
HAL Id: tel-01548913
https://theses.hal.science/tel-01548913v1

Submitted on 28 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New MP-SoC profiling tools based on data mining
techniques
Sofiane Lagraa

To cite this version:
Sofiane Lagraa. New MP-SoC profiling tools based on data mining techniques. Artificial Intelligence
[cs.AI]. Université de Grenoble, 2014. English. �NNT : 2014GRENM026�. �tel-01548913�

https://theses.hal.science/tel-01548913v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial 7 août 2006 ISBN: 978-2-11-129190-4

Présentée par

Sofiane LAGRAA

Thèse dirigée par Frédéric PÉTROT1

et codirigée par Alexandre TERMIER2

préparée au sein des Laboratoires 1TIMA et 2LIG
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (MSTII)

Nouveaux outils de profilage de MP-
SoC basés sur des techniques de
fouille de données
« New MPSoC profiling tools based on data mining techniques »

Thèse soutenue publiquement le 13 Juin 2014
devant le jury composé de:

M. Albert Cohen
Directeur de recherche INRIA, École Normale Supérieure, Examinateur
M. Bernard Goossens
Professeur, Université de Perpignan, Rapporteur
M. Pascal Poncelet
Professeur, Université Montpellier 2, Rapporteur
M. Miguel Santana
Directeur du centre IDTEC à STMicroelectronics, STMicroelectronics - Grenoble,
Examinateur
Mme. Peggy Cellier
Maître de conférences, INSA Rennes , Examinatrice
M. Frédéric Pétrot
Professeur, Institut Polytechnique de Grenoble, Directeur de thèse
M. Alexandre Termier
Maître de conférences (HDR), Université Joseph Fourier, Co-Directeur de thèse

Abstract

Miniaturization of electronic components has led to the introduction of complex elec-

tronic systems which are integrated onto a single chip with multiprocessors, so-called

Multi-Processor System-on-Chip (MPSoC). The majority of recent embedded systems

are based on massively parallel MPSoC architectures, hence the necessity of developing

embedded parallel applications. Embedded parallel application design becomes more

challenging: It becomes a parallel programming for non-trivial heterogeneous multi-

processors with diverse communication architectures and design constraints such as

hardware cost, power, and timeliness.

A challenge faced by many developers is the profiling of embedded parallel appli-

cations so that they can scale over more and more cores. This is especially critical for

embedded systems powered by MPSoC, where ever demanding applications have to run

smoothly on numerous cores, each with modest power budget. Moreover, application

performance does not necessarily improve as more cores are added. Application per-

formance can be limited due to multiple bottlenecks including contention for shared

resources such as caches and memory. It becomes time consuming for a developer to

pinpoint in the source code the bottlenecks decreasing the performance.

To overcome these issues, in this thesis, we propose a fully three automatic methods

which detect the instructions of the code which lead to a lack of performance due

to contention and scalability of processors on a chip. The methods are based on data

mining techniques exploiting gigabytes of low level execution traces produced by MPSoC

platforms. Our profiling approaches allow to quantify and pinpoint, automatically the

bottlenecks in source code in order to aid the developers to optimize its embedded

parallel application. We performed several experiments on several parallel application

benchmarks. Our experiments show the accuracy of the proposed techniques, by

quantifying and pinpointing the hotspot in the source code.

Key Words Multi-Processor System-on-Chip (MPSoC), Parallel Embedded Software,

Profiling, Data Mining, Execution Traces, Contention, Scalability.

Sofiane LAGRAA TIMA and LIG laboratories iii

Résumé

La miniaturisation des composants électroniques a conduit à l’introduction de sys-

tèmes électroniques complexes multiprocesseurs intégrés sur une seule puce, les Multi-
Processor System-on-Chip (MPSoC). La majorité des systèmes embarqués à venir est

basée sur des architectures avec un grand nombre de processeurs, d’où la nécessité de

développer des applications parallèles embarquées. La conception et le développement

d’une application parallèle embarquée est de plus en plus difficile, notamment pour

les architectures multiprocesseurs hétérogènes ayant différents types de contraintes de

communication et de conception, tels que le coût du matériel, la puissance et la rapidité.

Un défi à relever par les développeurs est le profilage des applications parallèles

afin qu’elles puissent passer à l’échelle. Cela est particulièrement important pour les

systèmes embarqués de type MPSoC, où les applications doivent fonctionner correcte-

ment sur de nombreux cœurs. En outre, la performance d’une application ne s’améliore

pas forcément lorsque l’application tourne sur un nombre de cœurs encore plus grand.

La performance d’une application peut être limitée en raison de multiples goulots

d’étranglement, notamment la contention sur des ressources partagées telles que les

caches et la mémoire. Il devient difficile et long pour un développeur de faire un pro-

filage de l’application parallèle et d’identifier les goulots d’étranglement dans le code

source qui diminuent la performance de l’application.

Pour surmonter ces problèmes, dans cette thèse, nous proposons trois méthodes

automatiques qui détectent les instructions du code source conduisant à une diminution

de performance due à la contention et à la croissance du nombre de processeurs sur

une même puce. Les méthodes sont basées sur des techniques de fouille de données

exploitant des gigaoctets de traces d’exécution de bas niveau produites par des simu-

lateurs de plateformes MPSoC. Nos approches de profilage permettent de quantifier

et de localiser automatiquement les goulots d’étranglement dans le code source afin

d’aider les développeurs à optimiser leurs applications parallèles embarquées. Nous

avons effectué plusieurs expériences sur plusieurs applications parallèles embarquées.

Elles montrent la précision des techniques proposées, en quantifiant et localisant avec

précision les lignes de code dans le code source qui induisent des ralentissements.

Mots Clès Système MultiProcesseur sur Puce (MPSoC), Logiciel Parallèle Embarqué,

Sofiane LAGRAA TIMA and LIG laboratories v

Acknowledgments

Il m’est agréable à travers ces quelques lignes d’exprimer toute ma gratitude et mes

remerciements envers les personnes qui m’ont aidé et m’ont soutenu tout au long de ma

thèse.

Mes sincères remerciements vont à Mr Frédéric Pétrot et Mr Alexandre Termier, qui

m’ont proposé ce sujet de thèse à travers lequel j’ai pu apprécier deux domaines de

recherche : le data mining et les systèmes embarqués. Je les remercie pour leur confiance

et leur soutien tout au long de ce projet.

J’adresse mes remerciements à Mr Albert Cohen qui m’a fait l’honneur de présider le

jury de ma thèse. Je souhaite aussi remercier Mr Goossens et Mr Poncelet pour avoir

accepté de rapporter mon travail de thèse. Mme Cellier et Mr Sontana pour avoir accepté

d’examiner mon travail.

Je remercie mes collègues de l’équipe SLS et l’équipe HADAS respectivement au

laboratoire TIMA et LIG pour leurs conseils, leur gentillesse et leur bonne humeur.

En fin, ce travail n’aurait pu avoir lieu sans le précieux soutien de ma famille.

Sofiane LAGRAA TIMA and LIG laboratories vii

List of Figures

1.1 Predictive evolution of number of cores in a chip and high performance

computing (source [ITR07]) . 2

1.2 MPPA®-256 block diagram (source [KAL]) 3

1.3 Overview of dissertation . 6

2.1 Example of MPSoC platform (Source: Texas Instruments) 8

2.2 Concurrent memory accesses latency versus Time across CPUs 12

2.3 Concurrent memory access by CPUs in a given time window 13

2.4 Speed-up as a function of the number of processors for matrix multiplica-

tion, ocean (SPLASH-2) and MJPEG multi-threaded applications. 14

2.5 Overview of the simulation of embedded software on MPSoC architecture 17

2.6 Trace file size according to the number of CPUs in each MPSoC platform 19

3.1 Classification of Embedded Software Profiler 28

3.2 Reasons for large traces . 30

3.3 Map of Data Mining domains . 32

3.4 A behavior graph dataset and Frequent graphs [LYY+05] 34

4.1 Profiling Process Overview . 42

4.2 Two groups or clusters of data points . 45

5.1 Example of 4 x 4 mesh NoC . 51

5.2 The windowed frequent events trace . 54

5.3 Contention Pattern discovery methodology from execution traces in MP-

SoC . 55

5.4 Overview of Windowed frequent events trace computation 56

5.5 Example of frequent patterns . 56

5.6 Example of hotspot detection from patterns 57

5.7 Contention Pattern discovery methodology from execution traces in MP-

SoC . 59

5.8 Boxplot . 60

5.9 The windowed events trace . 61

Sofiane LAGRAA TIMA and LIG laboratories ix

LIST OF FIGURES

6.1 Global approach for scalability hotspot in MPSoC platforms 70

6.2 Hot cluster evolution . 73

7.1 MJPEG Application described with communicating tasks 80

7.2 Description of the used architecture . 81

7.3 Simulated platform (1) . 83

7.4 Access rate of the nodes to the pages P_3090 and P_3088 running Man-

delbrot application . 84

7.5 Results Representation . 84

7.6 Period between the successive stores of the address 0x1000f914 86

7.7 New period between the successive stores of the address 0x1000f914 . . . 86

7.8 Memory access frequency . 88

7.9 Run time of memcpy, idct, memset in parallel application 88

7.10 Scalability hotspot in assembly code for the matrix multiplication appli-

cation. 90

7.11 Visualizing the evolution of hot clusters in each multi-threaded matrix

multiplication application according to platform instances 92

7.12 Growth rate evolution over platform instances running five multi-threaded

applications . 92

7.13 InitA function of LU application . 93

7.14 Improvement of InitA function of LU application 93

A.1 An example of disassembly of executable MJPEG code 101

B.1 InitA function of LU application . 104

x TIMA and LIG laboratories Sofiane LAGRAA

List of Tables

2.1 Raw trace format . 18

3.1 Access memory addresses of CPUs . 33

3.2 Frequent Access memory addresses of CPUs 34

3.3 A dataset in the context of system trace analysis [CBT+12] 35

3.4 Works on program analysis using on Traces 39

4.1 Example data . 46

4.2 Frequent itemsets . 46

5.1 Raw trace format for NoC . 51

5.2 Frequent Contention patterns . 58

5.3 Frequent Patterns . 63

5.4 Comparison of contention analysis methodologies in MPSoC 65

6.1 Scalability hotspots . 75

6.2 Comparison of Scalability Bottlenecks Detection Methodologies 76

7.1 Characteristics of applications . 80

7.2 Summary of the simulation characteristics 82

7.3 Frequent patterns . 84

7.4 Frequent patterns . 85

7.5 Contention windows . 87

7.6 Frequent Patterns . 88

7.7 Scalability hotspots . 91

7.8 Coverage of clusters in each multi-threaded application across platform

instances . 95

A.1 New Raw trace format . 102

B.1 Frequent Contention Patterns in FFT Application 103

B.2 Frequent Contention Patterns in Mandelbrot Application 104

B.3 Data variable called by floating point functions in platform with 4 CPUs 104

Sofiane LAGRAA TIMA and LIG laboratories xi

LIST OF TABLES

B.4 Data variable called by floating point functions in platform with 8 CPUs 105

B.5 Frequent Contention Patterns in RADIX Application 105

B.6 Frequent Contention Patterns in LU Application 105

xii TIMA and LIG laboratories Sofiane LAGRAA

Contents

Abstract iii

Résumé v

Acknowledgments vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Problem Definition 7

2.1 Context . 7

2.1.1 MPSoC . 7

2.1.2 Terminology . 9

2.1.2.1 MPSoC platform . 9

2.1.2.2 Multi-threaded programs 9

2.1.2.3 Parallel Embedded Software 9

2.2 Difficulties of Writing Parallel Programs for MPSoC 9

2.3 MPSoC Profiling Problems . 10

2.3.1 Contention problems . 11

2.3.2 Scalability bottlenecks . 13

2.3.3 Profiling tools and Profiling tools based on Simulation 15

2.4 Execution traces . 17

2.5 Execution trace analysis . 18

2.6 Conclusion . 19

3 Background and Related Work 21

3.1 Profiling Tools . 21

3.1.1 Software Based Profiling . 22

3.1.2 Hardware Based Profiling . 24

Sofiane LAGRAA TIMA and LIG laboratories xiii

CONTENTS

3.1.3 FPGA Based Profiling . 25

3.2 Related Work in Contention and Scalability Bottlenecks Discovery 25

3.2.1 Contention Discovery . 25

3.2.2 Scalability Bottlenecks Discovery 26

3.3 Positioning Relative To Existing Profiling Tools 27

3.4 Traces . 28

3.4.1 Execution Traces Representation 29

3.4.2 Dealing with the Large Size of Traces 29

3.5 Multi-Threaded Programs Analysis based on Traces 31

3.6 Data Mining . 31

3.6.1 Frequent Pattern Mining . 32

3.7 Traces Analysis Using Data Mining . 35

3.7.1 High level analysis . 35

3.7.1.1 Software Analysis . 35

3.7.2 Low level analysis . 37

3.7.2.1 Hardware Analysis . 37

3.7.2.2 Software Analysis . 37

3.8 Summary . 38

3.9 Conclusion . 40

4 New MPSoC Profiling Tools based on Data Mining 41

4.1 Profiling Process Overview . 41

4.1.1 MPSoC Simulation . 42

4.1.2 Trace Collection . 42

4.1.3 Traces Preprocessing . 43

4.1.3.1 Low-Level and High-Level Traces 43

4.1.3.2 The Windowed Events Trace 43

4.1.3.3 Feature of Traces . 43

4.1.4 Data Mining Tools . 43

4.1.4.1 Clustering . 44

4.1.4.2 Frequent Itemset/Pattern Mining 45

4.1.5 Knowledge Discovery . 46

4.2 Summary . 46

5 Contention Pattern Discovery in MPSoC 49

5.1 Introduction . 49

5.2 Preliminaries and Problem Formulation 50

5.2.1 NoC . 50

5.2.2 Trace Definitions . 51

xiv TIMA and LIG laboratories Sofiane LAGRAA

CONTENTS

5.2.3 Problem Statement . 52

5.2.4 Objective . 53

5.3 Contention Pattern Discovery Methodology in MPSoC I 53

5.3.1 Patterns definitions . 54

5.3.2 Pattern discovery method . 54

5.3.2.1 Windowed frequent events trace computation 55

5.3.2.2 Patterns computation . 56

5.3.3 Hotspot detection from patterns 56

5.3.4 Preliminary Results . 58

5.4 Approach limitations . 58

5.5 Contention Pattern Discovery Methodology in MPSoC II 58

5.5.1 Pattern discovery method . 59

5.5.2 Long latencies determinations . 59

5.5.3 Slicing the execution traces into contention windows 60

5.5.4 Mining the frequent contention patterns 61

5.5.5 Preliminary Results . 63

5.6 Comparison of Methodologies . 64

5.7 Conclusion . 66

6 Scalability Bottlenecks Discovery in MPSoC 67

6.1 Introduction . 68

6.2 Preliminaries and Problem formulation 68

6.2.1 Definitions . 68

6.2.2 Problem Statement . 69

6.3 Scalability bottlenecks discovery method 70

6.3.1 Overview of the method . 70

6.3.2 Trace collection . 71

6.3.3 Feature extraction . 71

6.3.4 Feature-based clustering . 72

6.3.5 Growth rate of hot cluster . 72

6.3.6 Frequent scalability bottlenecks mining 74

6.4 Preliminary Results . 75

6.5 Comparison of Scalability Bottlenecks Detection Methodologies 75

6.6 Conclusion . 76

7 Experimentations and Results 77

7.1 Parallel embedded software . 78

7.1.1 Ocean . 78

7.1.2 FFT . 78

Sofiane LAGRAA TIMA and LIG laboratories xv

CONTENTS

7.1.3 LU . 78

7.1.4 RADIX . 79

7.1.5 Mandelbrot . 79

7.1.6 MJPEG . 79

7.1.7 Matrix Multiplication . 79

7.2 Simulation environment and Hardware architecture 81

7.2.1 Simulator . 81

7.2.2 Operating System . 81

7.2.3 Hardware Architecture . 81

7.3 Experiments Set I: Contention discovery 82

7.3.1 Experiments I.1 . 82

7.3.2 Experiment I.2 . 85

7.3.3 Results analysis . 85

7.3.4 Experiments II . 86

7.3.5 Results Set II . 86

7.3.6 Discussion . 89

7.4 Experiments Set II: Scalability bottlenecks discovery 90

7.4.1 Results analysis . 90

7.4.2 Discussion . 95

7.5 Conclusion . 96

8 Conclusions and Future Work 97

8.1 Conclusions . 97

8.2 Future Work . 99

A Trace preprocessing 101

B Contention Patterns 103

Glossary 107

List of Publications 109

References 111

xvi TIMA and LIG laboratories Sofiane LAGRAA

Chapter 1: Introduction

Un poète doit laisser des traces de son passage, non des preuves. Seules les traces font réver.
René Char

Today, embedded systems are found in cell phones, digital cameras, portable video
games, personal digital assistants, and many other devices/ gadgets. Behind these dif-
ferent devices, it is the advancement of technologies, especially the rapidly progressing
semiconductor technology, that makes the development and production of such devices
possible, and make these devices smaller, while improving their performances. To
further improve performances while reducing costs and energy consumptions, Systems-
On-a-Chip (SoC) were introduced. They combine on a single chip general computation
units, memory, and I/O components. Recently, the need for more computing power as
well as increased graphics powers as leads to SoC with multiple computation cores as
well as GPU cores, called Multi-Processor System-On-Chip (MPSoC).

Industrial companies have already developed many MPSoC platforms for multimedia
and wireless communication applications. For example, TI’s OMAP (Open Multimedia
Application Platform) [Ins] product line targets the mobile phone and personal multime-
dia device market. Other companies have also developed their own MPSoC platforms in
the past few years, e.g., the STMicroelectronics’s STiH416 [STM], the Samsung Exynos 5
Quad [Sam] and KALRAY’s MPPA (Multi-Purpose Processor Array) platform [KAL].

According to the ITRS prediction [ITR07], it will be possible in ten years to integrate
more than 500 processors in a single chip (figure 1.1). Indeed, as a real example, the
figure 1.2 shows the KALRAY’s MPSoC architecture. This chip contains 256 processors
organized in an array of 16 clusters connected by a high-speed Network-on-Chip (NoC).
Each cluster contains 16 processing cores and 2MB of memory shared among the cores.

Hardware/software interaction is therefore very complex and often not analysable
at design time because of the dynamicity of the current applications and architectures.
MPSoC include complex memory hierarchies, components and more processors, which
in turn makes it difficult to develop / profile and optimize a parallel application on
a MPSoC.

Embedded Parallel Software

Writing parallel programs in MPSoC (embedded parallel software) is more difficult than
writing parallel programs or sequential programs on a classical computer. In classical

Sofiane LAGRAA TIMA and LIG laboratories 1

Introduction

Figure 1.1: Predictive evolution of number of cores in a chip and high performance
computing (source [ITR07])

sequential and parallel programming, the programmer must design an algorithm and
then express it to the computer in some manner that is correct, clear, and efficient to
execute. Additional to the problems of sequential programming, the parallelism adds
difficulties in several categories:

• The programmers need to understand the implications of parallelism and how to
transform common tasks into parallel programs.

• Parallel problems such as deadlocks, race condition, finding and expressing concur-
rency, managing data distributions, managing interprocessor communication, ba-
lancing the computational load, inefficiency of parallel software in utilizing the
hardware resources, scalability of processes.

• Increased difficulty to debug / profile N parallel processes.

• Increased difficulty to verify correctness of program.

• The researchers and practitioners lack of experience with parallel systems.

Parallel programming in MPSoC involves these same issues. Furthermore, for writing
efficient parallel programs, the programmer must know a good deal about the MPSoC
hardware complexity and characteristics of hardware resources limitation such as li-
mitations of processor-to-memory bandwidth, and small size of cache and memory
compared to cache and memory in a classical machine. MPSoCs lack dedicated perfor-
mance analysis methodologies of parallel applications. The hardware complexity and
characteristics of hardware resources are accompanied by dramatic constraints in energy
consumption. This is especially critical for embedded systems powered by MPSoC,
where ever demanding applications have to run smoothly on numerous cores, each with

2 TIMA and LIG laboratories Sofiane LAGRAA

Figure 1.2: MPPA®-256 block diagram (source [KAL])

modest power budget. Other issues can appear such as the cache miss and contention
which occur due to specific characteristics of the chip architecture.

Embedded parallel software performance is an essential and fundamental key in
modern development of MPSoC. With increased complexity and requirements, ap-
plications are expected to perform more computation in less time with lower power
consumption. In order to enhance the performance of embedded parallel application
on MPSoC, it is important to focus on optimization issues. Optimization is the process of
transforming a piece of code to make it more efficient (either in terms of time or space)
without changing its output or side-effects. The only difference visible to the code’s
user should be that it runs faster and/or consumes less memory. Optimizing parallel
programs is difficult [MMW96], specifically for embedded parallel program running
on MPSoC platforms. In order to optimize code, a tool for locating inefficient resources
usage is necessary. Such tool is called a profiler or profiling tool.

Profiling tools are computer aided software development tools that collect and
measure performance information of a software that is running on a target hardware
platform. The performance information they can provide are the amount of time needed
for each software function to execute in its entirety, the amount of cache read/write
misses, and other notable performance metrics. Profiling is deemed of pivotal impor-
tance for embedded systems design.

However, profiling techniques in MPSoC domain face the following major challenges:

• the existing profiling tools are not adapted and targeted to embedded system in
particular MPSoC software programs on MPSoC due to their intrusivity i.e. the
programmer must inject profiling code in source code sections to profile. The
intrusivity changes the application behavior.

Sofiane LAGRAA TIMA and LIG laboratories 3

Introduction

• the increasing complexity of applications and systems require profiling tools to be
fast and quickly available, so that they can be employed as early as possible in the
evaluation of embedded software.

• the accuracy of profiling information is imperative to capture the characteristics
of today’s highly diverse embedded applications and systems.

• the challenge to develop a powerful application suitable on parallel platform.

In order to raise up these challenges, execution traces is a commonly used technique
for debugging and performance analysis of a program in a machine or embedded system.
Concretely, execution traces implies generation and storage of relevant events during
run-time, for later off-line or post-mortem analysis.

Execution Traces Based Profiling

Execution traces have been used in program behavior comprehension to facilitate un-
derstanding of interactions between threads of an embedded software system. Further
in this thesis, execution traces have been used to profile, analyze program interactions,
and discover hotspots / bottlenecks in order to aid developer for program optimization.

However, another problem is the large amount of traces generated from the exe-
cution of a parallel embedded software on massively parallel MPSoC platform. The
execution traces can vary from tens up to a hundreds gigabytes. Identifying the relevant
information in this mass of data is a challenge. The large amount of traces complicates
the process of applying existing analysis techniques such as visualization or statistical
techniques. However, due to the complex nature of execution traces, most existing
works recognise the fact that there is a need for more advanced trace analysis techniques.
Therefore, we propose to use data mining techniques.

General Problem and Thesis objectives

Given the following context and problems:

• Evolution of the number of processors on a chip and particular hardware resources
limitation,

• Difficulties in writing embedded parallel software taking the characteristics of
hardware architecture into account,

• Difficulties of optimization of such programs,

• Difficulty to quantify and pinpoint the hotspots in the source code,

• Difficulty to analyse huge amounts of execution traces.

The objectives of this thesis is to develop and evaluate profiling techniques to aid
developers to take decision for optimization of the parallel programs running on MPSoC
in a fully automated way.

The profiling tools are based on execution traces and must have the following pro-
perties: 1O capabilities to analyse and understand the content of complex and large

4 TIMA and LIG laboratories Sofiane LAGRAA

execution traces; 2O an ability to extract meaningful and useful information from execu-
tion traces, 3O identifying recurrent behaviors that indicate performance issues while
running several tasks of applications concurrently on a MPSoC platform, and 4O an
ability to pinpoint the hotspots in the parallel program source code when:

• Multiple accesses to the same resource occurring at the same time cause the decline
of performance, this phenomena is called contention. The contention is one of the
principal cause of low performance that can stem from either hardware resource
limitations or from inefficiency of software applications in utilizing the hardware
resources.

• Bottlenecks prevent the performance of scaling embedded parallel application
linearly, when the number of processor increases. Application scalability refers
to the improved performance of running applications on a scaled-up MPSoC
platform.

In order to answer these problems:

• we opt for using data mining techniques for analysis of huge amount of execution
traces.

• we propose three techniques in order to find the cause of contention and scalability
bottlenecks using data mining on execution traces.

Our experimentations demonstrate the efficiency of our approaches by quantifying
and pinpointing hotspots in embedded parallel applications.

Thesis Organization

The remainder of the thesis is organized as follows:

• Chapter 2 presents in details the problems addressed in this thesis.

• Chapter 3 reviews a large state of art of profiling tools, the works using data
mining techniques on execution traces and the works on contention and scalability
bottlenecks. Also a positioning of our works is given.

Our three contributions are in frontier of two domains: MPSoC software engineering
and data mining. These contributions have in common the use of data mining techniques
and algorithms on execution traces for profiling embedded parallel applications:

• Chapter 4 presents an overview of new profiling tools based on the use of data
mining techniques on execution traces.

• Chapter 5 presents our first two contributions to identify and pinpoint frequent
contentions during the concurrent memory accesses and interaction between
processors.

• Chapter 6 presents our third contribution, a parallel scalability bottlenecks disco-
very method in MPSoC platforms using data mining on execution traces.

• Chapter 7 presents a set of experiments and results to validate our approaches.

• Chapter 8 concludes this thesis and presents future directions works of this thesis.

Sofiane LAGRAA TIMA and LIG laboratories 5

Introduction

Profiling Embedded Parallel Program

Chap. 2 Chap. 3

Chap. 5 Chap. 6 Chap. 7

Frequent Contention
 Discovery

Scalability Bottlenecks
Discovery

Experimentations
and Results

Collecting and Mining
Traces

Related WorkProblem Definition

CPU 0

CPU 1

CPU 2

CPU 3

Contention

Time

Time

Time

Time

Figure 1.3: Overview of dissertation

6 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 2: Problem Definition

Contents
2.1 Context . 7

2.1.1 MPSoC . 7

2.1.2 Terminology . 9

2.2 Difficulties of Writing Parallel Programs for MPSoC 9

2.3 MPSoC Profiling Problems . 10

2.3.1 Contention problems . 11

2.3.2 Scalability bottlenecks . 13

2.3.3 Profiling tools and Profiling tools based on Simulation 15

2.4 Execution traces . 17

2.5 Execution trace analysis . 18

2.6 Conclusion . 19

This chapter deals with performance bottlenecks and profiling issues for software
running on Multi-Processor System on Chip MPSoC. First, we present the context

of our work, followed by a detailed description of the main MPSoC profiling problems.
We then describe the difficulties in tracking the parts of source code decreasing the
performance of the software running on MPSoC. Finally, we summarize the problems
we intend to solve.

2.1 Context

2.1.1 MPSoC

A System-on-Chip (SoC) is an integrated circuit that implements most or all of the
functions of a complete electronic system. The system may contain memory, processor,
specialized logic, busses, and other digital functions. System-on-Chips are usually
targeted for embedded applications and widely used in cell phones, telecommunications,
networking, multimedia, and many other applications.

A MPSoC is a SoC that contains multiple processors, Constituting an evolution
in computer architecture, that is justified by the requirements of recent embedded
systems: real-time, low-power, and more demanding multitasking applications. The
MPSoC performance is determined by its hardware and software it runs. The hardware
components include the capacity of the node processors (e.g. CPU speed, cache size,

Sofiane LAGRAA TIMA and LIG laboratories 7

Problem Definition

etc.), the interconnect network that connects the processors, the memories, and more.
The software is basically the embedded application that is running which is the key
contributor to embedded system performance and power consumption.

To give an example of a MPSoC, Fig. 2.1 shows the the upcoming next generation
OMAP™4 mobile applications platform [Ins], OMAP44x, which is designed specifi-
cally for mobile multimedia telecommunication devices. It mainly consists of two
ARM Cortex™- A9 MPCore™RISC processors, a Digital Signal Processor DSP based
programmable video accelerator, a PowerVR™2D/3D graphics accelerator, an image
signal processing processor, a number of peripherals for video, I/O peripherals, and the
interconnection between the functional components.

Micro

Emulator
pod

Trace
analyzer

J TAG/
Emulation

HSI

USB

McBSP

Display
controller
parallel-serial SPI

HDMI™eMMC/MMC/SD

UART

McBSP

TPD12S015

HD
television

Fast
IrDA

Trace

LPDDR2 Keypad

Digital
MIC Keypad

USB

High-Speed
USB2OTG

SIMcard
MMcard

Main
battery

SIM

MMC/SD
card

REF/CLK

CDC3S04
clock
driver

eMMC

I2C

Timers,Interruptcontroller,mailbox

Boot/secureROM

M-Shield™ SecurityTechnology:SHA-1/MD5,
DES/3DES,RNG,AES,PKA,secureWDT,keys

OMAP44x

ARM®
Cortex™-A9
MPCore™

ARM®
Cortex™-A9
MPCore™

POWERVR™ SGX540
graphicsaccelerator

ImageSignal
Processor(ISP)

Sharedmemorycontroller/DMA

FLASH
controller

SDRAM
controller

NAND
flash

NOR
flash

SDIO

3G/4G
Modem

Coexistence

BlueLink™
Bluetooth®

NaviLink™
GPS

WiLink™
mWLAN

Touch
screen
controller

WUXGA

GPIO GPIO

CameraMIPI™ CSI-2

MIPI™ CSI-2

I2C

Subcamera

PDM In/Out

HFSpeakers

Handset
microphone

Power

Monitor

Charger

TWL6030

TWL6040

Speakers

Audio

Headset

IVA3Hardware
accelerator

32kHzCrystal

Vibrators

Amplifiers

Figure 2.1: Example of MPSoC platform (Source: Texas Instruments)

Multi-core MPSoC architectures allow the efficient execution of parallel programs.
This serves well in modern programming languages and operating systems as they are
designed to support multi-threaded application development with multiple concurrent
tasks. However, writing parallel programs is difficult and the resultant concurrent
tasks may not run as efficiently as expected on the MPSoC. Therefore, it is vital to be
able to evaluated and study the performance of embedded application on multi-core
architectures in order to improve their performance. Performance measurement is based
on collecting information about the execution characteristics of a program.

Performance measurement tools, also called profiling tools, help the developer to
profile its application in terms of execution time, memory usage, cache misses and other
important performance metrics. The results of the profiling tools help developers in
optimizing their applications.

Currently, the problem of how to do software analysis and efficient profiling is one
of the biggest challenges for MPSoC design [Mar06]. This thesis aims at advancing the
state of the art towards this goal.

8 TIMA and LIG laboratories Sofiane LAGRAA

2.2 Difficulties of Writing Parallel Programs for MPSoC

2.1.2 Terminology

2.1.2.1 MPSoC platform

A platform refers to the whole hardware necessary to run the embedded software. A
platform can be real (FPGA-based prototype, final SoC) or virtual, allowing to model
and simulate the hardware with the software running thereon.

2.1.2.2 Multi-threaded programs

A multi-threaded program contains two or more threads that can run concurrently. Each
thread defines a separate path of execution.

2.1.2.3 Parallel Embedded Software

Parallel embedded software runs on MPSoC platform. It is a multi-threaded program
operating on multiple CPUs. In this thesis, we use the term embedded software, program
or application for sake of brevity.

