms and IP blocks, as
well as low-level software. In the following, we review the state-of-the-art techniques
that developers can use to tackle problems at such low levels. We start at hardware
level with communication analysis, then look at the debugging of platforms running
on virtual simulators. We finish this section with an interactive debugger taking into
account the OS kernel.

Hardware Level

In [GVN09], Goossens et al. presented a debugging environment targeting System-on-
Chips(SoCs) with a Network-on-Chip (NoC). Similarly to this thesis work, their goal
was to raise the abstraction of the debug process. Their starting point was at a lower
level than ours: they started at bit, cycle and IP-bloc transaction levels [GVVSB07], then
they explained how their tool presents VHSIC Hardware Description Language (VHDL)
modules as a logical NoC topology; hardware FIFO structures as an ordered list of

113

related work

messages; or retrieves dynamic information about the routers used in communications.
They also discussed step-by-step execution over request/responses, transactions and
handshakes, instead of the basic clock-cycle level.

This work is in the same spirit as ours, however it lies too close to the hardware to
compete or cooperate with our proposal.

Platform-Simulator Level

Rogin et al. proposed in [RGDR08] another debugging environment, for the SystemC
platform simulator. SystemC is a set of C++ classes for system-level design and
modelling. It supports different levels of accuracy, from cycle-accurate operations to
Transaction-Level Modelling (TLM). The authors of the article explained that debugging
SystemC systems brings similar challenges to what we faced with programming models:
without an additional debugger support, developers (designers in their context) must
have an advanced knowledge of SystemC internals.

The debugging environment they introduced exploits SystemC API to provide
additional levels of abstractions. They mentioned for instance SystemC signals, ports,
events, etc. They also emphasized that their environment is based on GDB, to allow an
efficient debugging of the functional part of the platform.

The idea behind this tool is in the same mindset as the one which drove this
thesis work. Both projects could be integrated to offer a wide-angle view of MPSoC
applications through their different levels of abstractions.

Operating-System Level

Georgiev et al. proposed in [GADP+10] to improve source-level debugging with OS-
kernel awareness. Instead of focusing on classic applications as we do, they targeted the
Linux kernel and its modules and user-space applications. In the context of embedded
systems, they accessed the kernel memory space and processors states though a Joint
Test Action Group/Test Access Port (JTAG/TAP) port, but it should be possible to
obtain similar results with a system-level platform emulator. Their debugger offers the
ability to list the different tasks (e.g., user-land processes) and re-program the Memory
Management Unit (MMU) to access transparently their virtual memory context. It also
allows stopping the execution at key events, such as module management functions or
during the interactions with user processes.

Kernel-level debugging is orthogonal to model-centric debugging. Indeed, an MPSoC
application such as a video decoder may require a dedicated kernel module to perform
its low level tasks (for instance, to stream the decoded sound and image data to output
devices). If a program spreads infected memory states between the application and the
kernel module, then developers may benefit from both the kernel and the model-centric
debuggers. Going one step further, a model-centric debugger could consider the kernel
module as an extension of the application and take in into account in an exhaustive

114

7.2 hpc application debugging

view of the application memory space and architecture.

To continue this literature review, we let aside the embedded system aspect of our
work. We only focus on the multicore/parallel (Section 7.2) and the programming-
model aspects (Section 7.3) of application debugging, which are more broadly studied.

7.2 hpc application debugging

In this section, we review how the HPC community dealt with our debugging issues.
In particular, we present the works tackling large-scale applications, which is similar
to many-core MPSoC debugging concerns; then we look at debuggers targeting HPC
programming environments as well as GPGPU computing.

Large-Scale Applications

When a computer runs thousands of tasks simultaneously, their execution generates
tremendous quantities of information and events. A debugger must be able to filter out
part of this data, first of all in order to perform efficiently, but also not to overwhelm
developers with unusable information.

In order to support large-scale interactive debugging, Balle et al. [BBCLL04] defined a
debugger architecture based on a tree-like network of aggregators, with fully functional
source-level debuggers at each leaf. Figure 7.1 depicts this organization. The aggregator
network provides an output-reducing mechanism, which scales down the quantity of
execution output data brought to the user interface. They identified three different
types of output (identical, identical except a small variation and widely different), that
allow aggregators to merge the output streams. Hence, the network limits the quantity
of information reaching the top-level debugger and ensures an acceptable response
time. The tree network also carries the debugging commands input by the user and
dispatch it to the relevant leaf debuggers.

Figure 7.1: Balle et al. ’s Tree-like Aggregators Network for Large-Scale Debugging.

115

related work

In a similar way, parallel debugger DDT [All08] tries to simplify the debugging
activity by merging together duplicated information. For instance, processes can be
grouped according to the function they are currently executing or in a tree merging the
stacks of each process. Then, only a specific group is debugged, allowing developers to
better understand divergences within a group and thus possible bug sources.D

As we noted in the scope of model-centric debugging (Chapter 3, Section 3.2),
our proposal does not target, nor addresses, the concerns of large-scale application
debugging. Indeed, increasing the quantity of information available to developers is
certainly not the most suitable path to follow in such situations. Adapting our proposal
to large-scale debugging would involve an important refactoring of capture-mechanism
as well as output-reduction optimization. Besides, the implementation we proposed
assumes a share-memory environment, whereas large-scale computers may only offer
distributed memory. Hence, the debugger would have to be adapted to take that
configuration into account.

MPI Debugging

The literature provides only few examples which try to integrate the notion of message
passing directly in interactive debuggers. In [CG99], Cownie et al. presented how
they implemented MPI [MPI94] message queue interpretation in TotalView. They
introduced the idea of representing conceptual information about the message-passing
model in the debugger. They focused on the definition of a standard and concise API
interface between the debugger and the MPI library implementation, in the same
mindset as thread debugging, presented earlier. This standardization effort helped its
adoption, and as per their website1, more than eight MPI vendors implemented the
interface. However, on the debugger side, only TotalView has the ability to exploit it.

This early work presented an interesting approach, whose design is similar to what
exists today in GDB for thread debugging. However, they did not go really further
than listing the content of the internal message queues. As MPI relies on a task-based
programming model, with entities exchange message with one another, the principles of
model-centric debugging could be directly applied to MPI, for instance as an extension
of this work.

We discuss another MPI debugging tool in the last section of this chapter, Section 7.4,
more oriented towards execution visualization.

Charm++ Debugging

In [JLK04], Jyothi et al. described a parallel debugger designed for the Charm++ data-
driven parallel programming language. They insisted on the fact that the runtime
system is good location to collect debugging and program analysis information. Hence,
their debugging architecture is deeply tight into Charm++ runtime, and they im-
plemented the debugging operations directly in Charm++. The debugger interface

1 MPI Debugging Interface, http://www.mcs.anl.gov/research/projects/mpi/mpi-debug/

116

7.2 hpc application debugging

communicates with the application through a network interface, and a standard, stan-
dalone GDB can be connected to the application on demand. They discussed some
capabilities of their debugger, such as accessing visible objects as array and queue mes-
sages, setting breakpoints on Charm++-specific entry-points, “freezing” and “unfreezing”
selected processors, etc.).

An advantage of their design is that it can operate on distributed memory environ-
ments, which is important for Charm++ debugging. However, the Charm++-specific
debugging commands are limited, and there is no integration between the source-level
debugger (GDB) and the higher-level debugging environment.

StarSs Debugging

Temanejo [BGNK11] is a debugger for the task-based StarSs programming-model
family. These models, similarly to dataflow programming, put an important focus on
the data dependencies of the different tasks which form the application. The runtime
framework is in charge of executing the different tasks in parallel while preserving
the correct ordering. The debugger is able to follow and reconstruct the graph of task
executions. This graph is useful to developers as its structure is not known at compile
time. Additionally, the debugger also allows developers to control task executions. It
can change their priority, block them or measure their duration. Temanejo can also
launch a debugger (i.e., GDB) upon specific events, such as the beginning of a task
execution.

Although the tool offers interesting representations, it currently lacks advanced
interactive debugging commands. Indeed, Temanejo is totally decoupled from GDB,
hence neither of the tools can benefit from the other. GDB remains at source level, and
Temanejo cannot provide any language-related information.

