
HAL Id: tel-01548501
https://theses.hal.science/tel-01548501

Submitted on 27 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Verification and Synthesis
Christian von Essen

To cite this version:
Christian von Essen. Quantitative Verification and Synthesis. Numerical Analysis [cs.NA]. Université
de Grenoble, 2014. English. �NNT : 2014GRENM090�. �tel-01548501�

https://theses.hal.science/tel-01548501
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial :

Présentée par

Christian von Essen

Thèse dirigée par Saddek Bensalem
et codirigée par Barbara Jobstmann

préparée au sein du Laboratoire VERIMAG
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (EDMSTII)

Quantitative Verification and Syn-
thesis

Thèse soutenue publiquement le 28 avril 2014,
devant le jury composé de :

Dr. Alain Girault
INRIA Rhône-Alpes, Président
Prof. Marta Zofia Kwiatkowska
University of Oxford, Rapporteur
Prof. Jean-François Raskin
Université Libre de Bruxelles, Rapporteur
Prof. Ahmed Bouajjani
Université Paris Diderot, Examinateur
Prof. Saddek Bensalem
Université Joseph Fourier, Verimag, Directeur de thèse
Dr. Barbara Jobstmann
EPFL, Verimag, Jasper, Co-Directeur de thèse

Once upon a time, in a land far far away. . .

Abstract

This thesis contributes to the theoretical study and application of quantitative

verification and synthesis.

We first study strategies that optimize the ratio of two rewards in MDPs.

The goal is the synthesis of efficient controllers in probabilistic environments.

We prove that deterministic and memoryless strategies are sufficient. Based

on these results we suggest 3 algorithms to treat explicitly encoded models.

Our evaluation of these algorithms shows that one of these is clearly faster

than the others. To extend its scope, we propose and implement a symbolic

variant based on binary decision diagrams, and show that it cope with millions

of states.

Second, we study the problem of program repair from a quantitative per-

spective. This leads to a reformulation of program repair with the requirement

that only faulty runs of the program be changed. We study the limitations

of this approach and show how we can relax the new requirement. We devise

and implement an algorithm to automatically find repairs, and show that it

improves the changes made to programs.

Third, we study a novel approach to a quantitative verification and synthe-

sis framework. In this, verification and synthesis work in tandem to analyze

the quality of a controller with respect to, e.g., robustness against modeling

errors. We also include the possibility to approximate the Pareto curve that

emerges from combining the model with multiple rewards. This allows us to

both study the trade-offs inherent in the system and choose a configuration

to our liking. We apply our framework to several case studies. The major

case study is concerned with the currently proposed next generation airborne

collision avoidance system (ACAS X). We use our framework to help analyze

the design space of the system and to validate the controller as currently under

investigation by the FAA. In particular, we contribute analysis via PCTL and

stochastic model checking to add to the confidence in the controller.

Acknowledgements

I would first of all like to thank my advisers Barbara Jobstmann and Saddek

Bensalem. Barbara was always there to support me in my research and oth-

erwise. Saddek gave me the freedom to follow my ideas and find applications

for them. I am also very grateful to Marta Kwiatkowska, Jean-François Raskin

and Ahmed Bouajjani and Alain Girault who, in their role as my jury, took on

the task of reading this lengthy document and attending the defense. I hope I

can pay their effort with an interesting thesis and an exciting presentation.

I want to thank the whole former and present Verimag group for making

my stay as fun and entertaining as it was. Special thanks go to Jannik Dreier,

Mathilde Duclos and Julien Le Guen, for welcoming me in Grenoble and many

entertaining exploits.

I want to say thank you to Aditya Nori and Sriram Rajamani for welcom-

ing me in India and at Microsoft Research. They allowed me to explore the

application of formal methods to sampling and the Indian cuisine. A special

thanks goes out to Dimitra Giannakopoulou and the whole NASA Ames team.

They allowed me to see that there is hope for the application of formal methods

to exciting and important real-life topics. Dimitra’s enthusiasm is contagious,

her belief in me incredibly supporting and her people skills unsurpassed. She

taught me that working over two continents poses no big challenge, if only the

motivation is high enough.

I want to thank my family for supporting me in all my decisions and for

always being welcoming. They gave me the feeling that I am able to do the

things to which I aspire. I want to thank my wife Elena for putting up with

many a grumpy mood and for much moral support and belay service (I bet

the feeling is mutual). She is an inspiration in many ways, and I wish I was as

tough as her.

Christian

Contents
1 Introduction 1

1.1 On quantitative verification and synthesis 1

1.2 Relation to artificial intelligence 4

1.3 Outline and contributions . 4

1.4 Preliminaries . 6

1.5 State of the art . 28

1.6 Tools . 33

2 Efficient Systems in Probabilistic Environments 35

2.1 Introduction . 35

2.2 The system and its environment 37

2.3 Analysis . 44

2.4 Algorithms . 54

2.5 Symbolic implementation . 68

2.6 Conclusion . 83

3 Program repair without regret 85

3.1 Introduction . 85

3.2 On languages . 86

3.3 Example . 88

3.4 Repair . 90

3.5 Discussion and limitations . 98

3.6 Empirical results . 105

3.7 Future work and conclusions . 111

4 Quantitative verification and synthesis framework 113

4.1 Introduction . 113

4.2 Implementation description . 115

4.3 Discretization of spaces and distributions 121

4.4 Specifying models in Java . 125

4.5 Approximating Pareto curves 135

4.6 Case studies . 141

5 Analyzing the Next Generation Airborne Collision Avoid-

ance System 159

5.1 Introduction . 159

5.2 The ACAS X system . 161

5.3 Verification . 170

5.4 ACAS X design challenges . 176

5.5 Implementation . 183

5.6 Conclusions and Future Work 184

6 Conclusion 185

6.1 Future work . 187

1 Introduction

In which we introduce our subject matter, study

the difference between quantitative and

qualitative, give an overview of related work and

drive a poor little robot crazy.

Résumé

Ce chapitre est une introduction dans la thèse. Nous considérerons la motiva-

tion de la vérification et la synthèse quantitatives. Ensuite nous montrerons

les relations de ce sujet avec l’intelligence artificielle. Finallement nous indro-

duirons notation appliquée dans le cadre de ce travail et motivée par un petit

robot, qui doit nettoyer un gros appartement.

1.1 On quantitative verification and synthesis

Synthesis. Synthesis aims to automatically generate a program or system

from a higher-level specification. These specifications leave a lot of details

open, and it is the synthesizer’s task to resolve the non-determinism such that

the specification is fulfilled. This higher level allows a programmer or designer

to express his wishes concisely while leaving implementation details to an as-

sistant as willing as he is stupid (the computer). This form of abstraction

becomes ever more important as the programs that we write become ever more

complex because of the arrival of multi-processor systems, heterogeneous sys-

tems, pressing security questions, ever more computers in life-critical systems

etc. Programs also influence the lives of ever more people, so ever more people

should be able to influence programs. A high-level language and a synthesizer

might be able to lower the bar of creating custom programs. Take Excel as

CHAPTER 1: INTRODUCTION

an example. it allows many users that do not know how to program to create

spread-sheets and now special-purpose programs customized to their needs.

Synthesis looks promising in the area of embedded systems. Firstly, these

systems are often small and not equipped for interactive development and hence

debugging becomes especially challenging. Secondly, embedded systems are

the most prevalent computer systems today, ranging from thermometers to

vehicles on Mars. Finally, embedded systems, by their very nature, have to be

customized to each new kind of hardware they entail. Removing unnecessary

bugs altogether is therefore desirable and cost-effective.

Qualitative synthesis. Specifications are usually given with qualitative mean-

ing, i.e., they classify systems either as good (meaning the system satisfies the

specification) or as bad (meaning the system violates the specification). In this

thesis we explore how we can add more information to this process. We call

this “quantitative synthesis” Quantitative specifications assign to each system

a value that provides additional information.

Quantitative synthesis. Manichaeism was a religion that postulated that

the world is the battle-ground for good and evil — black and white. To us,

it appears that there are many shades of gray — quantitative information is

important to us in the real world. We can either just pass an exam (qualita-

tive), or pass it well (quantitative). A thesis can be acceptable or cum laude

(quantitative), but both are enough for graduation (qualitative). Tradition-

ally, quantitative techniques have been used to analyze properties like response

time, throughput, or reliability (cf. [dA97, Hav98, BK08, KNP09]).

Recently, quantitative reasoning has been used to state preference relations

between systems satisfying the same qualitative specification [BCHJ09]. For

example, we can compare systems with respect to robustness, i.e., how reason-

able they behave under unexpected behaviors of their environments [BGHJ09].

A preference relation between systems is particularly useful in synthesis, be-

cause it allows the user to guide the synthesizer and ask for “the best” system.

In many settings a better system comes with a higher price. For example, con-

sider an assembly line that can be operated in several speeds i.e., the number

of units produced per time unit. We would prefer a controller that produces as

many units as possible. However, running the line in a faster mode increases

the power consumption and the probability to fail, resulting in higher repair

costs.

2

1.1. On quantitative verification and synthesis

We want to synthesize reactive systems, i.e., systems that react to signals

from their environment indefinitely. We are looking for a system that behaves

optimal globally, i.e., on all possible behaviors of its environment. Having de-

fined a local evaluation criterion, e.g., the efficiency of a system on a single

environment input, we need to define a global evaluation criterion. There are

several possible ways, e.g., worst case, best case, or average. In the worst

and best-case scenarios we assume that our system operates in an antagonis-

tic or in a cooperative environment. To define the average, we need to define

a probability distribution. In our case, we use probability distributions over

the behavior of the environment: assembly lines need repair randomly, net-

work protocols have randomly behaving participants, servers receive random

requests, etc. Modeling environments with probabilistic behavior allows us to

assume that the environment is not hostile, i.e., it is not in fact trying to do

its worst. Probabilistic modeling also allows us to encode knowledge or ex-

pectations on environment behavior. Embedded systems sometimes are only

required to operate in given conditions that we can model probabilistically. A

server, for example, is only required to work given an expected average number

of requests, while a denial of service attack lies outside of its specification1. A

different component takes care of shielding the server in case of such an attack.

Lastly, assuming probabilistic behavior makes quantitative synthesis questions

often more tractable than their qualitative counterparts, admitting synthesis

algorithms with expected polynomial instead of exponential run-time.

This thesis also takes the idea of quantitative synthesis further. While

it is obvious that any cost or reward measure can be used for quantitative

specifications, we also explore how we can use additional information that

is not directly encoded in the qualitative specification to guide the synthesis

process. We focus on the use of the semantics of the program as quantitative

information in program repair. Instead of just repairing a program according

to a qualitative specification, we try to find a semantically close repair.

Finally, this thesis shows the power of quantitative formal methods. We

demonstrate how we can use an embedded domain specific language in a com-

mon programming language to describe a reactive system. We then show how

we can use this language to model, synthesize and analyze a real-life collision

1 We can still model a denial of service attack. We assume that a DDOS attack comes with
a small probability. If it comes, the environment suddenly changes its behavior drastically.

3

CHAPTER 1: INTRODUCTION

avoidance system for airplanes.

1.2 Relation to artificial intelligence

Synthesis, and particularly the techniques and ideas used for quantitative syn-

thesis and verification, is also a topic in the field of artificial intelligence (among

other fields, e.g., operations research). Named planning, artificial intelligence

tries to find (i.e,. synthesize) optimal decisions. These vary greatly, from opti-

mal treatment for patients or motion planning for robots. One prominent field

that is very close to what is done in this thesis is called reinforcment learning,

which is concerned with defining the decisions for an agent so as to optimize a

given reward.

These two fields can learn a lot from each other, and proliferation and

collaboration have started. For example, [MLOP07, HvdHvR09, KGFP09]

have proposed to use linear temporal logic2 to specify desirable sequences of

states, instead of just desirable states, as is common in artificial intelligence.

In the other direction, probabilistic model checking has adapted and improved

techniques originally developed for reinforcement learning [CBGK08]. Artificial

intelligence is used to support program verification in, e.g., [SNA12, NR11,

BN11]. In addition, artificial intelligence often tries to find controllers in a

world not fully known, while there have been no practical advances from the

field of verification and synthesis, yet. There are theoretical results [FGL12]

and experimental implementations [BCW+10], but it is not accepted practice.

To summarize, we believe that the budding collaboration in these fields is

promising, and hope to see closer collaboration.

1.3 Outline and contributions

We will now outline the thesis and summarize the contributions of each chapter.

Most chapters are based on published, peer-reviewed work and we will later

point out which part of each chapter is unpublished.

• Rest of Chapter 1: We will continue with necessary preliminaries and

then discuss both the theoretical and the practical state of the art of

quantitative verification and synthesis.

2A specification language stemming from the field of formal methods, and discussed later.

4

1.3. Outline and contributions

• Chapter 2: This chapter contributes theoretical results for the ratio ob-

jective for Markov decision processes (MDPs) as well as practical results

for quantitative synthesis.

1. We show that the ratio objective is well-defined for MDPs, and

contribute three algorithms on explicitly encoded MDPs: two algo-

rithms based on linear programming and one based on policy iter-

ation. We also implement the algorithm based on binary decision

diagrams in the probabilistic model checking tool PRISM [KNP11].

2. We also present a framework to automatically construct a system

with an efficient average-case behavior with respect to a reward and

a cost model in a probabilistic environment. To the best of our

knowledge, this is the first approach that allows synthesizing efficient

systems automatically. We analyze our framework, proving that we

can indeed find efficient systems. This analysis is the foundation for

the algorithms.

• Chapter 3: In this chapter, we refine the definition of repair of (reactive)

programs. We achieve this by requiring that a repair be semantically close

to the original program. By this, we show that quantitative verification

and synthesis does not necessarily mean rewards or probabilities.

We analyze the limits of our approach, and explore why a repair might

be impossible. We also provide several examples, showing that our new

notion of repair has advantages in practice. Finally, we provide an algo-

rithm and a prototype implementation that finds a repair, if one exists.

• Chapter 4: In this chapter, we present a novel framework designed for

quantitative and qualitative synthesis and analysis, in which the synthe-

sized strategies can be model checked in different models/assumptions.

We also propose a novel way for describing models in a Java embedded

domain specific language. We further show that we can approximate

Pareto curves of MDPs with many kinds of rewards via value iteration,

which allows us to side-step linear programming. We apply this system

to several case studies taken from the field of automotive engineering and

from artificial intelligence.

5

CHAPTER 1: INTRODUCTION

• Chapter 5: We apply the framework defined in Chapter 4 to a real-

world case study. We analyze and contribute to the design of the next-

generation airborne collision avoidance system currently under review at

the Federal Aviation Administration.

New results versus published results

• Chapter 2 is based on [vEJ11, vEJ12]. New and unpublished are the

symbolic algorithms and the proof that shows that none of the two policy

algorithms that we propose is necessarily better than the other.

• Chapter 3 is based on [vEJ13]. This thesis adds further analysis w.r.t

optimal repair, and also suggests other methods to define close repairs.

• Chapter 4 is completely new and unpublished

• Chapter 5 is based on [vEG14]

1.4 Preliminaries

As we go from topics well known to topics more esoteric, our definitions and

explanations will go from the brief to the extensive. This thesis needs to assume

some level of familiarity with basic math. It assumes that concepts such as

sequences, tuples, sets, functions and first-order logic are understood. Other

concepts, like Markov decision processes, are not taken for granted. The subject

of this thesis is dwelt upon, as is customary.

Mathy basics

We consider zero to be a very natural number, and therefore define N =

{0, 1, 2, . . .}. We refrain from defining the set of real numbers and just de-

note it by R. Let A,B be sets. Then A× B = {(a, b) | a ∈ A, b ∈ B} denotes

the cross product or Cartesian product of A and B. By 2A = {A′ | A′ ⊆ A} we

denote the powerset of A, i.e., the set of subsets of A. Let ∅ 6= A0, . . . , An ⊆ A
be non-empty subsets of A. If the subsets cover A and are pairwise disjoint,

i.e.,
⋃

0≤i≤nAi = A and ∀0 ≤ i 6= j ≤ n : Ai ∩ Aj = ∅, then the Ai are said

to form a partition of A, and we call the Ai blocks. We say that a partition

A is finer than a partition A′ if all blocks Ai ∈ A are contained in a block

6

1.4. Preliminaries

A′j ∈ A′, i.e., Ai ⊆ A′j . Given functions f : A → B and g : B → C we denote

by g ◦ f : A→ C the composition of f and g, i.e., (g ◦ f)(a) = g(f(a)).

The set of n-dimensional vectors over a setA is defined asAn := {(a1, ..., an) |
ai ∈ A, 1 ≤ i ≤ n}. For a vector a ∈ An we denote by ai the ith component

of a, starting from 1, i.e., a = (a1, . . . , an). By a < b for two vectors a, b ∈ An

we denote the fact that there is a component 1 ≤ i ≤ n such that ai < bi and

that for all 1 ≤ j ≤ n we have aj ≤ bj .
A σ-algebra over a set A is a set F ⊆ 2A such that (i) ∅ ∈ F , (ii) E ∈ F

implies A \ E ∈ F for any E ∈ F , and (iii) the union of any countable set

of elements of F E1, E2, · · · ∈ F is also in F , i.e.,
⋃
Ei ∈ F . Let F ,F ′

be σ-algebras over A and A′, respectively. A function f : A → A′ is called

measurable if the pre-image of every element in F ′ is an element of F , i.e., if

f−1(E) := {a ∈ A|f(a) ∈ E} ∈ F for all E ∈ F ′.

Probability theory. A probability space is defined by a tuple P := (Ω,F , µ),

where Ω is the set of outcomes or samples, F ⊆ 2Ω is a σ-algebra defining the

set of measurable events, and µ : F → [0, 1] is a probability measure assigning

a probability to each event such that µ(Ω) = 1 and for each countable set

E1, E2, · · · ∈ F of disjoint events we have µ(
⋃
Ei) =

∑
µ(Ei). Given a mea-

surable function f : Ω→ R∪{+∞,−∞}, we use EP [f] to denote the expected

value of f under µ, i.e.,

EP [f] =

∫
Ω

f dµ.

If P is clear from the context, then we drop the subscript or replace it with

the structure that defines P. The integral used here is the Lebesgue integral,

which is commonly used to define the expected value of a random variable.

By D(X) we denote the set of probability measures over set X. For a finite

set X, D(X) = {f : X → [0, 1] |
∑
x∈X f(x) = 1} holds.

Words. Let A be a finite set. Then An := {a0a1 . . . an−1 | ai ∈ A} denotes

the set of words over A of length n ∈ N. The empty word is denoted by ε,

and therefore A0 = {ε}. The set of all words of finite length is denoted as

A∗ :=
⋃
n∈NA

n. By Aω := {a0a1 · · · | ai ∈ A} we denote the set of infinite

words. Given two words v ∈ A∗, w ∈ A∗ ∪ Aω, we denote by v ≤ w the fact

that v is a prefix of w. Given a word w, we denote by wi the letter at position

i, where we start counting at 0. Further, by w≥i we denote the postfix of

w starting at position i, i.e., wiwi+1 · · · . Analogously, by w>i we denote the

postfix of w starting after position i, i.e., wi+1wi+2 · · · , by w<i we denote the

7

CHAPTER 1: INTRODUCTION

Figure 1.1: Robot in a two room apartment

prefix of w ending with the ith letter, i.e., w0 · · ·wi−1, and by w≤i we denote

the prefix ending with the i+ 1th letter, i.e., w0 · · ·wi.

Structures

Transition Systems. In this thesis, we concern ourselves with systems that

can take on a finite number of states. The most basic of such systems is a

transition system.

Definition 1.1 (Transition System) Let S 6= ∅ be a finite set, and let ∆ ⊆
S×S be a relation between elements of S such that ∀ s ∈ S∃ s′ ∈ S : (s, s′) ∈
∆. Let finally s0 ∈ S be an element of S. Then L = (S,∆, s0) is called a

transition system where S are the states of the transition system, ∆ is the

transition relation and s0 is the initial state. The transition relation dictates

that the system can move from state s ∈ S to state s′ ∈ S if (s, s′) ∈ ∆. For

convenience, we assume that each state has at least one outgoing transition,

i.e., ∀ s ∈ S∃ s′ ∈ S : (s, s′) ∈ ∆.

We use transition systems to represent the structures in this thesis.

Example 1.1 Consider Figure 1.1 as an example in which a robot can move

between two rooms of a flat3. A state is defined by the location of the robot

(i.e., left or right room). We depict the two rooms by two squares, while we

indicate the location of the robot by a black circle. In each step, the robot can

move from one room to the other, or remain in the same room. The arrows

between the two states in the figure depict how the robot can move. Formally,

we model this with an TS with S = {Left,Right}. The transition relation is

∆ = {(Left,Left), (Left,Right), (Right,Left), (Right,Right)}

State s0 ∈ S acts as the start state, i.e., the state in which all runs of the

transition system start.

3This and the following robot examples have been inspired by “Vacuum World” in [RN10].

8

1.4. Preliminaries

Definition 1.2 (Runs) An infinite run of L starting in a state s0 is an infinite

word ρ = s0 s1 · · · ∈ Sω over S whose first element is the state s0 and whose

adjacent pairs si, si+1, i ≥ 0 are transitions in L, i.e., (si, si+1) ∈ ∆. A finite

run of L is any prefix of an infinite run of L. We denote by Ωωs (L) the set of

infinite runs of L starting in s, and by Ω∗s (L) the set of finite runs of L starting

in s.

To illustrate these concepts, we extend the robot example with dirt. To be

more precise, not only can a room now contain a robot, but a room can become

dirty as well. If a room is dirty and the robot is in it, then the robot can clean

the room.

Example 1.2 Formally, each room may be dirty or clean, i.e., the state space

is now S = {Left,Right} × {Clean,Dirty} × {Clean,Dirty}. As before, the

robot may move from one room to the other, or stay where it currently is.

Additionally, it may now try to clean a room. This will remove any dirt from

the room. We depict the full transition system except for self loops in Figure 1.2

on Page 10. An example of an infinite run would start in (Left,Clean,Clean),

meaning that the robot is in the left room and there is no dirt. Now the

neighbours come to visit, and their kid dirties both rooms, i.e., we move to

state (Left,Dirty,Dirty). In our example, it is more important to clean the right

room, so the robot first goes to that room, i.e., to state (Right,Dirty,Dirty),

and cleans it, i.e., we move to state (Right,Dirty,Clean). Now the robot moves

to the left room, and the neighbours behave themselves, i.e., we move to state

(Left,Dirty,Clean). Now the robot cleans that room, i.e., we move to state

(Left,Clean,Clean). We have now described the prefix of a run. Note that we

cannot move between states arbitrarily. For example, we cannot move from

state (Right,Dirty,Dirty) to state (Left,Clean,Clean). The run we have just

described can now be extended to an infinite run by following the transitions

of the graph.

Although the system is small (only 8 states) it is already not obvious how

the robot should behave. An obvious task for controller synthesis is to find a

controller for the robot so that it cleans dirty rooms. But this simple formu-

lation still leaves a lot of choice. What is the robot supposed to do if there is

no dirty room? It could either idle, or walk to the other room if it suspects

that it is more likely that the other room will become dirty soon (because it

9

CHAPTER 1: INTRODUCTION

Figure 1.2: Transition system of a two room apartment; robot is black circle;
colors square is dirty; self-loops are left out

is, for example, the room in which the kids play with the dog). Or it could be

motivated to move to the other room because it is more important that the

other room be clean (because it is the room in which we welcome guests). Or

it has to visit the other room regularly to recharge its battery. In addition,

we have a clear separation of roles in our cleaning robot example: we have

the robot that tries to clean rooms on the one hand, and we have somebody

or something deposing dirt in our flat. We will therefore now distinguish be-

tween the protagonist, which we want to control, and the antagonist (e.g., the

environment, the kids or the dog), which tries to act against us.

Stochastic games. The most complex structure this thesis uses is a stochastic

game [Sha53]. We define the as unifying framework for the later structures (i.e.,

two player games and Markov decision processes).

Definition 1.3 (Stochastic game) A stochastic game is a game played be-

tween two players (Player 0 and Player 1), in which chance plays a role as well.

It is defined as S = (S,S0,S1,Sp, s0,∆, p) such that (S, s0,∆) is a transition

system. Sets S0,S1 and Sp partition S to define to which player (Player 0,

Player 1 or chance) a state belongs. Function p : Sp → D(S) defines the proba-

bility distribution used in a state in which chance rules. That is, p(s)(s′) is the

probability of going from state s to state s′. Instead of p(s)(s′) we sometimes

write p(s′ | s). We demand that ∀ s ∈ Sp ∀ s′ ∈ S : p(s′ | s) > 0 ⇐⇒ (s, s′) ∈ ∆.

We will now redefine example Example 1.2 as a stochastic game.

Example 1.3 As example state space we use S = {0, 1, c} × {Left,Right} ×
{Clean,Dirty} × {Clean,Dirty}, where the first component indicates to which

player the state belongs. In our example, Player 0 controls the robot (i.e.,

10

1.4. Preliminaries

cleaning, idling and movement), Player 1 controls the addition of dirt and

chance controls the unfortunate event that the vacuum cleaner is leaky and

loses dirt, i.e., makes the room the robot occupies dirty. In addition, the

players take turns. First, the environment (Player 1) decides if it wants to

make a room dirty. Then the robot may vacuum clean a room or move. Then,

chance may decide to make the room occupied by the robot dirty.

In Figure 1.3 we show a part of this stochastic game. States are depicted

as in Figure 1.2, but now we also mark which state belongs to which player by

either surrounding them with a box (Player 1), a circle (Player 0) or a diamond

(Chance). Our run starts in the state in the upper left corner, in which it is

the turn of Player 1 and both rooms are clean. Player 1 decides which (if

any) of the rooms becomes dirty, and it is the turn of Player 0 (i.e., the robot)

afterwards. For our example, we move to the state in which the left room is

dirty. The robot may now decide to either do nothing, clean the room, or go

to the other room. For our example we look at the two states in which the

robot either cleaned the room or was just idling. After the turn of Player 0

it is now up to chance to decide if the robot leaks. In the state in which the

robot did not do anything, chance has no choice but to move to the state in

which the left room is still dirty. In the state in which the robot cleaned the

room, chances transitions with a 99% chance to the state in which the room

stays clean, and with a 1% chance dirties the just cleaned room.

Stochastic games assume that Player 0 and Player 1 play against each other.

Often, we do not want to assume an antagonistic environment, but prefer a

purely random environment. Such a stochastic game (i.e., one without states

controlled by Player 1), will be described next.

Markov decision process. A Markov decision process (MDP) is a stochas-

tic game in which the sole player plays against chance, but not another player.

They have been used in game theory, operations research etc. for a long time.

They have seen much success because the real world appears to us as a Markov

decision process: we are a player in the game of life, taking actions based on

what we perceive as our state (see for example [CN06] for examples of search

engines and customer classification, [BHP97] for an approach to baseball and

[KLD+02] for an application in biology; see [Whi93] for a further survey, in-

cluding agriculture, finance, sales and epidemics, among others). The outcome

of our actions seems more or less random to us.

11

CHAPTER 1: INTRODUCTION

0.01

0.99

1

Figure 1.3: Example of a part of the stochastic cleaning robot game. States
surrounded by a box belong to Player 1, states surrounded by a circle belong
to Player 0, states surrounded by a diamond belong to chance. Numbers on
edges going out from nodes belonging to chance are probabilities.

Definition 1.4 (Markov decision process) A Markov decision process is

a stochastic game S = (S,S0,S1,Sp, s0,∆, p) in which S1 = ∅. Further, we

demand that states following a player state be random states, and vice versa.

Formally, we demand that the games forms a bipartite graph with S0 forming

one partition and Sp the other. That is, we demand that s ∈ S0 ∧(s, s′) ∈
∆ =⇒ s′ ∈ Sp and that s ∈ Sp ∧(s, s′) ∈ ∆ =⇒ s′ ∈ S0 hold. It is

thus sufficient to define an MDP by the tuple M = (S0, s0, A,Sp, p), where

A : S0 → 2Sp defines what decisions are available to a player in what state. We

then call Sp the actions, and A the action function. In addition, we often write

p(s, a)(s′) or p(s′ | s, a) for the probability of moving from s via a to s′.

In our robot example, it is probably overly pessimistic to assume that the

kids and neighbours dump dirt maliciously. Instead of this assumption, we now

assign a probability to the event that somebody dirties one of our rooms, if it

is not dirty already.

Example 1.4 As set of states, we now use S0 = {Left,Right}×{Clean,Dirty}×
{Clean,Dirty}. For nondeterministic (as opposed to random) transitions, we

have the same options as before: the robot can move from one room to the

other, idle or clean a room if it is dirty. We assume that the left room becomes

dirty with a probability of 10% if it is not dirty already, and that the right

room becomes dirty with a probability of 1%.

We depict a part of this MDP in Figure 1.4. We left out the actions that

move the robot to the other room, and those states in which the robot is in the

12

1.4. Preliminaries

right room. When we start in the state in which both rooms are clean, then

two actions are available: we can move to the other room (not depicted), or

Idle , i.e., wait for something to happen. After we have chosen our action, it

is the turn of the environment, which randomly decides what to do next. It

is most likely that both rooms remain clean. The next likely case is that the

left room becomes dirty (with probability 10%). The right room becomes dirty

with a probability of 1%. The least likely case is that both rooms become dirty

at the same time, with probability 1% · 10% = 0.1%. In the case that both

rooms are dirty, the robot has two actions available: it can either ignore the

dirt, in which case the only possible outcome is that both rooms remain dirty;

or it can clean the room in which it is located, in which case the only possible

outcome is that the room is clean now.

This simple setup already provides interesting possible controllers for the

robot. If both rooms are clean, then it probably makes more sense to move to

the room that is more likely to become dirty. This is only true, though, if it is

more important that that room be clean. Otherwise it might make more sense

to move to the more important room. Analogously, if both rooms are dirty,

does it make more sense to clean the room in which the robot currently is, or is

it better to go to the other room first? After all, if we first clean the room that

is probably going to become dirty quickly, then this room might become dirty

again while we subsequently clean the other room. Another possibility is to

have the robot patrol the rooms (i.e., switch from right to left and vice versa)

constantly, and only clean the room if we encounter dirt. It is obvious that

the optimality of a controller depends on how important we consider different

characteristics, e.g.: amount of time a room stays dirty, movement costs of

robots and difference importance of rooms. In any case, once we have selected

a controller there is no decision remaining. What remains is a structure that

contains only random transitions. We will consider those structures next.

Markov chain. A Markov chain (MC) is an MDP in which there is no decision

to make. This may be the case because there really is no decision to make (e.g.,

because we have to work on our thesis during the coming weekend; no choice

there), or because all decisions have been made already (e.g., because we know

exactly what our plans for the weekend are, but we had a choice before).

13

CHAPTER 1: INTRODUCTION

Idle

0.891

0.
00

9

0.099

0.001

Clean

Idle

0.99

0.01
0.
99

0.01

Idle

0.9
0.
1

Clean

Idle

1

1

Figure 1.4: Example of a port of a robot MDP. Rectangles with rounded
corners are actions, the other rectangles are state. Missing from this graph are
actions moving the robot to the other room, and states with the robot on the
right room.

Figure 1.5: Markov chain obtained from Figure 1.4 when the robot always
cleans the room it is in if the room is dirty and switches rooms otherwise; we
have left out the probabilities to enhance readability.

Definition 1.5 (Markov chain) An MDPM = (S0, s0, A,Sp, p) is a Markov

chain if there is no decision to make, i.e., in which |A(s)| = 1∀ s ∈ S0. Instead

of the above, we often write M = (S0, s0, p).

We are now going to pick an action for each state our little robot may

be in. We note here that picking an action for each state is a very simple

way of turning an MDP into a MC. We will investigate this more formally in

Section 1.4

Example 1.5 Our little robot is very anxious to get to work, and even more

anxious when it does not have anything to work on. It therefore cleans any dirt

14

1.4. Preliminaries

in the room it currently is in, and if it finds no dirt in the common room, then

it moves to the other. The resulting MC (without probabilities) is depicted in

Figure 1.5.

Markov chains associate a probability with their finite runs. In the follow-

ing, we will describe a probability space P := (Ω,F , µ) over the set of infinite

runs Sω0 . Since infinite runs have probability zero in every non-trivial Markov

chain. we cannot simply define µ(s0 s1 · · ·) = Πi∈Np(si+1 | si), as the following

example shows.

Example 1.6 Let us continue with the MC in Figure 1.5. We will now look at

the run that starts in the state in which both rooms are clean, and the robot is

in the left room. The probability of going to the state in which both rooms are

still clean, and the robot is in the right room is 0.891. The probability of going

back to the initial state is again 0.891. So the probability of the finite loop we

have just described is 0.891 × 0.891 = 0.8912. The probability of taking the

loop twice is 0.8914. The probability of the infinite run consisting of only loops

is therefore limn→∞ 0.891n = 0.

Instead, we will follow common practice and use the probability of finite

runs to define the probability of sets of infinite runs (so-called cones) with

common prefix, and generate a probability space based on those.

Definition 1.6 (Probabilities of runs and cones [Put94]) Let ρ ∈ Ω∗s (M)

be a finite run starting in some state s ∈ S. Then the probability of ρ

is defined as p(ρ) := Π0≤i<np(si+1|si). The cone ∇(ρ) ⊆ Sω0 is defined as

{ρρ′ | ρρ′ ∈ Ωωρ0(M)}. The probability measure of a cone is the probability of

the common prefix, i.e., µ({∇(ρ)}) := p(ρ). The samples of M are the cones,

and all sets of cones starting in a common state are measurable events, where

µ({∇(ρ0),∇(ρ1), . . .}) =
∑
i≥0 p(ρi) if ρi 6= ρj∀i 6= j ∈ N.

Example 1.7 Let us continue with the MC in Figure 1.5. We will start with

the state in which both rooms are clean, and in which the robot is in the left

room. As before, we now move to the state in which both rooms are still clean,

and in which the robot is in the right room, and then back to the previous

state. The probability of this finite run v is 1 · 10−6. The cone ∇(v) describes

the set of infinite runs that start from here.

15

CHAPTER 1: INTRODUCTION

To see why it makes sense to define the probability of a cone as the proba-

bility of its finite common prefix, consider what can happen after v, i.e., what

is the possible extension of v. According to Figure 1.5 there are four pos-

sibilies: (1) v1: both rooms stay clean (2) v2: the left room becomes dirty

(3) v3 the right room becomes dirty (4) v4 both rooms become dirty. Note

that ∇(v1), . . . ,∇(v4) partition ∇(v), i.e., every infinite extensions of v is an

extension of one of the vi. Therefore, p(∇(v)) = p(
⋃4
i=1∇(vi)) should be∑4

i=1 p(∇(vi)). This hold because of the way the probabilities of cones are

defined. Vice versa, this is the only possible way to define the probability of

cones that results in a properly defined probability space having this property.

Two player games. Sometimes, we are really not worried about how a system

behaves on average, or we have no idea what the probabilities are that influence

something beyond our control. Chess is one example where probabilities play

no role, but where there is clearly an antagonistic opponent. Another example

is when relatives come to visit and you want to know how long a room might

be dirty in the worst case. To model situations like these we define two player

games. In the following, when it is unambiguous, we will refer to two player

games simply as games.

Definition 1.7 (Game) A game is a stochastic game S = (S,S0,S1,Sp, s0,∆, p)

in which Sp = ∅. When defining games, we often leave out Sp and p and write

S = (S,S0,S1, s0,∆) instead.

To illustrate these concepts, we will let an antagonist decide which room

becomes dirty when.

Example 1.8 Consider Figure 1.4, but ignore the probabilities on the edges.

Player 0 picks the action, while Player 1 picks the following state from the set

of reachable states.

We can use this graph to ask, for example, for the maximum number of

consecutive steps that a room can be dirty compared to the number of steps

that it is clean, or for the ratio of cleaning steps per walking step of the robot.

Finite state machines. Finite state machines are systems that change their

states depending on an input word that they read. They can be seen as games

in which the players take turns.

16

1.4. Preliminaries

Definition 1.8 (Finite state machine) Formally, a finite state machine S =

(S,S0,S1, s0,∆) is a game with two restrictions. These restrictions ensure that

Player 1 acts as providing an input letter, while Player 0 changes the state of the

machine according to the input letter. Firstly, states following a Player 0 state

are Player 1 states, and vice versa. Formally s ∈ S0 ∧(s, s′) ∈ ∆ =⇒ s′ ∈ S1

and that s ∈ S1 ∧(s, s′) ∈ ∆ =⇒ s′ ∈ S0. Secondly, Player 1 starts the game,

i.e., s0 ∈ S1.

Usually, finite state machines are defined as reading from an input alphabet

Σ, and denoted by (S, s0,Σ,∆), where ∆ ⊆ S×Σ× S. This corresponds to the

game (S∪S′,S′,S, s0,∆
′), in which S′ = S×Σ, ∆′ = {(s, (s, σ)) | s ∈ S, σ ∈

Σ} ∪ {((s, σ), s′) | (s, σ, s′) ∈ ∆}. Intuitively, Player 1 first decides what letter

comes next. Then Player 0 decides what the next state is. If Player 0 has

no choice in any of his states (i.e., if |{s′ ∈ S | ∃σ : (s, σ, s′) ∈ ∆}| = 1 for

all s ∈ S0), then the machine is called deterministic, and non-deterministic

otherwise. For deterministic machines, we define δ : S×Σ → S as δ(s, σ) = s′

such that (s, σ, s′) ∈ ∆.

Sometimes, we want our machines to not only read and change their state,

but answer us as well. Therefore we equip them with output functions. Such

machines are sometimes called transducers.

Definition 1.9 (Moore/Mealy machines, transducers) Transducers are

deterministic machines equipped with an output function γ over an output

alphabet Ω, such that it can read and write letters. There are two possible

cases for γ: (1) the output depends exclusively on the current state of the

machine, i.e., γ : S→ Ω, or (2) the output depends on the current state of the

machine and the letter that is read, i.e., γ : S×Σ → Ω. A machine with output

function (1) is called a Moore machine, a machine with output function (2) is

called a Mealy machine. For both, we often write (S, s0,Σ,Ω, δ, γ) instead of

the stochastic game.

Moore and Mealy machines each define a unique output word for each

input word. Let w ∈ Σω ∪ Σ∗ be an input word. Then the run of a machine

is the sequence ρ = ρ0ρ1 · · · , where ρ0 = s0 and ρi = δ(ρi−1, wi−1) for i >

0. The output word on input w of a Mealy machine, denoted by γ(w), is

defined as γ(ρ0, w0) γ(ρ1, w1) · · · , and that of a Moore machine is defined as

γ(ρ0) γ(ρ1) · · · .

17

CHAPTER 1: INTRODUCTION

Initstart

Right

Left

(−,Clean,Clean)/Idle

(Left,Clean,Dirty)/Move

(Right, dirty,Clean)/Move

(Right,−,Dirty)/Clean

(Lef
t,D

irty,
−)/C

lean

(Right,−,Dirty)/Clean (Left,Dirty,−)/Clean

(Left,−,−)/Move

−/Idle

(Right,−,−)/Move

−/Idle

Figure 1.6: A machine for controlling the cleaning robot. The robot cleans
the first room in which it discovers dirt, and then always the room it has not
cleaned last. The labels on the edges of format In/Out describe what the
machine reads as input and writes as output as reactions. Dashes (–) stand
for the joker pattern, i.e., match anything not matched by anything else in the
state.

Example 1.9 We will now build a machine to control our robot for the model

in Figure 1.4. Our robot believes that it is better to clean the room that is has

not cleaned last. We implement such a robot using a finite state machine with

three states: (1) an initial state signifying that it has not cleaned any room

yet, (2) a state Left signifying that the robot wants to clean the left room next

(3) a state Right signifying that it wants to clean the right room next.

We therefore have S = { Init , Right , Left}. The robot reads from the set

of states of the MDP, and it outputs actions, i.e., one of {Move, Idle,Clean}.
We depict this machine in Figure 1.6. As you can see, the machine starts in

state Init and stays there until the room the robot is in is dirty. The robot

idles while no room is dirty. If the room the robot does not occupy becomes

dirty first, then it will move to the other room and then clean the room in

the next step. As soon as the left room becomes dirty and the robot is in the

left room, the machine tells the robot to clean the room and moves to state

18

1.4. Preliminaries

Right , signifying that it wants to clean the right room next. The analogous

thing happens when the right room becomes dirty first.

Once in state Right , the robot first switches to the other room. It then

idles there until the right room becomes dirty, in which case the robot cleans

it and moves to state Left , and so on.

Strategies and objectives

Strategies. When two players play a game, they usually have a strategy

beforehand, and sometimes make one up on the spot. A strategy can be either

deterministic, i.e., in each state the player knows exactly what she wants to

do, or she can leave the actual outcome to chance by, for example, flipping a

coin. Further, a player’s strategy can either depend on only the current state

of the game, or it can depend on a finite history of the game, or it can depend

on the complete history of the game.

Definition 1.10 (Strategy) Therefore, in its most general form, a strategy

for Player i ∈ {0, 1} in a stochastic game S = (S,S0,S1,Sp, s0,∆, p) is a function

d : S∗ Si → D(S) such that d(ρ s)(s′) > 0 =⇒ (s, s′) ∈ ∆ for each run ρ s of S.

A Player 0 strategy such that the co-domain of d(ρ) is {0, 1} for all runs

ρ ∈ S∗ s with s ∈ S0 is called deterministic. If a strategy can be implemented by

a Moore machine, then it is called finite memory strategy or finite-state strategy.

Formally, a strategy is a finite memory strategy if there is a Moore machine

M = (SO, o0,Σ,Ω, δ, γ) such that for all non-empty runs ρ = s0 s1 · · · sn ∈
Ω∗s0(S) and for the output word ω0 ω1 · · ·ωn = γ(ρ) produced by M on ρ we

have that d(ρ) = ωn.

We have already seen a finite, deterministic strategy in Example 1.9.

Qualitative properties. In this thesis, we call properties that a system or a

run of a system does or does not have — i.e., properties that have no middle

ground — qualitative properties. Examples of such properties include dead-

lock-freedom (can the system always continue, or does it get stuck) and safety

(does the system always remain in a safe region of a state space). In this

thesis, we will chiefly specify qualitative properties via linear temporal logic

(LTL) [Pnu77]. We define qualitative properties over a finite set of atomic

propositions AP 6= ∅.

19

CHAPTER 1: INTRODUCTION

Definition 1.11 (Linear temporal logic) Linear temporal logic (LTL) for-

mulas are defined by the following grammar.

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

The semantics of this syntax is defined over infinite sequences of sets of atomic

propositions, i.e., over (2AP)ω. A sequence w ∈ (2AP)ω fulfills a property ϕ,

written as w |= ϕ if

• ϕ = p ∈ AP and p ∈ w0

• ϕ = ¬ϕ′ and not w |= ϕ′

• ϕ = ϕ1 ∨ ϕ2 and (w |= ϕ1 or w |= ϕ2)

• ϕ = Xϕ′ and w>0 |= ϕ′

• ϕ = ϕ1 Uϕ2 and there is an i ∈ N such that (1) for all 0 ≤ j < i w≥j |= ϕ1

and (2) w≥i |= ϕ2

We denote by L(ϕ) = {w ∈ (2AP)ω | w |= ϕ} the language of ϕ, i.e., the set

of sequences satisfying ϕ.

In addition to the grammar above, we define the following symbols for

convenience.

• true = p ∨ ¬p for some p ∈ AP

• false = ¬true

• ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)

• Fϕ = true U ϕ

• Gϕ = ¬F¬ϕ

Example 1.10 Coming back to our robot example, one useful LTL property

would be G(leftDirty→ F leftClean), i.e., whenever the left room is dirty, then

it will be cleaned at some point. Another one we could find interesting is

G(roboLeft ∧ X(roboRight) → rightDirty), i.e., we are only allowed to move

from the left room to the right room when the right room is dirty.

20

1.4. Preliminaries

For two words w,w′ ∈ (2AP)ω we define w ∪ w′ by (w ∪ w′)i = wi ∪ w′i for

all i ∈ N. We say that a Mealy machine M = (S, s0, API , APO, δ, γ) fulfills a

specification ϕ, written as M |= ϕ if for all words w ∈ (2API)ω we have that

w ∪ γ(w) ∈ L(ϕ). This definition works analogously for Moore machines.

The second qualitative property we will consider is the parity condition.

Definition 1.12 (Parity condition) Let λ : 2AP → N be a function with

finite co-domain. This function defines a parity condition. We say that an

infinite word w ∈ (2AP)ω fulfills the parity condition if the highest number

seen infinitely often in λ(ρ0) · λ(ρ1) · · · is even.

We say that a Mealy machine fulfills a parity condition if for all words

w ∈ (2API)ω we have that w ∪ γ(w) fulfills the parity condition.

Quantitative properties. By quantitative properties we mean properties

that are not strictly true or false for a system or a word. Instead, a word or a

system is associated with a number. For example, the time taken until an event

happens is a quantitative property. Another is the energy used by a system.

We deal with two kinds of quantitative properties here. Firstly, we con-

sider probabilistic computation tree logic (PCTL)[HJ94], which is a logic for

probabilistic systems.

Definition 1.13 (PCTL) The grammar of PCTL is defined by the following.

