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Thèse dirigée par Professeur Roland Groz
et co-encadrée par Docteur Jean-Luc Richier
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Détection de Vulnérabilités Web par Frelatage Evolutionniste et

Inférence de Modèle

Résumé: Le test est une approche efficace pour détecter des bogues d’implémen-

tation ayant un impact sur la sécurité, c.-à-d. des vulnérabilités. Lorsque le code

source n’est pas disponible, il est nécessaire d’utiliser des techniques de test en

boı̂te noire. Nous nous intéressons au problème de détection automatique d’une

classe de vulnérabilités (Cross Site Scripting alias XSS) dans les applications

web dans un contexte de test en boı̂te noire. Nous proposons une approche pour

inférer des modèles de telles applications et frelatons des séquences d’entrées

générées à partir de ces modèles et d’une grammaire d’attaque. Nous inférons

des automates de contrôle et de teinte, dont nous extrayons des sous-modèles

afin de réduire l’espace de recherche de l’étape de frelatage. Nous utilisons des

algorithmes génétiques pour guider la production d’entrées malicieuses envoyées

à l’application. Nous produisons un verdict de test grâce à une double inférence de

teinte sur l’arbre d’analyse grammaticale d’un navigateur et à l’utilisation de mo-

tifs de vulnérabilités comportant des annotations de teinte. Nos implémentations

LigRE et KameleonFuzz obtiennent de meilleurs résultats que les scanneurs

boı̂te noire open-source. Nous avons découvert des XSS “0-day” (c.-à-d. des

vulnérabilités jusque lors inconnues publiquement) dans des applications web

utilisées par des millions d’utilisateurs.

Keywords: Sécurité, Frelatage, XSS, Algorithme Evolutionniste, Inférence,

Intelligence Artificielle, Applications Web



Detection of Web Vulnerabilities via Model Inference assisted

Evolutionary Fuzzing

Abstract: Testing is a viable approach for detecting implementation bugs

which have a security impact, a.k.a. vulnerabilities. When the source code is

not available, it is necessary to use black-box testing techniques. We address

the problem of automatically detecting a certain class of vulnerabilities (Cross

Site Scripting a.k.a. XSS) in web applications in a black-box test context. We

propose an approach for inferring models of web applications and fuzzing from

such models and an attack grammar. We infer control plus taint flow automata,

from which we produce slices, which narrow the fuzzing search space. Genetic

algorithms are then used to schedule the malicious inputs which are sent to the

application. We incorporate a test verdict by performing a double taint inference

on the browser parse tree and combining this with taint aware vulnerability

patterns. Our implementations LigRE and KameleonFuzz outperform current

open-source black-box scanners. We discovered 0-day XSS (i.e., previously

unknown vulnerabilities) in web applications used by millions of users.

Keywords: Security, Fuzzing, XSS, Evolutionary Algorithm, Inference,

Artificial Intelligence, Web Applications
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CHAPTER 1

Introduction

Why did I rob banks? Because I enjoyed it. I loved it.

Go where the money is...and go there often.

[Sutton & Linn 2004]

The world is a dangerous place to live ; not because of those who do evil, but because

of those of the people who don’t do anything about it.

[Einstein 1955]

Computer security is the cancer of the software industry. There is no money to

prevent it. Only sick persons care about it, but it is generally already too late.

However, everybody will have to face it someday.

[Ruff 2013b]

Do not underestimate the importance of cyber-attack capabilities.

I do not know how to defend a system if you are unaware of how to attack it.

[Filiol 2013b]

1.1 Context

Actors and Threats The Internet is a connected network of billions of devices.

For the simplicity of administrating them, we plugged into this network of net-

works devices having an impact on the physical world: traffic control, power plants,

gas stations, etc. Corporations and governments have data-stores connected to the

Internet [Duwell 2013]. Banks and trading systems offer an interface with the In-

ternet. If not secured, those systems make the Internet a playground for hack-

ers with varying motivations (e.g., enemy governments, army, individuals paid by

Mafia, etc.).

As security researchers, it is our duty to develop new techniques to protect bet-

ter national assets such as: energy, money, communication and information. More

11



1.1. CONTEXT CHAPTER 1. INTRODUCTION

specifically, in this cyber war, we want to protect computer assets from attacks

exploiting vulnerabilities (flaws in the system). A way to achieve such goal is to

detect vulnerabilities, and more precisely to detect them as soon as possible. If they

are present in our systems, we need to patch them to prevent exploitation (defen-

sive security). If they are present in enemy systems, attackers may want to exploit

them to gain additional privileges (offensive security). The source code of appli-

cations may not be available (e.g., when testing integrated or remote components).

In such cases, we need to rely on black-box testing techniques. This thesis focuses

on detecting certain classes of vulnerabilities in a black-box test context.

Security and Vulnerabilities Figure 1.1 shows a dependability tree according to

the [Avižienis et al. 2004] taxonomy. We mark in bold our focus for this thesis.

We detect errors and failures that affect availability (readiness for correct service),

Dependability & Security

Means

Forecasting

Removal

Tolerance

Prevention

Threats

Failures

Errors

Faults

Attributes

Safety

Reliability

Maintainability

Integrity

Confidentiality

Availability

Figure 1.1: Dependability & Security Tree [Trivedi et al. 2009] and our Focus

integrity (absence of improper system alteration), confidentiality (absence of unau-

thorized disclosure of information). More specifically, we search for vulnerabilities

in black-box test context. We address the automatic detection of Cross-Site Script-

ing (XSS).
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CHAPTER 1. INTRODUCTION 1.2. VULNERABILITIES

1.2 Vulnerabilities

1.2.1 Panorama

A vulnerability is an application fault which ultimately will lead to a failure violat-

ing a security property that was supposed to always hold.

Afterwards we list a non-exhaustive panorama of vulnerabilities:

• Code execution: permit an attacker to force an application to execute code

he created, because of a confusion between code and data. In such cases,

the integrity of the executed code is violated. It generally means that the

confidentiality and the integrity of the data processed by the application is

also violated. It may also mean a violation of the availability property for

the application. Code injection vulnerabilities include:

– memory corruption (e.g., Buffer Overflow),

– web command injection (e.g., Cross Site Scripting),

– cross-format interpretation (e.g., GIFAR [Magazinius et al. 2013]).

• Logical: for example, in an authentication protocol, a parameter is lacking

a security property (e.g., encryption, freshness, etc.), this makes the whole

scheme vulnerable to a particular kind of attacks:

– confidentiality: a credential is transmitted over an unencrypted chan-

nel, e.g., not over an SSL encrypted connection;

– integrity: an unsigned authentication token permits a user to imperson-

ate another one, e.g., session id;

– freshness: an action vulnerable to replay attack e.g., Cross-Site Request

Forgery (CSRF)[Lin et al. 2009], [Armando et al. 2008].

• User interface : techniques trick the user to perform an action, whereas he

believes performing another one, e.g., click-jacking [Rydstedt et al. 2010].

Such techniques violate the integrity of the user interface, thus of his actions.

• Flawed access control: depending on the path used to access an object,

there may be a discrepancy in the way the access control is enforced. Such a

situation frequently occurs when developers introduce new features in Web

Browsers (e.g., [Heiderich 2012a, Heiderich et al. 2010, Heiderich 2013b]).

Such vulnerabilities generally result in the violation of the integrity of ob-

jects. In the case of a Same-Origin Policy Bypass [Huang et al. 2010], the

confidentiality of documents belonging to other security domains is also vi-

olated.

• Flawed or weak cryptography: e.g., sensitive information is sent in clear-

text [Soltani 2013] or the implementation of a cryptographic algorithm is

flawed [Thomas 2013]. Either the integrity, or the confidentiality are gener-

ally targeted.

13



1.2. VULNERABILITIES CHAPTER 1. INTRODUCTION

In this thesis, we will search for code execution vulnerabilities.

1.2.2 About Code Execution Vulnerabilities

Code execution vulnerabilities arise because of the way an application is processing

data, it may interpret part of it as code. Examples of code execution vulnerabili-

ties include Buffer Overflow – a memory corruption vulnerability – and Cross Site

Scripting (XSS) – a Web Command Injection vulnerability.

A former black-hat1 used to make money with carding2 and botnets3. He used

to rely on XSS 55% of the time to take control of a website [Hansen 2013]. In

order to gain access to a web application, he used XSS more frequently than mem-

ory corruption vulnerabilities. In terms of frequency, SQL injection was the third

most common vulnerability category he used. All those three kinds of low-level

vulnerabilities permit attacker controlled code execution. XSS and SQL injection

belong to the family of Web Command Injection. SQL injection ranks first in the

OWASP top 10 of 2013, and XSS ranks third [OWASP 2013b]. Whereas years

ago, the focus was on desktop web application development, there is an increase

in customized versions of web applications for mobile devices (e.g., Android, IOS

applications). In this domain, developers seem to make similar mistakes. As a

result, numerous mobile applications are sensitive to Web Command Injection vul-

nerabilities [Moulu 2013].

1.2.3 Web Command Injection

Web Command Injection (WCI) belongs to the code execution vulnerabilities.

WCI is a family of vulnerabilities that affects applications interpreting a script-

ing language (e.g., HTML, SQL, Shell, PHP etc.) interpreters. WCI vulnerabilities

are characterized by the possibility to escape a confinement within a grammati-

cal structure. Example of Web Command Injection include Cross Site Scripting

(XSS), SQL injection, PHP Code injection, etc.

Cross-Site Scripting (XSS) is one of the currently most dangerous web

based attacks: it ranks third in the [OWASP 2013b] Top 10 vulnerabilities.

[Zalewski 2011b] describes them as “one of the most significant and pervasive

threats to the security of web applications.” Criminals use XSS to spam social

networks, spread malwares and steal money [Luo et al. 2009]. In 2013, XSS

were found in Paypal, Facebook, and eBay [Kugler 2013, Nirgoldshlager 2013]

[ZentrixPlus 2013]. We shall present XSS in Chapter 2.

1Unauthorized hacker having malicious intentions; of course, the notion of maliciousness is de-

pendent on the entity which assesses it.
2The process of cloning credit cards.
3Network of bots, computer nodes controlled by an attacker.

14



CHAPTER 1. INTRODUCTION 1.3. OBJECTIVES

Consequences of XSS an XSS vulnerability is activated by a maliciously crafted

HTTP request, or a maliciously crafted Ajax request. Its exploitation provides to

an attacker the capability of injecting arbitrary HTML code within portions of the

web application. Thus, the victim web interpreter will execute a sub-interpreter

code, which is controlled by the attacker. This permits:

• exfiltrating data (e.g., emails [Krebs 2012], authentication tokens

[Naraine 2010], bank account password, contacts [Acunetix 2010],

etc.);

• using the victim computer as a proxy or a node of a malicious net-

work (e.g., spam relay, DDoS, exploiting websites, malware propagation

[Faghani & Saidi 2009], mining bitcoin for the attacker, etc.);

• de-anonymizing a target: a browser can be uniquely tracked – up to a cer-

tain precision – via HTTP headers, available plugins and version, subset of

interpreted codes [Nikiforakis & Vigna 2013] [Abgrall et al. 2012];

• exploiting a memory corruption vulnerability in a browser sub-interpreter

to execute attacker controlled assembly code (e.g., [CVE-2008-1380 2008,

CVE-2006-4565 2006] target JavaScript interpreters in browser and email

client), to gain additional privileges (e.g., escape the browser process, obtain

additional security tokens, etc.).

1.3 Objectives

Our main problem is:

How to improve the efficiency and precision of black-box security testing

for automatically detecting XSS?

In order to address it, we face several sub-problems:

• sources: on which parts of the inputs to act for an efficient security testing?

• input sequences: how to drive the system into a desired state?

• maliciousness: how to create parts of inputs likely to exhibit a failure?

• test verdict: how and where to observe the effect of an input?

• confidence: which criteria characterize a precision in security testing?

1.4 Contributions

Our contributions are:

• an inference and slicing approach of particular control and taint flows for

guiding XSS search;

15



1.5. DISSERTATION STRUCTURE CHAPTER 1. INTRODUCTION

• a combination of model inference and fuzzing for detecting Type-1 (re-

flected) & Type-2 (stored) XSS;

• an implementation of these approaches and their evaluation,

• which led to the discovery and responsible disclosure4 of previously un-

known vulnerabilities: four stored XSS (CVE-2013-7297[Duchène 2013a],

[Duchène 2014d], [Duchène 2014c]), and of forty reflected XSS (CVE-

2014-1599 [Duchène 2014a], [Duchène 2014c]), some of them impacting

millions of users.

1.5 Dissertation Structure

We introduce the addressed problems in Chapter 2. We present the high level

architecture of our approach in Chapter 3. Our approach for black-box XSS detec-

tion combines a particular control+taint flow inference (Chapter 4) and evolution-

ary fuzzing (Chapter 5). We evaluate this approach in Chapter 6. We provide an

overview of related techniques in Chapter 7. We conclude and provide directions

for future work in Chapter 8.

4In the responsible disclosure vulnerability model, vendors having a vulnerability in their product

are allowed a period of grace before the security researcher who discovered this vulnerability makes

it public.
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CHAPTER 2

Problem Statement

The only acronyms that matter: RCE (Remote Code Execution), LPE (Local

Privilege Escalation), COE (Continuation of Execution)

[Grugq 2013]

The importance of XSS may overstep that of memory corruption vulnerabilities.

[Heiderich 2013a]

Due to their wide existence and their high impact when exploited (an attacker

is able to remotely execute arbitrary code in the victim’s interpreter), we focus in

this thesis on a particular case of web command injection: XSS. We define XSS

in Section 2.1, and the problem of automatically detecting XSS in black-box in

Section 2.5.

Web Command Injection (WCI) is a family of vulnerabilities that affects ap-

plications interpreting languages at run-time (e.g., HTML, SQL, Shell, PHP etc.).

Since they compile and execute instructions at run-time, those are referred to as in-

terpreters. Command injection vulnerabilities are characterized by the possibility

to escape a confinement within a structure.

Each WCI subfamily has a name dependent on the context (i.e., the output

grammar: database interpreter, browser interpreter, shell...). e.g., for the HTML

grammar, WCI is named XSS.

HTTP Request

Input

HTTP Response

Output
Web Client

(e.g., Firefox)
Web Server
(e.g. Apache httpd)

 <?php

 code

 ?>

White/Grey-BoxBlack-Box

Figure 2.1: Black-Box Web Command Injection Detection

17



2.1. CROSS SITE SCRIPTING (XSS) CHAPTER 2. PROBLEM STATEMENT

2.1 Cross Site Scripting (XSS)

The detection of XSS involves a taint-flow analysis on a control-flow graph.

Example A: an XSS involves a control-flow P0wnMe is a voluntarily vulnera-

ble web application containing several XSS. Once authenticated, a user Peach can

save a new message, view the saved ones, or logout. We illustrate several function-

alities of the P0wnMe application in Figure 2.2, Figure 2.3 and Figure 2.4.

Figure 2.2: Screenshots of P0wnMe v0.3: login

Figure 2.3: Screenshots of P0wnMe v0.3: Filtered Type-1 (reflected) Taint Flow

18



CHAPTER 2. PROBLEM STATEMENT 2.1. CROSS SITE SCRIPTING (XSS)

Figure 2.4: Screenshots of P0wnMe v0.3: Type-2 Taint Flow

Peach saves a note, e.g., buenosdias, by filling and sub-

mitting the form, i.e., sending the abstract input POST

/?action=save message&msg= buenosdias 1 (transition 7 → 17

in the control flow model shown in Figure 2.5) to the application. We describe in

Chapter 4 how to construct such control flow models, where nodes represent pages

and transitions HTTP requests. Such Control Flow Models (CFM) are different of

assembly control flow graphs that most security engineers are used to work with,

but CFM capture similar information at a higher level of abstraction. Later on, she

lists the saved notes, by sending GET /?action=get messages (transition

18→ 21). An extract of corresponding output is shown in Listing 2.1.

1 <H2>list of saved messages</H2>

2 buenosdias <A href="./?action=delete&id=1">[X]</A>

Listing 2.1: Excerpt of P0wnMe Output for the Transition 18→ 21

The value of the input parameter msg, sent in the transition tsrc = 7 → 17, is

reflected in 18 → 21: we observe it into the output. This reflection is not filtered:

the exact value sent in 7→ 17 is copied into the output of tdst = 18→ 21.

1We highlight text to indicate that it is part of a taint flow (partial string copy).

19



2.1. CROSS SITE SCRIPTING (XSS) CHAPTER 2. PROBLEM STATEMENT

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login': 'yoda' ,
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /'}

GET
/?action=
logout&

33

POST /? 
 {'message2': 

'2_e_g_a_s_sem '}

17

POST /? 
{'action': 'save_message'

'msg': '   '  }

9

GET /?action=
view_messages

GET /

GET /?action=
view_messages

GET / 
 GET /?action=

message&

GET /?action=
view_messages&

18 GET /?

21

GET /?action=
view_messages

GET /?

GET /?action=delete
_message&id=1

start

GET /

   buenosdias

Figure 2.5: Extract of a Control Flow Model of the P0wnMe Web Application

Moreover, in this application, notes are shared between users. Thus,

an attacker Koopa Troopa would attempt to send a malicious msg value

to escape the confinement (in Listing 2.1, a reflection is constrained in a

specific context: outside tags, before the <A> tag). An example of mali-

cious input is tsrc = 7 → 17 (POST /?action=save message&msg=

buenosdias <script> alert(1337)</script> ).

An excerpt of the corresponding output for the subse-

quent transition tdst = 18 → 21 is ...of saved

messages</h2> buenosdias <script>alert(1337)</script> <a

href="./?action=delete....

When Peach’s browser (the victim) parses this output, it executes the code

introduced by the attacker, and a messagebox is displayed, as shown in Figure 2.6.

In order to detect XSS, we need to navigate in the web application. Thus, we

need information about the control flow of the application. The problem is that

most deployed web applications lack formal documentation: a formal behavioral

model is rarely available. However, such models improve the ability to perform a

pertinent security testing campaign for an application [Takanen et al. 2008], espe-

20



CHAPTER 2. PROBLEM STATEMENT 2.1. CROSS SITE SCRIPTING (XSS)

Figure 2.6: Successful exploitation of an XSS in the P0wnMe application

cially if they combine control and taint information [Bekrar 2013b]. Thus the first

sub-problem to address is:

XSS.1 Navigating in the Application:

→ How to obtain a model of the application? What kind of models are

appropriate for detecting XSS?

Example B: an XSS involves a taint flow A fictive website

http://yoshi.jp suffers from an XSS vulnerability. A necessary con-

dition for an XSS is a reflection, i.e., a taint-flow i.e., a partial input copy from

an attacker controlled input parameter to a sink, part of an output of the web

application, as illustrated in Figure 2.7. Our notion of taint flow is different to

the traditional taint propagation rules for each assembly instruction in grey-box

contexts [Newsome & Song 2005, Xu et al. 2006]. We define our taint notion in

web applications in black-box more precisely in Definition 3.

Client→ Server:

1 ...

2 GET /nice.html?name= birdo HTTP/1.1

3 Host: yoshi.jp

Client← Server:

1 ...

2 Hello birdo !

Figure 2.7: The Input Parameter name is reflected into the output of the web

application

Koopa Troopa wants the victim Peach to execute a code that he controls. He

observes that the reflection is located in a structure “text node, outside a tag”.

21



2.2. DEFINITIONS CHAPTER 2. PROBLEM STATEMENT

He wants to “escape” this text node, and includes additional interpreter nodes

such as JavaScript (JS) ones. Thus he crafts the parameter name with the value

lakitu<script>alert(’evil’);</script> . To achieve exploitation,

he creates a page hosted on koopatroopa.fr, which will force the user browser

to perform this malicious request to the vulnerable website (hence the cross-

domain), once the code of koopatroppa.fr is interpreted (see Figure 2.8).

Client→ Attacker:

1 GET / HTTP/1.1

2 Host: koopatroopa.fr

Client← Attacker:

1 ...

2 <iframe src="http://yoshi.jp/nice.html?name=

lakitu<script>alert(’evil!’);</script> ">

3 ...

Client→ Server:

1 GET /nice.html?name= lakitu<script>alert(’evil!’);</script> HTTP

/1.1

2 Host: yoshi.jp

Client← Server:

1 ...

2 Hello lakitu<script>alert(’evil!’);</script> !

Figure 2.8: Successful exploit of an XSS

Thus, in order to detect XSS, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict

→ How to infer the taint?

→XSS.2.1 Where are the potential sinks (reflections)?

2.2 Definitions

We abstract an actual Web site as a Web Application. The Web Application re-

ceives a spiderlink and replies with a page model. As illustrated in Figure 2.9,

spiderlinks represent the HTTP requests sent to the concrete Web site, and page

models abstract the HTTP responses.
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spiderlink i page model p

HTTP request

i

HTTP reply

o

abstract level

concrete level

Website

concretize abstract

Figure 2.9: Abstraction and Concretization Functions for Web Applications

2.2.1 Spiderlink and Page Model

We define abstract(o) which abstracts an HTTP reply o into a page model p.

As illustrated in Figure 2.10, a page model is a prefix tree containing several spi-

derlinks (i.e., abstract links from <A> tags or abstract forms from <form> tags).

We also define concretize(i) which produces an HTTP request req from a

spiderlink i.

Input, concretize(Spiderlink i) Let Σ be an alphabet. Each spiderlink is

built from a link or a form.

Definition 1 Spiderlink

A spiderlink is a couple composed of:

• one action: the substring before the ? of an Hypertext Transfer Protocol

(HTTP) Uniform Resource Locator (URL)

• a list of input parameters

(name, value,method) ∈ {Σ∗}2×{GET, POST, COOKIE, HEADER}

Output, abstraction to Page Model p A page model is an abstraction of a con-

crete output of a web application. It contains spiderlinks.
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Definition 2 Page Model

Let o ∈ O be an output of a web application. Let F(o) be the set of links and

forms in o. A page model p = abstract(o) is a prefix tree which is built from the set

of spiderlinks and dompaths obtained from F(o). It has at least six levels including

the root node.

For each spiderlink f ∈ F(o), a set of nodes is added to the tree. Each set

consist of the following nodes or groups of nodes, ordered from the immediate

children of the root node to the deepest ones:

• dompath is a node, child of the root node. Its value is a string ∈ {/([a − z] ∪

{/})∗}, the shortest path in the Document Object Model (DOM) from the root

to the <A> or <FORM> tag.

• action is a tree of nodes, of depth ≥ 1. Its root is a child of a dompath node.

Each node of an action subtree has a string value contains a part of an HTTP

URL before the ? split by /

• params is a node, child of an action node. Its value is a list of strings: the

list of parameter names.

• values is a node, child of a params node. Its value is a list of strings: the list

of parameter values.

• methods is a node, child of a values node. Its value is a list of parameter

methods, each element ∈ {GET, POST, COOKIE, HEADER}

Consider the HTML ouput in Listing 2.2. The corresponding page model is

shown in Figure 2.10. The left side shows the browser rendering, while the right

side represents the page model. It contains four spiderlinks. The prefix tree rep-

resentation makes easier the identification of similarities between spiderlinks and

between page models.

1 ...

2 <html>

3 ...

4 <body>

5

6 <div class=’menu’>

7 <span id=’menu-left’>

8 <a href=’/’>Home</a>

9

10 </span>

11 <span id=’menu-right’>

12 <a href=’/login’>Sign in</a>

13 | <a href=’/newaccount.gtl’>Sign up</a>

14 </span>

15 </div>

16

24



CHAPTER 2. PROBLEM STATEMENT 2.2. DEFINITIONS

page

/html/body/div/span/a

/

()

()

()

/login

()

()

()

/newaccount

()

()

()

/html/body/div/form

/login

(uid,pw,submit)

(∅,∅,’Login’)

(GET,GET,GET)

Figure 2.10: Abstraction: graphical representation of the output and corresponding

Page Model.

17 <div>

18 <h2>Gruyere: Login</h2>

19 </div>

20

21 <div class=’content’>

22 <form method=’get’ action=’/login’>

23 <table><tr><td>

24 User name:

25 </td><td>

26 <input type=’text’ name=’uid’>

27 </td></tr><tr><td>

28 Password:

29 </td><td>

30 <input type=’password’ name=’pw’>

31 </td></tr><tr><td></td><td align=’right’>

32 <input type=’submit’ name=’submit’ value=’Login’>

33 </td></tr></table>

34 </form>

35 </div>

36 </body>

37 </html>

Listing 2.2: The output o (extract)

2.2.2 Taint

The taint is a metadata information between inputs and data handled by the ap-

plication [Livshits 2012]. It designates the possibility of an input to explicitly in-

fluence such data. The taint is a dynamic notion which flows between data. It is

generally a dynamic white-box (assume the availability of the application source

code) or grey-box (assume the availability of the application code) notion, as in

[Rawat & Mounier 2010, Bekrar et al. 2012], although in our case we will perform

taint inference dynamically in black-box (see Section 4.3).
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When considering taint propagation in grey-box or white-box, three sub-

problems arise:

• Taint Sources: When is an object directly influenced by inputs? In Table 2.1

we list examples of taint sources.

• Taint Propagation rules: When is an object indirectly influenced by inputs?

• Taint Removal: When is an object not influenced by inputs?

Taint tracking is widely used in white-box/grey-box test context for vulnerabil-

ity runtime detection, e.g., for XSS [Vogt et al. 2007] and for Memory Corruption

Vulnerabilities [Bosman et al. 2011].