2.2 Difficulties of Writing Parallel Programs for MPSoC

The development of parallel programs on multi-core architectures is needed for several
applications such as video decoding, 3D games,...etc. However, developing parallel
programs is not an easy task and is more difficult than sequential programs [MH89,
NM92]. They consist of concurrent processes / threads, each executing different tasks
with communication and coordination between them. Parallel programs are complex
dynamic systems and interactive ones. They include complex interactions among the
processes, and between the processes and the platform components. The difficulties of
writing parallel programs for MPSoC are summarized as follows:

• Finding the parallelism: The first problem to which the developer is confronted
to identify the parallel code sections in the application.

• Debugging and Profiling issues: For a sequential application, the developer has
only one application to debug / profile, but for a parallel application running
on multiple cores, the developer faces several threads. Analysing the complex
interactions, the concurrent processes, and the relationships between program
processes is a challenging task.

• Characteristics of MPSoC architecture: Embedded software development is chal-
lenging because of the hardware complexity of MPSoC. It requires parallel pro-
gramming for homogeneous or heterogeneous multiprocessors. It also must take
into account diverse communication architectures and design constraints, such as
hardware cost, power, and timeliness. Therefore the developer must understand
the various complete characteristics of MPSoC hardware.

• Time to market: Manufacturers have to integrate new hardware technologies, to
develop new software, and to provide new functions in a very short time.

Sofiane LAGRAA TIMA and LIG laboratories 9

Problem Definition

In addition, the developer must cope with the different challenges such as schedu-
ling tasks at the right granularity onto processors, associating data with tasks, resource
sharing, threads synchronization, etc.. These issues can severely impact runtime perfor-
mance and can be very hard to fix [Fos95]. The problem of efficient programming of
complex multi-threaded applications for MPSoC is not new, however it remains one of
the biggest hurdles in the embedded system community.

In order to help the developer write an optimized parallel program, in this the-
sis, we profile multi-threaded applications running on MPSoC platforms, in order to
quantify application performance and pinpoint the code sections that are amenable to
optimization.

2.3 MPSoC Profiling Problems

A profiler is a program analysis tool that collects data on a program in order to track
the performance of the running software. It measures, for example, the space (memory)
or time complexity of a program, the usage of particular instructions, or frequency
and duration of function calls in order to track performance. The most common use of
profiling information is to detect bottlenecks and aid program optimization.

A bottleneck sometimes known as hotspot is a software resource (sections of code)
that is a key limiting factor in improving system performance.

There are many reasons that can prevent the scaling of a parallel application and
can degrade the performance of applications. The major bottlenecks for multi-threaded
workloads on multi-core architectures are [EEKS06, HCC+11, EDBE12]:

• Resource sharing: Multi-core architectures typically have many shared resources
such as: interconnection network, memory, caches, etc. Resource sharing im-
proves the utilization of a hardware component and can improve overall system
performance. However, resource sharing may also have a negative impact on the
performance. For example, if several threads need to access the same device, they
will compete for its access and which may cause contention, that may propagate to
the network or lead to very high latencies.

• Cache coherency: Cache coherency ensures that cache is consistent with respect
to shared data. Cache coherency introduces extra traffic on the bus or intercon-
nection network, and causes additional misses when local cache lines that are
invalidated through upgrades by other cores, are re-referenced later. For example,
if threads attempt to update the same cache line (false sharing) or the same data
(true sharing), a cache invalidation will be occurred. Cache invalidation is an ex-
pensive operation because it causes memory operations to stall and wastes memory
bandwidth. Moreover, cache invalidations can cause cache misses later when other
cores access the same cache line or the same data again. If cache invalidations and
cache misses occur frequently, they create a contention and the performance of
the application may suffer severely.

• Synchronization: The two most commonly used synchronization primitives are
locks and barriers. Locks are typically used to define critical sections to guarantee
atomicity when modifying shared data. A barrier, on the other hand, imposes

10 TIMA and LIG laboratories Sofiane LAGRAA

2.3 MPSoC Profiling Problems

ordering and denotes a point in the execution beyond which a thread is only allo-
wed to go after all other threads have reached that point. Also, locks and barriers
make the application execute sequentially which causes loss of performance for
the parallel application.

• Load imbalance: Load imbalance means that one or a more threads need (sub-
stantially) more time to execute than the other threads. This puts a limit on
the achievable speedup, as the execution time of a multi-threaded application is
determined by the slowest thread.

• Parallelization overhead: Is the amount of time required to coordinate parallel
tasks. Parallel overhead includes factors such as: task start-up time, synchroni-
zations, data communications, software overhead imposed by parallel languages,
and task termination time.

The growth of these factors results in significant traffic increase in the MPSoC
platform. Consequently the execution time of the parallel program is also increased.

Different bottlenecks can limit performance at different times. In particular, conten-
tion for different code segments can be very dynamic. In this thesis, we focus on
contention problems, and scalability issues linked to contention.

Two of the major problems of parallel applications in MPSoC are : contention problems
and scalability bottlenecks that result from contention.

2.3.1 Contention problems

The hardware components in an MPSoC, such as memory, input / output and processing
elements, are usually referred to as resources. If certain resources are shared among the
programs such as memory, there will be a potential resource contention. Contentions
occur when a memory unit or one or more links of the MPSoC platform are accessed
simultaneously by more processors than they were designed to satisfy. This leads to
delays in response time, and increases the memory access latency, and reduces the
bandwidth from the processor to memory [MTQ07].

Contention depends on bottlenecks, the number of read/write accesses, amount of
private and shared data present in an application, and cache capacity. Understanding
and discovering when, where, and how contentions occur in shared memory resources
that impact application performance is a challenging task.

Figure 2.2 illustrates the notion of high latency contention in a small period of the
execution of a parallel Motion-JPEG (MJPEG) video decoding application. It shows
an example of concurrent memory accesses by 4 CPUs over time. In each CPU, we
see the memory access latency in y-axis is according to the time (cycles) in x-axis. We
can observe in the region highlighted by a rectangle that a) memory access latencies
are much higher than the other regions of the curve, and b) the latencies of CPUs are
correlated i.e whenever the memory access latency increases in a CPU, it grows across
all CPUs. : Thereby, there is contention in this period.

The principal causes of contention are:

• Different synchronization sections and resource sharing.

Sofiane LAGRAA TIMA and LIG laboratories 11

Problem Definition

CPU 0

CPU 1

CPU 2

CPU 3

Contention

Time

Time

Time

Time

Figure 2.2: Concurrent memory accesses latency versus Time across CPUs

• Concurrent accesses to memory segments and/or IPs. The concurrent accesses
can be read/write memory accesses. The more frequent concurrent accesses or
synchronization, the higher the latency.

The concurrency is only about running different pieces of code at the same time
during a time window. Time window represents time period in which a set of concurrent
accesses occur. The interest of time window is to have a slice of time periods in order
to help identify resources that are highly shared. The concurrent accesses is defined
as a set of multiple events that occur within a given time period. We are interested in
concurrent accesses because in a given time period, the contention may be caused by
one or more processors accessing the same resources not exactly at the same time.

If we make a zoom of Figure 2.2 in terms of memory addresses, we have Figure. 2.3.
In the given time period ∆, we can find one or more concurrent accesses by the CPUs to
the addresses belonging to the same memory page. The different concurrent accesses
may occur multiple times by different CPUs in the same memory page and can create
contention (highlighted in Figure. 2.3). Furthermore, the presence of multiple concur-
rent threads or programs are some of the challenges that make MPSoC programming
so difficult. Although many efforts have been done, concurrent programming remains
hard [LC10, KKJ+08].

The phenomenon of memory contention is well known to practitioners and can
occur one or more times during program execution. Thus, frequent contentions decrease
drastically the parallel program performance. Also, the performance suffers when too
many processors attempt to access the same memory component / page simultaneously.

12 TIMA and LIG laboratories Sofiane LAGRAA

2.3 MPSoC Profiling Problems

Figure 2.3: Concurrent memory access by CPUs in a given time window

The performance of parallel algorithms is heavily influenced by contention. Ne-
vertheless, even though contention is one of the principal considerations affecting the
performance of algorithms on multiprocessors, to the best of our knowledge, there
are no tools for analyzing and pinpointing the contention in source code in MPSoC
development environment.

Therefore a contention detection tool is needed to help programmers identify whe-
ther their multi-threaded programs suffer from contention or not, and pinpoint the
contention in source code if it exists.

2.3.2 Scalability bottlenecks

It is expected that the number of cores will increase in the coming years given the
continuous transistor density improvements predicted by Moore’s law. For example,
Intel’s Many Integrated Core (MIC) architecture with more than 50 cores on a chip, and
the 288 cores of the KALRAY’s MPPA (Multi-Purpose Processor Array) platform. A major
challenge with increasing core counts is the ability to analyze and optimize performance
of parallel programs for multicore architectures. Developers need performance analysis
tools and methodologies to identify the performance scaling bottlenecks and understand
the behavior of the multi-threaded programs running on MPSoC platforms having 2, 4,
6,...any number of CPUs on a chip.

Intuitively, a parallel program is scalable if it runs n times faster on n cores than on
1 core. In this case, it is said that there is a linear speedup. Formally, the speedup is
described with the equation 2.1.

Sofiane LAGRAA TIMA and LIG laboratories 13

Problem Definition

SpeedUp =
T (1)
T (n)

(2.1)

Where T (n) is the time it takes to execute the program when using n processors.
Speedup is often used to understand scaling behavior of an application.
In practice such scaling cannot be obtained by all programs, and the well known

Amdahl’s law [Amd67] states that the maximum speed up of utilizing n processors in a
program is equal to:

1

(1− P) + P
n

(2.2)

where P is the portion of the program that can be made parallel, and thus 1− P is
the portion of the program that runs sequentially.

Figure 2.4 shows the actual speedup on a given hardware platform according to the
number of processors running multi-threaded programs on MPSoC platforms. Each of
them has different and growing number of processors {1,4,8,16}. The speedup achieved
is not linear. For example, it only achieves a speedup of 2.16 with four cores for the
parallel MJPEG application. Thus, the multi-threaded program does not fully utilize
the increasing number of processors.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 8 16

S
pe

ed
up

Processors

Theorical speedup
Matrix Multiplication

Splash2/Ocean
MJPEG

Figure 2.4: Speed-up as a function of the number of processors for matrix multiplication,
ocean (SPLASH-2) and MJPEG multi-threaded applications.

Although a speedup curve gives a high-level view on application scaling behavior, it

14 TIMA and LIG laboratories Sofiane LAGRAA

2.3 MPSoC Profiling Problems

does not provide the developer information on the inefficient parts of the source code
and any insight with respect to :

• Why an application does not scale ?

• What are the critical regions or parts of source code that create the scalability
bottlenecks problems ?

• Are the bottlenecks frequent or not in each platform ?

The bottlenecks (described in 2.3) serialize execution, hence wasting valuable exe-
cution cycles, and limiting scalability of applications. However, it can be difficult to
identify which sections of code are likely to reduce multi-threaded application perfor-
mances. It is tedious for an application developer to find the correct reason for a lack of
scalability without any tools.

2.3.3 Profiling tools and Profiling tools based on Simulation

Using profiling tools, developers can identify sections of code that, if optimized, would
yield a better speed-up. Such sections of code are referred to as hotspots or bottlenecks.
The benefits of using such tools are to optimize the application by decreasing execution
time, increasing efficiency of resource utilization, or a combination of the two. Using
the results from the profiling tool, the developers can optimize parts of the program
and then run the tool again. This iterative refinement method allows the developer
to eliminate parts of the program that dominate the execution time until satisfactory
results are obtained.

The following approaches of profiling tools for computers or servers already exist in
the literature [MAT09]:

• Instrumentation based profiling: Instrumentation consists of injecting extra
code into the application’s source code before or during compilation. Instrumen-
tation code introduced into a program can change its behavior which in turn,
can lead to collecting, i.e the profiled information, which does not represent the
original un-instrumented program. Example: The profilers gprof [FS08] and In-
tel®VTune™ [Rei05] instrument the target program with additional instructions
to collect the required information.

• Hardware Based Profiling Hardware Counter Based Profiling (HCBP) tools [TK08a]
utilize on-chip hardware counters that are available on advanced processors. These
hardware counters are dedicated to monitoring specific events that occur during
runtime execution of an application. An example of such (HCBP) tool is Perfor-
mance Advanced Programming Interface (PAPI) [BDG+00].

These categories of profiling tools are not suitable for parallel programs because they
change its implementation and behavior during execution. The problems with these
categories are :

• They do not provide the results of complex interactions in parallel programs on
multiprocessor architecture such as MPSoC platforms.

Sofiane LAGRAA TIMA and LIG laboratories 15

Problem Definition

• The intrusivity (adding instructions in code source to profile it) is not suitable for
hardware and software architecture of MPSoC platform because it changes the
execution behavior of the application.

In order to tackle these issues, we use simulation methods with non-intrusive trace
collection.

• Simulation: Today simulation techniques are widely used to help developing and
designing SoCs and software that they run. Figure 2.5 shows the general principle
of the simulation. The simulation takes into consideration both embedded parallel
software and hardware architecture. In the context of this work, the hardware
is modeled using SystemC 1. Simulation is used to obtain the state of the whole
simulated system. It allows also to test the software without the real SoC. This
last point is crucial because, when designing a SoC, the time-to-market pressure is
very hard. The possibility to test software parts before having the chip finished is a
key factor for accelerating the release of a SoC. It allows too to verify that the SoC
is well suited to execute the required application. Several simulation techniques
exists, each one having its advantages and drawbacks. The main parameters of
a simulation technique is its speed and precision. A trade-off between this two
aspects has to be chosen depending on the needs. Our need in term of precision
is at Cycle-Accurate / Bit-Accurate CABA level of simulation, at which the system
is described in detail with respect to time. The interest of the use of CABA is to
get precise performance analysis. Simulations can have varying times to complete
depending on the complexity of the software code. It may take several hours to
run an entire simulation which may only cover a few seconds of real-time.

When hardware/software simulation is used, we must distinguish the host processor,
which is the processor of the machine on which the hardware/software simulation is
run, from the target processor, which is the processor embedded into the simulated
platform.

Architecturally, the host processor is usually different from the target processor. A
target processor may be simulated in a virtual platform, running on the host processor
like any software. In this work, we focus only on the target processor in a virtual
platform. In the following, we will refer to virtual platform as platform and target
processor as processor for sake of brevity.

During the simulation, the non-intrusive trace system generates execution traces
of processors. The trace system has a global view to everything that’s going on during
the platform simulation. A trace system consists in tracing hardware events that are
produced by instrumented models of the platform components. The produced trace
contains the instructions executed by the different processors of the MPSoC. The
related memory accesses are also traced up to the memory by every component relaying
them. These memory accesses are used to recover the inter-processors instructions
dependencies. Thus, a very low-level trace terms of address of assembler instruction is
generated by the cycle accurate simulator. These execution traces are used for software
analysis.

1SystemC is a language that allows designers to develop both the hardware and software components of
their system together. This is all possible to do at a high level of abstraction. Strictly speaking, SystemC is
not a language, but rather a library for C++, containing structures for modeling hardware components and
their interactions.

16 TIMA and LIG laboratories Sofiane LAGRAA

2.4 Execution traces

Figure 2.5: Overview of the simulation of embedded software on MPSoC architecture

2.4 Execution traces

Execution traces (or traces) are a description of events that occur during the execution of
a software application. They can be generated from simulated or real platforms such as
CoreSight trace macrocells tracer [Cor13] for ARM processors or STMicroelectronics’s
Application Trace Logger (ATL) [STM13] for STiH415 and STiH416 processors 2.

Execution traces are a collection of fine grained information of the execution thanks
to the simulation of hardware/software platform. Traces are at a low level of granu-
larity i.e. gathered at the register/signal level during simulation. Table 2.1 shows an
example of traces that represent memory accesses (event) performed by CPU. Each
event corresponds to a trace event. A trace event consists of, the global date at which
the event occurred in cycles since the power-up of the system, the CPU that initiated
the transaction, the program counter of the instruction that produced the access, the
instruction type (a fetch, load/store, load-link/store-conditional pairs), and the memory
access latency by the CPU.

The interests of (the low level of) traces are:

• Traces are a very powerful tool that can be used to locate the complex interactions
between processors and inconspicuous code defects.

• They are necessary for debugging applications and used for monitoring and profi-

2STiH415 and STiH416 are dual-core ARM Cortex-A9 CPU, designed for use in Set-top-boxes.

Sofiane LAGRAA TIMA and LIG laboratories 17

Problem Definition

Table 2.1: Raw trace format
CPU Cycle Program Instruction Data Access
ID Number Counter Type Address Latency
1 212305 0x10009d60 fetch 0x10009d60 28
2 212310 0x10009d60 load 0x10001a40 40
1 212333 0x10009d60 load 0x10001a40 52

ling the performance of applications.

• They provide accurate timestamps of processors events, thanks to the CABA level
simulation of parallel program execution.

The problems associated with traces are:

• Volumetry of traces: The traces can be very large from tens of megabytes to
hundred of gigabytes depending on several functions such as the number of
processors in the platform, simulation time, number of event parameters to be
traced and the data input size of the application.

Figure 2.6 shows the trace file size of MJPEG video decoding application against
the number of cores in the platform. The traces correspond to the decoding
required at 10 color images with a resolution of 255 x 144 pixels. We see that the
trace file size grows significantly when the number of cores in a platform grows.

• Trace analysis: Traces analysis is the process of applying techniques such as
statistical techniques to describe and illustrate, condense and recap, and evaluate
traces. Due to the volume of traces, it can be difficult to perform trace analysis.

2.5 Execution trace analysis

Analysing the concurrent processors behaviors and their interactions within a program
is a complex task due to the interleaving of events among processors. The large number
of events occurring in each processor in a given time period or in all periods, leads to
combinatorial explosion during analysis. Thus the analysis from huge amount of trace
may take a long time.

Trace analysis is a set of techniques that synthesizes, transforms, processes traces,
and/or factual elements to answer questions with the goal of discovering useful infor-
mation. It is difficult to analyse traces with existing simple tools and visualize the large
amount of execution traces in different steps of execution.

Capturing, extracting, and discovering information from execution traces from
multiple cores requires significant tools support to automatically extract and present
useful information to developer. For developing a trace analysis tool, there is a need to
overcome the following hurdles :

• Handling the huge amount of execution traces generated from hardware/software
simulation.

• Execution trace format: each tracing tool has its own trace format.

18 TIMA and LIG laboratories Sofiane LAGRAA

2.6 Conclusion

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

T
r
a
c
e

f
i
l
e

s
i
z
e

(
G
B
)

cores

Figure 2.6: Trace file size according to the number of CPUs in each MPSoC platform

• Which techniques can discover and extract automatically meaningful knowledge
of the bottlenecks from traces without developer intervention ?

– How to pinpoint and quantify the contention and scalability bottlenecks from
traces ?

– How to discover and extract automatically recurrent hotspots / bottlenecks
in parallel platform ?

– What is the frequent concurrent accesses leading to contention ? How to
discover and extract them ?

– How to design the profiling tools for contention and scalability bottlenecks ?

2.6 Conclusion

In this chapter, we defined our focus as addressing the delicate problem of memory
contention and scalability issues, targeting explicitly MPSoCs and/or multi-core proces-
sors. This raises the following problems:

• Finding both hotspots of contention points across multiple cores and presenting
explicitly what happens frequently at these points. The frequency of concurrent
accesses indicates that it is not a rare or difficult to predict situation, rather a
misuse of the resources that come from the application design.

Sofiane LAGRAA TIMA and LIG laboratories 19

Problem Definition

• Discovering automatically the frequent concurrent interactions where contention
occurs and the scalability bottlenecks impacting the parallel program.

• Isolating, pinpointing and quantifying the bottlenecks that arise due to contention
or scalability of processors in parallel applications running on MPSoC platform.

In MPSoC domain, profiling a multi-threaded application from a huge amount of
execution traces is not an easy task given the complexity of the hardware and software
architecture. A detailed analysis of the internal task structure of an application is
required to determine bottlenecks that should be fixed to improve overall performance.
It should help the developer by pointing and suggesting the part of source code to
improve. Also, analysing parallel performance and identifying scaling bottlenecks is
key in optimizing software and/or hardware design. To the best of our knowledge,
if performance evaluation tools exists, no automatic performance analysis tool exists
for MPSoC software yet. Such as make performance analysis, detect the most important
interactions such as hotspots between platform components, and identify scalability
bottlenecks.

In the rest of this manuscript, we describe the existing profiling tools and propose
solutions for each problem we raised. These solutions are disjoint but complementary
for profiling the embedded application in MPSoC.

20 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 3: Background and Related Work

Contents
3.1 Profiling Tools . 21

3.1.1 Software Based Profiling . 22

3.1.2 Hardware Based Profiling . 24

3.1.3 FPGA Based Profiling . 25

3.2 Related Work in Contention and Scalability Bottlenecks Discovery 25

3.2.1 Contention Discovery . 25

3.2.2 Scalability Bottlenecks Discovery 26

3.3 Positioning Relative To Existing Profiling Tools 27

3.4 Traces . 28

3.4.1 Execution Traces Representation 29

3.4.2 Dealing with the Large Size of Traces 29

3.5 Multi-Threaded Programs Analysis based on Traces 31

3.6 Data Mining . 31

3.6.1 Frequent Pattern Mining . 32

3.7 Traces Analysis Using Data Mining 35

3.7.1 High level analysis . 35

3.7.2 Low level analysis . 37

3.8 Summary . 38

3.9 Conclusion . 40

In this chapter the related works of profiling tools, techniques for traces analysis
programs, and especially trace analysis using data mining techniques are presented.

This state of the art is not limited to embedded systems but also encompasses domains
that require trace analysis. We also define the positioning of our approach w.r.t existing
works.

3.1 Profiling Tools

In software engineering, profiling is a commonly used technique for the investigation
of software behavior. This helps in identifying the code where the application spends
most of its time, i.e. the hotspot functions in order to optimize it. Profile information is

Sofiane LAGRAA TIMA and LIG laboratories 21

Background and Related Work

collected during the execution of the program, hence it is a form of dynamic software
analysis method.

A lot of research work have been done in computer science in profiling. We identify
three main categories for profiling techniques: software based profiling, hardware based
profiling, and FPGA based profiling [TK08b, PR12]. (See Figure 3.1)

3.1.1 Software Based Profiling

It is the most common technique for measuring the performance of the application
software. Globally, we can distinguish between four different software based profiling
methods: insertion of instrumentation code, source-level performance estimation, emu-
lation based profiling, and simulation. Each of these methods have advantages and
disadvantages in terms of speed and accuracy of the profiling.

Instrumentation code Insertion: Instrumentation consists of injecting extra code
into the application’s source code before or during compilation. The extra code is
software counters instantiated by the profiling tool on the host machine. It is responsible
for recording the execution time and the number of calls for different functions. The
recording is performed by sampling the Program Counter PC of the target processor at
regular interval during program execution. The best example of such profiler is GNU’s
gprof. Instrumentation code can be done at source level, assembly level or binary level
[GKM82], such that profiling information is collected during execution. Unlike gprof,
PIN dynamic instrumentation provides a simple, and flexible API for transparently
inserting new code at runtime into an application. The new code is used to observe the
behavior of the program, and can be used to write profilers, memory leak detectors,...
etc.

The advantages of instrumentation code insertion is the ease of injecting profi-
ling code into the application’s source code and is faster than the existing approaches
described in the next sections. The disadvantages are:

• Some compiler optimizations (e.g., function inlining) might be suppressed due to
the introduction of profiling code [GHC+09].

• The timing information observed from the environment is also affected by the
execution of profiling code.

• The accuracy is poor due to the software overhead introduced by the instrumenta-
tion code.

• Code injection can change the behavior of an application when collecting the
profiling information.

Moreover, this approach only presents profiles for native execution and can not
provide the convenience of profiling an application for a target architecture on a host
machine. In order to tackle this problem different profiling approaches for MPSoC were
proposed:

Source-level performance estimation (SLPE) techniques address instrumentation
code-based profiling issues especially in embedded systems. The approach proposed
in [LLSV99, LBH+00] obtains the timing information by decompiling the application
binaries to C code. The generated C code (instead of the original source code) can

22 TIMA and LIG laboratories Sofiane LAGRAA

3.1 Profiling Tools

be compiled natively and executed on the host computers. This approach resembles
closely a compile time binary translation that is enhanced with timing information.
SLPE [LLSV99, LBH+00, KFK+05, HAG08] uses machine-independent optimizations
provided by the host compilers for the sake of accuracy. An improvement of SLPE tools
is the intermediate profiling technologies or emulation based profiling.

Emulation based profiling is an improvement of previous approaches in terms of
accuracy by enabling the generation of detailed application information and perfor-
mance estimates. In these techniques the application source code is first lowered into
compiler intermediate representation (IR) and then translated into virtual assembly
(VA) by a backend. The resulting VA is then compiled and executed for profiling and
performance estimation [HAG08, GHC+09, EWL13].

The SLPE and emulation based profiling techniques target Application Specific
Instruction-set Processors (ASIPs). Both SLPE and emulation based profiling techniques,
have prohibitively limited accuracy, especially for VLIW architectures [GHC+09].

Instruction Set Simulators (ISS) based profilers: ISS are common for all design
types and are widely used tools for studying new architectures and developing software
closely related to hardware such as operating systems and embedded system applications.
Simulations take place in virtual environments that simulate the behavior of processors
as the software code is running in a virtual environment. The advantages of using an
ISS for profiling is as follows:

• The designer is able to view the entire data flow inside processors during the
simulation.

• The simulation is done on any host machine with the help of ISS model of the
target architecture.

• The simulation is more accurate than intrusive approaches.

• ISS based profiling does not require any modification at any level of the software
code of the application to be profiled.

The disadvantage of ISS based profilers is low speed: the intrusive approach is
considerably faster than the existing software based profiling approaches because the
executable is running in the real environment.

A simulator virtualizes the targeted processor hardware, its drawback is: it takes
from minutes to hours to run a simulation which only covers a few seconds of real-time.

In embedded systems, the most straightforward and widespread approach is ISS
based profiling. ISS based profiling such as SimpleScalar simulator is used for computer
architecture simulation [BA97b]. SimpleScalar measures the performance of several
parts of a superscalar processor and its memory hierarchy. It estimates the amount
of time (or other measurement) that the simulated processor will need to execute the
program. In order to distinguish between the existing ISS-based profiling approaches
w.r.t our approach, we call that profiling performed during simulation based on estima-
tion. Each estimation approach can be evaluated on the basis of speed, accuracy and
abstraction level. Abstraction level defines the hardware design level details either
high (Transaction Level Modeling TLM) or low (Cycle Accurate Bit Accurate CABA).
Abstraction level is important because during early estimation, detailed models of the

Sofiane LAGRAA TIMA and LIG laboratories 23

Background and Related Work

processing elements may not be available. Also, software estimation techniques rely on
instruction set abstraction. In addition the speed and accuracy are natural concerns and
based on the abstraction level, if TLM is used then the simulation is much faster but
also far less accurate than CABA.

Examples of ISS based profiling tools are described in [KKW+06, BKL+00, BFSS01].
Each of these tools are based on different performance estimation techniques.

3.1.2 Hardware Based Profiling

The most straightforward example is hardware performance counters [ABD+97] that
widely exist in modern processors. Hardware Counter Based Profiling (HCBP) tools
[TK08a] uilize on-chip hardware counters that are available on advanced processors such
as Sun Ultrasparc [Mic06], Intel Pentium Processors [Cor06] and Advanced Micro Device
(AMD) Processors [AMD02]. These hardware counters are dedicated to monitoring
specific events that occur during runtime execution of an application. The types of
events which can be monitored are: memory accesses, cache misses, pipeline stalls,
types of instructions executed among others. HCBP tools do not require the use of
instrumentation code since these counters are designed to collect performance of the
software program. Example of HCBP tools include:

• Intel’s VTune [Rei05] provides an interface for accessing and utilizing the hardware
counters to profile application code executing on Pentium based processors.

• The Performance Advanced Programming Interface (PAPI) [BDG+00] provides
users with a high level interface to access the profiling counters and can support
many different processors [Spr02].

Using hardware counters for profiling software is beneficial in the following points:

• It does not introduce any instrumentation code.

• They do not add any performance overhead since the data collection of these
counters occurs transparently by the hardware during runtime execution of the
software.

However, there are some limitations when using HCBP tools.

• Some HCBP tools may require the user to reconfigure and reprogram the counters
to detect different events.

• There is a limited number of hardware counters available. The programmer must
run the application many times to obtain data for different monitoring events
[Spr02].

• The hardware counters cannot be used in early chip design phases, when the
prototypes are not available yet [GHC+09]

Furthermore, both software and hardware based profiling approaches can benefit
from sampling profiling technique [MSR+07, Rei05] that reduces the runtime overhead.
Sampling profiling technique [MLG05] generates an interruption at a regular interval or
writes a task that samples the content of a program counter or other important registers

24 TIMA and LIG laboratories Sofiane LAGRAA

3.2 Related Work in Contention and Scalability Bottlenecks Discovery

of the processor to statistically determine execution behavior later on. Handling of
interrupts affects the gathered data since the interrupt service routines (ISR) used add
to the number of events.

3.1.3 FPGA Based Profiling

Some embedded systems utilize FPGAs as an implementation platform due to their
versatility. Such FPGAs are comprised of hardware customized logic, peripherals along
with soft-core processors running on the same chip. The profiling tool is implemented
on the FPGA and utilizes the soft-core processors for collecting the profiling information
in a nonintrusive manner. Examples of such tools are:

• Snoop [SC04b] which is an on-chip function level profiler that was implemented
on the Xilinx Virtex-II 2000 FPGA board.

• Frequent Loop Analysis Tool (FLAT) is a tool that detects functions in software
that heavily uses loops [GRV05].

• WOoDSTOCK [SC04a] (Watches Over Data STreaming On Computing element
linKs), is a profiling tool that monitors the dataflow between computing processor
elements.

The advantages of FPGA based profiling tools are

• They provide improved results compared to the profiling tools described earlier.

• They do not use the sampling profiling technique

However, the disadvantages of FPGA based profiling are

• Not all applications can make use of FPGA (not viable for high volume high
performance).

• Can be very difficult to program the profiling tool if the knowledge of the user is
limited.

A recent alternative to hardware/software based profiling is Trace/Debug interface.
It is designed on-chip and can be utilized to monitor the execution of software appli-
cations in real time. For example, ARM introduces two components to the CoreSight
architecture, the System Trace Macrocell (STM) and Trace Memory Controller (TMC)
[Cor13].

3.2 Related Work in Contention and Scalability Bottlenecks
Discovery

3.2.1 Contention Discovery

In [TdRC+10, AZXC11, RL10], the authors propose an adaptive routing algorithm for
detecting contention patterns. However, their method is limited to detecting only
contention in NoC routers. It is based on composite contention metrics and does not
consider execution traces.

Sofiane LAGRAA TIMA and LIG laboratories 25

Background and Related Work

In [QLD09], the authors investigate a technique to derive communication delay
bounds and energy consumption in NoCs. These techniques adopt analytic models,
specific methods like machine learning-based regression are also considered in [JKLS10].