GPGPU Debugging

In [HZG09], Hou et al. discussed GPU-kernel debugging, on the GPGPU side of the
application. The first step of their proposal consists in recording all the memory
operations carried out by the execution kernels. Then, offline, they allow developers
to visualize and analyze the flow of data, both inside a kernel and across several ones.
They use compile-time code-instrumentation to gather this knowledge, by logging
execution traces. In addition, their code-instrumentation framework also enables an
automatic detection of out-of-bound array accesses, uninitialized data accesses and race
conditions.

Although post-mortem instead of interactive, such debugging capabilities could help
developers to understand the problems of the GPGPU-side of kernel-based applications,
which is unsolved by our debugger. Some model-centric debugging events could also be
recorded during the execution (namely those used for visualization), and interpreted in
their data-flow visualizer. This would allow developers to follow a piece of information

117

related work

transferred between the main memory and the GPGPU memory.

In the following section, we go one step closer and highlight the research work
directly related to model-centric debugging.

7.3 programming-model aware debugging

In this section, we confront our contribution with similar publications. Although object
debugging may appear surprising in this context, the presented work clearly focuses
on programming model behind object-oriented programming, in contrast with the
language itself. The name programming-model-centric debugging stemmed out of this
work on object-centric debugging [RBN12].

Object Debugging

The authors of [RBN12] presented an object-centric debugger, which aims at shifting the
debugger focus from the execution stack towards the objects themselves. Our proposal
shares part of their motivations, although they considered different abstraction levels
and constraints. Their solution is based on the ability to dynamically modify the
behavior of individual objects, for instance to hook object instantiations, method
calls, etc. and inject a debugger notification. So it required a programming language
evolved enough to offer this capability, typically an interpreted language, or predefined
hook points. Our work is more oriented towards low-level languages, in particular
the C language which is frequently used in embedded systems. They also targeted
programming language-level debugging, as they worked with programming language
concepts, whereas we focused our efforts on the programming model. This means that
they did not address the problem of bringing the debugger closer to the programming
model abstractions used in the applications, and the developer is left with overwhelming
information about low-level details. Nevertheless, their approach could be used in
conjunction with ours, once the programming-model-related part of the debugging
activity has narrowed down the problem search-space.

Component Debugging

General component-based application debugging presents an additional difficulty,
which was out of scope of this work, as not directly relevant to embedded systems.
Component frameworks usually have the ability to bring together components written
in different languages and/or black-boxes, provided by third parties. In this scenario,
source-level debuggers are of little help, as most of them do not support multi-language
debugging, or debugging is simply not possible in case of black-boxes. The authors
of [WK05] proposed a solution to this problem: they squeezed debugging compo-
nents in between application components. These debugging components are able to
monitor component interface activities without any knowledge about the implemen-

118

7.3 programming-model aware debugging

tation and/or without exhibiting the multi-language debugging problem. The article
described some of the features which can be achieved with this concept, which include:

• Record and replay of the interactions, which allows a standalone re-execution of
a component.

• Data and flow control analyses at component level.

• Setting breakpoints on the interfaces for interactive debugging.

This approach is non-negligibly intrusive as it requires developers to build and manually
connect the interface monitors (although they mentioned that future versions should be
able to do it automatically). Also, as the debugging mechanisms are directly integrated
in the application and certainly have a significant cost (especially in their context
of scientific computing), the debug and production versions of the application are
inevitably different, and this discrepancy may hide some of the bugs.

Dataflow Debugging

StreamIt is a programming language for high-performance streaming applications
[TKA02], which can be related to dataflow programming models and in particular
synchronous dataflow [LM87]. The StreamIt Development Tool [Kuo04] provides
a graphical environment to assist stream applications coding and debugging. Its
debugger is tailored to StreamIt programming language. Similarly to our approach,
the debugger takes into account StreamIt specificities and allows developers to interact
with a graph representation of the application. It also displays information about the
communication channels, such as the tokens they hold or stream statistics.

So their tool appears to tackle the challenges we describe in Chapter 2, Section 2.3.2.
However, they did not focus on the problems of dynamic dataflow, as StreamIt is
a synchronous dataflow language: all data must be received before execution and
actors’ sending and receiving rate is defined at compile time. So a substantial part of
interactive debug challenges is avoided.

Wahl et al. described in 1988 a debugging methodology for dataflow programs [WS88],
which shares similarities with our approach. To our knowledge, this is the only research
study available related to dataflow debugging. However, at that time, they still had faith
in real dataflow machines, with non von Neumann architectures. Their methodology
pointed out that they wanted “to allow the user to debug a program in a way that is close to
his or her conceptual model of the program.” They also mentioned that “at the same time, the
user must be supplied with a set of debugging commands that includes those with which he and
she is familiar with in the context of uni-processor von Neumann machines.” We intimately
share these convictions, which drove our work for this thesis.

The methodology they proposed is close to our idea of dataflow debugging, however
they only skimmed over the interactive debugging aspects and they did not provide
details about its actual usage. Our work on dataflow debugging extends and deepens
this specific aspect. Furthermore, they explained that their methodology relies on a

119

related work

Figure 7.2: Gdebugger interface of OpenCL debugging.

dataflow machine simulators, which have to be modified to support debugging. This
requirement strongly limits the scope of their work, as their debugging module would
have to be implemented at hardware level. Our approach does not face this problem,
as the debugger only interacts with the software dataflow environment.

OpenCL Debugging

Gremedy Gdebugger [Gra10] is a commercial debugger for OpenCL applications. Its
graphical user-interface allows developers to control the execution based on OpenCL
operations. Namely, they can set breakpoints on API functions, OpenCL errors or
memory leaks. It is also possible to visualize OpenCL entities relationship and inspect
the content of OpenCL buffers. Figure 7.2 presents different parts of the user interface,
during an OpenCL debugging session.

These capabilities are interesting, although the interactive debugging side of the tool
appears to be limited. Indeed, the tool can only analyze OpenCL elements, which limits
the benefits for an overall application analysis and make compulsory the use of another
debugger to understand the actual code behaviour. The source-level debugger they rely
on is entirely hidden to the user, who cannot benefit from its capabilities.

120

7.4 visualization-assisted debugging

As per our investigations, Gdebugger appears to rely on a preloaded shared library
to capture OpenCL information. The library communicates with the user-interface
through data sockets and a source-level debugger (GDB), similarly to the mechanism
we presented in Chapter 4, Section 4.2.

In the following section, we review the publications which investigated how visual-
ization could improve application debugging. We do not come back on Gdebugger, as
its interface only presents information that could have been shown textually.

7.4 visualization-assisted debugging

To conclude this chapter on the related work, we study different approaches leverag-
ing visualization techniques to improve execution understanding during interactive
debugging.

MPI Debugging

In [SASH08], Schaeli et al. described an interesting solution which provides a visual
representation of the messages exchanged by MPI processes and allows developers to
explicitly control the ordering of the message-passing events. The authors explained that
their main goal was to automatically or manually detect race conditions. Consequently,
the approach did not focus on the other aspects of debugging, and their tool does
not allow interactive debugging commands such as step-by-step execution or memory
inspection. The implementation they proposed relies on the profiling API of MPI,
which allows an external library to execute code upon specific events triggering. For
instance, the process may wait for a debugger order before sending a message.

Although this contribution does not target the same class of problems as our work, the
tool they propose could be extended and coupled with a model-centric debugging for
MPI. As they noted, the graphical interface already displays the message-passing graph
and provides a high-level view of the communication patterns. They also implemented
high-level breakpoint mechanisms, although they only use them to control if a MPI
process should run or not.

Java Debugging

In [CJ07], Czyz et al. presented a declarative and visual debugging environment for Java
applications. The declarative aspect is out of the scope of this section, although it
influenced the design of their visualization tool. The authors emphasized that current
debugger graphical interfaces serve mainly as front-ends for traditional text-based
debuggers. They also insisted on the idea that a visual depiction of runtime states
can help developers to notice that their mental representation of the application state

121

related work

(a) graph structure (b) sequence diagram

Figure 7.3: Jive Visualization of a Java execution.

differs from the actual state. Our motivations to start working with visualization tools
stemmed from the same observations.

They also explained that a declarative debugger should allow developers to search the
entire execution history (they named that query-based debugging), and hence it should
provide runtime support for examining the current state as well as past state. This
observation also drove our work, although not to the same extend: we wanted to depict
state evolution, but not necessarily provide an exhaustive examination of past states.