Practical data tainting on important sized applications may only consider ex-

plicit value influence (e.g., assignments) in taint propagation rules, and not con-

sidering indirect value influence (e.g., resulting from a conditional check). Indeed,

such taint tracking systems aim at avoiding too numerous objects to be tainted, in

order to reduce the number of false positives in the test verdicts [Haller et al. 2013].

In black-box test context, as we cannot track the taint flow from a source to

a sink, we have to infer it, if possible. In Section 4.3, we provide information on

taint inference for XSS.

In Table 2.1, we list examples of code execution vulnerabilities, their taint

source, the code at server side, and sometimes how to infer knowledge in black-

box.

Vulnerability Taint Source Sink & Tainted Argument

(white-box)

Inference

(black-box)

Memory

Corruption

File read(han, buf ,nb)

Network read recv(sock, buff ,len,flag)

Keyboard input scanf("%d", &num )

XSS GET/POST pa-

rameters values

print(

$ POST[’email’] )

input copied to

the output

SQL injec-

tion

Cookie param-

eter values

sql query(

$ COOKIE[’sess id’] )

error message

Shell Injec-

tion

Parameter val-

ues

shell exec( $ POST [’

action ’])

error message

Table 2.1: Examples of Vulnerabilities and Taint Markers

In black-box test context, XSS vulnerabilities arise when a tainted data (re-

sulting of a partial copy of an input parameter value, a string of characters) appears

in at least one substring of one output (HTML code), and gets executed by the

browser as code.
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Definition 3 Taint
Let xsrc and odst be two strings. xsrc{odst denotes xsrc taints odst. Our notion of

taint measures the similarity between two strings. It uses string distance functions.

We define more precisely our notions of taint in Definition 5 and Section 5.2.

2.2.3 Vulnerability and Exploit

A vulnerability is a fault leading to an error. If a fault is traversed by a taint flow,

which is used to stimulate the fault, this will lead to a failure. Thus the problem of

searching vulnerabilities can be addressed by searching for sinks, and then search-

ing for inputs activating those sinks in a way prone to exhibit failures.

We are interested in vulnerabilities which violate the code integrity property.

Such vulnerabilities arise due to confusion between data and code: the interpreter

will consider attacker controlled data as code and thus execute it.

Cross Site Scripting (XSS) is a Web Command Injection vulnerability within

the HTML grammar. An XSS permits attacker controlled code execution at client

side. An example of sink for XSS is the PHP print() function:

<?php print( $ GET[’message’] ); ?>.

For some malicious messages, once the client browser renders the webpage, the

property stating that the content of the message variable should not be executed by

the browser is violated.

An exploit is an input activating a vulnerability s.t. the application will violate

a security property (in our case the integrity of the code executed at browser side,

as it will execute a payload resulting of the input).

Within a given class, some vulnerabilities are more complex to find than oth-

ers. The complexity of a vulnerability is an increasing metric w.r.t. the minimum

number of traversed states of the control flow model to violate a security property.

When searching for Web Command Injection, the filter (sanitizer) and the num-

ber of distinct traversed nodes in the control flow models are factors influencing

the complexity of a vulnerability. When searching for Memory Corruption, the

number of traversed jump instructions affects the difficulty in finding such vulner-

abilities.

2.2.4 Web Application, Reflection, Syntactic Confinement, XSS

Figure 2.7 illustrates a Reflection (i.e., a taint flow from an input parameter value to

an output). A reflection can be tracked (e.g., in white-box test context), or inferred

(e.g., in black-box test context). We formally define a reflection in Definition 5.
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Definition 4 Web Application (WA)

Let P be a set of page models, and I be a set of spiderlinks.

A Web Application (WA) W = (N, n0,T, I, P,Π) , is a graph:

• N is a set of nodes. n0 ∈ N is the initial node of the application.

• Each transition t = (na, i, nb) ∈ T ⊂ (N×I×N).

• Π : N → P is a mapping which to each node n associates a page model p.

In Section 2.5.2, we elaborate on the reasons why we consider that a reflection

only involves one taint source parameter. In Chapter 8, we provide insights on how

to extend our work in the case of several taint sources.

Definition 5 Reflection
Let Σ be an alphabet. Let W = (N, n0,T, I, P,Π) be a Web Application (Defi-

nition 4). Let S I = [i0, .., isrc(xsrc), .., idst] be a sequence of spiderlinks (∈ I+) and

S O = [o0, .., osrc, .., odst] (∈ Σ+
+

) the corresponding sequence of concrete outputs

(trace). When submitting the input idst, the obtained concrete output is odst ∈ Σ
+.

Let δ ∈ N be a threshold. Let xsrc be an input parameter value received in the

input isrc of the source transition tsrc. The execution of S I on W terminates with

tdst = (ns
dst
, idst, n

e
dst

).

(xsrc, tsrc, tdst, odst) is a δ-reflection if:

• xsrc taints odst, there is a partial copy of length ≥ δ of xsrc into odst i.e.,

∃y ∈ Σ+

– |y| ≥ δ

– (y ⊑ xsrc) ∧ (y ⊑ odst), where x1 ⊑ x2 ⇐⇒ ∃x3, x4 ∈ Σ
∗2 , s.t.

x2 = x3x1x4

• Π(ne
dst

) = abstract(odst)

We denote it as: (xsrc, tsrc){δ(odst, tdst).

A sanitizer/filter is a mechanism at server-side which validates and even-

tually modifies (mutates) a fuzzed value before it is reflected. Sanitiz-

ers may modify the input parameter values, e.g., by removing some char-

acters having a special meaning in the considered grammar (e.g., (‘, ”, >

, <) in the HTML grammar for XSS vulnerabilities). A common mis-

take when building such filters is to overlook the context of the reflection

[Weinberger et al. 2011a] (for instance always applying a given string transfor-

mation regardless of where the reflection happens a.k.a. “Context-Insensitive

Auto-Sanitization”. This may result in a false sense of security, in which the
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developer believes to be protected from XSS, whereas the sanitizer is flawed

[Weinberger et al. 2011a]. We illustrate an example of flawed sanitizer in List-

ing 2.3.

1 <?php function webapp_filter($str) {

2 if(eregi(’"|‘|>|<|;|/’,$str)) {

3 $filtered_str = "XSS attempt!";

4 } else {

5 $filtered_str = str_replace(" ","",$str);

6 }

7 return $filtered_str;

8 } ?>

Listing 2.3: A vulnerable sanitizer in P0wnMe

Since filter/sanitizer may change significantly the fuzzed value before it gets

reflected, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict

→XSS.2.2 Can we exploit a potential sink? (i.e., find an input which

bypasses the filter) How to infer the taint in the presence of filter?

Generating an input which is able to partially bypass the filter by partially being

copied into the output is not a sufficient condition for a successful XSS exploit.

Indeed, the reflected value has to “escape” the structure in which it was confined.

We name this objective non syntactic confinement.

Figure 2.11 illustrates two reflections. The first one is syntactically confined

according to the grammar (see the production rules in Figure 2.12), and the second

one is not. Graphically, the first reflection is syntactically confined because there

exists one non-terminal (TEXT) s.t. the whole produced sub-tree is tainted . This

is not the case for the second reflection: the first common parent non-terminal of

TEXT and SCRIPT is START, and its sub-tree is not fully tainted .

[Su & Wassermann 2006, Wassermann 2008] formalized the problem of web

command injection with the notion of Syntactic Confinement (Definition 6). We

use the following notations: Let G = (V,Ω, S ,R) be a context-free grammar with

nonterminals V , terminals Ω, a start symbol S , and productions R. Let “⇒G”

denote “derives in one step” s.t. αAβ⇒Gαγβ if A→γ ∈ R, and let “⇒∗G” denote

the reflexive transitive closure of “⇒G”. If S ⇒∗G γ, then γ is a “sentential form”.

Definition 6 Syntactic Confinement

Given an unambiguous grammar G = (V,Ω, S ,R) (V non terminals, Ω is an

alphabet of terminals, S a start symbol, R production rules), a word ω = ω1ω2ω3 ∈

Ω
∗, ω2 is syntactically confined in ω iff there exists a sentential form ω1Xω3 such

that X ∈ (V ∪Ω) and S ⇒∗G ω1Xω3 ⇒∗G ω1ω2ω3.
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Output and Taint Parse Tree Syntactically

Confined?

<h1>saved

messages</h1>

buenosdias <br />

saved 

messages
buenosdias<h1> </h1> <br />

TEXT

TEXT

START

H1_TITLE BR

X

<h1>saved

messages</h1>

buenosdias <script>

alert(1337) </script>

<br />
saved 

messages
buenosdias<h1> </h1> <br />

TEXT

TEXT

START

H1_TITLE BRSCRIPT

</script><script> alert(1337)

JS_CODE
✗

Figure 2.11: Syntactic Confinement of two Reflections in G =HTML

START→ [0:20](H1 TITLE | TEXT | BR | SCRIPT)

H1 TITLE→ "<h1>" TEXT "</h1>"

TEXT→ "a" | "b" | ...

BR→ "<br />"

SCRIPT→ "<script>" JS CODE "</script>"

Figure 2.12: Extract of the HTML Grammar Production Rules

In Definition 7, we give a restrictive definition of the notion of Web Command

Injection (WCI).

Definition 7 Web Command Injection (WCI)

Let M be a Web Application (Definition 4), Re f l(M) be a set of reflections

(Definition 5) in M, and G be a grammar. Let δ ∈ N be a threshold. Let r =

(xsrc, tsrc, tdst, odst) ∈ Re f l(M) be a δ-reflection (Definition 5), where for a given

trace, xsrc is a concrete input parameter value of the transition tsrc, and odst is the

concrete output value of the transition tdst. Let Z = taintedsub(xsrc, odst) be the set

of substrings of length ≥ δ in odst which are tainted by xsrc.

r is a Web Command Injection (WCI) w.r.t. to G, if ∃ z ∈ Z, s.t. z is not syntactically

confined in odst w.r.t. G.

A WCI permits to violate the code integrity property at the level of G.

Type-1 (reflected) and Type-2 (stored) XSS exist since applications handle dy-

namic data (i.e., since the first cgi-bin scripts appeared in web applications). As

of today, this problem is still unsolved: no scanner detects 100% of the XSS in all
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Definition 8 Cross Site Scripting (XSS) Vulnerability

We define a Cross-Site Scripting (XSS) as a Web Command Injection (Defini-

tion 7) in which the output grammar G is HTML (and the interpreted grammars:

e.g., JavaScript, CSS, etc.).

Definition 9 XSS Types

XSS Type Transition

(request)

Characteristic

“Pure” Type-0 /

DOM XSS

Ajax In a reflected DOM-XSS, the taint flow

does not involve an HTTP request.

Nodes are DOM states and transitions

are Javascript function or event calls.

Type-1 / Re-

flected XSS

HTTP The source and destination transitions

are the same: tsrc = tdst. At least one

HTTP request is involved.

Type-2 / Stored

XSS

HTTP The source and destination transition are

different: tsrc , tdst. At least two HTTP

requests are involved.

Stored DOM-

XSS

Ajax + HTTP At least one Ajax request and one HTTP

request are involved.

web applications. Type-0/DOM XSS exist since web application execute dynamic

code at client side (e.g., JavaScript Ajax transitions, such as Facebook). DOM XSS

involve Ajax transitions. In this thesis, we only focus on Type-1 (reflected) XSS

and Type-2 (stored) XSS.

[Heiderich et al. 2013] browser parser quirks induces transformations conform

to the definition of the categories mentioned in Definition 9.

2.3 Fuzzing

Fuzzing is the automatic generation and evaluation of abnormal inputs in order

to trigger the targeted vulnerability family(ies). Fuzzing is sometimes named as

“act of software torture” [Vuagnoux 2005]. The term was coined by Barton Miller

[Barton et al. 1989, Forrester & Miller 2000].

When searching for XSS in black-box, we will create fuzzed inputs from con-

trol and taint flows knowledge in order to escape the syntactic confinement of re-

flections. Thus we need to answer the following sub-questions:
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XSS.3 Creating Fuzzed Inputs:

• XSS.3.1 Where to fuzz inputs? Which inputs to select? On which

parts of those inputs to act?

• XSS.3.2 How to fuzz inputs? How to act on specific parts of those

inputs?

• XSS.3.3 How to prioritize inputs fuzzing? Which potential sinks

should we test first?

2.4 Other Web Command Injection Vulnerabilities

XSS is one vulnerability in the Web Command Injection family. We list other

sub-categories in Table 2.2, such as SQL injection, Shell Command Injection, PHP

Code Injection etc.We believe that the work applicable to XSS can also be applied

to those types of WCI.

Vulnerability Grammar Sink Similar Vuln. in

Cross Site Script-

ing (XSS)

HTML (&

sub-grammars)

print, echo

SQL Injection

(S QLi)

SQL sql query, etc. LDAP, NoSQL, etc.

Shell Command

Injection

bash, sh, zsh

etc.

exec

XML External

Entity (XXE)

XML XML processor

PHP Code Injec-

tion

PHP eval Ruby, Python, etc.

Table 2.2: Sub-Categories of the Web Command Injection Vulnerability Family

2.5 Summary of Addressed Problems

Automatically detecting XSS is an open problem. In the case of access to the

source code, white-box techniques range from static analysis to dynamic monitor-

ing of instrumented code. If the code or the binary are inaccessible, black-box

approaches generate inputs and observe responses. Such approaches are indepen-

dent of the language used to create the application, and permit a generic harness

setup. As they mimic the behaviors of external attackers, they are useful for offen-

sive security purposes, and may test defenses such as web application firewalls.

Automated black-box security testing tools for web applications have long been

around. However, even in 2012, the fault detection capability of such tools is
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low: the best ones only detect 40% of non-filtered Type-2 XSS, and 1/3 do not

detect any [Bau et al. 2010, Bau et al. 2012]. This is due to an imprecise learned

knowledge [Doupé et al. 2012], imprecise test verdicts, and limited sets of attack

values [Duchène et al. 2013b].

Thus there is a need for methods which detect Type-2 XSS (and server-side

filtered Type-1 XSS) using a black-box test context.

Problem:

→ How to automatically detect Type-1 and Type-2 XSS in web

applications, with a black-box test context?

2.5.1 Problems

According to the previous discussion, in order to effectively address XSS detection,

the following sub-problems must be addressed:

• XSS.1 Navigating in the Application: In order to detect XSS in web appli-

cation, we need to navigate in the application. Thus, we need information

about the control flow of the application. The problem is that most deployed

web applications lack formal documentation: a formal behavioral model,

such as an FS (Definition 5), is rarely available. However, such models im-

prove the ability to fuzz an application.

→ How to obtain a model of the application? What kind of models are ap-

propriate for detecting XSS?

• XSS.2 Achieving a Test Verdict:

Server-side sanitizers may perform significant string transformations be-

tween the fuzzed value and the reflection. Since such reflections are hard

to observe, there is a risk of false negative in the taint inference, thus in the

test verdict.

→ How to perform a test verdict in the case of filtered reflections?

– XSS.2.1 Where are the potential sinks?

– XSS.2.2 Can we exploit a potential sink? How to infer the taint in the

presence of filter?

• XSS.3 Creating Fuzzed Inputs: When creating fuzzed inputs, we need to

answer the following sub-questions:

– XSS.3.1 Where to fuzz inputs? Which inputs to select? On which parts

of those inputs to act?

– XSS.3.2 How to fuzz inputs? How to act on specific parts of those

inputs?
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– XSS.3.3 How to prioritize inputs fuzzing? Which potential sinks should

we test first?

The core of this thesis is the automatic black-box detection of vulnerabilities

that permit attacker controlled code execution. Those include cross-site scripting.

2.5.2 Hypotheses on the Web application

• Reset: as we want to replay some input sequences, we assume the ability to

reset the application in its initial state. Candidate solutions include applying

a virtual machine snapshot, but also killing the application, restoring the

database in its initial state and starting it again.

• Defensive Mechanisms: Since we are interested in finding XSS vulnera-

bilities with a black-box test context, and since the deployment of many

counter-measures is very low as of today (for more details, see Table 8.1 in

Chapter 8), we assume that the only counter-measure which may be present

in the tested web application is server side sanitizer. We believe that our ap-

proach for addressing this problem (see Chapter 4 and Chapter 5) could also

address situations when a Web Application Firewall (WAF) is present.
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CHAPTER 3

Our Proposal

Nobody ever defended anything successfully, there is only attack, attack and attack

some more.

Gen. George S. Patton ; 1885–1945

Glad to see more and more companies/researchers selling 0Ds to Govs. Software

vendors are losing the game but they are not yet aware of that.

[Bekrar 2013a]

As you’ve probably noticed, I’m basically lazy which is why I like fuzzing.

[Miller 2010]

The automatic detection of software vulnerabilities involve numerous combina-

torial problems [Filiol 2013a]. This also holds for the automatic detection of XSS

in a black-box test context. Due to these numerous problems and to the lack of

formal knowledge, we propose domain-based engineering [Czarnecki et al. 2000]

approaches which use heuristics guided by the practical experience of penetration

testers. Such approaches may not be sound, but still are safe to be used in practice.

In this chapter, we briefly justify our reasoning for addressing the aforemen-

tioned sub-problems.

Our approach for automatically detecting XSS in a black-box test context con-

sists of two steps: “crawling” infers the control flow and the taint flows of the

application, then “fuzzing” generates malicious inputs to exhibit vulnerabilities.

3.1 Control and Taint Flow Model Inference

Our first step constructs a model of the web application. This is achieved by a com-

bination of crawling and taint analysis. In order to do this, we need to address the

challenges XSS.1, XSS.2.1, and XSS.3.1, among those expressed in Section 2.5.1

(page 33).

• XSS.1 Navigating in the Application: [Doupé et al. 2012] showed that

black-box WCI security scanners perform poorly due to a lack of precise

knowledge about the applications they are testing. How to learn knowledge

for driving the application?
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• XSS.2 Achieving a Test Verdict: XSS are characterized by the fact that

once an input has been sent, its effect cannot always be observed right away

(e.g., we may need to drive the application in another state). By answering

to the question XSS.2.1 Where are the potential sinks?, we can prioritize the

locations where to invest more efforts in computing the test verdict.

• XSS.3 Creating Fuzzed Inputs: a naive fuzzing (e.g., mutating all input

parameters) may spend too much testing resources when focusing on non-

promising parts of the application. Therefore, we need to address the sub-

problem: XSS.3.1 Where to fuzz inputs? We also partly address the subprob-

lem XSS.3.3 How to prioritize inputs fuzzing?

To answer these sub-problems, we propose a reverse engineering approach.

Reverse Engineering is “the process of analyzing a subject system to identify the

system’s components and their interrelationships and create representations of the

system in another form or at a higher level of abstraction” [Chikofsky et al. 1990].

Since we are in a black-box test context, reverse-engineering can be achieved by

means of inference.

In order to address XSS.1, we propose an extension of

[Doupé et al. 2012] for inferring the control flow of the application. Then,

in order to address XSS.3.1, we propose to extend the previously obtained control

flow model with a taint flow inference for indicating the reflections. The outcome

is a hybrid control+taint flow model. Lastly, from this hybrid model, we generate

input sequences fuzzing on a specific point and directing toward another point to

observe, thus providing an answer to XSS.2.1. We summarize these choices in

Figure 3.1, and develop it in Chapter 4.

Control

+ Taint

Flow

Model

Directed

Inputs 

Generation

B. 

Approximate 

Taint Flow 

Inference

A. 

Control 

Flow 

Inference

Reverse Engineering --> 

C. 

Chopping:

Inputs 

Generation

Reflection

Aware

Non

Malicious

Inputs

Control

Flow

Model

LigRE

Application

+ 

Credentials

Figure 3.1: LigRE: Control+Taint Flow Model Inference

Example Most of considered open-source black box web scanners (Skipfish and

Wapiti) fail at detecting the P0wnMe XSS presented in Section 2.1. The main rea-

sons are imprecise application behavior awareness (some scanners do not navigate

properly, and do not observe the reflections), imprecise test verdict (e.g., Skipfish
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considers a page model change to be a sufficient condition for XSS), and limited

set of fuzzed values (unaware of the output structure or the filters). Our approach

overcomes the first limitation using a combination of control flow inference, taint

flow inference and a guided fuzzing.

In step A in Figure 3.1, our tool called LigRE infers a Control Flow Model (

Control Flow Model (CFM)) in the form of a colored automaton (nodes and contin-

uous arrows of Figure 3.2, where nodes represent webpages/outputs and transitions

represent inputs/HTTP requests), up to a tester defined precision. Then in step B,

LigRE walks through the model by generating HTTP requests and submitting them

to the application. The corresponding responses (HTTP replies) are recorded. Taint

flows of sent input parameter values are inferred on the outputs, and annotated on

the model (blue dashed lines on Figure 3.2).

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login': 'yoda' ,
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /'}

GET
/?action=
logout&

33

POST /? 
 {'message2': 

'2_e_g_a_s_sem'}

17

POST /? 
{'action': 'save_message'

'msg': 'egassem_'}

9

GET /?action=
view_messages

GET /

GET /?action=
view_messages

GET / 
 GET /?action=

message&

GET /?action=
view_messages&

18 GET /?

21

GET /?action=
view_messages

GET /?

GET /?action=delete
_message&id=1

start

GET /

Figure 3.2: Extract of the CTFM for the P0wnMe application

In order to address XSS.3.3 How to prioritize inputs fuzzing?, the chopping step

computes model slices (see Figure 3.3), and prioritizes them. Each slice is com-

posed of a prefix and a suffix. For instance, the prefix [0→ 2, 2→ 7] and the suffix

[7 → 17, 17 → 18, 18 → 21]. LigRE sends the prefix to the application, then pass

the authentication credentials (e.g., cookie) to a fuzzer (e.g., w3af [Riancho 2011]

or KameleonFuzz) and limits its scope to the suffix. Those slices permit to drive
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the tested application toward the originating transition of an inferred reflection tsrc,

and to constrain the fuzzing towards the transition tdst to observe the reflection.

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login' : 'yoda' ,
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /'}

start

GET /

7
GET /? 

 POST /? {'message2': ' /'}

17

POST /? 
{'action': 'save_message'

'msg': 'egassem_'}

18 GET /?

21

GET /?action=
view_messages

GET /?

Figure 3.3: A chopping slice produced by LigRE, during the step C, for the

P0wnMe application (prefix on the left part, and suffix on the right)

3.2 Evolutionary XSS Fuzzing

Once we have a model, we use it for generating fuzzed input sequences. In the cur-

rent section, we illustrate this fuzzing process. We address the challenges XSS.3.2,

XSS.3.3 and XSS.2 (Section 2.5.1, page 33).

• XSS.3 Creating Fuzzed Inputs For addressing the question XSS.3.2 How

to fuzz inputs?, we propose to reuse the hybrid control+taint flow model.

Indeed such models notably provide information about the reflection con-

text (e.g., the HTML structure of the reflection: outside a tag <b>Hello

Lakitu </b>). Fuzzing exists with various flavors: random, anomaly

operators, grammar-based. Since successful XSS exploits need to respect

some HTML constraints, we choose to generate fuzzed values with an attack

grammar. Thus the search space is composed of the reflections and the attack

grammar.

For addressing XSS.3.3 How to prioritize inputs fuzzing?, we can use met-

rics such as the rarity of a reflection, and the “injection power” of a reflec-

tion (e.g., how many different grammar meaningful HTML constructs are

reflected?). We integrate such metrics in the fitness function of a genetic al-

gorithm which captures characteristics of the best inputs and evolves them.
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• XSS.2 Achieving a Test Verdict The input sequence includes point(s) where

to observe the effect of a fuzzed input. Those are outputs of the web

application. Several Black-box scanners, e.g., [Zalewski & Heinen 2009,

Riancho 2011], only search for a verbatim reflection (exact string recopy)

in the HTML code present in the body of an HTTP Reply. As this does

not provide enough information about the ability to execute attacker con-

trolled code, these scanners are likely to obtain fuzzy test verdicts. Indeed,

server-side sanitizers may significantly transform fuzzed inputs when reflect-

ing them. Thus, in order to achieve a test verdict, it is necessary to obtain

the taint information associated with “how the browser parsed the output”.

A candidate solution is to obtain taint information up to the browser parse

tree. However, since we are in a black-box context and want to find XSS ex-

ploits for real-world browsers, we cannot propagate the taint as [Sekar 2009]

did with his home-written browser. Thus we propose to use taint inference

techniques to obtain this information.

We illustrate these choices in Figure 3.4, and develop this second part of our

approach in Chapter 5.

D.1. 

Malicious 

Inputs 

Generation

Inputs Evolved 
by Genetic Algo.

Evolutionary Fuzzing--> 

Fuzzed
Inputs

KameleonFuzz

Found
Vulnerabilities

D.2. Precise

Taint Flow

Inference

Reflection
Aware

Non
Malicious

Inputs

Attack Input
Grammar

Figure 3.4: KameleonFuzz: Evolutionary XSS Fuzzing

Example We describe the execution of LigRE+KameleonFuzz on P0wnMe

(page 18). We here focus on KameleonFuzz, once LigRE has inferred the con-

trol+taint flow models and generated input sequences.

