
HAL Id: tel-01548776
https://theses.hal.science/tel-01548776

Submitted on 28 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On computer-aided design-space exploration for
multi-cores

Jean-Francois Kempf

To cite this version:
Jean-Francois Kempf. On computer-aided design-space exploration for multi-cores. Embedded Sys-
tems. Université de Grenoble, 2012. English. �NNT : 2012GRENM110�. �tel-01548776�

https://theses.hal.science/tel-01548776
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Jean-François KEMPF

Thèse dirigée par Oded MALER
et codirigée par Marius BOZGA

préparée au sein VERIMAG
et de École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

On Computer-Aided Design-Space
Exploration for Multi-Cores

Thèse soutenue publiquement le ,
devant le jury composé de :

Kim G. LARSEN
Aalborg University, Rapporteur
Bruce KROGH
Carnegie Mellon, Rapporteur
Boudewijn R. HAVERKORT
University of Twente, Examinateur
Eugene ASARIN
Université Paris Diderot Paris 7, Examinateur
Fahim RAHIM
Atrenta, Examinateur
Oded MALER
CNRS, Directeur de thèse
Marius BOZGA
CNRS, Co-Directeur de thèse

ii

On Computer-Aided Design-Space Exploration for
Multi-Cores

Jean-François KEMPF

August 20, 2012

ii

Contents

Contents . iii

1 Introduction 1

2 Multi-core embedded system 3
2.1 MPSOC Architecture . 4

2.1.1 Processing Elements . 4
2.1.2 Memory Organization . 5
2.1.3 Interconnect . 5

2.2 Design Flow . 6
2.2.1 Low Level Modeling . 7
2.2.2 System-Level Design . 10

2.3 Models of Computation for Embedded Systems Design 11
2.4 Performance Evaluation . 13
2.5 Our Modeling Framework . 15
2.6 Related tools . 18

3 Timed automata 21
3.1 Clocks, time constraints, zones . 22
3.2 Timed Automata: Syntax and Semantics . 24
3.3 Reachability Analysis . 26
3.4 Implementation . 28

4 Duration Probabilistic Automata: Analysis 33
4.1 Scheduling under Stochastic Uncertainty . 33
4.2 Preliminaries . 35
4.3 Computing Volumes . 39
4.4 Conflicts and Schedulers . 42
4.5 Implementation and Experimental Results . 45
4.6 Conclusions . 50

5 Duration Probabilistic Automata: Synthesis 53
5.1 Preliminary Definitions . 53
5.2 Processes in Isolation . 55
5.3 Conflicts and Schedulers . 56
5.4 Expected Time Optimal Schedulers . 58
5.5 Computational Aspects . 60
5.6 Implementation . 61
5.7 An Example . 64
5.8 Concluding Remarks . 66

iii

CONTENTS

6 Modeling embedded systems with timed automata 69
6.1 Preliminaries . 69
6.2 Application Model . 70

6.2.1 Task Model . 71
6.2.2 Data Model . 72
6.2.3 Job Model . 74

6.3 Environment Model . 75
6.3.1 Generators Characteristics . 80

6.4 Architecture Model . 80
6.4.1 Processing Elements . 81
6.4.2 Memory . 82
6.4.3 Communication . 83

6.4.3.1 Bus-based Communication 83
6.4.3.2 NOC Communication . 83
6.4.3.3 DMA-based Communication 85

6.4.4 On Different Abstraction Levels . 85
6.5 System Model . 87

6.5.1 Computation Task Scheduling . 88
6.6 Evaluation . 90

7 Realization: The DESPEX Tool 91
7.1 General architecture . 91
7.2 Model description . 92
7.3 Translation to Timed Automata . 99

7.3.1 Reachability Analysis . 100
7.3.2 Stochastic Simulation . 101

7.4 Trace Analysis . 103

8 Case Studies 109
8.1 Reachability vs. Corner-Case Simulation . 109

8.1.1 Model Description . 109
8.1.2 Analysis . 110

8.1.2.1 Worst Case Analysis . 110
8.1.2.2 Best Case Analysis . 110
8.1.2.3 Reachability Analysis with Uncertainty 111
8.1.2.4 Quantitative Estimation . 111

8.1.3 Summary . 112
8.2 Video Processing on P2012 . 113

8.2.1 Model description . 113
8.2.2 Analysis . 116

8.2.2.1 Worst Case vs Statistics . 116
8.2.2.2 Reading Granularity . 116
8.2.2.3 Fixed vs Flexible Mapping 119

8.2.3 Power Consumption . 120
8.2.4 Summary . 120

8.3 A Radio Sensing Application . 121
8.3.1 Model Description . 121
8.3.2 Performance evaluation . 123
8.3.3 Summary . 124

iv CONTENTS

CONTENTS

9 Conclusions and Future Work 125

A DPA: Optimizing the Value Function (Work in Progress) 127
A.1 Non-Lazy Schedulers . 127
A.2 Upward Closed Strategies and Rectangular Approximations 130

Bibliography 135

CONTENTS v

CONTENTS

vi CONTENTS

Chapter 1

Introduction

This thesis is concerned with models, analysis techniques and tools intended to aid hardware and
software designers in exploring their systems design space and finding efficient deployments of
application programs on multi-processor platforms. The thesis can be viewed as a confluence
point between several academic and industrial research currents in a domain which is very im-
portant practically and for which no agreed upon unified theoretical framework exists. To better
understand the context of this thesis we mention two of the major driving forces behind the thesis.

Formal Analysis of Timed Systems

Formal verification is a kind of exhaustive simulation of abstract automaton-based models of soft-
ware and hardware that capture mostly concurrency and synchronization features. Timed models
such as timed automata, add quantitative timing information to the models and allow to reason
about delays, execution times, deadlines and other performance-related measures. Over the years,
a lot of work, at Verimag and elsewhere, explored the applicability of these models to scheduling
for embedded (and other) systems and circuits. Although the expressivity of timed automata can be
used to model more complex situations than what is possible using classical real-time models, their
standard analysis technique (forward computation of reachable states and zones) does not scale up
and for the the time being cannot be applied to systems beyond a rather low threshold of size and
complexity. Moreover, this type of analysis is worst-case oriented and is not always suitable for
soft real-time applications where we care more about the average performance. There is a recent
trend in verification, sometimes called statistical model checking, which replaces verification-style
exhaustive exploration by Monte-Carlo simulation. In the timed context this means, implicitly or
explicitly, to refine temporal uncertainty intervals into distributions supported by those intervals,
resulting in some kind of continuous-time “non Markovian” stochastic processes.1 We use such
models in this thesis in two ways. First we do statistical simulation on high-level models of appli-
cations running on multi-core platforms and secondly, we develop new semi-analytic techniques
for performance evaluation and optimization for duration probabilistic automata that can model a
class problems of scheduling under stochastic uncertainty.

The ATHOLE Project

The thesis was aligned, temporally and conceptually, with the ATHOLE project, coordinated by ST
Microelectronics, with the participation of CEA-LETI, THALES and CWS. Initially the project
was focused on the xSTream architecture but around mid-time, xSTream development has been
freezed and the project shifted to Plateform 2012 (P2012). The role of Verimag in the project

1Tradition aside, the term non-Markovian is misleading. These processes are Markovian (state-based) with respect
to extended states that include clock values.

1

CHAPTER 1. INTRODUCTION

was to apply its expertise in timed systems to help automating deployment decisions (mapping,
scheduling) and ease the difficult task of exploiting multi-cores efficiently. The exposure to indus-
trial and quasi-industrial practices and cultures was an opportunity to compare the modeling and
analysis methods used by system builders (hardware designers and programmers) and those used
by model builders (in verification and performance analysis). The tool described in this thesis,
which brings abstract modeling concepts and analysis techniques to these application domains,
was a major deliverable in the ATHOLE project.

The thesis is organized as follows:

• Chapter 2 is a very non-exhaustive survey on multi-core embedded systems and the model-
ing approaches used in various levels of abstraction during the design flow, with emphasis
on performance evaluation;

• Chapter 3 is a short introduction to timed automata, symbolic reachability computation on
zones and the IF toolset on top of which our tool is implemented;

• Chapter 4 develops a new technique for computing the performance (expected termination
time) of schedulers for acyclic scheduling problems (such as job-shop or task-graph) where
the duration of each task is considered to be uniformly distributed over a finite interval;

• Chapter 5 attacks the more ambitious synthesis problem and develops a dynamic program-
ming approach to derive expected-time optimal schedulers. These two sections constitute
the major theoretical contribution of the thesis and are accompanied by a prototype imple-
mentation;

• Chapter 6 is the core of the thesis. It presents our abstract modeling framework for appli-
cation programs (modeled as extended task-graphs), input generators (the processes that
generate new tasks instances subject to temporal and logical constraints), execution plat-
forms (very abstract models of processors, data transfer mechanisms and memories) and
deployment (mapping and scheduling policies). Each modeled object is transformed into a
timed automaton and the composition of these automata represents all the possible systems
behavior;

• Chapter 7 describes the tool DESPEX, the DEsign-SPace EXplorer, its architecture and the
type of analysis it provides, namely symbolic reachability computation and Monte-Carlo
discrete event simulation, followed by statistical and visual trace analysis;

• Chapter 8 describes three case studies treated by the tool. The first is a toy problem used
to demonstrate the advantage of timed automata verification over corner-case simulation.
The second is a video application provided by ST, evaluated for power and performance on
P2012 using simulation, and the third is a signal processing application provided by Thales
and evaluated on xSTream;

• Chapter 9 concludes the thesis and sketches some ideas for future work.

2

Chapter 2

Multi-core embedded system

Current embedded applications necessitate intensive computation and data communication which
are difficult to handle by a single processor architecture. The performance demanded by these ap-
plications, like for example multimedia applications, requires the use of multi-processors architec-
tures in a single chip endowed with complex communication infrastructures, such as hierarchical
buses or networks on chips (NoCs). That’s why Multiprocessors System on Chip (MPSoC) ar-
chitectures have become a very attractive solution for the consumer multimedia embedded market
[197].

System on Chip (SoC) represents the integration of different computing elements and other
electronics subsystems into a single integrated circuit. MPSoC [196] are SoC that may contains
one or more types of computing subsystems, memories, I/O devices and other peripherals. Ad-
ditionally, heterogeneous components are exploited to meet the tight performance and cost con-
straints. This trend of building heterogeneous MPSoC will be even accelerated due to current
embedded application requirements. ITRS (International Technology Roadmap for Semiconduc-
tors) roadmap [1] predicts that the number of processing engines on future MPSoC platforms will
increase rapidly (Fig-2.1), which will introduce a huge complexity into the software development
process for such complex platforms. Making the potential parallelism of the applications more
explicit so as to exploit the available processing engines, and then efficiently deploying it on the
underlying hardware are the new and big challenges for MPSoC software developers.

Figure 2.1: Consumer Portable Design Complexity Trends [1]

3

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

We will discuss current MPSOC architectures and their different components. Then we will
survey the typical embedded systems design flow and see that performance evaluation is done
at different level of granularity. Here we are more interested in performance estimation at early
design stage. We will present typical modeling techniques and discuss their utility for performance
estimation.

2.1 MPSOC Architecture

Heterogeneous MPSoC architecture can be represented as a set of processing elements (PE) or
components which interact via a communication network (Fig-2.2). The PE can be of different
type like processors (DSP, microcontroller, ASIP, . . .) or memory elements (caches, DRAM . . .)
connected trough different communication schemes. This type of heterogeneous architecture pro-
vides highly concurrent computation and flexible programmability. Heterogeneous MPSoC are
composed of different kind of PE as opposed to homogeneous MPSoC where the same type of
element is instantiated several times.

Figure 2.2: MPSOC Architecture

Some heterogeneous platforms from the major semiconductor vendors such as NXP Nexperia
[157], TI OMAP [185] or ST Nomadik [178] are already available. On the other hand, homoge-
neous ones were pionnered by the Lucent Daytona architecture [3, 196].

The literature relates mainly two kinds of organizations for multiprocessor architectures, shared
memory and message passing [68]. Heterogeneous MPSoCs generally combine both models and
integrate a massive number of processors on a single chip. Future heterogeneous MPSoC will
be made of few heterogeneous subsystems, where each subsystem includes a massive number of
identical processors to run a specific software stack [113].

We will now give an overview of the different hardware components in MPSoC.

2.1.1 Processing Elements

Processing elements range in a spectrum between generality and specificity. We can classify
them into two major type: General Purpose Processor (GPP) and Application Specific Processors
(ASP). GPPs are flexible because they are built to be used in a variety of applications with differ-
ent specifications. Changing functionalities or improving a system becomes relatively easy when
you only need to change a software program. On the other hand ASPs are designed to execute

4 2.1. MPSOC ARCHITECTURE

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

exactly one program, increasing performance and reducing power consumption. However, flexi-
bility and reprogramming is limited because it is designed as a custom digital circuit dedicate to
restricted application range. We can distinguish different sub-classes of ASP, such as ASIC (Ap-
plication Specific Integrated Circuit) where algorithms are completely implemented in hardware
and programmable microprocessors like DSP (Digital Signal Processor) for extensive numerical
real-time computation, or ASIP (Application Specific Instruction Set Processor) where hardware
and instruction set are designed together for one particular application.

2.1.2 Memory Organization

The memory subsystem is an important component of system designs that can benefit from cus-
tomization. Unlike general purpose processors where a standard cache hierarchy is employed, the
memory hierarchy of embedded systems can be tailored in various ways. The memory can be
selectively cached. The cache line size can be determined by the application. The designer can
opt to discard the cache completely and choose specialized memory configurations such as FIFOs
and stream buffers and so on.

The memory is a bottleneck in a computer system since the memory speed cannot keep up
with the processor speed and the gap is becoming larger and larger. Memory hierarchy issues are
among the most important concerns in designing application-driven embedded systems. A typical
embedded system architecture consists of processor cores, reconfigurable hardware, instruction
cache, data cache, on-chip scratch memory and on-chip or off-chip DRAM.

The cache is a special high-speed, low volume memory that is in close proximity to the pro-
cessing hardware that it is reserved for. It can be seen as an interface between the processor and
the off-chip memory. Embedded architectures include both data and instruction caches.

Scratch-Pad memory refers to data memory residing on-chip, that is mapped into an address
space disjoint from the off-chip memory, but connected to the same address and data buses. Both
the cache and Scratch-Pad memory (usually SRAM) allow fast access to their residing data, much
faster than accessing off-chip memory. Off-chip memory (usually DRAM) refers to a highest vol-
ume memory residing far from the processing element. The main difference between the Scratch-
Pad SRAM and data cache is that the SRAM guarantees a single-cycle access time, whereas an
access to the cache is subject to cache misses.

2.1.3 Interconnect

The interconnect is a resource shared between various hardware components. Its role is to transmit
data from a source to a destination component, thus implementing the communication network.
Basically the network component is characterized by two metrics:

• Latency: total time to transfer a quantity of data from the source to the destination compo-
nent;

• Bandwidth: amount of data that can be transmitted per time unit.

On-chip communication architectures can be divided into the following three main classes
[126]:

1. Point to point interconnect: pairs of processing elements communicate directly over dedi-
cated physically-wired connections [33];

2. Bus architectures [151] : long wires are grouped together to form a single physical entity.
One can find different bus based architecture:

• FPGA-like Bus [60] with programmable interconnects using static network;

2.1. MPSOC ARCHITECTURE 5

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

• Arbitrated Bus [110] with time-shared multiple core connectivity;

• Hierarchical Bus [11, 12, 195] combining multiple buses using bus bridges.

3. Network on Chip (NoC): Communication is achieved by sending message packets between
blocs using an on-chip packet-switched network. NoC is a relatively new chip design
paradigm concurrently proposed by many research group [172, 127, 28]. A survey of re-
search and practices of Network-on-Chip can be found in [40].

A component which can be seen as part of the interconnect is Direct Memory Access (DMA).
It is a device that can control the memory system without using the CPU. On a specified stimulus,
the module will move blocks of data from one memory location to another. DMA is essential
for embedded systems since it allows large quantities of information to be transferred to or from
memory, while the processor can be doing something else.

2.2 Design Flow

Systems-on-chip require the creation and use of radically new design methodologies because some
of the key problems in SoC design lie at the boundary between hardware and software.

Classic SoC design flows imply a long design cycle because most of them rely on a sequential
approach where complete hardware architecture should first be developed before software could
be designed on top of it. This long design cycle is not acceptable because of time to market
constraints.

Due to their complexity, the design of embedded systems requires modeling phases at differ-
ent abstraction levels (Fig-2.3). At each level, many different activities are required during the
design flow: specification and functional modeling, performance modeling, design and synthesis,
validation and verification. Because the real product is not available before the development task
is completed, all activities operate on models. According to [112]:

A model is a simplification of another entity, which can be a physical thing or another
model. The model contains exactly those characteristics and properties of the mod-
eled entity that are relevant for a given task. A model is minimal with respect to a task
if it does not contain any other characteristics than those relevant for the task.

A model is therefore an abstraction of one entity and may be defined differently according to
its use (functional validation, performance evaluation). There is an increasing use of early system-
level modeling, even if it would not contain the entire hardware architecture, but only a subset
of components which are sufficient to allow some level of software verification on the hardware
before the full hardware is available, thus reducing the sequential nature of the design process.
The use of high-level programming models to abstract hardware/software interfaces is the key
enabler for concurrent hardware and software designs. This abstraction allows to separate low-
level implementation issues from high-level application programming (Fig-2.3). It also smoothens
the design flow and eases the interaction between hardware and software designers. It acts as a
contract between hardware and software teams that may work concurrently. Additionally, this
scheme eases the integration phase since both hardware and software have been developed to
comply with a well-defined interface.

Furthermore programming an application-specific heterogeneous multi-processor architectures
becomes one of the key issues for MPSoC, because of two contradictory requirements:

• Reducing software development cost and overall design time: needs high level abstract
models;
• Improving performance: needs accurate and precise low level models.

6 2.2. DESIGN FLOW

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

Figure 2.3: Generic Embedded System Design Flow

All models are simplification of reality, an exact copy of a real product can only be the real
product itself. So there is always a trade-off as to what level of detail is included in the model,
too little detail implies a risk of missing relevant informations and giving wrong predictions, too
much detail makes models overly complicated and thus difficult to understand or analyze.

2.2.1 Low Level Modeling

Modeling the hardware is an important phase in the design of an embedded system. It is achieved
by developing virtual prototypes that can be fully functional software models of the physical hard-
ware, allowing accurate simulation, design verification and automatic layout generation. The ad-
vantage of virtual prototypes lies in their early availability in the development cycle. This way

2.2. DESIGN FLOW 7

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

software developers can begin earlier with development and verification of the hardware depen-
dent software.

Platform

To give an overview about the different levels of abstraction and to illustrate their interrelation to
the different specification domains, the Y-Chart of Fig-2.4 proposed by Gajeski is commonly used
[96].

Figure 2.4: Gajski-Kuhn Y-chart

The Y-chart model distinguishes between 3 abstraction domains

• Behavioral (functional): describes the temporal and functional behavior of a system without
any reference to the particular way in which it is implemented.

• Structural: deals with how the system is composed of interconnected hierarchical subsys-
tems.

• Physical/Geometrical: specifies how the system is laid out in terms of physical placement
in space and physical characteristics without any elements of functionality.

Each of these domains can also be divided into levels of abstraction:

• Transistor level

• Logical level

• Register-transfer level (RTL)

• Algorithmic level

• System level

8 2.2. DESIGN FLOW

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

Figure 2.5: Abstraction levels

Each level defines an abstract platform, called virtual prototype on which simulation can be
done more or less accurately (cycle accurate, instruction accurate, transaction accurate . . .). As
depicted in Fig-2.5, highest accuracy is obtained by lowest abstraction level but implies a higher
modeling effort as the number of components is huge. Simulation or timing analysis on such
models is also a major constraint. Typically a cycle-accurate processor model can be simulated at
a rate of between 50 and 1000 instructions per second, while execution on the real hardware is on
the order of millions of instructions per second.

Hardware Description Languages (HDL) are used to model systems at a low level of abstrac-
tion, typically at RTL, and are used to do simulation with high precision or to automatically gen-
erate the hardware layer. Tools like Verilog [184] or VHDL [176] are used to specify hardware in
a textual format.

Applications

Software too can be described at different levels of abstraction. The lowest level is binary machine-
executable code which is typically generated from a program written in a higher level program-
ming language such as C. An application is then evaluated on a real platform if such exists, or by
using a virtual platform. C code is compiled and translated automatically to assembly language
and machine code.

More generally, applications are written using a programming model. The programming
model specifies how application components are running in parallel and how they communicate
including synchronization operations that are available to coordinate their activities. The program-
ming model is usually embodied in a parallel language or a programming environment [68].

Examples of parallel programming models are as follows:

• Shared address space: communication is performed by posting data into shared memory
locations, accessible by all the communicating processing elements;
• Data-parallel programming: several processing elements perform the same operations si-

multaneously, but on separate parts of the same data set;
• Message passing: when the communication is performed between a specific sender and a

specific receiver.

2.2. DESIGN FLOW 9

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

Examples of such programming models are briefly described in the following:

• StreamIt is an example of programming model for streaming applications [183];

• MPI (message-passing interface) [154] is a message-passing library interface specification.
It includes the specification of a set of primitives for point-to-point communication with
message passing, collective communications, process creation and management, one-sided
communications, and external interfaces;

• MCAPI (multi-core communications APIs) [65] defines a set of communication APIs for
multi-core communications, to support lightweight, high performance implementations typ-
ically required in embedded applications;

• YAPI (Y-chart application programmer’s interface) is an interface to write signal and stream
processing applications as process networks, developed by Philips Research [75]. TTL (task
transaction level interface) proposed in [188] is derived from YAPI;

• OpenCL (Open computing language) is an open standard for writing applications that ex-
ecute across heterogeneous platforms consisting of CPUs, GPUs, and other processors, in-
troduced by Khronos working group [136]. OpenCL provides parallel computing using
task-based and data-based parallelism;

• OpenMP (open multi-processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C, C++, and Fortran
on many architectures [59].

Both hardware and software abstraction levels described previously are defined with too much
detail for rapid evaluation at early stage of the design flow. It implies a high development effort
before performances estimation can be done. The abstraction level close to our work is situated
on top of what is generally defined as system-level design.

2.2.2 System-Level Design

In modern system-level design methodology, known as HW/SW co-design, the development of
hardware platform and application software is done in parallel. Design space exploration needs
separate application and architecture specifications. An explicit mapping step maps application
components to architecture. HW/SW co-design includes various design problems including sys-
tem specification, design space exploration, performance estimation, HW/SW co-verification, and
system synthesis. This can be achieved at system level for early estimation and then models are
refined at lower level for more accurate performance evaluation.

Modeling and simulation at high abstraction levels are used to increase and to simplify the
development and validation of MPSoC at early design stage. For that we need abstract models
of both software and hardware components. Defining such models, requires knowledge about
hardware and software architecture details as well as execution environment constraints (timing,
power consumption . . .) at early design stages. This can be achieve by hardware-software co-
designer based on profiling or past experiences.

Description languages have been developed as well at higher levels of abstraction. At system
level, these language can describe abstractions of software and a high level component view of
hardware. One can cite for example:

• SystemVerilog [180] is an extension of Verilog inheriting capabilities for synthesizable mod-
ules description (Verilog) and object oriented language abstraction, that allow the verifica-
tion of complex systems;

10 2.2. DESIGN FLOW

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

• SpecC [88] is built on top of ANSI-C programming language and is intended for the speci-
fication and design of digital embedded systems, including hardware and software portions
and supports concepts like behavioral and structural hierarchy, concurrency, communica-
tion, synchronization, state transitions, exception handling, and timing;

• SystemC transaction-level modeling (TLM) is another standardization work [92] which of-
fers a set of standard APIs and a library, built on top of C++ programming language, that
implements a foundation layer upon which interoperable transaction-level models can be
built;

• AADL (Architecture Analysis and Design Language)[87] defines a language for describ-
ing both the software architecture and the execution platform architecture of performance-
critical, embedded, real-time systems. It describes a system as a hierarchy of components
with their interfaces and their interconnections, specifying both functional interfaces and
aspects critical for performance;

• SysML [194] is based on an extension of the Unified Modeling Language (UML) and has
views that deal with multiple aspects of the system: functional and behavioral, structural,
performance, and slew of other models like cost and safety.

Underlying the specification of embedded systems there is the notion of Model of computation
and communication which defines more formally how concurrent components interact with each
other. A multitude of modeling formalisms have been applied to embedded system design. Typi-
cally, these formalisms strive for a maximum of precision, as they rely on a mathematical (formal)
model. We will presents next the main classes of models used in the design of MPSoC.

2.3 Models of Computation for Embedded Systems Design

Modeling formalisms for embedded system design have been widely studied, and several reviews
and textbooks about models of computation (MoCs) can be found in the literature [131, 173, 80,
187, 94]. Usage of formal models in embedded system design allows (at least) one of the following
[173]:

• Unambiguously capture functionality of the required system;

• Verification of functional specification correctness with respect to its desired properties;

• Support synthesis onto a specific architecture and communication resources;

• Use different tools based on the same model (supporting communication among teams in-
volved in design, producing, and maintaining the system).

Two basic types of MoCs can be differentiated: process based and state based MoCs [89].
Process-based MoCs describe the system behavior as a set of concurrent processes communi-

cating with each other through message passing channels or shared memory facilities such as:

• Kahn process networks [116]: process are independent of each other and execute in parallel.
Communication is done through uni-directional message passing channels incorporating
buffers, which enable asynchrony;

• Dataflow model, processes are broken down into atomic blocks of execution, called actors,
executing once all their inputs are available. On every execution, an actor consumes the
required number of tokens on all of its inputs and produces resulting tokens on all of its
outputs. In the same way as KPNs, actors are connected into a network using unbounded,

2.3. MODELS OF COMPUTATION FOR EMBEDDED SYSTEMS DESIGN 11

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

uni-directional FIFOs with tokens of arbitrary type. More formally, a dataflow network is
a directed graph where nodes are actors and edges are infinite queues. Dataflow networks
are deterministic and have the same termination semantics as KPNs. It is a basis for many
commercial tools such as LabView [39] and Simulink [149];

• Synchronous DataFlow (SDF) [134] is a specialization of dataflow modeling, where pro-
duction and consumption values on edges are not necessarily the same. Unlike dataflow,
states do not influence the number of tokens that are produced and consumed in each firing
cycle and these numbers can be specified a priori;

• Process Calculi :

– Communicating Sequential Processes (CSP) [107, 52] allows the description of sys-
tems in terms of component processes that operate independently, and interact with
each other solely through message-passing communication. CSP uses explicit chan-
nels for message passing, whereas actor systems transmit messages to named destina-
tion actors;

– Calculus of Communicating Systems (CCS) [150]: the fundamental model of interac-
tion is synchronous and symmetric, i.e. the partners act at the same time performing
complementary actions;

– Algebra of Communicating Processes (ACP) [34] focus on the algebra of processes,
and sought to create an abstract, generalized axiomatic system for processes.

State based models are defined by a set of states and transitions, called state machines. States
explicitly represents the memory state of a program and transitions which can be guarded over
specific boolean conditions, represents the changes in the system behavior. Finite State Machines
(FSM, automata) is one of the basic model for describing various type of application and is usually
sequential, i.e it can only be in one state at a time. Two types of FSM exists: Moore type in which
the outputs are determined solely by its current state [153] and Mealy type in which outputs are
determined both by its current state and the current inputs.

Several extension of FSM have been proposed:

• Finite State Machine with DataPath (FSMD) introduces a set of variable in order to reduce
the number of states;

• Hierarchical and concurrent finite states machines (HCFSM) incorporate notions of hiearchy
and concurrency. Hierarchy is defined through the notion of superstates representing an en-
closed state machine and communicating through shared variables, events or signals. State-
charts [104] are the most well known formalism;

• Co-Design Finite State Machines (CFSM) [61] connect individual sequentials elements in a
global asynchronous network.

Combinations of different models have also been developed such as Program State Machine
(PSM) [90] which can be seen as a combination of KPN and HCFSM. Petri nets [161] are directed
graphs, similar to dataflows, with two types of nodes: places and transitions. Places correspond to
the states of the program and transitions are the computational entities. A firing of the transition
implies the consumption of tokens in the input places and output tokens in the output places.

The notion of time is extremely important in many of the modeling formalisms for embedded
systems. Untimed MoC, like Petri nets, is based on data dependency only and neither a transition
or the transfer of a token from one place to another takes a particular amount of time. Using a

12 2.3. MODELS OF COMPUTATION FOR EMBEDDED SYSTEMS DESIGN

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

timed MoC reflects the intention of capturing the timing behavior of a component which could
also influence its functional behavior. We can distinguish between continuous-time and discrete-
time system according to the type of the time variables.

In discrete event MoC, events are sorted by a time stamp stating when they occur and are
treated in chronological order. Transaction Level Modeling (TLM) is a discrete-event MoC built
on top of SystemC, where modules interchange events with time stamps.

Synchronous models of computation divide the time axis into totally ordered slots and every-
thing inside a slot occurs at the same time. This type of MoC is more suited for programming
control and real-time systems. Esterel [36], Lustre [102] and Signal [30] are some existing syn-
chronous languages.

Many of the untimed MoC presented previously have also been extended with timing infor-
mation. One can cite for example, Timed automata [6] , that extend finite automata with clock
variables which give timing constraints on the behavior of the system, or Timed Petri Nets [37]
where a timed interval is associated with each transition.

Modeling implies also the notion of determinism. Deterministic systems produce one unam-
biguous output for a given input, but a system may not always react with the same outputs when
confronted with the same inputs or inputs may not be precisely defined. For example commu-
nication times in distributed systems are hard to predict and may vary due to physical effects
or interferences. This leads to non-deterministic models where systems may produce different
behaviors. Quantitative properties concerning the different outputs are sometimes captured with
stochastic systems. We will discuss non determinism and uncertainty in more detail in the next
chapters.

2.4 Performance Evaluation

Performance analysis aims to assess and understand some quantitative properties at an early stage
of the product development and is as important as functionality. In [148] Marwedel indicates five
metrics for the evaluation of the efficiency of an embedded system:

• Power consumption

• Code size

• Run time efficiency

• Weight

• Cost

All these metrics can be subject to design requirements of the system, that is appropriate pre-
dictions of these characteristics are necessary in early design stage and can be considered objec-
tives of early performance analysis. According to [152], design space exploration is the process
of analyzing several implementation alternatives to identify an optimal solution. For efficient
system-level design space exploration of complex embedded systems the separation-of-concerns
concept has been introduced by [121]. Therefore, Y-chart design methodology [19, 122], depicted
on Fig-2.6, became a popular basis for early design space exploration.

To perform quantitative performance analysis, application models are mapped onto the ar-
chitecture model under consideration, whereafter performance of each application-architecture
combination can be evaluated. Subsequently, the resulting performance numbers may inspire the
designer to improve the architecture, adapt the application or modify its mapping.

Performance is often focus on the analysis of timing aspects e.g. how fast a system can react
to events. However power consumption is, in some situation, as important as execution time, and
we will focus in this thesis on performance analysis on these two metrics.

2.4. PERFORMANCE EVALUATION 13

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

Figure 2.6: Y-chart based design space exploration (obtained from [162])

Very often, the timing behavior of an embedded system can be described by the time interval
between a specified pair of events. Depending on the application domain timing properties can be
more or less critical. Many embedded systems must meet real time constraints, that is, they must
react to events within a specific time interval, called deadline. A real time constraint is called
hard if its violation is considered a system failure, and it is called soft otherwise. First of all it is
necessary to distinguish between the following terms (taken from [182]):

• Worst case and best case. The worst case and the best case are the maximal and minimal
time interval between the arrival and termination events under all admissible system and
environment states. The execution time may vary largely, owing to different input data and
interference between concurrent system activities.

• Upper and lower bounds. Upper and lower bounds are quantities that bound the worst- and
best-case behavior. These quantities are usually computed offline, that is, not during the
runtime of the system.

• Statistical measures. Instead of computing bounds on the worst- and best-case behavior, one
may also determine a statistical characterization of the runtime behavior of the system, for
example, distributions, expected values, variances, and quantiles.

In hard real time systems, performance is hardwired into correctness, for example requiring
that some deadline is never violated. For such systems we are more interested in upper bounds
and worst case behavior whereas in soft real time system lower and upper-bounds represent very
extreme cases and a more quantitative estimation will be more useful.

Performance evaluation is a key challenge in the analysis of MPSoC and can be broadly di-
vided in two main approaches: formal methods and simulation-based approaches. Formal veri-
fication is the process of checking whether some properties are satisfied by using mathematical
proofs. There are different type of formal verification:

• Model checking [63]: given an abstract model and a property to verify, typically expressed

14 2.4. PERFORMANCE EVALUATION

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

as a temporal logic formula, a model checker performs exhaustive exploration of the set of
all possible states.

• Theorem proving: the system is modeled as a set of mathematical definitions in some formal
mathematical logic. Properties of the system are derived as theorems that follow from these
definitions by using standard results in mathematical logic [160].

• Equivalence checking: formulas for both the specification and the implementation are re-
duced to some canonical form (if one exists) by applying mathematical transformations. If
their canonical forms are identical, then the specification and the implementation are said to
be equivalent.

Simulation consists in exploring a model interactively or randomly, possibly using heuristics
for choosing the visiting states. It is a technique of partial validation, i.e if no error is detected,
this method increase the confidence in program correctness but can never ensure that all properties
are satisfied. Discrete event simulation [56, 140] is widely used for evaluating performance of
MPSoCs.

Timing Analysis

Timing requirements have been widely studied in the real time community where schedulability
analysis techniques have been developed such as Rate Monotonic Analysis [141]. Most of these
techniques are devoted to single-processor systems but have been extended to distributed systems
[186] and more recently for fixed priority multiprocessors scheduling [97].

In the domain of communication networks, abstractions have been developed to model flow of
data through a network. In particular Network Calculus [132] provides the means to determinis-
tically reason about timing properties of data flows in queuing networks, and can be viewed as a
deterministic queuing theory. Modular performance analysis [191] and Real-Time Calculus [181]
extends the concepts of Network Calculus to the domain of real-time embedded systems.

Some other model-based solutions for timing design, performance optimization and timing
verification are symbolic timing analysis for systems (SymTA/S) [105] or schedulability analysis
provided by the tool TIMES [10], which is based on timed automata, a model we will discuss
later in detail as it underlies our models.

Power Consumption Evaluation

Accurate power consumption estimation can be done at transistor or gate level, but due to the
complexity of working at this level of abstraction, this is very costly. Thus, to accelerate power
estimation analysis, many abstract models have been proposed including TLM approaches [17,
137, 25, 199] or algorithmic descriptions [147, 83, 85, 108, 124] .

Generally, high-level models use a reference design model to retrieve more accurate power
estimation with RTL power estimation tools. Nevertheless, simulation time and memory require-
ment of these tools are considerable, making their use impracticable when exploring large design
spaces.

2.5 Our Modeling Framework

The models presented in this thesis are much more abstract than those used in the development
of the software and hardware in the sense that they do not represent the actual computations but
attempt to capture the essential features which are relevant for predicting performance. For the
application models we abstract away from the actual lines of code and view an application as a

2.5. OUR MODELING FRAMEWORK 15

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

task graph, a collection of high-level procedures, each characterized by its execution cost (number
of processor cycles), its precedences (to which tasks it needs to wait and which tasks wait for it to
terminate) and the amount of data it sends/receives to/from other tasks.

The modeling of the processing elements is even more abstract compared to their real complex-
ity. The state of a processor at a given instant is characterized by its speed (assuming processors
that can switch between voltage/frequency levels), whether it is turned on, and which task is ex-
ecuting on it. The speed of the processor is used to translate the quantity of work of a task into
a duration. In addition we use rough model of static and dynamic power consumption for the
processors indicating the power per time unit in either of its speeds, in execution and idling. The
same high-level modeling style is applied to other architectural components such as interconnect
and memory

In this modeling framework, a task is viewed as a simple timed automaton which leaves its
active state some time after entering it. The advantages of such abstract models in terms of how
hard it is to simulate or analyze them are evident: to advance a clock in a discrete event simulation
is orders of magnitude faster than a cycle-accurate simulation of the underlying software/herdware
system, and even much faster than simulation at the operational semantics level of C programs.
And of course, such models need not wait for the complete hardware and software to be real-
ized. However the question about the relation between such models and any reality should not be
ignored, and we phrase it explicitly: Where do the numbers that decorate the model come from?