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | P∼c[ψ]

ψ ::= ϕ U ϕ | Xϕ,

where c ∈ [0, 1] is a probability, ∼∈ {<,≤,=,≥, >} is a relation and AP is a

set of atomic propositions. In the above, a formula of shape ϕ is called a state

formula, while a formula of shape ψ is called a path formula.

We define the semantics to the above syntax over a Markov chain M =

(S0, s0, p) and a labelling λ : S→ 2AP . We say that a run ρ ofM fulfills a path

formula ψ, written as ρ |= ψ if

• ψ = Xϕ and ρ1 |= ϕ

• ψ = ϕ1 Uϕ2 and there is an i ∈ N such that (1) for all 0 ≤ j < i ρ≥j |= ϕ1

and (2) ρ≥i |= ϕ2,

where s |= ϕ means that state s ∈ S fulfills state formula ϕ, which is the case if

21

CHAPTER 1: INTRODUCTION

• ϕ = p ∈ AP and p ∈ λ(s)

• ϕ = ¬ϕ′ and not s |= ϕ′

• ϕ = ϕ1 ∨ ϕ2 and (s |= ϕ1 or s |= ϕ2)

• ϕ = P∼c[ψ] if P({ρ |= ψ | ρ ∈ Ωωs (M)}) ∼ c,

where P({ρ |= ψ | ρ ∈ Ωωs (M)}) is the probability measure of all runs starting

in s that fulfill ψ, which is a measurable function according to [Var85].

Example 1.11 Recall the Markov chain in Figure 1.5, we could ask for the

probability that both rooms will be dirty at some point, i.e., P[trueUbothDirty],

which is equal to 1 in our case. Or we can ask for the probability that the left

room will stay dirty forever, i.e., P[true U P=0[true U leftClean]] The probability

that both room become dirty are dirty in the next step is P[X bothDirty] =

0.001 in any state in which both rooms are clean, and zero in any state in which

both rooms are dirty already.

In addition to PCTL formulas, we also have reward-based properties.

Definition 1.14 (Reward function, accumulation function) A reward func-

tion r : S → R for a transition system L = (S,∆, s0), is a function which

assigns a reward to each state. In addition, we define accumulation functions

α : Rω → R ∪ {+∞,−∞} or α : Rω × Rω → R ∪ {+∞,−∞} that accumu-

late rewards over paths. In this thesis, we will encounter the following reward

functions.

• Mean payoff α(w) = lim infn→∞ 1/n
∑n
i=0 wi, which yields the average

reward seen along a path.

• Minimum sum α(w) = minn→∞
∑n
i=0 wi which yields the minimal or

maximal sum seen along a path. The maximum sum is defined analo-

gously.

• Discounted payoff α(w) =
∑
i∈N λ

i wi for a λ ∈ [0, 1), which considers

rewards near the beginning of a path more important than those at the

end of a path.

• Ratio payoff α(w1, w2) = liml→∞ lim infu→∞
∑u
i=l w

1
i

1+
∑u
i=l w

2
i
, which yields the

ratio of two rewards.

22

1.4. Preliminaries

Depending on what property we want to specify, we use different accumu-

lation functions. We can use the mean payoff to calculate the average speed

of a vehicle. The minimal or maximal sum of prefixes is useful when modeling

a finite resources, such as battery charge in a robot. The discounted payoff is

useful if we are uncertain of the future development of a model, but certain

regarding the near future, for example for financial modelling. Lastly, the ratio

of two rewards can be used for efficiency as we explore in Chapter 2, or to

calculate the expected outcome of a repeated experiment.

The ratio uses two limits, one of them a limit inferior because the first limit

allows us to ignore a finite prefix of the run, which ensures that we only consider

the long-run behavior. We need the limit inferior here because the sequence of

the limit might not converge. Consider a combination with states q and r, and

the run ρ = q1r2q4r8q16 . . . , where qk means that State q is visited k-times.

Assume State q and State r have the following costs: c(q) = 0, r(q) = 1,

c(r) = 1 and r(r) = 1. Then, the efficiency of ρ0 . . . ρi will alternate between

1/6 and 1/3 with increasing i and hence the sequence for i → ∞ will not

converge. The limit inferior of this sequence is 1/6. The 1 in the denominator

avoids division by 0 if the accumulated costs are 0 and has no effect if the

accumulated costs are infinite. For similar reasons we use the maximum in the

maximum sum (instead of just the infinite sum) and the limit inferior for the

mean payoff.

Example 1.12 In the robot example we use several reward functions. For

example, we can ask for the mean number of rooms cleaned per step, and

compare with the mean number of dirty rooms. We could also add a battery

to the robot and use the maximum sum reward to determine if it will always

stay at an energy level greater than zero. To determine how efficient the robot

is, we can ask how many rooms it cleans per movement step.

We have now defined rewards first for states or transitions and then for

runs. We are now going to lift rewards from runs to systems.

Definition 1.15 (Rewards for systems) In the following we will abuse no-

tation and lift r from states to sequences of states, i.e., we will write r(w)

to mean r(w0)r(w1) · · · ∈ Rω for a sequence of rewards w ∈ Rω. Let α :

Rω → R ∪ {+∞,−∞} is an accumulation function. Then the reward of a run

ρ ∈ Ωωs (L) is defined by (α ◦r)(w).

23

CHAPTER 1: INTRODUCTION

We have different approaches for different systems to lift a run reward func-

tion f : α ◦r from single runs to sets of runs Ωω. They fall in one of two

categories.

• Worst/Best case: we use the maximum or minimum over a set of infinite

runs Ωω e.g., maxρ∈Ωωs (L)(f(ρ)) or minρ∈Ωωs (L)(f(ρ)).

• Average case: we use the expected value EP [f], given by a probability

space P := (Ωωs (L),F , µ).

In general, when using structures entailing probabilities, then we use the aver-

age case, otherwise we will consider the worst/best-case.

Optimal strategies. Strategies are optimal for two player games and MDPs

if a quantitative objective is optimized or if a qualitative objective is fulfilled.

Formally, we start out with a stochastic game S = (S,S0,S1,Sp, s0,∆, p), and

have to find a Player 0 strategy d0 such that no matter what strategy d1 Player

1 uses, Player 0 is playing optimal or according to a specification.

Definition 1.16 (Runs and probability space of strategies) Given S and

d0, d1 as defined above, we define the set of runs L(S, d0, d1) = {ρ ∈ Ωωs0(S) |
∀i ∈ {1, 2, . . .}∀j ∈ {0, 1} : ρi ∈ Sj ⇒ dj(ρ≤i)(ρi+1) > 0}. We define a prob-

ability space P(S, d0, d1) = (Ωωs0(S),F , µ) over the cones of L(S, d0, d1) as for

Markov chains.

Depending on the structure and the objective (qualitative or quantitative),

we then look at the worst case over all runs, the expected value of a reward

function over P or the probability that a PCTL formula is fulfilled.

Definition 1.17 (Optimal strategy) In the following, we will use dε : ∅ →
D(S) to denote the strategy over the empty set, i.e., the strategy that does not

need to decide anything. This strategy is used in cases where there is no player

for whom to find a strategy, such as Player 1 in Markov decision processes.

• Given a game and an LTL formula ϕ, a Player 0 strategy d0 is optimal

if for all Player 1 strategies d1 we have that L(S, d0, d1) ⊆ L(ϕ).

• Given a game and a parity condition λ : S→ N, a Player 0 strategy d0 is

optimal for all Player 1 strategies d1 we have that all words in L(S, d0, d1)

fulfill the parity condition.

24

1.4. Preliminaries

• Given a game and a function f : Ωωs0(M) → R, a strategy d is optimal

if d has the optimal worst case over all strategies d1 of Player 1, i.e., a

strategy d such that

min
d1

min
ρ∈L(S,d,d1)

f(ρ) = max
d0

min
d1

min
ρ∈L(S,d0,d1)

f(ρ)

.

• Given a Markov decision processM = (S0, s0, A,Sp, p) and a parity con-

dition λ : S0 → N, we say that a strategy d0 is optimal if the probability

that a run fulfills the parity condition is maximal.

• Given a Markov decision processM = (S0, s0, A,Sp, p) and a measurable

function f : Ωωs0(M) → R, a strategy d0 is optimal if EP(S,d0,dε)[f] is

minimal or maximal over all strategies.

• Given a Markov decision processM = (S0, s0, A,Sp, p) and a PCTL path

formula ψ, a strategy is optimal if P({ρ |= ψ | ρ ∈ Ωωs0(M)}) is minimal

or maximal as measured in P(S, d0, dε).

Verification and Synthesis. Verification means proving that a system ful-

fills a given property, no matter what an adversary or the environment does.

For MDPs it means showing that the “optimal” strategy is above or below a

certain bound. For example, we might want to prove that, no matter what the

environment decides to do, the expected time a room is dirty is lower than 10

seconds. Synthesis, on the other hand, means finding a controller that would

pass verification, i.e., a controller that is correct by construction. Coming back

to the robot, we could ask for a controller such that, no matter what the en-

vironment does, the expected maximal time a room is dirty is lower than 10

seconds.

In the cases that we treat in this thesis, verification and synthesis both

mean finding an optimal strategy4, and can therefore be treated equally. The

only difference is in what we do with the result. In verification we ask only

for the existence of such a strategy, i.e., we ask if a specification is realizable.

In synthesis, for a strategy that realizes an objective. We can then use this

strategy to build a controller.

4That is, realizability and synthesis are the same problem from an algorithmic standpoint.

25

CHAPTER 1: INTRODUCTION

Combined objectives

In addition to regarding quantitative objectives and qualitative objectives in

isolation, we can also study combinations of these two. In this thesis, we

consider two kinds of combinations. Firstly, we combine different reward func-

tions and use the same accumulation function. For example, we can consider

the mean fuel usage and mean velocity, both of which we want to optimize.

There is an obvious trade-off between these two. There are two ways of ap-

proaching the search for strategies for this kind of combination. We can either

ask for a strategy such that all accumulated rewards are above or below a cer-

tain threshold, or we can ask for an approximation of all possible trade-offs, a

so called Pareto curve. Secondly, we can consider combining quantitative and

qualitative objectives.

Combined quantitative objectives. In the rest of this paragraph, we will

use a vector of reward and accumulation functions r = (α ◦r0, α ◦r1, . . . , α ◦rn)

for a stochastic game S = (S,S0,S1,Sp, s0,∆, p). For an infinite run ρ ∈ Ωωs0(S),

we will denote by r(ρ) = ((α ◦r0)(ρ), (α ◦r1)(ρ), . . . , (α ◦rn)(ρ)). We denote

by r↑(S, d0, d1) ∈ Rn+1 the lifted reward function that defines the reward

aggregated over all runs of the stochastic game when strategies d0 and d1 are

applied. For example, in the case that the stochastic game is an MDP and α is

the Mean function, r↑(S, d0, d1) denotes the vector of expected mean payoffs.

We have two ways of defining optimal strategies.

Definition 1.18 (Threshold optimal strategy) Given a vector t ∈ Rn+1,

a threshold optimal strategy is a Player 0 strategy d such that for all Player 1

strategies d1 we have r↑(S, d0, d1) ≥ t.

Definition 1.19 (Pareto optimal strategy) A strategy d is called Pareto

optimal if it cannot be improved in any component of its reward without sac-

rificing another component. Formally, we call it this if there is no strategy d′

such that maxd1 r
↑(S, d, d1) < maxd1 r

↑(S, d′, d1).

Combining quantitative and qualitative objectives. Now that we have

defined quantitative and qualitative objectives, it is natural to desire to combine

these two. We might want to ask for a strategy such that a qualitative objective

is fulfilled and such that one or more quantitative objectives are optimized.

26

1.4. Preliminaries

Dirty CleanReport

Figure 1.7: A two player game with only one player. The controller is supposed
to fulfill G F Report. There further is a mean payoff function that gives a reward
of 1 for every time that clean is visited, and 0 for the other states. The controller
is supposed to achieve a mean payoff of one.

Example 1.13 We can ask for a strategy that, at the same time, fulfills the

formula G(LeftDirty → F LeftClean) and the analogous formula for the right

room, and that minimizes the expected number of moves the robot has to take.

In fact, in literature we often consider something akin to the threshold

objective: the task is to find a strategy such that a qualitative specification is

fulfilled and such that one or more values are below or above a certain threshold.

Example 1.14 This example is adapted from [CHJ05]. Our robot now has

only one room to take care of, but it also has to report its status from time to

time. In Figure 1.7 we model this as a two player game. The three states model

that the room is clean with state Clean , that it is dirty with state Dirtyand

that the robot reports its status with state Report . We then might want to

fulfill, at the same time, property ϕ = G F Report , i.e., the robot will always

report at some point in time, and we want to minimize the time the room is

dirty. To further simplify the example, we assume that Player 1 leaves dirt in

the room whenever it is clean. As payoff function we choose r(Clean) = 1 and

r(Dirty) = r(Report) = 0 to reward the robot for clean rooms.

We are now looking for a strategy such that ϕ is fulfilled and such that

the mean payoff of r is 1 (it does not matter if we pick the expected value or

the minimum: they are the same). To that end, if we pick any finite memory

strategy, then we necessarily will not reach mean payoff 1 if we visit Report

from time to time. Any finite memory strategy has to have a postfix v ∈ Sω

that repeats itself contiguously (recall that Player 1 has no choice here — the

game is fully determined by Player 0). The mean payoff of this function equals

the number of times Clean is visited divided by the length of v.

27

CHAPTER 1: INTRODUCTION

The only way to get payoff 1 is to visit state Clean longer and longer

between visits to report. For example, we can play a strategy that visits Clean

once, then goes to Report , then to Dirty . It then visits Clean twice, goes to

Report and Dirty , and then visits Clean 3 times, and so on. This strategy

provides a mean payoff of 0.

In the last example, we use a strategy with infinite memory (we need to

count how often we visited Report and need to count down to know how long

we have to stay in Clean . With the example before, we have just showed that

when combining mean-payoff with parity objectives, the generated strategies

might need infinite memory.

In Section 1.5 we will show what memory is required for what objective.

We there distinguish along two axes. On the one axis, we distinguish between

objectives that require randomized strategies for some structures and objectives

for which deterministic strategies are enough. On the other axis, we examine

the memory requirement. We distinguish between memoryless objectives, i.e.,

objectives where memoryless strategies are always sufficient; finite memory

strategies, i.e., where strategies implementable by transducers are sufficient;

and infinite memory objectives in which structures might require an infinite-

memory strategy (like in the example above).

1.5 State of the art

In this section, we will investigate the known results and complexities for dif-

ferent quantitative and a few qualitative objectives for MDPs and two player

games. This serves two purposes. On the one hand, we want to provide a

context for the contribution of Chapter 2. On the other hand, we want to give

an overview of what properties can be used for quantitative verification and

synthesis, and how scalable these properties are. We will first look at purely

qualitative objectives, and then at purely quantitative objectives. Then we will

look at threshold optimal objectives, Pareto optimal objectives and finally at

a mixture of quantitative and qualitative objectives.

This section glosses over huge fields of research that are related but not

material to this thesis. On the one hand, the field of qualitative verification

and synthesis has many more results. Refer to [BCJ14] for an overview. On

the other hand, we do not consider the known results for stochastic and timed

28

1.5. State of the art

games, because we use them as a unifying framework only, but do not depend

on algorithms or results.

Qualitative objectives

LTL synthesis. LTL synthesis for games in general is two times exponen-

tially hard in the size of the formula, i.e. O(22|ϕ|). Research into efficiently

synthesizable subsets of LTL have resulted in, for example, GR(1) specifications

[BJP+12], we can synthesized in time polynomial in the size of the synthesized

system. LTL synthesis for MDPs is solvable in O(22|ϕ|) [dA97], and might

require exponential memory.

Parity objective. The parity objective for games is an intriguing problem.

Akin to the graph isomorphism problem it is one of the few problems which

belong to NP (and co-NP), but for which it is not known whether it is in P or

whether it is NP-complete[EJ88]. A pseudo-polynomial (polynomial in the size

of the state space, but only pseudo-polynomial in the maximum weight) algo-

rithm is known [McN93]. For parity games, pure strategies are sufficient[EJ88].

For MDPs, memoryless strategies are sufficient [dA97], and can be calcu-

lated in polynomial time.

Quantitative objectives

In the following we will summarize known complexity results for quantitative

objectives. For each, we will indicate the best known strategy memory require-

ment for each objective, as well as the runtime complexity of finding an optimal

strategy. Three questions marks (???) indicate open questions.

Single objective.

Two player games MDPs

Memory Runtime Memory Runtime

Max Pure [BFL+08] P-Poly. [BFL+08] Pure [CD11] P-Poly. [CD11]

Discounted Pure [ZP96] P-Poly. [ZP96] Pure [Put94] Poly [Put94]

Mean Pure [EM79] P-Poly. [ZP96] Pure [Put94] Poly [Put94]

Ratio Pure [BGHJ09] P-Poly. [BGHJ09] Pure [vEJ12] Poly [vEJ12]

Table 1.1: Known complexity results for single objectives.

29

CHAPTER 1: INTRODUCTION

Mean-payoff games have been extensively studied starting with the works

of Ehrenfeucht and Mycielski in [EM79] where they prove that memoryless

optimal strategies exist if the other player is only allowed to use memoryless

strategies as well.

No polynomial time algorithm is known for that problem. A pseudo poly-

nomial time algorithm has been proposed by Zwick and Paterson in [ZP96],

and [BCD+11] provided an improved algorithm. They also show a reduction to

discounted games, and the bounds shown in the table. Max games and Mean

games are equivalent according to [BFL+08]. Max MDPs can be reduced to

Max games [CD11]. The ratio objective for games has been considered in

[BGHJ09] to find robust strategies for games. In [vEJ12], on which Section 2

is based, we defined and analyzed the ratio objective for MDPs. For all other

quantitative objectives in combination with MDPs, see [Put94].

Threshold.

Two player games MDPs

Memory Runtime Memory Runtime

Max Inf [VCD+12] ??? Random Poly [FKN+11]

Discounted ??? ??? Rand+Mem [CMH06] Poly [CMH06]

Mean Inf [VCD+12] co-NP [VCD+12] Rand+Mem [BBC+11] Poly [BBC+11]

Ratio ??? ??? Rand+Mem Poly

Table 1.2: Known complexity results for threshold objectives.

In [VCD+12], the authors show that infinite memory optimal strategies

exist for both max- and mean-payoff games, but that they might both require

infinite memory. They show that finding an optimal strategy for mean-payoff

games is co-NP complete. They further show that a player that if both players

are restricted to finite memory strategies, then the problem is co-NP complete,

and NP-complete for memoryless strategies.

For MDPs, [CMH06] first addressed finding randomized strategies for mul-

tiple discounted objectives. Later [FKN+11] extended these results to the max

objective, while [BBC+11] contributed the same result for mean-payoff objec-

tives. In all cases we have polynomial algorithms, and in all cases randomized

finite memory strategies are sufficient.

30

1.5. State of the art

Note that the results for MDPs with the discounted accumulation function

require randomized strategies. Deciding if there is a deterministic strategy is

NP-complete. The proof can be adapted to show that deciding if there is a

deterministic strategy for the Total Sum accumulation function is NP-complete

[CMH06].

In [FKN+11], the authors show that randomization and memory are needed

for a variant of the discounted problem in which each reward components gets

its own discount factor.

Pareto. The following table describes the time required to calculate an ε-

approximation of the Pareto curve of an objective. For more information about

Pareto curves, see Chapter 4. As for the threshold case, the ratio objective

results are new and due to this thesis. That memory and randomization are

required follows from the same result for the mean-payoff objective.

MDPs

Memory Runtime

Max Random [FKN+11] Poly [FKN+11]

Discounted Random [CMH06] Poly [CMH06]

Mean Random+Mem [BBC+11] Poly [BBC+11]

Ratio Random+Mem Poly

Table 1.3: Known complexity results for approximating the Pareto curve.

Typically, these approximations are achieved by reducing the problem to

an equivalent linear program with multiple objectives. In Chapter 4 we show

that the Pareto curve of all these objectives can be approximated via multiple

optimizations of the single-payoff case.

Probabilistic qualtitative synthesis. Several authors have approached syn-

thesizing controllers for MDPs from logic specifications. For example, [dA97]

shows how to approach LTL synthesis in probabilistic environments by first

transforming the LTL formula in a Rabin-automaton and then finding a con-

troller in the product of the automaton with the MDP under reachability

(equivalent to total sum objective).

[LAB11] shows how to find a controller satisfying a PCTL formula. Their

solution does not always provide an optimal controller, nor does it always find

a controller if one exists (i.e., it is incomplete). The runtime of their approach

31

CHAPTER 1: INTRODUCTION

is polynomial in the size of the MDP and linear in the formula.

[KP13] gives a good overview of the current state of the art and describes

the approach of [dA97] in more detail.

Combining qualitative and quantitative objectives

When combining qualitative and quantitative objectives, strategies often re-

quire infinite memory where finite memory was sufficient for the single objec-

tives (see Example 1.14).

For a combination of total sum rewards and reachability objectives (i.e.,

LTL formulas of the kind ϕ = F p), the authors of [FKP12] show that combi-

nation of these is seamlessly possible, and that randomized strategies suffice.

They also provide a polynomial runtime algorithm to solve the threshold and

Pareto curve approximation problem.

For combining energy and parity or mean-payoff and parity objectives in

games, the authors of [CHJ05, CRR12] show a single exponential lower and

upper bound on memory for energy-parity games and mean-payoff-parity games

is sufficient, if any such strategy exists. They also present an algorithm with

single-exponential run-time.

One practical approach has been taken by [BBFR13], who combine LTL

specifications with the mean payoff objective. They also show that the com-

plexity of their algorithm is no worse than pure LTL synthesis, thereby provid-

ing both a lower and an upper bound.

The authors of [BFRR13] show how to combine game and MDP semantics

by synthesizing strategies that fulfill a certain worst-case threshold in game-

semantics and have optimal expected mean-payoff or total sum, among those

strategies that fulfill the worst-case threshold. They show that finite strategies

are not always sufficient and how to find a finite memory strategy if one exists.

For combining parity and max payoff objectives in MDPs, the authors of

[CD11] show that finding an optimal strategy is in NP ∩ co-NP, and that

exponential memory is required in the worst-case. For combining parity and

mean-payoff objectives in MDPs, the authors of the same paper show that

infinite memory is required in the worst-case, and that an optimal strategy can

be found in polynomial run-time.

32

1.6. Tools

1.6 Tools

On the practical side of things, the best-known tools for quantitative veri-

fication are PRISM [KNP11] and MRMC [KZH+11]. PRISM (Probabilistic

Symbolic Model checker) started out as a model checker for probabilistic log-

ics for Markov decision processes and Markov chains, and has grown over the

years to encompass reward-based properties and stochastic games. In contrast

to other tools, PRISM concentrates on symbolic encoding via binary deci-

sion diagrams, which sometimes allow highly compressed storage and thereby

faster algorithms. PRISM reads models from a custom format, which allows

easy creation of new models. MRMC (Markov reward model checker) is a

tool based on explicit storage and somewhat orthogonal in features to PRISM.

Uppaal[BDL+06] is a tool for model checking of timed systems, i.e., systems

consisting of a mix of continuous and discrete state space. Quasy [Cha11]

supports finding strategies for games for a single mean-payoff objective or lex-

icographically ordered mean-payoff objectives. In addition, it finds strategies

for mean-payoff objectives on MDPs. It also supports finding strategies for

mean-payoff parity objectives of unichain MDPs (see Chapter 2 for a definition

of unichain MDPs). As input it accepts games in a graph form.

On the quantitative synthesis side, Acacia+ [BBFR13] recently gained the

ability to combine qualitative and quantitative specifications in a way that

allows the synthesis of controllers fulfilling an LTL formula and optimizing a

mean payoff.

33

2
Efficient Systems in

Probabilistic Environments

In which we study the true meaning of

efficiency and add to the big body of work

around Markov Decision processes.

Résumé

Ce chapitre met au point la méthode de vérification et de synthèse utilisée pour

les systèmes efficaces dans l’environment probabilistique. Nous commencerons

par définition de l’efficacité, autrement dire, comment pouvons-nous obtenir la

productivité optimale avec les éfforts minimisés. Pour cela nous déterminons

le système comme éfficace, si il optimise le rapport entre le coüt et les efforts

appliqués.

A la base de cet effet nous étudions les processus de décision markovien

aves le ratio comme une foncionne objective. Ensuite nous prouvons, que ces

stratégies déterministes sans mémoire sont suffisantes, et présentons trois al-

gorithmes pour rechercher les stratégies optimales. Une de cette stratégie étant

basée sur optimisation linéaire et l’autre sur optimisation linéaire fractionnaire.

Ces trois algorithmes sont ensuite évaluiés sur une série des exemples. Finalle-

ment nous choisissons le plus efficace parmi ces algorithmes et le referons à la

base de la diagramme de décision binaire de telle manière, qu’il se retrouve à

la même echelle, comme un système de millions états.

2.1 Introduction

In this chapter we show how to automatically synthesize a system that has

an “efficient” average-case behavior in a given environment. The efficiency of

a system is a natural question to ask; it has also been observed by others,

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

e.g, Yue et al. [YBK10] used simulation to analyze energy-efficiency in a MAC

(Media Access Control) Protocol. The oxford dictionary defines the adjective

efficient as follows.

Definition 2.1 (Efficient (Oxford Dictionary)) Efficient (adjective): (of

a system or machine) achieving maximum productivity with minimum wasted

effort.

We analogously define efficiency as the ratio between a given cost model and

a given reward model. To further motivate this choice, consider the follow-

ing example: assume we want to implement an automatic gear-shifting unit

(ACTS) that optimizes its behavior for a given driver profile. The goal of our

implementation is to optimize the fuel consumption per kilometer (l/km), a

commonly used unit to advertise efficiency. In order to be most efficient, our

system has to maximize the speed (given in km/h) while minimizing the fuel

consumption (measured in liters per hour, i.e., l/h) for the given driver profile.

If we take the ratio between the fuel consumption (the “cost”) and the speed

(the “reward”), we obtain l/km, the desired measure.

Given an efficiency measure, we ask for a system with an optimal average-

case behavior. The average-case behavior with respect to a quantitative speci-

fication is the expected value of the specification over all possible behaviors of

the systems in a given probabilistic environment [CHJS10]. We describe the

probabilistic environment using Markov Decision Processes (MDPs), which is

a more general model than the one considered in [CHJS10]. It allows us to

describe environments that react to the behavior of the system (like the driver

profile).

Related Work

Related work can be divided into two categories: (1) work using MDPs for

quantitative synthesis and (2) work on MDP reward structures.

From the first category we first consider [CHJS10]. We generalize this work

in two directions: (i) we consider ratio objectives, a generalization of average-

reward objectives and (ii) we introduce a more general environment model

based on MDPs that allows the environment to change its behavior based on

actions the system has taken. In the same category there is the work of Parr

and Russell [PR97], who use MDPs with weights to present partially specified

36

2.2. The system and its environment

machines in Reinforcement Learning. Our approach differs from this approach,

as we allow the user to provide the environment, the specification, and the

objective function separately and consider the expected ratio reward, instead

of the expected discounted total reward, which allows us to ask for efficient

systems. Finally, in [WBB+10], Wimmer et.al. introduce a semi-symbolic

policy algorithm for MDPs with the average objective, while we present a

semi-symbolic policy algorithm for MDPs with the ratio objective, subsuming

the former.

Semi-MDPs [Put94] fall into the second category. Unlike work based on

Semi-MDPs, we allow a reward of value 0. Furthermore, we provide an ef-

ficient policy iteration algorithm that works on our Ratio-MDPs as well as

on Semi-MDPs. Approaches using the discounted reward payoff (cf. [Put94])

are also related but focus on immediate rewards instead of long-run rewards.

Similarly related is the work of Cyrus Derman [Der62], who considered the

payoff function obtained by dividing the expected costs by expected rewards.

As shown later, we believe that our payoff function is more natural. Note that

these two objective functions are in general not the same. Closest to our work

is the work of de Alfaro [dA97]. In this work the author also allows rewards

with value 0, and he defines the expected payoff over all runs that visit a re-

ward with value greater than zero infinitely often. In our framework the payoff

is defined for all runs. De Alfaro also provides a linear programming solution,

which can be used to find the ratio value in an End-Component (see Section 6).

We provide two alternative solutions for End-Components including an efficient

policy iteration algorithm. Finally, we are the first to implement and compare

these algorithms and use them to synthesize efficient controllers.

2.2 The system and its environment

In this section we will introduce the system, its environment and the quan-

titative monitor. We will show how they operate in lockstep and how their

combination leads to a system with measurable performance. While doing so,

we will introduce the necessary notation and definitions.

37

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

The system

The systems we aim to synthesize are reactive systems. That is, systems that

react infinitely to events from their environment. As usual, we model a reactive

system as a Moore Machine, i.e., a machine that reads letters from an alphabet

as input and writes letters in turn as output (see Definition 1.9 in Section 1.4).

Recall that a transducer is a tuple T = (S, s0,Σ,Ω, δ, γ), where S denotes

the finite set of states of T , s0 its initial state, Σ its finite input alphabet, Ω

its finite output alphabet. Function δ : S × Σ → S is the transition function

of T , defining how it moves from state to state in the course of reading its

input. Finally, function γ : S × Σ → Ω is the output function of T , defining

what output it writes, given the current state and the current input letter. If

γ is constant in its second parameter (i.e., if ∀s ∈ S ∀w0, w1 ∈ Σ : γ(s, w0) =

γ(s, w1)), then we call T a Moore machine, otherwise a Mealy machine. For

Moore machines, we sometimes use γ : S → Ω and γ : S×Σ→ Ω equivalently.

As a running example we will synthesize a controller for a production plant.

The plan consists of several production lines and we have several conflicting ob-

jectives. On the one hand, we want to maximize the number of units produced.

On the other hand, driving the plant at full speed increases maintenance costs

due to failing production lines. This is clearly a question of efficiency. A system

(i.e., the plant controller) in this setting reads the state of the production lines,

e.g., production line is broken or working. It then decides to turn specific lines

on or off based on this state information.

We model the stream of events from the environment as an infinite stream

of input letters, and the reactions of the system as an infinite stream of output

letters. It is our goal to enable the probabilistic environment to react to the

reactions of the system. To that end, we make the output of the system the

input of the environment, thus forming a feedback loop. The system and

the environment are stateful. Depending on the reactions of the system, the

environment changes its state. We model such an environment as a MDP

(Definition 1.4).

Recall that an MDP is defined by a tupleM = (M,m0, A,A, p), where M is

the finite set of states ofM, m0 ∈M is the initial state of theM, A is its set of

actions, A ⊆M×2A is the action activation relation and p : M×A×M → [0, 1]

is the probability transition function, i.e., we demand that
∑
s′∈M p(s, i, s′) = 1

for all states s ∈ M and actions i ∈ 2A. We demand that each state has at

38

2.2. The system and its environment

X Off

Slow

Fast

Off

Repair

1

0.99

0.98

0.01

0.02
1

0.1

0.9

(a) The environment

s0start s1

X /0
 , repair /10

(,¬repair)/0

¬repair/0
repair/20

(b) The monitor

Figure 2.1: Environment model and quantitative specification of the production
line example

least one activated action, i.e., that ∀m ∈M ∃a ∈ A : (m, a) ∈ A. When using

an MDP to model the environment, then we assume without loss of generality

that all actions are always activated, i.e., A = M × 2A.

Recall further that a Markov chain (MC) (Definition 1.5) is a Markov de-

cision process for which there exists exactly one action for each state, i.e., for

which the cardinality of the set {a ∈ A | (m, a) ∈ A} is one for all statesm ∈M .

For a Markov chainM = (M,m0, A,A, p) we sometimes writeM = (M,m0, p),

and then we also write p : M ×M → [0, 1].

Instead of feeding the states of the MDP directly to the system, we use

a labeling in between. The labeling intuitively allows us to decouple model

states from inputs the model feeds the system. We could do without it, but it

occasionally makes describing a model more pleasant.

Definition 2.2 (Labeling) Let Λ be a finite set. A labeling forM is a func-

tion λ : M → 2Λ that is deterministic with respect to the transition function

of M, i.e., for all states m,m′,m′′ ∈ M and every action a ∈ A such that

p(m, a,m′) > 0 and p(m, a,m′′) > 0 and m′ 6= m′′ we have λ(m′) 6= λ(m′′).

The environment

Example 2.1 (Modelling a single production line) The model of a sin-

gle production line is shown in Figure 2.1a. A line has two states: broken ()

and ok (X). In each of these states, the system can either turn a produc-

tion line on to a slow mode with action Slow , turn it on to a fast mode with

action Fast , switch it off with action Off , or repair it with action Repair .

The failure of a production line is controlled by the environment. We assume

39

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

a failure probability of 1% when the production line is running slowly and 2%

when the production line is running fast. If it is turned off, then a failure is im-

possible. Transitions in Figure 2.1a are labeled with actions and probabilities,

e.g., the transition from state X to X labeled with action Slow and proba-

bility 0.99 means that we go from state X with action Slow with probability

0.99 to state X . Note that the labels of the states (X and) of this MDP

correspond to decisions the environment can make. The actions of the MDP

are the decisions the system can use to control the environment. The speci-

fication for n production lines is the synchronous product of n copies of the

model in Figure 2.1a, i.e., the state space of the resulting MDP is the Cartesian

product, and the transition probabilities are the product of the probabilities;

for example, for two production lines, the probability to move from (X , X)

to (X , X) on action (Slow , Slow) is 0.992.

The system and its environment now form a feedback loop, as depicted

in Figure 2.2: First, M (the environment) signals its current (initial) state

to T (the system). Then, T changes its state and provides an output let-

ter, based on its own state and the state of M. The environment M will

System

Environment

Monitor

γλ

λ

γ

R

Figure 2.2: Overview

read that letter, change its state probabilistically,

and then provide the next output letter. The sys-

tem reads this letter, changes its state, and provides

the next letter. M reads this letter, makes a proba-

bilistic choice based on it and its current state, and

provides the next letter, and so on ad infinitum. This

loop allows us to model control over the environment

by the system.

The monitor

The task of the monitor will be to measure the stream of states of the environ-

ment and the outputs of the system. We model the monitor as a transducer,

but one whose output we fix to be two real numbers. These numbers model

the cost and reward of the decisions of the system.

Definition 2.3 (Monitor) A monitorO = (SO, o0,ΣO,ΩO, δO, γ) for an MDP

M = (M,m0, A,A, p) is a transducer that reads letters from ΣO = M × A as

input and writes pairs of positive real values (i.e., ΩO = R≥0×R≥0) as output.

40

2.2. The system and its environment

We sometimes write c, r : SO ×ΣO → R≥0 for the first and second compo-

nents of γ.

We use a monitor to evaluate a system with respect to a desired property. It

reads words over the joint input/output alphabet and assigns a value to them.

For example, the monitor for the production line controlling system reads pairs

consisting of (i) a state of a production line (input of the system) and (ii)

an action (output of the system). We obtain this transducer by composing

transducers with a single cost function in various ways.

Example 2.2 (Monitor of a production line) In our example, we use for

each production line two transducers with a single cost function to express

the repair costs and the production due to this line. The transducer for the

repair costs is shown in Figure 2.1b. It assigns repair costs of 10 for repairing

a broken production line immediately and costs 20 for a delayed repair. If

we add the numbers the transducer outputs, we obtain the repair costs of a

run. For example, sequence (X , Slow) (, Repair) (, Repair) has cost

0 + 10 + 10 = 20. The amount of units depends on the speed of the production

line. The transducer describing the number of units produced assigns value 2

if a production line is running on slow speed, 4 if it is running on fast speed,

and 0 if the production line is turned off or broken.

We extend the specification to multiple production lines by building the

synchronous product of copies of the transducer described above and compose

the cost and reward functions in the following ways: we sum the rewards for the

production and we take the maximum of repair costs of different production

lines to express a discount for simultaneous repairs of more than one production

line. The final specification transducer is the product of the production au-

tomaton and the repair cost automaton with (i) the repair cost as cost function

and (ii) the measure of productivity as reward function.

In the current specification a system that keeps all production lines turned

off has the (smallest possible) value zero, because lines that are turned off do not

break down and repair is unnecessary. Therefore, we require that at least one

of the lines is working. We can specify this requirement by using a qualitative

specification described by a safety1automaton. This safety requirement can

1 Our approach can also handle liveness specifications resulting in a Ratio-MDP with
parity objective, which is then reduced to solving a sequence of MDP with mean-payoff
parity objectives [CHJS10].

41

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

then be ensured by adapting the cost functions of the ratio objective [CHJS10,

vEJ11]. For simplicity, we say here that any action in which all lines are turned

off has an additional cost of 10.

Combining system, environment and monitor

In Section 2.2 we described how system and environment work together. Now,

in addition, the system provides its output and the environment its state to the

monitor. The monitor then provides two numbers in a tuple. These numbers

model the cost and reward of the decision the system made in the current

context. We describe this collaboration graphically in Figure 2.2. We now

combine these three into one object as follows.

Definition 2.4 (Combination of system, environment and monitor) We

define an extended MDP as the product of MDP and monitor, and the combi-

nation of MDP, monitor and system as follows.

1. We define the extended MDP of environment M = (M,m0, A,A, p)

with and monitor O = (SO, o0,ΣO,ΩO, δO, γ) to be the MDP M′ =

(M ′,m′0, A
′, A
′
, p′), where M ′ = M×SO is its set of states, m′0 = (m0, o0)

is its start state, A′ = A is its set of actions, A
′

= A is its action ac-

tivation function, and p′ : M ′ × A′ ×M ′ is its probabilistic transition

function, where p′((m, o), a, (m′, o′)) = p(m, a,m′) if o′ = δO(o, (m, a))

and zero otherwise.

This combination also induces an output function γM : M ′×A→ R≥0×
R≥0 of the MDP. The output function is defined as the output of the

monitor in the same context, i.e.,γM((m, o), a) = γ(o, (m, a)). As for

monitors, we often use c, r : C → R≥0 as shorthands for the cost and

reward parts of γM.

2. The combination of system T = (S, s0,Σ,Ω, δ, γ), environment M =

(M,m0, A,A, p) with labelling λ and monitorO = (SO, o0,ΣO,ΩO, δO, γ)

is defined as a Markov chain, i.e., as a tuple C = (C, c0, pC), where C =

S ×M × SO is its set of states, c0 = (s0,m0, o0) is its initial state and

pC : C × C → [0, 1] is its probabilistic transition function.

The probabilistic transition function pC models the progression of sys-

tem, environment and monitor in lockstep, i.e., pC((s,m, o), (s
′,m′, o′)) =

42

2.2. The system and its environment

p(m,w,m′) if s′ = δ(s, λ(m)) is the next state of T , based on its cur-

rent state and the labeling of the state of the environment, and o′ =

δO(o, (m, γ(s))) is the next state of the monitor, based on its current

state, the state of the environment and the output of the system. Oth-

erwise the value of pC is zero.

We denote by pC : C∗ → [0, 1] the canonical extension of pC to finite runs,

i.e., pC(w0w1 . . . wn) =
∏n−1
i=0 pC(wi, wi+1), and pC(w) = 0 for all other

runs (i.e., runs that do not start in the initial state).

This combination also induces a output function γC : C → R≥0 × R≥0

on the Markov chain. The output function is defined as the output of

the monitor in the same context, i.e., γC(s,m, o) = γ(o, (m, γ(s))). As

for monitors, we often use c, r : C → R≥0 as shorthands for the first and

second part of γC .

We sometimes interpret the probabilistic transition function as a matrix,

i.e., we enumerate the state space from 1 to n := |C|, and interpret pC

as an n × n matrix, where the entry in row i and column j has value

pC(mi,mj). Analogously, we can interpret every function f : C → R as

a row or column vector of dimension n, where entry i has value f(mi).

Example 2.3 (State transition probabilities of lines) This combination

provides us with a probability distribution over the development of system, en-

vironment and monitor over time. For instance, the probability of moving from

((X , X), (s0 , s0)) to ((,), (s0 , s0)) when choosing (Slow , Slow) is

0.012, while the probability of moving to ((,), (s1 , s1)) is 0 because we

cannot move from s0 to s1 with this input.

Measuring efficiency

While we now have a way to measure local decisions, we are still lacking a

means to measure the global, long-run quality2 of the system. To that end,

we will use the expected ratio payoff (see Definition 1.14 and Definition 1.15).

Recall, that the ratio payoff of a run ρ is defined as

R c
r
(ρ) = lim

l→∞
lim inf
u→∞

∑u
i=l c(ρi)

1 +
∑u
i=l r(ρi)

We often leave out c and r if they are clear from context.

2Pun intended

43

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Intuitively, R computes the long-run ratio between the costs and rewards

accumulated along a run. We divide costs by rewards, i.e., the higher the

efficiency of a run the lower the ratio. Therefore, in the rest of this paper we

try to minimize the ratio.

Definition 2.5 (Efficiency/Ratio of a combination) Given a combination

C, we define the efficiency or ratio of the combination as EC [R].

Lemma 2.1 (Expected ratio exists) The expected ratio EC [R] exists since

R is bounded from below by zero.

We now can ask for an efficient system in a probabilistic environment. We

model the system and the monitor as transducers and the environment as an

MDP. We evaluate the performance of a system in this context as its expected

efficiency, modeled by the expected ratio of costs and rewards. In the next

section we will analyze the combination of the three components and show the

theory necessary to find the optimal system for an environment and a monitor.

2.3 Analysis

In this section, we will lay the foundations of the algorithms in Section 2.4. We

will first show that pure strategies are sufficient for the ratio objective. Thus

we will make our search for the most efficient system simpler. We will further

show how to calculate the expected ratio of pure strategies. On the basis of

these results, we will look for algorithmic solutions to this search in Section 2.4.

Strategies and systems

To find a system T such that the combination of T , environment M and

monitor O is optimal, we combine M and O to obtain a new MDP as defined

in Definition 2.4 (1). We will then look for an optimal strategy in the resulting

MDP.

Definition 2.6 (Strategy (Policy)) A strategy (or policy) for an MDPM =

(M,m0, A,A, p) is a function d : (M×A)∗M → D(A) that assigns a probability

distribution to all finite sequences in (M ×A)∗M such that only active actions

are chosen, i.e., for all sequences w ∈ (M × A)∗, states m ∈ M and actions

a ∈ A such that d(wm)(a) > 0 we have (m, a) ∈ A.

44

2.3. Analysis

A strategy such that the co-domain of d(ρ) is {0, 1} for all ρ ∈ (M ×A)∗M

is called deterministic. A strategy that can be defined using domain M is called

memoryless. A memoryless, deterministic strategy is called pure. We denote

the set of pure strategies by D(M).

Note that the previous definition of a strategy diverts slightly from that

used in Chapter 1. A strategy in Chapter 1 was defined as d : (M ∪A)
∗
M →

D(M ∪A). Due to the way MDPs are defined as a subclass of stochastic games

in Chapter 1 both definitions are equivalent.

Like transducers in Definition 2.4, strategies induce Markov chains.

Definition 2.7 (Induced Markov chain) Let M be an MDP and d be a

pure strategy for M. Then by Md = (M,m0, pC) we denote the induced

Markov chain, where M and Md have the same set of states and same start

state and the probability function is defined by d, i.e., pC(m,m
′) = p(m, d(m),m′)

for all states m,m′ ∈M .

We are now going to prove that for every pure strategy (i.e., a function get-

ting states as input) there is a transducer (i.e., a function getting sequences of

labels as input), such that the two induce the same Markov chain and therefore

the same expected ratio. This proof is required because a system reads labels

from the Markov decision process as input, not its states.

Lemma 2.2 (Pure strategies are implementable by transducers) LetM
be an MDP and let d : M → A be a pure strategy for M. Then for any ratio

function R there is a transducer T such that for the combination C = (C, c0, pC)

of T and M we have that EC [R] = EMd
[R].

Proof Let C =Md. Let λ : M → 2A be a labeling and λ∗ : M∗ → (2A)∗ be

its canonical extension to words. We define λ−1 : (2A)∗ →M by λ−1(λ(m0)) =

m0 and λ−1(wi) = m for each word w and label i such that wi = λ∗(ρ) for

some run ρ ofMd with probability greater than zero, where m is the only state

s.t. pC(λ
−1(w), d(λ−1(w)),m) > 0 and λ(m) = i. For every other word, the

definition of λ−1 is arbitrary. λ−1 thus identifies the last state of a run that a

labeling sequence has come from. We will show later that there is indeed only

one such state.

Let d′ = d ◦(λ−1)∗. We now have to prove two claims: (1) λ−1(w) is well-

defined and (2) d′ is sufficient for the claim.

45

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

We prove (1) by induction over w. For |w| = 1, this follows from the first and

last case of the definition. Assume the claim has been shown for w. We are now

going to show that λ−1(wi) is well-defined. For that is it sufficient to show that

only one such m as in the definition exists. Let m = λ−1(w). Assume that there

exist m′ 6= m′′ ∈ M such that p(m, d(m),m′) > 0 ∧ p(m, d(m),m′′) > 0 such

that λ(m′) = λ(m′′). This contradicts the definition of a labeling. Therefore,

m′ = m′′ and λ−1 is well-defined.