Figure 3.2 contains a reflection for the value 2 e g a s sem of the parameter

message2 sent in the transition 7→ 33. An extract of the output Odst is:

<input name="message2" value=’ 2 e g a s sem ’/> where we

highlight the reflection. Here, the reflection context is inside a tag attribute

value. The context influences how an attacker generates fuzzed values. Listing 3.1

shows the server sanitizer for this reflection. It blocks simple attacks. Attackers

search a fuzzed value s.t. if passed through the sanitizer, then its reflection is not

syntactically confined in the context [Su & Wassermann 2006] i.e., it spans over

different levels in the parse tree.
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1 <?php function webapp_filter($str) {

2 if(eregi(’"|‘|>|<|;|/’,$str)) {

3 $filtered_str = "XSS attempt!";

4 } else {

5 $filtered_str = str_replace(" ","",$str);

6 }

7 return $filtered_str;

8 } ?>

Listing 3.1: A vulnerable sanitizer in P0wnMe

Table 3.1 shows fuzzed values sent by w3af [Riancho 2011], a black-box open

source scanner, when testing P0wnMe . W3af iterates over a list of fuzzed values.

It does not learn from previous requests, nor considers the reflection context. As a

result, all fuzzed values in Table 3.1 were affected by the filter described in List-

ing 3.1, and w3af considered this reflection not to be dangerous (false negative in

vulnerability detection). Only the input value composed of characters having no

special meaning in HyperText Markup Language (HTML) or JS (i.e., ∈ ~a − Z�)

were not filtered. We illustrate in the following table the only reflection that w3af

obtained.

Fuzzed Value (xsrc) Reflection

SySlw SySlw

uI<hf>hf"hf’hf(hf)uI

XSS attempt!
</A/style="xss:exp/**/ression(

fake alert(’XSS’))">

’’;!--"<klqn>=&{()}
<IFRAME SRC="javascript:fake

alert(’klqn’);"></IFRAME>

Table 3.1: w3af fuzzed values (extract)

The chopping (step C of LigRE, illustrated in Figure 3.3) produces input se-

quences containing at least one reflection.

In step D.1, KameleonFuzz generates individuals, i.e., input sequences in

which it fuzzes the reflected value by replacing the input parameter value by a

word generated from the Attack Input Grammar (AIG). For each individual, the

corresponding outputs are recorded and the taint is inferred between the fuzzed

input value and the concrete output, but also between the tainted substrings of the

concrete output and the nodes of the browser parse tree. This taint aware tree is an

input for the test verdict (did this individual trigger an XSS?) and the fitness score

(how close is this individual to triggering an XSS?). The best individuals are genet-

ically recombined while still conforming to the AIG to create the next generation:

e.g., the individuals 3 and 4 of generation 1 produce the individual 1 of generation

2. This process is iterated until a tester defined stopping condition is satisfied (e.g.,

one XSS is found). Table 3.2 illustrates this evolution.
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Fuzzed Value (xsrc) Reflection XSS Fit. Gen.

T9nj1’><script>alert

(18138)</script>
XSS Attempt! 3.1 1

oH1eqL’ onload="

document.body.inner

HTML+=’<div id=90480>

</div>’" fakeattr=’

XSS Attempt! 3.2 1

ZuIa2’ onload

=alert(94478)

ZuIa2’onload

=alert(94478)
13.3 1

WUkp’\tLgpRa WUkp’\tLgpRa 9.1 1

WUkp’\t onload=’

alert(94478)

WUkp’\tonload

=’alert(94478)
X 18.5 2

Table 3.2: KameleonFuzz fuzzed values (extract) of the reflection (tsrc =

7→33)(message)→(tdst = 7→33)

The sanitizer in Listing 3.1 removes the space , but not \t,\r or \n. An extract

of the output odst for the last individual is

<input name="message2" value=’ WUkp’\t

onload=’alert(94478) ’/>

Using string edit distance and a threshold, the taint is inferred between the

tainted substrings of odst and each node of the parse tree obtained from a browser.

This produces a Taint-Aware Tree (TAT), as illustrated in Figure 3.5.

input attributes

onload alert(94478)

value WUkp

name message2

Figure 3.5: A Taint -Aware Tree (TAT) TTdst (extract). The payload is a message

box that displays 94478 (harmless).

.+ attributes ( onerror ‖ onload ‖...) .* .+ .*

Figure 3.6: One Taint -Aware Patterns (TAP), represented in a Linear Syntax (a

tainted event handler attribute)

The TAT are filtered, using a set of Taint Aware Patterns (TAP) (Figure 3.6).

Each TAP is characterized by a non-confinement of a tainted value. TAP are pro-

vided by the tester, who can use a very generic TAP, or, for example, use ones
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which only detect XSS exploits triggering the JS interpreter. Since the TAP in Fig-

ure 3.6 matches the TAT in Figure 3.5, the syntactic confinement of the reflection

of xsrc is violated and the individual is a successful XSS exploit.

This example illustrates how evolutionary input generation can adapt to sani-

tizers.
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CHAPTER 4

Web Application Model Inference

for Black-Box XSS Detection

We think too small, like the frog at the bottom of the well.

He thinks the sky is only as big as the top of the well.

If he surfaced, he would have an entirely different view.

Mao Zedong

XSS involve both control and taint flows, as they rely on an input value being

partly copied to a transition output. Thus, our approach for automatically detecting

XSS in black-box consists of two steps: “crawling” infers the control and taint flow

of the application, then “fuzzing” generates malicious inputs to exhibit vulnerabil-

ities. In the current chapter, we focus on the first step, components A, B and C

of Figure 4.1. This chapter addresses the problems of Section 2.5.1 (see page 33):

XSS.1 How to navigate in the Application? XSS.2.1 Where are the potential sinks?

XSS.3.1 Where to fuzz inputs? XSS.3.3 How to prioritize inputs fuzzing?

4.1 Our Approach

4.1.1 High Level Overview

We propose LigRE, a reverse-engineering tool which produces a model used to

guide the fuzzing towards detecting XSS vulnerabilities. As illustrated in Fig-

ure 4.1, it first learns a control plus taint flow model, and then generates slices of

this model to guide the fuzzing.

During step A of Figure 4.1, LigRE learns the control flow of the application,

using a state aware crawler, to maximize coverage. During step B, LigRE anno-

tates the inferred model with observable taint flows of input values into outputs to

produce a control plus taint flow model. Annotations flow from a source tsrc to

a potential sink tdst. We use an heuristic driven substring matching algorithm for

its efficiency and as filters impact is generally low on reflections on non malicious

input parameters values.

After step B, we prioritize the most promising annotations. For each of them,

step C produces a slice of the model. Slices are chopped models. They permit to

drive the application to the origin of tsrc, for sending a malicious value xsrc, and

then to produce inputs guiding a fuzzer to navigate towards tdst, for observing the
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w3af
or 

KameleonFuzz
LigRE

Figure 4.1: High Level View of our Approach

effects of xsrc. The fuzzing, step D, consists in creating and prioritizing values xsrc

depending of their effect. The fuzzing step will be described in Chapter 5.

4.2 Control Flow Inference

Step A in Figure 4.1 takes as input the description of a remote web application

(e.g., interface, authentication credentials), interact with it, and outputs a control

flow model (CFM). A CFM formalizes the observable behavior of a web appli-

cation in a black-box test context. Nodes (states) represent webpages and transi-

tions represent requests and associated responses. However, storing only the afore-

mentioned information is not sufficient for constructing a precise model since the

web application may have internal macro-states (e.g., new user created, logged-in,

logged-out, etc.). We capture this notion of macro-states by adding colors to nodes,

as in [Doupé et al. 2012].

The control flow inference step uses heuristics to identify which request

changed the macro-state (Section 4.2.3), chooses the next request to be performed

(Section 4.2.4), and assess the degree of certainty in the model (Section 4.2.5.1).

The model is iteratively built.

Non-Deterministic Values (NDV) In the process of abstraction, some pa-

rameters are omitted: NDV a.k.a. nonces [Wikipedia 2006], i.e., output parame-

ters whose values differ when sending twice a given input sequence (and resetting

the system in between) and which may be used in subsequent inputs. Examples

of NDV include: anti-CSRF tokens [OWASP 2013a], session id stored in cook-

ies [Barth 2011], view states [Microsoft 2004]. In the presence of NDV, crawlers

achieve a limited coverage. More important, since we are interested in building a

Control Flow Model of the tested application, the presence of NDV may change

the abstracted output, thus resulting in a state explosion, whereas the execution

reached a previously encountered state.

We address this problem by requiring the human tester to identify NDV. In

order to do so, the tester has to observe which parameter values in a page model
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SFR Webmail: Graphical User Interface

Execution№0 Execution№1

HTTP

Reply

(ex-

tract)

Page

Model

(ex-

tract)

page

/html/body/div/form

/cas/login

(domain,. . . ,lt,. . . )

(’webmessagerie-pub’,. . . ,’ cEA2E9A07-...’,. . . )

(GET,. . . ,POST,. . . )

page

/html/body/div/form

/cas/login

(domain,. . . ,lt,. . . )

(’webmessagerie-pub’,. . . ,’ cA3686786-...’,. . . )

(GET,. . . ,POST,. . . )

Figure 4.2: Visually Spotting a Nonce for the Parameter lt in SFR WebMail
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are constantly changing when executing the exact same input sequence after an

application reset.

For instance in Figure 4.2, when the tester submits twice the same input GET

/, while resetting the application in between, the part of the page model corre-

sponding to the parameter lt has a different value the second time, thus lt is a

nonce. Thus, for each NDV name, the tester has to execute twice at least one given

transition. 1

For one given transition, detecting NDV may seem easy according to the pre-

vious example, assuming the knowledge of a complete control flow model. How-

ever, during the control flow inference, the complete model is not yet available

and is being inferred. Determining both the control flow model and the NDV are

two connected problems: not identifying NDV may lead to parts of the model be-

ing duplicated, and identifying NDV requires the ability to navigate to a transition

which contains one. However, our inference algorithm is not able to solve them

both simultaneously. Thus we require the tester to identify NDV.

Tester Provided Values The tester may also provide values for extending the

page models and thus generating new spiderlinks (e.g., a special login value for a

field named uid in a specific DOM path).

4.2.1 Overview

Algorithm 4.1 shows the inference of a control flow model from a web application.

The control flow inference step infers partial control flow models (not necessarily

completely specified for each input).

Until a tester defined multi-criterion stopping condition is met (e.g., number of

requests, duration, number of different pages seen, number of macro-states, etc.),

LigRE iterates the following process (line 8).

LigRE resets the web application to its initial state using a tester written script.

The first spiderlink to be chosen is the start input (generally GET /). LigRE sends

the concretization of the current spiderlink to the web application, and abstracts the

corresponding application output (HTTP reply) to a page model.

LigRE then consults the history plus the current spiderlink and page to deter-

mine if the macro-state has changed since the last time the same spiderlink was

sent (line 15). If this is the case, LigRE determines which spiderlink in the history

changed the state (line 17), thanks to the score heuristic (see Section 4.2.3). The

identifiers of each history entry are updated, and the colors of the macro-states are

computed (line 21 consists in merging identical macro-states).

LigRE updates the history by storing the spiderlink and the page model. LigRE

then updates the control flow model w.r.t. the new information in the history (line

25).

1In this example, the form submission method is POST, and the url to submit the form contains

parameters which will be sent using the GET method.

46



CHAPTER 4. INFERENCE FOR XSS 4.2. CONTROL FLOW INFERENCE

A new spiderlink is chosen in the ones available in the current page model. If

none is available, or if the current input sequence is longer than the maximal length

allowed by the tester, LigRE resets the web application, and builds a new sequence

following the aforementioned process by choosing the start spiderlink. The explo-

ration is thus a Depth First Search (DFS), until a contradiction is detected, or a

sequence of maximal length has been produced.

Similarly, when a contradiction is detected for a given macro-state, and the

confidence of the color not already chosen for the macro-state is higher than the

one in the control flow model, then we backtrack, undoing the latest macro-state

change, and reset the application and start a new input sequence.

LigRE makes use of heuristics, because the problem of determining macro-

state is addressed on the fly during the navigation problem.

Algorithm 4.1: Control Flow Inference

1 # IN: nonces , webapp, stopping criterion

2 # OUT: cfm

3 history=[]

4 webapp.reset()

5 curr sequence length = 0

6 curr identifier = 0

7 spiderlink = config.start spiderlink

8 while(not stopping criterion):

9 if(curr sequence length>MAX SEQUENCE LENGTH):

10 webapp.reset()

11 curr sequence length = 0

12 spiderlink = config.start spiderlink

13 output = webapp.send(spiderlink.concretize(nonces))

14 page = output.abstract(nonces)

15 if(cfm.macro state changed(spiderlink ,page,history)):

16 curr identifier += 1

17 k = cfm.index changed macro state(spiderlink ,page,history)

18 for i in range(k,len(history)):

19 history[i].identifier = curr identifier

20 page.identifier = curr identifier

21 cfm.compute colors(cfm.identifiers ,cfm.pages)

22 else:

23 page.identifier = curr identifier

24 cfm.history.append({spiderlink ,page})
25 cfm.update hist(history)

26 spiderlink = page.pick spiderlink()

27 curr sequence length += 1

28 return cfm
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4.2.2 Control Flow Notions

The history of inputs and outputs serves to build a navigation tree, which is used

to build a CFM. Both are colored. Their coloration evolves to characterize the

macro-states.
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4.2.2.1 Macro-State

Macro-state is an important notion for understanding the control flow of a web ap-

plication. It designates “anything that influences the executed code at server side”

[Doupé et al. 2012]. Both nodes and macro-states represent the current execution

context of the web application. They differ in their granularity. A node is charac-

terized by a page (i.e., the last output). Whereas a macro-state is a set of nodes,

i.e., at a higher level of abstraction, and is characterized by a common behavior of

these nodes. Definition 10 formalizes this notion.

Definition 10 Macro-State
Let W = (N, n0,T, I, P,Π) be a Web Application (Definition 4).

A macro-state is a set of nodes which is coherent w.r.t. its successor nodes.

Let C ⊂ N be a set of colors. Let col : N → C be a coloring function which

associates a color to each node. We say that col is a valid macro-state coloring

iff, for any na, nb ∈ N, col(na) , col(nb) whenever any of the following conditions

hold:

• ∃i ∈ I,∃(nc, nd) ∈ N2 s.t. (na, i, nc) ∈ T ∧ (nb, i, nd) ∈ T ∧ Π(nc) , Π(nd)

• {Π(u)|∃i ∈ I, (na, i, u) ∈ T } ∩ {Π(u)|∃i ∈ I, (nb, i, u) ∈ T } = ∅

If col is such a coloring, for each c ∈ C, the set of nodes Nc = {n ∈ N, col(n) = c}

is a macro-state.

4.2.2.2 Control Flow Model (CFM) (model)

A CFM is a Web Application with colors (i.e., macro-states). It is defined in Defi-

nition 11. The nodes and continuous arrows of Figure 3.2 are an example of CFM.

The inferred CFM are not necessarily completely specified for each pair of node

and input.

Definition 11 Control Flow Model (CFM)

A CFM is a 8-uple M = (N, n0,T, I, P,Π,C, col) where W = (N, n0,T, I, P,Π)

is a Web Application (Definition 4) and col : N → C ⊂ N is a coloring of W s.t.

the macro-states partition N:

• for each color c ∈ C, let Nc be the set of nodes in N having this color. Either

Nc is empty, or Nc is a macro-state (Definition 10)

4.2.2.3 Navigation Tree (history)

The Navigation Tree (history in Algorithm 4.1) is a set of traces. It is a prefix

tree which contains the sequences of abstract inputs (spiderlinks) and outputs (page

models). This navigation tree is an auxiliary structure for building the CFM.

49



4.2. CONTROL FLOW INFERENCE CHAPTER 4. INFERENCE FOR XSS

10→ 20 GET /saveprofile?action=new&is author=True&...

20→ 21 GET /login

10

20

GET /login

10

20

21

After

21th request

After

20th request

Figure 4.3: Evolution of the Navigation Tree when the Macro-State Changes

4.2.3 Macro-State Change Detection

As the stopping criterion will halt exploration before the Web Application is fully

explored, our inferred model is not completely specified. This holds for the step A

(control flow inference), but also for the step B (taint flow inference).

We build the CFM iteratively in step A, using a DFS exploration, so we need to

characterize the current macro-state after each request. In order to do it, we need to

address four sub-problems: Did the macro-state change? Which request changed

the macro-state? What is the current macro-state? Which link to pick next?

In order to alleviate the computational complexity, we address these sub-

problems using heuristics, inspired from [Doupé et al. 2012]. We added param-

eters in Table 4.1 and Table 4.2, and adjusted their weights using results from

experimentation by observing which combinations increased the efficiency of the

control flow inference. ?? details the dimensions and the rationale behind each

dimension.

4.2.3.1 Example

Figure 4.3 shows the evolution of an extract of the navigation tree (history)

when a macro-state change occurs. In this example, the spiderlink GET /login

permits detecting the macro-state change, because the page model obtained in →

10 is different from the one obtained in 20 → 21, and the same spiderlink GET

/login was executed. index changed macro state selects 10 → 20 as

the cause of the state-change, because it has the highest score (see Table 4.1)

value among [→ 10, 10→ 20, 20→ 21].
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+ or -

weight

id dimension name

++ 1 number of input parameters

+ 2 distance between page models (pprev i
−→

pi)

+ 3 HTTP method

− 4 number of times performed (total)

− 5 number of times it changed the state

− 6 number of requests between i and idetect

−− 7 number of potential contradictions (approx.)

Table 4.1: Dimensions of the score(spiderlink i) heuristic

4.2.3.2 Did the macro-state change? (macro state changed)

If a spiderlink i is sent twice to the application during the requests

prev and detect, and the obtained page models are different (i.e.,

(oprev = iprev.concretize().send()).abstract() , (odetect =

idetect.concretize().send()).abstract()), then the macro-state

changed. This is the case for the spiderlinks iprev=GET /login(→ 10) and

idetect=GET /login (20→ 21) in the navigation tree extract shown in Figure 4.3.

4.2.3.3 Which request changed the macro-state? (index changed macro

state, score heuristic)

If a macro-state change is detected between iprev and idetect, then the question

“which request in the history between those changed the macro-state?” arises.

To answer it, the heuristic function score represents the likelihood of a request

having changed the macro-state. For a spiderlink i ∈ [iprev, . . . , idetect] the higher the

value of score(i), the more likely i changed the macro-state. The dimensions

of score are listed in Table 4.1. If there is a +, resp. −, in front of the dimension,

then score is increasing, resp. decreasing, w.r.t. this dimension. score is used

in index changed macro state in Algorithm 4.1.

The following dimensions compose the heuristic of Table 4.1:

• 1. Number of input parameters: the more inputs parameters for a given

spiderlink, the more likely it will change the macro-state (e.g., when creating

a new user in an application).

• 2. Distance between page models: the more distinct are the page models

of i and iprev, the more likely they correspond to nodes in different macro-

states. Due to its effectiveness, we use the PQ-gram distance for measuring

the similarity between page models [Augsten et al. 2005].
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• 3. HTTP method : a POST method is more likely to change the macro-state

than a GET method, thus it will have a higher score.

• 4. Number of times performed (total): number of times that this spiderlink

has already been sent. Our navigation strategy prefers request that permit

determining a macro-state change, but not request that actually do change

the macro-state. Thus a frequently sent spiderlink is not very likely of having

changed the state.

• 5. Number of times this spiderlink changed the state : since we are using

heuristic functions, we want to be error tolerant, that is if once we determined

that a given spiderlink changed the macro-state, we want to decrease the

likelihood of repeating this error.

• 6. Number of requests between i and idetec: since our navigation strategy

prefers requests that help determining a macro-state change, it is likely that

we detected a macro-state change early, that is that idetect is probably close

of the spiderlink that changed the macro-state.

• 7. Number of potential contradictions (approximative): if we hypothe-

size that i changed the macro-state, how many potential contradictions would

we have? It is likely that choosing a wrong spiderlink as the reason for a

macro-state change would increase the number of contradictions.

The final score is a weighted linear sum of each dimension.

4.2.3.4 What is the macro-state of the current node? (compute colors)

The current node is the result of the submission of the spider-links since the last

reset. In order to know if the current node is one previously encountered, it is

necessary to merge macro-states.

For this purpose, an identifier is associated to each node. If the macro-state

changes, then the current identifier is updated to a one different of the preceding

node, it is unchanged otherwise (see Algorithm 4.1). [Doupé et al. 2012] reduced

this macro-state collapsing problem to the coloring of an undirected graph of iden-

tifiers [Doupé et al. 2012]. If there is an edge between two identifiers (e.g., A and

B), then they will have different colors, otherwise they will be merged (e.g., B and

D identifiers are merged in the same color B + D in Figure 4.4).
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Figure 4.4: Identifiers Merge: B and D denote the same Macro-State (extract of the

Google Gruyere Macro-State Coloring Process)

There are four rules to add an edge between two identifiers / macro-states α

and β:

• Rule1: there is a macro-state change from α → β or β → α (e.g., A→B,

B→C, C→D etc.)

• Rule2: they have no common pages (pages(α) ∩ pages(β) = ∅) (e.g., A and

C)

• Rule3: if ∃ a spiderlink i, and identifiers γ, δ, s.t.

– by executing i when the application is in the macro-state color(α)

drives it to the macro-state color(γ): α(i)→ γ

– and by executing i when in the macro-state color(β) it leads to a macro-

state color(δ): β(i)→ δ

– and the reached macro-states are different: color(γ) , color(δ)

– ... then it means that α and β should not be mapped to the same macro-

state: color(α) , color(β)
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• Rule4: adding an edge reduces the number of potential contradictions

Backtracking may occur during coloring (see Section 4.2.5.3).

Algorithm 4.2: Compute Colors

1 # IN: history , cfm, identif iers

2 # OUT: cfm, identif iers

3

4 def compute colors():

5 cfm.compute rules 1 and 2() # R1: same input , different

page model

6 # R2: no common page model

7 cfm.compute rule 4() # R4: contradictions

8 identifiers.greedy coloring()

9 while(cfm.compute rule 3() > 0 ): # R3: same input leads to

different macro−states

10 identifiers.greedy coloring()

11

12 class CFM:

13 def compute rules 1 and 2():

14 for a in identifiers:

15 for b in identifiers:

16 next node b = false

17 if(a != b):

18 at least one common page model=false

19 for t a in a.transitions:

20 for t b in b.transitions:

21 if(t a[’input’]==t b[’input’]):

22 # rule 1: same input , different page model

23 if(t a[’node’][’page model’]!=t b[’node’][

’page model’]):

24 identifiers.edges.append([a,b])

25 next node b = true

26 break

27 if(t a[’node’][’page model’]==t b[’node’][’

page model’]):

28 at least one common page model=true

29 if(next node b):

30 break

31 # rule 2: no common page model

32 if(not at least one common page model):

33 identifiers.edges.append([a,b])
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Algorithm 4.3: Compute Colors (cont.)

34 # R4: contradictions

35 def compute rules 4():

36 for a in identifiers:

37 for b in a.contradiction observed:

38 identifiers.edges.append([a,b])

39 # R3: same input leads to different macro−states

40 def compute rule 3():

41 num of added edges=0

42 for a in identifiers:

43 for b in identifiers:

44 if((a != b) and ([a,b] not in identifiers.edges) and ([b,a

] not in identifiers.edges)):

45 for t a in a.transitions:

46 next b = false

47 for t b in b.transitions:

48 if(t a[’input’]==t b[’input’]):

49 if(t a[’node’].identifier.color != t b[’

node’].identifier.color):

50 identifiers.edges.append([a,b])

51 num of added edges +=1

52 next b = true

53 break

54 if(next b):

55 break

56 return num of added edges

57

58 class Identifier:

59 def greedy coloring():

60 curr color = −1

61 for a in identifiers:

62 neighbors colors=[]

63 for b in a.get identifiers edges():

64 if(b.color != −1):

65 neighbors colors.append(b.color)

66 neighbors colors.sort()

67 # use the most recent available color

68 for j in range(curr color,−1,−1):

69 if((found color==−1) and (j not in neighbors colors)):

70 found color = j

71 break

72 if(found color==−1):

73 current color +=1

74 found color = current color

75 a.color = found color
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4.2.4 Navigation Strategy

Each time LigRE receives an output of the web application, it abstracts this con-

crete output to a page model and update the macro-states colors. Since we perform

a DFS exploration, LigRE chooses the next spiderlink to explore. Depending on

the tester parameters, it may generate additional spiderlinks – than the ones present

in the page model – for facilitating future taint flow inference.

4.2.4.1 Choosing the Next Spiderlink to Explore (pick spiderlink)

After obtaining a page model p, LigRE must decide what is the next spiderlink

in spiderlinks(p) to explore. The heuristic function navigating represents the

likelihood of a spiderlink to be chosen as the next one to be executed on the ap-

plication. For a given spiderlink i, the higher the value of navigating(i), the

more likely i will be picked. Table 4.2 lists its dimensions. pick spiderlink

in Algorithm 4.1 uses it.

+ or -

weight

id dimension name

+ + + 1 request never executed

++ 2 (1+consecutive contradictions)*num state change

++ 3 num recently sent

++ 4 number of artificially generated parameter values

+ 5 number of times sent

− 6 spiderlink method weight

− 7 number of times it changed the macro-state

Table 4.2: Dimensions of the navigating(spiderlink i) heuristic

The dimensions of Table 4.2 model the several intuitions:

• 1. Request Never Executed: we want to increase the knowledge of the

application.

• Some spiderlinks may be more likely to be picked up,

as they permit detecting a state change (2. (1+consecu-

tive contradictions)*num detect state change). However, we do not

want that only those are choosen, thus we temporarily introduce a penalty if

they have been recently picked (3. Number of Times Recently Sent).

• 5. Number of Times Sent: we want to favor less explored spiderlinks.

