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Résumé

Le Cloud Computing est en plein essor, grâce à ses divers avantages, tels

l’élasticité, le coût, ou encore son importante flexibilité dans le développement

d’applications. Il demeure cependant des problèmes en suspens, liés aux per-

formances, à la disponibilité, la fiabilité, ou encore la sécurité. De nombreuses

études se focalisent sur la fiabilité et les performances dans les services du

Cloud, qui sont les points critiques pour le client. On retrouve parmi celles-ci

plusieurs thèmes émergents, allant de l’ordonnancement de tâches au place-

ment de données et leur réplication, en passant par la tolérance aux fautes

adaptative ou à la demande, et l’élaboration de nouveaux modèles de fautes.

Les outils actuels évaluant la fiabilité des services du Cloud se basent sur

des paramètres simplifiés. Ils ne permettent pas d’analyser les performances

ou de comparer l’efficacité des solutions proposées. Cette thèse aborde pré-

cisément ce problème en proposant un modèle d’environnement complet de

test destiné à évaluer la fiabilité et les performances des services de Cloud

Computing. La création d’outils de tests destinés à l’évaluation de la fiabilité

et des performances des services du Cloud pose de nombreux défis, en raison

de la grande quantité et de la complexité des données traitées par ce genre

de services. Les trois principaux modèles de Cloud Computing sont respec-

tivement: Infrastructure en tant que Service (IaaS), Plate-forme en tant que

Service (PaaS) et Logiciel en tant que Service (SaaS).Dans le cadre de cette

thèse, nous nous concentrons sur le modèle PaaS. Il permet aux systèmes

d’exploitation ou aux intergiciels d’être accessibles via une connexion inter-

net. Nous introduisons une architecture de test générique, qui sera utilisée

par la suite lors de la création d’outils de tests, destinés à l’évaluation de la

fiabilité et de la performance.

Les contributions de cette thèse sont les suivantes:

Une architecture pour définir les charges de travail, de données et de

fautes pour le test d’un service de Cloud. Cette architecture est des-

tinée à la création d’outils de tests permettant l’injection de ces dif-

férents types de charges dans un service de Cloud réel, afin de produire

des statistiques liées à la fiabilité, la disponibilité, ou encore la perfor-

mance. La thèse démontre finalement comment l’utilisation d’une telle

architecture facilite la création d’outils de tests fiables et rentables, dans

le cadre des services du Cloud.

La conception et le développement d’outils de tests destinés à l’évaluation

de la fiabilité et de la performance des services MapReduce déployés dans

une infrastructure de Cloud publique. L’un de ces outils est MRBS (MapRe-
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duce Benchmark Suite). Il teste cinq aspects couvrant plusieurs do-

maines d’application, et propose un large éventail de scénarios d’exécution

tels que: des applications orientées données vs. des applications orien-

tées calcul, des applications interactives vs. des applications par lots.

La conception et le développement d’outils de tests destinés à l’évaluation

de la fiabilité et de la performance pour un service Cloud de gestion de

mémoire cache distribuée. Le prototype développé se nommeMemCB (Mem-

Cached Benchmarking). Il permet l’injection de différentes fautes telles

que des pannes de nœud ou des pannes de réseau dans un service Mem-

cached en ligne. Il produira par la suite diverses statistiques liées à la

performance et à la fiabilité.

Dans l’ensemble, cette thèse apporte une vision objective et systémique

d’une classe émergente et importante de systèmes informatiques. Elle facilite

l’adoption d’outils de tests destinés à l’évaluation de la fiabilité et de la per-

formance, afin de mieux les quantifier et appréhender leur importance.

Mots-clés: Outils de test, Analyse comparative, Fiabilité, Tolérance aux

pannes, Évaluation de performance, Cloud Computing, MapReduce, Hadoop,

Memcached
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Abstract

Cloud computing models are attractive because of various benefits such as

scalability, cost and flexibility to develop new software applications. However,

availability, reliability, performance and security challenges are still not fully

addressed. Dependability is an important issue for the customers of cloud

computing who want to have guarantees in terms of reliability and availabil-

ity. Many studies investigated the dependability and performance of cloud ser-

vices, ranging from job scheduling to data placement and replication, adaptive

and on-demand fault-tolerance to new fault-tolerance models. However, the

ad-hoc and overly simplified settings used to evaluate most cloud service fault-

tolerance and performance improvement solutions pose significant challenges

to the analysis and comparison of the effectiveness of these solutions.

This thesis precisely addresses this problem and presents a benchmarking

approach for evaluating the dependability and performance of cloud services.

Designing of dependability and performance benchmarks for a cloud service

is a particular challenge because of high complexity and the large amount of

data processed by such service. Infrastructure as a Service (IaaS), Platform as

a Service (PaaS) and Software as a Service (SaaS) are the three well defined

models of cloud computing. In this thesis, we will focus on the PaaS model

of cloud computing. PaaS model enables operating systems and middleware

services to be delivered from a managed source over a network. We introduce a

generic benchmarking architecture which is further used to build dependability

and performance benchmarks for PaaS model of cloud services.

Specifically, the dissertation contribute the following:

A reusable architecture to define workload, dataload and faultloads for

benchmarking a cloud service. This architecture is further used to build

benchmarks that allows to inject various workloads, dataloads and fault-

loads, in a real cloud service and produce extensive reliability, availability

and performance statistics. Finally, the dissertation demonstrates how

the use of a general architecture benefits to build dependability and

performance benchmarks for cloud services in a cost efficient manner.

Design and development of dependability and performance benchmark

for MapReduce service deployed in a public cloud infrastructure. One

interesting outcome is MRBS (MapReduce Benchmark Suite), a com-

prehensive benchmark suite for evaluating the dependability and perfor-

mance of MapReduce systems. MRBS includes five benchmarks covering

several application domains and a wide range of execution scenarios such
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as data-intensive vs. compute-intensive applications, or batch applica-

tions vs. online interactive applications.

Design and development of dependability and performance benchmark

for a distributed memory object caching cloud service, where the soft-

ware prototype developed is named MemCB (MemCached Benchmark-

ing). This supports injection of various faults such as node faults and

network faults in an online Memcached service and produce the perfor-

mance and dependability statistics.

Overall, the dissertation develops a more objective and systematic under-

standing of an emerging and important class of computer systems. The work

in this dissertation helps further accelerate the adoption of dependability and

performance benchmarks to get better understanding of prominent quality

attributes.

Keywords: Benchmarking, Dependability, Fault tolerance, Performance,

Cloud Computing, MapReduce, Hadoop, Memcached
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1.1 Background & Motivation

Cloud computing services emerged as a result of work towards organizing and

provisioning computational resources. Typically, these services are owned by

service providers that let consumers utilize cloud resources in a pay-as-you-go

fashion: the consumer pays only for the resources that were actually used to

solve its problem (for example: bandwidth, storage space, CPU utilization).

This phenomenon not only increased revenue for cloud service providers, but

also decreased costs for cloud service users.

Cloud computing promises to provide reliable and user-friendly services de-

livered through next-generation data centres that are build on virtualized com-

putational and storage technologies. As cloud computing is evolving, many

cloud services are provided. By and large, these services are being used to

manage large amounts of varying and complex data1. MapReduce is one of

the example of a popular Big Data cloud service, largely used by companies

for a wide range of applications such as log analysis, data mining, scientific

computing, bioinformatics, decision support or business intelligence. MapRe-

duce and other such cloud computing services are increasingly being used in

various industry domains such as financial services, retail, entertainment, or

healthcare.

Use of cloud services for large scale data analysis has a series of interesting

advantages:

Performance and scalability are the advantages that can be achieved

by migrating the data and computation to a cloud service. Since, it is

in the interest of the providers to serve as many customers as possible,

clouds can easily grow to huge sizes. Thus, a consumer is able to utilize

virtually an unlimited number of resources, provided it has the money

to pay for them.

Reliability and availability are other potential benefits that can be

guaranteed using a cloud service since such service is supported upon

a reliable distributed storage system. Cost and reliability are one of

the main drivers for the interest in cloud computing. Service avail-

ability is among the top challenges and opportunities for cloud service

providers [Armbrust et al., 2010]. Google Search is known for being

highly available, to the point that even a small disruption becomes a

news. Users expect similar availability from new cloud services.

Data can be better managed. Many of the big data and business

intelligence tools provide service users with the freedom and flexibility

1This data is also referred as big data.



4 Chapter 1. Introduction

to work with data without going through too many complex technical

details.

Cloud computing deployment model can be among any of the following

types [Rimal et al., 2009]:

Public Cloud

This is the traditional mode of cloud computing, where an outside ser-

vice provider is responsible for providing and dynamic provisioning of

data and computation resources over the web. Technically there is no

difference between public and private cloud architecture, however, se-

curity consideration may be substantially different for services (applica-

tions, storage, and other resources) that are made available by a service

provider for a public audience and when communication is effected over

a non-trusted network. Generally, public cloud service providers like

Amazon AWS, Microsoft and Google own and operate the infrastruc-

ture and offer access only via Internet.

Private Cloud

In this mode, data and processes are managed within the organization

without the restrictions of network bandwidth, security and other legal

issues that public clouds have. The initial investment needed to build

a private cloud is generally high. However, this ensures better privacy

and data security than a public cloud service.

Hybrid Cloud

This mode consists of multiple internal and external service providers.

It can be considered as a composition of two or more clouds (public or

private). Using this model, service providers can obtain higher degrees

of fault tolerance and usability without dependency on internet connec-

tivity. Hybrid cloud architecture requires both on-premises resources

and off-site (remote) server-based cloud infrastructure.

Community Cloud

In this mode of cloud computing, several organizations share and sup-

port a cloud infrastructure. The goal of a community cloud is to have

participating organizations realize the benefits of a public cloud such

as multi-tenancy and a pay-as-you-go billing structure, with the added

level of privacy, security and policy compliance usually associated with

a private cloud. The community cloud can be either on-premises or off-

premises, and can be governed by the participating organizations or by

a third-party service provider.



1.1. Background & Motivation 5

Using any of these modes, cloud computing services can be primarily clas-

sified into three layers, as illustrated in Figure 1.1.

Infrastructure as a Service (IaaS). IaaS model enables the entire in-

frastructure to be delivered as a service over a network, including storage,

routers, virtual systems, hardware and servers. Rather than directly renting

servers, software, disks or networking equipment, cloud consumers customize

virtual machine images, store the images and application data remotely us-

ing the storage service, and then finally launch multiple VM instances on the

cloud. Fees are charged on an utility basis that reflects the amount of raw

resources used: storage space-hour, bandwidth, memory consumed, etc. A

popular cloud service provider is Amazon, which provides its service by Ama-

zon EC2 [Ama, 2011a]. Other examples of IaaS providers are Windows Azure,

Rackspace, and IBM smartcloud [Sma, 2013], [Rac, 2013].

Platform as a Service (PaaS). PaaS model enables operating systems

and middleware services to be delivered from a managed source over a network.

It provides higher level programming and execution environments. Services at

this level aim at freeing the consumer from having to configure and manage

industry-standard application frameworks (for example Hadoop [Had, 2011a]),

on top of which distributed applications are build, directly at IaaS level.

Google App Engine is a well known PaaS provider [Goo, 2011].

Software as a Service (SaaS). At the highest level is SaaS, which aims

at delivering end user applications directly as a service over the Internet,

freeing the consumer from having to install any software on his/her local

machine. Most often, a simple web browser is enough to perform all necessary

interactions with the application. Google Apps is one of the leading examples

of a SaaS provider.

As cloud services emerged, traditional applications are also being migrated

to the cloud environments because of scalability objectives. There have been

performance issues related to migration of traditional applications to a cloud

environments. This is because applications not optimized for cloud-based

platforms. Sometimes, there might be some restrictions related to data place-

ments because of security challenges that further aggregates the performance

challenges. For some critical applications, performance is not enough. Cloud

service customers also need to guarantee a set of application-specific avail-

ability levels. Measuring and analysing the performance and dependability of

cloud services is a serious challenge. State of art approaches for dependability

and performance benchmarking suffers from cloud computing services specific

design challenges. Cloud computing is a relatively new domain. There are

very few standard dependability and performance benchmarks designed for

cloud computing services.
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Figure 1.1: Cloud computing services and technologies as a stack of layers

1.2 Problem Statement & Research Challenges

Cloud computing models seems to be attractive because of various benefits

such as: scalability, cost and flexibility to develop new software applications.

However, there are still various challenges related to availability, reliability,

performance and data security issues of cloud services. Table 1.1 shows some

recent incidents, where well known cloud services remains unavailable (or took

high time to load) for a significant time. This data has been taken from Net-

workWorld2 [Net, 2013]. The reasons for unavailability of these cloud services

were not very clear. For example, In the case of unavailability issue of Ama-

zon, there were speculations of denial-of-service attacks. However, experts

believed that it might be due to internal issues in the cloud service. Industry

experts also estimated that Amazon could have potentially suffered close to

5 million dollars of revenue for that single hour of offline time. Interestingly,

the reasons of unavailability for other cloud services were minor issues such as

an outdated network control software, faulty hardware, DNS problem or an

internal router problem. There are various other examples of unavailability

of cloud services in the recent past [CRN, 2012, Inf, 2011]. These incidents

2Network World is a weekly IT publication that provides news and information to net-

work executives.
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Table 1.1: Incidents of cloud outages in 2013 [Net, 2013]

Name of the

Company/Service
Outrage Date

Duration

of the

Outrage

Outrage Issue

Dropbox January 10, 2013 16 hours Service Unavailable

Facebook January 28, 2013 2-3 hours Service Unavailable

Amazon January 31, 2013 49 minutes Service Unavailable

Microsoft/Outlook.com February 1, 2013 2 hours Service Unavailable

Google Drive March 18-19, 2013 17 hours Slow Load time

Dropbox May 30, 2013 90 minutes Service Unavailable

reveal the fact that there is a need to address dependability issues for easy

and faster adoption of cloud services by the end users.

Dependability is an important issue for the customers of cloud computing

who want to have guarantees in terms of reliability and availability. Although

much work has been done in security and hardware in general distributed

computing systems, many problems still lie in characterization of dependabil-

ity of cloud computing. There is a lack of efficient approaches to characterize

the availability, reliability and performance of cloud services. We argue that

traditional approaches to characterize dependability and performance, may

not be appropriate for modern applications in cloud computing. In this con-

text, there has been a considerable interest in improving the dependability

and performance of cloud services.

Many studies investigated the dependability and performance of cloud ser-

vices, ranging from job scheduling to data placement and replication, migra-

tion of virtual machines, adaptive and on-demand fault-tolerance to new fault-

tolerance models [Voorsluys et al., 2009, Jackson et al., 2010, Pham et al., 2012].

However, the ad-hoc and overly simplified settings used to evaluate cloud ser-

vice dependability and performance improvement solutions, pose significant

challenges to the analysis and comparison of the effectiveness of these solu-

tions [Stantchev, 2009]. Performance of cloud services is evaluated using inad-

equate workloads, which may not represent real-world scenarios. Approaches

to characterize and empirically evaluate dependability and performance of

cloud services using realistic workloads, dataloads and faultloads, are missing.

This thesis precisely addresses this issue and presents a benchmarking

approach for evaluating the dependability and performance of cloud services.

Our objective in this dissertation is to create the process of dependability and

performance benchmarking for cloud services more objective and systematic.

We first introduce a benchmarking architecture which is further used to build

dependability and performance benchmarks for PaaS model of cloud services.

The work in this dissertation further helps in accelerating the adoption of
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dependability and performance benchmarks and therefore aid in getting a

better understanding of prominent quality attributes such as performance and

dependability.

Designing of dependability and performance benchmark for a cloud service

is a particular challenge because of high complexity and the large amount of

data processed by such service. Few reasons, why achieving dependability in

addition to performance is a serious challenge for cloud services are following.

Heterogeneity of cloud infrastructures. Different technologies from

different competing vendors of cloud infrastructure need to be integrated

for establishing a reliable system. This integration makes the cloud

services complex and creates multiple centres for failures. Sharing of

cloud resources by entities that engage in a wide range of behaviors, can

expose cloud applications to increased risk levels.

Challenges of public cloud infrastructures. Using a public cloud

means that the platform is no longer under one’s own control. Depending

on the type of the cloud service, the platform may mean one of several

things; at least it includes the physical machines but may also include

higher layers like a complete runtime system which introduces new chal-

lenges. Most importantly, the underlying physical resources (i.e., the

machines and the network) are shared between multiple customers and

applications and cannot be actively managed.

Multiple cloud platform services. Multiple instances of an appli-

cation might be running on several virtual machines. In the event of

server failures, there are automatic fail-over mechanisms that guaran-

tee against data loss. However, there are no techniques to measure the

effectiveness of these fail-over mechanisms for cloud services.

Dependability and performance issues in cloud services. Avail-

ability, reliability, and performance are serious challenges for applica-

tions hosted on cloud infrastructures. There are a number of areas that

impact the dependability and performance such as network vulnerability,

multi-site redundancy and storage failure. Without efficient approaches

that can quantify dependability and performance levels, cloud service

providers cannot provide a minimum service level agreement (SLA) guar-

antee.

Quantifying the dependability and performance in cloud ser-

vices. The quality attributes such as reliability, availability and per-

formance are very critical for cloud computing services. But, it is hard
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to analyze these attributes due to the complex characteristics of cloud

services such as massive-scale data sharing, wide-area network, hetero-

geneous software/hardware components and complicated interactions

among them. Moreover, there are no formal metrics for evaluating reli-

ability, availability and performance for cloud computing services.

Design of a performance and dependability benchmark for a cloud com-

puting service must address these challenges. The benchmark must cover

these scenarios in its implementation to provide a better realistic estimate of

performance and dependability levels of the service to the users. The bench-

mark must provide a variety of execution scenarios that are realistic for cloud

services. In addition, it should also provide a range of fault scenarios that

can be emulated by the users. This thesis is an attempt to make cloud ser-

vices dependability and performance benchmarking process more focused and

systematic.

1.3 Contributions of the Thesis

In this thesis, we consider the problem of benchmarking dependability and

performance of cloud services. Specifically, this dissertation contributes the

following:

A reusable architecture to define workload, dataload and faultloads for

benchmarking cloud services. This architecture is further used to build

benchmarks that allows to inject various workloads, dataloads and fault-

loads, in a real cloud service and produce extensive reliability, availabil-

ity and performance statistics. Finally, the dissertation demonstrates

how the use of a general architecture benefits to build dependability

benchmarks for cloud services in a cost efficient manner.

Design and development of dependability and performance benchmark

for MapReduce service deployed in a public and private cloud infrastruc-

tures. One interesting outcome is MRBS, a comprehensive benchmark

suite for evaluating the dependability and performance of MapReduce

systems. MRBS includes five benchmarks covering several application

domains and a wide range of execution scenarios such as data-intensive

vs. compute-intensive applications, or batch applications vs. online

interactive applications.

Design and development of dependability and performance benchmark

for a distributed memory object caching cloud service, where the soft-
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ware prototype developed for dependability and performance bench-

marking is named as MemCB. This benchmark supports injection of

various faults such as node faults and network faults in an online Mem-

cached service and produce the performance and dependability statistics.

Overall, the dissertation develops a more objective and systematic under-

standing of an emerging and important class of computer systems. The work

in this dissertation further helps in accelerating the adoption of dependabil-

ity and performance benchmarks to get better understanding of prominent

quality attributes such as performance and dependability.

1.4 Main Results

Publications

The work in this thesis led to following major publications.

A. Sangroya, D. Serrano and S. Bouchenak. Experience with Bench-

marking Dependability and Performance of MapReduce Sys-

tems. IEEE Transactions on Dependable and Secure Computing (TDSC),

under submission

A. Sangroya, D. Serrano, S. Bouchenak. Benchmarking Dependabil-

ity of MapReduce Systems. 31st IEEE International Symposium on

Reliable Distributed Systems (SRDS). Irvine, California, Oct 2012

A. Sangroya, D. Serrano and S. Bouchenak. MRBS: Towards De-

pendability Benchmarking for Hadoop MapReduce. Workshop

on Big Data Management in Clouds (BDMC) in conjunction with Euro-

Par. Rhodes Island, Greece, Aug. 2012

A. Sangroya, D. Serrano, S. Bouchenak. Towards a Dependability

Benchmark Suite for MapReduce. Poster at EuroSys 2012, Bern,

Switzerland. Apr 2012

L. Lemke, A. Sangroya, D. Serrano and S. Bouchenak. Evaluer la

tolérance aux fautes de systèmes MapReduce. Conférence d’informatique

en Parallélisme, Architecture et Système (ComPAS). Grenoble, France,

Jan 2013

Software Developed

Two software prototypes are developed as part of this thesis: MRBS

and MemCB. The distribution of the prototypes developed as part of this
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thesis is free and publicly available. MRBS is available as a software proto-

type to help researchers and practitioners to better analyze and evaluate the

dependability and performance of MapReduce systems; it can be downloaded

from: http://sardes.inrialpes.fr/research/mrbs.