For (2) it is sufficient to show that d(ρ) = d′(λ∗(ρ)) and that d′ can be

implemented by a transducer. Since we have that d′ ◦λ∗ = d ◦(λ−1)∗ ◦λ∗, it is

sufficient for the first to show that (λ−1)∗ ◦λ∗ is the identity function on all runs

with probability 0. This follows by induction over ρ. For the implementation

of d′ as a transducer it is sufficient to see that an implementation in the worst

case has to keep track of the whole MDP to know exactly in which state the

MDP currently is. �

We are looking for an optimal pure strategy for the MDP constructed from

the environment model and the monitor. In the next subsection we will show

that there always exists an optimal pure strategy.

Pure strategies are sufficient

In [Gim07], Gimbert proves that in an MDP any function mapping sequences

of states of that MDP to R that is submixing and prefix independent admits

optimal pure strategies. Since our function R may also take the value ∞, we

cannot apply the result immediately. However, since R maps only to non-

negative values and the set of measurable functions is closed under addition,

multiplication, limit inferior and superior and division, provided that the divi-

sor is not equal to 0, the expected value of R is always defined and the theory

presented in [Gim07] also applies in this case. Furthermore, to adapt the proof

of [Gim07] to minimizing the function instead of maximizing it, one only needs

to inverse the used inequalities and replace max by min. It remains to show

that R fulfills the following two properties.

Lemma 2.3 (R is submixing and prefix independent) LetM = (M,m0, A,A, p)

be a MDP and ρ be a run.

1. For every i ≥ 0 the prefix of ρ up to i does not matter, i.e., R(ρ) =

R(ρiρi+1 . . .).

46

2.3. Analysis

2. For every sequence of non-empty runs u0, v0, u1, v1 · · · ∈ (A×M)+ such

that ρ = u0v0u1v1 . . . we have that the function of the sequence is greater

than or equal to the maximal ratio of sequences u0u1 . . . and v0v1 . . . ,

i.e., R(ρ) ≥ min{R(u0u1 . . .),R(v0v1 . . .)}.

Proof The first property follows immediately from the first limit in the defi-

nition of R.

For the second property we partition N into U and V such that U contains

the indexes of the parts of ρ that belong to a uk for some k ∈ N and such

that V contains the other indexes. Formally, we define U :=
⋃
i∈N Ui where

U0 := {k ∈ N | 0 ≤ k < |u0|} and Ui := {max(Ui−1)+ |vi−1|+k | 1 ≤ k ≤ |ui|}.
Let V := U \ N be the other indexes.

Now we look at the value from m to l for some m ≤ l ∈ N, i.e. Rlm :=

(
∑
i=m...l c(ρi))/(1 +

∑
i=m...l r(ρi)). We can divide the sums into two parts,

the one belonging to U and the one belonging to V and we get

Rlm =

 ∑
i∈{m...l}∩U

c(ρi)

+

 ∑
i∈{m...l}∩V

c(ρi)


1 +

 ∑
i∈{m...l}∩U

r(ρi)

+

 ∑
i∈{m...l}∩V

r(ρi)


We now define the sub-sums between the parentheses as u1 :=

∑
i∈{m...l}∩U c(ρi),

u2 :=
∑
i∈{m...l}∩U r(ρi), v1 :=

∑
i∈{m...l}∩V c(ρi) and v2 :=

∑
i∈{m...l}∩V r(ρi).

Then we obtain

Rlm =
u1 + v1

1 + u2 + v2

We will now show

Rlm ≥ min

{
u1

u2 + 1
,

v1

v2 + 1

}
Without loss of generality we can assume u1/(u2 + 1) ≥ v1/(v2 + 1), then we

have to show that
u1 + v1

1 + u2 + v2
≥ v1

v2 + 1
.

This holds if and only if (u1 + v1)(1 + v2) = u1 + v1 + u1v2 + v1v2 ≥ v1 +

v1u2 + v1v2 holds. By subtracting v1 and v1v2 from both sides we obtain

u1 + u1v2 = u1(1 + v2) ≥ u2v1. If u2 is equal to 0 then this holds because

u1 and v2 are greater than or equal to 0. Otherwise, this holds if and only if

u1/u2 ≥ v1/(1 + v2) holds. In general, we have u1/u2 ≥ u1/(u2 + 1). From the

assumption we have u1/(u2 + 1) ≥ v1/(v2 + 1) and hence u1/u2 ≥ v1/(v2 + 1).

47

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

The original claim follows because we have shown this for any pair of m and l.

�

Theorem 2.1 (There is always a pure optimal strategy) For each MDP

with the ratio function, there is a pure optimal strategy.

Proof See [Gim07] and the last lemma. �

This theorem allows us to restrict the search for an optimal strategy (and

therefore optimal system) to a finite set of possibilities. In the next subsection,

we show how to calculate the expected ratio of a pure strategy. Then, in the

next section, we will show algorithms that perform better than brute force

search.

Expected ratio of pure strategies

To calculate the expected value of a pure strategy, we use the fact that an MDP

with a pure strategy induces a Markov chain and that the runs of a Markov

chain have a special property, which we can use to calculate the expected value.

We will first show how to calculate the expected value on a unichain MC, and

will then extend the result to any kind of Markov chain.

Definition 2.8 (Random variables of MCs [Put94]) Let pnC(m) be the prob-

ability of being in state m at step n and let π(m) := limn→∞
1
n

∑n−1
i=0 p

i
C(m).

This is called the steady state distribution of pnC . Let νnm denote the number of

visits to state m up to time n.

Definition 2.9 (Properties of MCs [Put94]) Let C = (M,m0, pC) be a

Markov chain. A state m ∈ M is called transient, if the probability of it

occurring infinitely often in a run of C is equal to zero. Otherwise it is called

recurrent.

A subset of states S of C is called recurrence class if all states can reach

each other, all states are recurrent, and there is no such set of states S′ such

that S ⊂ S′.

We say that a Markov chain is unichain if it has at most one recurrence

class. We call an MDP unichain if every strategy induces a unichain MC.

48

2.3. Analysis

A B

C D

E

0.3

0.5

0.2
0.5 0.5

1 0.51

0.5

Figure 2.3: Markov chain with tran-
sient states A and B, and two recur-
rence classes {C} and {D,E}.

A B

C D

E

0.3

0.5

0.2
0.5 0.5

0.9 0.51

0.25

0.1

0.25

Figure 2.4: Markov chain with tran-
sient states A and B,

Example 2.4 Consider the Markov chain in Figure 2.3. An infinite run that

starts in A or B can visit A infinitely often in principle, but it does so with

probability 0, because at some point it will take the transition with to C or

D with probability 1. On the other hand, once it reaches C it will visit state

C infinitely often. Likewise, once it reaches D , it will visit both D and E

infinitely often. Hence, C , D and E are recurrent. But they do not belong

to the same recurrence class: it is impossible to reach C from D or E , and

vice versa.

Compare this to Figure 2.4. A and B are still transient states, and C ,

D and E are still recurrent. But now C , D and E can reach each other

and are therefore in the same recurrence class.

We have the following lemma describing the long-run behavior of Markov

chains [Tij03, Nor03].

Definition 2.10 (Well-behaved runs) Let ρ be an infinite run of a unichain

Markov chain. Then we call this run well-behaved if liml→∞
νlm
l = π(m).

Lemma 2.4 (Runs are well-behaved almost surely [Put94]) A randomly

selected run of a unichain MC is well-behaved almost surely, i.e., P(well-behaved) =

1.

This lemma guarantees that an infinite run will always visit the states in

exactly the proportion as the expected number of visits, i.e., as the steady state

49

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

distribution proscribes. This is a non-trivial result, as the following example

shows.

Example 2.5 Consider states D and E of Figure 2.3. A run just in these

two states may take on many shapes. For example, it is possible that a run

visits D infinitely often. Or that it always visits state D ten times and

then visits state E one time. One might argue that each of these run has

probability 0, but then very infinite run has probability 0.

When we calculate the expected ratio, we only need to consider well-

behaved runs as shown in the following lemma.

Lemma 2.5 Let C = (M,m0, pC) be a Markov chain, let P = (Ω,F , µ) denote

its induced probability space, and let N denote the set of runs that are not

well-behaved. Then

EC [R] =

∫
Ω\N
R dµ

Proof According to the definition of the expected value of a Markov chain on

Page 7, the expected value is defined as E[R] =
∫

Ω
R dµ. According to a well

known property of Lebesgue integrals, we can ignore events having probability

0 when calculating the integral, i.e.,
∫

Ω
R dµ =

∫
Ω\N R dµ for any set of events

N with µ(N) = 0. From Lemma 2.4, it follows that the set of runs that are

not well-behaved has probability zero. �

For a well-behaved run, i.e., for every run that we need to consider when

calculating the expected value, we can calculate the ratio in the following way.

Lemma 2.6 (Calculating the ratio of a well-behaved run) Let ρ be a well-

behaved run of a unichain Markov chain C = (M,m0, pC , γC). Recall that we

denote by c the first cost of γC, and by r the reward.

R(ρ) =

∑
m∈M π(m)c(m)

liml→∞
1
l +

∑
m∈M π(m)r(m)

Proof By definition of R we have

R(ρ) = lim
m→∞

lim inf
l→∞

∑m
i=l c(ρi)

1 +
∑m
i=l r(ρi)

To get rid off the outer limit, we are going to assume, without loss of generality,

that there are no transient states. We can do this because every transient

50

2.3. Analysis

state will not influence R(ρ) because ρ is well-behaved and because R is prefix

independent.

R(ρ) = lim inf
l→∞

∑l
i=0 c(ρi)

1 +
∑l
i=0 r(ρi)

We can calculate the sums in a different way: we take the sum over the states

and count how often we visit one state, i.e.,

∑l
i=0 c(ρi)

1 +
∑l
i=0 r(ρi)

=

∑
m∈M c(m)νlm

1 +
∑
m∈M r(m)νlm

=

∑
m∈M c(m)(νlm/l)

1/l +
∑
m∈M r(m)(νlm/l)

We will now show that the sequence converges for lim instead of lim inf. But

if a sequence converges for lim, then it also converges to lim inf, and the two

limits have the same value. Because both the numerator and the denominator

are finite values we can safely draw the limit into the fraction, i.e.,

(†) lim
l→∞

(∑
m∈M c(m)(νlm/l)

1/l +
∑
m∈M r(m)(νlm/l)

)
=

liml→∞
(∑

m∈M c(m)(νlm/l)
)

liml→∞
(
1/l +

∑
m∈M r(m)(νlm/l)

)
=

∑
m∈M c(m) liml→∞(νlm/l)

liml→∞(1/l) +
∑
m∈M r(m) liml→∞(νlm/l)

‡
=

∑
m∈M c(m)π(m)

liml→∞(1/l) +
∑
m∈M r(m)π(m)

Equality ‡ holds because we have liml→∞
νlm
l = π(m) by Lemma 2.4. The limit

diverges to ∞ if and only if the rewards are all equal to zero and at least one

cost is not. In this case the original definition of R diverges and hence R and

the last expression are the same. Otherwise the last expression converges, so †
converges, and so lim inf and lim of this sequence are the same. �

Note that the previous lemma implies that the value of a well-behaved run

is independent of the actual run. In other words, on the set of well-behaved

runs of a unichain Markov chain the ratio function is constant. So the expected

value of such a Markov chain is equal to the ratio of any of its well-behaved

runs.

Theorem 2.2 (Expected ratio of a unichain MC) Let C = (M,m0, pC)

be a unichain MC and let π denote the Cesaro limit of pnC of the induced Markov

chain. Then the expected ratio can be calculated as follows.

EC [R] =

∑
m∈M c(m)π(m)

liml→∞(1/l) +
∑
m∈M r(m)π(m)

51

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

As a special case, when r(m) = 1 for all states, we can compute the mean

payoff [Put94] as follows.

EC [P] =
∑
m∈M

c(m)π(m)

Proof This follows from Lemma 2.6 and the fact that R is constant on a

unichain Markov chain (i.e., independent from the actual run). �

Note that this means that an expected value is ∞ if and only if the reward

of every action in the recurrence class of the Markov chain is 0 and there is at

least one cost that is not.

This provides us with an efficient method of calculating the expected ratio

of a unichain MC. We can calculate π by solving the linear equation system

π(P − I) = 0 [Put94], where P is the probability matrix of C (Definition 2.4).

Each run of a MC will almost surely end in one recurrence class (the prob-

ability of visiting only transient states is equal to zero). And since R is prefix-

independent, the ratio of this run will be equal to the ratio of the run inside

the recurrence class.

Theorem 2.3 (Expected ratio of a MC) Let C be a MC. For each recur-

rence class C′, let π(C′) be the probability of reaching C′.

EC [R] =
∑

C′rec. class

π(C′)EC′ [R],

where C′ ranges over all recurrence classes of C and EC′ [R] denotes the expected

ratio of the MC consisting only of recurrence class C′.

Difference between ratio and mean payoff

Note that Theorem 2.3 also hints at the difference between the expected ratio

and the ratio between expectations. The following example shows that straight-

forward reduction from MDPs with the ratio function to MDPs with the mean-

payoff function is not possible.

Example 2.6 (Expected ratio vs ratio of expectations) In Figure 2.5a

we have a Markov chain with three states. m0 is the initial state, and the states

labeled with r1
c1

and r2
c2

are reached with probability 1/3 and 2/3, respectively.

The labels also define the rewards and costs of each state.

52

2.3. Analysis

m0
r1
c1

r2
c2

1
3

2
3

11

(a) Expected Ratio vs Ratio of Expecta-
tions Example 2.6

s0
10
1

5
1

1
100

1
1

s1

1

1
2

1
2

8
9

1
9

1

(b) MDP for example Example 2.7

Figure 2.5: Two examples showing that the Ratio objective cannot be easily
reduced to the Mean objective

From the previous theorem it follows that we have E[R] = 1/3 ·r1/c1 +2/3 ·
r2/c2. Note that this is not the same as dividing the expected average cost by

the expected average reward E[Pc]
E[Pr] = 1/3·c1+2/3·c2

1/3·r1+2/3·r2 (i.e., the ratio of expected

average rewards and costs) for appropriate r1, r2, c1 and c2.

It is also not possible to just subtract costs from rewards and obtain the

same result. Recall the ACTS unit from Section 2.1. We want to optimize

the relation of two measures: speed (km/h) and fuel consumption (l). When

subtracting kilometers per hour from liters, the value of the optimal controller

has no intuitive meaning. Furthermore, it can lead to non-optimal strategies,

as shown by the following example.

Example 2.7 (Subtraction leads to different strategies) Consider an MDP

with two states, s0 and s1, as depicted in Figure 2.5b. There is one action en-

abled in s1. It has cost 1 and reward 100 and leads with probability 1 to s0.

There are three actions in s0: Action a0 has cost 5 and reward 1 and leads

with probability 1/9 to s1 and with 8/9 back to s0. Action a1 has cost 10 and

reward 1 and leads with probability 1/2 to s1 and with 1/2 to s0. Action a2

has cost and reward 1 and leads with probability 1 back to s0. We will ignore

this action for the remainder of this example.

The steady state distribution of the strategy choosing a0 is (9/10, 1/10),

and so its ratio value is (9/10 · 5 + 1/10 · 1)/(9/10 · 1 + 1/10 · 100) ≈ 0.42.

For the strategy choosing a1, the steady state distribution is (2/3, 1/3) and

the ratio value is (2/3 · 10 + 1/3 · 1)/(2/3 · 1 + 1/3 · 100) ≈ 0.634, which is

larger than the value for a1. Hence choosing a0 is the better strategy for the

53

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

ratio objective. If we now subtract the reward from the cost and interpret the

result as a Mean-Payoff MDP, then we get rewards 4, 9, and −99 respectively.

Choosing strategy a0 gives us 9/10·4−1/10·99 = −6.3, while choosing strategy

a1 gives us 2/3 · 9− 1/3 · 99 = −27. So, choosing a1 is the better strategy for

the average objective.

These two examples show that we cannot easily reduce the ratio payoff to

mean-payoff.

2.4 Algorithms

In this section we discuss three algorithms calculating most efficient strategies

for MDPs. In all of them, we first decompose the MDPs into strongly connected

components (called end-components) and then calculate optimal strategies for

each component. Finally we compose the resulting strategies into one optimal

strategy for the complete MDP.

We will first discuss end-components. Then we will define the common

structure for all algorithms. Afterwards we will discuss three ways to compute

optimal strategies for end-components. Finally, we will evaluate the perfor-

mances of all three algorithms and discuss their implication.

End-components

In [dA97], the author defines end-components as follows.

Definition 2.11 (End-component) Let M = (M,m0, A,A, p) be an MDP.

A subset of its states M ′ ⊆M is called an end-component if

• for each pair of states m,m′ ∈ M ′ there is a strategy such that a run

starting at m will reach m′ with probability greater zero, and

• for each state m ∈ M ′ there is an action a ∈ A such that for all states

m′ ∈M with p(m, a,m′) > 0 we have m′ ∈M ′.

An end-component is called maximal if there is no other end-component that

contains all its states.

Example 2.8 Figure 2.6 illustrates an MDP with two end-components (inside

the boxes)). The left end-component consists of two states: s0 and s2 . s0

54

2.4. Algorithms

>

s0 s1

s2 s3

Figure 2.6: Illustration of maximal end-components. States s0 and s2 to-
gether form a maximal end-component, while state s3 forms a maximal end-
component by itself.

only has one possible choice: it has to go to the action below it, from which the

next state is chosen probabilistically. However, s2 has two possible choices: it

can go up to the same action, or go right, from which the next state will be s3 .

So both states in this end-component can reach each other with probability one.

Both states have an action to stay inside the end-component. However, s2

does not have to. There also is a strategy allowing it to only pass through this

end-component, instead of remaining in it. So, while every run has to end in

an end-component, a run that enters an end-component does not have to stay

there. Note fruther that state s1 is contained in no end-component, although

it can reach itself by picking the action above itself. While there is an action

s1 can back that leads back to s1 , there is no strategy that enforces such a

visit.

Lemma 2.7 (End-components allow optimal unichain strategies) LetM
be an end-component, and let d be a non-unichain strategy for M. Then there

is a unichain strategy d′ with expected ratio that is as least as good as that of

d.

Proof Lemma 2.3 and Definition 2.11 allow us to construct a unchain strategy

from an arbitrary pure strategy with the same or a better value: d′ fixes the

recurrent class M ′ with the minimal value induced by d; for states outside of

M ′, d′ plays a strategy to reach M ′ with probability 1. �

55

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Input: MDP M, start state o0

Output: Value E[R] and optimal strategy d
1 ecSet← decompose(M);
2 foreach i← [0 . . . |ecSet| − 1] do
3 switch ecSeti do
4 case isZero : λi ← 0; di ← zero-cost strategy;
5 ;
6 case isInfty : λi ←∞; di ← arbitrary; ;
7 ;
8 otherwise : di ← solveEC(ecSeti); ;

9 endsw

10 end
11 d← compose(M, λ0, . . . , λ|ecSet|−1, d0, . . . , d|ecSet|−1);

Algorithm 2.1: Finding optimal strategies for MDPs

Input: MDP M, start state o0

Output: Set L of maximal end-components
1 L← {M};
2 while L cannot be changed anymore do
3 M′ ← some element of L;
4 Deactivate all actions that lead outside of M′;
5 Let M1, . . . ,Mn be the strongly connected components of M′;

L← L \ {M′} ∪ {M1, . . . ,Mn};
6 end

Algorithm 2.2: Decomposition into maximal end-components

General algorithm structure

As Lemma 2.7 shows, we can look for unichain strategies in the end-components

and then compose these strategies into an optimal strategy for the whole MDP.

The general shape of the algorithms is shown in Algorithm 2.1. In Line 1 we

decompose the MDP into maximal end-components [dA97] (see Algorithm 2.2).

Then we analyze each end-component separately: the predicates isZero and

isInfty (Line 4 and 6, resp.) check if an end-component has value zero or

infinity. This is necessary because the algorithms calculating optimal strategies

for end-components (solveEC, Line 8) only work if a strategy with finite ratio

exists and if the optimal strategy has ratio greater than zero. Finally, function

compose (Line 11) takes values and strategies from all end-components and

computes an optimal strategy for M using Lemma 2.10.

56

2.4. Algorithms

Decomposing MDPs

Decomposition into maximal end-components, due to [dA97], happens in a

sequence of refinements of MDPs, until no further refinement is possible. We

describe this formally in Algorithm 2.2.

Simple checks isZero and isInfty

Functions isZero and isInfty can be implemented efficiently as follows.

Lemma 2.8 For every MDP M = (M,m0, A,A, p) such that M is an end-

component of M, we can check efficiently if the value of M is zero or infinity

and construct corresponding strategies.

Proof M has value zero if there exists a strategy such that the expected

average reward w.r.t. the cost function c is zero. We check this by removing

all actions from states in M that have c > 0 and then recursively removing

all actions that lead to a state without enabled actions. If the resulting MDP

M′ is non-empty, then there is a strategy with value 0 for the original end-

component. It can be computed by building a strategy that moves to and stays

in M′.

M has value infinity iff (i) for every strategy the expected average reward

w.r.t. cost function c is not zero, i.e., M has not value zero, and (ii) for all

strategies the expected average reward w.r.t. the reward function r is zero.

This can only be the case if for all actions in the end-component the value

of cost function r is zero. In this case, any arbitrary strategy will give value

infinity. �

Algorithms for end-components

We will now discuss three algorithms for end-components. For all of them,

we assume that there exists a strategy with a finite ratio value and that the

optimal strategy does not have value zero. The first two solutions are based

on reduction to linear programs. The last solution is a new algorithm based

on strategy (or policy) iteration.

57

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Fractional linear program

Using Theorem 2.3, we transform the MDP into a fractional linear program.

This is done in the same way as is done for the expected average payoff case

(cf. [Put94]). We define variables x(m, a) for every state m ∈ M and every

available actions a ∈ A(m). This variable intuitively corresponds to the prob-

ability of being in state m and choosing action a at any time. Then we have

for example π(m) =
∑
a∈A(m) x(m, a).

We need to restrict this set of variables. First of all, we always have to be in

some state and choose some action, i.e., the sum over all x(m, a) has to be one.

The second set of restrictions ensures that we have a steady state distribution,

i.e., the sum of the probabilities of going out of (i.e., being in) a state is equal

to the sum of the probabilities of moving into this state.

Definition 2.12 (Fractional LP for MDP) LetM be a unichain MDP such

that every Markov chain induced by any strategy contains at least one non-zero

reward. Then we define the following fractional linear program for it.

Minimize

∑
m∈M

∑
a∈A(m) x(m, a)c(m, a)∑

m∈M
∑
a∈A(m) x(m, a)r(m, a)

subject to

∑
m∈M

∑
a∈A(M) x(m, a) = 1∑

a∈A(m) x(m, a) =
∑
m′∈M

∑
a∈A(m′) x(m′, a)p(m′, a,m) ∀m ∈M

There is a correspondence between pure strategies and basic feasible solu-

tions to the linear program3. That is, the linear program always has a solution

because every positional strategy corresponds to a solution. See [Put94] for a

detailed analysis of this in the expected average reward case that also applies

here.

Once we have calculated a solution of the linear program, we can calculate

the strategy as follows.

Definition 2.13 (Strategy from solution of LP) Let x(m, a) be the solu-

tions to the linear program. Let M ′ = {m ∈M | ∃a ∈ A : x(m, a) > 0}. Then

we define strategy d as d(m) = a for all states m ∈ M and the only possible

3A feasible solution is an assignment that fulfills the linear equations

58

2.4. Algorithms

a ∈ A such that x(m, a). For all other states, choose a strategy such that M ′

is reached with probability 1 (Lemma 2.7).

Note that this is well defined because for each state m there is at most one

action a such that x(m, a) > 0 because of the bijection (modulo the actions

of transient states) between basic feasible solutions and strategies and because

the optimal strategy is always pure and memoryless.

Linear program

We can also use the following linear program proposed in [dA97] to calculate

an optimal strategy. We are presenting it here for comparison to the other

solutions later in this section.

Definition 2.14 (Linear program for MDP) LetM be an unichain MDP

such that every Markov chain induced by any strategy contains at least one

non-zero reward. Then we define the following fractional linear program for it.

Minimize λ

subject to

hm ≤ cm − λrm +
∑
m′∈M

p(m, a,m′)hm′ ∀m ∈M,a ∈ A(m)

To calculate a strategy from a solution hm to the LP we choose the actions

for the states such that the constraints are fulfilled when we interpret them as

equations.

Policy iteration

We will now design a policy iteration algorithm for R that is based on the

policy iteration algorithm for P, which we show in Algorithm 2.3. Recall that

we use functions with finite domain and vectors interchangeably.

The goal of this algorithm is to find a strategy with minimal expected

mean payoff. The algorithm consists of one loop in which we produce a se-

quence of strategies until no further improvement is possible (Line 17), i.e.,

until there is no strategy with smaller expected payoff. At the beginning of

59

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Input: MDP M = (M,m0, A,A, p), mean payoff function
r : M ×A→ R

Output: Value EMd
[P] and optimal strategy d

1 n← 0, d0 ← arbitrary strategy;
2 repeat
3 Obtain vectors gn, bn that satisfy

(Pdn − I)gn = 0

rdn − gn + (Pdn − I)hn = 0

P ∗dnhn = 0

4 A
′
(m)← arg min

(m,a)∈A

∑
m′∈M

p(m, a,m′)gn(m′);

5 Choose dn+1 such that dn+1(m) ∈ A′(m);

6 foreach m ∈M ′ do if dn(m) ∈ A′(m) then dn+1(m)← dn(m);
7 ;
8 ;
9 if dn = dn+1 then

10 A
′
(m)← arg min

(m,a)∈A
r(m) +

∑
m′∈M

p(m, a,m′)hn(m′);

11 Choose dn+1 such that dn+1(m) ∈ A′(m);

12 foreach m ∈M ′ do if dn(m) ∈ A′(m) then dn+1(m)← dn(m);
13 ;
14 ;

15 end
16 n← n+ 1;

17 until dn−1 = dn;

Algorithm 2.3: Finding optimal strategies for MDPs with mean payoff
[Put94]

the loop we solve a linear equation system (Line 3). In this system, we de-

note by Pd the probability matrix we obtain from combining M with d, i.e.,

Pd(m,m
′) = p(m, d(m),m′). Analogously, rdn denotes the reward vector in-

duced by strategy dn, i.e., rdn(mi) = r(mi, d(mi)). Finally, by I we denote an

identity matrix of appropriate size. The resulting vectors are gain g and bias

h. Gain g(m) is equal to the expected payoff of a run starting in m. The bias

can be interpreted as the expected total difference between a reward obtained

in a state and the expected reward of that state [Put94]. Its detailed semantics

is not of material importance to this chapter. In Line 4 we collect all possible

actions for each state that minimize the local expected gain. In line Line 5

we choose one strategy from the possible actions. To guarantee termination

60

2.4. Algorithms

of this algorithm we fix the chosen strategy (Line 8) such that we choose the

same action as the old strategy whenever possible. If it was not possible to find

an improved strategy in this way, then we perform the steps from line Line 4

to Line 8 with a different local target function (Line 9 to Line 14), based on

reward and bias.

Theorem 2.4 (Algorithm 2.3 terminates and is correct) Algorithm 2.3

always terminates and returns an optimal strategy.

Proof In each of the iterations of this algorithm we have one of the following

cases [Put94]

• dn = dn+1: In this case there is no better strategy.

• dn 6= dn+1: We know that either gn < gn+1 or gn = gn+1 and hn < hn+1

(i.e., we have a lexicographic ordering).

In the first case we know that we found the best possible strategy. This

implies the correctness. From the second case it follows that no two strategies

can show up twice except for the first case. Since there are only finitely many

strategies we know that the algorithm therefore terminates. �

We are now going to reduce the search for an optimal ratio strategy for

an MDP M with reward r and cost c to the search for an optimal mean cost

strategy. According to Theorem 2.2, the ratio value of a unichain strategy

d is λd = πdcd/πdrd, if we interpret cd, rd and πd as vectors. Equivalently,

(cd − λdrd)πd = 0. If we now construct a mean payoff reward function r′ =

c − λr, then d has therefore an expected mean payoff of zero. We call r′ the

reward induced by λ.

Definition 2.15 (Reward induced by λ) Let c and r be cost and reward

functions and let λ ∈ R be a constant. Then we define the reward induced by

λ as r′(m, a) = c(m, a)− λr(m, a).

The correlation between functions r, c and r′ go even further, as the following

lemma shows.

Lemma 2.9 (Relation of ratio and mean payoff) LetM be an MDP, let

r and c be payoff functions, let d and d′ two unichain strategies with expected

ratio λ and λ′, respectively, and let r′ be the reward function induced by λ.

Then the following three claims hold.

61

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

1. λ′ = λ if and only if the expected mean cost of d′ in M with r′ is zero

i.e., EMd′ [Pr′] = 0.

2. λ′ < λ if and only if the value of d′ in M with r′ is smaller than zero,

i.e., EMd′ [Pr′] < 0 ⇐⇒ EMd′ [R c
r
] < EMd

[R c
r
].

3. If λ is not optimal, then there exists a strategy with value smaller than

zero for M and r′.

Proof For 1., EMd′ [Pr′] = 0 if and only if r′d′πd′ = 0 according to Theo-

rem 2.2. By definition of r′, this is equivalent to (cd′ −λrd′)πd′ = 0. By vector

arithmetic, this is equivalent to cd′πd′/rd′πd′ = λ. According to Theorem 2.2,

cd′πd′/rd′πd′ = λ′. So we obtain λ = λ′.

For 2., assume that d′ with r′ has a value smaller than zero, i.e., 0 > πd′r
′
d′ =

π(cd′ − λrd′) by the first claim, where πd′ is the steady state distribution of

d′ in M. Equivalently, 0 > πd′cd′ − πd′λrd′ and λ > πd′cd′/πd′rd′ = λ′,

where the last equality follows from Theorem 2.3. Since all transformations

are equivalent, the proof of this claim is finished.

For 3., assume that d∗ is optimal in M with c and r and that its value is

λ∗. Also assume that d, i.e., that λ > λ∗ is not optimal. We will now show

that d∗ has a value smaller than zero in the combination of M and r′, i.e.,

prove the claim.

Let v = πd∗r
′
d∗ = πd∗(cd∗ − λrd∗) be the expected mean payoff value of

d∗ for r′ and let v∗ = πd∗(cd∗ − λ∗rd∗) be analogous for λ∗. From λ∗ < λ it

follows that v∗ > v. Since v∗ is the value of d∗ in the combination of M and

the reward induced by λ∗, we know that v∗ is zero from the first claim. From

0 = v∗ > v we have that v is smaller than zero. But v is the value of d∗ in

the combination of M and r′ by definition, i.e., d∗ is a better strategy in the

induced MDP. �

Lemma 2.9 allows us to find an optimal strategy for R by starting with

some strategy d with value λ < ∞. We can then look for a better strategy

with Algorithm 2.3 in the combination of M and the function induced by λ.

If we cannot find such a strategy, then d is optimal, according to the third

claim of the last lemma. If we find such a strategy, then it has a ratio lower

than λ according to the second claim of the last lemma. This leads us to

Algorithm 2.4.

62

2.4. Algorithms

Input: End-component M, unichain strategy d0 (with 0 < λ0 <∞)
Output: Optimal unichain strategy dn

1 n← 0;
2 repeat
3 λn ← EMdn

[R];
4 dn+1 ← improved unichain strategy for Mλn ;
5 n← n+ 1;

6 until dn−1 = dn;

Algorithm 2.4: Policy iteration for R

This algorithm is correct and terminates since the expected values we pro-

duce are always decreasing. From Lemma 2.9 follows that the algorithm will

always find a correct strategy. Note that it is undefined how far we improve the

strategy in Line 4. We can take the first strategy having an expected payoff

smaller than zero or we can find an optimal strategy. As we will see in Section 6

there seems to be little difference between the two approaches. However, the

following example shows that choosing the best strategy in the induced MDP

is not always beneficial.

Example 2.9 Consider Figure 2.5b on Page 53. If we choose for state s0 the

action with cost 1 and reward 1, then we obtain 1 as expected ratio payoff of

this MDP. In the MDP induced by 1 we have −6.3 as expected mean payoff

for choosing the action with cost 5 and reward 1, according to Example 2.7.

Analogously, we have −27 for choosing the other action. Therefore, if choose

the optimal strategy in the induced MDP we will choose the latter action. But,

as seen in Example 2.7, choosing the former is optimal. �

Theorem 2.5 (Algorithm 2.4 terminates and is correct) Algorithm 2.4

terminates and is correct.

Proof Two strategies with different efficiencies cannot be the same. The

ratios in Algorithm 2.4 are monotonically improving. There are only finitely

many strategies. So termination follows. Correctness follows from Lemma 2.9.

�

Composing MDPs

Once we have calculated optimal strategies for end-components, we calculate a

strategy that selects end-components and decisions to reach them optimally. To

63

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

that end, we employ algorithms calculating optimal strategies of mean-payoff

MDPs. We presented one such algorithm in Algorithm 2.3.

We construct a new MDP in which each end-component is represented by

one state, and each state not in an end-component is represented by itself.

If it was possible to move from one state or end-component to another with

a given action, then it will be possible to move from one representing state

to the other in the new MDP. We will assign rewards such that staying in

a state representing an end-component is rewarded by the expected payoff of

that component. Moving from one component to another has no cost. An

optimal strategy for this MDP defines an optimal strategy for states not in an

end-component as well as movement between end-components.

Lemma 2.10 Given an MDP M and an optimal pure strategy di for every

maximal end-component Ci, 1 ≤ i ≤ n in M, we can compute the optimal

value and construct an optimal strategy for M.

Proof Let λi be the value obtained with di in the MDP induced by Ci.

Without loss of generality, we assume that every action is enabled in exactly

one state.

Let M = (M,m0, A,A, p) be the MDP of M defined by

• M = {Ci | ∀1 ≤ i ≤ n} ∪ {m ∈M | m 6∈
⋃
Ci}

• m0 =

Ci m0 ∈ Ci

m0 otherwise

• A = A

• A = {(m, a) ⊆ A | m 6∈
⋃
Ci} ∪ {(Ci, a) | ∃m ∈ Ci ∧ (m, a) ∈ A, 1 ≤ i ≤

n}

• ∀m,m′ ∈ M ∩ M ′∀a ∈ A : p(m, a,m′) = p(m, a,m′), i.e., movement

between states that do not lie in any end-component is like for M

• ∀1 ≤ i ≤ n∀m ∈ M ∩ M ′∀a ∈ A : p(m,Ci) =
∑
m′∈Ci p(m, a,m

′),

i.e., the probability of moving from a state in no end-component to end-

component Ci inM′ is equal to the probability of moving from m to any

of the states of Ci in M

64

2.4. Algorithms

• ∀1 ≤ i ≤ n∀m ∈ M ∩M ′ : ∀a ∈ A : p(Ci, a,m) = maxm′∈Ci p(m
′, a,m),

i.e., the probability of moving from end-component Ci to a state m in no

end-component with action a is equal to the probability of moving from

the single state in which a is activated to m; it is zero if no such state

exists

• ∀1 ≤ i, j ≤ n∀a ∈ A : p(Ci, a, Cj) = maxm∈Ci
∑
m′∈Cj p(m, a,m

′), i.e.,

the probability of moving from end-component Ci to end-component Cj

with action a is equal to the probability of moving from the single state

in which a is activated to any of the states in Cj ; it is zero if no such

state exists

We modifyM to obtain an MDPM′ by removing all actions for which there

is a state m ∈M such that p(m, a,m) = 1. Furthermore, for all states m that

are an end-component in M with value λi <∞, we add a new action ai with

p(m, ai,m) = 1 and costs λi; all other actions have cost 0. We now recursively

remove states without enabled actions and actions leading to removed states. If

the initial state m0 is removed, the MDP has value infinity, because we cannot

avoid reaching and staying in an end-component with value infinity.

Otherwise, let d′ be an optimal strategy for M′. We define d by d(m) =

d′(m) for all states m 6∈
⋃
Ci. For m ∈ Ci, if d′(m) = ai, we set d(m) = di(m).

Otherwise, let a be the actions chosen in state m, and let m′ be the state in

which a is enabled. Then, we set d(m′) = a and for all other states in Ci we

choose d such that we reach m′ with probability 1. We can choose the strategy

arbitrarily in states that were removed fromM′, because these states will never

be reached by construction of d.

Because of the way we constructed M′, d and d′ have the same value, and

d is optimal because d′ is optimal (Theorem 2.3). �

Evaluation

The goal of this first evaluation is to find out which of the given implementa-

tions we should follow to try to scale to large systems. We therefore apply all

three implementations to a series of production line configurations of increasing

size. We also report on the synthesized strategies.

65

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Synthesis results

We synthesized optimal controllers for systems with two to five production

lines. They behave as follows: For a system with two production lines, the

controller plays it safe. It turns one production line on in fast mode and

leaves the other one turned off. If the production line breaks, then the other

production line is turned on in slow mode and the first production line is

repaired immediately. For three production lines, all three production lines

are turned on in fast mode. As soon as one production line breaks, only one

production line is turned on in fast mode, the other one is turned off. Using

this strategy, the controller avoids the penalty of having no working production

line with high probability. If two production lines are broken, then the last

one is turned on in fast mode and the other two production lines are been

repaired. In the case of four production lines, all production lines are turned

on in fast mode if they are all working. If one production line breaks, then

two production lines are turned on and the third working production line is

turned off. The controller has one production line in reserve for the case that

both used production lines break. If two production lines are broken, then only

one production line is turned on, and the other one is kept in reserve. Only if

three production lines are broken, the controller starts repairing the production

lines. Using this strategy, the controller maximizes the discount for repairing

multiple production lines simultaneously.

We also evaluated the ACTS described in Section 2.1. The model has

two parts: a motor and a driver profile. The state of the motor consists of

revolutions per minute (RPM) and a gear. The RPM range from 1000 to

6000, modeled as a number in the interval (10, 60), and we have three gears.

The driver is meant to be a city driver, i.e., she changes between acceleration

and deceleration frequently. The fuel consumption is calculated as polynomial

function of degree three with the saddle point at 1800 rpm. The final model has

384 states and it takes less than a second to build the MDP. Finding the optimal

strategy takes less than a second. The resulting expected fuel consumption is

0.15 l/km. The optimal strategy is as expected: the shifts occur as early as

possible.

66

2.4. Algorithms

Experiments

We have implemented the algorithms presented here. Our first implementation

is written in Haskell4 and consists of 1500 lines of code. We use the Haskell

package hmatrix5 to solve the linear equation system and glpk-hs6 to solve

the linear programming problems. In order to make our work publicly avail-

able in a widely used tool and to have access to more case studies, we have

implemented the best-performing algorithm within the explicit-state version of

PRISM. It is an implementation of the strategy improvement algorithm and

uses numeric approximations instead of solving the linear equation systems.

First, we will give mean running times of our Haskell implementation on

the production line example, where we scale the number of production lines.

The tests were done on a Quad-Xeon with 2.67GHz and 3GB of heap space.

Table 2.1 shows our results. Column n denotes the number of production lines

n |M | |A| LP FLP Opt Imp.
2 9 144 0.002 13 0.015 14 0.003 13 0.003 14
3 27 1728 0.043 14 0.642 20 0.027 13 0.009 14
4 81 20736 1.836 41 14.73 332 0.122 21 0.122 24
5 243 248832 67.77 505 n/a n/a 1.647 162 1.377 166

Table 2.1: Experimental results table

we use, |M | and |A| denote the number of states and actions the final MDP

has. Note that |M | = 3n and |A| = 12n. The next columns contain the time

(in seconds) and the amount of memory (in MB) the different algorithms used.

LP denotes the linear program, FLP the fractional linear program. We have

two versions of the policy iteration algorithm: one in which we improve the

induced MDP to optimality (Column Opt.), and one where we only look for

any improved strategy (Column Imp.). The policy iteration algorithms perform

best, and Imp. is slightly faster than Opt but uses a little more memory. For

n = 5, the results start to differ drastically. FLP ran out of memory, LP needed

about a minute to solve the problem, and both Imp. and Opt. stay below two

seconds.

Using our second implementation, we also tried our algorithm on some of

the case studies presented on the PRISM website. For example, we used the

4http://www.haskell.org
5http://code.haskell.org/hmatrix/
6http://hackage.haskell.org/package/glpk-hs

67

http://www.haskell.org
http://code.haskell.org/hmatrix/

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

IPv4 zeroconf protocol model. We asked for the minimal expected number

of occurrences of action send divided by occurrences of action time. If we

choose K = 5 and reset = true, then the resulting model has 1097 states

and finding the optimal strategy takes 5 seconds. For K = 2 and reset =

false, the model has about 90000 states and finding the best strategy takes 4

minutes on a 2.4GHz Core2Duo P8600 laptop.

2.5 Symbolic implementation

In this section, we will discuss a symbolic variant of the policy iteration al-

gorithm, i.e., the structure of Algorithm 2.1 with Algorithm 2.4 implementing

solveEC. Symbolic encoding via binary decision diagrams (BDDs) has enabled

model checking and qualitative synthesis to address the state explosion prob-

lem in many cases [BCM+92], i.e., the problem that the state space we need to

analyze grows exponentially with the number of the components of a model.

Recently, Wimmer et al. developed a semi-symbolic (or, in their terms,

symblicit) variant of Algorithm 2.3 [WBB+10] with promising results. In this

section, we develop an analogous algorithm for the case of Ratio-MDPs.

We call the algorithm semi-symbolic because it uses symbolically as well as

explicitly encoded MDPs. BDDs are good for encoding large structures but

they are not suitable when it comes to solving linear equation systems (see

for example [HMPS96, KNP02]). Therefore we (like [WBB+10]) encode MDPs

and strategies symbolically but convert the induced MC into an explicit linear

equation system (after having reduced the state space via bisimulation).

Symbolic encoding

In this subsection we will first describe BDDs and their extension multiterminal

BDDs (MTBDDs). We will then encode MDPs, MCs, strategies and reward

functions as BDDs or MTBDDs as necessary.

Binary decision diagrams [Bry86] encode Boolean functions as directed

acyclic graphs as follows.

Definition 2.16 (Binary decision diagram [Bry86]) We use BDDs to en-

code Boolean functions 2V → B, where V is a finite set of variables. For

V = {v, w} and f : 2V → B, we write f({v}) to denote the function value of

68

2.5. Symbolic implementation

x0

x1 x2

x3 x3

1

Figure 2.7: A BDD encoding of x0 · (x1 ↔ ¬x3) ∨ ¬x0 · (x2 ↔ ¬x3)

the variable assignment v = 1 ∧ w = 0. Accordingly, f(∅) denotes the value of

f for the assignment v = 0 ∧ w = 0.

We define a BDD by (B, b0,B,V), where B is a finite set of nodes, b0 ∈ B

is the root node, B : B→ (B∪B)2 encodes the edge relation, and V : B→ V is

a function assigning a variable to each node. That is, if B(b) = (b′,b′′), then

there is an edge from b to b′ and from b to b′′. We demand the existence of a

asymmetric ordering < on V such that if there is a path from b ∈ B to b′ ∈ B,

then V(b) < V(b′). We further demand that the graph be reduced, i.e., there

may be no isomorphic sub-BDDs, i.e., no two sub-BDDs encoding the same

Boolean function.

Example 2.10 (Binary decision diagram) In Figure 2.7 we show the BDD

encoding the Boolean function, f : 2{x0,x1,x2,x3} → B, f = x0 · (x1 ↔ ¬x3) ∨
¬x0 · (x2 ↔ ¬x3). For example, f({x0, x1}) = f({x0, x1, x2}) = 1 and

f({x0, x1, x3}) = f({x0, x1, x2, x3}) = 0. Each circle describes a node, each

edge a connection between nodes. Solid edges denote positive assignments to

variables, dashed edges negative assignments. For simplicity, we omit any edge

leading to the leaf denoting zero.

For example, in Figure 2.7, assignment {x0, x1, x3} leads us to leaf 0 by

first following the solid edge from x0 to x1 , then the solid edge to x3 , and

finally the solid edge from x3 , which is not depicted here, and therefore leads

to leaf 0 . On the other hand, assignment {x0, x1} leads to leaf 1 by following

the same path to x3 and then taking the dashed edge.

BDDs support several logical operations very efficiently (linear in the num-

ber of nodes).

69

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Definition 2.17 (Operations on BDDs) Let B and B′ be BDDs, and let V

be the set of variables. The following operations are efficiently supported on

BDDs, corresponding to operations on Boolean functions.

• Negation ¬B

• Conjunction B∧B′

• Disjunction B∨B′

• Existential Quantification ∃V′ ⊆ V : B

• Universal Quantification ∀V′ ⊆ V : B

All operations have time complexity proportional to the size of the BDDs

[Bry86].

For more information about how to implement these operations, see [Bry86].

In [FMY97] the authors introduced an extension of BDDs that encodes

functions mapping from a finite set to R. It was originally developed to en-

code matrices and operations on matrices efficiently. It has since been used

successfully to encode MCs, MDPs, etc. [BCM+92].

Definition 2.18 (Multiterminal binary decision diagram) We use MTB-

DDs to encode functions 2V → R, where V is a finite set of variables.