• 4. number of artificially generated parameter values, 6. spider-

link method weight and 7. number of times it changed the macro-state:

we want to explore as much as possible of the current macro-state before ex-

ploring the next one. Thus, since POST requests are statistically more likely
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to change the macro-state than GET requests (e.g., user creation, user login),

navigating is a decreasing metric w.r.t. this dimension.

As illustrated in Algorithm 4.4, either the current node contains unexplored

spiderlinks and one of them is chosen according to their navigating score, or

the shortest path in the model to nodes containing non explored spiderlinks is com-

puted using [Dijkstra 1959]’s algorithm.

Algorithm 4.4: Pick Spiderlink

1

2 # IN: cfm, page, history

3 # OUT: spiderlink

4

5 def pick spiderlink(cfm, page, history):

6 chosen=None

7 never explored = []

8 for sp in page.spiderlinks:

9 if(sp not in history):

10 never explored.append(sp)

11 if(len(never explored)>0):

12 never explored.sort(key=lambda i: navigating(i),reversed=true)

13 sp set = never explored

14 else:

15 explored n times = []

16 n = 1

17 while((len(explored n times)==0) and (n<config.stop.

N MIN LINKS)):

18 explored n times = cfm.

get all transitions explored n times(n)

19 if(len(explored n times)==0):

20 raise Exception(’cfm built’)

21 explored n times.sort(key=lambda i: dijkstra(page.

current spiderlink ,i))

22 sp set = explored n times

23

24 chosen = sp set[0]

25 return chosen

The stopping criterion evaluates to true when for each node of the CFM, the

outgoing transitions have been explored a tester defined number of times. The

tester can limit the number of requests and the execution time. In our experiments,

we limit the number of sent requests. We adjust this metric by iteratively, browsing

manually the application, setting a limit, inferring a control flow model, observing
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the obtained CFM, and eventually adjusting the number of requests. We adjusted

this metric depending on the tested web application (e.g., for P0wnMe , we limit

to 60 requests, whereas for Gruyere, we limit to 200). Adjusting this metric is a

trial and error process, which converged around 25 iterations for the first tested

applications to around 8 for the most recently tested ones.

4.2.4.2 Pruning

Testers may want to prune the model for readability, speed, or desire to concentrate

the testing effort in one part of the application. This process is known to reverse en-

gineers of binary executables [Guilfanov 2008]. LigRE permits to specify pruning

patterns in order not to explore matching spiderlinks.

In Figure 4.5, we illustrate one pruning pattern. A pruning pattern matches

DOM tree nodes, in order to prevent LigRE to build spiderlinks for the <A> or

<FORM> DOM nodes containing in the subtrees matched by this pattern.

In Figure 4.6 we illustrate the impact that pruning has on the obtained CFM,

specifically for WebGoat [OWASP ], a deliberately vulnerable JSP web application

(see Table 6.1 in page 91). We want to focus the testing on one particular WebGoat

“lesson”: “Stored XSS”.

We define pruning patterns manually specifically for each web application we

want to test.

Figure 4.5: Nine Examples of Pruning Patterns for Spiderlinks

4.2.4.3 Artificial Spiderlink Creation

Depending on tester defined configuration, LigRE may create spiderlinks that con-

tain artificially generated values (i.e., which are not present in the page models).

This value creation aims at limiting the risks of collisions and false positives during

the later taint flow inference.

We want a function artif that receives an input parameter name (e.g., msg in

Figure 3.2) and produces a value s.t. the following properties hold for “most” input

parameter names:

• it is easy to compute artif(name)
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First LigRE Run: Initially Produced CFM after 60 requests: only one macro-state

is detected, because only the very first transitions from the root node are explored.

Second LigRE Run: Produced CFM with pruning after 60 requests. As LigRE

explore deeper parts of the application, it discovers a new (red) macro-state.

Figure 4.6: Result of Application of Spiderlink Pruning

• modifying an input parameter name significantly changes artif(name)

Those are two of the four properties of ideal cryptographic hash functions. Some

web fuzzers use hash functions [epsylon 2012].

In our implementation, we use our own function which creates parameter val-

ues by reversing the parameter name and by alternating characters from the re-

versed input parameter name and an extension string (may be tester provided, we

hardcoded default ones ; should not contain “special” HTML characters such as

{’,",>,/}), as illustrated in Table 4.3. This has the advantage of permitting a

human tester to visually identify the tainted parameter source. For two given input

parameters having the same name, our technique voluntarily generates the same

value, even if they originate from different transitions in the CFM.

Param. Name Extension String Generated Param. Value

pw 12 45 78 0 w1p2w p4w5p

Table 4.3: Automatic Value Generation for Helping Taint Flow Inference
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4.2.5 Backtracking

Backtracking consists of undoing parts of the model and recomputing them with

an additional constraint. It occurs when either a potential contradiction (Defini-

tion 12) is observed on part of the model with a low confidence, or when executing

a spiderlink on the CFM leads to a different page model than the one observed in

the Web Application. Backtracking is a part of the model.update() process

(Algorithm 4.1).

4.2.5.1 Confidence

The Confidence expresses the level of trust in a part of the model. This metric is

applicable to a node or a transition. The higher its value, the more confident we

are in the coloring of the element. Table 4.4 contains the dimensions used in this

function.

weight dimension name

− number of nodes in the shortest path from root

− number of unexplored spiderlinks in the page model

of n

− ... that have same hash as one which permit deter-

mining a macro-state change

Table 4.4: Dimensions of the confidence(node n) heuristic

4.2.5.2 Potential Contradiction

A potential contradiction indicate that we may have assigned a page model to the

wrong macro-state coloring. It is defined in Definition 12. Let us assume that the

Definition 12 Potential Contradiction
Let na and nb be two nodes ∈ N. A potential contradiction between na and nb

is defined as follows:

contradiction(na, nb) =































True if ((con f idence(na) , con f idence(nb))

∧(page model(na) == page model(nb))

∧(color(na) , color(nb)))

False otherwise

node b is the current state. If there exists a node a, s.t. contradiction(a, b) is True,

then we may have missed detecting a state change. Thus contradictions are inputs

for navigating (see Table 4.2) and score (see Table 4.1).
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4.2.5.3 Backtracking

We hypothesize that the web application is deterministic at the abstract level: if

an input sequence of spiderlinks from the start node is executed several times, the

sequences of obtained page models are the same.

Each sent spiderlink is executed on the application, and on the currently in-

ferred CFM. It may happen that the CFM execution leads to a different page model

than the application one. This is a non-determinism: either the application is not

deterministic (and the tester missed a nonce in the abstraction process), or the cur-

rent CFM is not correct. We assume it is the second case.

In such a situation, our heuristic assumes that the ultimate macro-state change

was not correct: we considered the identifiers α and β to map to the same macro-

state, but this turned out to be wrong. Thus, we add an edge between α and β (such

edges are used in the compute rule 4() of Algorithm 4.2), redo the coloring

and update of the model, reset the application, and start a new sequence from the

initial node.

4.3 Taint Flow Model Annotations

Control 
+ Taint
Flow

Model

D. 
Fuzzing

A. 
Control Flow 

Inference

Model Reverse-Engineering

Control
Flow

Model
C. 

Slicing
(Chopping)

Constrained Fuzzing

SlicesB. 
Taint Flow 
Annotation

Vulnera-
bilities

Web
App.

Figure 4.7: Step B: Taint Flow Inference

The taint flow model annotation corresponds to step B in Figure 4.1. It consumes

a Control Flow Model (CFM), to which it adds inferred taint flows, thus producing

a hybrid Control plus Taint Flow Model (CTFM), such as the one represented in

Figure 3.2. In such a model, the bold text represents the source of a reflection tsrc,

and the blue/dotted arrow edges designate the reflection destination tdst.

This step consists of first generating walks in the CFM, and then actively sub-

mitting those walks to the web application while inferring observable taint flows.

During this step, only taint flows are added to the CFM, no transitions are

added or removed, even though a precise analysis may discover new macro-states.

This is a choice of our implementation.

We compute the control flow inference (step A) and the taint flow inference

(step B) separately. The reason is that until step A (control flow inference) is

finished, we are unsure whether the execution context of the application leads to

a node for which we already inferred the taint. Thus performing control and taint

flow inference separately permits to only compute the taint when necessary. This
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is important, as on the tested applications, the taint flow is inferred significantly

more often than the control flow inference.

4.3.1 Definitions

Reflection Context and CTFM are defined respectively in Definition 13 and Defi-

nition 14. The taint-flow computation is explained in Section 4.3.3.

A reflection context is the output structure in which a reflected input value is

supposed to be confined (Definition 6) during the processing of a non-malicious

input. We list several reflection contexts in Table 4.5, and formally define this

notion in Definition 13.

outside an HTML tag <h1>

inside an HTML src/href at-

tribute value

<a href=" "/>

inside a non src/href HTML at-

tribute value

<input value=" "/>

inside an HTML textarea <textarea> </textarea>

inside a CSS value body { background-image:

url(images/ .png); }

inside a JS value var zipcode = " ";

Table 4.5: List of Considered Reflection Contexts (CT X) for GO =HTML

Definition 13 Reflection Context
Let G be a grammar (e.g., HTML), CT X be a set of reflection contexts (Ta-

ble 4.5), odst ∈ Σ
∗ be a concrete output and a word of G, and v ∈ Σ∗ be a non-empty

substring of odst.

The reflection context ctx(v) ∈ CT X is the narrowest structure in G (non-

terminal production rule) in which the reflected value is confined when sending

non fuzzed values. If G is context-free, then ctx(v) is the smallest word in G con-

taining v and derived from one unique terminal.

4.3.2 Generating Walks

Random walk and Breadth First Search (BFS) are the implemented strategies for

generating inputs from a CFM. The submission of those inputs is performed in a

DFS manner. Since we generate identical values if the same parameter is present

in several transitions, we want to reset the application frequently enough to avoid

over-tainting. Our input sequence creation strategies limit the length of the input

sequences, and the number of times the sequences traverse each node. If a sequence

is a prefix of another one, then we only keep the latter. We analyzed XSS on
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Definition 14 Control and Taint Flow Model (CTFM)

Let Σ be an alphabet, and G be a grammar. A Control and Taint Flow Model

(CTFM) is composed of:

• a CFM (Definition 11)

• a taint-flow function df : (Σ+ × T × T ) → CT X+, s.t. for a reflection

re f l = (xsrc, tsrc, tdst, odst) of the value xsrc of a parameter name ∈ Σ+,

d f (name, tsrc, tdst) produces the list of Reflection Contexts (Definition 13)

of xsrc into odst w.r.t. G

fifteen applications of various complexity, and observed that the longest shortest

path between tsrc and tdst, both included, is 4 transitions, and the shortest path to

reach the deepest tdst was 8, thus we arbitrarily limit the length of the generated

sequences to 8 (prefix+suffix).

4.3.3 Computing Taint Flows

For each sequence I = (t1, ..., tk), for each concrete output o j, j ∈ [1..k], for each

previously sent input parameter value xm, m ∈ [1.. j], a distance between xm and o j

is computed.

Specifically, the taint flow inference consists in first searching in the output o j

for exact substrings of xm of a minimal length, marking those found substrings,

clustering them, and then computing the edit distance [Levenshtein 1966] from xm

to the clusters. If this distance is lower than an empirically determined threshold,

then a taint flow is annotated on the CTFM.

Algorithm 4.5: Compute Taint

1 # IN: cfm, webapp

2 # OUT: ctfm

3

4 def from cfm to ctfm(cfm,webapp,config):

5 # generate input sequences

6

7 reg exp=[]

8 # submit each input sequence

9 for inp seq in sequences:

10 for k in range(0,len(inp seq)):

11 try:

12 reg exp[k]

13 catch IndexException:

14 reg exp[k] = []
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Algorithm 4.6: Compute Taint (cont.)

15 i k = inp seq[k]

16 o k = webapp.submit(i k.concretize(config.nonces))

17 taint flow = []

18 for j in range(k,−1,−1):

19 for l in range(0,len(inp seq[j].params)):

20 if(k not in taint flow[j][l]):

21 # search for exact substrings

22 inp param = inp seq[j].params[l]

23 try:

24 reg exp[j][l]

25 catch IndexException:

26 reg exp[j][l] = [

build reg exp of min length(inp param[

’value’], config.min taint length),

build reg exp of min length(inp param[

’value’], config.min taint cluster)]

27 if(reg exp[j][l][0].search(o k)):

28 taint flow[j][l] += [k]

29 continue

30 # f i l t e r s may be in place

31 if(matches = reg exp[j][l][1].search(o k)):

32 # see next page

33 def from cfm to ctfm(cfm,webapp,config):

34 # . . .

35 # indexed here for readability

36 if(matches):

37 clusters = []

38 # cluster them

39 curr clust = 0

40 for c in range(0,len(o k)):

41 if(matches.char c is tainted()):

42 if(num of misses > config.max chars inside clus):

43 curr clust += 1

44 clusters[curr clust] += o k[c]

45 num of misses = 0

46 else:

47 num of misses += 1

48 # is any cluster suff iciently close? (server−size f i l t e r )

49 for clust in clusters:

50 if(edit distance(in=inp param[’value’],out=clust) <=

config.max edit distance):

51 taint flow[j][l] += [k]

52 break

53 ctfm = {’cfm’:cfm,’taint flows’:taint flow}
54 return ctfm
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Algorithm 4.7: Compute Taint (cont.)

55 def build reg exp of min length(my str ,my len):

56 to compile=val.substr(0,my len)

57 for k in range(1,len(val)):

58 to compile = " | "+val.substr(k,my len)
59 return re.compile(to compile)

4.4 Flow-aware Non Malicious Input Generation
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Figure 4.8: Step C and D: Chopping and Flow aware Fuzzing

4.4.1 Overview

Control+Taint Flow Aware Fuzzing encompasses steps C and D in Figure 4.1:

first prioritizing the considered taint flows (Section 4.4.2), producing slices (Sec-

tion 4.4.3), and then using those slices to guide a fuzzer. Its pseudo-code is in

Algorithm 4.8. get reflections returns the observed reflections by decreas-

ing priority. It uses the prioritization(reflection) heuristic function

whose dimensions are described in Table 4.6. The higher the value of sum, the

more likely this reflection will be tested first. For each reflection, LigRE positions

the application in the node from which tsrc originates by sending a prefix se-

quence. Then LigRE feeds the fuzzer an authentication context (e.g., cookie) and

a suffix obtained from the chopped model (CH(tsrc, tdst), see Section 4.4.3) for the

fuzzer to navigate from tsrc to tdst.

4.4.2 Reflection Prioritization

Table 4.7 is an extract of the prioritization table in its initial state. dimk corre-

sponds to the dimension k of Table 4.6. Each tuple of cells (tsrc, xsrc, tdst) line

of Table 4.7 designates a reflection. Thus we have reflections a, b, c, d. Ini-

tially, chosen reflections, the list of already chosen reflections, is empty.

Since a has the highest prioritization value (see column sum in Table 4.7 and

line 20 of Algorithm 4.8), a is the first reflection chosen. a is added to

chosen reflections. The dimensions of a are updated: dim4,5(a)+=1. Then
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Algorithm 4.8: Control+Taint Flow-aware Fuzzing

1 #IN: webapp, ctfm , fuzzer

2 #OUT: vulns

3

4 def control data aware fuzzing(webapp, ctfm, fuzzer):

5 vulns = []

6 for refl in ctfm.get reflections():

7 webapp.reset()

8 prefix=shortest path(from=root,to=refl.src)

9 webapp.execute(prefix)

10 fuzzer.config.auth = webapp.context

11 suffix = shortest path(refl.src,refl.dst)

12 fuzzer.config.urls = suffix

13 vulns += fuzzer.do()

14 return vulns

15

16 class CTFM(Object):

17 reflections=[]

18 def get reflections(self):

19 chosen reflections=[]

20 prioritization table.init()

21 while(len(chosen reflections) < max input to fuzz):

22 chosen index=−1

23 prioritization table.sort(key=lambda refl:( −refl.sum,

refl.times chosen))

24 index having same sum=0

25 for i in range(1,len(prioritisation table)):

26 if(prioritization table[0].times chosen <

prioritization table[i].times chosen):

27 break

28 index having same sum=i−1

29 chosen index = random.randint(0,index having same sum)

30 chosen reflections.append(reflections[chosen index])

31 prioritization table.update dimensions()

32 return chosen reflections
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b is chosen, similarly: dim4,5(b)+=1. Later on, either c or d will be chosen. Let us

assume d is chosen first. Then dim4,5(d)+ = 1 and dim4(c)+ = 1 are updated, since

c and d have the same xsrc.

dim weight dimension name

1 − number of reflections having the same pa-

rameter name xsrc

2 − number of reflections having the same

(tsrc, tdst)

3 − number of macro-states from tsrc to tdst

4 − number of already chosen reflections hav-

ing the same xsrc

5 − number of already chosen reflections hav-

ing the same (tsrc, tdst)

Table 4.6: Dimensions of prioritization(reflection,chosen)

4.4.3 Chopping, a particular form of Slicing

Slicing permits to limit the state space exploration. This technique focuses on

parts of the applications w.r.t. a slicing criterion. The notion of slicing has

been extended to model-based languages. Various techniques are proposed in the

literature [Androutsopoulos et al. 2013]. In LigRE, we are interested in finding

paths between a source tsrc and a destination tdst on the model. Thus we use a

compressed form of slicing called chopping [Jackson & Rollins 1994], which cap-

tures this relation.Our chopping consists in a shortest sequence of transitions (also

called path) starting with tsrc and ending on the originating node of tdst. We use

[Dijkstra 1959]’s algorithm for computing such paths on CTFM.

Figure 3.2 illustrates a CTFM produced by step B. If the targeted reflection

is tdst = (7 − (msg)→17)) and tdst = (18→21), then an example of slice for this

reflection is illustrated in Figure 3.3.

4.5 Implementation

The approach is implemented as a tool LigRE containing approximately 8000

SLOC of Python3.2. Figure 4.9 represents its architecture. KameleonFuzz (Chap-

ter 5) extends LigRE by incorporating a new fuzzer. During the control flow in-

ference, the parse tree (approximated by a subset of the Document Object Model

(DOM)) is obtained using the selenium library [Huggins et al. ] which instruments

the Google Chrome browser to parse HTTP replies. During the taint flow inference,

requests are performed directly to the web application. During the fuzzing, LigRE

drives the application in the source via the prefix slice ; it then parameterizes the

suffix slice for a fuzzer (w3af [Riancho 2011] or KameleonFuzz Chapter 5).
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Reflection

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos.

a 7→ 33 message2 7→ 33 1 1 0 0 0 -2 0

b 7→ 17 msg 18→ 21 1 1 1 0 0 -3 0

c 33→ 9 action 33→ 9 5 1 0 0 0 -6 0

d 18→ 21 action 21→ 9 5 1 0 0 0 -6 0

(initial state)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos.

a 7→ 33 message2 7→ 33 1 1 0 1 0 -3 1

b 7→ 17 msg 18→ 21 1 1 1 0 0 -3 0

c 33→ 9 action 33→ 9 5 1 0 0 0 -6 0

d 18→ 21 action 21→ 9 5 1 0 0 0 -6 0

(after the first iteration, a has been chosen)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos.

b 7→ 17 msg 18→ 21 1 1 1 1 0 -4 1

c 33→ 9 action 33→ 9 5 1 0 0 0 -6 0

d 18→ 21 action 21→ 9 5 1 0 0 0 -6 0

a 7→ 33 message2 7→ 33 1 1 0 1 0 -3 1

(after the second iteration, b has been chosen)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5 sum chos.

c 33→ 9 action 33→ 9 5 1 0 1 0 -7 0

d 18→ 21 action 21→ 9 5 1 0 1 0 -7 1

a 7→ 33 message2 7→ 33 1 1 0 1 0 -3 1

b 7→ 17 msg 18→ 21 1 1 1 1 0 -4 1

(after the third iteration, d has been chosen, it could have been c also, see lines

21-26 in Algorithm 4.8)

Table 4.7: Prioritization of Reflections

In order to configure LigRE for an application, the tester has to write a

config.xml file (an extract of such a file is illustrated in Listing A.2 in

page 142) which contains informations about the interface (e.g., Domain Name

System (DNS) Fully Qualified Domain Name (FQDN), Transmission Control Pro-

tocol (TCP) port, baseHREF, etc.), a link to the tester written reset script, the stop-

ping condition, the nonces in the web application, and eventually some pruning

patterns if the tester wants the efforts to be concentrated in specific parts of the ap-

plication. The tester can also adapt the weight of the dimensions in our heuristics,

altough it should not be necessary to them for applications similar to the ones on

which we experimented.
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Figure 4.9: Architecture of LigRE

Figure 4.10: The Liger Hercules (10 feet long and 922 pounds weight), the LigRE

Logo

4.6 Related Work

4.6.1 Control Flow Inference (CFM)

Based on [Angluin 1987]’s L*, [Shahbaz & Groz 2009] designed an algorithm

for iteratively inferring the control flow of an I/O system. [Cho et al. 2010] in-

fer a botnet protocol by adding a prediction heuristic to [Shahbaz & Groz 2009].

[Hossen et al. 2013] automatically generate test drivers for non-Ajax web applica-

tions.

[Doupé et al. 2012] showed that improving control flow inference increases

vulnerability detection. LigRE shares similarities with their macro-state-aware-

crawler. Differences lay in the heuristics, the introduction of confidence, contradic-

tions, backtracking, and taint flow inference. [Doupé et al. 2012] run experiments

on a local cloud, whereas we run ours on a laptop.

[Dessiatnikoff et al. 2011] cluster pages according a specially crafted distance

for SQL injections [Dessiatnikoff et al. 2011]. [Marchetto et al. 2012a] dynam-

ically infer the control flow of Ajax web applications [Marchetto et al. 2012a].

They wrote abstraction functions for common Ajax primitives.
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[Tonella et al. 2012] use genetic algorithm for finding the right balance be-

tween over and under-approximations of CFM[Tonella et al. 2012].

LigRE does not make use of L* (because of the NDV, the macro-states which

leads to enormous state machines) and is driven by heuristics. It clusters pages

according to the notion of macro-state. The current implementation supports non-

Ajax applications or Ajax applications which downgrade gracefully.

4.6.2 Taint Flow Inference

W3af [Riancho 2011] and XSSAuditor [Bates et al. 2010](Chrome XSS filter) as-

sume the fuzzed input value to be reflected without modification, and thus rely on

exact string matching. This may lead to false negatives when input values are trans-

formed [Heiderich et al. 2010, Duchène et al. 2013b]. Skipfish generates three

variants for a spiderlink, and assumes there is a taint flow if the response varies

[Zalewski & Heinen 2009, Dessiatnikoff et al. 2011, Doupé et al. 2012].

This may lead to false positives, if the scanner is not aware of

a macro-state change. [Sun et al. 2009] compute a string edit dis-

tance [Levenshtein 1966]. [Sekar 2009] proposed a filtering algo-

rithm inspired from bioinformatics for improving the efficiency of

[Levenshtein 1966]’s distance. LigRE relies on a filter-tolerant substring

matching of a minimal length, and computes the edit distance on a smaller output.

LigRE relies on the fuzzer test verdict.

4.6.3 Control and Taint Flow Inference (CTFM)

[Caselden et al. 2013] use similar models, named Hybrid Control Flow Graph

(HI-CFG) on basic blocs, to automatically generate exploits for memory corrup-

tion vulnerabilities in binary programs with a grey-box test context. Netzob infers

protocols implementations using L*, and enhance it with taint flows w.r.t. equiv-

alence, size, or repetition relations. Its test driver, abstraction, and concretiza-

tion functions are written by an analyst [Bossert & Guihéry 2013]. With PRISMA,

[Krueger et al. 2012b] infer control and taint flow Markov models of botnet proto-

cols from traffic captures. LigRE targets XSS, a command injection vulnerability,

in web applications with a black-box test context, and produces CTFM to drive a

fuzzer.

4.6.4 Search for Parts of the Inputs where to Focus the Testing

[Haller et al. 2013], [Rawat & Mounier 2012], [DeMott et al. 2012a], and

[Bekrar et al. 2012, Bekrar 2013b] statically search for potential sinks and then

dynamically generate inputs targeting those potential sinks.

[Stock et al. 2013, Duchène et al. 2013a] dynamically propagate white-box

taint flows to prioritise DOM-XSS tests.
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[Cadar et al. 2008b] uses symbolic execution for generating inputs s.t. each

branch of an application is activated at least once by one input.

[Grégoire 2013] fuzzes third party code, and then generate inputs for applica-

tions which integrate such code (e.g., Acrobat Reader).

[Mulliner & Miller 2009] fuzzed the iOS SMS service by sending messages

through the baseband and modifying them before they reach the iOS service.

4.6.5 Conclusion

LigRE automatically partially reverse-engineers web applications as a control and

taint flow model. It prioritizes model slices to guide the scope of the fuzzing.

Heuristics drive LigRE. Empirical experiments show that LigRE detects more

XSS than open source and control flow aware scanners (see Section 6.2).

In addition of being an input for human penetration testers, the obtained mod-

els can be the first step for automated vulnerability detection: e.g., if provided to

a model checker or a fuzzer. For instance, our evolutionary smart fuzzer Kame-

leonFuzz [Duchène et al. 2012, Duchène et al. 2013b] can use such models, and

improves the fuzzing step of LigRE to detect more complex filtered XSS.

We observed there are two main reasons for false negatives: first the fuzzers

neither adapt to the reflection context nor to the server sanitizers, and second they

have an imprecise test verdict. We address those issues in Chapter 5.
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CHAPTER 5

Evolutionary Fuzzing for

Black-Box XSS Detection

If no mistake have you made, yet losing you are ...

a different game you should play.