The answer may vary depending on how developed the system in question is at the time of
analysis. If the code is fully written and the architecture fully developed, one may profile the tasks
and measure the execution times. In fact, if the systems is fully operational, testing it on the real
hardware can be more efficient than any simulation. If a new application is to be deployed on a
variant of an existing architecture, numbers can be derived based on a combination of profiling
and designers know-how from similar applications. These numbers can be very imprecise and
there may also be a large real-life variability among execution times of instances of the same task.
To compensate for the imprecision we invoke a very attractive feature of our models, inherited
from the tradition of formal verification: unlike “executable” models needed for simulation and
for implementation, we use models that are not necessarily deterministic: they may exhibit non-
determinism (or under-determination in the sense of [146]) in power consumption, in size of data
items and in task durations as well as in their arrival patterns. The methods applied to handle
this non determinism vary from Monte-Carlo simulation where the uncertainty space is randomly
sampled to generate statistics, via verification methods that attempt to prove that something such
as deadline miss never happens under all possible choices in the uncertainty space, to more so-
phisticated methods that compute the expected performance of a system.

To recapitulate our approach: we replace overly detailed models at a very low-level of abstrac-
tion (some of which might be inexistent at the time of the analysis) by very coarse grained models
that compensate for their imprecision by taking the under-determination more seriously and ex-
plicitly in the analysis method. It seems that software and especially hardware developers bring to
performance analysis too many low-level details (which are indispensable for implementation and
functional correctness, though) while investing less effort in modeling the external environment
of the system, such as the arrival model of tasks, which can have more effect on the performance
than the low-level implementation details. This is understood because the external environment is
not part of the system that they are responsible for developing and whose detailed implementation
model cannot be avoided.

Since our approach originates historically from the tradition of formal verification it is worth
making the premises of verification explicit in order to assess both its potential contribution and its
current inadequacy for performance evaluation. Algorithmic formal verification is concerned with
proving functional correctness of systems such as communication protocols and digital hardware.
This is often done on models that abstract away from data and focus on control (synchronization).

16 2.5. OUR MODELING FRAMEWORK

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

However, functional correctness in the strict sense often used in verification is not a necessary
nor sufficient condition for the usefulness of a system. A correct system with an extremely slow
response is not likely be ever used, while systems that work well most of the time are all around
us. To apply the insights of formal verification to system design beyond the very narrow context
in which it is currently used, one should rethink some the following premises of the field:

1. System models, at least traditionally, are qualitative/logical without quantitative informa-
tion;

2. The questions posed to the verification tool are of a qualitative yes/no nature: is the system
correct or not;

3. There is an implicit universal quantification over the possible behaviors of the system: a
system is correct if all its behaviors do not violate the specifications.

The first premise is relaxed by models of automata augmented with numerical variables are used
extensively in software verification as well as in hybrid systems. Timed automata [6], the model
most relevant to the present thesis, have been invented to model delays and execution times in a
quantitative way. Relaxing the second premise has been promoted as quantitative analysis/synthe-
sis [57, 42] and it consists of decorating states and transitions with numerical costs and tracking
their evolution along system behaviors. Such costs typically admit a simpler dynamics than more
general numerical variables in programs or hybrid systems. For example, the model of linearly-
priced timed automata [46, 128], which are timed automata augmented with costs that can grow
at different rates at different states, is simpler to analyze than other hybrid systems with constant
slopes [120, 119, 15] because the cost variables are passive observers of the dynamics. The re-
laxation of universal quantification is what underlies statistical model checking [201] [62] [72]
and can be viewed as a compromise between the rigor of formal verification and the scalability
constraints for real systems. We demonstrate in this thesis that a combination of all these relax-
ations has a great potential in solving a central problem related to the multi-core revolution: how
to evaluate and optimize the performance of application programs on such execution platforms.

Functional correctness and good performance are complementary and sometimes conflict-
ing evaluation criteria. In hard real-time systems, performance is hardwired into correctness:
a feedback function of a controller should be computed between every two consecutive sensor
readings which puts a deadline constraint on its computation time. Using a timed model of the
software/hardware architecture, which represents the execution times of the tasks as well as the
scheduling policy, one can verify that such a deadline is never missed. In certain simple situations
studied extensively by the real-time community [54, 142, 125] one can do the calculation [141]
without invoking an explicit dynamic “executable” model at all. For embedded systems where the
real-time constraints are softer the system is expected to give a best effort performance depending
on the system load and resource availability. A typical example would be video streaming where
a good trade-off between response time and image quality is sought. For such systems, the actual
response time is a performance measure of the system, together with additional criteria such as
system price or power consumption. Unlike what is common in verification, the quantitative mea-
sures are not Booleanized via predicates/constraints into a yes/no answer but remain quantitative
and can be used to compare the relative performance of different designs.

Unlike safety-critical verification, soft systems are not evaluated according to their worst-case
behavior but in a more probabilistic fashion. The traditional verification approach to the problem
of performance evaluation based on “classical” timed automata technology [202, 82, 48, 130, 192,
38, 10] is exhaustive: it can compute performance measures such as termination time and other
costs for all possible values of the uncertainty space, thus compute lower- and upper-bounds on
termination time. For soft real-time systems this is, at the same time, too much and too little. The

2.5. OUR MODELING FRAMEWORK 17

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

lower and upper-bounds represent very extreme cases which are realized only when all the tasks
take their extremal duration values.

Under very reasonable assumptions these extreme values are less likely than termination times
that admit many realizations (as 7 is more likely than 12 in dice). In contrast with the exhaustive
approach, in Monte-Carlo simulation the uncertainty space is finitely sampled according to some
distribution and each sampling point induces a single deterministic behavior whose performance
is evaluated by (cheap) simulation. Such an approach is weaker than formal verification because
it does not cover all behaviors: it can, at most, put bounds on the probability of error or a deadline
miss. On the other hand it is stronger as it can give an estimation of the distribution and expected
value of the termination times, which can be much more useful for this type of applications than
the very conservative bounds computed by the exhaustive approach.

2.6 Related tools

Timed automata are a common and theoretically well-founded formalism for real-time systems.
Reachability analysis of timed automata has been implemented in several tools, including KRONOS

[73], UPPAAL [130], IF [48] or RABBIT [38]. Literature relates many tools for design-space ex-
ploration, based on timed automata or other formalisms. We present in the sequel some of them,
close to our work.

TIMES [10]

It is a tool suite designed mainly for symbolic schedulability analysis and synthesis of executable
code with predictable behaviours for real-time systems. Given a system design model consisting
of a set of application tasks whose executions may be required to meet mixed timing, precedence,
and resource constraints, a network of timed automata describing the task arrival patterns and a
preemptive or non-preemptive scheduling policy, Times will generate a scheduler, and calculate
the worst case response times for the tasks. The design model may be further validated using the
UPPAAL timed model checker.

PTOLEMY [53]

The Ptolemy project studies heterogeneous modeling, simulation and design of concurrent systems
with a focus on systems that mix computationnal domains [84] It uses tokens as the underlaying
communication mechanism and controllers regulate how actors fire and how tokens are sent be-
tween each actors. Actors are software components that execute concurrently and communicate
through messages sent via interconnected ports. A model is a hierarchical interconnection of ac-
tors. The semantics of a model is not determined by the framework, but rather by a software
component in the model called a director, which implements a model of computation including
process networks, discrete-events, dataflow, synchronous/reactive, rendezvous-based models, 3-D
visualization, and continuous-time models. Each level of the hierarchy in a model can have its
own director, and distinct directors can be composed hierarchically. A major emphasis of the
project has been on understanding the heterogeneous combinations of models of computation re-
alized by these directors. Directors can be combined hierarchically with state machines to make
modal models [133]. For example, a hierarchical combination of continuous-time models with
state machines yields hybrid systems [135].

OCTOPUS [20]

The octopus toolset supports model-driven design-space exploration based on high level modeling
with a clear separation of application, platform and mapping. It provides formal analysis of func-

18 2.6. RELATED TOOLS

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

tional correctness and performance and semi-automatic exploration of alternatives and synthesis
of optimized designs. Analysis process works with different type of models:

• Timed automata model checking using UPPAAL [130]

• Petri nets simulation using CPNTools [164]

• Synchronous dataflow for trade-off analysis using SDF3 [179]

HOPES [99]

It is a model based framework for MPSoC software development. The application model is based
on actor-orientation and is described in UML using PeaCE model [100]:

• Process network: specify execution condition of each task and define interaction between
them.

• Synchronous piggybacked dataflow [101]: specify signal processing

• Flexible FSM [123]: specify control tasks.

The hardware platform is separately specified in a block diagram with a set of architectures and
constraints parameters described in an xml-style. Application is manually partitioned into the
abstract PEs that compose the hardware platform.

SESAME (Simulation of Embedded System Architectures for Multilevel Exploration) [162]

It is a modeling and simulation environment for system-level design based on the Y-chart design
approach [122] which allows application and architecture to be modeled separately. The appli-
cation model can be mapped onto the platform model and both are co-simulated via trace-driven
simulation [163].

BIP (Behavior, Interaction, Priority) [22]

It is a component framework intended for rigorous system design. BIP allows the construction
of composite hierarchically structured systems from atomic components characterized by their
behavior and their interface. Components are composed by layered application of interactions and
of priorities. Interactions express synchronization constraints between actions of the composed
components while priorities are used to filter amongst possible interactions and to steer system
evolution so as to meet performance requirements e.g. to express scheduling policies. Interactions
are described in BIP as the combination of two types of protocols: rendez-vous, to express strong
symmetric synchronization and broadcast, to express triggered asymmetric synchronization.

BIP has a rigorous operational semantics which has been implemented by specific execution
engines for centralized, distributed and real-time execution. BIP is used as a unifying semantic
model in a rigorous system design flow [21]. Rigor is ensured by two kinds of tools: verification
tools such as D-Finder [29] for checking safety properties (and deadlock-freedom in particular)
and source-to-source transformers [50], [43] that allow progressive refinement of (purely func-
tional) application software towards platform-dependent implementations.

2.6. RELATED TOOLS 19

CHAPTER 2. MULTI-CORE EMBEDDED SYSTEM

20 2.6. RELATED TOOLS

Chapter 3

Timed automata

In order to talk about systems behavior in a formal manner, it is necessary to represent them as
some kind of mathematical structure. The simplest way to represent behavior is by means of
automata or labelled transition system. These are simply graphs containing nodes and directed, la-
belled edges. Nodes represent the possible states of the system and edges (or transitions) represent
activities as moves between two nodes.

In [70] authors have identified a handful of semantic concepts which are well-established in
the context of computer-aided verification and modelling formalisms for discrete event systems:

• Action nondeterminism: From a given state several transitions may exist.

• Probabilistic branching: From a given state several transitions may exists and the choice
is based on some probability distribution.

• Clocks: A way to represent real time constraints and to specify the dynamics of a model in
relation to a physical, quantitive notion of time.

• Delay nondeterminism: allows one to leave the precise timing of events under specified.

• Random variables: give quantitative information about the likelihood of a certain event to
happen within a given time frame.

Working with high level models, implies taking into account uncertainty in order to com-
pensate for the lack of precision. Non-determinism can be modeled in many ways and labeled
transition systems possess only action non-determinism. Other formalisms associate some kind of
quantitative informations with action non-determinism.

Probabilistic automata have been used [170, 171, 169] for the purpose of modeling and analyz-
ing asynchronous, concurrent systems with discrete probabilistic choice in a formal and precise
way. Basically, a probabilistic automaton is a labeled transition system where the target of a
transition is a probabilistic choice over several next states. Stochastic processes [79] is another
formalism which is often used to represent the evolution of some random value, or system, over
time. This formalism will be introduced in the next chapters.

In the present chapter we are interested in timing uncertainty. Timed automata [6] provide a
theory for modeling and verification of real time systems. They provide the ability to constraint
the execution of a transition to occur anywhere within a time interval. Timed automata introduce
a dense non-determinism which is a very useful modeling feature when we have uncertain infor-
mation about process durations. Other formalisms with the same purpose include timed Petri Nets
[37], timed process algebra [165, 200, 156] and real time logics [9, 58].

21

CHAPTER 3. TIMED AUTOMATA

We will present next, the timed automaton formalism, which will be used as a basis for our
modeling framework presented in chapter 6.

3.1 Clocks, time constraints, zones

We use Z and R to denote, respectively the integer and real numbers, while N and R+ will stand
for their respective non-negative restrictions. We will use R+ as the time domain on which clock
variables range. We use R⊥ to denote R+∪ ⊥ were ⊥ is a special symbol meaning inactive or
irrelevant. We extend the addition operation to R⊥ by letting ⊥ +d =⊥.

Clocks and Valuations

Let C = {c1, ..., cn} be a finite set of variables called clocks, each ranging over R⊥ . A clock
valuation is a function v : C → R⊥ assigning to each clock c ∈ C its value v(c). The set of
possible valuations of C is then Rn⊥. A clock c is said to be active in valuation v iff v(c) 6=⊥,
otherwise it is inactive. In timed automata, clock valuations change due to two types of activities:
time progress which happens inside a discrete state and clock assignment which take place during
discrete transitions:

Time progress

Let d be a non-negative real. We say that clock valuation v′ is the result of applying d-time-
progress to clock valuation v, denoted by v′ = v + d, if for every clock c, v′(c) = v(c) + d. Note
that by the definition of addition on R⊥ , all the clocks inactive in v do not change their value
while all the other clocks advance uniformly.

Clocks assignment

A clock assignment is a function γ : R⊥ → R⊥ indicating a transformation of clock values which
occurs during a transition. v′ = γ(v) denotes the fact that v′ is the result of applying assignment
γ to clock valuation v. The type of assignments that we allow in the definition of timed automata
is restricted to compositions of one or more of the following basic assignments:

• Resetting to zero: ci = 0

• Deactivation of a clock: ci =⊥

• Clock copying: ci = cj

Clock constraints

Clock constraints are used to express the influence of clock values on the discrete dynamics (in-
variants and transition guards). We restrict ourselves to a family of constraints that we denote by
ΨC , defined by the following grammar:

ψ ::= true | ci ≺ k | ci − cj ≺ k | ψ ∧ ψ

where ci, cj ∈ C, k ∈ N and ≺∈ {<,≤,=,≥, >}.

22 3.1. CLOCKS, TIME CONSTRAINTS, ZONES

CHAPTER 3. TIMED AUTOMATA

Timed zones

Clock constraints define naturally the set of clock valuations that satisfy them. These are subsets
of Rn+. Every constraint ψ ∈ ΨC is a conjunction of atomic constraints. Knowing that the set of
valuations satisfying an atomic constraint defines a half-space, every constraintψ ∈ ΨC will define
a convex polyhedron which is the intersection of those half-spaces. Zψ denote this polyhedron and
it is called the timed zone associated with ψ. The set of all the zones defined on C will be denoted
ZC . Since the half-spaces are either orthogonal (ci ≺ k) or diagonal (ci− cj ≺ k) with k ∈ N, the
vertices of these polyhedra are integer points and there is a finite number of zones in any bounded
subset of Rn. The most important property of zones is that they can be canonically represented as
matrices i.e. DBMs (Difference Bound Matrices) [78].

In the following we will define some useful operations on zones that will be used throughout
this chapter. Let C ′ ⊆ C be a set of clocks, and let Z1, Z2 ∈ ZC be two timed zones defined on
C, then:

Z1 ∩ Z2 is the intersection of two zones Z1 and Z2, which is a zone (fig3.1-(b))
Z1 t Z2 is the convex hull of two zones Z1 and Z2 defined as

Z1 t Z2 = min{Z ∈ ZC | (Z1 ⊆ Z) ∧ (Z2 ⊆ Z)}
that is the smallest (in terms of inclusion) zone containing both Z1 and Z2, see (fig3.1-
(c)). Since zones are not closed under union, Z1 t Z2 is used as an over-approximation
of Z1 ∪ Z2.

Z↗ is the forward projection of Z, i.e. all clock valuations that can result by applying time
progress to element of Z (fig 3.1-(f)):
Z↗ = {v ∈ VC | ∃d ≥ 0, v − d ∈ Z}

Z/C′ is the projection of a zone Z on a clock subset C ′ ⊆ C:
Z/C′ = {v/C′ | v ∈ Z}
This operation is related to clocks deactivation, (fig 3.1-(d))

γ(Z) is the result of applying the clock assignment function γ to all element of Z:
γ(Z) = {γ(v) | v ∈ Z}

Figure 3.1: Operations on timed zones

3.1. CLOCKS, TIME CONSTRAINTS, ZONES 23

CHAPTER 3. TIMED AUTOMATA

All these operations can be computed efficiently on a DBM representation of timed zones.
More details can be found, for example, in [203].

3.2 Timed Automata: Syntax and Semantics

Timed automata have been introduced in [8, 6] as finite state Büchi automata (a variation of finite
automaton that runs on infinite, rather than finite, inputs) extended with a set of real valued vari-
ables modeling clocks. Constraints on the clock variables are used to restrict the behavior of an
automaton and Büchi accepting conditions are used to enforce progress properties. A simplified
version, namely Timed Safety Automata, has been later introduced in [106] to specify progress
properties using local invariant conditions.

Figure 3.2: Example of timed automaton

A timed automaton is presented as a discrete structure which is essentially a finite automaton
(i.e a graph containing a finite set of nodes or locations and a finite set of labeled edges) extended
with clock variables. Locations are supposed to capture all information about the current status
of the system, except for timing information. Edges represents events or transitions which change
the discrete state of the system. Time progress takes place inside the discrete states and is not ex-
pressed explicitly in this structure. Actually, time passage is recorded using clocks. All clocks of
the system increase synchronously at the same rate. These clocks can be set to zero, or deactivated
when a transition is taken.

Clocks constraints are used to restrict the behavior of the automaton by forcing it to leave a
state or forbidding it from taking a certain transition. In [174, 44] these constraints are associated
with the transitions, while in [106] they are divided between states and transition. Constraints on
states denote staying conditions (called invariant). The automaton may stay in a state (while the
active clocks are progressing) as long as the staying condition holds, otherwise it has to leave
the state via one of the enabled transitions. Constraints on transitions are called guards, and a
transition can be taken only if its guard constraints are satisfied.

Definition 3.2.1. (Timed automaton) A timed automaton is a tupleA = (Q, q0, C,Σ, I,∆) where
Q is a finite set of discrete states, q0 ∈ Q is the initial state, C is a finite set of clocks and Σ is
a finite set of labels. I ∈ Q → ΨC is a function associating a staying condition (invariant) with
every state q. The automaton is permitted to stay at q only as long as the clock constraint Iq is
satisfied.
∆ ⊆ Q×ΨC ×Σ×ΓC ×Q is the transition consisting of elements of the form e = (q, g, a, γ, q′)
where:

24 3.2. TIMED AUTOMATA: SYNTAX AND SEMANTICS

CHAPTER 3. TIMED AUTOMATA

q, q′ ∈ Q are, respectively, the source and the target of the transition
g ∈ ΨC is an enabling condition called the transition guard.It restricts the execution of the

transition to clock valuations that satisfy it.
a ∈ Σ is the transition label,
γ ∈ ΓC is a clock assignment function which takes place during a transition.

We assume, without loss of generality, that from every state q there is at most one transition
labeled by a for every a ∈ Σ.

Parallel Composition of Timed Automata

A timed automaton is often considered to be an element in a network of components running in
parallel and communicating with each other. The global behavior of such a network is captured
by the global timed automaton, called the product. There are many variations of composition
depending mainly on the interaction mechanisms through which the automata influence each other.
At this point we use a definition based on a distributed alphabet [77] where each component Ai

has its alphabet Σi. The alphabets of the components may have non-empty intersections and any
global transition labeled by a must involve a local a-transition in every automaton Ai such that
a ∈ Σi. Independent local transitions (transitions with different labels) enabled at the same global
state can be executed in any order (interleaving).

Definition 3.2.2. (Parallel composition of timed automata)
Let N = {Ai = (Qi, qi0, C

i,Σi, Ii,∆i) | i ∈ {1, .., n}} be a network of timed automata. We
assume the sets of clocks of each pair of automata to be disjoint and denote by J(a) the indices
i such that a ∈ Σi. The composition of these automata, denoted by A1 ‖ . . . ‖ An is a timed
automaton A = (Q, q0, C,Σ, I,∆) where Q = Q1 × . . .×Qn is the set of global discrete states
of the form q = (q1, . . . , qn), q0 = (q1

0, . . . , q
n
0) is the initial state,C =

⋃n
i=1C

i is the global set of
clocks, Σ =

⋃n
i=1 Σi is the global alphabet and I is the global invariant I(q) =

∧
i∈{1,...,n} I

i(qi).
The global transition relation ∆ consists of tuples of the form ((q1, . . . , qn), g, a, γ, (q′1, . . . , q′n))
such that:

• ∀i /∈ J(a), q′i = qi

• ∀i ∈ J(a), (qi, gi, a, γi, q′i) ∈ ∆i

• g =
⋂
i∈J(a) g

i

• γ = ◦i∈J(a)γ
i

Steps

Timed automata define infinite transition systems whose states are configurations of the form (q, v)
consisting of a discrete state q and a clock valuation v. The initial configuration is s0 = (q0,⊥)
with all clocks inactive and the transitions are either discrete transitions of the automaton or time-
passage transitions. This is formalized by the notion of a step.

Definition 3.2.3. (Steps) A step of a timed automaton A is one of the following :

• A discrete step: (q, v) −→a (q′, v′), for some transition (q, g, a, γ, q′) ∈ ∆ such that v |= g
and v′ = γ(v)

• A time step:(q, v) −→d (q′, v + d) for some d ∈ R+ such that v + d satisfies I(q)

3.2. TIMED AUTOMATA: SYNTAX AND SEMANTICS 25

CHAPTER 3. TIMED AUTOMATA

Note that the concatenation of two time steps is a time step:

(q, v) −→d1 (q, v + d1) −→d2 (q, v + d1 + d2) ≡ (q, v) −→d1+d2 (q, v + d1 + d2)

Conversely, due to the dense nature of the real numbers, a time step can be split into any number
of smaller time steps. A compound step is a discrete step followed by a time step (possibly of zero
duration):

(q, v) −→a,d (q′, v′ + d) ≡ (q, v) −→a (q′, v′) −→d (q′, v′ + d)

A run of the automaton A starting from a configuration (q, v) is a finite sequence of compound
steps (possibly starting by a pure time step). These definitions apply to products as well. Note
that a global time step in a global state q = (q1, . . . , qn) is just a local (and uniform) time step for
each component Ai. The global invariant requires that all local invariants hold at v + d. On the
other hand a global discrete step labeled by a is a local discrete step for all components Ai such
that a ∈ Σi.

3.3 Reachability Analysis

Given timed automata models we would like to verify them, that is, to see what the possible runs of
a given automaton are, and whether they satisfy a given property. The enumeration of possible runs
is done in a set-based fashion, computing in one step all the successors of a set of configurations
by an arbitrary passage of time and by transitions. Verification based on timed automaton can be
done in different manners:

• Reachability analysis: does there exists a run of A which ends in some specific state?

• Verification of temporal timed logic: does the timed automaton A satisfies a temporal logic
property ϕ ?

• Language inclusion, simulation: can A1 produce all behaviors that A2 does?

• Equivalence checking, timed bisimulation of timed automata: are two automaton A1, A2

equivalent or bisimilar?

In the context of this thesis, timed automata are used as the basis modeling formalism and we
use only reachability analysis to check whether some error state is reachable or not. All the prop-
erty that we use are bounded-horizon timed properties that can be reduced to safety reachability
on the composition of the system and the property monitor. We will recall next how reachability
analysis works.

The original decidability proof for verification of timed automata [8] was based on partition-
ing the state space into a finite number of equivalence classes called regions. Regions are the
“atomic” zones from which all other zones can be constructed. Two configurations (q, v) and
(q, v′) are region-equivalent if for every transition guard g, v |= g iff v′ |= g, and if by letting time
pass they reach the same region. Hence for every sequence of regions visited by a run from (q, v)
there is a run from (q, v′) visiting the same sequence. The timed automaton can thus be reduced
to a finite automaton whose states are regions with discrete transitions and special transitions that
correspond to the passage of time. Region equivalence is guaranteed to capture all the qualitative
behaviors of any automaton, but its force is also its weakness because the large number of regions
renders this approach impractical.

The most popular approach is on-the-fly forward search based on zones. This approach has
the following advantages:

26 3.3. REACHABILITY ANALYSIS

CHAPTER 3. TIMED AUTOMATA

• It does not explore the parts of the state space which are not reachable from the initial state;

• It does not refine zones beyond what is necessary and will typically result in a number of
generated zones much smaller than the number of regions;

• It uses an efficient data structure, the DBM, to store and manipulate zones.

The principle of symbolic reachability computation for discrete systems is to take a repre-
sentation of a set P of states reachable after k steps, and compute from it the set succ(P) of its
successors by all transitions, that is, the set

succ(P) =
⋃
q∈P

⋃
a∈Σ

{succa(q)}

The basic element in this computation is an object consisting of one discrete state and a set
of clock valuations. Successors by different transitions are treated separately and enumeratively,
while the symbolic treatement is reserved for time passage and clocks valuations.

Definition 3.3.1. A symbolic state of a timed automaton A = (Q, q0, C,Σ, I,∆) is a pair (q, Z)
with q ∈ Q a discrete state and Z a zone.

Symbolic states are closed under the following operations:

• The time successor of a symbolic state (q, Z) is the symbolic state (q, Z ′) where Z ′ is the set
of clock valuations reachable from Z by letting time progress without violating the staying
condition I(q):

postt(q, Z) = {(q, v + d)|(v ∈ Z) ∧ (d ≥ 0) ∧ ((v + d) |= I(q))} = (q, (Z↗ ∩ I(q)))

We say that (q, Z) is time-closed if (q, Z) = postt(q, Z).

• Let (q, g, a, γ, q′) ∈ ∆ be a transition. The a-transition successor of a symbolic state (q, Z)
is the set of configurations reached by taking this transition. Only clock valuations of Z
that satisfy the guard g are concerned with this transition. These clock valuations will be
transformed according to the assignment function σ while taking this transition:

posta(q, Z) = {(q′, v′)|∃v ∈ Z, v |= g ∧ v′ = γ(v)} = (q′, (γ(Z ∧ g)))

• The a-successor of a symbolic state (q, Z) is the set of configurations reached from (q, Z)
by an a-transition followed by passage of time:

succa(q, Z) = postt(posta(q, Z)) = (q′, (γ(Z ∧ g))↗∩ I(q′))

Proposition 3.3.1. Let (q′, Z ′) = succa(q, Z) for a transition (q, g, a, γ, q′). A configuration
(q′, v′) belongs to (q′, Z ′) if and only if it is the endpoint of a compound step

(q, v) −→a,d (q′, v′)

for some (q, v) ∈ (q, Z) and some d ≥ 0

Equipped with these operators under which the set of symbolic states is closed, we can now
introduce the forward reachability algorithm for timed automata which computes this way all the
runs of A. Algorithm-1 presents a breadth-first version of reachability computation but other
exploration orders are possible. The algorithm terminates because there are finitely many zones in
any bounded subset of Rn⊥.

3.3. REACHABILITY ANALYSIS 27

CHAPTER 3. TIMED AUTOMATA

Algorithm 1 Forward reachability algorithm (breadth first).

Explored← ∅
New← ∅
Waiting← {(q0,⊥)}
while Waiting 6= ∅ do

for all (q, Z) ∈Waiting do
for all (q, g, a, γ, q′) ∈ ∆ do

New← New ∪succa(q, Z)
end for
Explored← Explored ∪(q, Z)

end for
Waiting← New \ Explored
New← ∅

end while
return Explored

Authors in [74] introduce the notion of clock activity in order to reduce the number of clocks
and the complexity of timed verification. A clock is said to be active at some discrete state when
its value is relevant for the future evolution of the system, for example, when the clock appears
in the state invariant or in a guard of a transition outgoing from the state. The work of [74] had
two major parts. The first was the (approximate) detection of such clock inactivity by performing
a syntactic data-flow analysis of the automaton. Then this information was used to reduce the
dimensionality of the clock space, by manipulating in each state polyhedra whose dimension is
equal to the number of clocks active in this state. In our modeling framework we express clock
deactivation explicitly by assigning a clock value to ⊥ and, in the class of automata that we use
for modeling, clock activity tracking is self-evident and we can benefit from the dimensionality
reduction without performing the analysis.

3.4 Implementation

In the context of this thesis, timed automata models presented thereafter are defined using the IF
language [48]. We give in this section, an overview of this formalism as described in [49].

IF is a notation for systems of components (called processes), running in parallel and in-
teracting either through shared variables or asynchronous signals. Processes describe sequential
behaviors including data transformations, communications and process creation. Furthermore,
the behavior of a process may be subject to timing constraints. The number of processes may
change over time: they may be created and deleted dynamically. The semantics of a system is
the labelled transition system (LTS) obtained by interleaving the behavior of its processes. To
enforce scheduling policies, the set of runs of the LTS can be further restricted using dynamic
priorities. This representation is expressive enough to describe the basic concepts of modeling and
programming languages for distributed real time systems.

Processes

The behavior of a process is described as a timed automaton, extended with data. A process has a
unique process identifier (pid) and local memory consisting of variables (including clocks), control
states and a queue of pending messages (received and not yet consumed).

28 3.4. IMPLEMENTATION

CHAPTER 3. TIMED AUTOMATA

A process can move from one control state to another by executing some transition. As for
StateCharts [104, 103], control states can be hierarchically structured to factorize common behav-
iors. A sequence of transitions between two stable states defines a step. The execution of a step
is atomic, meaning that it corresponds to a single transition in the LTS representing the semantics.
Notice that several transitions may be enabled at the same time, in which case the choice is made
non-deterministically.

Transitions can be either triggered by signals in the input queue or be spontaneous. Transitions
can also be guarded by predicates on variables, where a guard is the conjunction of a data guard
and a time guard. A transition is enabled in a state if its trigger signal is present and its guard
evaluates to true. Signals in the input queue are a priori consumed in a FIFO fashion, but one can
specify in transitions which signals should be “saved” in the queue for later use.

Transition bodies are sequential programs consisting of elementary actions (variable or clock
assignments, message sending, process creation/destruction, resource requirement/release, etc)
and structured using elementary control-flow statements (like if-then-else, while-do, etc). In addi-
tion, transition bodies can use external functions/procedures, written in an external programming
language (C/C++).

Signals

Signals are typed and can have data parameters. Signals can be addressed directly to a process (us-
ing its pid) and/or to a signal route which will deliver it to one or more processes. The destination
process stores received signals in a FIFO buffer.

Data

The IF notation provides the predefined basic types bool, integer, real, pid and clock, where clock
is used for variables measuring time progress. Structured data types are built using the type con-
structors enumeration, range, array, record and abstract. Abstract data types can be used for
manipulating external types and code.

Composition

The semantics associates with a system a global LTS. At any point of time, its state is defined as the
tuple of the states of its living components: the states of a process are the possible evaluations of
its attributes (control state, variables and signal queue content). The transitions of the global LTS
representing a system are steps of processes and signal deliveries to queues where in any global
state there is an outgoing transition for all enabled transitions of all components (interleaving
semantics). The formal definition of the semantics can be found in [47].

System models may be highly nondeterministic, due to the non-determinism of the environ-
ment which is considered as open and to the concurrency between their processes. For the valida-
tion of functional properties, leaving this second type of non-determinism non resolved is impor-
tant in order to verify correctness independently of any particular execution order. Nevertheless,
going towards an implementation means resolving a part of this non determinism and choosing an
execution order satisfying time related and other nonfunctional constraints.

In IF, such additional restrictions can be enforced by dynamic priorities defined by rules speci-
fying that whenever for two process instances some condition (state predicate) holds, then one has
less priority than the other.

3.4. IMPLEMENTATION 29

CHAPTER 3. TIMED AUTOMATA

Time

The time model of IF is that of timed automata with urgency [44]. The execution of a transition is
an event defining an instant of state change, whereas time is progressing in states. The progress of
time is controlled by urgencies of the enabled transitions. Transitions are annotated with urgency
types that are eager, lazy and delayable. Eager transitions prevent time progress. Lazy transition
have no impact on the time progress. Delayable transitions are considered lazy unless their guard
is disabled by the progress of time, and then they are considered eager.

Example

As an example, consider a multi-threaded server which can handle at most N simultaneous re-
quests. Thus, if possible, for a request message (received from the environment) a thread is created.
The server keeps in the thc variable the number of running threads. Threads processes are quite
simple: once created, they work during a time interval [l, u], and when finished they send a done
message back to the server. A graphical description is shown in Fig-3.3 and the corresponding IF
code is shown in Listing-3.1.

Figure 3.3: Example of a multi-threaded server

/ / r e q u e s t f o r [l , u] amount o f work
s i g n a l r e q u e s t (l , u) ;
s i g n a l done () ;

p r o c e s s s e r v e r (1) ;
v a r t h c i n t e g e r ;

s t a t e i d l e # s t a r t ;
d e a d l i n e l a z y ;
p r o v i d e d t h c < N;
i n p u t r e q u e s t (l , u) ;

f o r k t h r e a d (s e l f , l , u) ;
t a s k t h c := t h c + 1 ;

n e x t s t a t e i d l e ;

d e a d l i n e e a g e r ;
i n p u t done () ;

t a s k t h c := t h c − 1 ;
n e x t s t a t e i d l e ;

e n d s t a t e ;
e n d p r o c e s s ;

p r o c e s s t h r e a d (0) ;
f p a r p a r e n t pid , l i n t e g e r , u i n t e g e r ;
v a r c c l o c k ;

s t a t e i n i t # s t a r t ;
s e t c := 0 ;

n e x t s t a t e work ;
e n d s t a t e ;

s t a t e work ;
d e a d l i n e d e l a y a b l e ;
when c>=l and c<=u ;

o u t p u t done () t o p a r e n t ;
s t o p ;

e n d s t a t e ;
e n d p r o c e s s ;

Listing 3.1: IF description

30 3.4. IMPLEMENTATION

CHAPTER 3. TIMED AUTOMATA

Observers

Observers express in an operational way safety properties of a system by characterizing its ac-
ceptable execution sequences. They also provide a simple and flexible mechanism for controlling
model generation. They can be used to select parts of the model to explore and to cut off execution
paths that are irrelevant with respect to given criteria.

Observers are described as IF processes i.e., as extended timed automata. They differ from IF
processes in that they can react synchronously to events and conditions occurring in the observed
system. Observers are classified into:

• Pure observers - which express requirements to be checked on the system.

• Cut observers - which in addition to monitoring, guide simulation by selecting execution
paths. For example, they are used to restrict the behavior of the environment

• Intrusive observers - which may also alter the system’s behavior by sending signals and
changing variables.

For monitoring the system state, observers can use primitives for retrieving values of variables,
the current state of the processes, the contents of queues, etc. For monitoring actions performed
by a system, observers use constructs for retrieving events together with data associated with them.
Events are generated whenever the system executes one of the following actions: signal output,
signal delivery, signal input, process creation and destruction and informal statements. Observers
can also monitor time progress, by using their own clocks or by monitoring the clocks of the
system.

In order to express properties, observer states can be marked as ordinary, error or success.
Error and success are both terminating states. Reaching a success state (an error state) means
satisfaction (violation). Cut observers use a cut action which stops exploration.

Model exploration

IF toolset includes an exploration platform that is a component which has an API providing access
to the LTS corresponding to IF description. The interface offers primitives for representing and ac-
cessing states and labels as well as basic primitives for traversing LTS enabling implementation of
any on-the-fly forward enumerative exploration or validation algorithm. The exploration platform
composes all active processes and computes global states and the corresponding system behavior.

Simulation time is handled by a specialized process managing allocation and deallocation of
clocks, computing time progress conditions and firing timed transitions. There are two implemen-
tations available, one for discrete time and one for dense time. For discrete time, clock values
are explicitly represented by integers. Time progress is computed with respect to the next enabled
deadline. For dense time, clock valuations are represented using variable-size Difference Bound
Matrices (DBMs) as in tools dedicated to timed automata such as KRONOS [202] and UPPAAL

[130].

