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Abstract

Accurate egomotion estimation is of utmost importance for any navigation sys-
tem. Nowadays different sensors are adopted to localize and navigate in unknown
environments such as GPS, range sensors, cameras, magnetic field sensors, inertial
sensors (IMU). In order to have a robust egomotion estimation, the information
of multiple sensors is fused. Although the improvements of technology in provid-
ing more accurate sensors, and the efforts of the mobile robotics community in
the development of more performant navigation algorithms, there are still open
challenges. Furthermore, the growing interest of the robotics community in mi-
cro robots and swarm of robots pushes towards the employment of low weight,
low cost sensors and low computational complexity algorithms. In this context
inertial sensors and monocular cameras, thanks to their complementary charac-
teristics, low weight, low cost and widespread use, represent an interesting sensor
suite.

This dissertation represents a contribution in the framework of vision-aided
inertial navigation and tackles the problems of data association and pose estima-
tion aiming for low computational complexity algorithms applied to MAVs.

For what concerns the data association, a novel method to estimate the rela-
tive motion between two consecutive camera views is proposed. It only requires
the observation of a single feature in the scene and the knowledge of the angu-
lar rates from an IMU, under the assumption that the local camera motion lies
in a plane perpendicular to the gravity vector. Two very efficient algorithms to
remove the outliers of the feature-matching process are provided under the above-
mentioned motion assumption. In order to generalize the approach to a 6DoF
motion, two feature correspondences and gyroscopic data from IMU measure-
ments are necessary. In this case, two algorithms are provided to remove wrong
data associations in the feature-matching process. In the case of a monocular
camera mounted on a quadrotor vehicle, motion priors from IMU are used to
discard wrong estimations.

For what concerns the pose estimation problem, this thesis provides a closed
form solution which gives the system pose from three natural features observed
in a single camera image, once the roll and the pitch angles are obtained by
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the inertial measurements under the planar ground assumption. Specifically, the
system position and attitude can uniquely be determined by observing two point
features but improved by exploiting the geometric constraints inherent to a virtual
pattern formed by the three features.

In order to tackle the pose estimation problem in dark or featureless environ-
ments, a system equipped with a monocular camera, inertial sensors and a laser
pointer is considered. The system moves in the surrounding of a planar surface
and the laser pointer produces a laser spot on the abovementioned surface. The
laser spot is observed by the monocular camera and represents the only point
feature considered. Through an observability analysis it is demonstrated that
the physical quantities which can be determined by exploiting the measurements
provided by the aforementioned sensor suite during a short time interval are: the
distance of the system from the planar surface; the component of the system
speed that is orthogonal to the planar surface; the relative orientation of the sys-
tem with respect to the planar surface; the orientation of the planar surface with
respect to the gravity. A simple recursive method to perform the estimation of
all the aforementioned observable quantities is provided. This method is based
on a local decomposition of the original system, which separates the observable
modes from the rest of the system.

All the contributions of this thesis are validated through experimental results
using both simulated and real data. Thanks to their low computational com-
plexity, the proposed algorithms are very suitable for real time implementation
on systems with limited on-board computation resources. The considered sensor
suite is mounted on a quadrotor vehicle but the contributions of this dissertations
can be applied to any mobile device.
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Résumé

L’estimation précise du mouvement 3D d’une caméra relativement à une scène
rigide est essentielle pour tous les systèmes de navigation visuels. Aujourd’hui
différents types de capteurs sont adoptés pour se localiser et naviguer dans des en-
vironnements inconnus : GPS, capteurs de distance, caméras, capteurs magnétiques,
centrales inertielles (IMU, Inertial Measurement Unit). Afin d’avoir une estima-
tion robuste, les mesures de plusieurs capteurs sont fusionnées. Même si le progrès
technologique permet d’avoir des capteurs de plus en plus précis, et si la com-
munauté de robotique mobile développe algorithmes de navigation de plus en
plus performantes, il y a encore des défis ouverts. De plus, l’intérêt croissant des
la communauté de robotique pour les micro robots et essaim de robots pousse
vers l’emploi de capteurs à bas poids, bas coût et vers l’étude d’algorithmes à
faible complexité. Dans ce contexte, capteurs inertiels et caméras monoculaires,
grâce à leurs caractéristiques complémentaires, faible poids, bas coût et utilisation
généralisée, représentent une combinaison de capteur intéressante.

Cette thèse présente une contribution dans le cadre de la navigation inertielle
assistée par vision et aborde les problèmes de fusion de données et estimation
de la pose, en visant des algorithmes à faible complexité appliqués à des micro-
véhicules aériens.

Pour ce qui concerne l’association de données, une nouvelle méthode pour
estimer le mouvement relatif entre deux vues de caméra consécutifs est proposée.
Celle-ci ne nécessite l’observation que d’un seul point caractéristique de la scène
et la connaissance des vitesses angulaires fournies par la centrale inertielle, sous
l’hypothèse que le mouvement de la caméra appartient localement à un plan per-
pendiculaire à la direction de la gravité. Deux algorithmes très efficaces pour
éliminer les fausses associations de données (outliers) sont proposés sur la base
de cette hypothèse de mouvement. Afin de généraliser l’approche pour des mou-
vements à six degrés de liberté, deux points caracteristiques et les données gyro-
scopiques correspondantes sont nécessaires. Dans ce cas, deux algorithmes sont
proposés pour éliminer les outliers. Nous montrons que dans le cas d’une caméra
monoculaire montée sur un quadrotor, les informations de mouvement fournies
par l’IMU peuvent être utilisées pour éliminer de mauvaises estimations.
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Pour ce qui concerne le problème d’estimation de la pose, cette thèse fournit
une solution analytique pour exprimer la pose du système à partir de l’observation
de trois points caractéristiques naturels dans une seule image, une fois que le roulis
et le tangage sont obtenus par les données inertielles sous l’hypothèse de ter-
rain plan. Plus spécifiquement, la position et l’attitude du système peuvent être
uniquement déterminées à partir de l’observation de deux points caractéristiques,
mais améliorées en exploitant les contraintes géométriques inhérentes à un pattern
virtuel formé par les trois points caractéristiques.

Afin d’aborder le problème d’estimation de la pose dans des environnements
sombres ou manquant de points caractéristiques, un système équipé d’une caméra
monoculaire, d’une centrale inertielle et d’un pointeur laser est considéré. Le
système se déplace dans l’entourant d’une surface plane et le pointeur laser pro-
duit un petit point sur la surface. Le point laser est observé par la caméra
monoculaire et représente le seul point caractéristique considéré. Grâce à une
analyse d’observabilité il est démontré que les grandeurs physiques qui peuvent
être déterminées par l’exploitation des mesures fourni par ce systeme de capteurs
pendant un court intervalle de temps sont : la distance entre le système et la
surface plane ; la composante de la vitesse du systme qui est orthogonale à la
surface ; l’orientation relative du système par rapport à la surface et l’orientation
de la surface par rapport à la gravité. Une méthode récursive simple a été pro-
posée pour l’estimation de toutes ces quantités observables. Cette méthode est
basée sur une décomposition locale du système d’origine, qui sépare les modes
observables du reste du système.

Toutes les contributions de cette thèse sont validées par des expérimentations
à l’aide des données réelles et simulées. Grace à leur faible complexité de calcul,
les algorithmes proposés sont très appropriés pour la mise en oeuvre en temps
réel sur des systèmes ayant des ressources de calcul limitées. La suite de capteur
considérée est monté sur un quadrotor, mais les contributions de cette thèse
peuvent être appliquées à n’importe quel appareil mobile.
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1.1 Context

In recent years, flying robotics has received significant attention from the robotics
community. The ability to fly allows easily avoiding obstacles and quickly having
an excellent birds eye view. These navigation facilities make flying robots the
ideal platform to solve many tasks like exploration, mapping, reconnaissance for
search and rescue, environment monitoring, security surveillance, inspection etc.
In the framework of flying robotics, micro aerial vehicles (MAV) have a further
advantage. Due to the small size they can also be used in narrow out- and
indoor environment and they represent only a limited risk for the environment
and people living in it.
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MAVs	  

Fixed-‐wing	   Flapping-‐
wing	  

Avian-‐style	   Insect-‐
style	  

Rotor	  cra:	  

Coaxial	   Mul=-‐
rotor	  

(a) 

(b) (c) (d) (e) 

Figure 1.1: MAVs classification. The vehicles in the pictures are: Perching Glider,
MIT (a); Festo’s Smartbird (b); AeroVironments Nano Hummingbird (c); Sky-
botix’s CoaX (d); Parrot’s AR.Drone (e).

1.1.1 Why quadrotors?

Micro aerial vehicles can be classified into: Fixed-wing, Flapping-wing and rotor-
crafts [52] (Figure 1.1). Fixed-wing vehicles are not very agile in three-dimensional
complex environment. Flapping-wing vehicles can be divided into avian-style and
insect-style vehicles [61]. The development of the former is strongly limited by the
lack of knowledge about fluid-structure coupling and aeroelasticity. Insect-style
flapping wing MAVs and rotor-craft can perform stationary flight and forward
flight, which represents a significant advantage in terms of maneuverability. Nev-
ertheless, insect-style flapping wing vehicles present an increasing complexity and
it has not yet been demonstrated whether they can be considered more convenient
than rotor crafts. The most common rotor craft configurations for MAVs are the
Coaxial rotorcraft and the Quadrotor aircraft. The former is well represented
by the Skybotix Coax [5], a vehicle equipped with two co-axial, counter-rotating
rotors and a stabilizer bar and the quadrotor vehicles. Quadrotors, thanks to
their fast reaction to external disturbances, light weight and low crash impact,
inherent safety, compactness, simple mechanical design, easier maneuverability
and controllability and ability to carry small payloads, are nowadays the best
option.
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1907	  

1924	  

1956	  

Nowadays	  

2000	  

Nowadays	  

•  Military	  

•  Military	  

•  Military	  

•  Academic	  research	  

•  Search	  &	  Rescue	  
•  Aerial	  mapping	  
•  Cinematography	  
•  Security	  
•  Precision	  Farming	  
•  Remote	  sensing	  
•  InspecFon	  …	  

Figure 1.2: History of quadrotors with respect to their application fields.
1907: Paul Corny machine (both from 1907), Bréguet Giant Gyroplane. 1924:
Ohemichen’s quadrotor; 2000: ETH Zurich’s OS4 [16], [15], the CEA’s X4-flyer
[37] and the ANU’s X-4 Flyer [79]; Nowadays there exists a lot of quadro-
tors. We list here few exemplars: AscTec Pelican [1], KMelRobotics’ NanoQuad
[3], Mikrokopter’s quadrotor [4], Flyduino, Arducopter, Parrot AR.Drone,
DeltaDrone quadrotor [2].

1.1.2 Brief quadrotor’s history

At the beginning of the 20th century the French scientist and academician Charles
Richet built a small, unmanned helicopter. Although the vehicle was not success-
ful, it inspired two of his students, Louis and Jaques Bréguet, which in 1907, under
his supervision, built the first quad-rotor (Figure 1.2) [55]. At the same time, the
French engineer Paul Corny, designed an other quadrotor vehicle (Figure 1.2).
Both the machines were reported to have carried a pilot off the ground but both
of them lacked in stability and didn’t have a proper control architecture.

In 1920, Étienne Ohemichen, an employee of the French Peugeot car company,
built a quadrotor machine, with eight additional rotors for control and propulsion.
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Nevertheless, his machine was underpowered and needed a hydrogen balloon for
the stabilization. After various attempts, in 1924 Ohemichen demonstrated that
a vertical flight machine could be stable and somehow maneuverable, and his
vehicle was considered the earliest mention of a complete quadrotor hovering
vehicle in history (Figure 1.2).

In 1956, Marc Adam Kaplan designed the most successful of the early designs
of the rotor-craft (the Convertawings Model A quadrotor). With this machine
Kaplan proved the quadrotor concept and realized the first four-rotor helicopter
able to perform successful forward flight. This helicopter was intended to be
the prototype for a line of much larger civil and military quadrotor helicopters,
but due to a lack of orders for commercial or military versions, the project was
terminated.

At the beginning of the third millennium, quadrotors drew the attention of
academic researchers in order to address the problems faced by small-scale UAVs.
The ETH Zurich’s OS4 [16], [15], the CEA’s X4-flyer [37] and the ANU’s X-4
Flyer [79] represents the first quadrotor research platforms.

1.1.3 Applications

Estimates from UAV Market Research (2011) reveals that the UAV market is
estimated to exceed US$60 bilion in the next three years, and this forecast does
not take into account for the thousands of MAVs already fielded.

As illustrated in Section 1.1.2, the development of quadrotors has been boosted
by the military (Figure 1.2). Nowadays, considering the high number and variety
of research projects involving quadrotors and of companies already selling ready-
to-flight products, their application field is widely extended (Figure 1.3). Quadro-
tor vehicles result suitable for search and rescue operations [69], [84], powerline
inspection [39], [81], and building inspection, crop dusting, precision farming, re-
mote sensing, security related tasks, aerial mapping, aerial photography, aerial
delivery and cinematography tasks.

As stated by Vijay Kumar in [52]: “While fixed-base industrial robots were the
main focus in the first two decades of robotics, and mobile robots enabled most
of the significant advances during the next two decades, it is likely that UAVs,
and particularly micro-UAVs, will provide a major impetus for the next phase of
education, research, and development”.

1.1.4 The quadrotor concept

Quadrotors are VTOL (Vertical Take-Off and Landing) MAVs, lifted and pro-
pelled by four rotors in cross configuration (Figure 1.4). They present two pairs
of identical fixed-pitch propellers, driven in opposite direction (two clockwise and
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Name	   Details	   Applica.ons	   Website	  

Research	  
projects	  

sFly	   Swarm	  of	  Micro	  
Flying	  Robots.	   Search	  and	  Rescue.	   www.sfly.org	  

AIRobots	  

Innova>ve	  Aerial	  
Service	  Robots	  for	  
remote	  inspec>on	  
by	  contact.	  

Building	  inspec>on,	  	  
Sample	  picking,	  	  
Aerial	  remote	  manipula>on.	  

airobots.ing.unibo.it	  

ARCAS	  
Aerial	  Robo>cs	  
Coopera>ve	  
Assembly	  System.	  

Joint	  transporta>on,	  	  
Precise	  placement	  and	  
assembly.	  

www.arcas-‐project.eu	  

ALCEDO	   Student	  project	  at	  
ETH	  Zurich.	  

Support	  in	  rescue	  of	  
avalanche	  vic>ms.	   www.alcedo.ethz.ch	  

Companies	  

Ascending	  
Technologies	   Munich,	  Germany.	  

Aerial	  Imaging,	  
Research	  plaQorms,	  
Art	  shows	  (in	  collabora>on	  
with	  Ars	  Electronica	  
Solu>ons).	  

www.asctec.de	  

Delta	  Drone	   Grenoble,	  France.	  

Inspec>on,	  
Environmental	  analysis,	  
Cartography,	  	  
Search	  and	  rescue.	  

www.deltadrone.fr	  

KMelRobo>cs	  
Aerial	  Imaging,	  
Research	  plaQorms,	  
Art	  shows.	  

kmelrobo>cs.com	  

Microdrones	   Germany.	  

Aerial	  photography,	  
Live	  broadcas>ng,	  
Inspec>on,	  
Surveillance.	  

www.microdrones.com	  

Figure 1.3: Quadrotors in research projects and in companies.

two counter-clockwise). This allows to control lift and torque avoiding the need
of a tail rotor. Control of vehicle motion is performed by varying the angular ve-
locity of one or more propellers, thereby changing its torque load and thrust/lift
characteristics (Figure 1.5). Taking-off and landing are performed by increasing
or decreasing respectively the speed of the four rotors simultaneously. Rotation
about the vertical-axis is obtained by augmenting the angular speed of two op-
posite propellers while decreasing the speed of the remaining two. Translational
motion is strongly coupled to the vehicle attitude. In order to achieve a lateral
movement, the quadrotor must adjust its pitch or roll by augmenting the angular
speed of one rotor and decreasing the one of its diametrically opposite rotor. Due
to its four actuators and its six degrees of freedom motion, the quadrotor is an
under-actuated and highly dynamically unstable system.
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F3 
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zB 
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xw 
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zw 
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Figure 1.4: Quadrotor notation. The four rotors are depicted in blue. wi is the
angular velocity of the i-th rotor, Fi and Mi are the vertical force and the moment
respectively produced by the i-th rotor. The body-vehicle’s frame B is shown in
black, it is attached to the vehicle, and its origin is coincident with the vehicle’s
center of mass. In gray it is depicted the world reference frame W.

1.2 Motivation and objectives

A crucial problem on an airborne vehicle is the stabilization and control in at-
titude and position, i.e. in six degrees of freedom. Most of the controlling ap-
proaches for MAVs present a cascade control structure [15]. The inner loop is
devoted to the attitude control and the outer one to the position control. Due to
the vehicle’s high dynamics, the attitude controller must run at higher frequency
than the position one.

With an attitude controller it is possible to perform a stationary flight at a
fixed altitude, but it is not possible to compensate for drifts in the horizontal
plane. The attitude controller relies on inertial measurement units, while the
choice of the sensors related to the position controller is strictly task dependent
and represents still an open problem for MAVs.

The most popular approaches to solve this problem are mainly based on the
fusion of the data provided by an IMU and a GPS [7], [104], or IMU, GPS
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(b) (a) 

(c) 

Figure 1.5: The quadrotor concept. The width of the arrows is proportional to
the angular speed of the propellers.

and camera [98]. However, these approaches require a reliable GPS signal. Laser
range finders have also been adopted in this framework [8],[12],[11]. Nevertheless,
range finders sensors have two drawbacks: they have a restricted perception area
(limited distance and field of view) and they are still too heavy for MAVs.

Figure 1.6 shows different sensors that can be mounted on a micro aerial
vehicle with their advantages and drawbacks.

Vijay Kumar’s group at GRASP Lab (General Robotics, Automation, Sensing
and Perception), University of Pennsylvania and Raffaello D’Andrea’s group at
IDSC (Institute for Dynamic Systems and Control), ETH Zurich, achieved im-
pressive results with quadrotors catching the attention of not only all the robotics
community but also of the media and the general public (Figure 1.7). Aggres-
sive maneuvers [96], dancing quadrotors [87], acrobatics [18], quadrotors throwing
and catching a ball [80], constructions with quadrotor teams [102], [56] represent
outstanding works on quadrotor control and trajectory tracking, but they are fea-
sible thanks to the high frequency vehicle position feedback provided by a motion
capture system [6]. This means that the vehicles’ workspace must be equipped
with high resolution (up to 16 Megapixels) and high frame rate (up to 1000 fps)
cameras as shown in Figure 1.7c. Motion capture systems represent a perfect
testbed to develop control algorithms, to test state estimation algorithms and to
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Advantages	   Drawbacks	  

Iner2al	  sensors	  

•  Linear	  
accelera*ons;	  
•  Angular	  veloci*es.	  