We define an MTBDD by (B,b0,B,V), where B, b0 and V are encoded

as for BDDs. The edge relation now supports R instead of B as leaves, i.e.,

B : B → (B∪R)2. We still demand the existence of an ordering and the lack

of isomorphic subgraphs as in Definition 2.16.

MTBDDs also support several operations very efficiently.

Definition 2.19 (Operations on MTBDDs) Let B = (B,b0,B,V) and B′

be two MTBDDs. The following operations are efficiently supported on MTB-

DDs, corresponding to operations on functions.

• Negation −B

• Addition B+B′

• Multiplication B×B′

70

2.5. Symbolic implementation

• Division B /B′

• Minimization minV′⊆V : B

• Maximization maxV′⊆V : B

• Summation
∑

V′⊆V : B

• Comparison with constant c ∈ R: B < c

All operations have time complexity polynomial in the size of the MTBDDs

[FMY97].

These structures allow us to encode MDPs in the following way.

Definition 2.20 (Symbolic encoding of MDPs, MCs and strategies) Let

M = (M,m0, A,A, p) be an MDP. Then we encode the MDP symbolically as

follows.

• We assign a symbolic encoding to M using dlog2(|M |)e variables VM ,

described as an injective function encM : M → 2VM .

• We assign a second symbolic encoding to M using dlog2(|M |)e variables

V′M , described as an injective function enc′M : M → 2V′M .

• We assign a symbolic encoding to A using dlog2(|A|)e variables VA de-

scribed as an injective function encA : A→ 2VA .

• We encode the set of states as a function fM such that fM (encM (m)) =

1 for all states m ∈ M , and 0 for everything else, i.e., if a variable

assignment encodes a state, then fM evaluates to 1, otherwise to 0. This

is necessary because the set of assignments to VM may be greater than

the set of variables.

• We encode the action activation relation A as a function fA : 2VM ∪VA →
B such that fA(encM (m) ∪ encA(a)) = 1 if and only if (m, a) ∈ A.

• We encode the transition function as a function fp : 2VM ∪VA ∪VM′ → R

such that fp(encM (m)∪ encA(a)∪ enc′M (m′)) = p(m, a,m′) for all states

m,m′ ∈M and actions a ∈ A and 0 for every other assignment.

71

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

• We encode a strategy d : M → 2A as the corresponding Boolean function

fd : 2VM ∪VA → B, i.e., fd(encM (m)∪ encA(a)) = 1 if and only if d(m) =

a.

• We encode costs and reward functions analogously as functions fc, fr :

2VM ∪VA → R.

We encode MCs analogously by leaving out the actions

Our goal is to have a symbolic policy iteration algorithm. This algorithm

uses linear equation systems to evaluate strategies (Algorithm 2.3). Because

solving linear equation systems using MTBDDs is slow in general (see for exam-

ple [HMPS96, KNP02]), we will show (based on [WBB+10]) how to construct

a small equivalent linear equation system in the next subsection.

Bisimulation and symbolic bisimulation

We aim to solve the equation system in Algorithm 2.3 explicitly. The size of

the equation system we solve is proportional to the number of states in the

induced MC. Therefore, we aim to reduce the number of states in the Markov

chain we have to analyze. To reduce the size of Markov chains, we will use

bisimulation. Bisimulation aims to identify a partition of the set of states of a

Markov chain that has certain properties, which we define later. We define a

signature on partitions of states of Markov chains.

Definition 2.21 (Signature) Let C = (M,m0, pC) be a Markov chain and

B a partition of M . For any state m ∈ M and any block B ∈ B, we define

pC(m,B) =
∑
m′∈B pC(m,m

′) as the probability of going from m to any state

in B. The signature of a partition B of M is defined as sig(B) := m 7→
{(B, pC(m,B)) | B ∈ B}, i.e., the signature of a bisimulation is a function

mapping states of C to the probability of moving to blocks.

A bisimulation of a Markov chain is a partition of the set of states, such

that any two states in the same block have 1) the same label according to a

given labeling function and 2) have equal probability of transitioning to blocks.

Definition 2.22 (Bisimulation) For a MC C = (M,m0, pC) and a function

l : M → L for some set L, a bisimulation is a partition of the states B ⊆ 2M

such that for all blocks B ∈ B and for all states m,m′ ∈ B therein we have that

72

2.5. Symbolic implementation

l(m) = l(m′) and pC(m,B
′) = pC(m

′,B′) for all blocks B′ ∈ B. A bisimulation

is called finer than another bisimulation if it is finer when interpreted as a

partition. A bisimulation B is called maximal if each other bisimulation is

finer than B.

A bisimulation defines a smaller, equivalent Markov chain in the following

sense.

Definition 2.23 (Quotient MC) Let C = (M,m0, pC) be a Markov chain

and let B be a bisimulation. The quotient MC is defined as CB = (B,B0, p
B
C),

where B0 ∈ B is the block such that m0 ∈ B0. The probabilistic transition func-

tion between blocks is defined as pBC (B,B′) = pC(m,B
′) =

∑
m′∈B′ pC(m,m

′)

for some7 state m ∈ B.

Obviously, CB is a well-defined Markov chain. It has the following property

of interest to us.

Lemma 2.11 Let C = (M,m0, pC) be a Markov chain, l : M → R be a labeling

function, B be a bisimulation of C and CB be the quotient MC defined by C and

B. Let lB(B) = l(m) for some m ∈ B. Then EC [Rl] = ECB [RlB], i.e., instead

of calculating the expected value of R for C we can calculate the expected value

for its quotient MC CB.

In [WDH08], Wimmer et.al. propose a symbolic bisimulation algorithm,

i.e., an algorithm calculating the maximal bisimulation of a Markov chain. We

repeat this algorithm here.

The algorithm is based on the following insight. A partition B is a bisim-

ulation if and only if for each pair of states m,m′ in the same block we have

sig(B)(m) = sig(B)(m′). Conversely, if B is not a bisimulation we can bring it

“closer” to being one by refining B according to sig.

Definition 2.24 (Signature refinement algorithm) Let C = (M,m0, pC)

be a Markov chain and let B0 of M be an initial partition of M according to a

labeling function. Let B be a partition of M that is finer than B0. We refine B
by putting all those states in one block that have the same signature and were

equivalent in the initial partition, i.e.,

sigrefB0
(B) = {{m′ ∈M | sig(m,B) = sig(m′,B) ∧m ≡B0

m′} | m ∈M}
7Note that it does not matter which state in B we choose because pC(m,B′) = pC(m′,B′)

for any m,m′ ∈ B.

73

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

The signature refinement algorithm then consists of a fixpoint application

of sigrefB0
to the initial partition.

Lemma 2.12 (Signature refinement is correct [WDH08]) The signature

refinement algorithm yields the maximal bisimulation of a Markov chain.

To perform these operations symbolically, we will first need to define a

symbolic encoding of partitions and signatures. Then we can define symbolic

versions of sig and sigrefB0
.

Definition 2.25 (Symbolic signature refinement [WDH08]) Let M be

a Markov chain and let B be a partition of the state space of M. Let VB be

a set of dlog2(| B |)e fresh variables. We identify each block of B with a unique

encoding encB(B), for B ∈ B. For example, we can enumerate the blocks and

use a binary encoding of the number of the block.

We can encode the blocks via a function fB : 2V′M ∪VB → B such that

fB(enc′M (m)∪ encB(B)) = 1 if and only if m ∈ B, for states m ∈M and blocks

B ∈ B.

We encode the signature of a state as the MTBDD of a function fsig(B) :

2VM ∪VB → R, fsig(B)(encM (m) ∪ encB(B)) = r ∈ R if and only if (r,B) ∈
sig(B)(m). For all other assignments, fsig(B) is zero. Given the encoding of a

partition, we can compute this function by fsig(B) =
∑

VM′
fp × fB.

To take an initial partition B0 into account, we introduce a fresh variable

V0 and define the final signature function f ′sig(B) = fsig(B) + V0×fB0 , where

fB0
: 2VM ∪VB → {0, 1} encodes the initial partition.

A partial application of f ′sig(B) to the encoding of two states m and m′

will be the same if and only if they have the same signature according to B
and lie in same block in B0: f ′sig(B)(encM (m)) = f ′sig(B)(encM (m′)) if and only

if 1) fsig(B)(encM (m))(encB(B)) = fsig(B)(encM (m′))(encB(B)) for every block

B ∈ B and 2) fB0
(encM (m)) = fB0

(encM (m′)).

We now show that the encoding of fsig(B) is correct.

Lemma 2.13 (The signature encoding is correct) We have to show that

fsig(B)(encM (m) ∪ encB(B)) = r ∈ R if and only if (r,B) ∈ sig(m,B).

74

2.5. Symbolic implementation

m0

m1 m1

B0 B0

0.1 0.9 0.3 0.7

Figure 2.8: Symbolic signature

Proof We defined fsig(B) =
∑

VM′
fp × fB. If we now evaluate this function

on state m ∈M and block B ∈ B, we receive

fsig(B)(encM (m) ∪ encB(B)) =
∑
VM′

fp(encM (m))× fB(encB(B))

=
∑
m′∈B

p(m,m′)

= p(m,B)

= r ⇐⇒ (r,B) ∈ sig(B)(m)

Example 2.11 (Signatures and blocks) To get a new symbolic partition

from the symbolic signature, it is useful to recall that two states should end

up in the same block if they have the same signature. Under the condition

that variables encoding block numbers come after variables encoding states

in the variable ordering (see Definition 2.18), we can get a simple algorithm

achieving that. If we traverse the symbolic signature from the root until we find

variables encoding the block number, all that remains is the encoding of that

state’s signature. For example, in Figure 2.8 the state encoded by ∅, i.e., where

m0 and m1 are 0, leads to the block encoded by ∅ with probability 0.1, while

it leads to the block encoded by {B0} with probability 0.9. This also means

that two states have the same signature if and only if the symbolic encoding of

their signature is the same. Observe for example, in Figure 2.8, that the states

encoded by {m1} and by {m0} lead to the block encoded by ∅ with probability

0.3, while they lead to the block encoded by {B0} with probability 0.7. They

have indeed the same signature, and should therefore end up in the same block

in the refined partition. Therefore, all state encodings leading to the same node

in VB have to have the same signature. We can therefore traverse the BDD

backwards from subgraphs encoding signatures to get a symbolic encoding of

75

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Input: S, p,E
Output: L

1 L0 ← [(S,E)];
2 n← 0;
3 repeat
4 Ln+1 ← [];
5 foreach (S′, E′)← Ln do
6 Let (S1, E1), . . . , (Sl, El) be the SCCs of (S′, E′);
7 E′i ← Ei ∧ [∃a∀m′ : p→ Si)] ;
8 Add (Si, E

′
i) to Ln+1;

9 n← n+ 1;

10 end

11 until Ln = Ln−1;

Algorithm 2.5: Symbolic end-component computation

all states in that block. This leads to an algorithm linear in the number of

states of the BDD.

Symbolic policy iteration

After we have seen in Section 2.4 how to compute an optimal strategy for

an explicitly encoded Ratio MDP, we will now develop a symbolic variant for

the symbolic encoding we have just seen. To that end, we describe symbolic

versions of all functions showing up in Algorithm 2.4.

Symbolic decomposition

We can adapt Algorithm 2.2 to symbolic structures. We will assume that there

is a method of calculating SCCs symbolically.

First, we encode the MDP as a directed graph by replacing every leaf in p

that has a value greater than 0 by 1. We further abstract existentially over all

actions, i.e., E = ∃VAfp. We now have E(encM (m)∪ encM ′(m
′)) if and only if

there is any action that makes it possible to move from m to m′ in M.

We present the algorithm in Algorithm 2.5. It works in exactly the same

way as Algorithm 2.2. The only important line is Line 7, where we restrict the

set of possible actions to those that stay inside an EC. Here we restrict the

directed graph such that there is only an edge if there is any possible action

that stays inside the end-component.

76

2.5. Symbolic implementation

Symbolic isZero and isInfty

We use symbolic version of what we described in Lemma 2.8. For isZero, we

restrict the set of states to those that have a cost of zero, i.e., M ∧ ∃VM′∃VA :

fc = 0. If the resulting MDP has an end-component, then isZero will return

true. For isInfty we check if r = 0∧ [¬M ∨ (∃VM∃VA : c > 0)] is a tautology.

Symbolic policy iteration

Input: MDP mdp consisting of a single end-component
Output: strategy d and optimal ratio value λ of mdp

1 d = initial(mdp) ;
2 dold = ⊥;
3 while d 6= dold do
4 λ = lambda(mdp, d);
5 g, b = gainAndBias(mdp, d, λ);
6 while g ≥ 0 and dold 6= d do
7 dold = d;
8 d = next(mdp, d, λ, g, b);
9 g, b = gainAndBias(mdp, d, λ);

10 end

11 end
12 return unichain(mdp, d), λ

Algorithm 2.6: Optimisation for a single end-component

In Algorithm 2.6 we present the algorithm that finds the optimal ratio

value for an end-component. The algorithm first picks any strategy d that has

a finite and strictly positive value (Line 1). We observed that the choice of this

strategy has a strong influence on the performance of our algorithm.

Then, in Line 3 we enter a loop that produces in every iteration a new

strategy that has the same or a better ratio value (λ) than the previous strategy.

We exit the loop if the same strategy is produced twice, i.e., there is no strategy

with a better ratio value for this MDP.

In the loop, we first compute the ratio value λ that can be obtained by

a strategy generated from the strategy d (Line 4). This computation is done

semi-symbolically. First, we compute the Markov chain C induced by strategy

d. For C, we symbolically compute a bisimulation relation (Definition 2.24),

which allows us to construct an equivalent smaller Markov chain C ′. Then,

we compute all recurrence classes (i.e., the strongly connected components) of

C ′. For each recurrence class, we build an explicit-state representation of the

77

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

sub-model and calculate the steady-state distribution, which in turn is used to

calculate the ratio value of the recurrence class. We set λ to the value of the

best recurrence class. This value is not necessarily the value of d but we can

construct a strategy that has value λ. Furthermore, λ is at least as good as

the actual value of d (see proof of Lemma 2.7).

In the rest of the algorithm, we perform computation on an MDP with

average objective induced by the reward function c−λ× r (which we compute

symbolically). For this induced MDP, we compute gain (g) and bias (b) (as in

Algorithm 2.3). The computation of gain and bias is similar to the computation

in Algorithm 2.3, i.e., we calculate gain and bias explicitly on an equivalent

smaller Markov chain. We know that a state has a gain smaller than zero in

the induced MDP if and only if its ratio value is smaller (i.e., better) than the

ratio value from which the induced MDP was calculated (Lemma 2.9). Since

the ratio value of strategy d is at most as good as λ, the gain of all states at

this point is greater than or equal to zero.

We now enter the inner loop (Line 6), which runs while the strategy keeps

changing and all entries of the gain vector are greater than or equal to zero.

Equivalently, the loop runs until there is a recurrence class of the current

strategy that has a value smaller than λ or until there is no better strategy

anymore.

In the inner loop, we try to improve the strategy (Line 8) and calculate

the new strategy’s gain and bias (Line 9). Note that the choice of the next

strategy and the way of computing the value λ differs from our description in

Section 2.4. In the latter version, we demand a unichain strategy from the

induced Mean MDP. Here, we demand just any kind of strategy. Forcing the

algorithm to use a unichain strategy was a major bottleneck in our initial sym-

bolic implementation, because it increased the number of blocks significantly

by introducing irregularity into the (MT)BDDs.

Instead we work with arbitrary strategies now. To calculate the expected

ratio of a strategy, we calculate the expected ratio of each recurrent class

with Theorem 2.2 and take their minimum. The correctness of this approach

follows trivially from the existence of a unichain Strategy with the same recur-

rence class as the optimal recurrence class, and therefore with the same value

Lemma 2.7.

78

2.5. Symbolic implementation

Symbolic composition

We can build a strategy for the whole MDP once we have built a strategy for

the end-components. This could be done exactly as in the explicit variant,

and by using a symbolic policy algorithm for mean-payoff MDPs, i.e., with a

symbolic variant of Algorithm 2.3.

Instead, we reduce the problem of composing strategies to the problem of

finding a stochastic shortest path.

Definition 2.26 (Stochastic shortest path problem) LetM = (M,m0, A,A, p)

be an MDP, and r : M ×A→ R be a reward function. Then the Total Reward

Fr : (M × A)ω → R defined by r is defined as Fr(ρ) =
∑∞
i=0 r(ρi). For a

state m ∈ M , an optimal strategy for the stochastic shortest path problem is

one for which the expected value is minimal, i.e., arg mind∈D′ EMd
[F], where

D′ ⊆ D(M) is the set of pure strategies reaching m almost surely.

We use the following definition to reduce strategy composition to a simple

variant of the shortest stochastic path problem.

Definition 2.27 (Reduction to stochastic shortest path problem) LetM =

(M,m0, A,A, p) be a MDP, r : M → R ∪ {⊥} be the optimal ratio calculated

for each state so far, or ⊥ if no reward has been calculated (because the state

does not lie in any end component).

We construct a new MDP M′ = (M ′,m′0, A
′, A
′
, p′) by adding a special

state m⊥ to the set of states and keeping the start state, i.e., M ′ = M ∪ {⊥},
and m′0 = m0. Let E ⊆M be the set of states in any end-component of M.

We extend the set of inputs by a fresh symbol a⊥, i.e., A′ = A∪{a⊥}, where

a⊥ is available in all states in any end-component, i.e., A
′

= A∪E ×{⊥}. For

any input a ∈ A in M, the transition function p′ of M′ is the same as in M,

i.e., p′(m, a,m′) = p(m, a,m′) for all states m,m′ ∈M . For the new input a⊥

we define p′(m, a⊥,⊥) = 1 for all m ∈ E ∪ {⊥}.
As reward function r′ we assign r′(m,⊥) = r(m) for every state m ∈ E,

and 0 for all other states and actions.

We use Value Iteration to solve this problem.

Lemma 2.14 (Algorithm 2.7 terminates and is correct) When given a

symbolically encoded MDP with r the minimal reward optimal reward of all end-

components, fp the symbolic transition function and immediate reward function

79

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

Input: min. Reward r, symb. transition fp, immediate reward I
Output: Values V ′, Strategy d

1 V ′ = r;
2 V ′(⊥) = 0 ;
3 V =∞ ;
4 while ||V − V ′|| ≥ ε do
5 V = V ′ ;
6 V ′ = minVp

∑
VM

(fp · V ′(VM ′ ← VM) + I)

7 end

Algorithm 2.7: Solving the Stochastic Shortest Path Problem

I : M × A → R, Algorithm 2.7 terminates and delivers an ε-optimal strategy

and ε-optimal values, i.e., the value of its strategy is at most ε away from the

optimal value in the || · ||-norm.

Proof See [Put94].

Using Algorithm 2.7 and Definition 2.27, we obtain the following theorem.

Theorem 2.6 (Composing strategies) LetM = (M,m0, A,A, p) be an MDP

and let M′ be constructed from M as in Definition 2.27. Let E ⊆ 2M be the

set of end-components of M, dE the optimal strategy for all end-components

E ∈ E, and let d′ be the optimal strategy for M′.

We call an end-component E active if there is a state m ∈ E such that

d′(m) = a⊥. Define d(M) ∈ A for m as

• d(m) = dE(m) if there is an active end-component E ∈ E such that

m ∈ E

• d(m) = d′(m) otherwise

Then d is optimal for M.

Proof First note that for every strategy d inM there is an analogous strategy

d′ in M′, and vice versa. We define d based on d′ as defined above. For the

other direction, call and end-component active if the probability of visiting

and staying in this end-component is greater 0. We define d′ based on d by

assigning d′(m) = d(m) for all states m not in an active end-component. For

all active end-components E and all states m ∈ E, we assign d′(m) = a⊥.

Finally, we assign d′(⊥) = a⊥.

80

2.5. Symbolic implementation

Name #States #Blocks Time in sec RAM in MB

line3 386 271 0.9 112
line4 1560 945 5.6 150
line5 5904 3089 20.5 236
line6 21394 9448 96.8 326

rabin3 27766 722 5.2 199
rabin4 668836 12165 104.6 537

zeroconf 89586 29427 2948.7 608

acts 1734 1734 1.6 159

phil6 917424 303 1.2 181
phil7 9043420 303 1.9 262
phil8 89144512 342 2.6 295
phil9 878732012 342 3.3 287
phil10 8662001936 389 4.3 303

power1 8904 72 0.415 89.9
power2 8904 n/a n/a 85

Table 2.2: Experimental results table

Then, for every optimal strategy d for M, d′ is optimal for M′, and vice

versa.

To see why, note that EMd
[R] =

∑
E∈E pd(E)r(E) =

∑
E∈E p

′
d′(E⊥)r(E) =

EM′
d′

[F], where by pd(E) we denote the probability that a run inM will reach

end-component E and stay in it, given that strategy d is used. Analogously, by

p′d′(E⊥) we denote the probability that a run in M′ will take action a⊥ from

a state in E, given that strategy d is used.

We chose this construction for the symbolic encoding because no numerical

computations (i.e., no equation solving) is involved. This is a great asset when

dealing with MTBDDs.

Evaluation of the symbolic algorithm

Table 2.2 shows the results of our implementation on various benchmarks.

The implementation can be downloaded from http://www-verimag.imag.fr/

~vonessen/ratio.html. The first column shows the name of the example;

column #States denotes the number of states the model has; #Blocks the

maximum number of blocks of the partitions we construct while analyzing the

model; Time the total time needed; RAM the amount of memory used (including

81

http://www-verimag.imag.fr/~vonessen/ratio.html
http://www-verimag.imag.fr/~vonessen/ratio.html

CHAPTER 2: EFFICIENT SYSTEMS IN PROBABILISTIC
ENVIRONMENTS

all memory used by PRISM and its Java Virtual Machine). Below, we briefly

describe the examples and discuss the results.

Experiments.. Examples line3-6 model the assembly line system described

in Section 2.1. We optimize the ratio between maintenance costs and number

of units produced by several lines running in parallel. Example zeroconf is

based on a model of the ZeroConf protocol [KNPS06]. We modify it to mea-

sure the best-case efficiency of the protocol, finding the expected time it takes

to successfully acquire an IP address. We choose a model with two probes sent,

two abstract clients and no reset. This model shows the limit of our technique

when bisimulation produces many blocks. In experiments phil6-10, we use

Lehmann’s formulation of the dining philosophers problem [LR81]. Here we

measure the amount of time a philosopher spends. This model is effectively a

mean-payoff model because we have a cost of one for each step. We use this ex-

periment to compare our implementation to [WBB+10]. We are several orders

of magnitude faster. We attribute the increase in speed to good initial strategy.

In rabin3 and rabin4, we measure the efficiency of Rabin’s mutual exclusion

protocol [Rab82]. We minimize the time of a process waiting for its entry into

the critical section per entry into the critical section. Note that only the ratio

objective allows us to measure exactly this property, because we grant a reward

every time a process enters the section and a cost for every time a process has

to wait for its entry. We also modeled an automatic clutch and transmission

system (acts). Each state consists of a driver/traffic state (waiting in front of a

traffic light, breaking because of a slower car, free lane), current gear (1-4) and

current motor speed (100 - 500 RPM). We modeled the change of driver state

probabilistically, and assumed that the driver wants to reach a given speed (50

km/h). Given this driver and traffic profile, the transmission rates and the fuel

consumption based on motor speed, we synthesized the best points to shift up

or down. In power1-2, we used the example from [NPK+05, FKN+11], which

the authors use to analyze dynamic power management strategies. Our imple-

mentation allows solution of optimization problems that are not possible with

either [NPK+05] or the multi-objective techniques in [FKN+11]. For example,

in power1 we ask the question “What is the best average power consumption

per served request”. In power2, we ask for the best-case power-consumption

per battery lifetime, i.e., we ask for how many hours a battery can last.

82

2.6. Conclusion

Observations.

The amount of time needed by the algorithms strongly depends on the amount

of blocks it constructs. We observed that a higher number of blocks increases

the time necessary to construct the partition. Each refinement step takes longer

the more blocks we have. Analogously, the more blocks we have, the bigger

the matrices we need to analyze. We observed an almost monotone increase in

the number of blocks while policy iteration runs. Accordingly, it is beneficial

to select an initial strategy with as few blocks as possible.

In the original policy iteration algorithm of Section 2.4, we constructed

unichain strategies from multichain strategies several times throughout the

algorithm. As it turns out, unichain strategies increase the amount of blocks

dramatically. We therefore successfully modified our algorithm to avoid them,

which drastically improved performance

The symbolic encoding as well as bisimulation are crucial to handle models

of a size that the explicit implementation described in Section 2.4 could not

handle (storing a model of the size of phil10 was not feasible on our testing

machine).

2.6 Conclusion

We have presented a framework for synthesizing efficient controllers. The

framework is based on finding optimal strategies in Ratio-MDPs, including

a novel closed-loop between system and environment. To compute optimal

strategies we first presented three algorithms based on strategy improvement,

fractional linear programming, and linear programming, respectively. We have

compared performance characteristics of these algorithms and integrated the

best algorithm into the probabilistic model checker PRISM. Based on these

algorithms, we introduced a semi-symbolic policy iteration algorithm and re-

ported on experiments with its integration into PRISM. This implementation

proved that we can analyze large MDPs.

Future Work. There still remains work to do. Of interest are methods to

scale the existing algorithms to even larger MDPs. For example, paralleliza-

tion of the algorithms could be considered. In another direction, abstraction

and decomposition of models to obtain smaller models are of interest. Work

has been published [KKNP10, DAT10] in this area, but more research seems

83

CHAPTER 2: INTRODUCTION

necessary. A promising approach uses SMT solvers to lump Markov chains

[DKP13].

Finally, a major bottle neck in our implementation is the decomposition

into end-components. More research for a faster algorithm in this area would

benefit our implementation.

84

3 Program repair without regret

In which we use the idea of quantitative

synthesis to find better repairs for programs.

Résumé

Dans ce chapitre nous décrivons l’application des idées de synthèse quantita-

tive pour réparation automatique des programme. Nous définirons la réparation

des programmes au nouveau comme la recherche d’un programme modifié. Le

programme d’origine n’est différent que dans les traces de spécificqtion con-

taminées. Ensuite nous prouvons, que cette définition est aussi strict en générale.

Pour cette raison nous définissons une version simple, dans laquelle nous in-

troduisons une deuxième specification pour caractériser quelle trace éxactement

doit rester unmodifier. Nous montrons sous quelles conditions il est possible

de réparer cette version simple. Si cela est possible, nous fournissons un algo-

rithme de réparation. Finnallement nous decrivons une implimentation et les

expériences finalles.

3.1 Introduction

Writing a program that satisfies a given specification usually involves several

rounds of debugging. Debugging a program is often a difficult and tedious

task: the programmer has to find the bug, localize the cause, and repair it.

Model checking [CE81, QS82] has been successfully used to expose bugs in

a program. There are several approaches [CGMZ95, ELLL01, RS04, ZH02,

JRS04, GV03, BNR03, RR03] to automatically find the possible location of

an error. We are interested in automatically repairing a program. Automatic

program repair takes a program and a specification and searches for a correct

program that satisfies the specification and is syntactically close to the origi-

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

nal program (cf. [BEGL99, JGB05, EKB05, GBC06, JM06, CMB08, SDE08,

VYY09, CTBB11]). Existing approaches follow the same idea: first, introduce

freedom into the program (e.g., by describing valid edits to the program), and

then search for a way of resolving this freedom such that the modified program

satisfies the specification or the given test cases. While these approaches have

been shown very effective, they suffer from a common weakness: they give little

or no guarantees on preserving correct behaviors (i.e., program behaviors that

do not violate the specification). Therefore, a user of a repair procedure may

later regret having applied a fix to a program because it introduced new bugs

by modifying behaviors that are not explicitly specified or for which no test

case is available. The approach presented by Chandra et al.[CTBB11] provides

some guarantees by requiring that a valid repair needs to pass a set of positive

test cases. Correct behaviors outside these test cases are left unconstrained

and the repair can thus change them unpredictably.

We present the first repair approach that constructs repairs that are guar-

anteed to satisfy the specification and that are not only syntactically, but also

semantically close to the original program. The key benefits of our approach

are: (i) it maintains correct program behavior, (ii) it is robust w.r.t. generous

program modifications, i.e., it does not produce degenerated programs if given

too much freedom in modifying the program, (iii) it works well with incomplete

specifications, because it considers the faulty program as part of the specifi-

cation and preserves its core behavior, and finally (iv) it is easy to implement

on top of existing technology. We believe that our framework will prove useful

because it does not require a complete specification by taking the program as

part of the specification. It therefore makes writing specifications for programs

easier. Furthermore, specifications are often given as conjunctions of smaller

specifications that are verified individually. In order to keep desired behaviors,

classical repair approaches repair a program with respect to the entire specifi-

cation. Our approach can provide meaningful repair suggestions while focusing

only on parts of the specification.

3.2 On languages

In addition to the definitions from Section 1.4, we need the following definitions.

Let AP be the finite set of atomic propositions, as in Section 1.4.

86

3.2. On languages

Definition 3.1 (Alphabet over letters) We define the alphabet over AP

(denoted ΣAP) as the set of all evaluations of AP , i.e., ΣAP = 2AP . If AP is

clear from the context or not relevant, then we omit the subscript in ΣAP .

We are now going to partition AP into sets I and O, where I are input

symbols and O are output symbols. Given a word w ∈ ΣωAP consisting of

letters made of input and output symbols, we will define the restriction of w

to the set of inputs by cutting away all output symbols. Analogously, given a

word consisting of only input symbols we will define its extension as the set of

words you can create by adding output symbols.

Definition 3.2 (Restricted and extended words) Given a set of proposi-

tions I ⊆ AP , we define the I-restriction of a word w ∈ ΣωAP , denoted by w↓I, as

w↓I = l0l1 · · · ∈ ΣωI with li = (wi ∩ I) for all i ≥ 0. Given a language L ⊆ ΣωAP

and a set I ⊆ AP , we define the I-restriction of L, denoted by L ↓I, as the set

of I-restrictions of all the words in L, i.e., L ↓I = {w↓I | w ∈ L}. Given a word

w ∈ ΣωI over a set of propositions I ⊆ AP , we use w↑AP to denote the extension

of w to the alphabet ΣAP , i.e., w↑AP = {w′ ∈ ΣωAP | w′↓I = w}. Extension of

a language L ⊆ ΣωI is defined analogously, i.e., L ↑AP = {w↑AP | w ∈ L}.

If a language contains for each input word w at most one word whose

restriction is w, then we call this language input deterministic. In effect this

means that the language allows at most one possible output for each input. If

a language contains for each input word w at least one word whose restriction

is w, then we call this language input complete. This means that the language

admits at least one output to each input.

Definition 3.3 (Input completeness and output determinism) A language

L ⊆ ΣωAP is called I-deterministic for some set I ⊆ AP if for each word v ∈ ΣωI

there is at most one word w ∈ L such that w↓I = v. A language L is called

I-complete if for each input word v ∈ ΣωI there exists at least one word w ∈ L

such that w↓I = v.

A Büchi automaton is an automaton in conjunction with a parity objective

with co-domain {1, 2}.

Definition 3.4 A Büchi automaton is a tuple A = (S, s0,Σ,∆,F) such that

(S, s0,Σ,∆) is an automaton. F ⊆ S is the set of accepting states. A word is

87

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

accepted by A if there exists a run s0 s1 . . . such that si ∈ F for infinitely many

i. We denote by L(A) the language of the Büchi automaton, i.e., the set of

words accepted by A. A language that is accepted by a Büchi automaton is

called ω-regular.

For every LTL formula ϕ (see Definition 1.11 on Page 20) one can construct

a Büchi automaton A such that L(A) = L(ϕ) [WVS83, LP85].

We will use the following lemma in Section 3.4. It follows directly from the

definition (i.e., from the fact that δO is a function).

Lemma 3.1 (Machine languages) The language L(M) of any machine M =

(SO, o0,ΣI,ΣO, δO,ΩO) is I-deterministic (input deterministic) and I-complete

(input complete).

Realizability and synthesis problem.

For LTL formulas, there is an algorithm to decide realizability and to solve

the synthesis problem.

Theorem 3.1 (Synthesis Algorithms [BL69, Rab69, PR89]) There ex-

ists a deterministic algorithm that checks whether a given LTL-formula (or

an ω-regular language) ϕ is realizable. If ϕ is realizable, then the algorithm

constructs M.

3.3 Example

In this section we give a simple example to motivate our definitions and high-

light the differences to previous approaches such as [JGB05].

Example 3.1 (Traffic Light) Assume we want to develop a sensor-driven

traffic light system for a crossing of two streets. For each street entering the

crossing, the system has two sets of lights (called light1 and light2) and

two sensors (called sensor1 and sensor2). By default both lights are red. If

a sensor detects a car, then the corresponding lights should change from red

to yellow to green and back to red. We are given the implementation shown

in Figure 3.1 as starting point. It behaves as follows: for each red light, the

system checks if the sensor is activated (Line 12 and 18). If yes, this light

becomes yellow in the next step, followed by a green phase and a subsequent

red phase. Assume we require that our implementation is safe, i.e., the two

88

3.3. Example

1 typedef enum {RED, YELLOW, GREEN} traffic light;
2 module Traffic (clock, sensor1, sensor2, light1, light2);
3 input clock, sensor1, sensor2;
4 output light1, light2;
5 traffic light reg light1, light2;
6 initial begin
7 light1 = RED;
8 light2 = RED;
9 end

10 always @(posedge clock) begin
11 case (light1)
12 RED: if (sensor1) // Repair: if (sensor1 & !(light2==RED & sensor2))
13 light1 = YELLOW;
14 YELLOW: light1 = GREEN;
15 GREEN: light1 = RED;
16 endcase // case (light1)
17 case (light2)
18 RED: if (sensor2)
19 light2 = YELLOW;
20 YELLOW: light2 = GREEN;
21 GREEN: light2 = RED;
22 endcase // case (light1)
23 end // always (@posedge clock)
24 endmodule // traffic

Figure 3.1: Implementation of a traffic light system and a repair

lights are never green at the same time. In LTL, this specification is written

as ϕ = G(light1 6= GREEN∨ light2 6= GREEN). The current implementation

clearly does not satisfy this requirement: if both sensors detect a car initially,

then the lights will simultaneously move from red to yellow and then to green,

thus violating the specification.

Following the approach in [JGB05] we introduce a non-deterministic choice

into the program and then use a synthesis procedure to select among these

options in order to satisfy the specification. For instance, we replace Line 12

(in Figure 3.1) by if(?) and ask the synthesizer to construct a new expression

for ? using the input and state variables. The synthesizer aims to find a simple

expression s.t. ϕ is satisfied. In this case one simple admissible expression is

false. It ensures that the modified program satisfies specification ϕ. While

this repair is correct, it is very unlikely to please the programmer because it

repairs “too much”: it modifies the behavior of the system on input traces on

which the initial implementation was correct. We believe it is more desirable to

follow the idea of Chandra et al. [CTBB11] saying that a repair is only allowed

89

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

ϕ M ϕ M

M ′

Figure 3.2: Graphical representation
of Def. 3.5

ϕ ψ M ϕψ M

M ′

Figure 3.3: Graphical representation
of Def. 3.6

to change the behavior of incorrect executions. In our case, the repair suggested

above would not be allowed because it changes the behavior on correct traces,

as we will show in the next section.

3.4 Repair

In this section we first give a repair definition for reactive systems which follows

the intuition that a repair can only change the behavior of incorrect executions.

Then, we provide an algorithm to compute such repairs.

Definitions

Given a machine M and a specification ϕ, we say a machine M′ is an exact repair

of M if (i) M′ behaves like M on traces satisfying ϕ and (ii) if M′ implements ϕ.

Intuitively, the correct traces of M act as a lower bound for M′ because they

must be included in L(M′). L(ϕ) acts as an upper bound for M′, i.e., it specifies

the allowed traces.

Definition 3.5 (Exact Repair) A machine M′ is an exact repair of a ma-

chine M for a specification ϕ, if (i) all the correct traces of M are included in

the language of M′, and (ii) if the language of M′ is included in the language

of the specification ϕ, i.e.,

L(M) ∩ L(ϕ) ⊆ L(M′) ⊆ L(ϕ)

Note that the first inclusion defines the behavior of M′ on all input words to

which M responds correctly according to ϕ. In other terms, M′ has only one

choice forn inputs which M treat correctly. Figure 3.2 illustrates Definition 3.5:

the two circles depict L(M) and L(ϕ). A repair has to (i) cover their intersection

(first inclusion in Definition 3.5), which we depict with the striped area in the

90

3.4. Repair

picture, and (ii) lie within L(ϕ) (second inclusion in Definition 3.5). One such

repair is depicted by the dotted area on the right.

Example 3.2 (Traffic Light, cont.) The repair suggested in Example 3.1

(i.e., to replace if (sensor1) by if (false)) is not a valid repair accord-

ing to Definition 3.5. The original implementation responds correctly, e.g., to

the input trace in which sensor1 is always high and sensor2 is always low,

but the repair produces different outputs. The initial implementation behaves

correctly on any input trace on which sensor1 and sensor2 are never high si-

multaneously. Any correct repair should include these input/output traces. An

exact repair (i.e, a repair according to Definition 3.5) replaces if (sensor1)

by if (sensor1 & !(light2 == RED & sensor2)). This repair retains all

correct traces while avoiding the mutual exclusion problem.

While Definition 3.5 excludes the undesired repair in our example, it is

sometimes too restrictive and can make repair impossible, as the following

example shows.

Example 3.3 (Definition 3.5 is too restrictive) Assume a machine M with

input r and output g that always copies r to g, i.e., M satisfies G(r↔ g). The

specification requires that g is eventually high, i.e., ϕ = F g. Definition 3.5

requires the repaired machine M′ to behave like M on all traces on which M

behaves correctly. M responds correctly to all input traces containing at least

one r, i.e., L(M) ∩ L(ϕ) = F(r ∧ g). Intuitively, M′ has to mimic M as long as

M still has a chance to satisfy ϕ (i.e., to produce a trace satisfying F(r ∧ g)).

Since M always has a chance to satisfy ϕ, M′ has to behave like M in every

step, therefore M′ also violates ϕ, and cannot be repaired in this case.

In order to allow more repairs, we relax the restriction requiring that all

correct traces are included in the following definition.

Definition 3.6 (Relaxed Repair) Let ψ define a language (by an LTL-formula

or a Büchi automaton). We say M′ is a repair of M with respect to ψ and ϕ

if M′ behaves like M on all traces satisfying ψ and M′ implements ϕ. That is,

M′ is a repair constructed from M iff

L(M) ∩ L(ψ) ⊆ L(M′) ⊆ L(ϕ) (3.1)

91

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

In Figure 3.3 we give a graphical representation of this definition. The

two concentric circles depict ϕ and ψ. (The definition does not require that

L(ψ) ⊆ L(ϕ), but for simplicity we depict it like that.) The overlapping circle

on the right represents M. The intersection between ψ and M (the striped area

in Figure 3.3) is the set of traces M′ has to mimic. On the right of Figure 3.3,

we show one possible repair (represented by the dotted area). The repair covers

the intersection of L(M) and L(ψ), but not the intersection of L(ϕ) and L(M).

The repair lies completely in L(ϕ). The choice of ψ influences the existence of

a repair. In Section 3.5 we discuss several choices for ψ.

Example 3.4 (Example 3.3 continued) Example 3.3 shows that setting ψ

to ϕ, i.e., F g in our example, can be too restrictive. If we relax ψ and require

it only to include all traces in which g is true within the first n steps for some

given n (i.e., ψ =
∨

0≤i≤n Xn g), then we can find a repair. A possible repair

is a machine M′ that copies r to g in the first n steps and keeps track if g has

been high within these steps. In this case, M′ continues mimicing M, otherwise

it sets g to high in step n+ 1, independent of the behavior of M. This way M′

satisfies the specification (F g) and mimics M for all traces satisfying ψ.

Reduction to Classical Synthesis

The following theorem shows that our repair problem can be reduced to the

classical synthesis problem.

Theorem 3.2 Let ϕ, ψ be two specifications and M, M′ be two machines with

input signals I and output signal O. Machine M′ satisfies Formula 3.1 (L(M)∩

L(ψ)
(a)

⊆ L(M′)
(b)

⊆ L(ϕ)) if and only if M′ satisfies the following formula:

L(M′) ⊆
(
(L(M) ∩ L(ψ))↓I↑AP → L(M)

)︸ ︷︷ ︸
(i)

∩L(ϕ)︸︷︷︸
(ii)

(3.2)

For two languages A and B, A → B is an abbreviation for (Σω \A) ∪ B.

Intuitively, Equation 3.2 requires that (i) M′ behaves like M on all input words

that M answers conforming to ψ and (ii) M satisfies specification ϕ.

Proof From left to right: We have to show that L(M′) is included in (i) and

(ii). Inclusion in (ii) follows trivially from (b). It remains to show L(M′) ⊆(
L(M) ∩ L(ψ)

)
↓I↑AP → L(M). Let w ∈ L(M′). If w 6∈

(
L(M) ∩ L(ψ)

)
↓I↑AP ,

then the implication follows trivially. Otherwise we have to show that w ∈

92

3.4. Repair

L(M). Since w ∈
(

L(M)∩L(ψ)
)
↓I↑AP , it follows that w↓I ∈

(
L(M)∩L(ψ)

)
↓I .

From w↓I ∈
(

L(M) ∩ L(ψ)
)
↓I and the fact that L(M) is input deterministic,

we know that M(w↓I) ∈ L(M) ∩ L(ψ) ⊆ L(M′) (due to (a)). Together with

L(M′) being input deterministic, it follows that M(w↓I) = M ′(w↓I) = w, and

so w ∈ L(M) holds.

From right to left: We have to show (a) and (b). (b) follows trivially from

L(M′) ⊆ (ii). It remains to show (a), i.e., that L(M) ∩ L(ψ) ⊆ L(M′). Assume

a word w ∈ L(M) ∩ L(ψ), we have to show that w ∈ L(M′). Let w′ ∈ L(M′)

be a word such that w↓I = w′↓I . Note that w′ exists because L(M′) is input

complete. We now show that w = w′, which implies that w ∈ L(M′). Since

w ∈ L(M)∩L(ψ), it follows that w↓I (=w′↓I) ∈ (L(M)∩L(ψ))↓I . Therefore, we

know that w′ ∈
(

L(M)∩L(ψ)
)
↓I↑AP . From L(M′) ⊆ (i) and from w′ ∈ L(M′),

it follows that w′ ∈ L(M). Since L(M) is input deterministic, w ∈ L(M),

w′ ∈ L(M), and w↓I = w′↓I , it follows that w = w′.

This theorem leads together with [PR89] to the following corollary, which

allows us to use classical synthesis algorithms to compute repairs.

Corollary 3.1 (Existence of repair) A repair can be constructed from a

machine M with respect to specifications ψ and ϕ if and only if the language

(
(L(M) ∩ L(ψ))↓I↑AP → L(M)

)
∩ L(ϕ) (3.3)

is realizable.

Algorithm

Corollary 3.1 gives an algorithm to construct repairs based on synthesis tech-

niques (cf. [JGB05]). In order to compute the language defined by Formula 3.3,

we can use standard automata-theoretic operations. More precisely, we con-

struct a Büchi automaton Aϕ recognizing ϕ and a Büchi automaton Aψ recog-

nizing ψ. Note that M is a Büchi automaton in which all states are accepting.

Since Büchi automata are closed under conjunction, disjunction, projection,

and complementation, we can construct an automaton for
(
(M×Aψ)|I +M

)
×

Aϕ, where A × B denotes the conjunction, A + B denotes the disjunction of

automata A and B, Ā denotes the complementation of A, and A|I the projec-

tion of automaton A with respect to a set of proposition I. Once we have a

93

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

Büchi automaton for the language in Formula 3.3, we can use Theorem 3.1 to

synthesize a repair.

This algorithm in unlikely to scale because the complementation of a Büchi

automaton induces an exponential blow-up in the worst case [DH94]. Further-

more, the projection operator can introduce non-determinism that can compli-

cate the application of a synthesis procedure due to the need of an additional

determinization step, leading to another exponential blow-up [Pit07, Sch09].

In the following we show how to obtain an efficient algorithm by avoiding com-

plementation (Lemma 3.2) and projection (Lemma 3.3).

Lemma 3.2 Given a machine M with input signals I and output signals O

and an LTL-formula ϕ over the atomic propositions AP = I ∪O, the following

equalities hold:

ΣωI \
(

L(M) ∩ L(ϕ)
)
↓I =

(
L(M) ∩ L(¬ϕ)

)
↓I (3.4)

ΣωAP \
(

L(M) ∩ L(ϕ)
)
↓I↑AP =

(
L(M) ∩ L(¬ϕ)

)
↓I↑AP (3.5)

Proof Intuitively, Equation 3.4 means that the set of input words on which

M behaves correctly, i.e., satisfies ϕ, is the complement of the set of inputs

on which M behaves incorrectly, i.e., violates ϕ and therefore satisfies ¬ϕ.

