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RÉSUMÉ en français

L’interprétation des grandes quantités de données d’expression génique récemment

générées par des techniques expérimentales à haut-débit exige des outils mathématiques

et informatiques fiables pour l’inférence des interactions régulatrices. Nous nous intéressons

à l’inférence des interactions régulatrices et l’amélioration des résultats de l’inférence

en identifiant les informations précises fournies par les données expérimentales.

Nous avons développé une approche expérimentale et computationnelle intégrée

pour l’inférence de modèles quantitatifs de promoteurs bactériens à partir des données

d’expression génique temporelles mesurée par l’intermédiaire de gènes rapporteurs flu-

orescents. Nous montrons comment les effets physiologiques globaux et les concentra-

tions de protéines peuvent être estimés à partir des données de fluorescence et intégrés

dans des méthodes d’inférence, à la fois structurelle et paramétrique, des fonctions de

régulation génique. Nous avons validé notre approche sur un module central dans le

réseau de régulation contrôlant la motilité et le système de chimiotactisme chez Es-

cherichia coli.

L’approche proposée est orthogonale aux méthodes déjà existantes pour l’inférence

des réseaux de régulation à partir de données temporelles d’expression génique et peut

être intégré avec plusieurs autres méthodes proposées dans la littérature.

MOTS CLÉS

Inférence des réseaux de régulation géniques, algorithmes d’identification structurelle et

paramétrique, biologie des systèmes, modélisation des réseaux de régulation bactériens,

estimation de paramètres
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TITLE in english

STRUCTURAL AND PARAMETRIC IDENTIFICATION OF BAC-

TERIAL REGULATORY NETWORKS

ABSTRACT in English

The interpretation of the large amounts of gene expression data yielded recently by

high-throughput experimental techniques requires more reliable mathematical and com-

putational tools for the inference of regulatory interactions. We focus on the inference

of regulatory interactions and improving the results of inference by pinpointing the

precise information provided by the experimental data.

We developed an integrated experimental and computational approach for the in-

ference of quantitative models of bacterial promoters from time-series gene expression

data measured by means of fluorescent reporter genes. We show how global physio-

logical effects and protein concentrations can be estimated from fluorescence data and

integrated into methods for the inference of both structural and parametric gene reg-

ulation functions. We validated our approach on a central module in the regulatory

network controlling motility and the chemotaxis system in Escherichia coli.

The proposed approach is orthogonal to existing methods for regulatory networks

inference from time-series gene expression data and can be combined with several other

methods proposed in the literature.

KEYWORDS

Inference of genetic regulatory networks, algorithms for structural and parametric iden-

tification, systems biology, modelling of bacterial regulatory networks, parameter esti-

mation
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LONG ABSTRACT in English

High-throughput technologies yield large amounts of data about the steady-state levels

and the dynamical changes of gene expression in bacteria. An important challenge

for the biological interpretation of these data consists in deducing the topology of the

underlying regulatory network as well as quantitative gene regulation functions from

such data. A large number of inference methods have been proposed in the literature

and have been successful in a variety of applications, although several problems remain.

We focus here on improving two aspects of the inference methods. First, transcrip-

tome data reflect the abundance of mRNA, whereas the components that regulate are

most often the proteins coded by the mRNAs. Although the concentrations of mRNA

and protein correlate reasonably during steady-state growth, this correlation becomes

much more tenuous in time-series data acquired during growth transitions in bacteria

because of the very different half-lives of proteins and mRNA. Second, the dynamics of

gene expression is not only controlled by transcription factors and other specific reg-

ulators, but also by global physiological effects that modify the activity of all genes.

For example, the concentrations of (free) RNA polymerase and the concentration of

ribosomes vary strongly with growth rate. We therefore have to take into account such

effects when trying to reconstruct a regulatory network from gene expression data.

We propose here a combined experimental and computational approach to address

these two fundamental problems in the inference of quantitative models of the activity

of bacterial promoters from time-series gene expression data. We focus on the case

where the dynamics of gene expression is measured in vivo and in real time by means

of fluorescent reporter genes.

Our network reconstruction approach accounts for the differences between mRNA

and protein half-lives and takes into account global physiological effects. When the

half-lives of the proteins are available, the measurement models used for deriving the

activities of genes from fluorescence data are integrated to yield estimates of protein

concentrations. The global physiological state of the cell is estimated from the activity

of a phage promoter, whose expression is not controlled by any transcription factor and

depends only on the activity of the transcriptional and translational machinery. We

apply the approach to a central module in the regulatory network controlling motility

and the chemotaxis system in Escherichia coli. This module comprises the fliA, flgM
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and tar genes. FliA is a sigma factor that directs RNA polymerase to operons coding

for components of the flagellar assembly. The effect of FliA is counteracted by the anti-

sigma factor FlgM, itself transcribed by FliA. The third component of the network, tar,

codes for the aspartate chemoreceptor protein Tar and is directly transcribed by the

FliA-containing RNA polymerase holoenzyme. The FliA-FlgM module is particularly

well-suited for studying the inference problems considered here, since the network has

been well-studied and protein half-lives play an important role in its functioning.

We stimulated the FliA-FlgM module in a variety of wild-type and mutant strains

and different growth media. The measured transcriptional response of the genes was

used to systematically test the information required for the reliable inference of the

regulatory interactions and quantitative predictive models of gene regulation.

Our results show that for the reliable reconstruction of transcriptional regulatory

networks in bacteria it is necessary to include global effects into the network model

and explicitly deduce protein concentrations from the observed expression profiles. Our

approach should be generally applicable to a large variety of network inference problems

and we discuss limitations and possible extensions of the method.
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RÉSUMÉ SUBSTANTIEL en français

Les technologies expérimentales à haut débit produisent de grandes quantités de données

sur les niveaux d’expression des gènes dans les bactéries à l’état d’équilibre ou lors des

transitions de croissance. Un défi important dans l’interprétation biologique de ces

données consiste à en déduire la topologie du réseau de régulation ainsi que les fonc-

tions de régulation quantitatives des gènes. Un grand nombre de méthodes d’inférence

a été proposé dans la littrature. Ces méthodes ont été utilisées avec succès dans une

variété d’applications, bien que plusieurs problèmes persistent.

Nous nous intéressons ici à l’amélioration de deux aspects des méthodes d’inférence.

Premièrement, les données transcriptomiques reflètent l’abondance de l’ARNm, tan-

dis que, le plus souvent, les composants régulateurs sont les protéines codées par les

ARNm. Bien que les concentrations de l’ARNm et de protéines soient raisonnable-

ment corrélées à l’état stationnaire, cette corrélation devient beaucoup moins évidente

dans les données temporelles acquises lors des transitions de croissance à cause des

demi-vies très différentes des protéines et des ARNm. Deuxièmement, la dynamique

de l’expression génique n’est pas uniquement contrôlée par des facteurs de transcrip-

tion et d’autres régulateurs spécifiques, mais aussi par des effets physiologiques globaux

qui modifient l’activité de tous les gènes. Par exemple, les concentrations de l’ARN

polymérase (libre) et les concentrations des ribosomes (libres) varient fortement avec le

taux de croissance. Nous devons donc tenir compte de ces effets lors de la reconstruction

d’un réseau de régulation à partir de données d’expression génique.

Nous proposons ici une approche expérimentale et computationnelle combinée pour

répondre à ces deux problèmes fondamentaux dans l’inférence de modèles quantitatifs

de promoteurs bactériens à partir des données temporelles d’expression génique. Nous

nous intéressons au cas où la dynamique de l’expression génique est mesurée in vivo

et en temps réel par l’intermédiaire de gènes rapporteurs fluorescents. Notre approche

d’inférence de réseaux de régulation tient compte des différences de demi-vie entre

l’ARNm et les protéines et prend en compte les effets physiologiques globaux. Lorsque

les demi-vies des protéines sont connues, les modèles expérimentaux utilisés pour dériver

les activités des gènes à partir de données de fluorescence sont intégrés pour estimer

les concentrations des protéines. L’état physiologique global de la cellule est estimé

à partir de l’activité d’un promoteur de phage, dont l’expression n’est contrôlée par
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aucun des facteurs de transcription et ne dépend que de l’activité de la machinérie

dexpression génique.

Nous appliquons l’approche à un module central dans le réseau de régulation contrôlant

la motilité et le système de chimiotactisme chez Escherichia coli. Ce module est com-

pose des genes fliA, flgM et tar. FliA est un facteur sigma qui dirige l’ARN polymérase

vers les opérons codant pour des composants de l’assemblage des flagelles. L’effet de

FliA est contrecarré par le facteur anti-sigma FlgM, lui-même transcrit également par

FliA. Le troisième composant du réseau, tar, code pour la protéine récepteur chimiotac-

tique de l’aspartate, Tar, et est directement transcrit par FliA associé à l’ holoenzyme

ARN polymérase. Le module FliA-FlgM est particulièrement bien adapté pour l’étude

des problèmes d’inférence considérés ici, puisque le réseau a été bien étudié et les demi-

vies des protéines jouent un rôle important dans son fonctionnement.

Nous avons stimulé le module FliA-FlgM dans une variété de souches de type

sauvage et mutantes et dans des milieux de croissance différents. La réponse tran-

scriptionnelle des gènes mesurée a été utilisée pour tester systématiquement les in-

formations requises pour l’inférence fiable des interactions régulatrices et des modèles

prédictifs quantitatifs de la régulation des gènes.

Nos résultats montrent que, pour la reconstruction fiable de réseaux de régulation

transcriptionelle chez les bactéries, il est nécessaire d’inclure les effets globaux dans le

modèle de réseau et d’en déduire de manière explicite les concentrations des protéines à

partir des profils d’expression observés, car la demi-vie de l’ARNm et des protéines sont

très différentes. Notre approche reste généralement applicable à une grande variété de

problèmes d’inférence de réseaux et nous discutons les limites et les extensions possibles

de la méthode.
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1. Introduction

1.1 Context

1.1.1 Bacteria in their environment

Bacteria are single-cell organisms that, under favorable conditions such as nutrient

abundance, can grow and divide rapidly. The number of bacteria on earth is estimated

to be 4− 6 · 1030 (Whitman et al., 1998) and their total amount of carbon or biomass

equals the estimated total carbon in plants. Typically few micrometers in dimension,

these numbers are indicative of their pervasiveness in our world. Their contribution is

everywhere enormous, in soils, water and air, recycling all types of matter. Bacteria

not only inhabit human organisms, we even rely on them to metabolize and absorb

essential nutrients, to fight pathogens, and to train and improve our immune function

(Peterson et al., 2009; Turnbaugh et al., 2007).

Bacteria can adapt to many different environments, for example they survive ex-

treme stress conditions associated with high concentrations of toxic metals or radioac-

tive environments (Daly et al., 2004; Keller and Zengler, 2004; Schaechter et al., 2006).

Recent studies of the human microbiome have begun to characterize the bacterial com-

munities living in our gastrointestinal tract (Peterson et al., 2009). These communities

thrive in the extreme conditions they have to deal with.

One of the microbes of the human gut flora, which can be grown easily and inexpen-

sively in a laboratory setting, is Escherichia coli. The bacterium produces menaquinones

(Conly et al., 1994; Suvarna et al., 1998), known as K2 vitamin, which plays an impor-

tant and complex role in hemostasis. However, some serotypes have developed ways to

thwart the immune system and can cause serious food poisoning in their hosts (Brown

et al., 2008; Tenaillon et al., 2010). Escherichia coli has served for over 60 years as

a model organisms for microbiology and biotechnology research (Keseler et al., 2013;

Salgado et al., 2013). Recently, this bacterium has been engineered to create “living

1



1. INTRODUCTION

materials”, assembling rows of gold nanowires. The resulting network conducts elec-

tricity and could be worth exploring for use in energy applications, such as batteries

and self-healing materials (Chen et al., 2014).

1.1.2 Responses of bacteria to changes in their environment

Bacteria have developed many original solutions to respond to often rapid changes in

their environment. Bacterial stress responses enable cells to survive adverse and fluc-

tuating conditions in their environment, such as the depletion of nutrients, changes in

pH and temperature, high population density (Storz and Hennge-Aronis, 2000). When

nutrients become exhausted, cell membranes become thicker for protection and cell

division is dramatically reduced or turned off to prevent energy expenditure.

Another example of a bacterial stress response is motility (Berg, 2004). This is

thought to be one of the most impressive evolutionary aspects of bacterial behavior, as

it allows bacteria to populate regions rich in nutrients and to avoid repellents (Berg,

2004). Many bacterial species swim by rotating external filamentous organelle, known

as flagella. The flagellum has three main components (as described by Berg (2004)),

a basal body integrated in the cell wall (‘‘the motor’’), a short joint structure (‘‘the

hook’’) and a long filament (‘‘the propeller’’). In E. coli, each flagellum is driven at

its base by a reversible flagellar motor that is powered by a chemical gradient across

the membrane and propels bacteria in a particular direction. When flagellar rotation is

counterclockwise, the flagella push the bacterium forward, allowing a reasonably smooth

“run”. When the rotation is clockwise, the flagella pull in opposing directions and the

bacteria “tumble” (Berg (2004) and Figure 1.1). Sensing chemicals is achieved through

a complicated protein chemotaxis system (Porter et al., 2011) that controls the flagellar

motor, allowing bacteria to migrate towards environments that are optimal for growth.

If the movement is directed towards an attractant, the running period is prolonged and

bacteria swim towards the attractant. On the contrary, if a repellent is encountered,

the bacteria tumble, which prevents them from swimming towards the repellent.

2



1.1 Context

‘RUN’ ‘THUMBLE’

Figure 1.1: Bacterial motility. Most of bacterial species can move by rotating their

flagella when sensing chemical gradients. The complex system coordinating movement and

chemical sensing is the chemotaxis system. Cells switch continuously between two modes

of movement: a “run” mode in which the bacterium swims forward, by rotating their

flagella counterclockwise and a “tumble” mode in which the bacterium randomly changes

direction, by rotating their flagella clockwise. The rotary motor located at the base of

each flagellum controls the direction of rotation (Berg, 2004). The complex chemotaxis

system, triggered by signals emitted by the transmembrane receptor proteins, dictates the

direction of rotation of the flagella.

1.1.3 Responses controlled by complex regulatory networks

How does a bacterial cell initiate and coordinate its adaptive responses when changes in

their environment occur? This is achieved by highly sophisticated, complex regulatory

networks.

For example, the synthesis and function of the flagellar and motility system is based

on the coordinated expression of more than 50 genes (Chilcott and Hughes, 2000). The

expression of these genes responds to environmental stimuli and, in addition, to sig-

nals that are coupled to the morphological development of the flagella. The flagellar

genes are organized in a transcriptional hierarchy of three operon classes (Chevance

and Hughes, 2008; Kutsukake et al., 1990; Macnab, 1996a) as shown in Figure 1.2. The

class 1 operon, flhDC, encodes the proteins FlhC and FlhD, which form a heteromul-

timeric complex initiating the transcription of the entire flagellar cascade through the

class 2 operons. These operons encode the structural proteins required for flagellar

3



1. INTRODUCTION

hook assembly as well as the main regulator of the class 3 operons, the sigma factor

FliA (σ28). When bound to core RNA polymerase, FliA directs the transcription of

the class 3 operons, the lower level of the regulatory hierarchy. However, FliA activity

is inhibited by the anti-sigma factor FlgM, which binds to FliA and thus prevents its

association with RNA polymerase, delaying class 3 genes expression and completion of

the flagellar assembly. FlgM is transcribed from both a class 2 and class 3 promoter

and can be excreted once the intermediary hook basal body structure is constructed.

Cellular processes are very complex, but it seems that such processes can often be

broken down into a limited number of recurring patterns of connectivity. The tran-

scriptional cascade in Figure 1.2 can be decomposed into elementary network motifs,

such as the SUM input FeedForwardLoop (Alon, 2007). That is, the master regulator

FlhDC activates a second regulator, FliA, and both activate, in an additive fashion, the

operons that produce the flagella motor. This specific network motif prolongs flagella

expression following deactivation of the master regulator, highlighting the regulatory

hierarchy and timing of the control of the flagella assembly (Kalir and Alon, 2004; Kalir

et al., 2005).

1.1.4 Experimental measurements

Recent advances in molecular biology and in biophysics have led to new technologies

for measuring cellular processes at the molecular level and in real time, including DNA

microarrays and RNA sequencing, gene reporter systems, quantitative RT-PCR and

mass-spectrometry based measurement of proteins. This allows the stress responses of

bacteria to be monitored and may give insights into the functioning of the regulatory

networks controlling these responses.

Measurements of the transcriptome of a bacterial cell by means of DNA microarrays

or RNA sequencing produce quantitative information on the state of the entire tran-

scriptional program of an organism at any time during an experiment (Dharmadi and

Gonzalez, 2004). These approaches provide a relative quantification of mRNA abun-

dance and cannot be obtained in vivo, in the sense that the actual measurements are

carried out on molecules extracted from the cells. Techniques such as quantitative RT-

PCR also measure relative mRNA concentrations, though usually not on a genome-wide

scale (Saunders and Lee (2013), see White et al. (2011) for an exception). Fluorescent
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Figure 1.2: The hierarchical transcriptional network controlling flagellar assem-

bly and the synthesis of the chemotaxis system (Karlinsey et al., 2000a). Class

1 genes encode the proteins FlhD and FlhC, transcriptional activators that are required for

expression of all the other flagellar genes. Class 2 genes encode structural components of

the Hook-Basal Body (HBB) complex, as well as regulatory proteins, including the sigma

factor σ28 and the anti-σ28 factor FlgM. σ28 is required for the expression of all class 3

gene promoters, including those for flagellin and those related to chemotaxis and motility.

FlgM binds to and inhibits σ28 until completion of the HBB. FlgM is then secreted from

the cell, and σ28-dependent (class 3) gene expression is initiated.

reporter genes allow measuring the activities of the promoter regulating the transcrip-

tion of genes in vivo and in real time. Although quantitative proteomics has much

advanced recently (Picotti and Aebersold, 2012), in vivo and real time measurements

of proteins on a genome-wide scale are not yet possible.

Reporter gene technology, in particular, allows the direct observation/quantification of
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the activity of genes in the cell. For motility gene data obtained by means of fluorescent

reporter systems this reflects the expression of the different classes of genes in the flag-

ellar cascade (Kalir and Alon, 2004). We can observe the precise temporal expression

profiles of the most important genes involved in flagellar assembly. However, discov-

ering the structure and functioning of the regulatory network is not directly possible

from the raw experimental data.

1.1.5 Network inference

Computational tools are needed to uncover regulatory interactions from the large

amounts of experimental observations, as well as to construct dynamic models of the

functioning of bacteria. This problem is commonly defined as reverse engineering (Teg-

ner et al., 2003), network reconstruction (MacCarthy et al., 2005) or network inference

(Faith and Gardner, 2005; Gardner et al., 2003).

Different modeling formalisms have been proposed for inferring the topology of gene

regulatory networks from gene expression data (de Jong, 2002; Hecker et al., 2009;

Villaverde et al., 2013). These models represent regulatory networks in different ways,

for example, as (oriented) graphs (Bayesian networks), discrete dynamic systems (Boolean

networks) and continuous dynamic systems (differential equations). Specific inference

algorithms for each of these formalisms have been developed, reconstructing the activ-

ity of one gene as a function of the activity of other genes. Although this has resulted

in powerful methods, a number of recurrent problems remain (Marbach et al., 2010;

Prill et al., 2010).

Examples of such issues are the dimensionality problem, or the problem of discrim-

inating direct from indirect regulations. Dimensionality issues arise, e.g. when the

number of variables (genes) is much larger than the number of experimentally observed

quantities. This is typical for in vivo time course gene expression measurements for

quantitative dynamic model inference and results in a multitude of regulatory struc-

tures consistent with the data. Moreover, measurements are typically noisy and do

not capture the entire dynamics of the gene expression. Using additional constraints,

biological background knowledge and clever simplifications can help analyze the pro-

hibitively large space of possible solutions in a time-efficient manner (de Smet and

Marchal, 2010). Second, a regulator, e.g., a transcription factor may directly control
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the expression of a target gene by fixing to its promoter region, but can also affect it

indirectly, by regulating the expression of an intermediary gene whose product in turn

regulates the expression of the target gene. Such direct and indirect regulatory influ-

ences are not easily distinguishable from gene expression data (Basso et al., 2005; Rice

et al., 2005). This is thought to be due to the fact that the inference algorithms rely

on specific assumptions about the underlying network topology (e.g. cyclic or acyclic

network structures, including feedback loops or cascades). However, network motif

analysis makes it possible to quantitatively assess how the difficulty of distinguishing

direct and indirect connections affects inference methods (Marbach et al., 2010). These

different problems may lead to systematic errors in predicting regulatory interactions

and, as a result, compromise the performance of network inference algorithms (Mar-

bach et al., 2010).

Several other fundamental problems of this sort exist in model inference. In my PhD

work I have focused on two other recurrent problems in network inference that will be

introduced in the next section.

1.2 Problem Statement: two problems in network infer-

ence

Usually, network inference algorithms rely on transcriptome data generated for in-

stance, through DNA microarray analysis or RNA sequencing. These relative RNA

concentrations characterize the transcriptome state of the cell as well as the activity

of the promoters initiating the transcription of the genes. The problem of inferring

regulatory interactions is that in general the active regulator is not mRNA but protein.

At steady-state, mRNA and protein concentrations are relatively well correlated (Lu

et al., 2007; Taniguchi et al., 2010). However, this is not expected to occur when the two

vary over time. mRNA and protein have different half-lives and their concentrations

evolve on different time-scales. For instance, in bacteria, mRNA half-lives are on the

order of a few minutes (Bernstein et al., 2002), whereas most of the proteins are stable

(Larrabee et al., 1980; Mosteller et al., 1980) and the degradation rate is dominated

by growth dilution, taking place on the time-scale of a cell cycle. The effect of rapid

responses in gene expression, taking place within a single generation, may thus persist
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over several generations (Maier et al., 2009; Taniguchi et al., 2010). As a consequence

of this temporal decorrelation of mRNA and protein concentrations, inference of regu-

latory networks relying exclusively on time-series transcriptome data may potentially

lead to spurious results.