•  Biased	  and	  noisy	  
measurements;	  
•  Large	  uncertain	  for	  
slow	  mo*ons.	  

	  

GPS	  

•  Absolute	  posi*on;	  
(outdoor).	  

•  Bad	  or	  no	  recep*on	  
in	  indoor	  or	  urban	  
environments.	  

	  

Magne2c	  field	  
sensors	  

•  Earth’s	  magne*c	  
field	  direc*on	  
(outdoor).	  

•  Disturbed	  by	  
electronic	  devices	  
nearby	  

	  

Barometric	  /	  
Pressure	  sensors	  

•  Absolute	  al*tude.	   •  Not	  reliable	  indoor;	  
•  Affected	  by	  weather	  
condi*ons.	  

	  

Airspeed	  sensors	  
•  Vehicle’s	  airspeed.	   •  Not	  suitable	  for	  

rotorcraFs.	  
	  

Cameras	  

•  Vast	  informa*on;	  
•  Visual	  feedback.	  

•  Affected	  by	  light	  
changes;	  
•  Textured	  
environments	  
required.	  

	  

Laser	  rangefinders	  

•  Distance	  to	  objects.	   •  Heavy	  for	  MAVs	  
•  Expensive	  
•  2D	  informa*on	  
	  

Figure 1.6: Properties of some sensors commonly on-board a MAV.

simulate GPS signal in indoor environments, but they have the big drawbacks of
being not portable and very expensive. Motion capture systems cannot therefore
be considered a solution for MAVs autonomous navigation.

The limitations of Global Positioning and motion capture systems highlight
the importance of on-board perception not relying on external infrastructures.
From the other hand, the limited sensing payload and the limited on-board com-
putation of MAVs represent a bottleneck for the developing of autonomous nav-
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(b) 

(a) 

(c) 

Figure 1.7: Flight Assembled Architecture (a) at FRAC Centre in Orlans,
France [25]. Robot Quadrotors Perform James Bond Theme (b) [53]. Fig-
ure (c) represents a motion capture system room. Figures (a),(c) courtesy of
http://www.flyingmachinearena.org.

igation algorithms.
A viable option for GPS denied environments is obtained by fusing visual

and inertial data. This option has become very popular for Micro Aerial Vehicle
(MAV) navigation due to the low cost, power consumption and weight.

1.2.1 Minimalist perception

The trend of robotics miniaturization boosts researchers towards minimalist de-
sign, investigation of the least complex solutions to a given class of tasks and
selection of the simplest set of sensors. According to this perspective, throughout
this dissertation we decided to tackle the problems of data association and pose
estimation in the framework of MAVs navigation.

The considered sensor suite is essentially composed of a monocular camera
rigidly attached to an inertial measurement unit and mounted on a micro quadro-
tor. The choice of the sensors is related to their complementary properties (see
Figure 2.1), their low power consumption, low cost and low weight.

Once chosen our minimal set of sensors, we want to establish the minimal
amount of information necessary to perform the data association and pose esti-

9
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Task	   Minimal	  sensor	  
suite	  

Minimal	  amount	  
of	  informa1on	   Hypothesis	   Algorithm	  

Outlier	  	  
rejec1on	  

•  Camera	  
•  IMU	  

•  1	  feature	  
•  Angular	  rates	  

(IMU)	  

Local	  planar	  
mo9on	   1-‐point	  algorithm	  

•  Camera	  
•  IMU	  

•  2	  features	  
•  Angular	  rates	  

(IMU)	  
None	  (6	  DoF)	   2-‐point	  algorithm	  

Pose	  	  
es1ma1on	  

•  Camera	  
•  IMU	  

•  3	  features	  
•  IMU	  

Planar	  ground	  
assump9on	   Virtual	  paFerns	  

•  Camera	  
•  IMU	  	  
•  Laser	  module	  

•  1	  feature	  	  
	  	  	  	  	  (laser	  spot)	  
•  IMU	  

Planar	  surface	  
with	  unknown	  
orienta9on.	  

Virtual	  features	  

Figure 1.8: This table summarises the objective of this dissertations in terms of
minimalist perception.

mation tasks, and to derive minimal complexity algorithms (Figure 1.8).

1.3 Contributions

The topics addressed by this thesis are the data association and the pose estima-
tion of a camera-IMU system in the framework of MAVs navigation. The previous
section highlighted the importance of on-board perception and the limitations in-
herent to small flying platforms such as limited payload and resources. In order
to find a compromise between the aforementioned specifics, we propose mini-
mal complexity algorithms which exploits system properties of typical navigation
constraints in indoor or city-like environments.

The contributions of this dissertation are summarized below:

1. Two low computational complexity methods to perform the outlier detec-
tion task.

1.1 1-point algorithm. Relying on the assumption that the local vehicle
motion lies in a plane perpendicular to the gravity vector, we provide
an efficient algorithm which only requires the observation of a single
feature in the scene and the knowledge of the angular rates from an
IMU. It’s efficiency and low computational complexity make it suitable
for real-time implementations.

10



1.2 2-point algorithm. Algorithm which requires the observation of one
more feature with respect to the previous one, but it relaxes the hy-
pothesis on the vehicle motion, being therefore suitable to tackle the
outlier detection problem in the case of a 6DoF motion. Additionally,
we show that if the monocular camera is rigidly attached to a quadro-
tor vehicle, motion priors from IMU can be exploited to discard wrong
estimations in the framework of a 2-point-RANSAC based approach.

2. Two low computational complexity algorithms to face the pose estimation
problem.

2.1 Virtual patterns. Many localization algorithms utilize artificial land-
marks, such as for example ultrasonic beacons, bar-code reflectors,
visual pattern, but they are not reliable in a landmark-free environ-
ment. Nevertheless, the geometry of a known visual pattern encodes
useful information. Starting from this consideration, and taking ad-
vantage of the so called “planar ground assumption” (common scenario
in indoor or city-like environments), we propose an algorithm which
exploits the geometric information encoded in the angles of a virtual
triangle made by three natural features belonging to the ground plane.
The algorithm is based on a closed solution which provides the vehicle
pose from a single camera image, once the roll and pitch angles are
obtained by the inertial measurements.

2.2 Virtual features. The feature extraction and matching task is compu-
tationally very expensive and fails in dark or featureless environments.
In order to significantly reduce the computational burden and to make
the feature matching task more robust with respect to outliers, we in-
troduce a virtual feature by equipping the vehicle with a laser pointer.
This problem differs from the classical vision and IMU data fusion one,
because the feature is moving jointly with the vehicle. To the best of
our knowledge, this problem has never been considered so far.

- Observability analysis. An observability analysis is performed to
identify the physical quantities (called “observable modes”) that
can be estimated by using the information provided by the afore-
mentioned sensor suite.

- Local decomposition. To estimate the observable modes, we per-
form a local decomposition of the original system and we apply a
simple recursive method (Extended Kalman Filter) to the observ-
able sub-system.

11



1.4 Thesis outline

The rest of the thesis is structured as follows.
Chapter 2 - Vision and Inertial sensors - provides a brief overview of visual

and inertial sensing from both a biological and technological point of view. The
calibration techniques used during the experiments are here described.

Chapter 3 - Data association - introduces the first two contributions of this
dissertation. In the first section we provide an overview of the data association
problem for the feature matching process. The feature detection, tracking and
matching problems are introduced. In the second section we describe the data
association problem and we provide an overview about the state of the art. Two
low computational complexity methods to perform the outlier detection task be-
tween two different views of a monocular camera rigidly attached to an inertial
measurement unit are presented.

Chapter 4 - Pose estimation - introduces the last two contributions of this
dissertation. In the first section we provide an overview of the visual-aided in-
ertial pose estimation problem, with an emphasis on aerial navigation. Two low
computational complexity algorithms to face the pose estimation problem are
presented.

Chapter 5 - Conclusions - summarizes the contributions of this dissertation
and provides perspectives for future developments.

12



Chapter 2

Visual and Inertial sensors

Contents
2.1 A biological overview . . . . . . . . . . . . . . . . . . . 14

2.1.1 The sense of sight . . . . . . . . . . . . . . . . . . . . 14

2.1.2 The perception of gravity . . . . . . . . . . . . . . . . 15

2.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . 17

2.2.1 Accelerometers . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . 21

2.4 Camera Calibration . . . . . . . . . . . . . . . . . . . . 23

2.5 Camera-IMU Calibration . . . . . . . . . . . . . . . . . 24

In this chapter we give a brief overview of visual and inertial sensing from
both a biological and technological point of view. The calibration techniques
used during the experiments are here described.

In recent years, the fusion of vision and inertial sensing has received great
attention by the mobile robotics community. These sensors require no external
infrastructure and this is a key advantage for robots operating in unknown envi-
ronments where GPS signals are shadowed. Additionally, these sensors have very
interesting complementarities and together provide rich information to build a
system capable of vision-aided inertial navigation and mapping.
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2. Vision and Inertial sensor fusion

CAMERA	   IMU	  

Slow	  mo'on	   •  Good	  feature	  tracking	   •  Large	  measurement	  uncertainty	  

Fast	  mo'on	   •  Tracking	  less	  accurate	  (mo'on	  
blur,	  effect	  of	  camera	  sampling	  
rate)	  

•  Higher	  frame	  rate	  means	  increase	  
in	  bandwidth	  and	  	  a	  drop	  of	  real	  
'me	  performances	  

•  Lower	  rela've	  uncertainty.	  	  
•  Precise	  measurements	  of	  large	  

speed	  and	  accelera'ons.	  

Impossible	  to	  
dis'nguish	  

•  A	  near	  object	  with	  low	  rela've	  
speed	  from	  a	  far	  object	  with	  
higher	  rela've	  speed.	  

•  A	  change	  in	  inclina'on	  from	  body	  
accelera'on.	  

Figure 2.1: Complementary properties of cameras and IMU sensors.

2.1 A biological overview

A special issue of the International Journal of Robotics Research was recently
been devoted to the problem of fusing vision and inertial data [27]. In [22], a
tutorial introduction to the vision and inertial sensing is presented. This work
provides a biological point of view and it illustrates how vision and inertial sensors
have useful complementarities allowing them to cover the respective limitations
and deficiencies.

2.1.1 The sense of sight

Vision is one of the most important senses and is common to almost all living
creatures. In an essay on the differences between human and animal vision,
[29], the authors stated that ”we must never make the mistake of thinking that
only we see the world as it really is.” The evolution of the organs dedicated to
visual perception followed the different needs of animals and adapted to different
circumstances. Eyesight helps fulfilling the most basic living activities: hunt,
exploration, protection. Nature teaches us that the way how to perceive the
environment, to interpret it, and therefore the technology behind the development
of new sensing sensors, must be application dependent.

The organs devoted to visual perception are the eyes. They perform the con-
version of light into electro-chemical impulses. There are more than 40 different
types of eye in nature. The simplest eye, the one belonging to microorganisms,
only detects if the environment is dark or bright.

The human eye (Figure 2.2) has a more complex structure which allows us to
collect the light in the environment, regulate its intensity through a diaphragm
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2. Vision and Inertial sensor fusion

Figure 2.2: Human eye. Image courtesy of http://www.biographixmedia.com.

and focus it by deforming a lens in order to form an image on the retina. The
retina is a layered structure with several layers of neurons interconnected by
synapses. The neurons sensitive to light are the photoreceptor cells. They can be
distinguished into rods and cones. The cones are located in the fovea (the part of
the retina where the light is focused by the lens) and they are sensitive to colors.
The rods are more sensitive to light than cones, they are located around the
fovea and they are responsible for night vision and peripheral vision. The image
focused on the retina is transformed into electrical signals which are transmitted
to the brain through the optic nerve.

Insects have compound eyes (Figure 2.3), consisting of thousands of photore-
ceptor units (ommatidium) located on a convex surface. The perceived image
derives from the combination of the inputs of each individual eye unit. One of
the benefits of compound eyes with respect to simple eyes is the large field of
view. In some cases they are also able to detect the polarization of light.

2.1.2 The perception of gravity

All living organisms must have a perception of the environment in which they
live, of the forces that are acting on them and of their motion. An important
role is assumed by the perception of gravity and of the orientation of the body
with respect to it. In most mammals, the sensing system devoted to the per-
ception of gravity (therefore movement and sense of balance) is called vestibular
system (Figure 2.4a) and it presents a similar structure of an Inertial Measure-
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Figure 2.3: Insect eye. Image courtesy of http://www.wikipedia.org.

ment Unit. The human vestibular system is located within the inner ear and it is
composed of three main parts: the vestibule, the cochlea, the circular canals. In
the vestibule there are the utricle and the saccule, two otoliths organs devoted to
the measurement of inertial and gravitational forces (Figure 2.4b). Both of them
contain otoliths which acts as proof mass. The otolithic membrane acts as the
spring and the damper and hair celles, embedded in the membrane are respon-
sible for the displacement detection. They provide therefore information about
the linear motion and the angular position of the head. In order to distinguish
the gravity from body motions, animals uses other cues such as vision. It seems
also that they can divide the acceleration signal by frequency. Lower frequency
components are associated to pose and high frequency ones to acceleration.

The angular velocity of the head is measured by the three semicircular canals
which are oriented in three orthogonal planes [35]. Each channel is filled with
a viscous fluid. As a result of any rotation, the fluid pushes against one of the
extremities of the channel, where is located the ampulla. The latter senses the
corresponding force.

The brain processes all the signals provided by the three channels and provides
an estimation of the head instantaneous angular velocity, in order to ensure gaze
stability (process known as vestibulo-ocular reflex ).

Insects have similar ways to detect a change in speed and direction. Flies
and other insects are equipped with mechanoreceptors (antennas) which contain
Johnston’s organ responsible of the antenna displacement detection due to pres-
sure, gravity, or sound. Flies have also a device very similar to a gryroscope
(halteres) (Figure 2.5) very important in gaze stabilization.
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2. Vision and Inertial sensor fusion

(a) (b)

Figure 2.4: Vestibular system. Image (a) courtesy of http://www.chrcentre.
com.au, image (b) courtesy of http://biology.nicerweb.com.

Figure 2.5: Halteres: small knobbed structures in some two-winged insects. They
are flapped rapidly and function as gyroscopes, providing informations to the
insect about his body rotation during flights.

2.2 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electronic device usually composed by
a three-axis accelerometer and a three-axis gyroscope. They are called Inertial
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2. Vision and Inertial sensor fusion

Figure 2.6: IMU applications Image courtesy of http://www.

unmannedsystemstechnology.com.

sensors because their working principle is based on the resistance to a change in
momentum (property of inertia). Accelerometers sense the translational body’s
acceleration (they measure spatial derivative order 2) and the gyroscopes sense
the rate of change of the body’s orientation (spacial derivative order 1). According
to the principles of inertial navigation systems (INS) [54], linear position, linear
velocity and angular position are estimated by integration. Inertial sensors do
not require any external infrastructure but the gravity field. The development of
low cost and low weight inertial sensors, called MEMS (Micro Electro Mechanical
Systems) inertial sensors, have lead to the extension of their field of applications.
Initially mainly used for aerospace applications, those sensors are nowadays incor-
porated into a lot of different mass-produced devices such as vehicles, cellphones,
gaming consoles, sports training devices, digital cameras, laptops. Their applica-
tions spread from inertial navigation (Figure 2.6) to earthquake detection, seismic
reflection profiling, volcanoes monitoring and magma motion detection, medical
applications, vehicle security, health monitoring, digital camera orientation, im-
age stabilization, laptop drop detection.

2.2.1 Accelerometers

An accelerometer senses the acceleration of a mass at rest in the frame of refer-
ence of the accelerometer device. An accelerometer at rest on the earth surface
measures an acceleration of 9.81m/s2 corresponding to the gravity acceleration.
On the contrary, an accelerometer in free fall measures zero acceleration.

The physical principle exploited by an accelerometer is quite simple (Figure
2.7). A mass, m, usually called seismic mass or proof mass is supported by a
spring c. A viscous damper, b, provides damping proportional to the relative
velocity of the test mass and the sensor body and it is necessary for a quick
stabilization of the system. When the sensor is subjected to acceleration, the mass
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Figure 2.7: Physical principle of a single-axis accelerometer.

is displaced and the displacement is measured in order to obtain the acceleration.
Equation 2.1 expresses the dynamics of the system.

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = −ÿ(t) (2.1)

The acceleration of the sensor body, ÿ(t), is converted to spatial displacement
with a natural frequency ωn and a damping ratio ξ. The mechanical motion is
then converted into an electrical signal.

It is not possible to distinguish if the sensor is accelerating or if it is subject to
some components of gravity acceleration. To resolve this ambiguity it is necessary
to make strong assumptions or to fuse the sensor information with measurements
from other sensors.

Nowadays there are three main types of MEMS accelerometers: capacitive,
piezo-electric and piezo-resistive. The piezo-electric devices have a large dynamic
range but they are not suitable for inertial navigation systems due to the the lack
of DC response. In piezo-resistive accelerometers, the test mass displacement
is measured by a piezo-resistor which changes its value. They are preferred in
high shock applications. In capacitive accelerometers, the mass displacement is
measured by a changing capacitor. They are more performant in low frequency
range and they can be used in servo mode to achieve high stability and linearity.
A detailed overview about MEMS has been given in [103] and [58].

2.2.2 Gyroscopes

A gyroscope is an heading sensor, used to measure or maintain orientation and
it has benn invented by Léon Foucault in 1852. Gyroscopes can be essentially
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Figure 2.8: Scheme of a 3D mechanical Gyroscope. Image courtesy of http:

//www.wikipedia.org.

classified into two main categories: mechanical gyroscopes and optical gyroscopes.
Mechanical gyroscopes (Figure 2.8) are based on the principal of conservation

of angular momentum. A classical mechanical gyroscope consists of a spinning
wheal or disk on an axle. Once that the device is spinning, it tends to resist to
changes of orientation.

Vibrating structure gyroscopes (VSG), called also Coriolis Vibratory Gyro-
scopes (CVG), do not present any rotating disk. The basic physical principle
is that a vibrating object tends to continue vibrating in the same plane as its
support rotates. The Coriolis effect induced by rotation is measured.