3.4. IMPLEMENTATION 31

CHAPTER 3. TIMED AUTOMATA

32 3.4. IMPLEMENTATION

Chapter 4

Duration Probabilistic Automata:
Analysis

The next two chapters constitute the major theoretical contribution of the thesis. They are con-
cerned with a class of stochastic processes, Duration Probabilistic Automata (DPA) [145], that can
model scheduling problems such as job-shop, where task durations are uncertain and distributed
uniformly over a bounded interval. DPAs can also be viewed as timed automata where the inter-
vals of temporal uncertainty are interpreted probabilistically, an assumption which is implicit in
the Monte-Carlo simulation provided by the tool. In this chapter we develop a piecewise-analytic
approach to compute performance measures for such systems, while in the next chapter we study
the synthesis of schedulers which are expected-time optimal. Naturally, these new results and
computational techniques are first developed on clean abstract models, less loaded with real-life
details than the models used in the more applied parts of the thesis.

4.1 Scheduling under Stochastic Uncertainty

Scheduling, the allocation of limited reusable resources over time to competing tasks, is a univer-
sal activity. It is performed routinely in domains of very different scales in terms of time, space
and energy. These include the allocation of airways and runways to flights, allocating machines to
different product lines in a factory, and the efficient allocation of computation and communication
resources to information-processing tasks. This latter activity is becoming of prime importance in
many scales, ranging from world-wide cloud computing, via the realization of multiple distributed
control loops, down to mapping and scheduling tasks on multi-core computers. In all such situa-
tions one wants to synthesize schedulers which are optimal or good in some sense, or at least to be
able to compare the performance of proposed schedulers and choose the better ones. Performance
and optimality of such schedulers are typically based on the quantity of work performed over time,
which in the case of a finite amount of work can be expressed as termination time. Good schedules
are typically associated with intensive, almost idle-free, utilization of critical bottleneck resources.

In a deterministic setting one assumes that everything is known in advance about the demand
for work, including the tasks to be executed, their arrival times and the durations for which they
occupy resources. In other words, once the scheduling policy itself is determined, the system
admits a unique execution scenario (run, realization). Evaluating a scheduler based on this unique
run is straightforward – just simulate it – while finding an optimal scheduler for any non-trivial
scheduling problem (such as job-shop) is NP-hard or worse. However, determinism is rarely the
case in real life and exact duration of tasks, their arrival times and many other features may vary to
large extents. Each instance in this uncontrollable space yields a different schedule and the overall
evaluation of a scheduler or a scheduling policy, which can be viewed as a strategy in a two-person

33

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

timed game [42] with uncertainty viewed as an adversary, should be based on some quantification
over all possible behaviors it induces [144].

This adversarial time-optimality problem has been tackled in [14, 2] using a worst-case ap-
proach on models of different types of uncertainty. In [14], using, the general model of timed game
automaton [16] where the adversary is discrete, the following problem was proved to be decid-
able: synthesize a controller which is worst-case time-optimal in the sense that the maximal (over
all possible runs induced by the adversary) time to reach a goal state is minimal. In [2] the case
of job-shop scheduling with uncertain task durations each ranging over a bounded interval was
treated. For this problem, worst-case optimality is defined trivially by the optimal solution to a de-
terministic scheduling problem associated with the worst case where all tasks take their respective
maximal duration. One has to define a new notion of optimality (d-future optimal strategies) to
make the optimal synthesis problem meaningful, resulting in a synthesis algorithm based on value
iteration over sets of clock valuations (zones) which can be seen as an offline version of some kind
of model-predictive control.

The use of worst-case reasoning is to some extent a residue of the safety-critical banner under
which formal verification has been argued for, but in many (if not most) real-life situations, tem-
poral uncertainty is modeled probabilistically as a distribution over the durations of each task and
scheduler quality is measured accordingly, for example by the expected completion time or by its
maximum over all but a small fraction of the runs. In this chapter we develop and implement a
computational framework in order to evaluate and optimize the performance of such schedulers,
modeled by automata similar in structure to those used in [2] but whose durations are probabilis-
tic. Such automata are sufficiently rich to express stochastic variants of well-known scheduling
problems such as job-shop or task-graph.

The study of continuous-time stochastic processes has been going on for many years in other
branches of mathematics where simple computational questions like those we pose are not typi-
cally asked, as well as in closer domains such as probabilistic verification and performance evalu-
ation [51, 45]. A well-studied class of such processes are continuous-time Markov chains (CTMC)
where durations are distributed exponentially. Such distributions are memoryless in the sense that
time spent waiting for a task to terminate does not influence the distribution on the remaining time.
As a result they are easy to compute with and problems such as model-checking against qualita-
tive [5] and quantitative [18] temporal properties or optimal controller synthesis for finite-horizon
problems [2] are well understood. This forgetfulness assumption may be realistic and useful for
modeling request arrivals in queuing models, but seems inappropriate for modeling the durations
of several instances of the same computational task.

In this work we assume task durations to be uniform over a bounded interval, which is a
natural “stochastization” of the set-theoretic temporal uncertainty of timed automata. Handling
such systems we find ourselves in the realm of the so-called generalized semi-Markov processes
(GSMP), a class of continuous-time stochastic processes [91, 93, 56, 118]. Similar computational
studies of GSMPs include [7, 35], [189, 55] and [145]. The former are concerned with verifying
temporal properties for some classes of GSMPs and develop techniques to determine whether the
probability of a property-violating behavior is zero. The work of [189, 55] is concerned with
stochastic Petri nets for which a computational framework is developed for propagating densities
in the marking graph. This work, as well as [145] on duration probabilistic automata, use densities
on clocks which are auxiliary state variables. At each reachable state and zone in the clock space,
the distribution over clock values is maintained and used to compute the distribution after the next
transition. In contrast, the approach presented in the this chapter works directly on the space of
the duration random variables and does not use clocks explicitly. Similar ideas were developed in
[115] to compute the probability of test cases in timed systems.

The rest of the chapter is organized as follows. Section 4.2 defines single and parallel pro-
cesses, their behaviors (timed and qualitative) and presents a useful coordinate transformation

34 4.1. SCHEDULING UNDER STOCHASTIC UNCERTAINTY

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

between durations and time stamps. Section 4.3 shows how to derive the timing constraints associ-
ated with a qualitative behavior when processes execute independently without resource conflicts,
and how to compute the volumes of the polytopes they define. Section 4.4 extends the frame-
work to the more interesting case of resource conflicts which are resolved by dynamic scheduling
strategies. Finally we present very preliminary experimental results and discuss future directions.

4.2 Preliminaries

We consider a composition S = P 1|| · · · ||Pn of n sequential stochastic processes, each consisting
of a sequence of steps. Each step has a probabilistic duration and cannot start before its predecessor
terminates. We consider two execution frameworks:

1. Independent execution: all processes start simultaneously and each process starts a step as
soon as its preceding step has terminated, regardless of the state of other processes;

2. Coordinated execution: the initiation of a step is controlled by a scheduler which may hold
a step of one process in a waiting state until the termination of a step of another process that
uses the same resource.

The second framework will allow us to compare schedulers but we start with the first because it is
simpler and does not require knowledge of timed automata. On this simpler model we will develop
the basic computational machinery that will allow us to compute the probabilities of different
qualitative behaviors, each corresponding to an equivalence class of timed behaviors associated
with a particular order in which steps of different processes terminate.

Definition 4.2.1 (Uniform Distribution). A uniform distribution inside an interval I = [a, b] is
characterized by a density ψ defined as

ψ(y) =

{
1/(b− a) if a ≤ y < b
0 otherwise

and in terms of distribution as

F (y) =

∫ y

0
ψ(τ)dτ =

0 if y < a
(y − a)/(b− a) if a ≤ y ≤ b
1 if b ≤ y

Definition 4.2.2 (Process). A sequential stochastic process is a pair P = (I,Ψ) where I =
{Ij}j∈K is a sequence of duration intervals and Ψ = {ψj}j∈K is a matching sequence of densities
with ψj being the uniform density over Ij = [aj , bj], indicating the duration of step j.

We consider finite processes with K = {1, . . . , k}. Probabilistically speaking, step durations
can be viewed as a finite sequence of independent uniform random variables {yj}j∈K that we
denote as vectors y = (y1, . . . , yk) ranging over a duration space

D = I1 × · · · × Ik ⊆ Rk

with density ψ(y1, . . . , yk) = ψ1(y1) · · ·ψk(yk). Each point y in the duration space induces a
unique behavior of the system written as a time-event sequence of the form

ξy = y1 e1 y2 e2 · · · yk ek. (4.1)

Time event sequences are alternations between time elapses represented by real numbers and dis-
crete events that take no time. In the case of a single process yj ∈ Ij is the duration of step

4.2. PRELIMINARIES 35

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

q1 q2
ek

qk
e1 e2 · · ·

Figure 4.1: An automaton view of a process.

j and ej is the event of terminating that step. The timed language1 associated with the process
consists of all the timed behaviors it may generate, namely L = {ξy : y ∈ D}. The untimed
language associated with the process is L, obtained by projecting away durations and retaining
events and their order. In the case of a single process L is simply the singleton language {w}
where w = e1 e2 · · · ek.

Mechanically speaking the process behaviors can be viewed as generated by the automaton of
Fig. 4.1 in which being at state qj corresponds to executing step j. Each run of the automaton is
associated with a point y in the duration space. Upon entering qj an auxiliary clock variable x is
reset to zero and the termination transition labeled by ej is taken exactly when x = yj .

Suppose we want to characterize the probability of a certain subset of L. For example those
behaviors in which for every j the actual duration of step j is in some sub-interval I ′j = [a′j , b

′
j] ⊆

Ij . The total probability of these behaviors is simply the volume of the rectangle I ′1 × · · · × I ′k
divided by the volume of the whole rectangleD. Probabilities of other subsets of the language can
be more interesting but harder to compute. For example, the probability that the whole process
terminates before some deadline r is simply the volume of the subset ofD satisfying y1+· · ·+yk <
r divided by the volume of D. Our technique is based on computing such volumes for a system of
several parallel processes as described in the sequel.

It turns out to be easier to compute volumes after a coordinate transformation from the space
of durations to the space of time stamps consisting of vectors t = (t1, . . . , tk) where tj is the
absolute occurrence time of event ej , defined as tj = y1 + y2 + · · ·+ yj . A behavior ξy can thus
be written also as a sequence of time-stamped events2

ξt = (e1, t1), (e2, t2), . . . , (ek, tk).

Assuming that all durations admit a positive lower bound aj > 0, all time stamps satisfy prece-
dence constraints of the form tj < tj+1.

Converting y to t and vice versa is done by the linear transformations t = Ty and y = T ′t
where T and T ′ are matrices of the form

T =

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 T ′ =

1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

These matrices are lower triangular (the value of tj cannot depend on a duration yj′ with j′ > j)
and their diagonal entries are equal to 1. The determinant of a triangular matrix is equal to the
product of the diagonal entries which is 1 and hence the transformations are volume preserving.
This means that the volume of the duration spaceD is equal to the volume of the time-stamp space
C defined by the constraints

ϕC :
∧
j∈K

aj ≤ tj − tj−1 ≤ bj

1In the computer science tradition the term language is often used to denote a set of sequences or other objects that
define dynamic behaviors.

2These are the timed traces used originally in [6] to give semantics to timed automata. More about the relation
between semantic models of timed behaviors can be found in [13].

36 4.2. PRELIMINARIES

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

and computing the volume of any subset C ′ ⊆ C amounts to computing the volume of its T ′

image D′ ⊆ D. Let us remark that the density of tj is the convolution of the densities ψ1, . . . , ψj
and its support is the Minkowski sum of I1, . . . , Ij .

The time-stamp space C and its subsets that we will encounter are defined as conjunctions
of inequalities of the form x ≺ c or x − x′ ≺ c where ≺∈ {<,≤,=,≥, >} and c is an integer
constant. They define polytopes which are called zones (or timed polyhedra). Zones are used
extensively in the analysis of timed automata [106, 73, 130]. They admit an efficient representa-
tion by difference-bound matrices (DBM) [78] and efficient algorithms based on shortest-path to
remove redundant constraints [67].

Definition 4.2.3 (Process System). A process system consists of n processes

S = P 1|| · · · ||Pn = {(Ii,Ψi)}ni=1

We use notations P i
j to refer to step j of process i and I ij = [aij , b

i
j] and ψi

j for the respective
intervals and densities. To ease notation we assume all processes to have the same number k of
steps. The event alphabet of the system is

Σ = {e11 , e12 , . . . , enk−1, e
n
k}

consisting of all the termination events of the steps of the various processes.
A behavior of the system is induced by a point in the global duration space

y = (y11 , y
1
2 , . . . , y

n
k−1, y

n
k) ∈ D =

n∏
i=1

k∏
j=1

I ij ⊂ Rnk,

which can be transformed into a point t in the time-stamp space

t = (t11 , t
1
2 , . . . , t

n
k−1, t

n
k) ∈ C = TD

where T is the appropriate block diagonal matrix.
When all processes start simultaneously, the time stamps are taken from the same global time

reference and one can view a global run as merging local runs and sorting the events according to
their time stamps, as illustrated in Fig. 4.2. The set of all such global behaviors is denoted by

L = L1|| · · · ||Ln.

All timed behaviors that admit the same order of events are said to exhibit the same qualita-
tive behavior. This can be formalized as an operation among the untimed local languages. Let
Li = {ei1 ei2 · · · eik} be the untimed language associated with process P i: it consists of the unique
qualitative behavior which satisfies the precedence constraints of P i. The potential qualitative
behaviors of S constitute the language

L = L1|| · · · ||Ln

which is the shuffle of these languages, that is, the set of sequences consisting of one occurrence of
each event in Σ and respecting the local precedence constraints for each process. Mathematically
speaking, a qualitative behavior corresponds to a linear order3 which is consistent with the partial
order defined by the union of the precedence relations of all the tasks. Such an order is also known
as interleaving in the theory of concurrency (readers can refer to [77] or [86]).

3Since we are dealing with volumes, our neglect of the possibility of events occurring at exactly the same time and
not paying too much attention to the distinction between strict and non strict inequalities is justified.

4.2. PRELIMINARIES 37

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

P
e11 e21 e22 e31 e32 e12 e13 e23 e33

e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

e11

Figure 4.2: A global behaviorw = e11 e
2
1 e

2
2 e

3
1 e

2
3 e

1
2 e

1
3 e

3
2 e

3
3 obtained by merging local behaviors.

The dashed line indicate the minimal set of additional inter-process constraints that characterize
w.

e11

e21

e12

e23

e13

e22

q21 q22
q23

e21 e22 e23

q11

q12

q13

e11

e12

e13

Figure 4.3: The product automaton for a process system with n = 2, k = 3. The thick arrows
indicate the path corresponding to the qualitative behavior w = e11 e

2
1 e

2
2 e

3
1 e

2
3 e

1
2 e

1
3 e

3
2 e

3
3 . The

race between e13 and e22 in state (q13 , q
2
2) is indicated by the dashed arrows.

We use the term qualitative behavior also for any prefix of a sequence in L. Such a prefix cor-
responds naturally to an incomplete run where not all processes have finished all their steps. From
the standpoint of automata, qualitative behaviors correspond to paths in the transition graph of the
global automaton associated with the system which is the (Cartesian) product A = A1|| · · · ||An

of the automata associated with the individual processes as illustrated in Fig. 4.3. Unfortunately,
these extremely important objects are not easy to draw for non-trivial dimensions. Incomplete
behaviors correspond to paths not reaching the final state.

In a global state of the form (q1j1 , . . . , q
n
jn

) each process i is busy executing its step ji and
there is a race between the termination transitions. The transition eiji that will win will be the first
to satisfy the condition xi = yiji . Since xi has been reset to zero at tiji−1 this condition will be
fulfilled at time tiji−1 + yiji = tiji . The outcomes of all these races are completely determined by
the value of y, and this determines the qualitative behavior which is exhibited. Had there been no

38 4.2. PRELIMINARIES

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

timing constraints on task durations, that is, I ij = [0,∞), the system would be completely asyn-
chronous and all interleavings would, in principle, be possible. When durations are bounded, some
qualitative behaviors may become strictly impossible due to the arithmetics of timing constraints
while others will occur at low probability. In the sequel we develop methods for computing these
probabilities.

4.3 Computing Volumes

The computation of the probability of a qualitative behavior w is performed in two steps. First we
associate with it a zone Zw ⊆ C consisting of all instances of t that yield this behavior. Then we
integrate over this zone to find its volume.

Let ϕC be the constraint describing the whole time-stamp space:

ϕC :
∧
i∈N

∧
j∈K

aij ≤ tij − tij−1 ≤ bij

with ti0 = 0 for every i. The zone Zw for the qualitative behavior of Fig. 4.2 can be characterized
by adding constraints that specify the particular order of events in w:

ϕw : ϕC ∧ t11 < t21 < t22 < t31 < t23 < t12 < t13 < t32 < t33 .

Some of these constraints appear already in ϕC and some are implied via transitivity by other
constraints. After eliminating these redundant constraints one obtains the following description:

ϕw : ϕC ∧ (t11 < t21) ∧ (t22 < t31) ∧ (t32 < t12) ∧ (t13 < t23) ∧ (t23 < t33).

As illustrated in Fig. 4.2, the constraints that remain in ϕw are the inter-process constraints that are
sufficient to characterize w. These constraints can be computed incrementally as we move along
the prefix of a qualitative behavior. Let us follow the first two steps. Initially we have the empty
word whose associated zone is C and hence its probability is 1. After the occurrence of the first
event e11 we know that P 1

1 terminated before P 2
1 and P 3

1 . This leads to the constraints:

ϕe11 : ϕC ∧ (t11 < t21) ∧ (t11 < t31) (4.2)

After this first event we have a competition between e21 , e31 and e12 . The winner of the race is the
next event ofw, e21 and hence we add the constrains t21 < t31 and t21 < t12 and remove the constraint
t11 < t31 which becomes redundant, yielding:

ϕe11e21 : ϕC ∧ (t11 < t21) ∧ (t21 < t31) ∧ (t21 < t12).

In general whenever event eij occurs, we add a constraint stating that tij is smaller than the time
stamps associated with all the pending events in the other processes. The incremental process is
illustrated in Fig. 4.4.

This procedure is probabilistically correct in the following sense. For every w ∈ L the prob-
ability of all behaviors having w as a prefix is the relative volume of the corresponding zone
Zw, namely, p(w) = |Zw|/|C|. This holds trivially for the empty behavior when there are no
constraints. For the inductive step observe that any qualitative behavior of the form w e which
extends w has to satisfy ϕw due to causality as well as additional constraints that guarantee that
e is indeed the next event to win the race. The constraints associated with all the extension of w
form a partition of Zw and all the probabilistic mass p(w) is split among them, satisfying∑

e

p(w e) = p(w).

4.3. COMPUTING VOLUMES 39

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

e11 e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

e11 e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

Figure 4.4: Incremental constraint construction: constraints for e11 and then for e11 e
2
1 . The con-

straint t11 < t31 becomes redundant after the second event.

In [145] a similar incremental approach that goes from a path/prefix to its successors has been
developed using the clock auxiliary variables. The use of clocks required the concept of den-
sity transformers to account for the distribution of clock values before and after transitions (see
also [35, 7, 189, 55]). These are not needed in the clock-free approach presented here. Those
acquainted with the verification of timed automata using a forward computation of the simula-
tion/reachability graph [73, 130] may notice that for every w the zone Zw in the time-stamp space
is empty exactly when its associated clock space zone in the reachability graph becomes empty.
This suggests an alternative clock-free analysis algorithm for timed automata which is immedi-
ately applicable to acyclic systems but will require more work to be adapted to the cyclic case.

Having labeled qualitative behaviors by constraints we need to compute the volume of the
zones. We illustrate this procedure on a concrete example with n = 3 and k = 1, hence D = C =
I11 × I21 × I31 , with concrete values

[a11 , b
1
1] = [2, 5], [a21 , b

2
1] = [3, 4], and [a31 , b

3
1] = [4, 7].

The constraints associated with all qualitative behaviors where process P 1 wins the first race are

ϕe11 : (2 ≤ t11 ≤ 5) ∧ (3 ≤ t21 ≤ 4) ∧ (4 ≤ t31 ≤ 7) ∧ (t11 < t21) ∧ (t11 < t31).

We pick an integration order t31 ≺ t21 ≺ t11 , that is, the inside-out order of variable elimination,
and rewrite ϕe11 as

ϕe11 : (2 ≤ t11 ≤ 5) ∧ (max(3, t11) ≤ t21 ≤ 4) ∧ (max(4, t11) ≤ t31 ≤ 7)

Then we split I11 into maximal segments where both max(3, t11) and max(4, t11) are uniform. In
our example [2, 5] splits into [2, 3], [3, 4] and [4, 5] and the volume of the set can be written as[∫ 3

2

∫ 4

3

∫ 7

4
+

∫ 4

3

∫ 4

t11

∫ 7

4
+

∫ 5

4

∫ 4

t11

∫ 7

t11

]
dt31dt

2
1dt

1
1 = 3 +

3

2
+ 0 =

9

2

which after dividing by |C| = 9 gives a probability of 1/2 for e11 winning the first race. Figure 4.5
illustrates two possible splits of a 2-dimensional zone into integration domains. The number of
case splits and the forms of the integration domains may vary a lot depending on the chosen order.

40 4.3. COMPUTING VOLUMES

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

x2

x1

b2

b1

a2

a1

A

C

x2

x1

b2

b1

a2

a1

D

B

E

1 ≺ 2 2 ≺ 1

Figure 4.5: Zone volume computation by splitting into integration domains in two different inte-
gration orders which yield 3 and 2 domains, respectively.

Theorem 1 (Probability of Qualitative Behaviors). Given a system of stochastic sequential pro-
cesses as in Def. 5.3.1 the probability of any of its qualitative behaviors is computable.

The global termination time (makespan) of a behavior is Θ = max{t1k , . . . , tnk}. For all be-
haviors that are qualitatively equivalent the maximum is attained by the same variable, namely tik
for any behavior whose last event is eik. To compute the expected termination time we integrate tik
over Zw and sum up over all w:

E(Θ) =
1

|C|

n∑
i=1

∑
w=w′eik

∫
Zw

tik.

Before moving to the coordinated execution framework let us mention some useful observa-
tions. So far we have treated qualitative behaviors in their finest granularity, taking note of the
ordering between any pair of events. In many situations we are interested in sets of qualitative
behaviors and their probability can often be computed more efficiently than summing up the prob-
abilities of individual qualitative behaviors.

Suppose we want to characterize the set of all qualitative behaviors that pass through a global
state q = (q1j1 , . . . , q

n
jn

). Let Li
j = {ei1 · · · eij−1} be the qualitative behavior of P i that leads to

qij . Then the set of qualitative behaviors that lead to q is

L(q) = L1
j1 || · · · ||L

n
jn .

The constraints that characterize L(q) may forget the specific interleaving, that is, the specific
order in which past events have occurred. The only constraints that are relevant are those that
guarantee that the entrance of each process into its respective local state preceded the exit of all
other processes from their respective states, that is,

ϕq : ϕC ∧
n∧
i=1

∧
i′ 6=i

tiji−1 < ti
′
ji′
.

Thus, to compute the expected termination time it suffices to partition the set of qualitative behav-
iors into n classes according to the identity of the last transition, letting Zi be the zone defined
by

ϕi : ϕC ∧
∧
i′ 6=i

ti
′
k < tik.

Then the expected termination time is

E(Θ) =
1

|C|

n∑
i=1

∫
Zi
tik. (4.3)

4.3. COMPUTING VOLUMES 41

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

A similar observation, made in the context of zone-based verification of timed automata, underlies
the fact that the union of zones reached by interleavings of the same set of events is convex [204,
143, 26].

4.4 Conflicts and Schedulers

Now we adapt the framework to the case where steps of different processes may be at conflict
due to requiring the same resource and hence cannot be executed simultaneously. Naturally, this
situation is more intuitively expressed using automata, states and runs. We explain the automaton-
based modeling very informally and delegate the formal definitions of DPA to Chapter 5 where
they are used for deriving a state-based optimal scheduler.

As a running example consider a system of two processes with three steps each, admitting
a resource conflict between their respective second steps P 1

2 and P 2
2 . Conflicts are modeled in

automata using forbidden states in the global automaton, state (q12 , q
2
2) in our example. To be

able to prevent the automaton from entering this state4 we refine the process model so that the
initiation of step P i

j does not occur automatically upon the termination of step P i
j−1. We thus

modify the process automaton shown in Fig. 4.3 by inserting a waiting state q̄ij between qij−1 and
qij . The automaton can leave this state only when it receives a start command sij from a scheduler
as illustrated in Fig. 4.6-(a).

As long as the scheduler is not completely specified the system is open or using another termi-
nology, admits both probabilistic and set-theoretic non-determinism. For example in state (q̄12 , q

2
1)

process P 1 may either start its second step (q̄12 , q
2
1) → (q12 , q

2
1) or wait until step P 2

1 terminates
and let P 2 take the resource first (q̄12 , q

2
1) → (q̄12 , q̄

2
2) → (q̄12 , q

2
2). A scheduler resolves this

type of non-determinism by telling each process in a waiting state whether to take the resource
and proceed to execution or wait until the resource is taken and released by another process.5

Once such a scheduler is defined, the set-theoretic non-determinism is eliminated and the only
non-determinism that remains is the one associated with task durations and thus it becomes pos-
sible to compute probabilities. To be more precise, probabilities can be computed also for non-
deterministic schedulers that make a probabilistic choice, but we do not consider them here.

A scheduler is thus a mechanism which may observe the state of the system and decide whether
to grant a resource to a process, possibly based on the level of progress of other processes. The
most passive scheduler grants the resource to the first process whose corresponding step becomes
enabled. Under such a FIFO scheduling policy it is the result of the race between e11 and e21 which
determines the resource granting decision. The automaton obtained by composing the system
with such a scheduler is shown in Figure 4.6-(b) where we have chosen to ignore the zero-measure
situation when both processes terminate exactly at the same time (alternatively this situation can
be handled by assigning an arbitrary priority when this is the case).

More active schedulers interfere with the execution order by imposing additional conditions
upon the start transitions. Suppose that the duration of step P 1

3 is much longer than that of P 2
3

hence it would be reasonable to give P 1
2 a priority over P 2

2 even if the latter becomes enabled
earlier. This priority can have different degrees of rigidity. A strict priority scheduler allows
s22 only in global states where P 1

2 has terminated, a condition that we write as A1 > q12 . The
automaton obtained by composing the system with such a scheduler is shown in Fig. 4.7. Note
that strict priority schedulers make the automaton always “bypass” a conflict state from the same
side.

4We consider schedulers that by construction cannot make the system enter a forbidden state.
5Note that we restrict ourselves to non-lazy schedulers: if they do not issue an sij command at some point, they will

not issue it later unless another process has utilized the resource. This class has been shown [2] to contain the optimal
schedulers for deterministic problems and its extension to our setting is discussed in Chapter 5.

42 4.4. CONFLICTS AND SCHEDULERS

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

e11

s12

e12

e13

s22
q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12 q
2
2

x11 := 0

e22 e21e21x21 := 0

s22

s22

s12 s12

(a)

e11

s12

e12

e13

q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12 q
2
2

Z12

Z12′

Z21

Z21′

e22s22 e21e21

x11 := 0

(b)

Figure 4.6: (a) Two parallel processes admitting a resource conflict and their product automaton.
The dashed arrows indicate start transitions which should be under the control of a scheduler
while the dotted arrows indicate post-conflict start transitions; (b) The automaton resulting from
composition with a FIFO scheduler and the 4 potential conflict resolution and resource utilization
scenarios.

4.4. CONFLICTS AND SCHEDULERS 43

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

e11

s12

e12

e13

e21e21 s22
q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12 q
2
2

e22

A1 > q12

Figure 4.7: (a) A scheduler that gives strict priority to P 1. This is realized by the condition
A1 > q12 which allows P 2

2 to start only after P 1
2 terminates.

Strict priority schedulers can be unnecessarily rigid for tasks with a significant variability in
durations as they do not adapt to the actual evolution of the schedule. As an example for such
adaptability consider the case where P 2

1 terminates very early so that we can start P 2
2 so that it

will surely terminate before P 1
2 becomes enabled and hence will not block it. Even if this is not

guaranteed with certainty, a scheduler might want to start P 2
2 if the expected delay incurred to P 1

is small. Technically, the knowledge of the relative timing of e21 at decision time is encoded by the
value of clock x1 reset upon starting P 1

1 . The larger is the value of x1, the more we are likely to
block P 1 and for a longer period. Hence the condition for issuing s22 by such a state-dependent
scheduler will be of the form (A1 > q12) ∨ (A1 < q̄12 ∧ x1 < d) for some constant d.

The labeling of states and qualitative behaviors with constraints in order to compute volumes,
probabilities and expected termination times can be extended to handle all these types of sched-
ulers. As an illustration consider the FIFO scheduler of Fig. 4.6-(b) which admits 4 classes of
qualitative behaviors (scenarios) that correspond to the outcomes of the conflict between P 1 and
P 2 on the shared resource. These scenarios are characterized by the identity of the winner (for
this scheduler it depends on the relation between t11 and t21) and by whether the loser termination
time is delayed (depending on whether the winner releases the resource before the loser becomes
enabled). These cases are summarized in Table 4.1 and depicted in Fig. 4.6-(b).

The transformation T from the duration space to the time-stamp space is different from the
independent execution framework. It can nevertheless be shown to be volume preserving along
the following lines. First, one can show that after adding inter-process precedence constraints
causality is preserved and there is always a rearrangement of the indices such that the transforma-
tion matrix remains lower triangular. Secondly the notion of volume preservation can be easily
generalized from linear to piecewise-linear transformations.

The above analysis can be generalized to m distinct resources and to multi-party conflicts on
each of them. For each resource l one can compute the set Ul of all the utilization scenarios for
this resource and their respective zones. A scenario corresponds to a particular order of resource

44 4.4. CONFLICTS AND SCHEDULERS

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

winner loser delayed loser not delayed

P 1

Z12′

t11 < t21
t11 + a12 < t12 < t11 + b12

t21 < t12
t12 + a22 < t22 < t12 + b22

Z12

t11 < t21
t11 + a12 < t12 < t11 + b12

t12 < t21
t21 + a22 < t22 < t21 + b22

P 2

Z21′

t21 < t12
t21 + a22 < t22 < t21 + b22

t22 < t11
t21 + a22 < t22 < t21 + b22

Z21

t21 < t12
t21 + a22 < t22 < t21 + b22

t11 < t22
t21 + a22 < t22 < t21 + b22

Table 4.1: The zones corresponding to the four possible outcomes of the resource conflict of
Fig. 4.7-(b). Constraints on t13 and t23 as well as the bounding constraints on t11 and t21 are omitted.

utilization by conflicting steps and to the waiting delays incurred to these steps. Then the classes of
potential qualitative behaviors of interest are the combinations of those, that is, U = U1×· · ·×Um
with zones defined by intersection. While this sounds like a recipe for a severe combinatorial
explosion, note that many scenarios will lead to empty zones, either for logical reasons (inter-
process ordering of conflicting steps is incompatible with local precedence constraints) or due to
the arithmetics of timing constraints (two conflicting tasks, one at the beginning and one at the
end of their respective processes, are likely to be executed in one order). Naturally, for priority
schedulers there will be fewer scenarios to analyze.

4.5 Implementation and Experimental Results

We have implemented a prototype tool which computes expected termination times as described
in this chapter. As input it takes a system description consisting of processes, steps, duration inter-
vals and conflicts as well as a definition of a scheduling policy. Then for every utilization scenario
it derives the corresponding zone, using the DBM library of IF [49] to normalize constraints and
detect empty zones. Then it performs integration over the non-empty zones to compute probabil-
ity and expected termination time. The integration uses the GNU Multiple Precision Arithmetic
Library (GMP) to avoid rounding errors. Below we give more technical details.

System Description

The prototype tool takes as input a textual description of the system, specified by the following
grammar:

system-decl ::= { process-decl }∗ { conflict-decl }∗
process-decl ::= process-id { step-decl }
step-decl ::= [l , u]
conflict-decl ::= shared := type { step-id , { step-id }∗ }
type ::= STRICT

| FIFO
step-id ::= process-id.step-num

Conflicts are defined through shared variables by specifying all steps P i
j that use the same

resource. An example of such description is depicted in Listing-4.1 where processes P 1 and P 2

execute their respective second step on the same resource.

4.5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 45

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

P1 { [2 , 8] [3 , 7] [4 , 8] }
P2 { [4 , 1 0] [4 , 1 2] [2 , 5] }

s h a r e d := STRICT { P1 . s2 , P2 . s2 }

Listing 4.1: Example of description

Constraints Generation

Constraints are generated in two steps. First we generate those implied by independent steps, those
where starting and ending do not influence steps from other processes. Constraints for conflicting
steps are handled in a separated step and imply cases splitting. Depending on scheduling policy,
the termination of steps before the conflict influences execution order on the shared resource and
also the start time of successors steps.

As an example consider 2 process P 1 and P 2 having 3 steps and executing their respective
second step P 1

2 and P 2
2 on the same resource. For a FIFO policy there are 4 cases as shown in

Table-4.1 and for a strict policy with P 1 > P 2 there are 2 cases:

• t12 < t21 implies P 2
2 starts after P 1

2 (real conflict)

• t12 > t21 implies P 2
2 starts after P 2

1 (false conflict)

Depending on the number of conflicts several cases needs to be computed. The number of
cases for a single FIFO scheduler implying s steps is bounded by (2(s−1) · s!) . This bound for
a STRICT scheduler implying s steps is 2s. The total number of cases for n processes with i
resources sharing si steps in FIFO and j resources sharing sj steps in strict policy is then bounded
by:

n ·
∏
i

(2(si−1) · si!) ·
∏
j

2(sj)

Note that during generation, constraints are also encoded as zones, enabling elimination of unfea-
sible cases, by emptiness check.

Finally for computing expected time we need to know the variable corresponding to the last
step responsible for the global execution time. This splits all previous cases according to the
identity of the last process, by adding constraints ∀i, tin < tlastn . Expected time is then computed
according to variable tlastn in each case.

/ / o r d e r : / / o r d e r : / / o r d e r : / / o r d e r :
/ / [1 , 4 , 2 , 5 , 3 , 6] / / [1 , 4 , 2 , 5 , 6 , 3] / / [1 , 4 , 2 , 5 , 3 , 6] / / [1 , 4 , 2 , 5 , 6 , 3]
c a s e 1 c a s e 2 c a s e 3 c a s e 4
{ { { {
Dt1 := [2 , 8] Dt1 := [2 , 8] Dt1 := [2 , 8] Dt1 := [2 , 8]
2<t1<8 2<t1<8 2<t1<8 2<t1<8
Dt4 := [4 , 1 0] Dt4 := [4 , 1 0] Dt4 := [4 , 1 0] Dt4 := [4 , 1 0]
4<t4<10 4<t4<10 4<t4<10 4<t4<10
Dt2 := [3 , 7] Dt2 := [3 , 7] Dt2 := [3 , 7] Dt2 := [3 , 7]
3<t2−t1<7 3<t2−t1<7 3<t2−t1<7 3<t2−t1<7
t1<t 2 t1<t 2 t1<t 2 t1<t 2
/ / F a l s e c o n f l i c t / / F a l s e c o n f l i c t / / Rea l c o n f l i c t / / Rea l c o n f l i c t
Dt5 := [4 , 1 2] Dt5 : = [4 , 1 2] Dt5 := [4 , 1 2] Dt5 := [4 , 1 2]
4<t5−t4<12 4<t5−t4<12 4<t5−t2<12 4<t5−t2<12
t4<t 5 t4<t 5 t2<t 5 t2<t 5
t2<t 4 t2<t 4 t4<t 2 t4<t 2
t4<t 5 t4<t 5 t4<t 5 t4<t 5
Dt3 := [4 , 8] Dt3 := [4 , 8] Dt3 := [4 , 8] Dt3 := [4 , 8]
4<t3−t2<8 4<t3−t2<8 4<t3−t2<8 4<t3−t2<8
t2<t 3 t2<t 3 t2<t 3 t2<t 3
Dt6 : = [2 , 5] Dt6 := [2 , 5] Dt6 := [2 , 5] Dt6 := [2 , 5]
2<t6−t5<5 2<t6−t5<5 2<t6−t5<5 2<t6−t5<5
t5<t 6 t5<t 6 t5<t 6 t5<t 6
t3<t 6 t6<t 3 t3<t 6 t6<t 3
expT := t 6 expT := t 3 expT := t 6 expT := t 3
}

Listing 4.2: Case 1

}

Listing 4.3: Case 2

}

Listing 4.4: Case 3

}

Listing 4.5: Case 4

46 4.5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

For the example depicted in Listing-4.1, the constraints are split into 4 cases corresponding
to the several possible orders of execution, shown in Listing 4.2, 4.3, 4.4, 4.5. Note that, here,
each step of the processes are associated with a variable ti defined in a lexicographic order i.e
process P 1{t1, t2, t3} and process P 2{t4, t5, t6}. Variable Dti defines the domain of each steps
and variable expT correspond to the last step leading to the global execution time, so expected
time will be computed according to variable expT .