Another important problem derives from the fact that the dynamics of gene expres-

sion is not only controlled by transcription factors, small regulatory RNAs, and other

specific regulators, but also by global physiological effects influencing the rates of tran-

scription and translation of all genes (Berthoumieux et al., 2013b; Gerosa et al., 2013;

Keren et al., 2013; Klumpp and Hwa, 2008). Most gene expression studies have been

based on the assumption that cells produce similar levels of total RNA per cell, without

including standardized controls that would reveal global transcriptional amplification

or repression. For instance, cells can globally up-regulate their gene expression pro-

gram, producing two to three times more total RNA and generating larger cells. In the

conventional approach to expression analysis, normalized amounts of RNA would be

introduced into the assay, thus masking changes in the activity of gene expression ma-

chinery. Ignoring such changes, for example in experiments with important variations

of the growth rate, can lead to artefacts in inferring regulatory interactions (Lovén

et al., 2012; Regenberg et al., 2006). Unfortunately, global physiological parameters

characterizing changes in the activity of the gene expression machinery, such as the

concentrations of (active) RNA polymerase and ribosome, are difficult to quantify in a

direct way.

The aim of my PhD work is (I) to propose a combined experimental and compu-

tational approach to address the above two fundamental problems in the inference of

quantitative models of regulatory interactions from time-series data and (II) the appli-

cation of these methods to real data of gene expression from the regulatory network

controlling motility in E. coli. This network has been well-studied and is therefore

particularly suitable as a test-case. From a methodological point of view, several issues

will be addressed during the project, such as the choice of appropriate modeling for-

malisms, the study and integration of time-series data in dynamic models, the design

of informative experiments, the application of effective algorithms for model identifica-

tion on real data, and the interpretation of the identification results to learn about the

structure and functioning of the network. In order to generate a set of rich observations
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of the system, I will experimentally probe the motility network in a variety of wild-type

and mutant genetic backgrounds and in different growth media by means of fluorescent

gene reporter measurements.

1.3 Principal research questions and approaches

1.3.1 Fluorescent reporter gene measurements

Our first research question is how to measure bacterial gene expression in vivo and in

real time in order to quantify time-varying gene expression changes in the motility net-

work. We have chosen to use fluorescent reporter gene techniques (de Jong et al., 2010;

Giepmans et al., 2006; Southward and Surette, 2002), since they allow gene expression

to be monitored with high precision and temporal resolution. Fluorescent reporter

genes consist of transcriptional fusions of a gene encoding a fluorescent protein, e.g.,

GFP or mCherry, to the promoters of the target genes, on (low-copy) plasmids or on

the chromosome. Chromosomal reporters avoid a number of potential artifacts, such

as a change in plasmid copy number across different growth phases, but they are more

difficult to construct and the intensity of the fluorescence signal may be close to the

background fluorescence, especially when GFP is used. In this study, we have chosen

to use plasmidic reporters of the motility genes, available in a reporter library (Zaslaver

et al., 2006). The copy number of these plasmids was shown previously to be stable in

media supporting different growth rates (Berthoumieux et al., 2013b; Zaslaver et al.,

2006).

1.3.2 Reconstruction of protein concentrations and global regulatory

effects

The experimental protocol allows monitoring the transcriptional response of a biologi-

cal network. How can we reconstruct quantities of interest for our purpose from these

data, notably protein concentrations and global physiological effects?

In the case of fluorescent reporter gene system, primary absorbance and fluorescence

signals can be transformed into what are commonly called in the literature promoter

activities (Zaslaver et al., 2006), using kinetic measurement models of gene expression

(de Jong et al., 2010; Huang et al., 2008; Ronen et al., 2002; Wang et al., 2008). More
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precisely, reporter gene data allow one to deduce protein synthesis rates and under cer-

tain conditions to consider them proportional to mRNA concentrations and promoter

activities. These quantities reflect the transcriptional activity of the gene, but they can

also be used to reconstruct the concentration of the protein, using information on the

protein half-life (de Jong et al., 2010).

As explained in Section 1.2, large-scale differences in gene expression over time or

across conditions may also reflect global changes in cellular physiology. The approach

described in Berthoumieux et al. (2013b) allows the global state of the cell to be moni-

tored in real-time and in vivo during the growth transition. I will therefore use a GFP

reporter driven by a constitutive promoter, not regulated by any transcription factor,

to assay the time-varying physiological state of the cell. For example, a plasmid ex-

pressing a GFP reporter for a phage promoter (Oppenheim et al., 2005), not regulated

by any protein in the host cell, can provide this type of information. The variations

in the activity of the constitutive promoter reflect changes in the overall physiological

state of the cell, including the RNA polymerase and ribosome concentrations, as well

as pool sizes of amino acids and nucleotides.

1.3.3 Transcriptional response of the FliA-FlgM module

We apply the experimental approach to a central module in the regulatory network

controlling the synthesis of flagella and the chemotaxis sensing system in Escherichia

coli (Chevance and Hughes, 2008; Kalir et al., 2001; Macnab, 1996a). This module

comprises the FliA and FlgM transcription factors and their targets. FliA or σ28 is a

sigma factor that directs RNA polymerase to operons coding for the flagellar filament

and the chemotaxis sensing system controlling the flagellar motor. The effect of FliA

is counteracted by the anti-sigma factor FlgM. As typical examples of FliA-dependent

genes we study flgM, the gene encoding FlgM, and tar. The latter gene encodes the

aspartate chemoreceptor protein Tar, which activates the flagellar motor component

(Berry and Armitage, 2008; Macnab, 1996b). The FliA-FlgM module forms a check-

point in the temporally-organized expression cascade. It is particularly well-suited for

investigating the inference problems considered here, since the interactions in this net-

work have been well-studied and protein stability has been found to play an important

role in its functioning.
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We will experimentally excite the FliA-FlgM module in a variety of wild-type and mu-

tant conditions, in different growth media, and measure the transcriptional response

of the genes. Promoter activities and protein concentrations will be computed for the

fliA, flgM and tar genes, as well as the activity of the constitutive phage promoter

pRM, to account for global regulatory effects.

1.3.4 Inference of quantitative models of the FliA-FlgM module

How can the data on the transcriptional response of the FliA-FlgM module be used

to systematically test the information required for the reliable inference of the regula-

tory interactions (structure) and quantitatively predictive models (parameters) of gene

regulation?

For the structural inference problem I will use a previously described inference

method (Porreca et al., 2010a). I will notably test if the use of fliA and flgM promoter

activities, instead of their protein concentrations, allows us to retrieve the expected

pattern of regulatory interactions. Furthermore, I will assess to which extent the results

can be improved when considering protein concentrations instead of promoter activities.

In addition, analysis will consider the presence or absence of a model factor for the

potential effects of global physiology. In order to compute protein concentrations we will

use measured or estimated half-lives, while global physiological effects will be measured

by means of a constitutive promoter.

In order to quantify to which extent the addition of the latter information improves

the identification of quantitative models of promoter activity, I will construct kinetic

models of the regulation of FliA-dependent genes. Using heuristic global optimization

methods, such as genetic algorithms, I will then estimate parameter values from the

data and asses the quantitative fit in the different conditions.
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1.4 Contributions

The interpretation of the large amounts of data yielded recently by high-throughput

experimental techniques requires more reliable mathematical and computational tools

for the inference of regulatory interactions.

In this work, we have made explicit the relation between experimental data and phys-

iological quantities by means of mathematical models of gene expression, calling into

question two assumptions that are commonly made in the inference of regulatory in-

teractions and quantitative gene regulation functions from time-series data. The first

assumption is that transcriptome data alone are sufficient to capture the time-varying

state of gene expression. Often, the regulators of gene expression are proteins, while

mRNA and protein concentrations are not correlated in dynamic experiments. As a

consequence, currently it is not possible to fully exploit the information contained in

time-series transcriptome data (Marbach et al., 2010). A second implicit assumption

in the analysis of transcriptome data is that gene regulation can be reduced to the

action of transcription factors and other specific regulators. This ignores the fact that

the activity of the transcriptional and translational machinery, as well as other global

physiological effects, may drastically change over the course of an experiment, a fact

that has been well-documented for microorganisms (Dennis et al., 2004; Scott and Hwa,

2011). This may lead to erroneous interpretations and the inference of spurious regu-

latory interactions (Lovén et al., 2012).

The main contribution of this thesis is an integrated experimental and computational

approach for addressing the above two problems, in the context of time-series measure-

ments of gene expression by means of fluorescent reporter genes. We notably show how

global physiological effects and protein concentrations can be estimated from fluores-

cence data and integrated into methods for the inference of structural and parametric

gene regulation functions. This work relies on solid results obtained previously. The

reconstruction of protein concentrations from real-time promoter activities by means of

kinetic models as well as the quantification of global physiological effects by means of

reporter genes have been proposed before (Berthoumieux et al., 2013b; de Jong et al.,

2010; Gerosa et al., 2013; Keren et al., 2013). For instance, Gerosa et al. (2013) have

developed quantitative models to dissect global and specific regulation of E. coli genes

involved in arginine biosynthesis (Gerosa et al., 2013).
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To our knowledge, the work presented here is the first systematic study of how the in-

tegration of information on both global physiological effects and protein concentrations

can improve the inference of regulatory interactions and the identification of gene regu-

lation functions from time-series data. It is important to emphasize that the proposed

approach is orthogonal to existing methods for the inference of regulatory networks

from time-series gene expression data and can be combined with any of the large vari-

ety of methods proposed in the literature.

We have validated our approach by analyzing a central module of the motility network

in E. coli. The FliA-FlgM module has been very well-studied and has characteristics

that make it particularly suitable for our purpose, such as short half-lives due to export

of certain proteins from the cell and proteolysis. The secretion and degradation rates

change across conditions, depending on the strength of induction of the flagella syn-

thesis network. As a consequence, the FliA and FlgM concentrations are expected to

vary during the course of an experiment and across the experimental conditions. This

yields a rich and challenging data set for testing how accounting for the distinction

between cellular responses on the level of mRNA and protein influences the results of

the inference process.

Furthermore, we use the reporter gene data not only for deducing the regulatory struc-

ture but also for quantifying the regulation function of two FliA-dependent motility

genes, not known to be regulated by any other transcription factors. When progressively

solving the problems mentioned above, by integrating information about the activity of

the gene expression machinery and computing estimates of protein concentrations from

promoter activities, both the structure and the dynamics of the regulation of the tar

and flgM promoters could be identified successfully. We emphasize that, when using

available measurements of FliA and FlgM half-lives, this was achieved without increas-

ing the number of parameters in the models and is therefore not simply a consequence

of increasing the degrees of freedom. The results confirmed the important roles played

by global physiological effects and the active regulation of FliA and FlgM half-lives in

shaping the dynamics of FliA-dependent promoters.

We believe that the approach proposed in this work has broad practical applicabil-

ity for exploiting and analyzing transcriptome data and improving network inference

in a variety of organisms.
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1.5 Thesis overview

The manuscript of this thesis will be organized as follows:

• Chapter 2 (State of the art) will review existing inference methods for dynamical

models. We will also describe the experimental techniques that can be currently

used to monitor gene expression data in microbial cells. Finally, data analysis

methods that allow the transformation of reporter gene data into biologically

relevant quantities will be presented.

• Chapter 3 (Results) will present the results obtained during this thesis. We will

investigate how reconstructing protein concentrations from promoter activities

and monitoring the global physiological state of the cell may improve the struc-

tural and parametric inference of gene regulatory networks. The approach will

be exemplified by means of a central module of the motility network in E. coli .

A paper containing the work presented in this chapter is in preparation.

• Chapter 4 will summarize the conclusions drawn from the current work and will

present perspectives and future improvements for the inference of quantitative

models of regulatory networks in biology.
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Inference of gene regulatory networks generally deals with the problem of reconstructing

interactions among genes from experimental data. Different types of data exist, and

correspondingly, different interaction models and different methods for their inference

are most adapted to the data considered. Depending on the context, the problem goes

under alternative names, notably reverse-engineering and network identification.

In this chapter we present the various methods employed in the literature for in-

ferring gene regulatory networks. In Section 1 we introduce common experimental

techniques that provide high-throughput measurements of regulatory molecules such

as mRNAs or proteins. Then, we present the inference algorithms that have been de-

veloped to exploit these experimental data, their strengths and weaknesses. In the last

section (Section 3), we address the data processing methods and the development of

measurement models for reporter gene techniques.

2.1 Experimental techniques for measuring gene expres-

sion

Measurements of the transcriptome and proteome of bacterial cells by means of DNA

microarrays, RNA sequencing, and other high-throughput or quantitative technologies

have created huge amounts of data on the state of the transcriptional program in differ-

ent growth conditions and genetic backgrounds, over the time course of an experiment.

Large efforts have been made to develop such experimental methods. This section

offers a short overview of the experimental technologies as well as examples of their

application.

2.1.1 High-throughput transcriptomics

Transcriptomics allows the monitoring of the genome-wide transcriptional response of

the cell to an environmental stimulus or a genetic modification.
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The most common technique used for producing data for the inference of gene networks

are microarrays. There are several types of microarrays, but DNA microarrays are by

far the most widely used.

The principle of DNA microarrays is based on the complementarity of messenger RNA

(mRNA) and the DNA strand from which it is transcribed. Therefore mRNA will bind

to single -stranded DNA molecules with the same sequence as the originally transcribed

gene.

To determine gene expression patterns in a cell, the messenger RNA molecules in a sam-

ple are extracted. Each mRNA molecule is then reverse transcribed by a reverse tran-

scriptase (RT) thus generating a complementary DNA (cDNA). In addition, the cDNA

is labeled in the process, typically using a fluorescent nucleotide. Next, the labeled

cDNAs obtained from cellular target mRNA are added to the microarray where they

hybridize with their complementary single-stranded DNA probe fixed on the microar-

ray substrate (Dharmadi and Gonzalez, 2004). The fluorescence intensity measured

at a particular spot in the array reveals the amount of the gene transcript which was

present in the sample. Many choices of DNA microarray platforms are available, such

as cDNA microarrays or oligonucleotide microarrays (Lockhart et al., 1996; Marshall,

2004; Schena et al., 1995). Starting with the dot-blots (Southern et al., 1999), DNA

microarrays have evolved to filter arrays (nylon membrane support), and to a glass

slides format, which has the advantage of high-probe density (Dharmadi and Gonzalez,

2004).

Informative high-throughput datasets have been obtained by means of DNA microar-

rays. Many studies on bacterial genetics make use of these datasets, especially for char-

acterizing bacterial responses to environmental changes, trying to explore the highly

complex regulatory networks and transcriptional regulation or genetic and metabolic

engineering (see review of Dharmadi and Gonzalez (2004)). For instance, global tran-

scriptional profiling of E. coli in acetate cultures was investigated using DNA microar-

rays on glass slides (Oh et al., 2002). Other examples of the use of DNA microarrays

datasets for E. coli can be found in the literature, such as the identification of regula-

tory networks (Faith et al., 2007) or metabolic engineering (Park et al., 2005).

A limitation of DNA microarray technology is that it only measures the relative concen-

tration of mRNA. Moreover, while microarrays have contributed to our understanding
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of transcription regulation (van Vliet, 2010), they have a limited precision of measure-

ments due to variability from the array fabrication process, systematic errors in the

hybridization process and heterogeneity of experimental design procedures (Dharmadi

and Gonzalez, 2004). This also increases the difficulty of combining and interpreting

different available microarray datasets (Bloom et al., 2009).

While DNA microarrays thus have limitations in their applicability, sequencing tech-

nologies recently became available for the detection and quantification of transcripts

in microorganisms. In addition to measuring mRNA levels, RNA-seq technology has

also been used for identifying small regulatory RNAs (Waters and Storz, 2009). For

example, Perkins et al. (2009) in a study on Salmonella enterica serovar Typhi, used

RNA-seq information to identify novel noncoding RNA sequences and new members of

regulons. A limitation of current sequencing technologies is that the mRNA has to be

extracted from a bacterial sample and measurements cannot be made in vivo or used to

investigate single-cell dynamics. If one wants to evaluate a dynamic response, sampling

time will become critical for the identification of changes in gene expression.

2.1.2 Quantitative proteomics

DNA microarrays are used to estimate mRNA levels, a molecule that rapidly changes

its concentration in response to regulatory signals. However, the biologically active

regulator is usually not mRNA, but protein (Cox and Mann, 2011). Although in

steady-state condition proteins and mRNA concentrations are moderately correlated

(Lu et al., 2007; Taniguchi et al., 2010), if one wants to evaluate changes in gene ex-

pression dynamically over time, this is not expected to be the case. Mass spectrometry

(MS)-based proteomics has emerged as an universal method for the measurement of

proteins (Bensimon et al., 2012; Schmidt et al., 2009; Wepf et al., 2009). Protein sam-

ples are extracted from cells and digested into peptides. The resulting peptide mixture

is separated, typically by high-performance liquid chromatography (HPLC) and con-

verted to gas phase ions by using the electrospray (Fenn et al., 1989) or matrix-assisted

laser ionization (Hillenkamp et al., 1991) methods. Next, the mass spectrometer scans

the entire mass range every few seconds. The data analysis software then isolates the

selected peptides in the mass spectra, fragments them and measures the mass spec-

tra of each of the fragments with a high resolution. Peptide-based proteomics does
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not directly identify proteins, but reconstructs them from the obtained mass spec-

tra of the fragments (Nesvizhskii and Aebersold, 2005). Using this methodology, the

first complete proteome quantification for yeast has recently been published (de Godoy

et al., 2008). One of the main perspectives is to combine proteomics and data pro-

vided by other high-throughput technologies in order to create comprehensive datasets

(Cox and Mann, 2011). Ishii et al. (2007) integrated proteome with transcriptome and

metabolome data for the investigation of responses of E. coli cells to environmental and

genetic perturbations.

Although proteomics can determine the absolute amount of each of the proteins in a

sample or their relative change between several conditions, some major limitations re-

main. Efforts have to be made to increase its throughput compared to other large-scale

technologies, by reducing measuring time on improved instruments (Picotti et al., 2010;

Reiter et al., 2011). Furthermore, special attention needs to be given to the develop-

ment of simplified sample preparation protocols and computational analysis software.

As for high-throughput techniques, protein extraction from bacterial samples and the

long processing times do not allow direct in vivo and real-time measurements (Picotti

and Aebersold, 2012).

2.1.3 RT-qPCR

Real-time polymerase chain reaction (RT-PCR) is a recent technology developed for

molecular biology and medicine, based on DNA labeling dyes to quantify changes in

RNA expression levels. Quantitative RT-PCR has become one of the most popu-

lar methods for the analysis of gene expression and verification of microarray results.

While high-throughput microarray analysis allows large-scale analysis of gene expres-

sion profiles, the reverse transcription (RT) followed by the polymerase chain reaction

(PCR) are often used to validate their findings (Bustin and Nolan, 2004; Bustin et al.,

2013). In addition, relative quantification or absolute quantification of gene expression

compared to standards that are run in parallel can be performed.

RT-qPCR protocols consist of several steps. First, RNA is isolated from sample

cells, then mRNA is reverse-transcribed to cDNA. Second, the synthesized cDNA is

amplified using specific PCR primers for the gene of interest. The PCR reaction also

contains a fluorophore that specifically binds to double-stranded DNA, which allows
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real-time monitoring of the amplification reaction. The fluorophores that are currently

available for quantitative PCR can be broadly classified as non-specific and sequence-

specific DNA-associating dyes (Mackay, 2007; Saunders and Lee, 2013). The most

commonly used reporter is the SYBR Green dye, a non-specific probe. Once it is

bound to the double-stranded DNA, it emits a fluorescent signal increasing with the

accumulation of PCR products. The other specific reporters such as TaqMan rely

on Fluorescence Resonance Energy Transfer (FRET) from the dye molecule to the

quencher, both attached to a specific oligoprobe (Holden and Wang, 2008). When

the oligoprobe hybridizes with its template DNA, the fluorophores (dye molecule and

quencher) are released and fluorescence emissions can be detected.

In conclusion, RT PCR has been mostly used for microarray data validation, but also

for the absolute and relative quantification of the number of plasmid copies in Lee et al.

(2006). However, the method uses cell lysate and does not allow in vivo measurements.

Moreover, the technology is not easily parallelized, therefore it is only used for detailed

study and validation of results. In addition, preparation of mRNA involves additional

steps, may lead to the loss of some initial mRNA, and it is more difficult to assess the

quality of the final product (Saunders and Lee, 2013).

2.1.4 Reporter genes

Current reporter gene technologies, based on Green Fluorescent Proteins (GFPs) (South-

ward and Surette, 2002) and other fluorescent and luminescent reporter proteins, pro-

vide an excellent means to measure gene expression in vivo and in real time, in contrast

to the other techniques presented in this chapter. The underlying principle of the tech-

nology is the fusion of the promoter region and possibly (part of) the coding region of

a gene of interest and a reporter gene. The expression of the reporter gene generates

a visible fluorescence or luminescence signal that is proportional to the actual number

of fluorescent molecules (Rosenfeld et al., 2006), it is easy to detect and reflects the

expression of a gene of interest when its promoter is activated. Reporter gene construc-

tions have enabled the real-time tracking of gene expression dynamics in single cells,

which provides valuable information about the functioning of cells (Golding et al., 2005;

Longo and Hasty, 2006). Blue, yellow, cyan, and red fluorescent proteins have been

engineered, allowing the expression of several genes to be studied in parallel, in the
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same cell. For example, three fluorescent reporter genes (encoding cyan, yellow and

red fluorescent protein) were used to investigate how noise is transmitted in a gene

network (Pedraza and van Oudenaarden, 2005).

Reporter constructs can be located on plasmids or on the genome, depending on the

Reporter 

gene

Promoter 

region

Reporter 

protein

Figure 2.1: Reporter gene systems. The promoter region of a gene of interest is fused

with a reporter gene. When the promoter is activated, the reporter gene is transcribed and

produces the reporter protein as a direct quantification of the strength of the promoter.

The reporter system can be introduced in cells on a plasmid or directly integrated into the

chromosome.

problem studied (de Jong et al., 2010). Plasmidic reporters have the advantage of being

easy to construct and generating a strong signal, compared to chromosomal construc-

tions, but their copy number may change with the experimental conditions (Lin-Chao

and Bremer, 1986), thus introducing biases in the interpretation of the data. By mea-

suring the plasmid copy number in a cell with qRT-PCR technology, one can correct

this bias (Berthoumieux et al., 2013b). In addition, protein concentrations can be re-

constructed from fluorescent reporter gene measurements by means of existing data

processing methods (de Jong et al., 2010), when information about proteins half-lives

is available.