To achieve their objectives, they extended an Eclipse environment, the Jive, for Java
debugging. The environment performs incremental state saving and restoration opera-
tions to record and replay/query the execution timeline. Thanks to this knowledge,
they can draw object and sequence diagrams of the execution state, as presented in
Figures 7.3(a) and 7.3(b), respectively. Our visualization capabilities are similar to what
they presented, although our programming-model knowledge allows us to include
more information in the diagrams. However, this knowledge has to be implemented
for each programming model, whereas theirs works for any Java application.

Besides, a drawback of the implementation they proposed is that it operates at
language level, and hence, in medium-to-large applications, their diagrams will be over-
loaded by the number of objects and method activation represented. They mentioned
that they were exploring solution to this issue, such as suppressing internal details
of some of the objects. Using a model-centric debugger at the lower levels could be
another solution.

In the following chapter, we conclude this thesis manuscript and detail the future
work.

122

8
C O N C L U S I O N S A N D P E R S P E C T I V E S

The Final Situation

Nowadays, consumer electronics devices are becoming more and more ubiquitous.
With new generation smart-phones, set-top boxes and hand-held audio and video
players, multimedia embedded systems are spreading at a fast pace, with a constantly
growing demand for computational power. During the last decade, MPSoC systems
have been introduced in the market to answer this demand. However, their exotic,
multi- and many-core architectures harden application development.

A programming model defines a set of well-studied guidelines that developers can
use to design the architecture and algorithms of their applications. At implementation
time, supportive environments make concrete the programming models guidelines
and provide developers with the relevant coding structures. They also emphasize
separation-of-concern, with the low-level development (the implementation of the
supportive environment) strictly decoupled from application development.

However, verification and validation of MPSoC systems remains a hard task. In some
cases such as heavily constrained programming models, supportive environments may
improve the task by allowing compile-time verification of mathematical properties.
However, in the case of dynamic multimedia applications, these environments only
worsen the situation.

We believe that interactive debugging can provide great help during software devel-
opment and refinement. Indeed, these tools allow developers to explore and understand
how the computer executes the application. With the ability to control CPU execution
step-by-step, as well as displaying different memory locations, developers can confront
their mental representation of what the code is supposed to do, against what it actually
does.

However, current tools are too low level to offer an optimal control of programming-
model-based applications, because they only operate at source and assembly level. The
runtime libraries of supportive environment disrupt the linearity of the execution flows,
and hide an important part of application state. Hence, the objectives of this thesis

123

conclusions and perspectives

were to raise the abstraction level of interactive debugging, so that it can be closer to
the concepts used for application development.

8.1 contribution

In this thesis work, we proposed the principles of programming-model-centric debug-
ging, a new level of application abstraction for interactive debuggers. This approach
emphasizes the role of programming-model guidelines in application development,
and uses it to offer a new, high-level and accurate vision of the applications. Three
articles were published related to this work [PSMMM12, PLCSM13b, PLCSM13a].

We first studied MPSoC application development and debugging. We highlighted the
necessity to rely on programming models and supportive environments to reuse well-
studied and established coding structures and algorithms. We illustrated these notions
with three programming models, used recurrently along the document: component-
based programming, dataflow programming and kernel-based GPGPU programming.
We also explored the debugging challenges faced by developers while building appli-
cations relying on such models. We highlighted that interactive debuggers provide
interesting capabilities in comparison with alternative tools, although it appeared that
they currently operate at too low level an optimal MPSoC application debugging.

In Chapter 3 we proposed our contribution to lighten these problems: enhancing
interactive debugging with programming-model knowledge. We first stated the prin-
ciples of model-centric debugging, related to providing a structural representation
of the application, following its dynamic behaviors, and allowing interactions with
the programming model abstract machine. We delimited the scope of application
of model-centric debugging, that is, any application relying on an advanced enough
abstract machine. We finally studied how our proposition applies to our three program-
ming models. Component and dataflow programming models fit well in the proposal,
thanks to the communicating-task paradigm they both extend. These models allow the
debugger to distinguish tasks and draw a graph-based architecture diagram. On the
other hand, kernel-based programming, highlights a distinct aspect of model-centric
debugging, where visualization tools are used to depict the interactions between the
application and the abstract machine, over the time.

Then, we conducted a practical study of model-centric debugging. This study aimed
at validating its feasibility, with the extension of GDB, the free debugger of the GNU
project, as well as industrial supportive environments and real-world application
debugging sessions.

In Chapter 4, we detailed the implementation of the key building blocks of a model-
centric debugger. Our design heavily relies on an extensible source-level debugger
as back-end. Hence, our implementation is based on GDB and its Python interface,
though any tool offering source-level debugging services should fit.

124

8.2 perspectives

After that, we described how we expanded model-centric principles to support the
industrial MPSoC environments of our three programming models.

Finally, we demonstrated the capabilities of model-centric debugging in the context
of four real-world applications. For each of our programming models, we highlighted
important debugging features, and confronted them to their source-level counterpart.

This study underlined how application developers can benefit from our contribution.
Indeed, instead of working with system-level entities such as threads and processes,
they will be able to control components, dataflow actors or kernels; and query the
internal state of programming model’s abstract machine. Our tool also dynamically
computes and draws a graph representation of the application architecture, instead of
the flat set of threads and processes. This representation is a significant improvement,
as it provides a more realistic and high-level view of the application state and activity.

Programming-model centric debugging also allows embedded platform vendors to
provide not only a set of programming models and environments to program their
architectures, but also a unified debugging suite, tailored to these different environ-
ments. Developers benefit from this unity, as they will be able to use a homogeneous
set of debuggers across different situations. It can also encourage them to tackle other
programming models of the platform, knowing that the tools they rely on are built on
the same approach.

8.2 perspectives

Interactive debugging of multicore embedded applications based on their programming
model appears to be a promising direction to lighten the bug tracking hassle. In the
following, we present different perspectives of future work:

Strengthen the implementation for production At this time, the tool we developed is a
research prototype, but we expect it to rapidly enter into production at ST.

Conduct extensive impact studies This production step will allow us to conduct more
concrete studies of the debugger’s impact on development and validation time.
Indeed, as industrial embedded application development is a long and sensible
process, we have not yet been able to provide application developers with our
tool during application development process.

Integrate within a graphical debugging environment Our work was mainly conducted in
the context of textual environments, with only a weak link with graphical tools
(we used them only for visualization purposes). New generation Integrated
Development Environment (IDE) offer advanced language analysis capabilities,
which could benefit from a model-centric debugging knowledge. Graphical
environments would also attract more easily junior developers, who may be
reluctant to textual tools.

Integrate within a visualization environment As we mentioned earlier, our visualization
mechanisms serve only for visualization purposes. If they could be integrate into

125

conclusions and perspectives

the debugging environment, this would enhance and simplify the interactions
between the developer and the abstract machine.

Extends towards other programming models In the Related Work chapter (Chapter 7), we
sketched some possible extensions/cooperation of model-centric debugging. We
mentioned in particular the idea of coupling our proposal with a hardware
platform simulator, which would provide a wide-angle view of the application,
at different levels of abstraction: model, language, assembly and hardware. In
parallel, MPI debugging could also benefit from model-centric debugging. We
presented an interesting visualization environment relying on MPI profiling API,
this work could be extended to integrate the interactive debugging of model-
centric debugging.

Enrich debugging information generated by compilers As a medium to long-term project,
we plan to study how to extend the debugging information generated by compil-
ers. With the help of their intermediate representation data structures, we expect
to provide debuggers with high-level and more abstract knowledge about the
execution flow.

126

Appendices

127

A
G D B M E M O RY I N S P E C T I O N

Main Memory Representation Thanks to the Dwarf [Fre10] debug information en-
crusted in application binaries by the compiler (if the relevant flag was set, like -g in
GCC), GDB can display the memory content with the correct representation:

(gdb) print *breakpoint_chain

$8 = {
ops = 0xc4b280 <bkpt_breakpoint_ops>,

next = 0xf92340,

type = bp_breakpoint,

enable_state = bp_enabled,

number = -1,

frame_id = {
stack_addr = 0,

code_addr = 0,

...

}
...