Computation

For each case, resulting from constraint generation we compute the volume of the corresponding
polyhedron defined as a zone. This volume is divided by the domain of each variable to get the
probability of each case. The associated expected time value is computed according to the variable
which defines the execution of the last step in the global behavior. Results for the example of
Listing-4.1 is shown in Table-4.2.

Case Probability Expected time
1 0.143017 20.2595
2 0.000501644 15.654
3 0.844586 21.9855
4 0.0118956 17.9216

global 1 21.6867

Table 4.2: Expected time for example of Listing-4.1

At implementation, the symbolic volume SV is represented as a list of pairs 〈Zi, Ei〉 where Zi
is a zone and Ei is a polynomial on t variables. Recall ϕC is the constraint describing the whole
time-stamp space, Zi ⊆ Ci with ϕCi is the constraint of each case.

Initially SV = 〈Zi, 1〉 and then, iteratively, we eliminate all variables t , that is we compute
the integral of Ei with respect to t. At each iteration, SV grows depending on the number of splits
implied by the integration calculation. We explain in the following how this computation works.

Variable Elimination

The variable elimination computation is shown in Algorithm-2. The function isDegenerate()
checks if the zone is not empty and if all bounds l ≤ xi − xj ≤ u are thick that is l 6= u.
The function compact() merges nodes with the same zone to avoid splitting explosion.

In general integration takes place in Rnk and its complexity depends on the following factors.
First, the number of scenarios (orders of resource utilizations and their combinations) determines
the number of zones whose volume we might need to compute, in case they are not detected
beforehand to be empty. Then the order of variables elimination influences the number of splits
during integration as shown in Fig-4.5. The naive order is to eliminate variable in a lexicographic
order (Order 1) from t1 to tn but this gives bad results. To counter that, different heuristics have
been implemented. One of them consists in computing the minimal constraints system [129] for
each zone and then the least constrained variable is eliminated (Order 2). Topological ordering
is another one and consists in eliminating variables according to the reverse order implied by the
global execution. For the case depicted in Listing-4.2 the order of elimination using this heuristic
is:

t6 ≺ t3 ≺ t5 ≺ t2 ≺ t4 ≺ t1
In a similar heuristic, for each zone and each variable t we compute It, the projection of the zone
on t. Then we define a partial order relation between these intervals such that It < It′ if the upper

4.5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 47

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

Algorithm 2 Variable elimination
function ELIMINATE(X,L)
//L is a list of nodes, X is a the variable to eliminate //Here, elimination means computation of
the integral with respect to X

Res← ∅ . The resulting node list
for all N = 〈Z,E〉 ∈ L do . Z and E are zone and polynomial of node N

for i = 0→ NZ do . NZ is the dimension of Z
if i 6= x then

for j = 0→ NZ do
Zc ← new ZONE . Zc encode bounds constraints

// Split and enforce these bounds as maximal, resp minimal
for k = 0→ NZ do

if k 6= x ∧ k 6= i then
Zc ∧ {Xk −Xi ≤ Z[k][x]− Z[i][x]}

end if
end for
for k = 0→ NZ do

if k 6= x ∧ k 6= j then
Zc ∧ {Xj −Xk ≤ Z[x][k]− Z[x][j]}

end if
end for

// Intersect bounds constraints with current zone
Zsplit ← Z ∧ Zc
if ¬ isDegenerate(Zsplit) then . check if current zone is not degenerated

// Create a new node with Zsplit and integrate current polynomial E

Res← Res ∪〈Zsplit,
∫ Xj−Z[x][j]

Xi−Z[i][x] E dX〉
end if

end for
end if

end for
end for
compact(Res)

end function

bound of It is smaller than the lower bound of It′ . Then we construct a compatible linear order
and integrate backwards (Order 3).

The chosen order determines the number of case splits but also the form of the integration
domains and the polynomials obtained during integration. We experienced orders of integration
that generate more splits but take less overall computation time. However, experimental result
show that lexicographic order behaves the worst. None of the other heuristics is universally better
than the other. For the moment we have no systematic explanation for these variations.

We show in Tables 4.3 and 4.4 the difference on the number of splits during integration accord-
ing to the chosen elimination ordering. Order 1,2 and 3 stand for the ordering heuristics presented
above. Each row corresponds to a non-empty case. Column Splits indicates the number of splits
that occurred during integration (i.e the maximum size of the list SV) and column Int indicates
the number of integrations that have been performed (at least as many as the number of variables
incremented by the number of splits). Column Proba and ExpectedTime give the probability and
expected time for each case. The row Time shows the execution time for computing all cases. We
see that the number of splits is extremely sensitive to the elimination order.

48 4.5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

P1 { [3 4 , 4 1] [3 6 , 4 2] [3 5 , 4 2] [3 8 , 4 8] [3 2 , 4 0] [3 5 , 4 4] }
P2 { [4 0 , 4 9] [3 4 , 3 7] [3 8 , 4 6] [3 1 , 3 6] [4 0 , 4 4] [3 5 , 4 1] }

s h a r e d := FIFO { P1 . s2 , P2 . s4 }
s h a r e d := FIFO { P1 . s4 , P2 . s3 }

Order 1 Order2 Order3
Case Splits Int Splits Int Splits Int Proba ExpectedTime

1 11125 22408 70 175 80 190 0.76160 242.13086
2 7215 15948 76 190 82 192 0.15962 237.73817
3 4730 9672 463 811 442 788 0.07084 238.54240
4 4050 8687 475 837 434 774 0.00794 233.20148

Global 27120 56715 1084 2013 1038 1944 1 241.105
Time 2m5.003s 0m12.381s 0m10.196s

Table 4.3: Example 1

P1 { [3 6 , 4 0] [3 3 , 4 1] [3 9 , 4 2] [3 7 , 4 5] [4 0 , 4 5] }
P2 { [3 8 , 4 6] [3 7 , 4 2] [3 1 , 3 5] [3 1 , 4 1] [3 7 , 4 6] }
P3 { [3 1 , 4 1] [3 2 , 3 9] [4 0 , 4 5] [4 0 , 4 3] [3 1 , 3 5] }

s h a r e d := FIFO{P1 . s4 , P2 . s4 }
s h a r e d := FIFO{P1 . s2 , P3 . s3 }
s h a r e d := FIFO{P2 . s2 , P3 . s2 }

Order 1 Order2 Order3
Case Splits Int Splits Int Splits Int Proba ExpectedTime

1 7579 16550 1214 2298 362 731 0.00260 234.50898
2 8144 18244 1450 2653 378 760 0.00436 233.28736
3 3944 7203 42 108 31 82 0.75366 234.54334
4 726 1788 28 76 21 59 0.00000 227.77534
5 6476 12343 115 249 128 279 0.18376 231.99327
6 5236 11386 106 233 97 220 0.00633 228.96075
7 19881 33919 1605 2978 355 732 0.02428 233.50729
8 timeout 10min 1716 3133 369 756 0.02501 232.10406

Global 51986 43785 6276 5135 1741 1632 1 233.948
Time timeout 10min 1m34.070s 0m31.207s

Table 4.4: Example 2

Experiments

We started conducting some more systematic experiments to assess the feasibility bounds of this
approach. For each value of n from 1 to 5 and for each value of k from 1 to 40, we choose a number
of conflicts (between 0 and 3) and a number of participants in each conflict (2 or 3). Each choice in
this space defines a problem type for which we draw 10 concrete problems by randomly choosing
the identity of the conflicting steps as well as step duration intervals of the form [c− d, c+ d] with
c drawn uniformly in [40, 50] and d in [0, c/20]. Then we try to compute expected termination
times for a FIFO scheduler with a timeout of 3 minutes per problem on a computer with a Pentium
processor at 2.0GHz and 2 GB of memory.

The experiments with n = 1 compute the volume of one zone, the time-stamp space. Applying

4.5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 49

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

the reverse order integration we can compute up to dimension 63 in 0.4 seconds (currently this is
a limitation of our DBM library). This performance is due to the fact that the elimination ordering
is optimal in the sense that no split is created during computation and, in that case, the number of
integration steps is minimal and equals the number of variables.

As already mentioned we tested several orders of integration that generate more or less splits.
Since there is a lot of exploration and fine tuning ahead, this is definitely not the last word on the
topic. To give an idea, we mention some problem types for which we managed to compute for
all the test cases. These include (n, k) = (2, 12) with 2 conflicts, (3, 6) and (4, 6) with 3 binary
conflicts or 2 ternary conflicts and (5, 4) with 2 binary conflicts. The results are listed in Table-4.5.
Column < 3 min indicates the percentage of examples which have been computed in less than 3
minutes.

4.6 Conclusions

We have presented a computational technique to evaluate schedulers in a non-Markovian set-
ting. To the best of our knowledge no similar computational results have been reported. The
analysis was based on splitting the space of valuations of the random variables and computing
volumes. This technique relies heavily on computing volumes and integrals over zones. Finding
good heuristics for this activity is a challenging research problem. We mention some future work
for a longer term:

1. To analyze larger systems one needs to develop algorithms that do not explore all classes
of qualitative behaviors but restrict the exploration to a high-volume small subset of those,
whenever such exists.

2. Another major challenge is to extend this framework to cyclic systems, define the appropri-
ate performance measures and study their steady-state behavior.

3. Finally, it would be interesting to compare the analytic method developed here with statis-
tical approaches based on random simulation. It is intriguing to see how many simulation
runs are needed to approximate our results with a good confidence.

50 4.6. CONCLUSIONS

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

Process Steps/Process Conflict Steps/Conflict Computation Time < 3 min
min mean max

1 63 0 0 0.404 0.408 0.412 100.00%

2 10 0 0 1.992 12.372 18.301 100.00%
2 15 0 0 110.471 153.084 178.868 100.00%
2 6 2 2 0.004 0.434 2.748 100.00%
2 8 1 2 0.008 10.848 51.459 100.00%
2 10 1 2 0.012 7.611 17.313 100.00%
2 10 2 2 0.012 16.308 63.164 100.00%
2 12 1 2 0.080 45.890 110.343 100.00%

3 2 0 0 0.004 0.011 0.024 100.00%
3 3 0 0 0.008 0.117 0.332 100.00%
3 4 0 0 0.004 1.188 3.912 100.00%
3 5 0 0 0.032 16.959 59.336 100.00%
3 6 0 0 1.400 51.745 152.454 90.00%
3 7 0 0 2.004 35.927 183.407 70.00%
3 3 1 2 0.004 0.005 0.008 100.00%
3 3 1 3 0.004 0.008 0.016 100.00%
3 5 1 2 0.008 3.431 15.697 100.00%
3 5 1 3 0.008 0.077 0.524 100.00%
3 6 1 2 0.008 15.868 89.006 100.00%
3 6 2 2 0.012 1.051 5.936 70.00%
3 6 2 3 5.976 5.976 5.976 90.00%
3 6 3 2 0.012 7.562 41.059 90.00%
3 8 1 2 0.040 0.573 1.564 30.00%
3 8 2 2 0.00%
3 8 2 3 3.784 37.986 62.284 50.00%

4 4 0 0 1.488 27.823 116.159 100.00%
4 5 0 0 0.148 58.457 128.340 70.00%
4 3 1 2 0.004 0.006 0.008 100.00%
4 3 2 2 0.056 0.228 0.444 100.00%
4 5 1 2 0.016 53.420 205.249 80.00%
4 5 2 2 0.036 0.040 0.044 40.00%
4 5 2 3 0.044 26.483 169.223 100.00%
4 6 1 2 0.088 60.349 181.943 70.00%
4 6 2 2 0.024 16.078 96.242 60.00%
4 6 2 3 0.104 4.558 17.477 80.00%
4 6 3 2 0.368 29.363 148.921 60.00%

5 2 0 0 0.012 0.211 0.824 100.00%
5 3 0 0 0.008 7.952 46.395 100.00%
5 4 0 0 0.012 38.167 183.523 100.00%
5 5 0 0 1.344 76.169 151.653 40.00%
5 3 2 2 0.032 0.416 1.136 100.00%
5 4 1 2 0.012 22.474 132.820 80.00%
5 4 2 2 0.016 15.618 99.534 80.00%
5 4 3 2 0.016 18.035 157.926 90.00%

Table 4.5: Experiments results

4.6. CONCLUSIONS 51

CHAPTER 4. DURATION PROBABILISTIC AUTOMATA: ANALYSIS

52 4.6. CONCLUSIONS

Chapter 5

Duration Probabilistic Automata:
Synthesis

We now move to the synthesis of optimal schedulers that minimize the expected termination time.
We develop techniques for value/policy iteration (dynamic programming) that compute a value
function and optimal action for any point in the extended state space (including clock values).
To this end we define a stochastic time-to-go function which assigns to any state of the schedule
(global state of the automaton and the values of active clocks) the density of the time to total
termination starting from this state under the optimal strategy. These functions are piecewise-
continuous and we show how they can be computed backwards from the final state. This will
require several definitions.

5.1 Preliminary Definitions

Definition 5.1.1 (Bounded Support Time Density). A time density is a function ψ : R+ → R+

satisfying ∫ ∞
0

ψ[t]dt = 1.

A time density is of bounded support when ψ(t) 6= 0 iff t ∈ I = [a, b]. A partial time density
satisfies the weaker condition:

∫
ψ[t]dt < 1. A time density is uniform if ψ[t] = 1/(b− a) inside

its support [a, b].

We will use non-standard notation for distributions:

ψ[≤ t] =

∫ t

0
ψ[t′]dt′ ψ[> t] = 1− ψ[≤ t]

with ψ[≤ t] indicating the probability of a duration which is at most t. We use c to denote the
“deterministic” density which gives the constant c with probability 1, which would be written in
density terms as

ψ[t] =

{
∞ if t = c
0 otherwise

The expected value of a time density ψ is E(ψ) =
∫
ψ[t] · tdt.

We will use such densities to specify durations of tasks (process steps) as well as the remaining
time to termination given some state of the system. To this end we need the following operators
on densities:

1. Convolution, to characterize the duration of two or more tasks composed sequentially;

53

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

ba x + tx a x x + t b

ψ

xtx t

ψ/x

Figure 5.1: The shift operator ψ/x. left: x < a; right: a < x < b. The intuition is that the passage
of time shifts the rectangle for ψ backward by x until ψ[x+ t] coincides with ψ/x[t]. When x > 0
the rectangle reaches the zero (causality) wall and the (fixed) volume is pushed upwards.

2. Shift, to reflect the change in the remaining time given that the process has already spent
some amount of time x.

Definition 5.1.2 (Convolution and Shift). Let ψ , ψ1 and ψ2 be uniform densities supported by
I = [a, b], I1 = [a1, b1] and I2 = [a2, b2], respectively.

• The convolution ψ1 ∗ ψ2 is a density ψ′ supported by I ′ = I1 ⊕ I2 = [a1 + a2, b1 + b2]
defined as

ψ′[t] =

∫ t

0
ψ1[t′]ψ2[t− t′]dt′

• The residual density (shift) of ψ relative to a real number 0 ≤ x < b is ψ′ = ψ/x such that

ψ′[t] = ψ[x+ t] · γa,b(x)

where

γa,b(x) =

{
1 if 0 < x < a
b−a
b−x if a < x < b

Note that when x < a, ψ/x is a simple shift of ψ. When x > a we already know that the
actual duration is at least x (restricted to the sub-interval [x, b]) and hence we need to normalize,
as illustrated in Figure 5.1.1 Note also that (ψ ∗ c)[t] = (c ∗ ψ)[t] = ψ[t − c] and that 0 is the
identity element for convolution. We can write ψ′ = ψ/x more explicitly as

ψ′[t] =

0 when x+ t < a
1
b−a when x < a, a < x+ t < b

1
b−x when a < x, x+ t < b

0 when b < x+ t

(5.1)

One can verify that the shift satisfies:

1. ψ/x[t− x] = γa,b(x) · ψ[t].

2. (ψ/x)
/y

= ψ/(x+y).

A subset of a hyper-rectangle is called a zone if it can be expressed as a conjunction of orthog-
onal and difference constraints, namely constraints of the form xi ≤ c, xi − xi′ ≤ c, etc.

1The definition can be extended to any bounded-support density with the normalization factor being∫ b
a
ψ[t]dt/

∫ b
x
ψ[t]dt.

54 5.1. PRELIMINARY DEFINITIONS

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

x1 := 0
s1

q1 q1
e1 · · · xk := 0

sk

qk qk qk+1

ek
x1 = y1 xk = yk

y1 := ψ1()
· · ·

yk := ψk()

Figure 5.2: A simple DPA.

5.2 Processes in Isolation

The processes in our model are inspired by the jobs in the job-shop problem. Each process consists
of an ordered sequence of steps such that a step can start executing only after its predecessor has
terminated.2 For simplicity of notation we assume all processes to have the same number k of
steps and let K = {1, . . . , k}.

Definition 5.2.1 (Process). A sequential stochastic process is a pair P = (I,Ψ) where I =
{Ij}j∈K is a sequence of duration intervals and Ψ = {ψj}j∈K is a matching sequence of densities
with ψj being the uniform density over Ij = [aj , bj], indicating the duration of step j.

Probabilistically speaking, step durations can be viewed as a finite sequence of independent
uniform random variables {yj}j∈K that we denote as points y = (y1, . . . , yk) ranging over a
duration space D = I1 × · · · × Ik ⊆ Rk with density ψ(y1, . . . , yk) = ψ1(y1) · · ·ψk(yk). A
state-based representation of a process is given by simple DPA.

Definition 5.2.2 (SDPA). A simple duration probabilistic automaton (SDPA) of k steps is a tuple
A = (Σ, Q, {x}, Y,∆) where Σ = Σs] Σe is the alphabet of start and end actions with Σs =
{s1, . . . , sk} and Σe = {e1, . . . , ek}. The state space is an ordered setQ = {q1, q1, q2, . . . , qk, qk+1}
with qj states considered idle and qj states are active, x is a clock variable and Y = {y1, . . . , yk}
is a set of auxiliary random variables. The transition relation ∆ consists of tuples of the form
(q, g, r, q′) with q and q′ being the source and target of the transition, g is a guard, a precondition
(external or internal) for the transition and r is an action (internal or external) accompanying the
transition. The transitions are of two types:

1. Start transitions: for every idle state qj , j < k + 1 there is one transition of the form
(qj , sj , {x}, qj). The transition, triggered by a scheduler command sj , activates clock x is
resets it to zero;

2. End transitions: for every active state qj , there is a transition, conditioned by the clock
value, of the form (qj , x = yj , ej , qj+1). This transition renders clock x inactive and outputs
an ej event.

The operational interpretation is the following (see Fig. 5.2). First, for each step j we draw a
duration yj according to ψj . Upon a scheduler command sj the automaton moves from a waiting
state qj to active state qj in which clock x advances with derivative 1. The end transition is
taken when x = yj , that is, yj time after the corresponding start transition. An extended state
(configuration) of the automaton a pair (q, x) consisting of a discrete state and a clock value3

which represents the time elapsed since the last start transition. The generalized state-space of the
SPDA is thus

S = {(qj ,⊥) : j ≤ k + 1} ∪ {(qj , x) : j ≤ k ∧ x ≤ bj}

where ⊥ indicates the inactivity of the clock in waiting/idle states.

2See [2] for a straightforward generalization to partial-order precedence constraints.
3To avoid additional notations we use x both for the clock variable and its value.

5.2. PROCESSES IN ISOLATION 55

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

Note the difference between transition labels sj and ej : the start transitions are controllable
and are issued by the scheduler that we want to optimally synthesize while the end transitions rep-
resent the uncontrolled external (to the scheduler) environment which is assumed to be uniformly
distributed. Without a scheduler, the SDPA is under-determined and can issue a start transition
any time. The derivation of an optimal scheduler is done via the computation of a time-to-go func-
tion that we first illustrate on the degenerate case of one process in isolation, where each state has
only one successor and any waiting between steps unnecessarily increases the time to termination.

Definition 5.2.3 (Local Stochastic Time to Go). The local stochastic time-to-go function asso-
ciates with every state (q, x) a time density µ(q, x) with µ(q, x)[t] indicating the probability to
terminate within t time given that we start from (q, x) and apply the optimal strategy.

This function admits the following inductive definition:

µ(qk+1,⊥) = 0 (5.2)

µ(qj ,⊥) = µ(qj , 0) (5.3)

µ(qj , x)[t] =

∫ t

0
ψj [x+ t′] · γa,b(x) · µ(qj+1, 0)[t− t′]dt′ (5.4)

Line (5.2) indicates the final state while (5.3) comes from the fact that in the absence of conflicts
the optimal scheduler need not wait and should start each step immediately when enabled. Equa-
tion (5.4) computes the probability for termination at t based on the probabilities of terminating
the current step in some t′ and of the remaining time-to-go being t− t′. It can be be summarized
in a functional language as

µ(qj , x) = ψj/x ∗ µ(qj+1,⊥) = ψj/x ∗ µ(qj+1, 0) (5.5)

The successive application of (5.5) yields, not surprisingly, µ(q1, 0) = ψ1 ∗ · · · ∗ ψk.

Definition 5.2.4 (Local Expected Time to Go). The expected time-to-go function is V : Q×X →
R+ defined as

V (q, x) =

∫
µ(q, x)[t] · tdt = E(µ(q, x)).

This measure satisfies V (qj , x) = E(ψj/x) + V (qj+1, 0) where the first term is the expected
termination time of step j starting from x. For the initial state this yields

V (q1, 0) = E(ψ1 ∗ · · · ∗ ψk) = E(ψ1) + · · ·+ E(ψk) =
k∑
j=1

(aj + bj)/2.

5.3 Conflicts and Schedulers

We now extend the model to express n processes, indexed byN = {1..n}, that may run in parallel
except for steps which are mutually conflicting due to the use of the same resource.

Definition 5.3.1 (Process System). A process system is a triple (P,M, h) where

P = P 1|| · · · ||Pn = {(Ii,Ψi)}i∈N

is a set of processes, M is a set of resources, and h : N ×K →M is a function which assigns to
each step the resource it uses.

56 5.3. CONFLICTS AND SCHEDULERS

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

We use notations P i
j to refer to step j of process i and ψi

j and I ij = [aij , b
i
j] for the respec-

tive densities and their support intervals. Likewise we denote the corresponding controllable and
uncontrollable actions by sij and eij , respectively. Without loss of generality we assume there
is one instance of each resource type, hence two steps P i

j and P i′
j′ such that h(i, j) = h(i′, j′)

are in conflict and cannot execute simultaneously. Each process is modeled as an SPDA Ai =
(Σi, Qi, {xi}, Y i,∆i) and the global system is obtained as a product of those restricted to conflict-
free states. We write global states as q = (q1, . . . , qn) and exclude states where for some i and i′,
qi = qij , q

i′ = qi
′
j′ and steps P i

j and P i′
j′ are conflicting. We say that action sij (respectively, eij) is

enabled in q if qi = qij (resp. qi = qij). Since only one transition per process is possible in a global
state, we will sometime drop the j-index and refer to those as si and ei.

Definition 5.3.2 (Duration Probabilistic Automata). A duration probabilistic automaton (DPA) is
a composition A = A1 ◦ · · · ◦ An = (Σ, Q,X, Y,∆) of n SDPA with the action alphabet being
Σ =

⋃
i Σi. The discrete state space is Q ⊆ Q1 × · · ·Qn (with forbidden states excluded). The

set of clocks is X = {x1, . . . , xn}, the extended state-space is S ⊆ S1 × · · ·Sn and the auxiliary
variables are Y =

⋃
i Y

i ranging over the joint duration spaceD = D1×· · ·×Dn. The transition
relation ∆ is built using interleaving, that is, a transition (q, g, r, q′) from q = (q1, . . . , qi, . . . , qn)
to q′ = (q1, . . . , q′i, . . . , qn) exist in ∆ if a transition from (qi, g, r, , q′i) exists in ∆i, provided
that q′ is not forbidden.

The DPA thus defined (Fig. 4.6-a) is not probabilistically correct as it admits non-determinism
of a non probabilistic nature: in a given state the automaton may choose between several start
transitions or decide to wait for an end transition (the termination of an active step). A sched-
uler selects one action in any state and then the only non-determinism that remains is due to the
probabilistic task durations. A discussion on different types of schedulers can be found in [119].

Definition 5.3.3 (Scheduler). A scheduler for a DPAA is a function Ω : S → Σs ∪{w} such that
for every s ∈ Σs, Ω(q, x) = s only if s is enabled in q and Ω(q, x) = w (wait) only if q admits at
least one active component.

Composing the scheduler with the DPA (see Fig. 4.6-b) renders it input-deterministic in the
sense that any point y ∈ D induces a unique4 run of the automaton composed of an alternation of
discrete transitions and periods of time elapse.

Definition 5.3.4 (Steps and Runs). The steps of a controlled DPAA◦Ω, induced by a point y ∈ D
are of the following types:

• Start steps: (q, x)
sij−→ (q′, x′) iff qi = qij and Ω(q, x) = sij;

• End steps: (q, x)
eij−→ (q′, x′) iff qi = qij and xi = yij;

• Time steps: (q, x)
t−→ (q, x+ t) iff ∀i (qi = qij ⇒ xi + t < yij).

The run associated with y is a sequence of steps starting at (q11 , . . . , q
n
1) and ending in (q1k+1, . . . , q

n
k+1).

The duration of a run is the sum of the time steps and it coincides with the termination time
of the last process, known as the makespan in the OR jargon. In a state q where P i is active, its
t-i-successor, denoted by σi(t, q, x), is the state (q′, x′) reached after a time step of duration t
followed by an ei transition.

4We define a priority order among the si-actions so that in the (measure zero) situation where two actions are taken
simultaneously we impose the order to guarantee a unique run and avoid the artifacts of the interleaving semantics.

5.3. CONFLICTS AND SCHEDULERS 57

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

5.4 Expected Time Optimal Schedulers

In [119] we developed a method to compute the expected termination time under a given sched-
uler by computing volumes in the duration space. We now show how to optimally synthesize
such schedulers from an uncontrolled DPA description. To this end we will have to extend the
formulation of stochastic time-to-go from a single process (5.4) to multiple processes (5.8).

We define a partial order relation on global states based on the order on the local states with
q � q′ if for every i, qi � qi

′
. We lift this relation to extended states letting (q, x) � (q′, x′) if

q � q′ or q = q′ ∧ x ≤ x′. The forward cone of a state q is the set of all states q′ such that q ≺ q′.
The immediate successors of a state q are the states reachable from it by one transition. A partial
scheduler is a scheduler defined only on a subset of Q. To optimize the action of the scheduler in
a state we need compare the effect of the action on the time-to-go.

Definition 5.4.1 (Local Stochastic Time-to-Go). Let A be a DPA with a partial strategy whose
domain includes the forward cone of a state q. With every i, x and every s ∈ Σs ∪ {w} enabled
in q, the time density µi(q, x, s) : R+ → [0, 1] characterizes the stochastic time-to-go for process
P i if the controller issues action s at state (q, x) and continues from there according to the partial
strategy.

Note that for any successor q′ of q the optimal action has already been chosen and we denote
its associated time-to-go by µ(q, x). Once µi(q, x, s) has been computed for every i, the following
measures, all associated with action s, can be derived from it.

Definition 5.4.2 (Global Stochastic Time-to-Go). With every state (q, x) and action s enabled in
it, we define

• The stochastic time-to-go for total termination (makespan):

µ(q, x, s) = max{µ1(q, x, s), . . . , µn(q, x, s)}

• The expected total termination time:

V (q, x, s) =

∫
t · µ(q, x, s)[t]dt

The computation of µ for a state q, based on the stochastic time-to-go of its successors, is the
major contribution of this chapter. The hard part is the computation of the time-to-go associated
with waiting in a state where several processes are active. In this situation (known as a race) the
automaton may leave q via different transitions and µ should be computed based on the prob-
abilities of these transitions (and their timing) and the cost-to-go from the respective successor
states.

With each state (q, x) we associate a family {ρi(q, x)}i∈N of partial time densities with the
intended meaning that ρi(q, x)[t] is (the density of) the probability that the first process to terminate
its current step is P i and that this occurs within t time. This definition is relative, of course, to
the fact that the time elapsed since the initiation of each and every active step is captured by the
respective clock value in x.5

5It is worth noting that the dependence on the time already elapsed is in contrast with the memoryless exponential
distribution where this time does not matter for the future. For those distributions the time-to-go is associated only
with the discrete state and is much easier to compute, see [2] for the derivation of optimal schedulers for DPA with
exponential distribution.

58 5.4. EXPECTED TIME OPTIMAL SCHEDULERS

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

Definition 5.4.3 (Race Winner). Let q be a state where n processes are active, each in a step
admitting a time density ψi. With every clock valuation x = (x1, . . . , xn) ≤ (b1, . . . , bn) and
every i we associate the partial density:

ρi(q, x)[t] = ψi
/xi [t] ·

∏
i′ 6=i

ψi′

/xi′ [≥ t]

Definition 5.4.4 (Computing Stochastic Time-to-go). For every i, the function µi is defined induc-
tively as

µi((. . . qik+1 . . .), x) = 0 (5.6)

µi(q, x, si
′
) = µi(σi

′
(0, q, x))) (5.7)

µi(q, x,w)[t] =
n∑

i′=1

∫ t

0
ρi
′
(q, x)[t′] · µi(σi′(t′, q, x))[t− t′]dt′ (5.8)

For any global state where P i is in its final state, µi is zero (5.6). Each enabled start action
si
′

leads immediately to the successor state and the cost-to-go is inherited from there (5.7). For
waiting we make a convolution between the probability of P i′ winning the race and the value of µi

in the post-transition state and sum up over all the active processes (5.8). The basic iterative step in
computing the value function and strategy is summarized in Algorithm 3. A dynamic programming
algorithm starting from the final state and applying the above procedure will produce the expected-
time optimal strategy for this scheduling problem. Since we are dealing with acyclic systems, the
question of convergence to a fixed point is not raised at all. The only challenge is to show that the
defined operators are computable.

Algorithm 3 Value Iteration

Input: A global state q such that Ω(q′, x) and µi(q′, x) have been computed for each of its
successors q′ and every i
Output: Ω(q, x), and µi(q, x)

% COMPUTE:
for all s ∈ Σs ∪ {w} do

for i = 1→ n do
compute µi(q, x, s) according to (5.7-5.8)

end for
compute µ(q, x, s) . max of random variables
compute V (q, x, s) . expected makespan

end for
% OPTIMIZE:

for all x ∈ Zq do
V (q, x) = mins(V (q, x, s))
s∗ = arg mins V (q, x, s)
Ω(q, x) = s∗

end for
% UPDATE:

for i = 1→ n do
µi(q, x) = µi(q, x, s∗)

end for

5.4. EXPECTED TIME OPTIMAL SCHEDULERS 59

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

If we look at the algorithm more carefully we see that it splits into three parts, the third being
merely book-keeping. In the first we essentially compute the outcome of waiting by race analysis
and of starting. As we shall see, starting from a specific class of time densities, this part can be
done in a symbolic/analytic way, resulting in closed-form expressions over x and t for the values
of µi, µ and V associated with each action. The second part involved optimization: to characterize
the extended states according to the action that optimizes V in them. For this part we have not
characterized the class of partitions of the clock space obtained but proved a monotonicity property
(non-lazy schedulers) that will facilitate the task of tracing the boundary. Since this work is not
fully completed, it is delegated to Appendix A.

5.5 Computational Aspects

We now turn to the properties of the previously defined functions and the way to compute them.
For every q, µi(q, x) is in fact an infinite family of functions parameterized by the clock valuations
inside the rectangle Zq of clock valuations which are possible as state q.

Definition 5.5.1 (Zone-Polynomial Time Densities). A function µ : Z → (R+ → [0, 1]), where Z
is a rectangular clock space, is zone polynomial if it can be written as

µ(x1, . . . , xn)[t] =

f1(x1, . . . , xn)[t]) if Z1(x1, . . . , xn) and l1 ≤ t ≤ u1

f2(x1, . . . , xn)[t]) if Z2(x1, . . . , xn) and l2 ≤ t ≤ u2

. . .
fL(x1, . . . , xn)[t]) if ZL(x1, . . . , xn) and lN ≤ t ≤ uL

where

• For every r, Zr(x1, ..., xn) is a zone included in the rectangle Z, which moreover satisfies
either Zr ⊆ [xi ≤ ai] or Zr ⊆ [ai ≤ xi], for every i = 1..n.

• For every r, the bounds lr, ur of the t interval are either nonnegative integers c or terms of
the form c − xi, with i = 1, n, c ∈ Z+. Moreover, the interval [lr, ur] must be consistent
with the underlying zone, that is, Zr ⊆ [lr, ur].

• For every r, fr(x1, ..., xn)[t] =
∑
k

Pk(x1,...,xn)
Qr(x1,...,xn)

tk where Pk are arbitrary polynomials and

Qr is a characteristic polynomial associated with zoneZr defined as
∏
i

(bi −max{xi, ai}).

Note that for each zone, the max is attained uniformly as either ai or xi.

Theorem 2 (Closure of Zone-Polynomial Densities). Zone-polynomial time densities are closed
under 5.7 and 5.8).

Sketch of Proof Operation 5.7 is a simple substitution. Closure under summation is also evident
- you just need to refine the partitions associated with the summed functions and make them
compatible and then apply the operation in each partition block. The only intricate part concerns
the quasi-convolution part of (5.8). The function µi(σi

′
(t′, q, x))[t − t′] is not a zone polynomial

time density. Due to the time progress by t′ enforced by the substitution σi
′

it might happen that
polynomials of the form (bi− (xi− t′)) appear in the denominators. But, in all feasible cases, they
will be simplified through multiplication by ρi

′
(q, x)[t′] which contains the same polynomials as

factors (within ψi
/xi [≥ t′], see Def. 5.4.3). Hence, integration of t′ is always trivially completed

as t′ occurs only on numerator polynomials and/or powers of the form t′k and (t− t′)k. Moreover,
after integration, the remaining constraints on t and x can also be rewritten to match the required
form of the zone-polynomial time densities.

We realized a prototype implementation of operator (5.8) that we detail in the next section and
apply to a simple example.

60 5.5. COMPUTATIONAL ASPECTS

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

5.6 Implementation

In the following we denote by F a zone polynomial function µ(x1, . . . , xn)[t] (Definition 5.5.1).
We provide a library for the manipulation of such function. At implementation F is represented
as a list of nodes {N1, . . . , Nk} and

F =
⋃
i

Ni (5.9)

A node Ni = 〈Zi, Li〉 is defined by:

• Zi a zone
• Li a list of pairs 〈Cij , F ij 〉 where:

– Cij is a constraints on variable t
– Eij is an expression defined as a polynomial fraction fr(x1, ..., xn)[t] as in Defini-

tion 5.5.1

F =

Z C E

l11 < t < u1
1 E1

1

Z1
l1k1 < t < u1

k1 E1
k1

.

ln1 < t < un1 E1
1

Zn
lnkn < t < unkn Enkn

(5.10)

As an example ψ/x[t] defined by (5.1) is encoded as:

ψ/x[t] =

Z C E

0 < t < a− x 0
0 < x < a a− x < t < b− x 1

b−a
b− x < t 0

a < x < b 0 < t < b− x 1
b−x

b− x < t 0

(5.11)

Manipulation of zones are performed using the DBM library of IF [49]. We extend the poly-
nomial library developed for volume computation in the previous chapter for the manipulation of
polynomial fractions. To compute µ(q, x, s) several operations on nodes are necessary. We present
in the sequel how they have been implemented. Note that, by construction we ensure that F is in
a disjoint form. That is, ∀Ni, Nj ∈ F,Zi ∩ Zj = ∅ ∧ ∀Cij , Cik ∈ Li, Cij ∩ Cik = ∅

Disjoint nodes

Let us first explain how nodes are kept disjoint during all computations. It is a necessary operation
for further computations, especially to facilitate integration of zone polynomial function according
to the t variables. This operation is performed by:
∀i 6= j, if Zi ∧ Zj 6= ∅ remove Ni, Nj and add new nodes:

• {Zi ∧ Zj , Li + Lj}
• {Zi − Zj , Li}
• {Zj − Zi, Lj}

5.6. IMPLEMENTATION 61

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

The subtraction of two zones leads to several zones implying creation of new nodes. It is
computed as follows:

Z1 − Z2 =
⋃
i,j

(Z1 ∩ ¬Z2[i][j])

The number of resulting nodes is bounded by n2 where n is the dimension of the zone. More
efficient algorithm based on minimal constraint graph can be used to minimize the number of
splits, readers can refer to [71] for more details.

