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Abstract 

 

Nowadays, huge quantities of data can be easily accessible, but all these data are not useful if we do not 

know how to process them efficiently and how to extract easily relevant information from a large quantity 

of data. The anomaly detection techniques are used in many domains in order to help to process the data 

in an automated way. The anomaly detection techniques depend on the application domain, on the type 

of data, and on the type of anomaly.  

For this study we are interested only in sequential data. A sequence is an ordered list of items, also called 

events. Identifying irregularities in sequential data is essential for many application domains like DNA 

sequences, system calls, user commands, banking transactions etc.  

This thesis presents a new approach for identifying and analyzing irregularities in sequential data. This 

anomaly detection technique can detect anomalies in sequential data where the order of the items in the 

sequences is important. Moreover, our technique does not consider only the order of the events, but also 

the position of the events within the sequences. The sequences are spotted as anomalous if a sequence 

is quasi-identical to a usual behavior which means if the sequence is slightly different from a frequent 

(common) sequence. The differences between two sequences are based on the order of the events and 

their position in the sequence.  

In this thesis we applied this technique to the maritime surveillance, but this technique can be used by 

any other domains that use sequential data. For the maritime surveillance, some automated tools are 

needed in order to facilitate the targeting of suspicious containers that is performed by the customs.  

Indeed, nowadays 90% of the world trade is transported by containers and only 1-2% of the containers 

can be physically checked because of the high financial cost and the high human resources needed to 

control a container. As the number of containers travelling every day all around the world is really 

important, it is necessary to control the containers in order to avoid illegal activities like fraud, quota-

related, illegal products, hidden activities, drug smuggling or arm smuggling. For the maritime domain, we 

can use this technique to identify suspicious containers by comparing the container trips from the data 

set with itineraries that are known to be normal (common). A container trip, also called itinerary, is an 

ordered list of actions that are done on containers at specific geographical positions. The different actions 

are: loading, transshipment, and discharging. For each action that is done on a container, we know the 

container ID and its geographical position (port ID). 

This technique is divided into two parts. The first part is to detect the common (most frequent) sequences 

of the data set. The second part is to identify those sequences that are slightly different from the common 

sequences using a distance-based method in order to classify a given sequence as normal or suspicious. 

The distance is calculated using a method that combines quantitative and qualitative differences between 

two sequences. 
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We will present in this thesis the context and the existing anomaly detection techniques. Then, we will 

present our anomaly detection technique and the results obtained by testing this technique with 

experimental data and with real world data. 

 

Résumé 

 

De nos jours, beaucoup de données peuvent être facilement accessibles. Mais toutes ces données ne sont 

pas utiles si nous ne savons pas les traiter efficacement et si nous ne savons pas extraire facilement les 

informations pertinentes à partir d’une grande quantité de données. Les techniques de détection 

d’anomalies sont utilisées par de nombreux domaines afin de traiter automatiquement  les données. Les 

techniques de détection d’anomalies dépendent du domaine d’application, des données utilisées ainsi 

que du type d’anomalie à détecter. 

Pour cette étude nous nous intéressons seulement aux données séquentielles. Une séquence est une liste 

ordonnée d’objets. Pour de nombreux domaines, il est important de pouvoir identifier les irrégularités 

contenues dans des données séquentielles comme par exemple les séquences ADN, les commandes 

d’utilisateur, les transactions bancaires etc. 

Cette thèse présente une nouvelle approche qui identifie et analyse les irrégularités de données 

séquentielles. Cette technique de détection d’anomalies peut détecter les anomalies de données 

séquentielles dont l’ordre des objets dans les séquences est important ainsi que la position des objets 

dans les séquences. Les séquences sont définies comme anormales si une séquence est presque identique 

à une séquence qui est fréquente (normale). Les séquences anormales sont donc les séquences qui 

diffèrent légèrement des séquences qui sont fréquentes dans la base de données.  

Dans cette thèse nous avons appliqué cette technique à la surveillance maritime, mais cette technique 

peut être utilisée pour tous les domaines utilisant des données séquentielles. Pour notre application, la 

surveillance maritime, nous avons utilisé cette technique afin d’identifier les conteneurs suspects. En 

effet, de nos jours 90% du commerce mondial est transporté par conteneurs maritimes mais seulement 1 

à 2% des conteneurs peuvent être physiquement contrôlés. Ce faible pourcentage est dû à un coût 

financier très élevé et au besoin trop important de ressources humaines pour le contrôle physique des 

conteneurs. De plus, le nombre de conteneurs voyageant par jours dans le monde ne cesse d’augmenter, 

il est donc nécessaire de développer des outils automatiques afin d’orienter le contrôle fait par les 

douanes afin d’éviter les activités illégales comme les fraudes, les quotas, les produits illégaux, ainsi que 

les trafics d’armes et de drogues. Pour identifier les conteneurs suspects nous comparons les trajets des 

conteneurs de notre base de données avec les trajets des conteneurs dits normaux. Les trajets normaux 

sont les trajets qui sont fréquents dans notre base de données.  

Notre technique est divisée en deux parties. La première partie consiste à détecter les séquences qui sont 

fréquentes dans la base de données. La seconde partie identifie les séquences de la base de données qui 
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diffèrent légèrement des séquences qui sont fréquentes. Afin de définir une séquence comme normale 

ou anormale, nous calculons une distance entre une séquence qui est fréquente et une séquence aléatoire 

de la base de données. La distance est calculée avec une méthode qui utilise les différences qualitative et 

quantitative entre deux séquences.     

Nous allons présenter dans cette thèse, tout d’abord, le contexte de recherche et les techniques de 

détection d’anomalies qui existent. Puis nous présenterons notre technique de détection d’anomalies et 

les résultats obtenus avec notre technique utilisant des données expérimentales et des données réelles 

de conteneurs. 
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Introduction 

 

1. Context 

Maritime surveillance includes many different fields. Oceans, seas, and coasts are precious resources used 

for different kind of activities like transport, tourism, fishing, mineral extraction, wind farms. 

It is important to control the human exploitation of natural resources for environmental concerns. The 

human activities are controlled in order to preserve the fragile balance of the maritime ecosystem. For 

example, it is important to regulate and control fishing in order to preserve the fish species. It is also 

important to control that industrial cargos do not discharge illegal substances into the sea, or to control 

the pollution made by the ships, cargos, ferries etc… 

Another concern linked with the maritime domain is the security. The security in maritime domain 

includes many different aspects. One security matter is to control the transport of people and the 

migration of people around the world by sea in order to avoid terrorism activities, to control the refugees, 

or to control the spread of diseases. Every year, more than 400 million passengers embark and disembark 

in European ports. Another security matter is to control the routes of cargo, ship, sail, private boat etc. in 

order to avoid collisions, in the middle of the sea or close to the shore, between them or with smaller sea 

users. Another really important and difficult security task is to predict, to inform, and to protect the sea 

users against the piracy in order to reduce the cargo attacks. It is also really important to control the 

containers that travel all around the world transporting goods. 

As we have seen the maritime surveillance is a large domain with many applications. For this work, we 

will focus on maritime container surveillance. The standardized steel shipping container was invited by 

the shipping owner Malcom McLean in 1956. A container is a standardized steel box used for the safe, 

efficient, and secure transport of materials, products, and goods. The containers travel all around the 

world by container ship, freight trains, or semi-trailer truck. A container can have free different sized 

defined by the ISO 6346 norm, norm established in 1967. The length of a container can vary from 20 feet 

(6.10 m), 30 feet (9.15 m) or 40 feet (12.20 m), and the height can be 8 feet (2.44 m) or 9 feet 6 inches 

(2.9m). The container capacity is expressed in twenty-foot equivalent units (TEU), an equivalent unit is 

equal to the standard container capacity which is 20 feet * 8 feet (6.10m * 2.44m). The containers can be 

from different types: standard container, refrigerated container for perishable goods, container with 

tanks for liquid, ventilated container, container with open top, collapsible container etc. There are 

approximately seventeen million containers of all types and sizes in the world. In 2007, the cost of a 

standard container (20 feet – 8 feet) was 1 400 euros for a use of 15 years. In 2012, the French company 

CMA CGM launched the longest ship, called CMA CGM Marco Polo, that can contain 16 020 containers. In 

Figure 1 we can see a picture of containers at the port of Genoa in Italy. 
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Figure 1: Picture of containers at the port of Genoa in Italy 

Most of the goods are transported by maritime containers all around the world and the number of 

containers travelling every day keeps increasing. Nowadays, more than 90% of all world trade is 

transported by maritime cargo containers moving from port to port. For example, 5/6 thousands of 

containers arrive every day only in the port of Rotterdam in Netherlands. It is necessary to control the 

container activities in order to detect threats like illegal activities, terrorism, miss-declaration, fraud, 

quota-related, illegal products, hidden activities, or drug and arm smuggling. For example, a case of drug 

smuggling was released in the press in 2000 [1]. The US Customs stopped a container containing marijuana 

in the port of Everglades in Florida. The ship containing the container arrived from Kingston in Jamaica 

and had for destination the port St John in Antigua. The container was manifested as “commercial cleaning 

solvents”, some financial information was removed from the itinerary information and an extra port was 

visited during the shipment. Another known example is an arm shipment going to El Salvador passing by 

the port of Portland in the USA [2]. The content of the containers was hidden and the original port of 

departure was removed from the itinerary information. As the cost and the human resources needed to 

physically check a container are really high, only 1-2% of the containers can be physically controlled by 

the customs. From statistics, around 10% of the containers are risky containers. As only few containers 

can be checked and as the percentage of suspicious containers is not that high, it is not worth doing some 

random physical checks on containers. As long as the number of containers travelling every day in the 

world is so important, it is necessary to improve the targeting of suspicious containers in order to inspect 

only the containers that are of high risk. In order to facilitate the targeting of anomalous containers, some 

tools are needed to facilitate the targeting performed by the customs. Therefore, the maritime anomaly 

detection field is more and more studied.  
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2. Anomalies 

There exist many definitions on what the maritime anomalies are. In order to understand what an 

anomaly is we need to define what a normal behavior is. Several definitions can be found for the normal 

behaviors. For example, the normal behaviors are defined as the predictable events, as the events that 

are recurrent, as the events that repeat in a predictable manner, or as the events that are frequent. The 

anomalies are defined as the non-normal behaviors, as the unusual behaviors, as unexpected behaviors, 

as the non-predictable events, as the infrequent events, as the extreme values, or as the events that 

deviate from the routine. A general definition of the maritime anomaly detection could be to find unusual 

behaviors using maritime information in order to improve the security of the citizens. For our application, 

we define the anomalies as unexpected events, and as behaviors that are quasi-identical to normal 

behaviors. It means that the suspicious containers behave as close as possible as normal containers. 

3. Data 

The maritime data can be of many different forms. We will list here some of them: vessel containers, 

shipping company, cargo owner, route of a container (departure port, transshipment ports and arrival 

port), image controls, time of the travel of a container, geographical position of a ship, speed of a ship, 

weight of a container, Automatic Identification System (AIS) which is an automatic tracking system used 

on ships in order to locate them. The AIS information gives different kind of information: a unique 

identification of the ship, the ship position, the ship course, and the ship speed. The ship position is the 

geographical position of the ship on the ocean. The ship course is the angle (in degrees) between the 

actual path of the ship and a fixed reference object (usually north). This information is provided by AIS 

equipment in the ship that communicates by electronically exchanges with the AIS Base stations. As the 

equipment is inside the ship, the interruption of the signal could be of several causes. It could be because 

of bad reception of the signal in areas that are not well covered, because of technical problems or due to 

volunteer purposes in order to hide the ship information at least for a while. 

4. Anomaly detection techniques applied to maritime security 

The problem with maritime container surveillance is that many factors can influence the routes taken by 

a container ship. A change in the itinerary can be justified by the global economic conditions, by cultural 

factors, by political factors, or even by environmental factors. For example, a ship itinerary is conditioned 

by political factor as embargo, an American ship cannot go in a Cuban port otherwise it is a violation of 

the embargo imposed by the US on Cuba. Or a ship may deviate from his original route because of the 

weather condition, like hurricane, iceberg, tide, or natural phenomena. A ship may change his route 

depending on the fluctuating price of the oil a different market could be attracting. For example, if the 

price of oil goes down enough, it makes the price of Brazilian bananas attractive to the French market, 

and in consequence the bananas coming from other places will decrease. A ship may react also to the 

crisis: a transporter could change the type of cargo to reduce the expenses, and/or the itinerary in order 

to reduce the travel expenses. A ship might also change his route for “bad” purposes in order to avoid the 

quotas legislation, to avoid taxes, to transport illegal products etc. 
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The purpose of the maritime anomaly detection is to sift through large quantities of data and spot the 

data that are worthy of interest. The data worthy of interest are the anomalous data. As we have 

described previously the data worthy of interest for the maritime security are data that have unusual, 

infrequent, or suspicious behaviors. First, the idea is to find the normal behaviors. The normal behaviors 

are the recurring events, also seen as the frequent events. Once the normal behaviors are defined, we 

can spot the events that are suspicious which means the events that are different from the normal ones. 

Martineau et al. [3] summarize some current studies on maritime anomaly detection that we will describe 

in this paragraph. 

Many techniques, before using the data, merge the data from different sources, different types, different 

formats, or different precisions. The fusion of the data is used to reduce the volume of the data and to 

improve the quality data in order to have the most accurate data as possible. As some data may provide 

incomplete or uncertain information, by merging several data together these incomplete data can be 

improved. For example, in order to detect the exact geographical position of a ship on the ocean several 

types of data given the position of the ship can be used and merge together: the radar contacts, the 

reconnaissance aircraft or aerial vehicles, and the Automatic Identification System (AIS). The radar 

contacts give information with an elliptic error, they are limited in range, and they can miss small vessels. 

The position given by the reconnaissance aircraft or aerial vehicles can be imprecise and they cannot cover 

everywhere. And the AIS emissions are limited to certain areas, they may be interrupted, and only vessels 

over 300 tons are equipped with transmitter. As all of these data are imprecise or can have some errors, 

with the fusion of all these data it is possible to obtain the geographical position of the ship as close as 

possible to the real position. We will not explain more details about the fusion process of data as it is a 

full topic by itself. Moreover, we do not have different types of data available for our application so we 

cannot merge data. 

Many techniques use the Automatic Identification System (AIS) data in order to discover suspicious 

(unusual) behaviors. We will describe some of them on the following paragraph. As explained previously, 

the AIS data contain different information:  the unique identification of the ship, the ship position 

(geographical information), the ship course (orientation of the route of the ship), and the ship speed. We 

will list several techniques using the AIS data in order to spot anomalous containers. These techniques 

group ships together depending on their behaviors. All these techniques use different technologies to 

learn the normal model and/or to detect the anomalies. 

· Rhodes et al. 2005 propose maritime situation awareness technique [4]. This technique detects 

the normal behaviors and learns continuously the models in order to detect deviation from the 

normality. The anomalous (unusual) activities are detected using vessel data (speed, position, 

etc.). In maritime surveillance the normality of an event can differ depending on the context like 

the class of vessel, the weather conditions, the tide, the season, the time of day etc. The 

continuously learning is used to continuously complete the set of rules in order to cover all cases. 

Thus, a new event can be added to the normal event list or spotted as anomalous. They use a 

modified version of the Fuzzy ARTMAP neural network classifier developed by Grossberg [5,6]. 

The ARTMAP algorithm is a learning algorithm that clusters features into categories using an 

unsupervised approach. It also maps and labels the clusters using a supervised algorithm. A 
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threshold specified by the user, called vigilance, is used as the level of generality/specificity for 

the clusters. With a high level of vigilance, the clusters will be more specific. An input pattern and 

a pattern from the clusters are compared. If the match between two patterns (input pattern and 

cluster pattern) satisfies the vigilance threshold, the input pattern is putted into the cluster. If the 

match does not satisfy the threshold, the threshold is raised in order to learn correctly the training 

example. The modified version of the ARTMAP algorithm uses the discovery of sub-space which 

provides an effective feature for discernment between targets.  

This technique does not need to have an operator supervising the process, except for an initial 

bootstrapping phase.  Then, the system is capable to discover normal and anomalous events and 

is able to adapt to changing situation as it is continuously learning. This technique can benefit 

from the operator knowledge as they can respond to the alerts defining an alert as suspicious or 

as not suspicious. The model is then updated with the new status of the alert using the operator 

knowledge. This technique can detect normal behaviors or anomalies only as continuous events. 

If a normal behavior is formed by un-continuous events, which means that if the normal events 

have an unusual order, this technique will not be able to detect them as it does not take into 

account sequences or sets of events as behaviors. 

 

· Garagic et al. 2009 propose an improved version of the previous technique developed by Rhodes 

et al. [4] in order to detect anomalies [7]. They define the normal behavior as activity that occurs 

frequently and anomaly as a rare activity that is different from the normal activity. The method 

described previously [4] uses uniform probability inside a category. This technique [7] replaces 

the fuzzy ARTMAP algorithm by a multidimensional probability density component. The 

probability density function is calculated using the Expected Maximization (EM) algorithm [8] to 

minimize the Killback-Leibler information metric [9]. The novel adaptive mixture-based neural 

network classifier algorithm is used to determine the highest probability to assign to a category. 

Then, a random input is compared to a specific category using the Mahalanobis distance (distance 

based on correlations). If the distance is too high, the input will be defined as anomaly. If the input 

is not an anomaly, a new category will be created. The probability density of this new category is 

calculated as described previously. 

This technique is a powerful tool for real world applications in maritime domain awareness. The 

speed and the performance of the learning algorithm make it suitable for a real-time application. 

Thanks to the learning algorithm this technique can adapt to changing situations. The robustness 

of the overall system could be improved and as the previous method, the importance of the data 

order should be reduced. 

 

· De Vries et al. 2008 developed a technique to characterize the vessel behaviors using a semi-

automatic ontology [10]. This method uses a Hidden Markov Model (HMM) to characterize the 

trajectory of ships using the AIS tracks. Then, the models are clustered to form classes of ships. 

All the ships of a class share the same behavior. This technique is not an anomaly detection 

technique, but as the vessels are classified into several groups where the behavior is supposed to 

be normal, it is possible to spot the vessels that do not behave as the behavior of the different 

groups. 
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This technique shows that the combination of machine learning and ontology engineering works 

well and that there are interesting possibilities to explore. This technique opens the combination 

between these two different fields but more experimental evaluations are required. This 

technique can be used in the maritime domain and also in other domains, like domains related to 

moving objects, such as cars or planes. But the technique needs to have good information 

available on the domain used by the technique in order to cluster the entire data set. The Hidden 

Markov Model is a well-known method to model data, for this application, another model could 

be found in order to model the data in a faster way. 

  

· De Vries et al. 2009 proposed another technique to model the ship trajectories using an 

unsupervised method [11]. In order to model the trajectories of the ships this technique uses the 

vessel tracks – AIS data. The Douglas-Peucker algorithm is used to compress the vessel tracks. The 

Douglas-Peucker algorithm, also called Ramer-Douglas-Peucker algorithm, is used to reduce the 

number of points in a curve by approximating a series of points. The simplified curve is composed 

by a subset of the points that defined the original curve. The vessel tracks are then split into 

segments. Different classes are created using the Affinity Propagation clustering. The Affinity 

Propagation algorithm is an algorithm that identifies exemplars among data points and forms 

clusters of data points around the exemplars. The exemplars are data points that represent 

several data points. The algorithm consider all the data as potential exemplars and exchange 

messages between the data points until  a good set of exemplars is found in order to create the 

clusters [12]. Using the vessel track of a ship, they can predict its future position by using the class 

that is the closest to the vessel track. The anomalies can be detected by comparing the predicted 

position and the actual position of the vessels. 

This technique is an unsupervised approach that models the ship trajectories in clusters, it can 

predict a ship trajectory thanks to the clusters, and it can detect anomalous ship track by 

comparing the prediction to the actual position of the vessels. This technique does not take into 

consideration for the model of the trajectory the type of the ship, even though the behaviors of 

the ships depend on the type of the ship. 

 

· Ma et al. 2009 propose a technique to spot the hidden behaviors [13]. The speed, the orientation, 

and the position of the ships are used to classify the ships into different clusters defining the 

normal behaviors. The classification is done using a Hierarchical Dirichlet process clustering. The 

Hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach that clusters grouped 

data. Each group of data is modeled with a mixture. Components can be shared across groups 

which allow dependencies across groups. Once the ships are clustered in several groups, each 

trajectory is then compared to the normal behaviors and detected as anomaly if the likelihood of 

occurrence is below the anomaly threshold. 

This technique can detect anomalies on ship behaviors depending on the trajectory of the ships. 

Some results are given using parking lot data set [14]. Using a large data set require a large amount 

of space to store the similarity matrix and a high computational cost to compute the similarities 

of all the pairs of trajectories. For example, it is difficult to calculate the eigenvectors on a huge 

matrix. 
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· Quanz et al. describe an anomaly detection technique for maritime security using cargo equipped 

with sensing and communication abilities [15]. The shipment routes form a network of sensor 

nodes. They define the anomaly (outlier) as an observation that deviates from the historical 

patterns. The algorithms automatically learn the normal behaviors as rules. Groups are created 

containing information sharing the same conditions. The anomaly detection is done on groups of 

nodes and individual nodes. This technique provides also a real-time system that learns 

continuously. They use three different algorithms for the anomaly detection. The first algorithm 

is an Online One-Class Support Vector Machine (OOCSVM) which estimates the support of the 

training data distribution. The OOCSVM tests each training instance with the current model. If the 

instance is not classified, the current model is updated. The second algorithm is an online real-

valued Artificial Immune System (AIS) which compares random data with the training data in order 

to discover the anomalous data. A distance between a given data and a training data is calculated. 

If the distance is above a specified threshold the data is deleted because it is considered as similar 

to the training data. If the distance is below the threshold the data is kept as anomalous. The third 

algorithm is a simple threshold approach where the maximum value and the minimum value for 

each feature in the training data are stored. The data are tested and spotted as anomalous if the 

value exceeds the training stored values. 

This technique improves the transportation chain security thanks to an anomaly detection based 

on sensor data. Some experimentations on data have demonstrated the effectiveness and 

feasibility of this approach. Although, this technique cannot relate the detection of anomalies on 

individual objects (an object that affects individual objects) and the detection of anomalies on 

group of objects (an event that affects the entire group of objects) as the two anomaly detection 

parts are not combined. The use of this technique is a bit complicated because many parameters 

have to be set as each algorithm has their own parameters. 

Other techniques use the fusion of data, which means that they use many different kinds of data at the 

same time in order to have a better picture. For these techniques, the first step is the data fusion. As 

explained before, the fusion of the data process use data from different sources and combine them 

together in order to improve the quality of the data. Even if these techniques have the same aim as our, 

they are really different from our anomaly detection technique, by consequence, we will present only 

briefly some techniques applied to the maritime surveillance using the fusion of different kinds of data. 

The following techniques, as the ones we previously explained, cluster ships together depending on their 

behaviors. 

· The SeeCoast system [16] uses video data, radar detections, and Automatic Identification System 

(AIS) data. This technique fuses all these different data in order to generate the tracks for vessels 

approaching the port or the vessels already in ports. The system is able to detect, classify, and 

track the vessels thanks to the video processing.  

 

· The SCANMARIS project is used to detect anomalous vessels [17]. This method learns the normal 

behaviors (Learning Engine) and then extracts automatically the anomalous vessels (Rule Engine). 

This technique fuses different types of data: coastal radar, Automatic Identification System (AIS), 
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online databases, etc. The fusion of the data helps to add information to each vessel that is 

detected like name, flag, type, operator, owner, tonnage characteristics, etc.  

 

· The project SECurity system to protect people, goods, and facilities located in a critical MARitime 

area (SECMAR) was developed by Thales Underwater Systems [18]. The system can detect 

automatically the threatening targets using different types of data, like, underwater sonar 

surveillance, above water radar surveillance, electro optic data, Automatic Identification System 

(AIS) data, and information provided by the ports. This technique is used for detecting potential 

terrorist threats by the sea, using data from the sea surface or under water data.  

 

· Carley et al. 2009 use network analysis in order to detect anomalies for the maritime domain [19]. 

They use Automatic Identification System (AIS) tracks, boarding reports, port information, and 

land data. This technique can detect different types of anomaly, for example, it can identify 

suspicion on ship owners, crews, passengers, ports, and locations. 

The two following techniques do not cluster the ships as the previous techniques which were based on 

the ship behaviors. But they partition the oceans/seas by regions. Once they have modeled the behaviors 

of the ships by areas, they can detect the abnormal behaviors depending on the behavior of a ship within 

a specific area. 

· The Learning and Prediction for Enhanced Readiness (LEPER) is a project sponsored by the Office 

of Naval Research (ONR) [20]. This method predicts the position of vessels using Hidden Markov 

Model prediction. The trajectories of ships are decomposed into sequences using a military grid 

reference system. The Hidden Markov Model is used to calculate the probabilities between grid 

locations using the sequences of ship trajectories. A vessel is anomalous if the distance between 

the prediction and the actual position of the vessel is above a predefined threshold.  

The project LEPER is a toolkit of components that can model normal behaviors and detect 

anomalous behaviors, it can recommend actions against the threats, and detect strategy changes. 

It has been tested on maritime data and all the anomalies were detected. More applications could 

be done using multi-modal data and multi-grid scales. 

 

· Janeja et al. 2004 present a study using the characterization of regions surrounding the locations 

of interest in order to detect anomalous trajectories [21]. The areas are partitioned into regions 

using Voronoi diagrams. The Voronoi diagrams are used to divide space into regions. A Voronoi 

region contains every point whose distance to that region is less or equal to any other region. 

Each region is defined with a specific vector representing the normal trajectory for this region. 