Table 1.2: Statistics from MRBS website
Visits 980

Unique Visitors 550

Pageviews 3,394

Average Visit Duration 00:02:28

% New Visits 55.71%

Country

France, United States, Brazil, China,

India, United Arab Emirates,

Germany, Spain, Portugal, Canada

Table 1.2 shows the statistics from the MRBS website. Between June 5,

2012 and January 1, 2014, MRBS webpage is visited 980 times ( including 550

unique visitors). The visitors comprises of 410 visitors from France, 160 from

United States, 109 from Brazil, and others from China, India, United Arab

Emirates, Germany, Spain, Portugal and Canada. MRBS software prototype

is downloaded and being used by approximately 60 academic and research

groups. People from industry and academia download MRBS for various rea-

sons such as:

For benchmarking an in-house developed MapReduce framework.

Comparing two different versions of Hadoop framework.

Evaluating Hadoop performance.

Tuning the Hadoop for best values of configuration parameters.

Testing fault-tolerance of large scale systems including MapReduce sys-

tems.

Finding out the performance bottlenecks of Hadoop MapReduce.

Studying the performance and scalability of MapReduce applications in

local cluster.

Looking for an alternative to micro-bencmarks such as TeraSort for

Hadoop clusters.
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1.5 Organization of the Document

This thesis is organized as follows:

Chapter 1

In Chapter 1, we provided an introduction to the problem of dependabil-

ity and performance benchmarking of cloud services. We also presented the

addressed scientific and technical challenges, and a summary of the main con-

tributions of this thesis.

Chapter 2

Chapter 2 discusses the existing work related to the problem of dependabil-

ity and performance benchmarking of cloud services. This chapter presents

the state of art of dependability and performance benchmarking. We focus

upon the work done in the area of dependability and performance bench-

marking of cloud services. However, since cloud computing is relatively a new

paradigm, we also study the approaches in other domains of computing such

as web servers, hardware, database systems, middleware etc. The generic

dependability and performance benchmarking architecture proposed in this

thesis is based on the ideas and principles proposed in designing benchmarks

in existing application domains. Moreover, in this chapter, we also present

the scientific and research challenges to design and develop dependability and

performance benchmark for cloud computing services.

Chapter 3

In Chapter 3, we introduce the generic architecture of dependability and

performance benchmarking of cloud services. We validate the architecture

by performing two case studies, which are discussed in detail in Chapters 4

and 6. This chapter consists of two main parts. The first part presents the

system model including the general terms and definitions used in designing

the benchmark architecture. We define terms such as workload, faultload and

dataload in the context of cloud computing environments. Thereafter, we

present the generic architecture and the details of how such architecture can

be used to build software frameworks. The second part is a summary of the

case studies that are done to validate the proposed architecture. The detailed

case studies are presented in the following chapters. We conclude this chapter

by highlighting the advantages of this architecture. Here, we describe how

the use of a generic architecture can help to reduce the cost in building new

software prototypes increasing further the usability and adaptability.

Chapter 4

MapReduce is a widely used cloud service for large data processing. Hadoop

is a popular framework and run time environment that support MapReduce

service deployed on private and public cloud. Hadoop supports fault tolerance
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by automatic management of data and computation in case of software and

hardware faults. This chapter, thus begins with providing a rich background

on MapReduce framework. It then present a background on hadoop and how

it supports fault tolerance. It then presents MRBS a comprehensive bench-

mark suite for evaluating the dependability and performance of MapReduce

systems Thereafter, details of using MRBS for dependability and performance

and analysis are presented. This chapter also includes a wide experimental

evaluation with MRBS.

Chapter 5

MRBS has several possible uses, among which helping developers and

testers to better analyze the fault-tolerance of MapReduce systems, or to

better choose the configuration of the MapReduce cluster to provide service

level guarantees. This chapter includes interesting case studies with using

MRBS. The case studies are performed both from the perspective of a cloud

service provider and cloud service user.

Chapter 6

To validate the generality of architecture proposed in Chapter 3, we make

use of the same design to build a prototype to another cloud service Mem-

cached. This chapter describes the design and development of this prototype.

It shows, first of all, an example Memcached service, fault tolerance in Mem-

cached service. Thereafter, this chapter provides an overview of faultload,

workload and dataload for this benchmark. Then it covers the experiments

done to benchmark dependability and performance of Memcached service.

Chapter 7

This chapter summarizes the main contribution of this work. It also opens

new elements of thought and some research perspectives.
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2.1 Introduction

Performance and dependability benchmarking allows to evaluate the impact

of faults over the various quality aspects of software products, ranging from

operating systems, to databases and web servers. The basic idea is to define an

evaluation process that proposes a set of performance and dependability mea-

sures to characterise the quality of a particular software component; identifies

the execution profile and experimentation setup to deploy; establishes the ex-

perimental procedure to follow; the time available for experimentation; and the

procedure to retrieve the measurements required to deduce the performance

and dependability measures from the system under test. Fault injection is a

well known basic technique underpinning this type of benchmarking. Faults

are used to emulate during experimentation the occurrence of disturbances

and observe the resulting system reaction.

Benchmarking is particularly a very important technique for evaluating

distributed systems and services. It has been invaluable in helping service

providers and users identify problems, analyze causes, and evaluate solutions.

Various research and industry standard performance benchmarking solutions

exist for some application domains such as TPC-C that evaluates on-line trans-

action processing (OLTP) systems [TPC, 2011b], TPC-H for benchmarking

decision support systems [TPC, 2011a].

The economy model behind cloud computing services prompted their adop-

tion especially in the private sector. Industry giants such as: Amazon, Google,

Microsoft, etc. develop and offer a wide range of cloud services. At the same

time, cloud projects are also under development in academia as a series of re-

search projects and open source initiatives [Cerbelaud et al., 2009]. Following

is the list of popular cloud computing service providers:

Amazon EC2. provides a virtual computing environment that exposes

a web service interface to the consumer through which it can launch virtual

instances of a variety of operating systems, that can be loaded with custom

application environments [Ama, 2011a]. The consumers can dynamically ad-

just the number of such instances through the same interface. A large pool of

predefined virtual machine images, called Amazon Machine Images (AMIs) is

provided, that can be directly used as such or customized to form new AMIs.

The cost for using EC2 is measured in instance-hours. A specialized storage

service, Amazon S3, is provided that is responsible to store both AMIs and

consumer data [Ama, 2013].

Google App Engine. is a PaaS that enables consumers to to build and

host web applications [Goo, 2011]. It offers fast development and deployment

that is coordinated through simple, centralized administration. The service is
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free up to a certain resource utilization level, after which a low pricing scheme

is applied. Fee is charged for storage space-hour, bandwidth and CPU cycles

required by the application.

Microsoft Azure. is the cloud service from Microsoft that runs on a

large number of machines, all located in Microsoft data centres [Win, 2013].

It is based on a fabric layer that aggregates the computational resources into

a whole, which is the used to build compute and storage services that are

offered to the consumer. Developers can build applications on top of languages

commonly supported by Windows, such as C#, Visual Basic, C++, Java,

ASP.NET, using Visual Studio or another development tool.

Nimbus. is an open source toolkit that allows institutions to turn their

cluster into an IaaS cloud [Nim, 2013]. This is interface-wise compatibility

with the Amazon EC2 API. Data storage support is provided by Cumulus,

which is compatible with the Amazon S3 API. It is based on an extensible

architecture that allows easy customization.

Eucalyptus. is an open-source toolkit that started as a research project

at University of California, Santa Barbara [Nurmi et al., 2009]. It implements

IaaS using existing Linux-based infrastructure found in modern data centres.

Its interface is compatible with Amazon’s EC2 API enabling movement of

workloads between EC2 and data centres without modifying any code.

OpenNebula. is another open-source toolkit, specifically designed to sup-

port building clouds [Sempolinski and Thain, 2010]. It can be integrated with

a wide range of storage and networking solutions to fit a broad class of data

centres, in order to form a flexible virtual infrastructure which dynamically

adapts to changing workloads.

Despite of extensive and growing demand of cloud computing services, little

has been reported on dependability and performance benchmarking in cloud

computing services. This motivates and facilitates the advances proposed in

the dissertation. This chapter gives a quick overview of dependability and

performance benchmarking in various application domains. We focus upon

the dependability and performance benchmarks proposed in cloud computing

services such as MapReduce, studied in this dissertation. This chapter sum-

marises the results of a wide survey of existing approaches for performance

and distributed computing in various diverse areas of computing systems such

as distributed systems, hardware, operating systems, database systems, web

services, cloud computing among others.

In particular, we categorize the existing work into two dimensions:

1. Benchmark approaches focusing upon the performance issues.

2. Benchmark approaches focusing upon the dependability issues.
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2.2 Existing Approaches of Dependability Bench-

marking

In this section, we present a brief summary of dependability benchmarks pro-

posed in various application domains. We conduct a small study in various

application domains of computing to see if dependability benchmarks exist in

those domains or not. The application domains that we consider are hard-

ware; cluster computing; operating systems; database systems; web servers;

and web services. Here, we present a brief summary of state of art approaches

in dependability benchmarking in all these domains:

Hardware

In the domain of hardware dependability benchmarking, Brown et al. pro-

posed a methodology to measure the availability of the software RAID sys-

tems [Brown and Patterson, 2000]. They propose two different kinds of fault

workloads: Single-fault workloads and Multi-fault workloads. A single-fault

workload consists of just a single fault, whereas multi-fault workloads consist

of a series of faults. Some examples of their faultloads are hardware errors or

mechanical errors; parity errors; power failures; and hard disk errors. Their

experimental evaluation consist of fault injection either in transient mode or in

sticky mode. In transient mode, faults appeared once and then disappeared.

However, in sticky mode, faults continued to manifest themselves after the

first injection. The dependability metrics that are used in their evaluation is

availability.

Ruiz et al. proposed a dependability benchmarking methodology for com-

paring Commercial-Off-The-Shelf (COTS) components in software develop-

ment on the basis of dependability [Friginal et al., 2011]. Their benchmarking

proposal to evaluate any hardware system consists of a thorough fault injec-

tion approach consisting of malicious attacks along with measures related to

reliability, security and performance.

Operating Systems

Kanoun et al. presented the specification of a dependability benchmark

for operating systems [Kanoun et al., 2005]. This work is part of a big Euro-

pean project on dependability benchmarking, named as DBench. Authors

provided software prototypes for qualitatively and quantitatively evaluating

two families of popular operating systems i.e. Windows and Linux. Their

faultload primarily comprises of corrupt system calls using bit-flip techniques.

Dependability measures in their benchmark are: operating system robustness,

reaction time and restart time in the presence and absence of faults.

Koopman et al. proposed benchmarks to test robustness of operating sys-
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tems by feeding corrupt data to system calls [Koopman et al., 1997]. They

compared five operating systems by analysing robustness which is measured

as the ability of a system to cope with errors. In this work, authors do not

explicitly injected a faultload, but rather assign a representative workload.

For example, they injected a workload that assigns different tasks to the oper-

ating system such as read and write to a file. Finally they observe the system

behaviour by calculating the total number of crashes, aborts and restarts.

Barbosa et al. described a dependability benchmark to evaluate parti-

tioning operating systems [Barbosa et al., 2011]. In contrast to traditional

process based operating system such as Linux, in a partitioning operating

system, memory (and possibly CPU time as well) is divided among statically

allocated partitions in a fixed manner. They included both hardware and

software faultloads e.g. single bit-flips into processor registers and memory.

Interestingly, they also measured the coverage of the injected faults. Finally,

they used low level metrics e.g. arithmetic mean of register errors and mem-

ory errors to compute the dependability levels. One of the limitations of this

benchmark is that it is proposed for a very specific system only i.e. C/OS-II

with Screen system. Thus, it is not portable to other application domains.

Moreover, they do not presented a detailed architecture that can be extended

by others.

Database Systems

In the domain of database systems, Vieira et al. proposed a dependability

benchmark for OLTP systems using the workload of the TPC-C performance

benchmark [Vieira and Madeira, 2003]. They evaluated both the performance

and key dependability features of OLTP systems, with emphasis on availabil-

ity. Their faultload consisted of operator faults, software faults, and hardware

faults. In addition to basic setup, the workload, and the performance mea-

sures specified in the TPC-C performance benchmark, they added two new

measures related to dependability. One key feature of their dependability

benchmark is that their faultload is portable across typical OLTP systems.

Web Servers

Duraes et al. presented a benchmark for evaluating the the dependability

of web servers [Durães et al., 2004]. They performed a case study involving

two widely used web servers (Apache and Abyss) running on top of three

different operating systems. They used the SPECWeb99 benchmark as start-

ing point, adopting the workload and performance measures from this per-

formance benchmark, and added the faultload and new measures related to

dependability. Their faultload consisted of software faults, hardware faults,

operator faults and network faults. Software faults were emulated by re-

producing directly at low-level code the processor instruction sequences that
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represent programming errors. Hardware and operator faults were emulated

using network failures, web server shutdowns and abrupt server reboots. This

benchmark can be used to compare several web servers and decide which one

is best suited to include in a larger information system.

Web Services

Web Services are a key technology in Service Oriented Architecture (SOA)

environments, which are increasingly being used in business critical applica-

tions. A web service is a software component that exposes a given functionality

that can be assessed by service consumers in an interoperable manner. Vieira

et al. proposed a benchmarking approach for the evaluation of the robustness

of web services [Vieira et al., 2007]. They made use of standard TPC-App

performance benchmark with two different implementations of the web ser-

vices. Two options provided for workload generation in their benchmark were:

(1) user defined workload and (2) random workload. Their faultload was com-

posed of errors such as invalid web services call parameters that were applied

in order to discover both programming and design errors. The benchmark

tool included a fault injection component that acted like a proxy that inter-

cepted all client requests (generated by the workload emulator component);

performed a set of mutations in the Simple Object Access Protocol (SOAP)

message; and forwarded the modified message to the server. They illustrated

the proposed approach by evaluating several publicly available web services.

Laranjeiro et al. [Laranjeiro et al., 2008] presented a dependability bench-

mark tool named wsrbench, for measuring robustness of web services. This

tool is available online at http://wsrbench.dei.uc.pt and requires very

little configuration effort to use. It is also provided with a web based in-

terface that allows users to perform configurations and visualize the results

of tests. They demonstrated the effectiveness by testing 100 publicly avail-

able web services. Like the previous work, they also provided two options

for workload generation: (1) user defined workload and (2) random work-

load [Vieira et al., 2007]. Their faultload consisted of several faulty client

requests including software faults such as null strings, empty strings and al-

phanumeric strings. Such tools can be used by service vendors in evaluating

and improving the robustness of their web services implementations before

deployment.

MapReduce Systems Works that have been devoted to the study and

improvement of fault-tolerance and performance of MapReduce, motivate the

need of MapReduce dependability and performance benchmarking. These

works include adaptive fault-tolerance [Jin et al., 2012, Lin et al., 2010], on-

demand fault-tolerance [Fadika and Govindaraju, 2010] and extending MapRe-

duce with other fault-tolerance models [Bessani et al., 2010, Ko et al., 2010],
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task scheduling policies in MapReduce [Isard et al., 2009, Zaharia et al., 2010],

cost-based optimization techniques [Herodotou and Babu, 2011], and replica-

tion and partitioning policies [Ananthanarayanan et al., 2011, Eltabakh et al., 2011].

These works are usually evaluated in an ad-hoc way, using microbench-

marks such as MapReduce sort, grep and word count programs introduced

in [Dean and Ghemawat, 2004]. Although some low-level tools exist to test

fault-tolerance of Hadoop MapReduce and HDFS [Had, 2011b], there is no

principled way to describe faultloads, and to measure reliability and availabil-

ity of MapReduce clusters. To the best of our knowledge, MRBS is the first

dependability and performance benchmark suite for MapReduce.

Cluster Computing

In the domain of cluster computing, Pramanick et al. proposed System

Recovery Benchmarking (SRB) framework for benchmarking availability of

cluster computing systems [Mauro et al., 2004]. They measure dependability

by injecting hardware faults such as node crashes on some nodes of the cluster.

Finally, they measure the recovery time of a cluster in the event of a cluster

node failure to estimate the dependability levels. Some of the interesting

features of SRB are repeatability; and portability across data center clusters.

Cloud Computing Systems

More recently, we have found works that target benchmarking for cloud

computing systems. YCSB [Cooper et al., 2010] is a performance benchmark-

ing solution for evaluating different data storage systems in cloud environ-

ments. Huppler et al. and Alexandru et al. also proposed initial ideas

to extend TPC benchmarks for cloud computing systems [Huppler, 2012,

Alexandrov et al., 2012]. Though dependability is not the focused attribute

in their works, yet they covered some elements of dependability such as avail-

ability and reliability. Moreover, these works presented the design challenges

for developing benchmarks for cloud computing systems.

In Table 2.1, we provide a summary of state of art dependability bench-

marks in various application domains of computer systems.

2.3 Existing Approaches of Performance Bench-

marking

Benchmarks are needed to compare the performance and other quality aspects

of different cloud services. Performance evaluation is a key step and an im-

portant criteria to adopt, choose or migrate a cloud service. In this section,

we discuss the existing work on performance benchmarking in the domain of

cloud computing services and also in other domains of computing such as web
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Table 2.1: Classification of dependability benchmarks for various application domains
Domain Reference Dependability Metrics Faultload Workload / Dataload

Hardware
[Brown and Patterson, 2000]

availability (service unavailability),
performance (response time,

throughput)

single-fault workloads (disk sector write
error), multi-fault workloads (disk failure

in RAID system followed by replacement of
failed disk followed by write failure while

reconstructing array)

SPECWeb99

[Friginal et al., 2011]
performance and dependability
(execution time, availability and

safety)
hardware

UDP Constant Bit Rate (CBR) data flows
of 200 Kbps

Operating
Systems

[Koopman et al., 1997]
robustness (# OS crashes, # hanging

tasks, # abnormally terminated
tasks)

software (operating system calls; rather
than injecting faults)

read(), write(), open(), close(), fstat(),
stat(), and select() system calls with a set

of parameter values such as FILE
HANDLE, BUFFER, LENGTH. example:
read() is tested with all combinations of: 7
different file handle test cases, 9 different

memory buffers, and 8 different lengths, for
a total of 7x9x8 = 504 test cases

[Barbosa et al., 2011]
dependability (arithmetic mean of
register errors and memory errors)

hardware (single bit-flips in memory),
software

six workloads: CRC32, Altimeter, Hamming
Distance, Bit Count, LU Decomposition,

Merge Sort

[Kanoun et al., 2005]
robustness (# exceptions, # error
codes, reaction time, restart time)

software (corrupted parameters of system
calls (make use of existing tools))

PostMark (a file system performance
benchmark)

Database
Systems [Vieira and Madeira, 2003]

performance (throughput),
availability (time for which system is

able to respond to at least one
terminal within the minimum

response time for each transaction) ,
data integrity (# data errors)

operator, software and hardware faults
(abrupt OS shutdown, abrupt transactional
engine shutdown, kill set of user sessions,
delete table, delete user schema, delete file

from disk, delete set of files from disk,
delete all files from one disk)

TPC-C workload

Web Servers
[Durães et al., 2004]

dependability (autonomy, availability,
accuracy, throughput, response time)

software, hardware and network
SPECWeb99 (performance benchmark

representing typical requests submitted to
real web-servers)

Web Services
[Vieira et al., 2007]

robustness (# application server
corrupts/machine crashes or reboots,
# web-service execution hangs, #
abnormal terminations, # incorrect

error code returns/delayed responses)

software (invalid call parameters: all
SOAP messages sent by the emulated
clients (generated by the workload

emulator component) to the server are
intercepted by the fault injector)

two different implementations of web
services specified by the standard TPC-App

performance benchmark Set of valid
web-service calls

Cluster
Computing [Mauro et al., 2004] availability (recovery time) hardware (node crash)

SPECsfs and Postmark (set of standard
filesystem benchmarks)

Cloud
Computing [Cooper et al., 2010] availability, reliability software

update heavy workload, read heavy
workload
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services, database systems, parallel computing and MapReduce. Following, we

present a summary of state of art approaches of performance benchmarking

and their limitations in the context of cloud computing services.