The operation Li + Lj is done by adding each pair 〈C,E〉 from the two lists together. This
addition results in 3 new pairs defines as follows:

〈C1, E1〉+ 〈C2, E2〉 =

〈C1 ∩ C2, E1 + E2〉
〈C1 ∩ ¬C2, E1〉
〈¬C1 ∩ C2, E2〉

(5.12)

Inside the operation (5.12), constraints on t are defined as conjunction of bounds, i.e with
Ci = li < t < ui and Ci = lj < t < uj :

Ci ∩ Cj = max(li, lj) < t < min(ui, uj)

Note that the list Li associated with each disjoint zone must also be disjoint, that is:

∀〈Cki , Eki 〉, 〈Ckj , Ekj 〉 ∈ Lk, Ci ∩ Cj = ∅

For that we need to compute unique bounds l and u on variable t. This is done by creating a new
case for each possible pair of bounds as shown in Algorithm-4.

Algorithm 4 CANONIZE (〈C,E〉)

Res = ∅ . The resulting node list
for all li ∈ C do

for all uj ∈ C do
//set li and uj as lower and upper bound

Ctmp ← {li < t < uj}
Ztmp ← new ZONE
for all lk 6= li do

// li > lk ⇒ xi
′ − ai′ > xk

′ − ak′ ⇒ xk
′ − xi′ < ak

′ − ai′

Ztmp ← Ztmp ∩ {li > lk}
end for
for all uk 6= uj do

// uj < uk ⇒ xi
′ − ai′ < xk

′ − ak′ ⇒ xi
′ − xk′ < ai

′ − ak′

Ztmp ← Ztmp ∩ {uj < uk}
end for
Ztmp ← Ztmp ∩ {li < uj} . check if new bounds are correct
if ¬ isDegenerate(Ztmp) then

Res← Res ∪ 〈Ztmp, {〈Ctmp, E〉}〉
end if

end for
end for
return Res

62 5.6. IMPLEMENTATION

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

Product

The multiplication of two zone polynomial functions F1 and F2 is done by multiplying all their
nodes in pairs. The result of Ni · Nj is a node Nk = 〈Zi ∩ Zj , Li · Lj〉 and the computation is
shown in Algorithm-5.

Algorithm 5 MULTIPLY (N1, N2)

Nr = 〈Zr, Lr〉 . The resulting node
Zr = Z1 ∩ Z2

Lr = ∅
if ¬ isDegenerate(Zr) then

for all 〈Ei, Ci〉 ∈ L1 do
for all 〈Ej , Cj〉 ∈ L2 do

if Ci ∩ Cj 6= ∅ then
Lr ← Lr ∪ 〈Ei · Ej , Ci ∩ Cj〉

end if
end for

end for
end if
return Nr

Addition

The addition of two two zone polynomial functions F1 and F2 is performed in the same way as
for multiplication, i.e by adding all their nodes in pairs as shown in Algorithm 6. The results of
the addition of two nodes is:

Ni +Nj =

Zi ∩ Zj Li + Lj
Zi ∩ ¬Zj Li
¬Zi ∩ Zj Lj

Note that the zone subtraction did not appear in the multiplication operation because the re-
sulting nodes are empty like 〈Zi ∩ ¬Zj , Li · 0 = 0〉.

Integration

Integration is performed on zone polynomial functions that are in disjoint form as explained pre-
viously. Constraints on variable t are disjoint and are sorted in increasing order. Note that they are
defined continuously between lowest and uppermost bounds i.e ui = li−1. For all nodes integra-
tion is performed on each E according to bounds on t. In the following F [e] denotes substitution
of variable t by expression e. Consider one node 〈Z,L〉 of a probability density function. We
compute its distribution

∫
t′<t ψ/x[t′]dt′ by computing iteratively integrals from 0 to t according to

the bounds in the ordered list

L = {〈a1 < t < a2, E1〉, . . . , 〈an−1 < t < an, En〉}

which gives a node 〈Z,L′〉 where

L′ =

{〈
a1 < t < a2, E

′
1 =

∫ t

a1

E1[t′]dt′
〉
, . . . ,

〈
an−1 < t < an, E

′
n−1 +

∫ t

an−1

En[t′]dt′

〉}

5.6. IMPLEMENTATION 63

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

Algorithm 6 ADD (N1, N2)

Res← ∅ . The resulting node list
if Z1 ∩ Z2 6= ∅ then

Ntmp ← new 〈Z1 ∩ Z2, Ltmp〉 . Ltmp list of resulting pairs 〈C,E〉
for all 〈Ei, Ci〉 ∈ L1 do

for all 〈Ej , Cj〉 ∈ L2 do
Ltmp ← Ltmp ∪ 〈Ci ∩ Cj , E1 + E2〉
Ltmp ← Ltmp ∪ 〈Ci ∩ ¬Cj , E1〉
Ltmp ← Ltmp ∪ 〈¬Ci ∩ Cj , E2〉

end for
end for
Res← Res ∪Ntmp

end if
for all Z ∈ Z1 − Z2 do

Res← Res ∪〈Z,L1〉
end for
for all Z ∈ Z2 − Z1 do

Res← Res ∪〈Z,L2〉
end for
return Res

As an example recall (5.11) for which we can get the probability distribution (5.14). In the same
way we can compute

∫
t<t′ ψ/x[t′]dt′ as shown in (5.15).

∫
ψ/x[t]dt =

Z C E

0 < x < a ∅ 1

a < x < b ∅ 1

(5.13)

∫ t

0
ψ/x[t′]dt′ =

Z C E

0 < t < a− x 0
0 < x < a a− x < t < b− x t−a+x

b−a
b− x < t 1

a < x < b 0 < t < b− x t
b−x

b− x < t 1

(5.14)

∫ ∞
t

ψ/x[t′]dt′ =

Z C E

0 < t < a− x 1

0 < x < a a− x < t < b− x b−x−t
b−a

b− x < t 0

a < x < b 0 < t < b− x b−x−t
b−x

b− x < t 0

(5.15)

5.7 An Example

We illustrate the above computation on a simple example consisting of two one-step processes P 1

and P 2 with respective duration intervals I11 = [20, 60] and I21 = [30, 50]. We start the backward
value iteration from the final state V (q12 , q

2
2 ,⊥,⊥) = 0. In each of the two predecessor states

(q11 , q
2
2) and (q12 , q

2
1) only one clock is active. The output of our tool and the plots of the value

function are depicted in Figure 5.3 and 5.4.

64 5.7. AN EXAMPLE

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

N1 :
Z : x1 = [0 , 2 0]
E : 40−x1

N2 :
Z : x1 = [2 0 , 6 0]
E : (1800−60∗x1 +1/2∗ x1 ˆ 2) / (60−x1)

Figure 5.3: The value function V (q11 , q
2
2 , x

1,⊥)

N1 :
Z : x2 = [0 , 3 0]
E : 40−x2

N2 :
Z : x2 = [3 0 , 5 0]
E : (1250−50∗x2 +1/2∗ x2 ˆ 2) / (50−x2)

Figure 5.4: The value function V (q12 , q
2
1 ,⊥, x2)

The more involved and interesting case is in state (q11 , q
2
1) where we have a race and a lot of

case splitting according to the relation between clocks. Listing 5.1 shows the output of our tool
which yields (5.16) as plotted in Fig 5.5.

We can compute the expected time-to-go from the initial state

V (q11 , q
2
1 , 0, 0) =

545

12
= 45.4167

and compare it with the clock-free technique developed in the previous chapter. The results are
indeed identical.

5.7. AN EXAMPLE 65

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

Figure 5.5: The value function V (q11 , q
2
1 , x

1, x2)

5.8 Concluding Remarks

We have built a framework to define and synthesize optimal schedulers in a non-Markovian setting.
To the best of our knowledge no similar computational results have been reported. The synthesis
algorithm is based on backward value iteration that computes the stochastic time-to-go function
over the extended state space.

66 5.8. CONCLUDING REMARKS

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

365
8
− 7

16
x1 − 3

80
x1x2 + 1

1600
x1x

2
2 + 3

160
x21 −

1
1600

x21x2 + 1
4800

x31 −
9
16
x2 + 3

160
x22 −

1
4800

x32 if
10 ≤ x1 ≤ 20

20 ≤ x2 ≤ 30

10 ≤ x2 − x1 ≤ 20

365
8
− 7

16
x1 − 3

80
x1x2 + 1

1600
x1x

2
2 + 3

160
x21 −

1
1600

x21x2 + 1
4800

x31 −
9
16
x2 + 3

160
x22 −

1
4800

x32 if
0 ≤ x1 ≤ 10

10 ≤ x2 ≤ 30

10 ≤ x2 − x1 ≤ 30

365
8
− 9

16
x1 − 3

80
x1x2 − 1

1600
x1x

2
2 + 3

160
x21 + 1

1600
x21x2 −

1
4800

x31 −
7
16
x2 + 3

160
x22 + 1

4800
x32 if

10 ≤ x1 ≤ 20

0 ≤ x2 ≤ 10

−20 ≤ x2 − x1 ≤ −10

545
12
− 1

2
x1 − 1

40
x1x2 + 1

80
x21 −

1
2
x2 + 1

80
x22 if

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

−10 ≤ x2 − x1 ≤ 10

545
12
− 1

2
x1 − 1

40
x1x2 + 1

80
x21 −

1
2
x2 + 1

80
x22 if

10 ≤ x1 ≤ 20

0 ≤ x2 ≤ 10

−10 ≤ x2 − x1 ≤ 0

545
12
− 1

2
x1 − 1

40
x1x2 + 1

80
x21 −

1
2
x2 + 1

80
x22 if

10 ≤ x1 ≤ 20

10 ≤ x2 ≤ 30

−10 ≤ x2 − x1 ≤ 10

545
12
− 1

2
x1 − 1

40
x1x2 + 1

80
x21 −

1
2
x2 + 1

80
x22 if

0 ≤ x1 ≤ 10

10 ≤ x2 ≤ 20

0 ≤ x2 − x1 ≤ 10

2000+x1x2−50x1−40x2
50−x2

if
10 ≤ x1 ≤ 20

40 ≤ x2 ≤ 50

30 ≤ x2 − x1 ≤ 40

2000+x1x2−50x1−40x2
50−x2

if
0 ≤ x1 ≤ 10

40 ≤ x2 ≤ 50

30 ≤ x2 − x1 ≤ 50

2000+x1x2−50x1−40x2
50−x2

if
0 ≤ x1 ≤ 10

30 ≤ x2 ≤ 40

30 ≤ x2 − x1 ≤ 40

4225
2
− 155

4
x1+ 1

4
x1x2+ 1

80
x1x2

2+ 3
8
x2
1−

1
80

x2
1x2+ 1

240
x3
1−

205
4

x2+ 3
8
x2
2−

1
240

x3
2

50−x2
if

10 ≤ x1 ≤ 20

30 ≤ x2 ≤ 40

10 ≤ x2 − x1 ≤ 30

4225
2
− 155

4
x1+ 1

4
x1x2+ 1

80
x1x2

2+ 3
8
x2
1−

1
80

x2
1x2+ 1

240
x3
1−

205
4

x2+ 3
8
x2
2−

1
240

x3
2

50−x2
if

10 ≤ x1 ≤ 20

40 ≤ x2 ≤ 50

20 ≤ x2 − x1 ≤ 30

4225
2
− 155

4
x1+ 1

4
x1x2+ 1

80
x1x2

2+ 3
8
x2
1−

1
80

x2
1x2+ 1

240
x3
1−

205
4

x2+ 3
8
x2
2−

1
240

x3
2

50−x2
if

0 ≤ x1 ≤ 10

30 ≤ x2 ≤ 40

20 ≤ x2 − x1 ≤ 30

2625− 125
2

x1−
1
2
x1x2−

1
40

x1x2
2+ 3

4
x2
1+ 1

40
x2
1x2−

1
120

x3
1−

75
2

x2+ 3
4
x2
2+ 1

120
x3
2

60−x1
if

20 ≤ x1 ≤ 30

0 ≤ x2 ≤ 20

−30 ≤ x2 − x1 ≤ −10

2625− 125
2

x1−
1
2
x1x2−

1
40

x1x2
2+ 3

4
x2
1+ 1

40
x2
1x2−

1
120

x3
1−

75
2

x2+ 3
4
x2
2+ 1

120
x3
2

60−x1
if

30 ≤ x1 ≤ 60

0 ≤ x2 ≤ 30

−30 ≤ x2 − x1 ≤ −10

7850
3
−60x1+ 1

2
x2
1−40x2+ 1

2
x2
2

60−x1
if

20 ≤ x1 ≤ 30

20 ≤ x2 ≤ 30

−10 ≤ x2 − x1 ≤ 10

7850
3
−60x1+ 1

2
x2
1−40x2+ 1

2
x2
2

60−x1
if

30 ≤ x1 ≤ 40

20 ≤ x2 ≤ 30

−10 ≤ x2 − x1 ≤ 0

7850
3
−60x1+ 1

2
x2
1−40x2+ 1

2
x2
2

60−x1
if

20 ≤ x1 ≤ 30

10 ≤ x2 ≤ 20

−10 ≤ x2 − x1 ≤ 0

2400−40x1+x1x2−60x2
60−x1

if
40 ≤ x1 ≤ 60

0 ≤ x2 ≤ 30

−60 ≤ x2 − x1 ≤ −30

2400−40x1+x1x2−60x2
60−x1

if
30 ≤ x1 ≤ 40

0 ≤ x2 ≤ 10

−40 ≤ x2 − x1 ≤ −30

111000−3050x1+50x1x2−
1
2
x1x2

2+30x2
1−

1
6
x3
1−3000x2+30x2

2
3000−50x1+x1x2−60x2

if
40 ≤ x1 ≤ 60

30 ≤ x2 ≤ 50

−30 ≤ x2 − x1 ≤ −10

332500
3

+60x1x2−3000x1−
1
2
x2
1x2+25x2

1−3050x2+25x2
2−

1
6
x3
2

3000−50x1+x1x2−60x2
if

30 ≤ x1 ≤ 40

30 ≤ x2 ≤ 50

−10 ≤ x2 − x1 ≤ 20

332500
3

+60x1x2−3000x1−
1
2
x2
1x2+25x2

1−3050x2+25x2
2−

1
6
x3
2

3000−50x1+x1x2−60x2
if

20 ≤ x1 ≤ 30

30 ≤ x2 ≤ 50

0 ≤ x2 − x1 ≤ 30

332500
3

+60x1x2−3000x1−
1
2
x2
1x2+25x2

1−3050x2+25x2
2−

1
6
x3
2

3000−50x1+x1x2−60x2
if

40 ≤ x1 ≤ 60

30 ≤ x2 ≤ 50

−10 ≤ x2 − x1 ≤ 10

(5.16)
(5.16) The value function V (q11 , q

2
1 , x

1, x2).
Since we have polynomials in x we use the xi rather than the xi notation for clocks.

5.8. CONCLUDING REMARKS 67

CHAPTER 5. DURATION PROBABILISTIC AUTOMATA: SYNTHESIS

N1 :
Z : x1 = [1 0 , 2 0] x2 = [2 0 , 3 0] x2−x1 = [1 0 , 2 0]
E:(365/8−7/16∗ x1−3/80∗x1∗x2 +1/1600∗ x1∗x2 ˆ2+3/160∗ x1 ˆ2−1/1600∗x1 ˆ2∗x2 +1/4800∗ x1 ˆ3−9/16∗x2 +3/160∗ x2 ˆ2−1/4800∗x2 ˆ 3)

N2 :
Z : x1 = [0 , 1 0] x2 = [1 0 , 3 0] x2−x1 = [1 0 , 3 0]
E:(365/8−7/16∗ x1−3/80∗x1∗x2 +1/1600∗ x1∗x2 ˆ2+3/160∗ x1 ˆ2−1/1600∗x1 ˆ2∗x2 +1/4800∗ x1 ˆ3−9/16∗x2 +3/160∗ x2 ˆ2−1/4800∗x2 ˆ 3)

N3 :
Z : x1 = [1 0 , 2 0] x2 = [0 , 1 0] x2−x1=[−20,−10]
E:(365/8−9/16∗ x1−3/80∗x1∗x2−1/1600∗x1∗x2 ˆ2+3/160∗ x1 ˆ2+1/1600∗ x1 ˆ2∗x2−1/4800∗x1 ˆ3−7/16∗x2 +3/160∗ x2 ˆ2+1/4800∗ x2 ˆ 3)

N4 :
Z : x1 = [0 , 1 0] x2 = [0 , 1 0] x2−x1 =[−10 ,10]
E:(545/12−1/2∗ x1−1/40∗x1∗x2 +1/80∗ x1ˆ2−1/2∗x2 +1/80∗ x2 ˆ 2)

N5 :
Z : x1 = [1 0 , 2 0] x2 = [0 , 1 0] x2−x1 =[−10 ,0]
E:(545/12−1/2∗ x1−1/40∗x1∗x2 +1/80∗ x1ˆ2−1/2∗x2 +1/80∗ x2 ˆ 2)

N6 :
Z : x1 = [1 0 , 2 0] x2 = [1 0 , 3 0] x2−x1 =[−10 ,10]
E:(545/12−1/2∗ x1−1/40∗x1∗x2 +1/80∗ x1ˆ2−1/2∗x2 +1/80∗ x2 ˆ 2)

N7 :
Z : x1 = [0 , 1 0] x2 = [1 0 , 2 0] x2−x1 = [0 , 1 0]
E:(545/12−1/2∗ x1−1/40∗x1∗x2 +1/80∗ x1ˆ2−1/2∗x2 +1/80∗ x2 ˆ 2)

N8 :
Z : x1 = [1 0 , 2 0] x2 = [4 0 , 5 0] x2−x1 = [3 0 , 4 0]
E : (2 0 0 0 + x1∗x2−50∗x1−40∗x2) / (50−x2)

N9 :
Z : x1 = [0 , 1 0] x2 = [4 0 , 5 0] x2−x1 = [3 0 , 5 0]
E : (2 0 0 0 + x1∗x2−50∗x1−40∗x2) / (50−x2)

N10 :
Z : x1 = [0 , 1 0] x2 = [3 0 , 4 0] x2−x1 = [3 0 , 4 0]
E : (2 0 0 0 + x1∗x2−50∗x1−40∗x2) / (50−x2)

N11 :
Z : x1 = [1 0 , 2 0] x2 = [3 0 , 4 0] x2−x1 = [1 0 , 3 0]
E:(4225/2−155/4∗ x1 +1/4∗ x1∗x2 +1/80∗ x1∗x2 ˆ2+3/8∗ x1 ˆ2−1/80∗x1 ˆ2∗x2 +1/240∗ x1 ˆ3−205/4∗x2 +3/8∗ x2 ˆ2−1/240∗x2 ˆ3) / (50− x2)

N12 :
Z : x1 = [1 0 , 2 0] x2 = [4 0 , 5 0] x2−x1 = [2 0 , 3 0]
E:(4225/2−155/4∗ x1 +1/4∗ x1∗x2 +1/80∗ x1∗x2 ˆ2+3/8∗ x1 ˆ2−1/80∗x1 ˆ2∗x2 +1/240∗ x1 ˆ3−205/4∗x2 +3/8∗ x2 ˆ2−1/240∗x2 ˆ3) / (50− x2)

N13 :
Z : x1 = [0 , 1 0] x2 = [3 0 , 4 0] x2−x1 = [2 0 , 3 0]
E:(4225/2−155/4∗ x1 +1/4∗ x1∗x2 +1/80∗ x1∗x2 ˆ2+3/8∗ x1 ˆ2−1/80∗x1 ˆ2∗x2 +1/240∗ x1 ˆ3−205/4∗x2 +3/8∗ x2 ˆ2−1/240∗x2 ˆ3) / (50− x2)

N14 :
Z : x1 = [2 0 , 3 0] x2 = [0 , 2 0] x2−x1=[−30,−10]
E:(2625−125/2∗x1−1/2∗x1∗x2−1/40∗x1∗x2 ˆ2+3/4∗ x1 ˆ2+1/40∗ x1 ˆ2∗x2−1/120∗x1 ˆ3−75/2∗x2 +3/4∗ x2 ˆ2+1/120∗ x2 ˆ3) / (60− x1)

N15 :
Z : x1 = [3 0 , 6 0] x2 = [0 , 3 0] x2−x1=[−30,−10]
E:(2625−125/2∗x1−1/2∗x1∗x2−1/40∗x1∗x2 ˆ2+3/4∗ x1 ˆ2+1/40∗ x1 ˆ2∗x2−1/120∗x1 ˆ3−75/2∗x2 +3/4∗ x2 ˆ2+1/120∗ x2 ˆ3) / (60− x1)

N16 :
Z : x1 = [2 0 , 3 0] x2 = [2 0 , 3 0] x2−x1 =[−10 ,10]
E:(7850/3−60∗ x1 +1/2∗ x1ˆ2−40∗x2 +1/2∗ x2 ˆ2) / (60− x1)

N17 :
Z : x1 = [3 0 , 4 0] x2 = [2 0 , 3 0] x2−x1 =[−10 ,0]
E:(7850/3−60∗ x1 +1/2∗ x1ˆ2−40∗x2 +1/2∗ x2 ˆ2) / (60− x1)

N18 :
Z : x1 = [2 0 , 3 0] x2 = [1 0 , 2 0] x2−x1 =[−10 ,0]
E:(7850/3−60∗ x1 +1/2∗ x1ˆ2−40∗x2 +1/2∗ x2 ˆ2) / (60− x1)

N19 :
Z : x1 = [4 0 , 6 0] x2 = [0 , 3 0] x2−x1=[−60,−30]
E:(2400−40∗x1+x1∗x2−60∗x2)/(60− x1)

N20 :
Z : x1 = [3 0 , 4 0] x2 = [0 , 1 0] x2−x1=[−40,−30]
E:(2400−40∗x1+x1∗x2−60∗x2)/(60− x1)

N21 :
Z : x1 = [4 0 , 6 0] x2 = [3 0 , 5 0] x2−x1=[−30,−10]
E:(111000−3050∗x1+50∗x1∗x2−1/2∗x1∗x2 ˆ2+30∗x1ˆ2−1/6∗x1ˆ3−3000∗x2+30∗x2 ˆ2)/(3000−50∗ x1+x1∗x2−60∗x2)

N22 :
Z : x1 = [3 0 , 4 0] x2 = [3 0 , 5 0] x2−x1 =[−10 ,20]
E: (332500 /3+60∗ x1∗x2−3000∗x1−1/2∗x1 ˆ2∗x2+25∗x1ˆ2−3050∗x2+25∗x2ˆ2−1/6∗x2 ˆ3)/(3000−50∗ x1+x1∗x2−60∗x2)

N23 :
Z : x1 = [2 0 , 3 0] x2 = [3 0 , 5 0] x2−x1 = [0 , 3 0]
E: (332500 /3+60∗ x1∗x2−3000∗x1−1/2∗x1 ˆ2∗x2+25∗x1ˆ2−3050∗x2+25∗x2ˆ2−1/6∗x2 ˆ3)/(3000−50∗ x1+x1∗x2−60∗x2)

N24 :
Z : x1 = [4 0 , 6 0] x2 = [3 0 , 5 0] x2−x1 =[−10 ,10]
E: (332500 /3+60∗ x1∗x2−3000∗x1−1/2∗x1 ˆ2∗x2+25∗x1ˆ2−3050∗x2+25∗x2ˆ2−1/6∗x2 ˆ3)/(3000−50∗ x1+x1∗x2−60∗x2)

Listing 5.1: The value function V (q11 , q
2
1 , x

1, x2) as produced by our tool

68 5.8. CONCLUDING REMARKS

Chapter 6

Modeling embedded systems with timed
automata

6.1 Preliminaries

Our guiding modeling principle is to abstract away as much as possible from low-level details
such as the application code itself or hardware protocols and compensate for the lack of precise
information by increasing the uncertainty margins and taking this uncertainty seriously in the
analysis. There will be several types of under-determination in the durations of tasks and data
transfers or their arrival rates. These can be due to various origins: tentative ignorance in early
development stages, true data-dependent variability in the algorithms or unmodeled variability in
the architecture workload and physical conditions.

Our goal is to provide HW/SW designers with a tool for rapid design space exploration, that
is, given an application and architecture description with a specific deployment scheme, provide
performance evaluation at early stage in the design flow. For this we provide a high level language
for model description, on the top of timed automata models, which is the input for simulation and
formal verification (Fig-6.1).

Timed automata [6] have been invented to model delays and execution times in quantitative
way. We choose this formalism as a basis of our modeling framework. More precisely we use IF
toolset [48] where the timed model is that of timed automata with urgency [44]. In this chapter,
we present our modeling framework, while the syntax of our description language as well as the
techniques used for performance evaluation will be discussed in Chapter 7.

Evaluation can be done on different metrics such as platform cost or application latency in
order to compare several deployment strategies. Such criteria can be conflicting in the sense that
improving one of them implies worsening the other. Initially, designers have several alternatives
both in application implementation and in the choice of the target platform. Providing a way for
rapid evaluation of different options at early design stages, can help them to identify weakness
sooner. That’s why we believe that a clear distinction has to be made between applications and
target platforms, enabling a quick comparison between various combinations of implementations
to evaluate trade-offs.

69

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.1: Model description

As depicted in Fig-6.1 we divide the model description into 4 parts:

• Applications are modeled at the task level, i.e a piece of code is modeled as a timed pro-
cess. The basic unit is a job decomposed into tasks. A task is characterized by quantitative
estimations of its duration and the amount of data it exchanges with other tasks. Such a de-
scription is compatible in spirit with numerous data-flow and component-based framework
[31, 82, 179, 183, 22] advocated for writing such applications.

• Environment models the dynamics of task arrival according to some logical and timing
constraints.

• Architecture is an abstraction of MPSoC including high-level performance related features
such as processor speeds, bandwidth and latency of communication mechanisms, static and
dynamic power consumption of architecture elements, etc.

• System specifies the deployment policy for the application on the platform, namely map-
ping, scheduling and buffer sizing.

6.2 Application Model

Application reflects software components and their logical interactions without considering target
platforms. They are described by task-data graphs (Fig-6.2) which are a simple generalization of
the common task-graph model [64]. The basis component is a task that is an atomic computa-
tional entity. Application behavior is determined by the relationship between these tasks, defining
control and data flows. Control flow is represented by precedence links meaning that a task cannot
start before some other tasks terminate. On the other hand, data flow specifies that data has to
be communicated to a computational entity. It can be defined in two ways. In the first, a task
produces an amount of data which is consumed by another task. This is achieved by adding on
precedence link a quantity of data that has to be transferred between a task and its successors.
However, communications are not always the results of an explicit producer/consumer scheme. A
computation may need a chunk of some specific data structure for executing, like for example in
image processing where images are encoded by some object and several operations work on pieces
of it. The initial object is placed in some memory component, depending of the target architecture,
not necessarily known when the application is modeled. For this reason, we introduce the concept
of abstract data and communication task to model the fact that some task needs a quantity of data
to execute, meaning that data will be transferred between the memory component on which data
is initially placed and the local memory of the processing element on which the task has been
mapped. Depending on the mapping of the tasks onto the architecture and the data transfer mech-
anism used, e.g. DMA (direct memory access) or inter-process communication, these transfers are

70 6.2. APPLICATION MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.2: Application model

transformed into special communication tasks. The whole task-data graph is called a job type and
it is the basic unit of work whose instances arrive to be executed.

6.2.1 Task Model

A task is an atomic computational entity, similar to actors in SDF [134], processing kernels or
filters in streaming models of computation [183]. We distinguish computational tasks, reflecting
the execution of some piece of code, and transfer tasks, expressing data communications. Task
models are defined independently from target platform, that is, explicit deployment is specified by
the system component, and implies resource immobilization and a translation of tasks attributes
into duration.

A computational task is characterized by an amount of work measured by instructions or cy-
cles. Once a task is scheduled to execute on a processor with a given frequency, its amount of work
is translated into duration. At this level of abstraction it may be difficult to estimate precisely this
amount. To compensate for this, we define it with bounded uncertainty. The termination of a task
may be a pre-condition to the initiation of other tasks, that is, a task cannot start before some other
tasks terminate and this is modeled by precedence links. Precedence is viewed as a control depen-
dency but is also a common way to model data dependency between computational entities and
can be decorated with some amount of data when tasks need to communicated a non-negligible
quantity of data.

Definition 6.2.1. (Task) A Task τ is defined by an amount of work wτ = [lτ , uτ] with lτ ≤ uτ
measured by instructions or cycles. When a task τ is executed on a processing element working at
frequency f , its execution time is in the interval [lτf ,

uτ
f]

A generic timed automaton for a task is shown in Fig-6.3. Symbols ? and ! denote respec-
tively input and output signals. For every task, its automaton stays in state Wait Pred until all
its predecessors terminate (incoming signal pred). Termination of predecessors includes control

6.2. APPLICATION MODEL 71

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.3: Timed automaton for a task

dependency of other tasks and data dependency involving communication latency. Once all prece-
dence constraints are satisfied, the task requests a PE for an interval of workload (signal askP(l,u)).
When the system component maps it to a PE (signal Start Computation) it moves to the execute
state. Termination time (signal End Computation) depends on the task workload and the PE
characteristics. Notice that execution are non-preemptive, that is, once a task is mapped on a pro-
cessing element, the processor is released only after the entire task terminates. Signal pred is a
way to inform all successors of task termination.

6.2.2 Data Model

As explained in [112] data is an important aspect of all models, and going from one representation
of data to another representation often marks a distinctive step in the design flow. Idealized data
types, such as real or integer numbers, or tokens, are useful for investigating the principal proper-
ties of an algorithm or a functionality not blurred by the maneuvers necessary to deal with concrete,
implementation-oriented data types. Symbols are used to further abstract from the detailed prop-
erties of data which in reality may contain hundreds of thousands of bits arranged according to
some specific structure.

We abstract data as simple data blocks which can be accessed by read/write operations when
tasks are transferring some amount of data. We do not focus on any structural aspect of these data
blocks. Here the use of abstract data is a way to deal with data placement, that is on which memory
component data resides and to which memory component it has to be transferred. This mapping
will be defined in the system component and defining abstract data is done on the application side
independently from a specific architecture.

Data transfer is modeled by communication tasks which simply specify that some amount
of data has to be communicated between two application components. Concrete communication
realization depends on the mapping and the platform communication model e.g. DMA (direct
memory access) or inter-process communication.

72 6.2. APPLICATION MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Definition 6.2.2. (Communication task) A communication task is defined by a triple τ c = (src, dst, δ)
where δ = [lτc , uτc] defines a quantity of data measured in bytes to be communicated from a soft-
ware component src to another software component dst.

Because some treatments, like image processing, can produce a variable amount of data, we
allow bounded uncertainty on the data quantity to be communicated. Another characteristic for
communication tasks is precedence as for other tasks, it models the fact that data are produced or
consumed by some computational entity.

Figure 6.4: Timed automaton for a communication task

The timed automaton for a communication task (Fig-6.4) stays in state Wait Pred until all its
predecessors have finished. The triggering of a signal transfer to the system initiate the transfer
of an amount of data ([l, u]) from src to dst. Depending on the mapping to the target platform,
this will imply more or less latency and immobilization of different components: memory, buses,
DMA.

Once data has been written on target memory, the system component reports this fact by send-
ing a signal dataAvailable which denotes the end of the transfer and signal dataAvailable is used
to inform all successors.

The reason for using communication tasks is to make the model more general than the classical
task graph model where data transfer are specified on precedence links. With this model, data can
be communicated, not only between two computational entities, but from or to some abstract data
whose placement is defined afterwards depending on target architectures.

To illustrate this consider the simple example shown in Fig-(6.5). Given this simple algorithm
we would like to evaluate different implementation alternatives. At the application level, objects
manipulation are abstracted using abstract data components, omitting data placement on target
platform. The performance of the application on specific hardware architecture will then depend
on data mapping, i.e placement of A and B on memory more or less distant from the processing
element on which computation is done will give more or less communication latency. Evaluating
different mapping strategies can then be done easily without changing neither application nor ar-
chitecture models.

As we said previously, communication tasks are used to model communications between soft-
ware components, involving data transfer between two processing entities. We can distinguish
different cases:

6.2. APPLICATION MODEL 73

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.5: Example of communication task usage

• transfer(τ1, τ2, δ) for transferring δ bytes produced by task τ1 to task τ2 i.e from local
memory of processor on which τ1 has been mapped to local memory of processor on which
τ2 has been mapped.

• transfer(d, τ, l, u) for reading pieces of an abstract data d, used by τ . Transfer is done from
memory component where d has been mapped to local memory of processor on which τ has
been mapped.

• transfer(τ, d, l, u) for writing pieces of an abstract data d produced by τ . Transfer is done
from local memory of processor on which τ has been mapped to memory component where
d has been mapped.

The use of this kind of communication model is useful for describing dataflow concepts such
as pipelining or data prefetching. This will be discussed when we present DMA communication
in the architectural side.

6.2.3 Job Model

Components defined above are structured in a particular object named Job which is the basic unit
of work whose instances arrive to be executed.

Definition 6.2.3. (Job) A Job is directed acyclic graph J = (T,C,E) where

• T = {τ1, ...τn} is a set of computation tasks

• C = {τ c1 , ...τ cm} is a set of communication tasks

• E is a set of ordered pairs of tasks (precedence link), defining a strict partial order prece-
dence relation on T ∪ C

Jobs instantiation depends on environment components called generators that define their ar-
rival scheme. A job and its underlying elements are created dynamically according to generators
triggering.

Jobs have been extended to allow loops modeling, that is, jobs that execute a finite number of
iterations sequentially. In this case, instantiation of a new iteration is done by the job itself at the
end of its own execution.

74 6.2. APPLICATION MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.6: Job instantiation

6.3 Environment Model

One aspect of scheduling which is treated differently along communities is the dynamic aspect: in
classical real-time scheduling new task instances arrive periodically or quasi-periodically but these
are traditionally simple tasks without precedence constraints. In contrast, job-shop and task-graph
problems typically do not handle the dynamic “reactive” aspect, that is, a stream of job instances
that arrive one after the other, for example, a sequence of encoded image frames or web queries.
This aspect is extremely important, first because it represents the real nature of these applications
and, secondly, it favors solutions based on pipelining which is the concurrent execution of tasks
that belong to different job instances (see some definitions and theoretical investigations in [76]).
One approach to treat this recurrence aspect is to use cyclic task-graphs admitting a loop from
the last to the first task. While this might be suitable for modeling loops in programs where the
termination of one instance enables the execution of the next one, it is not at all natural for jobs
arriving from the outside, often independently of their processing by the system. To this end we
use the concept of an input generator, a process that generates a timed sequence of job instances
subject to some logical and timing constraints. The simplest generator is the deterministic periodic
generator which produces an instance of a job repeatedly in regular time intervals. Strictly periodic
generators are sometimes idealization of more time-noisy processes and we allow additional types
of non-deterministic generators listed below. The environment model is not restricted to a single
generator, but one can define several different generators. In all following definitions, O denotes
an offset i.e the time at which the first event is generated.

Single Shot Generator

This is the simplest generator which generates only one job instance after some non-deterministic
offset O, defined as a time interval. The automaton for this generator is depicted on Fig-6.7. A job
instance is created in the time interval [l, u].

Periodic Generator

A periodic generator generates an event e every P units of time. The sequence {tk}k=1...n of time
stamps for the events satisfies ∀k ∈ N, tk = O + k · P

Periodic Generator with Uncertainty

For this generator the time between two events ranges in the interval [P, P + J], that is, the time
stamps tk satisfy ∀k ∈ N, tk + P ≤ tk+1 ≤ tk + P + J where t0 = O. This type of generator
ensures that two events are separated by at least P and by at most P + J time units.

6.3. ENVIRONMENT MODEL 75

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.7: Timed automaton for a single shot generator

Figure 6.8: Periodic generator timeline

Figure 6.9: Timed automaton for a periodic generator

Figure 6.10: Periodic generator with uncertainty

The timed automaton (Fig-6.11) for this generator uses one clock. The first event is generated
after offset in interval [O,O + J] and then after each event the clock is reset to zero and the next
event is generated when C ∈ [P, P + J]

76 6.3. ENVIRONMENT MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.11: Timed automaton for a periodic generator with uncertainty

Periodic Generator with Jitter

The time stamps of the events produces by this generator satisfy, ∀k ∈ N, O + k · P ≤ tk ≤
O + k · P + J

Notice that we allow jitter to be greater than period in order to model bursts, a finite number
of events generated, practically, at the same time.