Several regions can be grouped together if they have similar behaviors. The vector of the new 

region is the average of all the vectors of all the regions used to create this new region. The 

anomalies are detected using the combination of the path of a ship depending on the region. 

This technique detects trajectory anomalies by characterizing the behaviors by regions. More 

criteria could be added using different weights in order to define different levels of importance of 

certain situations which will describe more accurately the behaviors in the different regions.  
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5. Our problem 

The problematic that we have is to develop an anomaly detection technique that detects suspicious 

containers using only few information about the container route. Many anomaly detection techniques for 

maritime surveillance already exist and can really efficiently target suspicious behaviors. But most of these 

techniques need a lot of information about the container route, the ship geographical position, knowledge 

on the data etc. There is a need for the customs to detect suspicious containers using only the most basic 

information. And it is important that a person that does not have any knowledge on maritime shipment 

is able to use the anomaly detection technique. This anomaly detection technique is not a real time 

application which means that the aim is not to use real time data but to use historical data. The anomalies 

detected with historical data are information used by the customs to understand better their data, or a 

situation, to help them to analyze the data, or to make statistics on the data etc. We define the suspicious 

containers as containers behaving as close as possible as normal containers in a way that they do not 

attract the attention of the customs. It means that the suspicious containers behave quasi-identically as 

the normal containers. Thus, we are looking for containers that have a behavior slightly different from the 

frequent behaviors.  

As we have said the main, and important, difference between the techniques described previously and 

our problem is the available data. We have access to a broad data set of container itineraries but we do 

not have access to various kinds of data. For example, we do not have the AIS information for each ship, 

thus, we do not know all the geographical positions of a ship during his whole travel. But we do have 

information about the container events. When a container enters a port an event is created and some 

information is available. An event defines what happened to a particular container using the container 

identification number of the container at a particular date at a particular location. The different events 

that can happen to a container is: departure, transshipment or arrival. For example, the container that 

has the identification number 5016 leaves from the port of Rotterdam the 24th of January 2010. Some 

events also mention the vessel name involved. The available data are container events from 

heterogeneous, publically available sources. The integration of the collected data into a coherent data set 

requires significant semi-automatic transformations and cleaning that deals mostly with non-standard 

text strings defining geographic locations and container event types. The resulting dataset is stored in a 

data warehouse which facilitates the analysis processes by using appropriate data structures and indexes. 

The data set contains information in the form of container events. Currently the dataset contains more 

than 900 million events and about more than 12 million containers. With the container event information 

we can easily form the container itineraries. A container itinerary is the travel of a specific container (using 

the container identification number) from his departure port to his arrival port, passing potentially 

through transshipment port(s). The Figure 2 is an example of an itinerary with one transshipment port: 

the container leaves from Singapore, goes to Chiwan and ends its trip in Rotterdam. 
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Figure 2: Itinerary from Singapore to Rotterdam passing through Chiwan 

All the techniques that we have described previously share the same goal which is the maritime 

surveillance. They also share the same principle: they detect common behaviors using maritime data 

available, and then they detect the abnormal behaviors using the common ones. Our approach has also 

the same principle and the same application. We want to detect anomalies in maritime containers data 

thanks to a comparison between the normal container behaviors and random ones.  

We developed an anomaly detection technique for maritime surveillance but our technique can be used 

for other application too. The maritime data used are container itineraries which can be seen as ordered 

sequences of events. The events are ports and an itinerary is composed by the departure port, followed 

by the transshipment ports (if there is any transshipment port) and ending with the arrival port. Thus, this 

technique can be used for any domain that uses sequences. A sequence is an order list of events as the 

itineraries. This technique detects anomalous sequences based on the order of the events and the position 

of these events within the sequences. The anomalous sequences are sequences that are close to normal 

sequences but with some small changes. The normal sequences are the sequences that are common in 

the data set. With this technique we compare a normal sequence with a random one in order to detect 

that sequence as normal or as anomalous. The anomalous sequences are sequences that are similar to 

normal sequences but not exactly identical. For example, if we have a normal sequence “a b c d e” we are 

interested to detect the sequences that are almost identical to that sequence. Anomalous sequences 

could be of different types: 

·  “a b d e”: where one event has been removed from the original sequence 

· “a b f d e”: where one event has been replaced by another event from the original sequence 

· “a b c d e f”: where one event has been added from the original sequence 

· “ a c b d e”: where two events has been inverted from the original sequence 

Anomalous sequences are only the sequences that contain few modifications from the normal sequence. 

If the differences between the normal sequence and a random one are too important the random 

sequence will not be spotted as anomalous compared to that normal sequence. For example, the 

sequence “a d e c b” is too different from the normal sequence “a b c d e” to be spotted as anomalous. 

Even if the two sequences have the same events within the sequences, both sequences are really different 

because almost all the events have a different position with the sequences. Thus, we cannot say anything 

about that random sequence based on that normal sequence. 

Our anomaly detection approach is divided into two steps. First, we will find the normal sequences (for 

our application the normal sequences are normal container itineraries). In order to detect the normal 
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sequences we will use an unsupervised approach, which means that we will use the whole data set (the 

normal and abnormal sequences). We use the regular expressions in order to detect the common 

sequences. Then, we compare random sequences from the data set with the common ones in order to 

define them as normal or abnormal. In order to compare a common sequence and a random one, we 

calculate a distance between them two. Depending on the value of the distance, the random sequence 

will be defined as normal or anomalous. 

In the following chapter, we will describe some existing techniques applied to the maritime domain using 

graphs, some sequence mining techniques and some string distances. Then, we will explained in details 

our approach and give some experiments using experimental data and real-world data. 
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Literature Review 

In this section, we will first present some graph-based anomaly detection techniques that can be used 

with maritime data. As we have seen previously, our data can be seen as sequences of events that happen 

to maritime containers. Therefore, we will describe some sequence mining techniques. And as our 

technique calculate the distance between two sequences; we will explain the main distance functions. 

 

I. Graph-based anomaly detection 

 

As we have seen previously, most of the anomaly detection techniques applied to maritime domain are 

different from our approach because they use different maritime data. Some anomaly detection 

approaches that are used in maritime domain and could also be used with our data are the graph-based 

anomaly detection techniques. For example, using our data, an itinerary could be represented with a 

graph. 

A graph is a representation of a set of objects where some of them are connected by links. A link connects 

two objects. The objects are called vertices/nodes and the connections are called links/edges. The edges 

can be directed. A directed edge connects two vertices together in one way only. For example, the edge 

a to b is directed. Or the edge between two vertices can be undirected. An undirected edge links two 

vertices in both ways. For example, the edge a to b and the edge b to a are the same. For example, a graph 

represents the route taken by a car. The car starts from Milan and stops in Grenoble. The graph 

representing this information will be directed as there is a link only from Milan to Grenoble, the link 

Grenoble to Milan should not exist. At the opposite, if the car goes from Milan to Grenoble and then come 

back to Milan, the graph will be undirected as both directions exist. A sub graph is a part of the whole 

graph, it is also called substructure. A graph can be composed by several sub graphs. 

Knowing the definition of a graph, we can easily represent our data set with graphs. The whole data set 

will be a graph that contains many sub graphs. Each sub graph will represent one itinerary. In Figure 3 we 

can see an example of a sub graph representing an itinerary going from the port of Singapore to the port 

of Chiwan passing through the port of Rotterdam. 
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Figure 3: Graph representation of the itinerary Singapore, Rotterdam, Chiwan 

We will now describe several graph-based anomaly detection techniques. 

1. Graph-Based Anomaly Detection 

Noble et al. described two techniques to detect the anomalies in data that are represented with a graph 

[22]. 

The challenge of the anomaly detection research is to define what an anomaly is. For this study, they 

describe an anomaly as a surprising or an unusual pattern.  

· Anomalous substructure detection: 

The first technique is a general technique that uses the whole graph to detect the abnormal 

substructures contained in the graph. The anomalies are defined as unusual events, which means 

that the abnormal events are infrequent patterns. But it is not enough to detect only the 

infrequent substructures in order to detect the anomalous substructures of a graph as the large 

substructures occur only rarely. For example, the structure of the whole graph is present only 

once. Thus, if the whole graph is seen as a substructure, it will be detected as an anomaly as it 

occurs only once. In order to detect the unusual substructures they use the Subdue system [23].  

 

The Subdue system is a graph-based data mining project that detects the repetitive patterns. As 

we have seen before, an anomaly is an unusual event and it can be also defined as the opposite 

of a common event. The repetitive patterns occur frequently in a graph and the anomalies occur 

infrequently. In that case, Subdue will not detect the repetitive patterns but their opposites. The 

Subdue system creates a list of substructures. It starts by creating one substructure for each 

vertex of the graph. The substructures are extended by adding another vertex and its 
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corresponding link to the previous substructures. Every substructure is extended with the same 

process. Once all the substructures are created, the best substructures are detecting using the 

Minimum Description Length (MDL) heuristic [24]. The MDL is used for compressing the data using 

the regularities of the data set. The Description Length of a substructure is the lowest number of 

bits that is needed to encode it. The best substructure is the one that minimize the equation (1): 

 

Where G is the entire graph, S is a substructure of G, DL(G/S) is the Description Length of the 

graph G after compressing it using the substructure S, and DL(S) is the Description Length of the 

substructure S.  

The Figure 4 is an example of a graph composed by five sub graphs. The structure that can 

compress the most the graph is the best structure that connects the node A to the node B. 

 

Figure 4: Example of a best substructure 

The measure F(S,G) estimates how well a substructure compresses a graph. The amount of 

compression is linked to the substructure size and its number of instances. Large substructures 

are expected to occur only rarely, and small substructures are less likely to be rare. Thus, the aim 

is to discover small rare substructures. The frequent substructures, also called best substructures, 

have low values of F(S,G). For detecting the anomalies of a graph, the infrequent substructures 

are important. Unlike the frequent substructures that have a low value of F(S,G), the infrequent 
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substructures have a high value of F(S,G). In order to avoid the problems of the entire graph and 

of the single vertex that will have high values of the equation (1), and knowing that the 

compression of a graph depends on the size of the substructure, they do not use directly the 

formula (1) but the derived equation (2):  

Where Size(S) is the number of vertices contains in the substructure S, and Instances(S,G) is the 

number of times that S is present in the graph G. 

F’(S,G) is an approximation of the inverse of F(S,G). Therefore, S will be defined as an anomaly if 

F’(S,G) has a low value.  

· Anomalous sub graph detection: 

The second anomaly detection technique developed by Noble et al. partitions the graph into 

distinct substructures and it determines how anomalous is a sub graph compared to the other 

ones. As for the previous method, the anomalous substructures are seen as the opposite of the 

common substructures. Subdue is also used for this technique to detect the best substructures 

by running several iterations on one graph. On each iteration, Subdue discovers the best 

substructures using the Minimum Description Length (MDL) heuristic [24]. Then, the graph is 

compressed using the best substructures found by Subdue, which means that a best substructure 

is replaced by a single vertex in the entire graph. The next iterations will use the compressed graph 

in order to detect the new best substructures. The substructures that can compress the best the 

graph will be discovered at the first iterations. For example, after many iterations, Subdue will 

find as best substructures, substructures that occur only few times as all the more common 

patterns have already been detected. Thus, this technique needs to take into account when the 

best substructure is obtained (the number of the iteration i) and how much the substructure can 

compress the graph. The anomalous sub graphs tend to experience less compression than the 

other sub graphs as they contain few common patterns. The anomalous sub graphs are found 

using the principle that a sub graph that contains many common substructures is less likely to be 

anomalous than a sub graph that have only few common substructures. An anomalous sub graph 

is detected with a high value of the equation (3): 

Where n is the number of iterations and DLi(G) is the description length of the sub graph after the 

ith iterations. The fraction  is the percentage of the sub graph that is compressed 

at the ith iteration. All the sub graphs begin with A = 1, the value of A decreases depending on the 

portions of the sub graph that are compressed during the iterations. 
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· Experimentations: 

They tested these two techniques using the 1999 KDD Cup network intrusion dataset [25]. The 

data are connection records which are labeled as normal or as one of the thirty seven different 

attack types. Each record contains forty one characteristics that describe the connection, like 

duration, protocol type, number of bytes etc. They created samples of data containing a certain 

number of records from the data set. Most of the records of each sample are normal (96 – 96% 

are normal records) and each sample contains only one type of attack. The assumption of these 

unsupervised anomaly detection techniques is that the anomalous events are rare. Consequently, 

these techniques would have worked very poorly if the samples were containing many attack 

records. They tested these techniques with three different samples, varying the percentage of 

attacks and the overall number of records. The first sample contains 50 records and 1 attack. The 

second one contains 50 records and 2 attacks. The third sample contains 100 records and 2 

attacks. Each sample was converted into a graph. The anomalous substructures are substructures 

containing 2 or 3 vertices in order to avoid having a high computing time. They tested the three 

different samples with all the different types of attack. 

 

Using the first technique, the anomalous substructure detection technique, they limit the value 

of  to maximum 6 as they are interested only in the most anomalous substructures. The 

maximum value is an arbitrary value, for this test the maximum value is set to 6 which is a 

convenient value for this data set. The results were good for the sample containing 50 records 

and one attack, only two types of attack worked poorly. The results for the sample containing 50 

records and two attacks were poorer than the first sample. The attacks are not considered as 

anomalous as they are 4% of all the records. As for the first sample, the same two types of attack 

had poor results. The results for the sample containing 100 records and 2 attacks were the best, 

slightly better than the first sample. As for the two other samples, the same two types of attack 

had poor results. 

 

Using the second technique, the anomalous sub graph detection technique, the results were 

similar. The two same types of attack had poor results. The sample with 50 records and 2 attacks 

did not have good results. The sample with 50 records and 1 attack had reasonably good results 

and the sample with 100 records and 2 attacks had the best results. 

These two graph-based anomaly detection techniques can spot the anomalies based on the facts that an 

anomaly is the opposite of a normal event. The first technique examines the whole graph and detects 

anomalous substructures contained in the graph. The second technique partitions the graph in sub graphs 

and determines how anomalous each sub graph is compared to the other sub graphs. These two 

techniques improve their results when the amount of available data increases. In order to have good 

results the anomalies has to be really rare, which means that the number of anomalies has to be really 

low compared to the normal data. As we have seen with the experimentations, we can see a difference 

in the results when the anomalies are 2% of the whole data and when only 4% of the data are anomalous. 

 



25 

Muriel Pellissier 

2. Detecting Anomalies in Cargo Shipments Using Graph Properties 

Another anomaly detection technique using graphs is described by Eberle et al [26]. This technique uses 

the variations of graph properties to detect structural anomalies in graphs. The aim of this technique is to 

detect anomalies in structural data like cargo shipments data. They defined a graph anomaly as a change 

in the structure and as a structural inconsistency. The anomalous structures are structures that are 

different from the expected ones. As the anomaly reflects an event that wants to be hidden, the structure 

of an anomaly should be similar to the normal structure of the graph but with some small differences. A 

structural change could be of three different types: insertion, deletion, or modification. A substructure 

could be added to the original structure, which means that a substructure of one or more edges and 

vertices is added to the normal structure. Or a substructure could be removed from the original structure, 

which means that a substructure of one or more edges and vertices is removed from the normal structure. 

Or a substructure could be moved, a substructure of one or more edges and vertices is at a different place 

in the normal structure and in the anomalous one. They applied this technique to real world data using 

cargo shipments data. The shipments are represented with graphs; they can be expected or anomalous. 

As defined previously the anomalous shipments are the graphs that are different from the expected ones. 

They considered that the structural differences between graphs are determined by quantitative 

measures. Thus, in order to detect the structural anomalies they use five different graph properties. 

· Average shortest path length L:  

In order to calculate the length of the shortest path between two connected vertices they use the 

Floyd-Warshall all-pairs algorithm [27]. An adjacency matrix is created to determine the shortest 

path length between two connected nodes. Once all the shortest lengths between all the 

connected pair of nodes are calculated, they calculate the average length. The average length is 

the sum of all the shortest lengths divided but the number of connected vertices. The value of the 

average length will change if one shortest length between two vertices changes. 

 

· Density D:  

They define the density using the density definition for the social networks [28]. In a social 

network, some entities are connected to other entities and an interruption of a relation between 

two entities can affect the social network. In a same way, an anomaly can perturb the structural 

relation between a set of data. The density D of a graph reflects how compact the graph is. The 

density D is obtained by dividing the number of edges E of the graph by the maximum possible 

number of edges (4): 

Where E is the number of edges of the graph, V is the number of vertices of the graph, and V2 is 

the maximum possible number of edges between V vertices. 

The density value will change if a vertex or/and an edge is added or removed from the graph. 

 

· Connectedness C: 
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They used a definition described by Broder et al. [29] that says that a set of vertices of a graph is 

defined as strong-connected if for any vertices a and b of the set, there is a path from a to b in 

the graph. Therefore, they calculate the connectedness of a graph using the set of vertices P that 

contains all pairs (a,b), where there exist a path from a to b in the graph. The connectedness C is 

the number of vertices of the set P divided by the number of possible pairs (V*V) (5): 

 

The value of the connectedness will change if the number of edges changes. It means that if some 

connections between vertices (connected directly or indirectly) are added or removed the 

connectedness of the graph will change. 

 

· Eigenvalues λ and ν:  

This property uses, as the shortest path length, an adjacency matrix α. The element αij = αji = 1 if 

there is an edge between i and j, otherwise αij = 0. The eigenvalue is the number λ and the 

eigenvector is the vector ν that satisfy the equation (6): 

 

 

There is one eigenvalue for each vertex. As observed by Chung et al. [30], most of the eigenvalues 

are close to zero. Thus, the average of the eigenvalues is not useful information, only the 

maximum eigenvalue λmax is used. 

 

 

· Graph clustering coefficient CC: 

The graph clustering coefficient is defined by Boykin et a. [31] as the average of the clustering 

coefficients of each vertex (7): 

 

Where V’ is the number of vertices of degree greater than 1, E is the number of edges, and k is 

the degree. 

 

· Experimentations: 

They analyzed the effectiveness of this technique with synthetic data and cargo shipment data. 

They created synthetic random graphs and they inserted randomly anomalies in the structure of 

the graphs using some rules. The size of the graph containing the anomalies and the size of the 

graph without anomalies are the same in order to be easily compared. The connections can 

change but the number of vertices is identical. The density is also kept which means that the 

number of connections is relatively identical. The computational complexity of some of the 

measures increases as the number of connections increase. They use a ratio of approximately 4 

edges for every 3 vertices. The size of the anomalies (number of vertices and number of edges) 

influences the result. Thus, the anomalies inserted are proportional to the size of the graph. For 
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example, if the graph is small, the structure of the anomaly will also be small. They tested the 

graph properties with different types of changes (anomalies). As we have described previously, 

the structural changes could be of three different types: insertion, deletion, or modification. As 

explained before an anomaly is a structure that is close to a normal one. The inserted anomalies 

have a structure similar to the normal structure but not perfect. Consequently, the structure of 

an anomalous graph and a non-anomalous graph are kept as similar as possible and the anomaly 

structure has the same connection strategy than the rest of the associated graph.  

They created six different graph sizes to test this technique containing 35 vertices, 100 vertices, 

400 vertices, 100 vertices, 2000 vertices, and a dense graph of 100 vertices and 1000 edges. The 

results shown with this experimentation are that certain properties can detect certain types of 

anomalies. If the anomaly is an insertion of a substructure, the density and the connectedness are 

useful to detect the anomaly. If a substructure has been removed from the graph, the eigenvalue 

is used to detect the anomaly. If a substructure has been moved, the clustering coefficient and 

the average shortest path length can detect the anomaly. 

They tested this technique with real world data. The data used are the cargo shipments of the 

imported items from foreign countries into the US. They created several graphs using the cargo 

shipments data. They used 50 shipments per graph (about 1100 vertices). They introduced real 

anomalies representing illegal cargo. The first anomaly is drug smuggling: some containers 

containing marijuana were discovered in the port of Florida [1]. Some financial information was 

removed and an extra port was traversed during the shipment. The second anomaly is an arms 

shipment on the way to El Salvador passing by Portland [2]. The content of the containers was 

hidden and the original port of departure was removed. For both cases, this technique had 

detected the anomalies thanks to the density, the connectedness, and the clustering coefficient 

properties. 

As proved with the experimentations, this technique is able to detect if there is an anomaly within a graph 

using the graph properties. It is important to keep in mind while using this technique that the 

computational complexity increases with the number of connections. In order to have good results, the 

anomaly has to be small compared to the size of the graph and the structure of the graph containing an 

anomaly has to be as close as possible as the graph without anomalies. This technique detects if there is 

an anomaly within a graph, the next step will be to detect what is the anomalous substructure. In order 

to detect where the anomaly is within the graph, they proposed to partition the graph into smaller sub 

graphs [32], [33]. Every sub graph is checked to know if it contains an anomalous graph using the different 

properties. The anomalous sub graphs are divided into smaller sub graphs until the anomalous structure 

is found. 
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3. Anomaly detection in data represented as graphs 

Eberle et al. developed another technique to detect anomalies within a graph [34]. The purpose of this 

anomaly detection technique is to detect anomalous data, like fraud, using data that can be represented 

as a graph. It means that the data can be represented using vertices and edges. They have developed a 

tool called Graph Based Anomaly Detection (GBAD) that detects anomalies in structured data. This 

technique is an unsupervised approach which means that it does not required knowledge on the data. 

The data does not have to be labeled and the system does not have to be trained for using this technique. 

They defined the anomalies as hidden information, which means that the activities look as real as possible 

to hide as much as possible the illicit behavior in order not to be caught easily. Thus, the anomalies have 

to be close to the frequent patterns. An anomaly is an unexpected relationship between entities, where 

the relationship is close to non-anomalous behaviors. Using the graph representation of the data, an 

anomaly is a small deviation of the normal structure. The anomalies are of three different types: 

modification, insertion, and deletion. The anomalies can be identifiable within a graph by small 

modifications, insertions, or deletions of the graph structure. The modifications of a structure of a graph 

are the modifications of a vertex and/or an edge of the normal structure. The insertions are the additions 

of a vertex and/or an edge to the normal structure. And the deletions are the absence of a vertex and/or 

an edge. 

They have developed three different algorithms to detect the three different types of anomalies 

(modification, insertion, and deletion) in order to detect the anomalous structures within a graph. Each 

algorithm can detect one type of anomalies. The three different algorithms use the Minimum Description 

Length (MDL) approach to first discover the common patterns. Then, the three algorithms have three 

different approaches to detect the anomalies depending on the type of the anomaly. 

In order to use this technique they assumed that the data is regular. The anomalies are only a small 

percentage of the whole structure. For example, less than 10% of the structure of the graph is changed in 

an anomalous structure in order to have anomalous structures that are close to the normal ones. The 

normal structures, also defined as expected structures, are connected structures as they are not 

interested to detect anomalies across disconnected structures. The normal structures have to be well 

presented in the graph in order to distinguish easily the anomalous ones. It means that there are enough 

samples of the normal structures within a graph to classify clearly the normal ones and the anomalous 

ones. 

We will describe now the three different algorithms used for this technique and then the 

experimentations done on synthetic data and on real world cargo data.  

· The first algorithm is the Graph-Based Anomaly detection – Minimum Description Length 

algorithm (GBAD – MDL): 

The GBAD-MDL algorithm uses the Subdue system [23] to detect the best substructure of the 

graph. As we explained previously for the “anomalous substructure detection” approach [22], the 

Subdue system is a graph-based data mining project that detects the repetitive patterns within a 

graph. In order to detect the repetitive patterns, the Subdue system uses the Minimum 
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Description Length (MDL) approach [24] that discovers the best substructures of a graph G. The 

best substructure is the structure that can compress the most the data using the regularity of the 

data. Noble et al. [23] defined the best substructure as the structure that minimizes the 

Description Length of G (equation 8). 

 

Where G is the entire graph, S is a substructure of G, DL(G/S) is the Description Length of the 

graph G after compressing it using the substructure S, and DL(S) is the Description Length of the 

substructure S.  

Once a best substructure has been found, this algorithm examines all the patterns that are 

structurally similar with some relational deviations. The interesting instances are the structures 

that are close to the best substructure but do not match exactly the best substructure. The level 

of change between the best substructure and the patterns examined should be small in order to 

consider only the structures that are the closest to the best substructure. Using a parameter called 

“cost of transformation”, they calculate how close the instances are to the best substructure. The 

value “1.0” is added every time a change is needed to obtain the substructure from an instance. 

A change can be on a vertex or on an edge. As they are looking for hidden information, the 

anomalous structure should be really close to the normal structure and they should occur rarely 

within the graph. Thus, they do not have any interest in structures that are too different, which 

means that the cost of transformation has to be less than a threshold defined by the user. And 

the frequency of the anomalous structure should be low. Therefore, the potential anomalous 

structures will be the ones that minimize the product “cost of transformation * frequency”. This 

algorithm detects the modification anomaly type. 

The Figure 5 is an example of a modification anomaly within a graph composed by five sub graphs. 

The sub graph composed by the nodes A, B and C is detected as the best structure. The sub graph 

composed by the nodes A, D and C is the anomalous structure as it is close enough to the best 

structure and it is present only once in the graph. 
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Figure 5: Example of modification type of anomalies 

 

· The second algorithm is the Probabilistic algorithm (GBAD – P): 

This algorithm also uses the Minimum Description Length (MDL) approach to detect the best 

substructure. Instead of looking at the changes of a structure, like the previous algorithm, this 

algorithm examines the probability of all the extensions of the best substructure. An extension of a 

structure is the original structure with an edge and a vertex added to it. The extensions with the lowest 

occurrences (lowest probabilities) are the more anomalous ones. This algorithm detects the insertion 

anomaly type. 