Optical gyroscopes appeared for the first time at the beginning of 1980 and
their primary application was related to aircraft. Instead of moving mechani-
cal parts, optical gyroscopes rely on two monochromatic light beams, or lasers,
emitted from the same source and they are based on the Sagnac effect, named
after French physicist Georges Sagnac in 1913. Two laser beams are sent trav-
elling through an optical fiber, one in clockwise direction and the other one in
counterclockwise direction. According to the Sagnac effect, the beam travelling
in the direction of rotation has a higher frequency. The difference in frequency
of the two beams is proportional to the angular velocity of the cylinder. Optical
gyroscopes are not sensible to vibrations, accelerations, shocks, and provide very
precise rotational rate information.

2.3 Camera

Vision is a very powerful sense and this explains the great attention devoted in
the last decades to the design and development of technological devices able to
convert light into digital images and image processing algorithm able to extract
task-dependent useful information from camera measurements. Vision sensors
are nowadays very light weight, low cost, low power devices and they become
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Figure 2.9: Diagram of a CCD (a) and CMOS (b) sensor.

very popular in robotic applications.
The process related to the conversion of photons falling on an imaging sensor

into digital values is known as digital image formation. Light rays, emitted from
a light source and reflected from different surfaces belonging to the scene, pass
through the camera’s lenses and reach the image sensor. Those rays are integrated
for the duration of the exposure and then sent to a set of amplifiers. Nowadays
there are two main kinds of image sensors: CCD (Charged Coupled Device) and
CMOS (Complementary Metal Oxide on Silicon).

A CCD is an array of light-sensitive analog devices (pixels) (Figure 2.9a).
Each pixel, once hit by light, releases electrical charge which is read pixel by
pixel from the chip. The camera circuitry converts voltage values into digital
data.

A CMOS imaging chip is, as CCD, an array of light-sensitive analog devices
(pixels) (Figure 2.9b). The signals provided by each pixel are measured and
amplified in parallel thanks to extra-circuitry placed along the side of each pixel.

A CMOS sensor presents advantages with respect to a CCD one. The CMOS
chip is simpler, requires less power (one-hundredth less than a CCD chip). This
is a very important characteristic if the camera is mounted on board to systems
with limited autonomy.

For our experiments we choose therefore a monocular camera based on CMOS
technology.

2.3.1 Pinhole Camera Model

A camera model, in order to characterize the transformation between 3D scene
point coordinates and 2D image pixel coordinates, must take into account the
transformation between the camera and the world, and the size and position with
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Figure 2.10: Matrix Vision mvBlueFOX-MLC usb camera.

Figure 2.11: Pinhole camera model for standard perspective cameras.

respect to the optical center of the image sensor (pixelization).
Following the convention of the pinhole camera, the image plane Π is located

between the optical center and the scene (Figure 2.11). The axis perpendicular
to the image plane and passing through the optical center is named optical axis
and the intersection of it with the image plane is called principal point pp. The
distance f between the image plane and the optical center is called focal length.

Let {C} be the camera reference frame, with the origin in the optical center
oc (or center of projection) and with the z-axis parallel to the optical axis. Let u
and v be the two axes that identify a 2D reference frame belonging to the image
plane, with the center coincident with the principal point pp. Let P = [x, y, z]
and p = [u, v] be the 3D coordinate of a scene point in the camera reference frame
and its corresponding 2D pixel coordinate on the image plane respectively.

By using homogeneous coordinates for P and p, p̃ = [u, v, 1]′ and P̃ =
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[x, y, z, 1]′ the projection equation becomes:

 λu
λv
λ

 =

 fku 0 u0 0
0 fkv v0 0
0 0 1 0



x
y
z
1

 . (2.2)

where u0 and v0 are the coordinates of the principal point, ku and kv are the
inverse of the pixel size along u and v respectively, measured in pixel ·m−1. λ is
equal to the third coordinate of P in the camera reference frame. A monocular
camera provides therefore the position of a point in the scene, up to a scale factor
λ. In order to recover λ we need a stereo pair, multiple images, or the fusion of
monocular and inertial information.

If we want to express the coordinates of a point P in the world reference frame,
we have to take into account the transformation between the last one and the
camera reference frame. In this case, being P̃w = [xw, yw, zw, 1] the homogeneous
coordinate of a scene point P in the world reference frame, the projection equation
becomes:

 λu
λv
λ

 =

 αu 0 u0

0 αv v0

0 0 1

 [R|T ]


xw
yw
zw
1

 . (2.3)

Where αu = fku and αv = fkv represent the focal length in pixels. The
matrices R and T encode the relative rotation and translation between the camera
and the world reference frame and are called camera extrinsic parameters.

The matrix

A =

 αu 0 u0

0 αv v0

0 0 1

 (2.4)

is called intrinsic parameter matrix and its elements are called camera intrin-
sic parameters.

2.4 Camera Calibration

Camera calibration consists in the estimation of the intrinsic and extrinsic param-
eters of the camera model in order to map the image points into the corresponding
scene points with the highest precision possible. The idea behind the camera cal-
ibration process is that by knowing the 3D coordinates P̃ of some particular
scene points and their corresponding pixel coordinates in the image plane p̃, it is
possible to estimate the unknown parameters that characterize the camera model.
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Figure 2.12: Chessboard images used for calibration.

One of the first camera calibration algorithm was proposed in 1987 by [95]
and it consists in a two-stage technique to compute the position and the orienta-
tion first and the internal parameters later, by knowing corresponding 2D pixel
coordinates and 3D scene point coordinates. In 1998 [106] introduced the use of
a planar grid as calibration object. In order to facilitate the corner extraction
process, the most used planar grid is a chessboard-like pattern (Figure 2.13).

This method requires several images of the chessboard taken from different
position and orientation (Figure 2.12). It is important that the pattern covers
the bigger portion possible of the camera field of view and the accuracy of the
result increases with the number of images used.

The intrinsic and extrinsic camera parameters (including radial and tangential
distortion) are identified by knowing the coordinates of the corners on the pattern
and their corresponding pixel coordinates in each image and solving a least square
minimization plus a nonlinear refinement. This method has been implemented
in an open source Matlab toolbox [17] and it is the method we used for our
experiments.

2.5 Camera-IMU Calibration

For a robust fusion of the information provided from a monocular camera and
an Inertial Measurement Unit, we need to know the relative orientation and
translation between the reference frames associated to the two sensors (inter-
sensor calibration).

There exist many methods to calibrate a camera-IMU system [45] [71] offline
or online [101].
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Figure 2.13: Extracted corners on a chessboard.

Figure 2.14: Camera and IMU observing the vertical direction. Redrawn from
[57].

To perform the Camera-IMU calibration we used the InerVis Toolbox for
Matlab from [57].

In order to estimate the rotation between the two reference frames, the two
sensors must observe the vertical direction (Figure 2.14).

Once the camera is calibrated, it is possible to recover the extrinsic parame-
ters (rotation and translation) with respect to a reference frame attached on the
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(a) (b)

Figure 2.15: Camera poses relative to the calibration chessboard (a). Results of
rotation estimation (b).

chessboard. When the system is static, the accelerometers senses only the gravity
vector and they can therefore provide the gravity direction in the IMU reference
frame. By using a chessboard, positioned in a way that the vertical lines of the
chessboard are parallel to the gravity vector, it is possible to determine the ver-
tical direction in the camera reference frame (orthogonal Procrustes method for
3D attitude estimation). The relative accelerometer and camera measurement
are recorded from different static poses of the system. Being vIi and vCi the esti-
mation of the vertical direction extracted from IMU and camera measurements
respectively, the rotation between the two sensor corresponds to the quaternion
q that maximises:

n∑
i=1

(q vIi q
∗) · vCi . (2.5)
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This chapter introduces the first two contributions of this dissertation. In the
first section we provide an overview of the data association problem related to the
feature matching process. The feature detection, tracking and matching problems
are introduced. In the second section we describe the data association problem
and we give an overview about the state of the art. Two low computational
complexity methods to perform the outlier detection task between two different
views of a monocular camera rigidly attached to an inertial measurement unit are
presented. The first one only requires the observation of a single feature in the
scene and the knowledge of the angular rates provided by an inertial measure-
ment unit, under the assumption that the local camera motion lies on a plane
perpendicular to the gravity vector. In the second proposed algorithm we relax
the hypothesis on the camera motion. The observation consists of two features in
the scene (instead of only one) and of angular rates from inertial measurements.
We show that if the camera is on-board a quadrotor vehicle, motion priors from
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inertial measurements can be used to discard wrong data association. Both the
methods are evaluated on synthetic and real data.

3.1 Feature extraction and matching

Image features represent the informative content of a raw image. Feature ex-
traction plays therefore an important role in the creation of compact and robust
environmental models for map building and localization.

Features are repeatable and salient structures extracted from images and
mathematically formalized, that characterize the environment. They are clas-
sified into low-level feature and high-level feature. The former are geometrical
primitives like points, lines, corners, blobs, polygons while the latter are objects.
Raw images contain an high amount of data, but a low level of distinctiveness.
The feature extraction process performs an abstraction of the raw image reducing
the volume of data, but augmenting the level of distinctiveness.

Once that the features are extracted in the first image, their relative corre-
spondences must be identified in the consecutive images. There are two main
approaches to select features and their correspondences:

• Extracting features in one image and using local search techniques to track
them in the following images;

• Extracting features in all the images independently and match them ac-
cording to the similarity of their descriptors.

3.1.1 Feature Detection

A local feature is an image pattern that can be distinguished from the neighbor
pixels thanks to the difference in intensity, texture and color. In the framework
of visual odometry, great importance is given to corners and blobs because of the
precision with which they can be localized. A corner is defined as the intersec-
tion between two or more edges, while blobs are image patterns with distinctive
intensity, texture and color. A good feature detector must have the following
properties:

• Repetability : a large number of features should be detected in consecutive
images;

• Localization accuracy : both in scale and position;

• Computational efficiency : it must be suitable for real time applications;
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(a) Harris corners. (b) Surf features.

• Robustness : to noise, blur, artifacts;

• Distinctiveness : in order to reduce wrong data associations;

• Invariance: to photometric changes (affine intensity) and geometric (2D
rotation, scale, affine transformation) changes.

The choice of a feature detector is not only function of its properties but
also of the environment, of the task, of the computational constraints and of the
motion baseline. Corners are faster to compute than blobs, easier to localize in
position but less distinctive, difficult to localize in scale, more difficult to redetect
after large changes in viewpoint and scale, but they can be a good choice in urban
and indoor environments.

A performance evaluation of feature detectors and descriptors can be found
in [88], [70].

3.1.2 Feature Tracking

Detecting features in one image and tracking them by using local search tech-
niques is suitable for small scale environments in which the motion baseline and
the appearance deformation is small. The local search techniques mainly used
for tracking features are [88]:

• Sum of Absolute Differences (SAD)

• Sum of Squared Differences (SSD)

• Normalized Cross Correlation (NCC)
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Figure 3.1: Comparison of feature detectors: properties and performances [88].

3.1.3 Feature Matching

The feature matching task consists of searching the correspondences for features
in different images.

The easiest way to search for correspondences is to compare the feature de-
scriptors of all the features detected in the first image with the descriptors of
all the features detected in the next image by using a similarity measurement.
The features in the second image with the closer descriptors are selected as the
correspondences. However it can happen that one feature in the first image is
associated with more than one feature in the second image. To disambiguate the
solution, a mutual consistency check is performed. Every feature in the second
image is paired with features in the second image. The pairs showing consistent
preferred match are chosen as image correspondences.

The main disadvantage of this approach is that its computational complexity
is quadratic in the number of features. It is therefore not suitable for real-time
applications if the number of features is high. A faster image matching technique
consists in searching the correspondences not in the whole image, but in regions
where the features are expected to be. Those regions can be computed by using
a motion model (assuming constant velocity [26]) or by using additional sensors
like IMU, lasers, GPS or wheel odometry [62].
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Figure 3.2: Surf features matched across multiple frames overlaid on the first
image.

3.2 Outlier detection

The sets of feature correspondences are usually contaminated by outliers, i.e.
wrong data associations. It is of outmost importance to remove them because
they can negatively affect the accuracy of the esimated motion.

The standard method for model estimation from a set of data affected by
outliers is RANSAC (RANdom SAmple Consensus) [32]. It consists of randomly
selecting a set of data points, computing the corresponding model hypothesis,
and verifying this hypothesis on all the other data points. The solution is the
hypothesis with the highest consensus. The number of iterations (N) necessary
to guarantee a robust outlier removal is [32]:

N =
log(1− p)

log(1− (1− ε)s)
(3.1)

where s is the number of data points from which the model can be computed, ε is
the percentage of outliers in the dataset, p is the probability of success requested.
Figure 3.3 shows the number of iterations (N) with respect to the number of
points necessary to estimate the model (s). The values are computed for p = 0.99
and ε = 0.5. Note that N is exponential in the number of data points s; this
means that it is extremely important to look for minimal parametrizations of the
model, in order to reduce the number of iterations, which is of utmost importance
for vehicles equipped with a computationally-limited embedded computer.
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Number	  of	  points	  (s)	   1	   2	   3	   5	   8	  

Number	  of	  Itera3ons	  (N)	   7	   16	   35	   145	   1177	  

Figure 3.3: Number of RANSAC iterations.

3.2.1 Related works

When the camera is calibrated, its six degrees of freedom (DoF) motion can be
inferred from a minimum of five-point correspondences, and the first solution to
this problem was given in 1913 by Kruppa [50]. Several five-point minimal solvers
were proposed later in [31],[77],[90], but an efficient implementation, based on [77],
was found only in 2003 by Nister [75] and later revised in [89]. Before that, the
six- [78], seven- or eight- solvers were commonly used. However, the five-point
solver has the advantage that it works also for planar scenes. A more detailed
analysis of the state of the art can be found in [85].

Despite the five-point algorithm represents the minimal solver for 5DoF mo-
tion of calibrated cameras, in the last few decades there have been several at-
tempts to exploit different cues to reduce the number of motion parameters. In
[33], the authors proposed a three-point minimal solver for the case of two known
camera-orientation angles. For instance, this can be used when the camera is
rigidly attached to a gravity sensor (in fact, the gravity vector fixes two camera-
orientation angles). Later, the work in [73] improved on [33] by showing that the
three-point minimal solver can be used in a four-point (three-plus-one) RANSAC
scheme. The three-plus-one stands for the fact that an additional far scene point
(ideally, a point at infinity) is used to fix the two orientation angles. Using their
four-point RANSAC, they also showed a successful 6 DoF VO. A two-point min-
imal solver for 6-DoF Visual Odometry was proposed in [49], which uses the full
rotation matrix from an IMU rigidly attached to the camera. In the case of planar
motion, the motion model complexity is reduced to 3 DoF and can be parame-
terized with two points as described in [76]. For wheeled vehicles, the work in
[86, 82] showed that the motion can be locally described as planar and circular,
and, therefore, the motion model complexity is reduced to 2 DoF, leading to a
one-point minimal solver. Additionally, it was shown that, by using a simple
histogram voting technique, outliers can be found in as little as a single iteration.
A performance evaluation of five-, two-, and one-point RANSAC algorithms for
Visual Odometry was finally presented in [83].
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Figure 3.4: Epipolar constraint. p1, p2, T and P lie on the same plane (the
epipolar plane).

3.2.2 Epipolar Geometry

Before going on, we would like to recall some definitions about epipolar geometry.
When a camera is calibrated, it is always possible to project the feature coordi-
nates onto a unit sphere. This allows us to make our approach independent of
the camera model.

Let p1 = (x1, y1, z1) and p2 = (x2, y2, z2) be the image coordinates of a point
feature seen from two camera positions and back projected onto the unit sphere
(i.e., ‖ p1 ‖=‖ p2 ‖= 1) (Figure 3.4).

The image coordinates of point features relative to two different unknown
camera positions must satisfy the epipolar constraint (Figure 3.4) [38].

p2
TEp1 = 0 (3.2)

where E is the essential matrix, defined as E = [T]×R. R and T = [Tx, Ty, Tz]
T

describe the relative rotation and translation between the two camera positions,
and [T]X is the skew symmetric matrix:

[T]× =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

 (3.3)

According to equation (3.2), the essential matrix can be computed given a set
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of image coordinate points. E can then be decomposed into R and T [38].
The minimum number of feature correspondences needed to estimate the es-

sential matrix is function of the degrees of freedom of the camera’s motion. In
the case of a monocular camera performing a 6DoF motion (three for the rotation
and three for the translation), considered the impossibility to recover the scale
factor, a minimum of five correspondences is needed.

3.2.3 1-point algorithm

In this section we propose a novel method to estimate the relative motion be-
tween two consecutive camera views, which only requires the observation of a
single feature in the scene and the knowledge of the angular rates from an iner-
tial measurement unit, under the assumption that the local camera motion lies
in a plane perpendicular to the gravity vector [93]. Using this 1-point motion
parametrization, we provide two very efficient algorithms to remove the outliers
of the feature-matching process. Thanks to their inherent efficiency, the pro-
posed algorithms are very suitable for computationally-limited robots. We test
the proposed approaches on both synthetic and real data, using video footage
from a small flying quadrotor. We show that our methods outperform standard
RANSAC-based implementations by up to two orders of magnitude in speed,
while being able to identify the majority of the inliers.

3.2.3.1 Parametrization of the camera motion

We consider a micro aerial vehicle equipped with a monocular camera and an
IMU. The transformation between the camera reference frame {C} and the vehi-
cle’s body frame {B} (that for aerial vehicles is coincident with the IMU frame)
can be computed using [57]. Without loss of generality, we can assume that these
two frames are coincident.

According to aerospace conventions [24], the XB-axis of an aerial vehicle com-
monly defines the forward direction, the ZB-axis is downward, and the YB-axis
follows the right-hand rule. We assume the same convention for our vehicle (Fig-
ure 3.5). We use the Z−Y −X Euler angles to model the rotation of the vehicle
in the World frame. To go from the World frame to the Body frame, we first ro-
tate about zW axis by the angle Y aw, then rotate about the intermediate y-axis
by the angle Pitch, and finally rotate about the XB-axis by the angle Roll.

We define as well a coordinate frame {Cp} attached to the vehicle, with the
same origin as the vehicle’s Body Frame but with its z-axis aligned to the gravity
vector (g). The Roll and Pitch angles and the relative rotation about ZCp-axis
(dY aw) of the vehicle are provided by the IMU fusing the integration of the high
frequency gyroscopic measurements with the gravity direction obtained by the
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Figure 3.5: Notation.

accelerometers. If the system is in motion, the resulting estimation allows us
to safely recover the short term relative orientation of the vehicle, that is only
affected by a slowly changing drift term.