Figure 6.12: Periodic generator with jitter smaller than period

Figure 6.13: Periodic with jitter greater than period

6.3. ENVIRONMENT MODEL 77

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

The timed automaton for this generator (Fig-6.14) uses a counter N to enable jitter J to be
greater than the period P . Each time, clock C reaches the time period, N is incremented and the
next event must be generated in the interval [0, J − P · N]. If J ≤ P then events are generated
in [0, J] as shown in Fig-6.12. Otherwise, if J > P many events could be generated in a short
period. In Fig-6.13 we can see an example where J = 2.5 × P , the shaded area shows a time
frame, intersection of 3 “triggering intervals”, where 3 events can be generated simultaneously.

Figure 6.14: Timed automaton for periodic generator with jitter

Bounded Variability Generator

Let NI be the number of events in interval I . For this generator in every interval of time length ∆
the number of events e is at most n, ∀t,N[t,t+∆] ≤ n. Fig-6.15 shows an example of timeline for
a bounded variability generator which generates at most 2 events in every time interval of length
∆.

Figure 6.15: A bounded variability generator

The associated timed automaton (Fig-6.16) uses a vector of clocks of size MAX . Variable
MAX denotes the maximum number of events that can be generated in any interval of length ∆.
Variable first (resp. last) is used to memorize the index of the first (resp. last) clock measuring
time since the generation of the oldest event in the time frame of length ∆. Variable N counts the
number of events in the current time frame. Each time the first clock reaches ∆, N is decremented
and the index first is incremented to the next clock. An event can be generated at any time when

78 6.3. ENVIRONMENT MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

N < M and the time at which it has been generated is tracked by a new clock indexed by variable
last. When the number of events is equal toM we wait until first time frame ended before enabling
new event to be generated.

Figure 6.16: Timed automaton for bounded variability generator

Bi-Bounded Variability Generator

For every interval of length ∆ the number of events e is at least m and at most n, ∀t,m ≤
N[t,t+∆] ≤ n. Fig-6.17 shows an example of timeline for a bi-bounded variability generator
which generate at least 2 and at most 3 events in any time interval of length ∆ (shown as blue
rectangles).

Figure 6.17: A Bi-bounded variability generator

The timed automaton (Fig-6.18) works in the same way as that of bounded variability for the
generation of maximal number of event MAX . The difference comes from the state checkMin
which is reached each time the current time frame ends, and we remain in this state until the
minimal number of event MIN have been generated.

6.3. ENVIRONMENT MODEL 79

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.18: Bi-bounded variability generator timed automaton

6.3.1 Generators Characteristics

We summarize here some metrics about the different generators previously presented. Symbol ∆
represents a reference interval length and is associated with the period P in case of periodic-kind
generators. Min(a)/∆ (resp. Max(a)/∆) shows the minimal (resp. maximal) number of events
that can be generated in any interval of length ∆. Finally inter-arrival Min (resp. Max) indicates
the minimal (resp. maximal) inter-arrival duration between two consecutive events. Notice that
we assume that interval defined by ∆ is left-closed and right-open. For example for periodic
generator, considering a closed-interval, Max(e)/∆ will be 2 instead of 1.

Table 6.1: Characteristics of the different generators

Inter-arrival
Generator Min(e)/∆ Max(e)/∆ ∆ Min Max
Periodic 1 1 P P P

Periodic with jitter 0
⌈
J
P

⌉
P max(0, P − J) P + J

Periodic uncertainty 0 1 P P P + J
Bounded variability 0 n ∆ 0 (∆ if n = 1) ∞
Bi-bounded variability m n ∆ 0 ∆

6.4 Architecture Model

The architecture model defines the platform topology that is processing elements and memory
connected through some communication infrastructure. Modeling these components is generally
done with low level specification using HDL (VHDL, Verilog) or combined with software speci-
fication at system level (e.g SystemC). For rapid evaluation of different platforms or applications
we argue that it is necessary to keep applications and platforms as independent as possible. We

80 6.4. ARCHITECTURE MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

will present now, how we specify MPSoC architecture at a high level using timed automata mod-
els. Examples of different complete platforms will be shown in chapter 8, while here we focus on
models for each of the components.

6.4.1 Processing Elements

Processors can be of any kind (general purpose, controller, DSP, ASIC . . .) and are differentiated
by their specific properties. The simplest model for a processor is defined with a frequency/speed
which sets the number of cycles/instructions per time unit.

Figure 6.19: processor timed automaton

The timed automaton (Fig-6.19) for a simple processor model consists of two states, it stays
in state idle until it receive compute(l,u) from a task component through the system component
then it goes to state busy for a duration depending on the required amount of work ([l, u] defined
as cycle or instruction number) and its frequency f (i.e [lf ,

u
f]).

Power consumption is, in some situations, no less important than execution time. We distin-
guish energy and power as power is energy consumption per time unit. The high level power con-
sumption characteristics of processing elements and other components can be identified [198, 27]
by:

• Voltage drops: The dynamic power consumption is proportional to the square of the power
supply voltage (V 2). Therefore, by reducing the power supply voltage to the lowest level
that provides the required performance, we can significantly reduce power consumption

• Toggling: A circuit uses most of its power when it is changing its output value. By reducing
the speed at which the circuit operates, we can reduce its power consumption (although not
the total energy required for the operation, since the result is available later).

• Leakage: Even when a circuit is not active, some charge leaks out of the circuit nodes.
Completely disconnecting the power supply eliminates power consumption, but it takes a
significant amount of time to reconnect it.

As an example Fig-6.20 shows the power state machine [27] of StrongARM SA-1100 [111]
which provides three power modes, run mode is normal operation and has highest power con-
sumption, idle mode saves power by stopping the processor clock and sleep mode shuts off most
of the activity.

6.4. ARCHITECTURE MODEL 81

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.20: Power state machine of StrongARM SA-1100 from [27]

Note that adding power consumption to the model we move beyond timed automata to the
model of linearly-priced timed automata [24, 128] but since we are applying discrete event simu-
lation we do not have to worry about it. In fact, discrete event simulation can be applied also to
richer models of hybrid automata whose reachability problem is undecidable. Power consumption
estimation will be explained in Chapter-7.

In the same spirit we define a model for handling Dynamic Frequency Scaling (DFS). This
is a widely used technique aimed at adjusting computational power to application needs. It is
often associated with Dynamic Voltage Scaling (DVS) enabling significant power reductions when
computing demand is low. We define the model of this kind of processor with a fixed number of
frequency level. For each of them one has to define corresponding power consumption information
and latency for switching between different modes.

6.4.2 Memory

Memory can be of different types, here we restrict ourself to non banked memory (i.e reading and
writing are blocking operation). Writing and Reading are separated to allow different parameters
definition depending on each operation, for example, consumption can be different for reading or
writing on a memory or it could be faster to read than write or conversely.

Figure 6.21: Timed automaton for a memory component

82 6.4. ARCHITECTURE MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

A memory component is defined with different latency parameters, an initial latency which
occurs each time the component is accessed, and a rate (one for reading and one for writing)
which defines the number of data units treated per time unit. Associated with different states of
the automaton (Fig-6.21) we define consumption parameters.

One memory component can be linked to a processing element in order to model local memory
or to a bus component to model shared/off-chip memory as shown in Fig-6.22.

Figure 6.22: Memory architecture example

6.4.3 Communication

Communication is modeled through message passing. Each architectural component is modeled
with some kind of network controller containing static routing table. Communication messages
are injected in the architecture model by the system component, according to some application
transfer task, on a specific architectural component. For example the routing table of a processing
element contains informations about the path to its local memory or to a bus. All routing tables
are computed statically from the whole architecture model which is simply a graph.

6.4.3.1 Bus-based Communication

The base component for modeling communication is the bus. It consists of a component which
links many other components together (memory, processors). It has a finite number of communi-
cation channels allowing multiple communications do be done simultaneously.

The bus model stores communication messages in a FIFO queue and dispatches them on
link of the target component through communication channels. Transferring a message has some
latency depending on the message size.

6.4.3.2 NOC Communication

The topology of a network on chip specifies the structure in which routers connect IPs together.
There are many different structures adopted for the NOC domains such as tree [98] butterfly-tree
mesh [159] torus [127] folded torus [69] variations of the ring in octagon [117] and spidergon [66]

We focus here on spidergon scheme of the XSTREAM architecture [32]. In the spidergon
topology nodes are connected by unidirectional links. Let the number of nodes be an even number

6.4. ARCHITECTURE MODEL 83

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.23: Bus model

N = 2 × n. Each node, i.e processing element, in the network pei for 0 ≤ i ≤ N is directly
connected to node pej for j = (i+ 1) mod N , j = (i− 1) mod N and j = (i+ N

2) mod N . An
example with 8 processing elements is shown in Fig-6.24

Figure 6.24: Spidergon topology with 8 processing elements

A Spidergon topology of N nodes has 3
2 × N link and a diameter of dN4 e hops. Each node

has its own routing table defined statically and defines the shortest path to a target node. When a
communication message arrives in a node, the router has to choose between 3 possible outcomes:
the clockwise right link lr, the clockwise left link ll and the across link la. As an example the
routing table for processing element pe0 from Fig-6.24 can be defined as shown in Table-6.2

Table 6.2: Routing table for processing element pe0

Link Target PEs
lr {pe1, pe2}
ll {pe7, pe6}
la {pe3, pe4, pe5}

84 6.4. ARCHITECTURE MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Communication latency is modeled with link bandwidth parameter and can be of different
speeds. The energy consumption model is defined by associating a static power value to state idle
(there is no communication) and a dynamic power value to state busy when the link is communi-
cating. Communication among links is blocking, that is, when a transmission starts on a link, the
next communication has to wait until the link is released for starting, and communication messages
are scheduled in FIFO order on the same link in a non-preemptive manner.

6.4.3.3 DMA-based Communication

DMA are dedicated processing elements that can transfer large amounts of data between memory
locations without processor intervention. They can be used in a double buffering scheme shown
in Fig-6.25, to improve performance.

Figure 6.25: Data transfer: single versus double buffering

Typically a DMA engine is used to transfer data between the local memory of processing
elements and off-chip memory. We do not restrict ourself to a particular architecture, one can use
DMA with PEs having each their own local memory with a global DMA (Fig-6.26) or with DMA
dedicated to each PE (Fig-6.27) or with PEs sharing a common local memory (Fig-6.28).

Figure 6.26: DMA architecture with local memory for each PE

DMA is defined with an initialization latency each time a new transmission request is done and
some dynamic latency depending on the size of the data to be transmitted. Energy consumption is
defined as for other components with static and dynamic power value.

6.4.4 On Different Abstraction Levels

The granularity at which models are defined plays an important role in the simulation and veri-
fication steps. Given the opportunity to use different levels of abstraction even at high level of
specification can be very useful. One way to use architecture model at highest level of abstraction

6.4. ARCHITECTURE MODEL 85

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.27: Architecture with separate DMA for each PE

Figure 6.28: DMA architecture with a shared memory for all PEs

could be to entirely abstract communication architecture and is commonly the case in analysis
framework ([190, 158, 193, 168]) or in scheduling problems [64, 175, 139]

If the interface (i.e signal transmission) remains the same, then it would be simple to replace a
certain bus or NoC model by another by merely replacing the corresponding timed automata. Be-
cause each component is defined by its own automaton communicating through signals interface,
it would not affect the behavior for other hardware components at all. This allows easy investiga-
tion of the impact of any different network scheme that can be modeled as a timed automaton.

The simplest model could consist of modeling only processing elements and a bus component
which defines the entire communication scheme. A communication task can be scheduled on this
bus according to some policy and latency is proportional to the amount of data. With this abstrac-
tion, memory components are ignored and R/W operations are included in the latency model of
the bus. In the same spirit, abstracting network while modeling the use of a DMA can be achieved
by defining the transfer time with a more detailed function as

T (d) = I + α(p)× d (6.1)

which is inspired from [168] where T (d) represents the time needed for transferring d amount of
data through the network (including memory reading and writing, DMA cost), I is some initial-
ization latency (which can correspond to DMA or Bus initialization), α(p) is some transferring
cost parametrized by the number of processors sharing the interconnect.

86 6.4. ARCHITECTURE MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.29: Abstract NoC timed automaton

The timed automaton for this abstract NoC is depicted on Fig-6.29. Each time a transfer is re-
quested by signal transfer a clock c[i] is initialized and the latency is computed according to (6.1).
When transfer time for a specific clock elapses the system component is informed by sending the
signal dataAvailable.

In the same way we can provide more detailed models, especially for data transmission among
bus components. Bus accesses are non-preemptive and multiple requests are treated sequentially,
while in reality it is done in a round-robin manner, that smoothens the latency of pending transfers.
This can be achieved by cutting data transfers into multiple smaller ones, and scheduling them on
buses according to a round-robin scheme.

One advantage of our modeling framework is that defining different platform models can be
done easily by defining a new timed automaton simulating the desired behavior according to signal
arrival. We will discuss how one can extend already existing models in Chapter 7.

6.5 System Model

The aim of the system component is to characterize the deployment of an application on an ar-
chitecture. This deployment is specified through mapping and scheduling definitions. We do not
attempt here to find an optimal one but to provide a way to evaluate different models easily, that
is comparing different scheduling strategies, evaluating an application on different architectures
or several applications on a given architecture. For this reason, application and architecture are
modeled independently and the link between them is done through this system component.

Scheduling consists in assigning a starting time for each task on a specific architectural compo-
nent. Optimal schedulers can be sometimes computed, on simplified models, under deterministic
behaviors. One might be interested in evaluating them while admitting uncertainty. A schedule
can be computed according to different criteria such the overall termination time, the overall en-
ergy consumption, the overall communication time, architecture cost, etc. Considering opposing
criteria there is no unique optimal solutions but rather a set of incomparable trade-offs.

One has to define several system components depending both on application and architecture
(Fig-6.30). Abstract data need to be mapped initially on concrete memory components, computa-
tion tasks need to be scheduled with some scheme on processing elements and transfer tasks have
to be scheduled on the network (maybe initialized by some component like processor or memory).

6.5. SYSTEM MODEL 87

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

Figure 6.30: System model

6.5.1 Computation Task Scheduling

Task scheduling can be done according to different schemes which can be local to one processing
element or global to all of them. We will present in the following those that we have implemented.
Adding new scheduling policies can be done easily by writing the scheduler as a timed automaton.
Notice that for all following schedulers we assume that the latency of the scheduling operation
itself is negligible.

FIFO Scheduling

Tasks are pushed into processing elements according to their arrival order. One can choose a global
scheduling with one global FIFO queue, where tasks are mapped to the first available processor
(Fig-6.31). In that case, task deployment is done dynamically during execution and task instances
could execute on different processing elements.

Figure 6.31: Global FIFO scheduler

Another way to use FIFO scheduling is to define a fixed mapping, i.e each task is assigned
a specific processing element and each instance will execute on it. For that we define one FIFO

88 6.5. SYSTEM MODEL

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

queue for each processing element and tasks are pushed in queues according to a mapping table
(Fig-6.32).

Figure 6.32: Local FIFO scheduler

Fixed Priority Scheduling

Fixed priority scheduling is an extension of the FIFO policy. Each computation task is associated
with one PE and a fixed priority, several tasks can have the same priority so that they will be
executed according to FIFO scheduling. FPS is implemented by using a priority table, i.e. there
are a finite number of priority queues and each one is popped according to FIFO policy when all
queues of higher priority are empty. Each time a computation task wants to acquire the PE it is
put in its corresponding priority queue. As for FIFO schedulers, one can define FPS globally or
locally.

Strict Priority Scheduling

It is a way to model static scheduling where the schedule is defined deterministically, i.e the task
ordering is fixed and known before execution. Static schedule are given as a list of triples (τi, ti, pi)
saying that task τi will start at time ti on processing element pi. That can be interpreted as priority
assignments on tasks that ensure the same execution order.

Each computation task is associated with one PE and a strict priority and each task mapped on
the same PE has a different priority. For each PE all associated tasks will be executed according
to a strict order. Each time a computation task wants to acquire the PE it is put in a waiting list
and has to wait until all higher priority tasks have been executed.

Frequency Scaling Scheduling

Each computation task is associated with one PE , a fixed/strict priority, a starting frequency/speed
to which the PE will switch before the beginning of the computation. Optionally an ending fre-
quency/speed can be specified enabling switching at the end of the computation. This can be used,
for example, for halting a PE after some computation.

6.5. SYSTEM MODEL 89

CHAPTER 6. MODELING EMBEDDED SYSTEMS WITH TIMED AUTOMATA

6.6 Evaluation

The aim of this modeling framework is to provide design space exploration for performance eval-
uation. This is achieved by composing all automaton (application, environment, architecture and
system) to yield a global timed automaton which captures the semantics (all behaviors) of the
system and this is the object of our various methods of analysis and simulation. For that we need
a way to specify performance metrics that have to be measured. We focus here on property check-
ing, that is how to ensure that some property is not violated. Quantitative evaluation will be done
by statistical analysis on simulation traces and will be discussed in chapter 7.

Observers

For property verification with reachability analysis we use the concept of observers defined in the
IF toolset that we have presented in chapter-3. Observers express in an operational way safety
properties of a system by characterizing its acceptable executions sequences.

An example of property we are interested in is response time. We want to ensure that a job or
a task always meets its deadline. For that we define an observer that monitors job/task behavior i.e
it create a clock when the task becomes active and leads to an error state if the task does not finish
until some specified deadline. The observer for this property is depicted in Fig-6.33. In case of
violation we can retrieve a trace of the execution leading to this state. We present trace generation
in more detail in chapter 7.

Figure 6.33: Observer for checking the deadline of a task

In this chapter we have shown examples of the basic components used in our modeling framework.
They include computation and data transfer tasks encapsulated into jobs on the application side,
input generators that model job arrivals, architecture components such as processors and busses as
well as deployment (mapping and scheduling) policies. All those components are translated into a
unified semantic models of timed automata whose composition provides the model for the various
performance evaluation methods. As is also described in Chapter 7, one can add new models,
or refine existing ones to be more detailed, at relatively small investment. The effect of model
refinement on the feasibility of analysis depends and the method used and is, of course, more
significant for methods based on verification (reachability computation) than for simulation-based
techniques.

90 6.6. EVALUATION

Chapter 7

Realization: The DESPEX Tool

In the context of this thesis we developed tool for performance evaluation at early design stage,
called DESPEX (DEsign SPace EXplorer). According to [81], a formal model of a design should
consist of the following components:

• A functional specification of the system;

• A set of properties that the design must satisfy;

• A set of performance indices that evaluate the quality of the design (cost, reliability, speed,
size);

• A set of constraints on performance indices.

We will discuss in this chapter how the above components are implemented and how one can use
the tool for rapid design space exploration.

7.1 General architecture

Evaluating performances of an application on a given platform starts with the specification of the
whole system. We provide a description language dedicated to this purpose. Users have two
alternatives to describe an abstract MPSoC model, by using either textual or graphical modeling
language. Once the model is defined, automatic translation to timed automata is performed by
generating IF code. The IF code is then compiled using the IF toolset and provides an executable
model on which one can perform reachability analysis or simulation. The result of such analysis is
a timed trace on which several processing can be done such as graphical visualization or statistical
analysis. Simulation results can be saved by automatic report generation in various formats. We
will discuss in the following how the different steps, shown on fig-7.1 are done.

We provide a command-line tool chain and a graphical user interface. The tool consists mainly
of 25K lines of C++ code, developed with a concern for easy scalability, using established software
design concepts.

91

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.1: Tool architecture

7.2 Model description

Performance analysis is based on models which are generally defined using some specification
language. We developed a textual language for modeling MPSoCs and applications at a high
level of abstraction. An aim of this language is to remain as generic as possible while being easily
expandable. As shown in chapter 6, our model is structured in four parts: application, environment,
architecture and system. Each of their components is specified by a set of high level characteristics
influencing timed automaton behavior. This can be viewed as hierarchical components defined
with typed parameters. Fig-7.2 shows this hierarchy for application and environment components.

92 7.2. MODEL DESCRIPTION

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.2: Component characteristics

• An application is specified by jobs where:

– Tasks are characterized by an amount of work measured by instructions or cycles.

– Communication tasks are characterized by a quantity of data to be transferred from a
source to a destination

– Precedence links models precedence constraints over entities and can be labeled with
a quantity of data to specify data flow.

• The environment is specified using input generators characterized by particular parameters
that define triggering scheme (period, jitter . . .) .

• The architecture is specified by a graph structure connecting the following components with
specific parameters:

– Processor: frequency, power consumption values.

– Memory: R/W rate, access latency, power consumption values.

– Bus: bandwith, access latency, power consumption values.

– DMA: access latency, power consumption values.

• The system is defined by:

– A list of local schedulers depending on the number of processors within the platform,
or by a global scheduler. Each scheduler is typed according to its policy and is char-
acterized by a mapping table, which associates tasks with processors.

– a list of data mappers that associates abstract data with memory elements.

7.2. MODEL DESCRIPTION 93

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Concretely, the implementation of this model relies on what we call abstract model, allowing
genericity and easy scalability of our modeling framework. The abstract model provides indepen-
dently from the factual model, basic operations for parsing a textual description, edition through a
graphical user interface (GUI) or exploration. We present, in the sequel, its structure more in detail.

The abstract model defines generic hierarchical objects on which basic operations can be ap-
plied. Basically, it is structured as a generic hierarchical graph pattern, on which textual descrip-
tion is built. We implement an abstract component as an object with generic parameters and
possibly containing other components based on composite design pattern. Fig-7.3 shows the class
hierarchy.

Figure 7.3: Class hierarchy

An abstract component is specified with a type and an identifier, implemented as string param-
eters, and may contain other components. Fig-7.4 shows the specific grammar associated to these
abstract components, enabling description with a textual language.

Figure 7.4: Abstract components grammar

Parameters are implemented in the same way, as simple types like integers, booleans or strings
or as compound ones like lists or tables. For textual description, a grammar (Fig-7.5) is also asso-
ciated with parameters objects.

94 7.2. MODEL DESCRIPTION

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.5: Abstract parameters grammar

This abstract model is the center of our software architecture, depicted on Fig-7.6. The con-
crete model which defines concrete instantiations is derived from it and most operations are done
on this abstract object. This makes it possible to extend the modeling framework with low imple-
mentation effort.

Figure 7.6: Model implementation

7.2. MODEL DESCRIPTION 95

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Basically, the implementation is based on Model-View-Controller (MVC) design pattern. Any
textual description that follows the grammar defined above, can be read by the parser. Therefor,
object assignment is managed by a factory component. Model exploration uses a visitor design
pattern, that gives the ability to add new operations to existing structures without modifying those
structures. Visitors are used for different processing like timed automata generation, textual print-
ing of the model or for graphical viewing.

Graphical language intends to help users describe models in a graphical style, like Statecharts
[104] or UML [167]. We provide both a textual language and a graphical language for model
specification. An overview of the graphical interface editors is shown in Fig 7.7 and Fig 7.8. The
graphical interface, written using Qt [41], works directly with the abstract model, that is, each
abstract component is associated with a different graphical view which allows model edition. The
reason for working on the abstract model is the same as for the textual language, it gives more
genericity, that is, the GUI is not only dedicated to a specific language, but language extension
does not imply much implementation work.

Graphical views depend on component or parameter type. A composite component is defined
through a scene editor in which one can add some other components by pushing graphic items.
Components parameters are viewed and editable through dedicated items depending on their type
and are collected in a treeview. As for the textual language parser, a factory component is respon-
sible for graphical objects creation.

Figure 7.7: Textual editor.

96 7.2. MODEL DESCRIPTION

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.8: Graphical editor.

Property Definition

The evaluation of a model is done by estimating performance indices. By specifying constraints
on those indices, one can perform reachability analysis to check whether the model satisfies a set
of properties. As explained previously, these properties are encoded as timed automata observers
and can also be used during stochastic simulation. In that case, they are assimilated to monitoring
processes, close to the work done in [155] using a temporal logic front-end. Timing behavior can
be described by the time interval between a specified pair of events. A property on such interval
is then defined by associating a deadline constraint. On the other hand, statistical estimation on
these intervals, is provided by stochastic simulation and trace analysis.

We provide an XML-based language for properties specification, as constraints on time inter-
vals between start and end events, in timed automata models. An example of definition for the
response time of a job is shown in Listing-7.1 and the language grammar is shown on Fig-7.9

<p r o p e r t y name=” ResponseTimejob ” d e a d l i n e =750>
< s t a r t p r o c e s s =”{ j o b }0 ”>
< s t a t e name=” i n i t ” f l a g =” IN ”>< / s t a t e>

< / s t a r t>
<end p r o c e s s =”{ j o b }0 ”>
<e v e n t name=” k i l l ” >< / e v e n t>

< / end>
< / p r o p e r t y>

Listing 7.1: Property definition example

7.2. MODEL DESCRIPTION 97

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.9: Properties language grammar

In the same way, one can define power consumption values for hardware components, by
associating particular measure with states as shown in Listing-7.2 and Fig-7.10.

/ / consumpt ion p a r a m e t e r s f o r a memory component
<consumpt ion p r o c e s s =” locMem”>
< s t a t e name=” i d l e ”> 61 < / s t a t e>
< s t a t e name=” w a i t ”> 61 < / s t a t e>
< s t a t e name=” r e a d ”> 91 < / s t a t e>
< s t a t e name=” w r i t e ”> 91 < / s t a t e>

< / consumpt ion>
/ / consumpt ion p a r a m e t e r s f o r a p r o c e s s o r component
<consumpt ion p r o c e s s =” pe0 ”>
< s t a t e name=” i d l e ”> 72 < / s t a t e>
< s t a t e name=” busy ”> 362 < / s t a t e>
< / consumpt ion>

Listing 7.2: Power consumption definition example

98 7.2. MODEL DESCRIPTION

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.10: Power consumption specification grammar

Model Extension

The model can be easily extended with minimal programming effort. Adding new parameters is
the simplest operation, consisting simply in adding them in a concrete object and will automati-
cally be propagated in graphical views and in the textual language without any reprogramming.
Adding new components consists in defining a new object deriving from any abstract component
and some coding is required in the various component factory. Finally, a timed automaton for the
new component has to be provided in the IF printer.

7.3 Translation to Timed Automata

Once specification is done, we provide automatic translation to timed automata by generating IF
code. Each component is associated with a timed automaton communicating via signals. One can
see the overall architecture as a library of timed automata and extending or adding new component
in the model implies defining its corresponding automaton as an IF process properly managing
input and output signals.

Figure 7.11: Timed automata translation

Properties encoded as timed automata observers are generated at the same time. The whole
timed automata library is then compiled into an executable model provided by the IF toolset (Fig-
7.12). This allows reachability analysis or stochastic simulation.

7.3. TRANSLATION TO TIMED AUTOMATA 99

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.12: Simulation flow

Command Line Usage

Parsing and generation of an executable simulator is done by invoking the following command:

DFtoSimulator -i <DFfile> -o <simulator> [option]

-i <DFfile>: model specification in the description language
-o <simulator>: specify name of generated executable simulator

[option]:
-a : if specified generate simulator for reachability analysis

otherwise simulator is compiled for stochastic simulation
-p <file> : properties file input

This generates an executable simulator.x, if option -a is not specified, simulator.x is compiled
with all needed library for stochastic simulation including random number generation utility.

7.3.1 Reachability Analysis

The goal of reachability analysis is to check whether some properties are satisfied or not. For
a given model and a property we construct an observer, an automaton that monitors the global
behavior and reports an error on property violation. The verification process consists of exploring
the state space of the product system. In case of property violation, one get an error trace which
can be visualized with our tool to give designers a better understanding on components behaviors
that leads to an undesirable state.

In the same spirit as observers we use observer variables to store some specific values, like
worst case response time of a job, during the exploration process. These variables are simply
defined as static global variables and are not part of the state variables, i.e they do not influence
system dynamics. For example, to get the worst case response time of a job, we can use an observer

100 7.3. TRANSLATION TO TIMED AUTOMATA

CHAPTER 7. REALIZATION: THE DESPEX TOOL

(fig-7.13). Variable WRT is an observer variable, each time the job ends we store the maximal
response time value. In the same manner we can retrieve best cases values.

Figure 7.13: Observer for retrieving worst response time of a job

Command Line Usage

Running reachability analysis is done by:

simulator.x [traversal] [options] [-q file] [-t file]
-q file : save all explored state in file
-t file : save all explored transition in file

[traversal] must be one of:
-bfs : exhasutive breadth first search
-dfs : exhaustive depth first search
-inter : interactive exploration

[options] can be any of:
-se : stop on error states (bfs,dfs traversal only)
-ce : cut on error states (bfs,dfs traversal only)
-te : trace paths to error states (dfs traversal only)
-po : partial order reduction

7.3.2 Stochastic Simulation

Depending on the size of the model it may be difficult or even impossible to perform reachability
analysis due to state space explosion. We provide stochastic simulation as an alternative on se-
mantically equivalent models. Timed automata can be used to perform discrete event simulation
by using a randomized reachability exploration. One point which is not defined in timed automata
formalism is how timing uncertainty are distributed. The stochastic model can be viewed as a re-
finement of the TA model. It has the same set of behaviors but with a probability measure defined
on the space of behaviors which is non-zero exactly on the feasible ones.

From Timed Automata to Duration Probabilistic Automata

We restrict ourself to bounded uncertainty and we explain in this section how we integrate prob-
abilistic information into timed automata model. The resulting model of duration probabilistic

7.3. TRANSLATION TO TIMED AUTOMATA 101

CHAPTER 7. REALIZATION: THE DESPEX TOOL

automata (DPA) is investigated theoretically in Chapter 4 and 5 while here we focus on using it
for simulation based statistical analysis.

Figure 7.14: Standard description

The idea, here, is to define a random variable for each uncertainty interval, and to replace
every guard which is in the form of interval by drawing from the random variable. To illustrate
this, consider the automaton of Fig-7.14. Clock c, which is set to zero upon the start transition,
measures the time elapsed since the activation. This start transition is instantaneous and can be
initiated by some external supervisor. The timing of leaving state q′ is based on the clock value
and the temporal guard φ(c), which is simply the condition c ∈ [l, u]. In the stochastic model,
we associate a probability density with the duration of such step, which is technically expressed
as the distribution over the values of clock c when we leave state q′. We use a slightly modified
(but equivalent) version of the basic automaton, as shown at Fig-7.15. Rather than having the
start transition deterministic and delegating the non-determinism to the end transition, we use an
auxiliary variable y which is assigned non-deterministically upon start and which should be equal
to c upon end. In the set-theoretic setting this means an assignment y ∈ [l, u] while for stochastic
model this means drawing a value for y according to distribution φ, which we denote by y := φ().

Figure 7.15: Non determinism is decoupled through random variable y

Models remain the same as those used in reachability analysis except for timing transitions
that are translated into stochastic ones. Random variables associated with intervals are uniformly
distributed in our model. This choice was made because it is the simplest one, and at the level of
abstraction on which we work, it may be difficult for designers to estimate precise characteristics.
Based on past experiences it seems quite easy to give lower and upper bounds, but without further
information on how it may be distributed between them, uniform distribution could be considered
as a good assumption. In the case where more information is available one can define other
bounded-support distributions. For example, finding precise values for number of cycles in a task
can be a difficult work at early design stage. One can estimate lower and upper bounds or if it
is possible one can discretize the distribution by splitting interval into smaller one as depicted on
Fig-7.16.

Figure 7.16: Uniform versus discretized distribution

102 7.3. TRANSLATION TO TIMED AUTOMATA

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Concretely, we extend the IF toolset with random number generators that performs correctly
according to given probability distribution. Since we want to be able to compare, by statistical
simulation the performance of different deployments of the same application with the same dis-
tributions on duration, we should be careful to ensure experimental repeatability and sample the
random variables in a way which is independent of the order of execution of different tasks. Be-
cause of the use of a random number generator, this will not happen if we draw the duration just
before we start the task. Instead, we draw from all the duration random variables at initialization
time, and repeat the same values when we compare deployments.

Command Line Usage

Running a stochastic simulation is done by:

simulator.x -simDuration <num> -savesim <traceFile>
-simDuration <num>: simulation length where <num> is in tick unit
-savesim <traceFile>: generated trace file

Graphical Interface Usage

Simulation and reachability analysis can be done through the GUI. One can do interactive or step
by step simulation and visualize timed traces on the fly or offline for error traces resulting from
reachability analysis. Fig-7.17 gives an overview of the tool capabilities.

Figure 7.17: GUI for simulation and reachability analysis

7.4 Trace Analysis

Timed traces result from stochastic simulation or from property violation during reachability anal-
ysis. To give designers a better understanding on components behaviors that leads to an undesir-
able state after reachability analysis, we provide trace visualization with a graphical viewer called
TraceNavigator. An example of trace view is shown on Fig-7.18.

7.4. TRACE ANALYSIS 103

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.18: Simulation trace visualization with TraceNavigator

Stochastic simulation produces timed traces in XML format, on which statistical evaluation is
done off-line using TraceAnalyzer. It takes as input a properties file and a simulation trace. The
trace is then parsed and annotated with the list of values for each property. Statistics are then
calculated and graphics are generated by using scipy [114] and matplotlib [109] Python library.
Statistical reports are automatically generated as rst [95] files allowing easy formatting in various
ways (html, pdf, odt . . .).

Timing Evaluation

To properly design an embedded system it is important to understand the effect that scheduling
has on system performance. Scheduling analysis calculates worst-case and best case task response
times, i.e the time between task activation and task completion. Worst case response time can
then be compared against deadlines. We have seen that computing worst case response time or
checking deadlines can be achieved with reachability analysis. In addition to the best-case, worst-
case bounds, it can also be very helpful to know how response time is distributed between bounds.
This is achieved by statistical analysis of traces from simulation. Typical statistical measures are:

• State distribution for components (ex: processor or bus utilization)

• Response time distribution, mean, maximum and minimum values.

• Latency (bus access, memory R/W . . .)

These measures are done according to properties specification, defined as timed intervals.
For each interval, we get general statistical information like maximal, minimum and mean values
together with probability distribution as shown on Fig-7.19.

Power Consumption Estimation

Recall that power information transforms the timed automaton into a linearly-priced timed au-
tomaton [24, 128] whose analysis is implemented in UPPAAL [23] but not in IF. For this reason
(and also due to scalability) we avoid reachability computation and focus on simulation. Energy
consumption estimation is done via trace analysis. Each state of an architecture component is
associated with a power value. So we can derive from a simulation trace the energy consumption

104 7.4. TRACE ANALYSIS

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.19: Example of response time distribution

for each component. Let δsi be the time duration between entering and leaving state si and Psi be
the power value associated with state si. The energy consumption for a component Cj is then

ECj =
∑
si

δsi · Psi

and the mean power for component Cj is

PCj =
ECj
δsim

with δsim is the simulation duration.
The energy consumption ES and mean power PS for the whole system are given by:

ES =
∑
Cj

ECj

PS =
∑
Cj

PCj

Complementary we can estimate maximal power as

maxt(
∑
sk

Psk)

with sk all enabled state at time t.
As an example Fig-7.20 shows energy consumption proportion between hardware components

and power of the whole system during time on Fig-7.21.

7.4. TRACE ANALYSIS 105

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Figure 7.20: Energy proportion

Figure 7.21: Power

Command Line Usage

TraceAnalyzer -i <traceFile> -p <propertyFile> -o <report> [options]

-i <traceFile>: simulation trace file
-p <propertyFile>: property definition file
-o <report>: output report name

Options:
-f [html|tex|pdf|odt] : specify output format

106 7.4. TRACE ANALYSIS

CHAPTER 7. REALIZATION: THE DESPEX TOOL

Statistical Evaluation with TraceNavigator

The first functionality of TraceNavigator is to provide trace visualization as shown on Fig-7.18.
In addition, it gives a view of quantitative estimation for a given set of metrics like power con-
sumption of different hardware components (Fig-7.22), response time of software components
(Fig-7.24) or states distribution (Fig-7.23).

