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Diffusion weighted imaging (DWI) is a specific type of MRI acquisition based on the direction of diffusion of the brain water molecules. It allows, through several acquisitions, to model the brain microstructure, as white matter, which is significantly smaller than the voxel-resolution.

To acquire a large number of images in a clinical setting, very-fast acquisition techniques are required as single-shot imaging. However these acquisitions suffer locally large distortions. We propose a block-matching registration method based on the acquisition of images with opposite phase-encoding directions (PED). This technique specially designed for Echo-Planar Images (EPI) robustly correct images and provides a deformation field. This field is applicable to an entire DWI series from only one reversed EPI allowing distortion correction with a minimal acquisition time cost. This registration algorithm has been validated both on phantom and on in vivo data and is available in our source medical image processing toolbox Anima.

From these diffusion images, we are able to construct multi-compartments models (MCM) which can represent complex brain microstructure. Doing registration, averaging and atlas creation on these MCM images is required to perform studies and statistic analyses. We propose a general method to interpolate MCM as a simplification problem based on spectral clustering. This technique, which is adaptable for any MCM, has been validated on both synthetic and real data. Then, from a registered dataset, we performed a patient to population analysis at a voxel-level computing statistics on MCM parameters. Specifically designed tractography can also be used to make analysis, following tracks, based on individual anisotropic compartments. All these tools are designed and used on real data and contribute to the search of biomakers for brain diseases such as multiple sclerosis.

Chapter 1

Résumé en français 1.1 Contexte général L'imagerie par résonance magnétique (IRM) est un examen médical qui produit des images in-vivo des organes internes et des structures du corps. Pendant cet examen, le sujet est installé dans un champ magnétique puissant et homogène qui est générallement généré à l'intérieur d'un long tube (voir Fig 1.1). L'IRM est basée sur la résonnance magnétique nucléaire et utilise les proprié tes magnétiques des noyaux des atomes. L'eau est le composant principal du corps humain, la proportion qui dépend de nombreux facteurs dont l'âge est comprise entre 55% et 80% [Brozek 1961, Siri 1961, Ellis 2000]. Par conséquent, même si tous les atomes peuvent théoriquement être étudiés, pour l'IRM clinique, les atomes d'hydrogènes qui composent l'eau sont préférés. Un des avantages de l'IRM est que contrairement à d'autres modalités (comme les rayons X ou la tomodensitométrie), c'est une technique d'imagerie non-invasive. Une grande variété de séquences IRM existent avec des temps d'acquisitions différents. Générallement, différentes séquences peuvent être acquises durant un même examen pour obtenir des informations complémentaires sur le patient. Le temps d'acquisition total d'un examen IRM est important pour plusieurs raisons. Tout d'abord, le confort du patient est crucial, non seulement pour son bien-être, mais aussi parce que si des mouvements surviennent pendant une longue sequence, les images résultantes seront dégradées. En outre, la compléxité d'une machine IRM fait que les examens sont couteux. Selon le type de séquence et le choix des paramètres, une IRM produit un type d'imagerie varié ce qui inclut des images anatomiques, de l'imagerie fonctionnelle ou de l'imagerie quantitative.

En raison de sa faible dangerosité et de sa haute résolution spatiale, l'IRM est devenu un examen incontournable avec la tomodensitométrie pour l'étude des organes internes. Son usage clinque s'est répandu dans un grand nombre de domaine incluant: les pathologies thoraciques, les pathologies artérielles, les pathologies digestives, les maladies du système nerveux central [Calvo 2001, Gebker 2007[START_REF] Sandrasegaran | [END_REF], Polman 2005]... L'examen IRM est tout d'abord utilisé pour établir un diagnostique: localiser des tumeurs, étudier les problèmes d'articulations, préparer une intervention chirurgicale. Il permet également de surveiller l'évolution d'une maladie au cour d'une étude longitudinale et de pouvoir adapter un meilleur traitement. Il est aussi essentiel pour la recherche médicale, en particulier en neuroscience. En effet, les connaissances scientifiques sur le cerveau, à la fois anatomiques et fonctionnelles, ont largement progréssées grace aux études IRM. Désormais, les IRM sont des examens médicaux classiques et essentiels pour un usage clinique ainsi que pour la recherche scientifique. L'IRM de diffusion est un type particulier d'acquisition IRM, c'est le sujet principal de cette thèse. Cette technique vise à étudier la direction et la quantité de diffusion des molécules d'eau dans le cerveau. Cela permet, moyennant plusieurs acquisitions, de modéliser indirectement la microstructure du cerveau. La substance blanche en particulier a une taille nettement inférieur (le diamètre d'un axone est de l'ordre du micromètre) à l'unité de résolution spatiale, le voxel (qui est de l'ordre du millimètre cube). L'étude de la microstructure du cerveau par l'IRM de diffusion est un grand défi qui nécessite des méthodes précises et des modèles adaptés à la fois pour la qualité de l'acquisition et pour la reconstruction de la microstructure au niveau du voxel. Dans ce manuscript, nous nous focaliserons sur cette modalité IRM particulière.

L'IRM de diffusion peut apporter un excellent aperçu dans la qualification d'une maladie et l'adaptation du traitement. Le premier défi de l'IRM de diffusion est la conception et l'estimation des modèles de diffusion. Cet aspect a été largement étudié et une revue de la littérature sur le sujet est présentée en Section 1.2. Les acquisitions utilisées pour l'IRM de diffusion ont des artefacts, la correction de distortion de ces artefacts est introduite Section 1.3. Enfin, nous présentons des méthodes de traitements et des outils statistiques pour une classe de modèle de diffusion complexe appelé modèle multi-compartiment en Section 2.4 et Section 1.5.

Etat de l'art

Le manuscrit commence par un état de l'art (Chapitre 3) en proposant une présentation rapide du cerveau humain ainsi qu'une description des principales catégories de pathologies cérébrales et de l'impact potentiel des techniques d'imagerie médicale sur ces pathologies.

Des spins des atomes d'hydrogènes à la récupération du signal dans l'espace de Fourier, l'IRM est une modalité complexe d'imagerie médicale. En outre, les acquisitions d'IRM de diffusion (DWI) que nous étudions sont basées sur la diffusion naturelle des molécules d'eau selon différent tissues. Les principes généraux de l'IRM et la spécificité des acquistions DWI sont introduits dans ce chapitre.

Dans le reste de l'état de l'art, différent modèles de diffusion estimés à partir d'acquisition DWI sont présentés. Nous soulignons les forces et faiblesses de ces modèles classés en trois catégories:

• L'imagerie du tenseur de diffusion (DTI) représente la diffusion d'eau au sein de chaque voxel au moyen d'un tenseur.

• Les modèles basés sur la décomposition du signal dans une base de fonctions orthogonales.

• Les modèles multi-compartiment (MCM) représentant la diffusion avec plusieurs compartiments isotropiques et anisotropiques.

Correction de distortion des images écho planaires

En diminuant la durée d'acquisition des IRM, les techniques d'imagerie parallèle permettent l'acquisition d'un grand nombre d'images (EPI) dans un court laps de temps, compatible avec des contraintes cliniques requises pour l'imagerie de diffusion ou l'imagerie fonctionnelle. Cependant, ces images sont soumises à de larges distortions perturbant leurs correspondance avec l'anatomie sous jacente. La correction de ces distortions reste un problème ouvert, spécialement dans les zones sévèrement impactées par de grandes déformations.

Nous proposons au Chapitre 4 une nouvelle technique de block-matching basée sur l'acquisition de deux EPI avec des directions de phases d'encodages opposées. Cela s'appuie sur de nouvelles transformations entre les blocs adaptées au modèle de distortion et sur un schéma d'optimisation qui assure une transformation symétrique. Nous présentons des résultats qualitatifs et quantitatifs de correction par block-matching en utilisant différentes métriques à la fois sur des données synthétiques et sur des données réelles. Nous montrons la qualité de la correction block-matching et sa robustesse, y comprit dans des zones fortement affectées par les déformations. Pour finir nous présentons dans les perspectives un algorithme blockmatching totalement symétrique qui utilise une image structurelle supplémentaire non distordue comme une image centrale. 

General context

Magnetic resonance imaging (MRI) is a medical exam that produces in vivo images of internal organs and structure of the body. During the exam, the subject is installed inside a strong, homogeneous, magnetic field that is commonly generated within an horizontal tube (see Fig 2.1). MRI is based on nuclear magnetic resonance (NMR) using the magnetic properties of atoms nuclei. Water is the main component of the human body, proportion is of around 55% to 80% depending on various factors including age [Brozek 1961, Siri 1961, Ellis 2000]. Hence, even if all atoms can theoretically be studied, the hydrogen atom that composes water molecules is preferred in clinical MRI. A benefit of MRI is that contrary to other imaging modalities (as X-ray or computed tomography (CT)), it does not use ionizing radiation. While the precautionary principle is still required, the food and drug administration (FDA) declared in 2003, a nonsignificant risk status for MRI clinical systems generating static fields up to 8 Tesla [Hartwig 2009].

A wide range of MRI sequences exist with different acquisition times. Usually different sequences can be acquired in the same exam to get complementary information on the subject or patient. The total acquisition time of an MRI exam is important mainly for two reasons. First, the patient comfort is crucial, not even for his own well-being, but also since motion is more likely to occur during a long scan and the resulting images may thus be corrupted. Secondly, the complexity of an MRI scanner makes it an expensive exam. Depending on the sequence type and the parameters choice, MRI scan produces various types of images including anatomical images, functional images or quantitative imaging.

Due to its weak dangerosity and its high spatial resolution, MRI takes a growing place for internal body exams next to CT. It has been increasingly adopted for clinic Figure 2.1: Illustration of a MRI scan. Common license, courtesy of Jan Ainali , https: // commons. wikimedia. org/ wiki/ File: MRI-Philips. JPG in all kind of domain such as: thoracic pathology, osteoarthritis pathology, digestive pathology, central nervous system (CNS) disorders [Calvo 2001, Gebker 2007[START_REF] Sandrasegaran | [END_REF], Polman 2005]... MRI exams are primarily used to perform diagnostic: find unhealthy tissue, locate tumors, bone damage, surgery planning. Moreover, it allows to monitor the evolution of a disease within a longitudinal study and better adapt a treatment. It is also essential for research advancement, in particular in neuroscience. Indeed, the scientific knowledge about the brain, both anatomic and functional, has largely progressed thanks to MRI studies. Henceforth, MRI scans are classic and essential medical exams in clinic and to improve the brain comprehension in research.

Diffusion-weighted magnetic resonance imaging (DWI) also named diffusion MRI (dMRI) is a specific type of magnetic resonance imaging (MRI) acquisition, the main topic of this thesis, aimed at studying the direction and amount of diffusion of brain water molecules. It allows, through several acquisitions, to model indirectly the brain microstructure, especially the brain white matter (WM), which are significantly smaller than the voxel-resolution. The study of the brain microstructure through dMRI is a great challenge which needs accurate methods and well adapted models, both to the quality of the acquisition and to the expected voxel microstructure. We will focus on this specific MRI modality in this manuscript.

The dMRI may bring a great insight in disease quantification and treatment adaptation. The design and estimation of the diffusion model is the first challenge with dMRI. This aspect, well studied by a large literature, is introduced Section 2.2. The acquisitions used to model diffusion suffer from artifacts, the correction of distortion artifacts is presented Section 2.3. Finally, we present processing tools and statistical methods for a class of complex diffusion models named MCM in Section 2.4 and Section 2.5.

State of the art

We start this manuscript by a state-of-the-art (Chapter 3), first proposing a quick overview of the human brain, followed by a description of the main categories of brain diseases and the potential impact of medical imaging for those diseases.

From the spin of hydrogen nuclei to the signal recovery in the Fourier space, the MRI scanner is a complex medical imaging modality. Moreover, the DWI acquisitions are based on the natural diffusion of water molecules within different tissues. The MRI general principles and the specificity of the DWI acquisition are thus also introduced in this chapter.

In the rest of the state of the art, different models of water diffusion estimated from DWI acquisitions are presented. We highlight the strength and weakness of all these models divided in three categories:

• Diffusion tensor imaging (DTI) representing the water diffusion within each voxel with a tensor

• Based functions in q-space derived from the decomposition of the signal through an orthogonal basis of functions.

• Multi-compartment models (MCMs) representing the diffusion with several isotropic compartments and anisotropic compartments.

Distortion correction of echo-planar images

By shortening the acquisition time of MRI, echo planar imaging (EPI) enables the acquisition of a large number of images in a short time, compatible with clinical constraints as required for dMRI or functional MRI (fMRI). However such images are subject to large, local distortions disrupting their correspondence with the underlying anatomy. The correction of those distortions is an open problem, especially in regions where large deformations occur. We propose in Chapter 4 a new block-matching registration method to perform EPI distortion correction based on the acquisition of two EPI with opposite phase encoding direction (PED). It relies on new transformations between blocks adapted to the EPI distortion model, and on an adapted optimization scheme to ensure an opposite symmetric transformation. We present qualitative and quantitative results of the block-matching correction using different metrics on a phantom dataset and on in vivo data. We show the ability of the block-matching approach to robustly correct EPI distortion even in strongly affected areas. Finally, we present in perspectives a fully symmetric block-matching (BM) algorithm which uses an extra non-distorted structural image as the center image.

Interpolation of multi-compartment models

MCMs are increasingly used to characterize the brain white matter microstructure from dMRI. In chapter 5, we address the problem of interpolation and averaging of MCM images as a simplification problem based on spectral clustering. As a core part of the framework, we propose novel solutions for the averaging of MCM compartments.

This generic framework is tested for multi-tensor model (MTM) and evaluated for a specific MCM: the diffusion direction imaging (DDI). Results, computed on a large database, show the ability of the analytic method accounting for the internal tensor part of the DDI to perform better than simpler ones. We then present an MCM template of normal controls constructed using the proposed interpolation framework.

From multi-compartment model to statistics

We finally present in Chapter 6 to perform statistics using the interpolation framework proposed in Chapter 5. We propose an atlas-based patient to population comparison based on MCM data, both voxel-based and tract-based. The tract-based part relies on the construction of an atlas, MCM tractography and compartment selection along the tracts to take full advantage of the multiple compartments of the models.

The construction of the atlas, illustrated in Chapter 5, and the registration method are detailed. A deterministic tractography algorithm specifically adapted for MCM is also presented. A large number of figure illustrate the two approaches, voxel-based and tract-based. They highlight different strengths and weaknesses of both techniques and compare then to DTI based results, showing better interpretability of the obtained results.

Chapter 3 3.1 General context

State of the art

General presentation of the human brain

The central nervous system (CNS) is composed by the brain which centralizes the control of the body, conscious and unconscious thoughts, and the spinal cord. The peripheric nervous system (PNS) is the rest of the nervous system which connects the CNS to the rest of the body. According to the Society of Neuroscience, the human brain is the most complex living structure in the known universe. The human brain consists of the cerebrum, the cerebellum and the brainstem.

The cerebrum, the largest part, is divided by several sulci and gyri in 4 lobes: occipital, parietal, frontal and temporal (see Fig 3.1). Each lobe is related to a different function and is connected to the other by the white matter:

• The frontal lobe in the front of the cranial cavity is associated to the voluntary motor function. It is also involved in judgment, decision-making, language through the Broca's area and more.

• The parietal lobe is behind the frontal lobe separated by the central sulcus.

It plays a role in space perception, reading through the oculomotor system and receives the major part of sensitive information.

• The temporal lobe is under the frontal and parietal lobe separated by the lateral sulcus. It is involved in auditory processing and visual processing, language recognition (through the Wernicke's area in tandem with the Broca's area). The temporal lobe contains the limbic system which handles the treatment of emotion. The hippocampus belongs to the lymbic system and plays a crucial role in memory and spatial navigation.

• The occipital lobe, located behind the temporal lobe, is the smallest of the 4 lobes. It is mainly the visual processing center of the brain. Under the occipital and the temporal lobe is the cerebellum. Its major function is to coordinate motor control. It also plays a role in cognitive functions such as attention and language. The brainstem connects the cerebrum and the cerebellum to the rest of the body and regulates the cardiac and respiratory functions. This description composes a schematic review of the brain at a macroscopic level.

At a microscopic scale, the human brain contains neurons and glial cells which include all the non-neuronal cells. There are around 100 billion neurons in a human adult brain and recent studies advance the same quantity of glial cells [Hilgetag 2009, Pakkenberg 1988]. The cell body of the neuron and some glial cells compose the grey matter (GM) named in opposition to the WM which designate the axonal fibers of the neurons. The GM is mainly located at the periphery of the brain around the cranial cavity and is basically the seat of the consciousness. There is also a deeper gray matter made of brainstem and nuclei. The WM, which is bright in dissection because of the myelin, is responsible of the transmission of the information through the axons between different areas of the brain or between the brain and body.

A typical neuron comports mainly a cell body, an axon and dendrites (see a complete illustration of a neuron on Fig 3 .2). The axon transfers the electric signal from one neuron to another cell via its terminations called synapses. Each axon includes thousand of synapses that transmit the signal via a chemical process to the dendrites of other neurons. The axon has a diameter of around 1µm (from 0.5µm up to 8µm) and can reach up to 1 meter in length (therefore the total length of axons is evaluated to be longer than 100.000 km [START_REF] Schröder | [END_REF], Marner 2003]). Glial cells comprise the following cells, all helping brain function: • Astrocytes cover a large subclass of glial cells with all kind of supporting tasks in the CNS and PNS. The word astrocyte derived from their star shape, however their morphologies are extremely diverse [Zhang 2012a]. They compose between 20 and 40 % of all the glial cells and execute their supportive tasks while maintaining neuronal health. Several forms of astrocytes exist including protoplasmic, which mainly support the GM, and fibrous for the WM [Sofroniew 2010]. During decades, astrocytes were considered as passive in the brain. Contrariwise, many studies revealed their active role in metabolic support of neurons, synaptic generation, detoxification, guidance of neuronal migration, immune function and more [START_REF] Markiewicz | [END_REF]]. Moreover astrocytes stimulate the neuron-generating process [Svendsen 2002].

• Oligodendrocytes is an other specific type of glial cells which create membranes around one or several axons of the CNS (the Schwann cells play a similar role in the PNS). These membranes compose the myelin sheath which form an electrically insulating layer around axons. The myelin is a fat substance composed by 80% of lipids and 20% of proteins [Laatsch 1962[START_REF] Gerstl | [END_REF].

Overall the length of the axon myelin sheaths are interrupted by nodes of Ranvier (see Fig 3 .2). Information is transmitted along the axon through saltatory conduction, thanks to the myelin, making the signal transmission between neurons much faster. Schematically the action potentials jump from one node to the following. The myelin sheath is thus essential to protect axons and provide velocity to the electric signal up to 50 times compared to an unmyelinated fiber [Koch 2004]. The acquisition of myelin in the vertebrate lineage is important in the evolution since the velocity of the information propagation is crucial to survive [START_REF] Zalc | The acquisition of myelin: a success story[END_REF]]. The axon and myelin sheath also modify the diffusion of water molecules within the brain and therefore is an object of study for dMRI (see Section 3.5.3).

Brain diseases

The proper functioning of the brain through neurons and glial cells can be disturbed by all kinds of diseases. The brain disorders can be classified into four main categories:

• Traumatic brain injury (TBI) is caused by external action impacting the brain as impact, object penetration, deceleration, chemicals damage. They can cause injuries with different degrees of severity: hematomas, contusion, strokes, ischemia... After an accident, cerebral imaging exams can be performed to detect such TBI.

• Brain cancer is the anarchical propagation of abnormal cells within the brain. Such diseases still have a high mortality ratio of around 40 % for children to 95 % for elderly people [START_REF] Legler | [END_REF]]. Such tumors are often detected through unusual symptoms due to the expansion of the tumor perturbing brain function: nausea, speech difficulties, behavior change, vision problems, hearing problems. MRI scanner allows to detect the tumor, analyze its evolution, and to prepare and follow its treatment (chemotherapy, radiotherapy, surgery).

• Psychiatric disorders are a brain diseases which disorganize personality, mind or emotion. They include depression, bipolar disorder, anxiety, posttraumatic stress disorder (PTSD). The cause of such disorders is often unclear. However diseases such as depression are frequently related to anatomical brain anomalies and thus can be studied with cerebral imaging modalities [Mervaala 2000, Treadway 2011].

• Neurodegenerative diseases cause a progressive deterioration of neurons. Such disorders include Parkinson's disease, Alzheimer's disease, Huntington's disease or amyotrophic lateral sclerosis (ALS) and are often incurable [Gandhi 2005, Pluchino 2003, Lambrechts 2003]. Symptoms can induce memory loss, apathy, anxiety, motor issues [Paulsen 2001, Jack 2010, Chaudhuri 2006]. The evolution of such diseases are well-studied with classic MRI modality but also fMRI or positron emission tomography (PET) scan [Nordberg 2010].

To conclude this quick review of brain diseases, we detail one particular disorder: multiple sclerosis (MS). The deficit of myelin in the CNS can cause massive injury for vision, memory, motricity and more. MS is a serious and common autoimmune disease which induces chronic demyelination of the CNS. There are around 100.000 individuals suffering from MS in France. Affected persons, mostly located in the northern hemisphere, are young adults and the female to male ratio is about 3:1 [Ascherio 2007, Orton 2006]. There exist genetic risk factors and not-well defined environmental factors (as sunshine, tobacco or obesity) [Hedström 2012, Consortium 2011]. MS is rarely directly mortal but induces severe synptoms including motor, mental and sometimes psychatric issues [Compston 1998]. MS has a high variability between individuals and its evolution is hard to predict. Intensive research has been carried out on this disease, especially using MRI [Barkhof 1997[START_REF] Brex | [END_REF][START_REF] Fred D Lublin | Defining the clinical course of multiple sclerosis results of an international survey[END_REF], Polman 2005].

Leukodystrophies, a class of rare diseases, also cause demyelination of the CNS. These diseases affect children and their mortality rate is 1/3 [Bonkowsky 2010]. Demyelination can also occur in the PNS due to several diseases [Sumner 1991, Hartung 2000]. The common point of all these diseases is the possible utilization of MRI to make an accurate diagnostic and study the evolution of the disorder. This can lead to the improved understanding of a disease, for a particular patient as well as in general. It will thus allows, among other, to offer better treatments, to predict the evolution of the disease or to perform surgery.