Many studies use fluorescent reporter gene data to quantify gene expression in E. coli .
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2.2 Inference of gene regulatory networks

For example, (Ronen et al., 2002) used fluorescent reporter genes to investigate its SOS

DNA repair system. Kalir et al. (2001, 2005) analyzed the dynamics of the gene net-

work regulating flagella motif. To create a tool for accurate, high-resolution analysis of

transcription networks, Zaslaver et al. (2006) constructed a library of transcriptional

fusions of gfp to the intergenic regions containing promoters, in E. coli K12 strain, on

a low-copy plasmid. Dynamic measurements have been obtained using this library on

a genomic scale, in a diauxic shift experiment (Zaslaver et al., 2006).

2.2 Inference of gene regulatory networks

Existing methods for gene network inference can be classified in different ways, de-

pending on the criterion used for the classification. Several review papers explain the

principles of the different inference methods. In Faith and Gardner (2005), inference

methods are divided into ‘physical interaction’ approaches, that aim at identifying

interactions among transcription factors and their target genes, and ‘influence interac-

tion’ approaches, that try to relate the expression of a gene to the expression of other

genes. Stelling (2004) and Doyle III and Stelling (2006) classify inference methods

based on the type of models they pertain, distinguishing between interaction-based,

constraint-based and mechanism-based models. A relevant classification of modelling

and estimation approaches is provided in de Jong (2002). Discussions of modelling

methods and details on the computational aspects can be also found in Beer and Tava-

zoie (2004), Ambesi and Bernardo (2006) and Markowetz and Spang (2007). A mixed

classification of algorithms based on methodological approach, modelling context and

performance on different inference problems results from the DREAM challenge (Di-

alogue for Reverse Engineering Assessments and Methods), a large and cooperative

effort toward the assessment of inference performance (Greenfield et al., 2010; Marbach

et al., 2010, 2012) in the form of a competitive game among participant methods.

In what follows we will review gene network inference algorithms associated with differ-

ent interaction modelling formalisms, mostly following the recent review by Bansal et al.

(2007). In every case we will discuss the main approaches proposed in the literature

along with their advantages and limitations.
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2.2.1 Inference of gene clusters

A first approach to gene network inference is to try group genes that may be function-

ally related. Genes whose expression appears to be altered in a coordinated manner in

response to one or more experimental perturbations are grouped together and consid-

ered to be related to the cell function that has been probed experimentally. Typically

in this context, gene expression screening is performed by way of microarray experi-

ments, and functional gene grouping is operated by way of statistical methods called

clustering.

Clustering relies on the concept of similarity among expression patterns or profiles

(Eisen et al., 1998). As a similarity metrics, a correlation coefficient, most commonly

the Pearson coefficient, is used:

rij =

M∑
k=1

(xi(k)xj(k))√
M∑
k=1

(x2
i (k))

M∑
k=1

(x2
j (k))

(2.1)

where xi and xj are gene expression measurements taken in M different conditions and

rij is the pairwise correlation coefficient computed between gene i and gene j. All

pairwise correlation coefficients rij for all possible gene pairs ij are computed for a

set of n profiles. If the expression patterns of two genes are perfectly correlated (i.e.,

they are identical up to shifting and scaling) then rij = 1; in the opposite situation,

when the variables are linearly independent, rij = 0. Correspondingly, gene pairs

with large enough correlation coefficients are deemed to be functionally related (e.g.

above a suitable threshold between 0 and 1). Based on this principle, suitable methods

for grouping genes into similarity clusters have been developed (Amato et al., 2006;

Eisen et al., 1998). Gene clusters obtained in this way can be seen as fully connected

subgraphs of the graph with all genes as the graph nodes. Links among nodes within

a cluster are thus functional relationships and, although no direct mutual regulation

among clustered genes is implied by this grouping, clustered genes are often presumed

to undergo some form of mutual interaction. A common subsequent analysis step is to

annotate each cluster with a functional category representative of that cluster and use

this categorization for further inference (Guthke et al., 2005).
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2.2 Inference of gene regulatory networks

A common issue in gene clustering is the choice of the policy for associating genes

to one cluster or another. In particular, the number of clusters is a priori unknown and

can be chosen automatically based on data or manually, depending on the clustering

algorithm used (Amato et al., 2006; Eisen et al., 1998).

Similarity measures alternative to (2.1) have also been proposed, and the choice has

important effects on the clustering results. However, validation of results still remains

an opened issue(Allison et al., 2006; Handl et al., 2005). Most current clustering al-

gorithms do not provide estimates of the significance of the results returned. The

validation of clustering results is therefore often based on a manual and subjective

exploration process, such as visual inspection and prior biological knowledge to select

what is considered the most “appropriate” result. Recently, clustering has been applied

to metabolic pathways analysis (Milone et al., 2014), incorporating prior knowledge into

the cluster formation itself and show important improvements in the convergence and

performance.

Most clustering methods developed for gene networks (D’haeseleer et al., 2000; Stuart

et al., 2003) are derived from hierarchical clustering (Eisen et al., 1998). The clustering

algorithm developed by Eisen et al. (1998) has been applied to a variety of systems

such as in Spellman et al. (1998) to identify cell cycle-regulated genes of the yeast

Saccharomyces cerevisiae from microarray data, and in Bansal et al. (2007) to recover

network structure from steady-state and time-series data by both in silico and exper-

imental data analysis. Although the accuracy in identifying correct interactions was

fairly low, based on a large dataset (S. cerevisiae steady-state dataset, see Bansal et al.

(2007)) some known interactions were indeed recovered. Newer, sophisticated meth-

ods such as distance correlation have theoretical advantages over Pearson coefficient

(Székely and Rizzo, 2009) and have been tested on protein networks (Roy and Post,

2012).

Recently, methods for clustering have been widely coupled to more complex inference

algorithms to reduce the dimensionality of the search space before network inference

(cMonkey, Reiss et al. (2006)).

2.2.2 Inference of interaction graphs

Clustering approaches based on the Pearson coefficient may be effective for linear cor-

relations, but their performance decreases for nonlinear systems (Villaverde and Banga,
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Figure 2.2: Approaches for inferring gene regulatory networks. In gene clus-

ters, all dependencies between genes are typically assessed by Pearson correlations. In

information-theoretic networks, MI is 0 for statistically independent variables and DPI is

used to select direct regulatory interactions. In Boolean networks, the state of a gene is

computed as a simple Boolean rule from the activities of other genes. Bayesian networks

employ probability distributions to determine regulatory effects between genes. In the case

of ODE models, the activity of one gene is computed as a function (g) of the level of its

regulators. (Inspired by (Bansal et al., 2007))

2014). In addition, being the focus on functional relationships, no distinction is usually

made between direct and indirect interactions. A related problem is that of inferring

graphs of interactions, where nodes are genes but edges represent actual regulatory
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2.2 Inference of gene regulatory networks

effects between gene pairs. To discriminate between direct and indirect interactions,

rather than looking at Pearson correlation (Eq. 2.1), information-theoretic concepts

such as Mutual Information (MI, Shannon (1948)) can be employed instead. Based

on this, in general agreement with literature terminology, we will discuss inference of

interaction graphs in terms of methods based on an information-theoretic approach.

The underlying principle of information-theoretic approaches is the concept of entropy,

describing the uncertainty of a single random variable:

Hi = −
∑
xi∈χ

p(xi)log(p(xi)) (2.2)

which captures the a priori variability of the expression of the gene, and more generally,

the joint entropy

Hij = −
∑
xi∈χ

∑
xj∈χ

p(xi, xj)log(p(xi, xj)) (2.3)

which quantifies the variability of the random variables involved. Mutual information,

MIij , between gene i and gene j is computed as:

MIij = Hi +Hj −Hij (2.4)

It is a measure of dependencies between variables, the higher the value, the stronger

the mutual dependency. If two variables are statistically independent, their joint en-

tropy is Hij = Hi +Hj (i.e. p(xixj) = p(xi)p(xj)) and the mutual information is zero.

Conversely, full dependency corresponds to Hij = 0. In practice, these quantities can

be computed e.g. from microarray gene expression profile data (Butte and Kohane,

2000), see further below. Similar to the correlation approach, choosing a MI thresh-

old provides a mechanism to identify potential regulatory interactions, the smaller the

threshold, the higher the hit rate at the price of more probable false hits.

Different from the correlation approach, use of the so-called data processing inequal-

ity allows one to prune many indirect interactions among genes. The data processing

inequality states that if genes (i, k) interact indirectly through j, and no alternative

path exists between genes (i, k), then MIik ≤ min(MIij ,MIjk). Thus, when the data

processing inequality is verified, indirect interactions can be excluded from the set of

estimated interactions in favor of direct interactions. A well known example of infer-

ence method based on the DPI is ARACNE (Basso et al., 2005; Margolin et al., 2006).

In ARACNE, MIij is estimated from data for all pairs of observed genes i and j by
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the use of a Gaussian kernel (Steuer et al., 2002). Based on Montecarlo simulations,

a threshold MI0 corresponding to a suitable p-value for testing the independence of

Gaussian variables is determined. All gene pairs with mutual information below this

threshold are considered independent. Putative interactions are then checked for false

positives, i.e. dependence relationships that are not direct are sought based on the DPI.

This allows elimination of indirect interactions but may also eliminate direct interac-

tions (Margolin et al., 2006), depending on the data and the tuning of certain algorithm

parameters. Automatic choice of MI and DPI threshold parameters suggested along

with ARACNE gives a good sensitivity-accuracy compromise (Bansal et al., 2007).

In order to further improve the accuracy vs. sensitivity tradeoff, other approaches have

been investigated, leading e.g. to the design of minimum redundancy (Meyer et al.,

2007), entropy reduction (Samoilov, 1997; Villaverde et al., 2013) and continuous three-

way mutual information (Luo et al., 2008) methods.

Since M is symmetric (Mij = Mji) and mutual information does not provide any infor-

mation about directionality of regulation, the interaction network is still reconstructed

in the form of an undirected graph G, where edges represent statistical dependencies

observed in the data, but do not carry information about causality of regulation. In or-

der to establish causal relationships from the inferred associations between interacting

nodes, i.e. discriminate between regulatory and target genes, additional information is

necessary. Toward this aim, one example is Context Likelihood of Relatedness (CLR)

algorithm (Faith et al., 2007) where a distinction is made between the roles of transcrip-

tion factors and target genes. This algorithm includes an adaptive background correc-

tion to reduce false corrections and indirect influences. CLR calculates the statistical

likelihood of each MI value and then compares the MI of a transcription factor/gene

pair to the background distribution of all possible transcription factor/gene pairs that

include either the transcription factor or its target. Retaining only regulations whose

associated MI is significantly higher than the background values, apparent interactions

stemming from e.g. activity of one transcription factor weakly varying with the ex-

pression of several genes, or expression of one gene weakly varying with the activity of

several transcription factors, are filtered out of the reconstructed network.

In practice, the ability to estimate the MI between genes from experimental data, and

hence the practicality of the methods discussed above, depends on the quality of the

data, in particular, on the relevance of certain statistical independence assumptions.
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2.2 Inference of gene regulatory networks

Estimation of MI can be performed from multiple independent steady-state datasets

as well as from dynamic data, as long as the sampling time is long enough to consider

subsequent measurements statistically independent (Bansal et al., 2007). Computation

of MI indices then involves the probability mass function p(x), which is typically un-

known in reverse-engineering problems and needs to be reconstructed from the data.

This is often done by histogramming, i.e., partitioning the data into equally sized

bins and then counting the frequency of appearence of the data in every bin (Steuer

et al., 2002). This step is important and may affect the gain in performance from

Pearson correlation-based methods, quantifying only linear dependencies, and mutual

information-based methods (Steuer et al., 2002).

In real-world applications, ARACNE has been shown to perform well on large and

medium size steady-state datasets (human Bcells and S. cerevisiae, see Bansal et al.

(2007)), yielding results similar to clustering algorithms. On small time-varying datasets,

ARACNE had a poor performance, as expected because of its requirement of statis-

tically independent time-points (Bansal et al., 2007). Therefore, a new version of

ARACNE better suited for time-course data has been recently developed (Zoppoli

et al., 2010).

Using a compendium of microarray expression profiles in E. coli, CLR was used in (Faith

et al., 2007) not only to reconfirm known regulations, but also to discover several novel

interactions, some of which were validated experimentally. Still, direction of regulation

is well defined only for interactions discovered between one transcription factor and one

target gene, while it is undefined for interactions found between transcription factors.

In combination with other methods, CLR was reported to be an effective inference

algorithm for the DREAM4 100-gene in silico network inference challenge (Greenfield

et al., 2010).

Thus, despite the variously successful applications and the development of methods such

as CLR, the main challenge of the approaches developed in this framework remains that

of establishing the causality of interactions. In the next section, a framework that al-

lows for a natural treatment of the direction of regulations is discussed.
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2.2.3 Inference of Boolean networks

Boolean networks are discrete network models (or logical networks). Boolean networks

were first described by Kauffman (1969) and were later on recognized as a natural frame-

work for gene regulation modelling (Bornholdt, 2008; Kauffman et al., 2003; Thomas,

1973). The state of a gene (nodes in the network) can be approximated or described by

a Boolean variable xi ∈ {0, 1}. The gene can be “inactive”(0) or “active”(1) (de Jong,

2002). Boolean networks are usually represented as directed graphs, where the edges

(interactions between nodes) are represented by activation/inhibition Boolean func-

tions. Through these functions, the state of a gene is determined on the basis of the

states of its parent genes by applying basic Boolean operations (AND, OR, NOT).

Boolean networks can capture the dynamics of a regulatory system on a discrete time

grid as follows:

xi(t+ 1) = gi(x1(t), ...xk(t)) (2.5)

where xi(t), the state of the gene i at time t changes to a state, xi(t+ 1) at time t+ 1

following Boolean function gi. Each gene can be active or inactive, so the state space

consists of 2N states. The boolean function uses states for k nodes (regulators), so

the number of possible functions is 22k (de Jong, 2002). Although rapidly increasing

with the number of genes in the network, the state space and the number of interaction

functions is finite. Therefore, Boolean networks evolve towards a steady state or a cycle

of states, called attractor (Klipp et al., 2009). Reverse engineering a Boolean network

means finding a Boolean function for each gene in the network such that the observed

discrete data are explained by the logics of the model. REVEAL (REVerse Engineering

ALgorithm, Liang et al. (1998)) is one of the various algorithms used for the inference

of Boolean networks. REVEAL uses mutual information to identify a reduced set of

inputs that describe the activity of an output gene and then determines the Boolean

interaction functions from the data. The algorithm was shown to perform well on a

network of 50 genes, each gene having up to 3 regulators, when using for the analysis

only the reduced state transitions collection (100 out of 1015).

At a closer look, Boolean networks cannot fully describe real gene expression profiles

by their binary abstraction, therefore Boolean networks are inherently limited. As

well, there are important behaviors that cannot be modeled using Boolean framework,

such as amplification or addition of signals. Probabilistic Boolean networks (Akutsu
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et al., 2000; Shmulevitch et al., 2002) have been developed as an alternative to clas-

sic deterministic Boolean networks to deal with data uncertainty, allowing more than

one possible state transition Boolean function to describe gene interaction from noisy

expression data. Nevertheless, Boolean networks provide a good qualitative interpreta-

tion of gene regulation and can be used to simulate gene regulatory functions (Hecker

et al., 2009).

2.2.4 Inference of Bayesian networks

Bayesian Networks (BN) are probabilistic graph-based methods characterizing the ex-

pression of every gene i in a regulatory network by a random variable Xi. The interac-

tions among these are represented as joint probability distributions P (X1, ..., XN ) and

encoded in the structure of a directed acyclic graph G, whose nodes are the random

variables Xi. The joint probability density is expressed as a product of conditional prob-

abilities by applying Bayes’ theorem: P (A,B) = P (B ‖ A) ∗P (A) = P (A ‖ B) ∗P (B).

This allows one to write

P (X1, ..., XN ) =

N∏
i=1

P (Xi = xi ‖ Xj1 = xj1 , ..., Xjp = xjp). (2.6)

The p genes (with p generally depending on i) that appear in the conditional prob-

ability for gene i represent the actual regulators of gene i, i.e. the directed edges of

the associated graph G (also called the parents of node i). A crucial assumption is

that the model obeys a Markov property stating that each variable Xi is conditionally

independent of its non-descendants given its parents. If this causality condition does

not hold, similar to information-theoretic approaches, the edges of the BN graph no

longer represent direct causal interactions but only statistical dependencies (Bansal

et al., 2007).

Inferring a Bayesian network model means finding the directed acyclic graph G that

best explains a gene expression dataset, in the sense of maximizing a probabilistic scor-

ing function related to Eq. (2.6) over the candidate network topologies (Bansal et al.,

2007; N. Friedman, 2004; Villaverde and Banga, 2014). Existing methods typically

explore the multidimensional space of possible graphs (i.e., regulatory networks) ex-

haustively (Faith et al., 2007; Marbach et al., 2012).
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In reverse engineering applications, neither prior nor posterior probabilities are known

(Villaverde and Banga, 2014). Markov Chain Monte Carlo (MCMC) techniques (Gelfand

and Smith, 1990; Geman and Geman, 1984) are often used to evaluate Eq. (2.6) and

other relevant probabilities. Still, the search for the best BN model is an NP-hard

problem (Chickering, 1996). Hence, heuristic solutions are often implemented. In the

context of the DREAM project, MCMC BN inference was found to be computationally

very costly, making this approach better fitted for smaller networks (Marbach et al.,

2012).

In addition, the BN learning problem is usually underdetermined. Several strategies

exist to deal with this underdetermination, such as model averaging, bootstrapping or

if available, adding a priori knowledge to select the most likely model structure (Bansal

et al., 2007; Villaverde and Banga, 2014). BN inference is well suited to integrate het-

erogeneous datasets (Klipp et al., 2005), which makes BN modelling appealing when

compared to the network inference methods reviewed above.

However, the main limitation of Bayesian network models is that they cannot contain

cycles and thus they cannot represent cellular network feedback loops (Bansal et al.,

2007; Doyle and Stelling, 2006). To overcome this limitation, Dynamic Bayesian net-

works were developed along with inference methods using time-series data (Yu et al.,

2004).

A well-known BN inference algorithm is Banjo (Yu et al., 2004). This algorithm ad-

dresses both static and dynamic BNs and hence can infer gene networks from steady-

state and dynamic data, based on heuristic approaches for the exploration of the pos-

sible network topologies. The algorithm was tested on simulated and real microarray

data (Bansal et al., 2007). Banjo showed poor performance when applied on steady-

state data from a limited number of experiments (E. coli steady-state dataset, see

(Bansal et al., 2007)) when compared to interaction graph inference via ARACNE. In

presence of more data from a larger number of steady-state experiments (S. cerevisiae,

see (Bansal et al., 2007)), inference accuracy of Banjo proved to be considerably bet-

ter (S. cerevisiae, see (Bansal et al., 2007)) although the number of correct inferred

interactions remained limited. Unfortuntately, applicability of Banjo is limited for in-

creasing size of the dataset (number of experiments) due to computational complexity

(HumanBcells and S. cerevisiae, see (Bansal et al., 2007)). In the case of dynamic data

analysis, relative to the number of network genes, analysis based on both synthetic
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and experimental data (E. coli steady-state, see (Bansal et al., 2007)) showed that

Banjo (Yu et al., 2004) requires a large number of experiments for the estimation of

the necessary probability distributions.

2.2.5 Inference of Ordinary Differential Equation models

We have seen so far inference of models describing qualitative relationships among

genes, whether in the form of statistical relationships or in the form of regulatory log-

ics. What all these frameworks are missing is quantitative information concerning the

strength with which genes regulate each other, and how this reflects into quantita-

tive time-course dynamics. In this section we look at Ordinary Differential Equation

(ODE)-type modelling, which will also constitute the modelling framework of choice in

the following chapters.

In the context of gene networks, ODE models describe the dynamics underlying time-

course gene expression in terms of a time-varying network state. The state generally

represents concentrations of gene products (proteins, and sometimes corresponding

mRNAs) and transcription factors that control the regulation of the genes of inter-

est. Thus, this approach provides a more detailed and complex representation of the

functioning of the biological network (Villaverde et al., 2013) and is better suited for

the analysis of and inference from time-course quantitative (population-average) gene

expression data.

In their simplest form, ODE models of gene regulation have the representation

dxi(t)

dt
= gi(x1, ..., xN , θi, u(t))− λixi(t), i = 1, . . . , N (2.7)

where xi(t) is the time-varying concentration of the product of gene i, λi is a degra-

dation rate, gi is the synthesis rate function, θi is a vector of characteristic parameters

and u represents a network input or perturbation (chemical treatments, genetic modi-

fications, etc.) for a network with N genes (Bansal et al., 2007).

From a gene interaction viewpoint, these models encode the regulatory effects of every

gene on gene i into the analytical form of gi, thus enabling a link with the previously

discussed model classes. While the regulatory structure can in principle be captured

by suitably defined parameters θi, it is generally more appropriate to keep the con-

cepts of structure and continuous-type parameters distinct. The initial state of the

system, xi(t0) with i = 1, . . . , N , often is a steady-state solution of Eq. (2.7) (for an
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appropriate constant pre-experimental input) corresponding to the system being at a

dynamical equilibrium at the beginning of the experiment (de Jong, 2002). Inference of

ODE models most often refers to the problem of estimating parameters θi from time-

course or multiple steady-state experimental measurements of concentrations xi from

one or more system perturbations u, for a given structure of functions gi. However,

much work has also been dedicated to reconstructing or selecting the structure of the

gi, whence notably the set of regulatory interactions among the network genes, from

within suitable model families (Porreca et al., 2010a).

Unlike other approaches discussed in this chapter, in accordance with its deterministic

nature, ODE modelling usually does not rely on a statistical characterization of gene

regulatory interactions.

Model inference requires first of all the choice of an appropriate mathematical repre-

sentation of gi, whether a model family or a fixed model structure, usually from the

class of low-order polynomials or a combination of Hill functions (see Aracena (2008);

de Jong (2002); Porreca et al. (2010a); Szederkényi et al. (2011); Yang et al. (2007)).

Second, it requires the estimation of θi for each gene i. If the functional form of the

model is not fixed, structure and parameter estimation are intertwined problems, and

different methods try to isolate the two with different expedients, see Section [subsec-

tion on sign pattern] for a specific example.

Given a model structure, the identification of nonlinear ODE parameters from gene

expression data is a challenging problem, since the ODE system often does not have

an explicit solution (de Jong, 2002). In general, without suitable constraints, there are

multiple solutions, i.e. the ODE system is not uniquely identifiable from data. A com-

mon distinction is made between structural identifiability and practical identifiability.

Despite lack of agreement in the literature, the first generally refers to impossibility

to distinguish different parameter values for the given model and observed outputs,

no matter the abundance of the data, while the second refers to inherent limitations

in estimation accuracy due to the quality of the data (Berthoumieux et al., 2013a).