[Yoda 2001]

Fuzzing is normally limited to finding obvious symptoms like crashes, because it’s

rare to be able to tell correct behavior from incorrect behavior when the input is

generated randomly.

[Ruderman 2014]

5.1 Introduction

5.1.1 Context

XSS detection is a problem involving control+taint flows, and input sanitization.

In presence of even basic sanitizers, many scanners have difficulties in creating ap-

propriate inputs, and thus produce false negatives. In Chapter 4, we addressed the

automatic reverse-engineering of control+taint flow models. In the current chapter,

we focus on how to generate malicious inputs targeting the potential sinks. We

address the following problems of Section 2.5.1 (page 33): XSS.3.2 How to fuzz

inputs? How to act on specific parts of those inputs? XSS.3.3 How to prioritize

inputs fuzzing? Which potential sinks should we test first? XSS.2.2 Can we exploit

a potential sink?

In order to address these issues, we propose KameleonFuzz, a fuzzer which

mimics a human attacker by evolving and prioritizing the most promising malicious

inputs and taint flows obtained from LigRE. We incorporate in KameleonFuzz a

test verdict that relies on existing browser parsing and double taint inference.

5.1.2 The KameleonFuzz Approach

KameleonFuzz is a black-box fuzzer which targets Type-1 (reflected) and Type-2

(stored) XSS (see Definition 8) and can generate exploits targeting the discovered
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Figure 5.1: High Level Approach Overview

XSS. As illustrated in Figure 5.1, our approach consists of learning the model of

the application and generating malicious inputs. We reuse the LigRE components

A, B, C from Chapter 4. The main contribution of this chapter is KameleonFuzz

which encompasses the blocks D.1 (malicious input generation) and D.2 (precise

taint flow inference).

A Genetic Algorithm (GA), parameterized by an Attack Input Grammar (AIG),

evolves individuals (malicious inputs). The AIG reduces the search space and mim-

ics the behavior of a human attacker by constraining the mutation and crossover

operators which generate next generation inputs. We define a fitness function that

favors most suitable inputs for XSS attacks. Since server sanitizers may alter the

observed value at the reflection point Odst, a naive substring match may not in-

fer the taint precisely enough, which could lead to false negatives. To overcome

such limitations, we perform a double taint inference. The GA iteratively evolves

the best individuals of the current generation, according to their fitness score, and

recombines them to produce the next generation of individuals.

5.2 Evolutionary XSS Fuzzing

The fuzzing (step D in Figure 5.1) generates a population of individuals (Genetic

Algorithm (GA) terminology). An individual is an input (sequence of HTTP re-

quests) generated by LigRE (line 7 of Algorithm 5.1) in which KameleonFuzz

generates a fuzzed value xsrc according to an Attack Input Grammar (AIG) for the

reflected parameter (see line 15 of Algorithm 5.1). Inputs are concretized, sent to

the application, and the corresponding outputs are recorded. Then a precise taint

inference between the fuzzed value and the browser parse tree is performed in line

18. Each individual which did not find a vulnerability (test verdict of line 19 eval-

uates to false) is evolved via the mutation and crossover operators (Section 5.2.6,

line 25 and 28 of Algorithm 5.1) w.r.t. the AIG (Section 5.2.1) and according to

the fitness score (Section 5.2.5, line 22 of Algorithm 5.1).
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Algorithm 5.1: Genetic Algorithm (GA) pseudo-code

1 #IN: ctfm , attack grammar, webapp, config

2 #OUT: vulns

3

4 # First Generation: Individuals as Input Sequences

5 for l in range(1,config.popul size):

6 # a reflection is choosen, and a slice produced from the CTFM

7 popul[l] = Individual(ctfm.prio get slice(l))

8

9 vulns=[]

10 # Evolve the population

11 while(not(stopCondition())):

12 for indiv in popul:

13 webapp.reset()

14 # generate a fuzzer value

15 x src = attack grammar.generate(indiv.reflection ctx)

16 input sequence = indiv.inputs.concretize(x src)

17 o = webapp.send(input sequence)

18 taint = precise taint infer(x src ,o,parser)

19 if(verdict(taint,patterns)):

20 vulns += [input sequence]

21 popul[indiv] = Individual(ctfm.prio get slice(len(vulns)+

len(population)))

22 else:

23 indiv.fitness compute(x src ,o,taint,M)

24

25 children = crossover(popul.fittest([0..math.ceil(config.cross*len(

popul))]),attack grammar)

26 for c in children:

27 if(random(0,1) <= config.mutationRate):

28 c.mutate(attack grammar)

29 popul new = children

30 for l in range(len(children),len(popul)):

31 popul new[l] = popul.fittest(l−len(children])

32

33 popul = popul new

5.2.1 Attack Input Grammar (AIG)

Traditional fuzzing for memory corruption consists in the application of anomaly

operators on a set of bits (e.g., expanding a string, setting an integer to

INT32 MAX, etc.). This does not work when fuzzing for Web Command Injec-
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tion, as first the risk of memory corruption is low on web applications, and secondly

when searching for XSS, the reflection must fit a certain output structure (i.e., re-

flection context, Definition 13). Thus, in order to constrain the search space (i.e.,

avoid to search in the complete space Σ∗), we use an Attack Input Grammar (AIG)

for generating fuzzed values. It represents parameter values an attacker would at-

tempt to the application. As compared to a list of payloads as in w3af and Skipfish,

an AIG can generate more values, and is easier to maintain thanks to its hierarchi-

cal structure. This AIG also constrains mutation and crossover operators (lines 13,

25, 22 of Algorithm 5.1).

The knowledge used to build an AIG consists of the HTML grammar

[W3C 2012b], reflection contexts (Definition 13), string transformations in the case

of context change [Weinberger et al. 2011a], known attacks vectors [RSnake 2007,

Heyes et al. 2012].

ANTI-FILTER
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...
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AND

CONTEXT
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AND
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AND
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LETTER
OR

b ...a

Figure 5.2: Structure of an Attack Input Grammar (AIG) (extract)

We only give a taste of how to build an AIG, as it is yet manually written and its

automatic generation is a research direction. Figure 5.2 illustrates its structure. The

first production rule consists of representation and context information. Example

of contexts (Definition 13) include (<input value=" "/>) and outside a tag

(<h1> ). The representation consists of encoding, charset, and special string

transformation functions that we name anti-filter (e.g., PHP addslashes[PHP ]). In

our experiments it was sufficient to use UTF-8 encoding. However, variable length

encoding such as UTF-7 [Goldsmith & Davis 1997], Shift JIS [Microsoft b], etc.

may be of interest when the webpage does not specify any encoding to use.

We assume the availability of a representative set of vulnerable web applica-
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tions (different from the tested applications) and corresponding XSS exploits. For

each reflection context, the analyst writes a generalization of the XSS exploits in

the form of production rules with terminals and non-terminals.

We represent an AIG in an Extended Backus–Naur Form [Scowen 1993] with

bounded number of repetitions. We construct an AIG as an acyclic grammar. Thus

it unfolds to a finite number of possibilities. Listing 5.1 contains an excerpt of an

AIG we used during our experiments. The fuzzed value in Figure 5.3 was generated

using this grammar.

1 START = REPRESENTATION CONTEXT

2 REPRESENTATION = CHARSET ENCODING ANTI_FILTER

3 CHARSET = ( "utf8" | "iso-8859-1" | ... )

4 ENCODING = ( "plain" | "base64_encode" | ... )

5 ANTI_FILTER = ( "identity" | "php_addslashes" | ... )

6 CONTEXT = ( ATTRIBUTE_VALUE | OUTSIDE_TAG | ... )

7 ATTRIBUTE_VALUE = TEXT QUOTE SPACES HANDLER "=" QUOTE

JS_PAYLOAD QUOTE

8 HANDLER = ( "onload" | "onerror" | ... )

9 JS_PAYLOAD = ( JS_P0 | JS_P1 | ... )

10 JS_P1 = "alert(" NUMS ")"

11 NUMS = [5:10](NUM)

12 NUM = ("0" | "1" | "2" | ... | "9")

13 QUOTE = ("’" | "\"" | "" | "\\’" | ...)

14 SPACES = [1:3](SPACE)

15 SPACE = (" " | "\n" | "\t" | "\r")

16 TEXT = [0:9](LETTER)

17 LETTER = ("a" | "b" | ...)

Listing 5.1: Attack Input Grammar (AIG) (excerpt)

Generating a fuzzed value consists in performing a stepwise expansion

[Holler et al. 2012] through the production rules of an AIG and, if applica-

ble, performing choices. Producing the corresponding string from a fuzzed

value consists in concatenating the strings obtained by a depth-first explo-

ration of the context subtree, representing this string in a given charset, ap-

plying the anti-filter function, and applying an encoding function. For in-

stance, the string that results from the fuzzed value of Figure 5.3 is WUkp’ \t

onload=’alert(94478), on which the identity function is applied as an

anti-filter, and with no encoding change (node plain), and the resulting string in

UTF-8 charset.

In Algorithm 5.2, we illustrate the algorithm to transduce a production tree to

a concrete fuzzed value.
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Figure 5.3: The Production Tree of a Fuzzed Value

Algorithm 5.2: AIG: From Production Tree to Concrete Fuzzed Value

1 #IN: indiv prod tree

2 #OUT: x src (as a string )

3

4 def from aig word to string(indiv prod tree):

5 x src=""

6 ipt = indiv prod tree

7 x src = DFS aggregate(ipt.context)

8

9 # anti−f i l t e r

10 if(ipt.representation.antifilter=="identity"):

11 pass

12 elif(ipt.representation.antifilter=="addslashes"):

13 x src = addslashes(x src)

14 # . . .

15

16 # encoding

17 if(ipt.encoding=="plain"):

18 pass

19 elif(ipt.encoding=="b64 encode"):

20 x src = base64 encode(x src)

21 # . . .

22

23 # charset

24 if(ipt.charset=="utf8"):

25 pass

26 elif(ipt.charset=="EUC−CN"):

27 x src = ltchinese.conversion.python to euc(x src)

28 # . . .

29

30 return x src
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Algorithm 5.3: AIG: From Production Tree to Concrete Fuzzed Value (cont.)

1 def DFS aggregate(node):

2 n = len(node.children)

3 if(n==0):

4 str = node.value

5 else:

6 str = ""

7 for k in range(0,n):

8 str += DFS aggregate(node.children[k])

9 return str

In our experiments, we used the same AIG for the tested web applications. Due

to a minor limitation of the current implementation, we sometimes pruned some

production rules, for the search space to be narrowed, and thus the fuzzing to be

faster (this can be automated easily, as it only consists of selecting the production

rules for a given reflection context). We think that one unique AIG can be used

when searching for Type-1 and Type-2 XSS and assuming a specific set of filters

and of reflection contexts (Definition 13).

5.2.2 Individual

An individual is an input sequence targeting a specific reflection. It is composed

of an input sequence as a walk in a LigRE chopped model (Section 4.4.3), and of a

fuzzed value xsrc generated from an AIG. This input encompasses the originating

transition tsrc of a taint flow, and the transition where to observe the reflection tdst.

We define an individual in Definition 15.

Definition 15 Individual
Let M be a CTFM (Definition 14), let (xsrc, tsrc, tdst, odst) be a reflection (Defi-

nition 5) from the transition tsrc for the value xsrc of the parameter name(xsrc).

An individual I = (i0, . . . , in) is an input sequence s.t. :

• ∃ j, k ∈ [0. . .n], j ≤ k and tsrc is activated by i j and tdst is activated by ik

• the value of the input parameter name(xsrc), sent as part of i j in tsrc, is pro-

duced by the AIG.

5.2.3 Precise Taint Flow Inference (D.2)

When fuzzing, server side sanitizers may filter fuzzed input parameter values. Thus

we have to infer the taint again, and cannot only rely on results from the taint

annotation in step B (Section 4.3). Moreover, we want to answer the questions
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XSS.2.2 Can we exploit a potential sink? and XSS.3.3 How to prioritize inputs

fuzzing?. So we need to track the taint up to the nodes of browser parse tree. Thus

we perform this precise taint flow inference.

The precise taint flow inference permits obtaining information about the con-

text of a reflection. This later will serve for computing test verdict, and as an input

for the fitness function.

Parsing

String taint 

inference

concrete 

SUT output
fuzzed input 

parameter value

distance

(eg: Levenshtein)

substrings of output 

marked as tainted

String taint inference

Test verdict 

computation

parser

(eg: Chrome)

Parse Tree

(~DOM)

Taint-Aware

Tree

Taint-Aware

Patterns

XSS detected?

D.2.
precise 
taint 
inference

Fitness 

computation

fitness score

other fitness inputs

distance

o
dst

x
src

DOM
dst

TT
dst

Figure 5.4: Precise Taint Inference (xsrc→odst→TTdst)

The flow for producing a Taint Aware Tree (TAT) TTdst is shown in Figure 5.4.

We illustrate a TAT in Figure 5.6 and define it in Definition 16. First, a string to

string taint-inference algorithm (e.g., with the [Levenshtein 1966] edit distance) is

applied between the fuzzed value xsrc and the output odst in which it is reflected.

This first step results in Figure 5.5. In parallel, a parser (e.g., from Google Chrome)

evaluates the application output odst and produces a parse tree DOMdst (e.g., a

Document Object Model (DOM)). Then the taint is inferred between each tainted

substring of odst and each node of DOMdst to produce a TAT TTdst (see Figure 5.6),

as follows.
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<input name="message2"

value=" WUkp" onload="alert(94478) " />

Figure 5.5: Taint ed Substrings of the output odst

For each node of an output parse tree DOMdst, we compute a string distance

between each tainted substring and the node textual value. Then we only keep the

lowest distance score. If this score is lower than a tester defined threshold, then this

node is marked as tainted. This taint condition may be slightly relaxed in the case

of a cluster of neighbors nodes has a distance “close to the threshold”. The inferred

TAT TTdst (e.g., Figure 5.6) is an input for the fitness function and test verdict.

The data flow from the sending of a fuzzed input parameter value to its re-

flection within a parse tree node involves at least two transformations (if omit-

ting the transformations due to the encoding): a filter / sanitizer at server side,

and the parsing by the browser of the concrete output odst. During the server

side processing, the filter / sanitizer will induce string transformations. During

the parsing, the browser may induce transformations [Weinberger et al. 2011a,

Heiderich et al. 2013]. Intuitively, performing this two-steps taint inference pro-

cess should increase our rate of true positive and decrease our rate of true negative,

as compared to a direct string to parse tree inference.

input attributes

onload alert(94478)

value WUkp

name message2

Figure 5.6: A Taint -Aware Tree (TAT) TTdst (extract). The payload is a message

box that displays 94478 (harmless).

It is important to note that, instead of writing our own parser, as done in

[Sekar 2009], we rely on an real-world parser. This has two advantages. First,

we are flexible with respect to the parser (e.g., for XSS: Chrome, Firefox, IE ;

for other vulnerabilities such as SQL injections, we could rely on a SQL parser).

Secondly, we are certain about the real-world applicability of the detected vulnera-

bilities. This contrasts with writing a homemade parser which may introduce false

negative or false positive. However, we are aware that this potentially increases the

number of cases to be tested (number of applications × number of browsers × num-

ber of versions), but the effort in searching for an XSS for a specific browser and

version in a given application can be weighted depending on the number of users

using that precise browser and version (which can directly relate to the allocation

of testing resources and to a risk analysis).
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Definition 16 A κ, µ Taint Aware Tree (TAT)

Let M be a CTFM (Definition 14). Let (xsrc, tsrc, tdst, odst) be a δ-reflection in M

(Definition 5).

Let κ ∈ N and µ ∈ [[0..1]]. A κ, µ Taint Aware Tree (TAT) consists of:

• Ω(odst,G), the parse tree of the word odst w.r.t. the grammar G.

• d : Σ∗2→[[0..1]], a string distance function.

• Zδ(xsrc, odst), the set of δ-tainted substrings in odst by xsrc.

• a taint function Ψd,κ,µ : Z×Ω → {true, f alse} s.t. for each tainted substring

z ∈ Z and each parse tree node ω ∈ Ω,

Ψd,κ,µ(z, ω) =



















































True

if:

– the set of κ-tainted substrings in z

by ω.value is not empty

– OR d(ω.value, z) ≤ µ

False otherwise

5.2.4 Test Verdict

The test verdict answers the question “Did this individual trigger an XSS vulner-

ability?”. The TAT TTdst (Figure 5.6) is matched against a set of taint-aware tree

patterns (TAP) (e.g., Figure 5.8).

If at least one pattern matches, then the individual is an XSS exploit (i.e., the

test verdict will output “yes, vulnerability detected”). Our TAP are stable w.r.t.

the tested applications: we use the same TAP for all of them. A TAP is a tree

containing regular expressions on its nodes. Those regular expressions may contain

strings(e.g., script), taint markers , repetition operators(+,*), or the match-all

character(.). The tester can provide its own TAP. We incorporate in KameleonFuzz

default TAP for detecting successful XSS exploits. Those all violate the syntactic

confinement of tainted values.

Potential Vulnerability (Non Syntactic Confinement) If the TAP illustrated in

Figure 5.7 matches the TAT TTdst, then there is a non syntactic confinement of a

tainted value. This exhibits a potential vulnerability.

.+ .+ .+

Figure 5.7: The generic TAP detecting non syntactic confinement of a tainted value
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weight id dimension

+ + + 1 successfully injected character classes

+ + + 2 tainted nodes in TTdst

++ 3 singularity

++ 4 transitions from source xsrc to reflection odst

++ 5 new page discovered

++ 6 new macro-state discovered

+ 7 unexpected page seen

+ 8 page correctly formed w.r.t. output grammar

+ 9 unique nodes from the start node

Table 5.1: Dimensions of the fitness function

Exploitability A second step is to match the TAT TTdst with XSS specific TAP.

In order to write TAP, we observed the reflection contexts (see Definition 13 in

Section 4.3) and tainted parse tree nodes of outputs in various XSS attacks. Most

of them attempt to craft a handler in order to trigger code execution (e.g., Java-

Script) [Heyes et al. 2012]. From this set of attack vector, we generalize minimal

tainted parse trees, which are the TAP. We illustrate an example of TAP in Fig-

ure 5.8. The second TAP in that figure matches the TAT represented in Figure 5.6.

In Appendix B, we provide a detailed list of the TAP included in KameleonFuzz.

script children .+

.+ attributes ( onerror ‖ onload ‖...) .* .+ .*

Figure 5.8: Two Taint -Aware tree Patterns (TAP), represented in a Linear Syntax

(resp. a tainted script tag content and a tainted event handler attribute)

5.2.5 Fitness

The fitness function assesses “how close” is an individual to finding an XSS vul-

nerability. The higher its value, the more likely the GA evolution process will pick

the genes of this individual for creating the next generation. The inputs of the

fitness function are the individual I, the concrete output odst in which the fuzzed

value xsrc, sent in the transition xsrc, is reflected, Tdst = taint(parse(odst), xsrc) the

taint-aware parse tree, and the application model M. The fitness dimensions are

related to properties we observed between the fuzzed value and the reflection in

the case of successful XSS attacks. Those dimensions are listed in Table 5.1.

Those dimensions model several intuitions that a human penetration tester may

have. The most significant ones are:

• 1: Percentage of Successfully Injected Character Classes. Characters
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that compose leaves of individual fuzzed value tree (see Figure 5.3) are

categorized into classes depending on their meaning in the grammar (e.g.,

C1 ={<,>} C2 ={",’}, C3 ={\n,\r,\t}, C4 ={;,:}, etc.). This metric

expresses the “injection power” for the considered reflection.

• 2: Number of Tainted Nodes in TTdst. Whereas injecting several character

classes is important, it is however not a sufficient condition for an attacker

to exert control on several parse tree nodes. Successful XSS injections are

generally characterised by at least two neighbours tainted nodes (one which

is supposed to confine the reflection, and the other(s) that contain the payload

and a trigger for that payload). Thus, if an attacker is able to reflect on

several nodes, we expect that it increases its chances to exploit a potential

vulnerability.

• 3: Singularity of an individual w.r.t. its current generation. A problem

of GA is overspecialization that will limit the explored space and keep find-

ing the same bugs [DeMott et al. 2007]. To avoid this pitfall, we compute

“how singular” an individual is from its current generation. This dimension

uses the source transition xsrc, the fuzzed value xsrc, and the reflection con-

texts (i.e., the destination transition odst and the tainted nodes in TTdst, see

Definition 13).

• 4: The higher the Number of Transitions between the source transition

xsrc and its Reflection odst, the more difficult it is to detect that vulnerability,

because it expands the search tree.

• 5: a New Page discovered (5) or 6: a new Macro-State (6) discovered:

increase application coverage.

5.2.6 Mutation and Crossover Operators

A probability distribution decides whether an individual will be mutated or not.

When a mutation will happen, an operator is applied either on the fuzzed value or

on the input sequence. We list the implemented fuzzed value mutation operators in

Table 5.2. We fuzzed while aiming at one reflection at a time.

The fuzzed value mutation operator works on the production tree of the

fuzzed value xsrc (see Figure 5.3). The amplitude of the mutation is a decreasing

function of the fitness score: if an individual has a high fitness score, the mutation

will target nodes in the production tree that are close to leafs. Similarly, in the case

of a low fitness score, the operator is more likely to mutate nodes close to the root.

Figure 5.9 illustrates an example of application of the fuzzed value operator.
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" \nyoda onclick = alert(1)

JS_PAYLOADEQUAL
TAG

_EVENTQUOTETEXT_SIMPLE

"

QUOTESPACE

" \nyoda
onmous

eover
= alert(1)"

onmous

eover
=

document.loca

tion...` ' \t

10

e.g. 2 mutations:

1 ADDITION

1 REPLACEMENT

17

18

16

Individual

A 

Individual

 B

Figure 5.9: An Example of Application of a Mutation Operator on a Fuzzed Value

The input sequence mutation operator works on the whole sequence I. It

consists in either taking another path in the model from the source xsrcto the desti-

nation odst, or targeting a different reflection.

Name Param 0 name param 0 values

fuzzed

parameter value

mutation

# of sub-tree to mutate [[0 . . . 2]]

path mutation max length of new input se-

quence

N
+ (tester defined)

Table 5.2: The Mutation Operators

The crossover operator works at the fuzzed value level, i.e., on the production

tree. Its inputs are two individuals of high fitness scores. It produces two children.

When a crossover operator is applied on two parents which share at least one pro-

duction rule at a sufficiently deep level, we exchange at most two pairs of sub-trees

between the parents, in accordance with an AIG. Figure 5.10 illustrates an appli-

cation of the crossover operator on the fuzzed values of parents A and B. In this

figure, we only represent one of two children: the child AB1 contains the TEXT,

QUOTE, and SPACE production sub-trees of A, the subtree 17 of B, the the subtree

10 of B, and the subtrees EQUAL, QUOTE and JS PAYLOAD of A.
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" \nfuzz.gif onclick = alert(1)

JS_PAYLOADEQUAL
EVENT

QUOTE
TEXT

"

QUOTESPACE

"fuzz.gif

1 of 2 produced   children

' \tbrazil =

javascript: 
window.location="

http://vuln.ext/
pay?";'

onerror =
document.loca

tion...` ' \t

10
17

16

= alert(1)"

18

onmous

eover

onerror =
document.loca

tion...` ' \t

\n

onmous

eover

Child
AB1

Parent
B

Parent
A

Figure 5.10: Crossover of Two Individuals A and B in KameleonFuzz (only one of

two children is shown)

Name Param 0 name param 0 values

sub-tree exchange # of sub-tree exchange [[0 . . . 2]]

Table 5.3: The Crossover Operator

5.2.7 Stopping Condition

The stopping condition is a boolean function which evaluates to true when the

tester wants the fuzzing to be stopped. This function receives the number of dis-

tinct found XSS vulnerabilities, the number of founds XSS exploits, the number

of submitted fuzzed inputs, the duration of fuzzing, and the number of generations

evolved.

5.3 Implementation

5.3.1 Technical Details

KameleonFuzz is a python3 program which targets Type-1 and 2 XSS. It is com-

posed of 4500 lines of code. As shown in Figure 5.11, we instrument Google

Chrome [Google ] with the Selenium library [Huggins et al. ]. It includes LigRE

(8.000 lines of code) (Section 4.5), as control+taint flow model inference tool and

slicer. The tester has to provide an attack grammar, and stopping conditions.
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Parser    Selenium

Web 

Application

Browser

- e.g. Chrome
Parse Tree

(DOM)

Request

Attack
Grammar

XSS
Patterns

LigRE

- control+taint flow 

inference

- chopping

KameleonFuzz

- evolutionary fuzzing

HTTP

Request

& 

Response

Found
Vulnerabilities

Web
App.

GA
Config

Interesting
Reflections

Figure 5.11: Architecture of KameleonFuzz

Figure 5.12: Pascal, the KameleonFuzz Logo

5.3.2 A Potentially Iterative Process

In practise, the tester defines its stopping conditions. At the end of the test cam-

paign, if no interesting results were found, the tester can increase the testing re-

sources (e.g., increasing the number of generations, the size of the population,

etc.). In such a situation, our current implementation may repeat some tests which

were made during the first campaign. This can be avoided by storing the results of

the first campaign. This is a limitation of the implementation, not of the approach.
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5.4 Related Work

5.4.1 XSS Test Verdict in a Black-Box Approach

Confinement Based Approaches assume that malicious inputs break the struc-

ture at a given level (lexical or syntactical). As in [Sekar 2009], we rely on non-

syntactical confinement and we use detection policies that are both syntax and taint

aware. A key difference is that [Sekar 2009] wrote his own parser to propagate the

taint, whereas we use the parser of a browser (e.g., Google Chrome). Thus we

infer the taint twice (see Figure 5.4). By doing so, we are sure about the real-

world applicability of the found XSS exploits, and our implementation is flexible

w.r.t. the browser. [Su & Wassermann 2006] relies on non-lexical confinement as

a sufficient fault detection measure, which is more efficient than [Sekar 2009], but

requires a correctly formed output (which is not an always valid assumption on

HTML webpages [Heiderich et al. 2010]) and is prone to false negatives.