Considering that the camera is rigidly attached to the vehicle, two camera ori-
entation angles are known (they correspond to the Roll and Pitch angles provided
by the IMU).

If Rx(γ), Ry(γ), Rz(γ) are the orthonormal rotation matrices for rotation of
γ about the x-, y- and z-axes, the matrices

Cp1RB1 = (Rx(Roll1) ·Ry(Pitch1))T
Cp2RB2 = (Rx(Roll2) ·Ry(Pitch2))T

(3.4)

allow us to virtually rotate the two camera frames into two new frames {Cp1}
and {Cp2} (Figure 3.6). Pitchi and Rolli, (i = 1, 2) are the angles provided by
the IMU relative to two consecutive camera frames.

The two new image planes are parallel to the ground (zCp1
‖ zCp2

‖ g).
If the vehicle undergoes perfect planar motion, the essential matrix depends

only on 2 parameters. Integrating the gyroscopic data within the time interval
relative to two consecutive camera frames (i.e. the camera framerate), we can
obtain the relative rotation of the two frames about ZCp-axis. We define a third
reference frame Cp0 , that corresponds to the reference frame Cp1 rotated according
to dY aw, in order to have the same orientation of Cp2 (Figure 3.6)). The matrix
that describes this rotation is the following:

Cp0RCp1 = (Rz(dY aw))T (3.5)
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Figure 3.6: Cp1 and Cp2 are the reference frames attached to the vehicle’s body
frame but which z-axis is parallel to the gravity vector. They correspond to two
consecutive camera views. Cp0 corresponds to the reference frame Cp1 rotated
according to dY aw.

To recap we can express the image coordinates into the new reference frames
according to:

pCp0
=Cp0 RCp1 ·Cp1 RB1 · p1

pCp2
=Cp2 RB2 · p2

(3.6)

At this point the transformation between {Cp0} and {Cp2} is a pure transla-
tion:

T = ρ[cos(α) − sin(α) 0]T

R = I3
(3.7)

and it depends only on α and on ρ (the scale factor). The essential matrix results
therefore notably simplified:

E = [T]×R = ρ

 0 0 −sin(α)
0 0 −cos(α)

sin(α) cos(α) 0

 (3.8)

At this point, being pCp0
= [x0 y0 z0]T and pCp2

= [x2 y2 z2]T , we im-
pose the epipolar constraint according to (3.2) and we obtain the homogeneous
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equation that must be satisfied by all the point correspondences.

(x0z2 − z0x2)sin(α) + (y0z2 − z0y2)cos(α) = 0 (3.9)

where p0 = [x0 y0 z0]T and p2 = [x2 y2 z2]T are the directions (or unit-
sphere coordinates) of a matched feature in {Cp0} and {Cp2} respectively. Equa-
tion 3.9 depends only on one parameter (α). This means that the relative vehicle
motion can be estimated using only a single image feature correspondence.

At this point we can recover the angle α from 3.9:

α = tan−1

(
z0y2 − y0z2

x0z2 − z0x2

)
(3.10)

3.2.3.2 1-point Ransac

One feature correspondence is randomly selected from the set of all the matched
features. The motion hypothesis is computed according to (3.7). Without loss
of generality we can set ρ = 1. Inliers are, by definition, the correspondences
which satisfy the model hypothesis within a defined threshold. The number of
inliers in each iteration is computed using the reprojection error. We used an
error threshold of 0.5 pixels. The minimum number of iterations to guarantee a
good outlier detection, considering p = 0.99 and ε = 0.5 is 7 (according to (3.1)).

3.2.3.3 Me-RE (Median + Reprojection Error)

The angle α is computed from all the feature correspondences according to (3.10).
A distribution {αi} with i = 1, 2, . . . , Nf is obtained, where Nf is the number of
correspondences between the two consecutive camera images.

The best angle α∗ is computed as the median of the afore-mentioned distri-
bution α∗ = median{αi}.

The inliers are then detected by using the reprojection error. Unlike the 1-
point RANSAC, this algorithm is not iterative. Its computational complexity is
linear in Nf .

3.2.3.4 Performance evaluation

We evaluated the performance of the proposed approaches on both synthetic and
real data. We compare our 1-point RANSAC and Me-RE methods with the 5-
point RANSAC [75] in simulations, and with the 5-point RANSAC [75] and the
8-point RANSAC [59] in experiments on real data.
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Experiments on synthetic data We simulated different trajectories of a
quadrotor moving in indoor scenarios (Figure 3.7). The simulations have been
performed using the Robotics and Machine Vision Toolbox for Matlab [24].

To make our simulations as close as possible to the experiments, we simulated
a quadrotor vehicle moving in indoor environment, equipped with a downlooking
monocular camera. We randomly generated 1600 features on the ground plane
(Figure 3.7). Note that no assumptions are made on the feature’s depth.

We simulated a perspective camera with the same parameters of the one we
used for the experiments and added a Gaussian noise with zero mean and standard
deviation of 0.5 pixels to each image point. The vehicle was flying at the fix height
of 2m above the ground. We generated a circular trajectory (easily repeatable in
our flying arena) with a diameter of 1.5m. The period for one rotation is 10s. The
camera framerate is 15Hz, its resolution is 752 x 480. For the 1-point RANSAC
and the Me-RE, we set a threshold of 0.5 pixels. For the 5-point ransac we set a
minimum number of trials of 145 iterations, and a threshold of 0.5 pixels as well.

In Figure 3.8 we present the results obtained along the aforementioned tra-
jectory in the case of perfect planar motion (the helicopter is flying always at the
same height above the ground, and the Roll and Pitch angles are not affected by
noise).

Figure 3.9 represents the results when the Roll and Pitch angles are affected
by a Gaussian Noise with standard deviation of 0.3 degrees.

We evaluated as well the case in which the measure of the angle dY aw is
affected by a Gaussian Noise with standard deviation of 0.3 degrees. The relative
results are shown in Figure 3.10

We finally evaluated the case of non perfect planar motion introducing a
sinusoidal noise (frequency 4 rad/s and with amplitude of 0.02m) on the zW -
component of motion of the vehicle. Figure 3.11 represents the relative results.

We can observe that the Median + Reprojection Error (Me-RE) performs
always better than the 1-point RANSAC, and requires no iterations (its compu-
tational complexity is linear in the number of features).

In the case of perfect planar motion (Figure 3.8), the Me-RE algorithm finds
more inliers than the 5-point RANSAC. The latter algorithm requires at least
145 iterations according to Figure 3.3 to insure a good performance.

When the variables Roll, Pitch and dY aw are affected by errors (Figures 3.9
and 3.10), the performance of our algorithms drops, but they can still find almost
the 50% of inliers.

As expected, if the vehicle’s motion is not perfectly planar (Figure 3.11), the
performances of the 1-point RANSAC and the Me-RE get worse. The oscillations
that we can see in the plots are related to the fact that when the vehicle is
approaching the ground, less features are in the field of view of its on-board
camera.
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Figure 3.7: Synthetic scenario. The green line represents the trajectory and the
red dots represent the simulated features.
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Figure 3.8: Number of found inliers by Me-RE (red), 1-point RANSAC (cyan), 5-
point RANSAC (black), true number of inliers(blue) for a perfect planar motion.
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Figure 3.9: Number of found inliers by Me-RE (red), 1-point RANSAC (cyan), 5-
point RANSAC (black), true number of inliers(blue) in presence of perturbations
on the Roll and Pitch angles.
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Figure 3.10: Number of found inliers by Me-RE (red), 1-point RANSAC (cyan), 5-
point RANSAC (black), true number of inliers(blue) in presence of perturbations
on the dY aw angle.
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Figure 3.11: Number of found inliers by Me-RE (red), 1-point RANSAC (cyan),
5-point RANSAC (black), true number of inliers(blue) for a non-perfect planar
motion (s1 = 0.02 ∗ sin(8 ∗ wc · t)).

Figure 3.12: Nano quadrotor from KMelRobotics: a 150g and 18cm sized plat-
form equipped with an integrated Gumstix Overo board and MatrixVision VGA
camera.

Experiments on real data We tested our method on a nano quadrotor (Figure
3.12) [3] equipped with a MicroStrain 3DM-GX3 IMU (250 Hz) and a Matrix
Vision mvBlueFOX-MLC200w camera (FOV: 112 deg).

The monocular camera has been calibrated using the Camera Calibration
Toolbox for Matlab [17]. The extrinsic calibration between the IMU and the
camera has been performed using the Inertial Measurement Unit and Camera
Calibration Toolbox [57]. The dataset was recorded in our flying arena and ground
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truth data have been recorded using an Optitrack motion capture system with
submillimeter accuracy.

The trajectory has been generated using the TeleKyb Framework [36] (Figure
3.13). The vehicle followed a circular trajectory (1.5m of diameter, period of
10s) with fixed height above the ground of 1.5m. We computed SURF features
(Speeded Up Robust Feature). The feature detection and matching tasks has
been performed using the Machine Vision Toolbox from [24].

To evaluate the performance of our methods, we compared the number of
inliers found by the 1-point RANSAC and Me-RE methods with the number of
inliers found by the 5-point RANSAC and the 8-point RANSAC methods. Figure
3.14 presents the result of this comparison.

We observe that in the interval [380 : 490] the Me-RE algorithm has a very
good performance (it finds even more inliers than the 5-points RANSAC). On the
contrary the performance drops in the intervals [350 : 380] and [490 : 540]. The
last plot in Figure 3.15 shows the height of the vehicle above the ground during
the trajectory. We can notice that in the interval [380 : 490] the motion of the
vehicle along the z-World axis is smoother than in the other intervals, therefore
it affects less the performance of the 1-point and of the Me-RE methods.

Figure 3.16 shows the computation time of the compared algorithms, imple-
mented in Matlab and run on an Intel Core i7-3740QM Processor. According
to our experiments, the 5-point RANSAC takes about 67 times longer than the
8-point. The reason of this is that for each candidate point set, the 5-point
RANSAC returns up to ten motion solutions and this involves both Singular
Value Decomposition (SVD) and Groebner-basis decompositions. Instead, the 8-
point RANSAC only returns 1 solution and has only one SVD, no Groebner-basis
decomposition.

The Me-RE algorithm is not considered as a complete alternative to the 5-
point RANSAC. However, thanks to its negligible computation time (Figure 3.16),
it can be run at each frame. If the resulting number of inliers will be below a
defined threshold, it will be more suitable to switch to the 5-point algorithm.

3.2.3.5 Conclusions

In this section we presented two algorithms (1-point RANSAC and Median +
Reprojection Error) to perform outlier detection on computationally constrained
micro aerial vehicles. The algorithms operate with the aid of an on-board IMU
and assume that the vehicle’s motion is locally planar. Both the algorithms rely
on the reprojection error to look for inliers once that the essential matrix has
been estimated, but the 1-point RANSAC needs at least 7 iterations to provide
a satisfying solution, whereas the Me-RE’s computational complexity is linear in
the number of features and the performance is better. The Me-RE algorithm
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Figure 3.13: Plot of the real trajectory. The vehicle’s body frame is depicted in
black and the green line is the trajectory followed.

Figure 3.14: Number of found inliers by Me-RE (red), 1-point RANSAC (green),
5-point RANSAC (black), 8-point RANSAC (blue) along the trajectory depicted
in Figure 3.13.
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Figure 3.15: From the top to the bottom: Roll, Pitch and dY aw angles [deg]
estimated with the IMU (red) versus Roll, Pitch and dY aw angles [deg] estimated
with the Optitrack system (blue). The last plot shows the height of the vehicle
above the ground (non perfect planarity of motion).
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Algorithm	   Me-‐Re	   1-‐point	   5-‐points	   8-‐points	  

Time	  [s]	   0.0028	   0.0190	   2.6869	   0.0396	  

Figure 3.16: Computation time.

can therefore be a good replacement of the 5-point RANSAC when the motion of
the vehicle is smooth and the camera framerate is high. The motion can then be
refined applying standard methods [89], [38] to the remaining inliers. Considering
that α∗ is estimated as the median of the distribution of the α computed from all
the feature correspondences (3.10) , the standard deviation of this distribution
can be considered as an index of reliability of the Me-RE algorithm.

3.2.4 2-point algorithm

In this section we present a novel method to perform the outlier rejection task
between two different views of a camera rigidly attached to an Inertial Measure-
ment Unit (IMU). Only two feature correspondences and gyroscopic data from
IMU measurerments are used to compute the motion hypothesis [94]. By exploit-
ing this 2-point motion parametrization, we propose two algorithms to remove
wrong data associations in the feature-matching process for case of a 6DoF mo-
tion. We show that in the case of a monocular camera mounted on a quadrotor
vehicle, motion priors from IMU can be used to discard wrong estimations in the
framework of a 2-point-RANSAC based approach. The proposed methods are
evaluated on both synthetic and real data.

3.2.4.1 Parametrization of the camera motion

Let us consider a camera rigidly attached to an Inertial Measurement Unit (IMU)
consisting of three orthogonal accelerometers and three orthogonal gyroscopes.
The transformation between the camera reference frame {C} and the IMU frame
{I} can be computed using [57]. Without loss of generality, we can therefore
assume that these two frames are coincident ({I} ≡ {C}). The ∆φ, ∆θ and ∆ψ
angles characterizing the relative rotation between two consecutive camera frames
can be calculated by integrating the high frequency gyroscopic measurements,
provided by the IMU. This measurement is affected only by a slowly-changing
drift term and can safely be recovered if the system is in motion.

If Rx(∆), Ry(∆), Rz(∆) are the orthonormal rotation matrices for rotations
of ∆ about the x-, y- and z-axes, the matrix

C0RC1 = (Rx(∆φ) ·Ry(∆θ) ·Rz(∆ψ))T (3.11)
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Figure 3.17: The reference frame C0 and C2 differ only for the translation vector
T . ρ = |T | and the angles α and β allow us to express the origin of the reference
frame C2 in the reference frame C0.

allows us to virtually rotate the first camera frame {C1} into a new frame {C0}
(Figure 3.4) having the same orientation of the second one {C2}.

The matrix C0RC1 allows us to express the image coordinates relative to C1

into the new reference frame C0:

p0 =C0 RC1 · p1. (3.12)

At this point, the transformation between {C0} and {C2} is a pure translation

T = ρ[s(β) · c(α) − s(β) · s(α) c(β)]T

R = I3,
(3.13)

which depends only on the angles α and β and on the scale factor ρ. The essential
matrix results therefore simplified:

E = [T]×R = ρ

 0 −c(β) −s(β) · s(α)
c(β) 0 −s(β) · c(α)

s(β) · s(α) s(β) · c(α) 0

 . (3.14)
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With s(·) and c(·) we denote the sin(·) and cos(·) respectively. At this point,
being p0 = [x0 y0 z0]T and p2 = [x2 y2 z2]T , the coordinates of a feature
matched between two different camera frames and backprojected onto the unit
sphere, we impose the epipolar constraint according to (3.2) and we obtain the
homogeneous equation that must be satisfied by all the point correspondences.

x2(y0c(β) + z0s(α)s(β))− y2(x0c(β)− z0c(α)s(β))+
−z2(y0c(α)s(β) + x0s(α)s(β)) = 0.

(3.15)

Equation (3.15) depends on two parameters (α and β). This means that the
relative vehicle motion can be estimated using only two image feature correspon-
dences that we will identify as pA and pB, where pij = [xij yij zij ]

T with
i = A,B and j = 0, 2 indicate the direction of the feature i in the reference frame
j.

At this point, we can recover the angles α and β solving (3.15) for the features
pA and pB:

α = −tan−1
(
c4c2−c1c5
c4c3−c1c6

)
,

β = −tan−1
(

c1
c2c(α)+c3s(α)

)
,

(3.16)

where
c1 = xA2yA0 − xA0yA2 ,
c2 = −yA0zA2 + yA2zA0 ,
c3 = −xA0zA2 + xA2zA0 ,
c4 = xB2yB0 − xB0yB2 ,
c5 = −yB0zB2 + yB2zB0 ,
c6 = −xB0zB2 + xB2zB0 .

(3.17)

Finally, without loss of generality, we can set the scale factor ρ to 1 and
estimate the essential matrix according to (3.14).

3.2.4.2 Hough

The angles α and β are computed according to (3.16) from all the feature pairs
matched between two consecutive frames and distant from each other more than a
defined threshold (see Section 3.2.4.5). A distribution {αi, βi} with i = 1, 2, . . . , N
is obtained, where N is a function of the position of the features in the environ-
ment.

To estimate the best angles α∗ and β∗, we build a Hough Space (Figure
3.18) which bins the values of {αi, βi} into a grid of equally spaced containers.
Considering that the angle β is defined in the interval [0, π] and that the angle α
is defined in the interval [0, 2π], we set 360 bins for the variable α and 180 bins
for the variable β. The number of bins of the Hough Space encodes the resolution
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Figure 3.18: Hough Space in α and β computed with real data.

of the estimation.
The angles α∗ and β∗ are therefore computed as

< α∗, β∗ >= argmax{H},

where H is the Hough Space.
The factors that influence the distribution are the error on the estimation

of the relative rotation, the image noise, and the percentage of outliers in the
data. The closer we are to ideal conditions (no noise on the IMU measurements),
the narrower will be the distribution. The wider is the distribution, the more
uncertain is the motion estimate.

To detect the outliers, we calculate the reprojection error relative to the esti-
mated motion model.

The camera motion estimation can be then refined processing the remaining
subset of inliers with standard algorithms [89], [38].

3.2.4.3 2-point Ransac

Using (3.13) we compute the motion hypothesis that consists of the translation
vector T and the rotation matrix R = I3 by randomly selecting two features from
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Figure 3.19: Notation.

the correspondence set. To have a good estimation, we check that the distance
between the selected features is below a defined threshold (see Section 3.2.4.5). If
it is not the case, we randomly select another pair of features. Constraints on the
motion of the camera can be exploited to discard wrong estimations. The inliers
are then computed using the reprojection error. The hypothesis that shows the
highest consensus is considered to be the solution.

3.2.4.4 Quadrotor motion model

We consider a quadrotor equipped with a monocular camera and an IMU.
The vehicle body-fixed coordinate frame {B} has its ZB-axis pointing down-

ward (following aerospace conventions [24]). The XB-axis defines the forward
direction and the YB-axis follows the right-hand rule.