Brain imaging

Knowledge about the brain follows a fast and expanding progression while its organization(functional and structural) is still largely unknown [Kötter 2001[START_REF] Sporns | [END_REF]]. In history, the first anatomical descriptions of the brain where made from dissections.

Vesalius produced one of the first works about human anatomy during the sixteenth century in his book De humani corporis fabrica [START_REF] Vesalius | De humani corporis fabrica libri septem[END_REF]]. Among these descriptions were included some of the first illustrations of the CNS [Van Laere 1992]. At this time, dissections were prohibited by the Christian church and some medical students stole bodies to increase their brain anatomy performing illegal dissections [Boorstin 1985].

From an anatomical point of view, knowledge about the brain microstructure evolved first with the development of light microscope [START_REF] Wilt | [END_REF]]. In the early twentieth century, electroencephalography (EEG) was developed and provided a first approach to probe in vivo the brain activity. It was followed from 1950 by a large number of different in vivo imaging methods including MRI. The history of MRI starts around 1946 with the discovery of the magnetic resonance effect by Felix Bloch andEdward Purcell [Bloch 1946, Purcell 1946]. Thirty years later, the first image of a tumor in a mouse was obtained, highlighting the interest of such a technic for a medical use [Damadian 1976]. • functional MRI (fMRI) measures the brain activity through the cerebral blood oxygenation. It is able to produce a high spatial resolution map with a reasonable time resolution of the cerebral activity.

• Quantitative MRI directly relates the MRI signals to physical tissue properties. For example, relaxometry sequences measure the signal at several times to reconstruct relaxation curves which are specific to each tissue. dMRI measures the diffusion of the water molecules within the brain to infer microstructure properties. The Apparent Diffusion Coefficient (ADC) and the anisotropic structure of the brain provide informations about the brain structure, in particular the WM. In this thesis, we focus on this specific modality.

Diffusion MRI

Diffusion MRI (dMRI) or diffusion-weighted magnetic resonance imaging (DWI) is a specific type of MRI sequence that studies the constrained random diffusion of water molecules within different tissues. The phenomena of molecular diffusion within a magnetic field has been known and studied for a long time [Hahn 1950, Carr 1954, Stejskal 1965]. The first DWI images of the human brain were obtained more recently in 1985 [START_REF] Bihan | [END_REF]. The interest of the neuroscientific community for this modality has since largely grown since studies have demonstrated the ability of dMRI to detect strokes better than MRI traditional sequences [Moseley 1990].

The major clinical applications of dMRI concern neurological disorders, in particular diseases where the WM is affected. DWI is indeed the unique non-invasive in vivo modality allowing to model the microstructure of the brain [Le Bihan 2012]. The general principle of natural water diffusion is presented in Section 3.2.1. The study of this phenomena though dMRI acquisition is described in Section 3.2.2. We finally detail in Section 3.2.3 the acquisitions strategies of dMRI and their artefacts.

Principles of water diffusion

Diffusion characterizes the migration of molecules from the highest to the lowest concentration within a liquid, solid or gas solution. This phenomenon is natural and internal to a solution without any external action. For liquid solutions, at a macroscopic level, the diffusion is well modeled by Fick's law defined as [Fick 1855]:

J = -D∇n (3.1)
where D is the diffusion coefficient, J is the net diffusion flux and ∇n the concentration gradient. D is determined by the medium through the particle size, the temperature and the viscosity of the fluid. At a microscopic level, the molecules have movements induced by thermal energy. In a medium with uniform concentration, the diffusion flux is null, however the motion of molecules still persists. During the observation of pollen grains in a water solution with a microscope, Robert Brown discovered that large particles such as pollen are affected by permanent motions [START_REF] Brown | A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF]]. The large particle is in fact hit by small particles, molecules, around 10 21 times per second in a water solution [Chandrasekhar 1943]. This movement is named Brownian motion and is used to describe diffusion but also thermodynamic or financial flux in economy [De Meyer 2003]. An illustration of Brownian motion for several diffusion coefficients is presented Fig 3. The net flux of the solution, i.e the mean displacement of a particle, is null. Therefore the relation with the diffusion coefficient does not come directly. In 1905, in his famous annus mirabilis [Stachel 2005], Albert Einstein found in the Brownian motion the proof of existence of atoms he was seeking. Moreover, he proposed a probabilistic model of the mean-square displacement of a particle as [Einstein 1905]:

x 2 = 2dD∆ (3.2)
where x 2 is the mean-squared displacement of a particle during a diffusion time ∆, d is the dimensionality of the problem and D is the diffusion coefficient.

Water molecules compose around 75% of the brain depending on the evaluation techniques [START_REF] Kreis | Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations[END_REF], Lentner 1981]. Hence, knowledge about diffusion of water within the brain provides powerful information about tissues and structures. For example the diffusion coefficient increases within a tumor compared to normal brain tissue [START_REF] Maier | [END_REF][START_REF] Padhani | [END_REF]. Moreover, the anisotropy of water diffusion is used as a marker to identify the brain microstructure. Indeed, water diffusion is constrained by the orientation of the axons within the WM. We will see in the following how the diffusion framework using a magnetic field is used to estimate water diffusion within the brain.

Diffusion within a magnetic field

MRI

An MRI scanner generates a strong static magnetic field B 0 , typically from 1 to 7 Tesla for human, which is up to 100.000 times more than the earth 60µT magnetic field [Gómez Paccard 2006]. Hydrogen nuclei have a magnetic dipole named spins. They align themselves with the magnetic field B 0 in a proportion related to the strength field. This is called the longitudinal magnetization. When the spins are aligned, a radiofrequency (RF) pulse is applied to excite the system at a frequency named Larmor frequency:

ω = -γB (3.3)
where ω is the Larmor frequency, B the magnetic field strength and γ the gyromagnetic ratio which depends on the mass of the nuclei. The gyromagnetic ratio makes the Larmor frequency unique for each nucleus [Cohen 2010]. Once excited, spins enter a resonance regime, for a sufficient RF pulse, the spins end up oriented in the normal plane to the static magnetic field axis. It creates a transverse magnetization. After this brief RF pulse, spins return to their previous orientations aligned with the B 0 axis. An illustration of the process from the excitation until the end of relaxation is presented Fig 3 .5. During this step named relaxation, in conventional MRI, the signal is recorded by the coils at one particular moment named TE. Then the process is repeated after a TR that allows or not a complete return of the nuclei spins to their state before the RF pulse. On a 3T scanner, the order of magnitude of these times is around 50ms for the TE and 1s for the TR.

Each tissue has its own transversal relaxation time T 2 and longitudinal relaxation time T 1. From these intrinsic properties, it is possible to reconstruct an image for the signal highlighting different tissues with different contrasts by choosing appropriately TE and TR. Interestingly, the T 2 relaxation time is longer for the grey matter than the white matter and it is the opposite for the T 1 relaxation time [Mlynárik 2001]. T1-weighted images and T2-weighed images are two classical types of conventional sequences for MRI scanner. A short TE and a short TR give a T1-weighted image i.e an image where intensities vary mainly depending on the tissues T1 relaxation time. Contrariwise, a long TE and a long TR give a T2weighted image. Thereby, these two measures have different properties that confer them different advantages and disadvantages.

As we have seen in Eq 3.3, the Larmor frequency depends on the magnetic field strength. With the constant magnetic field B 0 of the scanner, all hydrogen nuclei are simultaneously excited. It is impossible to reconstruct from the signal received by the coils a map with correct spatial precision of the origin of the signal. Therefore an other linear magnetic field, called gradient, is applied to select a specific area which is the only one excited by a given RF. The global magnetic field of the scanner is then expressed as:

B(t) = G 0 + xG x (t) + yG y (t) + zG z (t) (3.4)
where G x (t), G y (t), G z (t) are the linear gradients, x, y, z the spatial coordinate and B(t) the global magnetic field which evolves along the acquisition. Applying a G z (t) magnetic field selects an entire slice excited for one RF , its Larmor frequency, which is different from that of the other slices. Then the two other gradients G x (t) and G y (t) are applied to the excited slice not simultaneously which leads to a phase difference θ x,y and gives to the receiver coil the following signal:

s(t) = f (x, y)e 2iπθx,y (3.5) 
where s(t) is the signal received in the Fourier space, also named k-space. From this signal it is possible to recover images with contrasts between tissues depending on acquisition parameters (mainly TE and TR). In the following, we will see how the magnetic gradient field can be used to report the diffusion within the tissues.

Pulse gradient spin echo

The magnetic field gradient used to perform slice selection and phase encoding is too small to measure the aforementioned diffusion effect. A much stronger gradient is applied in DWI sequences, named pulse gradient spin echo (PGSE), to highlight water diffusion. After the RF pulse, the slice excited is subject to a strong linear gradient during a very short time δ. The spins have thus a positive or negative extra-phase according to their position. Then, after a diffusion time ∆δ ≫ δ, the opposite gradient is applied to bring back spins to their original phase. In the illustration of this phenomenon in Fig 3 .6, the yellow area is in a low diffusion area. The assumption ∆δ ≫ δ makes the diffusion during the gradient application negligible. During the diffusion time, spins do not move too much and get back in phase after the opposite gradient application. Thus the lesion has a strong brightness in the recovered image. On the contrary, the ventricles in the blue area, are composed of free water with a high diffusion coefficient. During the diffusion time, spins lose phase coherence and stay incoherent after the opposite gradient application. Then the net flux is low and the recovered signal is very low.

From a signal without any gradient S 0 , which produces an image called b 0 and one signal S g,b acquired with a unit gradient g ∈ S 2 and a corresponding b-value b, we define the signal attenuation as:

A g,b = S g,b S 0 (3.6) A g,b = e -bD (3.7)
where D is a ADC in direction g and b is a quantity called b-value defined as:

b = γ 2 G 2 δ 2 (∆ - δ 3 ) (3.8)
where G is the gradient amplitude, δ is the gradient application time and ∆ is the sum of gradient and the diffusion time as illustrated in Fig 3 .6. The ADC can be recovered directly using Eq 3.7:

D = -log(A g,b ) b (3.9)
This relation gives the diffusion in the gradient direction. However, this is not sufficient to estimate the ADC in a 3D space. From 3 gradient directions, it is possible to estimate a global ADC independent of the gradient direction, also called mean diffusivity (MD). Since the brain is an organ with highly orientated structures, several images acquired with different gradient directions are required to correctly model the 3D diffusion. The description of the complete water diffusion probability density function (PDF) in the entire space, name ensemble average propagator (EAP), is theoretically possible through a Fourier transform [Ning 2015]:

p(x) = q∈R 3 A g,b e -2iπ<q.x> dq (3.10)
where q belong to the space defined by the gradient direction, called q-space. The most famous model named DTI estimates, in each voxel, a tensor diffusion which is a 3D Gaussian distribution with 6 parameters. The DTI is described in details in Section 3.3. For now, let us note that at least 6 acquisitions with different gradient directions and one b 0 image are required to estimate this model. If seven acquisitions is the theoretical minimum, it is generally 30, 90 or more images with several b-values which are acquired to reduce noise influence or to estimate complex models such as diffusion spectrum imaging (DSI) described in Section 3.4.2.1 or MCM described in Section 3.5.

Acquisition strategies

A classic MRI sequence to produce a T2-weighted image is made line by line. The corresponding acquisition time is proportional to the TR and ranges typically around 5 minutes [START_REF] Serrai | Acquisition time reduction in magnetic resonance spectroscopic imaging using discrete wavelet encoding[END_REF]]. With this type of sequences, 30 acquisitions would take 150 minutes which is impossible in a clinical use. MRI sequences used for diffusion therefore need an accelerated sequence. The most used one, named EPI, allows to acquire 30 gradient directions in 3 or 4 minutes. With this short acquisition time come artifacts on the recovered image. The acquisition strategy and the diffusion modeling are then two separate problems, then latter will be discussed in Sections 3.3, 3.4, 3.5.

Single-shot acquisition sequences

During an MRI sequence, the signal is acquired in the Fourier domain named kspace. At the end of the acquisition, the signal is reconstructed applying a 2D or 3D inverse Fourier transform depending on the acquisition. In a conventional pulse gradient sequence, the signal in the k-space is acquired line by line. To improve the acquisition time, single-shot methods which acquire the entire image slice by slice have been developed (see Fig 3 .7 for illustration). With the growing interest of the medical community for diffusion MRI, several single-shot methods has been proposed [START_REF] Ahn | [END_REF], Hennig 1986, Meyer 1992, Liu 1996]. The most commonly used in clinical practice, the echo planar imaging (EPI), allows to acquire an entire image in seconds rather than minutes [Stehling 1991].

Figure 3.7: Illustration of the signal recovery in the k-space on pulse gradient sequences. On the left: conventional sequence acquired line by line. On the right: EPI which acquires an entire slice in a single-shot. Courtesy from Tuch [START_REF] Tuch | [END_REF] Unfortunately, single-shot acquisition sequences also deteriorate the quality of the acquisition. Indeed, despite the regular improvements of scanners and acquisition techniques, several artifacts specific to single-shot sequences still affect images.

Artifacts

The rapid switch of strong gradients induces Eddy currents (also named Foucault currents) in the electrically conductive structure of the scanner [Jezzard 1998, Reese 2003]. In conventional MRI the gradients are applied with a weak intensity for a short time, resulting in a self compensation of the induced Eddy currents [START_REF] Johansen-Berg | [END_REF]. On the contrary, in dMRI, the applied gradient can be different than the prescribed one owing to high Eddy current. Furthermore, Eddy currents are time varying and thus do not affect the entire image in the same way. The resulting diffusion mod-els estimated from the DWI sequence therefore have misregistration artifacts with respect to conventional MRI sequences.

A map of the off-resonance frequency at each voxel, named a field map [START_REF] Funai | Regularized field map estimation in MRI[END_REF]], can be used to describe Eddy currents effects and correct them [Jezzard 1998]. Another method models the spatial and temporal evolution of Eddy currents [Rohde 2004]. A different approach proposes the acquisition of an image with an opposite PED and uses the characteristic of the gradient with reversed polarity to correct the Eddy current distortions [Bodammer 2004].

A different distortion artifact induced by the magnetic field inhomogeneity affects EPI images. This artifact leads to locally deformed images, their intensities being modified depending on this deformation. We describe this artifact and how to correct for it in Chapter 4.

An other artifact specific to dMRI named Johnson noise or noise floor occurs depending on the b-value [START_REF] Jones | [END_REF]]. High b-value means a low signal that is thus strongly affected by the background noise. The signal is corrupted by a Rician noise distribution that affects principally the low diffusion region. This causes underestimation of the tensor and anisotropy. A method exists to correct the MD and the anisotropy based on dyadic tensor (specific tensor product) [Basser 2000]. Alternative approaches propose to apply an anisotropic smoothing kernel [McGraw 2004, Tabelow 2008].

Diffusion Tensor Imaging

Model description

As we saw in Section 3.2, from 2 acquisitions, one with the application of a gradient and one without, it is possible to estimate the ADC in the direction of the gradient. This measure is useful in areas where isotropic diffusion occurs. However, in anisotropic diffusion areas, the ADC in a unique direction does not represent the complexity of the tissue. To do so, the diffusion tensor imaging (DTI) model represents, in each voxel, the diffusion PDF as a 3D Gaussian distribution parameterized by a symmetric matrix:

D =   d xx d xy d xz d xy d yy d yz d xz d yz d zz   (3.11)
This 3D model, one of the the simplest to represent anisotropic diffusion, is also the most used in clinic. The advantage of such a description is that it makes easy to visualize it using its isosurface of probability (as ellipsoid) (see Fig 3.8). It also provides straightforward parameters of the tissue microstructure (see below). The DTI, as there are 6 unknown parameters in the Gaussian covariance matrix, is estimated from at least 6 DWI. More generally, we consider n DWI. For each DWI, the b-values and gradients are now represented by a 3D vector B: 

B = b 0 g (3.
12)

The signal is represented by a 3D Gaussian distribution and Eq 3.7 becomes:

A g,b = e -B ⊤ DB (3.13)
The diffusion tensor D can thus be recovered as the solution of an inverse problem. From at least seven DWI, various solutions exist to recover D [START_REF] Basser | [END_REF], Landman 2007, Wang 2004, Chang 2005]. The estimation of the diffusion model is beyond our subject, a simple method to perform the DTI estimation is to see the problem as a linear least square on the logarithm of A g,b [START_REF] Cheng Guan Koay | A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging[END_REF]]. This estimation of the diffusion tensor offers an analytic expression and hence allows a fast and simple computation.

DTI scalar microstructure properties

A diffusion tensor is characterized by its eigenvalues and eigenvectors and can be expressed as:

D = R ⊤ P R (3.14)
where R ∈ SO(3) is a rotation matrix of the special orthogonal group grouping the eigenvectors and P is a diagonal matrix of the eigenvalues. The largest eigenvalue of P , λ 1 , also called the axial diffusivity (AD) and denoted d , characterizes the ADC in the principal direction of diffusion. The radial diffusivity (RD) is computed as the mean of the two lowest eigenvalues λ 2 and λ 3 . From these 3 eigenvalues, several scalar measures are derived to characterize the diffusion. The mean diffusivity (MD) (or mean ADC) λ is the average of the diffusion in all directions:

λ = λ 1 + λ 2 + λ 3 3 (3.15)
The MD is useful to quantify in a global scalar index of diffusion in the brain without direction consideration. It is generally the first biomarker observed and is similar for gray and white matter in adult brain [Johansen-Berg 2009]. MD is used in clinic to detect edema, ischemic strokes [Lythgoe 1997] or discern necrosed glioblastomas and cystic metastatic tumors for example [Toh 2011]. However, the MD does not quantify the anisotropy of diffusion, which is crucial to highlight the structure of the brain, particularly inside the WM. The fractional anisotropy (FA) is thus defined to characterize the anisotropy as:

F A = 3((λ 1 -λ) 2 + (λ 2 -λ) 2 + (λ 3 -λ) 2 ) 2(λ 2 1 + λ 2 2 + λ 2 3 ) (3.16)
This measure ranges between 0 and 1 where 0 represents an isotropic tensor and 1 a complete anisotropic tensor which is degenerated. WM injury through demyelination in the brain can be evaluated by measuring as FA, AD, RD. This loss of WM integrity plays a role in disorder as major depressive disorder (MDD), obsessive-compulsive disorder (OCD), autism, MS, epilepticus [START_REF] Lucchinetti | Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination[END_REF], Kutzelnigg 2005, White 2008, Song 2002, Budde 2009, Soares 2013, Wieshmann 1997].

DTI limitations

As we see, the DTI is easy to estimate and it is still very used in clinic for many diseases. However the simplicity of the DTI also holds limitations. A voxel size is typically around 8 mm 3 , this cube in a normal brain can include white matter (WM), grey matter (GM), glial cells, cerebrospinal fluid (CSF) ... The diameter of an axon is between 1 and 10 µm, the scale difference between the signal observed and the structure we want to describe is huge. Thus the diffusion in complex areas, as in WM crossing fibers, cannot be represented by a tensor. This phenomenon is illustrated in Fig 3 .9. Tensors correctly represent the structure when all fibers have the same orientation but in the crossing areas the tensor is represented as isotropic in the plane of the crossing fibers. Thus, it is not possible to distinguish a crossing fiber or a free diffusion area with the DTI.

Moreover, the parameters as FA, MD are entangled. A change in the microstructure is characterized but not well described. This can be explained as an increment of the water proportion or a diminution of myelin that can provide similar effects on these biomarkers. Hence they do not correctly describe what is really happening within the brain microstructure. Figure 3.9: Crossing fibers and the corresponding tensors. In (a) the principal orientation of the tensor is correct, in (b) the tensor is isotropic in the crossing plan, thus it is not possible in the crossing area to know if the DTI represents a free water diffusion or a crossing fiber. Courtesy of Park [Park 2005] More complex models have been developed to address these issues that will be presented in Section 3.4, 3.5. First we present a state of the art on tensor interpolation.

Tensor interpolation

To perform statistics on DTI, either to compare two populations or a patient to a group in a voxel-wise manner, a registration step is required. Indeed for all the acquisitions, even within the same study, patients are not at the same exact position and geometric acquisition parameters are different. Moreover the variability of the brain between individuals implies that there is no way to compare to images without a registration step apart from time consuming regional ROI selection and evaluation. Independently of the algorithm used to perform registration, the original images need to be interpolated. In the case of DTI images, we want to average Gaussian PDFs and to do so several methods have been proposed.

A Gaussian PDF is defined by its covariance matrix that belongs to S + 3 {R}, the space of positive-define matrices which is an open subset convex cone of S 3 {R} the set of symmetric matrices.

Euclidean average

The simplest way to average tensors is to use the Euclidean distance between the covariance matrices as:

d Eucl (T 1 , T 2 ) = ||T 1 -T 2 || F (3.17)
where ||.|| F is the Frobenius norm, and T 1 , T 2 are the two Gaussian covariance matrices. Thus the weighted sum of n tensors {T i } i=1,..,n is the one which minimizes the weighted distance using the Frechet mean:

T = arg min T n i=1 w i d Eucl (T i , T ) (3.18)
where w i are their corresponding weights. In this case, the weighted sum is directly expressed as:

T = n i=1 w i T i (3.19)
Unfortunately, that method is not well adapted to the space of positive-define matrices because the average of tensors can present a swelling effect [Batchelor 2005, Pasternak 2010]. To avoid these issues, several methods have been proposed based on Riemannian frameworks. We first review some mathematical notions to introduce these tensor interpolation methods.