Regular-Expressions Based Approaches assume that the fuzzed value is re-

flected “as such” in the application output i.e., that the sanitizer is the identity

function. In the case of sanitizers this may lead to false negatives [Riancho 2011].

Moreover, most do not consider the reflection context, which can lead to false pos-

itive. IE8 [Ross 2008] and NoScript [Maone 2006] rely on regular expressions on

fuzzed values. XSSAuditor (Chrome XSS filter) performs exact string matching

with JavaScriptDOM nodes [Bates et al. 2010].

String Distance Based Approaches Sun[Sun et al. 2009] detects self-

replicating XSS worms by computing a string distance between DOM nodes

and requests performed at run-time by the browser.

IE8 [Ross 2008] and Chrome XSSAuditor [Bates et al. 2010] filters only work

on Type-1 XSS. Whereas NoScript [Maone 2006] is able to block some Type-2

XSS, but is only available as a Firefox plugin.

5.4.2 Learning and Security Testing

In its basic form, fuzzing is an undirected black-box active testing technique

[Barton et al. 1989]. [Zalewski 2011a, Valotta 2013, Holler et al. 2012,

Ruderman 2007] mainly target memory corruption vulnerabilities.

[Stock et al. 2013]’s recent work fuzzes and detects Type-0 XSS in a white-box

test context. [Heiderich et al. 2013] detects in black-box Mutation based Cross

Site Scripting (m-XSS) caused by browser parser quirks. LigRE+KameleonFuzz

is a black-box fuzzer which targets Type-1 and 2 XSS (Definition 8).

Genetic Algorithm (GA) for black-box secu-

rity testing has been applied to evolve malwares

[Noreen et al. 2009] and attacker scripts [Budynek et al. 2005].
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[DeMott et al. 2007, Rawat & Mounier 2010, Bekrar et al. 2012] target memory

corruption vulnerabilities in a grey-box test context. Their fitness function

contains the number of executed basic blocks and the singularity of inputs.

[DeMott et al. 2007] performs random 1-point crossover and 2-points mutation.

[Rawat & Mounier 2010, Bekrar et al. 2012] perform offset aware mutations.

KameleonFuzz is the first application of GA to the problem of black-box XSS

search. Its fitness dimensions model the intuition of human security penetration

testers.

An Attack Grammar (AIG) produces fuzzed values for XSS as a composition

of tokens. [Wang et al. 2010, Tripp et al. 2013] and KameleonFuzz share this view.

In their recent work, [Tripp et al. 2013] prune a grammar based on the test his-

tory to efficiently determine a valid XSS attack vector for a reflection. It would

be interesting to compare KameleonFuzz to their approach, and to combine both.

[Wang et al. 2010] use a hidden Markov model to build a grammar from XSS vec-

tors. [Kals et al. 2006] uses attack vectors from a very large manually written li-

brary, without specific criterion.

Learning for Security Testing Radamsa targets memory corruption vulnera-

bilities: it infers a grammar from known inputs then fuzzes to create new inputs

[Pietikäinen et al. 2011]. [Shu & Lee 2007] passively infer a model from network

traces, and actively fuzz inputs.

For command injection vulnerabilities (XSS, SQL injection, . . . ),

[Dessiatnikoff et al. 2011] cluster pages according a specially crafted dis-

tance for SQL injections. [Sotirov 2008] iterates between reverse-engineering of

XSS filters, local fuzzing, and remote fuzzing. [Doupé et al. 2012] showed that

inferring macro-state aware control flow models increases vulnerability detection

capabilities.
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CHAPTER 6

Experiments for XSS Detection

You bruteforce all the moves in chess,are you playing? Mutate the code that plays

chess, you are learning and playing. The seed is the code.

[Heyes 2013]

One development team cannot fail 1000 times to develop a secure application, but

1000 teams can fail one time.

[Ruff 2013a]

I enjoy making things, breaking things, and making things that break things.

[Moore 2013]

Making the world a better place... One crash a time!

[Takanen 2012]

We evaluate our approach by applying our tools on different Web Applications,

listed in Table 6.1. We separately evaluate the LigRE inference (Section 6.2) and

the KameleonFuzz evolutionary fuzzer (Section 6.3) components. We discuss the

limitations of our tools in Section 6.4.

6.1 Evaluation methodology

We selected seven web applications of various complexity (Table 6.1). The cri-

teria for choices are various (different server side languages: JSP, Python, PHP;

have shown to contain at least one XSS each; some are used at industrial scale).

KameleonFuzz detected at least one true XSS in all of them.

P0wnMe v0.3 is an intentionally vulnerable web application for evaluating

black-box XSS scanners. It contains XSS of various complexity (transitions, filters,

reflection structure).

WebGoat v5.4 is an intentionally vulnerable web application for educating de-

velopers and testers. Its multiple XSS lessons range from message book to human

resources.
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Application Description Version Plugins

P0wnMe


















Intentionally

Vulnerable

0.3

WebGoat 5.4

Gruyere 1.0

WordPress Blog 3.2.1 Count-Per-Day 3.2.3

Elgg Social Network 1.8.13

phpBB Forum 2.0

e-Health Medical 04/16/2013

Table 6.1: Tested Web Applications

Gruyere v1.0 is an intentionally vulnerable web application for educating de-

velopers and testers. Users can update their profile, post and modify “snippets”

and view public ones.

Elgg v1.8.13 is a social network platform used by universities, governments.

Users can post messages, create groups, update their profile. An XSS exists since

several versions.

WordPress v3 is a blogging system: the blogger can create posts and tune

parameters. Visitors can post comments, and search. The count-per-day plugin is

known to contain XSS.

PhpBB v2 is a forum platform. We include this version, as it is notorious for

containing several XSS[Bau et al. 2010].

e-Health 04/16/2013 is an extract of a medical platform used by patients and

practitioners, developed by a company.

XSS Uniqueness an XSS is uniquely characterized by its source transition Isrc,

its parameter name, its destination transition Odst and the tainted nodes in the parse

tree T (P(Odst), Isrc). Hence if a fuzzed value is reflected twice in Odst, e.g., in

two different nodes in the parse tree, and for each node, the scanner generated an

exploitation sequence, then we count two distinct XSS. In our experiments, the

only time we had to distinguish two XSS using the nodes in the parse tree was in

the Gruyere application.

Experimental Platform We run the scanners on a Mac OS X 10.7.5 platform

with a 64 Bit Intel Quad-Core i7 at 2.66GHz processor, and 4GB of RAM DDR3

at 1067MHz.

6.2 LigRE evaluation

We aim at determining if control plus taint flow model aware XSS fuzzing is ef-

ficient enough to search for vulnerabilities in typical web applications. We also

aim at comparing the fault detection capability of our prototype implementation

LigRE against existing state of the art black-box vulnerability scanners. Relevant
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metrics include the number of distinct true XSS discovered, and the number only

found by a given scanner. To measure the efficiency of the scanners, we compare

the number of sent requests and of found XSS. In our experiments, LigRE detected

XSS missed by other scanners, and most of the XSS found by those.

We consider the following open-source black-box XSS scanners to compare

with our approach: Wapiti, w3af and SkipFish. They all infer the control flow and

fuzz. Their configuration i available in [Duchène 2013c]. In addition to LigRE

with all its components (A,B,C and D in Figure 4.1), we also include LigRE with

only A(control flow inference) and D(w3af). We denote them as LigREABC+D and

LigREA+D. In both setups, D denotes the w3af fuzzer.

RQ1. (Fault Revealing): Does control plus taint flow aware fuzzing find more

true vulnerabilities than other scanners?

For each scanner and application, we sequentially configure the scanner, reset the

application, set a random seed to the scanner, run it against the application, and

retrieve the results. We repeat this process five times, using different seeds. If

possible, scanners are configured s.t. they only target XSS. We configure them

with the same information (e.g., credentials). When a scanner does not handle it,

we perform two sub-runs: one with the cookie of a logged-on user and one without.

We adjust parameters for the runs to last at most five hours. Beyond this dura-

tion, we stop the scanner and manually analyze the results. The number of detected

XSS is the union of distinct true XSS found during the different runs. An XSS is

uniquely characterized by its source transition tsrc, its fuzzed parameter name xsrc,

its destination output tdst and the structure in which the value of xsrc is reflected.

For all scanners, we manually verify XSS. During our experiments, no scanner

reported false positive XSS (Skipfish reported other false positives).

Application Inferred

Taint-Flows

True XSS

Detected

Nodes Transitions

P0wnMe 28 2 13 51

WebGoat 134 4 20 80

Gruyere 23 3 30 130

WordPress 52 2 15 129

Elgg 59 1 49 214

PhpBB 213 4 63 279

e-Health 12 5 15 33

Table 6.2: LigREABC+D (D=w3af) detection capabilities on the tested applications

Table 6.2 contains the numbers of annotated reflections, found XSS, inferred

nodes and transitions. This illustrates the practicality of LigRE to infer the control

and taint flow models of the evaluated applications. The number of nodes and

transitions, may correspond to a partial application coverage.

Figure 6.1 represents the number of detected true XSS vulnerabilities for the
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considered scanners and applications. LigREABC+D (D=w3af) detected the highest

number of vulnerabilities for every application, and several vulnerabilities not de-

tected by other scanners. These results confirm [Doupé et al. 2012]’s experiments:

improving the control flow inference(LigREA+D) increases the vulnerability detec-

tion capabilities, as compared to non macro-state-aware scanners (Wapiti, w3af(D),

Skipfish). Moreover, comparing LigREA+D and LigREABC+D shows that taint flow

inference(B) and slices for flow aware fuzzing(C) also increase XSS detection ca-

pabilities. We notice that LigREABC+D founds vulnerabilities missed by other scan-

ners, including LigREA+D (D=w3af): see the non-dotted part of Figure 6.1.

Most scanners achieve limited coverage due to their partial handling of basic

forms, their inability to track the macro-state (beyond the classic logged in/out, and

assuming the tester provides values). At times, they send requests regardless of the

available links. The aggressive behavior of Skipfish is sometimes positive (e.g., in

Gruyere, it found one XSS missed by others on 404 pages), sometimes not (e.g.,

in Wordpress, it submitted 150 times a form without detecting any XSS). As the

control flow for the targeted reflection is quite simple, LigRE detected the XSS in

Wordpress mainly because it sent fewer fuzzed values than SkipFish. For Elgg,

both Skipfish and w3af loop between pages because they only consider the URL

and not the page model.

p0wnMewebgoatp0wnMep0wnMe gruyerewebgoatwebgoat wordpressgruyeregruyere elgg phpbb ehealth
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Figure 6.1: XSS Detection Capabilities of Black-Box Scanners
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On considered applications, a control plus taint flow directed fuzzing

increases XSS revealing capabilities.

RQ2. (Efficiency): How efficient are the scanners in terms of vulnerability

detection capabilities per number of tests?

We set up a proxy between the scanner and the web application, and configure

this proxy to limit the number of requests. We iteratively increase this limit, run

the scanner, and retrieve the number of found and distinct true XSS. We manually

verify them. We run such a process five times per scanner, web application, and

limit. For each number of requests, for each scanner, we sum the number of unique

true XSS detected for all applications. The results are illustrated in Figure 6.2.

0 500 1,000 1,500 2,000
0

5

10

15

20

HTTP requests

U
n
iq

u
e

D
et

ec
te

d
T

ru
e

X
S

S

Wapiti

w3af

Skipfish

LigREABC+D

Figure 6.2: XSS Detection Efficiency of Black-Box Scanners

Below approximately 850 HTTP requests, w3af is the most efficient scanner.

Thus we hypothesize that in applications with few macro-states, assuming it is able

to navigate correctly, which in our experiments mainly happened in P0wnMe and

Gruyere, then w3af is more efficient than other scanners at finding non filtered

XSS.

Moreover, the LigRE proof-of-concept spends a significative number of re-

quests in taint flow inference (from 75 to 93%). There is room for improvement.

An industrial implementation should consider additional heuristics to prune se-

quences: e.g., with a notion of achieved coverage of n long sub-sequences.
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Taint flow inference is the main barrier to entry of LigRE. If acceptable,

LigRE had the highest detection capabilities. Otherwise, traditional

scanners are of interest.

RQ3. (Current Use by Testers): What is the current use of CTFM by testers?

We conducted two surveys for evaluating the current level of use of CTFM by

penetration testers[Duchène et al. 2013c], and how they obtained them. Figure 6.3

synthesize relevant knowledge.
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Figure 6.3: Main Results of Poll for Web Applications Security Testers

Obtaining and using models Currently used open-source web scanners do not

output CTFM. W3af [Riancho 2011] outputs CFM. It achieves a low coverage

[Doupé et al. 2012]. In our sample, no tester uses w3af to obtain a CFM.
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Those who make use of CFM rely on a manual crawling approach, using Burp

[Stuttard 2007] as a proxy, and manually draw CFM. However, since considered

web fuzzers only accept a list of urls and an authentication context, they would

achieve a low transition coverage.

Taint Flow Tracking 77% of testers do not perform white-box taint flow track-

ing, mainly because they think that not enough tools are available. 50% of those

find this manual work tedious. Those who perform it rely on dynamic exact string

matching. 54% of testers perform black-box taint flow inference. Most of them do

it manually. 57% of those find it tedious. Taint flow tracking aims at determining

the exact composing of filters, in order to produce fuzzed inputs to bypass those

filters. Performing it manually is time consuming, and limited to human expertise.

In white-box, it may require knowledge of various server languages. Whereas in

black-box, the ability to interpret few client side languages is enough.

Even skilled penetration testers largely rely on manual taint flow tracking.

Since such work is time consuming, and prone to false negatives, there is

a need for tools producing hybrid control plus taint flow models.

6.3 KameleonFuzz evaluation

We evaluate our prototype implementation of KameleonFuzz against black-box

open source XSS scanners, in terms of detection capabilities (RQ4) and detection

efficiency (RQ5). In our experiments, KameleonFuzz detected most of the XSS

detected by other scanners, several XSS missed by other scanners, and 3 previously

unknown XSS.

We considered four black-box XSS scanners to compare with KameleonFuzz:

Wapiti, w3af, Skipfish and LigRE+w3af. Appendix A contains the configuration

we used during the experiments. It is important to note that only LigRE and Ka-

meleonFuzz are macro-state aware.

RQ4. (Fault Revealing): Does evolutionary fuzzing find more true vulnerabili-

ties than other scanners?

To answer this question, we consider the number of true positives, the number

of false positives, and the overlap of true positives. For the first two metrics, we

compare all tools, whereas for the overlap, we compare LigRE+KameleonFuzz

against the others (Wapiti, w3af, skipfish, LigRE+w3af). True positives are the

number of XSS found by a scanner that actually are attacks, thus the higher, the

better. If a scanner produces false positives, a tester will loose time, thus the lower

the better. The overlap indicates vulnerabilities detected by several scanners. We

denote as TA the True XSS vulnerabilities found by the scanner A. We define the
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Application
Potential

Reflections

# gen. to

detect the

found XSS

Transitions

start→Odst

True

Positive

(TP)

False

Positive

(FP)1st 2nd 3rd

P0wnMe 37 3 4 6 7 3 0

WebGoat 134 2 6 7 7 6 0

Gruyere 23 4 2 2 7 4 0

WordPress 52 2 2 2 5 4 0

Elgg 59 1 6 1 0

PhpBB 213 4 5 5 6 6 0

e-Health 12 1 4 4 4 8 0

Table 6.3: KameleonFuzz detection capabilities on the considered applications

overlap as:

overlap(A, B) = TA∩TB

TA∪TB

A low overlap indicates that scanners are complementary. We also consider the

vulnerabilities only detected by one scanner:

only by(A, B) = TA

TA∪TB
− overlap(A, B)

A low only by indicates that a given scanner does not find many XSS that the other

missed.

For each scanner and application, we sequentially configure the scanner, reset

the application, set a random seed to the scanner, run the scanner against the ap-

plication, and retrieve the results. We repeat this process five times, using different

seeds. Parameters have been adjusted so that each run lasts at most five hours.

Beyond this period, we stop the scanner and analyze the produced results. The

number of found vulnerabilities is the union of distinct true vulnerabilities found

during the different runs. If possible, scanners are configured so that they only

target XSS. We configure the scanners with the same information (e.g., authenti-

cation credentials). When a scanner does not handle this information correctly, we

perform two sub-runs: one with the cookie of a logged-on user, and one without.

Since all scanners, except LigRE and KameleonFuzz, are not macro-state aware we

configure them to exclude requests that would irreversibly change the macro-state

(e.g., logout when an authentication token is provided).

The practicality of LigRE+KameleonFuzz is illustrated in Table 6.3. This

figure reports the number of potential reflections, found vulnerabilities, and gener-

ations to find all detected vulnerabilities during the fuzzing. The three columns in

the middle report the length of created XSS exploits for the closest vulnerabilities

from the start node.

True and False XSS Positives. We manually verify the XSS for each scanner.

During our experiments, no scanner found a false positive XSS (Skipfish had other

false positives). Figure 6.4 lists the results of the black-box scanners against each

98



CHAPTER 6. XSS EXPERIMENTS 6.3. KAMELEONFUZZ EVALUATION

application. In our experiments, KameleonFuzz detected the highest number of

XSS, and several XSS missed by others. The union of the distinct true XSS found

by the scanners is 35. LigRE+w3af finds 23
35
= 65.7% of the known true XSS,

whereas LigRE+KameleonFuzz finds 32
35
= 91.4%. KameleonFuzz improves XSS

detection capabilities.
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Figure 6.4: Detection Capabilities of Black-Box XSS Scanners

The overlap and only by of true XSS found by LigRE+KameleonFuzz (KF)

against other scanners are illustrated on Figure 6.5. KameleonFuzz finds the major-

ity of known true XSS. W3af and Skipfish find the remaining ones. In the Gruyere

application, Skipfish and w3af each found one vulnerability missed by all other

scanners, including KameleonFuzz. Those consist of a not referenced 404 page

containing a type-1 XSS, and of a type-2 XSS within the pseudo field when reg-

istering. It is harder to find the latter XSS than others: the application behaves

differently as inferred when the scanner registers a new user with a fuzzed pseudo.

Reusing the fuzzing learned knowledge in the inference may permit Kameleon-

Fuzz to detect this XSS. Additionally, Skipfish and w3af both detected one XSS

in Gruyere that other scanners missed. Thus the only by of Skipfish and w3af is

two in Figure 6.5, whereas in Figure 6.4, one XSS is detected by both of them.

Inferring the control flow for navigating to non-referenced pages may increase Li-

gRE+KameleonFuzz XSS detection capabilities. If this is not an option, the tester

should use LigRE+KameleonFuzz, Skipfish, and w3af.
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Figure 6.5: Number of True XSS found, only by, and overlap of Li-

gRE+KameleonFuzz and other scanners

LigRE+KameleonFuzz detects more true XSS than other scanners. It has

no false positive.

KameleonFuzz increases XSS detection capabilities.

The non null only by of w3af and Skipfish suggest they are

complementary to KameleonFuzz.

RQ5. (Efficiency): How efficient are the scanners in terms of found vulnera-

bilities per number of tests?

To answer this question, it is appropriate to observe the number of detected

true XSS depending of the number of HTTP requests. Thus, we set up a proxy

between the scanner and the web application, and configure this proxy to limit the

number of requests. We iteratively increase this limit, run the scanner, and retrieve

the number of found distinct true XSS. We manually verify them. We run such

a process five times per scanner, web application, and limit. For each number of

requests, for each scanner, we sum the number of unique true XSS detected for all

applications. The results are illustrated in Figure 6.6.

On considered applications, below approximatively 800

HTTP requests per application, w3af is the most efficient scanner. Thus we

hypothesize that in applications with few macro-states, assuming it is able to
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Figure 6.6: Detection Efficiency of Black-Box XSS Scanners

navigate correctly, w3af is more efficient than other scanners at finding non

filtered XSS. In our experiments, mainly happened in P0wnMe and Gruyere.

In applications with more macro-states, assuming the cost of control+taint flow

inference is acceptable, LigRE improves vulnerability detection. Starting from 900

HTTP requests, LigRE+KameleonFuzz detects more vulnerabilities per number

of requests than LigRE+w3af. For instance, after 2200 requests per application,

fuzzing with KameleonFuzz detects 42.9% more XSS than fuzzing with w3af.

On the LigRE+w3af and LigRE+KameleonFuzz curves, we can observe several

landings, which mostly correspond to the end of the LigRE control+taint flow

inference for a given application.

If the cost of LigRE inference is acceptable, then LigRE+KameleonFuzz

is more efficient than LigRE+w3af.

Otherwise, w3af alone is of interest.

6.4 Discussion

6.4.1 Found 0-days XSS

During the experiments, I found the following XSS. We describe two of them in

the appendix at page 155.
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• CVE-2013-7297 – 1 Type-2 XSS in Elgg 1.8.13 (impact: Elgg is notably

used by the Australia Governement, Wiley Publishing, the University of

Florida) [Duchène 2013a]

• CVE-2014-1599 – 39 Type-1 XSS in SFR BOX NB6-MAIN-R3.3.4 (im-

pact: ∼ 5.2 Million users + possibility of changing the routing table)

[Duchène 2014a]

• 1 Type-1 XSS and 2 Type-2 XSS in Siemens-Home (impact: user imperson-

ation, customer data thief, privilege escalation) [Duchène 2014c]

• 4 Type-1 and 4 Type-2 XSS in Siemens e-Health (impact: privilege escala-

tion) [Siemens 2014, Duchène 2014b]

• 2 Type-2 XSS in HITB CFP (impact: privilege escalation) [Duchène 2014f]

• 1 Type-1 XSS in ITEA2 Diamonds Website [Duchène 2014b]

6.4.2 Applicability to other Web Command Injections (WCI)

Even though we only experimented with Type-1 and 2 XSS vulnerabilities, we are

confident that the KameleonFuzz approach can be applied to other types of WCI,

with proper adaptations (e.g., attack grammar), as shown in Table 6.4. Such adap-

Vulnerability Output Grammar Where to Parse?

Cross Site Scripting HTML HTML page

HPP Param. Pollution HTTP Reply Headers

PHP Code Injection PHP argument of eval

SQL Injection SQL arg. of sql query

Shell Injection Shell . . .exec, system

Table 6.4: Command Injections: Vulnerabilities, Output Grammars, and Observa-

tion Points

tation still do not require access to the application source code, only the ability

to intercept at run-time the arguments at the observation points. Thus for com-

mand injection vulnerabilities other than Type-1 and Type-2 XSS, one may con-

sider our approach as having a grey-box harness. Using our approach for detect-

ing Type-0 XSS and mutation-XSS is likely to require an adaptation of the attack

grammar[Heiderich et al. 2010, Heiderich et al. 2013].

6.4.3 Limitations

We classify the limitations in two categories: the limitations of our approach, and

those of our implementation.
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6.4.3.1 Approach Limitations

Reset We assume the ability to reset the application in its initial node, which

may not always be practical (e.g., when testing a live application having users

connected, we have to work on a copy). However, this does not break the black-

box harness assumption: we do not require to be aware of how the macro-state is

stored (e.g., database). How to relax this assumption is a research direction.

Generation of an Attack Input Grammar (AIG) Writing an AIG requires

knowledge of the parameters mentioned in Section 5.2.1. This work is yet man-

ual. The trade-off between the size of the language generated by this grammar

and the fault detection capabilities is yet to be studied. A too narrow generated

language (e.g., few produced fuzzed values for a given context, or very few con-

texts) may limit the fault detection capability, whereas a too important one may

have limited efficiency. Moreover, the AIG is tied to the targeted injection sub-

family (e.g., XSS, SQL injection, etc), thus the need for human input is a cur-

rent limitation. There is room for research in automating this generation process

[Wang et al. 2010].

XSS Model Hypothesis We hypothesize that an XSS is the result of only one

fuzzed value. Our current approach may have false negative on XSS involving the

fuzzing of at least two fuzzed values at a time[Dalili 2012]. To our knowledge, no

scanner handles such cases.

6.4.3.2 Implementation Limitations

Non Deterministic Value (NDV) We assume the tester’s ability to iden-

tify the NDV (e.g., anti-CSRF, viewstate, . . . ), or constantly changing pages

[SPaCIoS 2013]. Approaches to automate their detection have been investigated

[Hossen et al. 2011].

Dynamic Client-Side Content Our implementation does not support Ajax ap-

plications, unless they gracefully downgrade (i.e., keep their functionality while

navigating via HTTP requests instead of Ajax events). [Marchetto et al. 2008,

Amalfitano et al. 2008] automatically infer Ajax applications. Flash and PDF files

are not yet supported. Thus on very dynamic applications such as Facebook which

made intensive use of DOM transitions, our implementation would only infer and

fuzz a subset of the tested application. This means that the fault detection capa-

bilities of our implementation is limited to the subset of the application accessible

by performing only HTTP requests which can be discovered in links and in forms.