The Figure 6 is an example of an insertion anomaly within a graph composed by five sub graphs. The 

sub graph composed by the nodes A, B and C is detected as the best structure. The sub graph 

composed by the nodes A, B, C and D is the anomalous structure as it is close enough to the best 

structure and it is present only once in the graph. 
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Figure 6: Example of insertion type of anomalies 

 

· The third algorithm is the Maximum Partial Substructure algorithm (GBAD – MPS): 

As the two other algorithms, this algorithm uses the Minimum Description Length (MDL) approach to 

detect the best substructure of the graph. Then, it examines the similar substructures with missing 

edges and vertices. In order to examine the substructures with missing parts, they find all the 

substructures that are the ancestors of the best substructure. As for the other type of anomalies, the 

anomalous structures are structures that are close to a normal structure and structures that occur 

rarely within the graph. As for the first algorithm, the changes between a structure and the best 

structure are calculated with the “cost of transformation“. The anomalous structures are the ones 

that require the fewest additions for transforming an instance into the best substructure. Thus, the 

anomalous structures will be the ones that minimize the product “cost of transformation * frequency”. 

This algorithm detects the deletion anomaly type. 

The Figure 7 is an example of a deletion anomaly within a graph composed by five sub graphs. The 

sub graph composed by the nodes A, B and C is detected as the best structure. The sub graph 

composed by the nodes A and B is the anomalous structure as it is close enough to the best structure 

and it is present only once in the graph. 
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Figure 7: Example of deletion type of anomalies 

 

· Experimentations: 

They tested this technique with synthetic data and with real world data. The real world data used 

for the experimentations are cargo shipment data. For both cases, the anomalies are slight 

deviations from the normal structures, and the anomalies cannot be as common as the normal 

structures. 

For the synthetic data, they created randomly several graphs of various sizes. For each of these 

graphs they created 30 graphs containing random modifications, insertions, and deletions. The 

insertions are structures with added vertices and/or edges compare to the normal one. The 

modifications are structures with modified vertices and/or edges. And the deletions are structures 

with deleted vertices and/or edges. The anomalous structures are slight deviations from the 

normal structures with a low frequency. They tested this technique with several sizes of graphs, 

several sizes of common structures, several sizes of anomalies, and different anomalous 

thresholds. For each test, they calculated the percentage of complete anomalous structures 

discovered. They also calculated the percentage of part of anomalous structures discovered, it 

means that only some vertices or edges were discovered but not the whole anomalous structure. 

And they calculated the percentage of false positive anomalies. False positive anomalies are 

structures that were not injected as anomalous in the graph. In order to calculate these 
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percentages, they compare the results with the known anomalies that were injected in the data 

set. They tried this technique with different graph structures in order to see if the structures of 

the common pattern have an influence on the results. The different graph structures used are 

shown in Figure 8. 

 

 

Figure 8: Example of normative pattern shapes [34] 

They tested the effectiveness of each algorithm with each type of anomalies even though each 

algorithm was developed for one type of anomalies. The results using the first algorithm, Graph-

Based Anomaly detection – Minimum Description Length algorithm (GBAD – MDL), show that this 

algorithm is used to detect the modification type of anomalies. This algorithm can detect all the 

modification anomalies with all the sizes of graphs. Depending on the threshold some false 

anomalies are detected. If the value of the threshold is too high, some false anomalies might be 

detected. No anomalies are detected using this algorithm with insertion type of anomalies. This 

algorithm is also not effective neither with the deletion type of anomalies as many false positives 

are detected. The results for the second algorithm, Probabilistic algorithm (GBAD – P), show that 

this algorithm detects the insertion type of anomalies. This algorithm detects more than 82% of 

the anomalies and does not detect any false anomalies. Even with a big size for the anomalies, 

this algorithm is still effective. This algorithm does not detect any anomalies, neither false 

anomalies for the modification type of anomalies and for the deletion type of anomalies. The 

results for the third algorithm, Maximum Partial Substructure algorithm (GBAD – MPS), show that 

this algorithm detects the deletion type of anomalies. The result for a graph of size 1000 vertices 

and 1000 edges with a normal structure of 30 vertices and 30 edges were not good. But the results 

were improved by increasing the size of the normal structure to 100 vertices and 100 edges and 

by increasing the value of the anomalous threshold. The threshold value depends on the size of 

the normal structure. In order to set the threshold value to have the best results, they propose to 
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have a first run to detect the normal structure size. The maximum size of the anomalies is 

determined thanks to the size of the normal structure. As we have explained previously the 

normal structure and the anomalous one are close, around 10% of the structure can change 

between a normal and an anomalous structure. This algorithm does not have good results with 

the modification type of anomalies. The algorithm does not detect any anomalies but detects 

many false positives. The algorithm does not detect anything with the insertion type of anomalies. 

They tested these three algorithms using the different structures of graph seen previously. All the 

results are identical except for the star pattern. 

They also tried this technique with real world data. The data are cargo shipments obtained from 

the United States Customs and Border Protection (CBP) [35]. These data are the information 

about the imports into the US by maritime containers. They created graphs that represent cargo 

information. They first tested this technique with small random changes (modifications, deletions, 

or insertions) on random shipping entries. These data are not as regular as the synthetic data, but 

the three algorithms found successfully all the inserted anomalies without any false positive 

anomalies been detected. Then, they tried this technique with real world scenarios. They tested 

it with a drug smuggling case. A ton of marijuana was discovered in a port in Florida [19]. Some 

financial information was hidden, and the shipment went to an extra port during the shipment. 

The algorithm GBAD – MDL did not detect any anomalies, which is normal as no modification 

anomalies were present. The algorithm GBAD – P detected the insertion of the extra port as an 

insertion anomaly. And the algorithm GBAD – MPS found the missing financial information as a 

deletion anomaly. They also tested this technique with a simulation of a real world anomaly. In 

order to avoid quotas, embargoes, or prohibitions some information, like the port of origin, can 

be changed. They changed the country of origin of one of the shipments. The algorithm GBAD – 

MDL could detect the anomaly as it is a modification anomaly. 

This anomaly detection technique is used to detect anomalies in data that can be represented with graphs. 

The anomalies are defined as small deviations from a common structure. This technique detects three 

different graph anomalies: modifications, insertions, and deletions. They proved the effectiveness of this 

technique by testing this approach with synthetic data and with real world cargo data. As the anomalies 

are not known in advance, in order to detect all anomalies of all the different types of anomalies of a data 

set, it is needed to run the three different algorithms on the whole data set. Each algorithm has a different 

threshold that the user has to set. Therefore, it is needed for each algorithm to run it several times with 

different threshold values in order to obtain the best results. But as the anomalies are not known it is 

difficult to evaluate what should be the best value for the different thresholds. 
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4. Graph-Based Anomaly Detection Applied to Homeland Security Cargo Screening 

Eberle et al. proposed an improved technique of the graph-based anomaly detection technique presented 

previously [36]. Knowing that many containers travel every day all around the world, strategic decisions 

should be made to decide which cargo should be inspected carefully. For example, between 11 and 15 

million of containers arrive into the United States every year. The aim of this technique is to be able to 

improve the ability to target suspicious cargos in order to protect ports from illegal or dangerous goods 

that could enter in a country. This technique can detect anomalous behaviors using cargo data. The cargo 

data are shipping manifests. In order to detect the anomalous activities, they use the relationships 

between the cargo data. The cargo data are represented with graphs which are analyzed in order to detect 

the common patterns and the deviations of these patterns. This technique is an unsupervised approach. 

An unsupervised approach is an approach that does not need to know what the normal behaviors are or 

to train the data before using the technique. As the previous graph-based anomaly detection technique 

[34], this technique detects three types of anomalies: modifications, insertions, and deletions thanks to 

three different algorithms. For the previous technique, the three algorithms were implemented into the 

Graph Based Anomaly Detection (GBAD) system based on the Subdue system. The Subdue system is a 

graph-based knowledge discovery system [23] that detects the best structure in a graph using the 

Minimum Description Length (MDL) heuristic.  

One of the issues of the previous anomaly detection technique is the size of the cargo shipment 

information. A graph that represents 500 shipments could result in tens of thousands of nodes and 

vertices. Another issue is to detect if two structures are identical (also called graph isomorphism). In order 

to facilitate the comparison between two structures they use the technique GASTON developed by Nijssen 

et al. [37]. The GASTON technique uses a canonical approach to detect the frequent substructures of a 

graph. This approach converts the graph into a string canonical form and performs a canonical-string 

based graph match. The GASTON approach is an Apriori approach. All the embeddings of a graph are 

stored in memory. The frequency of a structure is the number of different graphs in the embedding list of 

that structure. The processing time using the GASTON technique is significantly improved compared to 

the MDL approach used in the previous technique. They implemented the three GBAD algorithms into the 

GASTON framework, which is called GBAD – FSM. 

· Experimentations: 

They tested this improved technique with ten different graphs having 550 to 281600 transactions. The 

graph of 550 transactions contains 550 sub graphs. Each shipment is a disconnected sub graph. The 

running time goes from 9.21 seconds (for the graph containing 550 transactions) to 2499.32 seconds (for 

the graph containing 281600 transactions). The running time of the Minimum Description Length 

algorithm (MDL) is linear. The running time of the Probabilistic algorithm (P) and the Maximum Partial 

Substructure algorithm (MPS) is exponential after 140800 transactions. Thus, to have a good running time 

using this technique, the number of shipments should be less than 140800. The P algorithm detects the 

insertion type of anomalies. The MPS algorithm discovers the deletions. And the MDL algorithm detects 

the modification type of anomalies. Only the MPS algorithm reported false anomalies.  
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They tested this technique with real world data [38]. Counterfeit boxes of laundry detergent were found 

because of anomalies in the shipment details. The standard weight information of the container is 

normally in pounds using a decimal point. In that anomalous container the weight was in kilograms using 

a comma. They tested this anomaly using 550 shipment transactions. The graph was composed with 3840 

vertices and 3584 edges. All the transactions were using as unit pounds and decimal point. One 

transaction used kilograms and comma. The anomaly was detected by the MDL algorithm.  

This technique uses a frequent sub graph mining approach to detect anomalies in cargo shipments data 

that can be represented with graphs. This technique is efficient to detect the anomalies of a data set and 

the running time has been improved compared to the previous technique using the Minimum Description 

Length (MDL). This technique has good results with large graphs, but it is less efficient with very large 

graphs (graphs containing more than 140800 transactions). 

In this section, we have presented several graph-based anomaly detection techniques that can be used 

with structural data as maritime data. For these techniques, the data are represented with graph 

representations and the anomalies are structural anomalies. The anomalies are small structural changes 

that could be of three different types: deletion, modification or substitution of a part of the structure. The 

anomalies are detected by analyzing the properties of the graph or the structures (or substructures) of 

the graph. Some techniques use the whole graph in order to detect the anomalous substructures. Some 

other techniques partition the graph into several substructures and then compare all the substructures.  

These graph-based anomaly detection techniques are efficient techniques that detect structural 

anomalies based on the graph representation of the data. These techniques have good results with data 

that contains only few anomalies within the whole dataset and where the normal structures are well 

represented within the dataset. The normal structures have to be well represented within the dataset in 

order to be able to detect easily the best substructures of the graph representing the whole dataset. As 

explained previously, the anomalies are detected by comparing structures to the best substructures. 

Indeed, if the normal structures are not well represented within the dataset, the best substructures will 

be difficult to be detected and by consequences, the anomalies will be more difficult to be spotted 

efficiently. Another limitation applied to these techniques is the size of the dataset. As the algorithms 

involving graphs have a time complexity really high, the time of a graph-based anomaly detection 

technique could be really important using a large dataset. While testing these techniques with our 

sequential data, we have seen another important limitation using these techniques. The limitation is 

linked with the graph representation of the data. We have realized that beside the fact that these 

techniques are efficient only for dataset where the normal structures are well represented and where the 

number of anomalies is low, it is not easy to find the efficient graph representation of the data in order to 

use the graph-based anomaly detection techniques efficiently. For example, using our maritime dataset 

where the order of the data and the position of the data is important, we could not find an appropriate 

graph representation that could keep both information and detect efficiently the structural anomalies.  

In the next paragraph, we will present the sequence mining techniques. 
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II. Sequence mining 

 

As the nature of the data and the nature of the anomalies can differ depending on the domain, one 

anomaly detection technique might be efficient for one domain but not efficient for another one. 

Therefore many different anomaly detection techniques exist depending on the problem that needs to be 

solved. Even if the algorithms are different, the principle of the anomaly detection techniques is often the 

same. The idea is to detect in a given data set the patterns that are different from the normal behaviors. 

The patterns that deviate from the normal ones are the anomalies.  

The sequence mining techniques detect the anomalies in sequential data. A sequence is an ordered list of 

events, also called symbols. A sequence is also called a string. A sequence can be finite like “1,2,3” or 

infinite “1,2,3,…”. For this study we are interested only in finite sequences. The events are data using a 

limited alphabet. For example, a text document can be seen as a sequence of words, and a gene as a 

sequence of nucleic acids. A subsequence/substring is a part of a longer sequence/string where some 

symbols are deleted from the original sequence and the order of the remaining symbols is kept. For 

example, the subsequence “a b e” is part of the longer sequence “a b c d e”.  

As sequences are ordered list of events, we can easily see a connection between our data and the notion 

of sequence defined previously. The available data are container events. When a container enters a port, 

an event is created given some information. The available information for each event is the identification 

number of the container, the name of the port and what happened to the container at that specific 

moment (departure, transshipment, or arrival). With this data we can easily create the itinerary of a 

container. The itinerary tells the route of the container from its departure to its arrival. An itinerary is an 

ordered list of events, where the events are ports. Thus, we can see our data set of itineraries as a data 

set of sequences, where an itinerary is a sequence. 

Different domains detect anomalies in sequences. For example, detecting anomalies in sequential data 

can be used for biology in order to detect anomalies in DNA sequences [39], [40]. The alphabet 

corresponds to the nucleic acid bases or amino acid bases. In that case the sequences are long and the 

normal structures known. The idea is to spot the anomalous sequences within a long sequence knowing 

the normal structures in order to detect mutations of DNA sequences or diseases. Another example is 

detecting anomalies in system calls [41], [42], [43], [44]. The alphabet is made with all the possible system 

calls or user commands. The anomalies are anomalous program behaviors that can be caused by virus or 

an unauthorized user that wants to enter the computer system. For example, studying the sequences of 

system calls you can detect an attack on a user session. Anomalous banking transactions, purchases can 

also be identified using sequence anomaly detection techniques [45]. The sequences are the transactions. 

The alphabet corresponds to all the actions possible for the users. The anomalies are irregular or abnormal 

behaviors of customers. 

Chandola et al. present a survey on anomaly detection technique for sequences that does not depend on 

the application domain [46]. They give an overview of the existing research on anomaly detection in 
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sequences. They identify three different categories for the anomaly detection research using sequences. 

The first category is the “sequence-based anomaly detection” that uses training data to create a model of 

the data. Then, the test data set is compared to the model in order to detect the anomalies. For example, 

the detection of illegal user sessions on a computer can be done using the past normal user sessions as 

training data. The past user sessions are sequences of system calls or commands. A new user session (test 

sequence) is compared to the past sequences (training sequences) in order to be defined as anomalous 

or normal.            The 

second category is the “contiguous subsequence-based anomaly detection” where the anomalies are 

subsequences of longer sequences. Each subsequence of a long sequence is compared to the other 

subsequences of the same long sequence. The subsequences that are significantly different from the other 

ones are anomalous. For example, it is possible to detect if a user’s account was hacked at some point 

during a given day. The user’s day activity is a long sequence. The long sequence is tested in order to 

detect anomalous subsequences.                

The third category is the “pattern frequency-based anomaly detection” where the anomalies are detected 

using the number of occurrences of the test patterns. A test pattern is anomalous if its frequency in a test 

sequence is significantly different from its frequency in a sequence known to be a normal sequence. For 

example, a particular sequence of commands made by a user can be detected as anomalous or as normal 

depending on its frequency. The frequency of this sequence is compared to the expected frequency. The 

sequence of commands is the query pattern made by the user, the frequency of that query pattern for a 

given day is compared with the frequency of that query pattern in the past. For example, the sequence 

“login, password, login, password” is normal if it occurs occasionally in a user’s daily profile, but it is 

anomalous if it occurs frequently as it could correspond to an attempt to enter an unauthorized user’s 

computer by trying several passwords. 

1. The sequence-based anomaly detection techniques 

The first group represents the sequence-based anomaly detection techniques. The anomalies are 

detected thanks to the training data. The training data are sequences that are known to be normal. The 

other sequences, called test sequences, are compared to the training data in order to be defined as normal 

or as anomalous. Several techniques are part of this group. 

a. Window-based techniques 

The window-based techniques separate a sequence in fixed-length subsequences that are also called 

windows. An anomaly score is calculated for each subsequences/windows. The anomaly score of the 

whole sequence is obtained with the different anomaly scores of all the subsequences. These techniques 

help to localize the cause of the anomaly within a sequence using the subsequences. It means that if a 

sequence is detected as anomalous we can find with the subsequences which part of the sequence is 

anomalous. 

In order to define a sequence as anomalous, we need to extract the k-length subsequences of all the 

sequences of the training data set. The frequency of each k-length sequence is calculated and defined as 

the normal frequency. The second step is to extract k-length subsequences from a test sequence. A 
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likelihood score is assigned to each subsequence. The likelihood score is the frequency of the subsequence 

in the training data set. A threshold is used to define a subsequence as anomalous or normal. A 

subsequence is defined as anomalous if the likelihood value, which is the frequency, is below the threshold 

and the subsequence is normal if the likelihood is above the threshold. The anomaly score of a test 

sequence is proportional to the number of anomalous subsequence in the test sequence. The anomaly 

score of the test sequence is the length of anomalous subsequences divided by the length of the whole 

sequence. This technique is used for example for detecting intrusion in operating system call [47], [41], 

[42], [44], [48], [49], [50], [51], [52], [53]. 

Several techniques exist based on the window-based approach. The different techniques differ on how 

they assign the anomaly score to the windows and how they calculate the anomaly score of the whole 

sequence. Some techniques are based on the frequency of the windows, some on the similarities between 

two windows, or on labels (normal or anomalous) given to the windows. 

Forrest et al. [42] described a technique to calculate the anomaly score of a subsequence using pairs of 

symbols. Every pair (a,b)i is defined as normal if the symbol b occurs at the ith position after the symbol a 

at least once in the subsequences of the training data set. The pairs of the test subsequences are 

compared with the pairs of the training sequences. If a pair of a test subsequence does not exist in the 

pairs found in the training sequences it will be defined as an anomalous pair. The anomaly score of a 

subsequence is the number of anomalous pairs divided by the total number of possible pairs. For a k-

length subsequence, the number of possible pairs is k(k-1)/2. 

Other techniques use the Hamming distance between two subsequences to obtain the anomaly score of 

a subsequence [41], [53], [54], [49], [51], [52], [55]. The hamming distance between two sequences is the 

number of symbols that are different between those two sequences. The anomaly score of a subsequence 

of the test sequence is the hamming distance between that subsequence and the closest subsequence of 

the training data set. 

The similarity between two sequences can also be used for calculating the anomaly score between two 

windows [44], [48], [56]. The similarity between a test subsequence and a training subsequence is 

calculated. If two symbols from two different subsequences are identical at the location l, the value of the 

similarity will be one, otherwise, the value is zero. If the previous symbols are also identical the similarity 

value of the previous symbols will be added to the current similarity value. Therefore, if several symbols 

are identical in a row the similarity value will be much higher than if only two symbols are identical. Thus, 

the similarity is calculated using the continuity of the matching symbols, which means that the similarity 

value will increase when several symbols will consecutively match. The anomaly score of a subsequence 

is the inverse of the maximum similarity between a subsequence of the test data set and a subsequence 

of the training data set. 

Other techniques assign a label (anomalous or normal) to the subsequences in order to define a sequence 

as anomalous or normal. The windows from the training sequences are labeled as normal subsequences. 

Then, each subsequence from the test sequences is compared to the normal subsequences. If a 

subsequence from the test sequences is not present in the normal subsequence list, the subsequence is 
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labeled as anomalous. In order to calculate the anomaly score of a test sequence, an anomaly score is 

given to each subsequence of the test sequence. The anomaly score of a subsequence is zero is the 

subsequence is normal and one if the subsequence is anomalous. 

Once the anomaly score of each subsequence of a sequence is calculated we need to calculate the 

anomaly score of the whole sequence. One sequence can be composed by several subsequences. All the 

previous techniques focus on how to calculate the anomaly score of subsequences; other techniques 

focus more on how to calculate an overall anomaly score for the whole sequence. Hofmeyr et al. [41] 

proposed two different methods to calculate the anomaly score of the whole sequence. The first method 

defines the overall anomaly score as the sum of all the anomaly scores of all the subsequences of a 

sequence divided by the length of the sequence. The second method defines the overall anomaly score 

as the number of the subsequences of the test sequence that are defined as anomalous. 

Ghosh et al. [52] proposed another technique to calculate the overall anomaly score. Every subsequence 

of a sequence is checked. If the subsequence is anomalous, the value one is added to the overall anomaly 

score. If the subsequence is normal, the value one is subtracted to the overall anomaly score (the overall 

score values cannot be negative, the minimum overall score is zero). If the overall anomaly score goes 

above a threshold, the sequence will be targeted as anomalous. 

The windows-based techniques are supervised techniques. Thus, in order to use these techniques you 

need to have two data sets, one data set of data known as normal data and one data set of data that 

needs to be tested. The windows-based techniques are able to localize the anomaly within a long 

sequence thanks to the subsequences. But the results depend a lot on the length of the subsequences 

used for the analysis. If the length is very small, most of the subsequences will have a high probability. If 

the length is very large, most of the subsequences will have a low probability. In both cases, it will be 

difficult to detect efficiently the anomalous subsequences. Thus, it is challenging to set the length value 

in order to have the more accurate results. Plus, all the subsequences of the training data set and their 

frequencies need to be stored which might require a large memory for big data set. 

b. Markovian techniques 

As the windows-based techniques, the Markovian techniques use the training data set (known as normal 

data) and the test data set. First, an approximation of the normal sequences is created thanks to the 

training sequences. This approximation is the model of the normal distribution. Then, a likelihood value is 

computed for a test sequence based on the normal distribution. 

The Markovian techniques use the “short memory property of sequences” [57], which is an order Markov 

condition. The order Markov chain property uses the memory of the events which means that the past 

symbols are used to predict the future symbol. A Markov chain of order m with m finite, also called Markov 

chain with memory m, is a process satisfying the property (9): 
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X is a sequence of length l and Xn the symbol of X at the location n. 

It exist several variants of the Markovian techniques. For example, the fixed Markovian techniques use a 

fixed memory k to estimate the conditional probability of a symbol of the test sequence. The fixed memory 

k is the length of the subsequence that is used to calculate the probability of a symbol. 

The conditional probability of a given symbol ti is: 

 

With f(ti,ti-1,..ti-k) the frequency of the subsequence “ti,ti-1,..ti-k” and f(ti-1,..ti-k) the frequency of the 

subsequence “ti-1,..ti-k”. Both subsequences are obtained from the training sequences. 

The probability of a symbol ti of a sequence depends on the previous k symbols. 

Ye [58] proposed a technique for the special case where k = 1. For this technique the conditional 

probability of the symbol ti depends only on the previous symbol. The probability is:  

 

A variation of these techniques is to use a variable length conditional probability of a symbol and not a 

fixed length probability as described previously. Using the frequency of a k fixed length subsequence may 

not be sufficient to calculate the conditional probability of a symbol. For example, if the subsequence 

“abcd” occurs once in all the training sequences and is followed by the symbol “e”. The fixed conditional 

probability using k = 4 is Pr(e|abcd), which will be 1 as “e” is always after “abcd”. But as “abcd” occurs 

only once in the training sequences the conditional probability does not give us reliable information. Using 

a variable length to calculate the conditional probability it is possible to use a subsequence that has a 

frequency higher than a certain threshold. For example, we do not calculate the conditional probability 

with k = 4, Pr(e|abcd), but the conditional probability with k = 2, Pr(e|cd), as the subsequence “cd” occurs 

often in the training sequences. Two models Probabilistic Suffix Trees [57] and Interpolated Markov 

Models can be used to compute the variable length conditional probability of a symbol. For example, Sun 

et al. [39] proposed a technique using the Probabilistic Suffix Trees (PTSs). A PTS is a tree that represents 

the Markov chain using suffix trees as index structure. Each edge of the tree is a symbol. A subsequence 

is obtained in each node using the path from the root of the tree to the node. Each node has the frequency 

and conditional probability information. The PTS is created with the training sequences and contains only 

the subsequences that have a frequency or a conditional probability above a specified threshold. A 

likelihood measure is then calculated for a test sequence using the conditional probabilities. 

Other techniques using the Markovian approach do not use only the immediate and contiguous k previous 

symbols (with k a fixed-length or variable lengths), but they use a sparse history. It means that for these 

techniques the history is not necessarily immediate to the symbol ti, or even contiguous. Using the 

previous example, Pr(e|abcd), with these techniques the conditional probability could be Pr(e|aXcX) 

where X is a wild card which means that X could be any symbol of the alphabet. For example, Eskin et al. 



42 

Muriel Pellissier 

[43] proposed a technique using the sparse history and using the Sparse Markov Transducers (SMTs) [59]. 

The SMTs are similar to the Probabilistic Suffix Trees (PTSs) described previously, but the SMTs allow wild 

cards in the sequences. They allow ignoring symbols of a sequence by using the wild cards. Several SMTs 

are created with the training sequences using the wild cards at different positions. As for the technique 

using the PTSs, then, the likelihood measures are computed for the test sequences. 