Riemannian manifold

A Riemannian manifold M is a smooth space equipped with a Riemannian metric which generalizes the notion of curve and distances defined in the classic Euclidean geometry. The Riemannian manifolds have been largely studied since the 19th century, many books being dedicated to describe their properties [Wolf 1967[START_REF] Boothby | [END_REF], Lee 2006[START_REF] Chavel | Isaac Chavel. Riemannian geometry: a modern introduction[END_REF]]. For each point x of M , an inner product equips the corresponding tangent space T x M . The neighborhood around the origin of the tangent space is called an exponential map. The smoothness of the variation of the tangent spaces allows to associate to each smooth curve γ(t) : [0, 1] → M a length derived from the tangent vector of the curve as:

L γ (a, b) = b a (< γ ′ (t), γ ′ (t) > T γ(t) M ) 1 2 dt (3.20)
where L is the length between two points a and b, γ ′ is the derivative of the curve in the tangent space (see an illustration Fig 3.10) and < ., . > TxM the inner product of the tangent space. A geodesic in a space thus defines the shortest way between two points as:

Figure 3.10: Illustration of a curved Riemannian space with a tangent space T x M defined for a point x (common license https://en.wikipedia.org/wiki/Tangent_ space).

d(a, b) = inf γ∈F ([0,1]:→R) b a (< γ ′ (t), γ ′ (t) > T γ(t) M ) 1 2 dt (3.21)
where inf is the infimum of all the curves γ on the manifold. Any Riemannian manifold can be associated with different metrics. Between two points at least one geodesic exists even if, contrarily to the classic Euclidean metric, no uniqueness is guaranteed.

Matrix operations

To use a Riemannian framework for DTI, we first need to express some operations on matrix spaces M n (R). The exponential of a matrix is defined as the infinite sum:

e X = ∞ k=0 X k k! (3.22)
This series converges for any X ∈ M n (R), thus e X is well-defined for all X ∈ M n (R) [Hall 2015]. The logarithm of a matrix, which is the inverse of the exponential: log(exp(M )) = M , is not always defined in the general case. However a tensor is characterized by its covariance matrix that belongs to S + 3 {R} (the space of positivedefinite matrices). In that space, the matrix logarithm always exists and is uniquely defined [Culver 1966]. In particular, let X ∈ S + 3 {R}, there is an eigen decomposition in a orthonormal basis as:

X = R ⊤ DR (3.23)
where R is an orthogonal matrix containing the eigenvectors of X and D is a diagonal matrix containing the eigenvalues of X. Then, for any k ∈ [0, ∞[

X k = (R ⊤ DR) ...(R ⊤ DR)... k times (R ⊤ DR) (3.24)
given that R ⊤ R = I 3 the identity matrix, we obtain:

X k = R ⊤ D k R (3.25)
The exponential of X is thus expressed as:

e X = ∞ k=0 R ⊤ D k R k! = R ⊤ ∞ k=0 D k k! R (3.26) e X = R ⊤ e D R (3.27)
where e D is the exponential of D which corresponds to the exponential of the diagonal elements of D. With this expression, the logarithm is uniquely defined as:

log(X) = R ⊤ log(D)R (3.28)
with log(D) containing the logarithm of the diagonal elements of D which is well defined since all eigenvalues are positive.

Affine-Invariant Riemannian metric

A Riemannian metric for tensors has been proposed based on a geodesic in the matrix log-space [Pennec 2006]. Interestingly, the method of information geometry [Amari 2007] derived on Gaussian probability density function (PDF) resulted in the same mathematical framework [START_REF] Lenglet | Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing[END_REF]]. This metric is defined to be invariant to any affine action on the tensor space, i.e:

< X, Y > P =< A * X, B * Y > A * P = Tr(P -1 2 XP -1 Y P -1 2 ) (3.29)
where Tr is the trace operator, X and Y are two tangent vectors to the manifold P and A is a left operator defined as:

A * X = AXA T (3.30)
This represents a solid theoretical mathematical framework which is affine invariant and conserves the determinant of the tensor. With this invariant metric, the exponential map associated at each point of the manifold is defined using the matrix exponential:

exp P (X) = P 1 2 exp P -1 2 W P -1 2 P 1 2 (3.31)
This expression also determines the inverse mapping with a one to one correspondence, so it is easy to come back to the matrix space. The mean T of a set of tensors X 1 , ..., X n is unique because the manifold has a-non positive curvature [Kendall 1990] and is the one that minimizes the sum of the squared distances (Frechet mean). It can be recovered following a gradient scheme:

T m+1 = T 1 2 m exp 1 n n i=1 log(T -1 2 m X i T -1 2 m ) T 1 2 m (3.32)
At each iteration, the mean is computed as the exponential map corresponding to the point of the previous step and is reprojected to the main manifold. As there is no analytic expression, finding a minimum takes time, even if this algorithm converges quickly [Fletcher 2004]. In this mathematical framework, the determinant, i.e the eigenvalues product, is conserved. Thus the average tensor does not suffer from a swelling effect as the Euclidean mean.

Geodesic-loxodromes

Another algorithm based on geodesic-loxodromes has been proposed later [Kindlmann 2007].

A loxodrome, very useful in navigation, is a road that crosses all meridians with a constant angle (see Fig 3.11), the famous Mercator projection is the first representation that draws every loxodrome as a straight line [START_REF] Michael | Surface parameterization: a tutorial and survey[END_REF]]. In mathematical terms, the constraints on the curve are expressed as:

∀t ∈ [0, 1], |γ(t) ′ | = 1, γ ′ (t).n(γ(t)) = α (3.33)
with α constant and n(γ(t)) a normalized vector pointing a constant direction. This method offers interesting properties: it conserves MD and FA instead the tensor determinant. Despite these trumps, as for the affine-invariant Riemannian method, a gradient descent is necessary to estimate the weighted average of tensors. For a classic image with more than 1 million voxels, the computation time can be really expensive. {R} is a Lie group whose tangent space is a vector space structure equipped with a logarithm multiplication ⊙ and a scalar logarithm multiplication ⊛:

T 1 ⊙ T 2 = exp(log(T 1 ) + log(T 2 )) (3.34) λ ⊛ T = exp(λ log(T )) (3.35)
where λ is a scalar, T , T 1 and T 2 belong to S + 3 {R}. We can notice that I 3 is the neutral element of the logarithm multiplication. S + 3 {R} has a Lie group structure with the logarithm multiplication. From these properties, the distance between two tensors is given by:

d (Log-Eucl) (T 1 , T 2 ) = || log(T 1 ) -log(T 2 )|| F (3.36)
From this distance, the mean T of a set of tensors T 1 , ..., T n with their corresponding weights w 1 , ..., w n is directly given by:

T = exp n i=1 w i log(T i ) (3.37)
Compared to the affine-invariant framework and the geodesic-loxodrome, this expression is very simple and thus the corresponding computation time is much shorter. This framework does not have the affine-invariance property but the determinant of the tensor is conserved. Moreover, several successive computations can be all done in the log-Euclidean space without coming back to the matrix space between each. The Euclidean, the affine-invariant, and the log-Euclidean interpolation results are compared on the weighted interpolation of two tensors in Fig 3 .12. The Euclidean tensor average suffers from an important swelling effect at the middle of the average. The affine-invariant and log-Euclidean averages conserve the determinant, the log-Euclidean average shows a more anisotropic structure than the affine-invariant. For both methods, the product of eigenvalues is conserved, however the ratio between the first and the second eigenvalues is different. This results in a fattening effect that deforms the shape of the average tensor. 

Shape invariant methods

To avoid the fattening effect, some recent studies propose shape-invariant methods [Wang 2014]. The eigen decomposition of a covariance matrix X = R ⊤ DR is a product of matrices that belong to SO 3 (R), the orthogonal group and D 3 (R) ∼ = (R + * ) 3 , the group of diagonal matrices with positive eigenvalues. A geodesic can be created as the product of two geodesics in each space SO 3 (R) and D 3 (R). The shape of a tensor is entirely described by the eigenvalues of D. Therefore, the shape of an average tensor is determined by the geodesic on the shape of the original tensors, which is independent of their orientation. Unfortunately, this method is not related to a Frechet mean and thus is less well defined for multiple tensors interpolation [Feragen 2016].

Models based on orthogonal basis

Now, we present an other type of models based on the decomposition of the signal in an orthogonal basis. These type of methods are classic to perform image processing. Indeed, representation of a signal in a set of orthogonal functions allows to capture, with few coefficients, the main part of the signal. For large bases, in addition to a low storage cost, the application of a simple operation of thresholding could denoise the signal. The popularity of representations produced a lot of bases as the Fourier space [Bracewell 1986], wavelets [Mallat 1989], the curvelet [Starck 2002] and more others. In the following we present how a set of orthogonal functions can be used to build a diffusion model.

Modified spherical harmonics functions

Orientation distribution functions (ODFs) are used to describe the principal diffusion directions, which can be done using a modified spherical harmonics (SH) orthonormal basis [Descoteaux 2007]. These functions represent main orientations of the signal in the q-space. The gradient applied to each DWI on the 2-sphere S 2 can be expressed with 2 orientation parameters g = (θ, ϕ). The modified SH basis is described by a set of functions:

Y j (θ, ϕ) =      √ 2 2 ((-1) m Y -m l (θ, ϕ) + Y m l (θ, φ)), if m < 0 Y 0 l , if m = 0 i √ 2 2 ((-1) m Y -m l (θ, ϕ) -Y m l (θ, φ)), if m > 0 (3.38)
where l is the order of the SH basis, m = -l, ..., l is an index, i.e, j := j(l, m) = l 2 + l + 1 + m. Y j is the j-th element of the modified SH basis and Y m i is the complex SH value. This basis is designed to be antipodally symmetric, real and orthonormal. Thus the signal from each DWI can be decomposed as:

S i = r j=i c j Y j l (θ, ϕ) (3.39)
where c j are the decomposition coefficients in the basis and r is the order of the basis. The maximum degree of the basis, l, controls the dimension and therefore the number of modified SH functions r = (l+1)(l+2)

2

. The degree of the basis defined the number of orientation of the modified SH functions. An illustration of these functions is presented Fig 3 .13. For the mathematical background on SH please refer to [Hobson 1931, Müller 2006, Atkinson 2012].

Figure 3.13: The first modified SH functions corresponding to degree l = 0, 2, 4 (from top to bottom).

The spherical harmonic functions basis, with a variable number of degrees, can represent any number of diffusion directions (generally 1, 2 or 3) and thus, contrary to DTI, allows to model crossing fibers. On the other hand, this basis only represents the diffusion directions. Therefore we lose microstructure information such as diffusivity. A tractography, which only considers directions, is thus a perfect application for such a representation [Descoteaux 2009].

Moreover, an orthogonal basis offers good mathematical properties. As for tensors, a Riemannian framework performing gradient descent has been developed to interpolate orientation distribution functions (ODF) [Goh 2011b]. An other analytic methods for ODF reorientation reduces the computational complexity of the interpolation [Geng 2009b]. These bases can also be used to perform group comparison for a clinical study. Principal component analysis (PCA) analysis techniques offers a voxelwise comparison [START_REF] Commowick | Diffusion MRI abnormalities detection with orientation distribution functions: A multiple sclerosis longitudinal study[END_REF]]. Finally, this method proposed a diffeomorphic registration algorithm used for fiber tractography [Raffelt 2011].

3D bases for ensemble average propagator reconstruction

ODFs only consider the direction of the water diffusion. To estimate the probability of the water displacement in the entire R 3 space, we need to consider other models.

In the following, we quickly present several models that allow the reconstruction of the EAP and thus are able to better describe the brain microstructure.

Diffusion spectrum imaging

The simplest way to consider an orthogonal basis from DWI acquisitions is to consider the entire q-space. A classic DWI is composed of several pulse sequences measured on the q-space. The acquisition is acquired from a homogeneous repartition of gradients applied to one or several shells for a total between 30 and 100 images. On the other hand, a diffusion spectrum imaging (DSI) acquisition covers the entire q-space with a 3D grid [Tuch 2002]. This results in a huge number of gradients applied (around 500) with different b-values for almost all of them. Here, the function basis is the q-space and the PDF can directly be estimated from it with a 3D discrete Fourier transform [START_REF] Wedeen | [END_REF]].

p(x) = (S 0 ) -1 F -1 (S g ) (3.40)
where F -1 is the inverse Fourier transform and p is the PDF of water diffusion. Such DSI sequences offer a high angular reconstruction with an acquisition time still too expensive for a clinical use. However, several acquisition schemes based on compressed sensing reduce the acquisition time offering new possibilities for this type of sequences [START_REF] Menzel | [END_REF], Bilgic 2012].

Q-space based functions

Other methods are based on the reconstruction on the signal from the entire q-space [Assemlal 2009]. The multiple q-shell diffusion propagator imaging (mq-DPI) proposes, as the ODFs, the use of modified SH functions [Descoteaux 2011]. An extension of this work using spherical polar Fourier (SPF) basis, a subset of the modified SH basis, provides better continuity and regularization properties [Caruyer 2012].

It is able to reconstruct information about radial diffusion and need less acquisitions than the DSI . From a multiple shell acquisition, the EAP can be analytically reconstruct using the Laplace equation [Spiegel 1991]. From the EAP expression, it is possible to obtain the ODFs as previously. Moreover, the return-to-origin (RTO) probability has an analytic expression:

RT O = b 2 max c 0 + 2d 0 b max 3 √ π (3.41)
where b max is the gradient strength, c 0 and d 0 are functions of coefficients of the signal in the modified SH basis. This measure is a propagator feature that includes both radial and axial diffusion informations into a scalar map.

Multi-Compartment models

General description

We have seen several models based on a decomposition on a orthogonal basis. Now we consider multi-compartment model (MCM), an other class of models that decomposes the water diffusion PDF as a weighted sum of compartments. These models do not have orthogonal properties and are designed to finely describe the microstructure of the brain. In return, they have complex PDF expressions, and thus, the corresponding mathematical framework from estimation to interpolation becomes harder. A MCM PDF is decomposed as:

p(x) = n i=1 w i p i (x) + m j=1 w j iso p j iso (x) (3.42)
where p i are the PDFs of anisotropic compartments, p j iso the PDFs of isotropic compartments and w i , w j iso are the compartment weights with the constraint:

n i=1 w i + m j=1 w j iso = 1 (3.43)
Before considering the isotropic and anisotropic compartments, we can note that the expression of MCMs has an intrinsic compatibility advantage with the signal from the Fourier space. Indeed, the characteristic function φ for p(x) is written as the weighted sum of individual characteristic functions:

φ(t) = n i=1 w i φ i (t) + m j=1 w j iso φ j iso (t) (3.44)
where φ i (t) and φ j iso are the characteristic functions of their corresponding PDFs. According to q-space equations, signal is formed from the PDFs as [Stamm 2013]:

A g,b = |φ( √ 2bg)| (3.45)
The main purpose of MCMs is to model, through several compartments, the microstructure of the brain. Each compartment represents specific diffusion within liquid as CSF but also small structures as axons, glial cells... An isotropic compartment represents isotropic water diffusion inside the brain. We present the different types of isotropic compartments, what they represent, and their corresponding models in Section 3.5.2.

An anisotropic compartment models a fascicle, i.e a bundle of axons with a similar general direction. A good review of anisotropic compartment has been proposed recently [Panagiotaki 2012]. We introduce several anisotropic compartments models as the multi-tensor model (MTM), diffusion direction imaging (DDI), neurite orientation dispersion and density imaging (NODDI) in Section 3.5.3.

Isotropic compartments

The isotropic compartments represent isotropic water diffusion within a voxel. Thus the diffusion follows a 3D Gaussian distribution:

p(x) = 1 √ 2πd exp - x ⊤ x 2d (3.46)
where d is the diffusivity. Isotropic compartments have several possible d values corresponding to different cell types or structures:

Free water. It represents the unconstrained water such as CSF in the ventricles and around the brain parenchyma. The diffusivity of free water, which depends on the temperature, is equal to d free = 3.10 -3 mm 2 s -1 at 37 • C [Pasternak 2009, Clark 2000, Harris 1980].

Isotropic restricted water. This type of isotropic compartment models the water inside impermeable spherical glial cells. Water molecules indeed rebound infinitely inside the spherical boundary of the glial cell. This trapped water has a corresponding diffusivity equal to d restricted = 1.10 -3 mm 2 .s -1 [START_REF] Stanisz | [END_REF], Panagiotaki 2012].

Fixed water. Some authors also described water particles stationary inside the walls of the glial cells or stuck into cellular membranes in fixed tissues [START_REF] Stanisz | [END_REF][START_REF] Alexander | [END_REF]]. In brain anatomy, these molecules probably exist, however our experience of MCMs estimations made on the Human Connectome Project (HCP)

give us a high percentage of stationary water which does not seem realistic. This may reflect a modeling problem or noise type and this behavior is subject to caution.

Anisotropic compartments

Anisotropic compartments represent the water diffusion within and around axons. We call fascicle a group of axons along the same global direction, the axial direction. The set of all axons in a fascicle is named intra-axonal space, the rest of the space is named extra-axonal (see Fig 3 .15 for illustration). The extra-axonal space is a complex environment composed by astrocytes, glial cells and extra-cellular molecules [Assaf 2004]. Some MCMs divide the signal attenuation between intra-axonal space A g,I and extra-axonal spaces A g,E . Three solutions exist to model a fascicle:

• One PDF models the entire anisotropic compartment.

• The independant sum of two random variables: one for intra-axonal and one for extra-axonal spaces. The final PDF is thus expressed as a convolution.

• A weighted sum of two PDFs: one for intra-axonal and one for extra-axonal spaces, therefore the PDF becomes :

p i (x) = w i I p i I (x) + w i E p i E (x) (3.47)
where p i I is the PDF of the intra-axonal space, p i E is the PDF of the extra-axonal space and w i I , w i E their respective weights: In the intra-axonal space, the water within the axon rebounds against the membrane, thus the global diffusion is more important along the axon than in the perpendicular plane. The ratio between the axial and radial diffusion depends on several parameters:

w i I + w i E = 1.
• The axon diameter [START_REF] Chetley | Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter[END_REF]]. The water molecules hit statically more quickly the membranes within a very thin axon. Thus the axial diffusion is inversely correlated with the diameter of the axon.

• The diffusion time. Along the same idea, when the diffusion time is high, water molecules hit more frequently the membranes. Hence, the FA is higher with a high diffusion time. It is interesting to notice that the b-value is related to the diffusion time and thus impacts the anisotropy of the diffusion model.

These general assumptions do not reflect the complexity of the water molecules behavior. The permeability of the membrane, the presence and the width of a myelin sheath also plays a role, but difficult to quantify in diffusion [Beaulieu 2002].

The water behavior within the extra-axonal space is even more complicated to model and understand. Water within the myelin has a short T2 relaxation time, hence the corresponding ADC is very low and the diffusion is negligible [START_REF] Brunberg | [END_REF]]. However, the rest of the water molecules surrounded by axons will more likely hit the myelin sheath and thus diffuse along the axial direction. The rest of the extra-axonal space is composed of glial cells and astrocytes and the collision of water molecules with such cells is, at least, not obvious to describe.

Therefore, contrarily to the free water diffusion which is well defined and overall accepted in the community, a lot of different models have been proposed to model anisotropic compartments. In the following, we present some of these models, obviously we do not pretend to be exhaustive. Another MCM named diffusion direction imaging (DDI), has been proposed and will be discussed into more details in Section 5.4.2 [Stamm 2013].

Tensor model

As we saw in Section 3.3 the anisotropic compartment can be described as a 3D Gaussian distribution. The characterize of which is used to define the acquired signal:

A g,b = e -B ⊤ DB (3.48)
This solution allows to represent several fascicles within one voxel and is a straight forward extension of the DTI model, the most used diffusion model. Two simplified versions of the tensor compartment exist:

• A stick compartment represents an anisotropic compartment as a degenerated tensor with one principal orientation with corresponding diffusivity. The two lowest eigenvalues are set to 0 [START_REF] Behrens | [END_REF]].

• A zeppelin compartment represents a tensor with equal second and third eigenvalues.

The estimation of MCMs is a hard non linear optimization problem. Indeed, in general PDFs do not have an analytic expression. Thus, these particular tensors are frequently used as a proto-compartment to estimate a more complex MCM. One common way to estimate MCM is to fix some parameters in a first time and release them one by one [START_REF] Stamm | [END_REF]]:

• Optimize stick models from randomly picked initial sticks.

• Use it to estimate a zeppelin releasing one eigenvalue.

• Finally, use the ball and zeppelin to compute the MCMs.

The MTM is a combination of isotropic compartments and several tensor compartments. It is estimated step by step with an expensive computation time. Furthermore, the MTM needs at least 2 different b-values to be estimated (as majority of MCM), a single shell leading to an infinite space of solutions [START_REF] Scherrer | [END_REF]]. Hence, its common use in clinic is not realistic yet.

NODDI

An other famous MCM developed recently is named NODDI [Zhang 2012a]. This model is made for HARDI acquisitions with at least 2 shells. In NODDI, the anisotropic compartment is separated between the intra-axonal space and the extraaxonal space as in Eq 3.47.

The intra-axonal space is modeled as a set of sticks considering the low radial diffusion inside an axon [START_REF] Behrens | [END_REF], Sotiropoulos 2012]. Depending on the brain area, the sticks have a low angular dispersion as in the corpus callosum or a large one as in centrum semiovale [Zhang 2012a]. The characteristic function of such a distribution on the sphere is expressed as follows:

φ i I ( √ 2bg) = S 2 f (n)e -bd <g,n> 2 dn (3.49)
where x belongs to the unit sphere S 2 , d is the axial diffusivity, g the gradient direction and f the distribution around the sphere, modeled as a Watson distribution [Mardia 2009]:

f (x) = M 1 2 , 3 2 , κ -1 e κ<µ,x> 2 (3.50)
where M denotes the confluent hypergeometric function of Kummer [Lewin 1991], µ is the mean direction and κ a concentration parameter around µ. The Watson distribution offers a good representation for both high and low dispersion. The extra-cellular space is also represented by a model of orientation-dispersed cylinders as:

log φ i E √ 2bg = -bg ⊤ S 2 f (n)D(n)dn g (3.51)
where D(n) is a cylindric symmetric tensor with n as principal orientation and f a Watson distribution. NODDI is a simplification of a previous model which required a more complex protocol and estimation time [Zhang 2011]. As proposed in the original paper [Zhang 2012a], the global MCM NODDI comports one isotropic compartment and only one such anisotropic compartment with separate intra-axonal and extra-axonal spaces. It demonstrates a good ability to represent the dispersion orientation among a fascicle. However, with one anisotropic compartment, it is not optimal to model crossing fibers, although it is possible to add other anisotropic compartments to do so.