Indeed, time-course gene expression data are usually sparse and associated with large

noise (Raue et al., 2009), which makes estimation of structurally identifiable parame-

ters quite uncertain.

Parameter estimation is generally expressed as an optimization problem, where the

objective functions minimized quantify the distance between the observations and the
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model-predicted values. Thus, model inference is performed using optimization tech-

niques (Bansal et al., 2007). Convex optimization, when applicable, provides a unique

minimum and scales well with the dimension of the problem (number of unknown pa-

rameters, etc.) (Boyd and Vandenberghe, 2004). However, identification of nonlinear

ODE parameters often results in non-convex problems, revealing a series of difficulties

if standard local optimization methods are used, such as converging to local solutions

or bad scalability for large systems. Global optimization methods have been devel-

oped to seek globally optimal solutions (see Floudas and Gounaris (2009) for a review;

Banga (2008); Banga et al. (2005); Vilas et al. (2012)). However, their computational

complexity increases rapidly with the problem size (Miró et al., 2012).

Models inferred from data carry information of the interactions among genes and hence

provide implicitly a signed graph of regulatory interactions. Different from previously

discussed methods for network inference, however, ODE models (Eq. 2.7) with param-

eters inferred from data can then be used to predict quantitatively the time response of

the network to different internal perturbations (e.g. gene knock-out or over-expression)

and external stimuli (environmental changes).

Among the best known algorithms for ODE network model identification are Network

Identification by multiple Regression (NIR), Microarray Network Identification (MNI)

and Time-Series Network Identification (TSNI) Bansal et al. (2006); Cantone et al.

(2009); di Bernardo et al. (2005); Gardner et al. (2003). NIR and MNI analyse steady-

state mRNA measurements, whereas TSNI uses time-series datasets.

The network is modeled as a system of linear ODEs (de Jong, 2002) expressing the

synthesis rate of every transcript as a linear function of the concentration xi of all

other cell transcripts and a network perturbation u. For one experiment with given

perturbation u, at measurement time tk, with k = 1, . . . ,M , the system satisfies

ẋi(tk) =

N∑
j=1

aijxj(tk) + biu(tk), (2.8)

where, for N genes, i = 1, ..., N . The coefficients aij and bi (collectively captured by θi

in Equation 2.7) quantify the effect of gene j and perturbation u, respectively, on gene

i. If u is constant and the system has reached steady-state, then ẋi(tk) = 0 and, for all
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i, Equation 2.8 simplifies to

N∑
j=1

aijxj(tk) = −biu(tk) (2.9)

From steady-state gene expression data (M = 1 and measurements of xi for different

constant values of u), the NIR algorithm (Gardner et al., 2003) computes the edges

aij by solving the multiple linear regression (2.9) assuming a priori information about

genes that have been directly perturbed (i.e. terms biu known). The user can choose

the maximum number of regulators per gene (i.e., the number of edges to a node).

After solving linear regression (2.9), the algorithm returns the estimated matrix of in-

teraction strenghts aij . If the noise in the data is small, this method does not require

large datasets. It has been tested in (Bansal et al., 2006) showing good performance

compared to ARACNE or Banjo even when a reduced number of experiments are avail-

able.

Similarly, MNI algorithm (di Bernardo et al., 2005) is based on Equation 2.9 and uses

steady-state data. However, each microarray experiment can result from any kind of

perturbation and knowledge about biu is not necessary. First, MNI computes the aij

from the gene expression data D and determines a model of the regulatory interactions

between genes. Then a test dataset {xd1, ..., xdN} representing the perturbed expression

of the genes is used to compute biu from Equation 2.9, with u a simple constant. The

network model initially identified in the algorithm (trained on the dataset D) is used as

a filter to predict a better model from the test perturbation data. A bi 6= 0 quantifies

that gene i is directly affected by the perturbation. The algorithm returns a ranked

list of genes, where most likely targets of the perturbation have high values of bi.

The TSNI algorithm (Bansal et al., 2006) relies on dynamical time-series data and

identifies both the network structure aij and the targets of perturbation, that is the

bi, by solving in this case the linear regression corresponding to a discrete-time ver-

sion of Equation 2.8. The algorithm assumes that a single perturbation experiment

is performed and M time points following the perturbation are measured, in contrast

to M different steady-state conditions considered for NIR and MNI (it can, however,

be easily generalized to multiple dynamical experiments). The algorithm is capable of

correctly inferring the structure (aij) and the targets of perturbation (bi) of small gene

networks. In larger networks instead, its performance in recovering the structure is not
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very good, probably because the network is not fully observable and one perturbation

experiment does not yield sufficient information for the inference (SOS E. coli network,

see Bansal et al. (2006, 2007)).

Many other ODE-based algorithms have been proposed in the literature. Inferelator

(Bonneau et al., 2006) is an inference algorithm for deriving genome-wide transcrip-

tional regulatory interactions, and has been applied to predict a large portion of the

regulatory network of the archaeon Halobacterium NRC-1. The algorithm infers regu-

latory interactions for genes and gene clusters from mRNA or protein expression levels

and uses standard regression and l1 shrinkage techniques to select models for the ex-

pression of a gene or cluster of genes as a function of the levels of their regulators. In

(Bonneau et al., 2006), many novel gene interactions were predicted, and in several

cases the inferred regulatory interactions were validated by experimental tests. The

Inferelator was also able to predict mRNA levels of 80% of the genes in the genome

over new experimental conditions in Halobacterium salinarium (Bonneau et al., 2007).

Greenfield et al. (2010) demonstrate complementarity between this method and the

mutual information CLR (Section 2.2.2) algorithm. Based on application to in silico

time-series data of the DREAM4 competition, their combined use significantly improves

the ability of selecting valid regulatory interactions compared to both methods alone.

Moreover, the duo is able to accurately predict the response of the system to new con-

ditions (new double knock-out perturbations).

Inference of Boolean-like models and the sign pattern analysis method

In the spirit of mixed ODE-boolean modeling, an original method of network inference

has been proposed in Porreca et al. (2010a), explicitly based on the idea of transcrip-

tion rate functions encoding the logics of regulation of the target genes. The resulting

ODE models are referred to as “Boolean-like” models. The proposed inference algo-

rithm tackles the identification of both structure and parameters of kinetic models of

gene regulatory networks from time-course gene expression data. A modeling frame-

work is considered where the dynamic equations are described in terms of a class of

gene activation rules known as unate functions (Aracena, 2008; Comet et al., 2013).

These functions reflect interactions where each gene is exclusively either an activator

or an inhibitor for the expression of any given target gene (though a regulator may
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be an activator and a repressor of distinct target genes). According to Grefenstette

et al. (2006), unate functions provide biologically realistic dynamics for gene networks.

The majority of the known gene activation rules (Kauffman et al., 2004; Nikolajewa

et al.) are modeled by nested canalizing functions (Jarrah et al., 2007), a class of unate

functions. Unate function modelling and analysis of biochemical networks has been

discussed also in (Murrugarra and Laubenbacher, 2011; Raeymaekers, 2002).

In Porreca et al. (2010a), the properties of these functions are exploited in order to

develop a two-step identification algorithm. Boolean-like ODE models are used to

describe the evolution of the product of gene i (xi):

ẋi = gi(x)− γi(x) (2.10)

where x = (x1, ..., xN ), N is the number of genes in the network, while gi(x) ≥ 0 and

γi(x) ≥ 0 are the synthesis and the degradation rates of the product of gene i.

The nonlinear model for the synthesis rate is

gi(x) = k0,i + k1,ibi(x) (2.11)

where k0,i ∈ R+ and k1,i ∈ R+ are constants and bi(x) : Rn+[0, 1] quantifies the regula-

tory effects of the gene products in the network on the expression of gene i by algebraic

combinations of Hill activation or repression functions (Keller, 1995; Yang et al., 2007),

namely

σ+(xj) =
xdj

xdj + θd
, σ−(xj) = 1− σ+(xj). (2.12)

Due to the assumption of unate structure, every function bi, and hence every corre-

sponding gi, is monotonically increasing or decreasing in every state variable x that is

an effective regulator of target i, while it is independent of xj if the product of gene j

does not regulate expression of gene i. These monotonicity properties can be captured

by a sign pattern, i.e. an N -tuple p = (p1, ..., pN ) ∈ {−1, 0, 1}N (depending on i) where,

for j = 1, ..., N pj is −1 if gene j acts as an inhibitor for gene i expression, it is 1 if

gene j acts as an activator for gene i expression, and 0, if gene j has no effect on the

expression of gene i.

The problem tackled by the two-stage algorithm is the reconstruction of every gi. To

this purpose, and unlike other algorithms in this section, here the authors assume

measurements of time-varying protein concentrations and promoter activities. As mea-

surements of x and corresponding gi(x) are considered to be available, the decay rate
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γi(x) can be ignored in the reconstruction of gi. In practice, when only concentration

measurements or synthesis rate measurements are available, the dataset required by

the algorithm can be completed from the available data provided knowledge of γi, see

Porreca et al. (2010b).

In the first step, the algorithm isolates families of consistent model structures, i.e.

families of so-called consistent sign patterns, by testing hypothetical sign patterns and

rejecting those corresponding to monotonicity properties of gi that are falsified by the

experimental data. This reduces considerably the number of plausible interactions. In

addition, the family of consistent patterns can be arranged in a hierarchical fashion,

and is fully characterized by a small set of minimal possible topologies of the network.

In the second step, quantitative identification of the networks returned by the first step

is performed. By solving a nonlinear regression problem (estimation of θ, d, k0,i and

k1,i and selection of the best specific model structure among those with a given sign

pattern), models of minimal complexity explaining the data with sufficient accuracy

are returned.

The method has been tested on an in silico network and on real data from synthetic

network (IRMA, see Cantone et al. (2009)) and compared to TSNI. The signed directed

graphs inferred from IRMA by TSNI were less accurate than those of Porreca et al.

(2010a), where an analysis of sensitivity to noise of network reconstruction performance

was also provided based on in silico data.

Performance of existing inference algorithms, data requirements and perspective for

novel developments are largely discussed by DREAM reports and in Bansal et al.

(2007); Hecker et al. (2009); Villaverde et al. (2013). Reliable inference from gene

expression data still remains an open subject. One of the main conclusions is that, in-

deed, the performance of current network-inference methods is strongly dependent on

the properties of the network that is being inferred and cannot be analyzed in isolation

of the data that made it necessary. Employing modeling formalisms and algorithms

that train on different features of the data and merging results seems to be a good

way to improve the performance of inference. Another important point is that models

and inference methods should be interpretable in terms of biological relevance of the

results. For instance, while steady-state methods can assume protein and mRNA con-

centrations to be correlated, this can lead to spurious inference results from time-series

datasets. However, the access to dynamic measurements for these chemical species is
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not always easy and computational methods need to be developed in order to account

for these issues. Next section addresses this point in a way that will be used for the

results of this thesis.

2.3 Reporter gene data analysis

2.3.1 Measurement models

The reconstruction of biologically-relevant quantities from reporter gene data requires

measurement models making explicit the relations between the concepts and the as-

sumptions under which these relations hold (de Jong et al., 2010). Measurement models

can describe the expression of the gene of interest in two steps (de Jong et al., 2010):

d

dt
m(t) = g(t)− (µ(t) + γm)m(t), m(0) = m0, (2.13)

d

dt
p(t) = κpm(t)− (µ(t) + γp) p(t), p(0) = p0, (2.14)

where m(t), p(t) are the mRNA and protein concentrations, respectively, µ(t) is the

time-varying growth rate, κp is the protein synthesis rate constant, and γm, γp are

the degradation constants of mRNA and protein, respectively. A similar measurement

model can be written for the reporter protein:

d

dt
n(t) = g(t)− (µ(t) + γn)n(t), n(0) = n0, (2.15)

d

dt
r(t) = κr n(t)− (µ(t) + γr) r(t), r(0) = r0, (2.16)

with analogous meanings for the variables and parameters. By construction of the

transcriptional fusions, the mRNA synthesis rates or promoter activities of the gene of

interest and the reporter gene are equal. This promoter activity is denoted by g(t).

Two common assumptions make it possible to simplify the above models. First of all,

typical mRNA half-lives in bacteria are on the order of a few minutes (Bernstein et al.,

2002), whereas typical cell doubling times range from tens of minutes to hours (Larrabee

et al., 1980; Mosteller et al., 1980). This motivates γm, γn � µ(t). Second, the mRNA

concentrations evolve on a much faster time-scale than the protein concentrations, so

that the former can be assumed to be in quasi-steady state: dm(t)/dt = dn(t)/dt = 0.
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As a consequence, m(t) = g(t)/γm and n(t) = g(t)/γn, and the models of Eqs. 2.13-2.16

simplify to the following reduced models:

d

dt
p(t) = k̂p g(t)− (µ(t) + γp) p(t), p(0) = p0, (2.17)

d

dt
r(t) = k̂r g(t)− (µ(t) + γr) r(t), r(0) = r0, (2.18)

with k̂p = κp/γm and k̂r = κr/γn. We define the synthesis rate of the reporter protein

f(t) = k̂r g(t). (2.19)

This quantity is proportional to the synthesis rate of the protein of interest, with

proportionality constant α = (κr/κp)(γm/γn), i.e.,

f(t) = α k̂p g(t). (2.20)

Therefore, if κp = κr (true for translational fusions) and γm = γn, then f(t) also equals

the synthesis rate of the protein of interest. As explained in de Jong et al. (2010), f(t)

can be directly computed from the absorbance and fluorescence signals. The quantity

is usually called promoter activity in the literature or more generally the activity of the

gene, motivated by the fact that it is proportional to g(t). Promoter activity is also

proportional to the mRNA concentration of the gene of interest. This simply follows

from the fact that f(t) is proportional to k̂p g(t) and the latter expression equals kpm(t)

by Eq. 2.14.

2.3.2 Constitutive promoters

One of the limitations of the above measurement model is that it assumes that kp, kr

(the protein and reporter protein synthesis rate constants) are constants and do not

depend on the time-varying activity of the ribosomes. The model also does not distin-

guish between the contributions of specific transcription regulators and the activity of

RNA polymerase to the promoter activity g(t). In order to address these limitations,

the measurement models can be easily generalized (Berthoumieux et al., 2013b) by

positing

g(t) = km gglobal(t) gspecific(t), (2.21)
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and by replacing kp by kp(t), and kr by kr(t). Analogously to Eq. 2.19, the generalized

expression for the synthesis rate of the reporter protein becomes:

f(t) =
(
km k̂r(t) gglobal(t)

)
gspecific(t), (2.22)

which is decomposed in a part due to the activity of the gene expression machin-

ery (km k̂p(t) gglobal(t)) and a part due to specific effects of transcription regulators

(gspecific(t)). By the same reasoning as for the classic measurement models, this ex-

pression remains proportional to the synthesis rate of the protein of interest (with

proportionality constant (κr/κp)(γm/γn)).

If we consider a reporter gene with a constitutive promoter that has the same ribosome-

binding site as the reporter of the gene of interest, following Eq. 2.22, we have:

gconst(t) = kconstm gglobal(t), (2.23)

and, correspondingly,

fconst(t) = kconstm k̂r(t) gglobal(t), (2.24)

Therefore, when measuring both f(t) (by means of the reporter of the gene of inter-

est) and fconst(t) (by means of the reporter of a constitutively expressed gene), global

physiological effects due to the activity of the gene expression machinery and specific

effects due to transcription factors and other regulators can be separated.

2.3.3 Data processing

As described in Section Experimental data of this chapter, in vivo and real-time gene

expression profiles can be obtained by means of fluorescent reporter gene systems mon-

itored in an automated, thermostated reader. The absorbance or the optical density

measured at 600 nm quantifies the biomass, while the fluorescence signal emitted at 520

nm, when excited at 485 nm, is proportional to the number of GFP molecules. The

absorbance is expressed in dimensionless units, whereas fluorescence intensities have

specific relative fluorescence units (RFU). In this section we describe how, by means of

the measurement models previously described, we derive promoter activities and pro-

tein concentrations from the absorbance and fluorescence data (Berthoumieux et al.,

2013b; de Jong et al., 2010).
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2.3.4 Reconstruction of promoter activities

The corrected absorbance and fluorescence data are used to compute promoter activi-

ties (synthesis rates) and protein concentrations, following the measurement models in

de Jong et al. (2010). From Eqs. 2.18-2.19 it follows that

f(t) =
d

dt
r(t) + (µ(t) + γr) r(t). (2.25)

The growth rate µ(t) can be estimated from the absorbance, that is,

µ(t) =
d

dt
A(t)

1

A(t)
=
d lnA(t)

dt
. (2.26)

The time-varying GFP concentration in the bacterial population, r(t), can also be

estimated from the absorbance and fluorescence, making the usual assumptions that

the fluorescence is proportional to the number of GFP molecules and the absorbance

proportional to the biomass:

r(t) ∼ I(t)

A(t)
. (2.27)

We arbitrarily set the proportionality constant in Eq. 2.16 to 1, thus expressing the

reporter protein concentration in units RFU (and the synthesis rate in units RFU

min−1). Substituting the expressions for r(t) and µ(t) into Eq. 2.25 and after some

basic computations (de Jong et al., 2010) we obtain:

f(t) =
d
dtI(t)

A(t)
+ γr

I(t)

A(t)
. (2.28)

The definition is equivalent to other definitions in the literature (Ronen et al., 2002)

when µ(t) >> γr. The expression is evaluated using estimates of A(t), I(t), and

dI(t)/dt obtained by means of cubic smoothing splines (de Jong et al., 2010).

2.3.5 Reconstruction of protein concentrations

In order to reconstruct the concentration of a protein of interest, the same measurement

models are used, in particular Eq. 2.17. The term k̂p g(t) was seen to be proportional

to f(t), following Eq. 2.20. We arbitrarily set the proportionality constant in Eq. 2.20

to 1, and we rewrite:

d

dt
p(t) = f(t)− (µ(t) + γp) p(t), p(0) = p0, (2.29)
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With the definition of the initial protein concentration and additional information on

the half-life of the protein (degradation constant γp) p(t) can be computed by numerical

solution of the above ODE.
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3. Inference of quantitative mod-

els of bacterial promoters from time-

series gene expression data

This chapter will present the results of the PhD thesis. We will show how the tran-

scriptional response of the genes in the FliA-FlgM module and global regulatory effects

have been measured by means of fluorescent reporter genes, in a variety of wild-type

and mutant conditions, in different growth media. We will present the mathematical

models developed to describe FliA-dependent gene expression. Furthermore, we will

illustrate how these data were used to systematically test the information required for

the reliable inference of the regulatory interactions and quantitatively predictive models

of gene regulation. In a first step, we tested if the use of FliA and FlgM promoter activ-

ities, instead of their protein concentrations, allows the expected pattern of regulatory

interactions to be inferred, and a quantitative model of the activity of FliA-dependent

genes to be identified from the data. In a second step, we introduced global regula-

tory effects, measured by means of a reporter gene driven by a constitutive promoter.

In a third step we estimated the concentrations of FliA and FlgM from the observed

promoter activities and physiologically plausible half-lives of the proteins. The results

had been further refined in a fourth step, by taking into account that FliA and FlgM

half-lives may vary across conditions, in the range of physiologically valid values.

We also describe in detail the experimental methods used either to produce or vali-

date the biological data on the central module controlling motility in E. coli, along with

the experimental conditions, the strains and the inference and modeling frameworks.
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3.1 Results

3.1.1 Monitoring the transcriptional response of the FliA-FlgM mod-

ule

The more than 60 genes responsible for motility in bacteria are structured in a tran-

scriptional hierarchy of three operon classes, which has been mapped in detail for

Escherichia coli and Salmonella enterica (Chevance and Hughes, 2008; Kalir et al.,

2001; Kutsukake et al., 1990; Macnab, 1996a). The single class 1 operon flhDC en-

codes the proteins FlhD and FlhC, that form a heteromultimeric complex activating

σ70-dependent transcription of the class 2 operons. The latter encode the proteins mak-

ing up the flagellar motor structure as well as a major regulator of the class 3 operons,

the sigma factor FliA (σ28). When bound to core RNA polymerase, FliA directs the

transcription of a total of 5 class 3 operons (Keseler et al., 2013), which code for the

proteins forming the filament structure of the flagellum and the chemotaxis sensing

system. The aspartate chemoreceptor Tar is an example of such a class 3 protein. The

action of FliA is counteracted by the anti-sigma factor FlgM, which binds to FliA and

thus prevents its association with RNA polymerase. FlgM is encoded by the gene flgM,

which is transcribed from both a class 2 promoter and a class 3 promoter. FlgM can be

excreted from the cell through the center of the basal-body structure of the flagellum

(Figure 3.1).

The transcriptional hierarchy produces a temporally-arranged order of events during

the assembly of the flagella and the chemotactic sensing system (Chevance and Hughes,

2008; Kalir et al., 2001; Kutsukake et al., 1990; Macnab, 1996a). On the highest level

of the hierarchy, the transcription of the flagellar master regulator responds to a variety

of intracellular signals (Girgis et al., 2007; Pesavento et al., 2008). For instance, the

expression of the flhDC operon is repressed when the bacteria are grown on minimal

medium with glucose (Adler and Templeton, 1967). When glucose is depleted from

the environment, however, the signalling molecule cyclic AMP (cAMP) accumulates

in the cell, which induces flhDC transcription through the intermediary of the cAMP

receptor protein Crp (Zhao et al., 2007). In the presence of FlhDC, the class 2 operons,

and thus the genes encoding the hook basal-body (HBB) structure as well as FliA and

FlgM, are actively transcribed. FlgM sequesters FliA and prevents it from transcribing
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Figure 3.1: FliA-FlgM module. A: The regulatory circuit composed of the flagellar-

specific transcription factor FliA, a sigma factor also known as σ28, and the anti-sigma

factor FlgM forms a check-point in the transcriptional hierarchy of the motility genes in E.

coli. While fliA is transcribed from a single class 2 promoter (pfliA), flgM is transcribed

from both a class 2 and a class 3 promoter (pflgA and pflgM, respectively). FliA binds to

RNA polymerase core enzyme and directs transcription from a total of 5 class 3 promoters

(Keseler et al., 2013), including ptar and pflgM. When bound to FlgM, FliA cannot activate

transcription. When the hook basal-body (HBB) structure is in place, however, FlgM is

exported from the cell, thus releasing FliA from the inactive complex. FliA is subject to

proteolysis by Lon, but FlgM-binding protects FliA from degradation. The fliA promoter

is auto-regulated by FliA and by a number of other regulators, most importantly the

motility master regulator FlhDC. The expression of FlhDC itself is under the control of a

variety of regulatory factors, including RpoS, CpxR, CsgD and Crp ◦ cAMP. The activity

of the genes is measured by fusion of their promoters to a gfp reporter gene on a low-copy

plasmid. Genes are shown in grey or green and their promoter regions in red. Regulatory

interactions are represented by dashed lines, association and dissociation of FliA and FlgM

as well as degradation and export by solid lines. The figure does not explicitly show that

fliA, flgM, and tar are included in larger transcriptional units, the fliAZY, flgAMN, flgMN

and tar-tap-cheRBYZ operons (Keseler et al., 2013). B: Pattern of known regulatory

interactions for the class 3 genes tar and flgM.
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the class 3 operons (Chilcott and Hughes, 2000). When the HBB structures have been

completed, however, FlgM is secreted from the cell, releasing FliA and relieving the

repression of the class 3 operons. The FliA-FlgM interactions thus form a check-point

between the expression of the class 2 and class 3 operons, ensuring that the filament

proteins are produced only when the basal body and the hook, to which the flagellar

filaments are attached, are in place.