Without loss of generality we can consider the IMU reference frame {I} coin-
ciding with the vehicle body frame {B}.

The modelization of the vehicle rotation in the World frame {W} follows the
Z − Y − X Euler angles convention: being φ, θ, ψ respectively the Roll, Pitch
and Y aw angles of the vehicle, to go from the World frame to the Body frame,
we first rotate about zW axis by the angle ψ, then rotate about the intermediate
y-axis by the angle θ, and finally rotate about the XB-axis by the angle φ.

The transformation between the camera reference frame {C} and the IMU
frame {I} can be computed using [57]. Without loss of generality, we can therefore
assume that also these two frames are coincident ({I} ≡ {C} ≡ {B}).

A quadrotor has 6DoF, but its translational and angular velocity are strongly
coupled to its attitude due to dynamic constraints. If we consider a coordinate
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Figure 3.20: Motion constraints on a quadrotor relative to its orientation. ∆φ > 0
implies a movement along YB0 positive direction, ∆θ < 0 implies a movement
along YB0 positive direction.

frame {B0} with the origin coincident with the one of the vehicle’s body frame
{B} and the XB0 and YB0 axes parallel to the ground, we observe that, in order to
move in the XB0 direction, the vehicle must rotate about the y-axes axis (Pitch
angle), while, in order to move in the YB0 direction, it must rotate about the
x-axis (Roll angle) (Figure 3.20).

These motion constraints allow us to discard wrong estimations in a RANSAC
based outlier detection approach. By looking at the relation between the x and
y component of the estimated translation vector and the ∆φ, ∆θ angles pro-
vided by the IMU measurements (the same used in (3.11)), we are able to check
the consistency of the motion hypothesis. If the estimated motion satisfies the
condition

((|∆φ| > ε)&(∆φ · Ty > 0)) ‖
((|∆θ| > ε)&(∆θ · Tx < 0)) ‖

((|∆φ| < ε)&(|∆θ| < ε)),
(3.18)

we count the number of inliers (the number of correspondences that satisfy the
motion hypothesis according to a predefined threshold) by using the reprojection
error, otherwise we select another feature pair. The condition in (3.18) is satis-
fied if the x and y components of the motion hypothesis are coherent with the
orientation of the vehicle. If both the angles ∆φ and ∆θ are below the threshold
ε, we cannot infer nothing about the motion and we proceed in the evaluation of
the model hypothesis using the reprojection error.

The value of the threshold ε (see 3.2.4.5) is a function of the vehicle dynamics
and of the controller used.
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Using (3.1) and considering p = 0.99 and ε = 0.5, we calculate the minimum
number of iterations necessary to guarantee a good performance to our algorithm
and we set it to 16.

3.2.4.5 Performance evaluation

To evaluate the performance of our algorithms, we run simulations and exper-
iments on real data. We compared the proposed approaches with the 5-point
RANSAC [75] on synthetic data, and with the 5-point RANSAC [75] and the
8-point RANSAC [59] on real data.

Experiments on synthetic data We built a synthetic scenario for our sim-
ulation by using the Robotics and Machine Vision Toolbox for Matlab [24]. We
simulated a quadrotor equipped with a downlooking monocular camera and an
IMU, moving in an indoor environment (Figure 3.21). Random features were
generated without any assumption on the structure of the environment.

The on-board downlooking monocular camera was simulated as a perspective
camera with the same intrinsic parameters of the camera that we used in the
experiments. A white gaussian noise with a standard deviation of 0.5 pixels was
added to each extracted feature.

We generated a trajectory consisting of a take-off and of a constant-height
maneuver. The camera framerate is 15Hz, its resolution is 752 x 480. For the
reprojection error in the 2-point RANSAC and in the Hough algorithm, we set a
threshold of 0.5 pixels. For the 5-point RANSAC, we set the minimum number to
trials to 145 iterations, and the threshold to 0.5 pixels for the reprojection error.

Figure 3.22 shows the results of a simulation run along the trajectory depicted
in Figure 3.21, in the ideal case of no noisy IMU measurements. The helicopter
takes off and performs a constant height maneuver.

In Figure 3.23, we present the results related to simulations where the quanti-
ties ∆φ, ∆θ and ∆ψ are affected by a Gaussian noise with standard deviation of
0.3 degrees. Those errors do not affect the performance of the 5-point algorithm
(that does not use IMU readings to compute the motion hypothesis). In this case,
the Hough and the 2-point RANSAC approaches can still detect more than half
of the inliers. The motion hypothesis can then be computed on the obtained set
of correspondences by using standard approaches [89], [38].

In Figure 3.24, we present the results related to simulations where the quan-
tities ∆φ and ∆θ are affected by a Gaussian noise with standard deviation of 0.3
degrees and in Figure 3.25 only the angle ∆ψ is affected by a Gaussian noise with
standard deviation of 0.3 degrees. These two plots show that errors on rotations
about the camera optical axis (that in our case coincides with rotations about
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Figure 3.21: Synthetic scenario. The red line represents the trajectory and the
blue dots represent the simulated features. The green dots are the features in the
current camera view.

the vehicle ZB axis, i.e. errors on ∆ψ) affects more the performances of both the
algorithms than errors on ∆φ and ∆θ.

Experiments on real data The proposed approaches are tested on our nano
quadrotor (Figure 3.12) [3] equipped with a MicroStrain 3DM-GX3 IMU (250
Hz) and a Matrix Vision mvBlueFOX-MLC200w camera (FOV: 112 deg and a
resolution of 752 x 480).

The monocular camera calibration has been performed using the Camera Cal-
ibration Toolbox for Matlab [17].

To extrinsically calibrate the IMU and the camera, we used the Inertial Mea-
surement Unit and Camera Calibration Toolbox [57].

To validate the performance of our methods, we flew the quadrotor in our
flying arena, equipped with an Optitrack motion capture system with submil-
limeter accuracy. The trajectory consisted of a take-off and a constant-height
maneuver above the ground, as shown in Figure 3.26 and was generated using
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Figure 3.22: The IMU measurements are not affected by noise (ideal conditions).

Figure 3.23: The angles ∆φ, ∆θ and ∆ψ are affected by noise.

the TeleKyb Framework [36]. We recorded a dataset composed of camera images,
IMU measurements and ground truth data provided by the Optitrack.

We processed our dataset with SURF features, matching them in consecutive
camera frames. We run the 8-point RANSAC method on each correspondences
set to have an additional term of comparison.
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Figure 3.24: Only the angles ∆φ and ∆θ are affected by noise.

Figure 3.25: Only the angle ∆ψ is affected by noise.

To evaluate the performance of our methods, we compared the number of
inliers detected using the Hough and the 2-point RANSAC methods with 5-point
and an 8-point RANSAC. For the 2-point RANSAC we set ε = 0.1 deg. The
results of this comparison are shown in Figure 3.27.

Figure 3.29 shows the error characterizing the estimated relative rotation be-
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tween two consecutive camera frames obtained by IMU measurements and the
ground truth values.

Looking at both Figure 3.27 and Figure 3.29, we can notice that the smaller are
the errors on the angles estimations, the higher is the number of inliers detected
by the Hough and the 2-point RANSAC method.

Our algorithms and the algorithms that we used for the comparison, are im-
plemented in Matlab and run on an Intel Core i7-3740QM Processor. We summa-
rize their computation time in Figure 3.28. We can notice that the computation
time of the 5-point RANSAC is almost 67 times the computation time of the
8-point RANSAC. This is due to the fact that the 5-points returns up to 10 mo-
tion solutions for each candidate set. Singular Value Decomposition (SVD) and
Groebner-basis decompositions are involved and this explains the high computa-
tion time.

The computation time of the Hough algorithm is function of the number of
feature pairs used to compute the distribution in Figure (3.18). In our experi-
ments, we choose all the feature pairs distant more than a defined threshold one
to each other. We experimentally set this threshold to 30 degrees on the unit
sphere.

3.2.4.6 Conclusions

In this section, we proposed two algorithms (Hough and 2-point RANSAC) to
address the outlier rejection task systems equipped with a monocular camera
rigidly attached to an IMU. We used a quadorotor micro aerial vehicle as platform
to demonstrate the validity of our results. We show that the relations between
the vehicle’s translational and angular velocity and its attitude can be exploited
in order to discard wrong estimations in the framework of a RANSAC-based
approach.

Both methods rely on on-board IMU measurements to calculate the relative
rotation between two consecutive camera frames and to the reprojection error to
detect the inliers. The two algorithms differ in the way to compute the motion
hypothesis.

The computation time of the Hough algorithm (Figure 3.28) is function of the
number of feature pairs used to compute the distribution in Figure (3.18). Smart
policies for the choice of the pairs of features to use (based for example on the
feature positions in the image plane and not only on their relative position) can
be used in order to reduce the computational complexity of the approach.

Experimental results show that the 2-point RANSAC algorithm can be a
good replacement of the 5-point RANSAC. The motion hypothesis can always be
refined by processing the found inliers with classic methods [89], [38].
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Figure 3.26: Real scenario. The vehicle body frame is represented in blue, while
the red line represents the followed trajectory.
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Figure 3.27: Number of inliers detected with the Hough approach (red), the 2-
point RANSAC (cyan), the 5-point RANSAC (black) and the 8-point RANSAC
(blue) along the trajectory depicted in Figure 3.26.

Algorithm	   Hough	   2-‐points	   5-‐points	   8-‐points	  

Time	  [s]	   0.498	   0.048	   2.6869	   0.0396	  

Figure 3.28: Computation time.
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Figure 3.29: Errors between the relative rotations ∆φ (errR), ∆θ (errP ), ∆ψ
(errY ) estimated with the IMU and estimated with the Optitrack.
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This chapter introduces the last two contributions of this dissertation. In the
first section we provide an overview of the visual-aided inertial pose estimation
problem, with an emphasis on aerial navigation. Two low computational com-
plexity algorithms to face the pose estimation problem are presented. The first
method requires inertial measurements from an IMU, and the observation of three
features in the scene, under the planar ground assumption. It does not require
any known pattern, but it exploits the geometrical constraints of a virtual one:
three features form a triangle.

59



4. Pose estimation

The latter contribution faces the problem of featureless or dark environments.
An aerial vechicle, moving in the surrounding of a planar surface is considered.
In order to reduce the computational burden required to perform the feature
extraction and matching task, a virtual feature is introduced by equipping the
vehicle with a laser pointer (in addition to a monocular camera and an IMU). The
laser spot produced by the laser pointer on the planar surface is the unique point
feature observed. We identified the physical quantities that can be determined
with this setup, we analytically derived the link between those quantities and the
sensor data, and we estimated them with an Extended Kalman Filter.

4.1 Filtering approaches and closed form solu-

tions

The problem of fusing vision and inertial data has been extensively investigated
in the past. In [23], a tutorial introduction to the vision and inertial sensing is
presented. This work provides a biological point of view and it illustrates how
vision and inertial sensors have useful complementarities allowing them to cover
the respective limitations and deficiencies. Specifically, as it has been derived
very recently in [65], the fusion of these sensors allows us to obtain the speed and
the scale factor in closed form, allowing real time applications and robustness
with respect to kidnapping.

In [10], inertial and visual sensors are used to perform egomotion estimation.
The sensor fusion is obtained by an Extended Kalman Filter (EKF ) and by
an Unscented Kalman Filter (UKF ). The approach proposed in [34] extends the
previous one by also estimating the structure of the environment where the motion
occurs. In particular, new landmarks are inserted on line into the estimated
map. This approach has been validated by conducting experiments in a known
environment where a ground truth was available. Also, in [97] an EKF has been
adopted. In this case, the proposed algorithm estimates a state containing the
robot speed, position and attitude, together with the inertial sensor biases and the
location of the features of interest. In the framework of airbone SLAM, an EKF
has been adopted in [46] to perform 3D−SLAM by fusing inertial and vision
measurements. It was observed that any inconsistent attitude update severely
affects any SLAM solution. The authors proposed to separate attitude update
from position and velocity update. Alternatively, they proposed to use additional
velocity observations, such as air velocity observation. More recently, a vision
based navigation approach in unknown and unstructured environments has been
suggested [14].

Recent works investigate the observability properties of the vision-aided in-
ertial navigation system [43], [45], [44], [63], [65], [66] and [72]. In particular, in
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[65], the observable modes are expressed in closed-form in terms of the sensor
measurements acquired during a short time-interval.

Visual UAV pose estimation in GPS-denied environments is still challenging.
Many implementations rely on visual markers, such as patterns or blobs, located
in known positions [105], [28], [21]. Those approaches have the drawback that can
work only in structured environment. In [40] Visual-Inertial Attitude Estimation
is performed using image line segments for the correction of accumulated errors
in integrated gyro rates when an unmanned aerial vehicle operates in urban ar-
eas. The approach will not work in environments that do not present a strong
regularity in structure.

In [101], [99] the authors developed a very robust Vision Based Navigation
System for micro helicopters. Their pose estimator is based on a monocular VS-
LAM framework (PTAM, Parallel Tracking and Mapping [48]). This software
was originally developed for augmented reality and improved with respect to ro-
bustness and computational complexity. The resulting algorithm can be used
in order to make a monocular camera a real-time on-board sensor for pose esti-
mates. This allowed the first aerial vehicle that uses on-board monocular vision
as a main sensor to navigate through an unknown GPS-denied environment and
independently of any external artificial aids [100], [99].

Natraj et al. [74] proposed a vision based approach, close to structured light,
for roll, pitch and altitude estimation of UAV. They use a fisheye camera and
a laser circle projector, assuming that the projected circle belongs to a planar
surface. The latter must be orthogonal to the gravity vector in order to allow
the estimation of the aforementioned quantities. The attitude estimation of the
planar surface becomes crucial in order to extend the operational environment of
UAVs. Shipboard operations, search and rescue cooperation between ground and
aerial robots, low altitude manoeuvres, require to attenuate the position error
and to track the platform attitude.

4.2 Virtual patterns

In this section we propose a new approach to perform MAV localization by only
using the data provided by an Inertial Measurement Unit (IMU) and a monocular
camera [91]. The goal of our investigation is to find a new pose estimator which
minimizes the computational complexity. We focus our attention on the prob-
lem of relative localization, which makes possible the accomplishment of many
important tasks (e.g. hovering, autonomous take off and landing). In this sense,
we minimize the number of point features which are necessary to perform lo-
calization. While 2 point features is the minimum number which provides full
observability, by adding an additional feature, the precision is significantly im-
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proved, provided that the so-called planar ground assumption is honoured. This
assumption has recently been exploited on visual odometry with a bundle adjust-
ment based method [47]. The proposed method does not use any known pattern
but only relies on three natural point features belonging to the same horizontal
plane, which form therefore a virtual pattern (a triangle). It is based on a closed
solution which provides the vehicle pose from a single camera image, once the roll
and the pitch angles are obtained by the inertial measurements. The first step of
the approach provides a first estimate of the roll and pitch (through the IMU data)
and then the vehicle heading by only using two of the three point features and a
single camera image. In particular, the heading is defined as the angle between
the MAV and the segment made by the two considered point features. Then,
the same procedure is repeated two additional times, i.e., by using the other two
pairs of the three point features. In this way, three different heading angles are
evaluated. On the other hand, these heading angles must satisfy two geometrical
constraints, which are fixed by the angles characterizing the triangle made by the
three point features. These angles are estimated in parallel by an independent
Kalman Filter. The information contained in the geometrical constraints is then
exploited by minimizing a suitable cost function. This minimization provides a
new and very precise estimate of the roll and pitch and consequently of the yaw
and the vehicle position.

4.2.1 The System

Let us consider an aerial vehicle equipped with a monocular camera and IMU
sensors. We assume that the transformation among the camera frame and the
IMU frame is known (we can assume that the vehicle frame coincides with the
camera frame).

We assume that three reliable point-features are detected on the ground (i.e.
they belong to the same horizontal plane). As we will see, two is the minimum
number of features necessary to perform localization. Figure 4.1 shows our global
frame G, which is defined by only using two features, P1 and P2. First, we define
P1 as the origin of the frame. The zG-axis coincides with the gravity vector but
with opposite direction. Finally, P2 defines the xG-axis 1.

Then, by applying the method in [65], the distance between these point fea-
tures can be roughly determined by only using visual and inertial data (specifi-
cally, at least three consecutive images containing these points must be acquired).

1Note that the planar assumption is not necessary to define a global frame. It is sufficient
that P1 and P2 do not lie on the same vertical axis (defined by the gravity). The XG-axis can
be defined assuming that P2 belongs to the xG − zG-plane. In other words, P2 has zero yG
coordinate.
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Figure 4.1: Global frame. Two is the minimum number of point features which
allows us to uniquely define a global reference frame. P1 is the origin, the xG-axis
is parallel to the gravity and P2 defines the xG-axis

4.2.2 The method

The first step of the method consists in estimating the Roll and the Pitch angles.
This is performed by an Extended Kalman Filter (EKF) which estimates the
gravity in the local frame by only using inertial data. Once the direction of
the gravity vector in the local frame is estimated, the Roll and Pitch angles
are obtained. The second step returns the Yaw angle and the position of the
vehicle taking as input the Roll and Pitch angles and a single camera image (3p-
algorithm, Section 4.2.2.2). The core of the 3p-algorithm is the 2p-algorithm,
which is described in the next section.

4.2.2.1 2p-Algorithm

This algorithm needs only two point features in a single camera image, and the
Roll and Pitch angles estimated from IMU measurements. Figure 4.2 represents
a schematic of the algorithm.

For each feature, the camera provides its position in the local frame up to a
scale factor. The knowledge of the absolute Roll and Pitch, allows us to express
the position of the features in a new vehicle frame N , which ZN -axis is parallel to
the gravity vector. Figure 4.3 displays all the reference frames: the global frame
G, the vehicle frame (represented by V ) and the new vehicle frame N . Our goal is
to determine the coordinates of the origin of the vehicle frame in the global frame
and the orientation of the XN -axis with respect to the xG-axis (which corresponds
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IMU	   EKF	  
Roll, Pitch 

CAMERA	  
1 image 

2p-‐
Algorithm	  

2 features 

Yaw, 
x, y, z 

Figure 4.2: The 2p-algorithm.

to the Yaw angle of the vehicle in the global frame).

Figure 4.3: The three reference frames adopted in our derivation.