Virtualized Systems

TPC formed a subcommittee in 2010 to develop TPC-V, a publicly-available

benchmark for virtualized databases. In [Bond et al., 2013], authors presented

the work in progress TPC-V. In this paper, authors presented a reference archi-

tecture for this benchmark and some preliminary experiments for performance

evaluation. VMmark [VMm, 2013] is another industry standard benchmark

for server consolidations. It was developed by VMware for its vSphere hyper-

visor operating system; although it is possible to run VMmark on other hy-

pervisors. The current VMmark version i.e. 2.0 adds platform-level workloads

such as dynamic VM relocation (vMotion) and dynamic datastore relocation

(storage vMotion) to traditional application-level workloads.

Database Systems

There are several major domain-specific database benchmarks from the

Transaction Processing Performance Council (TPC) – in particular TPC-W

for web e-commerce applications. There are a number of application bench-

marks that measure the overall performance of a DBMS. The 001 Benchmark

(commonly referred as the Sun Benchmark) was the first widely accepted

benchmark that attempted to predict DBMS performance for engineering de-

sign applications [Cattell and Skeen, 1992, Duhl and Damon, 1988]. Because

of its early visibility and its simplicity, it became a de facto standard for

benchmarking of object oriented database systems. The primary motivation

for the design of this benchmark is to focus upon engineering applications

such as computer-aided design (CAD) and computer-aided software engineer-

ing (CASE). The benchmark is designed to be applied to object-oriented,

relational, network or hierarchical database systems. The workload consisted

of three operations: lookup, traversal, and insert. Response time was used as

the performance metrics in their evaluation.

There is an increasing demand for adoption of XML database technology in

commercial enterprises. Common industry sectors using XML database tech-

nology includes finance and banking, insurance, government, retail, health care

and manufacturing. All major relational database systems offer some form of

XML support. Therefore, most of the performance benchmarks are oriented

towards XML based data management systems [DeWitt and Gray, 1992]. Fol-

lowing we discuss few of these benchmarks: XBench is a performance appli-

cation benchmark [Yao et al., 2004]. XBench workload consisted a set of 20

SQL query types such as sort, join, retrieve etc. The performance metrics

used in this benchmark is Query Execution Time (in Milliseconds).
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XOO7 was derived from OO7, which was designed to test the efficiency of

object-oriented DBMS [Bressan et al., 2003, Carey et al., 1993]. The database

model of XOO7 was mapped from that of OO7. Besides mapping the original

7 queries of OO7 benchmark into XML, XOO7 also added some XML spe-

cific queries. This is a publicly available benchmark which is implemented in

C++ and supports multi-user operations. The performance metrics that this

benchmark used is response time.

Nicola et al. [Nicola et al., 2007] developed an application-oriented and

domain-specific benchmark called“Transaction Processing over XML”(TPoX).

It exercised all aspects of XML databases, including storage, indexing, logging,

transaction processing, and concurrency control. TPoX simulated a financial

multi-user workload with XML data that consisted of transactions such as

placing a new order, adding a customer, removing a customer and updating

the status of an order. The system under test (SUT) included the database

system, the operating system, the workload driver, and the hardware of the

database server including storage and all auxiliary components. The primary

performance metric of this benchmark was throughput, measured as TTPS

(TPoX Transactions Per Second).

XMach benchmark consisted of a workload with eight queries and three

update operations [Böhme and Rahm, 2001]. This benchmark was developed

at the University of Leipzig. The goal of this benchmark was to test the

number of queries that can be processed by the database per second, including

the cost of processing. Additional measures included response time, bulk load

times and database or index size. The main objective of this benchmark was

to stress-test XML systems under a multi-user workload.

Schmidt et al. [Schmidt et al., 2001, Schmidt et al., 2002] provided a bench-

mark framework to assess the abilities of an XML database to cope with a

broad range of different query types typically encountered in real-world sce-

narios. The benchmark was intended to help both developers and users to

compare XML databases in a standardized application scenario. Their work-

load consisted of a set of 20 queries where each query is intended to challenge

a particular aspect of the query processor. The performance metrics used in

this benchmark was the total running time of a query.

Web Services

Web services technology enables a standards-based distributed computing

platform built upon Web technologies including HTTP and XML. Several

studies examine performance of Web services making use of benchmarking

techniques. Few of them are discussed here.

The TPC-W is a transactional web benchmark designed to mimic opera-

tions of an e-commerce site. The TPC-W workload consisted of a set of web
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interactions. The TPC-W workload explored a range of system components

together with the execution environment. Like all other TPC benchmarks, the

TPC-W benchmark specification was a written document which defines how

to setup, execute, and document a TPC-W benchmark run [Menasce, 2002].

In [Chung and Hollingsworth, 2004], authors made use of TPC-W benchmark

to choose an optimal configuration for a cluster based web service system.

Throughput measured as Web Interactions per second (WIPS) and cost mea-

sured as Dollars per WIPS were the primary metrics in this benchmark.

Authors of [Head et al., 2005] presented a benchmark suite for quantify-

ing, comparing, and contrasting the performance of Simple Object Access

Protocol (SOAP) based web service implementations. SOAP is the most

commonly used Web services communication protocol for information ex-

change in a distributed and heterogeneous environment. The primary metrics

that they used to evaluate performance was latency. The architecture details

were not provided and prototype was not publicly-available. Wickramage et

al. [Wickramage and Weerawarana, 2005], introduced a benchmark that simu-

lates the real world business services and a performance model to analyze Web

service frameworks. The benchmark consisted of various real world scenarios

such as credit card processing, online store operations, transactions between

travel agents etc. This benchmark is implemented as an open source project.

Zhu et al. [Zhu et al., 2006] presented a model-driven approach to gener-

ate a benchmark application for web service platforms. In this benchmark,

users had to implement their own workloads and generate the stress data

manually. They used the standard performance metrics such as web service

interaction response time (the time taken to perform a successful web interac-

tion) and service interactions per second. Mizouni et al. [Mizouni et al., 2011]

first proposed an architecture that allows the deployment of Web Services

on mobile devices. Then, they evaluated the QoS of these web services. In

this study, authors considered the following QoS parameters: throughput,

availability, response time, and scalability. Rosenberg et al. focused on the

QoS evaluation of web services [Rosenberg et al., 2006]. Their metrics con-

sisted of latency; response time; execution time; availability; and accuracy.

Stantchev [Stantchev, 2009] made use of WSTest benchmark to evaluate win-

dows instance in Amazon EC2. A virtual client generates requests consisting

of a SOAP requests were sent to one of the instances running WSTest in Ama-

zon EC2. The performance metric that they used is throughput measured as

transaction rate.

Parallel Computing

In the domain of parallel computing, several benchmark suite implemen-

tations are available for general purpose multi-core architectures. Standard
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Performance Evaluation Corporation (SPEC) [SPE, 2013] and Embedded Mi-

croprocessor Benchmark Consortium (EEMBC) [EEM, 2013] are two corpo-

rations that developed widely used benchmark suites for evaluating general

purpose CPUs and embedded processors, respectively. SPEC CPU2006 fo-

cused upon compute-intensive workloads for scientific and engineering appli-

cations. SPLASH-2 [Woo et al., 1995] consisted of multi-threaded scientific

applications and applications belonging to computer graphics.

Rodinia is a benchmark suite for parallel computing that supports GPU

platforms [Che et al., 2009]. The workload exhibited various types of par-

allelism, data-access patterns, and data-sharing characteristics. It covered

applications from diverse application domains such as data mining, grid com-

puting and MapReduce. Other parallel benchmark suites included Media-

Bench [Med, 2006] and ALPBench [Li et al., 2005] for multimedia applica-

tions, and BioParallel [Jaleel et al., 2006] for biomedical applications.

In the related domain of grid computing, an interesting benchmark is NAS

Grid Benchmark (NGB) [Frumkin and Van der Wijngaart, ]. NGB are repre-

sentative of tasks typically executed on the Grid, and also specify well-defined,

measurable quantities of workload. To verify the correctness of the benchmark

results, NGB provided reliable verification testing. NGB also measured to a

small extent, the data transfer capabilities of the communication network par-

ticularly latency and bandwidth. NGB do not measured security and fault-

tolerance capabilities; despite the fact that they are the primary attributes of

a grid computing system.

MapReduce Systems

Works have more specifically studied MapReduce performance benchmark-

ing, such as HiBench [Huang et al., 2010], MRBench [Kim et al., 2008], Pig-

Mix [Pig, 2011], Hive Performance Benchmarks [Pavlo et al., 2009]. Grid-

Mix3 [Gri, 2011], and SWIM [Chen et al., 2011] are useful tools for Hadoop

MapReduce performance benchmarking. However, these works do not incor-

porate multi-user workloads and therefore do not exhibit real-world scenarios.

HiBench consisted of eight MapReduce jobs [Huang et al., 2010]. The bench-

mark measured performance in terms of job processing time, MapReduce task

throughput, and I/O throughput. While HiBench included different types of

jobs, it did not support concurrent job execution, that is, the whole MapRe-

duce cluster is dedicated to a single job at a time, which inhibits cluster

consolidation. Thus, it failed to capture different workloads and job arrival

rates. Furthermore, HiBench did not consider faultload injection and did not

allow the evaluation of MapReduce dependability.

MRBench is a domain-specific benchmark that evaluated business-oriented

queries [Kim et al., 2008]. It used large datasets and complex MapReduce
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queries derived from TPC-H [TPC, 2011a]. However, as HiBench, MRBench

failed to capture job concurrency and arrival rates, workload variations, and

it did not evaluate MapReduce dependability in presence of failures.

Similarly, PigMix and Hive Performance Benchmark used a set of queries

to specifically track the performance improvement of respectively Pig and Hive

platforms [White, 2009]. Pig and Hive run on top of Hadoop MapReduce, the

former provides a high-level language for expressing large data analysis, and

the latter is a data warehouse system for ad-hoc querying.

GridMix3 took as input a job trace from a specific workload and emulated

synthetic jobs mined from that trace [Gri, 2011]. GridMix3 is able to replay

synthetic jobs that generate a comparable job arrival rate and a comparable

load on the I/O subsystems as the original jobs in the specific workload did.

However, GridMix3 does not capture the processing model and the failure

model from the traces. Thus, it fails to reproduce comparable job processing

times and failures in the MapReduce cluster.

SWIM is a similar framework that synthesizes specific MapReduce work-

loads [Chen et al., 2011]. The framework first samples MapReduce cluster

traces, and then executes the synthetic workloads using an existing MapRe-

duce infrastructure to evaluate performance. Here again, the proposed frame-

work does not capture job failures and does not model the dependability of

the MapReduce cluster.

Cloud Computing Systems

Researchers used benchmarks in order to compare the performance of

a cloud service such as IaaS. In their position paper, Iosup et al., focued

on the IaaS cloud specific elements of benchmarking, from a user’s perspec-

tive [Iosup, 2013]. They also discussed various research challenges in designing

a generic approach for IaaS cloud benchmarking. High Performance Comput-

ing Challenge (HPCC) benchmarks are used to evaluate performance aspects

of cloud services [HPC, 2011]. HPCC benchmark suite further consisted of 7

benchmarks. Mehrotra et al. made use of HPCC benchmark to evaluate the

performance of Amazon EC2 service [Mehrotra et al., 2012]. In this study,

authors focused upon the computational performance and network communi-

cation between the cluster nodes.

Ostermann et al. [Ostermann et al., 2010] evaluated the performance of

different types of virtual machines (VMs) provided by EC2 using HPCC

benchmark among others. There are various other works of use of bench-

marks to evaluate the quality aspects of cloud services in various application

domains. Authors compared and evaluated the features and performance of

open-source solutions in supporting Geosciences [Huang et al., 2013]. This

study included the comparison of three open-source cloud solutions, including
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OpenNebula, Eucalyptus, and CloudStack for performance aspects of Geosci-

entific applications.

In [Lee et al., 2009] authors argued that conventional frameworks do not

effectively support the evaluation of SaaS-specific quality aspects. They pro-

posed a quality model for evaluating SaaS applications. They defined ten

metrics for evaluating the quality attributes such as reliability; efficiency; scal-

ability and reusability. Such models could be used by cloud service providers

to evaluate their services and also predict their Return on Investment (ROI).

One more similar work is by Tsai et al. [Tsai et al., 2011], where authors focus

on scalability aspects of cloud services. In this work, they discussed a quality

model for scalability evaluation and provide relevant metrics to measure this.

Kossman et al. [Kossmann et al., 2010] used TPC-W (a transactional web e-

Commerce benchmark) and provided a comprehensive evaluation of existing

commercial cloud service providers for transaction processing.

The Yahoo Cloud Serving Benchmark (YCSB) was designed to deliver

a database benchmark framework for evaluating the performance of cloud

serving systems. The YCSB framework and workloads are available as open

source to evaluate systems. YCSB has been used to evaluate performance

and elasticity of four systems i.e. Cassandra, HBase, PNUTS, and a sim-

ple shared MySQL implementation [Cooper et al., 2010]. This framework is

also intended to evaluate other aspects such as availability and replication by

supporting easy creation of workload. Authors also discussed the trade-offs

between various aspects of performance such as read vs. write performance.

However, we observed that, authors did not include any faultloads in their

benchmark. Without the inclusion of a representative faultload, evaluation of

availability and other dependability aspects seems to be unrealistic.

Cloud storage services are becoming increasingly accepted as replacements

for traditional file systems. It is important to effectively measure the perfor-

mance of these services so that users of these services can easily compare

and evaluate different services. Authors at Intel presented a benchmark

named COSBench (Cloud Object Storage Benchmark) [Zheng et al., 2012].

This benchmark tool is still under development and is intended to be used

for cloud object storage services. Object storage services provide interfaces to

store and access files in a way that is similar regular file systems. In addition,

these services are often characterized by what is lacking in traditional tech-

nologies: scalability, cost-effectiveness, and ease-of-use. These services either

rely on public services, such as Amazon Simple Storage Service (Amazon S3)

or manage to build their own private clouds with the help of open source so-

lutions. COSBench evaluates the performance aspects of these services using

realistic workload patterns. In [Agarwal and Prasad, 2012], authors presented
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an open-source benchmark suite named as AzureBench. This benchmark is

used in the performance analysis of Microsoft Azure cloud platform’s storage

services. In Table 2.2, we provide a summary of state of art performance

benchmarks in various application domains of computer systems.

2.4 Discussion

In this chapter, we studied the existing work on dependability and perfor-

mance benchmarking not only in the domain of cloud computing services but

also in other domains of computing such as web services, database systems,

hardware and cluster computing. Our analysis of state of the art approaches

bring out the fact that there are very few standard benchmarks designed for

cloud computing services. However, there exists standard benchmarks in other

domains of computing.

To date, there has been no benchmarking approach to measure the de-

pendability and performance of large-scale cloud services. For some specific

examples of such services, few benchmarks emerged to measure various aspects

of performance. However, there is a severe mismatch between the diversity of

real life use cases, and a narrow coverage of behaviours by such benchmarks.

Of course, the problem is less severe for established application domains that

have evolved to become large-scale cloud services.

Fortunately, prior studies have also pioneered in developing a set of such

techniques for different application domains [DBe, 2004]. These techniques

provide us a basic to design dependability and performance benchmark for

complex and distributed cloud service. These techniques rely on complex

workloads and dataloads for a range of application domains such as database

systems, web services and operating systems. The rest of this dissertation

applies these techniques to large-scale cloud services to design and develop

dependability and performance benchmarks.

Analysis of the state of the art benchmarking approaches motivates us to

come up with a comprehensive benchmark suite for evaluating the depend-

ability of cloud services that achieves following important objectives:

Multi-criteria analysis. Benchmark should measure and analyze the

performance and dependability of cloud services. In particular, it should

consider several measurement metrics such as reliability, availability, fi-

nancial cost, request response time (i.e. latency), and request through-

put.

Diversity. Benchmark should cover a variety of application domains

and programs with a wide range of computation characteristics. It
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Table 2.2: Classification of performance benchmarks for various application domains
Domain Reference Performance Metrics Faultload Workload / Dataload

Virtualized
Systems [Bond et al., 2013] throughput no faultload

CPU heavy and I/O heavy transactions
upon virtual machines

Database
Systems

[Cattell and Skeen, 1992] response time no faultload

seven database lookup operations: Name
Lookup, Range Lookup, Group Lookup,

Reference Lookup, Record Insert,
Sequential Scan, Database Open

[Nicola et al., 2007] throughput (Transactions per second) no faultload
multi-user read/write workload on

database, with 70 % read and 30 % write
operations

Web
Services

[Menasce, 2002]
throughput (Web interactions per

second)
no faultload

E-commerce workload such as search, add
etc.

[Head et al., 2005] Latency no faultload operations in WSDL files

[Wickramage and Weerawarana, 2005] response time no faultload
real world business services such as credit

card processing, online store operations etc.

Parallel
Computing [Che et al., 2009] power consumption no faultload

workloads exhibiting parallelism, data-
access patterns, and data-sharing

characteristics such as applications based
upon data mining, image processing

MapReduce
Systems

[Gri, 2011] response time no faultload
emulates synthetic jobs using job traces

from a specific workload

[Huang et al., 2010]
response time, IO utilization, network

throughput
no faultload sort, search, machine learning etc.

[Kim et al., 2008] response time, throughput no faultload
complex MapReduce queries derived from

TPC- H

Cloud
Comput-
ing
Systems

[HPC, 2011]
throughput, latency and

communication bandwidth
no faultload scientific computing applications

[Cooper et al., 2010] latency, throughput
hardware faults, software faults,

network faults
read-heavy workloads, write-heavy
workloads, scan workloads, etc.

[Zheng et al., 2012]
response time, throughput and

network bandwidth
no faultload

different workload models for cloud storage
service
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should consider batch applications as well as interactive applications.

Moreover, it should allow to characterize different aspects of application

load such as the faultload, the workload and the dataload.

Usability. Benchmark must be easy to use, configure and deploy on a

distributed cluster.

Benchmarks must be designed for diversity and multi criteria analysis.

This challenge arises from the simple fact that the cloud services being stud-

ied are complex, and therefore workloads, dataloads and faultloads need to be

described in multiple ways, i.e., multiple features, characteristics, or dimen-

sions. For example, a large-scale data processing MapReduce service could be

used for different application domains such as data mining, machine learning,

bioinformatics among others. In reality, the workload may consist of many

complex minority behavior patterns. For example, some application could be

heavy based on their computational characteristics while some could be heavy

based on the data access characteristics. Also there could be few, which could

be heavy both according to the computational and data access characteristics.

Therefore, diversity is a must have property of a benchmark that is de-

signed to evaluate the dependability and performance of a cloud service. Multi

criteria analysis is another property that is desired for benchmarking a com-

plex system. This means that multiple attributes must be analysed together.

As we discussed in this chapter, earlier works have mainly focused only on

the performance aspects of cloud services while the dependability aspects are

ignored.

To illustrate the inherent challenges of new computing paradigms and as-

sociated ways of benchmarking, we consider an example MapReduce service.

The dependability and performance benchmark must be easy to use by the

naive users of service. It must provide an easy way to inject workload, dat-

aload and faultload in a running MapReduce cluster. The workload, dataload

and faultload must represent real world services. Moreover, it should pro-

vide an easier way to analyze the system’s dependability and performance.

It should provide high level performance statistics such as response time and

throughput for various applications. Similarly, it should provide high level

dependability statistics such as number of failed jobs and number of success-

ful jobs. There must be a mechanism to provide low level statistics such as

number of failed MapReduce tasks. It should provide information about the

data read and write throughput separately.

Existing benchmarks are quite helpful when considering the functionality

and scalability concerns in specific application domains. However, they are

limited in design and functionality to address the concern of large scale cloud
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services such as MapReduce. Consequently, it becomes a pressing concern to

design benchmarking approaches to better understand the dependability and

performance of cloud computing services.
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3.1 Introduction

With the increasing demand and benefits of cloud computing services, new so-

lutions are needed to benchmark the dependability and performance of these

services. Designing a dependability and performance benchmark that covers

a variety of fault and execution scenarios, poses various architectural chal-

lenges. Most of the state of art approaches of dependability and performance

benchmarking do not address the specific challenges for cloud services. Hence,

there is a strong need to develop dependability and performance benchmarking

solutions for cloud services.

In this chapter, we present a generic software architecture for dependability

and performance benchmarking for cloud computing services. We provide the

details of this generic architecture i.e. various components and modules, that

are responsible for injecting faults in cloud services in addition to the compo-

nents responsible for measuring the performance and dependability. We make

use of this architecture to build two software prototypes: MRBS and MemCB.