CHARMED

A last popular anisotropic compartment model named Composite Hindered And Restricted Model of Diffusion (CHARMED) has been proposed [Assaf 2004, Assaf 2005]. As NODDI, it separates the anisotropic compartment between intra-axonal and extra-axonal spaces.

In the intra-axonal space, the diffusion in the axial direction is considered as free and is thus represented by a classic 1D Gaussian distribution, a stick. Contrary to other models, CHARMED does not assume that the gradient application time δ is small enough to not affect the diffusion and hence attempts to model it. This results in a more complex cylindrically restricted distribution for the radial diffusion in intra-axonal space [Neuman 1974, Assaf 2004].

For the extra-axonal compartment, the model assumes a 3D Gaussian distribution, i.e a tensor. CHARMED is adaptable as it allows several anisotropic compartments with intra and extra-axonal spaces. In addition to that, it previously corrects the Johnson noise using [Pierpaoli 1996]. Few years later, the same authors extended this work with AxCaliber, another anisotropic compartment model, that considers the axon diameters as a free parameter to estimate [Assaf 2008].

Introduction

In recent years, single-shot echo planar imaging (EPI) has been increasingly used as it is substantially faster than most other acquisition sequences. The high speed of this acquisition comes from the fact that images are acquired within a singleshot instead of multiple shots (single or multiple echoes) in other classical sequences (Gradient Echo, Spin Echo...). With respect to the required relaxation time between each shot, the single-shot method saves a considerable acquisition time. By shortening the acquisition time of every single time frame, EPI enables the acquisition of a larger number of images than other methods while respecting the same clinical constraint. This is particularly useful for diffusion-weighted magnetic resonance imaging (DWI) wherein the acquisition of several scalar images is required to represent the underlying microstructure of the brain (white matter mainly) [Ferizi 2014b, Zhang 2012b, Stamm 2012a[START_REF] Taquet | [END_REF]. For this reason, EPI is the most common sequence used for DWI [Johansen-Berg 2009]. For similar speed reasons, EPI is also used for functional imaging [Huettel 2004], which requires the fast acquisition of many brain images while a task is executed by the subject.

The high velocity of EPI acquisitions comes at the cost of a high sensitivity to magnetic field inhomogeneities. Affected areas, often located at the tissue interfaces with different magnetic susceptibilities such as bone or air, are either contracted or dilated along the PED [Jezzard 1995] (moreover, measured tissue intensities in these regions change due to the local transformation). Therefore the brain anatomy in EPI does not match with structural images that are much less sensitive to distortions. Such a correspondence is however critical as a joint analysis is often performed for these modalities: 1-for diffusion imaging, structural images are used to define regions of interest for fiber tracking or to extract lesions that are to be linked to brain microstructure properties ; 2-for fMRI, activations are computed on low resolution EPI to speed up acquisition time and need to be aligned with a high resolution T1w image at least for interpretation and visualization of activated regions in the brain. In both cases, it is therefore necessary to perform EPI distortion correction as non linear anatomy mismatch between the modalities will lead to biased results. Computing such a distortion correction is still an open problem, especially in regions where large deformations occur.

As the distortion in EPI acquisitions comes from the B 0 field inhomogeneities, the first technique for distortion correction relies on the acquisition of a B 0 field map [Jezzard 1995, Reber 1998]. This map is in turn used to infer the local contractions and dilations, and correct EPI intensities. This field map however needs to be smoothed to avoid noise corruption and may therefore be unable to provide sufficient correction in severely distorted areas [START_REF] Holland | Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging[END_REF], Wu 2008].

Other techniques have considered new sequences using point spread functions (PSF) to obtain acquisitions with no distortion. This category includes works by [START_REF] Robson | Measurement of the point spread function in MRI using constant time imaging[END_REF]], Chung et al. [START_REF][END_REF]] and Zaitsev et al. [START_REF] Zaitsev | Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction[END_REF]]. Unfortunately such sequences are not currently available on all scanners.

A third class of methods considers the acquisition of two EPI sequences with opposite phase encoding directions -one anterior-posterior and one posterior-anterior for example -to correct for distortion. This class of techniques, initially proposed by Chang and Fitzpatrick [Chang 1992] and Bowtell et al. [START_REF] Bowtell | [END_REF]], relies on the computation of a distortion field from the two images to correct the EPI. Several methods use this technique: Andersson et al. [START_REF] Andersson | [END_REF]] used a pair of reversed EPI in conjunction with a discrete model of image formation for spin-echo EPI. An implementation called TOPUP is available in the FSL package1 . Voss et al. [Voss 2006] introduced an algorithm to estimate, from the two images, the correction displacement field based on cumulative intensity distributions along each line in the PED. This simple method strongly reduces the distortion, however it is sensitive to noise and the computed transformation needs to be smoothed, leading to a trade-off between regularity and precision. Other methods in this category include Morgan et al. approach [Morgan 2004], using continuously alternating phase encoding, Weiskopf et al. method [Weiskopf 2005] using a modified multi-echo EPI acquisition with reversed phases, or Holland et al. algorithm [START_REF] Holland | Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging[END_REF]] which performs an intensity-based registration (each line being considered independently). As for Voss et al. algorithm, the obtained displacement field is sensitive to noise, especially when large displacements are present. More recently a new method has been proposed to combine EPI with opposite PED with PSF [In 2015] however costing additional acquisition time. Finally a registration-based method has been proposed by Irfanoglu et al. [Irfanoglu 2015] requiring a non distorted image such as a T2 image (in addition to the reversed PED image) which is used as the central point where the two images with reversed PEDs are transformed. It minimizes a cost function to compute a transformation which has no a priori restriction with respect to EPI image formation. The transformation is instead projected after each step of the minimization to follow a distortion model (with distortions appearing uniquely along the PED).

This last category of techniques has the advantage of requiring only a short additional acquisition time to correct for distortion: if we assume no patient movement occurred during the acquisition and that the magnetic field inhomogeneity stays constant during the acquisition [Vovk 2007], only one supplemental EPI image with reversed PED is necessary to correct the entire EPI series (e.g. fMRI or DWI acquisition). This chapter therefore presents a new algorithm for distortion correction falling in the same category. Block-matching (BM) based registration has been successfully proposed for registration in medical imaging both for rigid [Ourselin 2000] and non-linear registration [Commowick 2012a]. As a registration framework, BM has the advantage of being very generic and easily adaptable to different transformation priors, both to match blocks in the floating image [Commowick 2012b] and for the global transformation (linear or non-linear). Moreover, it is also robust to outliers in the local matches. Our approach towards distortion correction of EPI is thus based on BM. It is designed to register two images acquired with opposite PED without requiring an additional structural image. To do so, we introduce a symmetric BM registration algorithm, optimizing local affine transformations constrained a priori in the PED to match the expected distortions in EPI. In addition, the transformation is computed as opposite symmetric to match the distortion model in EPI [Jezzard 1995]. The implementation of our algorithm is available in our open source medical image processing toolbox Anima2 .

We evaluate this algorithm qualitatively and quantitatively on two datasets in Section 4.4. First, we present results on EPI acquisitions of a phantom, where the geometry of the image is known. We also perform evaluation on in vivo diffusionweighted EPI of five subjects for which images with four different PED (anteriorposterior (AP), posterior-anterior (PA), left-right (LR), right-left (RL)) were ac-quired. We present our results in contrast to two state-of-the-art methods using the same inputs: TOPUP from Andersson et al. [START_REF] Andersson | [END_REF]] and Voss et al. method [Voss 2006].

Methods

Distortion Model

We assume that two images have been acquired: I F is the EPI forward image acquired with a classical PED (AP for example), and I B is the EPI backward image acquired with a reversed PED (PA in this case). The goal of EPI distortion correction is to estimate a distortion transformation field from these two images. Then, from this field, it is possible to recover a corrected image C from these two images, but also an entire serie of EPI acquired with AP or PA PED. Jezzard et al. [Jezzard 1995] have demonstrated that deformations due to B 0 field inhomogeneities appear mainly along the PED and are negligible in other directions. More precisely, we follow the distortion model as expressed previously in [Voss 2006, Morgan 2004] which assumes that I F and I B are generated from the theoretical corrected image C using a displacement field parallel to the PED:

C(x) = J T + (x)I F (T + (x)) C(x) = J T -(x)I B (T -(x)) (4.1)
where T + (x) = x + U (x) and T -(x) = x -U (x). J T + and J T -denote the Jacobian determinants of the local deformations which account for intensity changes in the distorted areas. It will lead to an increased intensity in the contracted areas and a decreased intensity in the dilated areas. U corresponds to the distortion displacement field which is parallel to the PED, e.g. if the PED is along the y-axis then

U (x) = [0 U y (x) 0] T .
It is assumed in this model that T + and T -are opposite symmetric, i.e. that they share the same U up to a minus sign along the PED.

Block-matching for distortion correction

Different approaches may be considered to match the two images. In the distortion model, the corrected image C is generally unknown. It could be replaced (as suggested in [Irfanoglu 2015]) by a non distorted similar acquisition (such as a T2 weighted acquisition). However, this is not always available in clinical acquisitions. We therefore consider the case where C can be at best estimated and choose a registration approach that does not rely on it. A registration method has been introduced by [START_REF] Avants | [END_REF]] allowing to estimate the corrected image C without having it directly appear in the algorithm. The idea, instead of looking for the transformation T between two images, is to seek the half-transformation T 1/2 so that the two images registered from I F and I B match as much as possible:

I F • T 1/2 ≈ I B • T -1/2 ≈ C (4.2)
We adapt this approach to a BM algorithm [Ourselin 2000, Commowick 2012a] by constraining the transformation to be aligned with the PED as assumed in the distortion model. The BM algorithm enables a simple and effective incorporation of this constraint on the deformation field. First we present the global scheme of the BM algorithm, then we detail each part separately. We consider an initial transformation U 0 which can be null or coming from another coarse correction algorithm.

We use a classic multi-resolution pyramidal scheme [Burt 1983] to process images from coarse to fine resolution. At each level of the pyramid, from the transformation at the previous pyramid level, we proceed as described in Algorithm 1 and illustrated as a diagram in Fig. 4.1.

Algorithm 1 Block-matching algorithm for EPI distortion correction 1: for p = 1...P , iteration on pyramid levels, do 2:

for l = 1...L, iterations, do 3:

Resample images to get I F,l-1 and I B,l-1

4:

Estimate local transformations for each block on I B,l-1 : A + ← block-matching(I B,l-1 , I F,l-1 )

5:

Estimate local transformations for each block on

I F,l-1 : A -← block-matching(I F,l-1 , I B,l-1 ) 6:
Extrapolate asymmetric dense SVF updates from A + and A -:

δS + ← extrapolate(A + ), δS -← extrapolate(A -) 7:
Compute a symmetric SVF update: δS, and compose it with current transformations 8:

Ensure T +,l and T -,l are opposite symmetric 9:

Regularize (elastic-like) T +,l and T -,l

At each step, we first resample the original images with the current transformation. Then we estimate pairings between the images in the forward and backward directions (A + = { Â+,1 , .., Â+,N } and A -= { Â-,1 , .., Â-,N }) using a BM algorithm. We utilize A + and A -to extrapolate two asymmetric stationary velocity field (SVF) δS + and δS -which are combined into a symmetric SVF update δS (Section 4.2.3). We then compose this update with T +,l-1 and T -,l-1 , and ensure that T + and T - still share the same displacement field U . Finally, the current displacement field is regularized using a convolution with a Gaussian kernel (standard deviation σ E ). The following sections detail the BM, extrapolation and composition steps of this algorithm and their specificities for distortion correction of EPI.

Block-matching of distorted EPI

At each iteration, we define blocks B +,i , which are patches centered at x i with size (2N + 1) 3 , regularly placed on image I B,l-1 (every V voxels in each direction). We also define blocks B -,i with the same characteristics on I F,l-1 . For each of those blocks, we look for an adapted transformation best matching them respectively to At the L-th iteration

Original I F Current forward transform T +,l-1 Current backward transform T -,l-1 Original I B Resample I F,l-1 Resample I B,l-1 δS + δS -
Block-matching in the log-Euclidean space Symmetrize the transform Go back to the regular space I F,l-1 and I B,l-1 . Let L be the set of allowed transformations for matching blocks.

δS = 1 4 (δS + -δS -) δT + , δT - Exponential T +,l = T +,l-1 • δT + T -,l = T -,l-1 • δT -
Frequently, in other applications, the transformation sought between blocks is a simple 3-dimensional translation. In the case of EPI distortion, the set L can be further adapted to match a priori the expected features of the distortion at the block level and thus obtain a more robust transformation estimation. First the model assumes that distortions appear uniquely along the PED: a one-dimensional translation along the PED (modeled by one parameter t .,i ) is therefore sufficient. At the scale of the block, a single translation is however not enough to account for local contractions and dilations due to the distortion at different points of the block. We account for this by adding three parameters to the transformation. The first one accounts for the change of scale due to the global contraction or dilation inside the block (s .,i ). This scale parameter solves the problem of global scaling inside the block, however different lines along the PED will have different distortions generating skewness at the block level. To consider this, we define two skew components (k .,i and m .,i ) for the two directions complementary to the PED. Assuming the PED is the y-axis, A .,i is expressed as a 4 × 4 matrix:

A .,i =     1 0 0 0 k .,i s .,i m .,i t .,i 0 0 1 0 0 0 0 1     (4.3)
Note that having the PED on an other axis will result in the line of parameters being displaced on the first or third line of the matrix. A few interesting properties are associated to this transformation. The Jacobian determinant of the transformation is simply computed as the scaling parameter s .,i , and this parameter is therefore utilized directly for modeling the intensity changes due to distortion at the block level. To speed up the global SVF extrapolation process (see Section 4.2.3), the transformation is estimated directly in the log-space. As the log-Euclidean framework presented in Section 3.3.4 for the positive-definite matrix space, the equivalent for the affine transformation has been developed [Alexa 2002, Arsigny 2009]. Let's assume that the logarithm of the transformation A, is encoded, with simplified notation, as follow:

à =     0 0 0 0 k s m t 0 0 0 0 0 0 0 0     (4.4)
where à is the corresponding log-transformation and k, s, m, t their corresponding parameters, this expression is equivalent as long as the scaling factor s > 0. The exponential of this matrix is defined as:

e à = ∞ k=0 Ãk k! = ∞ k=1 sk k!      0 0 0 0 k s 1 m s t s 0 0 0 0 0 0 0 0     
for any s = 0, which lead to the analytic expression:

e à = I 4 +      1 0 0 0 k s (e s -1) e s m s (e s -1) t s (e s -1) 0 0 1 0 0 0 0 1      (4.5)
where I 4 is the identity matrix. In the case s = 0, the exponential is smiplified to:

e à =     1 0 0 0 k 1 m t 0 0 1 0 0 0 0 1     (4.6)
From these expressions, the logarithm of A the original transformation which is the opposite of the exponential is recovered as:

log(A) =     0 0 0 0 k s-1 log(s) log(s) m s-1 log(s) t s-1 log(s) 0 0 0 0 0 0 0 0     (4.7)
which is correct as long as s > 0 and s = 0. If s = 0, the logarithm is simplified to:

log(A) =     0 0 0 0 k 0 m t 0 0 0 0 0 0 0 0     (4.8)
We have a corresponding one to one mapping between the affine transformation and the log-space. Therefore to speed up the algorithm, the BM search, as the entire pipeline, except the similarity measure, is done in the log-space. The BM step then amounts to estimate the four log-parameters of each block transformation in L to compute the set of optimal transformations Â+,i and Â-,i (respectively for blocks B +,i and B -,i ) optimizing a similarity measure S between I F,l-1 and I B,l-1 :

Â+,i = arg max Ã+,i S J exp( Ã+,i ) I F,l-1 • exp( Ã+,i ), I B,l-1 (4.9) Â-,i = arg max Ã-,i S I F,l-1 , J exp( Ã-,i )I B,l-1 • exp( Ã-,i ) (4.10)
This optimization is performed using the BOBYQA algorithm for gradient free optimization with parameters within predefined bounds [Powell 2009]. It proceeds by successively computing quadratic approximations to the cost function to find its local maximum.

Confidence weights

We have computed for each block B .,i the local transformation Â.,i that optimizes the similarity measure S. We then assign to this transformation a weight w .,i to estimate the confidence in the block match. To do so, we use a combination of two different terms. The first one is the similarity itself Ŝ.,i assuming it belongs to the range [0, 1], 1 being the best result (if not, a function of Ŝ.,i can be used). The second one, w d (B .,i ) gives an index of the local structure of the reference block along the PED. If the block structure is parallel to the PED, all tested transformations A .,i for that block may get the same similarity score, thereby introducing uncertainty in the matches. Actually, the algorithm will always find a solution due to small variations of intensities or computing precision. However the quality of such solutions will be random. We therefore want to avoid as much as possible such random solutions which can propagate important errors. Only considering the optimal similarity is therefore not enough and we introduce the index w d to give a low weight to these uncertain blocks and their corresponding local transformations. w d is defined as a function of the structure tensor inside the reference block B .,i :

w d (B .,i ) = c l D B .,i < vD B .,i , g > (4.11) • D B .,i is the average structure tensor of block B .,i • c l (D B .,i
) is a linear coefficient which quantifies the anisotropy of the tensor [Westin 2002]

-c l (D B .,i ) = λ 1 -λ 2 λ 1 , with λ 1 λ 2 λ 3 the eigenvalues of D B(.,i) -c l (D B .,i ) is close to 0 if D B .
,i has a planar or circular structure and close to 1 if it has a very anisotropic one

• vD B .,i is the principal eigenvector of D B .,i
• g is the unit vector along the PED w d will be 0 if the structure tensor is perpendicular to the PED (image structure parallel to g) or planar/spherical (c l = 0) giving a structure based confidence to the matches. Finally, the weight for the match of block B .,i is defined as the geometric mean of the similarity index and the structural index:

w .,i = w d (B .,i ) Ŝ.,i (4.12 
)

Transformation extrapolation and composition

From the BM algorithm, two sets of block pairings have been constituted: one for I F , Â+ = ( Â+,1 , . . . , Â+,m ), and one for I B , Â-= ( Â-,1 , . . . , Â-,n ). Each pairing is defined by the center of its corresponding block B .,i , a transformation Â.,i , and a weight w .,i . We then extrapolate two update SVFs from the sparse weighted transformation logarithms: δS + = extrapolate( Â+ ) and δS -= extrapolate( Â-). This extrapolation aims at computing a dense field of transformation logarithms R.,i (i = 1, ..., M representing each voxel) from the sparse Â.,j . This is performed utilizing an M-smoothing algorithm in the log-Euclidean space on affine transformations [Arsigny 2009] as proposed in [Commowick 2012a]:

( R.,1 , . . . , R.,M ) = arg min

R .,1 ,...,R .,M M i=1 j∈N i w B .,j ρ ||R .,i -log Â.,j || 2 d |x i -x j | 2 (4.
13) where log denotes the matrix logarithm which is naturally obtained in our framework, x j is the spatial position of pairing, N i is the neighbourhood of x i , ρ is a robust error norm to account for outliers in the set of sparse transformations Â. (here the Welsh function), d is a function of the Euclidean distance -here d(b 2 ) = exp(-b 2 /2θ 2 ) -giving more importance to spatially close reference pairings. This cost function is optimized through an iterative scheme, more detailed in [Commowick 2012a]. The obtained transformation logarithms R.,i are then applied to their respective positions x i to compute the SVFs δS + and δS -: δS . (x i ) = R.,i x i . Extrapolating update SVFs using this M-smoothing algorithm, we incorporate an outlier rejection framework, mainly coming from the ρ function in Eq. ( 4.13), that removes from the resulting SVF erroneous block transformation logarithms due for example to artifacts or other effects in I F,l-1 and I B,l-1 . In addition, the extrapolated fields are SVFs and therefore encode diffeomorphic and invertible transformations.

A symmetric δS is then computed, following [START_REF] Vercauteren | [END_REF]], as a quarter of the subtraction of asymmetric incremental updates δS + and δS -:

δS = 1 4 (δS + -δS -) (4.14)
While the half difference of the two asymmetric incremental updates is sufficient to compute a symmetrized field, δS is computed as a quarter of the difference as we are seeking the transformation bringing the two input images towards an unknown middle image C. As such only the half symmetric SVF is needed. The final step of each iteration then amounts to composing the updates with the current transformations and ensure that the resulting T +,l and T -,l transformations still share the same displacement field U at the l-th iteration U l . To do so, δT + and δT -are first obtained by exponentiating δS: δT + = exp(δS) and δT -= exp(-δS) [Arsigny 2009], and composed with the current transformations:

T +,l = T +,l-1 • δT + and T -,l = T -,l-1 •δT -.
As the composition and inverse operations do not ensure the opposite symmetry condition, we finally compute the shared displacement field U l as

U l (x) = 1 2 (T +,l (x) -T -,l (x)) such that T +,l (x) = x + U l (x) and T -,l (x) = x -U l (x).

Experimental design

Image acquisitions

Imaging was performed on a Siemens Verio 3T scanner. The approach was evaluated on in-vitro and in vivo data:

• In vitro: A grid phantom with known geometry developed by the UNIRS group from the commissariat a l'energie atomique (CEA) Neurospin for the CATI Consortium for image acquisition and processing3 was imaged : b 0 images (AP, PA, LR and RL) were acquired with a 12 channels coil, a 128×128×60 matrix size and a 2×2×2mm 3 voxel size.

• In vivo: 5 healthy volunteers were imaged after approval from the local institutional review board. For each volunteer, two pairs of b 0 EPI images with opposite PEDs (AP/PA and LR/RL), 128×128×60 matrix size and 2×2×2mm 3 voxel size were acquired with a 32 channels head coil. The EPI images were acquired using the parallel imaging method GRAPPA with an acceleration factor of 2 (TE = 82ms and an echo space 0.69ms). Regular clinical DWI were also acquired (30 gradient directions, b = 1000s.mm -2 ) with identical geometry and AP PED.

Experimental methods

Evaluation strategy

In order to estimate the quality of the distortion correction we follow the process illustrated in Fig. 