We did not experiment with such applications.
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Encoding The precision and efficiency of the taint flow inference is dependent

of the considered encoding transformations. Plain, url and base64 encodings are

implemented. LigRE and KameleonFuzz can be extended to support more.

6.4.4 Threats to Validity

External Comparison We only compare to open source black-box web scanners

and LigRE. We contacted several vendors of commercial products, but we did not

receive a positive reply within a reasonable timeframe. Thus we were unaware

to compare with commercial scanners. Those may obtain better results than the

considered scanners.

Randomness Scanners make extensive use of randomness. Since some XSS are

not trivial to be found, their discovery may involve randomness and duration. We

tried to limit such factors by running the scanners five times with different seeds

and up to five hours. The chosen duration of the experiments may impact the

results.

Considered Applications Our comparison with other scanners is limited to the

considered versions of scanners and applications. We cannot generalize results

from those experiments. Running the scanners on other applications or scanners

versions may produce different results.

KameleonFuzz Parameters KameleonFuzz contains numerous adjustable pa-

rameters e.g., probabilities that drive the mutation and crossover operators during

the fuzzing. In Appendix A, we provide significant parameters and their default

values. Those are chosen empirically. Because the value domain of each param-

eter is quite wide, and it is time consuming to run the whole test suite, it was

not feasible to evaluate the combination of all parameters values and their impact.

Thus, we cannot guarantee that the chosen default values achieve the best detection

capabilities and efficiency.
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Other Approaches for Detecting

Vulnerabilities

Any sufficiently complicated input data is indistinguishable from bytecode, its

consumer from a VM.

[Bratus & Bangert 2012]

After watching a lot of these talks I think what you have to do is ask each executive at

RSA how their vision differs from modern reputation-system, brain-in-the-cloud,

heuristics-based anti-viruses.

[Aitel 2014]

Sometimes, I forget that I launched calc.exe, and then I freak out when I notice it in

my taskbar.

[Kortchinsky 2013]

For the last three decades, in order to ensure the safety of systems, researchers

proposed many techniques dedicated to the automatic search and detection of vul-

nerabilities. Such techniques first differ from each other depending on the test

context (e.g., white-box, grey-box or black-box).

7.1 White and Grey-Box Approaches

Static Analysis techniques extract knowledge from information available with-

out executing the application (e.g., source code). Code review is performed by

automatic tools, or human security analysts. Even corporations with very large

web application code base, such as Google and Facebook, still perform manual

code reviews as part of their security testing processes. [Shar & Tan 2012] ex-

tracts the composition of sanitizers from the source code, and verifies if a by-

pass can be found for the composed sanitizer. [Aydin et al. 2014] extract sig-

natures from source code to generate CTFM-like automatons, from which they

generate input sequences towards achieving specific coverage criteria. Model

inference from source code generate CFM, e.g., [Mihancea & Minea 2014] for

105



7.2. BLACK-BOX APPROACHES CHAPTER 7. OTHER APPROCHES

Java application. They need to balance between over and under approximation

[Sankaranarayanan et al. 2013].

[Stock et al. 2013] crawls in the first reachable transitions from the start node

from various web applications, propagated the taint in white-box in javascript ob-

jects and submitted XSS attack vectors from a library. Even though only the first

transitions are covered, they found numerous DOM Cross Site Scripting (a.k.a.

Type-0 XSS) (DOM-XSS), which shows that those web applications were not

tested w.r.t. such vulnerabilities.

Grey-Box Approaches generally combine static and dynamic analysis tech-

niques, at the assembly level. [Rawat & Mounier 2012] statically search for

Buffer Overflow (BOF) sinks at the assembly level. [DeMott et al. 2012b,

Bekrar et al. 2012, Bekrar et al. 2011] use data taint propagation at the assembly

level to determine where to apply anomaly operators. Depending on the complex-

ity and required precision of the process, the taint can be inferred in web applica-

tion [Madou et al. 2008], or propagated precisely (e.g., [Doupé et al. 2013] in .Net

applications).

Symbolic Execution consists in expressing branches choices w.r.t. conditions

on inputs. Iteratively, the application is restarted and inputs are modified for

the application to take another branch. The goal is to increase branch coverage.

The SAGE fuzzer by [Godefroid et al. 2008] found various Memory Corruption

Vulnerabilities (Memory Corruption Vulnerability (MCV)) in Microsoft Office

products. Microsoft uses it daily and use their idle computing power to solve

billions of constraints [Bounimova et al. 2013]. KLEE by [Cadar et al. 2008a]

found many vulnerabilities in open-source projects. Those approaches assume

the availability of the source code. Symbolic execution techniques have also

been used for finding Web Command Injections (WCI) in web applications:

[Kiezun et al. 2009, Wassermann et al. 2008, Saxena et al. 2010a] generate string

constraints and then solve those to generate input sequences containing one fuzzed

value. Symbolic execution has also been applied in a grey-box context (e.g., at bi-

nary level): [Campana 2009]. Recently, concolic execution is gaining adoption, as

it permits to simplify certain constraints by using concrete values and thus reduces

the search space. However, all the public work still assumes the availability of the

source code [Haller et al. 2013, Feist et al. 2013].

Symbolic execution techniques are starting to be used in passive testing:

[Mouttappa et al. 2013b].

7.2 Black-Box Approaches

Black-Box security testing distinguish between passive techniques (e.g., monitor-

ing) and active techniques which submit inputs to the applications. Black-box

techniques produce a knowledge, often in the form of a model or a grammar, from

which inputs are produced.
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[Mouttappa et al. 2013a] verifies that properties are not violated on the

recorded traces. [Johns et al. 2008] passively monitors HTTP traffic, tokenize JS

in the outputs, and detects Type-1 and Type-2 XSS with an interesting precision.

[Offutt & Abdurazik 1999] generate tests from UML specifications writ-

ten by analysts, and have coverage criteria specific to UML diagrams.

[Friedman et al. 2002] generate tests from Finite State Machine (FSM) that

correspond to system specifications. Similar approaches are mentioned in

[Utting & Legeard 2010]. [Lebeau et al. 2013] manually model the application as

a UML diagram with OCL guards, from which they automatically generate secu-

rity tests for web applications.

Model Inference is a reverse engineering technique that consumes an appli-

cation and produces a model. [Angluin 1987] pioneered the black-box model in-

ference with her L* algorithm. [Cho et al. 2010] apply [Shahbaz & Groz 2009]’s

algorithm to understand the behavior of a botnet C&C and to take it down.

[Cho et al. 2011] infer CFM of protocol server implementations using concolic

execution techniques from which fuzzed inputs are generated. [Shu & Lee 2007]

learns using L* models of an implementation and applies model checking tech-

niques for searching for security properties violation (e.g., confidentiality or in-

tegrity of a given object). [Li et al. 2006] separately infer components mod-

els and then compose them for creating a model corresponding to the aggre-

gation of the components. [Petrenko et al. 2014] infer models containing Non

Deterministic Values (NDV) (e.g., models of web applications containing view-

state). [Krueger et al. 2012a] learns CTFM for simulating network honeypots.

[Choudhary et al. 2013] learns Asynchronous Javascript And XML (Ajax) applica-

tion models, which are significantly larger than traditional web applications model.

[Mariani et al. 2012] incrementally learns updates of Ajax application models.

Black-Box fuzzing techniques historically target MCV [Barton et al. 1989].

The beautiful story of how [Barton et al. 1989] crashed Unix utilities because of

transmission errors – due to a storm impacting his modem connectivity – explains

why black-box fuzzing is also called structural testing. In the domain of black-

box interpreter fuzzing [Woo et al. 2013] schedule and prioritize tests according

to various coverage criteria. In the LangFuzz approach, [Holler et al. 2012] re-

quire a target grammar and code fragments which it mutates. LangFuzz exposed

previously unreported JavaScript and PHP vulnerabilities. [Guo et al. 2013] infer

the grammars accepted by web browsers and mutate, according to this grammar,

code fragments known to have triggered a problem. [Wen et al. 2013] generate

programs in two phases: first they generate abstract scripts, and then they replace

abstract labels with concrete identifiers (e.g., variable name, function call, etc.).

They target ActionScript. They exposed previously unreported vulnerabilities in

the Adobe Flash ActionScript virtual machine. [Householder & Foote 2012] apply

a statistical theory algorithm to the problem of selection of parameters (random-

ization seed, file seed, range).

Model checking searches for properties violations on states of a model. Such

models can be written by a human analyst, extracted using a white-box con-
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text from e.g., the source code [Balint & Minea 2011], or inferred in black-box

[Shahbaz & Groz 2009] via the observed behavior at the application interfaces.
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Sure: today, it’s so easy to phish users or exploit real RCE bugs, that backdooring

web origins is not worth the effort. But in a not-too-distant future, that balance may

shift.

[Zalewski 2011c]

Give me ten carefully chosen hackers, and within 90 days I would then be able to

have this nation lay down its arms and surrender.

J. Saiteerdou, FBI [Liang & Xiangsui 1999]

Vulnerability Detection Systems: Think Cyborg, Not Robot

[Heelan 2011]

8.1 Discussion

We propose several directions of research for overcoming limitations of the im-

plementation, applying to other web command injections, and applying to other

classes of vulnerabilities, such as memory corruption.

8.1.1 Influence of Various Parameters

Encoding When no charset is specified for a page which is a destination for

a reflection (i.e., no content-type HTTP header, or no charset as a child of the

<head> node, or the reflection happens before this tag), it is interesting to act

on the encoding in the attack input grammar (AIG), in order to find an XSS. In

our experiments we only used UTF-8 encoding, as it already permitted to find

XSS in various applications. However, variable length encoding such as UTF-7

[Goldsmith & Davis 1997], Shift JIS [Microsoft b], etc.may be of interest in the

aforementioned case.

Evolutionary Parameters Studying thoroughly the influence of evolutionary pa-

rameters (e.g., crossover and mutation rate, population size, fitness weights) may

be of interest. The main difficulty is the significant number of combinations to test,

and the required duration to test thoroughly each given combination.
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8.1.2 Improving the efficiency of attack grammar

Automatic Attack Grammar Generation Few researchers addressed the prob-

lem of the automatic generation of an attack grammar. [Wang et al. 2010] pio-

neered this direction by inferring one grammar using a hidden Markov model. Ide-

ally an interesting grammar balances between a precision sufficient to bypass filters

and a narrowed search space s.t. the testing campaign for a given reflection context

has an acceptable cost. [Tripp et al. 2013] have an interesting compromise with

their advanced representation which combines filters, and reflection contexts.

Web Filters Reverse-Engineering In the process of fuzzing a reflection, knowl-

edge can iteratively be learned regarding the filter, thus there is room for apply-

ing machine learning algorithms. For instance, if the sanitizer is on client side

(e.g., as in most DOM-XSS), precise automata may be built using static analysis

techniques [Saxena et al. 2010b], e.g., symbolic execution [Saxena et al. 2010a]

or even concolic execution [Cho et al. 2011]. However, when the sanitizer is at

server side, such techniques cannot be used. This research direction has been pio-

neered by [Sotirov 2008]. [Tripp et al. 2013] implicitly capture the notion of Web

Filters Models in their attack grammar. If we would infer using machine learning

techniques the transducer for each reflection, then we would be able to prune our

attack grammar sub-tree with a great precision.

Attack Grammar Pruning A method for increasing the efficiency of Web Com-

mand Injection fuzzing consists in iteratively pruning sets of attack vectors after

observing the output obtained form each fuzzed input sequence. [Tripp et al. 2013]

exactly adopt such an approach.

8.1.3 Adapting the Approach in case of other Counter-Measures

In our problem, we hypothesize the only presence of server-side sanitizers. In this

section, we list the other defensive measures which it may be interesting to address.

Client-Side Sanitizers (inside the browser) transform input parameters

values based on black-listed regular expressions [nos 2006, Ross 2008]

[Bates et al. 2010], or prevent the execution of inline scripts1 if this script was

sent in an input parameter value of the current HTTP request [Google , nos 2006].

[Ross 2013]’s jSanity is an Internet Explorer (IE) client side sanitizer based on

IE9+’s parser. Its configuration is performed in a white-listing fashion (e.g., allow

foo-bar ; deny foo-*).

Web Application Firewall (WAF) is a firewall performing Deep Packet Inspec-

tion (DPI) up to the HTTP layer. [qua , mod , iro 2011] are examples of WAF.

1In the webpage <script> code </script>.
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They act as active defense mechanism, by detecting and removing content within

the webpages. They may even parse and interpret the webpage as the an end-user

browser would do. Since their parser may be different from the end-user, there is a

risk of false negatives and of false positives.

Static Rewriting [Doupé et al. 2013]’s deDacota statically rewrites .Net web ap-

plications in their binary form to enforce code+data separation when concatenated

variables or inlined JavaScript code creation has been detected.

Trusted DOM [Heiderich et al. 2011] a white-listing policy in which the devel-

oper indicates which DOM modification operations she allows. While this requires

work not to break the functionality of applications, such a counter-measure can

prevent type-0, type-1, and type-2 XSS.

HTML5 IFrame Sandbox Several XSS vulnerabilities exist due to

browser API developers not enforcing a strict access control model

[Heiderich et al. 2010], several attacks consists in a webpage embedded in

an iframe to access its parent DOM. In order to limit the impact in such cases,

the HTML5 IFrame Sandbox [w3c 2009] permits the parent webpage to disable

capabilities of the embedded one such as script execution, form submission etc.

DOM Tags Randomization [Van Gundy & Chen 2009] randomizes the prefix

of HTML tags for each request. For successfully exploiting a XSS vulnerabil-

ity, an attacker would have to guess the prefix that will be picked up next. This

makes the reliability of an XSS exploit very low. Randomizing the position of

certain codes is a similar concept to the ASLR [Yarom 1999, Team 2012], a 2001

counter-measure for raising the cost of exploiting memory corruption vulnerabili-

ties. Slightly differently, [Kc et al. 2003] randomizes the instruction set through a

XOR mechanism specific to each process and run.

Content Security Policy (CSP) [w3c 2012a, Google 2013] declares a policy at

server side, and enforces it at client side. The default policy prevents the execution

of inline scripts, only allows <script src="url.js" />, and disables

eval() like functions, and only allows the loading of “local scripts” (i.e., with

the same security domain that is same server Fully Qualified Domain Name

(FQDN) and TCP port) and resources. The main hypothesis behind such counter-

measures is that attackers exploiting XSS first execute inline JavaScriptwhich

loads a more complete library from a remote server they control. This server

different of the server hosting the application under attack. CSP enforces at client

side a data and code separation policy, which is defined at server side.
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Unfortunately, as promising as those counter-measures may seem, their current

deployment is quite low. In Table 8.1, we list possible reasons behind the low

adoptions of the aforementioned XSS counter-measures.

Defense Barriers to adoption Server

Impact

Client

Impact

Client-Side

Sanitizer

- adherence to browser version

- may break applications

x

WAF may break applications

Trusted DOM may break applications x

HTML5

IFrame Sand-

box

scope very limited (e.g., not applicable

for Java, Flash)

x x

DOM ran-

domization

- may break applications

- only make exploit less reliable

x x

CSP - non trivial amount of adaptations

[Weinberger et al. 2011b] - 96% of

Alexa top 1000 use CSP-incompatible

code patterns [Golubovic 2013]

x

Static Rewrit-

ing

- may break applications

- limited to ASP.Net applications

x

Table 8.1: Difficulties behind the Low Adoption of XSS Counter-Measures

8.1.4 Application to other Web Command Injections (WCI)

Abstraction Level When performing automatic control flow inference for one

given HTTP driver, the obtained automata are of significant size. When extend-

ing our LigRE+KameleonFuzz approach to other type of WCI such as DOM-XSS,

Ajax XSS, Cross Protocol XSS, or even SQL injections, the major challenge re-

searchers will face is likely to be the size of the obtained CFM. Depending on the

abstraction, the inferred CFM of an application such as Facebook may be com-

posed of several millions of nodes. If the abstraction is performed at a too high

level, specificities of WCI taint flows may be missed ; if the abstraction is per-

formed at a too low level, it may be unpractical to infer a complete model and thus

transitions may be missed.

Automatic Detection of Cross Protocol XSS Automatically detecting Cross-

Protocol XSS is a research direction. From the test context perspective, it involves

two abstraction and concretization functions, thus there is the need of develop-

ing additional test drivers for handling protocols such as SMTP, FTP, URL han-

dlers. Penetration testers may not systematically search for such vulnerabilities,

thus some interesting results such as Figure C may be obtained.
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Automatic Detection of Type-0/DOM XSS While [Stock et al. 2013] discov-

ered numerous DOM-XSS, it is important to note that they only traversed the

very first Ajax transitions from the start node. This means that deeper vul-

nerabilities are likely to have been overlooked. Thus the CFM should first

be extended to take into account transitions of the DOM which could be fired

by JavaScript events. There has been work in the inference of Ajax CFM

[Marchetto et al. 2008, Marchetto et al. 2012b]. A useful model for fuzzing would

be a composition of CTFM as obtained by LigRE and of CTFM extracted from taint

propagation mechanism in the JavaScript virtual machine (e.g., [Vogt et al. 2007],

Dominator Pro [Paola 2011]). For detecting Type-1 and Type-2 XSS, the same

Taint Aware tree Patterns (TAP) used in KF can be used. From the test verdict per-

spective, the only difference lies in the matching of the taint aware parse tree (TAT)

against TAP after each transition (i.e., classic HTTP or Ajax transitions). Very pre-

liminary results obtained with students suggest that taint aware DOM-XSS gram-

mar based evolutionary fuzzing may increase the efficiency of DOM XSS fuzzers

[Duchène et al. 2013a].

Automatic Detection of Flash XSS Similarly to the automatic detection of

DOM-XSS, the automatic detection of Flash Type-1 and Type-2 XSS involves

extending the CFM models by taking into account transitions in abstract Flash

machine states and reflections originating and reaching those transitions. An im-

plementation can use tools such as FlashDOM [Murray 2010].

Application to other Web Command Injections (WCI) We believe that the

LigRE+KameleonFuzz approach can be applied to various types of web command

injections (WCI): e.g., SQL injection [Su & Wassermann 2006], Shell command

injection [Sekar 2009], PHP interpreted code injection. This requires adaptations

on the points where we observe the reflections, so such an approach would then

be considered as having a grey-box test context. An implementation could hook

server side APIs such as sql query(), shell exec(), eval(), etc.

Relaxing the Single Parameter Fuzzed Value Hypothesis Many fuzzers and

penetration testers search for XSS using only one reflection. However, XSS may

involve several tainted fuzzed parameter values. Even companies such as Google

acknowledge that such scenarii are a hard combinatorial problem: for a Type-1

XSS to be catched by the Google Chrome filter, it has to be constructed with

only one reflected fuzzed value and to use at least one special character in the

HTML grammar(e.g., "). If two or more parameters are reflected, this scenario is

unsupported by the filter [Nikiforakis & Barth 2011]. In order to search for two

parameter XSS, the similar CTFM may be used. The selection strategy should

focus on transitions exhibiting at least two reflected parameters. Such adaptations

would permit the automatic detections of the vulnerabilities mentioned in page 155:
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Type-2 double parameter confusion XSS in Siemens-Home [Duchène 2014c] and

1 Type-2 double parameter confusion XSS in https://mega.co.nz.

GUI Security Testing Black-box model inference can be applied to GUI desktop

applications such as Evernote. We discovered manually a Unconstrained URL

Handler (CVE-2014-1404) [Duchène 2014e]. Such a vulnerability could have been

detected using CTFM which contains reflections within the arguments of libc

functions such as exec().

8.1.5 Evolutionary Black-Box Fuzzing for Memory Corruption

Our recent work [Duchène 2014f, Duchène 2013b] combines Genetic Algorithm

and Anti-Random Testing for detecting memory corruption vulnerabilities in inter-

preter. We alternatively prune the search space using a fitness heuristic and explore

other directions using anti-random testing techniques. Preliminary results suggest

such an approach increases the efficiency for detecting not very deeply embedded

memory corruption vulnerabilities in interpreters.

8.1.6 Using Control+Taint Flow Models for Defensive Security

From the perspective of a defender, Content Security Policy (Content Security Pol-

icy (CSP)) is a counter-measure implemented in recent browsers (IE10, Firefox,

Chrome), which permits web applications developers to enforce a policy regard-

ing cross domain inclusions and inline scripts. If defined wisely, such policies

could permit browsers to prevent XSS attacks. The current barrier before to the

adoption of CSP is the necessity for web application developers to write such poli-

cies (e.g., Mozilla foundation ask for human web developers to help them rewrite

pages on the Mozilla website). Thus there is the need for an automatic rewriting of

web application, in order to make them CSP-aware. [Golubovic 2013] proposed a

first candidate solution. However, in order not to break functionalities, automatic

application rewriting needs to infer precisely the control flow of the application.

[Golubovic 2013] does not consider the macro-state and thus may lack precision.

The precision of a combination of our LigRE approach with their automatic CSP

generation is a direction of research.

8.2 Conclusion

The research we contributed aims at showing the advantages of combining tech-

niques such as reverse-engineering and evolutionary driven fuzzing for automati-

cally detecting web command injections vulnerabilities in a black-box test context.

Since we hypothesize a black-box test context, we send inputs, record out-

puts, perform a computation and send new inputs, based on the computation result.

The reverse engineering step consists in inferring a control flow automaton, then
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annotating it with taint flows, then producing chopped models. The control flow in-

ference addresses the problem of navigating in the application and the macro-state

awareness. The taint flow inference exhibits paths containing reflections of input

parameter values. The chopping constraints the fuzzing transition search space.

The fuzzing step consists in the genetic evolution of individuals. An individual is

composed of a chopped model and of a fuzzed value generated by an attack gram-

mar. Once the individual is submitted, a double taint inference up to the nodes

of the browser parse tree, using string edit distance, produces a taint aware tree.

We designed taint aware patterns, which assess precisely the exploitability of po-

tential vulnerabilities, depending if they match the obtained taint aware tree. The

population of individuals is evolved w.r.t. a heuristic fitness function, but also mu-

tation and crossover operators. The evolution stops when a tester defined stopping

condition is met.

We discovered 0-days XSS in widely used applications: notoriously 1 Type-2

XSS in Elgg 1.8.13 (CVE-2013-7297), 39 Type-1 XSS in SFR-DSL-box (5.2M

DSL boxes, CVE-2014-1599). The main barrier of entry of our approach lays in

the noise induced by the number of resets and requests, which makes it unsuit-

able for a military offensive security operation which is supposed to be discrete,

and which may be of a too high cost for several companies. In such a case, we

advocate a combination of human tester guiding a hybrid inference plus fuzzing

tool. For extending this work, we suggest first to adapt the test drivers for detecting

DOM-XSS and Flash XSS. Then as the second research direction, we suggest to

explore how to relax the single parameter fuzzed value hypothesis, as it increases

significantly the complexity of the taint inference, and of the fuzzed input values

creation.
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APPENDIX A

Web Scanners Configuration

We here list the main settings used during experiments .

• Wapiti 2.20: -m "-all,xss"

• w3af 1.2 kali 1.0:

misc− s e t t i n g s

s e t maxThreads 1

s e t maxDepth 200

s e t maxDiscoveryTime 18000

back

p l u g i n s

d i s c o v e r y webSpider

d i s c o v e r y c o n f i g webSpider

s e t on lyForward True

back

a u d i t x s s

a u d i t c o n f i g x s s

s e t numberOfChecks 3

back

back

s t a r t

Listing A.1: w3af configuration

• SkipFish 2.10b: -Y -Z -m 10 -k 18000

• LigRE: The model annotation limits are as follows:

– minimal reflection length: 6 characters

– maximal input sequences length: 8 HTTP requests

The Fuzzing parameters are:

– fuzzer : w3af

– pass the context : cookie

• common parameters in KameleonFuzz 2013-08-31 are mentioned in Ta-

ble A.1
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Parameter Default

Value

LigRE.targeted reflections – The percentage of re-

flections that KameleonFuzz will focus on. LigREorders them

in descending order of potential interest [Duchène et al. 2013d].

0.8

GA.population size – The size of the population i.e., the

number of individuals. The actual amount is this value times the

number of targeted LigREreflections.

5

GA.elitism – Number of individuals having the highest fitness

score that are kept for the next generation.

4

GA.mutation proba – The probability to apply a mutation

operator on a new child.

0.5

GA.crossover num exchanges – Number of exchanges

performed by the crossover operator. One exchange means a

two points crossover i.e., for the whole sub-tree of the exchanged

grammar (non)-terminal.

1

Table A.1: Common parameters in KameleonFuzz and their default values. See

Section 6.4.4 on how we chose those default values.