These prototypes are used to benchmark two popular cloud services: MapRe-

duce and Memcached. The case studies with the use of software prototypes

developed as part of this thesis demonstrates the benefits of building a generic

architecture. Having available a generic software architecture would help the

designers of dependability benchmarking solutions in reducing the efforts to

design and develop new benchmarks for such services.

3.2 Objectives & Approach

Guaranteeing reliability, availability and performance are one of the major

challenges for cloud service providers such as Amazon, Google, Salesforce and

Microsoft. Primary motivation for introducing a benchmarking framework for

cloud services is that there is no scientific approach or framework so far in

the existing literature that could help users to evaluate the important quality

aspects such as dependability for cloud computing services. MapReduce is a

well known example of such services that provides a convenient means for dis-

tributed data processing and automatic parallel execution in cloud computing

environments.

Various benchmarking programs are often used to evaluate the specific

frameworks such as Hadoop MapReduce [Dean and Ghemawat, 2004, Gri, 2011,

Huang et al., 2010]. However, they are mainly micro level benchmarks mea-

suring specific Hadoop properties. Most of the times, the cloud service users

are more interested in knowing the performance and associated costs rather

than measuring low level statistics such as CPU behaviour and memory. Here,
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it is to be noted that we do not mean that low level system statistics are not

important to analyze the quality aspects. Rather, we argue that as a cloud

service are used even by naive users and for these users or service providers,

most important question is how an application performs in a realistic environ-

ment (e.g. in the presence of failures) and what is the associated cost? Most

of the time, high level statistics are necessary to get a simple idea of system’s

dependability and performance.

Dependability benchmarking is a promising approach to understand a sys-

tem behaviour in the presence of faults. For a benchmark suite to enable a

thorough analysis of a wide range features of cloud service, it must provide the

following. First, it must enable the empirical evaluation of the performance

and reliability of cloud services, two key properties of a cloud service. Further-

more, with the advent of pay-as-you-go model, a benchmark suite must allow

the evaluation of the costs of the running a representative workload in cloud

environments. Second, it must cover a variety of application domains and

workload characteristics, ranging from compute intensive to data-intensive ap-

plications, online real-time applications as well as batch-oriented applications.

Moreover, in order to stress reliability and performance, the benchmark suite

must enable different fault injection rates, and it must allow the generation of

different workloads (i.e. #clients, clients request distribution).

a variety of application domains

a variety of application types such as real-time applications vs. batch-

oriented applications [Neumeyer et al., 2010], [App, 2011]

a wide range of workload characteristics such as application load (i.e.

how many users concurrently access the application, mono-user systems

vs. multi-user systems), data-intensive vs. compute-intensive workloads,

failure frequency of cluster nodes

the benchmark suite must not depend on any particular platform (e.g.

public or private cloud)

Building complex benchmarks such as dependability benchmarks is diffi-

cult, since these benchmarks are composed of diverse fault types, different

ways to inject the faults in a running system and diverse metrics to under-

stand the dependability levels. New services such as cloud computing services

add an additional layer of complexity because of virtualization and sharing of

the resources.

DBench report introduced following key features for a dependability bench-

mark [DBe, 2004].
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Representativeness The measures, the workload and the faultload should

be as representative as possible. The workload representativeness reflects how

well the workload of the benchmark corresponds to the actual workload of the

real system. Fault representativeness is a measure of how well injected faults

correspond to real faults, i.e., faults affecting systems in real use.

Repeatability and Reproducibility Repeatability is the property, which

guarantees statistically equivalent results when the benchmark is run more

than once in the same environment. Reproducibility is the property, which

guarantees that another party obtains statistically equivalent results when

the benchmark is implemented from the same specifications and is used to

benchmark the same SUB

Portability Portability refers to the applicability of a benchmark spec-

ification to various target systems within a particular application area. A

portable benchmark can be implemented and run on various target systems

within the application area.

Non-intrusiveness If the implementation of the benchmark introduces

changes on the system under test (either at the structure level or at the be-

havior level) it means that the benchmark is intrusive. The benchmark must

require minimum changes in the system under test.

Scalability A benchmark must be able to evaluate systems of different

sizes.

Benchmarking Time and Cost The benchmarking time is the time re-

quired to obtain the result from the benchmark. It consists of three parts:

i) set-up and preparations, ii) running the actual benchmark program (i.e.,

execution time) and iii) data analysis. A key goal of dependability bench-

marking is to provide an efficient and cost effective approach to characterize

dependability.

Similarly, Gray et al. [Gray, 1992] identified four criteria for a successful

benchmark:

Relevance to an application domain.

Portability to allow benchmarking of different systems.

Scalability to support benchmarking large systems.

Simplicity so that results are understandable.

As discussed in Chapter 2, dependability benchmarks have been proposed

in various domains of computing such as hardware; cluster computing; op-

erating systems; database systems; web servers; and web services among
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others [Mauro et al., 2004, Brown and Patterson, 2000, Barbosa et al., 2011,

Vieira and Madeira, 2003, Durães et al., 2004]. Various works aim to pro-

pose a standard approach for dependability and performance benchmark-

ing. DBench project aims to provide a basic foundation for dependabil-

ity benchmarking and performs a detailed study on dependability bench-

marks [DBe, 2004]. Barbosa et al. [Barbosa et al., 2011] introduced a depend-

ability benchmark to evaluate dependability of operating systems. Vieira et

al. [Vieira and Madeira, 2003] proposed a dependability benchmark for Online

transaction processing (OLTP) systems. Duraes et al. [Durães et al., 2004]

present a benchmark for the dependability of web-servers.

One of the limitations of these approaches is that they do not discuss a

generic software architecture that can be extended by the users to develop

dependability benchmarks for their systems. A generic architecture might be

a key factor in reducing cost to build a new benchmark and also improve the

overall quality of benchmarking process. This is possible using generic com-

ponents which can be reused in building the new benchmark. In addition, it

must be able to support a diverse set of workload and fault injection scenarios.

Of course, the benefits of reuse would be maximum if the new benchmark to

be built is closer to the application domain of the previous benchmark. For

example, using the case studies conducted in this thesis, we demonstrate two

software prototypes built using the generic architecture in PaaS domain of

cloud computing.

We also observed that state of the art dependability benchmarks do not

address the challenges raised by cloud computing systems. This is mainly due

to the fact that cloud computing is a relatively new domain. Some of the terms

such as faultload, workload, and dataload are not clearly defined for cloud

computing use cases. The literature lacks the specific knowledge to build

a benchmark for cloud computing services. Therefore, it is not possible to

extend any existing benchmark easily for a cloud computing service. However,

we argue that the general definitions and principals can still be extracted

from the existing works and adapted to build a generic dependability and

performance benchmarking architecture for cloud computing services.

While designing a generic architecture for cloud computing services, we

define the following objectives:

1. Building a system model and identifying the general terms used in the

benchmark such as for faultload, workload, and dataload.

2. Introducing a software architecture and defining its generic components

and modules. In addition to this, inferring relationships between various

components.
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3. Demonstrating the benefits of architecture by building various software

prototypes using the architecture and making maximum component and

code reuse.

In this chapter, we make following contributions:

1. We discuss various components of a dependability and performance

benchmark in detail. The major components of the dependability and

performance benchmark architecture, i.e. workload, faultload, statistics

analysis, etc. are generic and can be easily adapted to build a new

dependability and performance benchmark.

2. We provide the details of various classes of our architecture API. The

classes can be easily adapted for designing a benchmark for a new service.

3. We provide a detailed illustration of instantiating the proposed archi-

tecture in the domain of cloud service. We choose the two widely used

cloud service models: MapReduce and Memcached service. The pro-

posed architecture is used in each of these service models to define the

components of the dependability and performance benchmark such as

faultload, injection of the faultload and measuring the performance and

dependability.

The proposed architecture can be used by the designers of dependabil-

ity and performance benchmark solutions for cloud computing services. The

software prototypes MRBS and MemCB can be directly used to analyse de-

pendability and performance of MapReduce systems and Memcached service

respectively. This chapter is further organized as follows. Section 3.3 dis-

cusses the system model and general definitions. Section 3.4 describes the

proposed generic architecture and software framework of dependability and

performance benchmarking. In Section 3.5, we instantiate the proposed ar-

chitecture for cloud services. In Section 3.6, we present a summary of this

chapter.

3.3 General Definitions & System Model

Figure 3.1 depicts the various components of dependability benchmark archi-

tecture.
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Figure 3.1: High level architecture of dependability and performance bench-

mark

3.3.1 Workload

The primary goal of a benchmark is to emulate a particular kind of real

world workloads widely used in industrial applications on a system. There

are two categories of a workload: synthetic workload and real workload. In

the case of a synthetic workload, a program is responsible for imposing the

workload on the system. However, a real workload gives a better measure of

performance and dependability by running real applications in the benchmark.

For example, the workload in MRBS are real applications. Moreover, all the

workloads in MRBS are also publicly available.

The workload is characterized by the benchmark application to execute,

and the number of concurrent clients issuing requests on that benchmark

application. The workload is also characterized by the execution mode which

may be interactive or batch. In interactive mode, concurrent clients share

cluster resources (i.e. have their requests executed) at the same time. The

workload is also characterized by client request distribution, that is the relative

frequencies of different request types. It may follow different distribution laws

(known as workload mixes), such as a random distribution.

3.3.2 Faultload

A faultload describes what fault occurs (e.g. a node crash), where it occurs

(e.g. in which node of the cluster), and when it occurs (e.g. one hour after the

application started). Such as faultload can be described in a file. An example

of such a faultload file is provided in Figure 3.2.

The faultload consists of a set of faults. These faults can either be hard-
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ware faults such as a node crash or software faults such as a run time error

in a program. Sometimes a significantly stressful workload can also lead to

failures. Therefore, this kind of workload can also be considered as a faultload.

However, the case studies in this thesis incorporates primarily the hardware

faults and software faults.

Our faultload satisfies the two important properties: representativeness

and ease of use. The most desirable feature for a faultload is its represen-

tativeness since faults are intended to emulate the real threats, the system

would experience. Secondly, the faults should also be easy to inject i.e. fault

can be injected even by naive users of service.

There are different possible ways to build a faultload: A faultload descrip-

tion may also be automatically obtained, either randomly or based on traces of

previous application runs; Users can explicitly build synthetic faultloads rep-

resenting various fault scenarios; faultload can be random values. The fault

injector component in Figure 3.1 is responsible for injecting the faultload to

the system under test.
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Figure 3.2: An example faultload file

3.3.3 Dataload

Designing a benchmark for a cloud computing service demands that it sup-

ports processing of large data sets. There is a great demand for cloud comput-

ing services for computation in scientific applications. These applications nor-

mally have very large data to process [Iosup et al., 2011]. Therefore, the dat-

aload of a benchmark for a cloud service must represent such a large dataset.

The real world applications might possess different behaviour according to

its data and computational requirements. Therefore, the dataload is charac-

terized by the size and also nature of data sets used as inputs for a benchmark

application. Ideally, datasets used in dependability and performance bench-

mark should be real and publicly available.

3.3.4 Dependability & Performance Analysis

The analysis of the desired attributes such as dependability and perfor-

mance is done using the information given by the benchmark. This informa-
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tion is processed to compute the statistics. The statistics can be generated

using files such as HTML files and/or charts. The benchmark contains the

scripts to plot these charts. There might be different runs of a benchmark to

compare the results. These are called scenarios. Some of the scenarios are

emulated without injecting any fault to compare a faulty system with a base

line system (where, no faults are injected). In addition to this, various metrics

that demonstrate dependability and performance of a system must be defined.

Some examples of dependability and performance metrics used in this thesis

are:

Dependability Analysis

Dependability is composed of metrics such as reliability, and availability.

Reliability is the ability of a service to support successful requests dur-

ing a period of time. Reliability is the overall measure of dependability

and it is related to the number of failures per unit of time interval. Re-

liability is measured as the ratio of successful client requests to the total

number of requests, during a period of time.

Availability is the measure of time a system is able to handle client

requests successfully. Ideally, this should be 100%. This means that a

system should be always available to handle successful business requests.

However, in real world, the application might have downtimes because

of number of clients reaching the maximum limit, network constraints,

power outrages, server crashes etc.

We measure availability from the client’s perspective as the ratio of, on

the one hand, the time the benchmark service is capable of returning

successful responses to the client, and on the other hand, the total time.

As for reliability, availability is measured during a period of time.

Performance Analysis

Performance and cost statistics can be generated using client request re-

sponse time, request throughput, and the financial cost of a client request.

Throughput is a measure of the amount of work an application per-

forms in per unit of time. For business applications, work is typically

measured in transactions per second (tps). We define throughput as the

number of clients requests handled by the system per unit of time.

Response time is a measure of the latency an application exhibits

in processing a business transaction. Response time is calculated as

the time an application takes to respond to some input. Ideally, the
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response time should be shorter for business transactions. Moreover,

a shorter response time for an application which is hosted in a cloud

premise definitely leads to economic benefits for the end users. We

measure response time as the time elapsed from the moment the client

submits a request until the response is received completely by the client.

3.4 Design Principles

3.4.1 Architecture Overview

Figure 3.3 depicts the four main phases of a typical run of the proposed

dependability and performance benchmark. These are: load generation phase,

benchmarking phase, monitoring phase and statistics measurement phase.

Figure 3.3: Phases of the benchmarking approach of the architecture

In the first phase i.e. load generation phase, workload and faultload spec-

ified by dependability benchmark user are generated. This phase might also

include an optional dataload generation, if it is needed by any of the bench-

mark workload application. In Section 3.3, we define workload, faultload and

dataload. Users of the benchmark must describe the loads that they want to

inject during the benchmark run. Ideally this is described with configuration

parameters and users have the options to choose between a range of these

parameters. For example, a user might choose a dataload size of 1 GB to 100

GB. Similarly, for a faultload he/she can choose the faults that he/she wants

to inject in the running system.

Once the loads are defined by the users, in the second phase i.e. load

injection phase, they are injected to the system under test according to the

time described by the users. Normally, there is a warm-up period before

a run time period. Normally, the warm period is used for starting various
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processes such as warming up caches, etc., so that the system is in a relatively

steady state. This provides a better estimate of system’s dependability and

performance compared to a scenario where no warm-up period is used. After

the warm-up period, the benchmark runs for a particular time as specified by

the user. During this run time period, workload is run with the given dataload

and faults are injected.

In the third phase i.e. monitoring phase, various statistics such as response

time, throughput, availability, reliability etc. are computed and stored. Dur-

ing this phase, the system counters can be used to generate the desired statis-

tics. For example, the number of failed jobs, number of successful jobs can be

calculated to plot the reliability statistics. Some other example of statistics

are provided in Section 3.3.4.

In the final phase i.e. statistics measurement phase, statistics outputs are

produced in the form of user friendly graphs or files. During this phase, the

statistics values obtained in the preceding phase are computed to plot easy to

read charts/html files. These charts/html files provide an easy to understand

view of system’s performance and dependability.

3.4.2 General Software Framework

Figure 3.4 details the classes and methods that are developed to detail the

high level architecture proposed in Figure 3.1. One of the most important

benefit of this architecture is that we can leverage large scale reuse of the

components. The design of most of the components of architecture is kept

generic. As this can be observed from Figure 3.4, faultload, faultload injector,

benchmark, workload injector are independent from the system under test.

To build a new benchmark, these components do not need any modifications.

The system dependent components such as faultype, workload and SystemU-

nderTestAPI are the ones where due to various dependencies it is difficult

to reuse them. The architecture consists of generic classes such as faultload,

benchmark, workload injector and statistics. The other classes can also be

adapted easily according to the system under test. Various classes and asso-

ciated methods of the generic architecture are explained as follows:

Faultload. This class includes method that reads the particular faultload

and provide description of the locations of these faults. Faultload can be

described using a file according to various criterion like random, trace based

or synthetic. This class includes methods to generate the faultload based

on the criteria specified by the user of the benchmark. For example, in the

simplest case, if a user wants to inject a random faultload, this class invokes

the method which is responsible for generating a set of random fault types,
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Faultload

Request

FaultType

+ t y p e

+injectFault()

FaultloadInjector

WorkloadInjector

+createClients()

+waitForClients()

Benchmark

+requestDistribution

BenchmarkingExperiment

SystemUnderTestAPI

Statistics

+countFailJobs()

+countSuccessfulJobs()

+measureResponseTime()

Workload

+init ial ize()

+prepare()

+destroy()

SUT Independant

SUT Dependant

Figure 3.4: Various classes of dependability and performance benchmark ar-

chitecture

timestamps etc. in the faultload file (as shown in Figure 3.2). This class has

also few other methods. For example, method that specify target nodes in the

cases where a node crash fault needs to be injected.

FaultloadInjector. This class includes a method that injects a given

faultload in a running system. This class also consists of methods that moni-

tors the time of running of the benchmark. As we mentioned earlier, a bench-

mark run might be optionally composed of a period of warm up time and run

time. This class is responsible to inject the faults during the run time of the

benchmark. For example, it will read the timestamps and fault types in the

faultload file and would inject a particular fault type at the specified time.

Workload. This class includes methods to initialize, prepare and destroy

a benchmark. As we discussed earlier, a dependability benchmark needs an

application that a user run on the top of dependability benchmark. The work-

load class includes specific methods that are needed to start these applications,

run for the given run time of the benchmark and stop when the time to run

the benchmark is over. There might be some optional methods to prepare any

input data, if it is needed by the benchmark workload application.

WorkloadInjector. According to the definition of the workload in Sec-

tion 3.3.1, this class contains methods to send client requests that are described

by the workload. In case, where a user wants to emulate a multi-clients be-

haviour, this class would create the concurrent clients that will send requests.

In a simplest First in First out (FIFO) case, there will be a method to create

concurrent clients, wait for the completion of the request (or the end of run

time of benchmark if it comes before) and send the next request.

Benchmark. A workload might consist of a number of benchmark appli-
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cations. The client can send requests according to different rules and combi-

nations. For example, in FIFO case, there will be method to create concurrent

client, wait for the completion of the request (or the end of run time of bench-

mark if it comes before) and send the next request. The next client request

may be chosen either randomly or according to a probability distribution.

This is explained as follows: A benchmark consists of a set of client re-

quests. This class contains request distribution functions. The requests might

be uniformly distributed or some requests may have higher probabilities of

occurrence than others. This might be specified in a transition matrix for

all the requests in the benchmark. The motivation for this is that all these

client requests can be different in terms of data and computation behaviour.

Therefore, to get a better understanding of system’s dependability and per-

formance, a user can set the probability for the occurrence of the next client

request.

Request. A benchmark may consists of one or more applications. Bench-

mark class calls the Request class for issuing a new client request.

Statistics. This class contains methods for calculating the statistics. For

example, it includes methods that count the number of successful and failed

jobs to measure the availability and reliability that are used to build the

dependability and performance metrics. Moreover, it is also responsible to

invoke methods that measure the response time of different client requests.

As we mentioned in Section 3.3.4, response time and throughput are used

to build the performance metrics. To get a better understanding, statistics

for failed requests are analysed separately than the successful requests. In

addition, this class also has methods to monitor the time for upload of the

data. Although data upload time is not used to generate the dependability

and performance metric.

BenchmarkingExperiment. This is the main class which is primarily

responsible for uploading the data, and calling other methods of classes dis-

cussed before. This class orchestrates all the classes to perform the operation

as specified by the user in the configuration file.

SystemUnderTestAPI. This class is responsible of injecting the work-

load and faultload into the system under test. This class contains methods

that identify the nodes in the distributed system. It might also differentiate

between master and slave nodes, e.g. in the case of Hadoop cluster or server

and clients in the case of Memcached system. The identification of nodes is

important because a user might want to select where he/she wants to inject a

particular fault. For example, in the Hadoop version 1.0.0, master node is not

fault tolerant [Had, 2013]. Therefore, he/she might want to skip the master

node for fault injection.
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Moreover, this class has methods that are responsible for starting and stop-

ping the nodes at the beginning and at the end of a benchmark respectively.

There might be some additional services that might need a start and stop

such as Hadoop services. This class also communicates with Statistics class

to send the information from system counters to build the required statistics.

3.5 On the Generality of the Proposed Archi-

tecture

Consider a scenario where a software designer wants to develop dependability

and performance benchmark for a cloud service. This benchmark must provide

the following functional and non-functional properties:

It should provide a means to create a faultload.

It should provide a means to inject faults in a running system.

It should provide a means to create a workload and dataload.