}

In this example, we display the content of the global variable breakpoint chain (from
GDB source code). We can see that it is a C structure, composed of pointers (ops and
next). Fields type and enable state are enums, number is a signed integer and
frame id is another structure:

(gdb) ptype *breakpoint_chain

type = struct breakpoint {
const struct breakpoint_ops *ops;

struct breakpoint *next;

enum bptype type;

enum enable_state enable_state;

int number;

struct bp_location *loc;

129

gdb memory inspection

...

}

Without these Dwarf information, GDB would only be able to display the raw content
of the memory:

(gdb) x/10x 0xea4ad0 # *breakpoint_chain

0xea4ad0: 0x00c4b280 0x00000000 0x00f92340 0x00000000

0xea4ae0: 0x00000001 0x00000001 0x00000003 0xffffffff

0xea4af0: 0x00000000 0x00000000

where we can indeed recognize the value of some of the fields :

• const struct breakpoint ops *ops = 0x00c4b280

• struct breakpoint *next = 0x00f92340

• int number = 0xffffffff (-1)

Function Parameters, Register and Stack Inspection

Function parameter inspection is a key requirement for the implementation of your
debugger. GDB interface does not explicitly allow manipulating it, hence we had to
build our own support, based on the standardized C calling conventions. In i386

processors, the parameters are pushed in the execution stack (reachable through the
processor register %SP). After the function completion, the return value is accessible
through register %eax . In x86 64 processors, parameters are stored in registers %rdi ,
%rsi , etc., and the return value is stored in %rax .

Processor registers can be displayed from GDB command-line, which directly relies on
the Linux’s Ptrace API for the implementation (Ptrace is used for the implementation
of the majority of the process control and inspection commands).

GDB also allows navigating in the process execution stack and displaying local
variables and registers accordingly:

#0 create_breakpoint (arg="clCreateKernel ", internal=1)

#1 bppy_init (self, args) at gdb/python/py-breakpoint.c:624

...

#102 PyRun_SimpleStringFlags () from /lib64/libpython2.7.so.1.0

...

#115 source_script (file=".gdbinit ") at gdb/cli/cli-cmds.c:598

...

#120 main (argc=1, argv=0x7fffffffe0e8) at gdb/gdb.c:34

The stack trace (largely trimmed) shows that GDB was sourcing a script file (.gdbinit)
with Python code. When the execution was stopped, the Python code was creating an
internal (internal=1) on the (OpenCL) function named clCreateKernel .

130

B
E X T E N D E D A B S T R A C T I N F R E N C H

b.1 introduction

Aujourd’hui, l’électronique grand public devient de plus en plus présente dans notre
environnement. Avec les nouvelles générations de smart phones, tablettes, décodeurs de
télévision internet ou autres baladeurs numériques portables, les systèmes embarqués
dédiés au multimédia se déploient à un rythme effréné, avec un besoin en puissance de
calcul toujours plus important.

Durant les dix dernières années, les Multi-Processor-Systems-on-a-Chip (MPSoCs)
ont été introduits sur le marché pour répondre à cette demande. Ces systèmes-sur-
une-puce (systems-on-a-chip, SoC) contiennent généralement un processeur généraliste
multi-cœur, mais aussi des grappes (clusters) de processeurs dédiés à une application
ou un domaine de calcul particulier. Ces processeurs peuvent avoir différents jeux
d’instructions (ce type d’architecture est aussi appelé “hétérogène”), ce qui permet aux
fabriquants d’optimiser les micro-architectures pour un calcul donné. Cette conception
permet ainsi de construire des plates-formes avec une forte puissance de calcul, tout en
maintenant une consommation électrique limitée.

Cependant, les attrayantes capacités des MPSoC sont attenuées par un important
problèmes. En effet, bien que la programmation multi-cœur hétérogène soit en mesure
de fournir une solution aux besoins actuels de puissance de calcul, elle augmente aussi
la complexité du développement et de la phase de vérification et validation. Dans
l’industrie des systèmes embarqués, ces aspects sont clés pour maintenir une rapide
mise sur le marché (time-to-market). De ce fait, il sera crucial pour ces entreprises de
réduire autant que possible leur impact.

En ce qui concerne l’aspect développement, les modèles de programmation four-
nissent les lignes directives, algorithmes de communications et modèles d’architectures
pour résoudre les problèmes de développement récurrents. Dans le contexte de la pro-
grammation MPSoC, ces modèles de programmation vont permettre aux développeurs
de pas “réinventer la roue de la programmation parallèle”, et réduire le temps de
conception de l’application. Pendant la phase d’implémentation, le code correspondant
à ces structures bas-niveau et spécifique à chaque plate-forme pourra être séparé de
l’application principale, par exemple sous la forme d’une bibliothèque logicielle. La
réutilisation de code contribuera aussi à limiter le temps de mise sur le marché de

131

extended abstract in french

ces systèmes. Nous appellerons par la suite ces bibliothèques “environnements de
programmation et d’exécution” (supportive environments).

Cependant, le parallélisme des MPSoC rend aussi plus difficile la phase de véri-
fication et validation des applications. La concurrence des flots d’exécutions amène de
nouveaux types de bogues qui ne pouvaient pas exister dans les exécutions séquentielles,
comme les interblocages ou les situations de compétitions. De plus, les environnements
de programmation vont fréquemment changer la séquentialité des flots d’exécution
pour se conformer aux directives du modèle de programmation. Dans ces conditions, il
devient particulièrement difficile pour les développeurs de localiser les bogues logiciels
et comprendre leur origine.

Objectifs de la thèse

Nous pensons que le débogage interactif peut fournir une aide substantielle au dével-
oppement et à la mise-au-point des applications pour les systèmes multi-cœur em-
barqués. En effet, bien que les modèles de programmation haut-niveau simplifient le
développement des applications, ils ne peuvent pas systématiquement garantir leur
conformité. Si certains modèles permettent des vérifications statiques avancées au
moment de la compilation, ces bénéfices sont possibles seulement au prix de fortes
contraintes de programmation réduisant beaucoup l’expressivité du code. De l’autre
coté, les modèles supportant un plus grand nombre d’algorithmes, et en particulier
ceux avec des comportements dynamiques, ne peuvent en général pas offrir de telles
garanties.

Pour ces modèles, le débogage interactif se présente comme une alternative intér-
essante. Il donne en effet la possibilité de surveiller et contrôler l’exécution des
applications à plusieurs niveaux de granularités (code source, instructions machines,
registres du processeur, mémoire centrale, . . .), ce qui aurait été impossible avec les
autres approches.

Cependant, dans son état actuel, le débogage interactif n’est pas encore adapté pour
déboguer les applications basées sur des modèles de programmation haut-niveau.
Le débogage au niveau des sources (source-level interactive debugging) a évolué pour
supporter plusieurs flots d’exécutions et inspecter chacun des contextes mémoires, mais
la sémantique des commandes de débogage est restée la même que pour les applications
séquentielles, c’est-à-dire exclusivement basée sur le contrôle du processeur et la gestion
des symboles (points d’arrêts, exécution pas-à-pas, affichage de la valeur d’une adresse
mémoire, d’un registre, d’une variable, etc.).

Notre objectif dans cette thèse est de rehausser le niveau d’abstraction qu’utilisent les
débogueurs interactifs pour représenter les applications. Ainsi, ils pourront permettre
de travailler au même niveau d’abstractions pendant les phases de développement et
de débogage, c’est-à-dire au niveau défini par le modèle de programmation.

Nous pensons que ces améliorations vont permettre aux développeurs de ne plus
avoir à gérer les événements logiciels incontrôlables (avec les approches de débogage
interactif actuelles) introduits par les environnements de programmation. D’autre

132

B.2 programmer et débogger les systèmes embarqués multi-cœurs

part, en plus de gêner les développeurs expérimentés dans leurs tâches, les outils
mal adaptés découragent aussi les jeunes développeurs dans l’utilisation du débogage
interactif.