Let us denote with [x1, y1, z1]T and [x2, y2, z2]T the coordinates of P1 and P2

in the new local frame. The camera provides µ1 = x1

z1
, ν1 = y1

z1
, µ2 = x2

z2
and

ν2 = y2

z2
. Additionally, the camera also provides the sign of z1 and z2

1.
Since the ZN -axis has the same orientation as the zG-axis, and the two features

P1 and P2 belongs to a plane perpendicular to the gravity vector, z1 = z2 = −z,
where z is the position of the origin of the vehicle frame in the global frame. We

1For a camera with a field of view smaller than 180deg the z−component is always positive
in the original camera frame.
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obtain:

P1 = −z

µ1

ν1

1

 P2 = −z

µ2

ν2

1

 (4.1)

Let us denote by D the distance between P1 and P2. We have:

z = ± D√
∆µ2

12 + ∆ν2
12

(4.2)

with ∆µ12 ≡ µ2 − µ1 and ∆ν12 ≡ ν2 − ν1. In other words, z can be easily
obtained in terms of D. The previous equation provides z up to a sign. This
ambiguity is solved considering that the camera provides the sign of z1 and z2.
Then, we obtain x1 = −zµ1, y1 = −zν1, x2 = −zµ2 and y2 = −zν2. It is therefore
easy to obtain α = arctan 2(∆ν12, ∆µ12) (Figure 4.4). Hence,

Y aw = −α = −atan(∆ν12/ ∆µ12) (4.3)

Figure 4.4: The yaw angle (−α) is the orientation of the XN -axis in the global
frame.

Finally we obtain the coordinates of the origin of the vehicle frame in the
global frame,

x = − cos(α) x1 − sin(α) y1

y = sin(α) x1 − cos(α) y1

z = ± D√
∆µ2

12+∆ν2
12

(4.4)
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Note that the position x, y, z is obtained in function of the distance D. Specif-
ically, the position scales linearly with D. As previously said, a rough knowledge
of this distance is provided by using the method in [65] and described in section
4.2.2.3. We remark that a precise knowledge of this distance is not required to
accomplish tasks like hovering on a stable position.

4.2.2.2 3p-Algorithm

The three features form a triangle in the (xG, yG)-plane. For the sake of clarity, we
start our analysis supposing that we know the angles characterizing the triangle
(γ1 and γ2 in Figure 4.5). Then, we will show how we estimate on line these
angles (Section 4.2.2.4).

Figure 4.5: The triangle made by the 3 point features.

We run the 2p−algorithm three times, respectively with the sets of features
(P1, P2), (P1, P3) and (P2, P3) as input. We obtain three different angles. Y aw12 is
the Yaw of the vehicle in the global frame given in (4.3) while the other expressions
are:

Y aw12 = −atan(∆ν12/∆µ12)
Y aw13 = −atan(∆ν13/∆µ13)
Y aw23 = −atan(∆ν23/∆µ23)

(4.5)
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The three above-mentioned angles must satisfy the following constraints:

γ1 = Y aw13 − Y aw12

γ2 = Y aw23 − Y aw12
(4.6)

Let us denote the known values of these angles with γ0
1 and γ0

2 . We correct the
estimation of the roll and pitch angles by exploiting these constraints. We solved
a nonlinear least-squares problem minimizing the following cost function:

c(ζ) = [(Y aw13 − Y aw12 − γ0
1)2 + (Y aw23 − Y aw12 − γ0

2)2] (4.7)

in which the variables Y awij are nonlinear functions of ζ = [Roll, P itch]T .
Once the least-squares algorithm finds the Roll and Pitch angles that minimize

the cost function, we can estimate the Yaw angle and the coordinates x, y and z
as described in 2p−algorithm (Figure 4.6).

IMU	   EKF	  
Roll,  
Pitch 

CAMERA	  
1 image 

γ1, γ2 

Yaw, 
x, y, z 

3 features 

3p-Algorithm 

Roll, Pitch Non	  Linear	  	  
Least-‐Squares	  
Op;miza;on	  

γ1,	  γ2	  
ESTIMATION	  

(KF)	  

Roll,  
Pitch 

2p-Algorithm 
run for  

(P1, P2), (P1,P3) , (P2,P3) 
 

Roll,  
Pitch 

Figure 4.6: Flow chart of the proposed pose estimator

4.2.2.3 Scale factor initialization

Recent works on visual-inertial structure from motion have demonstrated its ob-
servability properties [43], [45], [44], [63], [65], [68], [66], and [72]. It has been
proved that the states that can be determined by fusing inertial and visual infor-
mation are: the system velocity, the absolute scale, the gravity vector in the local
frame, and the biases that affects the inertial measurements. The work in [65]
expresses all the observable modes at a given time Tin in closed-form and only
in function of the visual and inertial measurements registered during the time
interval [Tin, Tfin].

In the following, we will adopt lower-case letters to denote vectors in the global
frame (e.g. the gravity is g = [0, 0,−g]T , where g ' 9.8ms−1). Lower-case letters
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will be used to denote vectors in the camera frame. Since this local frame is time
dependent, we adopt the following notation: Wt(τ) will be the vector with global
coordinates w(τ) in the local frame at time t. Additionally, we will denote with
Ct2
t1 the matrix which characterizes the rotation occurred during the time interval

(t1, t2). We have: Wt1(τ) = Ct2
t1Wt2(τ) and (Ct2

t1 )−1 = Ct1
t2 . Finally, Ct will denote

the rotation matrix between the global frame and the local frame at time t, i.e.,
w(τ) = CtWt(τ).

The position r of the system is:

r(t) = r(Tin) + v(Tin)∆t+

∫ t

Tin

∫ τ

Tin

a(ξ)dξdτ (4.8)

where t ∈ [Tin, Tfin].
Integrating by part we obtain:

r(t) = r(Tin) + v(Tin)∆t+

∫ t

Tin

(t− τ)a(τ)dτ (4.9)

where v ≡ dr
dt

, a ≡ dv
dt

and ∆t ≡ t− Tin.
The accelerometers provide the acceleration in the local frame and they also

perceive the gravitational acceleration. Their measurements are also corrupted by
a constant term (B) usually called bias. We can therefore write the accelerometer
measurement like this:

Aτ (τ) ≡ Aiτ (τ)−Gτ +B (4.10)

where Aiτ (τ) is the inertial acceleration and Gτ is the gravity acceleration in the
local frame (depending on time because the local frame can rotate). Rewriting
equation (4.9) by highlighting the vector Aτ (τ) provided by the accelerometer
and neglecting the bias term B:

r(t) = r(Tin) + v(Tin)∆t+ g
∆t2

2
+ CTin [STin(t)] (4.11)

where:

STin(t) ≡
∫ t

Tin

(t− τ)Cτ
Tin
Aτ (τ)dτ ;

The matrix Cτ
Tin

can be obtained from the angular speed during the interval
[Tin, τ ] provided by the gyroscopes [30].The vector STin(t) can be obtained by
integrating the data provided by the gyroscopes and the accelerometers delivered
during the interval [Tin, t].

The visual measurements related to the observation of N point-features are
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recorded simultaneously with the inertial measurements. Let us denote the fea-
ture position in the physical world with pi, i = 1, ..., N . P i

t (t) denotes their
position at time t in the local frame at time t. We have:

pi = r(t) + CTinCt
Tin
P i
t (t) (4.12)

Writing this equation for t = Tin we obtain:

pi − r(Tin) = CTinP i
Tin

(Tin) (4.13)

By inserting the expression of r(t) provided in (4.11) into equation (4.12), by
using (4.13) and by pre multiplying by the rotation matrix (CTin)−1, we obtain:

Ct
Tin
P i
t (t) = P i

Tin
(Tin)− VTin(Tin)∆t−GTin

∆t2

2
− STin(t) (4.14)

i = 1, 2, ..., N

A single image processed at time t, provides the position of the N features up
to a scale factor, which correspond to the the vectors P i

t (t). The data provided
by the gyroscopes during the interval (Tin, Tfin) allow us to build the matrix
Ct
Tin

. At this point, having the vectors P i
t (t) up to a scale, allows us to also know

the vectors Ct
Tin
P i
t (t) up to a scale.

We assume that the camera provides ni images of the same N point-features
at consecutive image stamps: t1 = Tin < t2 < ... < tni

= Tfin. For the sake of
simplicity, we adopt the following notation:

• P i
j ≡ C

tj
Tin
P i
tj

(tj), i = 1, 2, ..., N ; j = 1, 2, ..., ni

• P i ≡ P i
Tin

(Tin), i = 1, 2, ..., N

• V ≡ VTin(Tin)

• G ≡ GTin

• Sj ≡ STin(tj), j = 1, 2, ..., ni

The vectors P i
j can be written as P i

j == λijµ
i
j. Without loss of generality we

can set Tin = 0. Equation (4.14) can be written as follows:

P i − V tj −G
t2j
2
− λijµij = Sj (4.15)

The corresponding linear system is:{
−G t2j

2
− V tj + λ1

1µ
1
1 − λ1

jµ
1
j = Sj

λ1
1µ

1
1 − λ1

jµ
1
j − λi1µi1 + λijµ

i
j = 03

(4.16)
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where j = 2, ..., ni, i = 2, ..., N and 03 is the 3 × 1 zero vector. This linear
system consists of 3(ni − 1)N equations in Nni + 6 unknowns. The two column
vectors X and S and the matrix Ξ are defined as follows:

X ≡ [GT , V T , λ1
1, ..., λ

N
1 , ..., λ

1
ni
, ..., λNni

]T

S ≡ [ST2 , 03, ..., 03, S
T
3 , 03, ..., 03, ..., S

T
ni
, 03, ..., 03]T

Ξ ≡ (4.17)

T2 S2 µ1
1 03 03 −µ1

2 03 03 03 03 03

033 033 µ1
1 −µ2

1 03 −µ1
2 µ2

2 03 03 03 03

... ... ... ... ... ... ... ... ... ... ...
033 033 µ1

1 03 −µN1 −µ1
2 03 µN2 03 03 03

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...
Tni

Sni
µ1

1 03 03 03 03 03 −µ1
ni

03 03

033 033 µ1
1 −µ2

1 03 03 03 03 −µ1
ni

µ2
ni

03

... ... ... ... ... ... ... ... ... ... ...
033 033 µ1

1 03 −µN1 03 03 03 −µ1
ni

03 µNni


where Tj ≡ −

t2j
2
I3, Sj ≡ −tjI3 and I3 is the identity 3 × 3 matrix; 033 is the

3×3 zero matrix. The linear system in (4.16) can be written in a compact format:

ΞX = S (4.18)

The linear system in 4.18 contains completely the sensor information. By
adding the following equation to the system:

|ΠX|2 = g2 (4.19)

where Π ≡ [I3, 03 ... 03], it is possible to exploit the information related to the
fact that the magnitude of the gravitational acceleration is known.

The Visual-Inertial Structure from Motion problem consists in the determina-
tion of the vectors: P i, (i = 1, 2, ..., N), V , G and it can be solved by finding the
vector X, which satisfies (4.18) and (4.19). The scale factors are the quantities
λij for i = 1, 2, ..., N , j = 1, 2, ..., ni contained in the state vector X.

In our case to initialize the scale factor we need at least three consecutive
images containing the two points P1 and P2. This is enough considering that we
know the gravity magnitude and that we know in advance we will not occur in
degenerative cases (none of the camera poses will be aligned along with the two
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features, and the three camera poses and the two features will not belong to the
same plane) [67].

4.2.2.4 Estimation of γ1 and γ2

In order to estimate the angles characterizing the triangle γ1 and γ2 (Figure
4.5), we run a Kalman filter. The state that we want to estimate is Γ = [γ1, γ2]T .
During the prediction step the filter does not update neither the state Γ nor its co-
variance matrix because the angles are constant in time. For the observation step
we need the estimated Roll and Pitch (which allow us to virtually rotate the vehi-
cle frame V into the the new frame N) and the observations of the three features
in the current camera image [xi, yi, z]

T = z[µi, νi, 1]T for i = 1, 2, 3. At this point
the sides of the triangle can be computed according to: a = z

√
∆µ2

12 + ∆ν2
12,

b = z
√

∆µ2
13 + ∆ν2

13, c = z
√

∆µ2
23 + ∆ν2

23.
Applying the law of cosine we can easily compute the two required angles:

γ1 = acos
(
a2+b2−c2

2ab

)
γ2 = π − acos

(
a2+c2−b2

2ac

)
Note that these angles are independent from z. γ1 and γ2 represent the ob-

servation of the state Γ of the Kalman Filter.

4.2.3 Performance Evaluation

4.2.3.1 Simulations

In order to evaluate the performance of the presented method, we simulated
different 3D trajectories and scenarios.

The considered scenarios to test the 2p-Algorithm is shown in Figure 4.1. The
features are P1 = [0, 0, 0], P2 = D ∗ [1, 0, 0], where D = 0.1m. To compare the 2p-
Algorithm with the 3p-Algorithm, we added a third feature P3 = D∗[0.5,

√
3/2, 0]

(Figure 4.5). The angles γ1 and γ2 are respectively 60deg and 120deg.
The trajectories are generated with a quadrotor simulator that, given the

initial conditions, the desired position and desired Yaw, performs a hovering task
[20]. The initial vehicle position is x = y = z = 0 m, the initial vehicle speed is
vx = vy = vz = 0 ms−1 in the global frame.

Starting from the performed trajectory, the true angular speed and the linear
acceleration are computed each 0.01s We denote with Ωtrue

i and Atrue
v i the true

value of the body rates and linear accelerations at time stamp i. The IMU
readings are generated as following: Ωi = N

(
Ωtrue

i − Ωbias, PΩi

)
and Ai =

N
(
Atrue

v i − Ag − Abias, PAi

)
where:
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• N indicates the Normal distribution whose first entry is the mean value and
the second one is the covariance matrix;

• PΩi
and PAi

are the covariance matrices characterizing the accuracy of the
IMU ;

• Ag is the gravitational acceleration in the local frame and Abias is the bias
affecting the accelerometer’s data;

• Ωbias is the bias affecting the gyroscope’s data.

In all the simulations we set both the matrices PΩi
and PAi

diagonal and in
particular: PΩi

= σ2
gyroI3 and PAi

= σ2
accI3, where I3 is the identity 3× 3 matrix.

We considered several values for σgyro and σacc, in particular: σgyro = 1 deg s−1

and σacc = 0.01 ms−2.
The camera is simulated as follows. Knowing the true trajectory of the vehicle,

and the position of the features in the global frame, the true bearing angles of
the features in the camera frame are computed each 0.3s. Then, the camera
readings are generated by adding zero-mean Gaussian errors (whose variance is
set to (1 deg)2) to the true values.

Figures 4.7.a show the results regarding the estimated x, y and z. Figures
4.7.b show the results regarding the estimated Roll, Pitch and Y aw. In each
figure we represent the ground truth values in blue, the values estimated with the
2p-Algorithm in green and the values estimated with the 3p-algorithm in red.

Figure 4.8 summarizes these results by providing the mean error on the esti-
mated position and attitude.

4.2.3.2 Experimental Results

This section describes our experimental results. The robot platform is a Pelican
from Ascending Technologies [1] equipped with an Intel Atom processor board
(1.6 GHz, 1 GB RAM ) (Figure 4.9).

Our sensor suite consists of an Inertial Measurement Unit (3-Axis Gyro, 3-
Axis Accelerometer) belonging to the Flight Control Unit (FCU) AscTec Au-
topilot , and a monocular camera (Matrix Vision mvBlueFOX, FOV : 130 deg).
The camera is calibrated using the Camera Calibration Toolbox for Matlab [17].
The calibration between the IMU and the camera has been performed using the
Inertial Measurement Unit and Camera Calibration Toolbox in [57]. The IMU
provides measurements update at a rate of 100Hz, while the camera framerate
is 10Hz.

The Low Level Processor (LLP) of our Pelican is flashed with the 2012 LLP
Firmware [1] and performs attitude data fusion and attitude control. We flashed
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a b

Figure 4.7: Estimated x, y, z (a), and Roll, Pitch, Y aw (b). The blue line
indicate the ground truth, the green one the estimation with the 2p-Algorithm
and the red one the estimation with the 3p-Algorithm
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x	   y	   z	   Roll	   Pitch	   Yaw	  

3p-‐Algorithm	   0.26	  %	   0.24	  %	   0.08	  %	   0.07	  deg	   0.04	  deg	   0.01	  deg	  

2p-‐Algorithm	   4.08	  %	   5.41	  %	   5.23	  %	   1.63	  deg	   1.72	  deg	   1.36	  deg	  

Figure 4.8: Mean error on the estimated states in our simulations. For the
position the error is given in %.

Figure 4.9: AscTec Pelican quadcopter [1] equipped with a monocular camera.

the High Level Processor (HLP) with the asctec hl firmware [9]. The on-board
computer runs linux 10.04 and ROS (Robot Operating System). We implemented
our method using ROS as a middleware for communication and monitoring . The
HLP communicates with the on-board computer through a FCU-ROS node. The
communication between the camera and the on-board computer is achieved by a
ROS node as well. The presented algorithms are running online and on-board at
10Hz.

The scenario setup is shown in Figure 4.11. We used an ARToolKit Marker
with the only aim of having a ground truth to evaluate the performance of our
approach. The estimation of the camera pose provided by the marker is not
used to perform the estimation. The marker is positioned such that it’s reference
frame is coincident with the configuration shown in Figure 4.5. The three features
considered are the center of the three little balls in Figure 4.11. The use of three
blob markers instead of natural features is only related to the need to get a
ground truth. The information related to the pattern composed by the 3 features
(D = 0.25m, γ1 = 60deg, γ2 = 120deg) is only used to evaluate the performance
of our approach. The algorithm does not require any information about the
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Figure 4.10: Our Pelican quadcopter: a system overview

features configuration.
Figures 4.12.a and 4.12.b show respectively the position and the attitude es-

timated by using the proposed approach and compared with the ground truth
obtained with the ARToolkit marker. From Figure 4.12.a we see that the differ-
ence between our estimates and the ground truth values is of the order of 2cm for
x and y and less than 0.5cm for z. From Figure 4.12.b we see that the difference
between our estimates and the ground truth values is of the order of 2deg for
Pitch and less than 0.5deg for Roll and Y aw.

We believe that the main source of error is due to the distortion of the lens,
which is not fully compensated by the calibration. Note that this distortion
also affects our ground truth. We plan to test our approach in an environment
equipped with a Motion Capture System.