As the windows-based techniques, the Markovian techniques are supervised techniques that need 

training data set. The Markovian techniques detect the anomalies by looking at the history (previous 

symbols) of a symbol ti at the ith position of a sequence t. The history can be direct (immediate to the 

symbol and contiguous) or sparse (not immediate and not contiguous using wild cards), and it can be of 

fixed length or of variable lengths. Choosing to use a Markovian technique that uses a direct, or a sparse 

history, with a fixed length or with variables depend on the data set. For some data, the sparse history 

works better, for other data the direct history works better. 

2. The contiguous subsequence-based anomaly detection techniques 

The second group described in this survey is the contiguous subsequence-based anomaly detection 

techniques. The anomalies are subsequences of a longer sequence, where the anomalous subsequences 

are different from the rest of the long sequence. These techniques are used for activity that uses a long 

period of time, for example, credit card fraud detection. The credit card transactions of a user are 

continuously registered and an uncommon action may indicate a theft. 

A long sequence is divided into subsequences of fixed length k and an anomaly score is calculating for 

each subsequence by comparing the subsequence to the other ones. The subsequences with an anomaly 

score above a threshold given by the user are considered as anomalous subsequences. The length k is a 

really important threshold. As a priori we do not know the anomalies, we do not know the length k. If the 

length k is too small, the subsequences might have high probabilities and some anomalies will not be 

spotted as anomalies. On the contrary, if k is very large, the subsequences might have low probabilities 

and it will result in a high number of false anomalies. 

Several techniques can be used to calculate the anomaly scores of the subsequences. One possible 

technique for scoring the subsequences is to find how many times the subsequence is present in all the 

k-length sequences (which means how many times the subsequence is present in the long sequence). The 

anomaly score of the subsequence is the inverse of this number. As said previously, the length k is really 

important. For example, if k is too high, it will be difficult to find exact matches in the sequence. 

Another technique to calculate the anomaly score is the Window Comparison Anomaly Detection (WCAD) 

proposed by Keogh et al. [60]. This technique calculates an anomaly score for each subsequence of a 

longer sequence. Each subsequence is compared to the other subsequences using a Compression based 

DissiMilarity (CDM) measure. If the compression of a subsequence and the long sequence has a low value, 

it means that the subsequence is normal. It will indicate that the subsequence matches the rest of the 

long sequence. On the other hand, if the compression between the subsequence and the long sequence 

has a high value, the subsequence will be spotted as anomalous. The subsequence will then not be similar 

to the rest of the sequence. 
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Other techniques prune the subsequences in order to reduce the execution time as the standard 

techniques need O(l2) comparisons of subsequences, where l is the length of the long sequence. 

Considering that most of the subsequences tend to be normal, the subsequences that do not have an 

anomaly score high enough will be pruned [61], [62], [63], [64]. 

Chakrabarti et al. [45] proposed another technique using different length for the subsequences. As the 

anomalies are not known we can imagine that the anomalous subsequences might have different lengths 

k, therefore, a single value of the length might not be adapted. This technique is limited to small data set, 

or small alphabet. The sequence is divided into varying length subsequences. The difference lengths of 

the different subsequences are calculated in order to minimize the number of bits needed to encode each 

subsequence. In order to encode the subsequences they use the Shannon’s Source Coding Theorem. The 

subsequences that need the highest number of bits are defined as anomalous. 

These techniques can detect anomalous subsequences of a longer sequence by comparing all the 

subsequences of a sequence to each other. If a subsequence is different from the rest of the sequence it 

will be defined as anomalous. The length of the subsequences k is really important. As the anomalies are 

not known it might be difficult to set the k value to the best value. For example, if the length k is too small, 

many subsequences might appears many times within the sequence. Thus, the subsequences will have 

high probabilities and some anomalies might be missed. On the contrary, if k is very large, many 

subsequences will be rare and their probability will be low. Many false anomalies might be detected. 

3. The pattern frequency-based anomaly detection techniques 

The third group is the pattern frequency-based anomaly detection techniques. The anomalies are patterns 

of longer sequences that are detected using the frequencies of the patterns. The frequency of a pattern 

of a long sequence is calculated as the number of times that the pattern is present in the long sequence. 

In order to detect the anomalous pattern, the frequency of a pattern of a sequence from the test data set 

is compared with its expected frequency obtained in the training data set. If the frequency of the pattern 

in the test sequence and the frequency of the pattern in the training sequences are significantly different 

the pattern will be classified as anomalous. 

The basic pattern frequency-based technique calculates the anomaly score of a pattern as the absolute 

difference between the frequency of that pattern in a test sequence and the average of the frequencies 

of that pattern in the training sequences. The frequency of the pattern that occurs in the test sequence is 

normalized with the length of the test sequence. The average frequency obtains with the training 

sequences is calculated as the sum of each the normalized frequency of the pattern in each training 

sequence divided by the number of training sequences. The normalized frequency is the frequency of a 

pattern divided by the length of the long sequence. 

The problem with this method is that only the exact matching patterns in the test sequence and in the 

training sequences will be taken into account while calculating the anomaly score. If we are interested in 

a long pattern, it might be more difficult to find exactly the same pattern in the training sequences. For 

example, if we have the pattern “abd” in a test sequence and the training sequence “abcd”, with this 

method the pattern “abd” will not be detected in the training sequence. However depending on the 
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application it could be really important to consider also the cases where some symbols are inserted into 

the pattern. Some techniques, based on the previous one, are developed using subsequences in order to 

take into consideration also the subsequences that are close to the pattern but not exactly identical. 

Keogh et al. [65] proposed a technique using subsequences of the pattern. They count how many times a 

subsequence of the pattern occurs in a sequence. They determinate the largest length l of the 

subsequences, such that every subsequence of length l of the pattern occurs at least once in the training 

sequences. 

Gwadera et al [66] proposed another technique using subsequences of the pattern. For this technique, 

they count how many times the pattern occurs as a noncontiguous subsequence in a sequence. They 

divide the sequence in different windows of a fixed length, where the length is bigger than the length of 

the pattern. The pattern is considered present in a sequence if there is at last one window where the 

pattern is found as a subsequence of one of the windows. They determine how many windows of the 

sequence contain the pattern as a subsequence. The anomaly score of the pattern is the absolute 

difference between the number of windows containing the pattern in the sequence and the average 

number of windows containing the pattern in the training sequences. They also proposed another similar 

technique where not only the pattern can be detected as a noncontiguous subsequence but also where 

the order of the symbols in the pattern is not important [67]. As the previous method, they use fixed 

length windows and they count the number of windows that contain all the symbols of the pattern 

independently of the order of the symbols. 

These techniques use pattern of a longer sequence and the frequency of that pattern within the sequence 

and within the training sequences in order to define the pattern as anomalous or normal. As the previous 

technique, the abnormality of a pattern is based on the repetition of that pattern within a sequence. The 

pattern can be seen as contiguous subsequence, as noncontiguous subsequence, and also as unordered 

subsequence of symbols. 

In this section, we have presented several sequence mining techniques divided in three different 

categories. The first category contains the sequence mining techniques that compare the test data with 

the training data in order to detect anomalies. These techniques are supervised approaches, which means 

that you need training data known as normal data in order to use these techniques. The techniques 

described in this category divide a test sequence in several subsequences and then compare the 

subsequences with the subsequences of the training data. In order to compare two subsequences, these 

techniques calculate anomaly scores for each subsequences based on the frequencies of the 

subsequences, or the distance between two subsequences etc. As the anomalies are not known in 

advance, it might be difficult to set properly the length of the subsequences. If the length is too small, the 

subsequences will have high probabilities and it will end up in a high number of false negatives. At the 

contrary, if the length is too large, the subsequences will have low probabilities and it will end up in a high 

number of false positives. 

The second category groups the sequence mining techniques that detect as anomalies subsequences of a 

longer sequence that are different from the rest of the sequence.  For these techniques the anomalies are 
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part of a long sequence, and they are defined as anomalous because they do not match the rest of the 

long sequence. In order to compare two subsequences, these techniques calculate anomaly scores for 

each subsequences based on the frequencies of the subsequences, or the distance between two 

subsequences or the compression of sequence etc. As for the first group, the most important is to set 

properly the length of the subsequence. As before, if the length of the subsequence is too small, the 

technique might detect false negatives and if the length is too large, the technique might detect false 

positives. 

The third category is the sequence mining techniques that use the frequency in order to detect a pattern 

of a longer sequence as anomalous. At the difference with the other techniques described before, these 

techniques query only on a pattern, it does not detect anomalies within a sequence but detect if the 

pattern is anomalous or not. These techniques are supervised techniques and they need training data as 

the first group. They calculate the anomaly score of the pattern based on the frequency of the pattern in 

the training dataset and the frequency of the pattern in the test dataset. As for the two other groups, if 

the length of the pattern is too long it will be difficult to find exact match in the training dataset. These 

techniques have a high computational complexity which limits the multiple queries. 

All these sequence mining techniques detect anomalies within a sequence by comparing the order of the 

elements within two sequences or two parts of a sequence. But these techniques do not take into account 

while comparing the sequences the position of the elements within the sequences. However, depending 

on the application, the position of the elements within a sequence could be really importance as it could 

actually give an extra information. 

Other techniques could be used for sequence mining as the regular expressions. A regular expression is a 

sequence of characters that form a search pattern. The regular expressions are used for pattern/string 

matching or to detect similar pattern. The regular expressions are used in different applications like 

highlighting systems, internet search engines, network analysis, network security, network intrusion 

detection, they are also used for biology in order to align sequences, or for text processing as for example 

for translation of different languages. The sequence mining techniques uses subsequences and compare 

them with other subsequences (from a longer sequence, from a training dataset or from a test dataset). 

It is possible to use a regular expression in order to detect all the subsequences that are similar to a 

subsequence. The subsequence used as a regular expression is the search pattern. It is also possible with 

the regular expressions to detect subsequences that are not exactly similar using the wildcards. As a 

wildcard could be any event of the alphabet, it is easy to detect all the subsequences of a dataset that 

differ from the search pattern from only one event using a wildcard.  
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III. String distance 

 

A string is a sequence of characters (also called symbols) where the characters are part of a finite alphabet. 

The length of a string is the number of characters in the string. A substring (or subsequence) of a string a 

is a string a’, where a’ is contain in a. 

Strings are important structures in Computer Science, and really often used. Any text, or word, can be 

treated as a string. Many domains use the string techniques to analyze the data, for example, web 

documents, online libraries, molecular and genetic data (DNA sequences), and many other examples. 

Many operations can be done on strings, like, finding exact occurrences of words, finding approximate 

occurrences, string matching, string searching, subsequence searching, compressed matching etc. 

As we have said previously, our data can easily be seen as string/sequence. Our approach to detect 

anomalies in our data is divided into two steps. First, we detect the common sequences in our data set 

using the regular expressions. Then, we calculate the distance between a common sequence and a 

random one. Depending on the value of the distance between the two sequences, the random sequence 

will be targeted as anomalous or as normal. Therefore, in this section, we will describe some important 

string distances.  

1. Hamming distance 

The Hamming distance is the first fundamental string distance proposed by Hamming in the 1950’s [68]. 

The Hamming distance is a comparison between two strings of equal length assuming that both strings 

are made with the same alphabet. It is defined as the number of positions where the symbols of both 

strings are different. It calculates the minimum number of changes needed to change one string into the 

other one. 

For example, the Hamming distance between the strings “ABCDE” and “AFCGE” is 2 because B is changed 

in F and D is changed in G. 

Many distances are based on the Hamming distance. The Hamming distance is limited as the two strings 

should have the same length. Moreover, the distance does not consider deletion or insertion of symbols. 

For example, the Hamming distance of the string “ABCDE” and the string “BCDEA” is 5 because all the 

symbols are different: A is changed in B, B is changed in C etc.. If we consider insertion/deletion of a 

symbol in the string, these two strings are actually quite similar as the first symbol was deleted and moved 

to the last position of the string. 

2. Levenshtein distance 

The Levenshtein distance is also known as String Edit Distance [69]. The Levenshtein distance is a string 

metric that measures the distance between two strings. Let d be a function . Let x, y, z be 

objects of U. The metric function d is a distance function that satisfies the following conditions: 
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1. Non-negativity:  

2. Equality :  

3. Symmetry :  

 Triangle inequality : 

The Levenshtein distance is a metric distance that calculates the distance between two strings. The two 

strings can have different lengths. The Levenshtein distance between two strings is defined as the 

minimum number of insertions, deletions, or substitutions of a single character needed to transform one 

string into the other one. For example, the Levenshtein distance between the strings “ABCD” and “AEC” 

is 2. There is one substitution of the character B into E and one deletion of the character D. 

3. Damerau-Levenshtein distance 

The Damerau-Levenshtein distance measures the difference between two strings. The two strings can be 

of different length. This distance is based on the Levenshtein distance. It is defined as the minimum 

number of operations needed to change one string into the other one. As for the Levenshtein distance, 

the operations allowed are the insertion, the deletion, the substitution of a single character. This distance 

allows also the transposition of two adjacent characters. 

For example, the Damerau-Levenshtein distance between the strings “ADB” and “ABCD” is 2. The 

characters D and B are inverted from the string “ADB” into “ABD” and the character C is added between 

B and D (“ADB” -> “ABD” -> “ABCD”). 

4. The string edit distance with Moves 

The string edit distance with Moves is also a distance using substrings [70]. The string edit distance with 

Moves is a distance based on the Levenshtein distance (String Edit Distance). As we have seen previously, 

the Levenshtein distance between two strings a and b is the minimum number of insertions, deletions, or 

substitutions of a character to obtain the string b from the string a. The string edit distance with Moves 

uses the insertion, deletion, and substitution of a character, as the Levenshtein distance, and it uses in 

additional the move of substrings (blocks) in order to transform one string into the other one. A move of 

a substring means that a substring of the string a is also present in b but at a different position. 

5. Needleman-Wunsch algorithm 

The Needleman-Wunsch algorithm is used to compare two sequences X and Y. It uses the alignment of 

the symbols between the two sequences to calculate a score S(X,Y). The score between two sequences is 

the addition of all the scores of each pair of symbol of the sequences. A sequence can contain wild cards, 

the score is then calculated using a linear gap value. The value of the score for each pair of symbol is given 

by a similarity matrix. Let F[i,j] be the similarity matrix with i the length of the sequence X and j the length 

of the sequence Y. Let d be the linear gap penalty.  

For example, the sequence X is “A-CD-G” and the sequence Y is “ABCDEF”. If the linear gap penalty is d = 

1 and the similarity matrix is F[4,6]:    
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The score S(X,Y) is 

.  

6. Tichy distance 

The Tichy distance is a distance using substrings [71]. The Tichy distance uses the substrings of a string 

(also called blocks) in order to describe another string. The Tichy distance between a string a and a string 

b is the minimum number of substrings of b that can be found in the string a. The Tichy distance is used 

to measure the similarity between two strings. For example, the Tichy distance of the strings a = 

“ABCDEFG” and b = “ABHEFJG” is 3. The substrings “AB”, “EF”, and “G” of the string b are also substrings 

of the string a. 

7. String distance conclusion 

All these different string techniques calculate the distance between two strings that are made from the 

same alphabet by comparing the symbols of the two strings. Some techniques can compare two strings 

of different length; some compare only the strings that have the same length. Some techniques use the 

insertions, deletions, or substitutions of a single symbol within a sequence, some techniques use the 

transposition of two adjacent symbols, some techniques use the insertion of a substring into a string etc.  

We presented in this chapter the existing techniques that are linked with our research. We detailed first 

some graph-based anomaly detection that can be used with maritime data. The data are represented with 

graphs. The anomalies are structural anomalies. The anomalies are detected by using the graph properties 

or by analyzing the graph structure depending on the technique. Then, we presented some sequence 

mining techniques grouped in three categories. Some techniques use training data in order to detect 

anomalies in the test data set by comparing the test data with the training data. Some techniques detect 

subsequences of a sequence as anomalous by detecting the subsequences of a sequence that are different 

from the rest of the sequence.  And some techniques use the frequency of subsequences in order to detect 

the anomalies. Finally, we gave the definitions of some fundamental string distances. The string distances 

calculate the distance between two strings based on character changes. 

All these techniques compare the order of the symbols between the two strings but do not take into 

account the actual position of the symbols in the sequence. In our case the position is really important. 

The position of an event in the sequence will give some information about that event. For example, the 

itinerary that has for departure port: Singapore, for transshipment port: Chiwan and for arrival port: 
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Rotterdam is seen as the sequence: “Singapore Chiwan Rotterdam”. For our application, the position gives 

the information about the type of event. An event can be of three different types: departure, 

transshipment, or arrival. The port that is at the first position in the sequence is the port of departure. 

The last port of the sequence is the arrival port. And all the ports in between the first and the last one are 

transshipment ports. Thus, when we compare two sequences, we need to compare the symbols of two 

different strings but we also need to take into account the actual position of every symbol in the strings. 
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Our anomaly detection approach 

In this section, we will present our anomaly detection technique. The proposed technique has been 

developed to identify irregular maritime container itineraries using sequential data. This technique is 

divided into two different parts. First, we detect the most common sequences of ports within our data 

set. The common sequences of ports are the frequent itineraries, also called regular itineraries. For this 

application, the interesting itineraries are the itineraries that are close to the common ones with some 

small deviations. Thus, after finding the common itineraries, we identify the itineraries that are slightly 

different from the regular itineraries using a distance-based method. Thanks to the distance between a 

given itinerary and a common itinerary we can classify the given itinerary as normal or as suspicious. The 

distance is calculated using a method that combines quantitative and qualitative differences between two 

itineraries. 

In this paragraph, we will describe our anomaly detection technique. We will describe first the technique 

developed to detect the common sequences of our database using the regular expressions. Then, we will 

describe the distance measure developed. In the following paragraph, we will detail the results obtained 

using this technique with experimental data based on real world cargo data and the results obtained with 

real world cargo data. We will also compare these results with the results obtained with another anomaly 

detection technique using the same data: a graph-based anomaly detection technique. 

 

I. Method 

 

This technique is an anomaly detection technique that uses sequential data applied for our research to 

the maritime surveillance. As explained in the introduction, many containers are travelling around the 

world everyday transporting every kind of goods. Therefore, there is a need to control the movements of 

the containers in order to avoid illegal activities (like fraud, drug and arm smuggling), terrorism etc. The 

surveillance of the movements of the containers is difficult as it requires a lot of resources: human 

resources and financial resources. There is a really important need to develop automatic tools that could 

target suspicious maritime containers. 

One really important difference between the technique presented in this thesis and the existing anomaly 

detection techniques applied to the maritime domain is that this technique detects anomalous container 

itineraries using only little information. This technique does not need to use other data like AIS data, 

images data, information about the container content, the weight of the container etc. Also, other 

knowledge like sensitive ports, sensitive routes, or sensitive shipment companies are not used neither 

while using this technique. The idea is to use this technique with only the information extracted from the 

container events and no background knowledge on maritime domain. 

The data used for this technique are container events. Every time a container arrives at a port, an event 

is created. The event contains some information like the container identification number, the name of the 
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port and the event done on the container at that specific port. The event could be of three different types. 

When the container starts his trip, the event is called departure. When the container arrives at its final 

destination, the event is called arrival. When a container has already started its trip and it stops at a port 

that is not the port of the end of its trip, the event is called transshipment. With the container events it is 

possible to create sequences of events that represent the itineraries of the containers. The itinerary of a 

container is its route from the departure to its arrival. An itinerary can contain two or more ports. If the 

itinerary has only two ports, the container leaves the first port to arrive directly to its final port. If the 

itinerary has more than two ports, it means that the container does not go directly to its final destination 

but passes through one (or several) port(s) before going to its final destination. Those ports are called 

transshipment ports. An itinerary (sequence of events) is represented as an ordered list of ports, also 

called a sequence of ports. The position of the ports within the sequence is important because it gives the 

information about the type of event. The first port of the sequence is the port of departure. The last port 

of a sequence is the port of arrival. And all the port between the first port (departure port) and the last 

port (arrival port) are the transshipment ports. Our dataset contains more than 900 million of events and 

about 12 million of containers. Therefore, one of the requirements needed for this technique was to 

develop a technique that could work with a small dataset as well as with a large dataset of hundreds of 

millions of records. 

Another really important requirement while developing this technique was that everybody should be able 

to use this technique. It means that a maritime expert or a person without knowledge on maritime 

transport should both be able to use this technique with the same efficiency. Therefore, the anomaly 

detection technique that we propose is an unsupervised approach. Unlike a supervised approach, an 

unsupervised approach does not need to have training data to define the normal behaviors. Therefore, 

the user does not need to have any knowledge on the data in order to use this technique. 

This technique is used to find anomalies in structured data (sequential data). We apply this technique to 

maritime domain but it can also be used in other domains that use sequential data, data where the order 

of the elements of the sequences is important. For our application, maritime surveillance, we are 

interested in finding hidden information. Hidden information could be missing information, incomplete 

information or information that has been well hidden intentionally or unintentionally. We define these 

anomalies as unexpected relationships between ports where the relationships are close but not exactly 

identical to normal relationships. In other words, we are looking for sequences of ports that are close to 

the most frequent ones but with some differences. For the other domains, this technique could be used 

when the user wants to detect sequences that are close. Two sequences are defined as close if one 

sequence is almost similar to the other one, which means that one sequence is like the other one but with 

some small changes. The user could detect the sequences that are close to common (normal) sequences, 

or sequences that are close to specific sequences for example sequences from another data set. 

Let E = {e1, e2,.., em} be a set of m distinct items. In this application the items are ports and E is the alphabet 

of ports. For another application, the items could be of another type, as well as the alphabet. The alphabet 

contains all the distinct items of the data set. Here, the alphabet of ports contains all the distinct ports of 

the data set. Let S = {S1, S2,.., Sn} be a set of n sequences of m items with m a random variable changing 

from one sequence to another one. The set of n sequences (S) is the whole data set of itinerary. A 
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subsequence of the sequence Sy is   Sy’ = {ea, *, eb, *} where the symbol “ * ” corresponds to an unknown 

item. As for this application the items are ports, the symbol “ * ” could represent any port of the port 

alphabet E. The unknown items, represented by the symbol “ * ”, are also called wild cards. A subsequence 

is defined as a part of the whole itinerary. It means that a subsequence is not the full itinerary from the 

departure to the arrival but only a part of that itinerary. 

This anomaly detection technique is divided into two steps:  

1) First, we detect the sequences or subsequences that are common in our data set. We use the 

regular expression methods in order to detect the common itineraries using all the available data 

(normal data and anomalous data). 

2) Then, we compare a given sequence with the common sequences/subsequences and we calculate 

an anomaly degree with a distance technique. Depending on the anomaly degree value, we 

classify the given sequence as normal or anomalous. 

With this technique we can identify the anomalies and present their details to the user. The user can have 

some controls on the results with several thresholds in order to adapt better the results to his needs. The 

first threshold is to select the common itineraries. With a high threshold the user can select only the main 

itineraries and with a lower threshold the user can select more common itineraries that are less frequent 

than the main ones. The second threshold is the maximum anomaly degree threshold which is the level 

defining an itinerary as normal or anomalous. Moreover, the first part of this technique could also be used 

alone as it can detect common routes or frequent couple of ports. This information can be useful for the 

maritime surveillance. 
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II. Common sequences / subsequences 

 

The first step of this method is to detect the common itineraries. Thus, we need to detect the common 

sequences (itineraries) of our data set. In order to find the common sequences, we need to compare all 

the sequences of the data set and to calculate their frequency. Depending on their frequencies, they will 

be targeted as frequent itineraries. The position of the ports within a sequence is important because we 

know the event associated to a port with the position of that port in the sequence. For example, the first 

port is related to the departure event, the last one is the arrival event and the ones in between are the 

transshipment events. Thus, it is not enough to look only at frequent patterns within the data set. The 

position within the sequence has to be taken into account too. For example, we have the itinerary where 

a container leaves from Singapore to go to Rotterdam passing through Chiwan (Singapore – Chiwan – 

Rotterdam) and the itinerary from Chiwan to Rotterdam arriving in Copenhagen (Chiwan – Rotterdam – 

Copenhagen). The pattern “Chiwan – Rotterdam” in these two itineraries cannot be considered as the 

same as for the first itinerary Chiwan is a port of transshipment and for the second itinerary Chiwan is the 

port of departure.  

We are also interested in finding common subsequences. A subsequence is a part of a sequence (part of 

an itinerary) and not the whole sequence (itinerary). We use wild cards in order to create the 

subsequences. A wild card can substitute any data of our alphabet. For this application, the alphabet is a 

list of ports. Thus, a wild card can be any port of our alphabet. One wild card represents any port of the 

alphabet but it corresponds to only one port. As said previously, the position of the ports in the sequences 

is important, therefore, one wild card can be used only for one unknown port at a time. If several ports 

are unknown in a sequence, we will use one wild card for each unknown port in order to maintain the 

position of the ports in the sequences. 

The frequencies of the whole sequences are directly obtained by counting how many times each sequence 

appears in the data set. The frequencies of the subsequences are more difficult to calculate. As we do not 

have any knowledge on the data, for example, we do not know the interesting sequences or the 

interesting subsequences. Therefore, we need to create all the possible subsequences and we need to 

calculate how many times each subsequence appears in the data set. In order to create the subsequences 

we chose to use the wild cards. By replacing a port (or several ports) by a wild card (or several wild cards) 

into a sequence of the data set we create a subsequence of that sequence. If an itinerary has only two 

ports we will not create a subsequence. The subsequence of an itinerary of two ports will be composed 

by only one port and a wild card. We are not interested in single port but only in relations between ports. 

For every itinerary of more than two ports, we will create a subsequence of that itinerary by replacing 

only one port by a wild card. For one itinerary we can create several subsequences by replacing every port 

by a wild card at a time. The number of subsequences created depends on how many ports an itinerary 

has. For example, we can create four subsequences with an itinerary that has four ports. The Figure 9 

shows an example of an itinerary from port X1 to port X3 passing through X2 and all the possible 

subsequences of this itinerary. In the subsequences, the character “ * ” is a wild card and it can correspond 
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to any port of the alphabet. As we see in Figure 9, with an itinerary of three ports we can create three 

different subsequences. 