It should provide a means to measure the dependability and performance

levels using metrics such as reliability, availability, and throughput.

The benchmark must provide features such as Portability, Representa-

tiveness, Repeatability and Reproducibility among others.

In this thesis, we conduct two case studies to validate the general archi-

tecture proposed in this chapter. Using the general architecture introduced in

this chapter, we develop dependability and performance benchmarks for two

widely used big data cloud services, MapReduce and Memcached. MapReduce

is a relatively young programming model and run-time system for large-scale

data processing [Dean and Ghemawat, 2004]. It provides a convenient means

for distributed data processing and automatic parallel execution on clusters of

machines. We developed MRBS [Sangroya et al., 2012a], which is a compre-

hensive benchmark suite for evaluating the dependability and performance of

MapReduce systems. MRBS includes five benchmarks covering several appli-

cation domains and a wide range of execution scenarios such as data-intensive

vs. compute-intensive applications, or batch applications vs. online interac-

tive applications. MRBS can be used to evaluate the performance and/or the

dependability of MapReduce systems, using various workloads, dataloads, and

faultloads. MRBS benchmark suite consists of benchmarks from five applica-

tion domains: recommendation systems, business intelligence, bioinformatics,
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text processing, and data mining. MRBS supports injection of various faults

belonging to one of the fault types handled by Hadoop MapReduce. Hadoop

is able to tolerate failures of different types such as node crash, task process

crash, task software fault and hanging tasks. In Chapter 4, we present more

details of using MRBS to evaluate the performance and dependability of a

MapReduce service.

Furthermore, we develop MemCB for evaluating the dependability and

performance of Memcached systems. Memcached is a high-performance, dis-

tributed caching system which is commonly used to speed up dynamic web

applications by lightening the database load. This is done by speeding up the

access to databases by storing the results of the previous database computa-

tions or any other data which is accessed very often. Memcached works like a

giant hash table distributed across multiple machines. When the table is full,

subsequent inserts cause older data to be purged in least recently used (LRU)

order. Memcached is easily deployable over existing applications. Memcached

is used by high-traffic websites such as Youtube, Wikipedia, Facebook and

others [Mem, 2013b].

MemCB provides a simpler way for faultload injection in a running Mem-

cached cluster. This covers different fault types, such as node crashes and

network faults, injected at different rates, that provide a means to analyze the

fault-tolerance under different scenarios. MemCB includes a workload genera-

tion toolkit that emulates concurrent client requests in a Memcached cluster.

The faultload for Memcached consists of node crashes and network errors.

MemCB workload consists of multiple concurrent clients issuing requests to

the Memcached system. We use two kinds of client requests. The set requests

that write and store our generated data in Memcached; the get requests that

retrieve the data from Memcached. Dataload of MemCB is composed of keys.

Each key in the dataload is a concatenation of a $prefix and $key id. Users

can decide to modify the values of key prefix and key ID. MemCB produces

runtime statistics related to performance and dependability, such as Response

Time, Throughput, and reliability. Chapter 6, presents the details of the use

of MemCB to evaluate the performance and dependability of a Memcached

service.

In the following, we demonstrate how the proposed architecture helps to

reduce the cost and effort in building a benchmark for a new cloud comput-

ing service. We consider various dimensions for evaluation: cost of software

development; design complexity; usability and adaptability. Cost of software

development primarily includes primarily the coding effort to develop a per-

formance and dependability benchmark. Design complexity consists of how

many components are generic (that can be easily extended from the generic
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architecture) and how many components need to be designed from scratch.

Usability comprises the ease of using the benchmark in evaluating performance

and dependability of real world cloud computing service. Adaptability sug-

gests how easy it is to add a new feature in the benchmark. Example of a

feature could be the addition of a new fault type.

3.5.1 Reduced development costs

This section includes the software development effort (focused on code reuse)

needed to develop a new dependability and performance benchmark for the

previous use cases following the architecture proposed in this chapter. Obvi-

ously, there is a part of the dependability and performance benchmark that

depends on the workload to be injected, application dependant, that will re-

quire more or less effort based on the semantics of the application. We focus

thus on the effort needed to inject the different types of faults. Of course,

this will depend again on the number of different faults that are considered to

evaluate the dependability of a specific application. Table 3.1 shows the de-

tails of the software prototypes developed for performance and dependability

benchmarking of MepReduce and Memcached i.e. MRBS and MemCB re-

spectively. For both prototypes, we provide the details of total lines of code

and performance and dependability specific components.

Table 3.1: Comparison of effort to build a new benchmark
Evaluation Parameter MRBS MemCB

Total lines of code 10,606 454

Performance Application dependant 1,183 104

Performance Application independent 6,394 0

Dependability Application dependant 979 41

Dependability Application independent 673 0

# lines per fault injector 35 3

The MRBS benchmark was built using 10,606 lines of code. Among them,

1,183 correspond to the platform independent modules for workload genera-

tion, 6,394 correspond to the platform dependant modules for workload gen-

eration, 979 for the generic part of dependability benchmarking, 673 for the

platform specific dependability benchmark and 1,377 for statistics generation.

In the platform specific dependability benchmark, 535 lines correspond to the

generation of faultloads from previous execution traces, and 138 to the fault

type definitions and their injectors (80 lines to inject Task Software Fault and

Hanging Task faults, and 58 to inject Node Crash and Task Process Crash

faults).
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The MemCB benchmark was build using 454 lines of code. This bench-

mark also includes various third party libraries. Among the total lines of code,

104 correspond to the platform dependent modules for workload generation,

41 for the platform specific dependability benchmark and 309 for statistics

generation. In the platform specific dependability benchmark, 41 lines corre-

spond to inject Node Crash and Network Fault.

3.5.2 Better usability

The architecture possesses better usability from the point of view of bench-

mark designers and also benchmark users. Due to standard design of compo-

nents, it is always easier to develop a new benchmark. The use of configuration

files for tuning the parameters makes it easier to use and and run the bench-

mark. The benchmark outputs such as graphs and HTML files provides an

easier way to visualize the performance and dependability metrics. Most of

the code of benchmark prototypes such as MRBS is in Java which makes it

robust and platform independent.

3.5.3 Higher adaptability

The architecture is also flexible and adaptable. The addition of new features

such as new fault types is not difficult. This can be done without modifying

the generic components of the architecture. The addition of new workloads

and dataloads also do not require major modifications to the existing code.

The interfaces for faultload addition, injection, and workload injection are

flexible.

3.6 Summary

For a benchmark suite to enable a thorough analysis of the dependability

and performance of a cloud service, it must provide the following. First, it

must enable automatic faultload generation and injection in cloud service.

This should cover different fault types, injected at different rates, which will

provide a means to analyze the effectiveness of fault-tolerance in a variety of

scenarios. Second, it must allow to quantify dependability levels provided by

cloud service’s fault-tolerance systems, through an empirical evaluation of the

availability and reliability of such systems, in addition to performance and

cost metrics. Third, it must cover a variety of application domains, workload

and dataload characteristics, ranging from compute-oriented to data-oriented

applications, batch applications to online interactive applications. Finally,
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the benchmark suite must be portable and easy to use on a wide range of

platforms, covering different cloud infrastructures.

In this chapter, we have introduced the generic architecture to build per-

formance and dependability benchmarks for cloud services. We described

various components and modules responsible for injecting faults in cloud ser-

vices in addition to the components responsible for measuring the performance

and dependability. Subsequent chapters present the details of the use of the

generic architecture to build two software prototypes: MRBS and MemCB,

to benchmark two popular cloud services: MapReduce and Memcached.
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4.1 Introduction

Cloud computing is increasingly being used, enabling on-demand services

hosted on a virtually unlimited set of computing and storage resources. MapRe-

duce has become a popular Big Data cloud service [Dean and Ghemawat, 2004],

used by a wide range of applications such as log analysis, data mining, scientific

computing [Chen and Schlosser, 2008], bioinformatics [Schatz, 2009], decision

support and business intelligence [Gre, 2011].

MapReduce provides a convenient means for distributed data processing

and automatic parallel execution on clusters of machines. It has various appli-

cations and is used by several services featuring fault-tolerance and scalability.

MapReduce offers developers a means to transparently handle data partition-

ing, replication, task scheduling and fault-tolerance on a cluster of commodity

computers. Hadoop, one of the most popular MapReduce frameworks, pro-

vides key fault-tolerance features such as handling node failures, task failures,

hanging tasks [White, 2009].

There has been a considerable interest in improving fault-tolerance and

performance of MapReduce. Several efforts have explored on-demand fault-

tolerance [Fadika and Govindaraju, 2010], replication and partitioning poli-

cies [Ananthanarayanan et al., 2011], [Eltabakh et al., 2011], adaptive fault-

tolerance [Jin et al., 2012, Lin et al., 2010], extending MapReduce with other

fault-tolerance models [Costa et al., 2011, Ko et al., 2010]. There are works

that focus upon task scheduling policies [Isard et al., 2009, Zaharia et al., 2010,

Zaharia et al., 2008], resource provisioning [Verma et al., 2011] and cost-based

optimization techniques [Herodotou and Babu, 2011]. There has also been a

considerable interest in extending MapReduce with other fault tolerance mod-

els [Bessani et al., 2010], or with techniques from database systems [Lu, 2010,

Abouzeid et al., 2009, Dittrich et al., 2010, Floratou et al., 2011].

However, there has been very little in the way of empirical evaluation of

MapReduce dependability, and the impact of failures on performance. Eval-

uations have often been conducted in an ad-hoc manner, such as turning

off a node in the MapReduce cluster or killing a task process. These ac-

tions are typically dictated by what testers can actually control, but may

lead to low coverage testing. Recent tools, like Hadoop fault injection frame-

work [Had, 2011b], offer the ability to emulate non-deterministic exceptions in

the HDFS distributed filesystem underlying Hadoop MapReduce. Although

they provide a means to program unit tests for HDFS, such low-level tools are

meant to be used by developers who are familiar with the internals of HDFS,

and are unlikely to be used by end-users of MapReduce systems.

MapReduce fault injection must therefore be generalized and automated
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for higher-level and easier use. Not only it is necessary to automate the

injection of faults, but also the definition and generation of MapReduce fault-

loads. A faultload will describe what fault to inject (e.g. a node crash), where

to inject it (e.g. which node of the MapReduce cluster), and when to in-

ject it (e.g. five minutes after the application started). Furthermore, most

evaluations of MapReduce fault-tolerance systems relied on microbenchmarks

based on simple MapReduce programs and workloads, such as grep, sort or

word count. While microbenchmarks may be useful in targeting specific sys-

tem features, they are not representative of full distributed applications, and

they do not provide multi-user realistic workloads.

These observations motivate the design of MRBS (MapReduce Bench-

mark Suite), the first benchmark suite for evaluating the dependability and

performance of MapReduce systems.

The contributions of this chapter are following:

We provide automatic faultload generation and injection in MapReduce.

This covers different fault types, injected at different rates, which will

provide a means to analyze the effectiveness of fault-tolerance in a variety

of scenarios.

We provide a benchmark suite that covers five application domains:

recommendation systems, business intelligence, bioinformatics, text pro-

cessing, and data mining. It supports a variety of workload and dataload

characteristics, ranging from compute-oriented to data-oriented applica-

tions, batch applications to online interactive applications. Indeed, while

MapReduce frameworks were originally limited to offline batch applica-

tions, recent works are exploring the extension of MapReduce beyond

batch processing [Condie et al., 2010], [Liu and Orban, 2011]. The pro-

posed benchmark suite uses various input data sets from real applica-

tions, among which an online movie recommender service [Mov, 2011],

Wikipedia [Wik, 2012], and real genomes for DNA sequencing [San, 2011].

We describe the design principles of MRBS benchmark suite, and its

deployment on Hadoop clusters running on Amazon EC2, and on a pri-

vate cloud. Although the current MRBS prototype is provided for the

Hadoop popular MapReduce framework, we believe that the proposed

dependability and performance benchmarking solution can be easily ap-

plied to other MapReduce frameworks. We, thus, discuss the portability

of MRBS to other MapReduce frameworks.

We describe how MRBS allows automatic deployment of experiments

on cloud infrastructures. It does not depend on any particular infras-
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tructure and can run on different private or public clouds. This makes

dependability and performance benchmarking easy to adopt by end-

users of MapReduce, and by developers of MapReduce fault-tolerance

and scalability solutions.

MRBS is available as a software prototype to help researchers and prac-

titioners to better analyze and evaluate the dependability and perfor-

mance of MapReduce systems; it can be downloaded from: http://

sardes.inrialpes.fr/research/mrbs.

4.2 Background

4.2.1 MapReduce

MapReduce is a programming model and a software framework introduced by

Google in 2004 to support distributed computing and large data processing on

clusters of commodity machines [Dean and Ghemawat, 2004]. The MapRe-

duce functional programming model provides a simple means to write pro-

grams that process large input data sets. Programmers write only two main

functions: a map function and a reduce function, and the MapReduce frame-

work automatically handles data and computation distribution in a cluster. A

MapReduce job, i.e. an instance of a running MapReduce program, has sev-

eral phases; each phase consists of multiple tasks scheduled by the MapReduce

framework to run in parallel on cluster nodes. First, input data are divided

into splits, one split is assigned to each map task. During the mapping phase,

tasks execute a map function to process the assigned splits and generate in-

termediate output data. Then, the reducing phase runs tasks that execute a

reduce function to process intermediate data and produce the output.

4.2.2 Hadoop MapReduce

There are many implementations of MapReduce. Hadoop is a popular MapRe-

duce framework, available in public clouds such as Amazon, and Open Cir-

rus [Ama, 2011b, Ope, 2011a]. Hadoop cluster consists of a master node and

slave nodes. Users (i.e. clients) of a Hadoop cluster submit MapReduce jobs

to the master node which hosts the JobTracker daemon that is responsible

of job scheduling. By default, jobs are scheduled in FIFO mode and each

job uses the whole cluster until the job completes, or until the job finishes its

map phase in which case map slots are available for another job. However,

other multi-user job scheduling approaches are also available in Hadoop to
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allow jobs to run concurrently on the same cluster. This is the case of the

fair scheduler which assigns every job a fair share of the cluster capacity over

time [Fai, 2011]. Moreover, each slave node hosts a TaskTracker daemon that

periodically communicates with the master node to indicate whether the slave

is ready to run new tasks. If it is, the master schedules appropriate tasks on

the slave. Each task is executed by a separate process.

Hadoop framework also provides a distributed filesystem (HDFS) that

stores data across cluster nodes. HDFS architecture consists of a NameN-

ode and DataNodes. The NameNode daemon runs on the master node and

is responsible of managing the filesystem namespace and regulating access to

files. A DataNode daemon runs on a slave node and is responsible of man-

aging storage attached to that node. HDFS is thus a means to store input,

intermediate and output data of Hadoop MapReduce jobs. In addition, for

fault tolerance purposes, HDFS replicates data on different nodes.

4.2.3 Fault Tolerance in Hadoop

Hadoop is able to tolerate failures of different types [White, 2009], as described

in the following.

Node Crash. In case of a slave node failure, the JobTracker on the mas-

ter node stops receiving heartbeats from the TaskTracker on the slave for an

interval of time. When it notices the failure of a slave node, the master re-

moves the node from its pool and reschedules tasks that were ongoing on other

nodes. The heartbeat timeout is set in the mapred.task.tracker.expiry.interval

Hadoop property. In the current implementation of Hadoop, failures of the

master node are not tolerated.

Task Process Crash. A task may also fail because a map or reduce

task process suddenly crashes, e.g., due to a transient bug in the underlying

(virtual) machine. Here again, the parent TaskTracker notices that a task

process has exited and notifies the JobTracker for possible task retries.

Task Software Fault. A task may fail due to errors and runtime ex-

ceptions in map or reduce functions written by the programmer. When a

TaskTracker on a slave node notices that a task it hosts has failed, it notifies

the JobTracker on the master node which reschedules another execution of the

task, up to a maximum number of retries. This allows to tolerate transient

errors in MapReduce programs.

Hanging Tasks. A map or reduce task is marked as failed if it stops

sending progress updates to its parent TaskTracker for a period of time (in-

dicated by mapred.task.timeout Hadoop property). If that occurs, the task

process is killed, and the JobTracker is notified for possible task retries.
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4.3 Overview of MRBS

MRBS is a comprehensive benchmark suite for evaluating the dependabil-

ity and performance of MapReduce systems. As discussed in Chapter 3,

MRBS achieve the following design objectives:

1. Multi-criteria analysis. MRBS aims to measure and analyze the

performance and dependability of MapReduce systems. In particular,

we consider several measurement metrics such as reliability, availability,

financial cost, request response time (i.e. latency), and request through-

put. We also consider low-level MapReduce metrics, such as throughput

of MapReduce jobs and tasks, task and job failures, I/O throughput

(data reads/writes), etc.

2. Diversity. MRBS covers a variety of application domains and pro-

grams with a wide range of MapReduce characteristics. This includes

data-oriented applications vs. compute-oriented applications. Further-

more, whereas MapReduce was originally used for long running batch

jobs, modern MapReduce cluster is shared between multiple users run-

ning concurrently [Condie et al., 2010, Liu and Orban, 2011]. There-

fore, MRBS considers batch applications as well as interactive appli-

cations. Moreover, MRBS allows to characterize different aspects of

application load such as the faultload, the workload and the dataload.

Roughly speaking, the faultload describes MapReduce fault types and

fault arrival rates. The workload is characterized by the number of

clients (i.e. users) sharing a MapReduce cluster, the types of client re-

quests (i.e. MapReduce programs), and request arrival rates. The dat-

aload characterizes the size and nature of MapReduce input data.

3. Usability. MRBS is easy to use, configure and deploy on a MapReduce

cluster. It is independent from any infrastructure and can easily run

on different public clouds and private clouds. MRBS provides results

which can be readily interpreted in the form of monitored statistics and

automatically generated charts.

MRBS allows to inject various faultloads, workloads and dataloads in

MapReduce systems, and to collect information that helps testers understand

the observed behavior of MapReduce systems. The overall architecture of

MRBS is presented in Figure 4.1. MRBS comes with a benchmark suite,

that is a set of five benchmarks covering various application domains: rec-

ommendation systems, business intelligence, bioinformatics, text processing,
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and data mining. Conceptually, each benchmark implements a service run-

ning on a MapReduce cluster, and each service has several types of requests

that are issued by users (i.e. clients). A client request executes one or a se-

ries of MapReduce jobs. MRBS may emulate multiple clients implemented as

external entities, that concurrently access the MapReduce cluster.

MRBS

MapReduce cluster

master node

slave node slave node slave node…

MapReduce framework
& Distributed filesystem

Dependability
analysis

Workload

…

clients

re
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Figure 4.1: Overview of MRBS

MRBS benchmarks were chosen to exhibit different behaviours in terms

of computation pattern and data access pattern: the Recommendation Sys-

tem is a compute-intensive benchmark, the Business Intelligence system is

a data-intensive benchmark, and the other benchmarks are relatively less

compute/data-intensive. This is shown in Figure 4.2 that compares the differ-

ent benchmarks (note the logarithmic scale). Figure 4.2(a) gives the average

size of data accessed per client request, and Figure 4.2(b) gives the processing

time per unit of accessed data. Moreover, Figure 4.3 shows that MRBS bench-

marks present different MapReduce characteristics in terms of the average

number of MapReduce jobs and tasks per client request. Figure 4.3(a) gives

the average MapReduce tasks per job, and Figure 4.3(b) gives the average

MapReduce tasks per client request.

0figures obtained with the first dataload of each benchmark
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4.3.1 MRBS Benchmark Suite

Table 4.1: Workloads and applications constituting MRBS

Workload Cat-

egory

Application Description

Recommendation

System

Recommendation

Based upon Users

finds movies a user might like or

movies similar to another movie

Recommendation

Based upon Items

Business intelli-

gence

Complex HIVE

Queries

performs complex business

analysis

Bioinformatics CloudBurst DNA se-

quence analysis algo-

rithm

maps sequence data to reference

genomes

Text Processing Grep searches text files for lines con-

taining a match to a given text

pattern

Sort sorts the content of text files

WordCount counts the number of words in

text files

Data Mining K Means Clustering groups the contents of text files

together into clusters

Baysian Classifica-

tion

decides what are the documents

belonging to newsgroups

Benchmarks constituting MRBS are summarized in Table 4.1. We present

technical details of the benchmarks constituting MRBS in the following.