Enfin, nous avons l’intention de décrire une approche générique pour faciliter et
encourager le développement de débogueurs pour d’autres environnements de pro-
grammation haut-niveau. En effet, nous pensons qu’avoir un ensemble d’outils unifiés
pour le débogage haut-niveau pourra aider les développeurs à passer d’un modèle de
programmation à l’autre plus simplement et plus rapidement.

b.2 programmer et débogger les systèmes embarqués multi-cœurs

Dans ce chapitre, nous étudions les éléments nécessaires pour comprendre le contexte
de cette thèse. Nous présentons dans un premier temps les architectures MPSoC et
nous introduisons différents modèles de programmation capables d’exploiter leurs
caractéristiques. En effet, développer des applications tirant le meilleur profit des
processeurs multi-cœur MPSoC et de leur conception unique nécessite l’utilisation
d’algorithmes avancés, combinés à des bibliothèques logicielles performantes. Pour
satisfaire ces besoins, nous présentons trois modèles et environnements de program-
mation : la programmation par composants, par flots de données et par noyaux de
calcul.

Du point de vue de la vérification et validation, les modèles de programmation se
divisent en deux catégories : soit ils imposent de fortes contraintes aux développeurs,
avec de la programmation statique, et dans ce cas ils peuvent fournir d’intéressantes
propriétés pour la validation ; soit ils sont moins restrictifs et ils ne fournissent au-
cune aide à la vérification. Comme cette thèse s’est déroulée dans une des divisions
d’STMicroelectronics (ST) s’occupant de multimédia, nous ne nous sommes intéressés
qu’à cette seconde catégorie. En effet, la programmation multimédia nécessite sou-
vent l’utilisation de techniques de programmation dynamique, par exemple pour le
décodage vidéo ou le traitement des images, où l’exécution va dépendre du contenu
du média.

Nous présentons ensuite différents outils et techniques de débogage : l’analyse
papier/crayon, les analyses formelles et statiques, et l’analyse de traces, et nous les
comparons avec le débogage interactif. Avec cette étude, nous mettons en évidence que
le débogage interactif fournit une approche convaincante, qui permet aux développeurs
d’interagir avec l’application durant son exécution et d’inspecter les différents chemins
d’exécution et états internes du programme.

Cependant, nous montrons que le débogage au niveau des sources de l’application
n’est pas suffisant pour s’attaquer efficacement à des applications basées sur un modèle
de programmation. En effet, les modèles, et plus concrètement leurs environnements
de programmation, introduisent de haut niveaux d’abstractions dans les structures de

133

extended abstract in french

l’application, et ces niveaux d’abstractions ne sont pas pris en compte par les outils
actuels.

b.3 contribution : mise au point centrée sur le modèle de programmation

Dans ce chapitre, nous présentons notre contribution pour améliorer l’efficacité des
développeurs pendant le débogage interactif des applications multicœurs basées sur
les modèles de programmation pour les MPSoC. Nous proposons tout d’abord les
principes génériques du débogage centré sur le modèle (model-centric debugging), qui
vont dans trois directions :

1. fournir une représentation structurelle de l’architecture de l’application,

2. observer les comportements dynamiques de l’exécution,

3. permettre aux développeurs d’interagir avec les machines abstraites et physiques
exécutant l’application.

À travers ces trois axes, nous définissons les aspects nécessaires à la conception d’un
débogueur haut niveau et bien adapté au débogage des applications basées sur un
modèle de programmation.

Nous démarquons aussi le champs d’action du débogage centré sur le modèle : les
applications parallèles basées sur un modèle de programmation MPSoC. Nous notons
cependant que ce n’est pas une limitation forte, car le débogage centré sur le modèle
peut s’appliquer à n’importe quelle machine abstraite, à partir du moment où son
interface de programmation est suffisamment stable.

Vis-à-vis des limites du champs d’action, nous expliquons que le débogage centré
sur le modèle n’est pas forcément adapté aux applications déployées à large échelle, car
les développeurs se retrouveraient vite surchargés d’informations qu’ils ne pourraient
pas gérer. Nous notons également que, pour des raisons similaires, le débogage centré
sur le modèle ne pourra pas fournir beaucoup d’aide pour résoudre les problèmes des
applications basées sur le parallélisme de données (Single Instruction Multiple Data
(SIMD)).

Ensuite, nous étudions comment le débogage centré sur le modèle s’applique à
nos trois modèles de programmation MPSoC. Nous mettons en évidence que les
composants et la programmation par flots de données bénéficient directement de la
représentation des structures, grâce à la décomposition en tâches. Pour la même raison,
le débogage centré sur le modèle de programmation s’intègre aisément dans leurs
opérations de communications, et nous avons pu décrire comment les messages et
jetons de programmation par flots de données permettent d’améliorer le contrôle de
ces applications. Enfin, nous montrons que les principes du débogage centré sur le
modèle s’appliquent aussi à des modèles plus différents, comme la programmation
d’accélérateurs par noyaux de calcul. Nous notons que l’intérêt des représentations
structurelles n’est pas aussi important que pour les modèles basés sur les tâches ; par
contre la nature des interactions entre l’application et la machine abstraite permet de

134

B.4 blocs de construction d’un débogueur centrée sur le modèle de
programmation

concevoir d’autres fonctionnalités de débogage haut niveau, comme par exemple des
diagrammes de séquence des différentes interactions.

b.4 blocs de construction d’un débogueur centrée sur le modèle de
programmation

Dans ce chapitre, nous détaillons l’implémentation des principaux blocs de construc-
tions d’un débogueur basé sur les principes énoncés au chapitre précédent. La figure B.1
présente les différentes couches de l’architecture de notre débogueur. Les deux couches
inférieures correspondent aux acteurs traditionnels du débogage : la plate-forme
d’exécution, qui exécute l’application, et un débogueur niveau source.

Figure B.1: Architecture d’un débogueur centré sur le modèle pour une plate-forme
MPSoC

Dans le chapitre 2, nous avons présenté les plates-formes d’exécution MPSoC (en
partie basse de la figure), nous continuons donc ici avec les niveaux supérieurs. Nous
commençons avec la partie centrale et présentons les fonctionnalités de débogage niveau
source nécessaires pour l’implémentation d’un débogueur niveau modèle. Ensuite,
nous continuons avec la partie supérieure, qui correspond au débogueur centré sur le

135

extended abstract in french

modèle à proprement parler. Nous présentons l’étude de l’implémentation en suivant
trois axes directeurs :

1. le débogueur doit être capable de capturer les informations nécessaires au suivi de
l’état interne de la machine abstraite. Dans la figure, cela correspond aux flèches
roses connectant la partie haute, le débogueur niveau source et la plate-forme
d’exécution.

2. le débogueur doit définir des structures internes capables de refléter l’organisation
de la machine abstraite, et les mettre à jour au fur et à mesure. Ces structures
sont représentées sur la figure au travers des trois entités inter-connectées.

3. le débogueur doit fournir une interface haut niveau permettant à ses utilisateurs
d’interagir efficacement avec la machine abstraite. La plupart des commandes
fournies au travers de cette interface devront être paramétrables, en fonction
de l’état courant de la machine virtuelle. Cette interface est représentée par
l’utilisateur en au sommet du diagramme.

b.5 mcgdb, un débogueur centré sur le modèle pour l’environnement de
programmation d’un mpsoc industriel

Dans ce chapitre, nous continuons l’étude pratique du débogage centré sur le modèle
avec Model-Centric GDB (mcGDB), notre prototype de débogueur niveau modèle. Pour
chacun de nos trois modèles de programmation, nous revenons sur la description des
environnements de programmation de la plate-forme ST Heterogeneous Low Power
Many-core (Sthorm) (Chapitre 2, Section 2.2.2) et présentons les fonctionnalités de
débogage que nous avons proposées.

Nous présentons dans un premier temps le framework de programmation par com-
posants de Sthorm, en mettant l’accent sur l’aspect dynamique du déploiement et de
la gestion des composants, et sur le suivi des communications par message.

Ensuite, nous étudions le framework de programmation par flots de données, et
nous montrons comment la représentation structurelle de l’application est présentée
sous la forme d’un graphe. Nous expliquons aussi comment l’environnement de
programmation permet à l’application de gérer l’ordonnancement de ses acteurs, et
comment mcGDB prend cela en compte.

Enfin, nous détaillons le travail fait sur Open Computing Language (OpenCL).
Dans cet environnement, nous insistons sur la représentation des comportements
dynamiques de l’application à l’aide de diagrammes de séquence. Nous expliquons
aussi comment nous avons étendu le module OpenCL d’mcGDB pour supporter
NVidia Cuda, un environnement de programmation similaire à OpenCL, mais aussi
compétiteur commercial.