Figure 7.22: Consumption overview with TraceNavigator

Figure 7.23: States distribution for a task component

Figure 7.24: Response time overview

7.4. TRACE ANALYSIS 107

CHAPTER 7. REALIZATION: THE DESPEX TOOL

108 7.4. TRACE ANALYSIS

Chapter 8

Case Studies

In this chapter we demonstrate the application of the tool to several examples. We show first on
a synthetic example how temporal uncertainty influences performances analysis. We then present
two case studies: an evaluation of various alternatives for an image processing application and the
deployment of a radio sensing application on an embedded platform.

8.1 Reachability vs. Corner-Case Simulation

This section will demonstrate on a simple example that an analysis based exclusively on worst
case execution times might not catch the worst case behavior.

8.1.1 Model Description

The application consists of the task graph of Figure-8.1 and the architecture consists of two pro-
cessors of different types P1 and P2 as shown in Figure-8.2. The tasks are partitioned into two
types with A tasks running on P1 and B tasks on P2. The lower and upper-bound on the task
durations are shown in Table-8.1 (for simplicity we normalize processors speeds to 1). We assume
one instance of this job produced by a single-shot generator at time 0. We assume a FIFO sched-
uler for each processor which executes, without preemption, the appropriate tasks in the order they
become enabled.

Figure 8.1: Task graph example
Figure 8.2: Simplified Heteroge-
neous Architecture

109

CHAPTER 8. CASE STUDIES

Task Workload min Workload max
A1 2 3
A2 3 4
A3 4 5
A4 1 7
B1 2 6
B2 3 4
B3 4 6

Table 8.1: Task workload

8.1.2 Analysis

For that example, the property to verify is that the response time of the task-graph does not exceed
20. We first do analysis based on deterministic values (lower and upper) and then show some
results using non-deterministic workloads for computation tasks.

8.1.2.1 Worst Case Analysis

We take the application model with a deterministic workload for each task. It is common to take
the worst case execution time for each task in Table-8.1, in order to get a worst scenario for the
whole execution.

The analysis gives a response time of 19 time units which is less than the deadline (20). The
execution trace is depicted in Fig-8.3. Colors are associated with component states, executing in
red, waiting for predecessors in purple and waiting for the processor in yellow. Based on this
result, one might conclude naively that the timing requirement is satisfied because the worst case
response time is under the deadline.

Figure 8.3: Execution trace for worst-case duration

8.1.2.2 Best Case Analysis

Likewise we could take the best case for each task from table-8.1 in order to get an estimation
of the best scenario. The analysis gives a response time for the task graph of 13 time units.
The execution trace is shown on Fig-8.4. Based on worst case and best case analysis one might
therefore conclude that response time will be in [13, 19] and so the timing requirement is satisfied.

110 8.1. REACHABILITY VS. CORNER-CASE SIMULATION

CHAPTER 8. CASE STUDIES

Figure 8.4: Execution trace for best-case duration

8.1.2.3 Reachability Analysis with Uncertainty

Now we take the original model for the application i.e tasks workload are defined as the intervals
in Table-8.1 and do reachability analysis on the underlying timed automata model. The analysis
detects scenarios with response time of 23 (Fig-8.5) and 12 (Fig-8.6).

Figure 8.5: The execution trace which gives the worst response time

We see that lower and upper bounds on task durations do not allow us to infer the correct
bounds on the response time for this particular example. If this application is executed in a safety
critical environment, with hard real time constraints, conclusion of the analysis is that the deadline
can be violated. However, in case of soft real time constraints, QoS (Quality of Service) evaluation
in a quantitative way is more appropriate.

8.1.2.4 Quantitative Estimation

In addition to bounds on execution time, it can also be very helpful to know how the response
time is distributed. To get more quantitative informations we use stochastic simulation in order to
answer questions like: what is the mean response time? What is the probability that the response
time is greater than 20 time units?

For the purpose of this quantitative estimation we make the hypothesis that the execution times
are uniformly distributed in the intervals. We draw 10000 duration vectors randomly and perform

8.1. REACHABILITY VS. CORNER-CASE SIMULATION 111

CHAPTER 8. CASE STUDIES

Figure 8.6: The execution trace which gives the best response time

simulation with each value. The results are summarized in Table-8.2 and Fig-8.7.

Min value 12.97
Max value 22.17
Mean value 16.82

Table 8.2: Statistics

Figure 8.7: Distribution

8.1.3 Summary

With this simple example we have shown that analysis based on local extremal values (lower
and upper) might give incorrect bounds on the global response time. On the other hand timed
automata reachability analysis gives us the correct bounds, but no quantitative information about
the distribution of values between them. In the case where timing constraints are not critical
such pessimistic estimation can lead to over-designed and under-utilized systems, thus resulting
in unnecessarily increased costs. Moreover, stochastic simulation does not catch tight bounds but
gives more useful quantitative information about average performance.

112 8.1. REACHABILITY VS. CORNER-CASE SIMULATION

CHAPTER 8. CASE STUDIES

8.2 Video Processing on P2012

Platform 2012 (P2012, [177]) is an ongoing project of ST Microelectronics (the largest European
semi-conductor manufacturer) and CEA-LETI to develop a multi-core architecture to serve as an
accelerator (computation fabric) for high throughput computational tasks (video processing, ra-
dio sensing, image analysis) for embedded (smart phones) and other (TV set top boxes) devices.
P2012 is viewed as an alternative to GPUs as a replacement of dedicated hardware currently used
for these functions. The flexibility and productivity gains of software are supposed to compen-
sate for a tolerable degradation in performance compared to hardware. However, writing parallel
software is not a trivial matter and deploying it efficiently on the multi-core platform (mapping,
memory allocation, scheduling of computations and data transfers) is a hard combinatorial opti-
mization problem with a significant variations in performance over its feasible solutions.

STMicrolectronics has defined a benchmark based on typical applications in the context of
P2012. It is an augmented reality application called FAST (Features from Accelerated Segment
Test). This application was developed and parallelized on P2012 virtual architecture and a sequen-
tial version (set as reference and easier to analyze) was given to us. In this section we demonstrate
the applicability of our tool in exploring and comparing different deployment solutions for this
application.

We will use two variants of the application and of the P2012 architecture to demonstrate the
functionality of our tool. All these experiments should be taken with a grain of salt concerning
their realism since the development of P2012 and its applications was in a stage where models
were very approximate. The main purpose of the exploration is to illustrate the types of analysis
provided by our framework.

8.2.1 Model description

The P2012 Platform

Merely, P2012 is a many-core computing fabric based on multiple clusters. Clusters feature up
to 16 processors sharing multi-banked memories, a DMA engine and are connected via a high-
performance network-on-chip. In the context of this case study we restrict our models to one such
cluster.

The model of P2012 architecture used in this section is shown on Fig-8.8. It consists of 16
processing elements sharing a local memory and connected through a bus which models the actual
network-on-chip. The entire cluster is connected to an external memory via another bus and a
DMA engine is used to communicate data between local and off-chip memories.

Figure 8.8: A model of a 16-processor instance of P2012

8.2. VIDEO PROCESSING ON P2012 113

CHAPTER 8. CASE STUDIES

We associate with each component a list of synthetic parameters for power consumption shown
in Table-8.3. The realism of these parameters is limited due to the difficulty to get real values from
a virtual platform.

Component Frequency State Consumption

Processor

200Hz
idle 42
busy 212

400Hz
idle 72
busy 362

600Hz
idle 121
busy 606

Memory
idle 61
busy 91

LogInterconnect
idle 12
busy 61

BusExt
idle 121
busy 606

Table 8.3: Power consumption values for HW components

In the context of this case study we explore different alternatives by playing with the number
of available processors and their frequency parameters to have a picture of their influence on
performance.

FAST Algorithm Presentation

The FAST algorithm, developped by Edward Rosten et Tom Drummond [166], is a corner de-
tection method, used to extract feature points and later used to track and map objects in many
computer vision tasks. It mainly consists in computing the detection (function circular detec-
tion) on a chunk of an image. From an architectural point of view, the image resides initially in
the off-chip memory and has to be brought to local memory and dispatched to the processors for
execution.

The whole image does not fit into the local memory inducing several alternatives for its split-
ting and transfer to local memories. For our case study, we consider two different implementations
one based on bands and one based on blocks.

Band Treatment

This approach consists in dividing the image into bands and bringing each band to local memory,
then available processors work on different parts of this band. The number of parts will depend
on the number of processors available in the target platform. Fig-8.9 shows this splitting with 8
available processors. After computation is completed for the entire band, a synchronization is done
between all working processors and the result for the whole band is stored on off-chip memory.

We model this algorithm with our tool as a task graph (Fig-8.10). The entire image is modeled
as an abstract data and nodes read and write are communication tasks for accessing the data.
Task split and join model the synchronization process. This task graph represents the computation
of one band. Notice that the task graph is cyclic, that is it executes a finite number of iteration,
corresponding to the number of bands, for the computation of the entire image. In this case study
the size of a band is kept fixed.

114 8.2. VIDEO PROCESSING ON P2012

CHAPTER 8. CASE STUDIES

Figure 8.9: Bands splitting and dispatching on PEs

Figure 8.10: One centralized read, split and merge

Blocks Treatment

The second version consists in dividing the image into blocks directly and each read/write opera-
tion is done independently for each available processor. An abstract model of this second version
can be represented by one task for reading data, one for computation (circldetect task) and one
task for writing data back. This model, depicted in Fig-8.11, consisting in several jobs, each ded-
icated to the computation of each block. Notice that as for the first model, each job does several
computations sequentially, that is the start of an iteration is triggered by the end of the previous
one until the whole image has been processed.

8.2. VIDEO PROCESSING ON P2012 115

CHAPTER 8. CASE STUDIES

Figure 8.11: 16 independent reads and writes

Parameters Estimation

In order to perform analysis, one has to specify parameters such as computational workload for
tasks and quantity of transferred data. Profiling of the sequential implementation showed us that
the main computation is done by the circular detection function and all other functions have neg-
ligible workload. This is why our model contains only one computational task. Based on the
sequential implementation we were able to extract workloads for the computational tasks, i.e,
minimum and maximum number of cycles needed for the treatment of one pixel. Based on those
values, we compute estimations for the execution of one block of pixels depending on its size. In
our model, those execution vary up to 20% around the mean value. Note that the size of the output
is 6 times larger than the size of the input.

8.2.2 Analysis

8.2.2.1 Worst Case vs Statistics

Consider the first implementation depicted by the task-graph of Fig-8.10 which represents the
treatment of a horizontal band (16 blocks) of the image. All the blocks are fetched by a single
read command and the data is split onto 16 tasks whose output is merged and written back to the
offchip memory. Execution times for processing a single block admit roughly up 20 % deviation
from their average.

We first run a timed automata (TA) based analysis of the execution of this job on architecture
instances with various numbers of processors to obtain the respective lower- and upper-bounds on
execution times. Then we apply statistical analysis, based on 100 random simulation runs. Fig-
8.12 shows a histogram of these runs for different number of processors. Note that when there
is one processor per task, the average is close to the worst-case (for that configuration) because
the total termination time is defined as the max of individual task termination times. On the other
hand, when the number of processors is smaller and some tasks are executed sequentially, the
convolution effect renders the distribution more normal-like. Analysis and simulation results are
summarized in Table-8.4.

8.2.2.2 Reading Granularity

We make a comparison between the previously mentioned strategies for fetching the data based
on bands and blocks. We assume here, an image made of 256 blocks and a band consisting of 16
blocks for the first strategy with associated task graph is depicted in Fig-8.10. The second one is
an alternative specification where each block is read separately (Fig-8.11). The whole job for 256
blocks is represented by sequential concatenation of 16 copies of the basic task-graphs.

116 8.2. VIDEO PROCESSING ON P2012

CHAPTER 8. CASE STUDIES

(a) 1 PE

(b) 2 PEs

(c) 4 PEs

(d) 8 PEs

(e) 16 PEs

Figure 8.12: The distribution of total termination times using 1, 2, 4, 8 and 16 processors working
at 600Hz. The red vertical lines indicate the lower- and upper-bounds. Note the change of scale.

8.2. VIDEO PROCESSING ON P2012 117

CHAPTER 8. CASE STUDIES

TA Analysis Simulation
Frequency PE nb Min Max Min Mean Max

200 1 1165.552 1651.184 1377.174 1405.946 1426.697
200 2 593.392 836.208 715.049 728.614 741.454
200 4 307.312 428.720 378.453 386.348 394.134
200 8 164.272 224.976 216.509 206.045 212.247
200 16 92.752 123.104 119.776 121.214 122.258
400 1 593.392 836.080 702.889 713.974 725.086
400 2 307.312 428.656 368.718 374.989 383.316
400 4 164.272 224.944 200.303 203.442 206.939
400 8 92.752 123.088 113.498 116.687 118.317
400 16 56.992 72.160 70.304 71.232 71.690
600 1 402.672 564.464 474.497 483.100 493.192
600 2 211.952 292.848 253.268 257.086 260.640
600 4 116.592 157.040 140.468 142.829 145.902
600 8 68.912 89.136 83.690 84.835 86.063
600 16 45.072 55.184 54.137 54.611 54.998

Table 8.4: Results of TA Analysis versus Simulation

Fig-8.13 shows the speedup obtained by the second, more flexible policy, as the number of
processors grows. Note that the speed-up in the average-case is much more significant. Fetching
data by bands requires a synchronization for writing back the results. This synchronization im-
plies a latency coming from the slower computation. On the other hand block treatment is more
flexible, once a computation terminates the transfer of the next block can start immediately and
communication becomes more fluid.

Figure 8.13: The speed-up obtained by reading single blocks compared to reading 16-block bands

118 8.2. VIDEO PROCESSING ON P2012

CHAPTER 8. CASE STUDIES

8.2.2.3 Fixed vs Flexible Mapping

Next we move to a situation where there is a very large variability in the execution times of the
tasks, namely [150, 2100], and compare a fixed mapping with a local FIFO scheduler for each PE
against a flexible mapping by a global scheduler on an instance of P2012 with 4 processors. We
take the task graph of Fig-8.11 and use a periodic event generators with jitter. Using 4 processors,
each PE is assigned 4 tasks (exactly for the fixed mapping policy and approximately for the flexible
policy) and hence the worst-case execution time for a job instance is around 8400. For arrival
periods which are smaller than the worst-case execution time, a worst-case analysis naturally
shows the possibility of an unbounded accumulated backlog and, hence, unbounded latency. We
perform simulations with arrival periods 7000, 6000, 5000, and 4500. Not surprisingly, the global
strategy yields a much better average performance and its advantage increases with the arrival rate.
Decreasing the period to 4000 (below the average execution time) leads to frequent overflows.

(a) Processor utilization under fixed mapping strategy.

(b) Processor utilization under flexible mapping strategy.

Figure 8.14: Processor utilization

The processor occupancy is smoothened when using the block strategy as illustrated in Fig 8.14.
The two strategies behave similarly when the arrival period is long enough but when it becomes
shorter, the global mapping strategy, due to its flexibility, shows a relative advantage as depicted
in Fig 8.15.

Figure 8.15: Comparing the average performance of the fixed and flexible mapping strategies as
a function of the arrival period.

8.2. VIDEO PROCESSING ON P2012 119

CHAPTER 8. CASE STUDIES

8.2.3 Power Consumption

In the last experiment we compare different configurations of P2012 for the trade-offs between
response time and power consumption that they provide. We consider again a job consisting of a
concatenation of 16 copies of the task graph of Fig-8.10 and execute it on instances of the archi-
tecture with 1, 2, 4, 8 and 16 active processors, all running in either 200, 400 or 600 MHz. For
each configuration we run 100 simulations and compute the average response-time and consump-
tion. Fig-8.16 shows the trade-offs obtained. Such plots are extremely useful for detecting regions
where power consumption can be significantly reduced with a modest performance degradation
which still meets the system requirements. For example several configurations (16PE-600Hz,
16PE-400Hz, 8PE-600Hz) give a response time around 100 ms with consumptions ranging over
[400, 640] mW. Opting for configurations such as 16PE-200Hz, 8PE-400Hz or 4PE-600Hz reduces
power consumption, on average, by 2 while the response time is very slightly degraded.

Figure 8.16: Power-performance trade-offs obtained on different configurations (number of pro-
cessors and frequencies)

8.2.4 Summary

We have demonstrated how DESPEX can be used to solve very realistic problems in design-space
exploration, quantify the performance differences between different design choices and represent
available cost/performance trade-offs.

120 8.2. VIDEO PROCESSING ON P2012

CHAPTER 8. CASE STUDIES

8.3 A Radio Sensing Application

Finally we demonstrate how the tool was used for evaluating a radio sensing application developed
by Thales. The goal of this case study was to check the feasibility of porting the application,
currently running sequentially on a powerful desktop, to an embedded multi-processor platform.

This case study demonstrates more the power of the methodology supported by our tool frame-
work than performance itself. Porting a sequential implementation onto an embedded system in-
volves several difficulties. The ability to perform rapid design space exploration at early stages is
a key to identify difficult issues as soon as possible. Depending on the availability of simulators at
different level of accuracy, models are then refined and DESPEX fits well into the classic Y-chart
based design space exploration [122] presented in Fig-2.4 of Chapter-2.

8.3.1 Model Description

The application was evaluated on the P2012 platform [177] described previously and the xSTream
platform [32]. As shown in Fig-8.17, the xSTream architecture is defined as a computing nodes
fabric connected to a system bus. Each node admits a processing element (xPE) and has its own
local memory (LM) and communicates through a high-performance network on chip (xSTNoc).
Note that the processing elements of the two architectures belong to the same ISS family.

Figure 8.17: The xSTream architecture from [32]

The abstract model of the xSTream architecture is depicted on Fig-8.18. It consists in 8 pro-
cessing elements connected to local memory components. We model the network on chip (xST-
Noc) as a bus component. As for the P2012 model, synthetic parameters are associated with each
component.

8.3. A RADIO SENSING APPLICATION 121

CHAPTER 8. CASE STUDIES

Figure 8.18: The xSTream model

Radio Sensing Application

Sensing is one function of cognitive radio. A cognitive radio is a transceiver which automati-
cally detects available channels in the wireless spectrum and accordingly changes its transmission
or reception parameters so that more wireless communications may run concurrently in a given
spectrum band. According to [4] the main functions of cognitive radio are:

• Sensing: detecting unused spectrum and sharing the spectrum without harmful interference
with other users;

• Management: capturing the best available spectrum to meet user communication require-
ments;

• Mobility: maintaining seamless communication requirements during the transition to a bet-
ter spectrum;

• Sharing: Providing the fair spectrum scheduling method among coexisting users.

We focus on sensing which consists in two steps: extraction of the spectrum (GSM in this
example) and then extraction of the different channels inside the spectrum (200 in GSM).

For this example we consider one step of the sensing function, the so called characterization
that consists in several operations such as transposition, quantification and filtering on chunks of
the signal to be processed. Splitting of the signal is done according to 200 different channels. A
task-graph model of this application is shown on Fig-8.19. Boxes represent the concatenation of
several computations into task for the model used in our tool which is shown on Fig-8.20.

Parameters Estimation

Parameters have been estimated using an Instruction Set Simulator (ISS) provided in the context
of the ATHOLE project. That is, workload and amount of produced data are obtained for each
function after instrumentation and execution of the concrete C code . Note that the results obtained
for the PE of xSTream can be extrapolated to the PE of P2012 due to similarity.

122 8.3. A RADIO SENSING APPLICATION

CHAPTER 8. CASE STUDIES

Figure 8.19: Sensing Application

8.3.2 Performance evaluation

Parallelization

Programming multi-processors embedded systems such as xSTream and P2012 implies the use of
appropriated programming model. The sequential implementation needs therefore to be modified
for exploiting parallelism provided by such architectures. The use of DESPEX, requires to trans-
form the sequential implementation into a task-graph, by decomposing the initial implementation
into tasks that can possibly run in parallel and identify control and data flow.

This work shows that the sequential implementation is easily parallelizable and MPSoCs can,
in principle, be a solution to execute this kind of application. However, the modeling and analysis
effort has revealed that the amount of data transfer is huge and memory capability of embedded
architectures can be a bottleneck. Actually, the application is highly parallelizable because the
same computation is done on different chunks of data, nevertheless the workload required depends
on the size of the blocks, currently limited by local memory capacity.

Evaluation

According to the analysis performed with DESPEX, the application in its current form cannot
be ported to MPSoCs such as xSTream and P2012 while providing a real-time response. One
conclusion from this experience is that porting to embedded devices requires re-design of the

8.3. A RADIO SENSING APPLICATION 123

CHAPTER 8. CASE STUDIES

Figure 8.20: Sensing Application Model

algorithms, focusing on more modest usage of scarce resources such as memory. Nevertheless,
evaluation of different mapping strategies resulted in a 5% improvement in the execution time for
a fragment of the application working on 40 channels.

Methodologically, this case study demonstrates the advantage of separating as much as possi-
ble the models of the architecture and the platform. We have profiled the tasks on the processor of
xSTream and could use the numbers, slightly calibrated, to estimate their execution time on P2012
(featuring processors of the same ISS family) and evaluate the overall execution time on the new
architecture without much effort.

8.3.3 Summary

With this example, we have shown how our tool can fit into classical design flow for rapid design
space exploration. The modeling and re-design effort needed for using our tool, may serve for
detecting bottlenecks (such as memory data transfer) at early design stage. Such re-design is,
anyway, an unavoidable step in rewriting the application for parallel execution. Once parameters
have been extracted correctly, models can be used for evaluating several configuration in short
time without having to wait the availability of accurate system-wide simulators.

124 8.3. A RADIO SENSING APPLICATION

Chapter 9

Conclusions and Future Work

This thesis constitutes a contribution to the important problem of designing embedded multi-core
architectures and efficiently deploying application programs on these platforms. We have pro-
vided a tool-supported methodology for high-level modeling of the major components that par-
ticipate in the execution: hardware architecture, application program, external environment and
mapping/scheduling policies. These models abstract away from many low-level details of the
program and the architecture and provide for rapid simulation and performance evaluation, as
a complement to the more detailed and accurate models used in the development process. These
models are then translated into timed automata and are analyzed by complementary techniques that
include standard timed automata reachability, Monte Carlo simulation and analytic calculation of
performance indices. The modeling framework and analysis techniques have been implemented
into an extensive and extendible toolset, DESPEX, the design-space explorer, featuring many im-
portant functionalities. The tool, which served as a major deliverable in an academic-industrial
collaborative project, has been applied to several interesting case studies.

From a theoretical standpoint, we provided novel ideas and results concerning analysis and
scheduler synthesis for continuous-time stochastic processes where task durations are distributed
uniformly over a bounded interval. Compared to exponential “memoryless” distribution often
treated in the literature, for our distributions the clock values which represent the time elapsed
since the beginning of each active step, influence the temporal probability of future events. Hence,
analyzing such systems required several conceptual innovations including the delegation of timing
uncertainty into the duration space to facilitate volume computation and the definition of density
function families parameterized by clocks values. Realizing the proposed algorithms required an
implementation of a specialized integration package.

As for the future, we foresee numerous research directions in all dimensions of this work:
theory, implementation, methodology and application. We list a few of them below.

• The tool itself, like all tools developed within a project and a thesis, will require a major
re-design and implementation in the future before it could be given at the hands of real
users.1 Such modifications include the improvement of the translation of components into
timed automata, accelerating the simulation (currently performed on top of IF which is not
optimized for such simulations), compacting the generated traces which are currently too
verbose and improving the user interface.

• From a methodological point of view, a more systematic way to populate the high-level mod-
els with performance numbers should be developed. It should be based on a combination
of profiling the available components by low-level simulation and interaction with the user

1Although the case study described in Section 8.3 was conducted by Thales working directly with the tool.

125

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

in the style of decision-support systems. In general, a tighter integration with the software
development flow (which is still under construction for multi-core systems) is needed.

• On the application side, our ambition is to see DESPEX adapted and applied more exten-
sively to P2012 in the framework of a new forthcoming project. This will involve more
refined modeling of the specific components of the architecture as well as a tighter inte-
gration with the software development process for this platform. It should be noted that
the application and architecture concepts developed here are not restricted to the scale of
MPSoCs, and the problematics of finding the right balance between computations and data
transfers can be found in other scales such as distributed or scientific computing.

• On the theory side, the work on optimal scheduler synthesis is still incomplete. The exact
form of the boundaries in the decision space between the domains of the different actions
should be characterized and an approximation algorithm with guaranteed bounded error
should be implemented. Synthesis itself (in the sense of scheduler/controller synthesis) is
an open unsolved problem in terms of complexity, and some of the ideas developed in this
part can be used to find a more compositional way to achieve it. Finally, a more thorough
comparison of the computational trade-offs between analytic and statistical methods will
help in assessing their relative advantages and shortcomings.

126

Appendix A

DPA: Optimizing the Value Function
(Work in Progress)

A.1 Non-Lazy Schedulers

To complete the implementation we need to handle the optimization part of the iteration, comput-
ing V (q, x) = mins(V (q, x, s)) for every x. In other words we should trace the boundary in the
clock space between subsets where waiting or starting are preferred. To facilitate the task we first
prove an important property of optimal strategies which simplifies the partition of the clock space
according to the optimal action. This “non-laziness” property has been formulated in the deter-
ministic setting in [2] and it simply captures the intuition that waiting and refraining from taking
a resource is not useful unless some other process benefits from the resource during the waiting
period.1 The proof in the deterministic setting is based on taking a schedule that admits laziness
and transforming it iteratively into a schedule with less laziness (but no inferior performance) until
a non-lazy schedule is obtained. The proof in the non-deterministic context is more involved.

Definition A.1.1 (Laziness). A scheduling policy Ω is lazy in (q, x) if Ω(q, x+ t) = si for some i
and Ω(q, x+ t′) = w for every 0 ≤ t′ < t. A schedule is non-lazy if no such (q, x) exists.

Theorem 3 (Non Lazy Optimal Schedulers). The optimal value V can be obtained by a non-lazy
strategy.

To prove the theorem we first need the following lemma.

Lemma 1 (Value of Progress). Let q be a state and let x and x′ be two clock valuations which are
identical except for x′i = xi + δ. Then the value of (q, x′) is at least as good as the value of (q, x),
that is, V (q, x′) ≤ V (q, x).

Sketch of Proof: We prove it by induction on the number of transitions remaining between q and
the final state.
Base case:Base case: When there is only one end transition pending and one active clock working
toward a duration characterized by a time density ψ, the value is defined as

V (q, x) =

∫ b

max(x,a)
ψ/x(y)(y − x)dy =

{
(a+ b)/2− x when x ≤ a
(b− x)/2 when x ≥ a

and the derivative dV/dx is negative (−1 and then −1/2). Hence V (q, x′) < V (q, x).
Inductive case: suppose the lemma holds for all states beyond q. We will show that each action

1Or if some information gathered during the period has increased the expected time-to-go associated with waiting,
which is impossible in our setting, see discussion.

127

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

taken in (q, x′) can lead to a state at least as advanced as the state reached via the same action from
(q, x). For an immediate start transition this is evident. Suppose we take action w at (q, x′) and
(q, x). Then there are three possibilities: if the race winner at (q, x′) is some P i′ , i′ 6= i, taking an
ei
′

transition to q′, then the same P i′ will win the race from (q, x) within the same time, landing in
q′ with value of xi less advanced by δ and the inductive hypothesis holds, see Figure A.1-(a) and
the corresponding runs ξx and ξx′ , depicted below while omitting the discrete state and the other
clocks:

ξx′ : (xi + δ, xi
′
)

t−→ (xi + δ + t, xi
′
+ t)

ei
′

−→ (xi + δ + t,⊥)

ξx : (xi, xi
′
)

t−→ (xi + +t, xi
′
+ t)

ei
′

−→ (xi + t,⊥).

Suppose, on the contrary, that P i, the process whose clock is more advanced in x′ than in x,
wins the race from (q, x′) within t time. If P i is also the winner from (q, x), the ei transition will
be taken by ξx after t+ δ time. By waiting at q′ for δ time, run ξx′ can reach the same state as ξx,
see Figure A.1-(b) and the corresponding runs:

ξx′ : (xi + δ, xi
′
)

t−→ (xi + δ + t, xi
′
+ t)

ei−→ (⊥, xi′ + t)
δ−→ (⊥, xi′ + t+ δ)

ξx : (xi, xi
′
)
t+δ−→ (xi + δ + t, xi

′
+ δ + t)

ei−→ (⊥, xi′ + t+ δ).

Finally, suppose the race winner from (q, x) is P i′ within some t + δ′ time, δ′ < δ, leading
to state q′′. This splits into two sub-cases. If at q′′ the run ξx does not start a new step, then, by
waiting at q′ for δ − δ′ time, ξx′ can reach within t+ δ′ the same extended state that ξx has reach
in more time t+ δ:

ξx′ : (xi + δ, xi
′
)

t−→ ei−→ (⊥, xi′ + t)
δ′−→ (⊥, xi′ + t+ δ′)

ei
′

−→ (⊥,⊥)

ξx : (xi, xi
′
)
t+δ′−→ ei

′

−→ (xi + δ′ + t,⊥)
δ−δ′−→ (xi + δ + t,⊥)

ei−→ (⊥,⊥).

If, on the other hand, during the interval of duration δ−δ′ in which ξx catches up with the progress
of ξx′ in P i, ξx makes an si

′
transition to start a next step of P i′ , so can ξx′ and they will reach the

same state:

ξx′ : (xi + δ, xi
′
)

t−→ ei−→ (⊥, xi′ + t)
δ′−→ (⊥, xi′ + t+ δ′)

ei
′

−→ si
′

−→ (⊥, 0)
δ−δ′−→ (⊥, δ − δ′)

ξx : (xi, xi
′
)
t+δ′−→ ei

′

−→ si
′

−→ (xi + δ′ + t, 0)
δ−δ′−→ (xi + δ + t, δ − δ′) e

i(⊥,δ−δ′).−→

These two cases are illustrated in Figure A.1-(c).
The bottom line of this case analysis is that for every action taken in (q, x) and (q, x′) and for

every y, there exist durations ty and t′y, such that 0 ≤ t′y ≤ ty, a state py such that q ≺ py and
clock valuations zy and z′y such that zy ≤ z′y in the value of one clock (as in the premise of the
lemma) and

(q, x)
ty−→ (py, zy) and (q, x′)

t′y−→ (py, z
′
y).

Since the cost to go from (q, x) can be written as

V (q, x) =

∫
ψ(y) · (ty + V (py, zy))dy

and since for every y, t′y ≤ ty and V (py, z
′
y) ≤ V (py, zy) by the inductive hypotheses, we have

V (q, x′) ≤ V (q, x).

128 A.1. NON-LAZY SCHEDULERS

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

xi

xi
′

x x′

ei
′

xi

xi
′

x x′

t

t + δ
δei

(a) (b)

xi
′

xi

xi
′

x x′

t

t + δ′

δ′

ei

ei
′ ei

′

ei

δ − δ′

δ − δ′ A

B

(c)

Figure A.1: Proof of lemma: (a) P i′ wins from both x and x′; (b) P i wins from both. (c) P i wins
from x′ and P i′ wins from x. Here either ξx′ reaches point A in less time than does ξx, or both
reach point B at the same time.

A.1. NON-LAZY SCHEDULERS 129

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

x x+ t x x+ t

(a) (b)

Figure A.2: Proof of theorem.

Note that although the lemma can be interpreted as saying that always a more advanced state
has a better value, this is true in general only for progress that does not increase the possibility
of blocking due to resource conflicts. Advancing the clock of an already-active step, or starting a
step on a resource that has no other future users are such forms of progress while starting a step
on a resource that has other users in its horizon is not. Otherwise, FIFO schedulers were always
optimal.
Proof of Theorem 3: Imagine a strategy Ω which is lazy at (q, x) and takes its earliest start at
(q, x + t), as illustrated in Figure A.2-(a). A alternative strategy that would start at x, can be
after t time in a state where one clock is more advanced (Figure A.2-(b)) and hence satisfying the
condition of Lemma 1.

Let us repeat that the theorem does not say that a FIFO scheduler which makes a start transition
as soon as possible is optimal. It might be useful to delay starting until one of the competing tasks
has used the resource. Only delays that are shorter than that are considered lazy.

To illustrate the limited scope of the lemma and theorem consider a task with whose duration
characterized by a discrete probability with probability p for a and 1 − p for b. In this case, the
value function associated with waiting is

V (x) =

{
p(a− x) + (1− p)(b− x) when x < a
0(a− x) + 1(b− x) when x > a

Here at x = a there is a jump in V from (1 − p)(b − a) to (b − a) which is, intuitively, due to
the accumulation of information: after a time, the non-occurrence of an end event tells us that the
duration is certainly b. Such a situation contradicts the lemma, because for x < a < x′ we may
have V (x′) > V (a). This jump in the expected time-to-go for waiting can also justify laziness:
when x < a waiting can be better then starting, but after x = a the relation between these two
values may change.

A.2 Upward Closed Strategies and Rectangular Approximations

In the sequel we present the implications of non-laziness on the structure of the optimal scheduler.
To simplify notations, but without loss of generality, we assume throughout this part that each
resource m ∈ M is used by exactly one step of each of the processes. Although formally the

130 A.2. UPWARD CLOSED STRATEGIES AND RECTANGULAR APPROXIMATIONS

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

Q−

Q0 Q1

q q Q+

Figure A.3: The timeline of a process partitioned with respect to a resource used in state q and the
duration of a conflicting step of another process.

strategy is defined over Q, it can be decomposed into nk partial strategies, each representing a
start/wait decision associated with one step of one process. The strategy can be written as

Ω =
⋃
m∈M

⋃
i∈N

Ωi
m

where Ωi
m corresponds to the step where P i uses resource m, say step j. In this case Ωi

m has the
form

Ωi
m : Q1 × · · · {qij} · · · ×Qn → {sij ,w}.

We call the domain of Ωi
m the decision surface associated with sij . In general, the state space of a

process P which uses a resource m in state q can be partitioned as

Q = Q− ∪ {q} ∪ {q} ∪Q+,

namely the states before the step in question, the waiting state (where decisions are to be made), the
active state (where other processes cannot use the resource) and the states after that, see Figure A.3.

When the scheduler has to decide whether to let another process P ′ take resource m, the only
reason for not doing so could be the possibility of blocking P in the future if P is in some pre-
conflict state in Q−. However, not all pre-conflict states represent a real conflict with P ′. If the
upper bound on the duration of the step of P ′ is b, and P is in a state inQ− whose minimal distance
to q is larger than b, P ′ will release the resource before P becomes enabled and no blocking
will occur. This justifies a finer refinement of the pre-conflict states, Q− = Q0 ∪ Q1, with Q0

consisting of states of P where we need not worry about its being blocked by P ′ (see Figure A.3).
Note that Q0 is a static under-approximation of the set of states having this property under a given
scheduling strategy because it is based on a minimal distance, assuming P progresses toward q
without waiting. We stress again the fact that the boundary between Q0 and Q1 is specific to each
P ′.

We illustrate the implications of arithmetics, mutual exclusion and non-laziness on the parti-
tion of the state space induced the optimal strategy on a system of of 3 processes where we analyze
the decision surface Q2 ×Q3 for the sub-scheduler

Ω1
m : {q1} ×Q2 ×Q3 → {s,w}

for process P 1. First we partition the timelines of the competing processes P 2 and P 3 with respect
to the duration of the relevant step of P 1. One can observe that:

• If the other processes are in (Q2 × {q3}) ∪ ({q2} × Q3), that is, one of them uses the
resource, then only action w is possible;

• If the other processes are in (Q2
0 ∪Q2

+)× (Q3
0 ∪Q3

+) then action s is chosen because there
will be no blocking;

• The strategy needs really to be computed over (Q2
1 × (Q3−{q3}))∪ ((Q2−{q2}))×Q3

1)
and there we can enjoy the monotonicity property.

A.2. UPWARD CLOSED STRATEGIES AND RECTANGULAR APPROXIMATIONS 131

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

The optimal partition of the decision surface is illustrated in Figure A.4-(a) with the grey areas
indicating the subsets where where we need to compute. In each of this areas, the set Ω−1(w) is
upward closed with respect to �. Any upward closed set can be written as a union of rectangular
cones, but this union can be infinite, for example for a half-space which is not axes parallel and
certainly for sets with a curved boundary. In the absence of some algebraic miracle that will turn
Ω−1(w) to be a finite union of zones, the best we can hope for is an approximation scheme.