Formally, we know from the semantics of LTL that L(¬ϕ) = Σω \L(ϕ), which

implies that

L(M) ∩ L(¬ϕ)
(a)
= L(M) ∩

(
Σω \L(ϕ)

) (b)
= L(M) \ L(ϕ). (3.6)

Equality 3.6.b follows from simple set theory. Furthermore, since L(M) is input

deterministic and input complete, we know that

∀ w,w′ ∈ L(M) : (w↓I = w′↓I)→ w = w′ (3.7)

∀ w ∈ ΣωAP : ∃ w′ ∈ L(M) : w↓I = w′↓I (3.8)

We use these facts to show that for all A ⊆ Σω, ΣωI \
(

L(M) ∩ A
)
↓I =(

L(M)\A)↓I holds, which proves together with Equation 3.6 that Equation 3.4

is true:

94

3.4. Repair

v ∈
(

L(M) \A)↓I ⇐⇒ ∃w ∈ L(M) \A : (w↓I = v)

⇐⇒ ∃w ∈ L(M) : (w↓I = v) ∧ w 6∈ A
Eq.3.7⇐⇒
Eq.3.8

∀w ∈ L(M) : (w↓I = v)→ w 6∈ A

⇐⇒ ∀w ∈ L(M) : w ∈ A→ (w↓I 6= v)

⇐⇒ ∀w ∈ L(M) ∩A : (w↓I 6= v)

⇐⇒ 6 ∃w ∈ L(M) ∩A : (w↓I = v) ⇐⇒ v 6∈
(

L(M) ∩A
)
↓I

Equation 3.5 is a simple extension of Equation 3.4 to the alphabet ΣAP .

It follows from the fact that for any language L ⊆ ΣωI : (ΣIω \ L)↑AP =

ΣωI ↑AP \ L ↑AP holds.

With the help of Lemma 3.2 we can simplify Formula 3.3 to(
(L(M) ∩ L(¬ψ))↓I↑AP ∪ L(M)

)
∩ L(ϕ) (3.9)

This allows us to compute a repair using a synthesis procedure for the automa-

ton
(
(M×A¬ψ)|I + M

)
×Aϕ, which is much simpler to construct.

Lemma 3.3 (Avoiding input projection) Given a machine M and an LTL-

formula ϕ, for every word w ∈ Σω, w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ M(w↓I) ∈
L(ϕ) holds.

Proof

w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ w↓I ∈ (L(M) ∩ L(ϕ))↓I

⇐⇒ ∃w′ ∈ L(M) ∩ L(ϕ) : w′↓I = w↓I

⇐⇒ ∃w′ ∈ L(M) : w′↓I = w↓I ∧ w′ ∈ L(ϕ)

⇐⇒ M(w↓I) ∈ L(ϕ)

Inputs

M M ′A¬ψ

Check

Aϕ

Check
Aeq

True/false

Figure 3.4: Efficient implementa-

tion

Due to Lemma 3.3 we can check if

a word produced by M′ lies in (L(M) ∩
L(ϕ))↓I↑AP by checking whether M

treats the input projection of that word

correctly. A synthesizer looking for a so-

lution to Equation 3.9 can simulate M

and check its output against ¬ψ to decide

95

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

whether M′ is allowed to deviate from M.

This allows us to solve our repair prob-

lem using the simple setup we depict in Figure 3.4. It shows five automata

running in parallel:

1. The original machine M.

2. The repair candidate M′, a copy of M that includes multiple options to

modify M.

3. A specification automaton Aϕ to check if the new machine M′ satisfies

its objective.

4. A specification automaton A¬ψ to check if the original machine M violates

ψ.

5. A specification automaton Aeq that checks if the outputs of M and M′

coincide, i.e., eq = G(
∧
o∈O o ↔ o′), where O is the set of outputs of M

and o′ is the copy of output o ∈ O in machine M′.

Theorem 3.3 Given the setup depicted in Figure 3.4, a repair option in M′

is a valid repair according to Definition 3.6, if it satisfies the formula

ϕ ∧ (¬ψ ∨ eq). (3.10)

Proof Follows from Lemma 3.2 and Lemma 3.3.

Formula 3.10 forces M′ to (1) behave according to ϕ and (2) mimic the

behavior of M, if M satisfies ψ. Note that all automata can be constructed

separately because they can be connected through the winning (or acceptance)

condition. We avoid the monolithic construction of a specification automaton

and obtain the same complexity as for classical repair. E.g., if ϕ, ¬ψ, and

eq are represented by Büchi automata, then we can check for ϕ ∧ (¬ψ ∨ eq)
by first merging the acceptance states of ¬ψ and eq, and then solving for a

generalized Büchi condition, which is quadratic in the size of the state space

(|A¬ψ| × |M | × |M ′| × |Aϕ| × 2).

Implementation

Our prototype implementation is based on the following two ideas:

96

3.5. Discussion and limitations

1. If a synthesis problem can be decided by looking at a finite set of possi-

ble repairs 1 (combinations of choices), then the choice of repair can be

encoded using multiple initial states.

2. An initial state that does not lead to a counter example represents a

correct repair. Any model checker can be adapted to return such an initial

state, if one exists. By default a model checker returns the opposite, i.e.,

an initial state that leads to a counter-example but it is not difficult to

change it. E.g., in BDD-based model-checkers some simple set operations

suffice and in SAT-based checkers one can make use of unsat-core to

eliminate failing initial states.

The main drawback of this approach is that the state space is multiplied by

the number of considered repairs. However, the approach has several benefits

which make it particularly interesting for program repair. First, it is easy to

restrict the set of repairs to those that are simple and readable. In our pro-

totype implementation we adapt the idea of Solar-Lezama et al. [SLRBE05]

and search for a repair within a given set of user-defined expressions. In the

examples, we derive these expressions manually from the operators used in

the program (see Section 3.6 for more details). Furthermore, we assume a

given fault location that will be replaced by one of the user-defined expressions

(cf. [JGB05, JSGB12]). Expression generation and fault localization are inter-

esting and active research directions (cf. Section 3.1) but are not addressed in

this chapter. We focus on the problem of deciding what constitutes a good re-

pair. The second main benefit is that we can adapt an arbitrary model checker

to solve our repair problem. We believe (based on initial experiments) that at

the current state, model checkers are significantly more mature than synthesis

frameworks. In our implementation we used a version of NuSMV [CCG+02]

that we slightly modified to return an initial state that does not lead to a

counter example.

Note that using the sketch-like approach (i.e., using a set of expressions

to choose from) is an implementation choice. It does not take away from the

generality of our approach. An implementation generating stateful repairs as

in [JGB05, JSGB12] is possible.

1Note that any synthesis problem with memoryless winning strategies satisfies this con-
dition.

97

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

3.5 Discussion and limitations

In this section we discuss choices for ψ and analyze why a repair can fail.

Choices for ψ

We present several different choices for ψ and analyze their strengths and weak-

nesses:

1. ψ = ϕ

2. If ϕ = f→ g, then ψ = f ∧ g

3. ψ = ∅

In addition we suggest an approach based on Markov decision processes.

Exact. Choosing ψ = ϕ is the most restrictive choice. It requires that M′

behaves like M on all words that are correct in M. While this is in general de-

sirable, this choice can be too restrictive as Example 3.3 in Section 3.4 shows.

One might think that the problem in Example 3.3 is that ϕ is a liveness spec-

ification. The following example shows that choosing ψ = ϕ can also be too

restrictive for safety specifications.

Example 3.5 Let M be a machine with input r and output g; M always out-

puts ¬g, i.e., M implements G(¬g). Assume ϕ = F(¬r)→ G(g) = G(r)∨G(g).

Applying Formula 3.9, we obtain (G(¬g)∧¬(G(r)∨G(g)))↓I↑AP 2 ∧ (G(r)∨G(g)) =

(F(¬r)∧G(g))∨(G(r)∧G(¬g)). This formula is not realizable because a ma-

chine does not know if the environment will always send a request (G(r)) or

if the environment will eventually stop sending a request (F(¬r)). A correct

machine has to respond differently in these two cases. So, M cannot be repaired

if ψ = ϕ.

Assume-Guarantee. It is very common that the specification is of the form

f → g (as in the previous example). Usually, f is an assumption on the envi-

ronment and g is the guarantee the machine has to satisfy if the environment

meets the assumption. Since we are only interested in the behavior of M if the

assumption is satisfied, it is reasonable to ask the repair to mimic only traces

on which the assumption and the guarantee is satisfied, i.e., choosing ψ = f∧g.

2LTL is not closed under projection. We use LTL only to describe the corresponding
automata computations.

98

3.5. Discussion and limitations

Example 3.6 (Example 3.5 continued) Recall Example 3.5, we decompose

ϕ into assumption F¬r and guarantee G g. Now, we can see that M is only

correct on words on which the assumption is violated, so the repair should

not be required to mimic the behavior of M. If we set ψ = F¬r∧G g, then

L(M) ∩ L(ψ) = ∅ and M′ is unrestricted on all input traces.

Unrestricted. If we choose ψ = ∅ the repair is unrestricted and the approach

coincides with the work presented in [JGB05].

Reward based formulation. The first inclusion in Definition 3.6 strictly

defines the set of traces of a machine M a repaired machine M′ has to include.

We can relax this requirement using rewards. Using rewards allows us to ask

for the machine that agrees most of the time with M and for the machine that

agrees on the most traces with M. We will first present an example showing

where relaxing ψ makes sense.

Letter-Optimal Solutions. One intuitive solution to the repair problem is

a machine that “modifies the least possible output letters”. If ϕ is a safety

condition, then we are certain that we can win by staying in the safe region.

Therefore, our task is twofold: (1) stay in the safe region and (2) minimize the

number of times M′ chooses an output that differs from the output of M on

average. This can be achieved using a mean payoff objective, as the following

example illustrates.

Example 3.7 Let ϕ = G(r→ g), and let M fulfill G((g↔X¬g)), i.e., the ma-

chine signals g in every second step. If we choose ψ to recognize the safe region

of ϕ, then a repairing machine can output G(g), once M violates its specifica-

tion, thus choosing an output that differs from that of M infinitely often.

Another option is to reward M′ whenever it copies the behavior of M. To

calculate such a machine M′, we build a game from the safe region of ϕ and

M. Player 0 wins the game if she wins the safety game. The game is played

in rounds. First player 1 picks an input from ΣI, and then player 0 picks an

output form ΣO. The game grants a reward whenever the output chosen at a

state is equal to the output M chooses at this state.

In this example, an optimal strategy (i.e., the strategy that maximizes the

grant) will give a grant in every second step and whenever r is signaled.

99

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

We can generalize this idea to reduce the repair problem to two-player games

with mean-payoff and parity objectives. For a discussion and implementation

of these games, see e.g., [BBFR13].

Definition 3.7 (Letter-optimal repair) Let S = ((S×ΣAP),S0,S1, s0,∆)

be a two player game with a parity objective λ : S×ΣAP → N such that

player 0 controls the output symbols and player 1 controls the input symbols,

i.e., such that (s, i ∪ o) ∈ S0 ∧((s, i ∪ o), (s′, i′ ∪ o′)) ∈ ∆ =⇒ i = i′ and

(s, i ∪ o) ∈ S1 ∧((s, i ∪ o), (s′, i′ ∪ o′)) ∈ ∆ =⇒ o = o′, and such the game

is played in turns (such a game is generated, for example, to synthesize an

LTL-formula). Let further M = (M,m0,ΣI,ΣO, δ,Ω) be a machine.

Then we define the Letter-Optimal parity game S ′ by combining S with

M as follows. Let S ′ = (M × (S×ΣAP),M × S0,M × S1, (m0, s0),∆′) be a

two player game, where ((m, (s, i ∪ o)), (m′, (s′, i′ ∪ o′))) ∈ ∆′ if and only if

((s, i ∪ o), (s′, i′ ∪ o′)) ∈ ∆ and

s′ =

m if (b, i ∪ o) ∈ S1

δ(m, i) if (b, i ∪ o) ∈ S0

As reward function, we define r((m, (s, i ∪ o))) = 1 if Ω(m, i) = o and

(s, i) ∈ S1, and 0 otherwise. That is, a reward is assigned if the output of the

machine and the output of the last player 0 transition agree.

In addition, we define λ′ : M× (S×ΣAP)→ N by λ′(m, (s, i∪o)) = λ((s, i∪
o)), i.e., we copy the parity condition.

A letter-optimal repair is a winning and mean-payoff optimal strategy for

the defined game and vice versa. The parity condition makes sure that the

repair is qualitatively correct (e.g., fulfills an LTL-formula), while the quanti-

tative (mean-payoff) condition makes sure that as few letters as possible are

modified. Note that this might require infinite memory strategies in general,

but ε-optimal finite memory strategies exist [BBFR13].

Trace-Optimal Solutions. Another intuitive solution to the repair problem

is a machine that “modifies the least number of traces on average”. We model

the “on average” part using uniformly distributed inputs. Since this means

that the input we receive is not adversarial but probabilistic, this approach

does not work with every kind of qualitative specification, but only with safety

specifications.

100

3.5. Discussion and limitations

Example 3.8 Consider the following formula.

ϕ = (i ∧ X i→ ((o ∧ X o) ∨ (¬o ∧ X¬o))) ∧ (i ∧ X¬i→ (¬o ∧ X¬o))

as specification over input alphabet ΣI = {i} and output alphabet ΣO = {o}.
It requires on input ii . . . either output oo . . . or output ¬o¬o On input i¬i
it requires output ¬o¬o. Consider further M writing o constantly as machine

we need to repair. The machine is correct on input words starting with ii and

words starting with ¬i. It is incorrect on all words starting with i¬i.

Our goal is to minimize the number of traces that are modified. We there-

fore assign to each trace a payoff, either 1 or 0. An unchanged trace gets payoff

1, while a changed trace gets payoff 0. To “count” the number of changed

traces in a set of traces, we take the average payoff of all traces in that set. If

all traces are changed, then the payoff is 0; if no traces are changed, then the

payoff is 1. If half of the traces have changed, then the payoff is 0.5.

The minimal number of traces a repaired system has to change is all traces

that start with i, i.e., 50% of all possible traces.

The following definition provides an MDP whose optimal strategy provides

a machine that is correct for a safety specification and has a minimal number

of changed traces.

Definition 3.8 (Trace-optimal MDP) Let A = (S, s0,Σ,∆,F) be a realiz-

able, deterministic safety automaton, and let M = (M,m0,ΣI,ΣO, δ,Ω) be a

machine not fulfilling A.

We define the Word-Optimal MDP M as follows. LetM = ((M∪{⊥,>})×
S×ΣI, (>, s0, i0),ΣO, A, p) be an MDP, where i0 is some letter in ΣI, A(m, s) =

{o ∈ ΣO | ∃ s′ : (s, i ∪ o, s′) ∈ ∆}, i.e., the set of outputs allowed by the safety

automaton in state s for input i. Further, the probability function is defined

as

101

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

p((m, s, i), o)(m′, s′, i′) =



1
|ΣI | m = > ∧m′ = m0 ∧ s′ = s0

1
|ΣI | m 6= ⊥ ∧ Ω(m, i) = o∧

m′ = δ(m, i) ∧ (s, i ∪ o, s′) ∈ ∆

1
|ΣI | m 6= ⊥ ∧ Ω(m, i) 6= o∧

m′ = ⊥ ∧ (s, i ∪ o, s′) ∈ ∆

1
|ΣI | m = ⊥ ∧m′ = ⊥ ∧ (s, i ∪ o, s′) ∈ ∆

0 otherwise

As reward function, we define r((m, s, i), o) = 1 if m 6= ⊥, and 0 otherwise.

The initial state (modeled by >) defines the distribution of the first let-

ter. Afterwards, the machine and the safety automaton move synchronously,

depending on the random input letter. If the strategy for an MDP makes a

choice that differs from the choice of M, then the first component of the state

of the MDP goes to ⊥ immediatly, signalling that we “left” the machine. On

the other hand, if the strategy for an MDP never differs from the choice of M,

then the first component of the states of a trace will always be an element of

M . Therefore, the reward we chose will provide an average payoff of 1 if the

behavior of M is never left, and a payoff of 0 if the behavior differs at least once.

In that sense, the reward function “counts” changed and unchanged traces. An

optimal, i.e., maximizing strategy forM therefore changes the minimal number

of traces.

Reasons for Repair Failure

In the following we discuss why a repair attempt can fail. The first and simplest

reason is that the specification is not realizable. In this case, there is no correct

system implementing the specification and therefore also no repair. However, a

machine can be unrepairable even with respect to a realizable specification. The

existence of a repair is closely related to the question of realizability (Corol-

lary 3.1). Rosner [Ros97] identified two reasons for a specification ϕ to be

unrealizable.

1. Input-Completeness: if ϕ is not input-complete, then ϕ is not realiz-

able. For instance, consider specification G(r) requiring that r is always

102

3.5. Discussion and limitations

true. If r is an input to the system, the system cannot choose the value

of r and therefore also not guarantee satisfaction of ϕ.

2. Causality/Clairvoyance: certain input-complete specifications can only

be implemented by a clairvoyant system, i.e., a system that has knowl-

edge about future inputs (a system that is non-causal). For instance,

if the specification requires that the current output is equal to the next

input, written as G(o ↔ X i), then a correct system needs a look-ahead

of size one to produce a correct output.

The following lemma shows that given an input-complete specification ϕ,

input-completeness will not cause our repair algorithm to fail.

Lemma 3.4 (Input-completeness) If ϕ is input-complete, then
(
(L(M) ∩

L(ψ))↓I → L(M)
)
∩ L(ϕ) is input-complete.

Proof Let wI ∈ ΣI
ω. If wI ∈ (L(M) ∩ L(ψ))↓I , then there is a word w ∈

L(M) ∩ L(ψ) such that w↓I = wI . Therefore we have found a word for wI . If

not, then a word for wI exists because ϕ is input complete.

A failure due to missing causality can be split into two cases: the case in

which the repair needs finite look-ahead (see Example 3.9 below) and the case

in which it needs infinite look-ahead (see Example 3.10 below). The examples

show that even if the specification is realizable (meaning implementable by a

causal system), the repair might not be implementable by a causal system.

Example 3.9 Consider the realizable specification ϕ = g ∨X r and a machine

M that keeps g low all the time, i.e., M satisfies G(¬g). If input r is high in the

second step, M satisfies ϕ. An exact repair (according to Definition 3.5) needs

to set g to low in the first step if the input in the second step is high, because

it has to mimic M in this case. On the other hand, it the input in the second

step is low, g needs to be set to high in the first step. So, any exact repair has

to have a look-ahead of at least one, in order to react correctly.

The following example shows a faulty machine and a (realizable) specifica-

tion for which a correct repair needs infinite look-ahead.

Example 3.10 Consider a machine M with input r and output g that copies

the input to the output. Assume we search for a repair such that the modified

103

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

ϕ M

M ′

M ′

M ′

M ′

(a) M includes bad traces

ϕ M

(b) M cuts two valid machines

Figure 3.5: Two reasons for unrepairability

machine satisfies the specification ϕ = G F g requiring that g is high infinitely

often. Machine M violates the specification on all input sequences that keep r

low from some point onwards, i.e., on all words fulfilling F(G r). Recall that a

repair M′ has to behave like M on all correct inputs. In this example, M′ has

to behave like M on all finite inputs, because it does not know whether or not

the input word lies in F(G r) without seeing the word completely, i.e., without

infinite look-ahead.

Theorem 3.4 (Possibility of repair) Assume that we cannot repair machine

M with respect to a realizable specification ϕ. Then a repairing machine needs

either finite or infinite look-ahead.

Proof Follows from [Ros97], Corollary 3.1, and Lemma 3.4.

Characterization based on possible machines. Another way to look at

a failed repair attempt is from the perspective of possible machines. Recall,

in Figure 3.3 we depict a correct repair M′ as a circle covering the set of

words in the intersection of M and ψ. In Figure 3.5 we use the same graphical

representations to explain two reasons for failure. Figure 3.5a depicts several

machines M′ realizing ϕ. A repair of M has to be one of the machines realizing

ϕ. As observed in [GBJV08], there are words satisfying ϕ that cannot be

produced by any correct machine (depicted as red crosses in Figure 3.5a). E.g,

recall the specification ϕ = g ∨ X(r) in Example 3.9. The word in which

g is low initially and r high in the second step satisfies ϕ but will not be

produced by any correct (causal) machine because the machine cannot rely on

the environment to raise r in the second step. If the machine we are aiming to

repair includes such a trace, a repair attempt with ψ = ϕ will fail. In this case,

104

3.6. Empirical results

we can replace ϕ (or ψ) by the strongest formula that is open-equivalent3 to

ϕ in order to obtain a solvable repair problem. However, even if ϕ is replaced

by its strongest open-equivalent formula, the repair attempt might fail for the

reason depicted in Figure 3.5b. We again depict several machines M′ realizing

ϕ. M shares traces with several of these machines, but no machine covers the

whole intersection of ϕ and M. In other words, an implementing machine would

have to share the characteristics of two machines.

3.6 Empirical results

In this section we first describe the repair we synthesized for the traffic light

example from Section 3.3. Then, we summarize the results on a set of example

we analyzed. All experiments were run on a 2.4GHz Intel(R) Core(TM)2 Duo

laptop with 4 GB of RAM.

Traffic Light Example. In the traffic light example, we gave the synthesizer

the option to choose from 250 expressions (all possible logical expression over

combinations of light colors and signal states). NuSMV returns the expression

(s2 ∧ s1 ∧ (l2 6= RED)) ∨ (¬s2 ∧ s1 ∧ l2 6= GREEN), which is equivalent to

s1∧ ((s2∧ l2 6= RED)∨ (¬s2∧ l2 6= GREEN)) in 0.2 seconds. The repair forbids

the first light from turning yellow if the second light is already green. This is not

the repair we suggested in Section 3.3 because the synthesizer has freedom to

choose between the expressions that satisfy the new notion. Our new approach

avoids the obvious but undesired repair of leaving the first light red, irrespective

of an arriving car. This is the solution NuSMV provides (within 0.16s) if we

use the previous repair notion [JGB05].

Experiment description

In order to empirically test the viability of our approach and to confirm our

improved repair suggestions, we applied our approach to several examples. We

will first describe the examples we considered, and then we will analyze the

results.

Binary Search. This is an implementation of the binary search algorithm,

which is famous for the mistakes people make when they implement it. The

3Two formulas ϕ and ϕ′ are open-equivalent if any machine M implementing ϕ also
implements ϕ′ and vice-versa [GBJV08].

105

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

original implementation is as follows.

1 binary search(array, needle) {

2 lower := 1

3 upper := len(array);

4 i := (upper − lower)/2;

5 while(array[i] != needle

6 && array[upper] > needle

7 && array[lower] < needle) {

8 if (array[i] < needle) {

9 lower = i;

10 } else {

11 upper = i;

12 }

13 i = (upper − lower)/2;

14 return i;

15 }

While the implementation looks reasonable, it contains a bug. This bug is

revealed when checking against property

ϕ = sorted(array) ∧ needle ∈ array =⇒ F array[i] = needle.

It goes into an infinite loop if the array has even length and the needle is in the

rightmost element. This is due to a mistake in the assignment to lower. We

free the assignment to lower, and give the synthesizer the option to replace it

with i, lower + 1, lower - 1, upper, i - 1 or i + 1.

Note the implication in ϕ. Synthesizing with ψ = ϕ will not allow us to find

a solution to this example. To see why, consider the array as input symbol and

the returned value as output symbol. We then demand that the synthesizer

finds a solution such that

1. The two implementations return the same result when the input was

invalid

2. The two implementations return the same result when the input was valid

and the broken implementation returns the correct result

It makes more sense to demand that the two implementations return the

same result if the input is valid and the original implementation returns the

106

3.6. Empirical results

correct result (Section 3.5). In fact, given this specification, the synthesizer

returns the correct result lower + 1.

PCI. This example models the PCI Bus protocol, and is taken from the

NuSMV distribution. The arbiter has to give bus access to 6 elements, all

of which can demand access at any time. The solution is to have 3 smaller

2-input arbiters that decide for priority between a pair of elements each, and

one 3-input arbiter that takes the result of the 2-input arbiters as input. All

of these can run either in a fixed-priority or in a round-robin mode.

For each bus element, there is a specification demanding that the element

eventually can access the bus, if it demands it.

We introduced a bug in the round-robin mode of the 3-input arbiter, which

gave access to a element 1 if element 2 requested it (a simple off-by-one error).

This meant that, for example, the processor would never receive access to the

bus, i.e., one of the specifications is violated. We freed the behavior of the

offending round-robin scheduler, thus allowing the synthesizer a lot of choice.

Using the classical synthesis approach, we can guarantee access to the pro-

cessor by giving it constant access. We have thus repaired the arbiter according

to the violated property, but have introduced new bugs, violating other prop-

erties.

With our approach, the synthesizer finds the only correct implementation

that guarantees access for all bus elements, although the specification defines

only about one of them.

Read-Write Lock Example. A read-write lock can be implemented using

a semaphore and a lock. In read-write locks there can be arbitrarily many

readers to some datastructure. However, if a thread wants to write to the

data-structure, then it tries to acquire a write-lock. Once it tries to acquire a

write-lock, an implemenation can stop granting access to new readers. It then

waits until all readers have left the data-structure, grants the write-lock, and

only starts granting read- or write-locks, once the write-lock is released.

Consider the following implementation attempt.

1 struct rw lock {semaphore sem(N THREADS)};

2

3 write lock(rw lock) {

4 for i from 1 to N THREADS {

5 sem−−;

107

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

6 }

7 }

8

9 read lock(rw lock) {

10 sem−−;

11 }

12

13 release read lock(rw lock) {

14 sem++;

15 }

16

17 release write lock(rw lock) {

18 for i from 1 to N THREADS {

19 sem++;

20 }

21 }

22

23 THREAD i {

24 while (∗) {

25 if (∗) {

26 read lock(lock);

27;

28 release read lock(lock);

29 } else {

30 write lock(lock);

31;

32 release write lock(lock);

33 }

34 }

35 }

Our specification demands that if whatever happens in . . . is bounded, then

there is no deadlock. The implementation fails this specification. Consider a

run in which 2 threads simultaneously try to acquire the write-lock. The system

can grant one half of the locks to one thread, the rest of the locks to the other

thread. Since no thread has all locks, none can proceed and none of them

releases all locks. Therefore the system is in a deadlock.

We now add an additional mutex, because we suspect that we have to

108

3.6. Empirical results

lock the writer locking function, but we do not know how and when exactly.

Therefore we modify the implementation as follows.

1 struct rw lock {semaphore sem(N THREADS)};

2 mutex m;

3

4 write lock(rw lock) {

5 if (?) lock(m);

6 for i from 1 to N THREADS {

7 sem−−;

8 }

9 if (?) unlock(m);

10 }

11

12 read lock(rw lock) {

13 if (?) lock(m);

14 sem−−;

15 if (?) unlock(m);

16 }

17

18 release read lock(rw lock) {

19 if (?) lock(m);

20 sem++;

21 if (?) unlock(m);

22 }

23

24 release write lock(rw lock) {

25 if (?) lock(m);

26 for i from 1 to N THREADS {

27 sem++;

28 }

29 if (?) unlock(m);

30 }

We leave the actual condition when to acquire and release the lock free.

Our repair method will only activate the condition in function write_lock.

If any other lock is added, the change modifies runs that were implementing

the specification before. Only the traces where two or more threads try to

acquire the writer-lock are affected. This is not the case for the original repair

109

CHAPTER 3: PROGRAM REPAIR WITHOUT REGRET

approach, which can enable locks everywhere.

Processor. Here we take a model processor from the VIS distribution. We

introduce a bug that shows up when executing the XOR opcode, i.e., where the

processor has to store the bit-wise xor of two words.

We have several different repair models for this example, varying in the

number and structure of candidates. In the first model, we restrict repair to

the faulty component. Here, classical synthesis and our new approach provide

the same result.

In the other model, we have more freedom in repairs. In this case, classical

synthesis will allow changes that are not relevant to the specification, thereby

introducing new bugs. Our approach, on the other hand, forbids such repairs

and finds the only repair not inducing new bugs.

Results

We report the results in Table 3.1; For each example, we report the number of

choices for the synthesizer (Column #Repairs), the time and number of BDD

variables to (1) verify the correctness of the repair that we obtain (Column

Verification), (2) find a repair with our new approach (Column Repair), and

(3) solve the classical repair problem (Column Classical Repair).

In order to synthesize a repair, we followed the approach described in Sec-

tion 3.4 (Figure 3.4), i.e., we manually added freedom to the model and wrote

formula for ¬ψ and equality checking. For all but one of the examples (Pro-

cessor (1)), the previous approach synthesizes degenerated repairs, while our

approach leads to a correct program repair.

AG (→) is Example 3.5 from Section 3.5. It uses the original specification

for ψ, i.e., ψ = F(¬r) → G(g). We let the synthesizer choose between all

possible boolean combinations of g, r and a memory bit containing the previous

value of g. Our approach fails to find a repair. AG (&) is Example 3.6

from Section 3.5 with ψ = F(¬r) ∧ G(g), using the same potential repairs.

In this case, a valid repair is found. As in the Assume-Guarantee examples,

we have two different choices for ψ in the Binary Search (BS) example. In

the case that ψ = sorted → correct, there is no repair available, while for

ψ = sorted ∧ correct we find the correct repair.

The RW-Lock example demonstrates that our approach can also be used

to synthesize locks. The synthesizer can choose between 16 options (which

110

3.7. Future work and conclusions

represent release/acquire actions of different locks at different locations). Our

notion of repair forbids the acquisition of other locks (the repair we obtained

in 27ms with the approach in [JGB05]), because this would imply for example

that two threads asking for a read-lock at the same time have to wait for each

other. Our notion of repair encodes that runs that were unobstructed before

remain unobstructed in the new implementation as well, as long as they do not

lead to a dead-lock. Our experiments show that our notion of repair urges the

synthesizer to find the intended solution by forcing it to leave correct program

runs unchanged. We therefore believe that our approach makes synthesis as a

development methodology more practical.

The Processor examples demonstrate what happens in complex models

when increasing the amount of freedom in a model. They also show how

repairing partial specifications may lead to the introduction of new bugs. In

Processor (1), the minimal amount of non-determinism is introduced, i.e., only

as much freedom as strictly necessary to repair. Here, the classical approach

and our new approach give the same result. In Processor (2), we introduce

more freedom, which leads to incorrect repairs with the classical approach. In

particular, the fault is in the ALU of the processor, and the degenerated re-

pairs incorrectly execute the AND instruction, which is handled correctly in the

original model. We allow replacing the faulty and the a correct instruction by

either a XOR, AND, OR, SUB or ADD instruction. Finally, Processor (3) shows

that the time necessary for synthesis grows sub-linearly with the number of

repair options.

On average, synthesizing a repair takes 2.3 times more time than checking

its correctness. Our new approach seems to be one order of magnitude slower

than the classical approach. This is expected because finding degenerated

repairs is usually much simpler. (This is comparable to finding trivial counter

examples.).In order to find correct repairs with the approach of [JGB05], we

would need to increase the size of the specification, which will significantly slow

down the approach.

3.7 Future work and conclusions

Future Work. Investigation of ways to increase the computational power of

a repaired machine seems interesting. Every machine M′ repairing M has to

111

CHAPTER 3: INTRODUCTION

Verification Repair Class. Repair

#Rep. time #Vars time #Vars time #Vars

AG (→) 212 n/a n/a 0.038 16 0.012 14
AG (&) 212 0.015 14 0.025 14 0.012 12
BS (→) 5 n/a n/a 0.78 27 0.1 21
BS (&) 5 0.232 27 0.56 27 0.1 21
RW-Lock 16 0.222 34 0.232 34 0.228 22
Traffic 255 0.183 68 0.8 68 0.155 63
PCI 27 0.3 56 0.8 56 0.5 53
Processor (1) 2 2m02s 135 2m41s 135 0.5 69
Processor (2) 4 4m28s 138 5m07s 138 0.5 69
Processor (3) 25 5m23s 140 18m05s 140 0.5 71

Table 3.1: Experimental results

behave like M until it concludes that M does not respond to the remaining

input word correctly. As shown in Example 3.9, M′ might not know early

enough if M will fail or succeed. Therefore, studying repairs with finite look-

ahead is an interesting direction. To extend the applicability of our approach

to infinite state programs, one could explore suitable program abstraction tech-

niques (cf. [VYY10]). Finally, experiments with model checkers specialized in

solving the sequential equivalence checking problem [KMKH01, KSHK07] seem

interesting. We believe that such solvers perform well on our problem, because

M′ and M have many similar structures.

Conclusion. When fixing programs, we usually fix bugs one by one; at the

same time, we try to leave as many parts of the program unchanged as possible.

In this chapter, we introduced a new notion of program repair that supports

this method. The approach allows an automatic program repair tool to focus

on the task at hand instead of having to look at the entire specification. It also

facilitates finding repairs for programs with incomplete specifications, as they

often show up in real word programs.

112

4
Quantitative verification and

synthesis framework

In which we forge a framework out of the

existing techniques of quantitative verification

and synthesis, and apply it to save lives.

Résumé

Cette partie représente une implementation de base dans laquelle vérification

et synthèse peuvent se produire dans une boucle. Nous soulignons l’importance

des deux, c’est-à-dire ensemble de la vérification et de la synthèse dans une base

commune. Ce n’est uniquement que dans ce cas-là, que nous pouvons verifier les

modèle synthètisés. Nous utilisons Java comme la langue de programmation.

Nous décrivons également, comment nous transférons les modèles écrits au

Java dans les graphes représentés sous le forme d’une matrice éparse. De plus,

nous généralisons et agrandissons le travail précédent sur l’approximation des

Pareto courbes des processus de décision markovien.

4.1 Introduction

In this section, we present an implementation that is the basis for a common

verification and synthesis framework. Our goals are the following.

• Provide a common framework for the implementation of and research on

quantitative verification and synthesis.

• Show via examples that frameworks that do synthesis and verification in

a feed-back loop are beneficial.

• Demonstrate that these algorithms can be used for examples not com-

monly used in formal methods.

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

• Show that Java can be used as a modeling language.

A common framework for verification and synthesis. Existing frame-

works for quantitative verification or synthesis (for example PRSIM and Aca-

cia+) focus on doing either one or the other, but seldom on both. We have a

different goal for this framework. We want to support the analysis of controllers

that we synthesize. The benefits of using the controller that we synthesize as

input to the verification process are as follows.

• We can check the robustness of the controller against modified param-

eters. This is supposed to harden the synthesis process against model

parameter errors or inaccuracies.

• We can check the controller in environments different from the one in

which it was created. This can be used for example when synthesizing

the controller with one obstacle, and then checking how it performs with

two.

• We can replace parts of the previously probabilistic environment by an an-

tagonistic player and check the performance of the synthesized controller.

This can be used for a collision avoidance system that we synthesize with

probabilistically behaving obstacles. The probabilistic behavior can be

replaced by antagonistic behavior to check worst case performance.

• When using abstraction we can check the performance of the controller

(which was synthesized in the abstracted model) in a high-detail model.

The architecture of our framework is summarized in Figure 4.1. The syn-

thesis process consists of abstracting a concrete model, and using a synthesis

technique on the abstract model. We then translate the controller, which was

built on the abstract model, into the original, concrete model. This concrete

controller can then be deployed.

We pursue two strategies to verify and validate the synthesized controller.

First, we perform probabilistic model checking on an abstract model (not nec-

essarily the one used for synthesis). Second, we perform stochastic model

checking on the concrete model.

In the rest of this chapter, we will describe the design of the implementation

in Section 4.2 in terms of its interfaces. Then we show how these interfaces can

be used to implement value iteration algorithms.

114

4.2. Implementation description

Concrete Model

Abstract Model

Synthesis

Abstract Controller

Concrete Controller

Real World

Prob. MC Stoch. MC

Verification

Figure 4.1: Framework Overview

In Section 4.3 we describe necessary preliminaries for Section 4.4, where

we show one way to implement the interfaces with using Java as a model-

ing language. We use a Java EDSL (embedded domain specific language) to

describe models in a continuous probabilistic environment. We will use the

techniques described in the preliminaries to abstract the continuous models.

In Section 4.5, we will describe a general algorithm to approximate Pareto

curves of MDPs. Then, in Section 4.6, we will turn towards case studies. We

will study emergency braking systems for cars, adaptive cruise control systems

and get a car out of a ditch. The next chapter contains a more substantial case

study of the currently proposed next generation Airborne Collision Avoidance

System (ACAS X).

4.2 Implementation description

When designing this implementation, we had the following goals in mind.

• ACAS X had to fit into this framework

• Easy extensibility by researchers

• Multiple possible input formats for models

115

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

• Multithreaded implementation

• Storage and later reuse of synthesized strategies

• Memory efficiency

We defined a small set of interfaces to make the implementation easy to

extend by researchers. Interface Enumerator, EnumeratorFactory and Model

in Figure 4.2 define the interfaces a researcher has to implement if he wants to

add a modeling language. They also define the interfaces that are used by all

algorithms. So if a researcher wants to add capabilities to the framework, then

these interfaces tell him what methods all models provide.

The framework also provides two modeling languages that implement Model

(see Figure 4.2). A user of the framework uses these to model systems he wants

to analyze or for which he wants to find strategies. Class MRMCModel can read

MRMC[KZH+11] models. class HybridModel provides a novel modeling lan-

guage based on a Java embedded domain specific language (EDSL). We describe

it and how we implement the Model interface in Section 4.4. Finally, class

CachedModel can cache certain operations of a class implementing Model. It

can be used to speed up HybridModel models by trading memory consumption

for runtime.

In the rest of this section, we will describe the interfaces and how they can

be used to implement various common algorithms. We will then turn to the new

EDSL in Section 4.4 describe its semantics and how we use it to implement

the interfaces. We will explore how we can use its unique features to easily

validate the performance of strategies under different model assumptions. We

further define the transient matrix format which allows us to avoid storing

the transition function of an MDP in memory. We study the trade-off of this

format in comparison to the sparse matrix format. To have the best of both

worlds, our implementation also allows us to turn each transient matrix into a

sparse matrix (via CachedModel).

Interfaces and algorithms

We have three interfaces at the core of all algorithms (see Figure 4.2 for two

of these). First, the Model interface describes an MDP and declares a few

further operations on it. Second, the Enumerator and EnumeratorFactory

116

4.2. Implementation description

n1

�interface�

Model

MRMCModel HybridModel CachedModel

�interface�

Enumerator

Researcher

User

Figure 4.2: Class diagram of the framework.

interfaces are used to iterate in-place over a subset of the states of the model,

(i.e,. by changing an instance of Model). Note that this is opposed to the

usual Iterator interface of Java, which is expected to return a new instance

on every call to Iterator.next, thereby creating a lot of work for the garbage

collector. We chose to create a new interface instead of using Iterator to

make this difference explicit.

These interfaces are of use to a researcher who wants to implement his own

modeling, abstraction or algorithms. The framework does not require that a

user knows these details.

The Model interface. An implementation of the Model interface (Figure 4.3)

defines an MDP. A Model instance has the following tasks.

1. Describe the size of the model and the available actions.

2. Describe the rewards for each state and action.

3. Provide an enumerator over all states of the model.

4. Provide probabilities of next states and expected values.

The method signatures are designed such that a Model instance always con-

tains an implicit state upon which its methods depend. For example, method

void fillDistribution(int a, Distribution<T> d) in Line 36 defines the

probabilistic transition function p : M × A → D(M) of an MDP M =

117

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

(M,m0, A,A, p). Note that p gets a state and an action as parameters, while

fillDistribution gets an action number and a collection of type Distribution

to fill. The outcome of fillDistribution therefore depends on the state of

the Model instance.

The interface requires no method to force an instance to take on a specific

state. The algorithms we implemented never depend on specific states, but

iterate over all states. Methods next in Line 18, done in Line 21 and reset in

Line 24 together provide an enumeration interface that modifies the state of a

Model instance. It is guaranteed that the sequence reset(); while(!done())

next(); enumerates all possible states.

Each Model instance knows how many states there are (nStates in Line

3), how many actions are available to its implicit state (nActions in Line 6),

and what happens if such an action is taken (fillDistribution in Line 36,

transitionProb in Line 30 and expectedValue in Line 39 and Line 42).

Method rewards in Line 15 describes what rewards a state receives for an

action. Since we may want to deal with more than one reward at a time,

the reward functions return arrays instead of single values. The implementa-

tion promises to not modify the returned array, and also not to rely on the

immutability of the returned array between calls to rewards. In addition to

rewards, there is method initialRewards in Line 9, which has two purposes:

on the one hand, it is used by some algorithm to get the reward of final states

(i.e., states which have only self-loops); on the other hand, it is used by some

algorithms as an initial guess on the final result of the algorithm (a good initial

guess may speed up some algorithms immensely). Method isFinal in Line 27

indicates if a state is a final state.

Finally, each model has to define a perfect hashing method index in Line

46 that maps its implicit state to a number between zero and the number of

states, and a method get in Line 49 to return a copy of the current state.

Enumeration. We define interfaces for enumerators and sub-enumerators to

support parallelization.

Each enumerator is associated with an object that it modifies. Figure 4.4

presents the enumerator interface. Method reset resets the associated object

to the start of the enumeration, while next modifies it to advance the enumer-

ation by one step. No more calls to next are allowed when done returns true.

Finally, method set sets another object to the same state as its associated

118

4.2. Implementation description

1 public interface Model<T extends Model<T>> {
2 /∗∗ @return Number of states in this model ∗/
3 public int nStates();
4
5 /∗∗ @return Number of action available to current model ∗/
6 public int nActions();
7
8 /∗∗ @return Initial rewards for current state ∗/
9 public double[] initialRewards();

10
11 /∗∗
12 ∗ @param a action number − must be between 0 and {@link #nActions()} − 1
13 ∗ @return Rewards returned when taking action a
14 ∗/
15 public double[] rewards(int a);
16
17 /∗∗ Advance model’s iteration ∗/
18 public void next();
19
20 /∗∗ @return true if iteration is done ∗/
21 public boolean done();
22
23 /∗∗ Reset iteration over model ∗/
24 public void reset();
25
26 /∗∗ @return Is the current model a final state? ∗/
27 public boolean isFinal();
28
29 /∗∗ Probability of transitioning to {@code state} ∗/
30 public double transitionProb(int a, T state);
31
32 /∗∗
33 ∗ Fill a distribution for the given action.
34 ∗ The method is expected not to call Distribution#reset().
35 ∗/
36 public void fillDistribution(int a, Distribution<T> d);
37
38 /∗∗ @return expected value over @{code v} ∗/
39 public double expectedValue(int a, double v[]);
40
41 /∗∗ Fill expected value of @{code v[i]} into @{code into [i]} ∗/
42 public void expectedValue(int a, double v[][], double[] into);
43
44
45 /∗∗ @return index of current state ∗/
46 public int index();
47
48 /∗∗ @return A new copy of the current model ∗/
49 public T get();
50 }

Figure 4.3: Interface describing a model state

119

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

1 public interface Enumerator<T> {
2 public boolean done();
3 public void next();
4 public void reset();
5 public void set(T target);
6 }

Figure 4.4: The enumerator in-
terface

1 public interface EnumFactory<T> {
2 Enumerator<T> get(T m);
3 }

Figure 4.5: The enumerator
factory interface

object.

The enumerator factory (Figure 4.5) returns a new enumerator associated

with an object. This allows easy implementation of parallel algorithms. Since

almost all algorithms iterate over all states, we can implement an enumera-

tor factory that successively returns enumerators that enumerate only parts

of the state space. Each thread of a parallel implementation then accepts

sub-enumerators and works on the part of the state space enumerated by the

enumerator.

Supported algorithms

We have implemented algorithms for the following objectives:

• Total sum

• Discounted reward

• PCTL

• Bayesian Model checking

We will, by way of the discounted sum accumulation function, show how

the above interface can be used to implement a value iteration algorithm. This

will clarify which method corresponds to which concept. It will become clear

how we can implement many of the algorithms in literature for each possible

objective.

Value iteration is usually used to find the optimal strategy for the discounted

sum accumulation function. The high-level description of the algorithm is

displayed in Algorithm 4.1. We assign the vector of initial rewards to v in

the loop starting with Line 4. Note how we use the combination of reset(),

next() and done() to iterate over all states, and how index() is used to

120

4.3. Discretization of spaces and distributions

Input: Model m, discount double d

Output: v
1 double v[] ← new double[m.nStates()];
2 double v2[] ← new double[m.nStates()];
3 m.reset();
4 while !m.done() do
5 v[m.index()] ← m.initialRewards();
6 m.next();

7 end
8 m.reset();
9 repeat

10 repeat
11 double max = Double.NEGATIVE INFINITY;
12 foreach 0 <= a < m.nActions() do
13 double t ← m.reward(a) + d*m.expectedValue(a, v);
14 max ← Math.max(t, max);

15 end
16 v’[m.index()] ← max;

17 until !m.done() ;
18 v, v’ ← v’, v;

19 until |v’− v| < ε;

Algorithm 4.1: Discounted sum value iteration algorithm

index an array of values. We then calculate the optimal action for each state

in the loop in Line 9. This part is easily parallelizable using the enumerator

interfaces. We repeat this until the change of rewards between two iterations

is small enough (Line 19).

Implementation via sparse matrices

One obvious implementation of these interfaces is based on sparse matrices,

which is the same implementation MRMC [KZH+11] uses. We have imple-

mented this and are in fact able to read MRMC models and perform model

checking on them.