136

B.6 etudes de cas

Nous concluons ce chapitre avec un survol des points communs et divergences entre
ces trois implémentations, ainsi qu’une estimation du temps nécessaire pour porter
mcGDB vers d’autres environnements de programmation.

b.6 etudes de cas

Dans ce chapitre, nous expliquons comment notre contribution, une approche de
débogage centré sur le modèle de programmation, et son implémentation mcGDB,
peuvent être utilisées pour le débogage interactif des applications basées sur les modèles
de programmation MPSoC. Nous présentons quatre études de cas : un code de suivi
d’objets dans les vidéos (feature tracking) développé avec des composants, et un module
de décodage de vidéos au standard H.264, écrit avec la bibliothèque de programmation
par flots de données. Ces deux applications s’exécutent sur Sthorm, notre système
MPSoC de référence. Ensuite, nous étudions deux applications de calcul scientifique,
accélérées par des processeurs Graphical Processing Unit (GPU). Ces deux applications
ont été écrites dans deux environnements de programmation distincts, mais basés sur
le même modèle, la programmation par noyaux de calcul.

Comme nous n’avons eu accès qu’à des applications déjà bien établies (les codes
scientifiques ont plus de 10 ans, et les applications pour l’embarqué ont été développées
dans d’autres divisions d’ST), nous avons choisi de présenter une utilisation alternative
du débogage centré sur le modèle, où mcGDB est utilisé par des développeurs non
familiers avec les détails des applications. Ce cas d’utilisation correspond par exemple
à la phase de maintenance de l’application, ou quand un développeur commence à
travailler dans un projet sous documenté.

b.7 travaux connexes

Dans ce chapitre, nous présentons une étude de l’état de l’art en relation avec notre
contribution. Nous commençons avec les publications liées au débogage bas-niveau
des systèmes embarqués. Ensuite, nous revenons vers les systèmes plus généralistes et
étudions la littérature liée au débogage des applications High-Performance Computing
(HPC). Enfin, nous détaillons les travaux traitant du débogage lié au modèle de pro-
grammation ainsi que les outils de débogage utilisant des techniques de visualisation.

b.8 conclusions et perspectives

Contributions

Durant cette thèse, nous avons défini les principes du débogage centré sur le modèle
de programmation. Ces principes permettent aux débogueurs interactifs d’offrir un
nouveau niveau de représentation des applications. Notre approche met l’accent sur
le rôle du modèle de programmation pendant le développement des applications, et

137

extended abstract in french

reprend les lignes directives du modèle pour fournir une vision plus haut niveau et
plus précise des applications. Trois articles ont été publiés en relation avec ce travail
[PSMMM12, PLCSM13b, PLCSM13a].

Nous avons tout d’abord étudié le développement et le débogage des applications
MPSoC. Nous avons mis en évidence la nécessité de s’appuyer sur des modèles et
environnements de programmation pour réutiliser les codes et algorithmes déjà mise
en œuvre pour résoudre les problèmes classiques. Nous avons illustré ces notions
à travers trois modèles de programmation utilisés pour la programmation MPSoC :
les composants, les flots de données et les noyaux de calcul General-Purpose Graph-
ical Processing Unit (GPGPU). Nous avons aussi exploré les difficultés rencontrées
par les développeurs lorsqu’ils construisent des applications basées sur ces modèles.
Nous avons mis en évidence que le débogage interactif fournit des fonctionnalités
intéressantes par rapport aux autres outils, cependant il apparaı̂t clair que les outils
travaillent à un niveau inférieur à ce qui serait optimal pour le débogage d’applications
MPSoC.

Dans le Chapitre 3, nous avons proposé une approche pour alléger ces problèmes, en
ajouter la connaissance du modèle de programmation dans le débogage interactif. Nous
avons tout d’abord décrit les principes du débogage centré sur le modèle, qui proposent
1/ de fournir une représentation structurelle de l’architecture de l’application, 2/ de
suivre les comportements dynamique de l’exécution et 3/ de permettre aux utilisa-
teurs d’interagir avec la machine abstraite définie par le modèle de programmation.
Nous avons délimité la portée du débogage centré sur le modèle, qui pourra être
mise en œuvre dans l’ensemble des environnements de programmation utilisant une
machine abstraite suffisamment haut niveau. Nous avons enfin étudié comment notre
proposition pouvait s’appliquer à nos trois modèles de programmation MPSoC. Les
composants et la programmation par flots de donnée s’y intègrent très bien, car ces
modèles sont tous les deux basés sur la programmation par tâches communiquantes.
Le débogueur sera donc capable de distinguer les différentes tâches de l’application
et d’afficher des diagrammes représentant l’architecture sous forme de graphe. Notre
troisième modèle de programmation, la programmation par noyaux de calcul, met en
avant un autre aspect du débogage centré sur le modèle, où des outils de visualisation
sont utilisés pour représenter les interactions au cours du temps entre l’application et
la machine abstraites.

Nous avons ensuite mené une étude pratique sur le débogage centré sur le modèle.
Cette étude visait à valider sa faisabilité, avec l’extension de GDB, le débogueur libre
du projet GNU et le support des plusieurs environnements de programmation, et la
mise en œuvre de sessions de débogage d’applications du monde réel.

Dans le Chapitre 4, nous avons détaillé l’implémentation des principaux blocs d’un
débogueur centré sur le modèle. Notre implémentation repose principalement sur
l’extension d’un débogueur travaillant au niveau du code source, GDB et son interface
Python. Cependant n’importe quel outil capable de faire du débogage interactif au
niveau des sources pourrait être utilisé.

138

B.8 conclusions et perspectives

Ensuite, nous avons décrit comment nous avons étendu les principes génériques du
débogage centré sur le modèle pour supporter les environnements de programmation
MPSoC de nos trois modèles.

Enfin, nous avons démontré les capacités du débogage centré sur le modèle de
programmation dans le cadre de quatre applications du monde réel. Pour chacun
des nos modèles de programmation, nous avons mis en évidence les principales
fonctionnalités de débogage, et nous les avons confrontés à ce qu’il était possible avec
un simple débogueur niveau source.

Cette étude montre comment notre contribution peut aider les développeurs dans
leur travail. En effet, au lieu de travailler avec des entités de niveau système pour les
threads et processus, ils vont maintenant pouvoir contrôler des composants, des acteurs
de flot de données ou des noyaux de calcul, et interroger l’état interne de la machine
abstraite du modèle de programmation. De plus, notre outil construit et maintient
dynamiquement un graphe représentant l’architecture de l’application, au lieu d’un
simple ensemble non structuré de threads et processus. Cette représentation constitue
une amélioration importante car elle fournit une représentation plus réaliste et plus
haut niveau de l’état et l’activité de l’application.

Le débogage centré sur le modèle de programmation permet aussi aux constructeurs
de plates-formes embarquées de fournir, en plus des modèles et environnements de
programmation, un ensemble unifié d’outils de débogage, adapté à ses différents
environnements. Les développeurs vont bénéficier de cette unité, car ils vont pouvoir
utiliser un ensemble d’outils homogènes dans différentes situations. Cela peut aussi les
encourager à se confronter aux autres modèles de programmation de la plate-forme, en
sachant que les outils qu’ils vont utiliser seront basés sur la même approche.

Perspectives

Le débogage interactif des systèmes embarqués multi-cœur centré sur le modèle de
programmation semble une perspective de travail intéressante pour réduite la difficulté
de la recherche de bogues. Nous envisageons donc de poursuivre ce travail dans les
directions suivantes :

Renforcer l’implémentation pour une mise en production L’outil que nous avons développé
est aujourd’hui seulement au stade de prototype de recherche, mais nous pensons
qu’il pourra bientôt être mis en production au sein d’ST.

Conduire des études d’impacts Cette mise en production devrait nous permettre de con-
duire une étude sur l’impact de notre outil sur le temps de développement et
de validation des applications. En effet, comme le temps de développement
des applications pour l’industrie de l’embarqué est compté, nous n’avons pas
eu la possibilité de fournir notre outil aux développeurs pendant les phases de
développement.