Recommendation System. Recommendation systems are widely used

in e-commerce sites such as Amazon.com which, based on purchases and site

activity, recommends books likely to be of interest. MRBS implements an on-

line movie recommender system. It builds upon a set of movies, a set of users,

and a set of ratings and reviews users give for movies to indicate whether and

how much they liked or disliked the movies. These data have been collected

from a real movie recommendation web site [Mov, 2011]. The benchmark pro-

vides four types of operations. First, a user may ask for all ratings and reviews

given by other users for a given movie, to see whether people liked or disliked

the movie. The recommendation system also allows to browse all ratings and

reviews given by a user. Furthermore, a user may ask the recommender system



4.3. Overview of MRBS 67

to provide him/her the top ten recommendations, these are the movies this

user would like the most. Another type of operation a user may perform is

to ask the recommendation system how it would recommend him/her a given

movie; this would indicate to the user whether and how much he/she would

like or dislike that movie.

This benchmark is based on MapReduce implementations of data mining

and search algorithms. For building recommendations, similarities between

movies are computed by looking to users’ ratings and preferences. The al-

gorithm uses item-based recommendation techniques to find movies that are

similar to other movies [Jannach et al., 2010]. Similarities between movies

are relatively static and can thus be computed once and then reused. This

is what the Recommendation system benchmark does by storing the precom-

puted similarities in the distributed filesystem. Therefore, the benchmark

handles client requests by applying a search algorithm on the precomputed

data.

Business Intelligence. The Business Intelligence benchmark represents

a decision support system for a wholesale supplier. It implements business-

oriented queries that examine large volumes of data, execute queries with

a high degree of complexity, and give answers to critical business questions.

MRBS includes a MapReduce implementation of the TPC-H industry-standard

benchmark [TPC, 2011a]. It uses Apache Hive on top of Hadoop, a data

warehouse that facilitates ad-hoc queries using a SQL-like language called

HiveQL [Hiv, 2013]. The benchmark consists of eight data tables, and pro-

vides 22 types of operations among which an operation that identifies geogra-

phies where there are customers who may be likely to make a purchase, or an

operation that retrieves the ten unshipped orders with the highest value. The

provided operations are implemented as HiveQL queries, that are translated

into MapReduce programs by the Hive framework. The input data of the

benchmark were generated with the DBGen TPC provided software package,

and are compliant with the TPC-H specification [TPC, 2011a].

Bioinformatics. The Bioinformatics benchmark performs DNA sequenc-

ing. Users of the benchmark may choose a complete genome to analyze among

a set of genomes. Roughly speaking, DNA sequencing attempts to find where

reference reads (i.e. short DNA sequences) occur in a genome, allowing a fixed

number of errors. This is a highly parallelizable process that can benefit from

MapReduce. The benchmark includes a MapReduce-based implementation of

DNA sequencing [Schatz, 2009]. The data used in the benchmark are publicly

available genomes [San, 2011]. Currently, the benchmark allows to analyze

several genomes of organisms such as the pathogenic organisms Salmonella

Typhi, Rhodococcus equi, and Streptococcus suis. The Salmonella Typhi is
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a parasite that causes human typhoid fever; its genome is about 2,000,000

DNA characters long. The Rhodococcus equi is a disease-causing organism in

horses, with a genome of about 3,000,000 DNA characters. Streptococcus suis

is another pathogen which human infection can cause severe outcomes such

as meningitis; its genome is also about 2,000,000 DNA characters long. The

benchmark can be easily extended with new genomes to analyze by simply

defining them as new input data in MRBS configuration file.

Text Processing. Text processing is a classical application of MapRe-

duce used, for instance, to analyze the logs of web sites and search engines.

MRBS provides a MapReduce text processing-oriented benchmark, with three

types of operations allowing clients to search words or word patterns in text

documents, to know how often words occur in text documents, or to sort the

contents of documents. The benchmark uses synthetic input data that consist

of randomly generated text files of different sizes.

Data Mining. This benchmark provides two types of data mining op-

erations: clustering and classification [Mah, 2013]. Bayesian classification as-

signs a category from a fixed set of known categories to an un-categorized

element. As an example of classification application, Yahoo! Mail classifies

incoming messages as spam, or not, based on prior emails and spam reports.

MRBS benchmark considers the case of classifying newsgroup documents into

categories. A first step consists in applying a learning algorithm to train the

model. Then, the model can be used with an un-classified document to esti-

mate the newsgroup the document is likely to belong to. The benchmark uses

collections of data publicly available from [20N, 2011].

Furthermore, the benchmark provides canopy clustering operations. Canopy

clustering partitions a large number of elements into clusters in such a way that

elements belonging to the same cluster share some similarity. For instance,

Google News uses clustering techniques to group news articles according to

their topic. The benchmark uses datasets of synthetically generated control

charts, to cluster the charts into different classes based on their characteris-

tics [Mah, 2013].

4.3.2 MRBS Workload

The workload is characterized by the benchmark to execute, and the number of

concurrent clients issuing requests on that benchmark application; this number

may vary. The workload is also characterized by the execution mode which

may be interactive or batch. In interactive mode, concurrent clients share the

MapReduce cluster (i.e. have their requests executed) at the same time. In

batch mode, requests from different clients are executed in FIFO order. In
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interactive mode, clients concurrently and fairly share the MapReduce cluster

(see Section 4.2.2).

The workload is also characterized by client request distribution, that is

the relative frequencies of different request types. It may follow different

distribution laws (known as workload mixes), such as a random distribution.

Request distribution may be defined using a state-transition matrix that gives

the probability of transitioning from one request type to another.

4.3.3 MRBS Dataload

The dataload is characterized by the nature and size of data sets used as inputs

for a benchmark. Data used in MRBS’ benchmarks are real and publicly

available datasets. Users of MRBS may choose between datasets of different

sizes (see Table 4.2, the default input data for each benchmark being the

first one). Obviously, the nature and format of data depend on the actual

benchmark. In the following, we describe the nature of data used by the

different benchmarks.

The Recommendation System benchmark uses a dataset composed of four

subsets: a set of movies, a set of users, a set of ratings given by the users for

movies, and the estimated recommendation of all the movies for each user.

The first three sets have been collected from a real movie recommendation

web site [Mov, 2011]. The fourth is generated with a preprocessing of the first

datasets [Mah, 2013, Jannach et al., 2010].

The Business Intelligence benchmark uses a database that consists of eight

data tables. The database is generated with TPC-H’s DBGen database pop-

ulation tool [TPC, 2011a].

The Bioinformatics benchmark’s dataset is the genome of several real

pathogenic organisms, namely Salmonella typhi, Rhodococcus equi, and Strep-

tococcus suis, which are publicly available [San, 2011].

The Text Processing benchmark uses as input data the Wikipedia content

in different languages, e.g. English, Italian etc. [Wik, 2012].

TheData Mining benchmark uses publicly available data sets from [Mah, 2013]

and [20N, 2011]. The first one is used for clustering requests, the second is

used for classification requests.

MRBS can be used for benchmarking the dependability of MapReduce, for

benchmarking the performance of MapReduce, or for both. In the following,

we present dependability benchmarking; performance benchmarking is then

discussed in Section 4.3.7. To use MRBS for dependability benchmarking,

three main steps are needed: (i) build a faultload (i.e. fault scenario) to de-

scribe the set of faults to be injected, (ii) conduct fault injection experiments
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Table 4.2: Application domains and benchmark characteristics in MRBS. An appended ’+’ symbol indicates larger dat-

aload, higher computation contention or higher data access contention.
Domain Dataload Execution

mode

Workload Faultload Computation

vs. data

access

Recommendation

system

dataload 100,000 ratings, 1000 users, 1700 movies
interactive /

batch

mono-user

/

multi-user

no fault /

faults
compute-oriented+dataload+ 1 million ratings, 6000 users, 4000 movies

dataload++ 10 million ratings, 72,000 , 10,000 movies

Business

intelligence

dataload 1GB
interactive /

batch

mono-user

/

multi-user

no fault /

faults
data-oriented+dataload+ 10GB

dataload++ 100GB

dataload* any data size

Bioinformatics dataload genomes of 2,000,000 to 3,000,000 DNA characters interactive

/ batch

mono-

user /

multi-

user

no fault

/ faults

data-

oriented

/ compute-

oriented

Text

processing

dataload text files (1GB)
interactive /

batch

mono-user

/

multi-user

no fault /

faults

data-

oriented /

compute-

oriented

dataload+ text files (10GB)

dataload++ text files (100GB)

dataload* any data size

Data

mining

dataload 5000 documents, 5 newsgroups, 600 control charts
interactive /

batch

mono-user

/

multi-user

no fault /

faults

data-

oriented /

compute-

oriented

dataload+ 10,000 documents, 10 newsgroups, 1200 control charts

dataload++ 20,000 documents, 20 newsgroups, 2400 control charts
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based on the faultload, and (iii) collect statistics about dependability levels of

the MapReduce system under test. This is presented in Figure 4.4.

Cluster

(Amazon EC2, Azure, …)

MapReduce framework

(Hadoop)

MapReduce benchmark application

(Recomm. sys., Bioinformatics, …)

MRBS faultload

builder

MRBS fault

injection

MRBS 
dependability

analysis

workload dataload

faultload

tester

Figure 4.4: Overview of MRBS dependability benchmarking

The evaluator of the dependability of a MapReduce system chooses an

application from MRBS ’ set of benchmarks, depending on the desired appli-

cation domain and whether he/she targets compute-oriented or data-oriented

applications. MRBS injects workload and dataload in the system under test.

MRBS also allows the evaluator to choose specific dataload and workload, to

stress the scalability of the MapReduce system. Further details about work-

load and dataload injection, and performance analysis with MRBS are given

in Section 4.3.7.

4.3.4 MRBS Faultload

A faultload in MRBS is described in a file, either by extension, or by inten-

tion. In the former case, each line of the faultload file consists of the following

elements: the time at which a fault occurs (relatively to the beginning of the

experiment), the type of fault that occurs and, optionally, where the fault

occurs. A fault belongs to one of the fault types handled by Hadoop MapRe-

duce, and introduced in Section 4.2.3. A fault occurs in one of the MapReduce
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cluster nodes; this node may be either explicitly specified in the faultload or

randomly chosen among the set of nodes. To make the parsing of this faultload

file more efficient, redundant lines, that correspond to multiple occurrences of

the same fault at the same time, are grouped into one line with an extra pa-

rameter that represents the number of occurrences of that fault. Another way

to define a more concise faultload is to describe it by intention. Here, each

line of the faultload file consists of: a fault type, a fault distribution function

and the mean time between failures (MTBF).

4.3.5 MRBS Faultload Builder

Testers can explicitly build synthetic faultloads representing various fault sce-

narios. A faultload description may also be automatically obtained, either

randomly or based on previous application runs’ traces. Random faultload

builder may produce a faultload by extension or by intention. In the case of

faultload by extension, it generates the i-th line of the faultload file as follows:

< time stampi, fault typei, fault locationi >, with time stampi being a

random value between time stampi−1 (or 0 if i = 1) and the length of the ex-

periment, fault typei and fault locationi random values in the set of possible

values. However, in case of faultload by intention, random faultload builder

produces a faultload description where, with each fault type is associated a

random MTBF between 0 and the length of the experiment.

A faultload description may also be automatically generated based on

traces of previous runs of MapReduce applications and workloads. The trace-

based faultload builder parses the MapReduce framework’s logs and identifies

the faults that occurred in these runs: their time stamp, their type, and pos-

sibly their location. We designed the trace-based faultload builder to work

directly on the MapReduce framework’s logs, which allows it to work not

only on workloads and benchmark applications from the MRBS benchmark

suite, but also with other workloads and MapReduce applications. As with

the other variants of the faultload builder, the faultload that results from the

trace-based faultload builder may be described by extension or intention. In

the latter case, a statistical analysis of the traces is performed to calculate

MTBF for the different types of faults.

4.3.6 MRBS Fault Injection

The output of the MRBS faultload builder is passed to the MRBS fault in-

jector. The MRBS fault injector divides the input faultload into subsets of

faultloads as follows: one global faultload that groups all crash faults that



4.3. Overview of MRBS 73

will occur in all nodes of the MapReduce cluster (i.e. node crash, task process

crash), and per-node faultloads that group all occurrences of other types of

faults that will occur in each node (i.e. task software faults, hanging tasks).

node

…

MRBS faultload injection

faultload

MRBS 

faultload
builder

Crash faultload
injector

Per-node
faultload
injector

per-node
faultload

node

Per-node
faultload
injector

per-node
faultload

node

Per-node
faultload
injector

per-node
faultload

tasks tasks tasks

crash 
faultload

Faultload
division

MapReduce cluster

Figure 4.5: Architecture of MRBS faultload injector

The MRBS fault injector runs a daemon that is responsible of injecting

the global faultload. In the following, we present how the daemon injects

these faults, in case of a faultload described by extension, although this can

be easily generalized to a faultload described by intention. Thus, for the i-th

fault in the crash faultload, the dameon waits until time stampi is reached,

then calls the fault injector of fault typei (see below), on the MapReduce

cluster node corresponding to fault locationi. This fault injector is called as

many times as there are occurrences of the same fault at the same time. The

fault injection dameon repeats these operations for the following crash faults,

until the end of the faultload file is encountered or the end of the experiment

is reached.

The MRBS fault injector handles the per-node faultloads differently. A

per-node faultload includes faults that occur inside tasks. MRBS intercepts

task creation to check whether a fault must be injected in that task, in which

case the fault injector corresponding to the fault type is called (see below).

MRBS does not require the modification of the source code of the MapReduce
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framework. Instead, it synthesizes a new version of the MapReduce framework

library using aspect-oriented techniques. The synthetic MapReduce library

has the same API as the original one, but underneath this new library includes

task creation interceptors that encode the fault injection logic. The overall

architecture of the faultload injection in MRBS is described in Figure 4.5.

Node Crash Injection. A node crash is simply implemented by shutting

down a node. This fault injector uses the API of the underlying cloud infras-

tructure to implement such a fault. For example, in case of a public cloud

such as Amazon EC2, a node crash consists in a premature termination of an

Amazon EC2 instance. However, if a tester wants to conduct multiple runs

of the same dependability experiment, and if faults are implemented by shut-

ting down machines, new machines must be acquired from the cloud at the

beginning of each run, which may induce a delay. For efficiency purposes, we

propose an implementation of MapReduce node fault which kills all MapRe-

duce daemons running on that node. Specifically, in the case of Hadoop these

include the TaskTracker and DataNode daemons running in a slave node1.

The timeout to detect a MapReduce node failure is set to 30 seconds, a value

set in mapred.task.tracker.expiry.interval Hadoop property.

Task Process Crash Injection. This type of fault is implemented by

killing the process running a task on a MapReduce node.

Task Software Fault Injection. A task software fault is implemented

as a runtime exception thrown by a map task or a reduce task. This fault

injector is called by the interceptors injected into the MapReduce framework

library by MRBS .

Provoking Hanging Tasks. A task is marked as hanging if it stops

sending progress updates for a period of time. This type of fault is injected

into a map task or a reduce task through the interceptors that make the task

sleep a longer time than the maximum period of time for sending progress

updates (mapred.task.timeout Hadoop property).

4.3.7 Performance and Dependability Analysis in MRBS

Performance and Dependability Statistics

MRBS can be used to evaluate the performance and/or the dependability

of MapReduce systems, using various workloads, dataloads, and faultloads.

MRBS produces runtime statistics related to dependability, such as reliabil-

ity, and availability [Laprie, 1995]. Reliability is measured as the ratio of

1A node crash is not injected to the MapReduce master node since this node is not

fault-tolerant in the used version of Hadoop, c.f. Section 4.2.2.
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successful MapReduce client requests to the total number of requests, during

a period of time. Availability is measured from the client’s perspective as

the ratio of, on the one hand, the time the benchmark service is capable of

returning successful responses to the client, and on the other hand, the total

time; availability is measured during a period of time.

In addition, MRBS produces performance and cost statistics, such as client

request response time, request throughput, and the financial cost of a client

request. Throughput is the number of clients requests handled by the bench-

mark per unit of time. Response time is the elapsed time from the moment the

client submits a request until the response is received by the client. This may

include, not only the execution time of that request, but also the overhead of

time-sharing in Hadoop cluster.

MRBS also provides low-level MapReduce statistics related to the number,

length and status (i.e. success or failure) of MapReduce jobs, map tasks, reduce

tasks, the size of data read from or written to the distributed file system,

etc. These low-level statistics are built offline, after the execution of the

benchmark. Optionally, MRBS can generate charts plotting continuous-time

results.

Automatic Deployment of Experiments

MRBS allows to automatically deploy extensive experiments and test various

scenarios on cloud infrastructures such as Amazon EC2 and private clouds.

The cloud infrastructure and the size of the cluster are configuration pa-

rameters of MRBS. MRBS acquires on-demand resources provided by cloud

computing infrastructures such as private clouds, or the Amazon EC2 public

cloud [Ama, 2011a]: one node is dedicated to run MRBS load injectors, and

the other nodes are used to host the MapReduce cluster. MRBS automat-

ically releases the resources when the benchmark terminates. We expect to

provide MRBS versions for other cloud infrastructures such as the OpenStack

open source cloud infrastructure [Ope, 2011b]. Once the cluster is set up, the

MapReduce framework and its underlying distributed file system are started

on the cluster. The current implementation of MRBS uses the popular Apache

Hadoop MapReduce framework and HDFS.

Usability of MRBS

Once the user of MRBS has defined a workload, a dataload, and a faultload

(or used the default ones), MRBS automatically deploys the experiment on

a cluster in specified cloud, and injects the load into the MapReduce cluster.

It first uploads input data in the MapReduce distributed file system. This is
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done once, at the beginning of the benchmark, and the data are then shared

by all client requests. Afterwards, it creates as many threads as concurrent

clients there are. Thread clients will remotely send requests to the master node

of the MapReduce cluster which schedules MapReduce jobs in the cluster (see

Figure 4.1). Clients continuously send requests/receive responses until the

execution run terminates.

An experiment run has three successive phases: a warm-up phase, a run-

time phase, and a slow-down phase. Statistics are produced during the run-

time phase, whereas the warm-up phase allows the MapReduce system to

reach a steady state before collecting statistics, and the slow-down phase al-

lows to terminate the benchmark in a clean way. An experiment may also

be automatically run a number of times, to produce average statistics and

variance reports.

To make MRBS flexible, a configuration file is provided, that involves sev-

eral parameters such as the length of the experiment, the size of MapReduce

input data, etc. Nevertheless, to keep MRBS simple to use, these param-

eters come with default values that may be adjusted by MRBS users (See

Annexe A.1).

4.4 On the Portability of MRBS Software

Although the current version of MRBS prototype is provided for Hadoop,

we believe that the proposed dependability and performance benchmarking

solution can be easily applied to other MapReduce frameworks. Most of

MRBS prototype is general enough and applies to any MapReduce frame-

work, except some specific parts. In the following, we describe how to port

these parts to other MapReduce frameworks, discussing the different elements

presented in Figure 4.4.

4.4.1 Portability of Fault Builder

The faultload builder in MRBS is general enough to not to rely on the un-

derlying MapReduce framework, except the trace-based faultload generation.

Indeed, to generate faultloads based on traces, the faultload builder analyzes

the logs produced by the MapReduce framework, and uses pattern recognition

to detect the occurrence of faults. This pattern recognition should, therefore,

be adapted to a specfic MapReduce framework.
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4.4.2 Portability of Fault Injection

Fault injection techniques used in MRBS depend on the actual type of faults

to inject. For instance, the injection of task software faults or hanging tasks

depends on the MapReduce API. This API is needed to capture the task

creation point at which a fault will be injected by MRBS using aspect-oriented

techniques. Thus, the injection of faults of these types needs to be adapted

for any new MapReduce API. Furthermore, the injection of node crash faults

or task process crash faults depends on the actual names of the underlying

processes and, thus, needs to be adapted for a new MapReduce framework.

4.4.3 Portability of Performance and Dependability Anal-

ysis

High-level statistics such as response time, throughput, availability and relia-

bility are computed by MRBS based on the MapReduce framework’s output

files. And low-level statistics are extracted from the the MapReduce frame-

work’s log files. In both cases, pattern recognition is applied to these files to

extract the necessary information. Thus, this pattern recognition should be

adapted to the framework in use.

4.4.4 Portability of Workload and Dataload Injection

Workload injection and dataload injection depend on the MapReduce frame-

work user interface. The former uses this interface to send the request (i.e. MapRe-

duce jobs) of the emulated clients to the MapReduce cluster. The latter uses

this interface to upload the input data to the MapReduce filesystem. Port-

ing MRBS’ workload injection and dataload injection to a new MapReduce

framework is, thus, straightforward.