In [138], a multi-dimensional binary search algorithm was presented for approximating the
boundary between an upward-closed set and its downward-closed complement. We show below
how it can be applied to approximate the boundary between Ω−1(w) and Ω−1(s). Suppose we fix
a point (q, x) in the decision surface and compute its value under s and under w. If V (q, x,w) <
V (q, x, s) the optimal strategy satisfies not only Ω(q, x) = w but also Ω(q′, x′) = w for any
(q′, x′) in the upward rectangular cone above (q, x), that is, any state satisfying (q, x) � (q′, x′)
with no resource utilization between q and q′. Likewise if V (q, x,w) > V (q, x, s) the optimal
strategy is s for all points in the downward cone of (q, x).

By continuing in this manner, evaluating V on various states, we reach a situation in which
the decision surface is partitioned into at most 3 parts: Ωs consisting of states where the optimal
decision is known to be s, Ωw where the optimal decision is known to be w, and Ω? which is the
rest of the decision surface where we do not know yet, see Fig. A.4-(b). The technique of [138]
is geared toward reducing the distance between the boundaries of Ωs and Ωw and hence reducing
the size of Ω?. For any desired distance ε, the algorithm will converge after a finite number of
evaluations of V .

Based on this partial knowledge we can derive an approximately optimal strategy, by selecting
an arbitrary decision for all states in Ω?. In the sequel we consider eager approximations that
make s in all the states in Ω?. How far is such a strategy from the optimal one? The following
lemma bounds the derivative of V with respect to any of the clocks.

Lemma 2 (Derivative of V). Let V be the value function associated with a problem then for every
(q, x) and for every i

∂V

∂xi
(q, x) ≥ −1

Sketch of Proof: Consider first the local value function of a process in isolation. In any state
q, the domain of the clock is split into two parts. When x < a, the derivative is naturally −1.
When x > a the rate of progress is slower (because progress is combined with accumulation
of optimism-contradicting information) and the magnitude of the derivative is smaller.2 When
running together, the progress of each process is bounded by its progress in isolation or by the
progress of another process that blocks it. The progress of the expected termination of the last
process (makespan) is bounded by the progress of each of the processes.

Lemma 3 (Approximation). Let x, x′ be two points such that x < x′, d(x, x′) < ε, Ω(q, x) = s
and Ω(q, x′) = w for the optimal strategy Ω. Consider an eager approximation Ω′ making s in
all states (q, x′′) ∈ Ω? such that x ≤ x′′ < x′. Then for every such x′′ we have |Ω(q, x′′) −
Ω′(q, x′′)| ≤ ε.

Proof: According to what we know about the optimal strategy we have

V (q, x′,w) < V (q, x′, s) < V (q, x, s) < V (q, x,w)

and according to Lemma 2, V (q, x,w)−V (q, x′,w) ≤ ε. For any x′′, V (q, x′′, s) and V (q, x′′,w)
are inside the interval and the distance between them is bounded by ε.

2The derivative of V represents the progress toward the average duration, minus the growth of the average itself
when x > a.

132 A.2. UPWARD CLOSED STRATEGIES AND RECTANGULAR APPROXIMATIONS

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

Q0

Q1

q

q

Q+

s s

s s

w

w

w

w

s

s

w

w

w

s

s

Q0 Q1 q q Q+

(a)

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
���������������������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

s

s s

w

s

w

s

w

w

?

?

?

?

(b)

Figure A.4: (a) The decision surface for P 2 × P 3 for the decision of P 1. Only in the grey area
the decision is not self-evident and there the domain of w is upward closed; (b) A query-based
rectangular approximation of the optimal strategy. In the blank area the optimal strategy is not
known but approximated.

A.2. UPWARD CLOSED STRATEGIES AND RECTANGULAR APPROXIMATIONS 133

APPENDIX A. DPA: OPTIMIZING THE VALUE FUNCTION (WORK IN PROGRESS)

This result gives a basis for an approximation procedure, however there will be, at least theo-
retically, a wrapping effect, because the approximation of the value at q will be used for computing
the value of its predecessors, and a path that makes k decisions, in all of which the boundary is
approximated with accuracy ε relative to its successor, can in principle, deviate from the optimal
time-to-go by kε. But this is very theoretical and we expect real-life to behave much better.

Unfortunately, this part of the work has not been fully completed at the time of writing and we
had to postpone the complete implementation and experimental evaluation to the future.

134 A.2. UPWARD CLOSED STRATEGIES AND RECTANGULAR APPROXIMATIONS

Bibliography

[1] The International Technology Roadmap for Semiconductors (ITRS), System Drivers, 2009,
http://www.itrs.net/.

[2] Yasmina Abdeddaı̈m, Eugène Asarin, and Oded Maler. Scheduling with timed automata.
Theoretical Computer Science, 354(2):272–300, 2006.

[3] B. Ackland, A. Anesko, D. Brinthaupt, S.J. Daubert, A. Kalavade, J. Knobloch, E. Micca,
M. Moturi, C. J. Nicol, J.H. O’Neill, J. H. O’neill, J. Othmer, E. Säckinger, K. J. Singh,
J. Sweet, C. J. Terman, and J. Williams. A single-chip 1.6 billion 16-b mac/s multiprocessor
dsp, 2000.

[4] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty. Next genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A survey. COMPUTER
NETWORKS JOURNAL (ELSEVIER, 50:2127–2159, 2006.

[5] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for probabilistic real-time sys-
tems. In ICALP, pages 115–126, 1991.

[6] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[7] Rajeev Alur and Mikhail Bernadsky. Bounded model checking for GSMP models of
stochastic real-time systems. In In Proc. of HSCC’06, LNCS 3927, pages 19–33. Springer,
2006.

[8] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Mike Paterson,
editor, ICALP, volume 443 of Lecture Notes in Computer Science, pages 322–335. Springer,
1990.

[9] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204,
1994.

[10] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times:
A tool for schedulability analysis and code generation of real-time systems. In Kim Guld-
strand Larsen and Peter Niebert, editors, FORMATS, volume 2791 of Lecture Notes in Com-
puter Science, pages 60–72. Springer, 2003.

[11] ARM. Amba specification v2.0, 1999.

[12] ARM. Multi-layer ahb overview, 2001.

[13] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. J. ACM, 49(2):172–206,
2002.

135

BIBLIOGRAPHY

[14] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.
In Frits W. Vaandrager and Jan H. van Schuppen, editors, HSCC, volume 1569 of Lecture
Notes in Computer Science, pages 19–30. Springer, 1999.

[15] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theor. Comput. Sci., 138(1):35–65, 1995.

[16] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and Control, pages 469–
474, 1998.

[17] Rabie Ben Atitallah, Smail Niar, Samy Meftali, and Jean-Luc Dekeyser. An mpsoc per-
formance estimation framework using transaction level modeling. In Proceedings of the
13th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’07, pages 525–533, Washington, DC, USA, 2007. IEEE Computer
Society.

[18] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen.
Model-checking algorithms for continuous-time markov chains. IEEE Trans. Software
Eng., 29(6):524–541, 2003.

[19] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-Software
Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic Publishers, 1997.

[20] Twan Basten, Emiel Van Benthum, Marc Geilen, Martijn Hendriks, Fred Houben, Georgeta
Igna, Frans Reckers, Sebastian De Smet, Lou Somers, Egbert Teeselink, Nikola Trčka,
Frits Vaandrager, Jacques Verriet, Marc Voorhoeve, and Yang Yang. Model-driven design-
space exploration for embedded systems: the octopus toolset. In Proceedings of the 4th
international conference on Leveraging applications of formal methods, verification, and
validation - Volume Part I, ISoLA’10, pages 90–105, Berlin, Heidelberg, 2010. Springer-
Verlag.

[21] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-
Hung Nguyen, and Joseph Sifakis. Rigorous component-based system design using the BIP
framework. IEEE Software, 28(3):41–48, 2011.

[22] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time com-
ponents in bip. In SEFM, pages 3–12. IEEE Computer Society, 2006.

[23] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, and Judi
Romijn. Efficient guiding towards cost-optimality in uppaal. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2001, pages 174–188, London, UK, UK, 2001. Springer-Verlag.

[24] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Petters-
son, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced timed
automata. In Proceedings of the 4th International Workshop on Hybrid Systems: Computa-
tion and Control, HSCC ’01, pages 147–161, London, UK, UK, 2001. Springer-Verlag.

[25] G. Beltrame, D. Sciuto, and C. Silvano. Multi-accuracy power and performance transaction-
level modeling. Trans. Comp.-Aided Des. Integ. Cir. Sys., 26(10):1830–1842, October 2007.

[26] R. Ben-Salah, M. Bozga, and O. Maler. On interleaving in timed automata. In CONCUR,
pages 465–476, 2006.

136 BIBLIOGRAPHY

BIBLIOGRAPHY

[27] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design techniques
for system-level dynamic power management. IEEE TRANSACTIONS ON VLSI SYSTEMS,
8(3):299–316, 2000.

[28] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc paradigm. Computer,
35(1):70–78, January 2002.

[29] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-finder: A
tool for compositional deadlock detection and verification. In Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Pro-
ceedings, volume 5643 of Lecture Notes in Computer Science, pages 614–619. Springer,
2009.

[30] A. Benveniste and P. Le Guernic. Hybrid Dynamical Systems Theory and the
SIGNAL
Language. IEEE Transactions on Automatic Control, 35(5):535–546, May 1990.

[31] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halbwachs. Data-flow syn-
chronous languages. In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg,
editors, REX School/Symposium, volume 803 of Lecture Notes in Computer Science, pages
1–45. Springer, 1993.

[32] Jean-José Berenguer, Nicolas Coste, Iker De Poy Alonso, Giuseppe Desoli, Etienne
Lantreibecq, Julien Legriel, and Gilbert Richard. xstream : Architecture multi-coeur sur
puce pour des applications multimédia. http://vasy.inria.fr/multival/documents/xstream-
2009.pdf, 2009.

[33] Reinaldo A. Bergamaschi and William R. Lee. Designing systems-on-chip using cores. In
In the 37th Design Automation Conference, pages 420–425, 2000.

[34] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

[35] Mikhail Bernadsky and Rajeev Alur. Symbolic analysis for GSMP models with one stateful
clock. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, editors, HSCC,
volume 4416 of Lecture Notes in Computer Science, pages 90–103. Springer, 2007.

[36] Gerard Berry, Georges Gonthier, Ard Berry Georges Gonthier, and Place Sophie Laltte. The
esterel synchronous programming language: Design, semantics, implementation, 1992.

[37] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

[38] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A tool for BDD-based verifi-
cation of real-time systems. In In: Computer-Aided Verification (CAV 2003), Volume 2725
of Lecture Notes in Computer Science, Springer-Verlag, pages 122–125. Springer-Verlag,
2003.

[39] R.H. Bishop. LabVIEW 8 Student Edition. National instruments. Pearson Prentice Hall,
2007.

[40] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of network-
on-chip. ACM Comput. Surv., 38(1), June 2006.

BIBLIOGRAPHY 137

BIBLIOGRAPHY

[41] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 4 (2nd Edi-
tion) (Prentice Hall Open Source Software Development Series). Prentice Hall, 2 edition,
February 2008.

[42] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani and Oded
Maler, editors, CAV, volume 5643 of Lecture Notes in Computer Science, pages 140–156.
Springer, 2009.

[43] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis.
A framework for automated distributed implementation of component-based models. Dis-
tributed Computing, Mar 2012.

[44] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed systems.
In Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors, COMPOS, volume
1536 of Lecture Notes in Computer Science, pages 103–129. Springer, 1997.

[45] P. Bouyer. From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, 2009.

[46] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Quantitative analysis
of real-time systems using priced timed automata. Commun. ACM, 54(9):78–87, 2011.

[47] M. Bozga and Y. Lakhnech. IF-2.0: Common Language Operational Semantics. Technical
report, Verimag, 2002.

[48] Marius Bozga, Susanne Graf, and Laurent Mounier. If-2.0: A validation environment for
component-based real-time systems. In Ed Brinksma and Kim Guldstrand Larsen, editors,
CAV, volume 2404 of Lecture Notes in Computer Science, pages 343–348. Springer, July
2002.

[49] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The if toolset.
In SFM, pages 237–267, 2004.

[50] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture trans-
formation for performance optimization in BIP. In IEEE Fourth International Symposium
on Industrial Embedded Systems - SIES 2009, Ecole Polytechnique Federale de Lausanne,
Switzerland, July 8 - 10, 2009, pages 152–160. IEEE, 2009.

[51] E. Brinksma, H. Hermanns, and J.-P. Katoen, editors. Lectures on Formal Methods and
Performance Analysis, volume 2090 of LNCS. Springer, 2001.

[52] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, June 1984.

[53] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogenous systems. Int. Journal in Computer
Simulation, 4(2):0–, 1994.

[54] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS, Santa Clara,
CA, USA, 2005.

[55] L. Carnevali, L. Grassi, and E. Vicario. State-density functions over DBM domains in the
analysis of non-Markovian models. IEEE Trans. Software Eng., 35(2):178–194, 2009.

138 BIBLIOGRAPHY

BIBLIOGRAPHY

[56] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.
Springer Publishing Company, Incorporated, 2nd edition, 2010.

[57] Pavol Cerný and Thomas A. Henzinger. From boolean to quantitative synthesis. In Samar-
jit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebastian Fischmeister, editors,
EMSOFT, pages 149–154. ACM, 2011.

[58] Zhou Chaochen. Duration calculus, a logical approach to real-time systems. In Ar-
mando Martin Haeberer, editor, AMAST, volume 1548 of Lecture Notes in Computer Sci-
ence, pages 1–7. Springer, 1998.

[59] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007.

[60] Don Cherepacha and David Lewis. Dp-fpga: An fpga architecture optimized for datapaths.
VLSI Design, 4(4):329–343, 1996.

[61] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and Alberto L. Sangiovanni-
Vincentelli. A formal specification model for hardware/software codesign. Technical Re-
port UCB/ERL M93/48, EECS Department, University of California, Berkeley, 1993.

[62] Edmund M. Clarke, Alexandre Donzé, and Axel Legay. On simulation-based probabilistic
model checking of mixed-analog circuits. Formal Methods in System Design, 36(2):97–113,
2010.

[63] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. Mit Press, 1999.

[64] E.G. Coffman. Computer and Job-shop Scheduling Theory. Wiley, 1976.

[65] Multicore Association Communications. The multicore association communications api.

[66] M. Coppola et al. Spidergon: a novel on-chip communication network. In Proceedings of
International Symposium on System-on-Chip, 2004.

[67] T.T. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press, 1990.

[68] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture: A Hardware/-
Software Approach (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann, 1 edition, August 1998.

[69] William J. Dally and Charles L. Seitz. The torus routing chip. Distributed Computing,
1(4):187–196, 1986.

[70] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. Modest - a
modelling and description language for stochastic timed systems. In Proceedings of the
Joint International Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification, PAPM-PROBMIV ’01, pages 87–104, London, UK, UK, 2001.
Springer-Verlag.

[71] Alexandre David, John Håkansson, Kim G. Larsen, and Paul Pettersson. Minimal dbm
substraction. In Paul Pettersson and Wang Yi, editors, Nordic Workshop on Programming
Theory, number 2004-041 in IT Technical Report of Uppsala University, pages 17–20, Oc-
tober 2004.

BIBLIOGRAPHY 139

BIBLIOGRAPHY

[72] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bogsted Poulsen,
Jonas van Vliet, and Zheng Wang. Statistical model checking for networks of priced timed
automata. In Uli Fahrenberg and Stavros Tripakis, editors, FORMATS, volume 6919 of
Lecture Notes in Computer Science, pages 80–96. Springer, 2011.

[73] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool KRONOS.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems,
volume 1066 of Lecture Notes in Computer Science, pages 208–219. Springer, 1995.

[74] Conrado Daws and Sergio Yovine. Reducing the number of clock variables of timed au-
tomata. In IEEE Real-Time Systems Symposium, pages 73–81. IEEE Computer Society,
1996.

[75] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer, P. Lieverse,
K. A. Vissers, and G. Essink. Yapi: application modeling for signal processing systems. In
Proceedings of the 37th Annual Design Automation Conference, DAC ’00, pages 402–405,
New York, NY, USA, 2000. ACM.

[76] Aldric Degorre and Oded Maler. On scheduling policies for streams of structured jobs.
In Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of Lecture Notes in
Computer Science, pages 141–154. Springer, 2008.

[77] Volker Diekert. The Book of Traces. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1995.

[78] D.L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume 407 of
Lecture Notes in Computer Science, pages 197–212. Springer, 1989.

[79] J. L. Doob. Stochastic Processes (Wiley Classics Library). Wiley-Interscience, January
1990.

[80] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded
systems: Formal models, validation, and synthesis. In PROCEEDINGS OF THE IEEE,
pages 366–390. IEEE, 1999.

[81] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-Vincentelli.
Readings in hardware/software co-design. In Giovanni De Micheli, Rolf Ernst, and Wayne
Wolf, editors, Readings in Hardware/Software Co-Design, chapter Design of embedded
systems: formal models, validation, and synthesis, pages 86–107. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002.

[82] Stephen A. Edwards and Edward A. Lee. The semantics and execution of a synchronous
block-diagram language. Sci. Comput. Program., 48(1):21–42, 2003.

[83] Noel Eisley, Vassos Soteriou, and Li-Shiuan Peh. High-level power analysis for multi-core
chips. In Proceedings of the 2006 international conference on Compilers, architecture and
synthesis for embedded systems, CASES ’06, pages 389–400, New York, NY, USA, 2006.
ACM.

[84] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia
Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, January 2003.

140 BIBLIOGRAPHY

BIBLIOGRAPHY

[85] Haytham Elmiligi, Ahmed A. Morgan, M. Watheq El-Kharashi, and Fayez Gebali. Power
optimization for application-specific networks-on-chips: A topology-based approach. Mi-
croprocess. Microsyst., 33(5-6):343–355, August 2009.

[86] J. Esparza and K. Heljanko. Unfoldings – A Partial-Order Approach to Model Checking.
Springer, 2008.

[87] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analysis & design
language (AADL): An introduction. Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, 2006.

[88] Masahiro Fujita and Hiroshi Nakamura. The standard specc language. In Proceedings of
the 14th international symposium on Systems synthesis, ISSS ’01, pages 81–86, New York,
NY, USA, 2001. ACM.

[89] Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. Embedded System
Design: Modeling, Synthesis and Verification. Springer Publishing Company, Incorporated,
1st edition, 2009.

[90] D.D. Gajski. Specification and design of embedded systems. PTR Prentice Hall, 1994.

[91] R. German. Non-markovian analysis. In Ed Brinksma, Holger Hermanns, and Joost-
Pieter Katoen, editors, European Educational Forum: School on Formal Methods and Per-
formance Analysis, volume 2090 of Lecture Notes in Computer Science, pages 156–182.
Springer, 2000.

[92] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts and Appli-
cations for Embedded Systems. Springer Publishing Company, Incorporated, 1st edition,
2010.

[93] P.W. Glynn. A GSMP formalism for discrete event systems. Proceedings of the IEEE,
77(1):14–23, 1989.

[94] Luı́s Gomes and João Paulo Barros. Models of computation for embedded systems. In The
Industrial Information Technology Handbook, pages 1–17. CRC Press, Inc., 2005.

[95] David Goodger. An introduction to restructuredtext, 2012.

[96] Ian Grout. Digital Systems Design with FPGAs and CPLDs. Newnes, Newton, MA, USA,
2008.

[97] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Fixed-priority multiprocessor scheduling
with liu and layland’s utilization bound. In Proceedings of the 2010 16th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS ’10, pages 165–174, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[98] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip packet-switched in-
terconnections. In DATE, pages 250–256. IEEE Computer Society, 2000.

[99] Soonhoi Ha. Model-based programming environment of embedded software for mpsoc. In
Proceedings of the 2007 Asia and South Pacific Design Automation Conference, ASP-DAC
’07, pages 330–335, Washington, DC, USA, 2007. IEEE Computer Society.

[100] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and Young-
Pyo Joo. Peace: A hardware-software codesign environment for multimedia embedded
systems. ACM Trans. Des. Autom. Electron. Syst., 12(3):24:1–24:25, May 2008.

BIBLIOGRAPHY 141

BIBLIOGRAPHY

[101] Soonhoi Ha, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and Young-Pyo Joo.
Hardware-software codesign of multimedia embedded systems: the peace. In Proceed-
ings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA ’06, pages 207–214, Washington, DC, USA, 2006. IEEE
Computer Society.

[102] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language lustre. In Proceedings of the IEEE, pages 1305–1320, 1991.

[103] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The STATEMATE
Approach. McGraw-Hill, 1998.

[104] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[105] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf Ernst. Sys-
tem level performance analysis - the symta/s approach. In IEE Proceedings Computers and
Digital Techniques, 2005.

[106] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model
checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

[107] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
August 1978.

[108] Jingcao Hu and Radu Marculescu. Energy-aware mapping for tile-based noc architectures
under performance constraints. In Proceedings of the 2003 Asia and South Pacific Design
Automation Conference, ASP-DAC ’03, pages 233–239, New York, NY, USA, 2003. ACM.

[109] John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science and
Engineering, 9(3):90–95, May 2007.

[110] IDT. Idt peripheral bus (ipbus). intermodule connection technology enables broad range of
system-level integration, 2002.

[111] Intel. Intel strongarm sa-1100 microprocessor technical reference manual. Technical report,
Intel, March 1999.

[112] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and Time in Models
of Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[113] Ahmed A. Jerraya, Aimen Bouchhima, and Frédéric Pétrot. Programming models and hw-
sw interfaces abstraction for multi-processor soc. In Proceedings of the 43rd annual Design
Automation Conference, DAC ’06, pages 280–285, New York, NY, USA, 2006. ACM.

[114] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–.

[115] M. Jurdzinski, D. Peled, and H. Qu. Calculating probabilities of real-time test cases. In
FATES, pages 134–151, 2005.

[116] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L. Rosen-
feld, editor, Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475.
North-Holland, New York, NY, 1974.

142 BIBLIOGRAPHY

BIBLIOGRAPHY

[117] Faraydon Karim, Anh Nguyen, and Sujit Dey. An interconnect architecture for networking
systems on chips. IEEE Micro, 22(5):36–45, 2002.

[118] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling with Gen-
eralized Stochastic Petri Nets. John Wiley & Sons, 1994.

[119] Jean-Francois Kempf, Marius Bozga, and Oded Maler. Performance evaluation of sched-
ulers in a probabilistic setting. In Uli Fahrenberg and Stavros Tripakis, editors, FORMATS,
volume 6919 of Lecture Notes in Computer Science, pages 1–17. Springer, 2011.

[120] Yonit Kesten, Amir Pnueli, Joseph Sifakis, and Sergio Yovine. Integration graphs: A class
of decidable hybrid systems. In Robert L. Grossman, Anil Nerode, Anders P. Ravn, and
Hans Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 179–208. Springer, 1992.

[121] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-
Vincentelli. System Level Design: Orthogonolization of Concerns and Platform-Based
Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(12), December 2000.

[122] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. A methodology
to design programmable embedded systems - the y-chart approach. In Embedded Processor
Design Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, pages 18–
37, London, UK, UK, 2002. Springer-Verlag.

[123] Dohyung Kim and Soonhoi Ha. Static analysis and automatic code synthesis of flexible fsm
model. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference,
ASP-DAC ’05, pages 161–165, New York, NY, USA, 2005. ACM.

[124] Somayyeh Koohi, Mohammad Mirza-Aghatabar, Shaahin Hessabi, and Masoud Pedram.
High-level modeling approach for analyzing the effects of traffic models on power and
throughput in mesh-based nocs. In Proceedings of the 21st International Conference on
VLSI Design, VLSID ’08, pages 415–420, Washington, DC, USA, 2008. IEEE Computer
Society.

[125] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997.

[126] Ari Kulmala, Erno Salminen, and Timo D. Hämäläinen. Distributed bus arbitration algo-
rithm comparison on fpga-based mpeg-4 multiprocessor system on chip. IET Computers &
Digital Techniques, 2(4):314–325, 2008.

[127] Shashi Kumar, Axel Jantsch, Mikael Millberg, Johnny Öberg, Juha-Pekka Soininen, Martti
Forsell, Kari Tiensyrjä, and Ahmed Hemani. A network on chip architecture and design
methodology. In ISVLSI, pages 117–124, 2002.

[128] Kim Guldstrand Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune,
Paul Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachability
for priced timed automata. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV,
volume 2102 of Lecture Notes in Computer Science, pages 493–505. Springer, 2001.

[129] Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient veri-
fication of real-time systems: compact data structure and state-space reduction. In IEEE
Real-Time Systems Symposium, pages 14–24. IEEE Computer Society, 1997.

BIBLIOGRAPHY 143

BIBLIOGRAPHY

[130] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

[131] Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich. Models of com-
putation for embedded system design. In in System-Level Synthesis, pages 45–102. Kluwer
Academic Publishers, 1998.

[132] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic
queuing systems for the internet. Springer-Verlag, Berlin, Heidelberg, 2001.

[133] Edward A. Lee. Finite state machines and modal models in ptolemy ii. Technical Report
UCB/EECS-2009-151, EECS Department, University of California, Berkeley, Nov 2009.

[134] Edward A. Lee and David G. Messerschmitt. Synchronous data flow: Describing signal
processing algorithm for parallel computation. In COMPCON, pages 310–315, 1987.

[135] Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid systems. In Hybrid
Systems: Computation and Control (HSCC), volume LNCS 3414, pages 25–53. Springer-
Verlag, 2005.

[136] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jungho Park, Honggyu Kim,
Thanh Tuan Dao, Yongjin Cho, Sung Jong Seo, Seung Hak Lee, Seung Mo Cho, Hyo Jung
Song, Sang-Bum Suh, and Jong-Deok Choi. An opencl framework for heterogeneous mul-
ticores with local memory. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT ’10, pages 193–204, New York, NY, USA,
2010. ACM.

[137] Seung Eun Lee and Nader Bagherzadeh. A high level power model for network-on-chip
(noc) router. Comput. Electr. Eng., 35(6):837–845, November 2009.

[138] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximating the pareto
front of multi-criteria optimization problems. In Rupak Majumdar Javier Esparza, editor,
TACAS, volume 6015 of LNCS, pages 69–83. Springer, 2010.

[139] Julien Legriel and Oded Maler. Meeting deadlines cheaply. In Proceedings of the 2011 23rd
Euromicro Conference on Real-Time Systems, ECRTS ’11, pages 185–194, Washington,
DC, USA, 2011. IEEE Computer Society.

[140] Rainer Leupers and Olivier Temam. Processor and System-on-Chip Simulation. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[141] C.L. Liu and James Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment, 1973.

[142] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1st edition, 2000.

[143] D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the clock
explosion problem of timed automata. Theoretical Computer Science, 345:27–59, 2005.

[144] O. Maler. On optimal and reasonable control in the presence of adversaries. Annual Reviews
in Control, 31(1):1–15, 2007.

[145] O. Maler, K.G. Larsen, and B.H. Krogh. On zone-based analysis of duration probabilistic
automata. In Yu-Fang Chen and Ahmed Rezine, editors, INFINITY, volume 39 of EPTCS,
pages 33–46, 2010.

144 BIBLIOGRAPHY

BIBLIOGRAPHY

[146] Oded Maler. On under-determined dynamical systems. In Samarjit Chakraborty, Ahmed
Jerraya, Sanjoy K. Baruah, and Sebastian Fischmeister, editors, EMSOFT, pages 89–96.
ACM, 2011.

[147] César A. M. Marcon, Ney Laert Vilar Calazans, Fernando Gehm Moraes, Altamiro Amadeu
Susin, Igor M. Reis, and Fabiano Hessel. Exploring noc mapping strategies: An energy and
timing aware technique. In DATE, pages 502–507, 2005.

[148] Peter Marwedel. Embedded system design. Kluwer, 2003.

[149] The Mathworks. MATLAB Simulink Student Version 2012a. Pearson Academic Computing,
2012.

[150] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1982.

[151] Milica Mitic and Mile Stojcev. An overview of on-chip buses. Facta universitatis - series:
Electronics and Energetics, 19(3):405–428, 2006.

[152] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design space exploration of
heterogeneous embedded systems using symbolic search and multi-granular simulation.
In Proceedings of the joint conference on Languages, compilers and tools for embedded
systems: software and compilers for embedded systems, LCTES/SCOPES ’02, pages 18–
27, New York, NY, USA, 2002. ACM.

[153] Edward F. Moore. Gedanken-experiments on sequential machines. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 129–153. Princeton University Press,
Princeton, NJ, 1956.

[154] MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2, September 4th 2009.

[155] Dejan Nickovic and Oded Maler. Amt: A property-based monitoring tool for analog sys-
tems. In FORMATS, pages 304–319, 2007.

[156] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp: Theory and appli-
cation. Inf. Comput., 114(1):131–178, 1994.

[157] NXP. Nexperia pnx15xx/952x series data book, December 2007.

[158] Ümit Y. Ogras, Paul Bogdan, and Radu Marculescu. An analytical approach for network-
on-chip performance analysis. IEEE Trans. on CAD of Integrated Circuits and Systems,
29(12):2001–2013, 2010.

[159] Partha Pratim Pande, Cristian Grecu, André Ivanov, and Res Saleh. Design of a switch for
network on chip applications. In ISCAS (5), pages 217–220, 2003.

[160] L. C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason., 5(3):363–
397, September 1989.

[161] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathe-
matik, Bonn, 1962.

[162] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. A systematic approach to exploring
embedded system architectures at multiple abstraction levels. IEEE Trans. Computers,
55(2):99–112, 2006.

BIBLIOGRAPHY 145

BIBLIOGRAPHY

[163] Andy D. Pimentel, Mark Thompson, Simon Polstra, and Cagkan Erbas. Calibration of
abstract performance models for system-level design space exploration. J. Signal Process.
Syst., 50(2):99–114, February 2008.

[164] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Soren Christensen, and Kurt Jensen.
Cpn tools for editing, simulating, and analysing coloured petri nets. In Proceedings of the
24th international conference on Applications and theory of Petri nets, ICATPN’03, pages
450–462, Berlin, Heidelberg, 2003. Springer-Verlag.

[165] George M. Reed and A. W. Roscoe. A timed model for communicating sequential pro-
cesses. Theor. Comput. Sci., 58:249–261, 1988.

[166] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In
Ales Leonardis, Horst Bischof, and Axel Pinz, editors, ECCV (1), volume 3951 of Lecture
Notes in Computer Science, pages 430–443. Springer, 2006.

[167] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Reference
Manual. Addison-Wesley Professional, 2nd edition, 2010.

[168] Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. Optimizing explicit data
transfers for data parallel applications on the cell architecture. ACM Trans. Archit. Code
Optim., 8(4):37:1–37:20, January 2012.

[169] Roberto Segala. A compositional trace-based semantics for probabilistic automata. In
CONCUR, pages 234–248, 1995.

[170] Roberto Segala. Modeling and verification of randomized distributed real-time systems.
PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 1995. Not available from Univ. Microfilms Int.

[171] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.
Nord. J. Comput., 2(2):250–273, 1995.

[172] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and A. Sangiovanni-
Vencentelli. Addressing the system-on-a-chip interconnect woes through communication-
based design. In Proceedings of the 38th annual Design Automation Conference, DAC ’01,
pages 667–672, New York, NY, USA, 2001. ACM.

[173] Marco Sgroi, Luciano Lavagno, and Alberto Sangiovanni-Vincentelli. Formal models for
embedded system design. IEEE Des. Test, 17(2):14–27, April 2000.

[174] Joseph Sifakis and Sergio Yovine. Compositional specification of timed systems (extended
abstract). In Claude Puech and Rüdiger Reischuk, editors, STACS, volume 1046 of Lecture
Notes in Computer Science, pages 347–359. Springer, 1996.

[175] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on Parallel and Dis-
tributed Computing). Wiley-Interscience, 2007.

[176] IEEE Computer Society. IEEE Standards Intepretations: IEEE Std 1076-1987, IEEE Stan-
dard VHDL Language Reference Manual. IEEE Standards Office, New York, NY, USA,
1992.

[177] STMicroelectonics and CEA. Platform 2012: A many-core programmable accelerator for
ultra-efficient embedded computing in nanometer technology. Technical report, STMicro-
Electronics CEA, 2010.

146 BIBLIOGRAPHY

BIBLIOGRAPHY

[178] STMicroelectronics. Nomadik - open multimedia platform for next generation mobile de-
vices. Technical report, STMicroElectronics, 2004.

[179] Sander Stuijk, Marc Geilen, and Twan Basten. SDF3: SDF for free. In ACSD, pages
276–278. IEEE Computer Society, 2006.

[180] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog for Design: A Guide
to Using SystemVerilog for Hardware Design and Modeling. Springer Publishing Company,
Incorporated, 2nd edition, 2010.

[181] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for schedul-
ing hard real-time systems. In in ISCAS, pages 101–104, 2000.

[182] Lothar Thiele and Ernesto Wandeler. Performance analysis of distributed embedded sys-
tems, 2005.

[183] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language for
streaming applications. In R. Nigel Horspool, editor, CC, volume 2304 of Lecture Notes in
Computer Science, pages 179–196. Springer, 2002.

[184] Donald E. Thomas and Philip R. Moorby. The VERILOG Hardware Description Language.
Kluwer Academic Publishers, Norwell, MA, USA, 3rd edition, 1996.

[185] TI. Ti omap.

[186] Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram., 40(2-3):117–134, April 1994.

[187] Frank Vahid and Tony D. Givargis. Embedded System Design: A Unified Hardware/Soft-
ware Introduction. Wiley, international student edition edition, October 2001.

[188] Pieter van der Wolf, Erwin de Kock, Tomas Henriksson, Wido Kruijtzer, and Gerben Essink.
Design and programming of embedded multiprocessors: an interface-centric approach. In
Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, CODES+ISSS ’04, pages 206–217, New York, NY, USA,
2004. ACM.

[189] Enrico Vicario, Luigi Sassoli, and Laura Carnevali. Using stochastic state classes in quan-
titative evaluation of dense-time reactive systems. IEEE Trans. Software Eng., 35(5):703–
719, 2009.

[190] Jelte Peter Vink, Kees van Berkel, and Pieter van der Wolf. Performance analysis of soc
architectures based on latency-rate servers. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’08, pages 200–205, New York, NY, USA, 2008.
ACM.

[191] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. System architecture
evaluation using modular performance analysis: a case study. STTT, 8(6):649–667, 2006.

[192] Farn Wang. Efficient verification of timed automata with BDD-like data structures. STTT,
6(1):77–97, 2004.

[193] J. Wang, Y. Li, and Q. Peng. A Novel Analytical Model for Network-on-Chip using Semi-
Markov Process. Advances in Electrical and Computer Engineering, 11(1):111–118, 2011.

BIBLIOGRAPHY 147

BIBLIOGRAPHY

[194] Tim Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, Design. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[195] Pierre Wodey, Geoffrey Camarroque, Richard Hersemeule, and Jean-Philippe Cousin. Lo-
tos code generation for model checking of stbus based soc: the stbus interconnect. In
Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, MEMOCODE ’03, pages 204–, Washington, DC, USA, 2003. IEEE
Computer Society.

[196] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor system-on-chip (mpsoc) technol-
ogy. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
27(10):1701–1713, Oct. 2008.

[197] Wayne Wolf. The future of multiprocessor systems-on-chips. In Sharad Malik, Limor Fix,
and Andrew B. Kahng, editors, DAC, pages 681–685. ACM, 2004.

[198] Wayne Wolf. Computers as Components, Second Edition: Principles of Embedded Com-
puting System Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd
edition, 2008.

[199] Jinwen Xi and Peixin Zhong. A transaction-level noc simulation platform with architecture-
level dynamic and leakage energy models. In Proceedings of the 16th ACM Great Lakes
symposium on VLSI, GLSVLSI ’06, pages 341–344, New York, NY, USA, 2006. ACM.

[200] Wang Yi. Ccs + time = an interleaving model for real time systems. In Javier Leach Albert,
Burkhard Monien, and Mario Rodrı́guez-Artalejo, editors, ICALP, volume 510 of Lecture
Notes in Computer Science, pages 217–228. Springer, 1991.

[201] Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Ed Brinksma and Kim Guldstrand Larsen, editors,
CAV, volume 2404 of Lecture Notes in Computer Science, pages 223–235. Springer, 2002.

[202] S. Yovine. Kronos: A verification tool for real-time systems. STTT, 1(1-2):123–133, 1997.

[203] Sergio Yovine. Methodes et outils pour la verification symbolique de systemes temporises.
PhD thesis, Institut National Polytechnique de Grenoble, France, May 1993.

[204] J. Zhao. Partial order path technique for checking parallel timed automata. In FTRTFT,
pages 417–432, 2002.

148 BIBLIOGRAPHY