 

Figure 9: An itinerary and all its possible subsequences 

In order to create the subsequences we use the regular expression methods. The regular expressions are 

powerful methods that can identify strings within a text. They are used to detect specific characters, 

words, patterns within a text. Using the regular expressions, it is possible to detect easily a specific 

sentence in a text. It is also easy to find sentences that are not exactly identical using the wild cards. For 

example, it is possible to detect all the words of a sentence, to create a new sentence by replacing one of 

the words with a wild card and to detect all the sentences in a text that are similar to the new sentence. 

In order to use the regular expressions with our data, we can define a sequence as an ordered sentence 

where the positions of the words have an importance. And a group of sequences can be seen as a text 

composed by many sentences. For our application, an itinerary is considered as a sequence, which is a 

sentence for the regular expressions. The data set is a list of itineraries (sequences) which can be seen as 

a text (list of sentences) for the regular expressions.  

We need to create for every itinerary of our data set all the possible subsequences as we have seen in 

Figure 9. Then, we need to calculate the frequency of all the subsequences. The algorithm is shown in 

Figure 10. 
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Figure 10: Common subsequences algorithm 

First, we read every line of the data set file. Every line of the data set file is an itinerary. Then, we detect 

all the ports (words) of a line. One port is separated to another port by a space character (“ “). Thus, in 

order to detect the ports of a line, we look for the space character (“ “). One port corresponds to all the 

characters until the space character, or for the last port of a line until the end-of-line character. Finally, 

we create all the subsequences by replacing every time a different port with a wild card. For our 

application, a wild card replaces one port of an itinerary and it can match any port of the alphabet. With 

the regular expressions the combination of characters “ .+? ” is used for wild card. 

· The symbol “ . ” represents every character except the end-of-line character. As every line is a 

different itinerary it is important to keep the end-of-line character to know where an itinerary 

ends. 

· The symbol “ + ” is used to match one or more characters. In our database, each port is 

represented by a numerical code. In a location database we have for each port all the details of 

the location: the name of the country, the name of the city and the geographic coordinates. The 

codes used for the ports are inconsecutive numbers and the length of the port names is not 

standardized. As there is no important difference for the algorithm we have decided not to 

standardize the port names as it is easier for the user to have a link between the data records in 

the different databases. Using the port codes of our database we do not know how many 

characters one port has, therefore, we need to use the symbol “ + ” to match all the characters 

(one or more characters) of the port names.  
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· But as all the characters except the end-of-line character will match “ .+ ” we need to limit it. If 

we do not limit it all the characters until the end-of-line character will always be a match. In order 

to control the comparison we use the symbol “ ? ” which makes the operation lazy. This means 

that every time we compare two characters the character after the characters “ .+? ” is also 

checked. As soon as the character after “ .+? ” is found in the line the following characters will not 

match “ .+? ” anymore. 

Then, we count how often the subsequences are present in the data set. With a minimum frequency 

threshold we can select which lines (itineraries) are frequent enough in the data set to be considered as 

common itineraries. 

This algorithm has a time complexity of O(n3), but as we use finite sequences and the sequences contain 

only few objects (maximum 5), the time complexity is reduced to O(n2). 

With this first part we are able to detect the common itineraries (or part of itineraries) of the data set. 

The second part of this technique is used to detect the suspicious itineraries by comparing common 

itineraries with unknown itineraries. 
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III. Distance: anomaly degree 

 

The purpose of our anomaly detection technique is to detect anomalous itineraries and to be able to spot 

the anomalies within the anomalous itineraries. We identify the anomalous itineraries by comparing a 

given itinerary with the common ones. We calculate an anomaly degree between a given itinerary and a 

common one. Depending on the value of the anomaly degree we will classify the given itinerary as normal 

or abnormal (anomalous). The anomaly degree is calculated with a distance technique based on 

quantitative and qualitative differences between two itineraries. 

Let Sdata be a given sequence of the data set S containing all the itineraries of our database. Let Snor be a 

common sequence or subsequence discovered with the regular expression methods as described in the 

previously section. And let dist(Sdata,Snor) be the distance between two sequences: a given sequence Sdata 

and a common one Snor. For example, in Figure 11, we compare two itineraries. One itinerary is a given 

itinerary from the port X1 to the port X4 passing through the ports X2 and X3. The second itinerary is a 

common itinerary from the port X1 to the port X4 with a wild card as transshipment port. 

 

Figure 11: Two itineraries: a given itinerary (X1,X2,X3,X4) and a common itinerary (X1,*,X4) 

We define the distance dist(Sdata,Snor) as the number of actual changes divided by the maximum number 

of possible changes between two sequences: Sdata (given itinerary) and Snor (common itinerary). We 

calculate the distance using two criterions: the structure of the itinerary and the name of the ports. The 

structure corresponds to the number of events of an itinerary. The port names are the actual ports visited 

during an itinerary (the actual name of the ports) and their associated type. The type of a port could be 

of three different types: departure port, transshipment port or arrival port. As shown in Figure 11, the 

structure is the part above the black horizontal line and the port names is the part below the black 
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horizontal line. In the following paragraphs, we will explain how we calculate the distance between two 

itineraries. 

1. Structure distance 

To calculate the structure distance we use the events of the itineraries. The three possible events are the 

departure, the arrival, and the transshipment. For the structure distance, we calculate the actual changes 

between the two itineraries and the maximum number of possible changes between the two itineraries. 

· The actual changes are calculated with the absolute difference between the number of events of 

a given sequence Sdata and the number of events of a common sequence Snor. A sequence (also 

called itinerary) is an ordered list of ports. By consequence, the number of events can be easily 

obtained with the length of the sequence. Therefore, in order to calculate the difference between 

the numbers of events between the two sequences, we calculate the absolute difference between 

the length of the given sequence Sdata and the length of the common sequence Snor (12): 

 

· The maximum number of possible changes between the two sequences is the maximum number 

of events between Sdata and Snor (13):    

 

Then, we calculate the second part of the distance: the port names distance. 

2. Port names distance 

We also need to take into account the names of the ports and the events linked to the ports. In order to 

calculate the distance we will attribute values to the ports of the two sequences. A port can be present in 

the two sequences in three different ways: 

1) A port is identical in both sequences Sdata and Snor. It means that the name of the port and the 

event related to it are similar in both itineraries. For example, in Figure 12, the port X1 is for both 

itineraries the port of departure.  

2) A port of Sdata is also present in Snor but the port has not the same event in both itineraries. For 

example, in Figure 12, the port X4 is the port of transshipment in the given itinerary Sdata and it is the port 

of arrival in the common itinerary Snor. 

3) A port of Sdata is not present in Snor or the opposite. For example, in Figure 12, the port X2 is 

present only in the given itinerary Sdata, same for the port X3.  
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Figure 12: Two itineraries: a given itinerary (X1,X4,X3,X2) and a common itinerary (X1,*,X4) 

As said previously, the event related to the port is linked in our data (container itineraries) to the position 

of the port in the sequence. The first port is the port of departure, the last port is the port of arrival, and 

the ports in between are the ports of transshipment. 

· In order to calculate the actual changes of the port names distance, we compare the ports of the 

two sequences and we attribute a value to each port of the two itineraries. We will describe in 

the following paragraph how we attribute values to each port of the sequences using the fact that 

a port can be present in a sequence in three different manners as said previously. 

1) The first case is if a port is identical in both itineraries we attribute the value 0 to the 

port. Two ports are identical in two different itineraries if they have the same name and if they 

have the same related event in both itineraries. For example, the port X1 is the port of arrival of 

both itineraries. We know the event related to the port depending on the position of the port in 

the sequence. As the sequence is an ordered list of port, the first port is the port of departure, 

the last port is the port of arrival, and the ports in between are the ports of transshipment. Thus, 

we look at the positions of the ports in the sequences in order to compare the ports between two 

sequences. But as two itineraries might not have the same number of ports it is not 

straightforward to compare the position of two ports. In order to compare the positions of a port 

we compare the two itineraries starting from the beginning of the itineraries (starting from the 

left) and also starting from the end of the itineraries (starting from the right). If the names of the 

ports and the positions of the ports are similar in one of these two comparisons, the two ports 

will be considered as having the same position and we will attribute the value 0 to the ports.  

For example, if we consider the common itinerary X3 X5 * and the given itinerary X10 X3 

X5 X6. If we compare them only from the beginning, they will have an anomaly degree really high 
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as none of the ports have the same position as in the other itinerary. But if we compare the two 

itineraries from the end, they appear to be really similar. 

2) The second case is if a port is present in both itineraries but with a different event, we 

attribute the value 1. In order to compare the event, as for the first case, we compare the position 

of the port in the two sequences. We compare the sequences starting from the beginning (left) 

and from the end (right).  

3) The last case is if a port is present in only one of the two itineraries, we attribute the 

value 2 to the port. 

4) We need to add the case when the common itinerary contains a wild card “ * ”. As we 

have seen before, the character “ * ” implies that it can be any port of the port alphabet. We have 

decided not put any weight on the unknown port “ * ” and that we will not consider it as the same 

port as any other port. It means that when we compare a port with the wildcard, the two ports 

will be consider as different while we attribute the values to the ports. 

Then, we add all the values attributed to each port of the two itineraries in order to obtain 

the value for the actual changes for the port names distance (14): 

 

· The maximum number of changes that we can have with the port names is the number of distinct 

ports between the two itineraries. We do not consider the port “ * ” as one of the distinct port 

for the maximum number of changes. As we have seen we can attribute to a port the value 0, 1 

or 2. As the maximum value attributed to a port is 2, if two itineraries are completely different, 

the maximum possible value will be the number of all the distinct ports multiplied by 2. Therefore, 

the number of maximum changes is the number of distinct ports multiplied by 2 (15). 

 

Once we have calculated the structure distance and the port names distance, we can calculate the 

anomaly degree. 

3. Anomaly degree 

The anomaly degree is defined as the sum of the actual changes in the structure and in the port names 

divided by the sum of the maximum possible changes for the structure and for the port names (16). 

 

The maximum anomaly degree threshold can be defined by the user. Depending on the threshold the 

itinerary Sdata will be classify as normal or abnormal. If the anomaly degree is lower than the threshold, 

the itinerary will be detected as anomalous. If the anomaly degree is higher than the threshold, the 

itinerary will be defined as normal. 
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But in order to limit the number of false suspicious itineraries detected, we define two thresholds: the 

minimum anomaly degree threshold and the maximum anomaly degree threshold. An itinerary will be 

defined as anomalous if the value of its anomaly degree is included between the minimum anomaly 

degree threshold and the maximum anomaly threshold. We set the minimum anomaly degree threshold 

to 0.23 and the maximum anomaly degree threshold to 0.43. The user can change these values as needed. 

· Minimum anomaly degree threshold: 

 

We know that if an itinerary is common because of several itineraries, the common itinerary will 

contain the wild card character “ * ”. Therefore, when we compare one of these several itineraries 

with the common one, the anomaly degree value as defined previously will not be 0. For example, 

we have in our data set the itineraries “a b c”, “a b d”, “a b e”, “a b f”, “a b g” and “h j k”. The 

itinerary “a b *” will be a common itinerary. If we compare “a b c” with the common itinerary “a 

b *”, even if “a b c” is actually included in “a b *”, the anomaly degree will be 0.2222.  

 

Calculation of the anomaly degree between “a b c” and “a b *”: 

1) Structure distance: As both itineraries have the same number of events (3 events) and 

the actual changes value is the difference between the numbers of events of the two 

itineraries, the actual changes value is 0. The maximum changes value is the 

maximum number of events between the two itineraries. In this example, both 

itineraries have the same number of events, by consequence, the maximum changes 

value is 3. 

 

2) Name ports: The ports “a” and the port “b” take the value 0 as “a” and “b” in both 

itineraries have the same event. The port “a” is the port of departure, and the port 

“b” is the port of transshipment. The port “c” takes the value 2, as the port “c” is not 

present in the common itinerary. The port “*” does not take any value. The maximum 

changes value is the number of distinct ports multiplied by 2. Here, the value is: 3 * 2 

= 6. 

 

3) Anomaly degree value: The anomaly degree value is the actual changes value in the 

structures plus the total value attributed to ports divided by the addition of the 

maximum changes values of the structure and of the ports names. Thus, in this 

example the anomaly degree value is: 0 + 2 / 3 + 6 = 2/9 = 0.22. 

Therefore, we will define a minimum anomaly degree equal to 0.23 in order to avoid considering 

similar itinerary as anomalous. The itineraries that have an anomaly degree inferior to the 

minimum degree will not be targeted as anomalous itineraries.  

· Maximum anomaly degree threshold: 

 

We also define a maximum anomaly degree threshold but the user can change this value in case 

he wants to have a larger or smaller selection of anomalous itineraries. In order to define this 
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value we calculated the anomaly degree of different itineraries. We used suspicious itineraries 

and normal itineraries. 

 

Calculation of the anomaly degree between “1 3 4” and “1 3”: 

The itinerary “1 3” is suspicious compared to the common itinerary “1 3 4” because one port is 

missing, the arrival port has changed. 

1) Structure distance: actual changes: 1 and maximum changes: 3 

2) Name ports: ports value: 2 and maximum changes: 3*2 

3) Anomaly degree value: 1 + 2 / 3 + 6 = 3/9 = 0.33 

 

Calculation of the anomaly degree between “1 3 4” and “1 3 6”: 

The itinerary “1 3 6” is suspicious compared to the common itinerary “1 3 4” because the port of 

arrival has changed. 

1) Structure distance: actual changes: 0 and maximum changes: 3 

2) Name ports: ports value: 2 + 2 and maximum changes: 4*2 

3) Anomaly degree value: 0 + 4 / 3 + 8 = 4/11 = 0.36 

 

Calculation of the anomaly degree between “3 7 4 * 6” and “3 5 7 6”: 

Depending on the needs of the user, the itinerary “3 5 7 6” could be targeted as suspicious 

compared to the common itinerary “3 7 4 * 6”. Some transshipment ports have been removed 

from the common itinerary but another transshipment port was added to the given itinerary. 

1) Structure distance: actual changes: 1 and maximum changes: 5 

2) Name ports: ports value: 2 + 2 + 1 and maximum changes: 5*2 

3) Anomaly degree value: 1 + 5 / 5 + 10 = 6/15 = 0.4 

 

Calculation of the anomaly degree between “3 5 *” and “10 3 5 6”: 

The itinerary “10 3 5 6” is suspicious compared to the common itinerary “3 5 *” as the port of 

departure changed and was added to the common itinerary. 

1) Structure distance: actual changes: 1 and maximum changes: 4 

2) Name ports: ports value: 2 + 2 and maximum changes: 4*2 

3) Anomaly degree value: 1 + 4 / 4 + 8 = 5/12 = 0.42 

 

Calculation of the anomaly degree between “1 3 *” and “1 5 6 3”: 

The itinerary “1 5 6 3” can not be detected as suspicious compared to the common itinerary     “1 

3 *”, even if they have two ports in common. 

1) Structure distance: actual changes: 1 and maximum changes: 4 

2) Name ports: ports value: 2 + 2 + 1 and maximum changes: 4*2 

3) Anomaly degree value: 1 + 5 / 4 + 8 = 6/12 = 0.5 

 

Calculation of the anomaly degree between “1 * 4” and “1 2 3”: 

The itinerary “1 2 3” can not be detected as suspicious compared to the common itinerary        “1 

* 4”.  
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1) Structure distance: actual changes: 0 and maximum changes: 3 

2) Name ports: ports value: 2 + 2 + 2 and maximum changes: 4*2 

3) Anomaly degree value: 0 + 6 / 3 + 8 = 6/11 = 0.54 

 

With these different examples, we see that the maximum value of the anomaly degree used to 

consider an itinerary as suspicious is 0.42. Thus, we set the maximum anomaly degree value to 

0.43. If we use an anomaly degree level superior to 0.43, we might detect more suspicious 

itineraries than we should. If we use an anomaly degree level inferior to 0.43, we might miss some 

suspicious itineraries. 
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The algorithm is shown in Figure 13. 

 

Figure 13: Anomaly detection algorithm 
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First, we reduce the data file. The data file contains all the itineraries of our data set. In consequence, the 

same itinerary might be present several times. In order to avoid comparing several times a common 

itinerary with the same itinerary, we create a new file where each itinerary is present only once. This new 

file is the reducedDataFile. Every line of the reducedDataFile is an itinerary. 

We read every line of the frequencyDataFile that we have created previously with the common 

subsequences algorithm described in Figure 10. The file contains the frequency of every sequence of the 

data set and every subsequence created. 

A sequence/subsequence is considered to be a common itinerary it its frequency is superior to the 

minimum frequency threshold. If the itinerary is a common itinerary we compare the two lines. The first 

line is a given itinerary. The second line is the common sequence/subsequence found with the common 

subsequences algorithm described in Figure 10. 

Then, we attribute values to each port. The port has the value 0 if the port is in the other itinerary and at 

the same position or if the port is “ * ”. The port has the value 1 if the port is in the other itinerary but at 

a different position. And we attribute the value 2 to the port if the port is not present in the other itinerary. 

Using the values attributed to the port, we calculate the anomaly degree between the two itineraries. 

If the anomaly degree is between the minimum anomaly degree threshold and the maximum anomaly 

degree threshold, then we put in an array the given itinerary, the common itinerary and the anomaly 

degree value. We write all the anomalies found in a text file: anomalyFile. 

This algorithm has a time complexity of O(n4), but as we use finite sequences and the sequences contain 

only few objects (maximum 5), the time complexity is reduced to O(n2). 

With this second part of this technique, we are able to target unknown itineraries as suspicious or as 

normal by comparing them with common itineraries. 

4. Example 

As an example, we will calculate the anomaly degree of the two itineraries of the Figure 11: 

1) First, we calculate the values of the actual changes and of the possible changes for the structure 

distance. The actual changes value is the absolute difference between the number of events of 

the given itinerary and the number of events of the common itinerary. The given itinerary has 4 

events. The common itinerary has 3 events. Thus, the absolute difference is:  

The maximum changes for the structure distance is the maximum number of events between the 

two itineraries. Here, the maximum number of events is for the given itinerary that has 4 events. 

 

2) Then, we calculate the values for the name ports distance. We compare each port of one itinerary 

with the ports of the other itinerary. We attribute values to each port of the two sequences. We 

compare the first port of the given itinerary (X1) with the first port of the common itinerary (X1). 

Both are identical, thus we attribute the value 0 to the port X1. We compare the second port of 

the given itinerary (X2) with the second port of the common itinerary (“ * ”). As the ports are 
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different, we also compare the two itineraries from the end, thus, we compare X2 with the port 

X1 (both at the third position on the sequences starting from the end). In both cases, the ports 

are different, and the port X2”is not present in the common itinerary. Therefore, we attribute the 

value 2 to the port X2. We compare the port X3 with X4 (comparison starting from the beginning 

of the sequences) and with “ * ” (comparison starting from the end of the sequences). In both 

cases, the ports are different and the port X3 is not present in the common itinerary. Thus, we 

attribute the value 2 to the port X3. Finally, we compare the last port of the given itinerary (X4) 

with the last port of the common itinerary (X4). Both are identical so we attribute the value 0 to 

the port X4. The sum of all the values of each port is:  

Between the two itineraries we have 4 distinct ports (X1, X2, X3 and X4). 

 

3) Finally we calculate the anomaly degree which is the sum of the actual changes of the structure 

distance and of the name ports divided by the maximum changes of both distances. 

 

If the user defines a maximum anomaly degree threshold higher than the distance, the itinerary will be 

detected as anomalous. If we set the value of the maximum anomaly degree threshold to 0.43, as 

explained previously, this itinerary that has an anomaly degree equal to 0.42 will be detected as 

anomalous. The given itinerary might be seen as an anomalous itinerary as the normal behavior is to have 

only one transshipment port but in this example the given itinerary Sdata has two transshipment ports. 

We presented in this chapter our anomaly detection technique. This technique can detect anomalies in 

sequential data were the order of the items in the sequence is important, as well as, the position of the 

items in the sequence. This technique is divided in two parts. The first part detects the common sequences 

from the data set using the regular expressions. The second part calculates the distance between a given 

sequence of the data set and a sequence known as common. The distance is based on qualitative and 

quantitative differences between two sequences. 
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Experiments 

In this paragraph, we will detail the results obtained with the anomaly detection technique developed in 

this thesis. First, we will test this technique with experimental data that we have created based on the 

model of real world container itinerary data. Then, we will give the results obtained with the real world 

cargo data. We will also compare these results with the results obtained using the same data 

(experimental data and real world data) using a graph-based anomaly detection technique described in 

the literature review. We tested our container itinerary data with the graph-based anomaly detection 

technique developed by Eberle et al. in Anomaly detection in data represented as graph [34].  

 

I. Container itinerary data 

The container trips data are collected on different public sources. In order to have coherent dataset we 

clean the data. The cleaning is mostly linked with text string errors for geographic locations and for 

container events. The dataset contains container events information. For each event we know the 

container number, the geographical localization of the container, and what action is done on that 

container in that specific port. Currently, the dataset contains more than 900 million of events and about 

12 million of containers. As explained previously, we can easily create with the dataset of container events 

the container itineraries.  

In order to create experimental data based on the real world cargo data, we have created the model of 

our data set using Excel. The information that we obtained on the data is that for a number x of itineraries, 

we have y number of distinct ports where y = x * 6%. We also know that most of the itineraries have no 

transshipment port (56 %).  The itineraries with one transshipment port are less common (31 %). The 

itineraries with two transshipment ports are rarer than the itineraries that have one transshipment port 

(only 12 %). And the itineraries with three or more transshipments are only 1 % in our data set.  We can 

see in Figure 14 the representation of the percentages of transshipments in our data set. 

 

Figure 14: Percentages of transshipments in real world data 
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II. Experimental data 

 

We have created some experimental data based on the model made on real world data in order to test 

the anomaly detection technique developed in this thesis. The model used for this experimental data is 

the model detailed in the previous paragraph. 

In order to test this technique with a small amount of data before testing it with our large data set, we 

created experimental data with 210 itineraries. 

1) Knowing that there is a link between the number of itineraries and the number of ports: y = x * 

6%, with x the number of itineraries and y the number of ports. For 210 itineraries, we have twelve 

distinct ports.  

2) Based on the results detailed previously, we divided 160 itineraries as follow: 60 % of the 

itineraries have zero transshipment port, 30 % have one transshipment port, and 10 % have two 

transshipment ports. Thus, for 160 itineraries, we have 96 itineraries with zero transshipment 

port, 48 itineraries with one transshipment port, and 16 itineraries with two transshipments 

ports. 

3) We created randomly the 160 itineraries. We added four different itineraries ten times in order 

to be considered as frequent itineraries. And we added ten itineraries that are suspicious. 

 

1. Graph-based anomaly detection technique 

We described in details in the Literature review the graph-based anomaly detection technique developed 

by Eberle et al. [34]. We will give here just a small description of this technique. This technique uses an 

unsupervised approach and does not need to have training data. They detect the anomalies by analyzing 

the relationships between the data using a graph-based representation. A graph represents a cargo and 

all its information (contents, departure port, arrival port, transshipment ports, shipment company 

information, vessel number etc.). By analyzing the graphs it is possible to detect the normal behaviors and 

the deviations of those normal behaviors. Eberle et al. defines three types of graph-based anomalies: 

modifications, insertions, and deletions [34]. This technique detects the best substructure(s) of the graphs 

[23] using a Minimum Description Length (MDL) heuristic [24]. The detection of anomalies is performed 

utilizing three different algorithms (one algorithm for each type of anomaly) by finding the patterns that 

are close to the best substructure(s) [34]. 

· First, we tried this technique by representing the itineraries with a graph representation close to 

the one they used for their experiments. We created for each itinerary of the experimental data 

a sub graph on the model of the Figure 15. The Figure 15 represents the sub graph of the itinerary 

leaving from port 1, arrival to port 3, and passing through the transshipment port 2. 
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Figure 15: Graph representation of the itinerary from port 1 to port 3 passing through port 2 

Using the experimental data described previously, the software created one graph composed by 

210 sub graphs. The graph contained 1303 vertices and 1094 edges. With this technique, we have 

to execute the three different algorithms separately in order to detect the three different kinds 

of anomalies: modifications, insertions, and deletions. 

No anomalies were found with the Graph-Based Anomaly Detection - Minimum Description 

length algorithm (GBAD – MDL). This algorithm detects the modification type of anomalies. Three 

substructures were found as best substructures. The first best substructure was the structure 

containing: Itinerary, Departure port and Arrival port. The second best substructure was: 

Itinerary, Departure port, Arrival port and Transshipment port. The third best substructure was 

Itinerary and Departure port. 

No anomalies were found using the second algorithm: Probabilistic algorithm (GBAD – P). This 

algorithm detects the deletion type of anomalies. No best structures were found neither using 

this algorithm. 

No anomalies were found using the third algorithm: Maximum Partial Substructure algorithm 

(GBAD – MPS). This algorithm detects the insertion type of anomalies. Many best substructures 

were found (45 best substructures). 

No anomalies were found with this technique using the graph representation of itineraries shown 

in Figure 15. We thought that the bad results could be explained by the representation we used 

to represent our data. As this technique detects the best substructures of the graph, and then 

thank to these best substructures this technique detects the anomalous structures, we can think 

that our representation is not efficient for this technique. Indeed, as a sub graph represents an 

itinerary, all of the sub graphs contain the vertex named “Itinerary”, as well as the vertices named 

“Departure port” and “Arrival port”. And as 30% of the itineraries have one transshipment port, 

30% of the sub graphs have also the vertex named “Transshipment port”. Therefore, even if an 

itinerary is common it might not be as common as the substructures containing the vertices 

“Itinerary”, “Departure port”, “Arrival port” and even “Transshipment port”. Thus, we could think 
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that the only best substructures that this technique will detect are the substructures shown in 

Figure 16 and by consequence this technique will not be able to detect any anomalous itineraries. 