4.4.5 Portability of MRBS Experiment Deployer

MRBS allows automatic deployment of experiments, and this is implemented

mainly using the MapReduce framework user interface. This inludes oper-

ations such as starting and stopping the MapReduce service, copying the

datasets to the framework filesystem, selecting the MapReduce job sched-

uler, etc. Moreover, to automate the deployment of experiments on a given

cloud infrastructure (e.g. Amazon EC2), MRBS uses the cloud user interface

to start/stop instances. Thus, MRBS’ automatic deployment of experiments

should be adapted to the user interface of the MapReduce framework in use,

and the user interface of the target cloud infrastructure.
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4.5 Experimental Evaluation

In the following, we present the use of MRBS to evaluate the performance and

dependability of MapReduce systems.

4.5.1 Experimental Setup

The experiments presented in this section were conducted in a cluster running

on Amazon EC2 [Ama, 2011a], and on Grid’5000 [Bolze et al., 2006]. Each

cluster consists of one node hosting MRBS and emulating concurrent clients,

and a set of nodes hosting the MapReduce cluster. The experiments below

use several benchmarks of MRBS with default (unless specified otherwise)

dataloads (see Table 4.2); the benchmarks are run in interactive mode, with

multiple concurrent clients. In these experiments, client request distribution is

random, and request interarrival time is an average of 7 seconds. Availability

and reliability are measured in periods of 30 minutes, and cost is based on

Amazon EC2 pricing at the time we conducted the experiments, which is $0.34

per instance·hour.

The hardware configuration used in the experiments is described in Ta-

ble 4.3. The underlying software configuration is as follows. We used Ama-

zon EC2 large instances which run Fedora Linux 8 with kernel v2.6.21. Nodes

in Grid’5000 run Debian Linux 6 with kernel v2.6.32. The MapReduce frame-

work is Apache Hadoop v0.20.2, and Hive v0.7, on Java 6. MRBS uses Apache

Mahout v0.6 data mining library [Mah, 2013], and CloudBurst v1.1.0 DNA

sequencing library [Schatz, 2009].

Table 4.3: Hardware configurations of MapReduce Clusters

Cluster CPU Memory Storage Network

Amazon

EC2

4 EC2 Compute Units

in 2 virtual cores

7.5 GB 850 MB 10 Gbit Ether-

net

Grid’5000 4-core 1-cpu 2.53 GHz

Intel Xeon X3440

16 GB 278 GB

SATA II

Infiniband

20G

4.5.2 Performance Evaluation Under Workloads

To illustrate how MRBS allows to evaluate the performance of MapReduce

systems, we present here some experimental results. We perform these exper-

iments in Amazon EC2 and vary the workload to see the impact on perfor-
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mance. Figure 4.6 shows the performance statistics obtained with a 20-node

Hadoop cluster when the number of concurrent clients increases. All MRBS

benchmarks are used in these experiments. Each benchmark uses its first

dataload configuration as input data (see Table 4.2). The results presented

in the following correspond to the average of three executions of 30 minutes

run-time, after a 15 minutes of warm-up, with relative standard deviations of

0.2%-8%.

Figures 4.6(a) and 4.6(b) respectively present client request throughput

and response time, for the different benchmarks. The throughput of the Rec-

ommendation System increases quasi-linearly with the number of concurrent

clients. This is due to the fact that the MapReduce cluster is not overloaded

and can thus cope with more concurrent clients. This is also confirmed by

Figure 4.6(b) that shows that the response time of the Recommendation Sys-

tem does not increase with the number of concurrent clients. On the contrary,

Text Processing cannot cope with increasing concurrent clients and response

time increase linearly. Data Mining benchmark also shows a similar behaviour

with increased workload.

The throughput of the Bioinformatics and Business Intelligence bench-

marks increases linearly between 5 and 10 clients. The throughput with 20

clients continues to increase for Business Intelligence, whereas it does not in-

crease appreciably with Bioinformatics, which reaches its maximum capacity.

This is also reflected in the response times of the Bioinformatics and Business

Intelligence benchmarks, which present a sharp increase between 10 and 20

clients. Thus, these experiments show that a MapReduce cluster is able to

successfully host multi-user applications.

Interestingly, MRBS benchmarks show different throughput speedups, and

this is explained as follows. Compared to the other benchmarks in MRBS,

Recommendation System has the lowest average number of MapReduce tasks

per job (see [Sangroya et al., 2012b] for more details). The lower the average

number of MapReduce tasks per job in a benchmark is, the lower the number of

task slots needed by that benchmark to run a request in the MapReduce cluster

is, thus, the higher the number of available task slots for other concurrent

client requests is, and the higher the benchmark throughput is. Consequently,

thanks to concurrency in the MapReduce cluster, the average cost of a client

request is reduced by a factor of up to 2-3, depending on the benchmark,

cf. Figure 4.6(c).

Furthermore, MRBS also produces low-level MapReduce performance statis-

tics, in terms of the number of MapReduce tasks per unit of time, and the

size of data read or written in the distributed filesystem per unit of time, as

respectively shown in Figures 4.7(a), 4.7(b) and 4.7(c). More specifically, the
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Business Intelligence benchmark presents the highest amount of data read-

/written. For reads, it is two orders of magnitude higher than Bioinformatics,

and three orders higher than the Recommendation System. For writes, both

Bioinformatics and Recommendation System write few data compared to the

Business Intelligence benchmark, which is five orders of magnitude higher.

This corroborates the results of client request response times, the Business

Intelligence benchmark being the one with the highest response time.

4.5.3 Dependability Evaluation Under Faultloads

In this experiment, we illustrate the use of MRBS to evaluate the fault tol-

erance of Hadoop MapReduce. Here, a ten-node Hadoop cluster runs the

Recommendation System and Business Intelligence benchmarks, with 20 con-

current clients, in the Grid’5000 cluster. The experiment is conducted during

a run-time phase of 60 minutes, after a warm-up phase of 15 minutes. We

consider a synthetic faultload that consists of software faults and hardware

faults as follows: first, 100 map task software faults are injected 5 minutes af-

ter the beginning of the run-time phase, and then, 3 node crashes are injected

25 minutes later. Although the injected faultload is aggressive, the Hadoop

cluster remains available 98% of the time for Recommendation System and

83% for Business Intelligence. The cluster is also able to successfully handle

97% of client requests for Recommendation System and 81% for Business In-

telligence (see Table 4.4). This has an impact on the request cost which is

13% higher for Recommendation System and 33% for Business Intelligence

than the cost obtained with the baseline (non-faulty) system.

Table 4.4: Reliability, availability, and cost.

Benchmark Reliability Availability Cost (dollars/request)

Rec. System 97% 98% 0.004 (+13%)

Business Int. 81% 83% 0.008 (+33%)

To better explain the behavior of the MapReduce cluster, we will ana-

lyze MapReduce statistics, as presented in Figures 4.8(a), 4.9(a) and 4.8(b),

4.9(b). Figures 4.8(a) and 4.9(a) presents successful MapReduce jobs and

failed MapReduce jobs over time.

When software faults occur, few jobs actually fail. On the contrary, node

crashes are more damaging and induce a higher number of job failures, with

a drop of the throughput of successfull jobs from 16 jobs/minute before node

failures to 5 jobs/minute after node failures.
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Figure 4.7: Low-level MapReduce statistics
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Figures 4.8(b) and 4.9(b) show the number of successful MapReduce tasks

and the number of failed tasks over time, differentiating between tasks that

fail because they are unable to access data from the underlying filesystem

(i.e. I/O failures in the figure), and tasks that fail because of runtime errors

in all task retries2 (i.e. task failures in the figure). We notice that software

faults induce task failures that appear at the time the software faults occur,

whereas node crashes induce I/O failures that last fifteen minutes after the

occurrence of node faults. Actually, when some cluster nodes fail, Hadoop

must reconstruct the state of the filesystem, by re-replicating the data blocks

that were on the failed nodes from replicas in other nodes of the cluster3. This

explains the delay during which I/O failures are observed.

We now analyze the impact of these failures on the performance of the

Hadoop MapReduce cluster. Figures 4.8(c) and 4.9(c)show the response time

of successful client requests. With software faults, there is no noticeable im-

pact on response times. Conversely, response time sharply increases when

there are node faults, and while Hadoop is rebuilding missing data replicas.

Similarly, Figures 4.8(d) and 4.9(d) depict the impact of failures on client re-

quest throughput. Interestingly, when the Hadoop cluster looses 3 nodes, it

is able to fail-over, however, at the expense of a higher response time and a

lower throughput.

4.6 Summary

As cloud computing is evolving, many cloud services are provided. MapRe-

duce is one of them, a popular Big Data cloud service, largely used by many

companies. MapReduce provides a convenient means for distributed data

processing and automatic parallel execution on clusters of machines. It has

various applications and is used by several services featuring fault-tolerance

and scalability. There has been a considerable interest in improving the de-

pendability and performance of MapReduce. However, the ad-hoc and overly

simplified setting used to evaluate most MapReduce fault-tolerance and per-

formance improvement solutions poses significant challenges to the analysis

and comparison of the effectiveness of these solutions.

In this chapter, we presented MRBS, a comprehensive benchmark suite for

evaluating the dependability and performance of MapReduce systems. MRBS

includes five benchmarks covering several application domains and a wide

range of execution scenarios such as data-intensive vs. compute-intensive ap-

2By default, in Hadoop MapReduce, a task is executed at most four times before it fails.
3By default, data have three replicas in HDFS
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plications, or batch applications vs. online interactive applications. MRBS

allows to inject various workloads, dataloads and faultloads, and produces

extensive reliability, availability and performance statistics. MRBS is avail-

able as a software prototype for Hadoop, a popular MapReduce framework

available in public clouds. We also discuss the portability of MRBS on other

MapReduce environments, and the automatic deployment of MRBS experi-

ments on cloud infrastructures, which makes it easy to use. We implemented

the MRBS benchmark suite for Hadoop MapReduce, and we illustrated its

use to evaluate the performance and dependability of MapReduce systems.

This work opens interesting perspectives in terms of exploration of other

fault models, and how to make MRBS open and extensible with other appli-

cation domains and workloads. New heterogeneous workloads such as appli-

cations that possess low data read and high data write characteristics can also

be integrated. We hope that such a benchmark suite will lead to less ad-hoc

evaluations of MapReduce systems, and will help researchers and practitioners

to better analyze and evaluate the fault-tolerance and performance of MapRe-

duce.
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5.1 Introduction

In Chapter 4, we introduced MRBS benchmark suite for performance and de-

pendability benchmarking of MapReduce systems. MRBS has several possible

uses, among which helping developers and testers to better analyze the fault-

tolerance of MapReduce systems, or to better choose the configuration of the

MapReduce cluster to provide service level guarantees. In this chapter, we

illustrate the use of MRBS with six case studies which include, among others,

the evaluation of the scalability of Hadoop clusters, and the comparison of

performance and dependability levels of different Hadoop framework imple-

mentations. We use the same experimental setup as described in Section 4.5.1.

5.2 Scalability With Regard To Cluster Size

Here, we evaluate the scalability of Hadoop MapReduce with regard to the

size of the Hadoop cluster. We conducted experiments with MRBS running on

Hadoop clusters of different sizes: 5, 10, and 20 nodes, hosted in Amazon EC2.

We compare the results of theses clusters with the results obtained when run-

ning MRBS on a one-node Hadoop cluster. We run all the benchmarks from

MRBS with 10 concurrent clients accessing the cluster. For each experiment,

average results of three runs are presented, with relative standard deviations

below 4%. Figure 5.1 presents the performance results of the experiments.

Figures 5.1(a) and 5.1(b) respectively show the response time speedup and

throughput speedup, as functions of cluster size. The higher the response

time speedup is, the better (i.e. lower) the response time is. Similarly, the

higher the throughput speedup is, the better (i.e. higher) the throughput is.

Here, response time results show that, up to 5 nodes, the Hadoop cluster

is able to scale linearly when it runs Bioinformatics or Business Intelligence.

With higher cluster sizes, the speedup is sublinear. The Recommendation

System benchmark achieve the maximum speedup with 10 nodes. This is

not the case of other benchmarks. These differences in scalability capabilities

are explained by the fact that other benchmarks have a much higher number

of MapReduce tasks per client request than the Recommendation System

(see [Sangroya et al., 2012b] for more details). Thus, the former benchmarks

are able to exploit concurrency when having more nodes.

Figure 5.1(c) describes the average cost of a client request as a function of

the number of nodes in Hadoop clusters. Obviously, the larger is the Hadoop

cluster running on Amazon EC2, the higher is the cost of a client request. Sur-

prisingly, the Business Intelligence benchmark shows that a five node Hadoop

cluster costs less than one node. This is explained by the fact that with 5
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Figure 5.1: Performance under different cluster scales
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nodes, Business Intelligence achieves a superlinear speedup in throughput,

and request cost is a function of throughput and Amazon EC2 hourly cost

model.

5.3 Scalability With Regard To Data Size

In the following, we investigate the scalability of Hadoop MapReduce with re-

spect to the size of input data. We conducted experiments with the MRBS Busi-

ness Intelligence benchmark, with different sizes of input data: 1 GB, 10 GB,

20 GB, and 30 GB. The experiments were conducted on a 20-node Hadoop

cluster, hosted on Amazon EC2, with 10 concurrent clients. Each experiment

is run three times to report average results, with relative standard deviations

below 6%. Figure 5.2 presents performance results as functions of input data

size. The measured performance of the benchmark is compared with the the-

oretical linear performance slowdown that we could expect when increasing

the data size.

Figure 5.2(a) shows that, even though the performance decreases when

the input data are larger, request throughput performs better than linear

slowdown (note the logarithmic scale of the figure). Here, throughput is three

times better than linear slowdown. This is due to the fact that accesses to

the Hadoop filesystem do not increase linearly with the size of input data, as

shown in Figure 5.2(b). Figure 5.2(b) describes the throughput of data read

or written in the Hadoop filesystem, and Figure 5.2(c) describes MapReduce

task throughput. These results show that with input data larger than 10 GB,

the Hadoop cluster is overloaded, since it executes more MapReduce tasks

while handling less client requests. This is also confirmed by other statistics

reported by MRBS and showing an increase of MapReduce task retries, up to

+25%, when input data are larger than 10 GB.

5.4 How Many Faults Are Tolerated

Here, we consider the case of a service provider that hosts MapReduce services

on a ten-node cluster. One question that it has to answer would have the

following form: Up to how many node failures can the MapReduce cluster

tolerate, while guaranteeing an availability of at least 85%?

We conducted experiments with all benchmarks of MRBS, showing three

different behaviour: the Business Intelligence service is data-intensive, the

Recommendation System is compute-oriented, and the Bioinformatics service

is in between (see Section 4.3). Figure 5.3 shows the measured availability,
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(a) Request throughput

(b) Data read/write throughput

(c) MapReduce task throughput

Figure 5.2: Performance under different data scales
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Figure 5.3: Availability under different node faultloads

with different faultloads. To guarantee the target availability objective of 85%,

the MapReduce cluster hosting the data-intensive Business Intelligence service

would not tolerate more than two node failures. In comparison, the less data-

intensive Bioinformatics service would tolerate four node failures for the same

availability objective, while the compute-oriented Recommendation System

would be able to tolerate up to 6 node faults in a ten-node cluster. A similar

behaviour is also shown with two micro-benchmarks i.e. Text Processing and

Data Mining. There is relatively higher availability for Data Mining because

it is more compute-intensive than Text Processing benchmark. In summary,

Hadoop is able to transparently tolerate failures when there is one node crash.

With more node failures, Hadoop MapReduce may handle failures with an

acceptable availability level if the MapReduce service it hosts is more compute-

intensive than data-intensive.

5.5 Comparing Dependability of MapReduce

Frameworks

The goal of this experiment is to use MRBS to compare two different MapRe-

duce framework implementations, with regard to their dependability and per-

formance. Here, we considered two different versions of Hadoop, namely

Hadoop v0.20.2 and Hadoop v1.0.0. Two sets of experiments were conducted

on Grid’5000, hosting, on the one hand, a ten-node Hadoop v0.20.2 cluster,

and on the other hand, a ten-node Hadoop v1.0.0 cluster. Each MapReduce

cluster is used by 20 concurrent clients, running the MRBS Bioinformatics
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benchmark. The default dataload was used (see Table 4.2). Each experiment

consists of a 60 minute run-time phase, after a 15 minute warm-up phase.

The same faultload was injected on each of the two MapReduce clusters; it

consists of 100 MapReduce task software faults occurring after 5 minutes, and

3 node crashes occurring after 25 minutes.

In figures 5.4 and 5.5, we show the comparison of dependability for Hadoop v0.20.2

and Hadoop v1.0.0. The two Hadoop frameworks provide similar behaviour

in case of task software faults. However, Hadoop v1.0.0 provides higher fault

tolerance than Hadoop v0.20.2 in case of node crashes. This is shown in

Figures 5.4(a) and 5.5(a). This is explained by the fact that after node

crashes, Hadoop v0.20.2 faces several I/O failures between 25 and 40 min-

utes (cf. Figure 5.4(b)), mainly due to the necessary time for MapReduce and

the underlying filesystem to rereplicate lost data. This reconfiguration oper-

ation is apparently optimized in Hadoop v1.0.0, as shown in Figure 5.5(b).

This has a direct impact on client request response times and throughput,

as shown in Figures 5.4(c), 5.5(c), 5.4(d) and 5.5(d). Table 5.1 summa-

rizes the results of dependability evaluation of two MapReduce frameworks.

Hadoop v1.0.0 provides better dependability than Hadoop v0.20.2. This

might be due to the additional security measures provided in the release of

Hadoop v1.0.0 [Had, 2013].

Table 5.1: Dependability of two MapReduce frameworks.

MapReduce

framework

Reliability Availability Cost (dollars/request)

Hadoop v0.20.2 94% 96% 0.008 (+14%)

Hadoop v1.0.0 99% 99% 0.004 (+1%)

5.6 Comparing Performance of MapReduce Frame-

works

We also compared the two Hadoop v0.20.2 and Hadoop v1.0.0 MapReduce

frameworks with regard to their performance. These experiments were con-

ducted on Amazon EC2, hosting, on the one hand, a 10-node Hadoop v0.20.2

(blue bar), and on the other hand, a 10-node Hadoop v1.0.0 (red bar). With

each setting, all benchmarks were used. Each MapReduce cluster is used by

one client at a time with default dataloads (see Table 4.2). An experiment

consists of a 15 minute run-time phase, after a 5 minute warm-up phase. Each
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experiment was run three times to report average results. No faultload was

injected.

Figure 5.6 compares the client response times with the different MapRe-

duce framework implementations. Surprisingly, Hadoop v1.0.0 provides lower

performance (i.e. higher client response times) than Hadoop v0.20.2, whatever

the benchmark is. Here, the average client response time with Hadoop v1.0.0 is

higher than with Hadoop v0.20.2 by 34% for Recommendation System, 29%

for Bioinformatics, 34% for Business Intelligence, 39% for Text Processing,

and 27% for Data Mining benchmark.
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Figure 5.6: Performance of two MapReduce frameworks.

5.7 Summary

In this chapter, we illustrated the use of MRBS with case studies. MRBS can

be used for different purposes such as evaluation of the scalability of Hadoop

clusters, evaluation of the performance of Hadoop clusters, and comparison

of performance and dependability levels of different Hadoop framework im-

plementations. We conducted case studies from the perspective of a cloud

service provider and cloud service user. This demonstrates the benefits of us-

ing a generic architecture to build performance and dependability benchmark

for MapReduce cloud service.
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6.1 Introduction

Memcached is widely used to provide in-memory caching solution for many

popular web sites such as LiveJournal, Twitter, Flickr, Youtube and Face-

book [Mem, 2013b]. There are some recent examples, where Memcached is

being provided as a service in the cloud. Amazon provides ElastiCache, a

web service that makes it easy to deploy, operate, and scale an in-memory

cache in the cloud [Ela, 2013]. Similarly, there are others service providers

such as Gear6 that provides high availability Memcached solutions [Gea, 2009,

Mem, 2013e, Mem, 2013d]. Fault tolerance and high availability are among

the prominent quality attributes advertised by these providers. For example,

Amazon ElastiCache automatically detects and replaces failed nodes provid-

ing high reliability in the case of network overload and server crashes. Sim-

ilarly, Memcached Cloud is a service for running Memcached in a reliable

way [Mem, 2013d]. Such services guarantee that the data is constantly repli-

cated, and if a node fails, a fail-over mechanism guarantees that data is served

without any interruption.