In order to investigate the regulation of the genes involved in this check-point, we

measured the time-varying transcription of fliA, flgM, and tar (as an example of a class

3 gene) in E. coli. This was accomplished by means of fluorescent reporter systems,

consisting of transcriptional fusions of a gfp reporter gene with the promoters of the

target genes, carried on a low-copy plasmid. The strains transformed with the reporter

plasmids were grown in 96-well microplates, following a previously-established proto-

col (Section 3.2.1). After an overnight preculture, the bacteria were diluted into fresh

medium in the microplate and the absorbance of the cultures and the emitted fluores-

cence were monitored at 37◦ C in a thermostated microplate reader for 7 to 16 h, until

growth arrest occurred. These kinetic experiments were carried out in different growth

media (minimal M9 medium with glucose, LB medium) and in different genetic back-

grounds (wild-type and deletion mutants of the global transcription regulators RpoS,

CsgD, and CpxR). The timing and the strength of the induction of the hierarchy of

motility genes varies among conditions, leading to a different time-varying excitation

of the FliA-FlgM module.

While fliA and tar have a single promoter, this is not the case for flgM, which is tran-

scribed from both a class 2 and a class 3 promoter, as discussed above. The fluorescence

signal from the class 2 promoter, however, was found to be almost indistinguishable

from background levels in all conditions (Figure A.2 in Appendix A), consistent with

the observation that most FlgM in the cell derives from the FliA-dependent promoter

(Chevance and Hughes, 2008; Gillen and Hughes, 1993). In the analysis that follows,

we therefore neglected flgM transcription from the class 2 promoter.

As illustrated in Figure 3.2, the primary absorbance and fluorescence signals can

be transformed into promoter activities using kinetic models of gene expression (Sec-
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tion 3.2.2). More precisely, the reporter gene data allow one to deduce protein synthesis

rates (de Jong et al., 2010; Ronen et al., 2002). Under certain conditions, as explained

in detail in Chapter 2, the latter are proportional to mRNA concentrations and pro-

moter activities and thus reflect the transcriptional activity of the gene. Following

established terminology, we will refer to the measured protein synthesis rates as pro-

moter activities, or more generally, activities of genes.
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Figure 3.2: Primary data and promoter activities. A: Absorbance (•, black) and

fluorescence (•, blue) data, corrected for background intensities, obtained with the ∆cpxR

strain transformed with the ptar -gfp reporter plasmid, grown in M9 with glucose. B:

Activity of the tar promoter (•, blue), computed from the primary data as described in

Section 3.2.2 and in Chapter 2. The solid line corresponds to the mean of 6 replicate

absorbance measurements and the shaded region to the mean of the promoter activities ±
twice the standard error of the mean.

In each of the experimental conditions, we have acquired 5 to 8 replicate measure-

ments, which allows for an estimation of the uncertainty in the derived promoter ac-

tivities. Figure 3.3 shows the results for the five conditions considered here: (i) ∆rpoS

strain grown in M9 (∆rpoS -M9), (ii) ∆cpxR strain grown in M9 (∆cpxR-M9), (iii)

∆csgD strain grown in M9 (∆csgD-M9),(iv) ∆csgD strain grown in LB (∆csgD-LB),

and (v) wild-type strain grown in LB (WT-LB). As expected (Adler and Templeton,
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1967), the fluorescence signals in the wild-type strain grown in glucose were mostly not

distinguishable from the background fluorescence and therefore this condition was not

further considered. In one condition (WT-LB), the activities measured by means of

reporter genes were validated using RT-qPCR (Section 3.2.6).

The measured activity profiles in Figure 3.3 show some common features, such as

a transient activity peak of the genes during exponential growth, followed by stabi-

lization at a low level after growth arrest. The induction of the individual promoters

has a distinct temporal order, corresponding to the level of the promoters in the tran-

scriptional hierarchy (Kalir and Alon, 2004): fliA, flgM, tar. There are also clearly

visible differences between the profiles across the conditions though. In M9 medium

with glucose the motility genes in the mutant strains are transcribed right from the

start, whereas in LB induction occurs only after a number of generations, consistent

with previous reports (Adler and Templeton, 1967; Kalir et al., 2001). Moreover, the

strength of induction and the duration of the activity peak varies from one condition to

the other. For instance, the maximal activity of tar varies 10-fold between the WT-LB

and ∆csgD-LB conditions.

3.1.2 Identification of gene regulation functions from promoter activ-

ities

The circuit in Figure 3.1 has been well-studied over several decades and its regulatory

structure is well-known (Keseler et al., 2013). This therefore provides an excellent test

case for investigating what kinds of information are needed for the reliable inference

of regulatory interactions and quantitative regulation functions from gene expression

data. In a first step, we tested if we could account for measured time-varying promoter

activities while ignoring the distinction between mRNA and protein concentrations as

well as the activity of the gene expression machinery and other global physiological

effects, as is usually the case.

We expect FliA to be an activator and FlgM an inhibitor of target genes like tar

and flgM. In order to check if this regulatory pattern is consistent with the reporter
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Figure 3.3: Promoter activities of genes in the FliA-FlgM module. The promoter

activities of fliA (green), flgM (red), and tar (blue) measured in all experimental conditions

considered in this study: ∆rpoS strain grown in M9 (∆rpoS -M9), ∆cpxR strain grown in

M9 (∆cpxR-M9), ∆csgD strain grown in M9 (∆csgD-M9), ∆csgD strain grown in LB

(∆csgD-LB), and wild-type strain grown in LB (WT-LB). The promoter activities have

been derived from the primary data as illustrated in Figure 3.2.

gene data, we used minimal sign pattern analysis (Porreca et al., 2010a). This ap-

proach exploits time-series data to invalidate patterns of regulatory interactions, based

on the assumption that the activity of a gene is a monotonic function of its regulators.

The remaining patterns of regulatory interactions are subsumed by so-called minimal

patterns. These patterns are minimal in the sense that removing any of the regulators

results in an inconsistency with the data, while adding other regulators preserves con-

sistency (see Section 3.2.3 for details on the method).

We applied minimal sign pattern analysis to the reporter gene data in Figure 3.3.

In particular, we tested whether the expected regulatory pattern is conserved when

replacing the concentrations of FliA and FlgM by the measured promoter activities. In

order to check the robustness of the minimal patterns thus obtained, we verified that

no regulatory patterns were dismissed because of a single measurement in the time-
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3. INFERENCE OF QUANTITATIVE MODELS OF BACTERIAL
PROMOTERS FROM TIME-SERIES GENE EXPRESSION DATA

series. We found that, both for the tar and the flgM promoter, the expected regulation

by FliA and FlgM is not consistent with the data (Figure 3.4). Intuitively, this can

be explained by the fact that, over some interval of time in the condition ∆rpoS , a

decrease of the promoter activity of fliA and an increase of the promoter activity of

flgM coincide with an increase of the activity of the target genes.

FliA FlgM

Tar

FliA FlgM

FlgM

Figure 3.4: Minimal sign patterns for the regulation of tar and flgM when

replacing protein concentrations by promoter activities. For both the regulation

of tar gene and flgM gene, the expected sign pattern (fliA, flgM, tar) = (1,-1,0) is found

to be inconsistent with the data. The invalidation of the expected sign pattern is due

to the fact that, in ∆rpoS, a decrease of the promoter activity of fliA and an increase of

the promoter activity of flgM corresponds to an increase of the promoter activity of tar

(and flgM ). The minimal sign pattern identified for tar gene is (0,0,1), meaning that tar

is necessary for its own regulation. The minimal sign pattern identified for flgM gene is

(0,1,0), meaning that flgM is necessary for its own regulation. Black arcs represent the

minimal consistent sign patterns. Every consistent pattern can be obtained from one of

these minimal sign patterns by turning some gray arcs into black arcs with either a line

(inhibition) or an arrow (activation) end.

Despite this structural problem, we also tested to which extent it is possible to quan-

titatively predict the activities of tar and flgM from the activities of their regulators.

To this end, we developed a mechanistic model of the regulation of these promoters by

FliA and FlgM. The model takes into account the titration of FliA by FlgM and the

activation of transcription by (free) FliA. We made a quasi-equilibrium assumption for

FliA-FlgM association and dissociation, justified by the fast time-scale on which these

reactions occur in comparison with transcription and translation processes (Buchler

and Louis, 2008; Bundschuh et al., 2003). Moreover, we chose a Hill function to de-

scribe promoter activation and included a basal synthesis rate. The resulting model
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is:

f(t) = k0 + k1
pA,free(t)

n

θn + pA,free(t)n
, (3.1)

pA,free(t) =
1

2

(
−(K + pM (t)− pA(t)) +

√
(K + pM (t)− pA(t))2 + 4K pA(t)

)
, (3.2)

where f(t) is the time-varying promoter activity, pA,free(t) is the concentration of free

FliA, θ is a threshold constant for promoter activation, k0 and k1 are the basal and

maximal synthesis rates, respectively, and n is a Hill constant. The concentration of

free FliA is computed from the concentrations pA(t) and pM (t) of total FliA and FlgM,

respectively, and the FliA-FlgM dissociation constant K. All variables and parameters

are non-negative and n ≥ 1. The concentration variables, as well as θ and K, have

the units RFU, while the promoter activity and the rate constants have units RFU

min−1. The derivation of the model is described in detail in Section 3.2.4. Notice that

the model is in agreement with the expected pattern of regulatory interactions (Fig-

ure 3.1B).

How well does this model fit the data when the total concentrations of FliA and

FlgM in Eq. 3.2, pA and pM , are replaced by the measured activities of fliA and flgM,

respectively? We estimated the values of the kinetic parameters c = (k0, k1, n, θ,K)

in the regulation model from the data obtained in all five conditions, using a hybrid

genetic algorithm that was shown to give good results for nonlinear models in systems

biology (Rodriguez-Fernandez et al., 2006). The algorithm minimizes the mean-square

error between the observed promoter activities and the predictions of the model of

Eqs. 3.1-3.2, while taking into account differences in absolute promoter activity across

conditions as well as the time-varying size of confidence intervals (Section 3.2.2).

The predictions of the identified regulation function for tar are shown in Figure 3.5.

While the fit with the experimental data is quite good for the ∆csgD-LB condition and

acceptable for the WT-LB condition, the model is not able to account for the peak

in tar activity in the M9 conditions. The model either predicts no peak or a peak

occurring more than an hour before it is observed. When analyzing the estimated pa-

rameter values, we observe that the cooperativity parameter n equals 1 and that the
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value of the threshold θ is similar with values of the fliA activity over all conditions.

This means that the the regulation function of the tar promoter is essentially a linear

transformation of fliA activity.
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Figure 3.5: Fits of regulation function of tar to reporter gene data when re-

placing protein concentrations by promoter activities. The regulation function of

Equations 3.1-3.2 was fit using the promoter activities for tar, fliA, and flgM shown in

Figure 3.3, where the latter two replace the concentrations of FliA and FlgM, respectively.

The parameters were estimated using a multistart global optimization algorithm (see Sec-

tion 3.2.5 for details). The best fit (thick solid blue line) returns the value Q = 33.6 for

the objective function, for the parameter vector (k0, k1, n, θ,K) = (7.6, 853, 1, 662, 14615).

The mean of the promoter activity of tar (thin solid blue line) and confidence intervals

(shaded blue regions) are also shown in the figure.

We repeated the above analysis for the flgM promoter, setting the parameter that is

not promoter-specific, the FliA-FlgM dissociation constant K, to the value estimated

from the tar data. Since the fluorescence signal emitted by the strain carrying the

pflgM -gfp reporter plasmid is very close to the background levels, and thus unreliable,

we eliminate the condition WT-LB. The results are shown in Figure 3.6 and are quali-

tatively similar to results obtained for tar.

In conclusion, replacing protein concentrations by promoter activities in the FliA-

FlgM module is insufficient for obtaining reliable models of the promoter activities,

either structurally or quantitatively.
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Figure 3.6: Fits of regulation function of flgM to reporter gene data when

replacing protein concentrations by promoter activities. The regulation function

of Equations 3.1-3.2 was fit using the promoter activities for fliA, and flgM shown in

Figure 3.3, where the latter two replace the concentrations of FliA and FlgM, respectively.

The parameters were estimated using a hybrid genetic algorithm (see Section 3.2.5 for

details). The best fit (thick solid blue line) returns the value Q = 23 for the objective

function, for the parameter vector (k0, k1, n, θ,K) = (9, 582, 1, 221, 7307). The mean of

the promoter activity of tar (thin solid blue line) and confidence intervals (shaded blue

regions) are also shown in the figure.

3.1.3 Identification of gene regulation functions from promoter activ-

ities including global physiological effects

A possible explanation for the difficulty to identify quantitative regulation functions

from information on promoter activities only may be that, in addition to transcription

regulators and other specific regulators, the activity of the gene expression machinery

also affects gene expression (Bremer and Dennis, 1996; Klumpp et al., 2009; Maloe,

1979). Contrary to FliA and FlgM, which affect specific genes, all motility genes are

affected by the activity of the gene expression machinery and other global physiological

effects. Figure 3.7 shows the network structure of the FliA-FlgM module when such

global physiological effects are taken into account.

The activity of the gene expression machinery includes the abundance and activity

of RNA polymerase and ribosome, as well as pools of metabolic precursors, and is
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fliA

flgM

tar

 pflgM

 pfliA

 ptar
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FlgM

FliA•FlgM

Tar

gfp

 pflgM

 pfliA

 ptar

GFP

 pflgA flgA

FlhDC Lon

other class III 

promoters

 pflgA

Activity of 

gene expression machinery

 pRM

HBB

A

B

FliA FlgM

Tar

pRM FliA FlgM

FlgM

pRM

Figure 3.7: FliA-FlgM module extended with activity of the gene expression

machinery. A: The network is the same as in Figure 3.1, but the regulation of the motil-

ity genes by global physiological effects, in particular the activity of the gene expression

machinery, has been included. These regulatory interactions are shown by bold, dashed

lines. B: Pattern of regulatory interactions for the class 3 genes tar and flgM.

therefore difficult to quantify in a direct way. This has motivated the use of the growth

rate and the activity of constitutive genes, whose expression is in principle not controlled

by any specific regulators, as indirect read-outs of the global physiological state of the

cell (Berthoumieux et al., 2013b; Gerosa et al., 2013; Klumpp et al., 2009). In this study,

following (Berthoumieux et al., 2013b), we use the activity of the phage λ promoter

pRM, which is constitutive in non-infected E. coli cells, as a quantitative measure

of the activity of the gene expression machinery, and the global physiological state

more generally. In Figure 3.8 the time-varying activity of the constitutively-expressed

reporter gene is shown, together with the activity of tar.

Does the inclusion of global physiological effects enable the identification of quan-

titatively predictive gene regulation functions? In order to answer this question, we

again applied minimal sign pattern analysis to the reporter gene data, this time includ-
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Figure 3.8: Activities of constitutive phage promoter. The activities of the phage

λ promoter pRM (black) and the activity of tar (blue) measured in all experimental con-

ditions considered in this study. The tar promoter activities are the same as shown in

Figure 3.3.

ing the activity of the constitutive phage promoter as a proxy for the activity of the

gene expression machinery. As in the previous section, the FliA and FlgM concentra-

tions were replaced by the activities of their genes. Whereas the expected pattern of

regulatory interactions (activation of the promoter by the gene expression machinery

and FliA, inhibition by FlgM) was consistent with the data for tar, the analysis again

ruled out this pattern for flgM (Figure 3.9). This means that, even when including

global physiological effects in the analysis, the regulatory structure cannot generally be

recovered.

Ignoring the fact that the correct structure could not be recovered for flgM regula-

tion, we also checked if the proposed extension improves the capability of the regulation

function for FliA-controlled promoters to quantitatively account for the time-varying

data. To this end, we multiplied Eq. 3.1 with fconst(t), the measured activity of a

constitutive promoter:

f(t) = fconst(t)

[
k0 + k1

pA,free(t)
n

θn + pA,free(t)n

]
, (3.3)

The fits shown in Figure 3.10, obtained with the parameter estimation approach

55



3. INFERENCE OF QUANTITATIVE MODELS OF BACTERIAL
PROMOTERS FROM TIME-SERIES GENE EXPRESSION DATA
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FlgM
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Figure 3.9: Minimal sign patterns for the regulation of tar and flgM when

replacing protein concentrations by promoter activities and including global

physiological effects. For the regulation of tar gene, the expected sign pattern (fliA,

flgM, tar, pRM) = (1,-1, 0, 1) is found to be consistent with the data, e.g. the promoter

is activated by the gene expression machinery and FliA and repressed by FlgM. For the

regulation of flgM gene, the expected sign pattern (1,-1, 0, 1) is found to be inconsistent

with the data. Similarly to results presented in Figure 3.4, black arcs represent the minimal

consistent sign patterns. Every consistent pattern can be obtained from one of these min-

imal sign patterns by turning some gray arcs into black arcs with either a line (inhibition)

or an arrow (activation) end.

outlined in the previous section, are better than those obtained with a model accounting

for the effects of FliA and FlgM only, especially for the ∆rpoS -M9 and ∆cpxR-M9

conditions. The better fit is also reflected in a lower value of the fitting error (Q = 30

vs Q = 33.6). Notice that the extended model has the same parameters as the model

without global physiological effects in Eqs. 3.1-3.2, so that the improvement is not

simply due to an increase in the degree of freedom of the model. The parameter

estimates are basically the same as for the previous model, though the values obtained

for θ are larger than the maximum fliA activity (Figure 3.10). Essentially similar results

are obtained for flgM (Figure 3.11).

In conclusion, although taking into account the activity of the gene expression

machinery somewhat improves the results, models obtained are still incorrect from

the structural point of view and quantitative predictions of FliA-dependent regulation
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Figure 3.10: Fits of regulation function of tar to reporter gene data when

replacing protein concentrations by promoter activities and including global

physiological effects. The regulation function of Equations 3.2-3.3 was fit using the

promoter activities for tar, fliA, and flgM shown in Figure 3.3, where the latter two replace

the concentrations of FliA and FlgM, respectively. Moreover, global physiological effects

are quantified by the activity of the constitutively expressed pRM promoter (Figure 3.8).

The parameters were estimated using a hybrid genetic algorithm (see Section 3.2.5 for

details). The best fit (thick solid blue line) returns the value Q = 30 for the objective

function, for the parameter vector (k0, k1, n, θ,K) = (0.1, 16, 1.04, 662, 14615). The mean

of the promoter activity of tar (thin solid blue line) and confidence intervals (shaded blue

regions) are also shown in the figure.

functions are still unsatisfactory. As explained in Chapter 1, replacing protein con-

centrations by promoter activities may not be appropriate, due to the fact that the

half-lives of proteins are usually much longer than the half-lives of mRNA, causing the

temporal decorrelation of protein concentrations and promoter activities. We there-

fore investigated how information on protein concentrations can be integrated into the

inference process.

3.1.4 Identification of gene regulation functions from estimates of pro-

tein concentrations

It is straightforward to provide an estimate of the GFP concentration from the fluo-

rescence and absorbance data, as explained in Section 3.2.2. The results are shown in
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Figure 3.11: Fits of regulation function of flgM to reporter gene data when

replacing protein concentrations by promoter activities and including global

physiological effects. The regulation function of Equations 3.2 - 3.3 was fit using the

promoter activities for fliA, and flgM shown inFigure 3.3, where the latter two replace the

concentrations of FliA and FlgM, respectively. Moreover, global physiological effects are

quantified by the activity of the constitutively expressed pRM promoter (Figure 3.8). The

parameters were estimated using a hybrid genetic algorithm (see Section 3.2.5 for details).

The best fit (thick solid blue line) returns the value Q = 20 for the objective function, for

the parameter vector (k0, k1, n, θ,K) = (18, 14, 1.2, 817, 7307). The mean of the promoter

activity of tar (thin solid blue line) and confidence intervals (shaded blue regions) are also

shown in the figure.

Figure 3.12 and Figure 3.13. As can be seen, the transcriptional pulse in exponential

phase (Figure 3.3), leading to a transient accumulation of mRNA, is seen to be followed

by the prolonged presence of stable protein, indicating that the promoter activity may

indeed not be a good proxy for the protein concentration. Unfortunately, reporter con-

centrations are not always representative of the concentrations of proteins of interest,

that is, proteins naturally expressed from a promoter. Post-transcriptional regulation

and coding bias may cause divergent synthesis rates. The main bias, however, comes

from the fact that the two proteins generally have different half-lives and thus different

degradation rates (de Jong et al., 2010).

Available data in the literature indicate that the half-lives of FliA and FlgM are

much shorter than the 19 h of the GFP reporter. The measured half-lives of FliA and
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Figure 3.12: Estimates of FliA concentrations from reporter gene data. Con-

centrations of FliA (dashed line) computed from the fliA promoter activity (solid line) in

all experimental conditions considered in this study. The fliA activities are the same as

shown in Figure 3.3. The dark green line represents the concentration of the reporter pro-

tein, while the light green line represents the reconstructed concentration for the measured

half-live of 30 min. Promoter activity has been normalized with respect to the maximum

of the upper limit of its confidence interval in each condition. All protein concentrations

have been normalized with respect to the maximum of the upper limit of the confidence

interval of the reporter concentration in each condition. The shaded region corresponds

to the mean of the promoter activities ± twice the standard error of the mean. Similar

estimates of FlgM concentrations can be found in Figure 3.13.