Method 1: Voss

The first evaluated method was proposed by Voss et al [Voss 2006]. Their approach amounts, for each line in the PED, for both images, to do:

• Compute normalized cumulated intensities N i (y) = 1 α i y 0 L i (x)dx for i = 1, 2 (4.15) 
• L 1 and L 2 are line intensities of images I F and I B , α 1 and α 2 are normalization constants:

α i = ∞ 0 L i (x)dx for i = 1, 2 (4.16) 
• For a large number n of values x n between 0 and 1, find by cubic interpolation [Schoenberg 1973] y 1,n and y 2,n such that

N 1 (y 1,n ) = N 2 (y 2,n ) = x n
• At each position y n = (y 1,n + y 2,n )/2, the transformation map is computed as 4.17) This algorithm has the advantage of being very fast and simple. However, it is highly sensitive to noise and line registrations are purely independent which may lead to unrealistic transitions between consecutive lines. Therefore, a 3D Gaussian smoothing with a standard deviation σ is performed on the obtained transformation T , which leads to a trade-off between transformation precision (small Gaussian σ) and transformation regularity (large Gaussian σ). In our experimentations, we have set σ to one pixel.

U (y n ) = y 1,n -y n = y n -y 2,n ( 

Method 2: TOPUP

In addition to Voss et al. method, we also evaluated the distortion correction obtained from the TOPUP algorithm, available within the FSL package 4 . This correction method is based on the work from Andersson et al. [START_REF] Andersson | [END_REF]]. It uses a model of EPI image formation and, together with the two images with opposite PEDs, reconstructs a deformation field to obtain a corrected EPI. More details are provided in Andersson et al. publication or on the FSL documentation page. We utilized the default parameters of this method for all of our experiments.

Method 3: Proposed block-matching technique

Distortion correction involves finding very large and local displacements between the images, displacements that may be extremely difficult to recover for registration approaches. We tackle this problem using a coarse-to-fine approach to recover EPI distortion and using Voss et al. method with a large σ smoothing value as an initial transformation, which is then further improved with our BM strategy.

Aside from transformation initialization, the BM implementation has different parameters, that are set as follows. First, we use three levels on the multi-resolution pyramid and 10 iterations at each level. The size of each block is 3×3×3 (i.e. N = 1).

These blocks are placed regularly every two voxels in each direction (V = 2). The initial search radius for BOBYQA is set to 2 voxels, the initial skew radius is set to 0.1, and the initial scale radius to 0.1. We use a squared correlation coefficient as the similarity measure between blocks. At the end of each iteration, the elastic regularization is made with a σ E value of 2 voxels. These parameters were set to the same values for each distortion correction experiment.

Evaluation Metrics

Phantom Evaluation: point-based metric

Contrary to brain images, the phantom acquisition has a known grid structure on which landmarks are easily identifiable. For each uncorrected image (AP, PA, LR and RL), 20 landmarks were carefully and manually selected at voxels representing crossing points. To evaluate quantitatively distortion correction, we have then applied the following steps for each evaluated method. First, images AP and PA, respectively LR and RL, were used to correct their distortion and estimate two deformation fields (one for AP/PA and one for LR/RL). For this specific evaluation, they were applied independently to the spatial landmark positions in AP, PA, LR and RL giving 4 corrected images. If the distortion correction is perfect, the transformed points should then match after transformation. We evaluate this match by computing an average of the one to one Euclidean distances between the landmarks:

d i = 1 6 4 j=1 4 k>j ||p i,j -p i,k || (4.18)
where p i,j denotes the transformed i-th landmark on image j (one of the four images with different PEDs, AP, PA, LR and RL). d i is a distance in millimeters characterizing at which point the four images are distorted after correction around the specific locations of the p i,j : the closer d i is to 0, the closer the four input images are around the i-th landmark.

Brain images evaluation: intensity-based metrics

To compare images from the brain database after correction, we define a similarity measure computed between the two corrected images (C AP/P A and C LR/RL ). This evaluation similarity measure (Sim) is defined as a sum of local correlation coefficients normalized between two images. To compute this metric only on relevant areas, masks are computed on four images, the two corrected by TOPUP and the two corrected by BM using the brain extraction tool of the FSL package 5 . Then the union of these four masks is used to obtain the global mask M and therefore compute the similarity measure:

Sim(I, J, M) = 1 Card(M) p∈M C(I Np , J Np ) (4.19)
where I Np and J Np are neighborhoods of p in I and J, defined as a cube centered on p of size (2q + 1) 3 , in the result part q = 3. C is the local correlation between I Np and J Np . Card(M) denotes the cardinal of the set to ensure that Sim belongs to the range [0,1].

Sim characterizes well if the images match after correction and is defined between 0 and 1 which is useful to keep the same stable index between several subjects. We first compare the different distortion correction algorithms on the phantom acquisition. We present in Fig. 4.3 a visual example of the phantom images before and after correction. The BM corrected images are really close and appear visually as being well corrected for distortion. TOPUP images are also properly corrected. Phantom images however do not represent a realistic anatomy and the distortion correction quality may vary depending on the methods. For example, Voss method is not adapted for this kind of bicolor images and gives visually poorer results. In addition to visual inspection, we computed landmark position errors based on the distance presented in Section 4.3.3.1, Eq. (4.18). These results are illustrated in Fig. 4.4, showing the box-plots of d i distances over all i. Voss performs slightly and significantly better than uncorrected images (paired t-test, p = 3 × 10 -3 , average error of 2.09 mm compared to 3.46 mm untouched), illustrating its modest performance on this specific dataset. TOPUP also significantly reduces the distance errors, to an average of 1.54 mm, with respect to both uncorrected images (paired t-test, p = 3 × 10 -4 ) and to Voss algorithm (paired t-test, p = 1 × 10 -3 ). Finally, BM outperforms all other methods obtaining an average error of 1.38 mm, significantly different from uncorrected images (paired t-test, p = 2 × 10 -4 ), Voss algorithm (paired t-test, p = 4 × 10 -4 ) and TOPUP (paired t-test, p = 0.028), although both algorithms obtain close precision results, below the voxel size, and are therefore comparable. Overall, these results confirm the visual results, showing that both BM and TOPUP achieve the best results with BM having the lowest distance error and less variance.

Results

Results on the Phantom

Results on in vivo Data

Qualitative Results

We present in Fig. 4.5 results of our distortion correction method by visualizing pairs of b 0 EPI with opposite PED, corresponding images corrected by BM and structural T1 reference images. The two lines correspond to a different phase en- Generally, in a clinical use, it is reasonable to acquire an entire DWI serie in one PED and a single b 0 with reversed PED. To correct b 0 EPI, a deformation field is estimated from the pair of reversed PED b 0 . Then, considering no motion, this deformation field is used to correct the entire DWI serie. We present color fractional anisotropy (CFA), estimated from the original and the corrected DWI series, and their corresponding T1 (not distorted) images. The color in CFA map depends on the principal direction of the tensor (red is Left/Right, green Anterior/Posterior and blue Foot/Head) and the intensity of the color is proportional to the FA value. The colors and intensities of original and corrected CFA are similar. However the position of the left-right corrected CFA offers a better matching with the structural T1 around the falx cerebri (see arrows 4.6.a,b,c) and for the anterior-posterior corrected CFA around the brainstem (see arrows 4.6.d,e,f). Such a good correction will then allow, for example, for a better definition of regions of interest from the T1 image to seed fiber tracts on the diffusion image, or to study diffusion model properties in specific anatomical regions. We then illustrate on Fig. 4.7 distortion correction results of the different evaluated methods on a pair of EPI with opposite PED (anterior-posterior and posterioranterior). On this strongly affected area, we compared the three different distortion correction methods with respect to a structural image (T1 image). We first noticed that the three corrected images are more similar to the structural image than the original ones, suggesting that each method is able to strongly reduce the distortions. However the image corrected using Voss et al. method (Fig 4. 

Quantitative Results

We performed experiments on an Intel Xeon 2.5 Ghz computer on 20 cores. The mean time per subject is very short (about 5s) for the Voss algorithm, 170s for the BM and 500s for TOPUP. Unlike TOPUP, BM is multi-threaded, allowing a faster computation time which may be useful in the clinic.

To obtain a quantitative evaluation of the quality of the corrected images, the similarity metric (Sim) introduced in Section 4.3.3.2 was computed on the dataset of 5 subjects after correction by the different methods. The Sim metric results between the two corrected images C AP/P A and C LR/RL are presented in Table 4.1. These results are consistent with visual inspection and highlight that BM performs better than Voss et al. on all subjects, showing a significant improvement of the correction compared to the initialization (Wilcoxon signed-rank test, p = 0.03). Between BM and TOPUP, the best score depends on the subject, the average similarity for the 5 subjects is better for BM than TOPUP however it is not statistically significant (Wilcoxon signed-rank test, p = 0.69). 

Sim

Discussion and Conclusion

This chapter presented a new block-matching based algorithm for EPI distortion correction using an additional EPI with reversed PED. To this end, we have developed specific linear transformations constrained to fit a priori with the distortion model at the block level. This transformation definition, integrated into a symmetric BM algorithm, ensures a robust computation of an opposite symmetric transformation.

We have tested our distortion correction and two state-of-the-art methods on a phantom with a known ground truth shape. Our results perform significantly better than Voss et al. correction, which is not adapted for images with uniform intensity regions. Moreover BM performs significantly better than TOPUP algorithm but at a sub-voxel level (though one should not over interpret this difference). Then, we have evaluated the BM registration on 5 subjects with 2 pairs of b 0 EPI. A similarity measure based on local correlation between the 2 corrected images C AP/P A and C LR/RL show a significant improvement between the Voss initialization and the BM correction. TOPUP algorithm and BM obtain similar levels of similarity. These results demonstrate the ability of our BM approach to compute a robust EPI distortion correction. Our algorithm is implemented in a multi-threaded fashion using ITK allowing for faster computation time than TOPUP.

A common problem with reversed PED methods is motion since the a priori distortion model is not true any more in that case. The best way to avoid motion problems is to perform an acquisition with continuously alternating PEDs and to correct all pairs independently. For clinical use it is also possible to acquire only one PA and a series of AP and then correct the entire series from the deformation field estimated. This is more subject to the motion issue but also reduces the acquisition time, which is crucial.

The intensity of distortion in EPI is related to susceptibility-induced fields and eddy current-induced fields. The general trend to increase the scanner field strength increases distortions [Wang 2005]. Thus it is essential to have efficient tools to correct these distortions. With that goal, we proposed a new simple and robust method, computationally efficient, ready for a clinical use. We studied its application for diffusion MRI, however it can be used for other modalities based on EPI acquisitions 
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Perspectives

Motivations

To increase the quality of the distortion correction, we want to extend the BM correction method adding an extra image as reference. Indeed for almost all protocols including EPI, at least one non-distorted structural image, as T1-weighted, T2-weighted, FLAIR, is acquired. Thus, there is a possibility to use this free extrainformation to enhance the distortion correction. To do so, we developed a new BM algorithm with a structural image in the middle using a specific metric: the multiple correlation. To our knowledge, the concept of block-matching with more than 2 images has never been proposed before. We present this part in the perspective section as the results are not yet improving distortion correction and this subject requires more future research work.

New Block-Matching general framework

Now we consider that instead of a pair of b 0 with opposite PED, we have one set of n forward b 0 images, one set of m backward b 0 images for a total of p = n + m EPI and one structural image as a T2-weighted image, see Fig 4.8. We want to use the non-distorted structural image to recover through correlation measures a transformation applicable to the DWI images. The underlying assumption made is that non-distorted b 0 images should have the same structure than a T2-weighted image. In the following, we present a metric, well adapted to our framework, named multiple correlation.

Multiple correlation

The multiple correlation is a metric taking one target variable y and several independent variables {x i } i=1,..,p . The multiple correlation coefficient is expressed as:

R = c ⊤ R -1 x,x c (4.20)
where c = (r y,x 1 , .., r y,xp ) ⊤ is a vector of correlation coefficients with r y,x i being the correlation between the target variable y and the independent variable x i . R x,x is the covariance matrix of the independent variables:

R x,x =    r x 1 ,x 1 • • • r x 1 ,xn . . . . . . . . . r xn,x 1 • • • r xn,xn    (4.21)
where r x i ,x j is the correlation between x i and x j . The multiple correlation coefficient R belongs to the range [0, 1] and denotes a correlation between y and a linear combination of x i [Huberty 2003]. In the following, we describe how this measure is well adapted to our case and propose a algorithm for BM with several image.

Multiple correlation BM algorithm

Block-matching algorithm typically considers only two images to register. However, adding a structural image in the middle as a reference requires a new BM framework presented here. Now the structural image is represented by the target variable y and all the b 0 forward and backward registered images are represented by the independent variables x i . Instead of classic BM, we look for the best parameters associated with both forward and backward log-transformations as:

A F =     1 0 0 0 k s m t 0 0 1 0 0 0 0 1     and A B =     1 0 0 0 -k -s -m -t 0 0 1 0 0 0 0 1     (4.22)
where A F is the forward log-transformation associated to the forward b 0 images and A B is the backward log-transformation associated to the backward b 0 images (see Fig 4.8). For each block, the multiple correlation BM algorithm maximizes the multiple correlation between the target variable (the structural image) and the independent variables, forward and backward images registered by their respective transformations.

Results and discussions

We presented a mathematical framework of a new multiple correlation BM algorithm. In practice, the problem resides in getting of a non-distorted structural image enough similar to a b 0 EPI. In our experiments, we tried to use T2-weighted images. The forward b 0 images {x i } i=1,..,n and the backward b 0 images {x i } i=n+1,..,p are respectively averaged in one forward image x F and one backward image x B . The multiple correlation BM is not able to recover the eyes and more importantly presents issues around the brainstem.

image seem highly similar of how we expect a non distorted b 0 image. The remarkable result obtained on strong warped area by the multiple correlation shows the potential of this registration method. However, the second line shows results on a different slice where the T2-weighted images shows more details than the b 0 image does. The multiple correlation BM is not able to recover properly the eyes and also encounters issues around the brainstem whose boundaries get corrupted. This new multiple correlation BM registration method presents promising results. Unfortunately for now, we are not able to obtain a good correction for the entire brain. The acquisition of a non-distorted image very similar to the b 0 should be a solution. A recent new sequence named readout-segmented EPI could provide such an image [Porter 2009].

Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a unique MRI acquisition strategy, which can provide invaluable insights into the white matter architecture in vivo and non-invasively. A number of diffusion models have been devised, with the aim to characterize the underlying tissue microstructure. The most widespread model is known as diffusion tensor imaging (DTI) [Basser 1996] which, under the assumption of homogeneous diffusion in each voxel, describes the random motion of water as a single Gaussian process with a diffusion tensor. However, many regions of crossing fibers exist in low-resolution clinical DWI and the DTI model fails at correctly representing them. multi-compartment model (MCM) have been extensively proposed and studied as alternative diffusion models to cope with the intrinsic voxelwise diffusion heterogeneity [Ferizi 2014a]. The key principle of MCM is to explicitly model the diffusion in a number of pre-specified compartments akin to groups of cells inducing similar diffusion properties. MCMs may have a great impact on patient diagnosis or care, as they allow for a better characterization of brain tissue microstructure, which enables the identification of more specific biomarkers such as proportion of free water (edema), proportion of water in axons (partial disruption or complete loss of axons, axonal injury), etc.

A critical step to identify relevant biomarkers on a large database is the creation of an atlas from individual estimated MCM images. This is achieved using registration and interpolation of MCMs. To date, only few approaches have addressed this issue. Among them, [START_REF] Barmpoutis | Registration of high angular resolution diffusion MRI images using 4th order tensors[END_REF]] or Geng et al. [Geng 2009a] introduced registration methods specifically tuned for orientation distribution functions (ODF) on the sphere. Goh et al. [Goh 2011a] introduced an interpolation method for ODFs in a spherical harmonics basis as a Riemannian average. However, this approach does not apply to MCMs as they are not expressed in the same basis. Taquet et al. [START_REF] Taquet | [END_REF]] proposed an interpolation approach seen as a simplification problem of all weighted compartments from a set of voxels into a smaller set of compartments. However, they assume that a single compartment belongs to the exponential family which is not the case for all MCMs.

We introduce in this chapter a new interpolation and averaging method for MCM images also seen as a simplification problem. It relies on the fuzzy spectral clustering [Ng 2002] of input compartments, from MCMs provided e.g. from trilinear interpolation, into a predefined number of output compartments. Then, each cluster is used to compute an interpolated compartment, providing an output MCM. This method is very generic as it relies only on the definition of a similarity measure between compartments and of a weighted averaging scheme for compartments. It can therefore be applied to any MCM as long as those two components may be defined.

The MCM interpolation / averaging simplification problem is presented in Section 5.2. We present in Section 5.4.2 the averaging schemes and distances for tensors, diffusion direction imaging (DDI) model and free water models. Then, we define 4 possible compartment averaging methods for the DDI model [Stamm 2012b] in Section 5.4.2 and similarity measures related to each of those averaging schemes. We demonstrate qualitatively and quantitatively the interest of both the averaging schemes and interpolation framework on simulated and in vivo data. We finally apply this framework to compute an atlas of DDI (Section 5.5) which clearly highlights a better averaging fiber crossing regions.

Model interpolation as a simplification problem

Global interpolation scheme

The interpolation and the atlas creation of MCM are two different problems which can be treated following almost the same framework. For the atlas creation, at a given voxel, we have m MCM, each coming from an individual image, each containing anisotropic compartments of constrained water diffusion and isotropic compartments describing unconstrained or restricted water diffusion. The natural average of these m MCM is the superposition of the compartments with their corresponding weight multiply by the weights of their respective images α 1 , ..., α m . For the creation of an atlas, all the MCMs have the same weights which is the invert of the number of inputs:

∀i = 1, .., m α i = 1 m (5.1)
However, the high number of compartments composing that average MCM does not make it realistic according to the brain model and moreover causes algorithmic issues due to its important size. In this chapter, we describe how to simplify a MCM into a smaller one, i.e with less anisotropic and isotropic compartments.

For the interpolation scheme, we want to apply a transformation to a MCM. In the case of a trilinear interpolation, for each voxel in the interpolated MCM, we need to mix 8 neighboring voxels with weights α i corresponding to the output voxel position. This problem is similar to the averaging of several MCM: the simplification of a large number of compartments into a smaller one. Here weights of the MCM α i are defined by the spatial position of the trilinear interpolation.

We consider m MCM M i (i = 1, ..., m) each containing c(i) compartments of anisotropic water diffusion and g compartments of isotropic water diffusion. This means that the input MCM do not necessarily have the same number of anisotropic compartments, however they are assumed to have the same number of isotropic compartment g (one free water and one restricted diffusion water for example). We note F i j the j-th anisotropic compartment of M i and F i iso, l its l-th isotropic compartments, their respective weights being w i j and w i iso, l which sum up to 1. Each of these M i has an associated weight α i . We formulate the interpolation problem as merging the M i into one MCM with a predetermined number of anisotropic compartments q and g isotropic compartments. There are therefore two different averaging parts: anisotropic compartments and isotropic compartments.

The averaging of all anisotropic compartments coming from M i into q anisotropic compartments is performed using spectral clustering [Ng 2002]. Having defined a similarity matrix S between anisotropic compartments, spectral vectors are extracted from S. These spectral vectors are then clustered using fuzzy C-Means. Hence, we obtain q sets of n weights (n being the total number of anisotropic compartments) β i j,k that are probabilities for the j-th anisotropic compartment of M i to belong to the k-th cluster k ∈ {1, .., q}. We define θ i j,k the weight of the j-th anisotropic compartment of M i in the k-th cluster and θ i iso,l the weight of the l-th isotropic compartment of M i :

θ i j,k = α i w i j β i j,k
(5.2) 5.3) From θ i j,k and θ i iso,l , we compute weights φ k and φ iso,l of the output compartments. (5.4) ∀l = 1, ..., g φ iso,l = m i=1 θ i iso,l (5.5) We also define θi j,k and θi iso,l different sets of normalized weights from θ i j,k and θ i iso,l as:

θ i iso,l = α i w i iso,l ( 
∀k = 1, ..., q φ k = m i=1 c(i) j=1 θ i j,k
∀k = 1, ..., q m i=1 c(i) j=1 θi j,k = 1 (5.6) ∀l = 1, ..., g m i=1 θi iso,l = 1 (5.7)
From these sets of weights, we are able to simplify the input MCM into a single one C containing q anisotropic compartments {C k } k=1,...,q and g isotropic compartments {C iso,l } l=1,...,g :

∀k = 1, ..., q C k = m i=1 c(i) j=1 θ i j,k F i j (5.8) ∀l = 1, ..., g C iso,l = g i=1 θ i iso,l F i iso,l
(5.9)

An illustration of this global interpolation scheme is presented in Fig 5 .1. This framework is very generic and can be applied to any MCM as long as we provide a way to compute a similarity matrix between anisotropic compartments. The spectral clustering is described in Section 5.2.2. The isotropic compartment averaging is common to any MCM and is described in Section 5.3. We derive MCM compartments averaging and similarity measure for the multi-tensor in Section 5.4.1 and then for the DDI in Section 5.4.2.

Spectral clustering

Reducing a number of objects or variables into a smaller group (often denoted as clusters) is a common issue to many different domains: machine learning, data compression or image segmentation for example [START_REF] Haralick | [END_REF]]. This is a difficult and open problem with a large litterature on it [Jain 1999]. Here we want to cluster n compartments into q comparments as in Fig 5 .2.

Among the most popular algorithms proposed, the k-means consists in minimizing the distance across groups between points and their cluster centroids [Lloyd 1982] The algorithm thus alternates, from an initial position, between centroid computation and cluster affectation. The minimization of the distance in the k-means algorithm is a NP-hard problem [Mahajan 2009], for which a large number of approximations in a polynomial time have been proposed [Hartigan 1979, Kanungo 2002, Park 2009]. However these methods are sensitive to a random inizialization and the risk to converge to a local minimum is high [START_REF] Bradley | [END_REF]]. Another clustering category considers a different way of affecting data points to classes by assiging a weight to each point which corresponds to a probability of membership to each cluster. The fuzzy C-means clustering belong to this category [Bezdek 1984, Pal 2005].