There are some benchmarks to test the performance aspects of Memcached

such as throughput or response time [Mem, 2013h, Ben, 2013, Mem, 2013i,

Bru, 2009]. One limitation of these benchmarks is that they focus only on

the performance aspects of Memcached. However, to test the fault tolerance

capabilities, these tools do not provide any support. Indeed, while Mem-

cached system was originally designed as a performance improvement solu-

tion, recent discussions in developer forums depicts the need to enhance the

fault-tolerance features [Mem, 2013a]. For this reason, users need dependabil-

ity and performance benchmarks to test the software applications developed

over Memcached. Recent use of Memcached in high availability cloud ser-

vices motivates us further to provide a benchmarking solution considering the

dependability aspects of Memcached [Ela, 2013].

In this chapter, we introduce MemCB (MemCached Benchmarking), a

dependability and performance benchmark for Memcached. We provide a

simpler way for faultload injection in Memcached. This covers different fault

types, such as node crashes and network faults, injected at different rates,

that provide a means to analyze the fault-tolerance under different scenarios.

MemCB includes a workload generation toolkit that emulates concurrent client

requests in a Memcached cluster. We use MemCB to evaluate the performance

and dependability levels of Memcached under different workloads, dataloads

and faultloads.

The remainder of the chapter is organized as follows. Section 6.2 presents

a background on Memcached and its fault tolerance capabilities. Section 6.3
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provide an overview of MemCB, a description of performance and dependabil-

ity analysis in MemCB. Section 6.4 describes the experimental evaluation and

finally, Section 6.5 presents a summary of this chapter.

6.2 Background

6.2.1 Memcached

Memcached is a high-performance, distributed caching system which is com-

monly used to speed up dynamic web applications by lightening the database

server load. This is done by speeding up the access to databases by storing

the results of the database previous computations or any other data which is

often accessed. Figure 6.1 shows a simple scenario, where first request goes

to database server at the same time data object storing in Memcached server.

After this, the second user request data comes from Memcached server. Mem-

cached is easily deployable over existing applications. Memcached is simple

and open-source. Therefore, it is widely used by high-traffic websites such as

Youtube, Wikipedia, Facebook and others.

Figure 6.1: A simple Memcached workflow
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Memcached works like a big hash table distributed across multiple ma-

chines. When the table is full, subsequent inserts cause older data to be

purged in least recently used(LRU) order. Memcached’s interface provides all

the basic operations that hash tables provide, such as insertion, deletion, and

lookup/retrieval; as well as more complex operations built upon them. The

two basic operations are GET, to fetch the value of a given key, and SET

to cache a value. Another common operation is to DELETE the key value

pair as a way to invalidate the key if it was modified in persistent storage.

In our work, we focused on read operations (GET requests) and write opera-

tions (SET requests) because they are the dominant operations in real world

workloads such as at Facebook [Nishtala et al., 2013].

6.2.2 Fault Tolerance in Memcached

The primary design goal of Memcached is performance: to provide a high

speed cache solution. However, we looked at some recent works that mo-

tivate to provide a high availability Memcached solution alongwith perfor-

mance [Mem, 2007, Mem, 2012]. Memcached do not yet provide a rich fault

tolerance model that handles a number of failures. We found that there are

some faults to which Memcached provides a certain degree of fault tolerance.

This is to guarantee that if any individual server node crash, there is an au-

tomatic mechanism to rebalance the cluster.

Memcached is able to tolerate failures of different types, as described in

the following.

Hardware Crash. Version 2.0.0b2 of Memcached provides a mecha-

nism for automatic fail-over. OPT AUTO EJECT HOSTS is the tuning

parameter that enables automatic fail-over in memcached systems. This

supports transparent fail-over in case of a server node fails. Users need

to set this option to true if they want transparent fail-over in case of fail-

ures [Mem, 2013c, Mem, 2013f].

Network Error. A server is marked as failed if it exceeds the timeout

property. In the case, there is a high network load on a server and packets

that are sent or received from a server node exceeds the timeout value, server

is marked as dead. The parameter OPT RETRY TIMEOUT controls this

error. Similar to the hardware crash, in this case, Memcached exclude this

server from the list of servers as described before [Mem, 2013g].
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6.3 Overview of MemCB

MemCB allows to inject various faultloads, workloads and dataloads in a Mem-

cached system and to collect information helping testers understand the ob-

served behavior of Memcached system. The overall architecture of MemCB is

presented in Figure 6.2.
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Figure 6.2: Overview of MemCB

MemCB comes with a benchmark, Brutis [Bru, 2009] that is a tool de-

signed to test memcached instances by providing reproducible performance

data for comparison purposes. Brutis is developed in PHP and is primarily a

performance benchmark that helps by stressing a memcached cluster to test

the workload and network characteristics. Brutis is able to generate client

requests and produce some statistics related to performance. Some of the

statistics generated by Brutis are: total numbers of operations, sets, set fails,

gets, hits, misses and the latency of the requests. Brutis use XML files to

define the workload. It performs configurable sets of operations that store

and retrieve data in the cache.

We adopt Brutis and perform two key operations: The set operation that

store our generated data in Memcached and the get operation that retrieve

the data given according to a key. These operations can be mixed to emulate

more complicated scenarios.

6.3.1 MemCB Workload

As described in Chapter 3, the workload is characterized by the benchmark to

execute, and the number of concurrent clients issuing requests on that bench-

mark application. MemCB workload consists of multiple concurrent clients is-

suing requests to the Memcached system. We use two kinds of client requests.
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The set requests that write and store our generated data in Memcached; the

get requests that retrieve the data from Memcached. In our experiments, 10%

of the requests are set requests and 90% of the requests are get requests. This

is explained in detail in Section 6.4 of this chapter.

6.3.2 MemCB Dataload

MemCB is built over Brutis, that provides a method to generate random data

to be inserted into Memcached. Each key in the dataload is a concatenation

of $prefix and $key id. Users can choose to assign values to the key prefix and

key ID.

6.3.3 MemCB Faultload

As discussed in 6.2.2, the faultload for Memcached consists of the following

faults:

Node Crash. This fault is emulated as a hardware fault e.g. hard drive

fault or a CPU crash. Interestingly, when this fault happens, Memcached

looses any more any communication with the affected node and all the data

is lost. Memcached client then copies all the data again on any of the other

live nodes in the cluster.

Network Fault. The goal of this fault is to end/delay the communication

over the network. This fault can also be visualized as a latency error. The node

will suffer from an artificially emulated latency: meaning that the network is

overloaded.

6.3.4 MemCB Fault Injection

The MemCB fault injector divides the input faultload into subsets of faultloads

as follows: one global faultload that groups all faults that will occur in all

nodes of the Memcached cluster (i.e. node crash, network fault).

The MemCB fault injector runs a daemon that is responsible of injecting

the global faultload. Thus, for the i-th fault in the crash faultload, the dameon

waits until time stampi is reached, then calls the fault injector of fault typei
(see below), on the Memcached cluster node corresponding to fault locationi.

This fault injector is called as many times as there are occurrences of the same

fault at the same time. The fault injection dameon repeats these operations

for the following crash faults, until the end of the faultload file is encountered

or the end of the experiment is reached. Similar process is activated in the

case of network faults.
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Figure 6.3: Architecture of MemCB faultload injector

The overall architecture of the faultload injection in MemCB is described

in Figure 6.3.

Node Crash Injection. A node crash is simply implemented by shut-

ting down a node. For efficiency purposes, we propose an implementation of

Memcached node fault which kills all Memcached daemons running on that

node. Then, the Brutis will not have any answer from Memcached and will

consider this node as dead. The parameter, OPT AUTO EJECT HOSTS is

set to true that supports transparent fail-over.

Network Fault Injection. This type of fault is implemented through a

tool named tc that injects latency on a network node [TC, 2013]. TC provides

a way to manage the transmission of packets. In MemCB, to introduce a

network fault, we create a delay for sending and receiving packets that further

introduce an artificial latency.

6.3.5 Dependability and Performance Analysis in MemCB

MemCB produces runtime statistics related to dependability, such as relia-

bility, and availability [Laprie, 1995]. Reliability is measured as the ratio of

successful Memcached client requests to the total number of requests. This is

measured as hit ratio, which is the ratio of number of hits to number of total

requests. A hit/miss is defined as follows. When workload is searching for
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some data in Memcached, and if it obtains the data, it will be considered as

hit. Otherwise, if the data is no more there, the operation will be considered

as a miss. Metrics for dependability is as follows:

cache hit rate:
number of hits

total number of requests
In addition, MemCB produces performance statistics, such as client re-

quest response time, request throughput. Response time is the elapsed time

from the moment the client submits a request until the response is received

by the client. MemCB produces low level performance statistics as follows:

get request throughput:
numbers of get operations

time

set request throughput:
numbers of set operations

time

6.4 Experimental Evaluation

In the following, we illustrate the experiments with MemCB to evaluate the

performance and dependability of Memcached.

6.4.1 Experimental Setup

The experiments presented in this section were conducted in a cluster running

on Grid’5000 [Bolze et al., 2006]. Each cluster consists of one node hosting

MemCB and emulating workload, and a set of nodes hosting the Memcached

cluster. The hardware configuration consists of 4-core 2-CPU, 2.5 GHz Intel

Xeon E5420 QC CPU, 8 GB memory, 160 GB SATA storage (per node) and 1

GB Ethernet network. The software environment consists of Libmemcached-

1.0.16, Memcached-1.4.15, and PHP version 2.1.0. Each node run Debian

Linux 6 with kernel v2.6.32.

6.4.2 Experimental Results

Now, we present the results of using MemCB to evaluate the dependability

and performance of Memcached. Following experiments were conducted on

a four-nodes Memcached cluster. One node is used to host MemCB which

emulates workload that consists of 10 clients per node sending client requests

in a random manner. 10% of the requests are set requests and 90% of the

requests are get requests. The experiment is conducted during a run-time

phase of 30 minutes, including a warm-up phase. We consider a synthetic

faultload that consists of network faults and hardware faults as follows: first,

network faults are injected 10 minutes after the beginning of the run-time
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phase, and then node crashes are injected 10 minutes later. To better explain

the behavior of the Memcached cluster, we will analyze statistics, as presented

in Figures 6.4(a) and 6.4(b).

Figure 6.4(a) presents successful Memcached hits and misses over time.

When network faults occur, the server node on which we injected the fault,

fails to send and receive the packets within the timeout limit (a value config-

ured in the Memcached). As a result of this, after certain number of server

retries, the node which was taking long time to respond, is marked as failed.

Memcached removes this node from the list of available nodes. Thereafter,

Memcached client copies the data (keys) on the other live nodes in the cluster.

We can observe from Figure 6.4(b) that at the time of network fault injec-

tion (at 10 minutes), there is an impact on the response time of client requests.

High response time during this period is due to the injected latency, because of

which some client requests are successful but they took long time to respond.

On the contrary, with node crash fault injection (at 20 minutes) we observe

a slightly similar behaviour of cache access ratio. This is because, similar to

the network fault where the node was marked as failed due to timeout, after

a node crash, Memcached removes the faulty nodes from the list of available

nodes. We also observe that number of hits decrease and number of misses

increase when we injected the node crash fault (compared to the period when

we inject network fault). This is because of higher load on the servers after

one node was removed after network fault. There was one less node after

network fault and load per server was higher.

6.5 Summary

To evaluate the dependability and performance of Memcached systems, we

developed a software prototype, MemCB that covers realistic workloads, dat-

aloads and faultloads and allows their injection in a running Memcached clus-

ter. In this chapter, we have presented the details of this prototype which is

based on the principals discussed in Chapter 3. MemCB allows the empiri-

cal evaluation of Memcached systems to quantify their dependability levels in

terms of reliability, and their performance levels in terms of response times

and throughput. It allows to inject a rich faultload in a running Memcached

cluster.

Experimental results confirm that MemCB is able to successfully evaluate

the performance and dependability aspects of a Memcached system. The

prototype is intended to be used by the users of Memcached service in the

cloud. One of the future work is to add more workloads and dataloads so that

the benchmark is richer. Important perspective of this chapter is the addition
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of other fault types such as software faults. More experiments under variety

of scenarios are also needed to evaluate and improve the proposed software

prototype.
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7.1 Conclusions

In this thesis, we focused on the performance and dependability benchmarking

approach for cloud computing services. We argue that traditional solutions to

achieve and evaluate high dependability may not be appropriate for modern

applications in cloud computing. The ideas presented in this thesis benefit

both cloud service providers and users. Cloud service providers can easily in-

tegrate such benchmarks for dependability and performance analysis in their

services. Cloud service users on the other hand, can get benefits by using

the benchmark for dependability and performance analysis. Till now, ad-hoc

and overly simplified settings are being used to evaluate most cloud service

fault-tolerance and performance improvement solutions. This poses signifi-

cant challenges to the analysis and comparison of the effectiveness of these

solutions. A benchmark could be a very useful tool to systematically evaluate

the performance and dependability for cloud services.

We studied various research, scientific and technical issues in designing a

dependability and performance benchmark for cloud services in this thesis. To

support our idea, we designed, implemented, and evaluated benchmarks for

services belonging to PaaS model of cloud computing. We proposed a generic

architecture which is further used to build two software prototypes: MRBS

and MemCB. These prototypes were used to benchmark two popular cloud

services: MapReduce and Memcached. The architecture description included

the details of workload, dataload and faultload components, for benchmarking

dependability and performance of a cloud computing service.

Having available a generic software architecture greatly helps the designers

of dependability benchmarking solutions in reducing the efforts to design and

develop new benchmarks for cloud services. This architecture helps to reduce

the efforts needed to build a new dependability benchmark from scratch. The

proposed architecture can be used by the designers of dependability bench-

mark solutions for cloud computing services. The software prototypes MRBS

and MemCB can be directly used to analyze dependability and performance

of MapReduce systems and Memcached service respectively.

MRBS benchmarking suite allows the empirical evaluation of MapReduce

systems to quantify their dependability and performance levels. MRBS covers

five application domains and a wide range of execution scenarios, workloads

and dataloads. It also allows to characterize a faultload, generate it, and in-

ject it in a running MapReduce cluster. We illustrated the use of MRBS with

six case studies which include, among others, the evaluation of the scalabil-

ity of Hadoop clusters, and the comparison of performance and dependability

levels of different Hadoop framework implementations. MRBS is available as
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a software prototype for Hadoop, a popular MapReduce framework available

in public clouds. MRBS could be used for academic; research and industrial

purposes such as for benchmarking an in-house developed map-reduce frame-

work.

Similarly, MemCB allows the empirical evaluation of dependability and

performance of Memcached systems. The workloads, dataloads and fault-

loads used in MemCB are realistic and represent real world scenarios. Both

MRBS and MemCB prototypes follows the design rules of the generic archi-

tecture introduced in Chapter 3. MemCB allows to inject a rich faultload in

a running Memcached cluster. Experimental results depicted that MemCB is

able to successfully evaluate the performance and dependability aspects of

a Memcached system. The addition of other fault types and experimental

scenarios of MemCB are considered as future work.

The distribution of the prototypes developed as part of this thesis is free,

so that the scientific and industrial communities can reuse the work. MRBS

software prototype can be downloaded from: http://sardes.inrialpes.fr/

research/mrbs. In Table 1.2, we demonstrated the statistics from the MRBS

website. Between June 5, 2012 and January 1, 2014, MRBS webpage is visited

980 times ( including 550 unique visitors). The results of this work have been

featured in publications and scientific events as following.

A. Sangroya, D. Serrano and S. Bouchenak. Experience with Bench-

marking Dependability and Performance of MapReduce Sys-

tems. IEEE Transactions on Dependable and Secure Computing (TDSC),

under submission

A. Sangroya, D. Serrano, S. Bouchenak. Benchmarking Dependabil-

ity of MapReduce Systems. 31st IEEE International Symposium on

Reliable Distributed Systems (SRDS). Irvine, California, Oct 2012

A. Sangroya, D. Serrano and S. Bouchenak. MRBS: Towards De-

pendability Benchmarking for Hadoop MapReduce. Workshop

on Big Data Management in Clouds (BDMC) in conjunction with Euro-

Par. Rhodes Island, Greece, Aug. 2012

A. Sangroya, D. Serrano, S. Bouchenak. Towards a Dependability

Benchmark Suite for MapReduce. Poster at EuroSys 2012, Bern,

Switzerland. Apr 2012

L. Lemke, A. Sangroya, D. Serrano and S. Bouchenak. Evaluer la

tolérance aux fautes de systèmes MapReduce. Conférence d’informatique

en Parallélisme, Architecture et Système (ComPAS). Grenoble, France,

Jan 2013
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7.2 Perspectives

This work opens a number of scientific and technical perspectives. First, the

dependability and performance benchmark can be enriched with other metrics

such as data security etc. This work opens interesting perspectives in terms

of exploration of other fault models, and how to make prototypes such as

MRBS open and extensible with other application domains and workloads.

In this thesis, we considered performance and dependability metrics such as

response time, throughput, reliability, availability respectively in addition to

financial cost metrics. We believe that the addition of new metrics would

greatly benefit the benchmark users who want to evaluate other attributes of

cloud services.

The framework and benchmark prototypes developed as part of this thesis

can also be used as a supporting tool for quality of service (QoS) management

for cloud services. Service providers who want to guarantee a certain per-

formance and dependability levels, as part of a Service Level Agreement can

make use of our prototypes to plan the capacity of cloud services. One such ex-

ample is from Serrano et al. [Serrano et al., 2013], where the authors consider

the online control of cloud services to provide performance, dependability and

cost guarantees.

The framework proposed in this work could be proposed in other use cases.

Hadoop that supports MapReduce comes with a number of configuration pa-

rameters. It is often difficult to choose an optimal setting for these parameters.

MRBS could be used to run Hadoop with different configuration values, look

at the impact on quality attributes such as performance and dependability,

and find the best values for these parameters. MRBS can be useful tool in

such situations, and provides an easy way to run benchmarks on Hadoop

and study the impact on performance and dependability. Another interesting

application is to use MRBS to compare different scheduling algorithms. In

general, the benchmark prototypes can be used for different purposes by the

cloud service providers and users. The framework proposed in this work could

also be considered for other cloud services such as IaaS and SaaS.

The benchmarks proposed in this thesis to evaluate performance and de-

pendability can be supported by a verification and validation module. In our

experimental evaluation, we have made use of statistical measures such as av-

erage, mean, etc., to validate our results. As part of a future work, we believe

that more formal approaches of evaluation can be used to guarantee the cor-

rectness of the results. A technical perspective of this work could be to provide

benchmark suites that focus on other important areas of cloud services such

as database, operating system, virtual machines etc.
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A.1 Properties file of MRBS

Following is a small example of MRBS properties file. This file contains the

value of various configuration parameters of the benchmark. The proper-

ties file is designed for usability. For ease of use, most of the configuration

parameters have default values. Moreover, to configure most of the param-

eters, users have to just comment/uncomment the associated line. For few

parameters, specific values must be provided such as for run time and warm

up time of the benchmark. This information is also provided on the web-

site http://sardes.inrialpes.fr/research/mrbs.

# Choose (i.e. uncomment) one among the following.

################################################

# Benchmark length and concurrency level

################################################

# Warm -up phase length (in seconds): Time for the warm up

warm.up.time = 600

# Run -time phase length (in seconds): Time for the run

run.time = 1200

# Number of con. clients

number.concurrent.clients = 100

# Workload execution mode (Interactive mode: concurrent

clients share cluster resources)

#execution = batch

execution = interactive

################################################

# Configuration of the cloud

################################################

# Cloud type: Name of the cloud

cloud.name = ec2

#cloud.name = grid5000

#cloud.name = local

# Cloud Instance Type (For Amazon EC2)

instance.type = t1.micro
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#instance.type = m1.large

# Financial cost (in US dollars per machine*hour)

hourly.cost = 0.32

################################################

# Underlying software paths

################################################

# MRBS home

mrb.path = /home/sangroya/svn_mrbs/Software/mrbs

# Hadoop MapReduce framework home

mapreduce.framework.path = /home/sangroya/sango/hadoop

################################################

# Benchmark workload

################################################

# Recommendation System Benchmark

workload.mix = recommendation_system

# Decision Support Benchmark

#workload.mix = decision_support

# DNA Sequencing Benchmark

#workload.mix = dna_sequencing

################################################

# Benchmark faultload

################################################

# Faultload generation (synthetic , random OR trace -based)

faultload.generation = synthetic

#faultload.generation = random

#faultload.generation = trace -based
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