In [JKLS10], the authors propose non-parametric statistical regression models such
as Multivariate Adaptive Regression Splines MARS [Fri91] to overcome the limitations
in ORION2.0 [KLPS09]. ORION [WZPM02] and ORION2.0 [KLPS09] are architectural
models that use micro architecture and technology parameters for the router component
blocks.

Bottleneck Identification and Scheduling (BIS) technique [JSMP12] tries to identify
and solve the most critical bottlenecks at runtime in parallel applications, and migrates
dynamically threads that include these bottlenecks to a big core in a heterogeneous
multicore. Their method identifies bottlenecks using synchronization primitives (e.g.,
barriers) provided by parallel languages. The developer annotates the source code with
bottleneck identification instructions in order to profile the bottlenecks characteristics
such as process identifier, thread waiting cycles, and others. The authors of [JSMP12]
showed that different bottlenecks can limit performance at different times. In particular,
contention for different critical sections is dynamic.

3.2.2 Scalability Bottlenecks Discovery

Profiling critical jobs in scalable platforms and identifying bottlenecks inside the ap-
plication is hard [HR07] and few related works raise this issue. Scal-Tool [SLT99] is a
tool that isolates and quantifies scalability bottlenecks in parallel applications running
on Distributed Shared Memory DSM multiprocessors machines. Scal-Tool is based
on an empirical model that uses Cycles Per Instruction (CPI) equations, and uses as
inputs the measurements from hardware event counters in the processor. It isolates and
quantitatively estimates the cycle count impact of different scalability bottlenecks such
as insufficient caching space, load imbalance, and synchronization. From a number of
measurement (varying number of processors and varying the size of the dataset on a
single processor) the parameters in the CPI equations can be estimated. Globally, to
identify the scalability bottlenecks, Scal-Tool is based on estimation of CPI.

A cycle stack (also known as CPI stack) breaks down a single-thread program’s
execution time into a number of cycle components, each represent the number of cycles
the program is stalls due to various miss events, such as cache and TLB misses; and
branch miss predictions. Cycle stacks are widely used by software developers and com-
puter architects to gain high-level insight into the behaviors of applications [EEKS06].
In [HCC+11], the authors proposed using cycle stacks to analyze multi-threaded pro-
grams and understand performance bottlenecks for multi-core environments as there
could be other factors that were not seen in a single core environment. They simulate
the analyzed program and capture cycle stacks for each individual thread. In order to
analyze the profiled program’s scaling behavior, they take similar approach like ours
in which, they perform several simulations with increasing number of cores. In their
methodology, the authors employ Principal Component Analysis (PCA), which is a
statistical data analysis technique that extracts important trends from data. Clustering
is performed to obtain dendrograms that represent the (dis)similarity across workloads.

Speedup stacks [EDBE12], is an analysis of the causes of an application lake of perfect
scalability. It is a representation that quantifies the impact of individual components

26 TIMA and LIG laboratories Sofiane LAGRAA

3.3 Positioning Relative To Existing Profiling Tools

of scalability bottlenecks such as synchronization and interference in shared hardware
resources, and attributes in the gap between achieved and ideal speedup to the different
possible performance delimiters. Their method is based on hardware performance
counter architecture for obtaining speed up stacks. They used the proposed counters
to measure a set of performance metrics while the analyzed program is running on a
simulated multi-core implementing their permanence counters architecture. Based on
these metrics, they estimate the execution rate of the analyzed scalability bottlenecks.
However, speedup stacks do not identify the thread that caused the limitation. They also
do not suggest how to overcome the scalability limitations they identify. Pinpointing
critical threads is important for optimization.

In [CLZ+11], the authors conduct a study of parallel algorithms benchmark on real
machines and try to find out implications of program behavior on the real commodity
hardware. In order to fully understand the performance characteristics of the multi-
threaded application, the authors conduct study experiments to the impact of different
factors of multi-threaded applications on multicore server. The factors are the size of
the input data set, the number of threads, and parallelism mode (data parallelism or
task parallelism). Their study led to the following result: the shared cache and memory
bandwidth are indeed the performance bottleneck, that limits the scalability of parallel
programs.

In [GKS12], the authors performed a scalability analysis of parallel applications
on a 64-threaded Intel Nehalem-EX server. The authors measured how the hardware
performed according to performance counters. They used the measurements they
acquired to demonstrate that application performance can be limited due to contention
for shared resources. While additional threads are active, the contention caused by
shared resources increases, and the application may experience stagnation or slowdown
in performance.

In [JSMP12], the authors identify and accelerate the critical bottlenecks due to
critical sections, barriers, and pipeline stages. The identification of bottlenecks is done
in hardware based on information provided by the instrumentation of software. The
programmer instruments the instructions in source code for each potential bottleneck.

3.3 Positioning Relative To Existing Profiling Tools

Existing profiling techniques are useful, but do not fullfill our constraints which are:

• Non intrusiveness and availability before fabrication

• Parallelism of embedded applications running on MPSoC

• Behaviors of concurrent processors and their interactions within a parallel pro-
gram.

• Analysis of hotspots due to contention and scalability bottlenecks.

In order to profile the embedded application without altering its execution behavior,
we propose a new profiling tool in the branch of ISS based profiling tools. The new
profiling tool is based on post mortem analysis of execution traces. It generated execu-
tion traces of software running on MPSoC. Once traces are obtained (without affecting

Sofiane LAGRAA TIMA and LIG laboratories 27

Background and Related Work

program execution), trace analysis can be performed. In addition, the profiling aims
at identifying the interactions between processors and the causes of bottlenecks that
result in contention and scalability problems which decrease the parallel application
performance.

Figure 3.1: Classification of Embedded Software Profiler

The advantages of using traces for software profiling in MPSoC platform are:

• Non-intrusive profiling tool.

• Do not require estimation mechanisms for profiling.

• No sampling based profiling is performed for collecting software metrics or hard-
ware counters.

• Achieve the highest level of accuracy using hardware CABA model.

The disadvantages of using traces for software profiling are:

• Simulation can last longer due to the different parameters such as number of
processors to be simulated, simulation time, level of granularity, number of event
parameters, and data input size. All these parameters are described in details in
the following section 3.4.2.

• A huge amount of traces can be generated from simulation, hence can lead to long
post-mortem analysis.

3.4 Traces

In this section, we discuss the characteristics of traces in terms of representation and
volumetry.

28 TIMA and LIG laboratories Sofiane LAGRAA

3.4 Traces

3.4.1 Execution Traces Representation

Modelling and representing execution traces is an important aspect for analysing and
profiling long program executions. It is useful to develop a compact representation for
execution traces which capture both sequence events and memory access information.
This compact trace should be generated on-the-fly during program execution.

Globally in literature, there exists two representations for description of events trace:
items tables and graphs. The item can be an event, message, address,...etc. which is
saved into a table or a database, and is the most used representation for detecting of
systemic problems recurring during execution [LXM08], monitoring and verification
of program [LKL08], analyzing the behavior of software system [LMK07], discovering
sequences of instruction responsible for inefficiencies [ZXHW10], verify the design
using traces [CW10].

In [GMCP13], the authors present the structure of program execution traces in a
real machine in order to understand the structure of the program execution and the
instruction level parallelism. For their study they use Pin to instrument and generate
traces. Pin is a profiling tool that utilizes binary instrumentation techniques for Linux
applications. The traces represent the pipeline of the assembler instructions after each
cycle.

Another possibility is to represent execution traces into a graph [SMWG11, KKRL11,
LYY+05].

3.4.2 Dealing with the Large Size of Traces

The size of a trace file may easily exceed the per-user or per-file disk quota of the
operating-system, commonly limited to 2 gigabytes on 32-bit machines. For example,
the trace file size for decoding 10 color images using MJPEG application with 16 cores is
greater than 25 gigabytes.

The reasons accounting for such size can be divided into five categories :

• Number of processors/threads: Whenever the number of processors/threads
increases in a platform then the number of raw traces increases too. Also, the
amount of communication and synchronization events usually grows with the
number of processors/threads.

• Simulation time: The simulation time can take few minutes to several hours
depending to the number of processors to be simulated in CABA model. It is
obvious that restricting the simulation time to smaller interval can substantially
decrease the amount of traces.

• Levels of Granularity: The granularity means the level of detail captured through
tracing. The different levels of abstraction of a software system depend on the
trace tool used. We can distinguish between two contents of an execution trace at
the following levels of granularity:

– High level (HL): at this level, the execution traces are described in terms
of functions, blocks call levels, messages, diagrams, operations, programs
names.

Sofiane LAGRAA TIMA and LIG laboratories 29

Background and Related Work

– Low level (LL) : at this level, the execution traces consist of fine grained
information. They are generated in terms of machine instruction-level or
signals and saved one by one instruction at a time. In the trace file, the
instructions are described by their addresses and so are the data they access.
The tracing tool at instruction-level allows the fine grained analysis which
we are interested in.

• Number of event parameters: A trace line is composed of set of attributes recor-
ded as part of an event, typically a time stamp. In addition, there may be one or
more type-specific parameters. The trace file size can be as a consequence related
to the number of attributes.

• Data input size: this factor is related to the input size of the algorithm. A typical
example is the size of the video for MJPEG application, the size of video can extend
both the execution time and the number of events to be traced.

Graphically, Figure 3.2 summarizes causes of large traces.

Figure 3.2: Reasons for large traces

Building robust and efficient tools to collect, analyse, and extract knowledge from
a large amounts of execution trace is a very challenging task. The trace analysis itself
can be very time consuming, especially when the number of processors of the target
platform grows and simulation is done on many cycles.

30 TIMA and LIG laboratories Sofiane LAGRAA

3.5 Multi-Threaded Programs Analysis based on Traces

3.5 Multi-Threaded Programs Analysis based on Traces

Predictive analysis is the most used technique for multi-threaded programs analysis
based on execution traces. Predictive analysis is a broad term describing a variety of
statistical and analytical techniques used to develop models that predict future events
or behaviors.

Predictive analysis technique is used for :

• detecting violations of safety properties from apparently successful executions of
multi-threaded programs [SRA05]

• detecting concurrency errors during runtime by monitoring a concrete execution
trace of a concurrent program [WKGG09, WCGY09, WLGG10].

• detecting serializability violations and nondeterminism in multi-threaded pro-
grams [SMWG11, SMG12]

In [SMWG11], [SMG12], the authors addressed the problem of detecting serializa-
bility violations in a concurrent program [SMWG11] and nondeterminism in multi-
threaded programs [SMG12]. Two threads are considered to be deterministic if when
in the same initial state and applying the same sequence of operations, they reach
the same final state. In their works, the authors proposed a graph-based predictive
analysis method to derive a predictive model from a given traces. This model is based
on read-write and synchronization events in the observed trace.

In [WG12], the authors developed a tool for predicting concurrency failures in the
generalized execution traces of x86 executables of Linux application. They use PIN
[LCM+05] as profiling tool to instrument both the executables and all the dynamically
linked libraries upon which the applications depend. The additional code injected
during this instrumentation process is used to monitor and control the synchroniza-
tion operations such as lock/unlock, wait/notify, thread create/join, as well as the
shared memory accesses. Then they use a logical constraint based predictive analysis as
[WKGG09, WCGY09, WLGG10] to detect runtime failures by generalizing the recorded
execution trace. Predictive analysis aims at detecting concurrency errors during runtime
by monitoring a concrete execution trace of a concurrent program.

For our problems described in the chapter 2, we need powerful analysis tools and
techniques for trace analysis by extracting knowledge of hotspots and bottlenecks from
large amount of traces in order to profile embedded software on MPSoC. Such analysis
tools are from the Data Mining domain.

3.6 Data Mining

Data mining is the exploration and analysis of large quantities of data in order to
discover valid, novel, potentially useful, and ultimately understandable patterns in
data [FPsS96]. There are lots of concurrent and interleaving events among processors
leading to an exponential number of event combinations in parallel programs. Data
mining is well adapted to tackle this aspect and offers techniques and tools for proces-
sing, aggregating, extracting, analyzing, and mining combinatorial processor events in
execution traces.

Sofiane LAGRAA TIMA and LIG laboratories 31

Background and Related Work

In the last few years, data mining tools and knowledge discovery methods have been
used in embedded system area on simulation traces in order to extract automatically
assertions [CW10, LSAV11, LLV12, VSP+10], discover recurring runtime execution pat-
terns in the Linux kernel [LXM08], analyse hardware sample data [ZXHW10], improve
the performance of software [CH08], verify design specification [LFS10], analyse of mul-
timedia application [KFI+12] and debug embedded multimedia application [CBT+12].
More details are given in the next section.

Data mining techniques are well adapted to traces analysis because they offer the
following strong points:

• data mining offers a large variety of tools, techniques and combinatorial algorithms
for mining specific data, data pre-processing / post-processing, interestingness
metrics and complexity considerations.

• data mining algorithms provide the opportunity to extract useful patterns from
enormous amount of data.

• data mining algorithms can provide exact and accurate results of analysis.

• data mining techniques highlight relationships between events within traces of
events.

Data Mining contains different tools for classification, clustering, anomaly detection
and pattern mining (See Figure 3.3). In this state of the art, we focus on frequent pattern
mining algorithms used recently in traces analysis.

Figure 3.3: Map of Data Mining domains

3.6.1 Frequent Pattern Mining

Frequent pattern mining has been an active field in data mining research for over a
decade.

32 TIMA and LIG laboratories Sofiane LAGRAA

3.6 Data Mining

Frequent pattern mining consists of discovering patterns that appear frequently, i.e.
more than a given number of times, in the data. These patterns can be sets of elements,
sequences [Zak98], trees [Zak05] or graphs [YH02] depending on the nature of the data
and of the analysis to perform.

Each kind of pattern has a specific mining algorithm, for example if the data consist
of items, subsequences, substructures, then we have to apply an appropriate algorithm
for mining itemsets, sequences, graphs, respectively:

Given a set of items I = {I1, ..., In}. The data is represented as a list of transactions
T = {T1, ...,Tn}, where each transaction Ti consists of a unique identifier i ∈ [1,n] and is a
set of elements of I : Ti ⊆ I . An itemset is also a subset of I .

• Itemset mining algorithms mine the database of items looking for repetitive
patterns having a frequency greater than a given frequency threshold or called
minimum support (min_sup). The patterns are known as frequent itemset. More
detail is given in next chapter.

Example 3.6.1. Given access memory addresses as itemset performed by CPUs in
Table 3.1 and frequency threshold = 2.

CPU_ID Memory Addresses
1 {0x0100000a0 0x000000a4 0x000000a8 0x000000ac}
2 {0x0100000a0 0x000000a8 0x000000ac 0x100000b0}
3 {0x0100000a0 0x000000a8 0x000000ac 0x100000b0}

Table 3.1: Access memory addresses of CPUs

Then, the frequent pattern discovered by itemset mining algorithm are in Table 3.2. The
frequent patterns or the frequent memory addresses having the frequency = 3 means
that 3 CPUs access to such patterns, otherwise, by 2 CPUs.

• Sequence mining algorithms mine the sequence database looking for frequent
sequences patterns lending themselves to discovering frequent itemsets and the
order in which they appear.

Example 3.6.2. Given the frequency threshold = 2 and the table 3.1. The frequent
sequence patterns are:

– {0x0100000a0 0x000000a8 0x000000ac 0x100000b0} with the fre-
quency equal to 2. It means 2/3 of CPUs perform the same access order to addresses.

– {0x000000a8 0x000000ac} with the frequency equal to 3. It means 3/3 of
CPUs perform the same access order to addresses {0x000000a8 0x000000ac}.

– {0x000000ac 0x100000b0} with the frequency equal to 2.

• Graph mining algorithms allow the identification of frequent subgraphs within
graph data sets.

Example 3.6.3. Figure 3.4a shows behavior graph segments derived from three different
runs of a program. Graph mining algorithm discovers the two frequent subgraphs shown
in Figure 3.4b.

Sofiane LAGRAA TIMA and LIG laboratories 33

Background and Related Work

Frequent Pattern Frequency
{0x0100000a0} 3
{0x000000a8} 3
{0x000000ac} 3
{0x0100000a0 0x000000a8} 3
{0x0100000a0 0x000000ac} 3
{0x0100000a8 0x000000ac} 3
{0x0100000a0 0x000000a8 0x000000ac} 3
{0x0100000b0} 2
{0x0100000a0 0x0100000b0} 2
{0x0100000a0 0x000000a8 0x0100000b0} 2
{0x0100000a0 0x000000a8 0x000000ac 0x0100000b0} 2
{0x0100000a0 0x000000ac 0x0100000b0} 2
{0x000000a8 0x0100000b0} 2
{0x000000a8 0x000000ac 0x0100000b0} 2
{0x000000ac 0x0100000b0} 2

Table 3.2: Frequent Access memory addresses of CPUs

(a) A behavior graph dataset (b) Frequent graphs

Figure 3.4: A behavior graph dataset and Frequent graphs [LYY+05]

• Periodic mining algorithms targets frequent temporal regularity by mining time
series and focus on characterizing cyclic behaviors in dataset, i.e a periodic pattern
can be defined as the repeating activities at certain locations with regular time
intervals.

Example 3.6.4. Given Table 3.3 presents a program behavior dataset of execution
intervals. Each interval is represented by a transaction tk in a table. Periodic mining
algorithm discovers the following periodic patterns: {getFrame}, {displayFrame}, {get-
Frame displayFrame} at a period p = 2 on transactions from t1 to t8, therefore they form
a cycle of length l = 2,

The pattern mining algorithms are used for knowledge discovery and enhancing the
application area of a dataset. The goal of such algorithms is to find inherent regularities
in data. For example, discovering frequent sequences of instructions responsible for
inefficiencies [ZXHW10] or discovering frequent process that creates operating system
issues during execution [LXM08].

34 TIMA and LIG laboratories Sofiane LAGRAA

3.7 Traces Analysis Using Data Mining

tk Itemset
t1 getFrame displayFrame
t2 int16 swint16
t3 getFrame displayFrame
t4 write16 cpu_clock
t5 read16
t6 getFrame displayFrame printk
t7 sum_up sem_down
t8 getFrame displayFrame

Table 3.3: A dataset in the context of system trace analysis [CBT+12]

3.7 Traces Analysis Using Data Mining

We classify the related works of traces analysis using data mining techniques into two
groups of types of analysis: high level analysis and low level analysis.

3.7.1 High level analysis

3.7.1.1 Software Analysis

Software analysis using data mining techniques is used for the following problems:
Bug detection: In [LYY+05], the authors treat program executions as software beha-

vior graphs and develop a method to integrate graph mining algorithm and classification
for detecting suspicious regions of non-crashing bugs such as logical errors. This study
discover structural patterns in call graphs, which are characteristic for failing executions.

Fault localization: In [CDFR08, CDFR11], the authors focus on fault localization on
execution traces. When the result of a program execution is not the same as the expected
one, that execution is called a failure. Fault localization is a software engineering task
that tries to find an explanation to the failures by examining information from the
executions. To each execution is associated an execution trace that contains information
about the execution: the executed lines and the verdict of the execution (Pass when the
result of the execution is the same as the expected one, otherwise Fail). The authors
proposed a combination of association rules and Formal Concept Analysis (FCA) to
assist in fault localization. Association rules is a data mining technique for discovering
interesting relations between items in large databases. The pattern is often presented as
a collection of if-then rules, called association rules. The form of an association rule is
I → J , where I is a set of items and J is an item. The implication of this association rule
is that if all of the items in I appear in some transaction, then J is "likely" to appear in
that transaction as well. Formal concept analysis is formulated based on the notion of a
formal context, which is a binary relation between a set of objects and a set of properties
or attributes [GW97, Wil09].

A data structure is proposed to organize program elements in a multi-dimensional
space called the failure lattice. The failure lattice is a partial ordering of the elements of
the traces that are most likely to lead to failures. Lattice structure gives a reasoning basis
to find similar execution traces. Actually, all differences between the sets of executed
lines of passed and failed executions are represented in the trace lattice [CDFR08,

Sofiane LAGRAA TIMA and LIG laboratories 35

Background and Related Work

CDFR11].
In [CFDC11], the author propose an application of Logical Concept Analysis 1

[FR04] to build a generic framework to explore fault localization patterns extracted in
[CDFR08]. The kinds of patterns taken into consideration are association rules and
sequential patterns from execution traces. The framework is based on a data structure
which organizes the set of patterns in a partial order over in the set of patterns. The
partial order of pattern organisation allows to compact and structure the patterns and
navigate through them.

Information extraction from logs: In [SBL+09a, SBL+09b], the authors extract in-
formation from log files. The log files are generated by digital systems such as integrated
circuit design tools. They contain essential information on the conditions of produc-
tion and the final products in order to evaluate the quality of the design. The level of
granularity of log files is high and describes the events by a nature language such as
English. Therefore, for their analysis, they use Natural Language Processing (NLP) and
Information Extraction (IE) techniques. The size of log files is not much and is about
hundred of kilobytes.

In [SBL+09a], the authors propose an extension of their approach EXTERLOG (EX-
traction of TERminology from LOGs), presented in [SBL+09b], that is developed to
extract the terminology from these log files. They study how to adapt the existing
terminology extraction methods to the particular and heterogeneous features of log files
generated from different tools. They also present a filtering method of extracted terms
based on a ranking score in order to emphasize the precision of extracted relevant terms.

Concurrent program behavior analysis: In [KKRL11], the authors present MSGMi-
ner, a framework for building message sequence graphs from execution traces in the
concurrent domain using dependency graphs. Their goal is to understand concurrent
program behavior in order to depict important "phases" or "interaction snippets" in-
volving several concurrently executing processe. Their work supports concurrent and
distributed systems. However, MSGMiner requires each function to be clearly identified
in advance and the sequence of function messages to be partially ordered. MSGMiner
converts each trace in the trace set into a dependency graph whose vertices contain the
events in the trace. The dependency graph captures the partial order of events across
processes. The chronological order of events within each process is maintained by a
minimal set of directed edges. There is also a set of edges from send events to their res-
pective receive events. The edges in this dependency graph are similar to the "happened
before" relationship defined by Lamport [Lam78]. The MSGMiner framework breaks
down the dependency graphs obtained from the set of traces into sequences of smaller
dependency graphs. From these sequences it mines for a message sequence graph using
a variant of the sk-string algorithm [RPN97].

Monitoring and verification: In [LKL08] presented approaches to mine preceding
events that often occur before certain series of events through rules stating that "whene-
ver a series of events occurs, previously another series of events must have happened".
Specifications of this format are commonly found in practice and useful for program
testing and verification.

Software behavior: In [LMK07], the authors mine Live Sequence Chart (LSC) from
program execution traces. LSC can be viewed as a formal form of a sequence diagram

1Logical Concept Analysis is Formal Concept Analysis where logical formulas replace sets of attri-
bute [FR01]

36 TIMA and LIG laboratories Sofiane LAGRAA

3.7 Traces Analysis Using Data Mining

of UML2 described in [DH01]. In [LMK07], temporal rules are mined from LSC with
the same principal of rules as [LKL08] stating that "whenever a pre-chart is satisfied,
eventually another main-chart is satisfied".

3.7.2 Low level analysis

3.7.2.1 Hardware Analysis

Hardware analysis consists in analysing hardware components or architectures. For
hardware analysis, data mining techniques have been proposed for the following pro-
blems:

Automatic assertion generation: In [CW10], the authors propose an approach that
can automatically extract relationship among several signals from simulation traces.
Functional assertions describe the functional relationship through rules among several
signals from traces in an abstract level that is different from design implementation,
and such information can provide useful hints to synthesis tools because it may contain
boolean relations that do not exist in the implementation itself [CCCK11, LSAV11,
CW10]. Typically, functional assertions are written by designers or verification engineers.
Assertions are used for validating hardware designs at different stages through its
life-cycle like pre-silicon formal verification, dynamic validation, runtime monitoring
and emulation [BCZ07, BM05], as well as post-silicon debug and in-field diagnosis
[BCZ07, BZ08]. Alternatively, tools that try to generate assertions using data mining
algorithms have been developed recently [LSAV11, VSP+10, CW10].

In [VSP+10], the authors present GoldMine a methodology for generating assertions
automatically. Their method involves a combination of data mining and static analysis
of the Register Transfer Level (RTL) design. GoldMine mines the simulation traces of a
behavioral Register Transfer Level (RTL) design using a decision tree 2 based learning
algorithm to produce candidate assertions. These candidate assertions are passed to a
static analysis using formal verification engine.

3.7.2.2 Software Analysis

Software analysis using data mining techniques is used for the following problems:
Systemic problems: In [LXM08], the authors developed a framework for mining

kernel trace data aiming at the detection of recurring runtime execution patterns and
isolating processes responsible for systemic problems, such as inter-process communica-
tion patterns. The work finds the set of all temporally proximal events that occurred
frequently in a trace. This helped identify the processes that are heavy consumers of
system resources but still remain invisible to traditional tools such as top.

Monitoring sequences of instruction: In [ZXHW10], the authors developed an effi-
cient sequence mining algorithm for hardware sample data (also called hardware profile
data) that can discover short sequences of instruction and their frequency responsible

2Decision Tree (or classification tree) is represented as a tree-like of decisions and their possible
consequences. A decision tree is composed of internal nodes and terminal leaves. Each decision node
implements a splitting function with discrete outcomes labeling the branches. This hierarchical decision
process that divides the input data space into local regions continues recursively until it reaches a leaf
[BA97a].

Sofiane LAGRAA TIMA and LIG laboratories 37

Background and Related Work

for inefficiencies. Their algorithm is less robust to noise in the trace, coming for example
from different schedulings.

Another kind of data mining algorithm which is periodic pattern mining algorithm
is used on execution traces in [CBT+12].

Abnormal behaviors and optimization debugging: In [CBT+12], the authors pro-
pose a pattern mining approach for automatically discovering all periodic behavior
occurring in a multimedia application execution traces in order to identify abnormal
behaviors and optimize the debugging phase.

Program analysis and Trace compression: In [KFI+12, KFT+13], the authors use a
sequential pattern mining algorithm in order to reduce the size of execution traces by
automatically discovering a set of blocks that maximally covers the traces. The blocks
simplify the exploration of large traces by allowing programmers to see an abstraction
instead of low level events.

3.8 Summary

Table 3.4 summarizes the existing non exhaustive list of trace mining techniques dis-
cussed in the previous section. It also shows which tool is prescribed in the literature
against each problematics, techniques, level of trace granularity and trace type. This
way we can assess which part of the trace mining techniques is covered by existing tools
and which part is still left open. For example, no existing proposal focuses on high level
analysis of architectural hardware using data mining.

From the table, we observe that data mining algorithms have been recently used for
different problems including sequential and parallel algorithms. We can also infer that
there are few works on the trace analysis of embedded applications on MPSoC. The only
two works [CBT+12, KFT+13], we could find are carried out in parallel with this thesis
within LIG laboratory in a collaboration with STMicroelectronics.

The originality of our approach compared to the related works is as follow:

• It explicitly targets MPSoCs and/or multi-core processors and addresses the deli-
cate problem of memory contention and scalability bottlenecks discovery.

• It aims at discovering, quantifying and pinpointing automatically the bottlenecks
from trace with a low level of granularity.

• It provides exact and accuracy results for answering contention and scalability
problem in MPSoC.

38 TIMA and LIG laboratories Sofiane LAGRAA

3.8 Summary

Ta
bl

e
3.

4:
W

or
ks

on
p

ro
gr

am
an

al
ys

is
u

si
ng

on
Tr

ac
es

Pa
p

er
P

ro
b

le
m

P
la

tf
or

m
Tr

ac
e

P
ro

fi
li

n
g

St
ru

ct
u

re
D

M
T

[K
K

R
L

11
]

co
nc

u
rr

en
t

p
ro

gr
am

D
is

tr
ib

u
te

d
sy

st
em

s
H

L
D

is
tr

ib
u

te
d

sy
st

em
s

D
A

G
SA

S
[C

D
FR

08
]

Fa
u

lt
L

oc
al

iz
at

io
n

Pe
rs

on
ne

lC
om

p
u

te
r

H
L

So
ft

w
ar

e
Tr

ac
e

li
ne

A
R

[C
D

FR
11

]
(i

te
m

)
an

d
FC

A
[L

K
L

08
]

M
on

it
or

in
g

an
d

Se
rv

er
H

L
JB

os
s

A
p

p
li

ca
ti

on
it

em
s

M
T

R
ve

ri
fi

ca
ti

on
Se

rv
er

it
em

s
[L

M
K

07
]

so
ft

w
ar

e
be

ha
vi

or
Pe

rs
on

ne
lC

om
p

u
te

r
H

L
M

es
sa

gi
ng

ap
p

li
ca

ti
on

it
em

s
M

T
R

[C
B

T
+

12
]

ab
no

rm
al

be
ha

vi
or

s
an

d
M

P
So

C
L

L
M

u
lt

im
ed

ia
Tr

ac
e

li
ne

PM
A

op
ti

m
iz

at
io

n
d

eb
u

gg
in

g
M

P
So

C
ap

p
li

ca
ti

on
(i

te
m

)
[K

FI
+

12
]

P
ro

gr
am

A
na

ly
si

s
an

d
M

P
So

C
L

L
M

u
lt

im
ed

ia
ap

p
li

ca
ti

on
it

em
s

SM
A

[K
FT

+
13

]
Tr

ac
e

co
m

p
re

ss
io

n
[L

Y
Y

+
05

]
N

on
-c

ra
sh

in
g

bu
gs

Pe
rs

on
ne

lC
om

p
u

te
r

H
L

Si
em

en
s

P
ro

gr
am

s
G

ra
p

h
G

M
A

d
et

ec
ti

on
[Z

X
H

W
10

]
Se

qu
en

ce
s

of
in

st
ru

ct
io

n
Pe

rf
or

m
an

ce
M

on
it

or
in

g
L

L
H

ar
d

w
ar

e
it

em
s

SM
A

re
sp

on
si

bl
e

fo
r

in
effi

ci
en

ci
es

U
ni

t
m

on
it

or
in

g
it

em
s

[L
X

M
08

]
Sy

st
em

ic
p

ro
bl

em
s

Se
rv

er
H

L
O

p
er

at
in

g
sy

st
em

it
em

s
IM

A
(L

in
u

x
ke

rn
el

)
[S

M
W

G
11

]
Se

ri
al

iz
ab

il
it

y
vi

ol
at

io
ns

Pe
rs

on
ne

lC
om

p
u

te
r

H
L

Ja
va

/C
/C

+
+

p
ro

gr
am

s
G

ra
p

h
PA

[S
M

G
12

]
N

on
d

et
er

m
in

is
m

Pe
rs

on
ne

lC
om

p
u

te
r

H
L

Ja
va

/C
/C

+
+

p
ro

gr
am

s
G

ra
p

h
PA

[W
G

12
]

C
on

cu
rr

en
cy

fa
il

u
re

Pe
rs

on
ne

lC
om

p
u

te
r

H
L

Ja
va

/C
/C

+
+

p
ro

gr
am

s
it

em
s

PA
[C

W
10

]
A

u
to

m
at

ic
as

se
rt

io
n

ge
ne

ra
ti

on
E

m
be

d
d

ed
sy

st
em

L
L

A
M

BA
it

em
s

SM
A

[L
SA

V
11

]
H

ar
d

w
ar

e
d

es
ig

ns
&

[V
SP

+
10

]
D

T
D

M
T:

D
at

a
M

in
in

g
To

ol
H

L
:

H
ig

h
L

ev
el

SM
A

:
Se

qu
en

ce
M

in
in

g
A

lg
or

it
hm

SA
S:

St
ri

ng
al

go
ri

th
m

fo
r

Se
qu

en
ce

L
L

:
L

ow
L

ev
el

PM
A

:
Pe

ri
od

ic
M

in
in

g
A

lg
or

it
hm

A
R

:
A

ss
oc

ia
ti

on
ru

le
s

IM
A

:
It

em
se

t
M

in
in

g
A

lg
or

it
hm

G
M

A
:

G
ra

p
h

M
in

in
g

A
lg

or
it

hm
M

T
R

:
M

in
in

g
Te

m
p

or
al

R
u

le
s

FC
A

:
Fo

rm
al

C
on

ce
p

t
A

na
ly

si
s

D
T:

D
ec

is
io

n
tr

ee
PA

:
P

re
d

ic
ti

ve
A

na
ly

si
s

Sofiane LAGRAA TIMA and LIG laboratories 39

Background and Related Work

3.9 Conclusion

Profiling is a common software analysis technique which is widely used today. It has
been the subject of lots of papers, and several tools are available today on any computers.