 

Figure 16: Best substructures 

As the results were not good using the previous graph representation, we tried to use this technique with 

another graph representation of the itineraries. 

· We tried to represent the itineraries with another graph representation. The Figure 17 represents 

the sub graph of the same itinerary seen in Figure 15. The container leaves from port 1, arrival to 

port 3, and passing through the transshipment port 2. 

 

Figure 17: Another graph representation of the itinerary port 1 to port 3 passing through port 2 

Using the same experimental data but with a different graph representation, the software created 

one graph composed by 210 sub graphs. The graph contained 547 vertices and 338 edges. As for 

the first try, we need to execute the three different algorithms in order to detect all the anomalies. 

Three best substructures were detected with the GBAD – MDL algorithm. Two of the three 

substructures detected were common itineraries that we added to the experimental data. The 

algorithm detected one anomalous sub graph. The anomalous sub graph detected was an 

anomalous itinerary that we added to the data. 

Three best substructures were detected with the GBAD – MPS algorithm. The best substructures 

detected with the GBAD – MPS were the same best substructures detected with the GBAD – MDL 

algorithm. One sub graph was spotted as anomalous. The anomalous sub graph was not the same 

sub graph that was detected by the GBAD – MDL algorithm. But this anomalous sub graph was 

also part of the anomalous itineraries added to the data. 

More substructures were detected as best substructures with the GBAD – P. Twenty substructures 

were detected as best substructures, but no anomalies detected. 
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The results are a bit better using this graph representation of the itinerary but this technique does 

not detect all the anomalous itineraries inserted in the data. Two common itineraries were 

detected out of 4 common itineraries inserted in the data. And two anomalous itineraries were 

detected out of ten anomalous itineraries inserted in the data. 

Moreover, we can see that this graph representation does not work for our data as it does not 

keep the position information. As we see with the Figure 18, if we have the itinerary from port 1 

to port 3 passing by the port 2 as transshipment port, and the itinerary from port 2, to port 3 

finishing in port 1. This technique will detect the substructure from port 2 to port 3 as best 

substructure. But with that substructure we can see that the position information is not kept, and 

for our application, the information of the port will not be taken into account while finding the 

best substructures and by consequence the anomalies. Trying to apply this technique with our 

data, we understood the importance of the graph representation of the data. The graph 

representation could be, depending on the dataset, an important limitation of this technique. 

 

 

 

 

 

 

 

 

Figure 18: Graph representation limitation 

This graph-based anomaly detection technique does not give good results using our data. As they tested 

this technique with cargo information and they had good results, we can think that the main difference 

between our application and their application is the difference on the data. They created graphs that 

contained more information than we had with our data. For example, they had information about the trip 

and the container as us. They had also financial information, date of arrival, information about the cargo, 

information on the vessel, information about the importer, information about the shipper. It is really 

difficult to use this technique with our dataset that contains really little information because we could not 

find a good graph representation. As this technique is based on the best substructures found with the 

technique, if the graph representation is not good enough, the technique will have difficulties to detect 

the best substructures and by consequence the technique will not detect efficiently the anomalies. 

 

Best substructure 
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2. Our anomaly detection technique 

We tested our anomaly detection technique with the same experimental data detailed previously. 

For this experiment, we set the minimum frequency threshold to 5.40, the maximum anomaly degree 

threshold to 0.43, and the minimum anomaly degree threshold to 0.23. 

The maximum anomaly degree threshold value and the minimum anomaly threshold value were 

explained in the previous section. 

The minimum frequency threshold value was calculated with the frequencyDataFile created with the 

common subsequences algorithm (Figure 10). The average frequency was calculated with the frequency 

of all the itineraries. Another frequency value is calculated as the average of the frequency values of the 

itineraries that have a frequency value above the first frequency average. The second frequency value is 

the value used for the minimum frequency threshold. 

The results obtained with this technique using the data set of 210 itineraries described previously are 31 

itineraries that are detected as suspicious. The suspicious itineraries detected represent 15 % of the whole 

data set. We have inserted 10 anomalous itineraries. All the anomalous itineraries that we have inserted 

in the data set were detected as anomalous. With this technique, if an itinerary is really close to a common 

itinerary it will be targeted as suspicious. Therefore, we can explain that this technique detected other 

itineraries as suspicious because other suspicious itineraries might have been created while creating 

randomly the data set. As we have created all the itineraries with only 12 different ports (using the same 

percentage as in our real world data set), we might expect to create some itineraries that could be similar 

enough to be detected by our technique as suspicious. 

The results are written in a text file as we can see in Figure 19. Every anomalous itinerary uses three lines 

on the text file. The first line is the anomalous itinerary, the second line is the common itineraries, and 

the third line is the anomaly degree values. 

 

Figure 19: Anomalous itineraries using experimental data 

As shown in Figure 19, the first anomalous itinerary detected in this example is the itinerary going from 

port 1 to port 8 passing through port 9. It is considered anomalous because of three different common 

itineraries. The first common itinerary used to define this itinerary as abnormal is the itinerary going from 

any port to port 8 passing through port 6 and 9. As the departure port of the common itinerary is a wild 

card it can be any port, we consider the port of departure to be the port 1. We can see in that case that 
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the two itineraries are close but one transshipment port has been removed to the common itinerary. We 

have the same conclusion when we compare this itinerary with the two others common itineraries, one 

port of transshipment is missing. 

We have tested our technique with the same experimental data using different values for the maximum 

anomaly degree threshold. The Figure 20 gives the results obtained with 3 different values of the 

maximum anomaly degree. The execution time does not change with different threshold values. The 

program takes few minutes to execute (less than 5 minutes). 

Minimum frequency 5,4 5,4 5,4 

Minimum anomaly degree 0,23 0,23 0,23 

Maximum anomaly degree 0,49 0,43 0,4 

Anomalous itineraries 42 31 21 

Percentage of the whole data set 20,00% 15,00% 10,00% 

Anomalous itineraries inserted detected 10 (100%) 10 (100%) 8 (80%) 
 

Figure 20: Results obtained with different maximum anomaly degree values 

We tested our technique with an anomaly degree level that we increased. With the maximum anomaly 

degree value equal to 0.49, we detected 42 suspicious itineraries. The suspicious itineraries detected 

represent 20% of the whole data set. We have detected all the suspicious itineraries that we have inserted 

in the data set. We detected 11 suspicious itineraries more than with the maximum anomaly degree equal 

to 0.43. As expected, we can see that if you increase the level of the anomaly degree we will detect more 

itineraries targeted as suspicious.  

Then, we tested the technique with a lower anomaly degree level. With the maximum anomaly degree 

value set to 0.40, we detected 21 anomalous itineraries, which is 10 % of the whole data set. But two 

suspicious itineraries that we have inserted were not detected as suspicious. As expected if we lower the 

anomaly degree level, we will detect less suspicious itineraries but we might detect as normal some 

itineraries that are actually suspicious. The graph Figure 21 represents the anomalies detected depending 

on the maximum anomaly level. 
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Figure 21: Graph representing the anomalies depending on the maximum anomaly degree threshold 

The results obtained with the experimental data were as expected. When the different thresholds are set 

with the values that are the best adapted to the data, we obtained good results. Now that we validated 

our technique with experimental data, we will test this technique with real world cargo data. 
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III. Real world data 

 

We also tested the technique described in this thesis and the graph-based technique with real world data. 

The data set has 135798 itineraries and 22831 distinct itineraries.  

1. Graph-based anomaly detection technique 

We tried to use the graph-based anomaly detection technique with the 135798 itineraries of our data set. 

The first step of this graph-based anomaly detection technique is to create the graph and then by 

executing the three different algorithms to detect the best substructures of the graph and the anomalies. 

With this large data set, the software could not create the graph. The software can create five different 

types of graph: directed, spring, radial, circular, large spring. But with this large data set, none of the 

graphs could be created. As all the algorithms involving graphs have a time complexity that is really high, 

it makes difficult to work with a large dataset with graphs. We had for all of them error messages like out 

of memory, or error reading image. By consequence, we could not try the different algorithms on our data 

set. 

Even if we could not test the graph-based anomaly detection technique, we do not think it would have 

been possible to have good results. As we have seen with the experimental data, we could not find a good 

graph representation of our data that could work well for the graph-based anomaly detection techniques. 

2. Our anomaly detection technique 

We tested our technique with our real world cargo data. The minimum frequency calculated with the 

average frequency of all the itineraries as described for the experimental data is for the real world data 

60. As for the experimental data, the maximum anomaly degree is 0.43 and the minimum anomaly degree 

is 0.23. Though, in order to compare the results, we tested this technique with different threshold values. 

We tried our technique with different minimum frequency values, with different maximum anomaly 

degree values and with different minimum anomaly degree values. We can see the results in Figure 22. 

We do not give the execution time, as for the experimental data, the execution time is similar for all the 

tests and really fast considering the amount of data (less than 10 minutes).  

Minimum frequency 60 60 60 40 80 60 

Minimum anomaly degree 0,23 0,23 0,23 0,23 0,23 0 

Maximum anomaly degree 0,4 0,43 0,49 0,43 0,43 0,43 

Anomalous itineraries 11965 11992 13065 14270 10199 15886 

Percentage of the whole data set 8,80% 8,80% 9,60% 10,50% 7,50% 11,70% 

Percentage of the distinct 
itineraries 

52,40% 52,50% 57,20% 62,50% 44,70% 69,60% 

 

Figure 22: Results with different threshold values 
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As expected, if we increase the maximum anomaly degree level, we will detect more anomalous 

itineraries. We can see the results in the first three columns of the Figure 22. We tested with a maximum 

anomaly degree equal to 0.40, 0.43, and 0.49. 

If we decrease the minimum frequency value, we will detect more anomalous itineraries. We can see the 

results in the column 3, 4, and 5 of the Figure 22. We tested with a minimum frequency value equal to 40, 

60, and 80. 

We also tried with a minimum anomaly degree equal to 0. We can see from the Figure 22 that we detect 

many itineraries as anomalous with a minimum anomaly degree set to 0. 

Even if we can see differences between the results depending on the thresholds, the results obtained are 

not really good as we detect around 50% of the distinct itineraries as anomalous. The percentages of 

anomalous itineraries detected with this technique are really higher for the real world data than for the 

experimental data. Having a look at the itineraries that are detected as anomalous we can see that many 

itineraries are detected as anomalous because they are inverted. We can see some examples in the Figure 

23. The Figure 23 is a part of the output file we obtained. It represents a list of anomalous itineraries and 

their anomaly degree values. The first itinerary is the itinerary detected as anomalous by this technique. 

The second itinerary (itineraries) is (are) the common itinerary (itineraries) which is (are) compared to the 

first itinerary. And the third line is the anomaly degree value (s). 

 

Figure 23: Anomalous itineraries using real world data 

 For example, the itinerary “19 82” is spotted as anomalous while comparing it with the common itinerary 

“82 19 *”. We can see that these two itineraries have similar ports, but that the order of the ports is 

inverted between the two itineraries. Here, is the detail for the anomaly degree calculated for these two 

itineraries: 

1) Structure distance: actual changes: 1 and maximum changes: 3 

2) Name ports: ports value: 1 and maximum changes: 2*2 

3) Anomaly degree value: 1 + 1 / 3 + 4 = 2/7 = 0.28 

Thus, the anomaly degree is included between the minimum anomaly degree that we have set to 0.23 

and the maximum anomaly degree that we have set to 0.43. We do not think that this kind of itineraries 

is relevant for our anomaly detection technique. Thus, we decide to remove the inverted itineraries from 

our results. In order to remove these itineraries, we remove from the anomalous itineraries file, all the 
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itineraries where two consecutive ports are present in the first itinerary and also present in the second as 

consecutive ports but where the order is inverted from the first itinerary. 

Often, one itinerary is spotted as anomalous because of several common itineraries. If one of the common 

itineraries does not contain inverted consecutive ports then we do not remove the given itinerary from 

the anomalous data set. For example, the itinerary “148 277 70” is targeted as suspicious because of four 

different common itineraries: “277 70”, “* 277 148”, “70 277 *”, and “148 277”. The anomaly degree 

values are for the four itineraries 0.33. If the itinerary was targeted as anomalous only because of the 

itinerary “70 277 *”, we will remove it, but as the itinerary is targeted as anomalous because of other 

itineraries we keep this itinerary in the data set of anomalous itineraries.  

Thus, we remove all the itineraries that have inverted consecutive ports from all the results obtained with 

the real world data. We can see in Figure 24 that this time we obtain results as expected.  

Minimum frequency 60 60 60 40 80 60 

Minimum anomaly degree 0,23 0,23 0,23 0,23 0,23 0 

Maximum anomaly degree 0,4 0,43 0,49 0,43 0,43 0,43 

Anomalous itineraries 11965 11992 13065 14270 10199 15886 

Percentage of the whole data set 8,80% 8,80% 9,60% 10,50% 7,50% 11,70% 

Percentage of the distinct 
itineraries 

52,40% 52,50% 57,20% 62,50% 44,70% 69,60% 

       

After reduction       

Anomalous itineraries 2862 2893 4632 4259 2098 12409 

Percentage of the whole data set 2,11% 2,13% 3,41% 3,14% 1,55% 9,13% 

Percentage of the distinct 
itineraries 

12,54% 12,67% 20,29% 18,65% 9,18% 54,35% 

 

Figure 24: Results after reduction with different threshold values 

We can also see the influences of the different thresholds and the importance to set well the threshold 

values in order to have the best results. As said before, the number of anomalous itineraries detected 

decreases when the minimum frequency value increases as we can see in Figure 25.  
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Figure 25: Graph representing the anomalies depending on the minimum frequency threshold 

The number of anomalous itineraries detected increases when the maximum anomaly degree threshold 

increases as we can see in Figure 26.  

 

Figure 26: Graph representing the anomalies depending on the maximum anomaly degree threshold 

The number of anomalous itineraries detected can increase a lot when the minimum anomaly degree 

decreases. 

For a minimum frequency set to 60, a minimum anomaly degree to 0.23 and a maximum anomaly degree 

to 0.43, we obtained with the real world data set 12.7 % of the distinct itineraries as anomalous. 

We know that around 10% of the containers travelling in the world are risky containers. Thus, we can say 

that the percentage of anomalous itineraries detected with this anomaly detection technique is close 

enough to the real percentage to be considered as satisfactory result. We cannot verify all the itineraries 

found as anomalous as we do not have any knowledge on which itineraries are actually suspicious in our 

data set. Nevertheless, with the results obtained with the experimental data and the real world cargo data 

we can say that the results are good and as expected. 
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In this chapter, we have detailed the results obtained with our anomaly detection technique applied to 

experimental data and with real world cargo data. We also tested with the same data, experimental data 

and real world cargo data, to detect the anomalies using a graph-based anomaly detection technique. The 

results obtained with the graph-based anomaly detection technique are not really satisfactory. As we 

explained before, we were confronted to several problems while using a graph-based anomaly detection 

technique. First, the algorithms that involve graphs have a high time complexity which makes the graph-

based techniques difficult to use when dealing with large data set. We also faced another problem linked 

with the graph representation of the data. While testing a graph-based anomaly detection technique with 

our data, we realized that it was really difficult to find a good graph representation of our data. As our 

data does not contain many information, it was difficult for the graph technique to detect the best 

substructures, and as result, to detect the anomalies. The only graph representation that we could find 

could not take into account the position of the elements within a structure. 

At the contrary, the results obtained with our anomaly detection technique are for both data set 

satisfactory and as expected. Our anomaly detection technique detects anomalous sequences by 

comparing random sequences with common sequences. The anomalous sequences are sequences that 

are similar to common sequences but with small changes. The changes are based on the order of the 

events of the two sequences and on the position of the events within the sequences. This technique can 

be used for any application that uses sequential data where the order and the position of the events 

within a sequence is important. Moreover this technique could be used with small and big data set. 
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IV. Discussion 

 

We will now discuss how we could improve this technique. This technique can detect anomalous 

sequences using a data set of sequences. We define a sequence as anomalous when a sequence is close 

to a common sequence but not exactly identical. We have seen that depending on which kind of anomalies 

the user is looking for, the user can set different thresholds: the minimum frequency threshold, the 

minimum anomaly degree threshold and the maximum anomaly threshold. For our application, world 

cargo data we set the thresholds as follow: the minimum frequency to 60 (this value is obtained with the 

frequencies of the data), the minimum anomaly degree to 0.23 and the maximum anomaly degree to 

0.43.  

In order to reduce the number of anomalies detected and to improve this technique, we could add 

external information. External information is information that is not extracted directly from the data set. 

External information could be added by the user, combined with the data from the data set, and used by 

this technique to select more precisely the anomalies. This information could be taken into account by 

adding different weights to the items while calculating the distance between two sequences.  

For example, for the maritime surveillance, the customs have some information like for example some 

ports are known to be more sensitive than other ports, or some areas are sensitive or even some shipping 

companies. 

We do not have this information, but if we had we could add it while calculating the anomaly degree 

between two itineraries. We could add this information by putting more weight on the sensitive ports 

instead of putting weight on the ports only by comparing the ports from the given itinerary with the ports 

of the common itinerary. 

Same idea with the transshipment company, we do know for each trip the transshipment company, but 

as we do not have any information on the company we do not use this information while calculating the 

anomaly degree. If we knew which companies should have more surveillance, we could add weight to all 

the itineraries that are used by these companies.  

Future research aims at enriching the existing information with spatio-temporal data in order to identify 

unnecessary delays in the movements of the maritime containers. For example, if we know how long a 

container takes to travel from one port to another, or how long a container stays at a port, or the time for 

the whole itinerary from the departure port to the arrival port, we can use this information in order to 

detect other types of anomalies based on delays. 

Environmental information could be considered while calculating the distance between two sequences. 

For example, the weather can influence the routes taken by the cargo. The route could be changed 

because of natural disasters.  
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Economical information could also affect the cargo routes. For example, the fluctuations of the oil price 

can have an influence on the cost of transportation, thus, it can influence the itinerary taken by the cargo.  
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Conclusion 

 

The aim of the research of this thesis was to develop a technique that could detect automatically 

anomalous containers from a large data set of container trips using only little information on the container 

itineraries. This technique was developed for the maritime surveillance in order to detect suspicious 

containers by comparing container itineraries but it can also be applied to any other domain that uses 

sequential data. In order to elaborate this technique we were interested in several fields. We looked at 

the existing techniques developed for the maritime surveillance, the graph-based anomalies detection 

techniques, and the sequence mining techniques. We also looked at the existing string distances. 

The techniques developed for the maritime security are quite different from our approach as the 

techniques need a lot of information about the containers, the routes, the cargo etc. The existing 

techniques fuse different types of maritime information provided by different sources in order to detect 

suspicious behaviors. For our application, the idea was to detect suspicious behaviors with only little 

information about the container itineraries and no other information. 

The sequence mining techniques can detect anomalous subsequences by comparing the subsequences of 

a sequence with the other subsequences of the same sequence. Or they can detect anomalous sequences 

by comparing items of different sequences. The anomalous subsequences are detected with differences 

between sequences or subsequences. The differences are based on the order of the items within the 

sequences. But the position of the items in the sequences is not taken into account. For our application, 

we had to compare the items of two sequences based on the order of the items and their position. 

The graph-based anomaly detection techniques are techniques that detect structural anomalies. These 

techniques represent the data with graphs and then compare the structures of the graphs in order to 

detect the anomalies. Some of these techniques are even applied to the maritime security. Though, we 

tested some graph-based anomaly detection techniques with our data and the results were not 

satisfactory. These techniques use a lot of information in order to create structures that are big enough 

in order to be able to compare them. If the structures of the graphs are not important enough or regular 

enough it is difficult to compare them. With our data, that contains little information, the structures 

created were really small and it is difficult to obtain good results based on comparison of small structures. 

Our anomaly detection technique for sequential data can be applied to small and large data set of 

sequences. The anomalous sequences are defined as sequences that are close to common sequences but 

not exactly identical. An anomalous sequence is like a common sequence with some small changes. In 

order to detect a sequence as anomalous, this technique compares two sequences. One of the two 

sequences is a given sequence from the data set. The other sequence could be a frequent sequence 

detected from the data set, or a sequence from another data set given by the user depending on his needs. 

The changes between two sequences are calculated based on the order of the items in the sequences like 

for the sequence mining techniques. But the changes are not calculated only based on the order of the 

items but also based on the position of the items in the sequences. 
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This technique is divided into two different steps. First, the technique detects the frequent sequences of 

the data set with the regular expression methods. This part can be used alone in order to detect efficiently 

the frequent sequences of a data set. The second part of this technique is to compare the sequences from 

the data set with the sequences that were detected as common (frequent) with the first part of the 

technique. In order to compare two sequences, this technique calculates an anomaly degree between two 

sequences based on a distance measure. The distance between two sequences is calculated based on the 

qualitative and quantitative differences between two sequences. Depending on the anomaly degree 

value, the given sequence will be targeted as normal or as suspicious. 

We tested this technique with experimental data and with real world cargo data. For both data sets, we 

obtained satisfactory results. 

This technique could be further improved by taking into account external information. External 

information means information that is not extracted from the data set containing the sequences, but 

information that comes from external sources. External information could be added to this technique by 

adding different weights to the items while calculating the distance between two sequences. For example, 

for the maritime surveillance, we could add some information about the sensitive ports, sensitive areas, 

sensitive shipping companies etc. 
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Conclusion 

 

L’objectif de cette thèse était de développer une technique pour détecter automatiquement des 

conteneurs suspects à partir d’une large base de données d’itinéraires de conteneurs utilisant seulement 

peu d’informations sur les itinéraires des conteneurs. Cette technique a été développée pour la 

surveillance maritime afin de détecter les conteneurs suspects en comparant les itinéraires de conteneurs 

mais cette technique peut être utilise par tous les domaines qui utilises des données séquentielles. Afin 

de développer cette technique, nous nous sommes intéressés à plusieurs domaines. Nous avons étudié 

les techniques existantes appliquées à la surveillance maritime, les techniques de détection d’anomalies 

utilisant les graphs, et les techniques de traitement de séquence. Nous avons aussi regardé les distances 

calculées à partir de séquences.  

Les techniques développées pour la sécurité maritime sont assez différentes de notre approche. En effet, 

ces techniques utilisent beaucoup d’informations différentes afin de détecter les comportements 

suspects comme par exemple informations sur les conteneurs, sur les routes, ou sur les cargos. Les 

techniques existantes regroupent différents types de données maritimes qui proviennent de différentes 

sources. 

Les techniques de traitement de séquence peuvent détecter des parties de séquence comme anormales 

en comparant différentes parties d’une même séquence, ou bien elles peuvent détecter des séquences 

comme anormales en comparant les objets de différentes séquences. Les séquences sont détectées 

comme anormales en fonction des différences qu’il y a entre plusieurs séquences ou plusieurs parties de 

séquence. Les différences sont obtenues en fonction de l’ordre des objets dans les séquences. Cependant, 

la position des objets dans les séquences n’est pas prise en compte. Pour notre application, nous avons 

besoin de comparer les objets de deux séquences en fonction de l’ordre des objets ainsi que de leur 

position dans la séquence. 

Les techniques de détection d’anomalies utilisant les graphs sont des techniques qui détectent les 

anomalies utilisant la structure des graphs. Ces techniques représentent les données avec des graphs et 

comparent les structures des graphs afin de détecter les anomalies. Certaines de ces techniques sont 

même appliquées au domaine maritime. Cependant, nous avons teste ces techniques avec nos données 

et les résultats n’ont pas été satisfaisants. Ces techniques utilisent beaucoup d’informations afin d’avoir 

des structures qui soient suffisamment importantes pour pouvoir être comparées. Si les structures des 

graphs ne sont pas assez importantes ou régulières, il est difficile de pouvoir les comparer. Avec nos 

données, qui ne contiennent que peu d’informations, les structures crées étaient trop petites pour 

pouvoir obtenir de bons résultats en comparant les structures.  

Notre technique de détection d’anomalies peut être utilisée avec peu de données ainsi qu’avec une large 

base de données. Une séquence est définie comme étant anormale si la séquence est presque identique 

à une séquence qui est fréquente dans la base de données. Ce qui veut dire que la séquence est comme 

la séquence qui est fréquente avec quelques changements. Afin de définir une séquence de la base de 
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données comme anormale, cette technique compare deux séquences. Une des deux séquences est une 

séquence aléatoire de la base de données. L’autre séquence peut être en fonction du besoin de 

l’utilisateur ou bien une séquence détectée comme fréquente dans la base de données, ou bien une 

séquence d’une autre base de données. Les différences entre deux séquences sont calculées  en tenant 

compte de l’ordre des objets des séquences, ainsi que la position des objets dans les séquences. 

Cette technique est divisée en deux parties. Premièrement, cette technique détecte les séquences qui 

sont fréquentes dans la base de données utilisant les expressions régulières. Cette partie peut être utilisée 

seule afin de détecter efficacement les séquences qui sont fréquentes dans la base de données. Ensuite, 

cette technique compare les séquences de la base de données avec les séquences qui ont été détectées 

comme fréquentes par la première partie de cette technique. Afin de comparer deux séquences, cette 

technique calcule un degré d’anomalie entre deux séquences. Le degré d’anomalie est calcule grâce à une 

mesure de distance qui est calculée sur les différences qualitatives et quantitatives entre deux séquences. 

En fonction de la valeur du degré d’anomalie, la séquence sera définie comme normale ou anormale. 

Nous avons testé notre technique avec des données expérimentales, ainsi qu’avec des données réelles de 

conteneurs. Nous avons obtenu des résultats satisfaisants avec les données expérimentales, ainsi qu’avec 

les données réelles. 