4.3 Discretization of spaces and distributions

In the next section, we will build an EDSL for defining probabilistic models

with possibly continuous state space and normal distributions. To handle them

with the MDP backend of this framework, we need means to turn continuous

distributions into discrete distributions, and continuous state spaces into dis-

crete state spaces. We chose already existing techniques compatible with the

121

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

ACAS X report[KC11] for this. This section will present and explain these

techniques.

Sigma point sampling

Sigma point sampling [JU04] is a technique to approximate a continuous prob-

ability distribution by a deterministically chosen finite set of sigma points. In

the following, given a matrix A,
√

A denotes the square root matrix of A.

Definition 4.1 (Sigma point sampling [JU04]) Given a Gaussian proba-

bility distribution N(x,R) with mean x ∈ Rn and covariance matrix R ∈ Rn×n

(i.e., Ri,j is the covariance between elements i and j of the random vector),

and a tuning parameter κ ∈ Z, we define the sigma points σi ∈ Rn and their

weights wi ∈ R for 0 ≤ i ≤ 2n as follows.

w0 = κ/(n+ κ)

σ0 = x

σi = x+
(√

(n+ κ)R
)
i

∀1 ≤ i ≤ n

σi = x−
(√

(n+ κ)R
)
i

∀n+ 1 ≤ i ≤ 2n

wi = 1/(2(n+ κ)) ∀1 ≤ i ≤ 2n

Ideally, κ should be chosen such that n+ κ = 3 [BH08].

Example 4.1 The sigma points of a single normally distributed random vari-

able X with mean µ and standard deviation σ are µ, µ−
√

3σ and µ+
√

3σ.

For two independent random variablesX1 andX2 sampled fromN((µ1, µ2),R),

with R1,1 = σ2
1 and R2,2 = σ2

2 (and R1,2 = R2,1 = 0 because of the indepen-

dence), and with κ = 3, the sigma points are (µ1, µ2), (µ1 −
√

3σ1, µ2), (µ1 +
√

3σ1, µ2), (µ1, µ2 −
√

3σ2) and (µ1, µ2 +
√

3σ2).

The samples are chosen such that their mean and standard deviation are

equal to that of the source distribution.

Lemma 4.1 (Properties of sigma points [JU04]) Let N(x,R) be an n-

dimensional Gaussian distribution, and let σi and wi be sigma distribution

derived as described in Definition 4.1. Then the mean mean of the sigma dis-

tribution is x and its covariance matrix of is R.

122

4.3. Discretization of spaces and distributions

d ev

|d− v| |e− v|

Figure 4.6: Example for interpola-
tion of discretization in one dimen-
sion. Points d and e are discretiza-
tion points, while point v is a con-
tinuous point. We have ι(d|v) = 1−
|d−v|/∆ and ι(e|v) = 1−|e−v|/∆.

d|v0 − d0|

|v
1 −

d
1 |

v

Figure 4.7: Example for interpo-
lation of discretization. The four
black crosses mark discretization
points, while the green cross (v)
marks a continuous point. The
probability of d (the discretization
point in the lower right corner) is
ι(d | v) = (1−|d0−v0|)(1−|d1−v1|).

Linear interpolation and discretized state space

We discretize the continuous state space by picking points at fixed intervals.

Definition 4.2 (Discretized state space) We discretize a bounded contin-

uous state space C ⊆ Rn with bounds [li, ui] in dimension i by finite set of

discrete points D = D1 × D2 × . . . × Dn, where the Di describe a regular

discretization of C with distances ∆i, i.e., Di = {li, li + ∆i, li + 2∆i, . . . , ui}.
Note that Di contains (ui − li)/∆i points.

Given a continuous point v ∈ C, we define a probability distribution over

D such that a discrete point close to v has a higher probability than a point

further away. If discrete point and continuous point are the same, then the

probability of the discrete point should be one, and that of all other points

should be zero. To that end, we will use linear interpolation.

Definition 4.3 (Linear interpolation) Given continuous state space C and

discretized state space D ⊆ C, we define ι : C×D→ [0, 1] as

ι(v, d) =

Π1≤i≤n(1− |vi − di|/∆i) if ∀0 ≤ i ≤ n : |vi − di| < ∆i

0 otherwise

Instead of ι(v, d) we sometimes write ι(d | v).

123

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

Example 4.2 Figure 4.6 captures the idea for one dimension. Points d and e

are discretization points, while point v is a continuous point. Since v is closer

to d than to e, the probability of d should be higher than that of e. In addition,

the probabilities of d and e have to add up to one. According to the previous

definition, ι(d | v) = 1− |d− v|/|d− e|, i.e., one minus the distance between d

and v divided by their maximum possible distance.

For an example in two dimensions, consider Figure 4.7. Here we have

four different discretization points (the black crosses) and one continuous point

(v). To calculate the probability of point d (lower right corner) given v, we

measure the relative distance in both the first and the second component in

the state space (i.e., |v0 − d0|/∆0 and |v1 − d1|/∆1). After measuring the

relative distances, we have the probabilities of the two dimensions, i.e., p0 =

1−|v0−d0|/∆0 and p1 = 1−|v1−d1|/∆1. To get the probabilities of points v and

d, we multiply the probabilities of the separate dimensions, i.e., ι(d | v) = p0·p1.

That this function indeed defines a probability distribution is trivial.

Lemma 4.2 ι : C→ D is a probability distribution.

To ease notation later, we will now lift probability distribution from C to

probability distributions over D, for distributions with finite support

Definition 4.4 (Support) Let p ∈ D(A) be probability distribution over A.

Then Supp(p) = {a ∈ A | p(a) > 0} is the support of p. We say that p has

finite support if Supp(p) is finite.

Definition 4.5 (Interpolated probability distribution) Let p : C→ [0, 1]

be a probability distribution with finite support. The interpolated probability

distribution I(p) : D→ [0, 1] is then defined as

I(p)(d) =
∑

v∈Supp(p)

ι(d | v)p(v).

Example 4.3 Consider a car moving in continuous space, as in Figure 4.8,

and a discretization of the state space depicted by the crosses at the corners of

the grid. In this figure, the car will move in one step along one of the arrows,

to either point A or point B. In both cases, the car will end up between

discretization points.

124

4.4. Specifying models in Java

A

B

Figure 4.8: Illustration of car move-
ment before interpolation.

Y

X

Figure 4.9: Illustration of car move-
ment after interpolation.

Figure 4.9 shows the interpolated probability distribution. After interpola-

tion, the car moves in one step to one of the discretization points. For example,

the probability of moving to point X is the probability of moving to B times

ι(X|B). The probability of moving to point Y is the probability of moving to

A or B times the appropriate interpolation, i.e., p(A) · ι(Y |A) + p(B) · ι(Y |B).

4.4 Specifying models in Java

In this section we present our EDSL for specifying continuous space models. It

is based on implementing methods in the abstract class HybridModel, which

we will describe later. We show how we turn continuous models into discrete

state space models, and how we implement the Model interface automatically.

We will first present an adaptive cruise control (ACC) model as an example,

point out the various parts that are used as sources for discretization and sigma

point sampling, and we will then discuss the implementations that turn these

sources and models into MDPs. We will then shortly discuss how we can

interpolate the strategies that we generate from the discretized models and

how we can use the original models for statistical model checking.

Figure 4.10 contains the code of the ACC model. A few features here

are noteworthy. Continuous variables that are part of the model are annotated

with @CVAR. Discrete variables (not present in the example) are annotated anal-

ogously with @DVAR. A variable should be part of a model if (1) it influences the

probabilistic transition function and (2) it changes over time. In our case, vari-

ables distance and velocity are part of the model, while desiredDistance

and ticks are not part of the model (because they are constant). Method

void next(double acceleration, ACC target) defines a distribution over

the next states, given the current state. We first sample a random acceleration

for the other car with mean zero and an arbitrarily chosen standard deviation

125

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

1 public class ACC extends HybridModel<ACC> {
2 // Distance from car in front
3 @CVAR(min=0, max=100)
4 public double distance;
5
6 // Relative velocity
7 @CVAR(min=−14, max=14)
8 public double velocity;
9

10 // Distance we desire
11 public double desiredDistance = 50;
12
13 // Updates per second
14 public int ticks = 10;
15
16 @Override
17 public void next(double acceleration, ACC target) {
18 double random acceleration = normal.sample(0, 4.0);
19 double nextVelocity =
20 velocity + (acceleration + random acceleration) / ticks;
21 double nextDistance = distance −
22 (0.5 ∗ velocity + 0.5 ∗ nextVelocity) / ticks;
23 target.velocity = nextVelocity;
24 target.distance = nextDistance;
25 }
26
27 @Override
28 public double[] rewards(double acceleration) {
29 double[] rewards = new double[2];
30 rewards[0] = −Math.abs(desiredDistance − distance);
31 rewards[1] = −acceleration∗acceleration;
32 return rewards;
33 }
34 }

Figure 4.10: ACC example code

4 m/s2. Next, we calculate the velocity of the next state, based on the cur-

rent velocity, the random acceleration and the acceleration we got as input.

Lastly, based on old velocity and distance and on the new velocity, we calcu-

late the distance of the next state. Note that our framework supports both

loops and branching, although they are not present in this example. Addi-

tionally, we define the rewards the controller gets for its decisions in method

double[] rewards(double acceleration). In the case of ACC, it receives a

cost (negative reward) depending on how far the current distance is from the

desired distance (rewards[0]), and a cost depending on how much it acceler-

ates (rewards[1]). Note that these two define exactly the trade-off mentioned

126

4.4. Specifying models in Java

before. We want to minimize both rewards[0] and rewards[1], but applying

less acceleration will lead to a greater deviation from our desired distance. Vice

versa, being stricter about staying close to the desired distance requires more

acceleration.

From hybrid to discrete state space

Implementations of class HybridModel describe probabilistic hybrid systems.

Definition 4.6 (Probabilistic hybrid system) A Probabilistic hybrid sys-

tem is defined as H = (C, S, s0, A,A, p), where C ⊆ Rn is a continuous

state space, S is a finite set of states, S0 ∈ C × S is an initial state, A is

a finite set of actions, A : S → 2A is the action activation function, and

p : C× S×A→ D(C× S) is the continuous probabilistic transition function.

Our algorithms work on MDPs, and so we abstract probabilistic hybrid

systems to Markov decision processes as follows.

Definition 4.7 (Abstraction of hybrid systems) LetH = (C,S, s0, A,A, p)

be a probabilistic hybrid system and let D ⊆ C be a regular discretization of

the continuous state space. If p((v, s), a) defines the probability distribution

function over C×S for all v ∈ C, s ∈ S and a ∈ A, then we define the discretiza-

tion of H as a Markov decision process M = (D × S, s′0, A,A, p
′) as follows.

Let p′′ : p : C × S×A → D(C × S) be the probability distribution resulting

from sigma point sampling of p. Then p′ : D × S×A → D(D × S) is defined

as p′((v, s), a, (v′, s′)) := I(p′′((v, s), a))(v′, s′). s′0 is defined as the element of D

that contains s0.

Note that we make no claim to soundness or completeness. The choice of

discretization was made with the goal of being compatible to the ACAS X

report [KC11]. The framework is of course flexible enough to swap this dis-

cretization out for any other that generates MDP (for example that of [Hah12]).

Hybrid model base class

We will now present the base class that is used to implement the EDSL. We

will then show how we can use the information provided by the EDSL to

automatically implement the abstract of Definition 4.7.

127

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

1 abstract public class HybridModel<T extends HybridModel<T>>
2 implements Model<T>, Enumerator<T> {
3 /∗∗ Samples a new state from {@code this} state. ∗/
4 public abstract void next(int action, T target);
5
6 /∗∗ @return Number of actions available in current state. ∗/
7 public abstract int nActions();
8
9 /∗∗ @return Initial rewards for current state ∗/

10 public abstract double[] initialRewards();
11
12 /∗∗
13 ∗ @param a Action for which we need a reward
14 ∗ @return Reward for action {@code a}
15 ∗/
16 public abstract double[] rewards(int a);
17
18 /∗∗ @param Model configuration to use ∗/
19 public void setModelConfig(ModelConfig config) {
20 // ...
21 }
22
23 /∗∗ Reset sample iteration ∗/
24 public boolean resetSample() { ... }
25
26 /∗∗ Increase sample iteration ∗/
27 public boolean nextSample() { ... }
28 }

Figure 4.11: Hybrid model base class used for EDSL specifications.

Hybrid models as the one described above inherit from a common base class

HybridModel, parts of which we display in Figure 4.11. Note that HybridModel

implements the Model interface. Methods nActions, initialRewards, and

rewards implement the Model interface (Figure 4.3). Only methods next,

resetSample and nextSample are new. next is the continuous stepping func-

tion, which fills another instance with a sampled next state, as in Figure 4.10.

resetSample and nextSample will be described below.

Example 4.4 (Class Hybrid) By way of an example, we will use class Hybrid

in Figure 4.12 to explain how HybridModel implements most of the interface

of Model.

This class has two model variables: a continuous variable x and a discrete

variable counter. It uses a discrete probability distribution coin over Boolean

variables (Line 2). We define coin to return true with probability 0.3, and

128

4.4. Specifying models in Java

1 public class Hybrid extends HybridModel<Hybrid> {
2 private DiscreteDistribution<Boolean> coin = new DiscreteDistribution<Boolean>();
3
4 @CVAR(min=0, max=10)
5 double x = 5;
6
7 @DVAR(min=0, max=1)
8 int counter = 0;
9

10 public Hybrid() {
11 coin.add(true, 0.3); coin.add(false, 0.7);
12 }
13
14 @Override
15 public void next(int action, Hybrid target) {
16 boolean flip = coin.sample();
17 double t;
18 if (flip && counter == 1) {
19 t = normal.sample(−1, 1);
20 } else {
21 t = normal.sample(1, 1);
22 }
23 target.x = Math.min(Math.max(this.x + t, 0), 10);
24 target.counter = flip ? 1 − counter : 0;
25 }
26 // ...
27 }

Figure 4.12: Hybrid example used to explain the inner workings of class
HybridModel.

false with probability 0.7 (see Line 11).

In the stepping function, Hybrid first flips the coin. If the coin flip this

turn and the coin returns true and counter is one, then the next value of x

will be samples from N(−1, 1), otherwise from N(1, 1). Finally, if the flipped

coin returned false, then the next value of counter will be 0, otherwise it will

be one if the old value of counter was zero, and zero otherwise.

Automatic discretization, enumeration and perfect hashing

Class HybridModel describes a continuous (and therefore infinite) state space

model. To implement Model, we have to discretize the state space and the con-

tinuous probability distributions. In this section we describe how we implement

sigma point sampling and linear interpolation Section 4.3 to this end.

As noted before, state space variables are annotated with @DVAR and @CVAR

129

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

1 public void fillDistribution(int a, Distribution<T> d) {
2 T nextContinuous = get();
3
4 resetSampling();
5 do {
6 next(a, nextContinuous);
7 interpolate(nextContinuous, getProb(), d);
8 } while (nextSample());
9 }

Figure 4.13: Implementation of fillDistribution, part of class HybridModel

respectively. In addition, a model is given a model configuration that defines

the number of discretization points for each variable annotated with @CVAR.

Following Definition 4.2, a variable annotated with @CVAR(min=l, max=u) and

configured with n discretization points is discretized with distance ∆ = (l −
u)/(n − 1). To this end, class HybridModel gathers information about the

annotated fields: for each field, the lower and upper bounds are retrieved via

reflection upon the first time an instance of the class is created. Based on this

information, we can implement the enumeration methods and index automat-

ically. It also allows the implementation of partial enumerators that only enu-

merate over a subset of the available fields. We use this to allow parallelization.

In addition to enumeration, this information also allows the implementation of

interpolation as in Definition 4.5.

We will show how to implement method fillDistribution based on the in-

formation above. Recall that fillDistribution models the probabilistic transition

function. Methods expectedValue and transitionProb can be implemented

analogously. The implementation is based on one loop (see Figure 4.13), which

makes use of instrumented functions to generate all possible samples from the

sampling function, and of an interpolation function, both of which we will dis-

cuss next. As described before, method next fills a given state with a randomly

sampled state. We instrumentalize next as described below to enumerate, in

conjunction with resetSampling and nextSample, all possible samples. In

addition, the instrumentalized version keeps track of the probability of the

sample it most recently returned. This probability is accessible via method

getProb(). After having filled nextContinuous with a continuous next state,

we interpolate this state using linear interpolation, and fill distribution d with

the result.

130

4.4. Specifying models in Java

Example 4.5 For the class in Figure 4.12, the coin flip can either return

true or false. Depending on the outcome of the flip, and on counter, the

discretized gaussian distribution of x has either outcomes {−1,−1−
√

3,−1 +
√

3} or {1, 1−
√

3, 1+
√

3}. That is, if counter is 1, then the loop in Figure 4.13

will generate, one after the other, all combinations of {1}×{−1,−1−
√

3,−1+
√

3} ∪ {0} × {1, 1−
√

3, 1 +
√

3}

Instrumented next. We will now describe how we modify an implementation

of the continuous next method that the user provides. There are two intended

effects. First, we want to replace continuous sampling statements (i.e., calls to

normal.sample) by sigma point sampling (Definition 4.1). Second, we want

to be able to produce the whole discretized probability distribution by a loop

like the one in Figure 4.13.

We replace sampling calls by versions that return values deterministically.

What values are returned depends on an internal sampling stack explained

later. This is implemented such that repeated calls to next will always return

the same values, unless either nextSample or resetSampling are called.

Sampling calls are either calls to instances of class DiscreteDistribution

which allows user-defined discrete distributions, or from calls to normal.sample(mean,

sd), where normal is a field present in each instance of HybridModel. We in-

strument calls to these methods in next by replacing them with hidden versions

that have different semantics and an additional parameter.

In addition to their original parameters, the hidden version of normal.sample

and DiscreteDistribution.sample receive an ID (based on the position of

the sampling statement and how often it was called in an invocation of next).

We use this ID to get a handle on the sampling state, which we will explain

next.

Instead of returning random samples, these instrumentalized versions main-

tain a sampling stack, and return samples from this stack. The sampling stack

consists of a stack of frames, where each frame is a stack of sampling states. A

sampling state is a list of samples and probabilities.

In the beginning (i.e., before a call to next), the sampling stack is empty.

When an instrumented sampling method is invoked, it uses its ID to request its

frame from the sampling stack. When it finds that no such frame exists, a new

frame is created with all possible sampling points of the sampling statement.

For example, for a discrete probability distribution that can take on values true

131

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

and false with probability 0.5, will fill an empty frame with [0.5 : false, 0.5 :

true]. A continuous probability distribution, on the other hand, will fill the

frame with appropriate sigma point samples. After possibly filling the sampling

frame, a sampling statement returns the topmost element from its frame and

multiplies an instance field with the probability of that element.

Note that repeated calls to the instrumentalized next method will create

the same state each time (because the sampling state is not changed). To ad-

vance to the next state, method nextSample (Line 8) is used. This method

will remove the topmost element of the topmost sampling frame. If this frame

should be empty after removal, then it removes the frame completely and re-

moves the topmost element of the now newly topmost frame, until either it

finds a frame that is not empty after removal or until no frame remains. If

there are still frames left after this operation, then nextSample returns true

to indicate that there are samples remaining, otherwise it returns false.

Example 4.6 Let us take the code in Figure 4.12 as an example again. Af-

ter a call to resetSampling, the sampling stack is empty, i.e., []. We then

run the instrumented next function. On the call to coin.sample, its imple-

mentation will create a sampling frame for this sampling statement, i.e., the

sampling stack is now [[true, false]]. Then coin.sample returns true

and execution of next continues. The next instrumented statement is the

sampling statement in Line 19. Since this sampling statement has no sampling

frame yet, it will create one, i.e., the sampling state is now [[true, false],

[−1,−1−
√

3,−1 +
√

3]]. normal.sample will return the topmost of its ele-

ments, i.e., −1. Then the run of next continues until the method is finished.

Next follows a call to nextSample, which modifies the sampling stack by

popping the first element of the topmost frame. After this operation, the

sampling stack is now [[true, false], [−1 −
√

3,−1 +
√

3]]. Therefore,

the next returned sample is going to be (true, −1 −
√

3). After a call to

nextSample, the sampling stack will be [[true, false], [−1+
√

3]], and the

returned sample will be (true, −1 +
√

3). Now, the next call to nextSample

will pop −1 +
√

3 of the topmost frame. Since the frame is now empty, it will

be removed completely. The sample stack is now [[true, false]]. Since we

just removed a sample frame, we will also remove the topmost element of the

topmost frame, which yields stack [[false]].

On the next call to next, coin.sample returns false. By continuing the

132

4.4. Specifying models in Java

execution of next, the next sampling statement we encounter is in Line 21.

normal.sample will find that it has no corresponding sampling stack, and

therefore create one. After this operation, the sampling state is [[false],

[1, 1 −
√

3, 1 +
√

3]]. After two further calls to next, the sampling state will

be [[false], [1 +
√

3]]. A call to nextSample pops first the last element

of the topmost frame, then the last element of the bottom most frame. After

this, the sampling stack is empty again, and sampling therefore completed.

Strategy interpolation

We compute strategies on discretized models. To make these usable on the

original (continuous) model, we need means of strategy interpolation. By de-

fault, our implementation provides two schemata. The framework is extensible,

though, and researchers may implement their own interpolation schemes.

Linear interpolation of discretized values. If the set of actions available

in each state is a discretized state space from an originally continuous action

set, then we can use linear interpolation to get a continuous strategy.

Definition 4.8 Given a continuous action set A, continuous state space C,

discretized action set B and discretized state space D, and strategy d : D→ B,

the linearly interpolated strategy d′ : C→ A is defined as

d′(c) =
∑
s∈D

ι(s | c) · d(s)

Weighted voting. If the set of actions available is discrete and finite, then

we can use a weighted voting scheme. This is the scheme used in the ACAS X

case study. Intuitively, we ask each of the surrounding states of a discretized

state how good it believes each action to be. We then use linear interpolation

to judge how important the opinion of each discretized state is.

Definition 4.9 Let M = (M,m0, A,A, p) with reward function r : M → R

be the discretized MDP of a stochastic hybrid automaton. We create a table

equivalent to the function

T : M ×A→ R, T (m, a) = r(m, a) + Ep(m′|m,a)[max
a′∈A(s′)

T (m′, a′)]

that yields for each pair of state and action of the discretized MDP the imme-

diate received reward associated with the action and the expected reward of

133

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

the optimal action in each following state. Based on this, we create a strategy

d : C→ A for the continuous state space C by d(c) = arg maxa∈A(c)

∑
m ι(m |

c)T (m, a).

Bayesian statistical model checking

Modeling using Java has one additional advantage. It allows us to implement

statistical model checking. There are many flavors of statistical model checking

(e.g., [Var85, BHHK03, KNP07]). The one we chose to implement here is called

Bayesian statistical model checking [ZPC13], which uses a Bayesian approach

to confidence intervals.

This thesis touches only on the intuition behind Bayesian statistical model

checking, since it does not contribute to its theory. The contribution is the

application of this technique to the case studies in the rest of the thesis.

In Bayesian model checking, we use Bayesian statistics to establish the

probability that a randomly selected run of a Markov chain fulfills a property.

To that end, we collect finite runs of the Markov chain. Each run serves to

update our current belief about the real probability.

Example 4.7 Assume that we want to establish the unknown probability that

a possibly biased1 coin comes up head. Initially, we have a prior belief about

the coin’s bias. Let us say that we are totally clueless, and so our prior belief is

a uniform distribution of the interval [0, 1], i.e., we consider each bias equally

likely.

We then flip the coin for the first time. Based on the outcome, our belief

will either shift towards 0 or 1. We now flip the coin a second time, and update

our belief again, and so on. For details, see [ZPC13].

We continue creating runs until we are content with our belief. What

content means depends on the application in general. The approach chosen for

this implementation (and presented in [ZPC13]) is that similar to confidence

intervals: we keep on generating runs until we are confident enough that the

probability lies inside an interval with a certain width.

Example 4.8 Back to the coin flip example, we could keep generating runs

until we can believe with 99% probability that the bias lies in an interval [l, u]

1The bias b of a coin is the probability that it comes up head

134

4.5. Approximating Pareto curves

with u − l = 0.01, i.e., we know the probability up to an error of 0.5%. In

general, the smaller the interval and the higher our desired confidence, the

more information we need, i.e., the more traces we need to generate. For a

coin with bias 0.3, we needed to generate about 50,000 samples, to say that

P(b ∈ [0.296, 0.306]| traces) ≥ 0.99.

Trade-offs of EDSL

Compared to a classic sparse matrix implementation, the Java EDSL saves

memory by never storing the transition function. It does this by not storing

the transition matrix, but the transition function. This is analogous to storing a

formula or a table generating a formula. This was crucial in Chapter 5, because

the size of the transition function would have exceeded the available memory

by far. This is worthwhile whenever we use the probabilistic next function only

relatively rarely. Our implementation does allow to trade speed for memory

when desired. We have implemented a class that caches the transition function

in a sparse matrix, thereby reaching speed comparable to MRMC.

Note further that a user can override any of the functions that are imple-

mented using the scheme described above. In the example in Chapter 5, we

use this ability to speed up some of the computations.

4.5 Approximating Pareto curves

In this section we describe how we approximate Pareto curves. We use a

new variant of the so-called sandwich algorithms (see, e.g., [RvDdH11]) to

approximate Pareto curves. A sandwich algorithm is called thus because it

maintains a lower and an upper bound on Pareto curves. Upper bounds, lower

bounds, and Pareto curves are convex polygons, which in turn are defined by

hyperplanes.

Definition 4.10 (Hyperplane) In Rn, a Hyperplane is defined by an n + 1

dimensional vector w = (w1, w2, . . . , wn+1) ∈ Rn+1. The hyperplane is then

the set of points {v ∈ Rn | v · (w1, . . . , wn) = wn+1}. The hyperplane cuts Rn

into two half-spaces. The lower halfspace L ⊆ Rn is defined as L = {v ∈ Rn |
v × (w1, w2, . . . , wn) ≤ wn+1}, whereas the upper halfspace U is defined as all

other points, i.e. U = Rn \ L.

135

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

Figure 4.14: Figure demonstrat-
ing hyperplanes defining half-spaces.
The line crossing both axes denotes
a part of a hyperplane, while the
space above and below the hyper-
plane are the upper and lower half-
spaces. Green dots are in the lower
half-space, while black dots are in
the upper half space. The arrow pro-
truding from the hyperplane denotes
its normal.

Figure 4.15: Figure demonstrat-
ing the sandwich algorithm. The
black dot and the lines protruding
from it denote the target; green
dots denote Pareto optimal points,
while the green lines connecting
them denote the convex hull of the
Pareto optimal points (i.e., the lower
bound); the black dashed lines de-
note the hyperplanes going through
the Pareto optimal points (i.e., the
upper bound).

Alternatively, a hyperplane can be defined using two n dimensional vectors

v, w ∈ Rn, where the hyperplane is then defined as by vector (w1, . . . , wn, v ·w).

Example 4.9 Figure 4.14 demonstrates a hyperplane and its half-spaces in

two dimensions. The hyperplane is the line cutting both axes. It is defined

by its normal vector w (the arrow protruding from the hyperplane), and its

distance from the origin d. That is, the hyperplane is defined as the set of

points {v ∈ R2 | v · w = d}. All points v ∈ R2 that are below the hyperplane,

i.e., for which v · w ≤ d holds, define the lower half-space of the hyperplane.

Conversely, those points for which v ·w > d holds make up the upper half-space.

A hyperplane can equivalently be defined by two vectors v, w ∈ R, where v is

a reference point and w is the normal. The hyperplane defined by these two

points is then the hyperplane with normal w and distance v ·w. In Figure 4.14,

one such reference point is the green point lying on the hyperplane.

If we intersect several half-spaces and get a bounded space, then we call

this space a convex polytope.

136

4.5. Approximating Pareto curves

Definition 4.11 (Convex polytope) A convex polytope D(v1, v2, . . . , vm) ⊆
2R

n

is defined as the intersection of the m lower half-spaces defined by vectors

vi ∈ Rn+1, i.e., D(v1, v2, . . . , vm) =
⋃m
i=1 Li, where Li is the lower half space

defined by vi, if this intersection is bounded.

A “side” of a polytope is called a facet.

Definition 4.12 (Facet) A face of a convex polytope D(v1, v2, . . . , vm) ⊆ 2R
n

is every subset of F ⊂ D(v1, v2, . . . , vm) ⊆ 2R
n

such that there is a hyperplane

H such that F = C ∪ D(v1, v2, . . . , vm) ⊆ 2R
n

and such that all of the convex

polytope lies in the lower half-space of the hyperplane.

For an n dimensional polytope, the n−1 dimensional faces are called facets.

The reward space of an MDP with multiple reward functions is the set of

all achievable payoffs, i.e., the set of points in Rn that can be produced by a

strategy.

Definition 4.13 (Reward space of an MDP) LetM be an MDP, let r1, . . . , rn

be n reward functions (i.e., ri : M → R forall 1 ≤ i ≤ n), and let α : R∗ → R

be an accumulation function. The reward space rew(M, α, (r1, . . . , rn)) is

the set of points reachable via any strategy, i.e., rew(M, α, (r1, . . . , rn)) =

{(Ed[α ◦r1], . . . ,Ed[α ◦rn]) ∈ Rn | d : (S×A)∗M → A}

A member of the reward space is called Pareto optimal if there is no other

member better than it.

Definition 4.14 (Pareto optimal points) A point p ∈ rew(M, α, r) is called

Pareto optimal if there is no point p′ ∈ rew(M, α, r) such that p′ > p.

The Pareto curve is the set of Pareto optimal points.

Definition 4.15 (Pareto curve) The Pareto curve of rew(M, α, r) is the set

of Pareto optimal points of the same.

Convex polytopes are interesting to us, because the reward space of MDPs

with some accumulation functions are convex polytopes.

Lemma 4.3 ([CMH06]) The reward space of an MDP with the discounted

accumulation function is a convex polytope. Finite memory randomized strate-

gies may be required.

137

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

Lemma 4.4 ([FKN+11]) The reward space of an MDP with the total sum

accumulation function is a convex polytope, if it is bounded. Randomized and

finite memory strategies may be required.

Lemma 4.5 ([BBC+11]) The reward space of an MDP with the mean accu-

mulation function is a convex polytope. Randomized and finite memory strate-

gies may be required..

Often we are not interested in the full Pareto curve, but only in a part of

it defined by a target point t ∈ Rn. If we have such a point, then we are only

interested in the set of Pareto optimal points p such that p ≥ t.

Algorithm

Our algorithm works on the total sum accumulation function, the mean payoff

accumulation function and the discounted payoff function, because they all

fulfill the following property and have convex reward spaces.

Definition 4.16 (Linearizable) We call an accumulation function lineariz-

able if it fulfills the following property.

max
d:(M×A)∗M→A

Ed[α ◦(r · w)] < p · w =⇒ p 6∈ rew(M, α, r)

Lemma 4.6 Maximum sum, mean-payoff and discounted sum are linearizable.

Furthermore, their reward spaces are convex polygons.

Proof See [CMH06, FKP12] for discounted and maximum sum payoff. The

linearizability for mean-payoff follows by a similar argument.

Using Definition 4.16 and the convexity of the reward spaces, we can ap-

proximate a Pareto curve by maintaining a lower bound, i.e., a subset of the

space that definitively is a subset of the real reward space, and an upper bound,

i.e., a set definitively containing all of the reward space.

If we have already found Pareto optimal points X = {p1, . . . , pn}, then we

know that every convex combination of elements of X is achievable. Thus the

convex hull of a set of points X forms a lower bound.

The upper bound is a result of the linearizability of the accumulation func-

tions. To find a strategy and its payoff, we will linearize the reward vector

r ∈ (S → R)n with a weight vector w and optimize the E[α ◦(w · r)]. Because

138

4.5. Approximating Pareto curves

1 X ← Initial();
2 while ¬Sufficient(X) do
3 F ← maxFacet(X);
4 w ← weightOf(F);
5 q ← findPoint(w);
6 if q ∈ F then
7 set error of F to 0;
8 else
9 X ← X ∪ {(q, w)};

10 end

11 end

Algorithm 4.2: General sandwich algorithm for Pareto curves

of the linearizability of the accumulation function, we then know that a point

p cannot lie in the reward space if we have found a point q with weight w such

that q · w < p · w.

Refer to Figure 4.15 for a graphical explanation of the bounds. In this figure

we have already generated 5 points (in green). The convex hull connecting these

points forms the lower bound of the reward space, i.e., all points inside this

convex hull are part of the reward space. Note the dashed lines going through

the points. A line going through a point q that was generated using weight

w is the hyperplane with normal w and reference point q. Because of the

linearizability, these lines form an upper bound on the reward space: the space

above the lines (i.e., the union of all upper half-spaces of all hyperplanes) does

not intersect with the reward space. Therefore, the whole reward space has to

lie in the intersection of the lower half-spaces of the hyperplanes. So, In our

picture, any remaining Pareto optimal points have to be between the green

lines and the dashed lines.

These ideas already suggest algorithm Algorithm 4.2, the missing details

of which we will now fill in. A more detailed discussion of each point follows

later. In the algorithm we maintain a set of pairs X ⊆ Rn×Rn which contains

a pair (q, w) if q is a Pareto optimal point and w the weight that has been used

to generate q. As discussed before, X defines a lower and an upper bound of

the Pareto curve. We initialize this set in Line 1 using function Initial, such

that we have at least n different linearly independent Pareto optimal points

(i.e., such that we have at least one facet). Then we will keep adding points

to the set of points until we deem the approximation sufficient (Line 2). If

the approximation is insufficient, then we pick a facet with maximal error

139

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

(see below for a discussion of error) in Line 3. We will refine this facet, by

retrieving its weight w (Line 4), and calculating a Pareto optimal point q using

w (findPoint in Line 5). If we have found a new Pareto optimal point, i.e., if

q is not a member of facet F , then we will at (q, w) to X. Otherwise we know

that the facet is already perfect, i.e., it defines both lower and upper bound.

Finding initial points (Initial). Finding the set of initial points is interesting

in itself, especially if we are interested in only a subset of points. Many ap-

proaches are possible. For our implementation, we have chosen the following.

First, we optimize the MDP with weights wi for 1 ≤ i ≤ n, where (wi)i = 1

and (wi)j = 0 for all 1 ≤ i 6= j ≤ n. This is equivalent to finding the best

possible value for each dimension. Sometimes (for example, if two dimensions

are linearly dependent), this will not give us n different points. In that case,

we use the separating hyperplane theorem to add new points.

Lemma 4.7 (Separating hyperplane theorem) Given two non-intersecting

convex shapes there is a hyperplane such that the one convex shape lies in its

upper half-space and the other convex shape lies in its lower half-space.

There are two possible ways to go about finding a separating hyperplane.

Either we find a separating hyperplane between the points generated so far

and a utopia point, or between these points and a target point, if we have it.

The utopia point is ((q1)1, (q2)2, . . . , (qn)n) if the qi were generated using the

wi above. In both cases, we use the weight of the separating hyperplane to

generate a new point. We repeat this process until enough points have been

found.

Sufficient approximation (Sufficient). Sufficiency is defined depending on

our goals. It can mean continuing until the distance between upper and lower

bounds is small enough. It can mean continuing until we have proven that a

target t is unreachable or until we have found a Pareto optimal point p ≥ t,

either as a combination of generated points, or just as a generated point (note

that the complexity of these two objectives is different). Alternatively, it can

mean continuing until we have approximated the Pareto curve above target

point t to a satisfactory degree.

Finding the next facet (maxFacet). The next facet is always the facet with

the maximal error. What exactly the maximal error is depends on our goals.

In our case, we define the error of a facet as the maximal distance between the

140

4.6. Case studies

facet and a point inside the upper bound. To that end, we calculate the error

of a facet by solving the following linear programming problem for a facet with

normal w and reference point q, in which p is the variable vector.

max p · w − q · w

such that

p · w > q · w (4.1)

p · w′ ≤ q′ · w′ ∀(q′, w′) ∈ X (4.2)

In this LP, Equation 4.1 makes sure that p is outside the facet. Equation 4.2

makes sure that p is inside the upper bound we have defined so far. If we have

a target t (i.e., if we are interested in only a subsection of the Pareto curve),

then we add condition p ≥ t.

Finding a point given a weight (findPoint). Given weight w ∈ Rn this

means maximizing E[α ◦(w · r)], which can be done in polynomial time for all

accumulations that we define.

Complexity of finding deterministic controllers

For all objectives discussed in this section, both finding a controller fulfilling

a threshold and approximating a Pareto curve have algorithms with worst-

case polynomial runtime-complexity. The search for a deterministic controller

meeting a threshold criterion is a different matter. In [CMH06], the author

shows that finding a deterministic controller for the discounted objective is

NP-complete, and the proof can easily be adapted to the max sum and mean

payoff objective.

4.6 Case studies

Automatic deceleration for cars

This case study considers an automatic collision avoidance system for cars. See

[GKO+08] for a project report on automatic emergency braking systems pre-

pared for the European commission. Among other technical difficulties, reports

show that the system needs to react to unexpected driver behavior, unexpected

road conditions, etc. Hence, these systems require substantial modeling effort.

141

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

This case study demonstrates how a (simple version of) a collision avoidance

system can be modeled and analyzed.

In the setup we assume that the car we control is equipped with a device

that detects the relative velocity to an object in front. It is the responsibility

of the controller to brake the car as softly as possible until relative velocity

reaches zero. Here we face a trade-off. Paramount is, of course, security: we

do want to avoid collision, if possible, and reduce the velocity with which we

collide, if collision is unavoidable. On the other hand, we do not want to engage

the brakes harder or earlier than necessary.

Specification.

We use the following class to model this case study.

1 public class CCModel extends HybridModel<CCModel> {

2 // Distance to obstacle in meters

3 @CVAR(min=−10, max=200)

4 public double distance = 200;

5

6 // Relative velocity in meters per second

7 @CVAR(min=0, max=55)

8 public double velocity = 55;

9

10 // Update Frequency in Hz

11 public static int updateFrequency = 10;

12

13 // Used to discretize continuous action space

14 protected Discretized accelVar =

15 new Discretized("Acceleration", 0, 6.5, 100);

16

17 public int nActions() {

18 return accelVar.nBuckets();

19 }

20

21 public boolean isFinal() {

22 return distance < 0 || velocity == 0;

23 }

24

25 public void next(int action, CCModel next) {

26 double acceleration = accelVar.fromDiscretized(action);

142

4.6. Case studies

27 double nextVelocity = velocity − acceleration / updateFrequency;

28

29 nextVelocity = Math.min(Math.max(nextVelocity, 0), velocity);

30

31 double nextDistance = distance −

32 (0.5 ∗ velocity + 0.5 ∗ nextVelocity + otherVel) /

33 (double) (updateFrequency);

34 nextDistance = Math.max(nextDistance, −10);

35 nextDistance = Math.min(distance, nextDistance);

36

37 next.distance = nextDistance;

38 next.velocity = nextVelocity;

39 }

40

41 private double[] rewards = new double[2];

42

43 public double[] initialRewards() {

44 if (distance <= 0 && velocity > 0)

45 rewards[0] = −1 − velocity / 55;

46 else

47 rewards[0] = 0;

48

49 rewards[1] = 0;

50 return rewards;

51 }

52

53 public double[] rewards(int a) {

54 double accel = accelVar.fromDiscretized(a) / 6.5;

55 rewards[0] = 0;

56 rewards[1] = −(accel ∗ accel);

57 return rewards;

58 }

59 }

Our model has two model variables: distance measured in meters, and

velocity measured in meters per second. The actions the controller can choose

are varying degrees of braking strength (measured in meters per square sec-

ond). Since we only allow finitely many actions, we use an auxiliary class

143

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

Discretized which takes care of linearly discretizing a variable in a certain

range.

In this model, the state space forms a directed acyclic graph, because dis-

tance and relative velocity can only decrease. The model stops (i.e., has final

states) when the car collides with the object in front, or if velocity reaches zero.

Note in the next method that this model uses a purely deterministic update

function. In fact, we first de-discretize the acceleration, and then calculate the

velocity of the next state based only on the velocity of this state and the

braking force applied. The next distance to the obstacle is calculated based on

the distance of this state and the average velocity of this state and the next

state. Finally, we make sure that all state variables stay inside the described

bounds.

Our rewards have two components. First, we incur a cost whenever we

collide with the obstacle. The height of the cost depends on the velocity at the

time of collision. Second, we incur a cost each time we apply force. The height

of the cost is determined by the square of the applied force.

Controller generation. We use the total sum accumulation function to find

an optimal controller. This seems to be a good choice because each run en-

counters a final state in a finite number of steps almost surely. In addition,

we have a half-order on the states. By executing the value iteration steps indi-

cated by this half-order, the value of each state has to be updated only once.

This insight dramatically decreases the runtime of value iteration. We used

200 sample points for distance, and 50 sample points for velocity.

In Figure 4.16 we display the approximation of the Pareto curve generated

for the braking system. On the x-axis, we see the expected velocity with which

collision occurs, where we average over all states with maximal distance. On

the y-axis, we see the average squared deceleration. There is a clear trade-off.

Since it seemed to us that avoiding collisions was the most important aspect

of a controller, we picked a weight that produces a reward very far on the left

of the plot: [0.988; 0.0116].

Analysis. We are first going to discuss the shape of the discrete controller

and the interpolated controller. In Figure 4.18a, we display the action chosen

for each state. Note that synthesis returns intuitively correct results. If the

car is still far away from the obstacle, and if the relative velocity is low, then

the braking force applied is low as well. If, on the other hand, relative speed is

144

4.6. Case studies

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

E
x
p
e
ct

e
d
 s

q
u
a
re

d
 a

cc
e
le

ra
ti

o
n

collision velocity

Figure 4.16: Pareto curve of colli-
sion avoidance system.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

v
e
lo

ci
ty

distance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Figure 4.17: Trace starting at dis-
tance 50 meters and velocity 30
m/s. Plot color indicates applied
breaking force.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

v
e
lo

ci
ty

distance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) Chosen actions

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

v
e
lo

ci
ty

distance

 0

 1

 2

 3

 4

 5

 6

 7

(b) Interpolated controller

Figure 4.18: Comparison between chosen actions and interpolated controller.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

v
e
lo

ci
ty

distance

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) 200 sample points for distance, 50 for
velocity

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

v
e
lo

ci
ty

distance

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) 500 sample points for distance, 200 for
velocity

Figure 4.19: Probability of collision with obstacle in different resolutions

145

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

high, or if we are close, then the braking force applied is higher. Figure 4.18b

shows the linearly interpolated controller (see Definition 4.8). The interpolation

scheme provides a smoothed controller. Note that visual inspection of this plot

alone is not sufficient: the plot does not tell us anything about the dynamics of

the system. It would, for example, be possible that the controller will “stutter”,

i.e., vary the applied braking force quickly.

To analyze stuttering, we now turn to a single trace in Figure 4.17. On

the x-axis we have the distance to the obstacle, while we have the relative

velocity on the y-axis. The color of the line depicts the current braking force

the controller applies. This trace was generated by starting in a continuous

state with distance 200 meters and relative velocity 30 meters per second. We

then used the continuous transition function to generate this plot. To follow

the trace in time, we start in the upper right corner and then follow the line

by going left until velocity reaches 0. In the beginning the controller applies

a braking force of 3.5m/s2. It then slowly and smoothly reduces the braking

force until relative velocity reaches zero shortly before colliding with the object.

Note that no stuttering occurs.

We are now going to look at the probability of colliding with the obsta-

cle. We analyzed this property using both PCTL model checking and Bayesian

model checking. We first evaluated the controller in its own environment, and

then in an environment with reduced braking efficiency. The probability of a

collision is plotted as heat-maps in Figure 4.19a and Figure 4.19b. The differ-

ence between the two figures is in the discretization resolution we used to check

the property. In Figure 4.19a we used 200 points for distance and 50 points

for relative velocity (we used the same resolution for controller generation).

The yellow area above a certain threshold is not surprising. This is the area

in which a collision happens even if maximal braking force is applied. The

surprising part is the big area of uncertainty (in read, violet and blue) below

the threshold. In this area, we are not sure if a collision is going to happen,

although the transition function is deterministic. This uncertainty is a result

of the probabilities introduced when we discretize the continuous transition

function. As evidence we present Figure 4.19b, which checks the same prop-

erty with a higher resolution (500 sample points for distance, 500 for distance).

Both plots have the same shape, but the shape with higher resolution presents

a much smaller area of uncertainty.

146

4.6. Case studies

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

v
e
lo

ci
ty

distance

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Figure 4.20: Trace with reduced
braking effectiveness

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

v
e
lo

ci
ty

distance

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4.21: Probability of collision
with reduced braking effectiveness.

To judge the robustness of the controller against unexpected reductions in

braking strength, we first calculated the probability of collision in a model in

which braking strength is reduced by 20%. We have plotted the generated

trace in Figure 4.20 and the heat map in Figure 4.21

When comparing the original trace and the trace with reduced effectiveness,

it becomes clear that the controller comes to a stop later when braking force

is reduced. It also adapts to the new situation: while braking force does not

rise, high braking force is maintained longer than in the trace with full braking

effectiveness.