4.2.4 Conclusion

In this section we proposed a new approach to perform MAV localization by
only using the data provided by an Inertial Measurement Unit and a monocu-
lar camera. The approach exploits the so-called planar ground assumption and
only needs three natural point features. It is based on a closed solution which
provides the vehicle pose from a single camera image, once the roll and the pitch
angles are obtained by the inertial measurements. This makes the approach very
simple in terms of computational complexity and robust since the closed form
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Figure 4.11: Scenario: The AR Marker and the 3 balls are used only with the
aim to get a rough ground truth. The AR Marker provides the camera 6DOF
pose in a global reference frame according to our conventions.

a b

Figure 4.12: Estimated position (a), respectively x, y, z and estimated attitude
(b), respectively Roll, Pitch, Y aw. The red lines represent the estimated val-
ues with the 3p-Algorithm, the blue ones represent a rough ground truth (from
ARToolkit Marker).
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solution makes unnecessary any initialization. We evaluated the performance of
the proposed approach by using both synthetic and real data. We also described
the results obtained by implementing the approach on our quadrotor in real-time
and on-board.

The very low computational cost of the proposed approach makes it suitable
for pose control in tasks like hovering, autonomous take off and landing.

4.3 Virtual features

In this section we consider a vehicle which accomplishes a 3D-trajectory in the
surrounding of a planar surface. The vehicle is equipped with a monocular camera
and inertial sensors. This is the typical navigation problem in an indoor envi-
ronment or in a city-like environment. All the approaches previously mentioned,
require to extract natural features from the images provided by the camera and
in particular to detect the same features in different images. The feature match-
ing task becomes critical in outdoor environment because of possible illumination
changes. In order to significantly reduce the computational burden required to
perform these tasks and to make the feature matching more robust, we introduce
a virtual feature by equipping our vehicle with a laser pointer [92]. The laser
beam produces a laser spot on the planar surface. This laser spot is observed by
the monocular camera and it is the unique point feature used by the proposed
approach.

To the best of our knowledge, this problem has never been considered so
far. Compared to classical vision and IMU data fusion problems, the feature
is moving in the environment but we exploit the hypothesis that it moves on
a planar surface. The first question which arises is to understand which are
the observable modes, i.e. the physical quantities that can be determined by
only using the inertial data and the camera observation of the laser spot during
a short time-interval. The results provided in Section 4.3.3 address precisely
this issue. Then, the second step we consider is to analytically determine the
link between the observable modes and the sensor data. This is obtained by
performing a local decomposition of the original system (Section 4.3.4). This
decomposition separates the observable modes from the rest of the system and
will allow us to introduce a simple recursive method to perform the estimation
of all the observable modes (Section 4.3.4). The method is validated by using
synthetic data (Section 4.3.5). Preliminary tests with real data are also provided
and more complete experiments are in progress.
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4.3.1 The System

Let us consider an aerial vehicle equipped with a monocular camera and IMU
sensors. The vehicle is also equipped with a laser pointer. The configuration of
the laser pointer in the camera reference frame is known. The vehicle moves in the
surrounding of a planar surface and we assume that the laser spot produced by
the laser beam belongs to this planar surface (see fig. 4.13). The position and the
orientation of this planar surface are unknown. The camera observations consist
in the position of the laser spot in the camera frame up to a scale factor. The
IMU consists of three orthogonal accelerometers and three orthogonal gyroscopes.
We assume that the monocular camera is intrinsically calibrated and that the
transformations among the camera frame and the IMU frames are known (we
can assume that the vehicle frame coincides with the camera frame). The IMU
provides the vehicle angular speed and acceleration. Actually, regarding the
acceleration, the one perceived by the accelerometer (A) is not simply the vehicle
acceleration (Av). It also contains the gravity acceleration (G). In particular,
we have A = Av − G since, when the camera does not accelerate (i.e. Av is
zero) the accelerometer perceives an acceleration which is the same of an object
accelerated upward in the absence of gravity.

We will use uppercase letters when the vectors are expressed in the local
frame and lowercase letters when they are expressed in the global frame. Hence,
regarding the gravity we have: g = [0, 0, −g]T , being g ' 9.8 ms−2.

Finally, we will adopt a quaternion to represent the vehicle orientation. In-
deed, even if this representation is redundant, it is very powerful since the dy-
namics can be expressed in a very easy and compact notation [51].

Our system is characterized by the state [r, v, q]T where r = [rx, ry, rz]
T is

the 3D vehicle position, v is its time derivative, i.e. the vehicle speed in the global
frame (v ≡ dr

dt
), q = qt + iqx + jqy + kqz is a unitary quaternion (i.e. satisfying

q2
t + q2

x + q2
y + q2

z = 1) and characterizes the vehicle orientation. The analytical
expression of the dynamics and the camera observations can be easily provided
by expressing all the 3D vectors as imaginary quaternions. In practice, given
a 3D vector w = [wx, wy, wz]

T we associate with it the imaginary quaternion
wq ≡ 0 + iwx + jwy + kwz. The dynamics of the state [rq, vq, q]

T are:
ṙq = vq

v̇q = qAvqq
∗ = qAqq

∗ + gq

q̇ =
1

2
qΩq

(4.20)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz and Ω the angular velocity.
We derive the expression of the camera observation consisting in the position

of the laser spot in the camera frame up to a scale factor. The laser spot is on
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Figure 4.13: Quadrotor equipped with a monocular camera, IMU and a laser
pointer. The laser spot is on a planar surface and its position in the camera
frame is obtained by the camera up to a scale factor.
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Figure 4.14: The original camera frame XY Z, the chosen camera frame X ′Y ′Z ′

and the laser module at the position [Lx, Ly, 0] and the direction (θ, φ) (in
the original frame) and position [L, 0, 0] and the direction (0, 0) (in the chosen
camera frame).

a planar surface whose configuration is unknown. Without loss of generality, we
choose the camera frame with the z-axis parallel to the laser pointer (see figure
4.14). In addition, the camera frame is such that the laser beam intercept the
xy−plane in [L, 0, 0]. In 4.3.2 we introduce a simple and efficient method to
determine the parameter L together with the rotation to transform vectors from
the original camera frame into the chosen camera frame.

Finally, we characterize the planar surface in the global frame with the equa-
tion z = ky, where k is an unknown parameter.

In these settings, by carrying out analytical computation (which uses the basic
quaternion rules) we obtain the analytical expression of the position [Xs, Ys, Zs]
of the laser spot in the camera reference frame. We have:

Xs = L

Ys = 0

Zs =
rz + 2qzqxL− 2qykqxL− 2qyqtL− 2qtLkqz − kry

2kqzqy − 2kqtqx − q2
z − q2

t + q2
y + q2

x

(4.21)

The camera provides the vector [Xs, Ys, Zs] up to a scale factor. This is equivalent
to the two ratios Xs

Zs
and Ys

Zs
. Hence, since the latter is identically zero, the camera

80



4. Pose estimation

observation is given by hcam = Xs

Zs
, which is:

hcam =
L(2kqzqy − 2kqtqx − q2

z − q2
t + q2

y + q2
x)

rz + 2qzqxL− 2qykqxL− 2qyqtL− 2qtLkqz − kry
(4.22)

4.3.2 Camera-laser module calibration

In figure 4.14, we display the position and the direction of the laser pointer in the
original camera frame. The calibration consists in estimating the four parameters
Lx, Ly, θ, φ. In other words, it consists in estimating the line made by the laser
beam in the original camera frame. This line is determined starting from the
position of the laser spot in the original camera frame for at least two spots.
To have an accurate estimate, the two spots must be as far as possible one each
other. The precision can be further improved by considering more than two spots
(Figure 4.15b) and by finding the best line fit. In order to have the Cartesian
coordinates of a single spot in the original camera frame, it suffices to project
the spot on a checkerboard (Figure 4.15a). By using the Camera Calibration
Toolbox for Matlab [17], it is possible to get the equation of the plane containing
the checkerboard in the original camera frame and, known the direction of the
spot from the camera measurement, the 3D position is finally obtained.

The chosen camera frame is obtained by rotating the original frame such
that in the new frame the z−axis has the same orientation of the laser beam.
Additionally, we also require that the laser beam intersects the new x − axis.
In other words, we require that the laser beam intersects the new xy−plane in
the point [L, 0, 0]T , for a given L. We want to obtain the quaternion q which
characterizes this rotation. This will allow us to express the vectors provided by
the camera in the chosen frame. Note that, since the two frames only differ by a
rotation (i.e., they share the same origin), we are allowed to express the vectors
provided by the camera in the new frame, even if these vectors are defined up to
a scale. Finally, in this section we want to determine the value of L. As we will
see, both the quaternion q and the parameter L only depend on the calibration
parameters: Lx, Ly, θ, φ.

We start by rotating the original frame of φ about its z−axis. The quaternion
characterizing this rotation is qz−axis(φ) = cos

(
φ
2

)
+ k sin

(
φ
2

)
. Then, we rotate

the frame obtained with this rotation of θ about its y−axis. The quaternion
characterizing this rotation is qy−axis(θ) = cos

(
θ
2

)
+j sin

(
θ
2

)
. Hence, the previous

two rotations are characterized by the quaternion qzy ≡ qz−axis(φ)qy−axis(θ). The
obtained frame has the z−axis aligned with the laser beam. On the other hand,
the laser beam does not intersect necessarily the x−axis. To obtain this, we
have to rotate again the frame about its current z−axis. Let us compute the
intersection of the laser beam with the xy−plane. We compute this point in
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Laser spot 

(a) (b)

Figure 4.15: Camera-Laser module calibration steps. Figure (a) is the camera
image containing the laser spot projected onto a checkerboard. In green the
reference frame attached to the checkerboard. Figure (b) represents three different
camera positions used during the calibration process, the green grid represents
the checkerboard and the red lines represent the reference frame attached to the
checkerboard.

the original frame. By a direct computation we obtain: rinters = [Lx − τ 2
xLx −

τxτyLy, Ly − τxτyLx − τ 2
yLy, −τxτzLx − τyτzLy]

T , where τx = sin (θ) cos (φ),
τy = sin (θ) sin (φ), τz = cos (θ). We then compute this vector in the rotated
frame by doing the quaternion product: Rinters

q = q∗zyr
inters
q qzy. Let us denote

Rinters with [L′x, L
′
y, 0]T . We finally have: L =

√
L′2x + L′2y and q = qzyqz−axis(α),

where qz−axis(α) = cos
(
α
2

)
+ k sin

(
α
2

)
and α = arctan

(
L′
y

L′
x

)
.

4.3.3 Observability Properties

We investigate the observability properties of the system whose dynamics are
given in (4.20) and whose observation function is given in (4.22). We have also
to consider the constraint q∗q = 1. This can be dealt as a further observation
(system output):

hconst(rq, vq, q) = q∗q (4.23)

Finally, we want to investigate whether the parameter k is identifiable or not.
This is done by performing an observability analysis on the extended state S =
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Figure 4.16: The Pelican quadcopter equipped with a monocular camera and a
laser module.

[rq, vq, q, k]T , whose dynamics are given in (4.20) and by the additional equation
k̇ = 0.

We apply the method introduced in [64]. This will allow us to detect all the
observable modes, i.e. all the physical quantities that can be determined by only
using the information contained in the data provided by the IMU and the camera
in a given time-interval.

The system is characterized by the state: S = [rq vq q, k]T , whose dimension
is 11 (rq and vq are imaginary quaternions, i.e. they are characterized by 3 real
numbers; q contains 4 real numbers; k is a real number). The dynamics are given
in (4.20) together with the equation k̇ = 0 and the observations are given in (4.22)
and (4.23). To compute the Lie derivatives, we need to express the dynamics as
follows:

Ṡ = f(S,u) = f0(S) +
L∑
i=1

fi(S)ui (4.24)

We have L = 6 and the six inputs are the three components of the acceleration, A,
and the three components of the angular speed, Ω. Namely: u1 = Ax, u2 = Ay,
u3 = Az, u4 = Ωx, u5 = Ωy, u6 = Ωz. The seven vector functions f0, f1, ..., f6

are:

f0 = [vx, vy, vz, 0, 0, −g, 05]T

f1 = [03, q
2
t + q2

x − q2
y − q2

z , 2qtqz + 2qyqx, −2qtqy + 2qzqx, 05]T

f2 = [03, −2qtqz + 2qyqx, q
2
t + q2

y − q2
z − q2

x, 2qtqx + 2qzqy, 05]T

f3 = [03, 2qtqy + 2qzqx, −2qtqx + 2qzqy, q
2
t + q2

z − q2
x − q2

y, 05]T
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f4 = [06, −1/2qx, 1/2qt, 1/2qz, −1/2qy, 0]T

f5 = [06, −1/2qy, −1/2qz, 1/2qt, 1/2qx, 0]T

f6 = [06, −1/2qz, 1/2qy, −1/2qx, 1/2qt, 0]T

where we denoted with 0n the vector line whose dimension is n and whose entries
are all zeros.

We must compute the Lie derivatives of the two observation functions given
in (4.22) and (4.23) with respect to all the vector fields. By a direct computation,
performed by using the symbolic Matlab computational tool, we were able to find
not more than 6 independent Lie derivatives1.

In particular, according to the notation introduced in [64], the system has 5
continuous symmetries which are:

w1
s = [0, 1, k, 08]T

w2
s = [1, 010]T

w3
s = [04, 1, k, 05]T

w4
s = [03, 1, 07]T

w5
s = [06, qz − kqy, qy + kqz, −qx + kqt, −qt − kqx, 0]T

The observable modes are all the solutions of the system of partial differential
equations associated with the five symmetries. For instance, the equation asso-
ciated with w1

s is ∂
∂ry

+ k ∂
∂rz

= 0 (see [64] for more details). Since this system of

partial differential equations consists of 5 equations on a manifold whose dimen-
sion is 11, the number of independent solutions is 6 = 11 − 5 [42]. A possible
choice of these solutions is:

rz − kry
vz − kvy
2[cksk(−q2

t + q2
x − q2

y + q2
z) + (2c2

k − 1)(qtqx + qyqz)]

4cksk(qtqz + qxqy) + 2(2c2
k − 1)(qtqy − qxqz)

k

q∗q

where ck ≡ cos
(

arctan(k)
2

)
and sk ≡ sin

(
atan(k)

2

)
. By knowing the value of the

first solution, rz−kry and the value of the fifth solution, k, we can determine the

1A possible choice of 6 independent Lie derivatives is: L0hconst, L0hcam, L1
f0

hcam,

L1
f4

hcam, L1
f5

hcam, L2
f0, f0

hcam.
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quantity |rz−kry |√
1+k2 , which is the distance of the vehicle from the planar surface1.

Hence, to better visualize the physical meaning, it is convenient to select the
following 6 observable modes:

m1 =
rz − kry√

1 + k2

m2 =
vz − kvy√

1 + k2

m3 = 2[cksk(−q2
t + q2

x − q2
y + q2

z) + (2c2
k − 1)(qtqx + qyqz)]

m4 = 4cksk(qtqz + qxqy) + 2(2c2
k − 1)(qtqy − qxqz)

m5 = k

m6 = q∗q

Finally, the physical meaning of also m3 and m4 becomes clear by referring
to a new global frame x̃, ỹ, z̃. This frame has the x̃ỹ-plane coincident with
the planar surface. In other words, this new global frame has the vertical axis
coincident with the axis orthogonal to the planar surface. In this new frame, m1

is the z̃-coordinate of the vehicle, m2 is the component of the vehicle speed along
the z̃-axis. m3 and m4 are related to the roll and pitch angles of the vehicle in

the new frame. In particular, the roll angle is arctan

(
m3√

1−m2
3−m2

4

)
and the pitch

is arcsin(m4). m5 is related to the orientation of the x̃ỹ-plane with respect to the
gravity. In particular, the z̃-axis makes an angle arctan(k) = arctan(m5) with
the gravity. m6 is trivially the magnitude of the quaternion, which is 1 since it
describes a rotation.

From now on, we will adopt the new frame to characterize the vehicle con-
figuration. The state in this frame is S̃ = [r̃q ṽq q̃, k]T . The x̃, ỹ, z̃-frame is
obtained by rotating the x, y, z-frame about the x-axis of the angle arctan(k).
Hence, it is characterized by the quaternion:

p = cos

(
arctan(k)

2

)
+ i sin

(
arctan(k)

2

)
(4.25)

Therefore, q = pq̃ or:

q̃ = p∗q (4.26)

By using the quaternion p it is also possible to obtain:

r̃q = p∗rqp ṽq = p∗vqp (4.27)

1In other words, also
rz−kry√

1+k2
is a solution of the system of partial differential equations.
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By using (4.26) and (4.27), we obtain the expressions of the observable modes in
the new coordinates. We have:

m1 = r̃z

m2 = ṽz

m3 = 2(q̃tq̃x + q̃y q̃z)

m4 = 2(q̃tq̃y − q̃xq̃z)
m5 = k

m6 = q̃∗q̃

(4.28)

In particular m1 is the z̃-coordinate of the vehicle, m2 the component of the
vehicle speed along the z̃-axis, m3 and m4 are related to the roll and pitch angles

of the vehicle in this frame. In particular, the roll is arctan

(
m3√

1−m2
3−m2

4

)
and the

pitch is arcsin(m4). m5 is related to the orientation of the x̃ỹ-plane with respect
to the gravity. In particular, the z̃-axis makes an angle arctan(k) = arctan(m5)
with the gravity. m6 is trivially the magnitude of the quaternion q̃, which is 1
since it describes a rotation.

By summarizing the results of the observability analysis performed in this
section we say that the information contained in the data provided by the IMU
and the camera during a given time-interval, allows us to determine the six modes
m1, ..., m6. For this reason, in the rest of the section, we will focus our attention
only on these six quantities (actually, on the first five, since m6 trivially expresses
the constraint of having a unitary quaternion).