FlgM in Salmonella enterica wild-type strains growing in LB were found to be 30 min

and 18 min, respectively (Aldridge et al., 2006). These half-lives are much shorter than

those commonly found for proteins in E. coli. This can be explained by the fact that,

in addition to being physically degraded, FlgM is secreted from the cell. Moreover,

FliA is subject to active degradation by Lon (Figure 3.1).

How can we exploit this information to reconstruct the protein concentration from

the promoter activity? As shown in (de Jong et al., 2010) and Section 3.2.2, if the

half-live of the protein of interest is known, then an estimate of its concentration can

be reconstructed from the observed promoter activity using a simple kinetic model inte-

grating the effects of protein synthesis and degradation as well as growth dilution of the

protein. Figure 3.12 shows the result that is obtained for the FliA concentration, using
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Figure 3.13: Estimates of FlgM concentrations from reporter gene data. Con-

centrations of FlgM (dashed line) computed from the flgM promoter activity (solid line)

in all experimental conditions considered in this study. The flgM activities are the same

as shown in Figure 3.3. The dark red line represents the concentration of the reporter pro-

tein, while the light red line represents the reconstructed concentration for the measured

half-live of 18 min. Promoter activity has been normalized with respect to the maximum

of the upper limit of its confidence interval in each condition. All protein concentrations

have been normalized with respect to the maximum of the upper limit of the confidence

interval of the reporter concentration in each condition. The shaded region corresponds to

the mean of the promoter activities ± twice the standard error of the mean.

the above-mentioned half-life. Although the difference with the promoter activities is

less striking than for the GFP concentrations, the computation of the concentration via

integration of the corresponding activity smoothens out the rapid variations observed

in Figure 3.3 and changes the time-varying profile of the regulators.

A tacit assumption in the computation of protein concentrations from promoter

activities is that the half-lives of the proteins are constant over the duration of the

experiment. This may not be true in our case, since the apparent half-lives of FliA and

FlgM are regulated and depend on the presence of completed HBB structures. Data

from the literature indicate that the first FlgM molecules appear in the extracellular

medium shortly after the induction of fliA (Barembruch and Hengge, 2007; Karlinsey

et al., 2000b). Once the cell population stops growing, the rate of assembling new flag-

ella and thus the secretion of FlgM come to a halt as well. Since our kinetic experiments
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have focused on the exponential growth phase, and the analysis is limited to the time

frame in which fliA and flgM are expressed, the half-lives of FliA and FlgM have been

assumed constant. Does the estimation of time-varying protein concentrations from

the promoter activities, by means of a kinetic model and physiologically realistic half-

lives, improve the inference of regulatory interactions and gene regulation functions?

We performed the same tests as in previous cases, by checking if the minimal sign pat-

tern structures remain consistent with the data when using only reconstructed protein

concentrations of FliA and FlgM as regulators of tar and flgM and if the quantitative

fit improves. For both FliA-dependent genes, we find that the model is structurally

consistent with the data (Figure B.1 and Figure B.2 in Appendix B). However, the

quantitative model of Eqs. 3.1-3.2 identified from the data is not particularly good

(Figure B.3 and Figure B.4 in Appendix B). We then verified that a model using the

reconstructed FliA and FlgM concentrations as regulators of tar and flgM, in addition

to the activity of the gene expression machinery, is structurally compatible with the

data. Minimal sign pattern analysis did not rule out the expected pattern of regula-

tory interactions, for both FliA-dependent target genes (Figure 3.14 and Figure 3.15).

Second, we identified the gene regulation model of Eqs. 3.2-3.3 from the data, with

the estimated FliA and FlgM concentrations for pA and pM , respectively. As shown in

Figure 3.16, the model better captures the quantitative trend in the data, except for the

∆csgD -LB condition (Q = 24.7). Allowing the half-lives to vary around the measured

values, which were obtained for a different species in growth conditions that are similar

but not identical to ours, results in a very good fit in all conditions (Q = 24.1, Fig-

ure 3.16). Therefore, even approximately correct half-live values may allow the results

of the inference process to be improved.

Interestingly, the estimated parameters show that the regulation function has a

slightly different role than when activities are used as placeholders for protein concen-

trations. Since n = 2.4, the regulated term k1A(t)n/(θn + A(t)n) in Eq. 3.3 has a

(mildly) sigmoid form. The threshold value θ takes a value such that in experiments

with strong induction of the flagellar cascade, and thus a strong peak in fliA activity

(∆rpoS -M9 and ∆csgD-LB), the regulated term covers the entire range of values from

0 to k1 (Figure D.1-C in Appendix D). That is, contrary to the fits studied in previous
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Figure 3.14: Minimal patterns of regulatory interactions for tar over a range

of physiologically realistic half-lives. The minimal regulatory patterns for the gene

tar in the motility network of Figure 3.7 as a function of the half-lives of FliA and FlgM.

The plots correspond to the five experimental conditions considered (∆rpoS -M9, ∆cpxR-

M9, ∆csgD-M9, ∆csgD-LB, and WT-LB) as well as the pooling of the data sets from all

five conditions. The dot in the center of each region in the plots corresponds to a tested

combination of half-lives of FliA and FlgM, and thus to specific protein concentration

profiles computed from the kinetic model of gene expression (Section 3.2.4). The minimal

regulatory patterns were obtained by applying the minimal sign pattern algorithm (Porreca

et al., 2010a). The color codes represent the different categories of minimal signal patterns

inferred. A region is colored green if the expected regulatory patterns is among the minimal

sign patterns returned by the algorithm, and yellow if it is compatible with the returned

sign patterns. A region is colored red if none of the returned sign patterns is consistent

with the data. Two examples of inconsistent sign patterns are shown. The values of the

half-lives are represented in log.
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Figure 3.15: Minimal patterns of regulatory interactions for flgM over a range

of physiologically realistic half-lives. The minimal regulatory patterns for the gene

flgM in the motility network of Figure 3.7 as a function of the half-lives of FliA and FlgM.

Similarly to Figure 3.14, the plots correspond to the four of the experimental conditions

considered (∆rpoS -M9, ∆cpxR-M9, ∆csgD-M9, ∆csgD-LB) as well as the pooling of the

data sets from all five conditions. The condition WT-LB was not used in the analysis

of the regulation of the flgM promoter. The dot in the center of each region in the

plots corresponds to a tested combination of half-lives of FliA and FlgM, and thus to

specific protein concentration profiles computed from the kinetic model of gene expression

(Section 3.2.4). The minimal regulatory patterns were obtained by applying the minimal

sign pattern algorithm (Porreca et al., 2010a). The color codes represent the different

categories of minimal signal patterns inferred. A region is colored green if the expected

regulatory patterns is among the minimal sign patterns returned by the algorithm, and

yellow if it is compatible with the returned sign patterns. A region is colored red if none of

the returned sign patterns is consistent with the data. Two examples of inconsistent sign

patterns are shown. The values of the half-lives are represented in log.
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Figure 3.16: Fits of regulation function of tar to reporter gene data when re-

constructing protein concentrations from the reporter gene data and including

global physiological effects. The regulation function of Eqs. 3.2-3.3 was fit to the data

using the promoter activity for tar (Figure 3.3), concentrations of FliA and FlgM recon-

structed from the activities of their promoters for physiologically realistic half-lives (Fig-

ure 3.12 and Figure 3.13), and the activity of the constitutively expressed pRM promoter

quantifying global physiological effects (Figure 3.8). The parameters were estimated using

a hybrid genetic algorithm (see Section 3.2.5 for details). Three fits are shown, namely

the best fit for measured half-lives of FliA and FlgM of 30 min and 18 min, respectively

(solid line, Q = 24.7, (k0, k1, n, θ,K) = (0.3, 4.6, 2.4, 3030, 223750)) and two other fits for

comparable half-lives (dashed lines, Q = 24.1, (k0, k1, n, θ,K) = (0.2, 4.7, 2.2, 4535, 222800)

and Q = 25, (k0, k1, n, θ,K) = (0.3, 4.6, 2.4, 2800, 162000) ). The mean of the promoter

activity of tar (thin solid blue line) and confidence intervals (shaded blue regions) are also

shown in the figure.

sections, at high concentrations of FliA the tar promoter is maximally expressed, as

expected.

The above analysis ignores a particularity of the FliA-FlgM module, namely that

the half-lives vary across growth conditions. Generally speaking, in environmental

conditions favoring a larger number of flagella, and thus completed HBB structures, the

secretion rate of FlgM is higher and therefore the apparent half-life shorter. In mutant

strains without HBB structures, and thus no protein secretion, the FlgM half-life is 3 h

(Karlinsey et al., 2000a), while in some conditions half-lives up to 7 min were measured
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Figure 3.17: Fits of regulation function of flgM to reporter gene data when re-

constructing protein concentrations from the reporter gene data and including

global physiological effects. The regulation function of Eqs. 3.2-3.3 was fit to the data

using the promoter activity for flgM (Figure 3.3), concentrations of FliA and FlgM recon-

structed from the activities of their promoters for physiologically realistic half-lives (Fig-

ure 3.12 and Figure 3.13), and the activity of the constitutively expressed pRM promoter

quantifying global physiological effects (Figure 3.8). The parameters were estimated using

a hybrid genetic algorithm (see Section 3.2.5 for details). Three fits are shown, namely the

best fit for measured half-lives of FliA and FlgM of 30 min and 18 min, respectively (solid

line, Q = 27.7, (k0, k1, n, θ,K) = (0.3, 6.1, 2, 3170, 223750)) and two other fits for compa-

rable half-lives (dashed lines, Q = 26.3, (k0, k1, n, θ,K) = (0.4, 5.9, 2.3, 2358, 279500) and

Q = 27.1, (k0, k1, n, θ,K) = (0.3, 6, 2.1, 2760, 162000) ). The mean of the promoter activity

of tar (thin solid blue line) and confidence intervals (shaded blue regions) are also shown

in the figure.

(Karlinsey et al. (1998), see Aldridge et al. (2006) for intermediate values). The half-life

of FliA, the flagellar sigma factor, is also variable. FliA is subject to active degradation

by the Lon protease, but stabilized when bound to FlgM (Figure 3.1). This makes its

apparent half-life dependent on the concentration of its anti-sigma factor (Barembruch

and Hengge, 2007). The measured half-life of FliA in mutant strains without HBB

structures, and thus with maximal protection of by FlgM, is 2 h (Barembruch and

Hengge, 2007). In wild-type strains exponentially growing in LB medium, this value

may decrease down to 30 min (Aldridge et al., 2006). In summary, the half-lives of
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both FliA and FlgM are not identical across all growth conditions considered. While

we can give upper and lower bounds on the half-lives, we do not know the exact value

in most conditions.

This specific property of the FliA-FlgM module suggests a final extension of the

analysis to improve the inference results. We allowed the FliA and FlgM half-lives to

vary between physiologically possible bounds in each of the conditions and estimated

not only the parameters of the regulation functions, but also the half-lives. In order

to reduce the computational complexity of this procedure, we discretized the space of

possible half-lives, selecting 27 values each for FliA and FlgM, and we precomputed the

protein concentration profiles for each half-life in each of the experimental conditions.

The resulting time-course patterns were used for the same analysis as above.

Figure 3.14 shows the results for the structural inference of tar regulators. As can

be seen, almost all combinations of half-lives are compatible with activation of tar by

FliA and the gene expression machinery and with inhibition by FlgM. This means that

the structure of interactions is robust over a range of half-lives, a desirable property for

network inference. Figure 3.18 illustrates that the quantitative regulation function of

tar activity obtained is more precise than in all other previously considered situations

(Q = 20.9), while the parameter values are similar to those obtained in the previous

sections. Although we substantially relaxed the possible half-live values of FliA and

FlgM, it is remarkable that the optimal values are close to the reported values for LB

medium (Figure 3.18). This emphasizes the importance of active degradation of FliA

and secretion of FlgM for the dynamics of the motility network. Moreover, while the

proportion of FliA released by FlgM varies across conditions, most FliA is predicted to

be free over the duration of the experiment (Figures C.1, C.2, C.3, C.4 in Appendix C).

This is also intuitively expected, as FlgM is actively exported in the exponential growth

phase considered. The best fit finds a cooperativity parameter equal to 1.8 (or 1.09 in

the case of the second fit considered). A priori, positive cooperativity is not expected

to occur, since FliA does not form a dimer and has only a single binding site in the

promoter region. Buchler and Louis (2008) have shown, however, that the titration of

a transcription factor may indeed lead to positive cooperativity (Buchler and Louis,

2008). The conditions they indicate in their analysis (pM > K and pM ≈ pA) are

satisfied here. Like for the fit with the measured half-lives in Figure 3.16, the activity

of tar varies from 0 to its maximal possible value (Figure D.1-F in Appendix D). The
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half-lives obtained in the case of the best fit vary around the measured values of half-

lives for FliA and FlgM. We obtain a more stable half life for FliA (50 min) and FlgM

(27 min) in the ∆rpoS -M9 condition. The values of half-live in all conditions can be

seen in the legend of Figure 3.18.
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Figure 3.18: Fits of regulation function of tar to reporter gene data when recon-

structing protein concentrations from the reporter gene data for physiologically

realistic half-lives and including global physiological effects. As in Figure 3.16,

but the half-lives have now also been estimated from the data, within a physiologically

plausible range. Two example fits are shown, namely the best fit for estimated half-

lives of FliA and FlgM (solid line, Q = 20.9, (k0, k1, n, θ,K) = (0.2, 5.1, 1.8, 3145, 17204))

and another example of a high-ranking fit (dashed line, Q = 21.09, (k0, k1, n, θ,K) =

(0.12, 8.5, 1.09, 24566, 88350)). In the case of the best fit, the half-lives of FliA are equal to

(50, 24, 24, 35, 45) min in the (∆rpoS, ∆cpxR, ∆csgD-M9, ∆csgD-LB, WT-LB) conditions,

respectively, while the half-lives of FlgM are equal to (27, 18, 24, 18, 18) min. In the case of

the second fit, the half-lives of FliA are equal to (60, 30, 24, 60, 30) min and the half-lives of

FlgM are equal to (9, 11, 24, 45, 7) min in the above experimental conditions, respectively.

The mean of the promoter activity of tar (thin solid blue line) and confidence intervals

(shaded blue regions) are also shown in the figure.

The improvement in the fit is less evident in the case of flgM promoter (results

are reported in Figure 3.19). One possible explanation is that the fit (in Figure 3.11)

obtained using the promoter activities of fliA and flgM was already quite good, due

67



3. INFERENCE OF QUANTITATIVE MODELS OF BACTERIAL
PROMOTERS FROM TIME-SERIES GENE EXPRESSION DATA

to the fact that the activity of flgM is among the regulators. However, the parameter

values obtained when using protein concentrations of FliA and FlgM are similar to

those obtained for tar promoter analysis (Figure D.2-F in Appendix D). However,

the K parameter value is found to be approximately 10 times the maximum of FlgM

concentration. This may be a consequence of the fact that the best fit is achieved for

combination of half-lives and K values identified for tar regulation.
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Figure 3.19: Fits of regulation function of flgM to reporter gene data

when reconstructing protein concentrations from the reporter gene data for

physiologically realistic half-lives and including global physiological effects.

Similarly to Figure 3.18 the half-lives have been estimated from the data, within a

physiologically plausible range. Two examples of fits are shown, namely the best

fit for estimated half-lives of FliA and FlgM (solid line, Q = 25, (k0, k1, n, θ,K) =

(0.45, 5.9, 2.4, 2930, 222850)) and another example of a high-ranking fit (dashed line,

Q = 25.4, (k0, k1, n, θ,K) = (0.4, 6.1, 2.3, 3030, 279550)). In the case of the best

fit obtained, the half-lives of FliA are equal to (24 min, 35 min, 27 min, 50 min) in

the (∆rpoS, ∆cpxR, ∆csgD-M9, ∆csgD-LB) conditions, respectively. The half-lives of

FlgM are equal to (27 min, 11 min, 11 min, 9 min) in the (∆rpoS, ∆cpxR, ∆csgD-M9,

∆csgD-LB) conditions, respectively. In the case of the second fit, the half-lives of FliA

are equal to (24 min, 35 min, 27 min, 27 h) and the half-lives of FlgM are equal to

(18 min, 13 min, 20 min, 27 min) in the above precised experimental conditions, respec-

tively. The mean of the promoter activity of tar (thin solid blue line) and confidence

intervals (shaded blue regions) are also shown in the figure.

The reconstruction of protein concentrations from transcription data results in much
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better inference results for the FliA-FlgM module. The computation of the protein

concentrations requires a simple kinetic model, accounting for protein synthesis and

degradation, as well as estimates of the protein half-lives. While this increases the

complexity of the data analysis procedures, it reflects the actual dynamics of gene ex-

pression and is thus critical for exploiting time-series measurements. Moreover, the

availability of information on protein half-lives may not be constraining in practice,

since even rough half-live estimates from the literature were seen to preserve the ex-

pected interaction pattern and provide a significant improvement of the ability of the

models to quantitatively describe the time-varying promoter activity.

3.1.5 Determination of conditions in which protein half-lives and global

physiological effects are important

The importance of accounting for global physiological effects and protein half-lives was

demonstrated above for the regulation of the expression of tar. The same analysis was

repeated for the regulation of the flgM promoter. We found that, for this promoter,

the improvement in the fit to the experimental data obtained by including global phys-

iological effects and protein kinetics is much less pronounced than for tar. One possible

explanation is that the flgM activity profile happens to be already well explained using

the promoter activities of fliA and flgM as proxies for the corresponding protein con-

centrations (Figure 3.6), thus leaving little space for improvement. In addition, from

a mathematical viewpoint, we notice that using the promoter activity of flgM for the

fitting of the same quantity may render the regression problem degenerate. Still, these

results raise a more general question: When is it important to take into account protein

half-lives and global physiological effects?

To answer this question we performed an in-silico analysis where the regulation

model of Eqs. 3.2-3.3 is simulated for different protein half-lives and varying strength of

the global physiological contribution, using the pfliA, pflgM, and pRM activity profiles

reported in Figures 3.3 and 3.8. Identification is then attempted from the simulated

data with models ignoring protein half-lives and global physiology. This enables us to

quantify the relevance of the analysis in the previous sections for a variety of realistic

scenarios, starting from experimentally measured activities of bacterial promoters.

To evaluate the importance of protein half-lives, we simulated FliA and FlgM con-

centration profiles for half-lives ranging between 7 minutes and 16 hours. The other
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relevant parameters in the model (k0, k1, n, θ,K) were fixed in agreement with the best

fit obtained for the reference half-lives of 30 min for FliA and 18 min for FlgM, shown

in Figure 3.16. More precisely, the relative position of the parameter values within the

interval of physiologically plausible values, which may depend on the FliA and FlgM

concentrations, as explained in Section 3.2, was conserved across conditions. Activ-

ity profiles of tar were then generated in accordance with Eqs. 3.2-3.3 based on the

experimentally measured pRM activities. We then attempted to identify from these

simulated data a gene regulation model accounting for the global physiological effects,

but using promoter activities in place of FliA and FlgM concentrations. The results

are reported in Figure 3.20.

As can be seen, the quality of the fit decreases with longer half-lives of FliA, but

is rather insensitive to the half-life of FlgM. The strong dependency on the half-life

of FliA shows that, in general, accounting for slow protein kinetics is important, but

that promoter activities can be safely used in place of protein concentrations for very

fast-degrading proteins. This is intuitively explained by the fact that fast-degrading

protein concentration profiles reproduce promoter activity profiles quite closely, while

this is not true in case of slow degradation (Figure 3.12). The relative insensitivity

to FlgM half-lives can be explained by the fact that, in the time window considered

in our experimental set-up, a good fit requires most FliA to be free (Appendix C).

Longer half-lives, and therefore higher concentrations of FlgM, favor lower free FliA

concentrations, but this tendency is compensated in the parameter optimization pro-

cess by higher values for the equilibrium constant K. The actually measured reference

half-lives of 18 min for FlgM and 30 min for FliA are located in the upper left corner of

Figure 3.20A, where fitting residuals are comparably small. Therefore, for networks in-

volving regulators with longer half-lives than the exceptionally short half-lives observed

for FliA and FlgM, it will be even more critical to account for protein kinetics.

To evaluate the importance of global physiological effects, starting from the exper-

imentally measured pRM activity profiles, we simulated global physiological effects of

different strength. In particular, we rescaled the variations of fconst(t) around its tem-

poral mean across all conditions, f̄const, by a factor α ranging from 0 (no variability,

no regulatory effect) to 1 (measured variability, moderate regulatory effect) and 1.25

(increased variability, strong regulatory effect). That is, synthetic activity profiles of

FliA-dependent promoters were generated in accordance with the model
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Figure 3.20: Heatmap of the fitting residuals, given by the value of the objective

function Q, for simulated data generated for different protein half-lives and for

different strengths of global physiological effects. A: For all different combinations

of 33 half-lives of FlgM (horizontal axis) and FliA (vertical axis), the residual of the fit by

a model ignoring protein kinetics is represented by the color code reported in the right bar.

The combination corresponding to the measured half-lives in rich LB medium is marked

with a light blue square (18 min for FlgM, 30 min for FliA). B: For 26 different values of

the strength parameter α, defined in Eq. 3.4, the residual of the fit by a model ignoring

global physiological effects is represented by the color code. The value corresponding to

the real data is marked with a light blue rectangle (α = 1).

f(t) =
[
α ·
(
fconst(t)− f̄const

)
+ f̄const

]
·
[
k0 + k1

pA,free(t)
n

θn + pA,free(t)n

]
, (3.4)

with pA,free(t) computed from the FliA and FlgM concentration profiles according

to Eq. 3.2. The upper bound of 1.25 for α was chosen so as to avoid negative values of

the promoter activity f(t).

Identification results using FliA and FlgM concentrations computed for the reference

half-lives of 30 min and 18 min, respectively, but ignoring global physiological effects
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are reported in Figure 3.20B. It is clear that the misfit of the tar promoter activity

data increases with the strength of the ignored physiological effects. In particular, with

the experimentally observed pRM activity (α = 1), the discrepancy between the data

and the best model fit is quite significant. This is in agreement with the results of

previous sections, where accounting for global physiological effects turned out to be an

important step toward improving the quality of the inference results. Neglecting small

variations of global physiological state (α � 1) is safer, but ignoring highly varying

global physiological effects (α > 1) may have even more severe repercussions on the

inference results than those observed in the previous section.