1 <!DOCTYPE RootElement SYSTEM "RootElement.dtd">

2 <KameleonFuzzConfig>

3 <FuzzingPruning>

4 <param name="max_index_of__do_not_follow" value="200" />

5 <param name="do_not_fuzz[0]" value="PARAM_NAME pw" />

6 <param name="do_not_fuzz[1]" value="PARAM_NAME uid" />

7 </FuzzingPruning>

8

9 <Random>

10 <param name="seed.inference" value="1361641868" />

11 <!--

12 Seed to feed the Prime Random Number Generator (useful for

tests replication). System time is used if no seed is

provided

13 -->

14 <param name="seed.annotation" value="" />

15 <param name="seed.fuzzing" value="" />

16 </Random>

17

18 <Logging>

19 <!--param name="loglevel" value="DEBUG" /-->

20 <param name="loglevel" value="INFO" />

21 <!-- DEBUG, ERROR, WARN, NOTICE, INFO, NONE -->

22 </Logging>

23
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24 <EvolutionaryAlgorithmConfig>

25 <param name="numberOfPoolsOrIslands" value="1" />

26 <param name="

percentageOfPopulationMigratingFromOneIslandOrPoolToAnotherOne

" value="0.04" />

27

28 <param name="PopulationSize" value="10" />

29 <param name="PopulationTakingPartInRecombination" value="1.00"

/>

30 <!-- FLOOR of this value * population_size will be choosen:

how many % of the BEST individuals do we consider for

crossover -->

31 <param name="Elitism" value="2" />

32 <param name="crossoverNodeSelectionAndNumberOfPointsStrategy"

value="samePrefix_and_1NodeRandom" />

33 <!-- strategies: samePrefix_and_1NodeRandom,

samePrefix_and_1NodeFirstFromRoot -->

34 <param name="mutationRate" value="0.5" />

35 <param name="mutationStrategy" value="random" />

36 <!-- other values of mutationStrategy include # most

frequent value first ... within nodes "close" from leafs

-->

37 <param name="firstGenerationInputParamSelectOneInXPercents"

value="0.8" />

38 <param name="modelMaxDepthForPrefixingInputSequences" value="7

" />

39 </EvolutionaryAlgorithmConfig>

40

41 <Fitness> <!-- the higher the more important the weight will be

-->

42 <param name="number_of_classes_injected_vs_sent" value="2" />

43 <param name="string_distance" value="2" />

44 <param name="number_of_tainted_nodes" value="3" />

45 <param name="

number_of_nodes_between_fuzzed_input_sending_and_reflection

" value="2" />

46

47 <param name="number_of_unique_states_from_start_node" value="

0.5" />

48 <param name="how_well_formed_wrt_HTML_is_the_output" value="

0.5" />

49

50 <param name="new_output_symbol_discovered" value="5" />

51 <param name="percentage_of_expected_output_symbols" value="3"

/>

52 <param name="

number_of_different_macro_states_between_fuzzed_value_submission_and_reflection

" value="1" />

53 <param name="singularity_on_fuzzed_input_param_value" value=

"4" />

54 <param name="singularity_on_input_sequence" value="3" />

55 </Fitness>

56

57 <InternalTests>
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58 <param name="run" value="True" />

59 </InternalTests>

60

61

62 <Crawling>

63 <param name="stop.when_conjecture_is_complete" value="True" />

64 <param name="stop.max_duration" value="0" /> <!-- in seconds

-->

65 <param name="stop.max_num_of_http_requests" value="200" />

66 <param name="longest_path.max_times_per_edge" value="7" />

67 <param name="longest_path.max_times_per_node" value="7" />

68 <param name="longest_path.max_depth_of_subsequence" value="10"

/>

69 <param name="stop.

minimum_number_of_times_we_went_trough_each_transition"

value="7" />

70 <param name="stop.minimum_number_for_all_clusters" value="7" /

>

71 <param name="stop.

number_of_times_to_go_through_each_link_and_no_new_page_discovered

" value="7" />

72 <param name="

max_explored_times_for_a_transition_for_djisktra_computation

" value="7" />

73 <param name="max_depth_of_input_sequence" value="170" />

74 <param name="conjecture.

max_consecutive_potential_contradictions" value="4" />

75 <param name="follow_external_links" value="none" />

76 <param name="conjecture.strategy" value="from_root" />

77 <param name="

once_emergency_sequence_executed_forbid_emergency_for_x_requests

" value="2" />

78 <param name="save_model_in_config_folder" value="True" />

79 <param name="load_last_model_in_config_folder" value="True" />

80 <param name="folder_where_to_save_progression" value="logs/

gruyere/0_inferred_models/" />

81

82 <param name="folder_where_to_save_and_load" value="logs/" />

83 <!-- which folder will be used to check for a previously

annotated model -->

84 <!-- or where to save it -->

85 <param name="crawled_model_filename_suffix" value="

crawled_model.json" />

86

87 <!-- we should here indicate all the nonce fields that could

lead to identifying different states -->

88 <param name="prefix_tree.fields_to_ignore" value="form.hidden.

nonce" />

89 <!-- if it is a form request, then we will ignore any field

that is of type hidden and of name nonce -->

90 <param name="http_request_comparison.fields_to_ignore" value="

params_structured.nonce" />

91 <!-- eg: for each GET or POST parameter, we will ignore any

field that names is nonce -->
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92

93 <param name="performance.memory.

execute_only_x_last_navigation_sequences" value="20" />

94 <param name="performance.dot.

discard_task_if_not_started_within_x_seconds" value="100"

/>

95 <param name="performance.conjecture.

skip_executing_whole_sequences_on_infered_FSM" value="True

" />

96

97 <param name="dot.skip_saving_files_and_producing_svg" value="

False" />

98 <!-- can be useful for speeding execution -->

99

100 <param name="dot.infered_FSM_filename" value="infered_fsm.svg"

/>

101 <param name="dot.navigation_graph_filename" value="

navigation_graph.svg" />

102 <param name="dot.skip_outputting_non_yet_explored_spiderlinks"

value="True" />

103 <param name="dot.max_output_times" value="2" /> <!-- to avoid

repetition -->

104 <param name="dot.max_simulatneous_processes" value="2" />

105 <!-- to make use of multi-core computers-->

106 <!-- be aware that httpd and chrome will already use 1 each

one-->

107

108 <param name="dot.enable_html_tags" value="False" />

109 <param name="conjecture.

assumes_non_determinism_is_due_to_wrong_macro_state_hypothesis

" value="True" />

110 <param name="conjecture.wrong_macro_state.

assumes_it_is_the_latest_change_that_went_to_an_already_known_macro_state_whereas_it_i

" value="True" />

111 <param name="conjecture.die_when_wrong_prefix_tree" value="

False" />

112 <!-- set to false for gruyere -->

113 <param name="conjecture.wrong_prefix_tree.assumes_state_change

" value="True" />

114 <!-- set to True for gruyere -->

115

116 <!-- weights for confidence function -->

117 <param name="confidence.weight.

number_of_unexplored_links_on_model_for_current_state_so_far

" value="2" />

118 <param name="confidence.weight.nodes_from_root__shortest_path"

value="1" />

119 <param name="confidence.weight.nodes_from_root__actual_path"

value="0" />

120 <param name="confidence.weight.

number_of_explored_links_that_have_same_spiderlinks_as_one_who_helped_determining_a_st

" value="0" />

121 <param name="confidence.weight.

number_of_unexplored_links_that_have_same_spiderlinks_as_one_who_helped_determining_a_
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" value="0" />

122 <param name="confidence.weight.number_of_incoming_edges" value

="0.1" />

123

124 <param name="conjecture.

consider_only_first_spiderpage_for_confidence_computation"

value="True" />

125

126

127 <param name="raiseExceptionWhenEmptyForms" value="False" />

128 <!-- if False, at least we will print a WARNING -->

129 <param name="infered_model.filename_suffix" value="

infered_model.pickle" />

130 <param name="infered_model.

number_of_folders_in_which_to_search_for" value="3000" />

131 <!-- we search in the last 5 recent log folders -->

132

133 <param name="skip_outputting_graphs" value="False" />

134

135 <param name="die_in_case_of_exception" value="False" />

136 <param name="exit_after_inference" value="True" />

137 <param name="stopping.finish_outputting_graphviz_files" value=

"True" />

138 <param name="stopping.timeout" value="200" />

139

140 <param name="state_change.score.num_of_parameters" value="0.3"

/>

141 <param name="state_change.score.boost_if_POST_request" value="

0.18" />

142 <param name="state_change.score.boost_if_GET_request" value="

0.10" />

143 <param name="state_change.score.distance_num_of_requests"

value="0.3" />

144 <!-- default value is 1 -->

145 <param name="state_change.score.num_of_contradictions" value="

2" />

146 <!-- default value is 1 -->

147

148 <param name="cluster.weights.min_number_of_leaves" value="5" /

>

149 <!-- value used for p0wn_me,wordepress,webgoat is 5 -->

150 <param name="navigation.score.weight.

likelyhood_to_detect_a_state_change" value="0.3" />

151 <param name="navigation.score.weight.

if_new_page_boost_already_seen_requests" value="0.6" />

152 <param name="navigation.score.weight.never_seen_boost" value="

0.4" />

153 <param name="navigation.score.weight.

num_of_times_recently_performed" value="1.0" />

154 <param name="navigation.score.

num_of_times_recently_performed__to_take_into_account"

value="1" />

155 <param name="navigation.score.boost_if_POST_request" value="

0.16" />
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156 <param name="navigation.score.boost_if_GET_request" value="

0.10" />

157 <param name="navigation.score.weight.

number_of_artificial_values" value="0.1" />

158 <param name="navigation.score.weight.tester_provided_values"

value="0.3" />

159 <param name="conjecture.

consider_only_first_spiderpage_for_confidence_computation"

value="True" />

160

161 <param name="navigating.

go_back_to_root_when_currently_accessible_graph_is_complete_

" value="True" />

162 <param name="pickle.sys.recursionlimit.increase_factor" value=

"10" />

163 </Crawling>

164

165 <CrawlingFieldsValues>

166 <param name="subset_matching_enabled" value="true" />

167 <param name="

number_of_expansion_to_consider_before_smartfilling" value

="15" />

168 <param name="expansion_sorting_order" value="

no_more_polar_bears" />

169 <!-- reversed or anything else-->

170 <param name="

expand_prefilled_values_with_one_of_length_greater_of_equal_than_min_length_to_infer_t

" value="True" />

171 </CrawlingFieldsValues>

172

173

174 <CrawlingSlicing>

175 <!-- prevent some requests to be performed -->

176 <!-- works in a black-listing mode -->

177 <!-- useful for pruning the inference and the fuzzing -->

178

179 <param name="max_index_of__do_not_follow" value="10" />

180 <param name="do_not_follow[0]" value="GET /xss-type-1/?action=

logout" encoding="plain" />

181 <param name="do_not_follow[3]" value="FORM_FIELD_VALUE

orlandopassword" encoding="plain" />

182 <param name="do_not_follow[4]" value="GET /xss-type-1/?action=

auth" encoding="plain" />

183 <param name="do_not_follow[5]" value="FORM_FIELD_VALUE Create

account" />

184 <param name="do_not_follow[6]" value="FORM_FIELD_VALUE Upload"

/>

185 </CrawlingSlicing>

186

187

188 <HFuzz>

189 <param name="Fuzzer" value="w3af" />

190 <param name="credentials" value="cookie" />

191 </HFuzz>
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192

193

194 <ModelAnnotation>

195 <param name="ignoreOutputSymbols" value="True" />

196 <param name="modelExplorationMethod" value="

breath_first_prefix_1by1_bounded" />

197 <!-- values include:

198 - breath_first_prefix_1by1_bounded

199 - random_bounded:

200 NOTE: for both, the length of input sequences is bounded by

modelMaxInputSequencesLength

201 -->

202 <param name="random_bounded.

max_attempts_to_generate_input_sequences" value="6" />

203 <!--

204 60

205 -->

206 <param name="max_number_of_times_per_each_state" value="1" />

207 <!-- limits loop in the model. values:

208 * (not implemented yet)

209 or 1,2,3...

210 -->

211 <param name="method" value="efficient_substring" />

212 <!-- possible values:

213 - efficient_substring

214 - edit_distance

215 -->

216 <param name="efficient_substring.min_string_length" value="6"

/>

217 <!-- only input parameters with value of at least xx

characters will be considered for approximate taint

computation -->

218

219 <param name="modelMaxBackwardDepthForAnnotatingTaint" value="7

" />

220 <!-- should be greater or equal than the value of

modelMaxDepthForPrefixingInputSequences -->

221 <param name="modelMaxInputSequencesLength" value="8" />

222 <!-- should be greater or equal than the value of

modelMaxBackwardDepthForAnnotatingTaint -->

223

224 <!-- param name="maxNumberOfGeneratedInputSequences" value="60

" /-->

225

226 <param name="save_annotated_model_in_config_folder" value="

True" />

227 <!-- values: True or anything else -->

228 <param name="load_last_annotated_model_in_config_folder" value

="True" />

229

230 <param name="folder_where_to_save_and_load" value="logs/

gruyere/1_annotated_models" />

231 <!-- which folder will be used to check for a previously

annotated model -->
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232 <!-- or where to save it -->

233

234 <param name="annotated_model_filename_suffix" value="

annotated_model.pickle" />

235

236 <param name="graphviz.generate" value="True" />

237 <param name="graphviz.in_folder" value="logs/gruyere/1

_annotated_models" />

238 <param name="graphviz.representation_type" value="

concise_from_and_to_transition" />

239 <!-- values:

240 steps_123

241 concise_from_and_to_transition

242 -->

243

244 <param name="exit_after_model_annotation" value="False" />

245 <param name="list_reflections" value="True" />

246 <param name="list_reflections.exit_after" value="False" />

247 </ModelAnnotation>

248

249 <TaintInferenceConfig>

250 <param name="useExactStringMatchingFirst" value="true" /> <!--

true, false -->

251 <param name="distance" value="sekar_basic" />

252 <!--

253 edit_distance, as described in Sekar’s paper

254 sekar_optimized

255 -->

256

257 <param name="costInsertion" value="1" />

258 <param name="costDeletion" value="1.9" />

259 <param name="minimumLengthOfTaintedStrings" value="6" />

260 <param name="sekar.minLengthOfTaintedSubstringsInOutput" value

="6" />

261

262 <param name="propagation.minLengthOfOutputSubstring" value="6"

/>

263 <param name="propagation.minLengthOfInputSubstring" value="6"

/>

264

265 <param name="maxDistanceToTaint" value="1" /> <!-- NOT USED --

>

266

267 <!-- those values work well for substring taint propagation

268 DOMTaintIfNodeAlone = 1-0.15

269 DOMTaintIfNodeWithBrother = 1-0.06

270 DOMTaintMaxNodeDistance = 2

271 -->

272 <param name="DOMTaintIfNodeAlone" value="0.65" />

273 <param name="DOMTaintIfNodeWithBrother" value="0.40" />

274 <param name="DOMTaintMaxNodeDistance" value="2" />

275 <param name="TaintPropagationOnDOM" value="substring" />

276 <!-- substring or sekar_basic -->

149



APPENDIX A. WEB SCANNERS CONFIGURATION

277 <!-- substring is faster, but more false negative on taint

propagation, thus on fault verdict also -->

278

279 <param name="assertSamePageIsReached" value="False" />

280 </TaintInferenceConfig>

281

282 <Fuzzing>

283 <param name="input_sequences.generating_strategy" value="

ShortestPath" />

284 <param name="

max_number_of_fuzzed_input_parameters_per_individual"

value="1" />

285 <param name="

max_number_of_fuzzed_input_parameters_per_transition"

value="1" />

286 <param name="

during_fuzzing_do_not_require_reaching_same_state_as_in_model

" value="True" />

287

288 </Fuzzing>

289

290 <VulnerabilityToSearch>

291 <param name="type" value="HTTP-HTML-XSS-reflected" />

292 <param name="AttackInputGrammar" value="./KameleonFuzz/Grammar

/HTTP/XSS/attack_grammar.kfgrammar" />

293 </VulnerabilityToSearch>

294

295

296 <!-- if any of those conditions is evaluated to true, then the

program stops -->

297 <StoppingConditions>

298 <param name="numberOfFoundFaults" value="1" />

299 <param name="max_duration" value="60" /> <!-- in seconds -->

300 <param name="EA_MaxPopulationGenerations" value="200" />

301 </StoppingConditions>

302

303

304 <SUTConfig>

305

306 <param name="interface.protocol" value="HTTP" />

307 <param name="interface.host" value="127.0.0.1" />

308 <param name="interface.port" value="8008" />

309 <param name="interface.baseHREF" value="/2497762752997571069/"

/>

310 <param name="startPage" value="" />

311 <param name="Reset.HTTP_Request.action" value="GET

/2497762752997571069/reset" />

312 <param name="Reset.HTTP_Request.verification" value="(.*)

Server reset to default values...(.*)" />

313

314 <if condition="os.name==’nt’">

315 <param name="reset.command.action" value="C:/Users/php.exe -

c C:/Users/fabite/Documents/EasyPHP-5.3.8.1/apache C:/

Users/fabite/Dropbox/git/KameleonFuzz/KameleonFuzz/
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config/gruyere/script_reset.php &quote;coucou&quote;" />

316 </if>

317

318 </SUTConfig>

319

320

321 </KameleonFuzzConfig>

Listing A.2: Extract of config.xml configuration file
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KameleonFuzz: List of Taint

Aware tree Patterns

We incorporate in KameleonFuzz the list of default TAP illustrated in Table B.1

Name Reflection

Context

(see Table 4.5)

Grammar TAP

tainted event

handler and

action

inside an attribute

value

HTML

.+

attributes

( onerror ‖ onload ‖...)

.* .+ .*

tainted script

tag and

content

• outside a tag

• inside a

textarea

HTML

script

children

.+

tainted url /

src with a

script

pseudo-

protocol

inside a src/href

attribute value

HTML

.+

attributes

(src‖href)

( javascript: | vbscript: ).* .+ .*

Table B.1: KF: List of Implemented Taint Aware tree Patterns (TAP)

We are aware that this list does not cover all cases of XSS. In Table B.2, we

list additional TAP that would be of interest.
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PATTERNS

Name Reflection

Context

Grammar TAP

Cascading

Style Sheets

(CSS)

escape

inside a CSS value CSS

.+

attributes

( onerror ‖ onload ‖...)

.* .+ .*

CSS URL

handler

inside a CSS url

value

CSS

.+

attributes

(src‖href)

( javascript: | vbscript: ).* .+ .*

JS escape inside a JS value JS

.+

expression

(.* .+ )

AND

.+

instructions

( .+ .*)

Table B.2: KF: List of Additional TAP to be Implemented
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0-day Found XSS Vulnerabilities

Two of the 0-days XSS discovered by KameleonFuzz

We illustrate two 0-day XSS that KF uncovered:

• Elgg: Type-2 XSS (CVE-2013-7297). The control flow inference, the reflec-

tions, and the taint aware patterns permit detecting this XSS present since

several versions.

• SFR BOX NB6-MAIN-R3.3.4: 39 Type-1 XSS (CVE-2014-1599). The con-

trol flow inference permits navigating sufficiently deep enough in the appli-

cation.

Elgg 1.8.13: 1 Type-2 XSS (CVE-2013-7297)

Elgg is an open-source social network notably used by the University of Florida

and the Australian governement. Elgg 1.8.13 suffers from an unfiltered Type-2

XSS in the website field of the user (see Figure C.1). This vulnerability has been

responsibly reported [Duchène 2013a].
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Figure C.1: Elgg 1.8.13 – Type-2 XSS in the website field (CVE-2013-7297)

SFR BOX NB6-MAIN-R3.3.4: 39 Type-1 XSS (CVE-2014-1599)

SFR is the french Vodafone (estimated DSL user base of 5.2 Millions). The af-

fected product is SFR BOX NB6-MAIN-R3.3.4. It suffers from 39 unfiltered Type-

1 XSS. Some are illustrated in Figure C.2. These vulnerabilities have been reported

using responsible disclosure process [Duchène 2014a].
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Figure C.2: Examples of Type-1 XSS in SFR BOX NB6-MAIN-R3.3.4

Vulnerabilities

• /network/dns: 5 non-filtered Type-1 XSS

• /network/dhcp: 6 non-filtered Type-1 XSS

• /network/nat: 7 non-filtered Type-1 XSS
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• /network/route: 12 non-filtered Type-1 XSS

• /wifi/config: 1 non-filtered Type-1 XSS

• /network/lan: 8 non-filtered Type-1 XSS

Exploitation hypotheses The requirements for such exploits to work are:

• the user is already logged-in (or tricked by SE techniques to authenticate in

the interface of his web router)

• ip address of the SFR Box router is known (most users use the default set-

tings: 192.168.1.1/24)

Example of exploitation scenario If a user is tricked into authenticating into

its interface, an attacker can XSS the user, and thus getting read and write access

to the router configuration webpages. Such as scenario is mainly possible due to

non filtered reflections (mainly Type-1 / reflected) and the lack of Content Security

Policy. Moreover, no anti-CSRF token such as view-states are present, thus there

is the possibility of modifying the routing tables even without an XSS, if the user

is authenticated in the box.

A non limitative list of actions include:

• getting authentication credentials (wireless, DSL credentials)

• rebooting the router

• modifying the route table (thus possibility of content injection if an attacker

controlled server is on the route)

• DDOSing a target with numerous XSS’ed clients

Examples of Vulnerabilities that KameleonFuzz is unable

to detect

We illustrate three vulnerabilities that KF is unable to detect as of today:

• mega.co.nz: cross-domain double parameter HTML injection. Kame-

leonFuzz only supports one fuzzed input parameter value at a time.

• Evernote: unconstrained URL handler (CVE-2014-1404). KameleonFuzz

test drivers only support websites ; a CTFM containing reflections into libc

parameters is required to detect this vulnerability.

• Siemens-Home: Two type-2 Reflections in HTML context result in IE-7

XSS. KameleonFuzz only supports one fuzzed input parameter value at a

time.
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http://mega.co.nz: Phishing with Cross-Domain HTML Content

Injection in emails

Two parameters entered during the subscription transition (see Figure C.3) are re-

flected in the HTML email sent by the mega servers (see the HTML code in Fig-

ure C.4 and the rendering in Figure C.5).

Figure C.3: mega: source transition

Evernote 5.4.4 (402282): unconstrained file handler (CVE-2014-1404)

I reported using a responsible disclosure process an Unconstrained file handler

which permits attacker controlled code execution [Duchène 2014e].

We can provide a local executable file in the URL field (¡source-url¿ tag) of a

note. Once the note is opened or imported:

• on Mac OS X, if a user is tricked into clicking on info, open, it results in

attacker controlled shell command execution. No warning whatsoever is

displayed to the user

• on Windows, a warning to the user is presented, but this still is a risk on this

platform and should be prevented
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Figure C.4: mega: reflection transition, HTML source code

The creation of such files can be automated via the cre-

ation of XML document conform to the Evernote DTD:

http://xml.evernote.com/pub/evernote-export3.dtd

and via a specially crafted source-url tag:

<source-url>file:////bin/sh</source-url>

I tested this vulnerability on the following versions: Evernote 5.4.4 and Ever-

note 5.5. 402941 direct, Mac OS X (see Figure C.6) and on Windows (see Fig-

ure C.7).
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Figure C.5: mega: reflection transition, rendered webpage

Figure C.6: Evernote CVE-2014-1404: on Mac OS X
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Figure C.7: Evernote CVE-2014-1404 on Windows: a warning is displayed though

Siemens-Home: 1 Type-1 XSS, 2 Type-2 XSS including 1 IE7-IE10 spe-

cific XSS [Duchene 2014b]

Reflection in a JS context An unauthenticated webpage had a Type-1 reflec-

tion, as illustrated in Figure C.8 and Figure C.9. The server-side sanitizers were

targeting reflections in an HTML context.
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Figure C.8: Siemens–Type-1 Reflection in a JS context - code

Figure C.9: Siemens–Type-1 Reflection in a JS context - execution

Type-2 Reflection in a JS context A Type-2 reflection exists from the city

field (Figure C.10) into the s.state JS sink (Figure C.11 ) results in an ex-

ploitable XSS (Figure C.12).
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Figure C.10: Siemens–Type-2 Reflection in a JS context - source
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Figure C.11: Siemens–Type-2 Reflection in a JS context - code

Figure C.12: Siemens–Type-2 Reflection in a JS context - execution

Two type-2 Reflections in HTML context result in IE-7 XSS This Type-2 XSS

involves two parameters and I only succeeded in exploiting this reflection in one

browser. We have two POST parameters in which we can inject characters: name
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and firstname (see Figure C.13).

Figure C.13: Siemens–Two Parameters Confusion - Reflection

This is not a trivial XSS in the sense there is a server sanitizer in place (maybe

a WAF). So far, its observed behavior exhibits the following constraint:

Constraint 1: If the substring < immediately followed by a character in [a-Z]

is present in any parameter, then the request is not processed, and we are redirected

to an error page (see Figure C.14). Thus the fuzzed values <b or <u are blocked

by the sanitizer.
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Figure C.14: Siemens–Two Parameters Confusion - Filter

Hopefully, as [Heiderich 2012b] pointed out: <% permits inserting a node in

Internet Explorer 7.

Good starting point, we have injected an active DOM node.

Constraint 2: the sanitizer blocks input parameters which are more than 40

characters long.

However, on such a node, classic JS event handlers (e.g., onmouseover, etc.)

cannot be triggered. We need another method for triggering a scripting engine.

What about CSS? :after and :before only work starting from IE8, and the

first constraint permits only IE7-10 node injection. Thus this first candidate solu-

tion is discarded.

Microsoft integrated in Internet Explorer 5.0 a feature named Dynamic Prop-

erties, aka CSS expressions [Microsoft a]. And those are interpreted in IE7-10

[Braun & Heiderich 2013].

Thus we attempt name=<% and firstname=

style=’a:expression(alert(1337))’>.

But now another subtlety of the sanitizer is revealed:

Constraint 3: [a-Z]:[a-Z] would be blocked from going into the database, thus

not being reflected.

Hopefully, this part of the filter can be bypassed by only putting a space: the

string a: b is accepted. Moreover, the filter does not remove simple quotes ’.

Finally: name=<% and firstname= style=’a:

expression(alert(1337))’>
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Figure C.15: Siemens–Two Parameters Confusion - Exploit IE7-IE10
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Figure C.16: Siemens–Two Parameters Confusion - Execution
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