In this chapter, we describe and give a classification of profiling approaches, trace
analysis of programs using data mining and a positioning of our work. Even though
existing profiling tools are very useful, they cannot cope well with parallelism easily, so
the use of traces has been proposed to perform more complex analysis.

In the MPSoC domain, the use of data mining to analyze execution traces is relatively
recent, and we believe data mining algorithms are powerful tools for mining, discovering
and extracting knowledge, system behavior or relations between events from a huge
amount of traces.

As can be seen from our literature analysis, no work has been done to profile parallel
programs running on MPSoC in a fully automated way.

40 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 4: New MPSoC Profiling Tools

based on Data Mining

Investigation, c’est une espèce de quête où l’esprit suit à la piste les traces d’une cause ou d’un
effet, présent ou passé

Denis DIDEROT

Contents
4.1 Profiling Process Overview . 41

4.1.1 MPSoC Simulation . 42

4.1.2 Trace Collection . 42

4.1.3 Traces Preprocessing . 43

4.1.4 Data Mining Tools . 43

4.1.5 Knowledge Discovery . 46

4.2 Summary . 46

This chapter presents a global overview of new MPSoC profiling tools based on using
data mining techniques on simulation traces. The first profiling tool identifies

frequent contentions during the concurrent memory accesses and pinpoints the hots-
pots in source code. The second profiling tool discovers and quantifies the scalability
bottlenecks over MPSoC platforms and localizes the bottlenecks in source code. These
profiling tools have in common the knowledge discovery process using data mining
algorithms and techniques on execution traces.

4.1 Profiling Process Overview

Our profiling tools for contention and scalability bottlenecks discovery follow a process
described in Figure 4.1. The process contains the following steps: 1O a non-intrusive trace
collection from a MPSoC simulator. 2O Trace preprocessing in order to have a high level
of traces in terms of functions in addition to low level traces, and therefore facilitates
the mining, comprehension and analysis. 3O Contention and scalability bottlenecks
discovery using data mining algorithms such as frequent itemsets mining algorithm,
clustering and statistical tool. Data mining algorithms extract knowledge to show the

Sofiane LAGRAA TIMA and LIG laboratories 41

New MPSoC Profiling Tools based on Data Mining

user in order to improve software or hardware properties. In the following, all these
steps are presented in details.

Figure 4.1: Profiling Process Overview

4.1.1 MPSoC Simulation

A MPSoC simulator that we use is SystemC Accurate System Simulator (SystemCASS).
SystemCASS1 is a SystemC cycle-accurate simulator for SoCs 15x times faster than
the SystemC simulation kernel [BPG04]. Its goal is to provide cycle accurate based
simulation of systems built upon hardware and software components, in order to eva-
luate performances (hardware/software partitioning, system validation). The hardware
platforms are described using SoCLib library. SoCLib [Soc] is an open platform for
virtual prototyping of MPSoC. It is a SystemC library of component models. It supports
several models of processors (MIPS, ARM, PowerPC, Sparc, MicroBlaze, etc.), of buses,
of memories, and several operating systems. SoCLib comes with debugging features
like a GNU debugger. SoCLib supports two abstraction level of simulation models:
Transaction Level Modeling (TLM) and Cycle Accurate Bit Accurate (CABA). In TLM
level, a set of abstraction levels simplifying the description of intermodule communi-
cation is defined and the communication between hardware modules are modeled as
transactions.

The CABA level models are accurate to the bit and cycle.TLM permits faster si-
mulation but less accurate estimates than CABA. We use CABA abstraction level, in
our simulations for cycle-accurate and bit-accurate simulation in order to get a precise
performance analysis, timestamp precision of events, and efficient handling of time
series of events such as slicing the traces into time windows, or computing the runtime.

4.1.2 Trace Collection

For trace collection, we use a non-intrusive trace system developed by Hedde et al.
[HP11]. This trace system consists in tracing hardware events that are produced by
models of multiprocessor platform components. They consist of fine grained information
about the execution. These traces, viewed as a set of events, are traced and collected with
tracing tools system for MPSoC analysis. The component models are instrumented in a

1https://www-asim.lip6.fr/trac/systemcass

42 TIMA and LIG laboratories Sofiane LAGRAA

4.1 Profiling Process Overview

non-intrusive way so that their behavior in simulation is not modified. Using this trace
results allow to run precise analysis of the software that is executed on the platform.
Globally, a trace file contains both system calls and the embedded application behavior
performed by CPUs and represented by the following information: the timestamps,
the CPU identifier that initiate the memory access and the information related to this
access. More details are given in the next section.

The traces results contain records of events of each CPU (see 2.4), which occurred
during the execution. Traces allow to have precise fine-grain analysis of the software
running on the MPSoC platform.

The traces are saved into binary files and can be very large from tens of megabytes
to hundred of gigabytes.

4.1.3 Traces Preprocessing

The collected traces are low-level traces. Three kinds of preprocessing are performed
and used in different contributions for manipulating the low-level traces:

4.1.3.1 Low-Level and High-Level Traces

The raw traces, as output by the simulator, contain for each trace event information that
are useful for our analysis: CPU identifier, timestamp, program counter, instruction
type, data address, and memory access latency. But not sufficient for profiling and
interpreting results. Furthermore, the embedded application source code is developed
in high-level programming language (C/C++), hence the necessity of a preprocessing
step in order to have both low-level and high-level traces in terms of functions. The
transformation process is outlined in Appendix A.

4.1.3.2 The Windowed Events Trace

In order to analyse and discover hotspots during a time period, slicing a trace file into
time windows is necessary. The time window gives a snapshot of what happens during
a given time period, the set of concurrent accesses of each processor. In addition, time
window facilitates the visualization of the concurrent processors. More details are given
in the next chapter.

4.1.3.3 Feature of Traces

Due to the huge amount of execution traces, reducing them is a challenge, Thus, this
processing may include the transformation and features extraction of the original traces
into simplified ones, while keeping the interesting characteristics of traces. More details
are given in 6.3.3.

4.1.4 Data Mining Tools

For quantifying and pinpointing contention and scalability bottlenecks, We are interes-
ted in :

• Finding groups of memory accesses with similar behavior in a given MPSoC
platform.

Sofiane LAGRAA TIMA and LIG laboratories 43

New MPSoC Profiling Tools based on Data Mining

• Identifying groups of memory accesses according to their access frequency and
the access time.

• Comparing multiple and scalable MPSoC platforms for discovering frequent
groups of bottlenecks over such platforms.

• Discovering co-occurrence of memory accesses repeating themselves often and
occurring contentions.

However, we need automatic tools that allow us to extract knowledges from execution
traces. Thus, there are two data mining techniques particularly relevant to this thesis,
namely clustering and frequent itemset/pattern mining.

Clustering is an unsupervised learning process where data are divided into groups.
Similar data are grouped into the same group and different data are separated into
different groups.

Frequent pattern mining (FPM) is a process in which patterns appearing frequently
in a dataset are extracted. Frequent pattern mining often serves as an intermediate step
for knowledge discovery, improved data understanding and more powerful data analysis.
For example, it can be used as a feature extraction step or classification. For improved
data understanding, patterns can be used for annotation or contextual analysis [HK06].

4.1.4.1 Clustering

Clustering is one technique in data mining for finding and organizing data instances
into similarity groups, called clusters such that the data instances in the same cluster are
similar to each other and data instances in different clusters are very different from each
other.

There are many clustering algorithms. A good summary and categorization is
available in [HK06]. Clustering algorithms can be categorized broadly into hierarchical
or partitional. In the hierarchical approaches, the clusters are build step by step by
merging or dividing previously formed clusters. In the partitional approaches, all
the clusters are build at once, further refinement are then performed by shifting data
samples from one cluster to another in the successive clustering steps. One of the most
well-known and classic clustering algorithm is k-means [HW79], which belong to the
partitional family of clustering algorithms.

The k-means algorithm is the best known partitional clustering algorithm. It is also
widely used among all clustering algorithms due to its simplicity and efficiency. The
k-means algorithm divides the dataset into k groups where k is a number of clusters
specified by the user. The distance of each data items from the mean the group it belongs
(hence the name k-means). Several distance metrics have been proposed. Some of them
includes: Manhattan distance, Euclidean distance, and many more. In Manhattan
distance the distance between two data points in x-y space is defined as |x1−x2|+ |y1−y2|.
In Euclidean distance the distance between two data points in x-y space is defined as√

(x1 − x2)2 + (y1 − y2)2. Algorithm 1 presents the pseudo-code of the K-means algorithm.
First, the algorithm forms an initial set of k groups randomly. The mean of each group
is then computed. Next, each data point is assigned to the group where the distance
(Euclidean distance) between the data point and the group’s mean is minimized. The
procedure is repeated until a fix point is reached, namely no more data items move into
a different group/cluster.

44 TIMA and LIG laboratories Sofiane LAGRAA

4.1 Profiling Process Overview

Algorithm 1 Pseudo-code of the K-Means algorithm

Input: D: a data set containing n objects, K : the number of clusters
Output: Set of K clusters

1: arbitrary choose K objects from D as the initial cluster centers;
2: repeat
3: (re)assign each object to the clusters which has the closest mean, based on distance;

4: update the cluster means, that is, calculate the mean value of the objects for each
cluster;

5: until no change
6: return WT

Figure 4.2: Two groups or clusters of data points

Each cluster has a cluster center, which is also called the cluster centroid. The
centroid, usually used to represent the cluster, is simply the mean of all the data points
in the cluster, which gives the name to the algorithm, i.e., since there are k clusters.
Fig. 4.2 gives the k-means clustering algorithm with k = 2.

4.1.4.2 Frequent Itemset/Pattern Mining

In this thesis, we use frequent itemset mining [AS94]. In this setting, we consider a set of
items I = {I1, ..., In}. The data is represented as a list of transactions T = {T1, ...,Tn}, where
each transaction Ti consists of a unique identifier i ∈ [1,n] and is a set of elements of I :
Ti ⊆ I . An itemset is also a subset of I .

The support support(P) of an itemset P is defined as the proportion of transactions
in the data set which contain the itemset. Formally,

support(P) =
no. of transactions which contain the itemset P

total no. of transactions
(4.1)

Given a minimum support threshold min_p, an itemset P is frequent if support(P) ≥
min_p.

FPM algorithms search for patterns in a combinatorial search space, which is gene-
rally very large. But, the anti-monotone property allows fast pruning: which states, "If

Sofiane LAGRAA TIMA and LIG laboratories 45

New MPSoC Profiling Tools based on Data Mining

Table 4.1: Example data

Transaction
T1 {A,B,C}
T2 {A,C}
T3 {A,B,C}

Table 4.2: Frequent itemsets

Itemset Frequency Itemset Frequency
{A,B,C} 2 {B,C} 2
{A,B} 2 {A,C} 3
{A} 3 {C} 3
{B} 2

a pattern is frequent, so are all it’s sub-patterns; if a pattern is infrequent, so are all its
super-patterns." Efficient data structure and algorithmic techniques on top of this basic
principle enable FPM algorithms to work efficiently on database of millions events.

Usually, effective search space pruning strategy needs to be employed to render FPM
algorithms feasible to handle datasets. Some well known algorithms are Apriori [AS94],
Eclat [Zak00] and FP-Growth [HPY00].

Lets consider a simple example. We have set of items I = {A,B,C}, the data is
represented in Table 4.1.

The frequent itemsets with their support are given in Table 4.2. This table shows
that the frequent itemsets contain many redundant information. In practice, we are only
interested in closed frequent itemsets, which are the maximal itemsets by set inclusion
for a given support value. A pattern is called closed, if it has no super-pattern with the
same support. Closed frequent pattern can also be mined within the FPM process. They
can be an order of magnitude less numerous than frequent itemsets while retaining the
same amount of information. The most efficient closed frequent itemsets according to
the FIMI contest [FIM04] is LCM [UKA04a]. In our example the closed frequent itemsets
are {A,B,C} with support 2 and {A,C} with support 3.

4.1.5 Knowledge Discovery

Knowledge discovery is the process of discovering "valuable" information from patterns
extracted from large traces using data mining algorithms. According to the definition of
the knowledge discovery in databases by Fayyad et al [FPsS96]. The information should
be novel, non-trivial, previously unknown and potentially useful for developers in order
to improve software or hardware proprieties.

4.2 Summary

This chapter introduced an overview of new techniques that we use in our profiling
method for MPSoC platforms, which involves trace collection, pre-processing, and data
mining steps. Through platforms simulation and adequate tracing tool, the trace tool

46 TIMA and LIG laboratories Sofiane LAGRAA

4.2 Summary

generates a trace file containing the behavior of CPUs simulated in platform such as
concurrent memory access information.

Data mining algorithms are powerful algorithms, they find valuable patterns and
regularities in large volumes of dataset and group similar behaviors, which we will allow
to implement methods for contention and scalability bottlenecks detection. In the next
chapter, we detail these methods.

Sofiane LAGRAA TIMA and LIG laboratories 47

Chapter 5: Contention Pattern Discovery

in MPSoC

Contents
5.1 Introduction . 49

5.2 Preliminaries and Problem Formulation 50

5.2.1 NoC . 50

5.2.2 Trace Definitions . 51

5.2.3 Problem Statement . 52

5.2.4 Objective . 53

5.3 Contention Pattern Discovery Methodology in MPSoC I 53

5.3.1 Patterns definitions . 54

5.3.2 Pattern discovery method . 54

5.3.3 Hotspot detection from patterns 56

5.3.4 Preliminary Results . 58

5.4 Approach limitations . 58

5.5 Contention Pattern Discovery Methodology in MPSoC II 58

5.5.1 Pattern discovery method . 59

5.5.2 Long latencies determinations 59

5.5.3 Slicing the execution traces into contention windows 60

5.5.4 Mining the frequent contention patterns 61

5.5.5 Preliminary Results . 63

5.6 Comparison of Methodologies . 64

5.7 Conclusion . 66

This chapter presents the first contributions of this thesis: a framework for automa-
tic contention discovery in MPSoC using data mining on simulation traces. The

contributions have been the subject of articles in [LTP12, LTP13].

5.1 Introduction

Hardware/software interaction is complex and often not analysable at design time
because of the dynamicity of the current applications and architectures. Given this

Sofiane LAGRAA TIMA and LIG laboratories 49

Contention Pattern Discovery in MPSoC

context, there is a dramatic need for tools that will ease this integration and optimization
process.

Since the traffic between two components processor-memory is proportional to the
number of processors, for MPSoC platform containing a large number of processors, the
resulting interconnection network can become complex and expensive. Even if the inter-
connection network meets the processor-memory bandwidth requirement, performance
degradation can result if several processors share a common link in the interconnection
network. This type of contention is referred to as communication contention.Another
contention is referred to as memory contention which is related to the fact that a memory
module can handle only one memory request at a time. When several processors re-
quest the same memory module, the requests are serialized. Thus, one or more links of
the MPSoC platform are accessed simultaneously by more processors than they have
been designed to satisfy, leading to delays in response time and increasing the memory
access latency from the processor to the memory [MTQ07]. When several processors
repeatedly access the same memory location, it gives rise to hotspot contention. This is
because it creates hotspot in either the memory module or the interconnection network
that get overloaded with the requests which create a bottleneck for system performance.

For this reasons, our goal is to detect automatically such inefficiency i.e. concurrent
accesses to memory segments leading to hotspots: high latencies and low throughputs.
Also, discovering and extracting automatically the frequent and repeated accesses that
cause the contention and pinpointing them in source code is a challenge.

The rest of the chapter is organized as follow. Section 5.2 formally presents defini-
tions, problem statement and objectives. We detail our approach and give preliminary
results in section 5.3. We enumerate their limitations in section 5.4, and we propose an
improved approach with preliminary results in section 5.5. We compare our methodolo-
gies with the existing ones, in section 5.6. Section 5.7 concludes this chapter.

5.2 Preliminaries and Problem Formulation

This section gives necessary definitions and problem statement and objectives of the
approach.

5.2.1 NoC

Network-on-Chip (NoC) is an efficient on-chip communication architecture for SoC
architectures based on network infrastructure, with similarities and differences relative
to the classical networks. It enables integration of a large number of computational
nodes and storage blocks on a single chip. Each node consists of CPU and their caches,
local memory and a router. Lots of topologies have been proposed for NoCs so far,
such as 2D Mesh [DYL02], Torus [DT01], Star [AK89], Octagon [KND02], FATTREE
[ACG+03]. Among these topologies, mesh topology has gained more consideration by
designers due to its simplicity and their grid-type shapes and regular structure which
are the most appropriate for the two dimensional layout on a chip/ For example, Figure
5.1 shows a 4 x 4 mesh NoC. Each core communicates with other cores by sending and
receiving messages through a network interface controller (NIC) that connects the core
to a router (hence the network).

50 TIMA and LIG laboratories Sofiane LAGRAA

5.2 Preliminaries and Problem Formulation

A XY routing algorithm is implemented as routing algorithm of NoC. XY routing is
a dimension order routing which routes packets first in x or horizontal direction to the
receiver’s column and then in y or vertical direction to the receiver. XY routing suits
well networks using mesh topology. Addresses of the routers are their xy-coordinates.
XY routing never leads to deadlock [DNAKN05].

5.2.2 Trace Definitions

Let T S be a set of trace symbols containing instruction addresses, data addresses and
memory accesses types that have been performed by CPU cpu_id at time t with a latency
latency. A trace event e = (t, s) consists of a timestamp t ∈ [0, tmax] and a set of symbols
s ⊆ T S representing a memory access that has been performed by an initiator. A raw

Table 5.1: Raw trace format for NoC
Cycle CPU Access Page Program Hop Node Access

Number ID(1) type Number Counter Count ID (2) Latency
212305 1 INST 785408 0xbfc00740 3 10 48

trace, see Table 5.1, consists of, in order of occurrence, the global date at which the
event occurred in cycles since the power-up of the system, which CPU initiated the
transaction (CPU ID(1)), the transaction type (which can be instruction fetch, data read
and data write), the 4Kb page number in which the access takes place, the program
counter of the instruction that produced the access, the hop count to destination (CPU
ID(2)) which represents the Manhattan distance between the CPU ID(1) that initiate
the operation and the memory receiving the requested address, and finally the latency
between the start of the transaction and the reception of its acknowledgement. For the
rest of this chapter, we use the term "event" to represent both actual CPU event and the
corresponding trace event.

The transaction of Table 5.1 is based the topology of the 4x4 mesh network-on-chip
NoC of Fig. 5.1.

Figure 5.1: Example of 4 x 4 mesh NoC

Let C = {1, ..., k} be a set of CPUs. A CPU trace T c, with c ∈ C a CPU identifier, is a

Sofiane LAGRAA TIMA and LIG laboratories 51

Contention Pattern Discovery in MPSoC

list of trace events T c = {e1, ..., en} ordered by their timestamps. It represents all the trace
events emitted by CPU c during the execution.

The execution trace ET = {T 1, ...,T k} is the set of CPU traces for all the CPUs of the
MPSoC.

For a CPU trace T c, we denote by T c[a,b] the list of trace events of T c that happen
between time a and time b. An execution trace represents a very fine grained information,
especially for traces coming from cycle-accurate simulators. In order to coarsen the grain
of analysis and discover interesting correlations, the trace is split into time windows. The
interest of time window allows to: regroup the co-occurring events belonging to the
same time period that may be the cause of contention.

Let δ be a window duration. Then there are Nw = d tmaxδ e time windows, whose starting
and ending times are defined as:

∀i ∈ [0,Nw − 1] wi = (bwi , ewi) = (i ∗ δ,min((i + 1) ∗ δ, tmax))

We consider that inside a time window, all the events appear simultaneously. Hence,
the windowed CPU trace of a CPU c ∈ C having CPU trace T c is WT c = {wtc0, ...,wt

c
NW−1}

where for all i ∈ [0,NW − 1] wtci = T c[wi ,wi+1[.
Due to the exhaustive nature of our traces, the accesses leading to contention are

captured in the trace and called contention patterns.

Definition 1 (Contention pattern). A contention pattern is a set of co-occurring events
i.e. whose timestamps differ by at most δ cycles, that are each on a different CPUs which
access a similar resource (a memory address), and where at least one of the events exhibits an
unusually long latency, indicating contention on the resource.

Definition 2 (Frequent Contention pattern). A contention pattern is frequent if it occurs
in the trace more than ε times.

5.2.3 Problem Statement

The problem that is addressed in this chapter is to automatically discover recurrent
hotspots due to contention (i.e. bad usage of the MPSoC) in an execution. We also want
to have hints on the reasons of this contention, in order to be able to improve either
task/data placement or directly the code of the application.

In MPSoC, contention develops when multiple processors access the same memory
module concurrently, it causes reduced bandwidth and increased memory access time
(latency). Profiling contention problem, we can ask the following questions:

• What are the accesses leading to the contention ?

• What happens during a contention ?

• How to detect and identify co-occurrence of events ?

• How to analyse them among large traces ?

52 TIMA and LIG laboratories Sofiane LAGRAA

5.3 Contention Pattern Discovery Methodology in MPSoC I

5.2.4 Objective

We then rely on advanced data mining techniques which allow to automatically identify
and report access patterns whose latency deviate significantly from the average behavior
of the traces. This method allows to help developers to extract automatically the parts
of the traces exhibiting contention and mining them in order to discover both frequent
interactions between several processors and the patterns that create this contention.

The data mining techniques on huge amount of simulation traces allow to analyse
and discover frequent patterns of co-occurrence of events that create contention are well
adapted to this task because:

• by definition, they can identify patterns repeating themselves often,

• they identify the co-occurrence of some events, which is usually what happens
during a contention scenario: for example, CPU1 and CPU2 are both contending
for resource A at the same time.

In order to resolve the problem statement and achieve our objectives, we have
proposed two approaches according to analysis granularity:

• Either we want to know precisely, 1O how many processors create contention in a
given time window ? by specifying the minimum number of processors as input
of the approach that create contention. 2O Are patterns found in 1O frequent in
multiple time window ? (Approach 5.3)

The advantage of this approach is: the developer can specify the minimum number
of processors that create contention. The approach discovers with accuracy the
number of processors greater than the minimum number of processors and their
identifiers participating at the contention in a given time window. The disadvan-
tage of this approach is: it takes a lot of event combinations and requires a large
computing power.

• Either we partially abandon the user input parameter of the previous approach (i.e.
minimum number of processors) but in this approach we keep only time windows
with potential contention. To make this choice, the discovered time window is
based on latency treatment. And after, we mine the time window. (Approach 5.5)

The advantage of this approach is: the latency is a posteriori indicator of contention,
and the approach is faster than the first one. The disadvantages of this approach:
we have not any information about the number of CPUs involved in the contention.
At best, if the contention is stable, then we can know the CPUs involved.

5.3 Contention Pattern Discovery Methodology in MPSoC I

We describe in this section our method to detect hotspots in the trace of a multicore
execution by discovering frequent itemsets in this trace. We do this in two phases: first,
we identify the most recurrent patterns, and second we search within the resulting set
the ones that have the highest execution times in the considered window. First we give
some definitions.

Sofiane LAGRAA TIMA and LIG laboratories 53

Contention Pattern Discovery in MPSoC

5.3.1 Patterns definitions

In order to detect contention, our principle is twofold: we want to identify groups of
events that occur simultaneously in a significant number of CPUs and in a significant
number of time windows.

We first define a way to aggregate all the windowed CPU traces in a single trace that
keep only trace events appearing simultaneously in a significant number of CPUs.

Definition 3. Let wi i ∈ [0,Nw − 1] be a time window and min_supc ∈ [1, k] be a threshold
on the number of CPUs. A trace event e is frequent if there exits at least d CPUs > min_supc
such as e ∈ wtdi .

The frequent events window f wi corresponding to window wi contains all the frequent
trace events for window wi .

The windowed frequent events trace FWT = {f w0, ..., f wNw−1} contains all the frequent
events windows.

Figure 5.2 shows an example of a frequent events window. It shows the events
occurred in each CPUs during the window 1. We assume that min_supc = 2. The events
A and B occur in 3 CPUs, whereas C,M and N appear only in 1 CPU, so only A and B are
frequent events.

Figure 5.2: The windowed frequent events trace

The next step is to discover groups of frequent trace events that appear in at least a
given number of frequent event windows.

Definition 4. Let min_sup_w ∈ [0,Nw − 1] be a frequency threshold on the number of
windows. A frequent pattern is a set of frequent trace events that occur simultaneously at
least min_sup_w windows.

The Figure 5.5 shows 3 time windows, with their frequent trace events on the right.
We consider a frequency threshold min_supw = 2. The frequent event A is the only one
that appears in 2 windows, so {A} is the frequent pattern discovered.

5.3.2 Pattern discovery method

Given an execution trace ET and three thresholds min_sup_c, min_sup_w and δ time
window size as user input, our goal is to discover automatically the frequent contention
patterns. If the min_sup_w threshold is set sufficiently high, the frequency of a conten-
tion pattern indicates that it is not a rare and difficult to predict situation, but a misuse
of the resources which comes from the application design, and that should be fixed to
improve overall performances.

Our discovery method is based on three steps: preprocessing the raw traces, com-
puting the windowed frequent events trace, eventually compute the frequent patterns

54 TIMA and LIG laboratories Sofiane LAGRAA

5.3 Contention Pattern Discovery Methodology in MPSoC I

and hotspot detection. Fig. 5.3 shows the global methodology of the contention pattern
discovery process from execution traces in MPSoC.

Figure 5.3: Contention Pattern discovery methodology from execution traces in MPSoC

The execution traces are generated from MPSoC simulator using a tracing tool system.
The simulator has the hardware description platform and multithreaded application as
inputs. Now, we show the rest of the steps.

Discretization of Latency

Discretization is one of the most important, and often required, preprocessing me-
thods in data mining. The task of discretization of numerical value is well known to
statisticians.

The goal of discretization is to reduce the number of values, by grouping them into
a number n of intervals (bins or slots). Also, the reduction is necessary for further
data mining tasks because frequent itemset mining algorithms are not adapted to mine
numerical values.

Thus we discretized numeric attributes into larger bins in order to regroup events
exhibiting similar values.

As an example, the memory access latencies are discretized by bins of 20 up from
0 to 140, (i.e. all latencies between 0 and 20 are represented by the bin lat_0_20). The
choice to take bins of 20 is that the memory access average latency is approximately 20
cycles, in our experimental setup.

From Traces To Transactions

Using the window duration parameter δ, we split the trace of each CPU into windows,
merge the trace events in each window and produce the windowed CPU traces as
described in 5.3.1.

5.3.2.1 Windowed frequent events trace computation

This computation is straightforward. For each window wi and each event ej ∈ {e1, ..., en},
we compute the number of CPUs in which the event ej occurs and we keep only the
frequent events, i.e. the frequency of the event is greater than the frequency threshold
min_sup_c, for the next step. These events are inserted into the window f wi of the
windowed frequent events trace FWT . An overview is shown in Figure 5.4.

Sofiane LAGRAA TIMA and LIG laboratories 55

Contention Pattern Discovery in MPSoC

Figure 5.4: Overview of Windowed frequent events trace computation

5.3.2.2 Patterns computation

From the windowed frequent events trace defined before, we build a matrix where the
lines are the windows and the columns represents the frequent trace events. This matrix
is fed to the most efficient closed frequent itemset mining algorithm, LCM[UKA04b],
with the min_sup_w support threshold, which outputs the frequent patterns as defined
before.

Figure 5.5 shows that the frequent pattern {A} with the intermediate matrix used to
apply the mining algorithm.

Figure 5.5: Example of frequent patterns

5.3.3 Hotspot detection from patterns

The frequent patterns by themselves can give good hints for potential contention periods
and their reasons. However, they can be very numerous and be of unequal interest (for
example, presence of obvious patterns).

We thus need a way to score the patterns in order to determine the patterns respon-
sible for the most contention and present them in priority. For this score, we observe that

56 TIMA and LIG laboratories Sofiane LAGRAA

5.3 Contention Pattern Discovery Methodology in MPSoC I

the problem of contention in a MPSoC can be assimilated to the problem of scheduling
tasks in a single processor.

Liu and Layland [LL73] were the first to study the problem of scheduling tasks on
single processor. They did show that an optimum scheduler possesses an upper bound
to processor utilisation which may be as low as ≈ 70 percent for large task sets.

For detecting the frequent contention, we thus use the frequent patterns found in
the last method and we use the following test based on Liu and Layland work:

∀ω ∈W,∀p ∈ P ,Up
iω =

n∑
i=1

D
p
iω

δ
≤ n(n
√

2− 1) (5.1)

∀p ∈ T c,Dpiω =
∑

dp (5.2)

where W is the set of windows, and n is the number of CPU. When this number of
CPU tends towards infinity the expression (5.1) will tend towards:

lim
n→∞

n(n
√

2− 1) = ln2 = 0.6931... (5.3)

DPiω is the duration time of frequent pattern P into each window ω. It is defined as
follows: Let a frequent pattern P discovered from the last method. For computing the
duration D of the pattern P into each window, we proceed as follows:

• Firstly, we project the pattern P on the trace events T c by the matching between P
and T c.

• Secondly, we extract the memory access time of the pattern P from its latency.

• Thirdly, we sum the latency of the events for each window of the CPUs (Eq 5.2).

So Up
iω is applied for each patterns P to determine a memory access rate by the CPUs

in the window ω. Thus, if this measure is greater than threshold (ln 2), then we say this
pattern create a contention in the window ω .

Fig. 5.6 shows an example of the hotspot detection from a pattern found in Fig. 5.5.
The frequent pattern A is projected in the trace events and its duration extracted at
each time window for all CPUs. For each window, we compute U such as the window
duration δ = 200. We see that there is a contention in the third window.

Figure 5.6: Example of hotspot detection from patterns

Sofiane LAGRAA TIMA and LIG laboratories 57

Contention Pattern Discovery in MPSoC

5.3.4 Preliminary Results

We experiment this approach in a 4x4 mesh NoC hardware platform. The nodes run mul-
tithreaded Mandelbrot fractal application. More details on the simulation environment
are given in chapter 7.