Cette technique pourrait être approfondie en ajoutant d’autres informations qui ne peuvent être obtenue 

directement en étudiant la base de données. Par exemple, des informations provenant d’une autre source 

pourrait être ajoutées aux informations extraites de la base de données. Ces informations pourraient être 

ajoutées à cette technique en donnant différents poids aux différents objets lorsque nous calculons la 

distance entre deux séquences. Par exemple, pour la sécurité maritime, nous pourrions ajouter des 

informations concernant les ports à risques, les régions à risques, les compagnies de transport à risques 

etc.  
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I did my thesis with the Laboratory of Informatics (LIG) of the University of Joseph Fourier of Grenoble in 

France and with the Joint Research Centre (JRC) of the European Commission. My PhD research was part 

of the Maritime affairs Unit which is part of the Institute for the Protection and Security of the Citizen 

(IPSC) of the Joint Research Centre. 

The European Union is divided into five institutions : the European Parliament, the Council of the 

European Union, the European Commission, the European Court of Justice and the European Court of 

Auditors. 

The Joint Research Centre (JRC) is a Directorate-General of the European Commission. The mission of the 

Joint Research Centre is to provide customer-driven scientific and technical support for the conception, 

development, implementation and monitoring of European Union policies. The JRC is a reference center 

of science and technology for the European Union.  The scientific institutes of the JRC are located at five 

different sites in Europe: Geel (BE), Ispra (IT), Karlsruhe (DE), Petten (NL) and Seville(ES). 

The JRC has seven different scientific institutes. The Institutes are: 

· Institute for Reference Materials and Measurements (IRMM) 

· Institute for Transuranium Elements (ITU) 

· Institute for Energy and Transport (IET) 

· Institute for the Protection and Security of the Citizen (IPSC) 

· Institute for Environment and Sustainability (IES) 

· Institute for Health and Consumer Protection (IHCP) 

· Institute for Prospective Technological Studies (IPTS) 

The Institute for the Protection and Security of the Citizen (IPSC) is one of the institutes of the JRC located 

in Ispra in Italy. The institute provides scientific and technological support to European Union policies in 

many different areas like the stability and security, crisis management, maritime and fisheries policies and 

the protection of critical infrastructures. The IPSC institute provides European policy makers with scientific 

and technology advice on issues that are relevant to safety, security and stability within and outside the 

European Union. 

One of the fields of the IPSC institute is the maritime surveillance. The institute provides support in 

maritime surveillance like piracy prediction, monitoring fisheries, transport safety (maritime, air and rail 

traffic accident reporting), and containers monitoring (risk analysis for containers cargo). 
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ABSTRACT 

Identifying irregularities in sequential data is essential for many application domains. This paper discusses unusual 

events and how such events could be identified in sequential data. The type of sequential data used in this study holds 

location-based and time-based information. The irregularities are managed by establishing a weighted relationship 

between consecutive terms of the sequence. The sequences are spotted as irregular if a sequence is quasi-identical to 

a usual behavior which means if it is slightly different from a frequent behavior. 

This paper proposes a new approach for identifying and analyzing such irregularities in sequential data. The data used 

to validate the method represent cargo shipments. This work is part of a PhD research, now in the 3rd year. The 

proposed technique has been developed to identify irregular maritime container itineraries. The technique consists of 

two main parts. The first part is to establish the most frequent sequences of ports (regular itineraries). The second part 

identifies those itineraries that are slightly different to the regular itineraries using a distance-based method in order 

to classify a given itinerary as normal or suspicious. The distance is calculated using a method that combines 

quantitative and qualitative differences of the itineraries. 
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permission and/or a fee. 
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1. INTRODUCTION 
Nowadays, most of the goods are transported by maritime containers all around the world and the number 

of containers travelling every day is really important. For example, 5/6 thousands of containers arrive every 

day in the port of Rotterdam. It is necessary to control the container activities in order to detect illegal 

activities like fraud, quota-related, illegal products, hidden activities, or drug and arm smuggling. The cost 

and the human resources needed to physically check a container are really high. In consequence, only 1-

2% of the containers can be physically controlled by the customs. As long as the number of containers 

travelling every day in the world is very high, it is necessary to improve the targeting of suspicious 

containers by inspecting only those that are of high risk. Therefore, some tools are needed to facilitate the 

targeting performed by the customs. 

In this study, suspicious containers are defined as containers behaving as close as possible as normal 

containers in a way that they do not attract the attention of the customs. In order to detect such anomalies 

we will use the container itineraries. An itinerary represents all the events of a container from its departure 

(loading) to its arrival (discharge) including the transshipments. The proposed method does not require the 

geographical information of a container at every moment during its trip. It is sufficient to know when a 

container is in a port, the name of the port and what action is made on the container at that specific port. 

The different actions are loading, discharging, and transshipment. In Figure 1 we have an example of an 

itinerary with one transshipment port: the container leaves from Singapore, goes to Chiwan and ends its 

trip in Rotterdam. 

 

Fig. 1. Itinerary from Singapore to Rotterdam passing through Chiwan 

An itinerary is a sequence of ports: the first port corresponds to the departure port and the last port is the 

arrival port. If there are more than two ports in an itinerary, the ports between the departure port and the 

arrival port are called transshipment ports. 

With this technique we are able to analyze the relationships between the ports. We are interested in rare 

relationships between ports. We define the anomalies as unexpected relationships between ports where the 

relationships are close but do not match exactly the common relationships. Our technique is divided in two 

parts. The first part is to detect the common itineraries. Common itineraries are routes, or part of routes, 

that are frequently taken for transporting containers. In order to detect the common itineraries we use regular 

expressions. A regular expression allows us to find frequent patterns using wildcards. The second part is to 

calculate an anomaly degree between two itineraries. To calculate the anomaly degree we measure the 

distance between a given itinerary and a common one. The given itinerary is classified as normal or 

abnormal (suspicious) depending on its anomaly degree value. 

In the next section of this paper we will describe existing anomaly detection techniques. In section 3, we 

explain the anomaly detection technique we have developed. The section 4 presents some results obtained 

using this anomaly detection technique with experimental data as well as real world data. We then conclude 

the paper by proposing some directions for future research. 

2. RELATED WORK 
This research is linked to the detection of anomalies in sequences. We will describe in this section some 

anomaly detection techniques for sequences and also some techniques applied to the maritime domain. 
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Chandola et al. presents a survey on anomaly detection technique for sequences [1]. The paper provides a 

summary of the different techniques that currently exist for detecting anomalies in sequence data. Even 

though most of the anomaly detection techniques share the same purpose the techniques and the data can 

be really different depending on the domain and/or on the application. For example, some really known 

applications of anomaly detection of sequences are the system calls that can detect for example an attack 

on a user session or the biology domain in order to detect anomalies in DNA sequences. This survey is the 

only one that is not oriented on any application domain. Sequences are defined as series of ordered events. 

The events are data that can only take certain values. A subsequence is a part of a sequence. 

The anomaly detection research can be divided in three different categories. The first group represents the 

sequence-based anomaly detection techniques: the abnormal sequences are identified thanks to some 

training data (normal sequences). Four techniques are part of this group. The similarity-based techniques 

deal with the similarities between a given sequence and a normal sequence in order to obtain an anomaly 

score. The window-based techniques use small parts of the whole sequences in order to detect the anomalies. 

The Markovian techniques use probabilistic models in order to evaluate the probability of a symbol 

knowing the previous symbols. The Hiddden Markov model-based techniques add wildcards into sequence 

in order to detect the anomalies. 

The second group represents contiguous subsequence-based anomaly detection techniques:  the anomalies 

are subsequences of longer sequences. These techniques use windows of sequences (subsequences). Each 

window is compared with all the windows obtained from the sequences using a distance technique. A 

subsequence is considered as an anomaly depending on the distance value. 

The third group represents pattern frequency-based anomaly detection techniques: These techniques 

compare the expected frequency of a pattern, which is estimated from the training data set, with the 

frequency of the same pattern in the data set. When the expected frequency and the actual frequency are 

too different the pattern is classify as abnormal. 

Eberle et al. describes some anomaly detection techniques applied to the specific domain of the cargo 

security [2]. Several directions can be taken to detect suspicious containers. Some studies use images of the 

cargo [3] and [4]. The anomalies are identified by processing the images. Agovic et al. proposes a technique 

using the weight of the containers to detect anomalies [5]. Ling et al. presents a technique to track and 

monitor automatically the movement of the barges in real-time in order to detect suspicious movements [6]. 

Other techniques detect spatial anomalies comparing distance between spatial information [7], [8], and [9]. 

Eberle et al. describes a graph-based anomaly detection technique [2]. This technique uses an unsupervised 

approach and does not need to have training data. They detect the anomalies by analyzing the relationships 

between the data using a graph-based representation. A graph represents a cargo and all its information 

(contents, departure port, arrival port, transshipment ports, shipment company information, vessel number 

etc.). By analyzing the graphs it is possible to detect the normal behaviors and the deviations of those normal 

behaviors. Eberle et al. defines three types of graph-based anomalies: modifications, insertions, and 

deletions [10]. This technique detects the best substructure(s) of the graphs [11] using a Minimum 

Description Length (MDL) heuristic [12]. The detection of anomalies is performed utilizing three different 

algorithms (one algorithm for each type of anomaly) by finding the patterns that are close to the best 

substructure(s) [10]. 

All these sequences mining approaches focus on detecting anomalies in sequences based on the order of 

the elements. For our application the order is important as well but it is also necessary to take into account 

the absolute position of the elements in the sequence.  

Those techniques that focus on maritime domain require much more information for targeting anomalies 

like geographical information, pictures of the container, weight of the container, content of the container 

or information about the shipment company. This information is not always available and this may cause 
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certain problems when applying such techniques. The advantage of using our approach is that it requires 

much less information about the shipments and it can be easily applied. 

In the next section we will explain the different steps of the anomaly detection technique that we propose. 

3. ANOMALY DETECTION TECHNIQUE 
The proposed anomaly detection technique uses an unsupervised approach. Unlike a supervised approach, 

an unsupervised approach does not need to have training data to define the normal behavior. The user does 

not need to have any knowledge on the data to use this technique. This technique is used to find anomalies 

in structured data. We apply this technique to the maritime domain but it can also be used in other domains 

as well. For our application, maritime surveillance, we are interested in finding hidden information. Hidden 

information could be missing information, incomplete information or information that has been well hidden 

intentionally or unintentionally. We define these anomalies as unexpected relationships between ports 

where the relationships are close but not exactly identical to normal relationships. In other words we are 

looking for sequences of ports that are close to the most frequent ones but with some differences. A 

sequence of ports is called an itinerary. 

Let E = {e1, e2,.., em} be a set of m distinct items. In this application the items are ports. Let S = {S1, S2,.., 

Sn} be a set of n sequences of m items with m a random variable changing from one sequence to another 

one. A subsequence of the sequence Sy is Sy’ = {ea, *, eb, *} with * unknown items (wildcard). A 

subsequence is a part of an itinerary. 

This anomaly detection technique is divided into two steps:  

1) We detect sequences or subsequences that are common in our data set. We use a regular expression 

technique in order to detect the common itineraries using all the data (normal and abnormal). 

2) We compare a given sequence with the common sequences/subsequences and we calculate an 

anomaly degree with a distance technique. Using the anomaly degree we can classify the given 

sequence as normal or abnormal. 

With this technique we can identify the anomalies and present their details to the user. The user can have 

some controls on the results with several thresholds in order to adapt better the results to his needs. The 

first threshold is to select the common itineraries. With a high threshold the user can select only the main 

itineraries and with a lower threshold the user can select more common itineraries that are less frequent 

than the main ones. The second threshold is the maximum anomaly degree threshold which is the level 

defining an itinerary as normal or abnormal. Moreover, the first part of this technique could also be used 

alone as it can detect common routes or frequent couple of ports. This information can be useful for the 

maritime surveillance. 

3.1 Common sequences/subsequences 
To detect the common sequences (itineraries) we need to compare all the sequences of the data set and to 

calculate their frequency. We are also interested in finding common subsequences. A subsequence is a part 

of a sequence and not the whole sequence. We use wildcard in order to define the subsequences. The 

wildcard can substitute any port. 

The frequency is directly obtained by counting how many times each sequence appears in the data set. The 

frequency of a subsequence is more difficult to calculate. In the following section we will discuss how to 

calculate the frequency of a subsequence. As we do not have any knowledge about the data set, we do not 

know the interesting subsequences. We need to create all the possible subsequences and to calculate how 

many times they appear in the data set. In order to create the subsequences we need to add wildcards to the 

sequences. If an itinerary has only two ports we will not create a subsequence. The subsequence of an 

itinerary of two ports will be composed by only a port and a wildcard. We are not interested in single port 
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but only in relations between ports. For every itinerary of more than two ports, we will create a subsequence 

of that itinerary by replacing only one port by a wildcard. For one itinerary we can create several 

subsequences by replacing every port by a wildcard at a time. The number of subsequences created depends 

on how many ports an itinerary has. For example, we can create four subsequences with an itinerary that 

has four ports. Figure 2 shows an example of an itinerary from port X1 to port X3 passing through X2 and 

all the possible subsequences of this itinerary. In the subsequences, the character “ * ” is a wildcard and it 

can correspond to any port. As we see in Figure 2, with this itinerary we can create three different 

subsequences. 

 

 

 

Fig. 2. An itinerary and all his possible subsequences 

The regular expression is a powerful method to identify strings in a text. It is used to detect specific 

characters, words, patterns within a text. With regular expressions it is possible to detect easily a specific 

sentence in a text. It is also easy to find sentences that are not exactly identical using wildcards. For example 

it is possible to detect all the words of a sentence, to create a new sentence by replacing one of the words 

with a wildcard and to detect all the sentences in a text that are similar to the new sentence. 

A sequence can be seen as an ordered sentence where the positions of the words have an importance. A 

group of sequences can be seen as a text composed by many sentences. For our application, an itinerary is 

considered as a sequence which can be a sentence for the regular expression. The data set is a list of 

itineraries which can be seen as a text (list of sequences) for the regular expression.  

We need to create for every itinerary of our data set all the possible subsequences as we have seen in Figure 

2. Then, we need to calculate the frequency of all the subsequences. The algorithm is shown in Figure 3. 

 

Fig. 3. Common subsequences algorithm 

 

 

1) We read every line of the data set file. Every line of the file is an itinerary. 
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2) We detect all the ports (words) of a line. All the ports are separated to each other by a space 

character (‘ ‘). 

3) We create subsequences by replacing every time a different port with a wildcard. With regular 

expression the combination of characters “.+?” is used for wildcard.  

4) We count how often the subsequences are present in the data set. With a minimum frequency 

threshold we can select which lines (itineraries) are frequent enough in the data set to be considered 

as common itineraries. 

In our database each port is represented by a code. In a location database we have for each port all the 

details of the location: the name of the country, the name of the city and the geographic coordinates. The 

codes used for the ports are inconsecutive numbers and the length of the port names is not standardized. As 

there is no important difference for the algorithm we have decided not to change the port names as it is 

easier for the user to have a link between the data records in the different databases. 

A wildcard “*” replace a port in an itinerary and it can match any port. With regular expression the wildcard 

is the symbol “.+?”. The symbol “.” represents every character except the new-line character. As every line 

is a different itinerary it is important to keep the new-line character to know where an itinerary ends. The 

“+” is used to match one or more characters. But as all the characters except the new-line character will 

match “.+” we need to limit it. If we do not limit it all the characters until the new-line character will always 

be a match. In order to control the comparison we use the symbol “?” which makes the operation lazy. This 

means that every time we compare two characters the character after “.+?” is also checked. As soon as the 

character after “.+?” is found in the other line the characters following will not match “.+?” anymore. 

With this first part we are able to detect the common itineraries and we need with the second part to detect 

the suspicious itineraries. 

3.2 Anomaly degree 

The purpose of our technique is to detect anomalous itineraries and to spot the anomalies. We identify the 

anomalies by comparing a given itinerary with the common ones. We calculate an anomaly degree between 

a given itinerary and a common one. Depending on the value of the anomaly degree we will classify the 

given itinerary as normal or abnormal. The anomaly degree is calculated with a distance technique. 

Let Sdata be a given sequence of the data set S. Snor be a common sequence or subsequence discovered with 

the regular expression technique as described previously. And dist(Sdata,Snor) is the distance between two 

sequences: a given sequence Sdata and a common one Snor. For example, in Figure 4, we have two itineraries. 

One itinerary is a given itinerary from X1 to X4 passing through X2 and X3. The second itinerary is a 

common itinerary X1 to X4 with a wildcard for the transshipment port. 
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Fig.4. Two itineraries: a given itinerary (X1,X2,X3,X4) and a common itinerary (X1,*,X4) 

The dist(Sdata,Snor) is the number of actual changes divided by the maximum number of possible changes 

between two sequences. We calculate the distance using two factors: the structure of the itinerary and the 

port names. The structure corresponds to the number of events and their type. The port names are the actual 

ports visited during an itinerary. As shown in Figure 4, the structure is the part above the black horizontal 

line and the port names is the part below the black horizontal line. 

To calculate the structure distance we use the events of the itineraries. The events are the departure, the 

arrival, and the transshipment(s). We calculate the absolute difference between the number of events of the 

sequence Sdata and the number of events of the sequence Snor:  

|Sdata.lenght  - Snor.lenght | 

The maximum possible changes between two structures are the maximum number of events between Sdata  

and Snor:     

max(Sdata.lenght  Snor.lenght) 

We also need to take into account the port names and the event linked with the port. There are three 

possibilities: 1) A port is identical in both sequences Sdata and Snor. It means that the name of the port and 

the event related to it are similar in both itineraries. For example, in Figure 4, X1 is for both itineraries the 

port of departure. 2) A port of Sdata is also present in Snor but the port has not the same event in both 

itineraries. For example, if in Sdata port X5 is the port of departure and in Snor port X5 is the port of 

transshipment. 3) A port of Sdata is not present in Snor or the opposite. 

The event related to the port is linked in our data set to the position of the port in the sequence. The first 

port is the port of departure, the last port is the port of arrival, and the ports between are the ports of 

transshipment. 

Therefore, we calculate the difference between two sequences as:  

1) If a port is in both itineraries at the same position we attribute the value 0 to the port. But as two itineraries 

might not have the same number of ports it is not straightforward to compare the position of two ports. In 

order to compare the position of a port we compare the two itineraries from the beginning and starting from 

the end of the itineraries. If the position is similar in one of the two comparisons, the two ports will be 

considered as having the same position and we will attribute the value 0 to the ports. For example, if we 

consider the common itinerary X3 X5 * and the given itinerary X10 X3 X5 X6. If we compare them only 

from the beginning they will have an anomaly degree really high as none of the ports have the same position 

as in the other itinerary. But if we compare the two itineraries from the end, they appear to be really similar. 

2) If one port is present in both but with a different position, as defined previously, we attribute the value 

1. 

3) If a port is present in only one of the two itineraries we attribute the value 2 to the port. 

4) We need to add the case when the common itinerary contains a wildcard “*”. As we have seen before, 

the character “*” implies that it can be any port. We will not put any weight on the port “*” and we will not 

consider it as the same port as any other port. Thus, we know that if an itinerary is common because of 

several itineraries when we compare one of these several itineraries with the common one the anomaly 

degree will not be 0. For example, we have in our data set the itineraries a b c, a b d, a b e, a b f, a b g and 

h j k. The itinerary a b * will be a common itinerary. If we compare a b c with the common itinerary a b *, 

even if a b c is actually included in a b *, the anomaly degree will be 0.2222. The ports a and b take the 

value 0 but the port c take the value 2. We will define a minimum anomaly degree equal to 0.23. The 
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itineraries that have an anomaly degree inferior to the minimum degree will not appear as abnormal 

itineraries. 

The maximum number of changes that we can have with the port names is the number of distinct ports 

between the two itineraries. We do not consider the port “*” as one of the distinct port for the maximum 

number of changes. As we have seen we can attribute to a port the value 0, 1 or 2. The maximum value 

attributed to a port is 2 so if two itineraries are completely different, the maximum possible value will be 

the number of all the distinct ports multiplied by 2. Thus, the number of maximum changes is the number 

of distinct ports multiplied by 2. 

The anomaly degree is: 

dist(Sdata,Snor) =   |Sdata.lenght  - Snor.lenght | + Ʃport_value(0,1,2) .                                                      

            max(Sdata.lenght  Snor.lenght) + (num_of_distinct_port)*2 

A maximum anomaly degree threshold is defined by the user. Depending on the threshold the itinerary Sdata 

will be classify as normal or abnormal. If the anomaly degree is lower than the threshold the itinerary will 

be detected as anomalous. 
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The algorithm is shown in Figure 5. 

 

Fig. 5. Anomaly algorithm 

1) We reduce the data file. The data file contains all the itineraries of our data set. In consequence, the 

same itinerary might be present several times. In order to avoid comparing several times a common 

itinerary with the same itinerary we create a new file where each itinerary is present only once. This 

new file is the reducedDataFile. 

2) We read every line of the reducedDataFile. 

3) We read every line of the frequencyDataFile that we have created previously with the common 

subsequences algorithm described in Figure 3. The file contains the frequency of every 

sequence/subsequence. 

4) A sequence/subsequence is considered to be a common itinerary it its frequency is superior to the 

minimum frequency threshold. If the itinerary is a common itinerary we compare the two lines. The 

first line is a given itinerary. The second line is the sequence/subsequence found with the common 

subsequences algorithm described in Figure 3. 

We attribute values to the ports. The value 0: if a port is in the other itinerary and at the same position 

or if a port is “*”. The value 1: if a port is in the other itinerary but at a different position. And the 

value 2: if a port is not present in the other itinerary. 

5) We calculate the anomaly degree between the two itineraries. 
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6) If the anomaly degree is between the minimum anomaly degree threshold and the maximum anomaly 

degree threshold, then we put in an array the given itinerary, the common itinerary and the anomaly 

degree value. 

7) We write all the anomalies found in a text file: anomalyFile. 

For example, if we compare the two itineraries of Figure 4: 

· Structure: actual changes: |4-3| (4 events Sdata and 3 events Snor) and maximum changes: 4  

· Name ports: actual changes: 4 (X1 compared with      X1 = 0, X2 compared with * or X1 = 2, X3 

compared with * or X4 = 2, X4 compared with X4 = 0) and maximum changes: 4*2 (4 different 

ports: X1, X2, X3. X4) 

· Anomaly degree: dist(Sdata,Snor) =  (1+4) / (4+4*2) = 0.41 

If the user defines a maximum anomaly degree threshold higher than the distance, the itinerary will be 

detected as anomalous. The normal behavior is to have only one transshipment port but the itinerary Sdata 

has two transshipment ports. 

4. EXPERIMENT 
We collect our data on container trips on different public sources. In order to have coherent dataset we clean 

the data. The cleaning is mostly linked with text string errors for geographic locations and container events. 

The dataset contains container events information. For each event we know the container number, the 

geographical localization of the container, and what action is done on that container in that specific port. 

Currently, the dataset contains more than 900 million of events and about 12 million of containers. As our 

data contains anomalies, first we tried this technique with some experimental data created based on the real 

world data. Once the results with experimental data are satisfied we tried this technique with the real world 

data. 

4.1 Experimental data 

We have created some experimental data set based on real world data. With some tests done on our data set 

we know that for a number x of itineraries, we have y number of ports with y = x * 6%. We also know as 

shown in Figure 6 that most of the itineraries have no transshipment port. 

 

Fig. 6. Percentage of transshipments in real world data 

We created experimental data with 200 itineraries. 60 % of the itineraries have zero transshipment, 30 % 

have one transshipment, and 10 % have two transshipments. We use twelve distinct ports. With a random 

function we create the itineraries. We add four different itineraries ten times in order to be considered as 

frequent itineraries. We add ten suspicious itineraries. 

For this experimentation, the minimum frequency will be 5.40, the maximum anomaly degree will be 0.49, 

and the minimum anomaly degree is 0.23. The minimum frequency value is calculated with the 

frequencyDataFile of the common subsequences algorithm. The average frequency is calculated with the 
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frequency of all the itineraries. Another frequency is calculated with the itineraries that have a frequency 

above the frequency average. The second frequency value is the value used for the minimum frequency 

threshold. 

With this technique from a data set of 210 itineraries we detect 42 itineraries (20%) that could be anomalous. 

All the anomalous itineraries inserted are detected as anomalous, other suspicious itineraries created 

randomly are also detected.  

The results are written in a text file as we can see in Figure 7. Every anomalous itinerary uses three lines 

on the text file. The first line is the anomalous itinerary, the second line is the common itineraries, and the 

third line is the anomaly degree values. 

 

Fig. 7. Anomalous itineraries using experimental data 

As shown in Figure 7, the first anomalous itinerary detected in this example is the itinerary going from port 

1 to port 8 passing through port 9. It is considered anomalous because of three different common itineraries. 

The first common itinerary used to define this itinerary as abnormal is the itinerary going from any port to 

port 8 passing through port 6 and 9. As the departure port of the common itinerary is a wildcard it can be 

any port, we consider the port of departure to be the port 1. We can see in that case that the two itineraries 

are close but one transshipment port has been removed to the common itinerary. We have the same 

conclusion when we compare this itinerary with the two others common itineraries, one port of 

transshipment is missing. 

4.2 Real world data 
We tested this technique with real world data as well. The data set have 135798 itineraries but 22831 distinct 

itineraries. The minimum frequency calculated with the frequency of the itineraries as described previously 

is 60. As for the experimental data the maximum anomaly degree is 0.49 and the minimum anomaly degree 

is 0.23. 

We tested this technique with three different minimum frequency thresholds: 30, 50, and 60. 60 is the value 

obtained as described previously with the frequency of the itineraries. 