4.3.4 Local Decomposition and Recursive Estimation

The goal of this section is to provide a method able to estimate the observable
modes in (Section 4.3.3). To achieve this goal, the first step is to determine
the link between the observable modes and the sensor data. By adopting the
terminology introduced in [41], we have to perform a local decomposition of our
system. We remind the reader that the local decomposition is the extension of
the Kalman canonical decomposition [19] to the case of a non linear system. It
consists in writing the equations characterizing the dynamics and the observation
only in terms of the observable modes. We also remind the reader that in the
non linear case it is often impossible to characterize the system with a unique
decomposition. The decomposition only holds in a local region of the space of
states. This is the reason why it is called local decomposition. To cover the
entire space of states more than one decomposition is required (see [41]). In the
following, we will show that for our system the number of decompositions is two.
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We first provide the dynamics of the state S̃ = [r̃q ṽq q̃, k]T . We obtain:

˙̃rq = ṽq
˙̃vq = q̃Aq q̃

∗ + p∗gqp

˙̃q =
1

2
q̃Ωq

k̇ = 0

(4.29)

A local decomposition for the dynamics is:

ṁ1 = m2

ṁ2 = −m4Ax +m3Ay + ξ(m3, m4)Az + gz

ṁ3 = Ωx ξ(m3, m4) + Ωzm4

ṁ4 = Ωy ξ(m3, m4)− Ωzm3

ġz = 0

(4.30)

where gz is the component of the gravity along the z̃-axis, i.e. gz = −g cos(arctan(k)) =
−g√
1+k2 = −g√

1+m2
5

; the function ξ(m3, m4) depends on the original state and in par-

ticular changes its sign depending on the sign of q̃2
x + q̃2

y − 1
2
:

ξ(m3, m4) ≡


√

1−m2
3 −m2

4 if q̃2
x + q̃2

y <
1

2

−
√

1−m2
3 −m2

4 if q̃2
x + q̃2

y >
1

2

(4.31)

Hence, as previously said, we have two local decompositions for our original
system. The validity of (4.30) can be checked by using (4.28) and (4.29). Note
that deriving (4.30) is troublesome. In contrast, checking its validity is very
simple since it only demands to perform differentiation.

To complete the local decomposition we need to express the camera observa-
tion function in (4.22) in terms of the observable modes. We obtain:

hcam =
Lξ(m3, m4)

m4L−m1

(4.32)

The validity of (4.32) can be checked by using (4.22), (4.25), (4.26), (4.28) and
(4.31).

The equations (4.30) and (4.32) represent a local decomposition for our sys-
tem. They provide the analytical expression of the link between the observable
modes and the sensor data. Specifically, equation (4.30) provides the link be-
tween the observable modes and the IMU data. Equation (4.32) provides the
link between the observable modes and the data delivered by the monocular
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camera. Having these equations allows us to perform the estimation of the state
[m1, m2, m3, m4, gz]. An efficient and simple approach is obtained by using
an Extended Kalman Filter, EKF . To implement this filter it suffices to com-
pute the Jacobian of the dynamics in (4.30) and the Jacobian of the observation
function in (4.32) ([13]).

Let us consider the state m = [m1, m2, m3, m4, gz]. The basic ingredients
to implement an EKF , which estimates m, are the analytical expression of the
Jacobians of the dynamics, and the observation [13].

The Jacobian of the observation is obtained by differentiating the expression
of hcam given in (4.32) with respect to m, i.e.

H ≡ ∂hcam
∂m

=
Lξ(m3, m4)

(m4L−m1)2
×

×
[

1 0 −m3(m4L−m1)

1−m2
3−m2

4

Lm2
3−L+m1m4

1−m2
3−m2

4
0
]

where the function ξ(m3, m4) is defined in (4.31). Regarding the Jacobian of the
dynamics, we need first of all to discretize the equations in (4.30). Let us denote
with δt the discretization time step. The Jacobian of the dynamics with respect
to the state m is:

Fm =


1 δt 0 0 0
0 0 δt (Ay − Azm3) −δt (Ax + Azm4) 0
0 0 −δtΩxm3 δt(Ωz − Ωxm4) 0
0 0 −δt(Ωz + Ωym3) −δtΩym4 0
0 0 0 0 1


where m3 = m3

ξ(m3, m4)
and m4 = m4

ξ(m3, m4)
. The Jacobian of the dynamics with

respect to the input u = [Ax, Ay, Az, Ωx, Ωy, Ωz]
T is:

Fu =


0 0 0 0 0 0
−m4 m3 ξ 0 0 0

0 0 0 ξ 0 m4

0 0 0 0 ξ −m3

0 0 0 0 0 0


where ξ ≡ ξ(m3, m4).

4.3.5 Performance Evaluation

We evaluate the performance of the proposed strategy by using both synthetic
and real data. The advantage of simulations is that the ground truth is perfectly
known and this allows us a quantitative evaluation of the proposed strategy.
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4.3.5.1 Simulations

We simulate many different trajectories in 3D and many different scenarios cor-
responding to different orientation of the planar surface. For all the simulations
we use the proposed strategy to estimate the observable modes, i.e.:

• the distance of the vehicle from the planar surface (d = |m1|);

• the component of the vehicle speed orthogonal to the planar surface (vo =
m2);

• the roll (R) and the pitch (P ) angles in the x̃, ỹ, z̃-frame (i.e. the frame
where the x̃, ỹ-plane coincides with the planar surface);

• the orientation of the plane with respect to the gravity (α). . . .

Specifically, in all the simulations the values of the estimated d, vo, R, P and
α will be compared with the ground truth values.

Simulated Trajectories The trajectories are generated by randomly generat-
ing the linear and angular acceleration of the vehicle at 100 Hz. In particular,
at each time step, the three components of the linear acceleration and the an-
gular speed are generated as Gaussian independent variables whose mean values
will be denoted respectively with µa and µω and whose variances will be denoted
respectively with σ2

a and σ2
ω. We set the parameters to be close to a real case:

µa = 0 ms−2, σa = 1 ms−2, µω = 0 deg s−1 and σω = 10 deg s−1. The initial vehi-
cle position is at x̃ = 0, ỹ = 0, z̃ = 1m. The initial vehicle speed is [1, 0, 0]ms−1

in the x̃, ỹ, z̃-frame.

Simulated Sensors Starting from the performed trajectory, the true angular
speed and the linear acceleration are computed at each time step of 0.01s (re-
spectively, at the time step i, we denote them with Ωtrue

i and Atrue
v i ). Starting

from them, the IMU sensors are simulated by randomly generating the angu-
lar speed and the linear acceleration at each step according to the following:
Ωi = N

(
Ωtrue

i − Ωbias, PΩi

)
and Ai = N

(
Atrue

v i − Agi − Abias, PAi

)
where:

• N indicates the Normal distribution whose first entry is the mean value and
the second its covariance matrix;

• PΩi
and PAi

are the covariance matrices characterizing the accuracy of the
IMU ;

• Agi is the gravitational acceleration in the local frame and Abias is the bias
affecting the data from the accelerometer;
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Figure 4.17: A typical vehicle trajectory in our simulations.

• Ωbias is the bias affecting the data from the gyroscope.

In all the simulations we set both the matrices PΩi
and PAi

diagonal and in
particular: PΩi

= σ2
gyroI3 and PAi

= σ2
accI3, where I3 is the identity 3× 3 matrix.

We considered several values for σgyro and σacc, in particular: σgyro = 1 deg s−1

and σacc = 0.01 ms−2.
Regarding the camera, the provided readings are generated in the following

way. By knowing the true trajectory, and the position and the orientation of the
planar surface, the true bearing angles of the laser spot in the camera frame are
computed1. They are computed each 0.1s. The parameter L is set equal to 0.3m.
Then, the camera readings are generated by adding to the true values zero-mean
Gaussian errors whose variance is equal to (1 deg)2 for all the readings.

Simulation Results Figure 4.17 displays a typical 3D trajectory obtained in
our simulations. The figure also displays the planar surface, consisting of a plane,
which makes an angle of α = π

8
rad = 22.5 deg with the gravity.

Figures 4.18 a and b display the estimated α respectively in the case without
and with bias. The values of the biases adopted in our simulations are: Ωbias =
[0.03 0.03 0.03]T (deg s−1) and Abias = [0.03 0.03 0.03]T (ms−2). As expected,
the estimation in presence of bias becomes worse. However, the error on the
estimated α in presence of bias is smaller than 1 deg.

Figures 4.19, 4.20, 4.21 and 4.22 a and b display respectively the estimated
P , R, vo and d. In each figure, both the cases of unbiased and biased inertial

1This is obtained also by knowing that the laser pointer has the same orientation as the
camera and that it is located at the position [L, 0, 0]
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a b

Figure 4.18: Estimated α in absence (a) and in presence of bias (b) on the inertial
data. Blue dots indicate ground true values while red discs indicate the estimated
values.

measurements are displayed. We initialized the filter by using a value of the
initial observable state which differs from the ground truth by a relative error in
the range [10, 20]%.
We also evaluated the robustness of the filter with respect to systematic errors
on the imu-camera calibration and laser-camera calibration. Specifically, we per-
formed simulations by introducing errors of one cm and one deg on the calibration
parameters. These systematic errors affect the estimated α (the difference with
respect to the ground truth is in the range [4, 6]deg) while for all the other ob-
servable modes the effect is negligible (less than one deg for R and P and less
than 1cms−1 and 1cm respectively for vo and d).

4.3.5.2 Preliminary experiments

In this section we provide preliminary results obtained by using a data set pro-
vided by the autonomous system laboratory at ETHZ in Zurich. The data are
provided together with a reliable ground-truth, which has been obtained by per-
forming the experiments at the ETH Zurich Flying Machine Arena [60], which is
equipped with a Vicon motion capture system. As previously said, the observa-
tions of the laser spot are simulated. This was possible thanks to the fact that
a reliable ground truth was provided together with the inertial data. In particu-
lar, given the true trajectory, we simulated the same planar surface described in
the previous section. By having the true vehicle configuration it was possible to
create the observations performed by the camera on the laser spot produced by
a laser pointer as in the simulations (see the last paragraph in 4.3.5.1).
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a b

Figure 4.19: Estimated P in absence (a) and in presence of bias (b) on the inertial
data. Blue dots indicate ground true values while red discs indicate the estimated
values.

a b

Figure 4.20: Estimated R in absence (a) and in presence of bias (b) on the inertial
data. Blue dots indicate ground true values while red discs indicate the estimated
values.
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a b

Figure 4.21: Estimated v0 in absence (a) and in presence of bias (b) on the inertial
data. Blue dots indicate ground true values while red discs indicate the estimated
values.

a b

Figure 4.22: Estimated d in absence (a) and in presence of bias (b) on the inertial
data. Blue dots indicate ground true values while red discs indicate the estimated
values.
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Figure 4.23 displays the estimated α. Figures 4.24 a and b display the es-
timated P and R and figures 4.25 a and b display the estimated vo and d. All
the observable modes are estimated with very good accuracy. Additionally, we
remark that the convergence of the filter occurs in less than half second for all
the observable modes.

Figure 4.23: Estimated α in the experiment. Blue dots indicate ground true
values while red discs indicate the estimated values.

a b

Figure 4.24: Estimated P (a) and R (b) in the experiment. Blue dots indicate
ground true values while red discs indicate the estimated values.
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a b

Figure 4.25: Estimated vo (a) and d (b) in the experiment. Blue dots indicate
ground true values while red discs indicate the estimated values.

Figure 4.26: The Pelican quadcopter equipped with a monocular camera and a
laser module and passive markers.

4.3.5.3 Camera-laser module calibration

In order to test the Camera-laser module calibration techinique, we equipped our
robot platform (Pelican quadrotor from Ascending Technologies) with a monoc-
ular camera (Matrix Vision mvBlueFOX, FOV : 130 deg) and a Laser Module
(SparkFun TTL, wavelength: 650nm, poweroutput: 0.45-0.8mW ).

The Laser module and the monocular camera are mounted on a fixed baseline,
and the latter is calibrated using the Camera Calibration Toolbox for Matlab [17].
The calibration between IMU and camera has been performed using the Inertial
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Measurement Unit and Camera Calibration Toolbox by Lobo [57].
The results of the Camera-laser module calibration described in Section4.3.2

are the following: θ = 47.1 deg, φ = −3.1 deg and Lx = −0.146 m,
Ly = −0.005 m. The resulting L is 0.100 m. Figure 4.15 represents some steps
of the calibration.

4.3.6 Conclusion

In this section we considered an aerial vehicle equipped with a monocular camera
and inertial sensors. Additionally, a laser pointer is mounted on the vehicle and
it produces a laser spot. The laser spot is observed by the monocular camera
and it is the unique point feature used in the proposed approach. We focused our
attention to the case when the vehicle moves in proximity of a planar surface and
in particular when the laser spot belongs to this surface. The work provided two
main contributions. The former is the analytical derivation of all the observable
modes, i.e. all the physical quantities that can be determined by only using the
inertial data and the camera observation of the laser spot during a short time-
interval. Specifically, it is shown that the observable modes are: the distance of
the vehicle from the planar surface; the component of the vehicle speed, which
is orthogonal to the planar surface; the relative orientation of the vehicle with
respect to the planar surface; the orientation of the planar surface with respect to
the gravity. Once the observed modes have been derived, a local decomposition
of the original system has also been provided. This decomposition separates
the observable modes from the rest of the system and allowed us to introduce a
simple recursive method to perform the estimation of all the observable modes
(second contribution). The use of a virtual laser spot feature overcomes the limits
of feature tracking algorithms and makes our approach suitable to work even in
dark or featureless environment. The method is validated by using synthetic data.
The validation with real data is in progress. We presented a low-cost low-weight
sensor suite and a low computational complexity approach in the framework of
aerial navigation. It can be integrated in the framework of autonomous takeoff
and landing, safe touch-down and low altitude manoeuvres. However, we want
to emphasize that both the contributions are very general and can be applied
in other frameworks. In particular, in all the environment where GPS is denied
and where the most of objects have planar surfaces (e.g. in an indoor or city-like
environment). For instance, these contributions could be used in the framework
of humanoid robotics (where visual and inertial sensing are often adopted and
the navigation usually occurs in an indoor environment).
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Chapter 5

Conclusions

This dissertation tackles the problems of data association and pose estimation
of a camera-IMU system, with a focus on MAVs navigation. Due to the limited
computation resources of MAVs, a particular attention is devoted to the study of
low computational complexity techniques.

Two methods to perform outlier detection on computationally-constrained mi-
cro aerial vehicles are presented. The algorithms rely on on-board IMU measure-
ments to calculate the relative rotation between two consecutive camera frames
and the reprojection error to detect the inliers. The first method assumes that
vehicle’s motion is locally planar, while the second method includes the general
case of a 6DoF motion. Even if the 5-point RANSAC is the “golden standard
method” for 6DoF motion estimation, experimental results shows that the pro-
posed Me-RE and 2-point RANSAC algorithms can be used as a first choice
before committing to the 5-point RANSAC due to their very low computational
complexity. Considering that the Me-RE algorithm relies on the local planar
motion assumption, we remark that it can replace the 5-point algorithm if the
motion of the vehicle is smooth and the camera framerate is high. We show that
the Me-RE algorithm outperforms standard RANSAC-based methods by up to
two orders of magnitude in speed, while being able to identify the majority of the
inliers. The motion can then be refined applying standard methods [89], [38] to
the remaining inliers. We show that in the case of a monocular camera mounted
on a quadrotor vehicle, motion priors from IMU can be used to discard wrong
estimations in the framework of a 2-point-RANSAC based approach.

For what concerns the pose estimation problem, two low computational com-
plexity algorithms are provided.

The first is a new approach to perform MAV localization by only using the
data provided by an Inertial Measurement Unit and a monocular camera. The
approach exploits the so-called “planar ground assumption” and the geometric
constraints encoded in a virtual pattern made by three natural point features
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belonging to the ground plane. It is based on a closed solution which provides
the vehicle pose from a single camera image, once the roll and the pitch an-
gles are obtained by the inertial measurements. This makes the approach very
simple in terms of computational complexity and robust since the closed form
solution makes unnecessary any initialization. The very low computational cost
of the proposed approach makes it suitable for pose control in tasks like hovering,
autonomous take off and landing.

In order to overcome the limits of feature tracking algorithms and to provide
a solution for featureless or dark environments, we introduce the concept of vir-
tual features. We consider an aerial vehicle equipped with a monocular camera,
inertial sensors and a laser pointer. We suppose that the vehicle is moving in the
surrounding of a planar surface whose orientation is unknown (assumption that
holds in indoor or city-like environments and on landing platforms) and that the
laser spot produced by the laser pointer belongs to this surface. The laser spot is
then observed by the monocular camera and it represents the unique point feature
used in the proposed approach. The difference with respect to classical vision and
IMU data fusion problems is that in this case the feature is moving jointly with
the vehicle. We analytically derive all the physical quantities (called “observable
modes”) that can be determined by only using the information contained in the
inertial data and the camera observation of the laser spot during a short time-
interval. Specifically, it is shown that the physical quantities we can estimate are:
the distance of the vehicle from the planar surface; the component of the vehicle
speed which is orthogonal to the planar surface; the relative orientation of the
vehicle with respect to the planar surface; the orientation of the planar surface
with respect to the gravity. Once having derived the observable modes, a local
decomposition of the original system is provided. This decomposition separates
the observable modes from the rest of the system and allowed us to introduce a
simple recursive method to perform the estimation of all the observable modes.
Additionally this decomposition provides the link between them and the sensor
data. This corresponds to write the equations characterizing the dynamics and
the observations only in terms of the observable modes and it is performed by
using an extension of the Kalman Canonical decomposition for nonlinear systems
[64]. Once obtained the local decomposition, we estimate the observable subspace
by using an Extended Kalman Filter.

All the algorithms described in this dissertation have been developed in the
framework of MAVs navigation. However, they can be used wherever is required
low computational complexity and low payload budget.
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5.1 Research Outlook

Since the performed experiments provided encouraging results, future work will
include supplementary performance evaluations.

Moreover, the contributions presented in this dissertation can be extended in
the following directions:

1. The first one aims to the data association issue.

1.1 1-point algorithm - Real-time on-board implementation, considering
the standard deviation of the distribution of the α computed from all
the feature correspondences (3.10) as an index of reliability of the Me-
RE algorithm. The feature matching set will be preprocessed at each
timestamp with the Me-RE algorithm. If the variance of the afore-
mentioned distribution will be higher than a predefined threshold, the
resultant motion hypothesis will be discarded and a 5-point algorithm
will be run on the whole matching set. On the contrary, the 5-point
algorithm will be run only on the resultant inlier set.

1.2 2-point algorithm - Real-time on-board implementation, considering
smart policies for the choice of the pairs of features to use (based for
example on the feature positions in the image plane and not only on
their relative position) in order to reduce the computational complexity
of the approach.

2. The second one addresses the pose estimation problem.

2.1 Virtual patterns - Implementation with natural features with smart
policies for the choice of the triplet of features to use. Additionally
it would be interesting to analyse the computational complexity ver-
sus the robustness of the algorithm while considering virtual patterns
made by more than three features.

2.2 Virtual features - Real-time on-board implementation to perform au-
tonomous landing and safe touchdown tasks in dark or featureless envi-
ronments. It is therefore important to consider laser patterns (instead
of a single spot) in order to improve the precision. Additionally, we
remarked that the performance depends on the laser-module configu-
ration in the camera frame. Hence, the performance can be improved
by using a laser module with a servomotor which changes the config-
uration according to the vehicle trajectory.
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