We discovered interesting patterns about the nodes running the Mandelbrot applica-
tion 5.2. The most accessed instructions by the concurrent CPUs: CPU_8 to CPU_15 are
located in the following memory pages: P_3091, P_3090, P_3088. The pages P_3091 and
P_3090 contain the code of the floating point helper functions (as our processors do not
support floating point operations directly, the compiler has automatically instantiated
ad-hoc functions to perform the operations) and the page P_3088 contains the code
of the Mandelbrot application. Among these frequent concurrent accesses, we found
that the frequent contention pattern is the accesses to pages containing floating point
operations after each access.

Table 5.2: Frequent Contention patterns

Application Frequent Pattern Support
CPU[8,15] INST P_3090 fpadd_parts id_10 96%
CPU[8,15] INST P_3090 __muldf3 id_10 62%

Mandelbrot CPU[8,15] INST P_3088 mandelbrot id_10 95%
CPU[8,15] INST P_3091 __unpack_d id_10 87%
CPU[8,15] INST P_3090 __pack_d id_10 80%

More details, discussions and experiments about this approach in the chapter 7.

5.4 Approach limitations

The first version of contention pattern discovery methodology is intended for NoC
architecture using specific and adequate tracing tool system.

The approach described in this chapter admits the following limits:

• Two key problems associated with discretization of latency values are how to
choose the number of intervals (bins), and how to decide on their width.

• Frequent itemset mining algorithm is applied twice for: identifying patterns that
occur simultaneously in a significant number of CPUs and in a significant number
of time windows. This process can take twice the execution time of Frequent
itemset mining algorithm.

Thus, the extended version of contention pattern discovery methodology use another
tracing tool for SMP architecture and a totally data mining driven method for hotspot
detection and frequent contention pattern discovery. These limits are improved in the
next sections.

5.5 Contention Pattern Discovery Methodology in MPSoC II

Discovering contention patterns is a multi-step process. As we detect contention through
instruction latency value, the first step is to determine what is an unusually high latency.

58 TIMA and LIG laboratories Sofiane LAGRAA

5.5 Contention Pattern Discovery Methodology in MPSoC II

This information can of course be given as input, however we show a simple method to
determine it semi-automatically. Then the execution trace must be filtered to keep only
events that are around high latency events, and this filtered execution trace requires
further preprocessing in order to be fed to a pattern mining algorithm that will discover
the contention patterns.

5.5.1 Pattern discovery method

Given an execution trace ET and two thresholds ε and ω, our goal is to discover automa-
tically the frequent contention patterns. If the ε threshold is set sufficiently high, the
frequency of a contention pattern indicates that it is not a rare and difficult to predict
situation, but a misuse of the resources that come from the application design, and that
should be fixed to improve overall performances.

Our discovery method is based on three steps: preprocessing the raw traces, com-
puting the windowed frequent events trace, eventually compute the frequent patterns
and hotspot detection. Fig. 5.7 shows the global methodology of the contention pattern
discovery process from execution traces in MPSoC.

Figure 5.7: Contention Pattern discovery methodology from execution traces in MPSoC

5.5.2 Long latencies determinations

The latencies will the analysed through simple statistical techniques. Let L denote the
list of all non-trivial (i.e. not cache hits) latencies found in the execution trace, whatever
the CPU: L = {e.latency | e ∈ ET }. Without domain knowledge, the basic assumption that
we make is that most memory accesses are done without contention. The median of the
latency values in L is thus supposed to be representative of the normal access latency.
In order to allow for some variations in the latency value, we only consider as unusual
latency values that are in the upper quartile, i.e. the highest 25% of the latency values.
Q3(L) denotes the lowest latency of the upper quartile. This is a standard statistical
way to identify high values in a dataset [Pot06]. It can be represented graphically by a
boxplot, as in the Fig 5.8. In this figure the median is at the middle, 50% of values are
lower (left of median) and 50% of values are higher (right of median). Q3 represents the
limit of the upper quartile, with 75% of values below and 25% of values above.

Hence for latencies, the set LH of high latency values contains all latencies above
Q3(L), i.e right of Q3 in the figure, LH = {l | l ∈ L∧ l ≥Q3(L)}, in Fig 5.8. We see that the
set LH contains all latencies above Q3 = 12 cycles.

Note that in the case where most memory accesses are done under contention, the
median will be higher than in a case without contention. Our set LH will contain only

Sofiane LAGRAA TIMA and LIG laboratories 59

Contention Pattern Discovery in MPSoC

Figure 5.8: Boxplot

the extremely high latency values, i.e. memory accesses for which contention have the
most adverse effects. Focusing on these accesses is thus anyway a priority, so our method
can also be applied to these cases.

5.5.3 Slicing the execution traces into contention windows

By having identified high latencies, the execution trace can be filtered to focus on events
having these latencies and their immediate surroundings. The output of this filtering
step is a sequence of contention windows. A contention window is a slice of an execution
trace having a duration ω, and which contains one or more high latency events. It thus
give us the context of occurrence of high latency events. This context is important as if
ω is not too long, we can be sure that the contention patterns are located inside.

For constructing the windowed events trace, our solution is presented in Algorithm 2.
It receives as input a contention window duration ω, the execution trace ET , and a set
of high latency events HL defined by: HL = {e | e ∈ ET ∧ e.latency ∈ LH }. HL is sorted
on increasing timestamp in order of events, as well as is ET . The algorithm outputs
the set WT of contention windows. It’s principle is as follows: for each high latency
event eH ∈HL increasing according to the timestamp order (line 3), all the events from
the execution trace ET that surround it (at most −ω/2 cycles before or ω/2 cycles after)
are inserted into the current window (lines 4-5). If one of these events is a high latency
event, it is removed from HL (lines 6-8) to avoid making a near-duplicate window in the
next iteration of the for all (line 2). A single time window can thus have several high
latency events, which is expected as high latencies come from several CPUs competing
for a single resource and thus slowing down each other.

Our algorithm authorizes some overlap between windows, but it will be limited to
at most ω/2 cycles for a couple of overlapping windows.

Fig.5.9 shows an example of the windowed execution trace on 4 CPUs. The window
1 is constructed according to the first high latency event encountered in any of the CPUs.
Here it is C on CPU0. The window 1 contains the events of all CPUs occurring from
(−ω2) before C to (+ω

2) after C. Here a second high latency event occurs in this window
(event A on CPU1). The window 2 is constructed according to the high latency event
encountered in any of the CPUs after exiting window 1. Here for example lets consider
it is D on CPU1. The window 2 contains the events of all CPUs occurring from (−ω2)

60 TIMA and LIG laboratories Sofiane LAGRAA

5.5 Contention Pattern Discovery Methodology in MPSoC II

Algorithm 2 Windowed events trace

Input: duration ω, execution trace ET , high latency events HL
Output: Windowed trace WT

1: n← 0
2: for all eH ∈HL do
3: WT [n]←∅
4: while ET [i].ts ≥ eH .ts −ω/2 AND ET [i].ts ≤ eH .ts+ω/2 do
5: WT [n]←WT [n]∪ {ET [i]}
6: if ET [i] ∈HL then
7: HL←HL \ {ET [i]} {Avoid some overlapping windows}
8: end if
9: i← i + 1

10: end while
11: n← n+ 1
12: end for
13: return WT

before D of CPU1 to (+ω
2) after D of CPU1. We also see that window 2 overlaps partially

window 1.

A B C A D F B X

C P U _ 0

A B A A D F B Y

C P U _ 1

A B D A D F B Y

C P U _ 2

A B D A D F B Y

C P U _ 3

w /2 w /2

window 1
window 2

Time

Figure 5.9: The windowed events trace

5.5.4 Mining the frequent contention patterns

There exists many different algorithms for mining patterns in data. In our case, the
most important information is the frequent co-occurrence of set of instructions, memory
address and memory access types represented by the repetition of the set of trace

Sofiane LAGRAA TIMA and LIG laboratories 61

Contention Pattern Discovery in MPSoC

symbols over several CPUs. Our assumption is that due to the way contention windows
were selected, any set of events appearing frequently in these windows is suspicious and
have a high chance to be involved, directly or indirectly, in the contention that drives
up the latencies. The data mining technique used to discover such sets of frequently
occurring events is called frequent itemset mining algorithm [AS94, UKA04b]. In this
technique, the first input is a multiset of transactions D = {t1, .., tp} defined over an
alphabet of items Σ = {i1, .., iq}, where ∀ti ∈ D ti ⊆ Σ. The second input is a minimum
support threshold ε ∈ [0,p]. Frequent itemset mining algorithms then extract all the
frequent itemsets, i.e. all the itemsets is ⊆ Σ that appear in more than ε transactions of D.
More formally, is must satisfy support(is) ≥ ε, where support(is) = |{ti | ti ∈D ∧ is ⊆ ti}|.

In order to exploit this technique, we transform the set of windows WT into a set
of transactions D. This is presented in Algorithm 2. Each window w ∈WT becomes
a transaction (lines 2-5), i.e. a set of items. We thus loose the sequencing of events
inside a window, for the data mining algorithm all the events of a single window are
considered simultaneous. This is not a problem, as inside a window we are interested
in the co-occurrence of different events and not in their precise sequencing at the cycle
scale.

Algorithm 3 Windowed events transactions

Input: Windowed trace WT
Output: Transactions dataset D

1: for all w ∈WT do
2: D[i]←∅
3: for all e ∈ w do
4: D[i]←D[i]∪ {e.cpuid_e,e}
5: end for
6: end for
7: return D

Pattern mining algorithms are complex algorithms that explore a large combinatorial
space i.e the algorithms have exponential time complexity according to the number of
items in order to compute the exacts solutions. In order to do so efficiently, they exploit
several properties of sets over the alphabet Σ, and of the frequency definition. Changing
any of these properties prevents from using the most efficient algorithms. Thus, in order
to mine complex data while keeping good scale up properties, a delicate problem is
to find an alphabet Σ that allows to find informative patterns while fitting with the
pattern mining framework defined above. In our case, the alphabet Σ of transaction
items should at least contains all the possible trace symbols T S. But consider the case
where two CPUs CPU1 and CPU2 make the same memory access, represented by a ∈ T S,
in a single contention window. The associated transaction is a set and not a multiset, so
it will only be the singleton {a}. This will not allow to discover any contention: a single
CPU issuing access a would have given the same transaction. Our solution is to prefix
each trace event with the CPU that issued it: here this will give {CPU1_a,CPU2_a} such
that all CPUs of the platform here CPU1,CPU2 are in transaction, and it gets possible
to find contention patterns. Now consider the case where we have two transactions
t1 = {CPU1_a,CPU2_b} and t2 = {CPU1_b,CPU2_a}. There is no itemset common to
both t1 and t2, as they contain completely different items: the algorithm cannot see

62 TIMA and LIG laboratories Sofiane LAGRAA

5.5 Contention Pattern Discovery Methodology in MPSoC II

their similarity and does not extract any frequent pattern. Our solution is to keep also
the original event with its CPU prefix (line 4). This gives: t1 = {CPU1_a,CPU2_b,a,b}
and t2 = {CPU1_b,CPU2_a,b,a}, with a common pattern being to have simultaneously
the events a and b. We thus have Σ = T S ∪ ({CPU1, ...,CPUk} × T S). Once we have the
transactions, we can use a state of the art frequent itemset mining algorithm. We use
LCM [UKA04b], the most efficient one according to the FIMI contest [FIM04]. The
resulting frequent itemsets are the contention patterns that we are looking for.

5.5.5 Preliminary Results

In this section, we show the the preliminary results of this approach, taking into consi-
deration the following characteristics:

The hardware platform is a shared memory multiprocessor that contains n MIPS32
processors such as n = {1,4,8}, interfaced with one data cache and one instruction cache.
It also contains one memory and others peripherals components: a timer, an interrupt
controller, a frame buffer, a block device, a tty. More details of simulation environment
in the chapter 7.

We perform two simulations on different platforms: platform 1 and platform 2 which
contain 4 and 8 processors, respectively. The software that runs on these platforms is a
parallel Motion-JPEG decoder on top of an operating system for embedded system that
includes a Pthread library. These platforms should exhibit different contention levels,
and thus help us validate our approach of contention pattern discovery.

In order to discover contention patterns, we apply our approach to the contention
windows converted to transactions with a minimum support threshold of ε = 65%:
we are interested in interactions between functions, memory locations and CPUs that
occur in more than 65% of contention windows, i.e. very frequently parts of the traces
exhibiting potential contention. We focus on platform with 4 and 8 processors, which
exhibit high levels of contention. The most interesting contention patterns discovered
for these simulation platforms are presented in Table 5.3.

Table 5.3: Frequent Patterns
Platform Frequent Pattern Support

CPU[0,3] [0x10009ee4, 0x10009f78] idct
[0x10016b50, 0x10016f2c] memcpy 72 %

4 CPUs lat_10_20 lat_20_30
CPU[0,7] [0x10009b10, 0x1000a224] idct

[0x10016ab0, 0x10016e8c] memcpy 88 %
8 CPUs lat_10_20 lat_20_30

The pattern of the platform using 4 CPUs shows a concurrent memory access pat-
tern that creates a contention implying all 4 CPUs and occurring in 72 % of conten-
tion windows. This pattern shows a frequent interaction between the functions idct
and memcpy, and more specifically between the loops of idct located in address in-
terval [0x10009ee4, 0x10009f78] and the loops of memcpy located in address interval
[0x10016b50, 0x10016f2c]. The pattern also shows that the usual latencies around these
interactions are between 10 and 30 cycles (lat_10_20, lat_20_30). Having in mind that

Sofiane LAGRAA TIMA and LIG laboratories 63

Contention Pattern Discovery in MPSoC

the high latency threshold is Q3 = 12 for the 4 CPUs trace, this corresponds well to
contention latencies.

The pattern for the 8 CPUs platforms is the same as on the 4 CPUs platform, with
different addresses due to a different executable. However these addresses correspond
to the same assembler instructions than previously: this enforces the importance of the
idct/memcpy interaction. In the 8 CPUs platform the pattern has an even higher support
of 88 %, whereas there are more contention windows in this case: this pattern is clearly
the main responsible for most of the contention and thus the lack of scalability when
the number of cores increases. This pattern thus helps the application developer to
know that the idct function, which performs the inverse discrete cosine transformation,
has negative interactions with memcpy, a function for copying data from one address to
another. It even pinpoints the specific assembler instructions of both functions that are
the most impacted: the developer, which is more likely to work on idct than memcpy,
will know immediately which loop of idct he/she has to work on.

More details, discussions and experiments about this approach in the chapter 7.

5.6 Comparison of Methodologies

Table 5.4 shows a comparison of existing methodologies in literature of contention
detection. The methodologies are described in details in related work chapter 3.2.1. The
comparison is performed in terms of the kind of architecture used for contention detec-
tion, use of traces in the contention detection methodology, yes or no if the methodology
is integrated in routing algorithm, the specification of contention detection tool.

The originality of our approach compared to the related works is as follow:

• Profiling and analysing concurrent application behavior in MPSoC platform.

• Identifying and extracting the implicit patterns from large execution traces.

• Extracting, Quantifying and pinpointing the hotspots.

• Pinpointing contention in the source code.

64 TIMA and LIG laboratories Sofiane LAGRAA

5.6 Comparison of Methodologies

Pa
p

er
A

p
p

li
ca

ti
on

A
rc

h
it

ec
tu

re
Tr

ac
es

R
ou

ti
n

g
To

ol
D

om
ai

n
A

n
al

ys
is

A
lg

or
it

h
m

H
ot

sp
ot

D
et

ec
ti

on
C

o-
oc

cu
re

n
ce

O
u

r
ap

p
ro

ac
he

s:

M
P

So
C

A
ll

Ye
s

N
o

V
er

1.
0

[L
T

P
12

]
M

et
ri

cs
Fr

eq
u

en
t

it
em

se
t

V
er

2.
0

[L
T

P
13

]
St

at
is

ti
ca

ll
y:

B
ox

p
lo

t
m

in
in

g
[T

d
R

C
+

10
,A

Z
X

C
11

,R
L

10
]

N
oC

N
o

Ye
s

M
et

ri
cs

X
[Q

L
D

09
]

Fo
rm

al
an

al
ys

is
[J

K
L

S1
0]

St
at

is
ti

ca
lr

eg
re

ss
io

n:
M

A
R

S
[J

SM
P

12
]

H
et

er
og

-
SC

M
P

N
o

N
o

So
u

rc
e

co
d

e
X

en
eo

u
s

C
M

P
A

C
M

P
in

st
ru

m
en

ta
ti

on

Ta
bl

e
5.

4:
C

om
p

ar
is

on
of

co
nt

en
ti

on
an

al
ys

is
m

et
ho

d
ol

og
ie

s
in

M
P

So
C

Sofiane LAGRAA TIMA and LIG laboratories 65

Contention Pattern Discovery in MPSoC

5.7 Conclusion

The automatic identification of application contention is an important issue for the
optimization of application deployment in integrated multiprocessor platforms. Using
the trace generation capabilities of nowadays well accepted virtual platforms, we have
introduced a frequent itemsets mining algorithm that allows to automatically identify
the frequent patterns that occur concurrently.

Our contention patten discovery framework provides the developer, the necessary
and sufficient knowledge to improve the concurrent application. The framework offers
the following originalities, first, it targets explicitly MPSoCs and/or multicore processors
and addresses the delicate problem of memory contention. Second, it relies on a com-
pletely automatic data mining approach that both finds contention points and presents
explicitly what happens frequently at these points. Third, we provide a framework
adapted to instruction-level traces.

66 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 6: Scalability Bottlenecks

Discovery in MPSoC

Bottlenecks occur in surprising places, so don’t try to second guess and put in a speed hack
until you have proven that’s where the bottleneck is.

Rob Pike

Contents
6.1 Introduction . 68

6.2 Preliminaries and Problem formulation 68

6.2.1 Definitions . 68

6.2.2 Problem Statement . 69

6.3 Scalability bottlenecks discovery method 70

6.3.1 Overview of the method . 70

6.3.2 Trace collection . 71

6.3.3 Feature extraction . 71

6.3.4 Feature-based clustering . 72

6.3.5 Growth rate of hot cluster . 72

6.3.6 Frequent scalability bottlenecks mining 74

6.4 Preliminary Results . 75

6.5 Comparison of Scalability Bottlenecks Detection Methodologies . . 75

6.6 Conclusion . 76

This chapter presents the second contribution: scalability bottlenecks discovery in
MPSoC platforms using data mining on simulation traces. Understanding scalability

of programs is a difficult problem; indeed, it is one of the fundamental problems in
parallel computing. The lack of scalability of parallel applications are numerous, and it
can be time consuming for a developer to pinpoint the correct one. In this chapter, we
propose a fully automatic method which detects the instructions of the code which lead
to a lack of scalability. The method is based on data mining techniques exploiting low
level execution traces produced by MPSoC simulators.

Sofiane LAGRAA TIMA and LIG laboratories 67

Scalability Bottlenecks Discovery in MPSoC

6.1 Introduction

In this chapter, we focus on one critical point of parallel applications, their scalability.
Intuitively, a parallel program is scalable if it runs n times faster on n cores than on 1
core. In this case, it is said that there is a linear speedup. In practice such scaling cannot
be obtained by all programs, and the well known Amdahl’s law gives a more precise
bound on the maximal speedup that can be reached by a given application. There are
many reasons that can prevent the scaling of a parallel application: the program can
spend too much time doing synchronization, it can suffer from congestion on memory
accesses or accesses to other external resources, or there can be load unbalance, or cache
trashing, etc. It is tedious for an application developer to find the correct reason for a
lack of scalability among all those.

Thus, we propose a fully automatic method that discovers the main reasons for
lack of scalability of an application, and reports the exact code lines involved. The
developer can thus directly concentrate on understanding and solving the problem
found, gaining a lot of time in the profiling process. Our method is based on the
analysis by data mining techniques of low-level execution traces produced by running
the application on a MPSoC simulator. Using such simulators is already part of the
workflow of MPSoC application development. Indeed, due to the fast evolution rate of
these chips, applications often start to be developed before the chip physically exists.
Because of the complex execution of these applications on MPSoC, collecting traces
and analyzing them a posteriori has emerged as the best way to understand the complex
interactions between the components of the MPSoC. Our method thus integrates in
the existing workflow of MPSoC application development, bringing further benefits for
profiling scalability.

The rest of the chapter is organized as follow. Section 6.2 formally presents defini-
tions, problem statement and objectives. We detail our approach in the section 6.3. In
the section 6.4, we give preliminary results. We compare our methodologies with the
exciting one, in the section 6.5 and in the section 6.6 we conclude this chapter.

6.2 Preliminaries and Problem formulation

The execution traces used in this chapter are the same as the ones described in 2.1.

6.2.1 Definitions

We give definitions and notations used throughout this chapter.

Definition 5 (% Time spent). Given an execution trace ET and an address @i , %_time_spent(@i ,ET)
is the percentage of the total execution time of the program spent in this adress. Let
ET (@i) = {e | e ∈ ET ∧ e.s ⊇ {@i}} be the events of ET that are accesses to @i , we have:

%_time_spent(@i ,ET) =

∑
e∈ET (@i) e.latency∑
e∈ET e.latency

× 100

Definition 6 (% accesses). Given an execution trace ET and an address @i , %_accesses(@i ,ET)

68 TIMA and LIG laboratories Sofiane LAGRAA

6.2 Preliminaries and Problem formulation

is the percentage of the total number of accesses that were done to @i .

%_accesses =
|ET (@i)|
|ET |

× 100

From these metrics, it is possible to evaluate how detrimental to performance an
access is likely to be:

Definition 7 (Hot predicate, hot access). Given an execution trace ET and an address @i , a
predicate isHot(@i ,ET) is called hot predicate if it answers truewhen both %_time_spent(@i ,ET)
and %_accesses(@i ,ET) are significantly higher for @i than for the other addresses, and f alse
otherwise.
An @i for which isHot(@i ,ET) = true is called a hot access.

There are many ways to define a hot predicate. Usually, this is done by statistical
methods based on characteristics of the distribution of values for %_time_spent and
%_accesses: for example by taking only the upper quartile of both distribution. The di-
sadvantage of such methods is that they require a parameter that determines from which
point an access starts to be considered as hot. In this chapter, one of our contributions,
is to propose a parameterless way to express the predicate isHot.

The definition of hot predicate exhibits the two main characteristics of problematic
regions of the code in a parallel trace: first, the time spent and number of accesses are
unusually high for a set of accesses, and second this problem occurs several times in
the execution, further degrading performance. However, such hot predicate, even if
detrimental for performances, may have no impact at all on the parallel scalability of
the application considered. We thus propose a definition of hot predicates having an
impact on scalability: the scalability hotspots.

Definition 8 (Hotspot). A hotspot HA is a set of hot accesses appearing consecutively in
the execution trace ET .

Definition 9 (Scalability hotspot). Let P1, .., Pk be k homogeneous MPSoC platforms only
differing in their number of cores, with for all i < j ∈ [1..k] Pi has less cores than Pj . Let
ET1, ...,ETk be execution traces of an application, where ETi has been produced on platform Pi
using all its cores. Let min_p be a user given threshold, with min_p ∈ [1..k].

A set of accesses HS is a scalability hotspot if:

• For the accesses in HS, the metrics %_time_spent and %_accesses increase with the
number of cores of the platforms where HS is a hotspot

• HS is a hotspot in at least min_p execution traces of ET1, ..,ETk

These definitions are necessary for identifying code regions executed frequently,
allowing a developer to focus on optimizing those regions to build an optimized software
or hardware implementations.

6.2.2 Problem Statement

Given a set of execution traces ET1, ...,ETk produced by platforms P1, .., Pk as defined
above and user threshold min_p, our goal is to discover the scalability hotspots of the
traces.

Sofiane LAGRAA TIMA and LIG laboratories 69

Scalability Bottlenecks Discovery in MPSoC

Such scalability hotspots are the parts of the code that are most likely to impact
parallel scalability, and should be investigated in priority by the application develo-
pers. Thus, our objective is to quantify and pinpoint the bottlenecks in multi-threaded
application.

In order to discover automatically scalability hotspots, our approach exploits data
mining techniques. The following section introduces these techniques.

6.3 Scalability bottlenecks discovery method

6.3.1 Overview of the method

The five major scalability bottlenecks of multi-threaded workloads on multi-core hard-
ware are: resource sharing, cache coherency, synchronization, load imbalance, and
parallelization overhead [EDBE12]. For discovering such scalability bottlenecks, our
proposed approach uses data mining techniques in order to analyze automatically large
quantities of execution traces and discover such bottlenecks of software.
This approach takes as input a set of traces resulting from the simulated execution of the
same program, with the same parameters, on a simulated MPSoC with a varying number
of cores. We call each of these MPSoC instances a platform. Our approach outputs
addresses that are the more impacted when running on more cores, forming what we
call scalability hotspots (Def 9). These addresses can either be addresses of instructions
in the code, pinpointing parts of the code that are responsible of the scalability issues,
or addresses of data, indicating where the memory of the MPSoC is not used efficiently.
Fig. 6.1 shows the outline of our approach, which consists of these principal steps:
feature extraction, feature-based clustering, mining and analysis of scalability hotspots.
We now present each of theses steps in detail.

Figure 6.1: Global approach for scalability hotspot in MPSoC platforms

70 TIMA and LIG laboratories Sofiane LAGRAA

6.3 Scalability bottlenecks discovery method

6.3.2 Trace collection

The trace files are obtained by running the same multi-threaded program on different
instances of the multi-processor platform, each instance differing from the other by its
number of processors (either by instantiating more processors, or simply by having only
a subset of all processors actually active). From each platform instance, the execution
traces are saved into trace files. These trace files are used for discovering scalability
hotspots across the platform instances. In the next step of our approach, each trace file
corresponding to a MPSoC platform is applied independently of the other trace files the
two following steps: feature extraction and feature-based clustering.

6.3.3 Feature extraction

Trace processing may include transformation of the original traces into simplified ones,
along with reduction of dimensionality by extraction of only the most informative
features from a huge amount of execution traces. Extracting the features may improve
the recognition process and make easier the extraction of the critical zones through the
consideration of only the most important traces representation.
For a trace of a given platform, each trace line gives information on an access to an
address. For each such address, we compute the following statistics, called features:
%_time_spent and %_accesses according to definitions 5 and 6.
The features are represented by the following address-feature vector of the platform
j ∈ [1,p] where the platforms are numbered in [1,p] and platform j has by convention 2j

cores and has corresponding raw trace ETj :

Xpj = [X1,X2, ...,Xnj] (6.1)

where ∀i ∈ [1,nj] Xi = v(@i ,x,y,z), with nj the number of different addresses in the
trace ETj , x = %_time_spent(@i ,ETj) and y = %_accesses(@i ,ETj).

In the traces, we have only the address of the executed instruction and information
about the source code (i.e. instruction or line number in the source code). In order
to have a higher level of granularity in the traces and facilitate the interpretation of
the results, we use the symbol table of the executable to determine using well-known
techniques [Bal69] the function to which this instruction belongs. In the feature vector,
z = ei .f unction is the function name.
These features give first performance metrics at the level of granularity of the address,
similar to those provided by gprof [FS08] at the level of granularity of functions.

Transforming each trace ETj as a feature vector Xpj first allows an important com-
pression of the volume of data mining algorithms will have to process. This speeds-up
further analysis. We also show in the following sections that the features of vector Xpj
are sufficient for discovering scalability hotspots.

In the next step, the features extracted are used for automatically discovering the
hot accesses.

Sofiane LAGRAA TIMA and LIG laboratories 71

Scalability Bottlenecks Discovery in MPSoC

6.3.4 Feature-based clustering

This step allows to automatically group accesses using a clustering algorithm. Clustering
is a data mining technique for organizing data elements into similarity groups, called
clusters such that the data elements in the same cluster are similar to each other and data
element in different clusters are very different from each other. A classical clustering
algorithm is k-means [HW79]. The k-means algorithm is the best known partitional
clustering algorithm. It is also widely used among all clustering algorithms due to its
simplicity and efficiency. Given a set of data points and the required number of k clusters
(k is specified by the user), this algorithm iteratively partitions the data into k clusters
based on a distance function such as Euclidean distance. Each cluster has a cluster
center called the centroid. The centroid, usually used to represent the cluster, is simply
the mean of all the data points in the cluster, which gives the name to the algorithm,
since there are k clusters. The clustering is the basis of our hot predicate definition. The
clusters are obtained by applying k-means clustering algorithm on Xpj with the number
of clusters k as an input parameter. The result of k-means algorithm is the cluster feature
vector (6.2) of the platform j which is the extension of the address-feature vector (6.1)
with the cluster identifier assigned to each address performed by processors.

Xpj clusterV ector = [X ′1,X
′
2, ...,X

′
nj] (6.2)

Where X ′i = v(@i ,x,y,z,C@i
), and C@i

∈ [1, k] is the identifier of the cluster for address
@i such as k is the maximum number of clusters.

In this work, we set the number of clusters k = 2 as we are interested to distinguish
two types of accesses: hot accesses within a hot cluster and other accesses in the second
cluster called normal cluster. Formally, the hot cluster is based on its centroid that satisfy
the following definition:

Definition 10 (Hot Cluster). Let two centroids cp0
(xp0

, yp0
) and cp1

(xp1
, yp1

) of the platform
having p processors such as cp0

∈ C0 and cp1
∈ C1 where C0 and C1 are two clusters and x is

the percentage of the time spent %_time_spent and y is the percentage of accesses %_accesses.
C1 is a hot cluster if cp1

> cp0
which true if (xp1

− xp0
) + (yp1

− yp0
) > 0 , and normal cluster

otherwise.

By definition, we consider that the hot cluster will always have the label C1. The
hot predicate isHot for an address @i simply consists in testing if @i is in the hot
cluster or not. The set of hot accesses for platform Pj is thus Hotj = {@i | @i ∈ [1,nj]∧
isHot(@i ,ETj) = true}. Hot cluster gives, for each platform, the set of hot accesses of that
cluster. Now when considering all platforms together, it becomes interesting to check if
there are set of hot accesses that are found in several hot clusters, indicating that they
are problematic for several platforms. Furthermore, for these sets of hot accesses found
in several platforms, if their performance statistics decrease with the number of cores, it
is a high indication that these hot accesses are scalability hotspots. We present in the
next two sections these two last steps for discovering scalability hotspots.

6.3.5 Growth rate of hot cluster

The hot clusters are computed independently for each platform. The next step of the
analysis, presented in this section, is to determine if there is a correlation between the

72 TIMA and LIG laboratories Sofiane LAGRAA

6.3 Scalability bottlenecks discovery method

increase of number of cores in platforms and the statistics determining the hot clusters.
This way we can determine if the hot clusters can help to determine a scalability problem.

Definition 11 (Performance loss). Given the hot clusters extracted from each platform, we
say that an application loses its performance if the centroid of the hot cluster evolves across
platform instances, i.e. both %_time_spent and %_accesses of the centroid grow with the
number of cores.

Such a performance loss is illustrated in Fig. 6.2. Discovering the impact of the

%time

%freq

Platform 1 Platform 2 Platform 3 Platform 4

Hot cluster

Normal cluster

%time %time %time

%freq %freq %freq

Figure 6.2: Hot cluster evolution

loss of performance of scalability hotspots is not an easy task. When the number of
processors grows in the platform instances, the distance between the centroids of the two
clusters grows too. Thus, we define a metric based on the euclidean distance between
the centroids of the clusters. It measures the evolution of the distance in a multi-core
platform relative to the distance in the one core platform. This principle is inspired
from the speed-up metric. This metric is necessary to evaluate the impact of scalability
hotspots on application performance. Therefore, this metric is called the growth rate
metric.