 

 

Fig. 8. Results with different minimum frequency values 
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As shown in Figure 8, the number of anomalous itineraries detected increases when the minimum frequency 

value decreases. If the minimum frequency threshold is too low, a lot of itineraries will be spotted as 

anomalous itineraries. 

With the minimum frequency adapted (here 60) we detect 4773 anomalous itineraries. It is 3.5 % of the 

whole dataset and 20.9 % of the distinct itineraries. Some examples of anomalous itineraries are shown in 

Figure 9. 

 

Fig. 9. Anomalous itineraries using real world data 

As we can see in Figure 9, the method is able to identify suspicious itineraries thanks to changes between 

a common itinerary and a given one. The changes that are detected are deletion, insertion, and replacement 

of ports. For example, the itinerary “175 277 955” is tagged as anomalous. The common itinerary is “0 175 

277”. The departure port and the arrival port are different. The departure port information was probably 

removed from the itinerary in order to hide the origin of the container.   

5. CONCLUSION 
This paper describes an anomaly detection technique for sequential data representing maritime container 

itineraries. The method is performed into two steps. First, we detect the common sequences. Then, we 

calculate the distance between a given itinerary and a common one. 

We tested this technique with experimental data based on real world data as well as with real world data. 

The results are very promising and indicate that this method is efficient in identifying suspicious/irregular 

itineraries. 

This technique could be further improved if it is enriched with customs based knowledge. For example, 

knowing sensitive area, sensitive port, or which combination of ports could be potentially used for 

transporting suspicious containers will facilitate the user in spotting the irregular itineraries much 

successfully. Other information could be added like weather information, for example, routes could be 

changed because of natural disasters. 

Future research aims at enriching the existing information with spatio-temporal data in order to identify 

unnecessary delays in the movements of the maritime containers. For example, if we know how long a 

container takes to travel from one port to another, we can use this information in order to detect other types 

of anomalies based on delays. 
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Abstract. Detecting anomalies in maritime domain is nowadays essential as the number of goods transported by 

maritime containers keeps increasing. An anomaly can be described in several ways depending on the application 

domain. For cargo shipment an anomaly can be defined as an unexpected relationship between ports. 

This paper describes a new approach for detecting the anomalies in sequential data used to describe cargo 

shipments. The technique is divided in two steps. First, we find the normal itineraries with a regular expression 

technique. Then, we compare a given itinerary with a normal one using a distance-based method in order to classify 

the given itinerary as normal or suspicious. The first results of this method are very promising and it can be further 

improved when integrated with time-based information. This paper presents both the methodology and some results 

obtained using real world data representing container movements. 

 

Keywords: anomaly detection, maritime security, sequence, regular expression, distance 

1 Introduction 

Nowadays, most of the goods are transported by maritime containers all around the world and the number 

of containers travelling every day is really important. For example, around 15 million containers arrive into 

ports every year only in the US. It is necessary to control the container movements in order to detect illegal 

activities like fraud, quota-related, illegal products, hidden activities, or drug and arm smuggling. But only 

1-2% of the containers can be physically controlled by the customs because the cost and the human 

resources needed to check a container are really high. As the number of containers travelling every day in 

the world increases, it is necessary to improve the targeting in a way that it reduces as much as possible the 

physical check on random containers. Performing physical checks only on those containers that seems to 

be suspicious will improve both targeting and efficiency. Therefore, some computational tools are needed 

to help the customs to focus their attention on suspicious containers. 

In this study, suspicious containers are defined as containers behaving as close as possible as normal 

containers in order not to attract the attention of the customs. In order to detect such anomalies we will use 

the container itineraries. An itinerary represents all the events of a container from its departure (loading) to 

its arrival (discharge) including the transshipments. The proposed method does not require the geographical 

information of a container at every moment during its trip. It is sufficient to know when a container is in a 

port, the name of the port and what action is made on the container at that specific port. The different actions 

are loading, discharging, and transshipment. In Figure 1 we have an example of an itinerary with one 

transshipment port: the container leaves from Singapore, goes to Chiwan and ends its trip in Rotterdam. 
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Fig. 2. Itinerary from Singapore to Rotterdam passing through Chiwan 

An itinerary is a sequence of ports: the first port corresponds to the departure port and the last port is the 

arrival port. If there are more than two ports in an itinerary, the ports between the departure port and the 

arrival port are called transshipment ports. 

With this technique we are able to analyze the relationships between the ports. We are interested in rare 

relationships between ports. We define the anomalies as unexpected relationships between ports where the 

relationships are close but do not match exactly the common relationships. Our technique is divided in two 

parts. The first part is to detect the common itineraries. Common itineraries are itineraries, or part of 

itineraries, that are frequently used in the transport of the containers. We detect the common itineraries 

using regular expressions. A regular expression allows us to find frequent patterns using wildcards. The 

second part is to calculate an anomaly degree between two itineraries. To calculate the anomaly degree we 

measure the distance between a given itinerary and a common one. The given itinerary is classified as 

normal or abnormal (suspicious) depending on its anomaly degree value. 

In the next section of this paper we will describe existing anomaly detection techniques. In section 3, we 

explain the anomaly detection technique we have developed. The section 4 presents some testing of this 

anomaly detection technique and their corresponding results. We then conclude the paper by proposing 

some directions for future research. 

2 Related work 

This research is linked to the detection of anomalies in sequences. We will describe in this section some 

anomaly detection techniques for sequences and also some techniques applied to the maritime domain. 

Chandola et al. presents a survey on anomaly detection technique for sequences [1]. The paper provides a 

summary of the different techniques that currently exist for detecting anomalies in sequence data. Even 

though most of the anomaly detection techniques share the same purpose the techniques and the data can 

be really different depending on the domain and/or on the application. For example, some really known 

applications of anomaly detection of sequences are the system calls that can detect for example an attack 

on a user session or the biology domain in order to detect anomalies in DNA sequences. This survey is the 

only one that is not oriented on any application domain. Sequences are defined as series of ordered events. 

The events are data that can only take certain values. A subsequence is a part of a sequence. 

The anomaly detection research can be divided in three different categories. The first group represents the 

sequence-based anomaly detection techniques: the abnormal sequences are identified thanks to some 

training data (normal sequences). Four techniques are part of this group. The similarity-based techniques 

deal with the similarities between a given sequence and a normal sequence in order to obtain an anomaly 

score. The window-based techniques use small parts of the whole sequences in order to detect the anomalies. 

The Markovian techniques use probabilistic models in order to evaluate the probability of a symbol 
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knowing the previous symbols. The Hiddden Markov model-based techniques add wildcards into sequence 

in order to detect the anomalies. 

The second group represents contiguous subsequence-based anomaly detection techniques:  the anomalies 

are subsequences of longer sequences. These techniques use windows of sequences (subsequences). Each 

window is compared with all the windows obtained from the sequences using a distance technique. A 

subsequence is considered as an anomaly depending on the distance value. 

The third group represents pattern frequency-based anomaly detection techniques: These techniques 

compare the expected frequency of a pattern, which is estimated from the training data set, with the 

frequency of the same pattern in the data set. When the expected frequency and the actual frequency are 

too different the pattern is classify as abnormal. 

Eberle et al. describes some anomaly detection techniques applied to the specific domain of the cargo 

security [2]. Several directions can be taken to detect suspicious containers. Some studies use images of the 

cargo [3] and [4]. The anomalies are identified by processing the images. Agovic et al. proposes a technique 

using the weight of the containers to detect anomalies [5]. Ling et al. presents a technique to track and 

monitor automatically the movement of the barges in real-time in order to detect suspicious movements [6]. 

Other techniques detect spatial anomalies comparing distance between spatial information [7], [8], and [9]. 

Eberle et al. describes a graph-based anomaly detection technique [2]. This technique uses an unsupervised 

approach and does not need to have training data. They detect the anomalies by analyzing the relationships 

between the data using a graph-based representation. A graph represents a cargo and all its information 

(contents, departure port, arrival port, transshipment ports, shipment company information, vessel number 

etc.). By analyzing the graphs it is possible to detect the normal behaviors and the deviations of those normal 

behaviors. Eberle et al. defines three types of graph-based anomalies: modifications, insertions, and 

deletions [10]. This technique detects the best substructure(s) of the graphs [11] using a Minimum 

Description Length (MDL) heuristic [12]. The detection of anomalies is performed utilizing three different 

algorithms (one algorithm for each type of anomaly) by finding the patterns that are close to the best 

substructure(s) [10]. 

All these sequences mining approaches focus on detecting anomalies in sequences. For the sequence mining 

approaches the order of the elements is important. For our application the order is important but the absolute 

position of the elements in the sequence is equally important.  

Those techniques that focus on the maritime domain require much more information for targeting anomalies 

like geographical information, pictures of the container, weight of the container, content of the container or 

information about the shipment company. This information is not always available and this may cause 

certain problems when applying such techniques. The advantage of using our approach is that it requires 

much less information about the shipments and it can be easily applied. 

In the next section we will explain the different steps of the anomaly detection technique that we propose. 
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3 Anomaly detection technique 

The proposed anomaly detection technique uses an unsupervised approach. Therefore this approach does 

not need to have training data to define the normal data. The user does not need to have any knowledge on 

the data to use this technique. This technique is used to find anomalies in structured data. We apply this 

technique to the maritime domain but it can also be used in other domains as well. For our application, 

maritime surveillance, we are interested in finding hidden information. Hidden information could be 

missing information, incomplete information or information that has been well hidden intentionally or 

unintentionally. We define these anomalies as unexpected relationships between ports where the 

relationships are close but not exactly identical to normal relationships. In other words we are looking for 

sequences of ports that are close to the most frequent ones but with some differences. A sequence of ports 

is called an itinerary.  

Let E = {e1, e2,.., em} be a set of m distinct items. In this application the items are ports. Let S = {S1, S2,.., 

Sn} be a set of n sequences of m items with m a random variable changing from one sequence to another 

one. A subsequence of the sequence Sy is Sy’ = {ea, *, eb, *} with * unknown items (wildcard). A 

subsequence is a part of an itinerary. 

This anomaly detection technique is divided into two steps:  

1. We detect sequences or subsequences that are common in our data set. We use a regular expression 

technique in order to detect the common itineraries using all the data (normal and abnormal). 

2. We compare a given sequence with the common sequences/subsequences and we calculate an anomaly 

degree with a distance technique. Using the anomaly degree we can classify the given sequence as normal 

or abnormal. 

With this technique we can identify the anomalies and present their details to the user. The user can have 

some controls on the results with several thresholds in order to adapt better the results to his needs. The 

first threshold is to select the common itineraries. With a high threshold the user can select only the main 

itineraries and with a lower threshold the user can select more common itineraries that are less frequent 

than the main ones. The second threshold is the maximum anomaly degree threshold which is the level 

defining an itinerary as normal or abnormal. Moreover, the first part of this technique could also be used 

alone as it can detect common routes or frequent couple of ports. This information can be useful for the 

maritime surveillance. 

3.1 Common sequences/subsequences 

To detect the common sequences (itineraries) we need to compare all the sequences of the data set and to 

calculate their frequency. We are also interested in finding common subsequences. A subsequence is a part 

of a sequence and not the whole sequence. We use wildcard in order to define the subsequences. The 

wildcard can substitute any port. 

The frequency is directly obtained by counting how many times each sequence appears in the data set. The 

frequency of a subsequence is more difficult to calculate. In the following section we will discuss how to 

calculate the frequency of a subsequence. As we do not have any knowledge about the data set, we do not 

know the interesting subsequences. We need to create all the possible subsequences and to calculate how 

many times they appear in the data set. In order to create the subsequences we need to add wildcards to the 

sequences. If an itinerary has only two ports we will not create a subsequence. The subsequence of an 
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itinerary of two ports will be composed by only a port and a wildcard. We are not interested in single port 

but only in relations between ports. For every itinerary of more than two ports, we will create a subsequence 

of that itinerary by replacing only one port by a wildcard. For one itinerary we can create several 

subsequences by replacing every port by a wildcard at a time. The number of subsequences created depends 

on how many ports an itinerary has. For example, we can create four subsequences with an itinerary that 

has four ports. Figure 2 shows an example of an itinerary from port X1 to port X3 passing through X2 and 

all the possible subsequences of this itinerary. In the subsequences, the character “ * ” is a wildcard and it 

can correspond to any port. As we see in Figure 2, with this itinerary we can create three different 

subsequences. 

 

Fig. 3. An itinerary and all his possible subsequences 

The regular expression is a powerful method to identify strings in a text. It is used to detect specific 

characters, words, patterns within a text. With regular expressions it is possible to detect easily a specific 

sentence in a text. It is also easy to find sentences that are not exactly identical using wildcards. For example 

it is possible to detect all the words of a sentence, to create a new sentence by replacing one of the words 

with a wildcard and to detect all the sentences in a text that are similar to the new sentence. 

 A sequence can be seen as an ordered sentence where the positions of the words have an importance. A 

group of sequences can be seen as a text composed by many sentences. For our application, an itinerary is 

considered as a sequence which can be a sentence for the regular expression. The data set is a list of 

itineraries which can be seen as a text (list of sequences) for the regular expression.  

We need to create for every itinerary of our data set all the possible subsequences as we have seen in Figure 

2. Then, we need to calculate the frequency of all the subsequences. The algorithm is shown in Figure 3. 
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Fig. 4. Common subsequences algorithm 

1) We read every line of the data set file. Every line of the file is an itinerary. 

2) We detect all the ports (words) of a line. All the ports are separated to each other by a space character 

(‘ ‘). 

3) We create subsequences by replacing every time a different port with a wildcard. With regular 

expression the combination of characters “.+?” is used for wildcard.  

4) We count how often the subsequences are present in the data set. With a minimum frequency 

threshold we can select which lines (itineraries) are frequent enough in the data set to be considered 

as common itineraries. 

 

In our database each port is represented by a code. In a location database we have for each port all the 

details of the location: the name of the country, the name of the city and the geographic coordinates. The 

codes used for the ports are inconsecutive numbers and the length of the port names is not standardized. 

As there is no important difference for the algorithm we have decided not to change the port names as it is 

easier for the user to have a link between the data records in the different databases. 

A wildcard “*” replace a port in an itinerary and it can match any port. With regular expression the 

wildcard is the symbol “.+?”. The symbol “.” represents every character except the new-line character. As 

every line is a different itinerary it is important to keep the new-line character to know where an itinerary 

ends. The “+” is used to match one or more characters. But as all the characters except the new-line 

character will match “.+” we need to limit it. If we do not limit it all the characters until the new-line 

character will always be a match. In order to control the comparison we use the symbol “?” which makes 

the operation lazy. This means that every time we compare two characters the character after “.+?” is also 

checked. As soon as the character after “.+?” is found in the other line the characters following will not 

match “.+?” anymore. 

With this first part we are able to detect the common itineraries and we need with the second part to detect 

the suspicious itineraries. 
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3.2 Anomaly degree 

The purpose of our technique is to detect anomalous itineraries and to spot the anomalies. We identify the 

anomalies by comparing a given itinerary with the common ones. We calculate an anomaly degree between 

an itinerary and a common one. Depending on the value of the anomaly degree we will classify the given 

itinerary as normal or abnormal. The anomaly degree is calculated with a distance technique. 

Let Sdata be a given sequence of the data set S. Snor be a common sequence or subsequence discovered with 

the regular expression technique as described previously. And dist(Sdata,Snor) is the distance between two 

sequences: a given sequence Sdata and a common one Snor. For example, in Figure 4, we have two itineraries. 

One itinerary is a given itinerary from X1 to X4 passing through X2 and X3. The second itinerary is a common 

itinerary X1 to X4 with a wildcard for the transshipment port. 

 

Fig. 5. Two itineraries: a given itinerary (X1,X2,X3,X4) and a common itinerary (X1,*,X4) 

The dist(Sdata,Snor) is the number of actual changes divided by the maximum number of possible changes 

between two sequences. We calculate the distance using two factors: the structure of the itinerary and the 

port names. The structure corresponds to the number of events and their type. The port names are the actual 

ports visited during an itinerary. As shown in Figure 4, the structure is the part above the black horizontal 

line and the port names is the part below the black horizontal line.  

To calculate the structure distance we use the events of the itineraries. The events are the departure, the 

arrival, and the transshipment(s). We calculate the absolute difference between the number of events of the 

sequence Sdata and the number of events of the sequence Snor:  

 |Sdata.lenght  - Snor.lenght | 

The maximum possible changes between two structures are the maximum number of events between Sdata 

and Snor:  

 max(Sdata.lenght  Snor.lenght) 

We also need to take into account the port names and the event linked with the port. There are three 

possibilities: 1) A port is identical in both sequences Sdata and Snor. It means that the name of the port and 

the event related to it are similar in both itineraries. For example, in Figure 4, X1 is for both itineraries the 

port of departure.  2) A port of Sdata is also present in Snor but the port has not the same event in both 
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itineraries. For example, if in Sdata port X5 is the port of departure and in Snor port X5 is the port of 

transshipment. 3) A port of Sdata is not present in Snor or the opposite. 

The event related to the port is linked in our data set to the position of the port in the sequence. The first 

port is the port of departure, the last port is the port of arrival, and the ports between are the ports of 

transshipment. 

Therefore, we calculate the difference between two sequences as:  

1) If a port is in both itineraries at the same position we attribute the value 0 to the port. But as two itineraries 

might not have the same number of ports it is not straightforward to compare the position of two ports. In 

order to compare the position of a port we compare the two itineraries from the beginning and starting from 

the end of the itineraries. If the position is similar in one of the two comparisons, the two ports will be 

considered as having the same position and we will attribute the value 0 to the ports. For example, if we 

consider the common itinerary X3 X5 * and the given itinerary X10 X3 X5 X6. If we compare them only 

from the beginning they will have an anomaly degree really high as none of the ports have the same position 

as in the other itinerary. But if we compare the two itineraries from the end, they appear to be really similar. 

2) If one port is present in both but with a different position, as defined previously, we attribute the value 

1. 

3) If a port is present in only one of the two itineraries we attribute the value 2 to the port. 

4) We need to add the case when the common itinerary contains a wildcard “*”. As we have seen before, 

the character “*” implies that it can be any port. We will not put any weight on the port “*” and we will not 

consider it as the same port as any other port. Thus, we know that if an itinerary is common because of 

several itineraries when we compare one of these several itineraries with the common one the anomaly 

degree will not be 0. For example, we have in our data set the itineraries a b c, a b d, a b e, a b f, a b g and 

h j k. The itinerary a b * will be a common itinerary. If we compare a b c with the common itinerary a b *, 

even if a b c is actually included in a b *, the anomaly degree will be 0.2222. The ports a and b take the 

value 0 but the port c take the value 2. We will define a minimum anomaly degree equal to 0.23. The 

itineraries that have an anomaly degree inferior to the minimum degree will not appear as abnormal 

itineraries. 

The maximum number of changes that we can have with the port names is the number of distinct ports 

between the two itineraries. We do not consider the port “*” as one of the distinct port for the maximum 

number of changes. As we have seen we can attribute to a port the value 0, 1 or 2. The maximum value 

attributed to a port is 2 so if two itineraries are completely different, the maximum possible value will be 

the number of all the distinct ports multiplied by 2. Thus, the number of maximum changes is the number 

of distinct ports multiplied by 2. 

The anomaly degree is: 

 

dist(Sdata,Snor) =   |Sdata.lenght  - Snor.lenght | + Ʃport_value(0,1,2)      .                           

max(Sdata.lenght  Snor.lenght) + (num_of_distinct_port)*2 
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A maximum anomaly degree threshold is defined by the user. Depending on the threshold the itinerary Sdata 

will be classify as normal or abnormal. If the anomaly degree is lower than the threshold the itinerary will 

be detected as anomalous. 

The algorithm is shown in Figure 5. 

 

Fig. 6. Anomaly algorithm 

1) We reduce the data file. The data file contains all the itineraries of our data set. In consequence, the 

same itinerary might be present several times. In order to avoid comparing several times a common 

itinerary with the same itinerary we create a new file where each itinerary is present only once. This 

new file is the reducedDataFile. 

2) We read every line of the reducedDataFile. 

3) We read every line of the frequencyDataFile that we have created previously with the common 

subsequences algorithm described in Figure 3. The file contains the frequency of every 

sequence/subsequence. 
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4) A sequence/subsequence is considered to be a common itinerary it its frequency is superior to the 

minimum frequency threshold. If the itinerary is a common itinerary we compare the two lines. The 

first line is a given itinerary. The second line is the sequence/subsequence found with the common 

subsequences algorithm described in Figure 3. 

We attribute values to the ports. The value 0 if a port is in the other itinerary and at the same position 

or if a port is “*”. The value 1 if a port is in the other itinerary but at a different position. And the 

value 2 if a port is not present in the other itinerary. 

5) We calculate the anomaly degree between the two itineraries. 

6) If the anomaly degree is between the minimum anomaly degree threshold and the maximum anomaly 

degree threshold, then we put in an array the given itinerary, the common itinerary and the anomaly 

degree value. 

7) We write all the anomalies found in a text file: anomalyFile. 

For example, if we compare the two itineraries of Figure 4: 

· Structure: actual changes: |4-3| (4 events Sdata and 3 events Snor) and maximum changes: 4  

· Name ports: actual changes: 4 (X1 compared with X1 = 0, X2 compared with * or X1 = 2, X3 compared 

with * or X4 = 2, X4 compared with X4 = 0) and maximum changes: 4*2 (4 different ports: X1, X2, X3. 

X4) 

· Anomaly degree: dist(Sdata,Snor) =  (1+4) / (4+4*2) = 0.41 

If the user defines a maximum anomaly degree threshold higher than the distance, the itinerary will be 

detected as anomalous. The normal behavior is to have only one transshipment port but the itinerary Sdata 

has two transshipment ports. 

4 Experiment 

We collect our data on container trips on different public sources. In order to have coherent dataset we clean 

the data. The cleaning is mostly linked with text string errors for geographic locations and container events. 

The dataset contains container events information. For each event we know the container number, the 

geographical localization of the container, and what action is done on that container in that specific port. 

Currently, the dataset contains more than 900 million of events and about 12 million of containers. As our 

data contains anomalies, first we tried this technique with some experimental data created based on the real 

world data. Once the results with experimental data are satisfied we tried this technique with the real world 

data. 

4.1 Experimental data 

We have created some experimental data set based on real world data. With some tests done on our data set 

we know that for a number x of itineraries, we have y number of ports with y = x * 6%. We also know as 

shown in Figure 6 that most of the itineraries have no transshipment port. 
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Fig. 6. Percentage of transshipments in real world data 

We created experimental data with 200 itineraries. 60 % of the itineraries have zero transshipment, 30 % 

have one transshipment, and 10 % have two transshipments. We use twelve distinct ports. With a random 

function we create the itineraries. We add four different itineraries ten times in order to be considered as 

frequent itineraries. We add ten suspicious itineraries. 

For this experimentation, the minimum frequency will be 5.40, the maximum anomaly degree will be 0.49, 

and the minimum anomaly degree is 0.23. The minimum frequency value is calculated with the 

frequencyDataFile of the common subsequences algorithm. The average frequency is calculated with the 

frequency of all the itineraries. Another frequency is calculated with the itineraries that have a frequency 

above the frequency average. The second frequency value is the value used for the minimum frequency 

threshold. 

With this technique from a data set of 210 itineraries we detect 42 itineraries (20%) that could be anomalous. 

All the anomalous itineraries inserted are detected as anomalous, other suspicious itineraries created 

randomly are also detected.  

The results are written in a text file as we can see in Figure 7. Every anomalous itinerary uses three lines 

on the text file. The first line is the anomalous itinerary, the second line is the common itineraries, and the 

third line is the anomaly degree values. 

 

Fig. 7. Anomalous itineraries using experimental data 

As shown in Figure 7, one anomalous itinerary detected is the itinerary going from port 1 to port 5 passing 

through port 3 and 4. It is considered anomalous because of three different common itineraries. The first 

common itinerary used to define this itinerary as abnormal is the itinerary going from any port to port 4 

passing through the port 3. As the departure port of the common itinerary is a wildcard it can be any port, 

we consider the port of departure to be the port 1. We can see in that case that the two itineraries are really 

similar but an extra port is added (the arrival port) which might be a suspicious behavior. 
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4.2 Real world data 

We tested this technique with real world data as well. The data set have 135798 itineraries but 22831 distinct 

itineraries. The minimum frequency calculated with the frequency of the itineraries as described previously 

is 60. As for the experimental data the maximum anomaly degree is 0.49 and the minimum anomaly degree 

is 0.23. 

With these thresholds we detect 4773 anomalous itineraries. It is 3.5 % of the whole dataset and 20.9 % of 

the distinct itineraries. Some examples of anomalous itineraries are shown in Figure 8. 

 

Fig. 8. Anomalous itineraries using real world data 

As we can see in the Figure 8, we detect the modification, the deletion, or the insertion of information of 

the common itineraries. 

5 Conclusion and future work 

This paper presents a method for identifying suspicious itineraries of maritime containers. This technique 

consists of two main parts. In the first part, we detect the common sequences, the most frequent one and in 

the second part, we calculate the distance between a given itinerary and a common one. 

We have tested this technique with experimental data based on real world data as well as with real world 

data. The results are very promising and indicate that this method is satisfactory in identifying suspicious 

itineraries. 

This technique can be further improved by integrating customs import declarations or potentially other type 

of intelligence. For example, knowing which port is sensitive or which combination of ports is suspicious 

could facilitate more the user to take decision in favor of some itineraries and identify directly suspicious 

cases. 

In the future, we manage to integrate such type of information as well. For example, we could take into 

account also the time dimension in order to estimate unnecessary delays. If we know for instance the usual 

time it takes for a container to travel from one port to another, we would be in a position to identify 

itineraries suffering from long delays and target those itineraries for further inspection. 
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