Here we use a normalized spectral clustering algorithm [Ng 2002], illustrated in Fig 5 .2. From a similarity matrix S between inputs, spectral vectors of dimension q (where q is the number of clusters) are computed and used to initialize a clustering algorithm, generally the k-means, but we choose the fuzzy-C-means to keep continuity in the interpolation. Several choices are possible to define spectral vectors : we use the largest eigenvectors of the symmetric normalized Laplacian of S [Ng 2002]. This method only needs a similarity matrix between the inputs (here MCM compartments), is robust, well-reviewed with a large number of algorithms proposed [START_REF] Luxburg | [END_REF][START_REF] Spielmat | [END_REF]. For each type of compartments, we define specific semimetric {d(F i , F j )} i,j=1,...,n which are used to compute the similarity matrix. A semimetric d has the same properties than classic distance without the triangle inequality: 

   d(F i , F j ) ≥ 0 d(F i , F j ) = 0 if and only if F i = F j d(F i , F j ) = d(F j , F i ) (5.10)
this allows to define a weak metric in spaces not equipped with a natural distance. From this semimetric, we compute the similarity matrix as:

S i,j = e -d 2 (F i ,F j ) 2σ 2
i,j=1,...,n (5.11) where σ is a normalization coefficient to avoid computational errors. We describe how distances {d(F i , F j )} i,j=1,...,n are defined for isotropic compartments in Section 5.3 for the multi-tensor and several DDI semimetrics in Section 5.4.

Isotropic compartments averaging

Isotropic compartments are treated differently from other compartments as they represent specific tissues with no preferred direction and known properties. Each MCM M i has g isotropic diffusivities d i iso,l from its isotropic compartments F i iso,l , associated to weights θ iso,l . Isotropic diffusions follow a Gaussian distribution with covariance matrix D i iso,l defined as : ∀l = 1, ..., g D i iso,l = d i iso,l I 3 (5.12) where I 3 is the identity matrix. These covariance matrices D i iso,l define tensors and then belong to S + 3 (R), the space of positive-definite matrices and can be averaged following the log-Euclidean framework described in Section 3.3.4.6. Then the average isotropic tensors are defined as: ∀l = 1, ..., g D iso,l = exp m i=1 θi iso,l log(D i iso,l ) (5.13)

In this simple case, the exponential and the logarithm of identity matrices multiplied by a scalar are given by: exp(αI 3 ) = exp(α)I 3 (5.14) log(αI 3 ) = log(α)I 3 (5.15) which simplify Eq (5.13) and lead to the mean diffusivities:

∀l = 1, ..., g d iso,l = exp m i=1
θi iso,l log(d i iso,l ) (5.16)

Anisotropic compartments averaging

Each MCM has one or several anisotropic compartments which represent a constrained water diffusion along particular tissues. Within an axon, the water is indeed trapped and then diffuses along the axon direction. A bundle of axons oriented in the same direction creates an unisotropic water diffusion at the voxel level. This water diffusion is represented as an anisotropic compartment following different models depending on the MCM considered. We present the interpolation scheme for two MCM: the multi-tensor model (MTM) in Section 5.4.1 and the diffusion direction imaging (DDI) in Section 5.4.2.

For each cluster k, we wish to average the set of F i j with weights θi j,k into a compartment C k with weight φ k . To simplify notations in the following section, we now just consider n anisotropic compartments with their corresponding weights w i that we want to average into a single one. To perform spectral clustering, we also need to be able to compute a similarity measure between two anisotropic compartments. In each part of the following sub-section, we define the similarity measure induced by the semimetric used to average compartments.

Multi-tensor

The multi-tensor model (MTM) is one of the classical MCM (see Section 3.5.3.1). It contains several anisotropic tensors and one or several isotropic compartments. We want to average these anisotropic tensors and define a distance between them. Let {T i } i=1..n be a set of tensors with their corresponding weights {w i } i=1..n . All {T i } i=1..n belong to S + 3 (R), the space of positive-definite matrices and can be average following a log-Euclidean framework. The computation is done in the log-Euclidean space and the average tensor is recovered as:

T = exp n i=1 w i log(T i )
(5.17)

From this, we can easily and efficiently average any number of tensors into a unique one. A distance between two tensors is also directly defined in the log-Euclidean space as:

d(T 1 , T 2 ) = || log(T 1 ) -log(T 2 )|| F (5.18)
where ||.|| is the Frobenius norm:

||M || F = Tr(M T M ) = j λ 2 j (5.19)
where Tr is the trace operator and λ j are the eigenvalues of M . The similarity matrix used for spectral clustering is thus derived from Eq 5.11. Examples of the multi-tensor averaging are given in the results part (Section 5.5). In the following, we continue to focus on the compartments averaging on an other MCM: the DDI.

We introduce the DDI model and then compare several metrics to average the DDI anisotropic compartments.

DDI model

Presentation of the DDI model

In addition to one or several isotropic water compartments, a number of axonal compartments are added to the DDI to model how water molecules diffuse in axonal bundles with various orientations. Diffusing water molecules in a particular axonal compartment are assumed to undergo a random displacement that is the independent sum of a von Mises & Fisher (VMF) vector on the sphere S 2 of radius r and a Gaussian vector on R 3 [Stamm 2012c]. The VMF is an orientation distribution with the following PDF on the unit sphere [Banerjee 2005]: 5.20) where x ∈ S 2 , µ ∈ S 2 is the principal axis of diffusion, κ ∈ [0, ∞[ is an index of the concentration of diffusion around µ (κ = 0 is an isotropic distribution and κ → ∞ is a distribution focused on one point, see Fig 5.3). This definition of a VMF distribution is extended to a sphere of radius r :

f (x|µ, κ) = κ 2π(e κ -e -κ ) e κµ T x ( 
f (x|µ, κ, r) = κ 2πr 3 2 (e κ -e -κ ) e κµ ⊤ x r
(5.21)

Hence, the resulting PDF describing this random displacement is given by the 3D convolution of the VMF distribution with the Gaussian distribution:

p 0 (x|µ, κ, d, ν) = f (x|µ, κ, r) * e -1 2 x T Σ -1 x (2π) 3 2 |Σ| 1 2
(5.22) where r is the radius of the VMF sphere given by r = √ νd and Σ the covariance matrix of the Gaussian part defined as:

Σ = (1 -ν)d κ + 1 [I 3 + κµµ T ] (5.23)
where d is the diffusivity along µ and ν the non Gaussianity proportion of the compartment. The VMF distribution present a favorite direction along µ. However an anisotropic compartment represents a bundle of axons which is assumed to be in a unique orientation with no privileged forward or backward direction within a voxel. Therefore the water diffusion is equal in both direction ±µ, thus to consider orientation instead of direction, the PDF is symmetrized:

p(x|µ, κ, d, ν) = p(x|µ, κ, d, ν) + p(x| -µ, κ, d, ν) 2 (5.24)
We now consider n compartments F i (i = 1, ..., n) with their corresponding weights w i that we want to average into one compartment F . From this model, let µ i , κ i , ν i , d i be the parameters of all the compartments F i and µ, κ, ν, d be the parameters of the final average compartment F . We propose four different methods to compute this average: simplest, tensor, log VMF, and covariance analytic.

Simplest averaging

In the DDI model, each µ i is a unit direction in S 2 . However, as we saw previously, they do not represent a direction but an orientation. The simplest way to solve this problem (as two opposite directions) is to put all µ i in the top hemisphere and average them on the sphere to obtain µ : 5.25) where ρ i ∈ [0, π] and ϕ i ∈ [0, π] represent the spherical coordinates of the µ i put in the top half sphere, ρ and ϕ the average angles of µ. The rest of the parameters are simply estimated as a weighted Euclidean averaging :

           ρ = n i=1 w i ρ i ϕ = n i=1 w i ϕ i ( 
                     κ = n i=1 w i κ i d = n i=1 w i d i ν = n i=1 w i ν i (5.26)
In this average, all parameters are estimated independently and we wish to compute a similarity measure to this semimetric. A weighted sum of distances using all parameters is used and defined as:

d simple (F 1 , F 2 ) = | < µ 1 , µ 2 > | + α|κ 1 -κ 2 | + β|d 1 -d 2 | + γ|ν 1 -ν 2 | (5.27)
with α, β, γ normalization terms to give each parameters the same influence in the similarity between compartments. The similarity matrix S used for spatial clustering related to this average is then defined using the semimetric defined in Eq 5.27 along Eq 5.11.

Tensor averaging

The simple averaging is only a partial solution, especially for directions close to the sphere equator which might generate discontinuities in averaging. We now consider µ i as orientations instead of directions. To do so, µ i is represented as a cigar-shaped tensor T i defined as: 5.28) with ε = 10 -6 to have non degenerated tensors and I 3 the identity matrix. Then, T i ∈ S + 3 (R) and we can use the log-Euclidean framework. The T i are averaged in the log space in a similar way to MTM:

T i = µ i µ T i + εI 3 ( 
T = exp n i=1 w i log(T i ) (5.29)
We define the average µ as the principal direction of T (i.e the eigenvector with the largest eigenvalue). The other parameters are obtained by weighted Euclidean averaging as for the simple averaging. Also the semimetric between compartments is defined as:

d tensor (F 1 , F 2 ) = || log(T 1 ) -log(T 2 )|| F + α|κ 1 -κ 2 | + β|d 1 -d 2 | + γ|ν 1 -ν 2 | (5.30)
where α, β and γ are normalization coefficients. This semimetric is then used along Eq 5.11 to compute the similarity matrix.

Covariance analytic

Another approach uses information from covariance matrices Σ i of the DDI compartments. These Σ i matrices belong to S + 3 (R) and can be averaged into Σ using the log-Euclidean framework similarly to Eq. ( 5.29):.

Σ = exp n i=1 w i log(Σ i ) (5.31)
We then wish to extract all parameters from the average Σ. We start by approximating Σ by a cigar-shaped tensor to match the DDI compartment model. To do this, we need to enforce two equal secondary eigenvalues λ ⊥ . In the log-Euclidean framework, this amounts to compute λ ⊥ as λ ⊥ = √ λ 2 λ 3 where λ 2 , λ 3 are the two lowest eigenvalues of Σ. We now have Σ the cigar-shaped tensor of F :

Σ = (1 -ν)d κ + 1 [I 3 + κµµ T ] (5.32) 
A tensor in S + 3 (R) with 3 different eigenvalues has 6 specific parameters, however our tensor is cigar-shaped and then only has 4 specific parameters. We want to recover 2 parameters for the direction µ and 1 for κ, µ and d. For the missing 5-th parameter, we process by identification using the given relation r 2 = νd. To exploit this relation, we define the average radius as the one whose sphere surface is the average of the input sphere surfaces. This corresponds to a weighted Euclidean average of the individual r 2 i :

r = n i=1 w i r 2 i 1 2
( 5.33) This therefore gives us a direct relation between ν and d leading to only 4 parameters to estimate (µ, κ and ν), d being computed as d = r 2 /ν. Then, we can estimate all the parameters by the resolution of the eigensystem of Σ. Interestingly, we can develop the product Σµ as follows:

Σµ = (1 -ν)d κ + 1 [I 3 + κµµ ⊤ ]µ (5.34) 
Additionally, µ belong to S 2 and thus µ ⊤ µ = 1. We thus obtain:

Σµ = (1 -ν)d κ + 1 (1 + κ)µ (5.35) Σµ = (1 -ν)dµ (5.36)
We can therefore see that µ is an eigenvector of Σ and λ = (1ν)d is its corresponding eigenvalue. We note µ ⊥ any perpendicular vector to µ and compute Σ: 5.37) the dot product µ ⊤ µ ⊥ being null, then: 5.38) any µ ⊥ ∈ Vect(µ) ⊥ is an eigenvector of Σ forming a two-dimension eigenspace with an unique eigenvalue associated λ ⊥ = (1-ν)d 1+κ . We can notice that λ > λ ⊥ is the largest eigenvalue because κ > 0, then µ corresponds to the principal direction of Ŝigma that can be computed from the numerical resolution of the eigensystem. We

Σµ ⊥ = (1 -ν)d κ + 1 [I 3 + κµµ ⊤ ]µ ⊥ ( 
Σµ ⊥ = (1 -ν)d 1 + κ µ ⊥ ( 
have λ = (1 -ν)d, λ ⊥ = (1-ν)d 1+κ and d = r 2 ν .
Resolving the system, we obtain these estimations for κ and ν:

λ = (1-ν)r 2 ν -→ ν = r 2 λ+r 2 λ ⊥ = (1-ν)r 2 (1+κ)ν -→ κ = λ λ-λ ⊥ (5.39)
In the covariance analytic method, all the parameters except r are estimated from the eigenanalysis of Σ, the average of the covariance matrices. Therefore the natural choice to define a distance in this case is to compute directly the log-Euclidean distance following Eq 5.18:

d covariance analytic (F 1 , F 2 ) = || log(Σ 1 ) -log(Σ 2 )|| F (5.40) 
This metric (which is a distance in this case) is used to compute the similarity matrix following Eq 5.11

log VMF

We now explore the option to use the VMF to compute µ and κ and recover only ν from Σ. We want to consider a VMF distribution as a point in a Riemannian manifold following geometric information methods. To define a metric on PDF spaces, a theoretical framework exists using partial derivatives of the PDF though Christoffel symbols [Amari 2007]. We tried to apply such a framework to VMF distributions, unfortunately, the corresponding partial derivative equations are not solvable. Therefore, to consider a VMF as a point of a Riemannian manifold, the two parameters need to be treated separately. The space S 2 ×R + where the couple of parameters (µ, κ) evolves is a Riemannian manifold as a product of two Riemannian manifolds. Therefore the averaging of the two parameters µ and κ can be treated independently. To average several points, a geodesic on these manifolds is defined (refer to [McGraw 2006] for details). Following this geodesic, the orientation averaging is similar to tensor averaging as in Section 5.4.1. The interpolation of κ is done recursively by projection as in McGraw et al. Letting κ = κ 1 , we repeat until convergence (i.e until l κ < ε):

l κ = n i=1 w i log κ i κ (5.41) κ = κ exp(l κ ) (5.42)
This iterative methods converges to the Frechet mean in the tangent space. Similarly to the covariance analytic method, we then use the relation r 2 = νd. Then knowing all parameters except ν, we obtain it from Σ using (Eq 5.36 and Eq 5.38). As 2 equations are available to estimate one parameter, we compute the least square solution to ensure more stability:

ν = r 2 [2r 2 + λ + λ ⊥ (1 + κ)] 2(r 2 + λ)[r 2 + λ ⊥ (1 + κ)] (5.43) 
The log VMF metric in the Riemiannian manifold S 2 × R + belongs to the log-space for both direction and concentration parameters. Therefore we compute the distance of tensors and the distance of κ with their corresponding Riemannian metric which give the following semimetric between compartments:

d logVMF (F 1 , F 2 ) = || log(T 1 ) -log(T 2 )|| F + α| log(κ 1 ) -log(κ 2 )| + β||r 1 -r 2 || 2 2 (5.44)
where α, β and γ are normalization coefficients.

Experiments and results

DDI compartment averaging evaluation on simulated data

We first evaluate DDI compartment averaging into a single one. To do so, we simulate random DDI compartments by drawing parameter values from uniform distributions between different bounds depending on the parameter: [0, 20] for κ, [5.10 -4 , 5.10 -3 ]mm 2 .s -1 for d, [0, 1] for ν, and random orientation on S 2 for µ. Four random DDI compartments are computed, that correspond to the four corners of a grid of size 11 × 11 that we want to extrapolate. The reference is a grid containing 4 compartments per pixel with a weight proportional to the position of the voxel with respect to each corner (see Fig. 5.4.e). For each method, we average each pixel of the reference image into only one DDI compartment. To quantitatively evaluate DDI averaging, we simulate, for each method and the reference, a DWI signal from DDI models following Eq. ( 6) in [Stamm 2012b] on 60 directions for each of 3 different b-values (1000, 2000 and 3000 s.mm -2 ). A Euclidean distance between simulated DWIs of the 4 methods and the reference provides quantitative results.

To perform a robust experiment, we created a database of 500 sets of 4 corners. Then taken as the Euclidean distances on the 500 random images are normalized so that the simplest error mean is 100. The result for the different methods are simplest: 100, tensor: 31.6, log VMF: 28.0, covariance analytic: 11.1. We present in Fig. 5.4 representative images from averaged DDI models superimposed on the corresponding error maps. The simplest method has a large error explained by direction averaging. The tensor method is better: thanks to the orientation averaging part. However, there are still large errors which can be explained by large κ values in regions averaging orthogonal directions, which is not realistic. log VMF suffers from the same problem as tensor. Covariance analytic performs much better than all other methods. This is mainly due to smaller errors in crossing fibers. This is logical as when two orthogonal compartments are averaged, the best single compartment representing them is almost spherical, meaning a low κ value. The Euclidean distance map in the DWI signal confirms this idea.

MCM interpolation experiments on real data

Multi-tensors model

We now test the entire MCM interpolation pipeline including spectral clustering and isotropic compartments averaging. A MTM is estimated from a subject of the Human Connectome Project (HCP) data [Van Essen 2012] which is a DWI with 145 × 174 × 145 voxels with a 1.25 × 1.25 × 1.25 mm 3 resolution and 270 gradient directions over 3 b-values (1000, 2000, and 3000 s.mm -2 ). The estimated MTM includes 3 anisotropic compartments (tensors) and 2 isotropic compartments (one free water with a diffusivity d free = 3 × 10 -3 mm 2 s -1 and one restricted water with a diffusivity d restricted = 1 × 10 -3 mm 2 s -1 ).

To test the global interpolation scheme, a rotation of angle 120 degrees is picked around a random axis and then applied 3 consecutive times to the original MTM image. We then compare the final MTM obtained to the original one. To visualize the MTM, we compute the MTM PDF values on several points of a sphere and deform it using these values. As a consequence, the sphere will be elongated along the most probable diffusion directions and contracted elsewhere.

The visual representation of the original and interpolated MTM is presented in Fig 5.5. At the brain level, the MTM seem very similar to the original one though smoother. In the zoomed area, despite crossing in the original MTM, the rotated MTM stay close to the original models even in the crossing zone. As expected, the image is smoothed by the interpolation but all main orientations are recovered. We cannot perform quantitive evaluation on only one method, however at least visually after 3 consecutive interpolations the result seems very correct compared to the original MTM image.

DDI model

We then tested the entire MCM interpolation pipeline for the DDI model. To perform the validation of the different DDI interpolation methods on real data, we tested methods on a set of 46 real DDI images estimated from DWI with 128 × 128 × 55 voxels with a 2 × 2 × 2 mm 3 resolution, 30 gradient directions with one b-value = 1000 s.mm -2 . Input DDI models have been estimated with three DDI compartments and one free water compartment [START_REF] Stamm | [END_REF]].

For each input DDI, we compute a rotation of angle 120 degrees and then apply it 3 consecutive times for each four methods: simpliest, tensors, log VMF and covariance analytic. From the 4 resulting DDI, one for each method, and the original one we compute the corresponding DWI images. These DWI are estimated from a set of 270 gradient on 3 shells (b = 1000, b = 2000, b = 3000 s.mm-2) coming from the HCP database [Van Essen 2012]. We then compute the Euclidean distance between each rotated DDI and the original one on the DWI corresponding images. All DDI methods and their corresponding DWI Euclidean distances are illustrated in Fig 5.6. The DDI image of the simpliest method seems very different to the original DDI image showing that the orientation of the interpolated compartments is not well estimated. At this scale, the DDI images of the three other methods look similar to the original DDI image. Regarding the DWI Euclidean distances, the two worst images correspond to the simplest and the log VMF methods, the best of all being the covariance analytic method. A deeper visual analysis of the 2 best methods will be made in the following, but first, we present the quantitative results.

For each DWI difference image the sum of the Euclidean distances is divided by the size of the mask of the brain, then the global results are normalized to set the median of the simplest method to 100. The results are presented in Fig 5 .7. Means are respectively: simpliest 101.2, tensor: 69.1, logVMF: 118.1, covariance analytic: 58.0. The methods are classified in the same order for all 46 subjects showing very robust results (all paired t-tests, p < 1.0 × 10 -18 ). The logVMF suffers from the ). The estimated MTM includes comports 3 anisotropic compartments (tensors) and 2 isotropic compartments (one free water with a diffusivity d free = 3 × 10 -3 mm 2 s -1 and one restricted water with a diffusivity d restricted = 1 × 10 -3 mm 2 s -1 ). multiple interpolations and obtains worse results than the simplest method, which stays far from the two best methods. The covariance analytic performs significantly better than the tensor showing better robustness for several successive interpolations.

Following the same process than for MTM, we visualize the original DDI and the one rotated, for one of the 46 subjects of our dataset, by the 2 methods which obtained the best results, tensor and covariance analytic(see Fig 5.8). On the first line, the 3 images have the same aspect though the rotated DDI seems smoother than the original one, however more interesting observations come with a zoom. On the second line, the covariance analytic method compartments are smaller than the original ones probably due to an under estimation of the diffusivity. On the same line, the compartments size of the tensor method seem slightly bigger than the original DDI. The third line represents all the compartments at the same size to focus on the orientation. We can see that orientations of the compartments obtained with covariance analytic methods are very similar to the original ones while the compartments from the tensor method orientations seem different. These observations show that all these methods have imperfections confirming the complexity of the interpolation of MCM.

DDI Atlas Construction

The ultimate goal of the registration of MCM images is the production of an average atlas of the white matter microstructure. We computed an atlas from 46 DDI images following Guimond et al. atlas construction method [START_REF] Guimond | [END_REF]]. This atlas construction was performed using non linear DTI registration as proposed by Suarez et al. [Suarez 2012]. Then, the obtained transformations were applied to the DDI models. We interpolated the DDI models using our clustering approach with the covariance analytic averaging. In addition, when applying a transformation to oriented models, it is necessary to apply the local linear part of the transformation to the interpolated models. We used a technique similar to finite-strain reorientation for tensors [Ruiz-Alzola 2002a] by applying the local rotation to the µ i directions of each anisotropic compartment of the interpolated DDI. We present the visual result of the atlas and a zoomed area in Fig. 5.9. This atlas provides a clear distinction of crossing fibers and will be of great interest in future studies for example of white matter microstructure destruction in diseases. 