Definition 12 (Growth rate). The Growth rate (Grp) refers to how much the distance
between the two centroids cp1

(xp1
, yp1

) and cp2
(xp2

, yp2
) of the platform having p processors

grows relative to the corresponding distance between the two centroids c1(x1, y1) and c2(x2, y2)
of the platform having 1 processor.

Grp =

√
(xp1
− xp2

)2 + (yp1
− yp2

)2√
(x1 − x2)2 + (y1 − y2)2

(6.3)

Where p is the is the number of processors in a platform. Grp is a value, typically
between 1 and 100, estimating how many times the hot clusters grows over platforms,
compared to how much the hot cluster containing the scalability bottlenecks patterns
decrease the performance of the platform, i.e. how much effort is wasted in communica-
tion, synchronization or waiting state. Thus, the centroid of the cluster provides a scale
for measuring the cluster evolution over different platforms.

The interest of computing the growth rate is not only to measure the impact of
the scalability bottlenecks but also to aid the developer to make a decision if a given

Sofiane LAGRAA TIMA and LIG laboratories 73

Scalability Bottlenecks Discovery in MPSoC

program needs to be optimized. If the growth rate for two platforms with increasing
number of cores is close to zero, it is likely that the program has no parallel scalability
problem, or if one exists, it is not possible to detect it with our metrics. Otherwise,
large positive values of growth rate indicate that the instructions contained in the hot
clusters are likely to cause parallel scalability bottlenecks. The next section will focus
on pinpointing the instructions of the hot clusters that the developer should investigate
in priority.

6.3.6 Frequent scalability bottlenecks mining

It is vital to understand bottlenecks in platforms and their impact over the scalability for
optimizing application performance and design future hardware. From the hot accesses,
the developer wants to discover the frequent hot accesses common in each platform in
order to focus on the parts of the code to improve. For this, we describe the frequent
scalability hotspot mining method which discovers the set of hot accesses on multi-
threaded application across multi-core platforms instances. A delicate problem is to
find the frequent patterns that decrease the performance when the number of processors
increases. We thus need to discover the frequent scalability hotspots, and do so using
frequent itemset mining algorithm existing in data mining for mining instructions memory
addresses that belong to the hot clusters through all platform instances. The extracted
patterns are the most likely to be responsible of scalability issues. In the frequent itemset
mining algorithm, the first input is a multiset of transactions D = {t1, .., tp} defined over
items in our case, the items are the hot accesses of all platforms, i.e. Σ = ∪i∈[1,p]Hotj ,
where ∀ti ∈ D ti ⊆ Σ. To do this, we transform the set of hot accesses into a set of
transactions D by merging all hot clusters in a same transaction table. Each hot cluster
becomes a transaction, i.e. a set of hot accesses. The second input is a minimum support
threshold min_p ∈ [1,p] where p is the number of platform instances. Frequent itemset
mining algorithms then extract all the frequent hot accesses, i.e. all the hot accesses is ⊆ Σ

that appear in more than min_p transactions of D. Once we have the transactions, we
can use a state of the art frequent itemset mining algorithm. We use LCM [UKA04a],
the most efficient one according to the FIMI contest [FIM04], to which we provide the
minimum support threshold min_p and the transactions of hot accesses.

Example: Let a number of platform instances p = 3, a minimum support threshold
min_p = 2 and set of hot accesses and the functions contained in their hot cluster res-
pectively. We assume the following transactions:
Platform 1 itemset is {0x01,0x02,0x03,0x9,0x10} ∈
Hot1, where {0x01,0x02,0x03} ∈ function f1 and {0x9,0x10} ∈ function f2.
Platform 2 itemset is {0x11,0x12,0x13,0x19,0x20} ∈Hot2, where {0x11,0x12,0x13}
∈ function f3 and {0x19,0x20} ∈ function f4.
Platform 3 itemset is {0x31,0x32,0x33,0x19,0x20} ∈
Hot3, where {0x31,0x32,0x33} ∈ function f5 and {0x19,0x20} ∈ function f4.
The frequent pattern is thus {0x19,0x20} ∈ function f4, occurring in platforms 2 and
3.

The discovered frequent hot accesses with their frequencies pinpoint the scalability
bottlenecks in the source code, and should be investigated by the developer.

74 TIMA and LIG laboratories Sofiane LAGRAA

6.4 Preliminary Results

6.4 Preliminary Results

In this section, we show the the preliminary results of this approach, taking into consi-
deration the following characteristics:

The hardware platform is a shared memory multiprocessor that contains n MIPS32
processors such as n = {1,4,8,16}, interfaced with one data cache and one instruction
cache. It also contains one memory and others peripherals components: a timer, an
interrupt controller, a frame buffer, a block device, a tty. More details of simulation
environment in the chapter 7.

We perform two simulations on different platforms: platform 1, platform 2 and
platform 3 which contain 1, 4, 8 and 16 processors, respectively. The software that runs
on these platforms is a Matrix multiplication algorithm that includes a Pthread library.
These platforms should exhibit different contention levels, and thus help us validate our
approach of scalability bottlenecks pattern discovery.

Table 6.1: Scalability hotspots

Software Scalability hotspot % Occurrence
pattern

Matrix Multiplication
[1000825c:10008268]

75 %
cpu_mp_wait

We see that the frequent scalability hotspot contains synchronisation addresses in
the cpu_mp_wait function, decreasing the performance by its evolution in (3/4) 75 %
platform instance i.e. all parallel platforms.

More details, discussions and experiments about this approach in the chapter 7.

6.5 Comparison of Scalability Bottlenecks Detection Methodo-
logies

Table. 6.2 shows a comparison of existing methodologies in literature of scalability
bottlenecks detection. The methodologies are described in details in related work
chapter 3.2.2. The comparison is performed in terms of the platform on which the
methodologies is performed, the tools used for scalability bottlenecks discovery and
what results the tool shows the user. We can see that our methodology ([LTP14]) is:

• The only one that gives a precision of results to user by quantifying and pinpoin-
ting the bottlenecks using data mining on executions traces among the existing
methods.

• The first approach on MPSoC.

• Not using estimation mechanisms or instrumenting source code for bottlenecks
extraction.

Sofiane LAGRAA TIMA and LIG laboratories 75

Scalability Bottlenecks Discovery in MPSoC

Paper Platform Tools Data Results
Scal-Tool DSM Based on estimation X quantifying +
[SLT99] pinpointing
Cycle stacks SMP Statistical tool (PCA) cycle stack quantifying
[HCC+11] clustering
[CLZ+11] CMP Statistical tool Performance counters Statistical
[GKS12] CMP Statistical tool Performance counters Statistical
[JSMP12] ACMP Instrumentation of X Monitoring of

source code Bottlenecks
Speedup stacks CMP Based on estimation X quantifying
[EDBE12]
Our approach MPSoC Frequent itemsets Traces quantifying +
[LTP14] and Clustering pinpointing

Table 6.2: Comparison of Scalability Bottlenecks Detection Methodologies

6.6 Conclusion

In this chapter, we have proposed a new approach for discovering the scalability hotspots
that reduce the parallel performance in MPSoC platforms running embedded software.
The proposed approach uses data mining techniques on simulation traces, thus offering
several advantages. It can profile the parallel embedded software in one (intra platform)
or multiple platforms (inter platforms), and it is applicable on embedded systems as
well as on parallel machines as long as detailed information on the memory accesses
are available. It can be performed on homogeneous architectures with different types of
processors in order to select the most appropriate processors type running a given multi-
threaded program. The approach only requires one parameter, and then is completely
automatic. Furthermore, the pinpointing and quantifying the bottlenecks is already a
nice service to the programmer. It can thus be very helpful in reducing the amount of
work a programmer has to do.

76 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 7: Experimentations and Results

No amount of experimentation can ever prove me right; a single experiment can prove me
wrong.

Albert Einstein

Contents
7.1 Parallel embedded software . 78

7.1.1 Ocean . 78

7.1.2 FFT . 78

7.1.3 LU . 78

7.1.4 RADIX . 79

7.1.5 Mandelbrot . 79

7.1.6 MJPEG . 79

7.1.7 Matrix Multiplication . 79

7.2 Simulation environment and Hardware architecture 81

7.2.1 Simulator . 81

7.2.2 Operating System . 81

7.2.3 Hardware Architecture . 81

7.3 Experiments Set I: Contention discovery 82

7.3.1 Experiments I.1 . 82

7.3.2 Experiment I.2 . 85

7.3.3 Results analysis . 85

7.3.4 Experiments II . 86

7.3.5 Results Set II . 86

7.3.6 Discussion . 89

7.4 Experiments Set II: Scalability bottlenecks discovery 90

7.4.1 Results analysis . 90

7.4.2 Discussion . 95

7.5 Conclusion . 96

Sofiane LAGRAA TIMA and LIG laboratories 77

Experimentations and Results

After having described our approaches to automatically discover contention (Chap-
ter 5) and scalability issues (Chapter 6), we now evaluate how effective theses

approaches can be to help profiling real word applications on large simulated MPSoC
platforms. We first describe the context of the experiments, with the applications consi-
dered and the hardware platforms simulated. We then show the patterns extracted by
our approaches, and how they can help to improve application performances.

7.1 Parallel embedded software

In order to evaluate our approaches, we selected seven different parallel applications
that are well known real world benchmarks. Among them applications from Stanford
ParalleL Applications for SHared memory SPLASH-2 [CME+95] parallel benchmarks
suite. [CME+95] is a set of parallel applications for use in the design and evaluation
of distributed and shared-memory multiprocessing machines. The SPLASH-2 applica-
tions are: Ocean, Fast Fourier Transform (FFT) LU and RADIX. Another applications
such as MJPEG video decoding application, Mandelbrot fractal application and Matrix
Multiplication algorithm.

7.1.1 Ocean

Ocean is a program that simulates large-scale ocean movements. The ocean surface is
represented with a grid mesh. Ocean program partitions the grids that represent ocean
into square-like subgrids rather than groups of columns to improve the communication
to computation ratio. The grids are conceptually represented as 4-D arrays, with all
subgrids allocated contiguously and locally in the CPU that own them. Ocean program
uses a red-black Gauss-Seidel multigrid equation solver [Bra77]. See [WSH93] for more
details. Application domain can be video games.

7.1.2 FFT

The FFT benchmark performs a complex 1-D FFT transform. It uses the radix
√
n six-step

FFT algorithm, which is optimized to minimize interprocessor communication [Bai90].
The data set consists of the n complex data points to be transformed, and another n
complex data points referred to as the roots of unity. Both sets of data are organized
as
√
n x
√
n matrices partitioned so that every processor is assigned a contiguous set of

rows which are allocated in its cache. The FFT algorithm achieves its computational
efficiency through a divide and conquer strategy. Application domains of FFT can be
image analysis, image filtering, image reconstruction, image compression , and sound
processing.

7.1.3 LU

The LU benchmark factors a dense matrix into the product of an upper and lower
triangular matrix. The matrix is divided into blocks, which are assigned to processors
using 2-D scatter decomposition to reduce communication. Each block is allocated
locally on the processor that owns it. The dense n x n matrix is divided into an N x N

78 TIMA and LIG laboratories Sofiane LAGRAA

7.1 Parallel embedded software

array of B x B blocks (n =N ∗B). The application domains where such decomposition
solution is useful, includes text mining [GGM04].

7.1.4 RADIX

RADIX is a parallel version of radix sort [ZB91], it comprises three phases: build local
histograms, build a global histogram, and permute keys. Execution of the algorithm
proceeds iteratively, analyzing one digit of an integer per iteration to populate the
histograms and then permuting the keys accordingly, starting with the least significant
digit.

More details about Splash benchmark suite are given in [CME+95]. This set of
applications are designed to evaluate the shared and distributed memory parallel ma-
chines. Splash applications are parallel compute-intensive applications and are always
a reference in domain. In the following, we describe another benchmarks:

7.1.5 Mandelbrot

The Mandelbrot set is a fractal set defined in the complex plane by the following
equation: zn = z2

n−1 + z0 The Mandelbrot set is a classic example of task parallelism,
where the computation is viewed as a set of tasks operating on independent data streams.
In this case, generating a pixel of the Mandelbrot image is the computation, and the
pixel position is the data stream. The applications domains where such Mandelbrot
solution are useful, which include geology, biology, finance, image compression.

7.1.6 MJPEG

The Motion-JPEG video format is composed of succession of JPEG still pictures. It is
used by several digital cameras and camcorders to store video clips of a relatively small
size. With Motion-JPEG, each frame of video is captured separately and compressed
using the JPEG algorithm.

Parallel Motion-JPEG video decoding application is described by a set of communica-
ting tasks through a queue. It is composed of three stages: fetch, compute and dispatch
as shown in Figure 7.1. The first stage fetch reads a data stream from a file accessed
through hardware module TG. It decompress the data and send them in the next stage.
The second stage compute performs image decoding and is parallelized in several tasks.
For example in the figure there are 3 decoder C0,C1,C2.

The frames are displayed using a frame buffer. The Frame buffer is a video output
device which displays images from a memory buffer containing a complete frame of
data.

The interest of this application is that all tasks have a specific function and are
working on a data stream. Also the memory accesses by processors vary depending on
the task being performed over time, this is typical of the work of a real MPSoC.

7.1.7 Matrix Multiplication

The definition of the matrix multiplication operation is very simple, all of which sim-
plifies its understanding. Given a matrix A(m×r) of m rows and r columns, and a matrix

Sofiane LAGRAA TIMA and LIG laboratories 79

Experimentations and Results

Figure 7.1: MJPEG Application described with communicating tasks

B(r×n) of r rows and n columns, matrix C resulting from the multiplication operation
of A and B matrices, C = A×B. In the parallel Matrix Multiplication, the matrices are
divided into sub-blocks which are mapped to the processors in order to perform the
multiplication operation. It exists several applications domains of this application such
as image processing / recognition.

Table 7.1 shows the problem domain of each application, language, library used to
implement the application and the particular methods or algorithms that are dominant
in it. Four applications (Ocean, FFT and LU, matrix multiplication) are scientific
computations and one application (MJPEG) for the video decoding. We believe that the
current set of applications provides a reasonably wide variety of applications.

Table 7.1: Characteristics of applications

Application Problem Domain Parallelism Mode Language Library Problem Size
Ocean Multi-grid Data parallelism

C PThreads

130 × 130
ocean simulation grid size

FFT Signal Processing Data parallelism 256 data points
LU Blocked dense Data parallelism 256 × 256 matrix

LU decomposition 8 × 8 blocks
RADIX Sorting Data parallelism 2048 data

algorithms to sort
Mandelbrot fractal shape Task parallelism 256 × 256 pixels

MJPEG Video decoding Task parallelism 50 frames,
255 × 144 pixels

Matrix Parallel Matrix Data parallelism 1024 × 1024
Multiplication Multiplication matrix

All benchmarks were compiled using GCC version with the -O3 optimization level.

80 TIMA and LIG laboratories Sofiane LAGRAA

7.2 Simulation environment and Hardware architecture

7.2 Simulation environment and Hardware architecture

7.2.1 Simulator

The MPSoC simulator used for experimentations is SystemCASS described in 4.1.1.

7.2.2 Operating System

We use DNA-OS [GP09] as operating system for our experiments. DNA-OS is a kernel-
mode lightweight operating system for Multiprocessor System on a Chip. It is build on
top of a thin HAL to ease porting on new platforms and processor architecture. It targets
the following architectures: ARM, MIPS, Micro Blaze, SparcV8, NiOS. It adapts to all
types of architectures: SMP (Symmetric MultiProcessing) DS (Distributed Scheduling).
DNA-OS allows to write parallel program using the following libraries: POSIX Threads
(PThreads) and newlibc with multiprocessor support.

7.2.3 Hardware Architecture

Our simulation platforms were built using the SoCLib components library [Soc]. Most
components are described with an accuracy level of the clock cycle and the data bit
CABA. Figure 7.2 shows and describes the architecture used of experiments. The hard-
ware platform is a shared memory multiprocessor that contains n MIPS32 processors,
interfaced with one data cache and one instruction cache. It also contains one memory
and the peripherals components required to perform standard I/O operations : a timer,
an interrupt controller, a frame buffer, a block device, a terminal sink (TTY). These
components are interconnected with a generic network-on-chip.

Figure 7.2: Description of the used architecture

The table 7.2 summarizes the characteristics of platforms.

Sofiane LAGRAA TIMA and LIG laboratories 81

Experimentations and Results

Table 7.2: Summary of the simulation characteristics

Applications Ocean, FFT, LU, RADIX,
MJPEG, Mandelbrot, Matrix Multiplication

Simulator SystemCASS
Operating System DNA-OS
Architecture SMP
Processor model MIPS32
Number of CPUs n = {1,2,4,8,16}
Number of memory banks 3 (code, data, stack)
Memory size 32MB
Data cache size 4KB
Instruction cache size 4KB
Size of a cache line 32 bytes

7.3 Experiments Set I: Contention discovery

In this section, we describe the experiments and results of two approaches to automati-
cally discover contention presented in (Chapter 5). The first experiments 7.3.1 present
results of the first approach and the second experiments 7.3.4 present the results of the
second approach.

7.3.1 Experiments I.1

For the first experiments, we take a particular case of the hardware architecture des-
cribed in Figure 7.2 which is 4x4 mesh NoC with wormhole routing protocol and a
XY routing algorithm as shown in Fig. 7.3. Every node contains: MIPS processor with
one data cache (with write-through invalidate memory coherency strategy) and one
instruction cache, one shared memory or local memory and others peripherals compo-
nents: a timer, a frame buffer and a tty. For our experiment, three application instances
are mapped to this platform: two Motion-JPEG decoders and one Mandelbrot fractal
computation.

The Fig. 7.3 shows the mapping of these applications on the MPSoC. Four nodes are
allocated for the Motion-JPEG applications and eight nodes are allocated for Mandelbrot.
The data memory is located on the node 5 and the code of the applications and operating
system is located on the node 10.

Trace preprocessing
The raw traces, as output by the simulator, contain for each traces event informations

that are not useful for our analysis, so we dispose of it.
There are no function names but only the PC address of the executed instruc-

tion: using the symbols table of the executable, we determine using well known tech-
niques [Bal69] (See Appendix A) the function to which an instruction belongs.

After the pre-processing step of the traces files, we cut the trace files into windows
with a period of 2500 clock cycles and we run the frequent pattern mining step with
min_supc = 2 CPUs and min_supw corresponding to 60 % of windows. Some frequent
patterns found are presented in Table 7.3. Here, we have found the combination of
itemsets with different CPU_ID: from CPU_8 to CPU_15 and having the same access in

82 TIMA and LIG laboratories Sofiane LAGRAA

7.3 Experiments Set I: Contention discovery

Figure 7.3: Simulated platform (1)

the page P_3090, function fpadd_part and node id_10. For example, the first discovered
pattern shown in Table 7.3 is: {{ CPU_8 INST P_3090 fpadd_part id_10 }, { CPU_9 INST
P_3090 fpadd_part id_10 }, ..., { CPU_15 INST P_3090 fpadd_part id_10 }}, for ease of
writing: CPU[8,15] INST P_3090 fpadd_parts id_10.

For the nodes that run the Mandelbrot application, the most accessed instructions
are located in the following pages of node 10: P_3091, P_3090, P_3088.

The pages P_3091 and P_3090 contain the code of the floating point helper functions
(as our processors do not support floating point operations directly, the compiler has
automatically instantiated ad-hoc functions to perform the operations) and the page
P_3088 contains the code of the Mandelbrot application. Now, for refining and un-
derstanding the hotspots shown by the frequent patterns, we extract the access times
to the memory page for each frequent pattern and we apply the equation (1). The
Figures 7.4a and 7.4b show respectively the access rate of the nodes to the pages P_3090
and resp. P_3088 during the first 200 windows.

We see that in the page P_3090 some patterns exceed the ln2 threshold which
we interpret as a contention of memory access, and the same result holds for the
page P_3091. Unlike the previous two memory pages, the page P_3088 contains very
little memory contention. A quick analysis of the patterns allows to exhibit a cache
trashing phenomenon. In Mandelbrot both floating additions and multiplications must
be performed, but the small instruction cache of a core cannot handle both these helper
functions. Thus these functions evict each other in turn from the instruction cache,
introducing contention on the text memory containing the code of the functions. The
latency increases and the performance decreases.

The Fig.7.5 shows a representation of the pattern related to floating point operations
realized as functions that create contention detected by our experiments for different
architectures.

The software functions "__unpack_d, __pack_d, _fpadd_parts" and "__muldf3" are

Sofiane LAGRAA TIMA and LIG laboratories 83

Experimentations and Results

Frequent Pattern Support
CPU[8,15] INST P_3090 fpadd_parts id_10 96%
CPU[8,15] INST P_3090 __muldf3 id_10 62%

Mandelbrot CPU[8,15] INST P_3088 mandelbrot id_10 95%
CPU[8,15] INST P_3091 __unpack_d id_10 87%
CPU[8,15] INST P_3090 __pack_d id_10 80%
CPU_0, CPU_2 INST P_3085 fetch_process id_10 67%

MJPEG CPU_0, CPU_2 INST P_3073 fdaccess_read id_10 67%

Table 7.3: Frequent patterns

(a) Access rate of the nodes to the page P_3090 (b) Access rate of the nodes to the page P_3088

Figure 7.4: Access rate of the nodes to the pages P_3090 and P_3088 running Mandelbrot
application

all functions associated with the manipulation of floating-point numbers and contained
in fp-bit and libgcc libraries of GCC complier, respectively. If we add up the time
taken for all of these functions to execute, we discover that a massive 22,27% of each
processor’s time in each platform is due to the floating-point calculations performed
by these function calls. The conversion processes are done using the __pack_d and
__unpack_d functions that compress or expand data into the target register format.
_fpadd_parts function performs the addition operation of floating-point. __muldf3
function performs the multiplication operation of floating-point.

Figure 7.5: Results Representation

Now, we see that floating-point operations consume a lot of time and create a
contention. In the next experiment, we integrate floating point coprocessor in MIPS32
processors.

84 TIMA and LIG laboratories Sofiane LAGRAA

7.3 Experiments Set I: Contention discovery

7.3.2 Experiment I.2

In order to tackle the contention pattern which is the floating points problem discovered
in the first experiments, the second hardware platform showed in the figure 7.2 is a
shared memory multiprocessor (SMP) that contains four MIPS32 processors that include
a floating-point unit. The software that runs on this platform is the Contiguous Ocean
application (that simulate large scale ocean movements) of the SPLASH-2 parallel
benchmark suite. We chose this benchmark because it is characterised by the number of
floating point operations used[CME+95]. The following results show that the floating
points patterns does not appear again and the problem is resolved but another pattens
are discovered.

7.3.3 Results analysis

To determine the frequent memory contention during the execution of the application,
we use the same parameters as the first experiment such as the decomposition into
windows and the minimum threshold in the pattern discovery method. We found that
the CPUs 1, 2 and 3 have the same behavior during each time window. Thanks to the
integration of a floating point unit in MIPS32 processors, we did not found a frequent
pattern that is symptomatic of instruction cache trashing like in the first experiment.

Table 7.4: Frequent patterns
Frequent Pattern Execution time

CPU[0,3] INST slave1 0x1000f9f4
CPU[0,3] INST slave1 0x1000f914
CPU[0,3] INST slave1 0x1000fab4 38,39 %
CPU[0,3] INST slave1 0x1000f704
CPU[0,3] INST slave1 0x1000f70c
CPU[0,3] INST slave1 0x1000fca0

In the Splash benchmarks, the function slave1 is the top level function replicated
on the pool of processors. It does the initialization on its data set and calls the slave2
function that does the actual computation. Our data mining process did not find any
abnormal latency behavior in the computation themselves, but strangely enough, it did
in the initialization function. Indeed, we noticed that recurrent patterns with large
latencies accounted for almost 40% of the execution time of this function, and were
indeed due to array initializations (see Table 7.4). These latencies are due to successive
stores of constants in loops, which is unexpected as the cache contains a write buffer
that should not stall the processor. Figure 7.6 shows successive, frequent and periodic
stores whose program counter address is 0x1000f914. We see that the stores operations
to this address are periodic with regular periods between 23 and 80 cycles, and the
average latency of a store is 26.01 cycles. This phenomenon is the same for each CPUs
and for each patterns discovered, and is due to the fact that all processors are doing the
initialization at the same time. In fact, a synchronization barrier is necessary to make
sure that the shared data structure is allocated before working on it, so all processor try
to access the memory concurrently when the barrier is released, leading to contention.

Improvement: By doubling the size of the write buffer (from 8 to 16 slots, which has

Sofiane LAGRAA TIMA and LIG laboratories 85

Experimentations and Results

Figure 7.6: Period between the successive stores of the address 0x1000f914

clearly a hardware cost), the patterns were not anymore considered as abnormal by the
tool. We see in figure 7.7 that the period between successive stores has doubled (because
the execution between two iterations is twice as fast) compared with the previous
configuration, and the average latency decreases by 32% to 17,75 cycles.

Figure 7.7: New period between the successive stores of the address 0x1000f914

This is experiments of how our profiling tools can help to make hardware level
decision when the chip is still being prototyped in a simulator.

7.3.4 Experiments II

The second experiments 7.3.4 present the results of the second approach of contention
discovery on parallel Motion-JPEG application.

7.3.5 Results Set II

The first criterion taken into consideration when the performances of the parallel
systems are analysed is the speed up used to express how many times a parallel program
works faster than a sequential one. For this, we performed experiments in order to
evaluate the speed up. The speed up of the video decoding application results are 3.3
and 4.5 corresponding for 4, and 8 cores in a platform, respectively. It is just acceptable
for 4 cores and bad for 8 cores, hence the video decoding application considered does
not scale well with the number of cores. We verified that this bad scalability is not
due to a lack of work or a load unbalance issue. Having eliminated these reasons for

86 TIMA and LIG laboratories Sofiane LAGRAA

7.3 Experiments Set I: Contention discovery

lack of parallel scalability, the remaining reason is likely to be contention that slows
down memory accesses and thus prevents the application to reach the desired speed up.
It is thus justified to apply our approach in order to automatically detect the parts of
the trace where contention occurs, and to understand through contention patterns the
reasons for this contention. First, we explain what preprocessing was necessary on trace
in order to apply our approach.

To be able to use the pattern mining algorithm, we discretized continuous numeric
attributes into bins of numeric intervals in order to regroup events exhibiting similar
values. As an example, the memory access latencies are discretized by bins of 10 from
0 to 250 i.e. all latencies between 0 and 10 are represented by the bin lat_0_10. These
information will help the pattern mining algorithm to discover meaniningful patterns.

The first step of our approach compute the high latency values for each trace (trace
for 1, 4 and 8 CPUs). The high latency thresholds in different platforms using 1, 4 and 8
CPUs are 9.65, 12 and 15 respectively. However, as the number of CPUs increases the
number of the high latency thresholds also increases.

The second step of our approach exploits these thresholds in order to compute the
windows identifying the parts of the traces exhibiting contention. We set the window
duration to ω = 200 cycles.

Over all the traces, the number of contention windows found and the percentage of
the trace they cover is summarized in Table 7.5.

Table 7.5: Contention windows

Platform Nb of windows Coverage of trace
1 CPU 86 843 1.20%
4 CPUs 925 951 16.97%
8 CPUs 1 686 785 36.79%

As expected, there are few windows with high latencies for the platform with 1 CPU.
However, as the number of CPUs increases the number of these windows also increases,
and it covers a significant fraction of the execution time. This is in line with the speed
up results, and confirms that contention is a problem for our experiments with 4 and 8
CPUs.

In order to better understand the reasons for contention, we plot in Figure 7.8
the frequency of apparition of instructions in the contention windows for 4 CPUs
platform. More precisely, x-axis is the program counter identifying instructions, and
y-axis is the frequency of apparition of each instruction over all contention windows. As
instructions can be related to functions, this figure indicates which functions are the
most responsible for contention. Three highly frequent groups arise that we identified
with the corresponding function names: there are memset, idct and memcpy functions.
The figure shows that contention is mostly due to idct and memcpy. However, this figure
does not indicate the interactions between idct and memcpy in contention windows.

Figure 7.9 shows the percentage of CPU time spent in the functions idct, memcpy
and memset. It can be noticed that idct is more often executed on CPU_2 and CPU_3
than on CPU_0 and CPU_1. This is the opposite for memcpy. However all CPUs spent at
least 10% of their time in each function, so there is no pattern associating a CPU with a
function. Depending on the architecture, this information could be of interest to the

Sofiane LAGRAA TIMA and LIG laboratories 87

Experimentations and Results

Figure 7.8: Memory access frequency

application developer. For example in cases each CPU has its own memory bank, he/she
may want to bind some threads to given CPUs in order to keep good spatial locality.

Figure 7.9: Run time of memcpy, idct, memset in parallel application

In order to understand such interactions, we apply the pattern mining algorithm to
the contention windows converted to transactions with a minimum support threshold
of ε = 65%: we are interested in interactions between functions, memory locations
and CPUs that occur in more than 65% of contention windows, i.e. very frequently
parts of the traces exhibiting potential contention. We focus on platform with 4 and 8
processors, which exhibit high levels of contention. The most interesting contention
patterns discovered for these simulation platforms are presented in Table 7.6.

Table 7.6: Frequent Patterns
Platform Frequent Pattern Support

CPU[0,3] [0x10009ee4, 0x10009f78] idct
[0x10016b50, 0x10016f2c] memcpy 72 %

4 CPUs lat_10_20 lat_20_30
CPU[0,7] [0x10009b10, 0x1000a224] idct

[0x10016ab0, 0x10016e8c] memcpy 88 %
8 CPUs lat_10_20 lat_20_30

The pattern of the platform using 4 CPUs shows a concurrent memory access pat-
tern that creates a contention implying all 4 CPUs and occurring in 72 % of conten-
tion windows. This pattern shows a frequent interaction between the functions idct
and memcpy, and more specifically between the loops of idct located in address in-
terval [0x10009ee4, 0x10009f78] and the loops of memcpy located in address interval
[0x10016b50, 0x10016f2c]. The pattern also shows that the usual latencies around these

88 TIMA and LIG laboratories Sofiane LAGRAA

7.3 Experiments Set I: Contention discovery

interactions are between 10 and 30 cycles (lat_10_20, lat_20_30). Having in mind that
the high latency threshold is Q3 = 12 for the 4 CPUs trace, this corresponds well to
contention latencies.

The pattern for the 8 CPUs platforms is the same as on the 4 CPUs platform, with
different addresses due to a different executable. However these addresses correspond
to the same assembler instructions than previously: this enforces the importance of the
idct/memcpy interaction. In the 8 CPUs platform the pattern has an even higher support
of 88 %, whereas there are more contention windows in this case: this pattern is clearly
the main responsible for most of the contention and thus the lack of scalability when
the number of cores increase. This pattern thus helps the application developer to know
that the idct function, which performs the inverse discrete cosine transformation, has
negative interactions with memcpy, a function for copying data from one address to
another. It even pinpoints the specific assembler instructions of both functions that are
the most impacted: the developer, which is more likely to work on idct than memcpy,
will know immediately which loop of idct he/she has to work on.