Intégration dans un environnement graphique de débogage Notre travail a été principale-
ment implémenté au sein d’environnements en ligne de commande, avec un

139

extended abstract in french

faible lien avec les outils graphiques (nous les avons seulement utilisé pour
visualiser l’exécution). Les nouvelles générations d’environnements de dévelop-
pement intégrés (Integrated Development Environment (IDE)) offrent des ca-
pacités avancées d’analyse des langages, qui pourraient bénéficier des connais-
sances du débogage centré sur le modèle de programmation. Les environnements
graphiques attirent aussi plus facilement les jeunes développeurs, qui pourraient
être effrayer par les outils en ligne de commande.

Intégration dans un environnement de visualisation Comme mentionné dans le point pré-
cédent, nos mécanismes de visualisation sont utilisés uniquement pour la visu-
alisation. Si elles pouvaient être intégrées dans un environnement de débogage
graphique, cela permettrait d’améliorer et de simplifier les interactions entre les
développeurs et l’application.

Etendre vers d’autres modèles de programmation Dans le chapitre des travaux connexes
(Chapitre 7), nous avons proposé des possibilités d’extensions/coopération du
débogage centré sur le modèle. Nous avons mentionné en particulier l’idée de cou-
pler notre proposition avec des simulateurs de plates-formes, ce qui permettrait
d’offrir une vision multi-niveau de l’application : modèle, langage, assembleur et
matériel. Dans un autre domaine, les applications basées sur Message-Passing
Interface (MPI) pourraient aussi bénéficier de débogage centré sur le modèle.
En particulier, nous avons présenté un environnement de visualisation utilisant
l’Application Programming Interface (API) de profiling d’MPI. Ce travail pourrait
être étendu pour intégrer des commandes pour le débogage interactif de niveau
modèle.

Enrichir les informations de débogage générées par le compilateur À moyen ou long terme,
nous voulons étudier comment améliorer les informations de débogage générées
par le compilateur. Avec les informations sur les structures de contrôles calculées
dans la représentation intermédiaire de la compilation, nous pensons qu’il serait
possible de fournir aux débogueurs des informations plus haut niveau et plus
abstraites sur le flot d’exécution.

140

B I B L I O G R A P H Y

[All08] Allinea Software. Parallel Debugging is Easy, 2008. {116}
[BBCLL04] Susanne M. Balle, Bevin R. Brett, Chih-Ping Chen, and David LaFrance-

Linden. Extending a Traditional Debugger to Debug Massively Parallel
Applications. J. Parallel Distrib. Comput., 64, May 2004. {115}

[BDT12] S.S. Bhattacharyya, E.F. Deprettere, and B.D. Theelen. Dynamic dataflow
graphs. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala,
editors, Handbook of Signal Processing Systems (2nd edition). Springer, 2012.
{20, 23}

[BFFM12] Lucas Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. P2012:
Building an ecosystem for a scalable, modular and high-efficiency embed-
ded computing accelerator. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 983–987, 2012. {13}

[BGNK11] Steffen Brinkmann, José Gracia, Christoph Niethammer, and Rainer Keller.
TEMANEJO - a debugger for task based parallel programming models.
In International Conference on Parallel Computing, 2011. {117}

[Bou00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade
Feature Tracker. Description of the Algorithm. http://robots.stanford.
edu/cs223b04/algo_tracking.pdf, 2000. {86}

[CG99] James Cownie and William Gropp. A Standard Interface for Debugger
Access to Message Queue Information in MPI. In Proceedings of the 6th
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 51–58, London, UK,
1999. Springer-Verlag. {116}

[CJ07] Jeffrey K. Czyz and Bharat Jayaraman. Declarative and visual debugging
in eclipse. In Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, eclipse ’07, pages 31–35, New York, NY, USA, 2007. ACM. {121}

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009. {25}

[Crn04] Ivica Crnkovic. Component-Based Approach for Embedded Systems. In
Ninth International WCOP Workshop, June 2004. {19}

[Fre10] Free Standards Group. The DWARF debugging standard. dwarfstd.org/
doc/Dwarf3.pdf, 2010. {54, 129}

[GADP+10] Kiril Georgiev, Mathieu Auvray, Serge De-Paoli, Miguel Santana, and
Chris Smith. Debugging Embedded Linux Kernel Through JTAG Port. In

141

Bibliography

Proceedings of the S4D (System, Software, Soc and Silicon Debug), 2010. {50,
114}

[Gnu13] Gnu Project. GDB, The GNU Debugger. http://www.gnu.org/software/
gdb/, 1986-2013. {50}

[GOD+09] Luigi Genovese, Matthieu Ospici, Thierry Deutsch, Jean-François Méhaut,
Alexey Neelov, and Stefan Goedecker. Density functional theory calcu-
lation on many-cores hybrid central processing unit-graphic processing
unit architectures. The Journal of chemical physics, 131:034103, 2009. {99}

[Gra10] Graphic Remedy. gDEBugger, 2010. {55, 120}

[GVN09] Kees Goossens, Bart Vermeulen, and Ashkan B. Nejad. A high-level debug
environment for communication-centric debug. In Design, Automation
Test in Europe Conference Exhibition, 2009. DATE ’09., pages 202–207, 2009.
{113}

[GVO+11] Luigi Genovese, Brice Videau, Matthieu Ospici, Thierry Deutsch, Stefan
Godecker, and Jean-François Mehaut. Daubechies Wavelets for High Per-
formance Electronice Structure Calculations: the BigDFT Project. Comptes
Rendus de l’Académie des Sciences, 339:149–164, 2011. {99, 100}

[GVVSB07] Kees Goossens, Bart Vermeulen, Remco Van Steeden, and Martijn Ben-
nebroek. Transaction-based communication-centric debug. In Networks-
on-Chip, 2007. NOCS 2007. First International Symposium on, pages 95–106.
IEEE, 2007. {113}

[HZG09] Qiming Hou, Kun Zhou, and Baining Guo. Debugging gpu stream
programs through automatic dataflow recording and visualization. ACM
Trans. Graph., 28(5):153:1–153:11, December 2009. {117}

[JHRM04] Wesley M. Johnston, J. R. Paul Hanna, Richard, and J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv, 36, 2004. {19, 23}

[JLK04] Rashmi Jyothi, Orion Sky Lawlor, and Laxmikant Kale. Debugging
support for Charm++. In PADTAD Workshop for IPDPS 2004, page 294.
IEEE Press, 2004. {116}

[JLL05] He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-Based Software
Engineering – The Need to Link Methods and their Theories. In Proc. of
ICTAC05, Lecture Notes in Computer Science 3722. Springer, 2005. {18}

[Khr08] Khronos OpenCL Working Group. The opencl specification, version 1.0.
http://khronos.org/registry/cl/specs/opencl-1.0.pdf, December 2008.
{16, 21, 23, 78}

[KME09] Dimitri Komatitsch, David Michéa, and Gordon Erlebacher. Porting a
high-order finite-element earthquake modeling application to NVIDIA
graphics cards using CUDA. Journal of Parallel and Distributed Computing,
69(5):451–460, 2009. {106}

142

Bibliography

[Kuo04] Kimberly Kuo. The streamit development tool: A programming environ-
ment for streamit. M.eng. thesis, Massachusetts Institute of Technology,
Cambridge, MA, Jun 2004. {119}

[KWK10] Johan Kraft, Anders Wall, and Holger Kienle. Trace recording for embed-
ded systems: Lessons learned from five industrial projects. In Runtime
Verification, 2010 International Conference on. Springer-Verlag (Lecture Notes
in Computer Science), November 2010. {25}

[LCBT+12] Patricia López Cueva, Aurélie Bertaux, Alexandre Termier, Jean-François
Méhaut, and Miguel Santana. Debugging embedded multimedia appli-
cation traces through periodic pattern mining. In Proceedings of the tenth
ACM international conference on Embedded software, EMSOFT ’12, pages
13–22, New York, NY, USA, 2012. ACM. {25}

[Lea00] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000
conference on Java Grande, JAVA ’00, pages 36–43, New York, NY, USA,
2000. ACM. {23}

[LM87] Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow. In
Proceedings of the IEEE, volume 75, September 1987. {20, 119}

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: a comprehensive study on real world concurrency bug
characteristics. ACM SIGARCH Computer Architecture News, 36(1):329–339,
2008. {11}

[MBF+12] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lep-
ley, Germain Haugou, Fabien Clermidy, and Denis Dutoit. Platform 2012,
a many-core computing accelerator for embedded socs: performance
evaluation of visual analytics applications. In DAC, pages 1137–1142,
2012. {13}