Conclusion and perspective

We have addressed the problem of interpolation and averaging of MCM images. As MCMs become increasingly popular and used, the issue of interpolation (e.g. for a registration purpose) or averaging (e.g. for atlas creation) becomes acute in the absence of relevant dedicated solutions yet. We have proposed to perform interpolation as a MCM simplification problem, relying on spectral clustering and compartment averaging methods handling both isotropic and anisotropic compartment parameters. For this latter part, we have proposed and compared four different alternatives, for the DDI model these methods being evaluated with synthetic and real data. Ac-cording to these different experimental conditions, the covariance analytic solution exhibits significantly better performance than the others. As we saw in the visual analysis there are still some question to be analyzed further on the attenuation of the diffusivity with the covariance analytic method, nevertheless it is able to robustly recover the orientation after several transformations. Another accute problem is the number of clusters of the model. In our experiments, the number of anisotropic compartments is the same for the entire image. A priori, some parts of the brain do not need 3 compartments in addition to a free water compartment. Tools based on akaike information criterion (AIC) [Sakamoto 1986] exist to compute a specific number of compartments for each voxel . The number of compartments after interpolation in our algorithm is however fixed for the entire image. Simple solutions towards handling better images with varying number of anisotropic compartments include taking the mean or maximum of the number of clusters of the input voxels do not support successive transformations.

We can also imagine smart algorithms to estimate automatically the optimal number of clusters after interpolation. Such methods already exist for spectral clustering based on rotation of the spectral vector [START_REF] Zelnik-Manor | [END_REF] or the selection of eigenvalues [Sanguinetti 2005]. Unfortunately they cannot consider one cluster as a solution and are thus not directly applicable to our problem.

Introduction

A clinical study often includes data from a group of healthy subjects, named controls, and a group of patients affected by the same disease. From such a database, we are looking for biomarkers that highlight anatomical abnormalities. A longitudinal study can also compare the evolution of the symptoms along the successive MRI scanners. One solution is to manually select region of interest (ROI) of damage tissues for a particular disease for one or several patients [Filippi 2001, Werring 2000].

Then a comparison can be made with healthy tissue to follow the evolution of one patient along several MRI scans or compute statistic for a population.

For now, the majority of clinical dMRI is made from DWI acquisitions with a limited number of b-values and directions, using scalar maps as MD or simple models as DTI to investigate the brain microstructure. More complex models, such as MCM, are instead specifically designed to reveal this microstructure. Therefore, fine biomarkers can be considered to better interpret the damage and evolution of a disease.

From a group of patients and a group of controls, there are mainly two ways to study the influence of a disease. First, the two populations (controls and patients) can be aligned on a template to perform a voxel-wise comparison or tract-based statistics. One method is to make a patient population versus a control population comparison [Whitcher 2007[START_REF] Lepore | Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors[END_REF]. This method allows to highlight general biomarkers common to a population and, therefore, improves the understanding of a particular disease. These techniques are interesting in that they do not require the tedious ROI delimitation. However, diseases with too much variability, such as multiple sclerosis (MS), are not well-adapted for this kind of statistics. Here, we prefer to compare one patient again the entire group of control [START_REF] Commowick | [END_REF]]. Contrarily to the population versus population, this method does not reveal statistically robust biomarker for a disease at a population level. Instead, it offers the possibility to highlight particular changes of some parameters specific to a patient evolution for each patient individually and thus to perform longitudinal studies.

In this chapter, we propose two different approaches that exploit the potential of MCM to better understand and describe patient disease and evolution: one solution from voxel-based analysis and one solution from tract-based analysis. The classical voxel-based method considers each voxel independently to compute statistics. For the second method, a tractography is computed from an average control derived from the atlas. Parameters are extracted along the fibers for the patient and the controls and subsequently used to compute statistic. The voxel-based and the tract-based methods are respectively presented in Sections 6.4 and Section 6.5.

Atlas based patient to group statistics

General method

An atlas, in neuroscience, is a collection of brain images, brain representation or brain labeling. First, print atlases were used to guide surgical operations [Talairach 1988[START_REF] Schaltenbrand | Atlas for stereotaxy of the human brain: with an accompanying guide[END_REF]]. Now, progress in image processing allows to automatically estimate all kinds of atlas [START_REF] Woods | [END_REF][START_REF] Commowick | Création et utilisation d'atlas anatomiques numériques pour la radiothérapie[END_REF][START_REF] Jack L Lancaster | Automated Talairach atlas labels for functional brain mapping[END_REF], Cabezas 2011]. We consider in this chapter an atlas as a collection of control acquisitions registered on the same support.

It is possible to compute an evolving atlas that can easily integrate an extra acquisition to the current average atlas through weighted average or geodesic [Beg 2006]. However, these methods are more adaptive to big data as the HCP when it is highly time consuming to compute an other atlas. Here, we follow a process to create an atlas from a data collection once and for all. We want to perform patient to group comparison. To do so, the following steps are processed:

• Creation of an atlas. For one or several modalities, the entire collection of data control is first pre-processed: denoising, distortion correction, MCM model estimation (see Section 6.3). Then the pre-processed images are registered on the same space. The resulting collection of images is called an atlas A. From this point on, the control subjects in A all have the same position in space and scalar or compartment values extracted at a given voxel or along a given tract are comparable. The atlas creation and the registration method are respectively detailed in Section 6.2.2 and Section 6.2.3. The creation of the atlas is made off-line, once and for all.

• Patient to population comparison. For each new patient, the DWI acquisition is registered on the atlas using the same pre-processing and registration technique. The patient image is thus aligned with all controls in A and may be compared to the population. We present two different approaches for statistical comparison: one voxel-based solution in Section 6.4 and one tract-base solution in Section 6.5.

Atlas construction

We assume in this section that we are able to compute a transformation between two individual brain images. The registration algorithm used for this task will be presented in Section 6.2.3. Unfortunately we do not currently use a specific MCM registration method which is part of the perspective of this work. Therefore, the atlas is created from the DTI models. Then, the corresponding transformations can be applied to any MCM, using the MCM interpolation method proposed in Chapter 5, to contruct a MCM atlas. From a database of control images T 1 , ..., T N (here the DTIs computed from the DWI images) , the atlas is computed iteratively as follows [START_REF] Guimond | [END_REF]]:

• T R is the DTI reference, at first iteration T R = T 1 .

• Until convergence, i.e until the average diffeomorphic transformation D avg is almost null, do:

1. Register all DTIs T 1 , ..., T N on T R following Section 6.2.3. Let R 1 , ..., R N be the corresponding transformations (at the first iteration R 1 is null). Each R i is the composition of an affine and a diffeomophic transformation

R i = A i • D i
2. Average all the registered DTIs into a single one T avg in the log-Euclidean space of tensors:

log(T avg (x)) = 1 N N i=1 log( Ti (x)) (6.1)
where log denotes the matrix logarithm and Ti is T i resampled with R i with its tensors reoriented appropriately [Ruiz-Alzola 2002b].

3. Average all the diffeomorphic transformations with the log-Euclidean framework for diffeomorphisms to recover an average transformation D avg :

log(D avg ) = 1 N N i=1 log(D i ) (6.2)
where log denotes here the logarithm of a diffeomorphism.

4. The new DTI reference T R is obtained applying D -1 avg to T avg .

Finally, we have the initial DTIs with the corresponding final transformations R 1 , ..., R N . These transformations can be used to estimate a DTI atlas. They are applied to the MCMs computed from the original DWIs to create a MCM atlas.

Registration

From a group of images (medical or not), there exist several ways to register them. A non-exhaustive review of the large literature on the non-linear registration methods has been proposed recently [START_REF] Klein | [END_REF]]. Here, from two sets of DWI, we assume one fix subject F and one moving subject M . We want to compute a global transformation R that sends F to M , i.e F (x) = M • R(x). This purpose is however an ill-posed problem, hence, T has regularity constraints. As mentioned in the previous section, wa have not yet developed registration tools for MCM (especially the similarity measure between MCMs). Therefore, from the two sets of DWI, the corresponding DTI, T F and T M are estimated. Then the derived MD scalar maps A F and A M are computed. The global transformation comes from two transformations, i.e R = A • D:

• An affine transformation A to roughly register the moving image on the fixed image.

• A dense transformation R estimated as a smooth constrained concatenation of local affine BM transformations [Commowick 2012c].

The first transformation is estimated with a block-matching algorithm from the two scalar maps A F and A M [Ourselin 2000]. Then, this transformation is applied to T M . The dense transformation is recovered by matching this temporary registered DTI on the fixed DTI. Finally, the global transformation is the combination of these 2 transformations.

We do not remind the entire BM algorithm as it is largely described in Chapter 4 and [Commowick 2012c], yet we can notice some important differences. Contrary to local transformations in distortion correction specifically designed for the distortion model, here, transformations are classical rigid transformations. These transformations are applied to DTI instead of scalar images. Thus a tensor interpolation is done following the log-Euclidean framework (see Section 3.3.4.6) and tensors are reoriented using finite strain reorientation [Ruiz-Alzola 2002b].

The similarity measure cannot be a well-defined correlation coefficient between blocks of scalar values anymore. Instead, we use a generalized correlation metric adaptable to the tensor case proposed by [Suarez 2012]. The total covariance matrix is expressed as:

Λ(X, Y ) = Σ X,X Σ X,Y Σ Y,X Σ Y,Y (6.3) 
where X, Y are the 6D log-tensors respectively in the fixed and in the registered blocks. Each Σ .,. is the 6 × 6 covariance matrix between the 6D log-tensors. The correlation matrix Γ(X, Y ) is then defined as:

Γ(X, Y ) = Σ -1 2 X,X Σ X,Y Σ -1 2 Y,Y (6.4) 
The generalized squared correlation coefficient (GCC) is finally expressed as:

GCC(X, Y ) = 1 6 Tr Γ(X, Y ) ⊤ Γ(X, Y )) (6.5) 
The general transformation obtained can be applied to the DTI as well as any MCM following the interpolation scheme presented in Chapter 5. For both cases, reorientation is done using finite-strain reorientation.

6.3 Experimental design

Database

The pipeline presented previously is tested on the USPIO dataset [Crimi 2014]. This study, named after the contrast agent ultrasmall super paramagnetic iron oxid (USPIO), consists of two groups: patients suffering MS (at a very early stage: first event suggestive of MS, i.e clinically isolated syndromes (CIS)) and control subjects. Images were acquired in 5 French centers, for a total of 36 patients and 46 controls. For each patient and control among other modalites, we used the following images:

• A DWI acquisition with a spatial resolution 128 × 128 × 55, a corresponding voxel size 2 × 2 × 2 mm 3 with 30 gradient directions acquired on one shell (b = 1000 s.mm -2 ).

• A T2 TSE with a spatial resolution 192× 256× 44, a corresponding voxel size 1 × 1 × 3 mm 3 . The other parameters were set to obtain a T2-weighted image (TR = 6530ms, TE = 84ms). A T1-weighted image was also acquired. For a better comparison, in all the figure illustrations of this chapter, these structural image, are resampled on the DWI acquisition for anatomy visualization.

From the entire dataset, a subset of 46 controls and 20 patients is used as our dataset. Our atlas A is thus constituted from the 46 controls registered for DDI, DTI models and also structural images. The DDI are resampled using the covariance analytic metric presented in Section 5.4.2.4 and with finite strain reorientation of the anisotropic compartments.

Preprocessing pipeline

For all patients and controls some preprocessing steps to enhance the DWI acquisitions were performed.

Distortion correction

We have seen in Chapter 4 that EPI suffers from distortion artifacts and we proposed a method to correct these distortions. Unfortunately, the USPIO study started in 2009 and extra acquisitions with reversed PED were not included in the protocol at this time. Therefore, although we advocate for reversed PED based correction for future studies, the distortion correction is here roughly performed using a simple registration from the b 0 image to the T2-weighted image [Ourselin 2000, Commowick 2012c]. All the new protocols of our team concerning dMRI now include a reversed PED image to correct distortion as presented in Chapter 4.

Denoising

A denoising step is then performed to enhance images quality. This is done using a non-local means (NLM) method specifically adapted for the Rician noise in DWI acquisitions [Wiest-Daesslé 2007]. The algorithm uses the redundancy of information on the whole DWI dataset to denoise each DWI image.

Model estimation

From the preprocessed DWI acquisitions, DDI models are estimated. The nonlinearity of the cost function makes it hard to minimize. Hence, the minimization is performed trough successive steps by revealing the parameters progressively [START_REF] Stamm | [END_REF]]. First a stick model is estimated, then a zeppelin model and finally the DDI model (see Section 3.5.3.1 for more details). Each DDI is computed with 3 anisotropic compartments and one isotropic compartment (with a fixed diffusivity equal to d free = 3.10 -3 mm 2 .s -1 corresponding to a free water compartment). Each DTI is estimated with a linear least square solution on the log acquired signals [Westin 2002].

Scalar parameters evaluation

We describe in this section microstructure parameters potentially of interest that can be evaluated from the DDI images in our framework. Each DDI comports one free water compartment with a fixed diffusivity and a corresponding weight w 1 iso , and several anisotropic compartments and their corresponding weights w i . Each anisotropic compartment is described by 5 parameters : d is the diffusivity along the axon, κ is the orientation concentration index, ν is a non Gaussianity parameter, µ is the main diffusion orientation. The only parameter of the free water compartment is its weight w iso . However, for anisotropic compartments, classical diffusivity and anisotropy measures can be derived from their parameters [Stamm 2013]:

• The axial diffusivity d that represents the diffusivity along the principal direction of diffusion is expressed as:

d = d(1 -2νξ(κ)) (6.6) with ξ(κ) = cosh(κ) κ sinh(κ) - 1 κ 2 (6.7)
where cosh is the hyperbolic cosine and sinh is the hyperbolic sine.

• The radial diffusivity d ⊥ represents the diffusivity in the orthogonal plane of the axial diffusivity:

d ⊥ = d 1 -ν 1 + κ + νξ(κ) (6.8) 
• The mean diffusivity (MD) that represents the average diffusivity in all directions it thus defined as:

λ = d + 2d ⊥ 3 (6.9)
• The fractional anisotropy (FA) describes the degree of anisotropy of the compartment, FA belong to [0, 1]:

FA = d -d ⊥ d 2 + 2d 2 ⊥ (6.10)

Statistical test

We consider our atlas A containing n registered images {C i } i=1,..,n of diffusion models (DDI or DTI) of control subjects. From one image of a patient C 0 registered on the atlas, it is thus possible to compute different statistics. The statistical test is common to the voxel-based and the tract-based approaches. Hence, let us assume that we have in one point x (voxel or tract) a parameter p extracted. For each point x, {C i x,p } i=1,..,n denotes the value of p for all the control images and C 0 x,p the value of p for the patient image. Hence, a z-score can be computed: 6.11) where µ x,p and σ x,p are respectively the mean and standard deviation of the parameter p at the voxel x for the entire population, the control group excluding the patient. The z-score is a normalized measure, i.e it does not depend on the mean and the standard deviation of a variable. A negative z-score means a patient parameter value is lower than the average value of the control parameters and inversely for a positive value. The scaled z-score is assumed to follow a Fisher distribution F (1, n -1) and is thus used to compute a p-value:

z x = C 0 x,p -µ x,p σ x,p ( 
p(z x ) = 1 -F 1,n-1 N (N -1) N 2 -1 z 2 x (6.12)
where F 1,n-1 is the cumulative distribution function of a Fisher distribution with parameters 1 and n-1 and p is the corresponding p-value.

6.4 Voxel based method

Voxel specific measures

We present a visual result of the voxel-based analysis for one patient. The comparison is made between the DDI model and the DTI model. For the DTI models, the classical FA and MD values are computed following respectively Eq 3.15 and Eq 3.16. For the DDI models, the free water and anisotropic compartments are separated. For the free water compartment, the weight of the compartment is computed. For the anisotropic compartments, the three AD and RD extracted for each compartment are averaged into two global measures: 6.13) where d i and d i ⊥ are respectively the axial diffusivity and radial diffusivity of the i-th anisotropic compartment. The global MD and FA are derived from these average axial and radial diffusivity following Eq 6.9 and Eq 6.10.

             d = 3 i=1 d i 3 d⊥ = 3 i=1 d i ⊥ 3 ( 

Results

The z-scores of all these parameters for DDI and DTI models are presented Fig 6 .1. As expected around the lesions, the destruction of myelined fibers results into an increase of the MD combined with a decrease of the FA. For the DDI model, the injury of myelin and axons results in a strong increase of the free water compartment weight. This also results into a small decrease of the MD into the average anisotropic compartments measure. We propose an explanation of such a behavior in the next section with tract-based analysis. We illustrate in the Fig 6 .2 and 6.3, the DDI free water weight of a patient compared to the average free water scalar map of all the controls in the atlas. This results, as shown before, into an important increase of the free water compartment weight that is clearly highlighted by the corresponding z-scores. We can already conclude on the fact that the increase of MD is probably attributed to a large increase in free water, showing the interest of MCM to better understand from dMRI, what is happening .

Tracts-based method

Introduction to tractography

Before going into more details about the tract-based framework, we first briefly present tractography. Tractography is a method to model the WM tracts in the brain, from dMRI, represented by 3D curves without diameters. A tractography is computed from a diffusion model, generally the DTI, but not necessarily. There are various algorithms to perform this task. They can be mainly classified in two types: deterministic and probabilistic [Yamada 2009]. The DTI model has some issues and strengths due to its simplicity (see Section 3.3). Hence, a tractography performed from a DTI has the corresponding problems, in particular in crossing fiber areas [START_REF] Yamada | [END_REF], Wedeen 2008]. In Section 6.5.3, we propose a deterministic tractography algorithm specifically designed for MCM.

As basic dMRI, tractography is used in clinic in several diseases: strokes, multiple sclerosis (MS), epilepsy, brain tumors, spinal cord disorders and more [START_REF] El-Sourgy | Applications of MR fiber tractography imaging in multiple scleros[END_REF], Ciccarelli 2008, Hagler 2009, Hesseltine 2007[START_REF] Akai | Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor[END_REF], Holodny 2001, Parmar 2004]. A tractography provides useful information for surgical operation to avoid damage of motor tracts. It is used for both surgical planning and post-procedure evaluation [Romano 2009, Berman 2009, Yu 2005]. The tractography is generally performed once for all before the surgery with fixed parameters. However, recent work on realtime fiber tracking can offer a direct and adaptable visualization during the surgery [Chamberland 2014]. Tractography can also be used to do statistics as we will see in the following [Smith 2006].

Tract-based statistical test

We assume that we have a tractography T adapted for all the registered images computed from an average DDI. The computation of such a tractography in described in details in Section 6.5.3. For now, let just notice that a tractography is a sequence of spatial positions and thus the derived local directions can be estimated. For each DDI registered on our atlas (both control and patient), parameter values are added to T . Contrarily to the voxel-based approach, the parameters are directly extracted from one compartment. For each point r that belongs to T , we do the following:

• Estimate, for one patient C 0 and all DDI control images registered {C i } i=1,...,n at the spatial position P r of point r, the interpolated MCM {M i r } i=0,...,n using the MCM interpolation framework (see Chapter 5).

• At each point r, let D T r be the direction of T . For each {M i r } i=0,...,n , select the anisotropic compartment {M i,q(i) r } i=0,..,n with the closest orientation compared to D T r : 6.14) where | < D n , O i Mn > | is the cosine between the i-th anisotropic compartment and the current direction and q(i) is the selected compartment number.

q(i) = arg max i∈[1,...,p] | < D n , O i Mn > | ( 
• For all of the n + 1 DDI registered {M i r } i=0,...,n , extract the corresponding parameter {C i r,p } i=0,..,n from the selected compartment M i,q(i) r .

• Finally, compute the statistical test for the patient versus controls with the z-score and p-value computation and affect these values to T .

Tractography from MCM

Tractography algorithm

Our atlas of 46 DDI subjects registered is now used to obtain an average DDI model using the MCM interpolation framework. The tractography is thus estimated on this average model as follows:

• A masked of the average DDI model is computed as the intersection of the registered masks of the 46 original DDI models.

• Seeds are placed on each voxel on the entire masked image.

• For each seed in the image, a tract, i.e a sequence of spatial position, is estimated. The entire tractography is composed by the union of all these tracts.

There are several methods to perform the estimation of a tract from one seed. The final tractography highly depends of the algorithm type (deterministic or probabilistic) and the stop conditions of the fiber tract. Our deterministic algorithm for MCM is an extension to MCM of the usual FACT tractography [Mori 1999]:

For a current point n and a previous point n -1 in a sub-tract with their corresponding spatial positions P n and P n-1 , do:

1. Estimate the model M n at the current position P n using the MCM interpolation scheme (see Chapter 5) 2. Compute the current direction from the spatial locations: 6.15) 3. We note {O i Mn } i=1,..,p the orientation of the p anisotropic compartments of M n . Then, the closest orientation O m Mn compared to the current direction is selected:

D n = P n -P n-1 ||P n -P n-1 || ( 
m = arg max t∈[1,...,p] | < D n , O t Mn > | (6.16) O m
Mn is now considered to be the selected direction, i.e the one that is the closest to the current direction. For more regularity, the next direction is computed as a weighted sum of the current direction and the selected direction:

D n+1 = W (r)O m Mn + (1 -W (r))D n (6.17)
where D n+1 is the next direction and W (r) is a weight balancing the selected O m Mn and the previous direction to make the fiber smoother.

4. The next direction is added to the current position to give the next position:

P n+1 = P n + sD n+1 (6.18)
where s is a scalar step that involves the velocity of the fiber progression. In our algorithm s is set to 1 mm.