More experiments about the rest of applications: FFT, RADIX, LU, Mandelbrot are
given in Appendix B.

7.3.6 Discussion

Our approach is more accurate than the existing current works [TdRC+10, AZXC11,
RL10] because it identifies the frequent concurrent memory access patterns, extracts
from the execution traces the patterns that create a contention and generates a compact
and readable output that can be analyzed by the software developers. Our tool helps
the developers to highlight concurrent memory access patterns and the impact on
the parallel scalability. In the experimentations, we saw, firstly, the high frequency
interactions between idct and memcpy functions in a parallel platform. These interactions
lead to contention in different platforms. However, it’s difficult to find such interactions
with the existing profiling tools [FS08, Rei05]. Secondly, memcpy is having a major
impact on the parallel scalability of a video decoding application. Thus, the developer
can optimize the program with the following possible solutions:

• Using software (or hardware) based prefetching caches or non-blocking caches
techniques. These effective techniques allow to decrease memory access latency
[CB92].

• In [WDV06], a dedicated hardware accelerator was proposed that works in conjunc-
tion with caches found next to modern-day microprocessors, to speed up the
commonly utilized memcpy operation.

• The memcpy function can be put between a lock/unlock pair to serialise the
memory access and ensures that when one CPU is executing memcpy, no contention
will be created. As such, serialization can be detrimental to performance, it can be
activated only when idct is executing the loops identified in the previous frequent
pattern and deactivated the rest of the time.

• Refactor the communication scheme of the whole application.

Sofiane LAGRAA TIMA and LIG laboratories 89

Experimentations and Results

7.4 Experiments Set II: Scalability bottlenecks discovery

In this section, we describe the experiments and results of the approach to automatically
discover scalability bottlenecks presented in (Chapter 6).

7.4.1 Results analysis

After having performed different speed up measures of applications as shown in Chap-
ter 2. In this section, we show the different bottlenecks patterns found in all experi-
mented applications. The Tables 7.7, 7.8 and Fig. 7.12 show the scalability hotspots,
the growth rate evolution and the coverage of clusters in each multi-threaded appli-
cation across platform instances, respectively. They give detailed information about
the scalability bottlenecks in different critical zones of the multi-threaded applications.
The scalability hotspots in multi-threaded applications that undergo evolution across
scalable platforms are discovered and the hot accesses are distinguished from other
addresses. The patterns are highlighted by the address range and their function name.
Table 7.7 shows the frequent hot patterns discovered having a minimum support thre-
sholdmin_p = 25%. The frequent patterns discovered from hot clusters in each platform
Pi running the same multi-threaded applications highlight the common critical zones.

Matrix Multiplication Algorithm
In the first application which is matrix multiplication application, we see that the

scalability hotspot contains synchronisation addresses in the cpu_mp_wait function,
decreasing the performance by its evolution in each platform instance as shown in
Fig. 7.11 and Fig. 7.12. The pattern represents a sequence of instructions in a loop as
shown in Fig. 7.10. cpu_mp_wait procedure spins until the value of the variable sync
returns 0. This variable must exist and must be initialized to 1 beforehand.

Figure 7.10: Scalability hotspot in assembly code for the matrix multiplication applica-
tion.

10008250: <cpu_mp_wait>
...

1000825c: sync
10008260: lw v0,-17120(v1)
10008264: bnez v0,10008260 <cpu_mp_wait+0x10>
10008268: nop

The particular loop means that the processors are in a ’wait’ state waiting to be
’notified’ of work to be done. Therefore, it induces load imbalance of the tasks in cores,
with a high impact on scalability as shown by the growth rate in Fig. 7.12. In order
to see in detail the impact of the evolution of the hot cluster in a platform, Fig. 7.11
shows the evolution of hot accesses in the hot clusters in multi-threading matrix mul-
tiplication according the platforms, each point plotted represent the coordinates (x,y)
of an address where x is the percentage of the time spent and y is the percentage of access.

Improvement of Matrix Multiplication Algorithm
The found synchronisation pattern shows that there was a synchronization barrier

pthread_barrier_wait() in addition to a pthread_join() in the source code

90 TIMA and LIG laboratories Sofiane LAGRAA

7.4 Experiments Set II: Scalability bottlenecks discovery

Table 7.7: Scalability hotspots

Software Scalability hotspot % Occurrence
pattern

Matrix Multiplication
[1000825c:10008268]

75 %
cpu_mp_wait

Ocean
[100235b0:100235dc] 75 %

lock_acquire

Motion-JPEG

[100023b4:100023d0] 75 %
soclib_fb_write

[100171a4:100171d4]

50 %
__malloc_lock

[100171e0:10017200]
__malloc_unlock

FFT
10044650 (data address)

75 %[1000b0a0:1000b0a8]
cpu_mp_wait

RADIX

[1000b940:1000b948]

75 %
cpu_mp_wait

10027190 : cpu_mp_synchro
[100147b8:10014830]

lock_acquire

LU

[10013c60:10013c80] __muldf3

75 %
[100147b8:10014830] __unpack_d

100071ec lrand48
[0x10015f9c:0x10015fdc] InitA

[10013c60:10013c80] __muldf3
100 %

[100147b8:10014830] __unpack_d

Mandelbrot

[10011c60:10011c94]

75 %

__fpadd_parts
[100238c0:100239d0]

__ieee754_sqrt
[10008c40:10008c48]

cpu_mp_wait
[10012cb0:10012d64]

__unpack_d
[10012a50:10012b58]

__pack_d
[10012158:1001218c]

__muldf3
[100238c0:100239d0]

100 %

__ieee754_sqrt
[10012cb0:10012d64]

__unpack_d
__pack_d

[10012158:1001218c]

Sofiane LAGRAA TIMA and LIG laboratories 91

Experimentations and Results

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

%
A
cc
es
se
s

% Time spent

Platform 1: 1 CPU

Normal cluster
Hot cluster

(a) Platform 1 : 1 CPU

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

%
A
cc
es
se
s

% Time spent

Platform 2: 4 CPUs

Normal cluster
Hot cluster

(b) Platform 2 : 4 CPUs

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

%
A
cc
es
se
s

% Time spent

Platform 3: 8 CPUs

Normal cluster
Hot cluster

(c) Platform 3 : 8 CPUs

Figure 7.11: Visualizing the evolution of hot clusters in each multi-threaded matrix
multiplication application according to platform instances

 0

 10

 20

 30

 40

 50

 60

1 4 8 16

G
ro

w
th

 r
at

e

#Processors

Matrix_Multiplication
Splash-2/Ocean

RADIX
MJPEG

MANDELBROT
FFT
LU

Figure 7.12: Growth rate evolution over platform instances running five multi-threaded
applications

and which was not in the right place. A barrier for a group of threads in the source code
means any thread must stop at this point and cannot proceed until all other threads
reach this barrier. This pattern increases the growth rate in each platform instance.

By eliminating this problem, it allows us to gain in performance 3.79%, 3.91% and
4.32% of runtime in the platform with 4, 8 and 16 CPUs, respectively.

LU
In LU application, we discovered two patterns:

1. The frequent pattern in all platforms is the software functions __unpack_d and
__muldf3 are all functions associated with the manipulation of floating-point
numbers and contained in fp-bit and libgcc libraries of GCC complier, respectively.
__unpack_d functions that compress or expand data into the target register format.
__muldf3 function performs the multiplication operation of floating-point.

2. In addition to the discovered contention pattern in Figure 7.13, the second pattern

92 TIMA and LIG laboratories Sofiane LAGRAA

7.4 Experiments Set II: Scalability bottlenecks discovery

Figure 7.13: InitA function of LU application

void InitA(double *rhs)
{
...
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
...
a[ii][jj] = ((double) lrand48())/MAXRAND;// 1©// executed by all threads
} }
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
...
rhs[i] += a[ii][jj];// 2©// executed by all threads
} } }

is the multiple simultaneous accesses at two instructions 1O, 2O of InitA function
in LU application. The first instruction 1O performs multiple initialization of
a matrix using lrand481 by all threads, and the second instruction 2O performs
the same operation on the same array index, thus, different results on different
executions are obtained. This pattern is considered as a bug by developers. In
order to tackle these two patterns and improve this application, we have two
solutions: protecting these instructions with a locks, or partitioning a matrix into
sub-matrix affected to each thread. We use the second solution because each thread
performs a local operations in a given sub-matrix. An improvement in given in
Figure 7.14.

Performing this minor improvement, the performance improvement of the new
LU application is 3.03%, 3.41%, 4.88% in the platform with 4, 8 and 16 CPUs,
respectively.

Figure 7.14: Improvement of InitA function of LU application

void InitA(int *nb, double *rhs)
{
...
int thread_id = (int) nb;
/*
Determine the portion to be computed by the thread_id.
*/
int startrow = thread_id * n / P; // P : number of processor.
int endrow = (thread_id+1) * n / P ; // n: The size of the matrix.
for (j=startrow; j<endrow; j++) {
for (i=0; i<n; i++) {
...
a[ii][jj] = ((double) lrand48())/MAXRAND;
} }
for (j=startrow; j<endrow; j++) {
for (i=0; i<n; i++) {
...
rhs[i] += a[ii][jj];
} } }

FFT The same pattern as Matrix Multiplication application is found in FFT ap-
plication. In FFT application, another frequent pattern is the shared data address

1lrand48 is a function in C stdlib library. The lrand48 function uses 48-bit arithmetic to generate
non-negative long integers uniformly distributed pseudo-random values.

Sofiane LAGRAA TIMA and LIG laboratories 93

Experimentations and Results

0x10044650 protected by load-link and store-conditional (LL/SC) which are a pair of
instructions used in multi-threading to achieve synchronization, this pair cause conten-
tion during simultaneous requests on address. In order to improve this application, the
user can improve by replicating the execution of the section code on processors [LCZ01].

Ocean
In Splash’s Ocean, like the first experiment the growth rate increases with the num-

ber of cores of the platform. The discovered scalability hotspot contains the address
range grouped into lock_acquire function. The lock_acquire function acquires access to
a specific lock being represented by a given lock set. If the lock is already controlled
by another thread then the calling thread will spin. It means that the high number of
accesses and their high percentage of execution time are grouped in synchronization
operations into the number of barriers (locks) encountered by the processors when they
access to the critical section. Among the suggestions for improvement is to pin the
threads to cores.

Motion-JPEG
In the third application, which is parallel Motion-JPEG, we see that the growth

rate is almost the same in all platforms and does not increase significantly like the
first two experiments. Some addresses in the hot cluster are present in each platform:
the frequent pattern is a loop of soclib_fb_write function responsible for displaying the
decoded image. The evolution of this loop is stable in both 4, 8 and 16 CPUs platforms.

Other results are detected by the approach, the frequent accesses to the data ad-
dresses are called by set of instruction belonging to memcpy, and specially to the __mal-
loc_lock and __malloc_unlock functions that copies the values from one memory block to
another, and protect/release that memory blocks from corruption during simultaneous
allocations, respectively. In order to improve Motion-JPEG application, the developer
can spread its data over several physical memory banks, for example.

RADIX
In RADIX application, the cpu_mp_wait and lock_acquire functions are

frequent bottlenecks. The growth rate of such functions (Fig. 7.12) is quite stable in
platforms with 4 and 8 CPUs but it grows in the platform with 16 CPUs.

Mandelbrot
In addition to cpu_mp_wait function " __fpadd_parts, __ieee754_sqrt,

cpu_mp_wait, __unpack_d, __pack_d, __muldf3 " functions associated with
the manipulation of floating-point numbers are discovered as bottlenecks in Mandelbrot
application. The growth rate is greater in a platform with 16 CPUs than the other
platforms.

Regarding the impact of discovered scalability hotspots in applications, there are
more important and significant growth rate increases across platform instances in matrix
multiplication and Ocean applications which is not the case for Motion-JPEG and LU
and a little evolution of patterns in FFT (Fig. 7.12).

Table 7.8 shows the number of hot accesses and normal accesses in the hot cluster
and the normal cluster, respectively. We see that the number of hot accesses is constant
when the number of cores increases in a platform for each application. It shows the

94 TIMA and LIG laboratories Sofiane LAGRAA

7.4 Experiments Set II: Scalability bottlenecks discovery

highlighted and localized number of hot accesses in a platform in order to aid the user
if the size of hot cluster, (i.e. the number of hot accesses) increases across the platforms.

Table 7.8: Coverage of clusters in each multi-threaded application across platform
instances

Software # CPU
Address

Hot Cluster Cluster

Matrix Multiplication
1 180 38294
4 4 38470
8 4 38470

16 4 38470

Ocean
1 311 82310
4 8 82613
8 8 82613

16 6 82615

Motion-JPEG
1 741 1223628
4 85 1224284
8 85 1224284

16 60 1224309

FFT

1 227 75812
4 12 76872
8 5 78747

16 5 78747

LU

1 151 95280
4 59 97541
8 37 97541

16 37 97541

RADIX

1 197 38030
4 79 42579
8 63 45934

16 63 45934

Mandelbrot

1 79 93930
4 254 97792
8 293 96740

16 153 100180

These results obtained using these five applications confirm the interest of our
approach, and its ability to provide both visual clues on the sources of scalability issues
as well as precise code location that the developer should examine.

7.4.2 Discussion

The scalability bottleneck patterns discovered can help the user to improve his/her multi-
threaded applications. From the hotspots discovered, there are several ways/method to
improve the performance of the multi-threaded applications in multi-core platforms.
The improvements can be made either at the software or hardware level. If hardware
architecture design improvements are possible, they consist of fine tuning the multi-

Sofiane LAGRAA TIMA and LIG laboratories 95

Experimentations and Results

core architecture in terms of general purpose (cache size and policies, ...) or custom
hardware [BSsL+02], interconnects [GG00], interfaces [YYS+04]. It is very important to
tune the code so that it exploits as well as the target hardware architecture. Software
improvements can be a different level of granularity, either requiring the user to produce
other coarse grain parallel version of its code, or at low level by changing synchronization
primitives, data placement, and so on. Techniques like Post-pass optimizers or object
code optimizer are capable of applying an extra optimization pass on assembly or object
code. It tries to replace identifiable sections of the code like the pattern found in the
Motion-JPEG application with replacement code that is more algorithmically efficient to
a target architecture.
The critical section synchronization discovered in matrix multiplication and Ocean
applications impact the scalability of the overall platform. As platform sizes get larger,
the number of processes potentially requesting a lock increases. Several solutions have
been proposed in the literature to reduce the idle wait process tile. In [BSPN03] the
authors describe an implementation of an optimized operation which combines a global
fence operation and a barrier synchronization operation, but usage of simpler atomic
operations and lock-free or wait-free algorithms might also be applicable.

7.5 Conclusion

In this chapter, we experimented our approaches on seven parallel embedded appli-
cations. The approaches discover hotspots and bottlenecks caused by contention or
scalability of platforms. They quantify and pinpoint the hotspots and bottlenecks in
source code of application. We discovered that the hotspots and bottlenecks can be syn-
chronisation functions, GCC compiler library functions associated with the manipulation
of floating-point numbers, acquiring a lock in a application’s function or functions in
libc library of GCC compiler such as malloc_lock() and malloc_unlock() for
locking the memory pool. These bottlenecks identifies also the load imbalance. We
demonstrate that the developer gains upto 5% of runtime on super optimized applica-
tions. However, the few limitation of scalability bottlenecks discovery approach is: the
same variable may have different memory addresses in different platform instance or
execution trace files. So, the frequent hot access to this variable using frequent itemset
mining can not capture all the addresses of the same variable in different platform
causing the scalability issues. In this case, the need of a very efficient trace preprocessing
or powerful frequent itemset mining algorithm, which is not necessarily trivial from
addresses.

96 TIMA and LIG laboratories Sofiane LAGRAA

Chapter 8: Conclusions and Future Work

This thesis presents new profiling tools for parallel embedded applications in Multi-
Processor System-on-Chip MPSoC. The profiling tools are based on data mining

techniques applied on simulation traces. Our contributions are threefold. First, we
proposed a technique for contention discovery in parallel embedded program. Second,
we proposed an approach for scalability bottleneck discovery in MPSoC. Third, we
proposed an effective way to trace analysis. Numerous experimental results have been
provided to demonstrate the capacity of these approaches to pinpoint and quantify
bottlenecks.

8.1 Conclusions

We presented the key problems of MPSoC profiling tools in the chapter 2, where a set of
questions were asked that we intend to answer in this thesis. We repeat the same set of
questions here and provide answers to them in the following text.

1. Contention problems.

• What are the accesses leading to the contention ?

• What happens during a contention ?

• How to detect and identify co-occurrence of events ?

• How to scale contention detection to large traces ?

The automatic identification of parallel application contentions is a major issue
for the optimization of application deployed in MPSoC, as it is one of the keys to
enable good scalability. Using the trace generation capabilities of nowadays well
accepted virtual platforms, we have presented an automatic approach based on
data mining that when given only two thresholds, can automatically discover, ex-
tract, quantify contention patterns and pinpoint such patterns in source code. We
have shown by experiments on different applications that the extracted patterns
are interesting and can provide useful and meaningful information that will help
the developer to understand the embedded software behavior, and the reasons of
the contention in order to ease the optimization process (chapter 5).

Then, we focused on scalability problems of parallel embedded programs which
may be the one of the consequences of contention.

Sofiane LAGRAA TIMA and LIG laboratories 97

Conclusions and Future Work

2. Scalability problems.

• Why an application does not scale ?

• What are the critical regions or parts of source code that create the scalability
bottlenecks problems ?

• Are the bottlenecks frequent or not in each platform ?

System scalability is limited by the number of paths between the memory and
the processors, which can lead to poor performance due to access contention. In
the chapter 6, we have proposed a new approach for discovering the scalability
bottlenecks patterns such as resource sharing, synchronization that reduce the
parallel performance in MPSoC platforms running parallel embedded software.
The proposed approach can profile the parallel embedded software in one (intra
platform) or multiple platforms (inter platforms), and it is applicable on embed-
ded systems as well as on parallel machines as long as detailed information on the
memory accesses are available. It can be performed on multiple architectures with
different type of processors in order to select the most appropriate processors type
running a given multi-threaded program.

For our profiling tools based on execution traces for discovering contention and
scalability bottlenecks, we have answered the following questions:

3. Which techniques can discover and extract automatically meaningful knowledge
of the bottlenecks from traces without developer intervention ?

• How to pinpoint and quantify the contention and scalability bottlenecks from
traces ?

• How to discover and extract automatically recurrent hotspots / bottlenecks
in parallel platform ?

• What is the frequent concurrent accesses leading to contention ? How to
discover and extract them ?

• How to design the profiling tools for contention and scalability bottlenecks ?

The approaches proposed in this thesis are based on data mining techniques on
huge amount of execution traces. These techniques offer several advantages and
help in the discovery process of profiling embedded applications, extract the
unknown co-occurrence of different events of hotspots contention and scalability
bottlenecks of a given application from execution traces. For knowledge discovery
process, we use a frequent itemset mining algorithm for discovering co-occurrence
of memory accesses repeating themselves often and occurring contentions. Also,
this algorithm is used for discovering the frequent bottlenecks in scalable MPSoC
platforms. Another algorithm used for knowledge discovery process is a cluste-
ring algorithm for grouping, discovering, identifying the bottlenecks in a given
platform. These approaches are very helpful in reducing the amount of work a
programmer has to do for localization of performance decline.

98 TIMA and LIG laboratories Sofiane LAGRAA

8.2 Future Work

To the best of our knowledge, this is the first work reporting the use of data mining
on MPSoC traces to identify hotspots and bottlenecks patterns that create contentions
or scalability problems in multi-threaded applications.

Our experimental results demonstrate that our approach based on data mining
techniques discovers unknown specific problems of a given application and specific
instructions decreasing the performance. The quantified and pinpointed contention
or scalability bottlenecks in source code help the developers to understand better
the contention and scalability problems of their parallel embedded applications and
facilitate the optimization of applications within a complex MPSoC platform.

8.2 Future Work

This thesis opens several perspectives for further research in the context of profiling
tools for MPSoC using and data mining.

We classified the perspectives in three categories: short term, middle term and
long term. Each one propose either an extension of proposed solution in this thesis or
additional profiling tools.

Short term perspectives

The next generation of profiling tools for MPSoC based on data Mining using traces
must be oriented toward the "big traces" aspect. These profiling tools must be based
on either online trace analysis or postmortem analysis (like this thesis) with parallel /
distributed algorithms.

• Parallel / Distributed Algorithm: The size of trace files increases drastically with
the number of processors and the runtime of simulated application can quickly
reach hundreds of giga bytes or tera bytes. Therefore, trace analysis becomes more
and more difficult with existing data mining techniques. In this case, compression
algorithms, trace management techniques and a parallel / distributed algorithm
for trace analysis are required.

Another characteristics of profiling tool can be proposed such as:

• Loop profiling tool: 90% of the execution time of programs is spent in loops [PRW10].
Loop profiling is a process which gives information about the execution time of
loops. Thus, loop profiling tool is a necessary step and can be used in the process
of speeding up software applications in MPSoC. In addition, the major results
found in experiments are loops. We started working on this tool by developing a
sequence mining algorithm on execution traces in order to extract and discover
the loops executed by CPUs, and their characteristics such as the time spent and
the number of calls, automatically.

• Refinement Patterns: In order to distinguish more finely several types of perfor-
mance problems in scalable applications, our future plan consists on varying the
number of clusters k of the approach described in the chapter 6.

Sofiane LAGRAA TIMA and LIG laboratories 99

Conclusions and Future Work

Middle term perspectives

• Call Graph Analysis and Mining: A call graph is a directed graph that represents
calling relationships between subroutines in a program. Specifically, each node
represents a procedure and each edge (f1, f2) indicates that procedure f1 calls
procedure f2. Each CPU has own call graph, thus in MPSoC, we can have as many
graphs as processors. A new algorithm for mining call graphs can be proposed for
extracting the following proprieties: frequent sub-graphs of procedure calls, and
the profile of sub-graphs in terms of number of calls and time spent in sub-graphs.
These proprieties allow to have a program behavior, dysfunctional of sub-graphs
or possible anomalies and bugs.

• Automatic Time Window: The use of time window duration as input of algo-
rithms for contention discovery in chapter 5 is adapted to dichotomic search.
Discovering time window duration, automatically, is a challenge not only for our
approaches but also for a general case of data mining algorithms.

Long term perspectives

• Online Profiling tool online profiling tool based on data mining traces allow to
provide in real time profiling results and avoid to save giga or tera bytes of traces.
However, this new profiling tool needs to handle the trace stream incoming from
trace generator. So, new data mining algorithms over traces stream are needed.
For example: frequent itemset mining algorithm over trace stream or clustering
algorithm over trace stream. Also, the online profiling tool must be integrated into
the MPSoC platform and executed in parallel.

In addition to online profiling solution, we believe on an intelligent profiling tool
which takes decisions instead of developer:

• Self-adaptive algorithm: Given a platform having 16 CPUs, if contention occurs
frequently on a specific pattern while threads are active, the contention for shared
resources can increase, and the application may experience stagnation or slowdown
in performance. In this case, the parallel algorithm must take a decision to
deactivate one or more CPUs or killing threads causing the contention. Identifying
threads and/or data accesses that need to be asked upon can be done using data
mining.

100 TIMA and LIG laboratories Sofiane LAGRAA

Appendix A: Trace preprocessing

This appendix briefly describes the trace preprocessing that consist to extract the func-
tion name from a given instruction address.

There are no function names in execution traces, but only the PC address of the
executed instruction: using the symbols table of the executable objdump, we determine
the function to which an instruction belongs and insert the function name in the raw
traces.

objdump is used for disassembly a program. It displays and saves information about
one object file. Basically, the objdump file contains information about the memory
sections and their layout, the addresses of functions, and the assembly code. Figure A.1
shows part of the assembly code section of an objdump file for the MIPS32 processor
built-in MJPEG program.

Figure A.1: An example of disassembly of executable MJPEG code

The information in objdump file is mostly useful to programmers who are working
on profiling software in low level, optimization and the compilation tools. Using the
objdump file, we can extract the function name of an address in order to have both low
and high level of granularity of traces. Table A.1 shows the new raw trace format with
the function name inserted in last column. Note that this does not represent the call
graph, but the currently active function.

Sofiane LAGRAA TIMA and LIG laboratories 101

Trace preprocessing

Table A.1: New Raw trace format

CPU Cycle Program Instruction Data Access Function
ID Number Counter Type Address Latency Name
1 212305 0x10008260 fetch 0x10008260 28 cpu_mp_wait

102 TIMA and LIG laboratories Sofiane LAGRAA

Appendix B: Contention Patterns

This appendix briefly describes the contention patterns discovered in different embedded
applications.

FFT

Figure B.1 shows the frequent contention patterns in FFT benchmark in a platform
with 4 and 8 CPUs. We see that the frequent contention patterns are dominated by an
lengthy initialization phase of FFT function (InitU2), __kernel_cos and __kernel_sin
manipulating trigonometric functions, and cpu_mp_wait function. These patterns are
both in a platform with 4 and 8 CPUs with different threshold.

Table B.1: Frequent Contention Patterns in FFT Application
Platform Frequent Pattern Support

CPU[0,3] [0x10006314:0x10006388] InitU2 40 %
4 CPUs CPU[0,3] [0x10026328:0x10026380] __kernel_cos 32 %

[0x100274ac:0x100274f8] __kernel_sin
CPU[0,3] [0x1000b0a08:0x1000b0a8] cpu_mp_wait 88%
CPU[0,7] [0x10006314:0x10006388] InitU2 45 %

8 CPUs CPU[0,7] [0x10026328:0x10026380] __kernel_cos 28 %
[0x100274ac:0x100274f8] __kernel_sin
CPU[0,7] [0x1000b0a08:0x1000b0a8] cpu_mp_wait 92%

Mandelbrot

The frequent contention patterns in Mandelbrot application in a platform with 4 or 8
CPUs (Table B.2) are a set of data variable manipulating by floating points functions
__fpadd_parts __unpack_d __ieee754_sqrt __pack_d __muldf3. These data variable are
shown in Table B.3 and Table B.4 for patterns of a platform with 4 or 8 CPUs, respectively.
These data variable are manipulated by different instructions of floating points functions.
The instructions perform loading / storing operations on these data variable.

RADIX

Among the frequent contention patterns in RADIX application shown in Table B.5. We
discover that the accesses to the loop in ran_num_init are responsible of contention.

Sofiane LAGRAA TIMA and LIG laboratories 103

Contention Patterns

Table B.2: Frequent Contention Patterns in Mandelbrot Application
Platform Frequent Pattern Support

CPU[0,2] __fpadd_parts __unpack_d
4 CPUs __ieee754_sqrt __pack_d __muldf3 87 %

(data variables in Table B.3)
CPU[0,5] __fpadd_parts __unpack_d

8 CPUs __ieee754_sqrt __pack_d __muldf3 95 %
(data variables in Table B.4)

Table B.3: Data variable called by floating point functions in platform with 4 CPUs
0x10194190 0x101a42a0 0x1019c218 0x1018c108 0x1019c1f8 0x101a4280
0x10194170 0x101a42d0 0x1019c248 0x1018c0e8 0x101941c0 0x101a4288
0x1019c200 0x10194178 0x1018c0f0 0x1019c228 0x101a42b0 0x101941b4
0x1006c1ec 0x1019c23c 0x101a42c4 0x1019c230 0x1018c1b0 0x101941e4
0x101941a0 0x101a42b8 0x1018c1c0 0x1019c1f0 0x101a4278 0x1018c12c
0x101941a8 0x1018c1f0 0x1018c138 0x1019c26c 0x101a428c 0x10194168
0x1018c15c 0x101a42f4 0x1019417c 0x1019c204

ran_num_init function represents a loop that consist to fill the random-number array. In
order to tackle this contention pattern, one possible enhancement proposed in RADIX
source code application is to pin processes to processors in order to avoid migration.

LU

The discovered contention pattern in Table. B.6 is a multiple accesses simultaneously
at two instructions 1O, 2O in Figure B.1 of InitA function in LU application. The first
instruction 1O performs multiple initialization of a matrix using lrand481 by all threads,
and the second instruction 2O performs the same operation on the same array index,
thus, different results on different executions are obtained. This pattern is considered as
a bug by developers.

Figure B.1: InitA function of LU application

void InitA(double *rhs)
{
...
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
...
a[ii][jj] = ((double) lrand48())/MAXRAND;// 1©// executed by all threads
} }
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
...
rhs[i] += a[ii][jj];// 2©// executed by all threads
} } }

1lrand48 is a function in C stdlib library. The lrand48 function uses 48-bit arithmetic to generate
non-negative long integers uniformly distributed pseudo-random values.

104 TIMA and LIG laboratories Sofiane LAGRAA

Table B.4: Data variable called by floating point functions in platform with 8 CPUs
0x101b43b0 0x101c44c0 0x101ac328 0x1019c218 0x101bc438 0x101a42a0
0x10194190 0x1018c108 0x101a4280 0x101bc418 0x101ac308 0x1019c1f8
0x101b4390 0x101c44a0 0x10194170 0x101bc448 0x101a42b0 0x101ac310
0x101ac338 0x101a4288 0x101c44d0 0x101b43c0 0x1018c0e8 0x101bc420
0x1019c200 0x101b4398 0x101c44a8 0x1019c228 0x1019c248 0x101941a8
0x10194178 0x101bc468 0x101a42d0 0x1008c274 0x101b43e0 0x101ac300
0x101ac358 0x101bc450 0x101b43c8 0x101c44f0 0x1018c0f0 0x101941a0
0x101a4278 0x101c4498 0x1019c230 0x101ac340 0x101b4388 0x101941c0
0x101a42b8 0x101c44d8 0x10194168 0x1019c1f0 0x1018c1c0 0x101a42bc
0x101bc410 0x1019c234 0x101b43cc

Table B.5: Frequent Contention Patterns in RADIX Application
Platform Frequent Pattern Support

CPU[0,3] [0x10005c5c:0x10006068] ran_num_init 35 %
4 CPUs CPU[0,3] [0x1000b940:0x1000b948] cpu_mp__wait 55 %

CPU[0,3] 10038618 semaphore_pool 42 %
CPU[0,7] [0x10005c5c:0x10006068] ran_num_init 39 %

8 CPUs CPU[0,7] [0x1000b940:0x1000b948] cpu_mp__wait, 65 %
10038618 semaphore_pool

Table B.6: Frequent Contention Patterns in LU Application
Platform Frequent Pattern Support

CPU[0,3] [0x10015f9c:0x10015fdc] InitA
4 CPUs 100071ec lrand48 69 %

CPU[0,7] [0x10015f9c:0x10015fdc] InitA
8 CPUs 100071ec lrand48 78 %

Sofiane LAGRAA TIMA and LIG laboratories 105

Glossary

AMBA Advanced Micro-controller Bus
Architecture

API Application Programming
Interface

ASIP Application-Specific
Instruction-set Processor

ATL Application Trace Logger

CABA Cycle Accurate Bit Accurate

CMP Chip MultiProcessor

ACMP Asymmetric Chip
MultiProcessor

SCMP Symmetric Chip MultiProcessor

CPI Cycles Per Instruction

CPU Central Processing Unit

DAG Directed Acyclic Graph

DNA DNA is Not just Another OS

DS Distributed Scheduling

DSP Digital Signal Processor

DSM Distributed Shared Memory

FCA Formal Concept Analysis

FFT Fast Fourier Transform

FPM Frequent Pattern Mining

FPGA Field Programmable Gate Array

HAL Hardware Abstraction Layer

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HCBP Hardware Counter Based
Profiling

IR Intermediate Representation

ISR Interrupt Service Routines

ISS Instruction Set Simulator

LU Lower Upper

MARS Multivariate Adaptive
Regression Splines

MIC Many Integrated Core

MJPEG Motion-JPEG

MPSoC Multi-Processor System On
Chip

NoC Network On Chip

PC Program Counter

PCA Principal Component Analysis

RTL Register Transfer Level

SLPE Source-Level Performance
Estimation

SMP Symmetric Multiple Processor

SoC System On Chip

SystemCASS SystemC Accurate System
Simulator

TLM Transaction Level Modeling

Sofiane LAGRAA TIMA and LIG laboratories 107

Contention Patterns

UML Unified Modeling Language

VA Virtual Assembly

VLIW Very Long Instruction Word

108 TIMA and LIG laboratories Sofiane LAGRAA

List of Publications

International Conferences

[1] Sofiane LAGRAA, Alexandre Termier , and Frédéric Pétrot. Scalability Bottlenecks
Discovery in MPSoC Platforms Using Data Mining on Simulation Traces. In Pro-
ceedings of the 17th IEEE International Conference on Design, Automation and Test in
Europe, DATE 2014, Dresden, Germany. [To Be Published]. [Best Paper Award]

[2] Sofiane LAGRAA, Alexandre Termier , and Frédéric Pétrot. Data mining MPSoC
simulation traces to identify concurrent memory access patterns. In Proceedings
of the 16th IEEE International Conference on Design, Automation and Test in Europe,
DATE 2013, Grenoble, France, pages 755-760, 2013. [Published]

[3] Sofiane LAGRAA, Alexandre Termier , and Frédéric Pétrot. Automatic congestion
detection in MPSoC programs using data mining on simulation traces. In Procee-
dings of the 23rd IEEE International Symposium on Rapid System Prototyping, RSP
2012, Tampere, Finland, pages 64-70, 2012. [Published]

Sofiane LAGRAA TIMA and LIG laboratories 109

References

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vande-
voorde, Carl A. Waldspurger, and William E. Weihl. Continuous profiling:
where have all the cycles gone? ACM Trans. Comput. Syst., 15(4):357–390,
November 1997.