In summary, the simulation study shows that, as expected, the importance of ac-

counting for protein kinetics and global physiological effects depends on the strength

of these effects, although the structure of the system itself may also play a role, as

illustrated by the different dependency of the quality of the fit on FliA and FlgM

concentrations (Figure 3.20A). As a general rule, ignoring significant fluctuations of

the global physiology or large differences between mRNA and protein half-lives is very

likely to result in modelling bias and hence poor inference results. Interestingly, in

the previous sections a substantial improvement of the fit of a quantitative regulation

function to tar activity was already obtained when taking into account concentrations

of short-lived proteins and moderately-variable global physiological effects. In the light

of the analysis of this section, the contribution of our approach becomes even more fun-

damental in other systems, bearing in mind that the vast majority of bacterial proteins

are much more stable than FliA and FlgM, which are actively degraded and exported

from the cell (Figure 3.1).

In the next chapter, we propose further guidelines for experimental design to facil-

itate the implementation of the approach developed here.
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3.2 Methods and materials

3.2.1 Strains and growth conditions

The E. coli strains we used in this study are all derived from the wild-type strain

BW25113. In particular, we used the ∆rpoS , ∆cpxR and ∆csgD deletion strains

of BW25113 taken from the Keio collection (Baba et al., 2006). The mutants were

reconstructed in our laboratory (Dudin et al., 2013) in order to eliminate the kanamycin

resistance gene present in the original deletion strains (Table 3.1).

Strain Characteristics Reference or source

WT E. coli BW25113 Baba et al. (2006)

WTpRM E. coli BW25113 pRM-gfp::intS This study

∆rpoS E. coli BW25113 ∆rpoS Dudin et al. (2013)

∆cpxR E. coli BW25113 ∆cpxR Dudin et al. (2013)

∆csgD E. coli BW25113 ∆csgD Dudin et al. (2013)

Table 3.1: Strains used in this study.

The wild-type and mutant strains were transformed with low-copy plasmids bearing

a gfp reporter gene (Table 3.2). The reporter plasmids for the genes tar, fliA, flgM, and

flgA were selected from the plasmid library developed at the Weizmann Institute (Za-

slaver et al., 2006). These low-copy pUA66gfp plasmids carry the kanamycin resistance

gene and have the origin of replication of the pSC101 plasmid. The promoter regions

of the genes of interest control the transcription of the gene encoding the stable GFP-

mut2 reporter. The same vector was used to construct a reporter for the constitutive

promoter pRM of the phage lambda, by cloning the pRM promoter region contained

on the pZE1RMgfp plasmid used in Berthoumieux et al. (2013b) into the pUA66gfp

plasmid backbone. Table E.1 in Appendix E lists the primer sequences used for the

construction of this pUA66pRM-gfp plasmid using the Gibson Assembly method (Gib-

son, 2011). The above-mentioned plasmids were transformed into the wild-type and

deletion strains of Table 3.1. We verified that the plasmids do not modify the growth

of the transformed strains. All strains and plasmids were verified by PCR.

The pRM promoter fused with the gfp reporter gene was also inserted into the chro-

mosome of the BW25113 wild-type strain as reference for the qRT-PCR assays. The
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Plasmid Characteristics Reference or source

pUA66gfp Kanr,pSC101ori, gfpmut2 Zaslaver et al. (2006)

pUA66fliA-gfp Kanr,pSC101ori ,fliA− gfpmut2 Zaslaver et al. (2006)

pUA66flgM-gfp Kanr, pSC101ori ,flgM − gfpmut2 Zaslaver et al. (2006)

pUA66flgA-gfp Kanr,pSC101ori ,flgA− gfpmut2 Zaslaver et al. (2006)

pUA66tar-gfp Kanr, pSC101ori , tar − gfpmut2 Zaslaver et al. (2006)

pUA66pRM-gfp Kanr, pSC101ori , pRM − gfpmut2 This study

Table 3.2: Plasmids used in this study.

WTpRM strain was constructed by using a linear DNA recombination protocole of

Sharan et al. (2009). The pRM promoter region along with the gene encoding the GF-

Pmut3 reporter were introduced into the intS loci on the chromosome of the BW25113

WT strain, by means of the λ Red system. pRM-gfpmut3 was recovered from the

pZE1RMgfp plasmid used in Berthoumieux et al. (2013b).The recombineering protocols

use the bacteriophage λ Red system that includes the phage recombination genes gam,

bet and exo. The protein coded by gam, Gam, prevents E. coli nuclease from degrading

linear DNA fragments (Karu et al., 1975; Murphy, 1991) thus allowing preservation

of transformed linear DNA in vivo. The bet gene product, Beta, is a ssDNA binding

protein that promotes annealing of two complementary DNA molecules (Karakousis

et al., 1998), and the exo gene product, Exo, has a 5 to 3 dsDNA exonuclease activity

(Cassuto et al., 1971). Working together these latter two proteins insert linear DNA

at the desired target, creating genetic recombinants.

For all experiments, the strains were recovered from glycerol stock and grown overnight

(16 h) at 37◦ C in LB rich medium or M9 minimal medium (Miller, 1972) supplemented

with 0.3% glucose and mineral trace elements. For the preculture of strains containing

plasmids, kanamycin (50 µg/ml) was added. The overnight cultures were diluted (10- to

100-fold) into a 96-well microplate, so as to obtain an adjusted initial OD600 of 0.2. The

wells of the microplate contain 150 µl of the above medium, to which was added 1.2%

of the buffering agent HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) for

maintaining a constant external pH. The wells were covered with 60 µl of mineral oil to

prevent evaporation. The microplate cultures were then grown for about 16 h at 37◦ C,

with agitation at regular intervals, in a microplate reader (Fusion Alpha, Perkin-Elmer).
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3.2.2 Experimental monitoring of gene expression in real time and

data analysis

The expression of the fluorescent reporter genes in different genetic backgrounds and

different growth media was monitored in vivo and in real time. About 150 readings

each of absorbance and fluorescence were obtained during a typical experiment using

the Perkin-Elmer microplate reader. The absorbance measured at 600 nm quantifies

the biomass, while the fluorescence signal emitted at 520 nm, when excited at 485 nm, is

proportional to the number of GFP molecules. In order to compute promoter activities

and protein concentrations from these data, data analysis procedures were designed

and implemented in MATLAB, completing earlier work (Berthoumieux et al., 2013b;

de Jong et al., 2010; Ronen et al., 2002). These analysis procedures take into account

for the specific half-life of the fluorescent reporter protein and implement procedures

for subtracting the autofluorescence background.

3.2.2.1 Background subtraction

We first corrected the absorbance for the background absorbance of the growth medium.

The corrected absorbance signal A(t) is computed as

A(t) = Au(t)−Ab(t), (3.5)

where Au(t) is the primary absorbance signal and Ab(t) the absorbance of the growth

medium (M9 or LB, depending on the experiment).

The fluorescence signal was corrected for autofluorescence generated by wild-type bac-

teria carrying the pUA66gfp plasmid without any promoter driving the expression of

gfp or no plasmid at all (in practice these two measures of the autofluorescence gave

the same result). The autofluorescence depends on the (time-varying) population size.

Since the culture generating the fluorescence signal of interest and the culture generat-

ing the autofluorescence signal may not be exactly synchronized, direct subtraction of

the autofluorescence background is not always possible. We used a calibration proce-

dure, such that the corrected signal I(t) is defined by

I(t) = Iu(t)− s(A(t)), (3.6)

where Iu(t) is the primary fluorescence level and s a calibration function, mapping

absorbance levels to autofluorescence levels. The calibration function is obtained by
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fitting a cubic smoothing spline to the autofluorescence generated by bacteria carrying

the promoterless pUA66gfp plasmid or no plasmid at all as a function of the absorbance.

Splines have the advantage that they can be evaluated for any absorbance within the

observed range and easily extrapolated beyond this range. Figure 3.21 gives an example

of background correction of absorbance and fluorescence data, in the case of the tar

reporter in the ∆cpxR mutant strain.

3.2.2.2 Computation of promoter activity and protein concentrations

Following the measurement model in (de Jong et al., 2010), we describe the expression

of the gene of interest and of the reporter protein as follows (Chapter 2):

d

dt
p(t) = f(t)− (µ(t) + γp) p(t), p(0) = p0, (3.7)

d

dt
r(t) = f(t)− (µ(t) + γr) r(t), r(0) = r0, (3.8)

where p(t) and r(t) are the concentrations of the protein of interest and of the reporter

protein, respectively, µ(t) is the time-varying growth rate, and γp, γr [min−1] are the

degradation constants of the protein of interest and the reporter protein, respectively.

Notice that in the case of FlgM, protein degradation includes both physical degrada-

tion of the protein and secretion through the cell membrane. The reporter protein

concentration r(t) and the promoter activity f(t) can be computed by means of the

formulas:

r(t) =
I(t)

A(t)
, (3.9)

f(t) =
d

dt
r(t) + (γr + µ(t)) r(t) =

d

dt
I(t)

A(t)
+ γr

I(t)

A(t)
, (3.10)

The reporter concentration is expressed in units RFU and the promoter activity in

units RFU min−1, as is usual for this kind of measurements (see (Berthoumieux et al.,

2013b) and Chapter 2). The growth rate is easily estimated from the time-varying

absorbance, using the standard relation µ(t) = d lnA(t)/dt.

We used cubic smoothing splines (csaps function in MATLAB) to fit the fluorescence

and absorbance data and obtain estimates of A(t), I(t), dA(t)/dt, and dI(t)/dt. The

half-life of the GFPmut2 reporter used in this study is 18 h (γr = 0.0006 ± 0.0001)).

The maturation time of GFPmut2 is short enough (4 min, Zaslaver et al. (2006)) to be
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Figure 3.21: Illustration of data analysis procedures. Absorbance and fluorescence

data acquired with the ∆cpxR mutant strain carying a pUA66tar-gfp plasmid, grown in M9

with glucose. A: Primary (uncorrected) absorbance (•, grey), background absorbance (•,
red), and corrected absorbance (•, black). B: Calibration curve obtained by measuring the

autofluorescence of the wild-type strain without plasmid. Primary fluorescence data are

plotted against (corrected) absorbance data and the curve is obtained by fitting a smooth-

ing spline. C: Primary fluorescence data (•, grey), and the corrected fluorescence (•, blue)

obtained after subtracting the fluorescence of the background (•, red) as in Eq. 3.6. D:

Promoter activity of tar (•, blue) computed from the corrected absorbance (-, grey) and

corrected fluorescence by means of Eq. 3.10. E: Protein concentration of tar (•, blue)

computed for a half-life of 2 h from the corrected absorbance (-, grey) and corrected fluo-

rescence measurements using Eq. 3.7. F: Protein concentration of tar (•, blue) computed

for a half-life of 18 h from the corrected absorbance (-, grey) and corrected fluorescence

measurements using Eq. 3.7.
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ignored.

In order to reconstruct the concentration of a protein of interest, we again use Eq. 3.7.

The promoter activity, f(t), is proportional to the synthesis rate, as explained in detail

in Chapter 2. When the degradation constant is known, we can compute the pro-

tein concentration by numerical integration, starting from the initial concentration p0.

This initial concentration is obtained from the reporter gene data, by realizing that

the bacterial cells at the beginning of the experiment are rediluted cells from a precul-

ture grown in the same medium. In particular, assuming that gene expression in the

preculture is at steady-state, it follows from Eq. 3.7 and Eq. 3.8 that

p(0) = p(T ) =
µ(T ) + γr
µ(T ) + γp

r(T ), (3.11)

where µ(T ) is the growth rate of the preculture at the time of redilution (at the time

T ), p(T ) and r(T ) are the corresponding concentrations of the protein of interest and

reporter protein, respectively. Usually, the bacteria in the preculture are in stationary

phase, so µ(T ) = 0. Eq. 3.7 was solved by numerical integration using the quad function

in Matlab.

In the case of the motility network there are two complications that slightly modify this

general scheme. First, the half-lives of FliA and FlgM are variable over the time-course

of the experiment. During exponential growth, when the motility genes are expressed,

FliA and FlgM have short half-lives, due to proteolysis and secretion, respectively.

During stationary phase, at the end of the preculture, this is no longer the case and

FliA and FlgM have larger half-lives. As a consequence, when computing the initial

protein concentrations from the reporter concentrations at time T , we need to take

protein degradation constants γp’ corresponding to these larger half-lives. Second, in

some experimental conditions, notably in rich medium like LB, the activity of the

fliA, flgM, and tar promoter is negligible in the first few hours of the experiment

(Kalir et al., 2001). As a consequence, the fluorescence intensity in the corresponding

reporter strains is indistinguishable from the background fluorescence. We assume the

promoter activity of the genes to be 0 in this case and back-extrapolate the observed

promoter activities at earlier times towards 0. Figure 3.22 illustrates the effects of

variable half-lives and extrapolation of promoter activities on the computation of FliA

and FlgM concentrations in a WT strain. Moreover, in various experimental conditions

(rich medium) the activity of the promoters can only be observed when the fluorescence
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intensity overreaches the value of background fluorescence. When fluorescence intensity

of FliA and FlgM was not observable before actual expression of genes we have assumed

it to be 0 and we have interpolated the promoter activity values towards 0 for this part

of the experiment. Figure 3.22 shows an example of effects of variable half-lives and

interpolation of promoter activities on the computation of protein concentrations of

FlgM and FliA in a WT strain.

For each of the derived quantities r(t), f(t), and p(t), confidence intervals (defined

as ±2 standard errors of the mean) were computed from 6-7 experimental replicates.

3.2.3 Computation of minimal consistent sign patterns of regulatory

interactions

In this section we adopt a notation, where vector x = (x1, . . . , xn) indicates concen-

tration of regulators (e.g., FliA and FlgM), but may comprise in addition regulatory

effects such a global cell physiology, depending on the context. What follows applies

identically to all target genes of interest, i.e. tar and flgM. Let f(x) be the promoter

activity of one gene of interest.

We use the approach introduced in ((Porreca et al., 2010a)), which exploits time-series

data of protein concentrations and promoter activities (protein synthesis rates) to infer

patterns of regulatory interactions. The method relies on two assumptions:

1. f(x) is monotonic in every xj , with j = 1, . . . , n;

2. A set of measurements D = {(x̄k, f̄k) : k = 1, . . . ,m} of the concentration

vectors x and the corresponding target promoter activities f are available, along

with confidence intervals f̄k ± εk and x̄k ± ek.

Assumption 1 of the method reflects the hypothesis that a regulator (e.g., a transcrip-

tion factor, but also the gene expression machinery) cannot operate both as a repressor

and as an activator of a specific target gene (see Porreca et al. (2010a) and references

therein), while it is allowed to operate as a repressor for one gene and as an activa-

tor for another gene. This corresponds to assuming that the activity of a gene is a

monotone nondecreasing function of activators and a monotone nonincreasing function

of repressors. Any such regulatory pattern can be encoded in terms of a sign pattern,
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Figure 3.22: Effect of variable half-lives and promoter activity extrapolation on

initial protein concentrations in a WT strain. A: The observed promoter activtity of

flgM (dashed line, red) and its etrapolation (*, red). B : The observed promoter activtity of

fliA (dashed line, green) and its etrapolation (*, green). C : The effect on the computation

of the protein concentration of FlgM when taking into account the extrapolation of its

promoter activity in A and the initial condition. Protein concentration was computed for

an initial half-life of 3 h and a short half life of 18 min. D : The effect on the computation

of the protein concentration of FliA when taking into account the extrapolation of its

promoter activity in B and the initial condition. Protein concentration was computed for

an initial half-life of 2 h and a short half life of 30 min. The hatched regions correspond

to the regions where the activity of promoters was extrapolated, i.e. [0, 410 min] for flgM

and [0, 340 min] for fliA. The promoter activities have been derived from the primary data

as illustrated in Figure 3.2. The shaded regions correspond to the mean of the promoter

activities and protein concentrations, respectively, ± twice the standard error of the mean.

The absorbance is drawn in solid, grey lines.

i.e., a vector containing one entry per regulator, taking value +1 for activators, −1

for repressors, and 0 for factors that do not affect the expression of the gene under

consideration. We may thus define the sign pattern π = (π1, . . . πn) of f by posing

πj = 1 if f is increasing in xj , πj = −1 if f is decreasing in xj , and πj = 0 if f is

independent of xj , j = 1, . . . , n. The sign pattern encodes the directed, signed graph

of the regulation of the gene under consideration by all possible regulators in the net-

80



3.2 Methods and materials

work (compare Figure 3.23 B-E). As for assumption 2, data may come from several

gene reporter experimental scenarios (different strains and media) and is provided in

the required form by the processing of the previous Section 3.2.2, where (x̄k, f̄k) is the

measurement average at time tk, while ek and εk are fixed to twice the standard error

of the mean (x̄k, f̄k). Also observe that dependence of confidence intervals on index k

is explicitly taken into account.

The rationale of the procedure for eliminating hypotheses from the set of all candi-

date sign patterns is the following (Porreca et al., 2010a). Given any two concentration

vectors x′ and x′′, the implication

πj(x
′′
j − x′j) ≥ 0, j = 1, . . . , n⇒ f(x′′) ≥ f(x′)

is satisfied by the very definition of the sign pattern π of f . Therefore, for a hypothetical

sign pattern π̄ and perfect measurements (εk = ek = 0 for all k), any two data points

(x̄′, f̄ ′) and (x̄′′, f̄ ′′) that falsify the implication allow one to conclude that π̄ is not the

sign pattern of f . In particular, if f̄ ′′ < f̄ ′, the sign pattern π̄ defined by π̄j = 1 if

x̄′′j > x̄′j , π̄j = −1 if x̄′′j < x̄′j , and π̄j = 0 otherwise, is inconsistent with the data. In

addition, any subpattern of π̄, i.e. a pattern π̃ whose nonzero entries are equal to the

corresponding entries of π̄ (denoted with π̃ v π̄), is also inconsistent with the data,

since the implication above is still violated.

For instance, in the network module considered in this paper, the assumption that

both FlgM and FliA activate tar can be rejected if two measurement times are found

such that, for increasing concentrations of FlgM and FliA, the promoter activity of tar

is decreased. The algorithm makes the above verifications in a computationally efficient

way and returns, for every target gene, a set of minimal sign patterns. The minimal

sign patterns are regulatory patterns consistent with the data, having the properties

that removal of any interaction results in an inconsistent pattern, whereas addition of a

regulator (activator or repressor) preserves the consistency. This test is easily robusti-

fied to account for measurement uncertainties, see Figure 3.23 for a graphical example

on a network resembling tar regulation.

For any data point (x̄, f̄) ∈ D, let (x̂, f̂) and (x̌, f̌) indicate the confidence bounds

f̂ = f̄ + ε and f̌ = f̄ − ε, in the same order, and similarly x̂j = x̄j + e and x̌j = x̄j − e,
with j = 1, . . . , n. Let the complexity c of a sign pattern π be the number of nonzero
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entries of π. The algorithm is divided into two phases, conceptually organized as follows

(see Figure 3.23 for reference).

Computation of inconsistent patterns Π̄ from data D

• Set Π̄ = ∅

• For all pairwise different data points (x̄′, f̄ ′) and (x̄′′, f̄ ′′) in D:

If f̂ ′′ < f̌ ′

– Define π̄ = (π̄1, . . . , π̄n) by π̄j =


1, x̌′′ > x̂′

−1, x̂′′ < x̌′

0, otherwise

, with j = 1, . . . , n

– Include π̄ in Π̄

• Return Π̄

At this stage, a generic pattern π is inconsistent if and only if π v π̄ for some π̄ ∈ Π̄

(Porreca et al., 2010a).

Computation of minimal consistent patterns Π∗ from Π̄

• Set Π∗ = ∅

• For c = 0, 1, . . . , n:

– Enumerate all possible patterns π of complexity c

– For every such π:

If @ π̄ ∈ Π̄ such that π v π̄ (π is consistent), and

If @ π∗ ∈ Π∗ such that π∗ v π (π is minimal consistent), then

Include π in Π∗

• Return P ∗
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Figure 3.23: Computation of inconsistent and minimal consistent sign patterns

from data. An example of the method of Section 3.2.3 is shown for the regulation of

gene 3 in a hypothetical network with genes 1,2,3. A: From top to bottom, example time

profiles and corresponding confidence intervals (thin black lines) for the concentrations of

the proteins enconded by genes 1,2,3 and the synthesis rate of gene 3. Only the two data

points (x′, f ′3) and (x′, f ′′3 ) are considered in this example. Non-overlapping confidence

intervals of f ′3 and f ′′3 (reported next to each other for ease of comparison by the orange

and blue shaded regions) imply f̂ ′′3 < f̌ ′3. Similarly, non-overlapping confidence intervals

for x′1, x
′′
1 and for x′2, x

′′
2 imply x̂′′1 < x̌′1 (π̄1 = −1) and x̌′′2 > x̂′2 (π̄2 = 1), respectively,

while confidence intervals for x′3 and x′′3 overlap (π̄3 = 0). Whence, π̄ = (−1, 1, 0). If

this was the sign pattern of f3, then f3(x) should increase for x′1 decreasing to x′′1 and

x′2 increasing to x′′2 (x3 is irrelevant in the hypothesis π̄3 = 0), whereas the observation

says that f̂ ′′3 < f̌ ′3. Pattern π̄ = (−1, 1, 0) is thus inconsistent with the data. B - E:

Regulation patterns for gene 3, corresponding to the consistent sign patterns of f3 deduced

from the inconsistent patterns Π̄ = {π̄} obtained in A. Circles represent genes; directed

arcs represent regulation of the target gene 3 by regulator j, with j = 1, 2, 3; arrow ends

represent activation (πj = 1), line ends represent inhibition (πj = −1). Black arrows

represent the minimal consistent sign patterns (1, 0, 0) in B, (0,−1, 0) in C, (0, 0, 1) in D,

and (0, 0,−1) in E. Every consistent pattern is obtained from one of the cases B - E by

turning the corresponding πj = 0 into either πj = −1 or πj = 1.

At this stage, a generic pattern π is consistent if and only if π∗ v π for some π∗ ∈ Π∗

(Porreca et al., 2010a).
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In practice, the above operations can be made computationally efficient. Notably,

in our implementation, “for” loops and “if” tests are replaced by suitable algebraic and

Boolean matrix operations in Matlab.

3.2.4 Derivation of regulation function of motility genes

We develop a kinetic model for the regulation of the expression of tar as a function of

the total concentrations of FliA and FlgM (see Figure 3.1 in Section 3.1.1). The

model is based on a quasi-equilibrium approximation of the mass-action kinetics for

the formation of the FliA·FlgM complex, and a phenomenological Hill-type regulatory

law of tar expression by free FliA.