When comparing the two heat maps that depict probability of a collision,

we firstly see that the area of certain collision grows. This is to be expected

with lower braking strength. We also see that the area in which the probability

of collision is neither zero nor one grows.

Stochastic model checking reveals the following results. At a distance of 200

meters, the synthesized controller is effective for a velocity of up to 47.25 meters

per second, a figure that is reflected by Figure 4.19b. When initial velocity is

treated as uniform over all possible values, then the probability of collision

lies in the interval [0.035, 0.0545] with probability 95%. With 20% reduced

effectiveness of braking, the controller is successful at least until a velocity of

37.5 is reached. The probability of collision lies in the interval [0.234, 0.254]

with probability 95%.

Possible extensions of the model. This case study is fairly simplistic.

We will now discuss how the model can be extended to get closer to current

systems.

Real world models are usually three-stage systems. Firstly, the braking

system is pre-charged such that the reaction time of the system will be miti-

147

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

gated. The second stage consists of warning the driver visibly or audibly about

an imminent collision. Only in the last stage, and only in very recently de-

ployed systems, do controllers actually initiate braking themselves. It would

be fairly easy to extend the model to encompass these features, though research

is required as to how drivers react to the warning signals.

Real world models also have to consider failing sensors or a reduction in

braking strength. These could be included in the model, but it that they should

be handled by a higher-instance, which detects sensor failures or conflicting

sensor results and handles accordingly. Slight reductions of braking strength

are handled by the controller we synthesize, as shown by the analysis. In the

event of a catastrophic failure of the braking system, even the best controller

is unable to prevent collision and we consider it therefore best to not include

this possibility in the model.

Finally, it would be possible to extend this model to make it more robust

with regard to reduced braking efficiency. One possibility is a feed-back loop

informing the controller of the reduced braking efficiency. Another is to synthe-

size different controllers for different braking strengths, and let a higher-order

system select the appropriate controller. A third possibility is to add a higher-

order system that amplifies the controllers braking strength as necessary.

Adaptive cruise control

This case studies considers an adaptive cruise control system (ACC), which we

described already in Section 4.4. ACCs are now built into luxury cars and are

responsible for automatically maintaining a fixed distance to the car in front.

Such a system senses (1) the current distance between the car it equips and

the car in front, and (2) their relative velocity, i.e,. by how much the distance

shrinks or grows per second. On the one hand, the goal of this system is to reach

and maintain the desired distance quickly. On the other hand, the controller

is also responsible for pleasant driving. That is, it should not unnecessarily or

suddenly accelerate or jerk (where jerk is the change of acceleration over time).

There is a trade-off between these two criteria, and our framework allows study

of trade-offs like these. An additional concern is that the relative velocity is

not exclusively under the control of the system. Instead, since we do not know

and cannot predict the other driver’s intentions, we assume that she is going to

behave randomly. See [VE03] for an overview of research on collision avoidance

148

4.6. Case studies

and adaptive cruise control for cars. [LDCd06] studies a synthesis approach

similar to ours for cooperative adaptive cruise control. This approach assumes

that cars communicate via compatible cruise control systems.

Specification. This case study uses the following class as model.

1 public class ACC extends Model<ACC> {

2 // Distance from car in front

3 @CVAR(min=0, max=100)

4 public double distance;

5

6 // Relative velocity

7 @CVAR(min=−14, max=14)

8 public double velocity;

9

10 // Distance we desire

11 public double desiredDistance = 50;

12

13 // Updates per second

14 public int ticks = 10;

15

16 @Override

17 public void next(double acceleration, ACC target) {

18 double random acceleration = normal.sample(0, 4.0);

19 double nextVelocity =

20 velocity + (acceleration + random acceleration) / ticks;

21 double nextDistance = distance −

22 (0.5 ∗ velocity + 0.5 ∗ nextVelocity) / ticks;

23 target.velocity = nextVelocity;

24 target.distance = nextDistance;

25 }

26

27 @Override

28 public double[] rewards(double acceleration) {

29 double[] rewards = new double[2];

30 rewards[0] = −Math.abs(desiredDistance − distance);

31 rewards[1] = −acceleration∗ acceleration;

32 return rewards;

33 }

34 }

149

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

-400

-350

-300

-250

-200

-150

-100

-50

 0

-270 -265 -260 -255 -250 -245 -240 -235

re
w

a
rd

s[
1

]

rewards[0]

Figure 4.22: Pareto Curve of ACC

-6

-4

-2

 0

 2

 4

 6

 8

 10

 42 43 44 45 46 47 48 49 50 51

v
e
lo

ci
ty

distance

-6

-4

-2

 0

 2

 4

 6

Figure 4.23: Trace of one run

A few features here are noteworthy.

• Variables distance and velocity are part of the model, while variables

desiredDistance and ticks are not part of the model (because they are

constant).

• We first sample a random acceleration for the other car, with mean zero

and standard deviation 4. Next, we calculate the velocity of the next

state, based on the current velocity, the random acceleration and the

acceleration we got as input. Lastly, based on old velocity and distance

and on the new velocity, we calculate the distance of the next state.

• Additionally, we define the rewards the controller gets for its decisions

in method double[] rewards(double acceleration). In the case of

ACC, it receives a cost (negative reward) depending on how far the current

distance is from the desired distance (rewards[0]), and a cost depending

on how much it accelerates (rewards[1]).

Note that the rewards define exactly the trade-off mentioned before. On

the one hand, we want to minimize both rewards[0] and rewards[1], but

applying less acceleration will lead to a greater deviation from our desired

distance. On the other hand, being stricter about staying close to the desired

distance requires more acceleration.

Controller generation. It was not clear to us what weights we should assign.

We therefore generated a part of the Pareto curve based on minimal perfor-

mance criteria. We display part of the curve in Figure 4.22. Based on this

curve, we picked weight (0.9788, 0.0211) to generate a controller.

We show the actions of a controller generated with weight (0.9788, 0.0211)

by our framework in Plot 4.24. On the x-axis we present the distance to

150

4.6. Case studies

-15

-10

-5

 0

 5

 10

 15

-20 0 20 40 60 80 100 120

v
e
lo

ci
ty

distance

-6

-4

-2

 0

 2

 4

 6

Figure 4.24: Controller Plot with
weight (0.9788, 0.0211)

-15

-10

-5

 0

 5

 10

 15

-20 0 20 40 60 80 100 120

v
e
lo

ci
ty

distance

-6

-4

-2

 0

 2

 4

 6

Figure 4.25: Plot of Controller
weith weight (0.9588, 0.0411)

the car in front, while we present the relative velocity on the y-axis. The

color indicates the applied acceleration. For example, where the distance is as

desired (50 m), and the relative velocity is 0, no further acceleration is applied.

Going through this point is a diagonal going from roughly (35, -15) to (65,

15) where applied acceleration equals zero. In this area, the controller judges

the relative velocity just right to reach the desired distance quickly enough.

As we move horizontally outwards from this narrow band, the acceleration the

controller applies rises sharply. Especially, as either distance or relative velocity

decreases, the controller increases the applied acceleration.

Plot 4.23 shows one trace of the interplay between controller and environ-

ment as it happens in the continuous environment (i.e., we run the program

defined above as it is). It starts out in position (50,10), i.e., where the distance

is as desired but we are closing in too fast. As we follow the trace, we see that

the car equipped with an ACC gains on the car in front (because its velocity

is greater than that of the other car). The color of the trace shows the applied

braking force in each particular moment. As we can see, the controller breaks

the car harshly until he reaches a relative velocity of -3 m/s. At this point it

slowly decreases the de-acceleration until a relative velocity of about -5 m/s is

reached. It now maintains speed until we reach a distance of about 47 m (i.e.,

the car is 3 meters too close). Would the controller maintain speed here, then

it would overshoot the desired distance. Instead, it gently accelerates the car

again until it reaches a relative velocity of 0 and is very close to the desired

distance. The “ball” region around the desired distance and relative velocity 0

shows how the controller reacts to the random behaviour of the car in front.

In Plot 4.25, we present a controller generated with weight (0.9588, 0.0411).

In comparison to the weight above, we have decreased the importance of

151

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

rewards[0], and increased the importance of rewards[1]. This decreases

the importance of the distance to the other car and increases the importance

of not applying too much acceleration. This has the effect of growing the

band where relative velocity is judged adequate, and also moving the area of

increased acceleration further out.

These two examples show that the weight chosen when optimizing a con-

troller can have a strong influence on the one hand, and that choosing weights

is not intuitive on the other hand, especially as the number of dimension in-

creases. We therefore consider the easy availability of Pareto curves an asset

of our framework.

Verification

Probabilistic model checking. We use probabilistic model checking to judge

how the controller behaves if assumptions we made about the environment are

not met and how the controller behaves with regard to properties that were

not used for its construction. As an example of the latter, we can consider

the stability of the system. In control theory, stability is the property of a

system to reach a bounded set of states and never leave it. In our case, we

define this set as a bound on the deviation of the distance of the two cars from

the desired distance. We can easily state a desired bounded set of states via

PCTL formula: P=?[G(|d − 50| < c)], where d denotes the distance between

the two cars and c is a constant. Our framework takes this formula as input

and calculates the probability of being in a stable (i.e., in a state from which

only other stable states can be reached) for each state. In Plot 4.26 we plot

the probability of being in a stable state, where we arbitrarily judge a state

stable if c = 5. Note, first, that any state with a distance not within 5 meters

of the desired distance cannot be stable. Note second, that as the relative

velocity becomes more extreme, the probability of a state being stable goes

towards zero. At the very extreme ends, the controller is unable to maintain

control over the relative velocity in a way that guarantees that the distance will

stay within 5 meters of the desired distance. Closer to the area where relative

velocity is 0, the probability lies between 0 and 1. The reason that there is no

sharp threshold between probability 0 and 1 lies in the random acceleration of

the car in front. With a certain probability, the car in front will contribute to

moving the distance towards the desired distance (braking where the controller

152

4.6. Case studies

-15

-10

-5

 0

 5

 10

 15

-20 0 20 40 60 80 100 120

v
e
lo

ci
ty

distance

'acc.dat' u 1:2:(1-$3)
 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4.26: Probability of being in
a stable state

-15

-10

-5

 0

 5

 10

 15

-20 0 20 40 60 80 100 120

v
e
lo

ci
ty

distance

'acc.2.dat' u 1:2:(1-$3)
 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4.27: Probability of being in
a stable state with 80% acceleration
effectiveness.

needs to accelerate and vice versa). With a certain probability, the car will

work against our controller (accelerating where we need to accelerate, braking

where the controllers needs to break as well).

Judging the probability of reaching a stable state is an additional task. This

can be easily done in our framework by checking the controller against formula

P =?(FP=1[G(|d−50| < c))). As it turns out, the probability is 1 for all states

of our model, i.e., under the given assumptions the controller is able to reach

and maintain a low deviation from the desired distance to the other car almost

surely.

We can now modify certain parameters of the system, and judge its be-

haviour under these modified assumptions. For example, consider very rainy

weather, where we assume that acceleration only works at 80% efficiency of

what the controller expects2. The probability of a state being stable is plotted

in Figure 4.27. In this case, the probability is only about at most 40%3.

Lastly, our framework also allows us to easily turn the tables around and

choose actions for the car in front. In this new model, the braking force applied

by the ACC is determined by a controller we previously generated, and we now

synthesize worst-case accelerations for the car in front. This is easily achieved

by replacing next above by the following.

1 public void next(double acceleration2, ACC target) {

2 double acceleration = controller.get(this);

3 double nextVelocity =

4 velocity + (accleration + acceleration2) / ticks;

2This assumes that we use the same controller in bad weather, and that we cannot
compensate

3Note that there are techniques for dealing with uncertain parameters(e.g., robust Markov
decision processes

153

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

5 double nextDistance = distance −

6 (0.5 ∗ velocity + 0.5 ∗ nextVelocity) / ticks;

7 target.velocity = nextVelocity;

8 target.distance = nextDistance;

9 }

Now we can apply the very same techniques we used above to compute the

worst-case probability of a state being stable.

Bayesian Probabilistic Model Checking. As we have noted before, the

models described in Java lend themselves directly to continuous state space

simulation. We cannot check the PCTL formula above as it is, because it

expresses properties over infinite runs. Instead we have to give time-bound

formulas. As an example, we consider a formula expressing the property “What

is the probability that we reach a state inside 5 meters around the desired

distance in 1000 steps (where 1 step is 10 milliseconds long), and stay inside

this area for the next 1000 steps.” Bayesian probabilistic model checking allows

us to make statements like “given the set of samples generated, the probability

that this formula is true lies in the interval [a, b] with probability c”. In this

framework, the width of the interval b − a and confidence c are configurable.

In our case it turns out, that with 95% confidence the formula holds with

probability [0.98, 1.00] from some randomly generated state. We assume that

the remaining cases will require longer runs. For comparison, we decreased the

efficiency of the applied acceleration to 80%. In this case, we get an interval

[0.971297, 0.991297], which shows us that the controller performs well even

under adverse conditions.

Related work.

Mountain car

The mountain car example [Sut95] is a famous example usually used for rein-

forcement learning. In this setting, a car is caught in a ditch, and its engine is

too weak to just drive up at one of the sides. Figure 4.29 depicts the landscape.

The car is assumed to start motionless at the bottom of the ditch (position -

0.5).

The model. Figure 4.28 contains the code of this model. We have to state

variables (position and velocity). It is our goal to get out of the ditch we

154

4.6. Case studies

landed in, i.e., the car has to reach position 0.6. The controller can influence

the car by accelerating forward or backward full-throttle, or by letting the

motor idle. That is, the controller has three possible actions in each state. The

velocity of the car is also influenced by gravity. The controller incurs a cost of

1 for each time step, and a different cost for each applied acceleration.

Synthesis. We present the Pareto curve in Figure 4.30. The almost linear

trade-off between acceleration and time is uncommon for our case studies: we

usually see curves that are entirely rounded. Only after an expected number

of about 70 applied accelerations do we start to see a non-linear trade-off.

Analysis. We picked two controllers for analysis. One controller that was

generated with weight [0.9, 0.1], which we will call slow from now on, and one

controller that was generated with weight [0.1, 0.9], which we will call fast from

now on. The expected reward of slow is [−61.57,−176.73], and that of fast is

[−98.61;−106.24]. Their outcomes are very different: the slow controller uses

about 40% fewer accelerations, but takes about 50% more time than the fast

controller.

How the different controllers achieve their different goals can be seen in the

two trace plots in Figure 4.31, both of which were started at position −0.5 and

velocity 0, i.e. motionless at the bottom of the ditch. In both plots we have the

position of the car in the ditch on the x-axis, and the velocity on the y-axis.

We additionally display the applied action in color: black means reverse, red

means idle and yellow means forward.

We will first analyze the trace of the fast controller in Figure 4.31a. Right

at the start the controller accelerates and manages to climb the hill up a little

(yellow section going from position -0.5 to position -0.4). It then immediately

reverses, rolls down the hill and back up the hill on the opposite site. It

manages to climb the hill up almost all the way, where it reaches velocity 0

(black section going from -0.4 to -1). It then accelerates again, rolls down the

one side of the ditch and up the other, and keeps accelerating until it reaches

position 0.6. Note that velocity decreases after position −0.4, although the

controller applies force: this is a result of the comparatively strong gravity.

Contrast this strategy with the strategy of the energy-conserving controller

in Figure 4.31b. First, note the long stretches of red, which depict an idle

motor. At the beginning, the car backs up the hill to the left a little (black

section going from -0.5 to -0.7). It then rolls down the hill half-way with an

155

CHAPTER 4: QUANTITATIVE VERIFICATION AND SYNTHESIS
FRAMEWORK

1 public class MountainCar extends HybridModel<MountainCar> {
2 @CVAR(min=−1.2, max=0.7)
3 public double position = −0.5;
4
5 @CVAR(min=−0.07, max=0.07)
6 public double velocity = 0.0;
7
8 @Override
9 public void next(int action, MountainCar target) {

10 int accel = action − 1;
11 target.velocity = velocity + 0.001 ∗ accel +
12 Math.cos(3 ∗ position) ∗ (−0.0025);
13 target.position = position + target.velocity;
14 }
15
16 @Override
17 public int nActions() {
18 return 3;
19 }
20
21 private double[] rewards = new double[2];
22 @Override
23 public double[] initialRewards() {
24 rewards[0] = rewards[1] = 0;
25 return rewards;
26 }
27
28 @Override
29 public double[] rewards(int action) {
30 int accel = action − 1;
31 rewards[0] = −Math.abs(accel);
32 rewards[1] = −1;
33 return rewards;
34 }
35
36 @Override
37 public boolean isFinal() {
38 return position >= 0.6;
39 }
40 }

Figure 4.28: Code of mountain car model

156

4.6. Case studies

−1 −0.5 0 0.5

Start

Goal

Figure 4.29: A mountain landscape

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 60 65 70 75 80 85 90 95 100 105 110

Ti
m

e
 s

te
p
s

Applied acceleration

Figure 4.30: Pareto curve of moun-
tain car controllers.

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

v
e
lo

ci
ty

position

-1

-0.5

 0

 0.5

 1

(a) Fast trace

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

v
e
lo

ci
ty

position

-1

-0.5

 0

 0.5

 1

(b) Slow trace

Figure 4.31: Traces of slow and fast controllers, started at the bottom of the
ditch. X-axis depicts position, Y-axis depicts velocity, color depicts applied
action.

idle motor until -0.6 and then accelerates until it reaches position -0.3 (yellow

section), first passing the bottom of the ditch and then climbing up the right

hill somewhat. It then starts idling (red section), continuing to roll the hill up

a little until position -0.2, and then it continues to roll the hill down, first with

an idle motor (until -0.3) and then with reversing the car (until -0.9), and then

with an idle motor again. It passes the bottom of the ditch, rolls up the left

hill until reaching position -1, and then starts rolling the hill down again, at

first with an idling motor. While rolling the hill down, passing the ditch and

rolling up the right hill, the controller gives a last push (last yellow section)

from position -0.9 to position -0.1. The car then finally reaches the top of the

hill (position 0.6). Note that the slow controller exits the ditch with a much

lower velocity than the fast controller.

When comparing the two traces (which have been created using continuous

dynamics, not discretized dynamics), we see that the slow controller needs 176

157

CHAPTER 4: INTRODUCTION

steps, while the fast controller needs only 106 steps. In contrast, the slow con-

troller only applies 61 acceleration actions, while the fast controller applies 98

acceleration actions. Comparison of these (exact) numbers with the expected

(discretized) numbers used for generation shows that the approximation used

in our framework delivers good results in the case study.

Conclusion

We have presented a new framework and several case studies for probabilis-

tic quantitative verification and synthesis. The intended contribution of this

framework is to stress the need to do verification and synthesis in a loop in

the same framework. In the course of this, we showed how we can use a Java

EDSL as a modeling language. In addition, we have generalized and extended

previous work on approximating Pareto curves of MDPs. We have used this

EDSL on several case studies which have emphasized the need of Pareto curves

and verification of synthesized controllers.

158

5

Analyzing the Next

Generation Airborne Collision

Avoidance System

In which we apply quantitative verification and

synthesis to analyze and improve the next

generation collision avoidance system for

airplanes.

Résumé

La nouvelle génération de système anti-collision aérienne ACAS X se base sur

le système détérministique traditionnel, comme le système actuel TCAS. Pour

augmenter la puissance ACAS X dépend des modéles probabilistiques, ce que

singifie la variation de l’incertitude. Le travail présenté dans cet article montre

le défi de ACAS X et décrivent les études de l’application de la vérification prob-

abilistique et méthodes de syntèse s’addressant ces défis. Comme ces méthodes

probabilistique sont utilisées par défaut, nous avons développé une base pour

gérer les systèmes avec les caractéristics similaires à celles d’ACAS X. Nous

décrivont donc l’application de cette base pour ACAS X, les résultats et les

recommendations suite à notre analyse.

5.1 Introduction

The current onboard collision avoidance standard, TCAS [KD07](Traffic Col-

lision Avoidance System) has been successful in preventing mid-air collisions.

However, its deterministic logic limits robustness in the presence of unantici-

pated pilot responses, as exposed by the collision of two aircraft in 2002 over

Überlingen, Germany [Joh04]. To increase robustness, Lincoln Laboratory has

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

been developing a new system, provisionally known as ACAS X(Air Collision

Avoidance System), which uses probabilistic models to represent uncertainty.

Simulation studies with recorded radar data have confirmed that this novel

approach leads to a significant improvement in safety and operational perfor-

mance. The Federal Aviation Administration (FAA) has formed a team of

organizations to mature the system, aiming to make ACAS X the next inter-

national standard for collision avoidance.

The adoption of a completely new algorithmic approach to a safety-critical

system naturally poses a significant challenge for verification and certifica-

tion. Our goal in this work is to study the applicability of formal proba-

bilistic verification and synthesis techniques, which go beyond simulation stud-

ies [KNP11, KZH+11]. Our study was driven by tasks defined in collaboration

with the ACAS X team to be complementary to their verification efforts. Dur-

ing the course of our work, we identified shortcomings of existing tools, which

lead us to develop a framework customized for ACAS X (or similar systems).

In our framework, models are expressed in a traditional programming language

for increased expressiveness, and verification and synthesis algorithms are de-

signed for scalability and efficiency.

The contributions of this work can be summarized as follows: 1) Develop-

ment of a faithful model for synthesis of the ACAS X controller, based on the

Lincoln Laboratory publications [KC11]; 2) Development of customized veri-

fication and synthesis algorithms for efficient handling of ACAS X (and like)

systems; 3) Identification of design and verification challenges for ACAS X

as related to probabilistic verification and synthesis; 4) Results obtained from

the application of our framework to ACAS X and recommendations for the

ACAS X effort.

The results of our work will serve as input for the certification of ACAS X.

Due to access restrictions, we analyze a previous version of the system [KC11],

but are currently working with the ACAS X team to extend our work to the

current version. We believe that ACAS X presents researchers in probabilistic

verification and synthesis with a unique opportunity to focus on a relevant,

safety-critical case study. For this reason, we are preparing a public release of

our models and framework, to encourage other members of the community to

build on our work.

The remainder of this chapter is organized as follows. Section 5.2 describes

160

5.2. The ACAS X system

the ACAS X system as designed and deployed by the ACAS X team. In addi-

tion to these techniques, our work implements and applies formal verification

and synthesis approaches, described in Sections 5.3 and 5.4. We discuss imple-

mentation details in Section 5.5, and Section 5.6 concludes the chapter.

5.2 The ACAS X system

Model Description. Similarly to the current standard TCAS, ACAS X [KC11]

uses several sources to estimate the current state of the plane on which it is

deployed, and the planes in its vicinity. If it detects the possibility of an im-

minent collision (less than 40 seconds away) and it produces vertical maneuver

advisories (to climb or descend) in order to avoid the collision. Both TCAS and

ACAS X operate at a frequency of one state update and advisory per second.

The ACAS X model consists of two airplanes on collision course. Loss of

Horizontal Separation, from now on denoted as LHS, describes the situation

where two airplanes are in the exact same location when their height difference

is ignored. A Near Mid-Air Collision (NMAC) occurs when the two airplanes

are within 100 ft of each other when LHS occurs. We refer to the plane equipped

with ACAS X as our plane (often referred to as ownship in the literature), and

the other plane as intruder (similarly to [KC11]).

The model has 5 parameters: (1) h ∈ [−1000, 1000] ft, the height differ-

ence between the two planes, (2) δh0, δh1 ∈ [−2500, 2500] ft /min, our and the

intruder’s climbing rates (3) adv the advisory produced by ACAS X one sec-

ond ago (4) ps the pilot state. The state can be described in our framework

(Chapter 4) as follows.

1 public class ACASModel extends HybridModel<ACASModel> {

2 // Height distance between airplanes

3 @CVAR(min=−1000, max=1000)

4 public double h;

5

6 // Our climbing rate

7 @CVAR(min=−2500, max=2500)

8 public double h0;

9

10 // Intruder’s climbing rate

11 @CVAR(min=−2500, max=2500)

161

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

12 public double h1;

13

14 // State of pilot − encodes last advisory as well as pilot’s reaction

15 @DVAR(min=0, max=12)

16 public int pilotState;

17

18 // ...

19 }

Listing 5.1: State space of ACASModel

Pilot state and advisories can take the following values.

• COC stands for “clear of conflict” — the pilot is free to choose how to

control the plane.

• CLI1500 / DES1500 stand for “climb / descend with 1500 ft /min”, respec-

tively; they advise the pilot to change the climbing rate with 1/4g until

reaching a climbing rate of 1500 ft /min / −1500 ft /min, respectively.

• Advisories SCLI1500 / SDES1500 and SCLI2500 / SDES2500 are similar

but employ an acceleration of 1/3g. Moreover, SCLI2500 / SDES2500

target a final climbing rate of 2500 ft /min / −2500 ft /min, respectively.

At each point, the state encodes the advisory given a second ago, as well

as the pilot’s reaction to it. Pilot state and advisories can take on any of these

values, but not all combinations are possible: the pilot can either follow the ad-

visory (i.e., response == lastAdvisory), or perform random maneuvers (i.e.,

response == COC), since studies have shown that pilots may not react imme-

diately or at all to an advisory. This part can be modeled in our framework as

follows.

1 public class ACASModel extends HybridModel<ACASModel> {

2 // ...

3 public enum Advisory {

4 COC,

5 CLI1500,

6 DES1500,

7 SCLI1500,

8 SDES1500,

9 SCL2500,

162

5.2. The ACAS X system

10 SDES2500;

11

12 public boolean isStrengthening(Advisory other) {

13 // ...

14 }

15

16 public boolean isReversal(Advisory other) {

17 // ...

18 }

19

20 public boolean isWeakening(Advisory other) {

21 // ...

22 }

23

24 public boolean isAlert(Advisory other) {

25 // ...

26 }

27 }

28

29 // Last advisory given − encoded in pilotState

30 public Advisory lastAdvisory;

31 // Pilot’s response to last advisory − encoded in pilotState

32 public Advisory response;

33

34 //...

35 }

Listing 5.2: Advisory declaration of ACASModel

The dynamics of the system are governed by the physics of the two planes

and by the behavior of the two pilots. We model the intruder as behaving ran-

domly, with his acceleration drawn from a normal distribution. We model the

pilot of our plane probabilistically. Whenever his reaction and the advisory we

give do not agree, his behavior is governed by discrete probability distributions.

The acceleration of our airplanes depends on the pilot’s reaction. If the pilot

is following the advisory, then the acceleration is determined by the advisory.

Otherwise, it is random, with the same parameters the intruder uses. This can

be modeled as follows in our framework.

163

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

1 public class ACASModel extends HybridModel<ACASModel> {

2 // ...

3 // Probability to react if pilot’s reaction is slow

4 protected static final double responseSlow = 1/6.0;

5 // Probability to react if pilot’s reaction is fast

6 protected static final double responseFast = 1/4.0;

7

8 // Probability distribution used if pilot is slow to react

9 public DiscreteDistribution<Boolean> slowReaction;

10 // Probability distribution used if pilot is fast to react

11 public DiscreteDistribution<Boolean> fastReaction;

12

13 // Earth’s gravity in ft/sˆ2

14 public static final double G = 32.1740;

15

16 // Standard deviation of random acceleration

17 public static final double sigma = 3;

18

19 public ACASModel() {

20 slowReaction = new DiscreteDistribution<Boolean>();

21 fastReaction = new DiscreteDistribution<Boolean>();

22

23 slowReaction.add(false, 1−responseSlow);

24 slowReaction.add(true, responseSlow);

25 fastReaction.add(false, 1−responseFast);

26 fastReaction.add(true, responseFast);

27 }

28

29 @Override

30 public void next(int action, ACASModel next) {

31 // Set lastAdvisory and response

32 decodePilotState();

33 // Turn action number into an advisory

34 Advisory adv = decodeAdv(action);

35

36 // If the advisory has not changed, or if the advisory is

37 // COC, then the next pilot response is the advisory.

38 // This models an immediate reaction to COC

164

5.2. The ACAS X system

39 if (adv == response || adv == Advisory.COC) {

40 next.response = adv;

41 }

42 // If the advisory changes and is not a COC, sample to see

43 // if the pilot reacts or is in COC mode

44 else if (adv == Advisory.CLI1500 || adv == Advisory.DES1500) {

45 next.response = slowReaction.sample() ? adv : Advisory.COC;

46 } else {

47 next.response = fastReaction.sample() ? adv : Advisory.COC;

48 }

49 // Remember the advisory we give

50 next.lastAdvisory = adv;

51 // Update intruder’s climbing rate

52 next.h1 = this.h1 + normal.sample(0, sigma) ∗ 60;

53

54 if (next.response == Advisory.COC) {

55 // Update our own climbing rate randomly if that is our reaction

56 next.h0 = this.h0 + normal.sample(0, sigma) ∗ 60;

57 } else {

58 // Update our climbing rate by h0Diff, according to advisory and situation

59 double h0Diff = 0;

60 switch (next.response) {

61 case CLI1500:

62 if (h0 < 1500)

63 h0Diff = G / 4.0;

64 break;

65 case SCLI1500:

66 if (h0 < 1500)

67 h0Diff = G / 3.0;

68 break;

69 case SCL2500:

70 if (h0 < 2500)

71 h0Diff = G / 3.0;

72 break;

73 case DES1500:

74 if (h0 > −1500)

75 h0Diff = −G / 4.0;

76 break;

165

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

77 case SDES1500:

78 if (h0 > −1500)

79 h0Diff = −G / 3.0;

80 break;

81 case SDES2500:

82 if (h0 > −2500)

83 h0Diff = −G / 3.0;

84 break;

85 }

86 next.h0 = this.h0 + h0Diff ∗ 60;

87 }

88

89 // Update height difference based equally on the climbing rates

90 // of this round and the next round

91 next.h = h + ((h0 + next.h0)/2 − (h1 + next.h1)/2) / 60;

92

93 // Make sure values fall into their defined intervals

94 if (next.h0 >= 2500) next.h0 = 2500;

95 if (next.h0 <= −2500) next.h0 = −2500;

96 if (next.h1 >= 2500) next.h1 = 2500;

97 if (next.h1 <= −2500) next.h1 = −2500;

98 if (next.h >= 1000) next.h = 1000;

99 if (next.h <= −1000) next.h = −1000;

100

101 // encode next state’s pilotState variable according to

102 // next.adv and next.response

103 next.encodePilotState();

104 }

105

106 // ...

107 }

Listing 5.3: Dynamics of ACASModel

In order to generate a controller, each ACAS X advisory receives a cost/re-

ward, where costs are rewards with negative values. Reward COC is associated

with switching from any alerting state to COC; Alert is a cost associated with

switching from COC to either CLI1500 or DES1500; Reversal is a cost asso-

ciated with switching from any climbing to any descending advisory, or vice

166

5.2. The ACAS X system

versa; Strengthening is a cost associated with switching from any climb/des-

cent advisory with goal 1500 ft /min to SCLI2500/SDES2500, respectively; NMAC

is a cost associated with the occurrence of an NMAC.

1 public class ACASModel extends HybridModel<ACASModel> {

2 // ...

3 private static double[] nmacReward = new double[] {−1, 0, 0, 0, 0};

4 private static double[] alertReward = new double[] {0, −1, 0, 0, 0};

5 private static double[] strengtheningReward = new double[] {0, 0, −1, 0, 0};

6 private static double[] reversalReward = new double[] {0, 0, 0, −1, 0,};

7 private static double[] cocReward = new double[] {0, 0, 0, 0, 1};

8 private static double[] zeroReward = new double[] {0, 0, 0, 0, 0};

9

10 @Override

11 public double[] initialRewards() {

12 if (−100 <= h && h <= 100) {

13 return nmacReward;

14 } else {

15 return zeroReward;

16 }

17 }

18

19 @Override

20 public double[] rewards(int a) {

21 Advisory newAdv = decodeAdv(a);

22 decodePilotState();

23 if (newAdv.isAlert(lastAdvisory)) {

24 return alertReward;

25 } else if (newAdv.isStrengthening(lastAdvisory)) {

26 return strengtheningReward;

27 } else if (newAdv.isReversal(lastAdvisory)) {

28 return reversalReward;

29 } else if (newAdv == Advisory.COC && lastAdvisory != Advisory.COC) {

30 return cocReward;

31 }

32 return zeroReward;

33 }

34 }

167

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

-1500

-1000

-500

 0

 500

 1000

 1500

-5 0 5 10 15 20 25 30 35 40

h
e
ig

h
t

d
iff

e
re

n
ce

time

 0

 0.5

 1

 1.5

 2

Figure 5.1: Controller generated in resolution (10, 10, 10) with weights as in
[KC11]. x-axis shows time until LHS, y-axis height difference. Parameters δh0

and δh1 are zero throughout, and adv = ps = COC. Color indicates selected
advisory: black (0) for COC, red (1) for CLI1500, yellow (2) for DES1500.

Controller generation. For controller generation we use the framework de-

scribed in Chapter 4. That is, we will define a discretized state space DR,

parameterized by a resolution vector R = (rδh0
, rδh1

, rh) ∈ N3, where rδh0
is

the number of discretization points above and below 0 for parameter δh0, and

rδh1
and rh describe the number of points for δh1 and h analogously. That

is, if δh0 = 10, then we use 21 points to discretize δh0. The ACAS X report

[KC11] uses resolution (10, 10, 10).

Controller deployment. For controller deployment, we select (based on

[KC11]) the weighted voting scheme (see Section 4.4, Page 133).

In Figure 5.1 we illustrate a part of the interpolated strategy generated

according to [KC11]. On the horizontal axis we denote the time until collision,

running from zero (on the left hand side of the plot) to 40 seconds (on the right

hand side of the plot). On the vertical axis we denote the height difference

between the two planes. Both climbing rates are zero, and the last advisory

and the pilot state are COC. Note that LHS occurs at time 0 where, if two

airplanes are less that 100 feet apart, an NMAC occurs. As we move towards the

right, potential collisions are therefore less imminent. Such plots are easy to

generate with our framework.

168

5.2. The ACAS X system

-1500

-1000

-500

 0

 500

 1000

 1500

-5 0 5 10 15 20 25 30 35 40

h
e
ig

h
t

d
iff

e
re

n
ce

time

 0

 0.5

 1

 1.5

 2

Figure 5.2: Controller generated resolution (20, 20, 20) with weights as in
[KC11]. x-axis shows time until LHS, y-axis height difference. Parameters δh0

and δh1 are zero throughout, and adv = ps = COC. Color indicates selected
advisory: black (0) for COC, red (1) for CLI1500, yellow (2) for DES1500.

One way to intuitively understand these plots is to imagine the intruder on

the left hand side of the plot at time and height zero, and our plane somewhere

on the plot. The advisory is then determined by the color at the position of

our plane. We want to emphasize that plots like these can only ever display

a small slice of the whole state space. We have to fix both climbing rates and

the pilot state in order to be able to generate a two dimensional plot.

The black area marks the part of the state space in which the controller

advises COC. The red part marks the part of the state space in which the

controller advises climbing, while the yellow part of the state space marks a

descend advisory. Note the red zone, above the middle line, in which the

controller advises to climb. It is the red and yellow zones in which the cost

generated by the probability of an NMAC outweighs the cost of giving an

advisory. In the black area above the red zone, the probability of an NMAC is

not sufficiently high enough to outweigh the cost of issuing an alert.

We would like to point out two features of the generated controller. Firstly,

if the airplanes start out on the same height, then the controller waits for a long

time until giving an advisory, as witnessed by the black space between the two

“tails” on the right. This is because it is very unlikely that the two planes will

169

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

remain on the same height for a long time (due to their random movement),

and it is therefore better to wait until the intruder either starts climbing or

descending and go in the opposite direction. Secondly notice the “mouth”

shape close to time 0 and around height difference 0. In this collision situation,

ACAS X is not giving any advisory, although one would intuitively expect that

some advisory would be more informative to the pilot than a COC, which may

be misleading. This is an artifact of the costs and rewards used for synthesis

described above. Consider the state in which ps = adv = COC, δh0 = δh1 =

h = 0 and time to LHS = 2 as an example. The framework evaluates all possible

advisories it can give, which are COC, DES1500 and CLI1500 here. Intuitively,

ACAS X should signal either DES1500 or CLI1500 to avoid a collision. But

even if an advisory was given, a collision would still be very likely because of

the lack of time for an effect to happen. Therefore, ACAS X expects to receive

the costs of an NMAC with high probability even if an advisory is given. Let

us call the expected cost incurred due to an NMAC if no advisory is given c0,

and the expected cost incurred due to an NMAC if an advisory is given c1 (it

does not matter which advisory since the situations are symmetric). Note that

c1 < c0, since the probability of an NMAC is lower if an advisory is given.

ACAS X will definitely receive the cost of an alert if it chooses to give one

(i.e., Alert). If ACAS X gives an advisory it will incur costs c1 + Alert, and

if no advisory is given it will incur costs c0. Due to the way costs are chosen,

c1 + Alert > c0. Equivalently, c0 − c1 < Alert, i.e., the difference in the

probability of an NMAC is not high enough to merit an advisory. We describe

a technique that identifies situations like these in Section 5.3.

5.3 Verification

To complement the ACAS X work that primarily uses simulation, we apply

formal analysis techniques to evaluate the ACAS X controller. Simulation-

based techniques are studied and discussed in Section 5.4, where we explore the

design-space of controllers and compare different generated controllers among

themselves. In this section, we evaluate the ACAS X controller 1) in terms

of the quality criteria used for its generation, and 2) through model checking

of PCTL [HJ94] properties, which are ideal for probabilistic models such as

ACAS X’s. we discretize the continuous model with several different resolu-

170

5.3. Verification

tions for evaluation. We could even use different model characteristics and

parameters (although we do not do the latter in the experiments presented

here).

The type of analysis that we perform provides a value v(s) for each state

of the discretized model. To easily compare results of analyses with each other

and with simulations, we define a probability distribution I(s) over the states

of the model. It is derived from the following continuous probability distri-

bution defined in [KC11]. The only states considered are those at 40 sec-

onds from LHS, and in which ps = adv = COC. Over those states, we define

a continuous distribution over (δh0, δh1, h) ∈ R3 by sampling δh0 and δh1

uniformly from [−1000, 1000] ft /min, denoted as δh0 ∼ U(−1000, 1000) and

δh1 ∼ U(−1000, 1000). To make a collision likely, and therefore to provoke the

controller into action, h is sampled from N(40((δh1−δh0)/60), 25), i.e., from a

normal distribution centered at 40((δh1 − δh0)/60) with a standard deviation

of 25.

To define an analogous distribution on the discretized state space DR,

we assign probability masses to all three parameters so as to soak up the

probability of the space around them. For example, if the discretization uses

{−2500,−2250, . . . , 2250, 2500} for δh0 and δh1 and {−1000,−900, . . . , 900, 1000}
for h, then we assign to the points with δh0 = δh1 = h = 0 the probability

mass of all states in which h ∈ [−50, 50] and δh0, δh1 ∈ [−125, 125].

That is, the probability of picking sample point δh0 is defined as:

P(δh0−∆δh0/2 ≤ H0 ≤ δh0+∆δh0/2), whereH0 ∼ U(−1000, 1000) and ∆δh0 is

the distance between two discretization points of δh0. We define the discretized

probability of δh1 analogously. The discretized probability of h is defined as:

P(h−∆h/2 ≤ H ≤ h+ ∆h/2), where H ∼ 40((δh1 − δh0)/60) +N(0, 25), i.e.,

the probability distribution of h depends on δh0 and δh1. Here, ∆h stands for

the distance between two discretization points of h. We then use I to calculate

the expected value EI(s)[v(s)].

Influence of resolution on controller evaluation

Our first step in evaluating the ACAS X controller involves analyzing its

performance in different resolutions. We picked (10, 10, 20), . . . , (10, 10, 50),

(20, 20, 10) . . . (50, 50, 10) and (20, 20, 20) . . . (50, 50, 50) as values. For each of

these resolutions, Figure 5.3 presents the evolution of the probability of seeing

171

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 10 15 20 25 30 35 40 45 50

P
(N

M
A

C
)

resolution

Height
Climbing Rate

All

Figure 5.3: P(NMAC) of baseline controller in various resolutions

an NMAC versus the resolution. The three lines represent the three groups of

increasing resolutions. Line “Height” represents resolutions (10, 10, n), while

line “Climbing Rate” represents the resolutions (n, n, 10) and line “All” repre-

sents the resolutions (n, n, n), for n ∈ {10, 20, 30, 40, 50}.

These plots indicate that the probability of NMAC drops as we increase

resolution. This in turn indicates (though does not guarantee) that a coarse

resolution provides a conservative estimate for the quality criteria of the con-

troller. Lines “Height” and “Climbing Rate” indicate that increasing the res-

olution of the height difference has a stronger influence on the quality of the

analysis than the resolution of the climbing rate. This observation is reinforced

by comparing lines “Height” and “All”. The difference between these two lines

is small, despite the fact that an n-fold increase in resolution of the climbing

rate leads to an n2-fold increase in state space.

PCTL model checking

The PCTL model checking engine that we have developed enables users to: (1)

vary the resolution of the model to get more precise results, and (2) analyse

non-trivial properties expressed in the PCTL formal property language. In

contrast to simulation, PCTL model checking allows an exhaustive search of

the state space and can thus uncover scenarios that simulations might easily

172

5.3. Verification















        

























h

δh1

δh0

DES1500	

SDES2500	

COC	

va
lu
es
	

1me	
 to	
 LHR	

NMAC	
 Example	

Figure 5.4: Trace plots for property 1. x-axis displays time to LHS, y-axis
displays values of (δh0, δh1, h). The color of line h depicts the advisory,
tagged above the line.

miss. This is important given the low probability of some of the properties we

want to check.

Property 1: Near Mid-Air Collision.

Studies the probability of a near mid-air collision, formally P=?[F NMAC].

During analysis, we observed that the most likely cases of this undesirable sce-

nario stem from late reactions from the pilot. We therefore decided to instead

concentrate on NMACs that occur despite immediate reactions to advisories

by the pilot. We formulate this as P=?(F NMAC | G adv = ps), i.e., what is

the probability of reaching an NMAC state although the pilot always reacts

immediately.

The highest probability over all initial states that we encounter with the

conditional probability formula is 2.30 · 10−8, as opposed to 6.92 · 10−4 with

the original formula. This confirms that the vast majority of NMACs happen

because the pilot does not react fast enough or at all. To understand the

NMACs that occur despite the fact that the pilot reacts to advisories, we

analyzed some traces that are most likely to fulfill P=?(F NMAC | G adv = ps).

173

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM















        

























!h1

!h0

!"#$%&&'

#!"#(%&&'

)*)'

+,
-.
/0
'

12/'34'567'

)58$%&&'

)*)'

h

#9-:3';<+:04=>'"?,29-/'

Figure 5.5: Trace plots for property 3. x-axis displays time to LHS, y-axis
displays values of (δh0, δh1, h). The color of line h depicts the advisory,
tagged above the line.

Figure 5.4 depicts such a scenario: initially, our airplane is 1000ft below the

intruder and we are climbing with 2500 ft /min. The intruder, on the other

hand, starts out with a climbing rate of −250 ft /min. Until 22 seconds to LHS,

the two airplanes maintain their course, and therefore the height difference

shrinks. If both planes were to continue to maintain their course, then our

plane would be well above the intruder at time 0 to LHS, so ACAS X does not

alert.

At this point, climbing rate of the intruder starts increasing, and the vertical

distance becomes −150 ft. The height difference levels off as a result of the

intruder’s increase in climbing rate from now on. ACAS X signals the DES1500

advisory seven seconds later, and SDES2500 one second after that. As a result,

our airplane starts descending steeply until it reaches −2500 ft /min. At the

point of the first alarm, the vertical distance is 50 ft, i.e., our plane is slightly

above the intruder. Unfortunately, the climbing rate of the intruder starts

decreasing at exactly the same point and from that point on, the two climbing

rates are not different enough to carry our plane outside of the danger zone

174

5.3. Verification

and we end up with a vertical distance of 100 ft, and hence an NMAC.

Traces like these capture exactly the type of unforeseen behaviour that led

to the Überlingen accident [Joh04], and probabilistic model checking can detect

cases like these easily. We consider it encouraging that the most likely case of

collision requires relatively complex behaviour of the intruder (first increasing

the climbing rate, then decreasing it, at exactly the right point in time).

Property 2: No advisory despite collision. Studies the probability of issu-

ing no advisory although a future NMAC is likely, formally P=?[F(P=1[X COC]∧
P>0.1[F NMAC])]. This formula was motivated by our previous observation of

Figure 5.1 in Section 5.2, according to which there is an area where ACAS X

issues no advisory although an NMAC is imminent. Figure 5.6 shows the

probability of the formula for all states in which δh0 = δh1 = 0 ft /min and

adv = ps = COC. This probability is 1 until about 12 seconds away if the height

difference between the planes is less than a 100 ft. Model checking the formula,

however, reveals that among all initial states, the highest probability is 0.3%,

so getting into such a situation is improbable.