Implementation details

Each tract from one seed is composed by two sub-tracts: one forward and one backward. They are computed separately and finally regrouped. For the first position, D 1 , the orientation of the main anisotropic compartment is taken, i.e the one with the largest weight within M 1 . Both directions correspond to the anisotropic compartment orientation, one is used to initialize the forward sub-tract, the other to initialize the backward sub-tract. Optionally, it is possible to add the compartment weight (or a function of it) in front of the dot product Eq 6.16 to give more importance to "heavy" compartments. The weight used to smooth the fiber is expressed as: 6.19) where FA(O m Mn ) is the FA of the selected direction O m Mn and r ∈ [0, 1] is a minimal weight attributed to the new direction. For r = 1, the next direction is the selected direction and the previous direction is not taken into account. For r = 0, the weight of the selected compartment corresponds to its FA value. Therefore, a very anisotropic compartment has more value than an isotropic one in the computation of the next direction. In our algorithm, r = 0.25 is chosen, giving some significance to the previous direction and, hence, some smoothness to the tract.

W (r) = (1 -r)FA(O m Mn ) + r ( 
The tract progresses until one stop condition is reached. There are various possibilities of stop conditions and the parameters chosen highly influence the final result. In this tractography, we use as stop conditions:

• The point needs to belong to the brain mask.

• The maximum tract angle between two following directions is 60 degrees.

• The maximum length of a tract is 150 mm, i.e when the maximum is reached, the fiber tract stops.

• The minimum length of a tract is 10 mm, i.e tracts shorter than 10 mm are not considered in the final tractography.

• The tract is stopped for a total weight of isotropic compartments up to 0.8. This is explained by the incertitude regarding the selection of an anisotropic compartment with low weight.

This algorithm is applied to the average DDI of our atlas. This results in a tractography adapted to perform statistics on the entire atlas and for all patients.

Results

From the average MCM tractography T , we compute statistics for several parameters: compartment AD, MD and FA. Two subsets are extracted from the whole brain tractography: the left and the right corticospinal tract (CST). These tracts are chosen for a patient with lesions on the left CST and no lesion on the right CST. The patient is the one illustrated in the voxel-based approach on From left to right these figures show: the patient parameter value, the average parameter value computed from the entire atlas, the p-value range between 0 and 0.25 superimposed with a lesion manual segmentation.

These figures show visually the ability of the AD and MD parameters to characterize a lesion within the brain. Both measures present a reasonable number of false positive areas. The FA does not seem to be an adapted measure on this image.

Normally, DTI MD within a MS lesion is supposed to be higher than for normal WM tissues [Filippi 2000]. In this example, the change of the DTI MD is contained, in the DDI model, in the weight of the free water compartment (see Fig 6.1). Hence, the AD within the anisotropic compartments decrease and so does the MD. This may correspond to a physical reality. If the myelin and WM bounds are damaged, the water is less trapped within the axons and thus can hit glial cells interrupting its axial diffusion. However, this kind of interpretation needs to be taken with high caution, considering the difficulty to understand the microstructure process. What is sure is that DTI MD entangles everything and DDI separates information which is in itself interesting. 2). On the first line within the left CST, the AD value is lower on the patient than the average within the lesion leading to a significant difference in a large part of the lesion. On the second line the AD seems also lower for the patient than the average. These results are less significant according to the p-value, however there are still some small false positive area. 2). These results seem highly similar compared to the AD (see Fig 6.4). However the lesion comports more significant with the MD measure than with the AD measure. 2). Contrary to the AD and MD measures, the FA is not able to recover the major part of the lesion. However, interestingly, the measure seems almost complementary to the AD and MD measure.

Conclusion

In this chapter, we have presented two different approaches to perform statistics using MCM. The USPIO dataset contains both control subjects and patients suffering from MS. From 46 controls, we first computed a DDI atlas using the MCM interpolation framework presented in Chapter 5. We introduced specific parameters computed from the DDI anisotropic compartment and modalities to perform statistics from a set of measures. Then we proposed two different approaches: one voxel-based and one tract-based.

For the voxel-based method, we presented several scalar maps from both DDI and DTI models. The z-score shows the ability of the DDI free water compartment weight to characterize MS lesions for two patients, as well as the classical MD from the DTI. The other scalar measures, coming from anisotropic compartments average, seem less adapted to this kind of voxel-based measure.

To better use the MCM specificity, we have proposed a deterministic MCM tractography. From a tractography computed on the average DDI, we then computed statistics on tracts. The AD and MD, extracted from the anisotropic compartment, have an inverse behavior compared to the AD and MD computed from the DTI model at the voxel level. However, they appear to be relevant biomarkers with high p-value significance within a lesion. On the right CST, there are no lesions for the patient. Yet, the AD and the MD of the patient seem to be globally lower than the average control, although this trend is not statistically significant. That might be explained by difference between normal-appearing white matter (NAWM) diffusion between patient and control subjects [Wiest-Daesslé 2009]. As a future work, we can study this assumption with a patient population versus control population statistical test.

We demonstrated the possibility to perform statistics on MCMs at both the voxel level and the tract level. The parameters extracted from the DDI are complementary to the ones extracted from the DTI. However, the compartments separation offers a possible microstructure explanation contrary to the scalars from DTI that can lead to inaccurate interpretation. Behind this proof of concept, a lot of experiments can be done. This work can be extended to more patient or other diseases. It is also possible to compute a quantitative score (as a dice score) to estimate the performance of the model and use it to compare several models. 

Contributions summary

This manuscript has presented contributions to dMRI processing tools, in particular MCM. Several preprocessing steps are necessary before the exploitation of DWI acquisitions. With the goal of the clinical use of complicated models such as MCM, a lot of research studies are indeed necessary to evaluate prospective benefits. To perform quantitative evaluation, we need to be able to compute statistics on data and thus create an atlas, register MCM and more. In the following, we summarize the major contributions of this thesis. All the processing methods proposed have been integrated in our team code Anima. This open software is available on line with the corresponding documentation1 .

Distortion correction of EPI

The dMRI needs ultra fast acquisition modalities as echo planar imaging (EPI) that are corrupted by artifacts. To better exploit the diffusion model resulting from these DWI, preprocessing steps need to be performed. EPI suffers from large distortions mainly at the air/bone interfaces. We have proposed a new registration method to correct these distortions. This method uses b 0 images with opposite phase encoding direction (PED), the acquisition of such an extra image not being time consuming. The registration is based on a new BM algorithm specifically adapted to the distortion model.

The BM method has been tested on in vivo data. A quantitative evaluation performs on two pair of images with opposite PEDs show high similarity between the corrected images.

This work leads to several publications including one oral presentation at a peer reviewed international conference and one peer-reviewed international journal: 

MCM interpolation

The interpolation of images is a prerequisite to perform many of classical processing steps: averaging, registration, atlas creation. A large number of algorithms perform interpolation on scalar data and interpolate each DWI individually. However it is better to directly work on the diffusion models and thus use an MCM interpolation scheme.

We have proposed such a general framework viewed as a simplification problem based on spectral clustering. This method is adaptable to any MCM as long as a weighted average and pseudo-distance between anisotropic compartments can be provided. We tested our interpolation scheme for two particular MCM: the DDI and the MTM. The MTM offers nice visual images while the analytic DDI anisotropic compartment average computation provides good quantitative results.

This work has been presented at the peer reviewed international conference MIC-CAI in Munich 2015: We have presented a statistical framework on a dataset of patients suffering from MS at an early stage. From this dataset, DTI and DDI models were estimated.

We detailed the construction of a DDI atlas using the MCM interpolation framework presented in Chapter 5. Statistics including z-scores and p-values have been computed from the parameters extracted from the DDI free water and anisotropic compartments as well as classic MD and FA DTI parameters. Two different approaches were proposed to compute statistics: one voxel-based and one tract-based. With the voxel-based, the weight of the free water compartment z-score highlights lesions on several visual examples showing the interest of such a method to separate isotropic and anisotropic compartments. For the tractbased approach, a tractography algorithm adapted to MCM was specifically designed. Results show a decrease of AD and MD extracted from a single anisotropic compartment within lesions. Visual examples with p-value were presented to illustrate this behavior. This proof of concept demonstrates the interest of MCMs to characterize MS lesions showing a better and easier interpretability than with parameters extracted from DTI and offers the possibility of longitudinal studies.

Perspectives

Methodological perspectives

In dMRI, the distortion artifacts of the EPI acquisition are a major problem. It will become worse with stronger scanner magnetic fields. Hence, the correction of these artifacts stays an open problem. In addition to DWI acquisitions with one or several PED, a structural image is generally acquired in a classical MRI exam. The use of a structural image as a reference to correct distortion has already been proposed [Irfanoglu 2015]. Our new block-matching algorithm currently takes two b 0 images with opposite PED. Therefore, we want to adapt this method to an additional undistorted image as a reference for improved correction.

Such a block-matching with three images instead of two would be an innovation to our knowledge. This framework offers a well-adapted multiple correlation metric with a structural image as a target variable. Unfortunately, the T2-weighted image presents more details than the b 0 images in some brain areas and thus the blockmatching is corrupted in these areas. We have not currently handled these issues, however this method offers promising results. We can try to adapt a specific brain mask to this task to remove unwanted extra information from the T2-weighted image. An additional specific weight could also be added to treat this issue. Other similarity measures are also an option to penalize areas where the two b o images with reversed PED do not match and thus recover the best of classic and multiple correlation BM. Last but not least a non-distorted structural image more similar to a b 0 image could be provided with new MRI sequences such as the readoutsegmented EPI [Holdsworth 2008, Porter 2009]. This BM extension constitutes a major perspective of this thesis that we started to explore rapidly as shown in Section 4.6.

Behind the preprocessing steps, various works can be done directly on diffusion models. First, we have proposed a method to interpolate MCM. This framework was developed for two anisotropic compartment types: tensor and DDI. However, the method is very generic and can be extended to any anisotropic compartment modeling. Hence the use of this interpolation framework can be extended with specific metrics for other classical anisotropic compartments such as NODDI or CHARMED.

These interpolation tools can be used to create an atlas and then compute statistic on patient and control populations. The MCM atlas is made through several steps:

1. DTI and MCM are estimated from the original DWI.

2. The DTI atlas is created following Section 6.2.2 using a specific DTI registration technique.

3. The transformations used for the DTI atlas are applied to the MCM using the interpolation framework to create a MCM atlas.

It is better to use DTI to register models than a registration on T1-weighted images applied to the tensors [Ruiz-Alzola 2002b]. However, it would be even better to do the registration directly on MCM and perform the entire pipeline with the MCMs to be more coherent and obtain more accurate registration. Thus, a generic MCM registration method is a natural extension of the interpolation framework proposed in Chapter 5, where only a new MCM based similarity metric needs to be defined. These preprocessing steps allow to compute statistics from a dataset. In Chapter 6, we have presented some results from the USPIO database that concerns patients suffering from early stage MS. This evaluation could be extended with quantitative results on the entire database and comparison with other diffusion models. Moreover, the two statistical approaches, voxel-based and tract-based, can be applied to other diseases such as Alzheimer's disease, traumatic brain injury, brain tumors... Previous propositions are natural evolutions of the work presented in this thesis. However, more general considerations about dMRI can also be studied. The dMRI is blind to myelin due to the short T2 relaxation time of the water within the myelin [START_REF] Brunberg | [END_REF]. Other MRI modalities such as relaxometry can detect and quantify the myelin sheath. The ratio between the axon diameter, known as g-ratio, and the axon with its myelin sheath diameter is a known biomarker from particular diseases [Stikov 2011]. MS damages indeed in majority the myelin sheath and the demyelination causes important change in this ratio. Hence, a combination of dMRI and relaxometry could offer useful information to compute this kind of biomarker on a compartment basis.

Clinical perspectives

Nowadays, dMRI is a routine process in clinic to diagnose several brain diseases. Generally a DWI sequence is made of 3 different gradient directions and a b 0 image to compute a MD scalar map. Recently, the Observatoire français de la sclérose en plaques (OFSEP), that studies MS, recommended to acquire at least 6 different gradient directions and one b 0 that allows to estimate a DTI [START_REF] Cotton | OFSEP, a nationwide cohort of people with multiple sclerosis: Consensus minimal MRI protocol[END_REF]]. Thus the standard protocol (i.e, not in clinic research) does not offer the possibility to estimate a MCM. Therefore, there is a challenge to transfer MCM from pure research to clinical applications. A MCM, in clinical research, is estimated with at least 30 gradient directions and many MCMs need more than one b-value shell. Therefore, the acquisition time is a central problem for a routine clinical use. In this domain that goes beyond the topic of this thesis, many recent developments (specific sequences such as CUSP [START_REF] Scherrer | [END_REF]], compressed sensing, multi-band acquisitions) are very promising. As a future work, we can study how these fast and multi-shell sequences can be useful for computing more precise biomarkers in the clinics.

In addition to this consideration, MCM has to provide intelligible information easy to interpret for the medical corpus. To convince radiologists of the interest of MCMs, solid studies that related diffusion models to the ground truth are also required. One way to do that is to practice dissections or biopsy on animals. An interesting database of dMRI and histology towards such a validation was proposed in 2017 at International Society for Magnetic Resonance in Medicine (ISMRM) and will be of great interest for relating specific MCM parameters to tissue damage2 . Elaborated diffusion models can be the future of dMRI provided that we are able to explain and prove their interest in an improved comprehension of brain diseases. 
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 45 Figure 4.5: Illustration of BM EPI distortion corrections on b 0 images acquired with opposite PEDs on one subject. (a-b, d-e) pair of EPI with opposite PEDs along the left-right axis for the first row, along the anterior-posterior axis for the second row; (c,f) corresponding BM corrected images for each pair of EPI; (d,g) structural T1 reference.

  anterior-posterior CFA (e) block-matching CFA (f) T1

Figure 4 . 6 :

 46 Figure 4.6: Colored FA visualization of distortion correction results. The distortion field is computed from the two b 0 images and applied to an entire DWI volume with a left-right PED for the first line and a anterior-posterior PED for the second one. The FA is then estimated from the original and the corrected DWI. (a,d): uncorrected FA, (b,c): block-matching corrected FA, (c, f): structural T1 reference.

  7.d) still presents a mismatch around the lateral ventricles (see arrow on Fig 4.7.b). TOPUP and BM both obtain a corrected image very close to the structural T1 image.

Figure 4 . 7 :

 47 Figure 4.7: Registration results on a subject according different distortion correction methods. First row : (a) b 0 acquired with anterior-posterior PED; Mean of opposed PEDs corrected images : (b) by Voss; (c) by TOPUP; (d) by BM; (e) T1 structural reference. Second row (f) to (i) : zoom on the lateral ventricles of the corresponding colored FA; (j) T1 zoomed.

Figure 4 . 8 :

 48 Figure 4.8: Illustration of multiple correlation BM with n b 0 forward images, m b 0 backward images and a non-distorted structural T2-weighted image in the middle.

Fig 4 .

 4 9 presents distortion correction results using, classic BM correction, multiple correlation BM correction, and the structural T2-weighted image used as target variable. The first line shows these results on an axial slice where the T2-weighted

Figure 4 . 9 :

 49 Figure 4.9: Illustration of the multiple correlation BM. From left to right: AP b 0 PED, classic BM from two b 0 (AP and PA), multiple correlation BM estimated from two b 0 as independent variables and one T2-weighted image as the target variable, the T2-weighted image. Line one: The multiple correlation BM offers a sharper reconstruction of the strongly distorted areas than the classical BM. Line two:The multiple correlation BM is not able to recover the eyes and more importantly presents issues around the brainstem.

Figure 5 .

 5 Figure 5.1: Global scheme of the interpolation of 4 MCMs with two anisotropic compartments and one isotropic compartment each. The detail of the spectral clustering is presented in Fig 5.1

Figure 5 .

 5 Figure 5.2: Illustration of spectral clustering using Fuzzy C-Means

Figure 5 . 3 :

 53 Figure 5.3: From Wikimedia Commons : Points sampled from three von Mises-Fisher distributions on the sphere (blue: κ = 1, green: κ = 10, red: κ = 100). The mean directions µ are shown with arrows.

Figure 5 . 4 :

 54 Figure 5.4: First four images (a-d) illustrate DDI averaging using the four methods superimposed on their local error maps. Image (e) is the reference. (f) Error map corresponding scalar bar.

Figure 5 . 5 :

 55 Figure 5.5: Visualisation of an original MTM image and its corresponding interpolation after 3 rotations. The MTM is estimated from a subject of the HCP data [Van Essen 2012] which is a DWI with 145 × 174 × 145 voxels with a 1.25 × 1.25 × 1.25 mm 3 resolution and 270 gradient directions over 3 b-values (1000, 2000, and 3000 s.mm -2). The estimated MTM includes comports 3 anisotropic compartments (tensors) and 2 isotropic compartments (one free water with a diffusivity d free = 3 × 10 -3 mm 2 s -1 and one restricted water with a diffusivity d restricted = 1 × 10 -3 mm 2 s -1 ).

Figure 5 . 6 :

 56 Figure 5.6: Illustration of the 4 DDI interpolation methods: simplest, tensor, log VMF and covariance analytic. These DDI have been estimated from DWI with 128 × 128 × 55 voxels, a 2 × 2 × 2 mm 3 resolution and 30 gradient directions with one b-value = 1000 s.mm -2 . The interpolation is done after 3 consecutive rotation of 120 degrees. Each method is represent by two contiguous images, the interpolated DDI and the DWI Euclidean distances. The original DDI image is located at the center of the 9 images.

Figure 5 .

 5 Figure 5.7: Error between the DWI corresponding images of the original DDI and the one estimated after 3 rotations following the 4 different methods.

Figure 5 . 8 :

 58 Figure 5.8: Illustration of 2 DDI interpolation methods, covariance analytic and tensor, compared to the original DDI. The interpolation is made applying 3 consecutive rotation of 120 degrees. The first line represent the original DDI and the two interpolated by the covariance analytic method and the tensor method. The second line represents the same DDI images zoomed on the yellow rectangle. The third line represents the same zoom with all the compartments normalized to the same size to focus on the orientation of the DDI compartments.

Figure 5 . 9 :

 59 Figure 5.9: Example of a DDI atlas superimposed on the average B0 image: Axial view on the first line and coronal view. This atlas is constructed from our database of 46 real DDI images estimated from DWI with 128 × 128 × 55 voxels with a 2 × 2 × 2 mm 3 resolution, 30 gradient directions with one b-value = 1000 s.mm -2 .

Figure 6 . 1 :

 61 Figure 6.1: Illustration of the z-score (patient vs atlas controls) on several parameters. The z-score scalar bar is presented in (i), a negative z-score means a patient parameter value under the average controls and a positive z-score a value superior to the average. Values outside the blue marks denote a p-value under 0.05. (a) T2weighted image. (b) DDI free water compartment weight. (c) DDI mean diffusivity. (d) DTI mean diffusivity. (e) DDI axial diffusivity. (f) DDI radial diffusivity. (g) DDI fractional anisotropy. (h) DTI fractional anisotropy. The DDI free water compartment weight and the DTI MD clearly highlight the lesion indicated with the horizontal arrow with an important positive z-score. The DTI FA and, to a lesser extent, the DDI MD and the DDI AD also highlight the lesion with a negative zscore. This denotes the free water DDI weight and the DTI MD and FA as the best to characterize lesions. The other DDI parameters are relatively weaker biomarkers. This can be explained by the difficulty to analyze together parameters of several anisotropic compartments at a voxel-level.

Figure 6 . 2 :

 62 Figure 6.2: Illustration of the voxel-based analysis. (a) Patient free water weight scalar map. (b) Average of the free water weight scalar map of all the DDI controls on the atlas. (c) T2-weighted image of a patient, MS lesions are highlighted with blue arrows. (d) Z-score of the patient free water weight scalar map compared to the atlas. A negative z-score means a patient parameter value under the average controls and a positive z-score a value superior to the average. Values outside the blue marks denote a p-value under 0.05.

Figure 6 . 3 :

 63 Figure 6.3: Illustration of the voxel-based statistic. (a) Patient free water weight scalar map. (b) Average of the free water weight scalar map of all the DDI controls on the atlas. (c) T2-weighted image of a patient, MS lesions are highlighted with blue arrows. (d) Z-score of the patient free water weight scalar map compared to the atlas. A negative z-score means a patient parameter value under the average controls and a positive z-score a value superior to the average. Values outside the blue marks denote a p-value under 0.05.

  Fig 6.1 and Fig 6.2. The results are presented for three parameters, one figure per parameter: AD in Fig 6.4, MD in Fig 6.5 and in FA Fig 6.6. For each figure, the first line corresponds to the left CST and the second line to the right CST.
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 64 Figure 6.4: Compartment axial diffusivity study. First line: left CST, second line: right CST. The first column is the patient AD value and the second column the AD average value computed from the entire atlas. The corresponding scalar bar is low the two first columns and represents the diffusivity in mm 2 .s -1 . The last column corresponds to the p-value rescaled between 0 and 0.25 (all values above 0.25 are put to 0.25). On the first line the green 3D volume represents a 3D lesion segmented manually on the T2-weighted image (see Fig 6.2). On the first line within the left CST, the AD value is lower on the patient than the average within the lesion leading to a significant difference in a large part of the lesion. On the second line the AD seems also lower for the patient than the average. These results are less significant according to the p-value, however there are still some small false positive area.

Figure 6 . 5 :

 65 Figure 6.5: Compartment mean diffusivity study. First line: left CST, second line: right CST. The first column is the patient MD value and the second column the MD average value computed from the entire atlas. The corresponding scalar bar is low the two first columns and represents the diffusivity in mm 2 .s -1 . The last column corresponds to the p-value rescaled between 0 and 0.25 (all values above 0.25 are put to 0.25). On the first line the green 3D volume represents a 3D lesion segmented manually on the T2-weighted image (see Fig 6.2). These results seem highly similar compared to the AD (seeFig 6.4). However the lesion comports more significant with the MD measure than with the AD measure.

Figure 6 . 6 :

 66 Figure 6.6: Compartment fractional anisotropy study. First line: left CST, second line: right CST. The first column is the patient FA value and the second column the FA average value computed from the entire atlas. The corresponding scalar bar is low the two first columns and represents the diffusivity in mm 2 .s -1 . The last column corresponds to the p-value rescaled between 0 and 0.25 (all values above 0.25 are put to 0.25). On the first line the green 3D volume represents a 3D lesion segmented manually on the T2-weighted image (see Fig 6.2). Contrary to the AD and MD measures, the FA is not able to recover the major part of the lesion. However, interestingly, the measure seems almost complementary to the AD and MD measure.
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