[ACG+03] Adrijean Adriahantenaina, Herve Charlery, Alain Greiner, Laurent Mor-
tiez, and Cesar Albenes Zeferino. Spin: A scalable, packet switched,
on-chip micro-network. In Proceedings of the conference on Design, Auto-
mation and Test in Europe: Designers’ Forum - Volume 2, DATE ’03, pages
20070–, 2003.

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric
interconnection networks. IEEE Trans. Comput., 38(4):555–566, 1989.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, AFIPS ’67 (Spring), pages 483–485, 1967.

[AMD02] AMD. Amd athlon processor, x86 code optimization guide. 2002.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, pages 487–499, 1994.

[AZXC11] Najla Alfaraj, Junjie Zhang, Yang Xu, and H. Jonathan Chao. Hope: Hots-
pot congestion control for clos network on chip. In NOCS, pages 17–24,
2011.

[BA97a] Leonard A. Breslow and David W. Aha. Simplifying decision trees: A
survey. Knowl. Eng. Rev., 12(1):1–40, January 1997.

[BA97b] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[Bai90] D. H. Bailey. Ffts in external or hierarchical memory. J. Supercomput.,
4(1):23–35, March 1990.

[Bal69] R. M. Balzer. Exdams: extendable debugging and monitoring system. In
AFIPS, pages 567–580, New York, NY, USA, 1969. ACM.

Sofiane LAGRAA TIMA and LIG laboratories 111

REFERENCES

[BCZ07] Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion checkers in
verification, silicon debug and in-field diagnosis. In Proceedings of the 8th
International Symposium on Quality Electronic Design, ISQED ’07, pages
613–620, 2007.

[BDG+00] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable
cross-platform infrastructure for application performance tuning using
hardware counters. In Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’00, 2000.

[BFSS01] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Source-level execu-
tion time estimation of c programs. In Proceedings of the ninth international
symposium on Hardware/software codesign, CODES ’01, pages 98–103, 2001.

[BKL+00] Jwahar R. Bammi, Wido Kruijtzer, Luciano Lavagno, Edwin Harcourt,
and Mihai T. Lazarescu. Software performance estimation strategies in a
system-level design tool. In Proceedings of the eighth international workshop
on Hardware/software codesign, CODES ’00, pages 82–86, 2000.

[BM05] A. A. Bayazit and S. Malik. Complementary use of runtime validation
and model checking. In Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, ICCAD ’05, pages 1052–1059, 2005.

[BPG04] R. Buchmann, F. Petrot, and A. Greiner. Fast cycle accurate simulator
to simulate event-driven behavior. In Electrical, Electronic and Computer
Engineering, 2004. ICEEC ’04. 2004 International Conference on, pages
35–38, 2004.

[Bra77] Achi Brandt. Multi-Level Adaptive Solutions to Boundary-Value Problems.
Mathematics of Computation, 31(138):333–390, April 1977.

[BSPN03] Darius Buntinas, Amina Saify, Dhabaleswar K. Panda, and Jarek Nieplocha.
Optimizing synchronization operations for remote memory communica-
tion systems. In IPDPS, pages 199.1–, 2003.

[BSsL+02] Rajeshwari Banakar, Stefan Steinke, Bo sik Lee, M. Balakrishnan, and Peter
Marwedel. Scratchpad memory: A design alternative for cache on-chip
memory in embedded systems. In CODES, pages 73–78. ACM, 2002.

[BZ08] Marc Boulé and Zeljko Zilic. Automata-based assertion-checker synthesis
of psl properties. ACM Trans. Des. Autom. Electron. Syst., 13(1):4:1–4:21,
February 2008.

[CB92] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-
blocking and prefetching caches. In Proceedings of the fifth international
conference on Architectural support for programming languages and operating
systems, ASPLOS-V, pages 51–61, 1992.

[CBT+12] Patricia López Cueva, Aurélie Bertaux, Alexandre Termier, Jean-François
Méhaut, and Miguel Santana. Debugging embedded multimedia applica-
tion traces through periodic pattern mining. In EMSOFT, pages 13–22,
2012.

112 TIMA and LIG laboratories Sofiane LAGRAA

REFERENCES

[CCCK11] Chih-Neng Chung, Chia-Wei Chang, Kai-Hui Chang, and Sy-Yen Kuo.
Applying verification intention for design customization via property
mining under constrained testbenches. In ICCD, pages 84–89, 2011.

[CDFR08] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. For-
mal concept analysis enhances fault localization in software. In Proceedings
of the 6th international conference on Formal concept analysis, ICFCA’08,
pages 273–288, 2008.

[CDFR11] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Mul-
tiple fault localization with data mining. In SEKE, pages 238–243, 2011.

[CFDC11] Peggy Cellier, Sébastien Ferré, Mireille Ducassé, and Thierry Charnois.
Partial orders and logical concept analysis to explore patterns extracted
by data mining. In Proceedings of the 19th international conference on
Conceptual structures for discovering knowledge, ICCS’11, pages 77–90, 2011.

[CH08] Xueqi Cheng and Michael S. Hsiao. Simulation-directed invariant mining
for software verification. In DATE, pages 682–687, 2008.

[CLZ+11] Xuhao Chen, Jiawen Li, Zhong Zheng, Li Shen, and Zhiying Wang. Eva-
luating scalability of emerging multithreaded applications on commodity
multicore server. In Proceedings of the 2011 International Conference of
Information Technology, Computer Engineering and Management Sciences -
Volume 01, ICM ’11, pages 332–335, 2011.

[CME+95] Woo Steven Cameron, Ohara Moriyoshi, Torrie Evan, Singh Jaswinder
Pal, and Gupta Anoop. The splash-2 programs: characterization and
methodological considerations. In ISCA, pages 24–36, 1995.

[Cor06] Intel Corporation. Ia-32 intel architecture
software developer’s manual. [Online]. Avai-
lable:http://developers.sun.com/prodtech/cc/articles/pcounters.html., Accessed
February 2006.

[Cor13] CoreSight. Coresight on-chip debug trace ip. 2013.

[CW10] Po-Hsien Chang and Li-C. Wang. Automatic assertion extraction via
sequential data mining of simulation traces. In ASP-DAC, pages 607–612,
2010.

[DH01] Werner Damm and David Harel. Lscs: Breathing life into message se-
quence charts, 2001.

[DNAKN05] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi. Evaluation
of pseudo adaptive xy routing using an object oriented model for noc.
In Microelectronics, 2005. ICM 2005. The 17th International Conference on,
pages 5 pp.–, 2005.

[DT01] William J. Dally and Brian Towles. Route packets, not wires: on-chip inte-
connection networks. In Proceedings of the 38th annual Design Automation
Conference, DAC ’01, pages 684–689. ACM, 2001.

Sofiane LAGRAA TIMA and LIG laboratories 113

REFERENCES

[DYL02] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-
works: An Engineering Approach. Morgan Kaufmann Publishers Inc., 2002.

[EDBE12] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. Speedup stacks:
identifying scaling bottlenecks in multi-threaded applications. In IEEE
international symposium on performance analysis of systems and software,
Proceedings, pages 145–155. IEEE, 2012.

[EEKS06] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A
performance counter architecture for computing accurate cpi components.
SIGOPS Oper. Syst. Rev., 40(5):175–184, 2006.

[EWL13] Juan Fernando Eusse, Christopher Williams, and Rainer Leupers. Coex:
A novel profiling-based algorithm/architecture co-exploration for asip
design. In ReCoSoC, pages 1–8, 2013.

[FIM04] Workshop on frequent itemset mining implementations, 2004.
http://fimi.ua.ac.be/fimi04/.

[Fos95] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[FPsS96] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth. From
data mining to knowledge discovery in databases. AI Magazine, 17:37–54,
1996.

[FR01] Sébastien Ferré and Olivier Ridoux. Searching for objects and proper-
ties with logical concept analysis. In Proceedings of the 9th International
Conference on Conceptual Structures: Broadening the Base, ICCS ’01, pages
187–201, 2001.

[FR04] S. Ferré and O. Ridoux. Introduction to logical information systems. Inf.
Process. Manage., 40(3):383–419, 2004.

[Fri91] J. H. Friedman. Multivariate Adaptive Regression Splines. Annals of
Statistics, 19, 1991.

[FS08] Jay Fenlason and Richard Stallman. Gnu gprof. 2003. [Accessed April 6th
2008].

[GG00] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip
packet-switched interconnections. In DATE, pages 250–256, 2000.

[GGM04] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling databases. In
Discovery Science, pages 278–289, 2004.

[GHC+09] Lei Gao, Jia Huang, Jianjiang Ceng, Rainer Leupers, Gerd Ascheid, and
Heinrich Meyr. Totalprof: a fast and accurate retargetable source code
profiler. In Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’09, pages
305–314, 2009.

114 TIMA and LIG laboratories Sofiane LAGRAA

REFERENCES

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A
call graph execution profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[GKS12] Vishal Gupta, Hyesoon Kim, and Karsten Schwan. Evaluating scalability
of multi-threaded applications on a many-core platform, CiteSeerX, vol.
21, 2012.

[GMCP13] Bernard Goossens, Ali El Moussaoui, K. Chen, and David Parello. De quoi
est faite une trace d’exécution ? Technique et Science Informatiques, 2013.

[GP09] Xavier Guerin and Frédéric Petrot. A system framework for the design of
embedded software targeting heterogeneous multi-core socs. In Procee-
dings of the 2009 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors, ASAP ’09, pages 153–160, 2009.

[GRV05] Ann Gordon-Ross and Frank Vahid. Frequent loop detection using efficient
nonintrusive on-chip hardware. IEEE Trans. Comput., 54(10):1203–1215,
October 2005.

[GW97] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathemati-
cal Foundations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st
edition, 1997.

[HAG08] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-approximate
retargetable performance estimation at the transaction level. In Proceedings
of the conference on Design, automation and test in Europe, DATE ’08, pages
3–8, 2008.

[HCC+11] Wim Heirman, Trevor E. Carlson, Shuai Che, Kevin Skadron, and Lie-
ven Eeckhout. Using cycle stacks to understand scaling bottlenecks in
multi-threaded workloads. In Proceedings of the 2011 IEEE International
Symposium on Workload Characterization, IISWC ’11, pages 38–49, 2011.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2006.

[HP11] Damien Hedde and Frédéric Pétrot. A non intrusive simulation-based
trace system to analyse multiprocessor systems-on-chip software. In
International Symposium on Rapid System Prototyping, pages 106–112, 2011.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. SIGMOD Rec., 29(2):1–12, May 2000.

[HR07] Ralf Hoffmann and Thomas Rauber. Profiling of task-based applications on
shared memory machines: scalability and bottlenecks. In Proceedings of the
13th international Euro-Par conference on Parallel Processing, Euro-Par’07,
pages 118–128, Berlin, Heidelberg, 2007. Springer-Verlag.

[HW79] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied
Statistics, 28:100–108, 1979.

[Ins] Texas Instruments. Omap™4 mobile applications platform.

Sofiane LAGRAA TIMA and LIG laboratories 115

REFERENCES

[ITR07] ITRS. International technology roadmap for semiconductors - system
drivers [online]. http://www.itrs.net/Links/2007ITRS/2007_
Chapters/2007_SystemDrivers.pdf, 2007.

[JKLS10] Kwangok Jeong, A. B. Kahng, B. Lin, and K. Samadi. Accurate machine-
learning-based on-chip router modeling. IEEE Embed. Syst. Lett., 2(3):62–
66, 2010.

[JSMP12] José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Bottleneck
identification and scheduling in multithreaded applications. SIGARCH
Comput. Archit. News, 40(1), March 2012.

[KAL] KALRAY. Kalray’s mppa (multi-purpose processor array).
http://www.kalray.eu/products/mppa-manycore/mppa-256/.

[KFI+12] C. Kamdem Kengne, L. C. Fopa, N. Ibrahim, Alexandre Termier, Marie-
Christine Rousset, and Takashi Washio. Enhancing the analysis of large
multimedia applications execution traces with frameminer. In ICDM
Workshops, pages 595–602, 2012.

[KFK+05] Kingshuk Karuri, Mohammad Abdullah Al Faruque, Stefan Kraemer, Rai-
ner Leupers, Gerd Ascheid, and Heinrich Meyr. Fine-grained application
source code profiling for asip design. In DAC, pages 329–334, 2005.

[KFT+13] Christiane Kamdem Kengne, Leon Constantin Fopa, Alexandre Termier,
Noha Ibrahim, Marie-Christine Rousset, Takashi Washio, and Miguel
Santana. Efficiently rewriting large multimedia application execution
traces with few event sequences. In KDD, pages 1348–1356, 2013.

[KKJ+08] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yun-
heung Paek. A retargetable parallel-programming framework for mpsoc.
ACM Trans. Des. Autom. Electron. Syst., 13(3):39:1–39:18, July 2008.

[KKRL11] Sandeep Kumar, Siau-Cheng Khoo, Abhik Roychoudhury, and David Lo.
Mining message sequence graphs. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 91–100, 2011.

[KKW+06] Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz, Gerd Ascheid,
Rainer Leupers, and Heinrich Meyr. A sw performance estimation fra-
mework for early system-level-design using fine-grained instrumentation.
In Proceedings of the conference on Design, automation and test in Europe:
Proceedings, DATE ’06, pages 468–473, 2006.

[KLPS09] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0:
a fast and accurate noc power and area model for early-stage design space
exploration. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’09, pages 423–428, 2009.

[KND02] Faraydon Karim, Anh Nguyen, and Sujit Dey. An interconnect architecture
for networking systems on chips. IEEE Micro, 22:36–45, 2002.

116 TIMA and LIG laboratories Sofiane LAGRAA

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_SystemDrivers.pdf
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_SystemDrivers.pdf

REFERENCES

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[LBH+00] M. T. Lazarescu, J. R. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo.
Compilation-based software performance estimation for system level de-
sign. In Proceedings of the IEEE International High-Level Validation and Test
Workshop (HLDVT’00), HLDVT ’00, 2000.

[LC10] Rainer Leupers and Jeronimo Castrillon. Mpsoc programming using the
maps compiler. In Proceedings of the 2010 Asia and South Pacific Design
Automation Conference, ASPDAC ’10, pages 897–902, Piscataway, NJ, USA,
2010. IEEE Press.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’05, pages 190–200, 2005.

[LCZ01] Honghui Lu, Alan L. Cox, and Willy Zwaenepoel. Contention elimina-
tion by replication of sequential sections in distributed shared memory
programs. In PPoPP’01, pages 53–61, 2001.

[LFS10] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable specification
mining for verification and diagnosis. In DAC, pages 755–760, 2010.

[LKL08] David Lo, Siau-Cheng Khoo, and Chao Liu. Mining past-time tempo-
ral rules from execution traces. In Proceedings of the 2008 international
workshop on dynamic analysis: held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2008),
WODA ’08, pages 50–56, 2008.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. In Journal of the ACM, pages 46–61,
1973.

[LLSV99] Marcello Lajolo, Mihai Lazarescu, and Alberto Sangiovanni-Vincentelli.
A compilation-based software estimation scheme for hardware/software
co-simulation. In Proceedings of the seventh international workshop on
Hardware/software codesign, CODES ’99, pages 85–89, 1999.

[LLV12] Lingyi Liu, Chen-Hsuan Lin, and Shobha Vasudevan. Word level feature
discovery to enhance quality of assertion mining. In ICCAD, pages 210–
217, 2012.

[LMK07] David Lo, Shahar Maoz, and Siau-Cheng Khoo. Mining modal scenario-
based specifications from execution traces of reactive systems. In ASE,
pages 465–468, 2007.

[LSAV11] Lingyi Liu, David Sheridan, Viraj Athavale, and Shobha Vasudevan. Auto-
matic generation of assertions from system level design using data mining.
In MEMOCODE, pages 191–200, 2011.

Sofiane LAGRAA TIMA and LIG laboratories 117

REFERENCES

[LTP12] Sofiane Lagraa, Alexandre Termier, and Frédéric Pétrot. Automatic conges-
tion detection in mpsoc programs using data mining on simulation traces.
In RSP, pages 64–70, 2012.

[LTP13] Sofiane Lagraa, Alexandre Termier, and Frédéric Pétrot. Data mining
mpsoc simulation traces to identify concurrent memory access patterns.
In DATE, pages 755–760, 2013.

[LTP14] Sofiane Lagraa, Alexandre Termier, and Frédéric Pétrot. Scalability bot-
tlenecks discovery in mpsoc platforms using data mining on simulation
traces. In DATE, 2014.

[LXM08] Christopher LaRosa, Li Xiong, and Ken Mandelberg. Frequent pattern
mining for kernel trace data. In Proceedings of the 2008 ACM symposium
on Applied computing, SAC ’08, pages 880–885, New York, NY, USA, 2008.
ACM.

[LYY+05] Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S. Yu. Mining
behavior graphs for "backtrace" of noncrashing bugs. In SDM, 2005.

[Mar06] Grant Martin. Overview of the mpsoc design challenge. In Proceedings of
the 43rd annual Design Automation Conference, DAC ’06, pages 274–279,
New York, NY, USA, 2006. ACM.

[MAT09] Mubrak S. Mohsen, Rosni Abdullah, and Yong M. Teo. A survey on
performance tools for openmp, 2009.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurrent
programs. ACM Comput. Surv., 21(4):593–622, December 1989.

[Mic06] Sun Microsystems. Using ultrasparc-iiicu performance coun-
ters to improve application performance. [Online]. Available:
http://developers.sun.com/prodtech/cc/articles/pcounters.html, Accessed
February 2006.

[MLG05] Edu Metz, Raimondas Lencevicius, and Teofilo F. Gonzalez. Performance
data collection using a hybrid approach. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, ESEC/FSE-13,
pages 126–135, 2005.

[MMW96] Sfi-Tr-William Macready, William G. Macready, and David H. Wolpert.
What makes an optimization problem hard? Complexity, 5, 1996.

[MSR+07] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh
Peri. Shadow profiling: Hiding instrumentation costs with parallelism. In
CGO, pages 198–208, 2007.

[MTQ07] Parth Malani, Ying Tan, and Qinru Qiu. Resource-aware high performance
scheduling for embedded mpsocs with the application of mpeg decoding.
In ICME, pages 715–718, 2007.

118 TIMA and LIG laboratories Sofiane LAGRAA

REFERENCES

[NM92] Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some
issues and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88,
March 1992.

[Pot06] Kristin Potter. Methods for presenting statistical information: The box plot.
Hans Hagen, Andreas Kerren, and Peter Dannenmann (Eds.), Visualization of
Large and Unstructured Data Sets, GI-Edition Lecture Notes in Informatics
(LNI), pages 97–106, 2006.

[PR12] Rajendra Patel and Arvind Rajawat. A survey of embedded software
profiling methodologies. International Journal of Embedded Systems and
Applications (IJESA), 1(2):19–40, 2012.

[PRW10] Marcin Pietron, Pawel Russek, and Kazimierz Wiatr. Loop profiling tool
for hpc code inspection as an efficient method of fpga based acceleration.
Applied Mathematics and Computer Science, 20(3), 2010.

[QLD09] Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of communication
delay bounds for network on chips. In Proceedings of the 2009 Asia and
South Pacific Design Automation Conference, ASP-DAC ’09, pages 7–12,
2009.

[Rei05] J. Reinders. VTune Performance Analyzer Essentials: Measurement and
Tuning Techniques for Software Developers. Engineer to Engineer Series.
Intel Press, 2005.

[RL10] Rohit Sunkam Ramanujam and Bill Lin. Destination-based adaptive
routing on 2d mesh networks. In ANCS, page 19, 2010.

[RPN97] Anand Raman, Jon Patrick, and Palmerston North. The sk-strings method
for inferring pfsa. In In Proceedings of the, 1997.

[Sam] Samsung. Samsung exynos 5 quad 5210 technical specifications.

[SBL+09a] Hassan Saneifar, Stéphane Bonniol, Anne Laurent, Pascal Poncelet, and
Mathieu Roche. Mining for relevant terms from log files. In KDIR, pages
77–84, 2009.

[SBL+09b] Hassan Saneifar, Stéphane Bonniol, Anne Laurent, Pascal Poncelet, and
Mathieu Roche. Terminology extraction from log files. In DEXA, pages
769–776, 2009.

[SC04a] Lesley Shannon and Paul Chow. Maximizing system performance: using
reconfigurability to monitor system communications. In FPT, pages 231–
238, 2004.

[SC04b] Lesley Shannon and Paul Chow. Using reconfigurability to achieve real-
time profiling for hardware/software codesign. In Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate ar-
rays, FPGA ’04, pages 190–199, 2004.

Sofiane LAGRAA TIMA and LIG laboratories 119

REFERENCES

[SLT99] Yan Solihin, Vinh Lam, and Josep Torrellas. Scal-tool: pinpointing and
quantifying scalability bottlenecks in dsm multiprocessors. In Supercom-
puting, 1999.

[SMG12] Arnab Sinha, Sharad Malik, and Aarti Gupta. Efficient predictive analysis
for detecting nondeterminism in multi-threaded programs. In FMCAD,
pages 6–15, 2012.

[SMWG11] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. Predictive
analysis for detecting serializability violations through trace segmentation.
In MEMOCODE, pages 99–108, 2011.

[Soc] SoCLib, "A modeling and simulation platform for system on chip", 2009.
[Online]. Available: http://www.soclib.fr/Home.html.

[Spr02] Brinkley Sprunt. The basics of performance-monitoring hardware. IEEE
Micro, 22(4):64–71, July 2002.

[SRA05] Koushik Sen, Grigore Roşu, and Gul Agha. Detecting errors in multi-
threaded programs by generalized predictive analysis of executions. In
Proceedings of the 7th IFIP WG 6.1 international conference on Formal Me-
thods for Open Object-Based Distributed Systems, FMOODS’05, 2005.

[STM] STMicroelectronics. Advanced hd application processor with 3d graphics
acceleration and arm cortex-a9 smp cpu.

[STM13] STMicroelectronics. Application trace logger (atl). Technical report, STMi-
croelectronics, 2013.

[TdRC+10] Leonel Tedesco, Thiago R. da Rosa, Fabien Clermidy, Ney Calazans, and
Fernando Gehm Moraes. Implementation and evaluation of a congestion
aware routing algorithm for networks-on-chip. In SBCCI, pages 91–96,
2010.

[TK08a] Jason G. Tong and Mohammed A. S. Khalid. Profiling tools for fpga-based
embedded systems: Survey and quantitative comparison. JCP, 3(6), 2008.

[TK08b] Jason G. Tong and Mohammed A. S. Khalid. Profiling tools for fpga-based
embedded systems: Survey and quantitative comparison. JCP, 3(6), 2008.

[UKA04a] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

[UKA04b] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

[VSP+10] Shobha Vasudevan, David Sheridan, Sanjay J. Patel, David Tcheng, William
Tuohy, and Daniel R. Johnson. Goldmine: Automatic assertion generation
using data mining and static analysis. In DATE, pages 626–629, 2010.

120 TIMA and LIG laboratories Sofiane LAGRAA

REFERENCES

[WCGY09] Chao Wang, Swarat Chaudhuri, Aarti Gupta, and Yu Yang. Symbolic
pruning of concurrent program executions. In Proceedings of the the 7th
joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, ESEC/FSE
’09, 2009.

[WDV06] Stephan Wong, Filipa Duarte, and Stamatis Vassiliadis. A hardware cache
memcpy accelerator. In In Proc. IEEE International Conference in Field
Programmable Technology, pages 141–147, 2006.

[WG12] Chao Wang and Malay Ganai. Predicting concurrency failures in the
generalized execution traces of x86 executables. In Proceedings of the
Second international conference on Runtime verification, RV’11, pages 4–18,
2012.

[Wil09] Rudolf Wille. Restructuring lattice theory: An approach based on hie-
rarchies of concepts. In Proceedings of the 7th International Conference on
Formal Concept Analysis, ICFCA ’09, pages 314–339, 2009.

[WKGG09] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. Symbolic
predictive analysis for concurrent programs. In Proceedings of the 2nd
World Congress on Formal Methods, FM ’09, pages 256–272, 2009.

[WLGG10] Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta. Trace-
based symbolic analysis for atomicity violations. In Proceedings of the 16th
international conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’10, pages 328–342, 2010.

[WSH93] Steven C Woo, Jaswinder P Singh, and John L. Hennessy. The performance
advantages of integrating message passing in cache-coherent multiproces-
sors. Technical report, Stanford, CA, USA, 1993.

[WZPM02] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion:
a power-performance simulator for interconnection networks. In Procee-
dings of the 35th annual ACM/IEEE international symposium on Microarchi-
tecture, MICRO 35, pages 294–305, 2002.

[YH02] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

[YYS+04] Mohamed-Wassim Youssef, Sungjoo Yoo, Arif Sasongko, Yanick Paviot, and
Ahmed A. Jerraya. Debugging hw/sw interface for mpsoc: video encoder
system design case study. In DAC, pages 908–913, 2004.

[Zak98] Mohammed Javeed Zaki. Efficient enumeration of frequent sequences. In
Proceedings of the International Conference on Information and Knowledge
Management, pages 68–75. ACM, November 1998.

[Zak00] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 12:372–
390, 2000.

Sofiane LAGRAA TIMA and LIG laboratories 121

REFERENCES

[Zak05] Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest:
Algorithms and applications. IEEE Trans. Knowl. Data Eng., 17(8):1021–
1035, 2005.

[ZB91] Marco Zagha and Guy E. Blelloch. Radix sort for vector multiproces-
sors. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing ’91, pages 712–721, 1991.

[ZXHW10] Jia Zou, Jing Xiao, Rui Hou, and Yanqi Wang. Frequent instruction sequen-
tial pattern mining in hardware sample data. In ICDM, pages 1205–1210,
2010.

122 TIMA and LIG laboratories Sofiane LAGRAA

REFERENCES

Sofiane LAGRAA TIMA and LIG laboratories 123

	Dedication
	Abstract
	Résumé
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Context
	MPSoC
	Terminology
	MPSoC platform
	Multi-threaded programs
	Parallel Embedded Software

	Difficulties of Writing Parallel Programs for MPSoC
	MPSoC Profiling Problems
	Contention problems
	Scalability bottlenecks
	Profiling tools and Profiling tools based on Simulation

	Execution traces
	Execution trace analysis
	Conclusion

	Background and Related Work
	Profiling Tools
	Software Based Profiling
	Hardware Based Profiling
	FPGA Based Profiling

	Related Work in Contention and Scalability Bottlenecks Discovery
	Contention Discovery
	Scalability Bottlenecks Discovery

	Positioning Relative To Existing Profiling Tools
	Traces
	Execution Traces Representation
	Dealing with the Large Size of Traces

	Multi-Threaded Programs Analysis based on Traces
	Data Mining
	Frequent Pattern Mining

	Traces Analysis Using Data Mining
	High level analysis
	Software Analysis

	Low level analysis
	Hardware Analysis
	Software Analysis

	Summary
	Conclusion

	New MPSoC Profiling Tools based on Data Mining
	Profiling Process Overview
	MPSoC Simulation
	Trace Collection
	Traces Preprocessing
	Low-Level and High-Level Traces
	The Windowed Events Trace
	Feature of Traces

	Data Mining Tools
	Clustering
	Frequent Itemset/Pattern Mining

	Knowledge Discovery

	Summary

	Contention Pattern Discovery in MPSoC
	Introduction
	Preliminaries and Problem Formulation
	NoC
	Trace Definitions
	Problem Statement
	Objective

	 Contention Pattern Discovery Methodology in MPSoC I
	Patterns definitions
	Pattern discovery method
	Windowed frequent events trace computation
	Patterns computation

	Hotspot detection from patterns
	Preliminary Results

	Approach limitations
	 Contention Pattern Discovery Methodology in MPSoC II
	Pattern discovery method
	Long latencies determinations
	Slicing the execution traces into contention windows
	Mining the frequent contention patterns
	Preliminary Results

	Comparison of Methodologies
	Conclusion

	Scalability Bottlenecks Discovery in MPSoC
	Introduction
	Preliminaries and Problem formulation
	Definitions
	Problem Statement

	Scalability bottlenecks discovery method
	Overview of the method
	Trace collection
	Feature extraction
	Feature-based clustering
	Growth rate of hot cluster
	Frequent scalability bottlenecks mining

	Preliminary Results
	Comparison of Scalability Bottlenecks Detection Methodologies
	Conclusion

	Experimentations and Results
	Parallel embedded software
	Ocean
	FFT
	LU
	RADIX
	Mandelbrot
	MJPEG
	Matrix Multiplication

	Simulation environment and Hardware architecture
	Simulator
	Operating System
	Hardware Architecture

	Experiments Set I: Contention discovery
	Experiments I.1
	Experiment I.2
	Results analysis
	Experiments II
	Results Set II
	Discussion

	Experiments Set II: Scalability bottlenecks discovery
	Results analysis
	Discussion

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	 Trace preprocessing
	Contention Patterns
	Glossary
	List of Publications
	References