Property 3: Split Advisory. Studies the probability of issuing an alert,

switching it off, and then switching an alert on again (a split advisory), formally

P=?[F(¬ COC∧P=1[X COC] ∧ P>0[F¬ COC])]. Even though during controller gen-

eration ACAS X penalizes reversals, these costs only reflect immediate changes

in controller advisories. Split advisories are also undesirable, but are harder to

capture during controller generation. The PCTL property described above can

however be used to study how likely such situations are. Analysis of the model

checking results revealed that a main cause for such situations is the pilot not

following the advisory. We therefore refined the property similarly to Property

1, by checking cases where split advisories occur under the condition that the

pilot always reacts immediately to advisories.

Figure 5.5 depicts a split advisory scenario under the refined property. Ini-

tially (at 40 seconds to LHS), our plane is 830 ft above the intruder and descend-

ing with 2500 ft /min, while the intruder is in level flight. The vertical distance

is therefore decreasing. Around 19 seconds into the scenario, the intruder starts

descending, and soon after, ACAS X advises CLI1500 and maintains this advi-

sory for 2 seconds, before switching it off again. Accordingly, the rate of descent

of our plane gradually reduces to 1500 ft /min. The advisory is then switched

off, as the intruder stops descending, effectively moving out of the way of our

175

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

plane. ACAS X switches to COC but, a second later, gives advisories DES1500,

followed by SDES2500, as the intruder’s rate of descent increases again.

Let us further analyze this generated scenario. The first climb advisory

aimed at avoiding a collision that would be likely if our plane continued to

descend at the same rate. It could not force the pilot to increase the rate

of descend further, since 2500 ft /min already is the maximum. Therefore,

climbing was the only possibility. Then the intruder stopped descending, which

reduced the probability of colliding with our current climbing rate. This may

have caused ACAS X to shut the advisory off. Shortly before ACAS X switched

the advisory back on, the difference in climbing rates was 1000 ft /min, and the

height difference was -30 ft. Since we were about 15 seconds away from LHS,

this amounted to a decreased vertical distance of about 260 ft. ACAS X decided

to increase the vertical distance by increasing the rate of descent.

It would be interesting to study whether the cost function of ACAS X may

encourage such cases of split advisories. Given that (Alert+ COC < Reversal),

it is possible that ACAS X decided to gain a small reward for selecting COC

after the first advisory, and additionally avoid the cost of a reversal that would

be incurred if the advisory was switched directly from a climb to a descend.

5.4 ACAS X design challenges

The generation of the ACAS X controller depends on two major design issues

that have so far been unexplored: the selection of weights, and the discretiza-

tion resolution. As reported in [KC11], the weights were selected based on an

intuition of the relative importance of the different quality criteria. In this sec-

tion, we study more systematic techniques for selecting controller weights, and

investigate how discretization resolution influences the generated controller.

Generating controller weights

Our goal is to systematically explore deterministic controllers whose perfor-

mances exceed requirements on NMAC, Alert, etc., provided by domain or cer-

tification experts. We approximate the Pareto curve of the model towards this

goal.

Figure 5.7 presents a subset of the points generated by this approach on

Alert and NMAC exclusively. The target point and the box it defines are plotted

176

5.4. ACAS X design challenges

-1500

-1000

-500

 0

 500

 1000

 1500

-5 0 5 10 15 20 25 30 35 40

h
e
ig

h
t

d
iff

e
re

n
ce

time

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.6: Probability of fulfilling property 2. Plot parameters as in Figure 5.1;
color depicts probability

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

P
(A

le
rt

)

P(NMAC)

Controllers
Target

First Point

Figure 5.7: Points generated for two objectives.

in black, and the points generated are plotted in red. The algorithm first

generated 8 points outside the box. The first point generated within the target

box (the 9th overall) is depicted in blue. We generated 10 more points after

we found it. We note that all subsequent 10 points that are generated also lie

within the box. The same effect has been observed for three dimensions. We

177

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

conclude that this algorithm is good at approximating the interesting part of

the Pareto front (that inside the box) once it finds the first point that meets

the target specifications.

We have checked this algorithm against various targets, and it always either

finds a controller meeting the requirement, or proves that no such controller

exists. Note that finding a controller in the box is an NP-complete problem

(easy adaptation of proof from [Cha07]). In the worst case, the algorithm has

to generate all points of the Pareto front of the model, of which there are expo-

nentially many. However, as the next section shows, little more than 100 points

suffice to find a controller meeting the requirement for various resolutions.

We believe that this technique can be very helpful as the controller model

ACAS X evolves. Each evolution (be it a change in discretization or a change

in parameters), necessitates tuning weights anew (as witnessed by the first

experiment in the next section). Our approach allows us to semi-automatically

select these weights by presenting domain experts with the trade-offs. They

can then select a controller they deem sufficient, or select an area for further

refinement.

Discretization resolution

To study the effects of discretization resolution on the quality of the obtained

controller, we designed a number of experiments described in this section. We

will from now on refer to the controller presented in [KC11] as the “baseline”

controller.

Experiment 1. This experiment aims to analyze the performance of con-

trollers generated at resolutions (20, 20, 20), (30, 30, 30), (40, 40, 40) and (50, 50, 50),

using the weights of the baseline controller. Our expectation was that a higher

resolution would lead to a better performance, at least in terms of P(NMAC).

However, the experiments showed that the controllers we generate by this

method do not necessarily perform better in all the quality attributes. In-

stead, higher resolution controllers have a significantly higher P(NMAC) and

significantly fewer alerts than the baseline controller in the same resolutions.

The reason becomes clear when we consider the controller plots in Figure 5.1

and Figure 5.2. The area in which an alert is signalled by the controller is sig-

nificantly smaller in Figure 5.2 when compared to Figure 5.1. To understand

the reason for this effect, we analyzed the controllers using the techniques from

178

5.4. ACAS X design challenges

Section 5.3. It turns out that controllers in higher resolutions indeed perform

better in the sense of having a higher expected reward than the baseline con-

troller. Intuitively, the controllers use the additional information they receive

from a higher resolution to improve the score they receive. To this end, the

controllers improve their score by reducing the expected number of alerts, at

the cost of a higher P(NMAC).

This experiment made it clear to us that weights may balance out the

quality attributes of a controller differently, when different resolutions are con-

sidered. As a consequence, we believe that it is more meaningful to system-

atically explore the design space of controllers based on specific target quality

attributes, as presented in Section 5.4. One could then compute weights based

on these target values, and within the resolution where the generation will

occur.

Experiment 2. Given the first experiment, we decided to study whether it is

possible to generate controllers that are better than the baseline controller in all

quality attributes, in higher resolutions. To generate a controller that performs

better than the baseline controller in a given resolution R = (rh, rδh0 , rδh1), we

first evaluate the performance of the baseline controller in resolution R. The

result is a vector v = (NMAC, Alert, Strengthening, Reversal, NMAC), which

summarizes the performance of the baseline controller when model checked in

resolution R (see Section 5.3 for more details). We then use the technique

described above to approximate the Pareto front above v. From the generated

controllers that meet the specification, we then pick the one with the lowest

P(NMAC).

Figure 5.8 illustrates the obtained results. The bars show, for resolution

factor n the performance of the baseline controller when checked against res-

olutions (n, n, 10) (Climbing Rate), (10, 10, n) (Height) and (n, n, n) (All) re-

spectively. It can be seen that we were almost unable to decrease P(NMAC)

using the climbing rate alone. The relative performance of these controllers

is consistently around 99.5%. When we increase the resolution of the height,

then we get a relative performance of about 85%. Finally, when increasing the

resolution of both we see a relative performance of about 83%. As witnessed

in Section 5.3, the discretization of height seems to have the biggest influence

on controller quality. Interestingly, the relative performance does not improve

as we increase the resolution.

179

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 10 20 30 40 50 60

P
(N

M
A

C
)

Resolution

All - Original Controller
All - Finer Controller

Height - Original Controller
Height - Finer Controller

Climbing Rate - Original Controller
Climbing Rate - Finer Controller

Figure 5.8: Controller quality vs resolution.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 10 15 20 25 30 35 40 45 50

P
(N

M
A

C
)

resolution

Height
Climbing Rate

All

Figure 5.9: Controller quality checked in (50,50,100).

To further judge the quality of the generated controllers, we checked them

against resolution (50, 50, 100) and present the results in Figure 5.9. On the x-

axis, we have the controller resolution, while on the y-axis we have the probabil-

ity of a Near Mid-Air Collision. As before, “Height” stands for the controllers of

resolution (10, 10, n), “Climbing Rate” for the controllers of resolution (n, n, 10)

and “All” for the controllers of resolution (n, n, n). This experiment confirms

that increasing the resolution of the height difference between the two planes

180

5.4. ACAS X design challenges

has the most impact up to and including (10, 10, 30), after which we notice no

further improvement. In contrast to this, we notice further improvements in

category “All”. Our experiments indicate that the best ratio of resolution for

the three parameters is (n, n, 3 · n).

Experiment 3. Let vR(c) denote the quality vector of a controller c in reso-

lution R (i.e., the vector of P(NMAC),P(Alert), etc). We organized this experi-

ment to study if ∀c1, c2, R1, R2 : vR1
(c1) ≥ vR1

(c2) ∧ R2 > R1 =⇒ vR2
(c1) ≥

vR2
(c2) holds. To this end, we compared the performance of the controller

we generated in resolution (20, 20, 20) to the baseline controller in resolutions

(20, 20, 20) and (50, 50, 100), and present the results in the following table.

Note that the higher resolution controller performs better than the baseline

in all dimensions in resolution (20, 20, 20); specifically, it is very close to the

target performance in everything but NMAC, where it is notably better.

NMAC Alert Strength. Reversal COC

(10, 10, 10) in (20, 20, 20) −4.850 · 10−4 -0.6310 -0.083 -0.019 0.629
(20, 20, 20) in (20, 20, 20) −4.186 · 10−4 -0.6306 -0.081 -0.019 0.631
(10, 10, 10) in (50, 50, 100) −2.897 · 10−4 -0.6245 -0.078 -0.020 0.622
(20, 20, 20) in (50, 50, 100) −2.313 · 10−4 -0.6308 -0.078 -0.019 0.630

Table 5.1: Performances of the baseline controller (resolution (10, 10, 10) and
controller generated in resolution (20, 20, 20) with the performance of the base-
line controller as target (see Section 4.5). Analysis resolution is (50, 50, 100).

This attests to the efficacy of our Pareto front algorithm. When comparing

this to the analysis results in resolution (50, 50, 100), we observe that while

the higher resolution controller and the baseline controller are still very close

in all characteristics except NMAC, the higher resolution controller is no longer

strictly better in all dimensions. For example, it uses slightly more alerts and

slightly more reversals. This is offset by the fact that the P(NMAC) of the

higher resolution controller is still significantly better than that of the baseline

controller. To summarize, the general tendencies of the relation of controllers

when checked in higher resolutions are the same, but the exact relations are

not preserved.

Bayesian model checking

In this section, we evaluate the generated controllers using simulation (where

discretization is not required), and compare the results with model check-

ing. Our analysis reports that the probability of NMAC lies in range [2.48 ·

181

CHAPTER 5: ANALYZING THE NEXT GENERATION AIRBORNE
COLLISION AVOIDANCE SYSTEM

10−4, 2.58 · 10−4] with probability 95%. We generated 38’796’000 samples to

reach this level of confidence for the given interval size [ZPC13].

We additionally applied this simulation technique to controllers of resolution

(10, 10, 10), . . . , (10, 10, 50) generated previously. The following table presents

the probability of seeing an NMAC for each of them.

Resolution 10 20 30 40 50
P(NMAC) · 104 [2.51, 2.61] [2.17, 2.27] [2.08, 2.18] [2.12, 2.22] [2.27, 2.37]

Table 5.2: Probability of seeing an NMAC in controllers of resolution
(10, 10, 10) to (10, 10, 50).

We conclude that the trend follows that depicted in Figure 5.8: improve-

ments in performance are significant until we reach resolution (10, 10, 30),

at which point they taper off. We were unable to perform this analysis on

controllers with resolution larger than (20, 20, 20) because we could not fit

the whole table into memory at once. For (20, 20, 20), though, we receive

P(NMAC) ∈ [2.06 · 10−4, 2.16 · 10−4], i.e., a number very close to that of the

controller generated for (10, 10, 30).

Bayesian model checking and probabilistic model checking. Bayesian

and probabilistic model checking have different strengths and weaknesses. On

the one hand, Bayesian model checking allows us to use the continuous state

space model. This avoids the discretization error probabilistic model checking

introduces. It further allows us to employ a much more detailed model, al-

though we have not done so in this study. For example, we can include more

complicated pilot models or three dimensions.

On the other hand, probabilistic model checking calculates an exact (for its

model) value for each state of the model. This can be more informative than

the summarized information we receive from Bayesian model checking. It also

avoids the uncertainty of confidence intervals. We can further employ some

optimization techniques which allow us to avoid keeping the whole controller

in memory. This becomes useful for high-detail controllers, where the table

requires more memory than our test machine provides. This is the reason why

we can check the controller generated, for example, for resolution (30, 30, 30).

This was not possible in our implementation of Bayesian model checking.

182

5.6. Conclusions and Future Work

5.5 Implementation

We initially used existing probabilistic model checking tools for ACAS X but

encountered several limitations. First, we could not express the linear interpo-

lation needed in the controller evaluation. Second, we not only require capabil-

ities for the specification of a model, but also for loading generated controllers

for subsequent verification. Last but not least, for our mupliple experiments

involving increasing resolution, the state spaces we generate grow prohibitively

large, and there is a considerable slow-down that could benefit from paralleliza-

tion, which is unavailable in current releases of existing tools.

More specifically, the size of the controller has 40 · ((2rδh0
+ 1) · (2rδh1

+

1) · (2rh + 1) · 13) states in resolution (rδh0
, rδh1

, rh). So, for example, the

model from [KC11] has 4′815′720 states overall. A controller with resolution

(50, 50, 50) has 535′756′520 states. We wrote a simplified version of the model

in [KC11] for PRISM [KNP11] (without linear interpolation, but with sigma

point sampling). While PRISM succeeded in loading the model as a BDD

model, analyzing it was not possible (we aborted conversion to the hybrid

representation after 10 minutes).

These problems motivated us to create our own framework in Chapter 4

that uses traditional programming languages to describe models, and takes

advantage of two key insights into the ACAS X model. Firstly, if we want to

calculate the values of any property in this model at time t, then we only need

to keep the value of time t − 1 in memory. This alone leads to a reduction

of memory consumption to 2.5%. Secondly, since we need to calculate value

iteration steps only a relatively small number of times for each state, it is

possible to avoid storing the transition matrix in memory and generate the

values on-demand.

In addition, we parallelized value iteration, and the speed-up obtained in

experiments using up to 12 cores was almost linear (1.94 for 2 cores, 3.37

for 4 cores, 4.67 for 6 cores, 6.47 for 8 cores, 7.54 for 10 cores, 8.93 for 12

cores). Parallelization proved essential for our experiments involving increasing

discretization resolution; generating the Pareto fronts for all cases took about

2 days, as opposed to more than a month.

183

CHAPTER 5: INTRODUCTION

5.6 Conclusions and Future Work

ACAS X is a safety-critical system that the FAA plans on introducing as the

new standard for collision avoidance. The system that will be deployed is the

look-up table that is generated by the techniques described in [KC11]. It is

therefore reasonable that a large number of the verification efforts would focus

on the verification of the generated controller in operation. However, we believe

that it is meaningful to take advantage of the existence of models for additional

formal analysis both of the controller itself, and of the design choices.

Our experiments related to the effects of resolution on controller generation

were particularly interesting. For example, we observed that height discretiza-

tion is more effective that climbing rate alone, when exploring the space of

controllers better than a particular target. We therefore recommend increas-

ing height resolution first, when there is an upper bound in controller size that

does not allow for uniform discretization of all variables. In the future, we

intend to carry out more experiments in this domain in order to give more

precise recommendations.

Some of the results that we obtained were also unexpected: the fact that a

higher resolution may balance the weights of quality attributes differently and

therefore result in a drop in performance of NMAC; or the fact that the relative

performance of two controllers may change when moving to higher resolutions.

This cautions us, in exploring the space of controllers, to ultimately evalu-

ate their relative performance in simulation. However, the Pareto-front-based

techniques for controller generation provide a systematic way of generating and

comparing controllers that can complement designer intuition.

PCTL model checking also proves valuable in studying properties of gen-

erated controllers. However, more useful than the model checking itself, is the

capability to visualize its results and generate traces that help with understand-

ing of the model checking results. We therefore found that latter aspect of our

tools most helpful, together with a simulator that we built, which allows us to

interactively explore generated controllers. In the future, we plan to connect

the simulator to the model checker, to allow replay of the generated traces.

184

6 Conclusion

This thesis has contributed to the theoretical and practical aspects of quan-

titative verification and synthesis. We have added theoretical results and al-

gorithms to rewards for single objective Markov decision processes. This field

seems well studied now, with single rewards and combinations of two rewards

well covered and practical algorithms available. We have also provided an

algorithm for approximating the Pareto curve of many objectives.

We have shown that the idea of adding quantitative information to a qual-

itative does not necessarily mean using rewards or probabilities, but can also

mean other information like closeness between original and repaired program.

Here we have not only contributed to a reformulation of the program repair

problem, but we have also analysed the limits of this reformation and showed

where this reformulation makes program repair impossible. We have studied

the reason for the impossibilities and presented two alternative formulations

that might lead to success where the other approaches might fail. The use-

fulness of this approach was shown with several examples taken from classical

model checking scenarios. Our prototype implementation showed that a re-

formulation was necessary, that it was useful and that it might contribute to

faster repair by the way of partial specifications. More has to be done to make

this reformulation practical. On the one hand, it seems promising to use tech-

niques based on sequential equivalence checking to speed up the repair search

process. On the other hand, it seems promising to marry our approach to

partial program synthesis frameworks to extend it to real programs. In this

area, our approach is the first to show the following difference between program

repair from partial program synthesis, which hitherto were the same. Partial

program synthesis is the term given to the process of filling in missing details

in a partial program. Program repair as defined by us means modifying an

existing program while leaving as many traces unchanged as possible.

CHAPTER 6: CONCLUSION

This thesis took a more practical turn then. It took the known results and

algorithms of verification and synthesis and forged them into a single frame-

work. This was inspired by the need of verification of synthesized controllers.

We showed that it is useful to check synthesized controllers, even though they

are correct by construction. On the one hand, abstractions might have been

employed during controller generation. We want to check the correctness of

the abstraction or check whether the error introduced by abstraction is within

bounds. On the other hand, we might want to check the controller against

modeling errors, i.e,. how robust is it when the assumptions made during

modeling do not hold? The novelty of this framework consists in the idea of

targeting synthesis and verification at the same time such that the two can be

used in a loop. This allows us to synthesize a controller under one condition

and then verify it in different conditions. We showed by the way of several

case studies that quantitative verification and synthesis techniques developed

in our field can be useful for tasks formal methods do not commonly address.

We showed that the feed-back loop approach of our framework is indeed use-

ful for controller validation. On the performance side, we showed that the

algorithms are easily parallelizable, and that performance is crucial, especially

when controllers need to be generated many times. The case studies taught us

that Pareto curves are important in the settings we looked at, because reward-

based synthesis often involves trade-offs. Systematic exploration of the space

of trade-offs and visual inspection proved very useful in our case studies.

Using an embedded domain specific language based on Java showed that

we can use Java to write probabilistic programs, and that these can be used

as a model for embedded control systems. The case studies showed that the

EDSL provides a natural way of writing models that is accessible to everybody

who has written a Java program.

For now, our framework only provides algorithms for purely quantitative

objectives, and it would be useful to add, for example, synthesis for mean-payoff

parity conditions, or for mean-payoff LTL conditions.

Application of our new framework to a real-world case study was a very

exciting part of this thesis. It showed us that the techniques we study and

develop are interesting not only from a research perspective, but also address

pressing safety concerns. We showed how our framework can contribute to the

exploration of the design space of an airborne collision avoidance system, and

186

6.1. Future work

how PCTL, a formalism classically used in our field, can be used outside of

our field. We hope that this case study leads to a more practical orientation of

quantitative verification and synthesis.

This thesis has contributed to theoretical and practical aspects of quanti-

tative verification and synthesis. Besides using it as a basis to reformulating

program repair, we have shown that quantitative synthesis can be practical in

more than synthesizing automata. We have shown that pure quantitative syn-

thesis is useful already, and that it provides very sensible controllers. We have

shown that the same framework can and should be used for both synthesis and

verification. Especially the successful application of this framework to a real

world case study lends this idea weight.

6.1 Future work

While this thesis provides a number of advances to its field of study and even

reformulation of a known problem, a large number of open and interesting

questions remain. We already discussed some at the end of the respective

chapters, but some general directions of future work remain.

Theoretical aspects. We have reformulated the program repair problem. It

remains open how to find an appropriate lower bound of acceptable repairs.

A related interesting problem is to find specifications that are good for repair,

i.e., for which we can always find a lower bound. While we provided two

formulations based on rewards, case studies of these remain open. Another

interesting question is how to extend our idea of repairs without regrets to

infinite state programs. An open and possibly very hard problem is the search

for a polynomial time algorithm for games with parity conditions.

Practical aspects. To make the field of quantitative verification and synthesis

interesting from a practical perspective, it seems necessary to make its core

algorithms scale to large models. While BDDs were a means of choice for a

long time, it seems that their limits have been reached. So we have to look

for alternatives to beat the state space explosion program. On the one hand,

alternative symbolic methods like antichains [WDHR06] have seen success in

qualitative synthesis and verification, and so it can be hoped that they can be

adapted to the quantitative setting. On the other hand, abstraction methods

seem promising. Works like [DKP13] make a start for MDPs. In addition,

187

scalable distributed versions of all core algorithms are desirable.

Orientation. It seems desirable that quantitative verification and synthesis

turn to practical aspects. A lot of theory has been produced, but is seems that

practical example of synthesis are few and far in between. We have provided

a start with Chapter 4 and more so in Chapter 5, and so hope that more

attention will be given to these methods. Beside safety critical systems like

ACAS X, an interesting field is the application of formal methods procedures to

robotics scenarios. In turn to make these methods practical, it seems necessary

to combine quantitative and qualitative aspects. So focused research into fast

algorithms that produce synthesizable strategies that behave correct intuitively

is necessary.

In addition, we have found that quantitative verification and synthesis can

benefit from techniques from the field of operations research and artificial in-

telligence, and vice versa. More collaboration is desirable.

188

Bibliography

[BBC+11] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech

Forejt, and Antońın Kucera. Two views on multiple mean-payoff

objectives in markov decision processes. CoRR, abs/1104.3489,

2011.

[BBFR13] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, and Jean-

François Raskin. Synthesis from ltl specifications with mean-

payoff objectives. In Nir Piterman and Scott A. Smolka, edi-

tors, TACAS, volume 7795 of Lecture Notes in Computer Science,

pages 169–184. Springer, 2013.

[BCD+11] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gen-

tilini, and Jean-François Raskin. Faster algorithms for mean-

payoff games. Formal Methods in System Design, 38(2):97–118,

2011.

[BCHJ09] Rodric. Bloem, Krishnendu. Chatterjee, Thomas. A. Henzinger,

and Barbara Jobstmann. Better quality in synthesis through

quantitative objectives. In CAV, pages 140–156, 2009.

[BCJ14] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobst-

mann. Handbook of Model Checking, chapter Graph games and

reactive synthesis. Springer, 2014.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan,

David L. Dill, and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Inf. Comput., 98(2):142–170, 1992.

[BCW+10] Dietmar Berwanger, Krishnendu Chatterjee, Martin De Wulf,

Laurent Doyen, and Thomas A. Henzinger. Strategy construc-

tion for parity games with imperfect information. Inf. Comput.,

208(10):1206–1220, 2010.

[BDL+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John

H̊akansson, Paul Pettersson, Wang Yi, and Martijn Hendriks.

Uppaal 4.0. In QEST, pages 125–126. IEEE Computer Society,

2006.

[BEGL99] Francesco Buccafurri, Thomas Eiter, Georg Gottlob, and Nicola

Leone. Enhancing model checking in verification by ai techniques.

Artif. Intell., 112(1-2):57–104, 1999.

[BFL+08] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen,

Nicolas Markey, and Jiŕı Srba. Infinite runs in weighted timed

automata with energy constraints. In Franck Cassez and Claude

Jard, editors, FORMATS, volume 5215 of Lecture Notes in Com-

puter Science, pages 33–47. Springer, 2008.

[BFRR13] Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and

Jean-François Raskin. Meet your expectations with guaran-

tees: Beyond worst-case synthesis in quantitative games. CoRR,

abs/1309.5439, 2013.

[BGHJ09] Roderick Bloem, Karin Greimel, Thomas A. Henzinger, and Bar-

bara Jobstmann. Synthesizing robust systems. In FMCAD, pages

85–92. IEEE, 2009.

[BH08] L. F. Bertuccelli and J. P. How. Robust Markov decision processes

using sigma point sampling. In American Control Conference

(ACC), pages 5003–5008, 11-13 June 2008.

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and

Joost-Pieter Katoen. Model-checking algorithms for continuous-

time markov chains. IEEE Trans. Software Eng., 29(6):524–541,

2003.

[BHP97] Bruce Bukiet, Elliotte Rusty Harold, and José Luis Palacios.

A markov chain approach to baseball. Operations Research,

45(1):14–23, 1997.

[BJP+12] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir

Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. J.

Comput. Syst. Sci., 78(3):911–938, 2012.

190

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model

checking. MIT Press, 2008.

[BL69] J. R. Büchi and L. H. Landweber. Solving sequential conditions

by finite-state strategies. Transactions of the American Mathe-

matical Society, 138:295–311, 1969.

[BN11] Nels E. Beckman and Aditya V. Nori. Probabilistic, modular

and scalable inference of typestate specifications. In Mary W.

Hall and David A. Padua, editors, PLDI, pages 211–221. ACM,

2011.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symp-

tom to cause: localizing errors in counterexample traces. In Alex

Aiken and Greg Morrisett, editors, POPL, pages 97–105. ACM,

2003.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[CBGK08] Frank Ciesinski, Christel Baier, Marcus Größer, and Joachim

Klein. Reduction techniques for model checking markov decision

processes. In QEST [DBL08], pages 45–54.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2:

An OpenSource Tool for Symbolic Model Checking. In CAV,

2002.

[CD11] Krishnendu Chatterjee and Laurent Doyen. Energy and mean-

payoff parity markov decision processes. In Filip Murlak and

Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes

in Computer Science, pages 206–218. Springer, 2011.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and Synthe-

sis of Synchronization Skeletons Using Branching-Time Temporal

Logic. In Logic of Programs, pages 52–71, 1981.

[CGMZ95] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and

Xudong Zhao. Efficient generation of counterexamples and wit-

nesses in symbolic model checking. In DAC, pages 427–432, 1995.

191

[Cha07] Krishnendu Chatterjee. Markov decision processes with multiple

long-run average objectives. In Vikraman Arvind and Sanjiva

Prasad, editors, FSTTCS, volume 4855 of Lecture Notes in Com-

puter Science, pages 473–484. Springer, 2007.

[Cha11] Krishnendu Chatterjee. Graph games with reachability objectives

- (invited talk). In Giorgio Delzanno and Igor Potapov, editors,

RP, volume 6945 of Lecture Notes in Computer Science, page 1.

Springer, 2011.

[CHJ05] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Ju-

rdzinski. Mean-payoff parity games. In LICS, pages 178–187.

IEEE Computer Society, 2005.

[CHJS10] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobst-

mann, and Rohit Singh. Measuring and synthesizing systems in

probabilistic environments. In Tayssir Touili, Byron Cook, and

Paul Jackson, editors, CAV, volume 6174 of Lecture Notes in

Computer Science, pages 380–395. Springer, 2010.

[CMB08] Kai-Hui Chang, Igor L. Markov, and Valeria Bertacco. Fixing

design errors with counterexamples and resynthesis. IEEE Trans.

on CAD of Integrated Circuits and Systems, 27(1):184–188, 2008.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Hen-

zinger. Markov decision processes with multiple objectives. In

Bruno Durand and Wolfgang Thomas, editors, STACS, vol-

ume 3884 of Lecture Notes in Computer Science, pages 325–336.

Springer, 2006.

[CN06] Wai Ki Ching and Michael K. Ng. Markov chains : models,

algorithms and applications. International series in operations

research & management science. Springer, New York, 2006.

[CRR12] Krishnendu Chatterjee, Mickael Randour, and Jean-François

Raskin. Strategy synthesis for multi-dimensional quantitative ob-

jectives. CoRR, abs/1201.5073, 2012.

192

[CTBB11] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav

Bodik. Angelic debugging. In ICSE 2011, pages 121–130, New

York, NY, USA, 2011. ACM.

[dA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD

thesis, Stanford University, 1997.

[DAT10] Cherki Daoui, Mohammed Abbad, and Mohamed Tkiouat. Ex-

act decomposition approaches for markov decision processes: A

survey. Adv. Operations Research, 2010, 2010.

[DBL08] Fifth International Conference on the Quantitative Evaluaiton

of Systems (QEST 2008), 14-17 September 2008, Saint-Malo,

France. IEEE Computer Society, 2008.

[Der62] Cyrus Derman. On sequential decisions and markov chains. Man-

agement Science, 9(1):16–24, 1962.

[DH94] Doron Drusinsky and David Harel. On the power of bounded

concurrency i: Finite automata. J. ACM, 41(3):517–539, 1994.

[DKP13] Christian Dehnert, Joost-Pieter Katoen, and David Parker. Smt-

based bisimulation minimisation of markov models. In Roberto

Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, VM-

CAI, volume 7737 of Lecture Notes in Computer Science, pages

28–47. Springer, 2013.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree

automata and logics of programs (extended abstract). In FOCS,

pages 328–337. IEEE Computer Society, 1988.

[EKB05] Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdar-

pour. Revising unity programs: Possibilities and limitations. In

OPODIS, pages 275–290, 2005.

[ELLL01] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue.

Trail-directed model checking. Electr. Notes Theor. Comput. Sci.,

55(3):343–356, 2001.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean

payoff games. International Journal of Game Theory, 8(2):109–

113, 1979.

193

[FGL12] Paolo Felli, Giuseppe De Giacomo, and Alessio Lomuscio. Syn-

thesizing agent protocols from ltl specifications against multiple

partially-observable environments. In Gerhard Brewka, Thomas

Eiter, and Sheila A. McIlraith, editors, KR. AAAI Press, 2012.

[FKN+11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David

Parker, and Hongyang Qu. Quantitative multi-objective verifi-

cation for probabilistic systems. In Parosh Aziz Abdulla and

K. Rustan M. Leino, editors, TACAS, volume 6605 of Lecture

Notes in Computer Science, pages 112–127. Springer, 2011.

[FKP12] V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for

probabilistic model checking. In S. Chakraborty and M. Mukund,

editors, Proc. 10th International Symposium on Automated Tech-

nology for Verification and Analysis (ATVA’12), volume 7561 of

LNCS, pages 317–332. Springer, 2012.

[FMY97] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang.

Multi-terminal binary decision diagrams: An efficient data struc-

ture for matrix representation. Formal Methods in System Design,

10(2/3):149–169, 1997.

[GBC06] Andreas Griesmayer, Roderick Bloem, and Byron Cook. Repair

of boolean programs with an application to c. In Thomas Ball

and Robert Jones, editors, CAV, volume 4144 of LNCS, pages

358–371. Springer, 2006.

[GBJV08] Karin Greimel, Roderick Bloem, Barbara Jobstmann, and Moshe

Vardi. Open implication. In ICALP, pages 361–372, 2008. LNCS

5126.

[Gim07] Hugo Gimbert. Pure stationary optimal strategies in markov de-

cision processes. In STACS’07, pages 200–211, Berlin, Heidelberg,

2007. Springer-Verlag.

[GKO+08] C. Grover, I. Knight, F. Okoro, I. Simmons, G. Couper, P. Massie,

and B. Smith. Automated emergency brake systems: Technical

requirements, costs and benefits, 2008.

194

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining

counterexamples. In Thomas Ball and Sriram K. Rajamani, ed-

itors, SPIN, volume 2648 of Lecture Notes in Computer Science,

pages 121–135. Springer, 2003.

[Hah12] Ernst Moritz Hahn. Model Checking Stochastic Hybrid Systems.

Doctoral dissertation, Universität des Saarlandes, Saarbrücken,

12/2012 2012.

[Hav98] Boudewijn R. Haverkort. Performance of computer communica-

tion systems - a model-based approach. Wiley, 1998.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about

time and reliability. Formal Aspects of Computing, 6:102–111,

1994.

[HMPS96] Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio

Somenzi. Markovian analysis of large finite state machines. IEEE

Trans. on CAD of Integrated Circuits and Systems, 15(12):1479–

1493, 1996.

[HvdHvR09] Koen V. Hindriks, Wiebe van der Hoek, and M. Birna van

Riemsdijk. Agent programming with temporally extended goals.

In Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and

Jaime Simão Sichman, editors, AAMAS (1), pages 137–144.

IFAAMAS, 2009.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem.

Program repair as a game. In Kousha Etessami and Sriram K.

Rajamani, editors, CAV, volume 3576 of Lecture Notes in Com-

puter Science, pages 226–238. Springer, 2005.

[JM06] M. U. Janjua and A. Mycroft. Automatic correction to safety

violations in programs. Thread Verification (TV’06), 2006. Un-

published.

[Joh04] CW Johnson. Final report: review of the BFU Überlingen

accident report. Contract C/1.369/HQ/SS/04 to Eurocontrol,

“http://www. dcs. gla. ac. uk/˜ johnson/Eurocontrol/Ueberlin-

gen/Ueberlingen Final Report. PDF”, 2004.

195

[JRS04] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and free

will in error traces. STTT, 6(2):102–116, 2004.

[JSGB12] Barbara Jobstmann, Stefan Staber, Andreas Griesmayer, and

Roderick Bloem. Finding and fixing faults. J. Comput. Syst.

Sci., 78(2):441–460, 2012.

[JU04] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE, 92(3):401–422, March 2004.

[KC11] Mykel J. Kochenderfer and James P. Chryssanthacopoulos. Ro-

bust airborne collision avoidance through dynamic programming.

Project Report ATC-371, Massachusetts Institute of Technology,

Lincoln Laboratory, 2011.

[KD07] JE Kuchar and Ann C Drumm. The traffic alert and collision

avoidance system. Lincoln Laboratory Journal, 16(2):277, 2007.

[KGFP09] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pap-

pas. Temporal-logic-based reactive mission and motion planning.

IEEE Transactions on Robotics, 25(6):1370–1381, 2009.

[KKNP10] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and

David Parker. A game-based abstraction-refinement framework

for markov decision processes. Formal Methods in System Design,

36(3):246–280, 2010.

[KLD+02] Seungchan Kim, Huai Li, Edward R. Dougherty, Nanwei Cao,

Yidong Chen, Michael Bittner, and Edward B. Suh. Can markov

chain models mimic biological regulation?, 2002.

[KMKH01] Zurab Khasidashvili, John Moondanos, Daher Kaiss, and Ziyad

Hanna. An enhanced cut-points algorithm in formal equivalence

verification. In HLDVT, pages 171–176, 2001.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prob-

abilistic symbolic model checking with prism: A hybrid approach.

In Joost-Pieter Katoen and Perdita Stevens, editors, TACAS,

volume 2280 of Lecture Notes in Computer Science, pages 52–66.

Springer, 2002.

196

[KNP07] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.

Stochastic model checking. In Marco Bernardo and Jane Hill-

ston, editors, SFM, volume 4486 of Lecture Notes in Computer

Science, pages 220–270. Springer, 2007.

[KNP09] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.

Prism: probabilistic model checking for performance and relia-

bility analysis. SIGMETRICS Performance Evaluation Review,

36(4):40–45, 2009.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Veri-

fication of probabilistic real-time systems. In CAV, volume 6806

of LNCS, pages 585–591. Springer, 2011.

[KNPS06] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and

Jeremy Sproston. Performance analysis of probabilistic timed au-

tomata using digital clocks. Formal Methods in System Design,

29(1):33–78, 2006.

[KP13] Marta Z. Kwiatkowska and David Parker. Automated verifica-

tion and strategy synthesis for probabilistic systems. In Dang Van

Hung and Mizuhito Ogawa, editors, ATVA, volume 8172 of Lec-

ture Notes in Computer Science, pages 5–22. Springer, 2013.

[KSHK07] Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasi-

dashvili. Industrial strength sat-based alignability algorithm for

hardware equivalence verification. In FMCAD, pages 20–26, 2007.

[KZH+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger

Hermanns, and David N. Jansen. The ins and outs of the prob-

abilistic model checker MRMC. Perform. Eval., 68(2):90–104,

2011.

[LAB11] M. Lahijanian, S.B. Andersson, and C. Belta. Control of markov

decision processes from pctl specifications. In American Control

Conference (ACC), 2011, pages 311–316, 2011.

[LDCd06] Julien Laumônier, Charles Desjardins, and Brahim Chaib-draa.

Cooperative adaptive cruise control: a reinforcement learning ap-

197

proach. In The Fourth Workshop on Agents in Traffic and Trans-

portation, Hakodate, Hokkaido, Japan. Citeseer, 2006.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state

concurrent programs satisfy their linear specification. In POPL,

pages 97–107, 1985.

[LR81] Daniel J. Lehmann and Michael O. Rabin. On the advantages

of free choice: A symmetric and fully distributed solution to the

dining philosophers problem. In John White, Richard J. Lipton,

and Patricia C. Goldberg, editors, POPL, pages 133–138. ACM

Press, 1981.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Ann.

Pure Appl. Logic, 65(2):149–184, 1993.

[MLOP07] Marta Cialdea Mayer, Carla Limongelli, Andrea Orlandini, and

Valentina Poggioni. Linear temporal logic as an executable se-

mantics for planning languages. Journal of Logic, Language and

Information, 16(1):63–89, 2007.

[Nor03] J.R. Norris. Markov Chains. Cambridge University Press, 2003.

[NPK+05] Gethin Norman, David Parker, Marta Z. Kwiatkowska,

Sandeep K. Shukla, and Rajesh Gupta. Using probabilistic model

checking for dynamic power management. Formal Asp. Comput.,

17(2):160–176, 2005.

[NR11] Aditya V. Nori and Sriram K. Rajamani. Program analysis and

machine learning: A win-win deal. In Hongseok Yang, editor,

APLAS, volume 7078 of Lecture Notes in Computer Science,

pages 1–2. Springer, 2011.

[Pit07] Nir Piterman. From nondeterministic büchi and streett automata

to deterministic parity automata. Logical Methods in Computer

Science, 3(3), 2007.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages

46–57. IEEE Computer Society, 1977.

198

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive

module. In POPL, pages 179–190, 1989.

[PR97] Ronald Parr and Stuart J. Russell. Reinforcement learning with

hierarchies of machines. In Michael I. Jordan, Michael J. Kearns,

and Sara A. Solla, editors, NIPS. The MIT Press, 1997.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. Wiley-Interscience, April

1994.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and ver-

ification of concurrent systems in CESAR. In Symposium on

Programming, pages 337–351, 1982.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata

on infinite trees. Transactions of the American Mathematical

Society, 141:1–35, 1969.

[Rab82] Michael O. Rabin. N-process mutual exclusion with bounded

waiting by 4 log2 n-valued shared variable. J. Comput. Syst.

Sci., 25(1):66–75, 1982.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A

Modern Approach (3. internat. ed.). Pearson Education, 2010.

[Ros97] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis,

Stanford University, 1997.

[RR03] Manos Renieris and Steven P. Reiss. Fault localization with near-

est neighbor queries. In ASE, pages 30–39. IEEE Computer So-

ciety, 2003.

[RS04] Kavita Ravi and Fabio Somenzi. Minimal assignments for

bounded model checking. In Kurt Jensen and Andreas Podel-

ski, editors, TACAS, volume 2988 of Lecture Notes in Computer

Science, pages 31–45. Springer, 2004.

[RvDdH11] Gijs Rennen, Edwin R. van Dam, and Dick den Hertog. En-

hancement of sandwich algorithms for approximating higher-

dimensional convex pareto sets. INFORMS Journal on Com-

puting, 23(4):493–517, 2011.

199

[Sch09] Sven Schewe. Tighter bounds for the determinisation of büchi

automata. In FOSSACS, pages 167–181, 2009.

[SDE08] Roopsha Samanta, Jyotirmoy V. Deshmukh, and E. Allen Emer-

son. Automatic generation of local repairs for boolean programs.

In Alessandro Cimatti and Robert B. Jones, editors, FMCAD,

pages 1–10, 2008.

[Sha53] L. S. Shapley. Stochastic Games. Proceedings of the Na-

tional Academy of Sciences of the United States of America,

39(10):1095–1100, 1953.

[SLRBE05] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bod́ık, and

Kemal Ebcioglu. Programming by sketching for bit-streaming

programs. In Vivek Sarkar and Mary W. Hall, editors, PLDI,

pages 281–294. ACM, 2005.

[SNA12] Rahul Sharma, Aditya V. Nori, and Alex Aiken. Interpolants as

classifiers. In P. Madhusudan and Sanjit A. Seshia, editors, CAV,

volume 7358 of Lecture Notes in Computer Science, pages 71–87.

Springer, 2012.

[Sut95] Richard S. Sutton. Generalization in reinforcement learning: Suc-

cessful examples using sparse coarse coding. In David S. Touret-

zky, Michael Mozer, and Michael E. Hasselmo, editors, NIPS,

pages 1038–1044. MIT Press, 1995.

[Tij03] H. C. Tijms. A First Course in Stochastic Models. Chichester:

Wiley, 2003.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concur-

rent finite-state programs. In FOCS, pages 327–338. IEEE Com-

puter Society, 1985.

[VCD+12] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen,

Thomas A. Henzinger, Alexander Rabinovich, and Jean-

François Raskin. The complexity of multi-mean-payoff and

multi-energy games. CoRR, abs/1209.3234, 2012.

200

[VE03] Ardalan Vahidi and Azim Eskandarian. Research advances in

intelligent collision avoidance and adaptive cruise control. Intel-

ligent Transportation Systems, IEEE Transactions on, 4(3):143–

153, 2003.

[vEG14] Christian von Essen and Dimitra Giannakopoulou. Analyzing

the next generation airborne collision avoidance system. In Erika

Ábrahám and Klaus Havelund, editors, International Conference

on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2014), Held as Part of ETAPS 2014, Lec-

ture Notes in Computer Science, Grenoble, France, April 2014.

Springer.

[vEJ11] Christian von Essen and Barbara Jobstmann. Synthesizing sys-

tems with optimal average-case behavior for ratio objectives.

In Johannes Reich and Bernd Finkbeiner, editors, iWIGP, vol-

ume 50 of EPTCS, pages 17–32, 2011.

[vEJ12] Christian von Essen and Barbara Jobstmann. Synthesizing ef-

ficient controllers. In Viktor Kuncak and Andrey Rybalchenko,

editors, VMCAI, volume 7148 of Lecture Notes in Computer Sci-

ence, pages 428–444. Springer, 2012.

[vEJ13] Christian von Essen and Barbara Jobstmann. Program repair

without regret. In Natasha Sharygina and Helmut Veith, editors,

CAV, volume 8044 of Lecture Notes in Computer Science, pages

896–911. Springer, 2013.

[VYY09] Martin Vechev, Eran Yahav, and Greta Yorsh. Inferring synchro-

nization under limited observability. In TACAS’09, volume 5505

of LNCS, pages 139–154. Springer, 2009.

[VYY10] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-

guided synthesis of synchronization. In Manuel V. Hermenegildo

and Jens Palsberg, editors, POPL, pages 327–338. ACM, 2010.

[WBB+10] Ralf Wimmer, Bettina Braitling, Bernd Becker, Ernst Moritz

Hahn, Pepijn Crouzen, Holger Hermanns, Abhishek Dhama, and

Oliver E. Theel. Symblicit calculation of long-run averages for

201

concurrent probabilistic systems. In QEST, pages 27–36. IEEE

Computer Society, 2010.

[WDH08] Ralf Wimmer, Salem Derisavi, and Holger Hermanns. Symbolic

partition refinement with dynamic balancing of time and space.

In QEST [DBL08], pages 65–74.

[WDHR06] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and

Jean-François Raskin. Antichains: A new algorithm for checking

universality of finite automata. In Thomas Ball and Robert B.

Jones, editors, CAV, volume 4144 of Lecture Notes in Computer

Science, pages 17–30. Springer, 2006.

[Whi93] D. J. White. A survey of applications of markov decision

processes. The Journal of the Operational Research Society,

44(11):pp. 1073–1096, 1993.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning

about infinite computation paths (extended abstract). In FOCS,

pages 185–194. IEEE, 1983.

[YBK10] Haidi Yue, Henrik C. Bohnenkamp, and Joost-Pieter Katoen. An-

alyzing energy consumption in a gossiping mac protocol. In Bruno

Müller-Clostermann, Klaus Echtle, and Erwin P. Rathgeb, ed-

itors, MMB/DFT, volume 5987 of Lecture Notes in Computer

Science, pages 107–119. Springer, 2010.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating

failure-inducing input. IEEE Trans. Software Eng., 28(2):183–

200, 2002.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff

games on graphs. Theor. Comput. Sci., 158(1&2):343–359, 1996.

[ZPC13] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian

statistical model checking with application to stateflow/simulink

verification. Formal Methods in System Design, 43(2):338–367,

2013.

202