[MCS+06] Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram
Krishnamurthi, and Steven P. Reiss. The design and implementation
of a dataflow language for scriptable debugging. Automated Software
Engineering Journal, 2006. {44}

[Mol03] Ingo Molnar. The Native POSIX Thread Library for Linux. Technical
report, Tech. Rep., RedHat, Inc, 2003. {52, 56}

[MPI94] MPI Forum. MPI: A message-passing interface standard, 1994. {16, 116}
[NVi09] NVidia. Whitepaper on NVIDIA’s Next Generation CUDA Compute

Architecture: TM Fermi. http://www.nvidia.fr/content/PDF/fermi_

white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.

pdf, 2009. {14}
[Ölv11] Peter Csaba Ölveczky. Formal model engineering for embedded systems

using real-time maude. In AMMSE, 2011. {25}
[Pau13] Paulin, Pierre G. OpenCL Programming Tools for the STHORM Multi-

Processor Platform: Application to Computer Vision, 2013. 13th Inter-

143

Bibliography

national Forum on Embedded MPSoC and Multicore, July 15-19, 2013,
Otsu, Japan. {24}

[PLCSM13a] Kevin Pouget, Patricia López Cueva, Miguel Santana, and Jean-François
Méhaut. Interactive Debugging of Dynamic Dataflow Embedded Ap-
plications. In Proceedings of the 18th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS), Boston,
Massachusetts, USA, may 2013. Held in conjunction of IPDPS. {40, 70,
124, 138}

[PLCSM13b] Kevin Pouget, Patricia López Cueva, Miguel Santana, and Jean-François
Méhaut. A novel approach for interactive debugging of dynamic dataflow
embedded applications. In Proceedings of the 28th Symposium On Applied
Computing (SAC), pages 1547–1549, Coimbra, Portugal, apr 2013. {40, 70,
124, 138}

[PPCJ10] Kevin Pouget, Marc Pérache, Patrick Carribault, and Hervé Jourdren.
User level DB: a debugging API for user-level thread libraries. In Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pages 1–7, 2010. {52, 56, 66}

[PSMMM12] Kevin Pouget, Miguel Santana, Vania Marangozova-Martin, and Jean-
François Mehaut. Debugging Component-Based Embedded Applications.
In Joint Workshop Map2MPSoC (Mapping of Applications to MPSoCs) and
SCOPES (Software and Compilers for Embedded Systems), St Goar, Germany,
may 2012. Published in the ACM library. {37, 65, 124, 138}

[RBN12] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. Object-centric
debugging. In In Proceeding of the 34rd international conference on Software
engineering, 2012. {118}

[RGDR08] Frank Rogin, Christian Genz, Rolf Drechsler, and Steffen Rülke. An
integrated systemc debugging environment. In Eugenio Villar, editor,
Embedded Systems Specification and Design Languages, volume 10 of Lecture
Notes in Electrical Engineering, pages 59–71. Springer Netherlands, 2008.
{55, 114}

[SASH08] Basile Schaeli, Ali Al-Shabibi, and Roger D. Hersch. Visual Debugging
of MPI Applications. In Proceedings of the 15th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 239–247, Berlin, Heidelberg, 2008. Springer-Verlag.
{121}

[SPA+08] Nathan Sidwell, Vladimir Prus, Pedro Alves, Sandra Loosemore, and Jim
Blandy. Non-stop multi-threaded debugging in gdb. In GCC Developers’
Summit, page 117, 2008. {35, 51}

[ST98] David Skillicorn and Domenico Talia. Models and languages for parallel
computation. ACM Comput. Surv., 30(2), June 1998. {15}

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit:
A language for streaming applications. In International Conference on

144

Compiler Construction, Grenoble, France, Apr 2002. {119}
[TS12] J. Tompson and K. Schlachter. An Introduction to the OpenCL Programming

Model, 2012. {21, 23}
[Vaj11] András Vajda. Programming many-core chips. Springer, 2011. {16}
[VMD04] Joël Vennin, Samy Meftali, and Jean-Luc Dekeyser. Understanding and

extending systemc user thread package to ia-64 platform. In Proceedings
of International Workshop on IP Based SoC Design, December 2004. {66}

[WCC+12] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich,
and M. Frans Kaashoek. Undefined behavior: what happened to my
code? In Proceedings of the Asia-Pacific Workshop on Systems, APSYS ’12,
pages 9:1–9:7, New York, NY, USA, 2012. ACM. {4}

[WK05] Torsten Wilde and James A. Kohl. Port Monitor: A Monitoring & Debug-
ging Approach For Component Frameworks. In CompFrame 2005, Atlanta
GA, June 2005. {118}

[Wol04] Wayne Wolf. The future of multiprocessor systems-on-chips. In Pro-
ceedings of the 41st annual Design Automation Conference, DAC ’04, pages
681–685, New York, NY, USA, 2004. ACM. {11}

[WS88] N.J. Wahl and Stephen R. Schach. A methodology and distributed tool
for debugging dataflow programs. In Software Testing, Verification, and
Analysis, Proceedings of the Second Workshop on, jul 1988. {119}

[WSBL03] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC video coding standard. IEEE Transactions on Circuits and
Systems for Video Technology, 13(7), July 2003. {94}

[Zel05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. {5}

145

147

abstract

In this thesis, we propose to study interactive debugging of applications running on embedded
systems Multi-Processor System on Chip (MPSoC). A literature study showed that nowadays, the
design and development of these applications rely more and more on programming models and
development frameworks. These environments gather established algorithmic and programming
good-practices, and hence speed up the development process of applications running on MPSoC
processors. However, sound programming models are not always sufficient to reach or approach
error-free codes, especially in the case of dynamic programming, where they offer little to no help.

Our contribution to lighten these challenges consists in a novel approach for interactive debugging,
named Programming Model-Centric Debugging, as well as a prototype debugger implementa-
tion. Model-centric debugging raises interactive debugging to the level of programming models,
by capturing and interpreting events generated during the application execution (e.g. through
breakpointed API function calls). We illustrate how we applied this approach to three different
programming models, software components, dataflow and kernel-based programming. Then, we
detail how we developed a debugger prototype based on GDB, for STMicroelectronics’s STHORM
programming environment. STHORM development toolkit provides supportive environments for
component, dataflow and kernel-based programming. We also demonstrate how to tackle software
debugging with our debugger prototype through four case studies: an augmented reality feature
tacker built with components, a dataflow implementation of the H.264 video decoding standard and
two scientific HPC computing applications.

résumé

Dans cette thèse, nous proposons d’étudier le débogage interactif d’applications pour les systèmes
embarqués MPSoC (Multi-Processor System on Chip). Une étude de l’art a montrée que la con-
ception et le développement de ces applications reposent de plus en plus souvent sur des modèles
de programmation et des frameworks de développement. Ces environnements définissent les
bonnes pratiques, tant au niveau algorithmique qu’au niveau des techniques de programmation.
Ils améliorent ainsi le cycle de développement des applications destinées aux processeurs MPSoC.
L’utilisation de modèles de programmation ne garantit cependant pas que les codes pourront être
exécutés sans erreur, en particulier dans le cas de la programmation dynamique, où ils offrent très
peu d’aide à la vérification.

Notre contribution pour résoudre ces challenges consiste en une nouvelle approche pour le
débogage interactif, appelée Programming Model-Centric Debugging, ainsi qu’une implémentation
d’un prototype de débogueur. Le débogage centré sur les modèles rapproche le débogage interactif
du niveau d’abstraction fourni par les modèles de programmation, en capturant et interprétant les
événements générés pendant l’exécution de l’application. Nous avons appliqué cette approche sur
trois modèles de programmation, basés sur les composants logiciels, le dataflow et la programmation
d’accélérateur par kernels. Ensuite, nous détaillons comment nous avons développé notre prototype
de débogueur, basé sur GDB, pour la programmation de la plate-forme STHORM de STMicroelec-
tronics. Nous montrons aussi comment aborder le débogage basé sur les modèles avec quatre études
de cas : un code de réalité augmentée construit à l’aide de composants, une implémentation dataflow
d’un décodeur vidéo H.264 and deux applications de calcul scientifique.

148