Let pA,free, pM,free and pAM denote the concentrations of free FliA, free FlgM and

FliA·FlgM, respectively, and let pA, pM denote total concentrations for FliA and FlgM.

Assuming complex formation and dissociation are fast events relative to gene expression

and protein degradation, we make the approximation

d

dt
pAM = k+ · pA,free · pM,free − k− · pAM ' 0,

with k− > 0 and k+ > 0. Using the facts that pA = pA,free + pAM and pM =

pM,free + pAM , substitution into the above to eliminate pM,free and pAM from the

equation yields

k+ · pA,free ·
(
pM − (pA − pA,free)

)
− k− · (pA − pA,free) = 0,

which is a second-order polynomial equation in pA,free. The solution of the equation

that satisfies 0 ≤ pA,free ≤ pA is

pA,free(pA, pM ) =
1

2

(
−(K + pM − pA) +

√
(K + pM − pA)2 + 4KpA

)
, (3.12)

with K = k−/k+, which is a function of the total concentrations pA and pM (Buchler

and Louis, 2008). Only the free FliA molecules regulate the expression of the tar

promoter, and we quantify the regulatory effect by the law

pnA,free
pnA,free + θn

,
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with n ≥ 1. Multiplying by maximal synthesis rate k1 and adding basal (unregulated)

synthesis rate k0 leads to the model we will be using to describe regulation of fliA-

dependent genes

f(t) = k0 + k1

pnA,free
pnA,free + θn

, (3.13)

Note that, in accordance with the expected regulatory pattern, the function k0 +

k1
pnA,free(pA,pM )

pnA,free(pA,pM )+θn is increasing in pA and decreasing in pM . To verify this, it suffices

to show that derivatives with respect to pA and pM are nonnegative and nonpositive,

respectively. Ignoring k0 and k1 without loss of generality, the derivative of pA,free with

respect to pA can be written as

1

2
+

1

2
· −(pM − pA +K) + 2K√

(pM − pA +K)2 + 4KpA
.

This expression is obviously positive if pM − pA +K ≤ 0. If instead pM − pA +K > 0,

note that the expression is still positive if the square of the fraction,(
(pM − pA +K)− 2K

)2
(pM − pA +K)2 + 4KpA

,

is smaller than 1. But this is apparent since, under pM − pA +K > 0, the numerator is

no bigger than (pM − pA +K)2, whereas the denominator is no smaller than the same

quantity. Similarly, the derivative of pA,free with respect to pM can be written as

−1

2
+

1

2
· pM − pA +K√

(pM − pA +K)2 + 4KpA
.

This expression is obviously negative if (pM−pA+K) ≤ 0. If instead (pM−pA+K) > 0,

note that the square root is no smaller than (pM−pA+K), hence the rightmost fraction

is no bigger than 1, i.e. the overall expression is again negative.

The additional regulatory effect of the global physiological state of the cell is quan-

tified via further multiplication by a function fconst(t):

f(t) = fconst(t)

[
k0 + k1

pnA,free
pnA,free + θn

]
, (3.14)

Monotonicity with respect to pA and pM remains unchanged. In addition, f is increasing

in fconst. In all cases, the model depends on the (nonnegative) parameters k0, k1, n, θ,K.
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3.2.5 Parameter estimation

The promoter activity models we have considered in the Section 3.1 have the form

f(t) = f
(
x(t), c

)
, where c is a vector of unknown parameters and x is a vector of re-

gressors. The specific form of f
(
x(t), c

)
is given for tar in Eq. 3.13 and 3.14, and is

analogous for flgM. The regressors take different forms in consecutive sections of this

thesis, consisting either of the activities fA and fM of the fliA and flgM promoters

(x = (fA, fM )) or the reconstructed concentrations pA and pM of FliA and FlgM (x =

(pA, pM )). In all sections, c = (k0, k1, n, θ,K). The superscript symbol s indicates the

experimental condition, where s ∈ S = {∆rpoS-M9,∆cpxR-M9,∆csgD-M9,∆csgD-LB,WT-LB}.
Given measurements

(
x̄s(t), f̄ s(t)

)
of
(
x(t), f(t)

)
(averages of 6-7 experimental repli-

cates) at times t ∈ T s along with confidence intervals (f̄s(t) ± εs(t)) (computed from

the same experimental replicates with εs equal to twice the standard error of the mean

f̄s), we estimate c by solving the optimization problem

min
c∈C

Q(c), Q(c) =
∑
s∈§

∑
t∈s

1

2εs(t)

∣∣f̄s(t)− f(x̄(t), c
)∣∣2 .

The solution is found in MATLAB using the numerical global search function gs with

standard settings (interior-point method fmincon for local minimizations). For tar

activity, the search is initialized at the values (k0, k1, n, θ,K) = (k̂0, k̂1, n̂, θ̂, K̂) defined

as k̂0 = min{f̄s(t) : t ∈ T s, s ∈ S}; k̂1 = max{f̄s(t) − k̂0 : t ∈ T s, s ∈ S}; n̂ = 1;

K̂ = ¯̄x1, where the double bar stands for mean over t ∈ T s and s ∈ S; and, in view of

Eq.3.12,

θ̂ =
1

2

(
−(K̂ + ¯̄x2 − ¯̄x1) +

√
(K̂ + ¯̄x2 − ¯̄x1)2 + 4 K̂ ¯̄x1

)
.

The parameter search space C is given by the constraints k0 ≥ 0, k1 ≥ 0, n ∈ [1, 3],

θ ∈ [0, 10× p̄A,free], K ∈ [0, 10×Kmax], where Kmax = max{xs2(t) : t ∈ T s, s ∈ S}. For

the estimation of the regulation function of flgM, the condition WT-LB is not available

and hence excluded from the computation of Q(c). Moreover, K is fixed for biological

consistency, in this case, to the value inferred from the fitting of tar promoter activity.

3.2.6 Validation of reporter gene data using quantitative RT-PCR

We verified the reporter gene measurements by means of qRT-PCR in the WT-LB

condition, following a previously described protocol (Lee et al., 2006).
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According to Eq. 2.13 in Chapter 2, the ratio of the promoter activities f1, f2 of two

genes is proportional to the ratio of the mRNA concentrations m1,m2, that is,

f1(t)

f2(t)
=
kp,1
kp,2

m1(t)

m2(t)
. (3.15)

Measuring gene expression by qRT-PCR allows the relative abundances of the mRNA

of a target gene to be quantified with respect to the mRNA of a reference gene (Van-

Guilder et al., 2008). This provides a direct way to verify if the relative promoter

activities measured with reporter genes are confirmed by another, independent experi-

mental method. We compared the promoter activity of tar, as an example of a motility

gene, with the activity of the constitutive pRM promoter. The validation of the ratio

ftar/fpRM was carried out by means of the WTpRM strain, a modified BW25113 strain

carrying a natural copy of tar and a transcriptional fusion of the pRM promoter with

a gfp gene inserted into the intS loci on the chromosome (Section 3.2.1). Quantitative

RT-PCR was used to quantify the relative abundances of tar and gfp mRNA, using a

standard qPCR protocol (Lee et al., 2006).

We took 5 µL samples at 11 time-points from cultures of the WTpRM strain, grow-

ing in a microplate under the conditions described in Section 3.2.1. Total mRNA was

protected using the RNAprotect Bacteria Reagent kit (Quiagen) and then extracted

using the RNeasy mini kit (Quiagen) according to the protocols of the manufacturer.

The RNA samples were then treated using the turbo DNAse (Ambion) to avoid DNA

contamination. Approximately 1 µg of RNA for each of the 11 time-points was reverse

transcribed using SuperScript II Reverse Transcriptase (Invitrogen). The cDNA sam-

ples were diluted 10x into MESA Green qPCR Master Mix (Eurogentec), supplemented

with primers for the tar and gfp genes. Quantitative PCR was performed in a StepOne-

Plus Real-Time PCR System (Applied Biosystems) according to the instructions of the

manufacturer. Briefly, 5 µl reaction mixtures were incubated for 10 min at 95 0C and

40 PCR cycles (15 s at 95◦ C, 10 s at 62◦ C and 10 s at 70◦ C). PCRs were run in

quadruplicate. Raw data were transformed into threshold cycle (CT ) values. PCR am-

plification efficiencies for tar and gfp were determined by constructing standard curves

from serial dilutions (Lee et al., 2006).

The results were analyzed by means of a standard model for computing m1(t)/m2(t)

at the sample time-points t with respect to m1(t0)/m2(t0), the same quantity at a ref-
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erence time-point t0 (Pfaffl, 2001):

q(t) =
m1(t)/m1(t0)

m2(t)/m2(t0)
=
E

∆Cgfp
T

gfp

E
∆Ctar

T
tar

, (3.16)

where CgfpT and CtarT are the measured CT values for gfp and tar, respectively, ∆CgfpT (t) =

CgfpT (t)−CgfpT (t0), ∆CtarT (t) = CtarT (t)−CtarT (t0). As our reference time-point, we chose

a measurement during exponential growth on glucose. As a consequence, the changes in

mRNA abundance are relative to the mRNA abundance in exponential phase. The effi-

ciencies were measured to be 109% for gfp (Egfp = 2.09) and 105% for tar (Etar = 2.05).

From Eq. 3.15 it follows that

q(t) =
f1(t)/f1(t0)

f2(t)/f2(t0)
. (3.17)

The right-hand side of this equation can be computed from the measured promoter

activities, as explained in Chapter 2. Figure 3.24 compares the value of q(t) measured

by means of reporter genes and qRT-PCR. There is a good qualitative and quantitative

correspondence between the two independent methods (qRT-PCR and gene reporter

genes) for measuring gene expression.
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Figure 3.24: Validation of the reporter gene measurements using quantitative

RT-PCR. A: The figure shows the promoter activity of tar with respect to global physi-

ological effects (•, blue). The promoter activities were derived from corrected absorbance

and fluorescence, measured using plasmids expressing the GFP reporter for the phage

promoter pRM and the tar promoter. The shaded regions represent confidence intervals

computed as ± the standard error of the mean of 5 replicates. B :The figure reports the

expression of tar gene with respect to the mRNA quantity of pRM (WTpRM strain, Sec-

tion 3.2.1) measured by qPCR (•, black). We have normalized with respect to the observed

Tar mRNA quantity in exponential growth following Eq. 3.16. Expression of tar gene is

observed to be maximal around 700 min. The results obtained by using the two indepen-

dent techniques are in good agreement. The errorbars were computed from the standard

error of the mean of 4 replicates. The absorbances have been also plotted on the figures

(solid line, grey).
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4. Conclusion

4.1 Summary of results

In this thesis, we develop methods for inferring genetic regulatory interactions and

quantitative gene regulatory functions from gene expression profiles. The validation of

the approach proposed in this work is carried out on a well-studied but complex gene

regulatory network responsible for the motility of the bacterium E. coli . This chapter

summarizes the main contributions of the thesis and puts our results into perspective

relative to other methods for network inference.

While many problems persist in current methods for inferring gene regulatory net-

works from expression data, we believe that the solution should not only be sought in

technical improvements of the algorithms themselves, but may come from a better un-

derstanding of the precise information on gene expression provided by the experimental

data and their integration into appropriate modeling formalisms. The relation between

the primary data and physiological quantities like the cellular concentrations of mRNA

and protein is usually indirect and obscured by simplifications and assumptions that do

not generalize beyond the specific situations for which they were designed. The main

regulators of gene expression are proteins. Even though the concentrations of mRNA

and proteins are weakly correlated at steady state, this is generally not the case when

considering time-varying, dynamical expression data.

Reporter gene systems can yield gene expression profiles in complex in vivo experi-

ments. Such dynamical data are well described by ordinary differential equations. We

have therefore adapted an ODE modeling framework to convert (fluorescent) reporter

gene data into biologically relevant quantities, such as promoter activities and protein

concentrations. This approach is more appropriate for the inference of gene networks

in the sense that it explicits the relation between experimental data and physiological

quantities by means of mathematical (measurement) models of gene expression. Al-

though an important source of the incomplete and sometimes spurious findings of classic

inference algorithms, not many modeling frameworks for inference of gene regulatory

networks focus on the distinction between these quantities.
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Computing protein concentrations by means of the measurement models presented

in this thesis supposes that we know the approximate values of the protein half-lives.

With the exception of yeast, genome-wide studies of the stability of individual proteins

in microorganisms are rare. It should be noted though that most proteins in E. coli are

stable, with half-lives >10 h, so that the decay of protein concentrations is dominated

by growth dilution, that is, µ � γp. In other words, in many situations, in order

to obtain a reasonable estimate of the effective protein half-life, it will be sufficient to

perform the experiments in growth media supporting bacterial growth rates that results

in doubling times well below 10 h.

Moreover, many methods for network inference rest on the common and tacit belief

that the regulation of gene expression in bacteria is controlled uniquely by transcrip-

tion factors and other specific regulators. In fact, the complex regulatory activity of the

transcriptional and translational machinery of the cell, as well as other intrinsic global

physiological effects, may induce major changes in gene expression over the course of

an experiment . As Lovén et al. (2012) point out, many transcriptome studies assume

that the total quantity of RNA is similar between different experimental conditions and

use this quantity for normalization of the data. As a consequence, a global increase or

decrease of transcriptional activity across conditions may lead to erroneous interpreta-

tion of the experimental data and the inference of spurious regulatory interactions. In

this thesis, we have developed an improved model that, in addition to specific regula-

tory interactions, accounts for global regulatory effects of bacterial cells. We estimate

the global physiological state of the cell from the activity of a constitutively expressed

gene and whose expression only depends on the activity of the transcriptional and

translational machinery.

Our analysis of reporter gene datasets thus makes it possible to account for the

difference between mRNA and protein concentrations as well as for global physiolog-

ical effects. We have validated the adequacy of the models to describe bacterial gene

expression by comparing the deduced promoter activities with independent RT-qPCR

measurements. We have shown that the inclusion of information about both global

physiological effects and protein concentrations can improve the inference of regulatory

interactions and the identification of quantitative regulation functions from time-series

data. Compared to the classical inference approach, i.e., the inference of structure and
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quantitative functions of gene regulatory networks from promoter activities, the inclu-

sions of global regulatory effects significantly improves the prediction results. A further

improvement is achieved by explicitly considering proteins as the regulators by taking

into their half-lives.

To provide an integrated and straightforward inference approach, our method com-

bines the above described experimental and computational models with a structural

and parametric identification algorithm. The algorithm aims at inferring the structure

of gene networks from time-series data by exploring the monotonicity properties of the

network (or the model) and recovering only structures in good agreement with the data.

For these structures, parameter estimation is performed to find the best prediction of

both the (qualitative) model structure and the (quantitative) parameters. Generally,

large search spaces reduce the performance, and may even compromise results of in-

ference algorithms, the selection of data-consistent gene network models allows us to

focus on precisely analyzing a small set of candidate models. Ultimately, this leads to

results that are interpretable and relevant to the initial biological question.

The practical validation of our approach rests on the study of a gold standard bi-

ological system, the FliA-FlgM (motility) module in E. coli. Although atypical, this

module possesses rich dynamics. The short half-lives of the FliA and FlgM proteins are

time-varying and depend on the experimental conditions, inducing the time course of

flagella synthesis. We investigated the capacity of our approach to infer from reporter

gene data both the regulatory structure and the quantitative regulation function of two

uniquely FliA-dependent motility genes (flgM and tar). When integrating information

on the activity of the gene expression machinery and reconstructing protein concentra-

tions from promoter activities, both the structure and the dynamics of the regulation

of the tar and flgM promoters could be inferred successfully. For this analysis, we used

available measurements of FliA and FlgM half-lives. This extended model contains

the same number of parameters as the initial model and an improved fit between data

and model is therefore not simply a consequence of increasing the degrees of freedom.

Our results also confirmed the importance of global physiological effects and the active

regulation of FliA and FlgM half-lives in predicting the activity of FliA-dependent pro-

moters. When global physiological effects were ignored, or the FliA and FlgM half-lives

were set to typical values of stable E. coli proteins, a sharp drop in the quality of the

prediction of the gene regulation models was observed.
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More generally, under which conditions does the inclusion of the above factors lead

to better results and when can they be ignored? We performed a simulation study in

which we systematically varied the relative contribution of global physiological effects

to cross-condition variations in the expression of a target gene and the half-lives of the

regulators. These results showed that increasing half-lives of the activating transcrip-

tion factor and stronger variations of global physiological effects make it more difficult

to obtain good fits when using promoter activities and data on specific regulators only,

respectively. While these conclusions are not surprising, it is important to emphasize

that in the system studied here, where FliA and FlgM have half-lives that are excep-

tionally short for bacterial proteins, a considerable improvement of the fit could be

obtained. For regulatory proteins with more typical half-lives, the gain may therefore

be even more important than observed here.

4.2 Perspectives

Our method to more fully exploit the information contained in time-series (population-

averaged) data of the transcriptional response of bacterial cells to a changing environ-

ment depends on kinetic models of gene expression, relating the primary fluorescence

and absorbance data to promoter activities and protein concentrations. In order to

further improve the estimation of the biologically important quantities (promoter ac-

tivity, etc.) from the primary data, we could take into account delays that are due

to the maturation of GFP and the time for rounds of transcription and translation to

complete. This refinement was not necessary here since the GFP reporter used in our

study is fast-folding and the transcription and translation delays are very short with

respect to the time-scale of the experiments.

In principle, it should be possible to apply the same approach to the inference of

regulatory networks from high-throughput transcriptome data, such as DNA microar-

ray and RNAseq data. The primary data would directly yield mRNA measurements,

eliminating one step of the data treatment. However, since our algorithm relies on the

interpretation of the dynamics of the system, we would need a relatively high sampling

density. Furthermore, since we need to estimate the error on the change in mRNA

or protein concentrations, many replicate experiments would have to be performed.

Combining a high sampling density with numerous replicates may rapidly become very
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costly. Future improvements, and the associated cost reduction, of sequencing tech-

niques may soon make RNAseq data available for being analyzed by our algorithm.

We have found that an estimate of the protein concentration is crucial for improving

the reliability of the network reconstruction. Since the measurement of mRNA is much

easier than the direct measurement of protein concentrations, this implies that we need

to know (or estimate) the protein half-lives. As pointed out above, in fast-growing

cultures, the effective protein half-life is dominated by growth dilution. Experiments

carried out in these conditions are directly amenable to analysis by our method. How-

ever, often this is not possible, for example, when measuring the transition from ex-

ponential growth to stationary phase. In this case, we would need to measure protein

half-lives, for example using Western blots. However, such experiments are time and

money consuming. An alternative could be to use translational fusions of the genes

in the network to different flavors of fluorescent proteins. The stability of the protein

would be directly correlated with the easily observable fluorescence signal. Control ex-

periments would have to ascertain that the GFP-tag does not affect the half-life of the

protein. The ideal solution, a direct observation of the proteins in the cell, for example

by quantitative proteomics, remains too time and money consuming even more so than

in the case of high-throughput transcriptomics.

The method we propose has the advantage that it can be used to monitor the dy-

namics of gene expression and global physiological effects in real time, without any

additional preparation steps. However, reporter constructs have to be constructed for

the genes of interest on plasmids or integrated into the chromosome. Such cloning

tasks become increasingly automated and it seems possible that in the near future,

many hundreds of such constructs can be assembled in parallel in a liquid handling

robot. Efficient DNA assembly techniques, such as the Gibson assembly, will be op-

timized to streamline vector construction. We therefore anticipate that the reporter

gene technology will be easily extended to other bacteria and certain eucaryotes, such

as yeast.

Our approach to network reconstruction is based on the analysis of time-series

data to first pinpoint possible network structures and then adjust model parameters

in order to obtain a quantitative fit of the model to the experimental data. In the

first step, any additional information limiting the possible network topologies could

potentially be incorporated in order to reduce the search space of the algorithm. This
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additional information can come from any of a number of sources: biological data that

exclude a particular network structure, “classical” inference methods using steady-

state data of the same system to limit the possible network topologies, or any other

modeling approaches or measurements that fix certain parameters of the quantitative

model. We therefore consider our algorithm a further improvement to the general

problem of network inference, adding a new powerful tool that can be combined with

existing methods to reliably deduce the underlying regulatory structure from time-series

expression data.
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A. Monitoring the expression of

flgA promoter

The flgM gene can be expressed from two different promoters, its own specific class

3 flgM promoter and the class 2 flgA promoter from the same transcriptional unit

(Figure A.1). Expression from the class 2 promoter is initiated by the master regulator

of the flagellar cascade, the FlhDC heteromultimeric complex. When the Hook-Basal

Body (HBB) structure is completed, the σ28 factor initiates transcription from class

3 promoters. It has been reported that the level of expression of the flgM gene from

its class 2 promoter is only of about 20% of the total expression level (Salmonella

typhimurium, Gillen and Hughes (1993), Karlinsey et al. (2000b)).

flgM pflgM pflgA flgA

FlhDC FliA (σ
28

)

flgN pflgN

Figure A.1: The flgAMN operon.

We have tested whether the transcription from the flgA promoter has an important

contribution to the expression of the flgM gene in E. coli by means of fluorescent

reporter genes (the plasmid carying the flgA promoter has been taken from the plasmid

library of Zaslaver et al. (2006)). The results show that the measured fluorescence

signal representative for the activity of the flgA promoter is very low and are shown in

Figure A.2.
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A. MONITORING THE EXPRESSION OF FLGA PROMOTER
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Figure A.2: Monitoring the expression of flgA promoter. The figure shows the

fluorescence profiles (•, blue) corresponding to the activity of flgA with respect to the

background fluorescence (•, black). The class 2 promoter expression has been observed

in all the strains and growth media considered in this study (∆rpoS, ∆cpxR, ∆csgD-M9,

∆csgD-LB and WT-LB). The fluorescence signal is not distinguishable from the background

fluorescence in any of the conditions, thus gene expression from flgA promoter can be

ignored. Absorbances (solid line, grey) show that growth conditions are similar with those

in the experiments monitoring the expression from flgM promoter.
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B. Additional information on iden-

tification of gene regulation func-

tions from estimates of protein con-

centrations

In order to test if the known structure of the regulatory network of the FliA-FlgM

(motility) module could be recovered from only protein concentrations of FliA and

FlgM (over a range of plausible half-life values), we applied the sign pattern analysis

(details in Chapter 3). The results for the structural inference are shown in Figure B.1

for tar and in Figure B.2 for flgM. A large number of combinations of half-lives are

compatible with activation of FliA-dependent genes by FliA and with inhibition by

FlgM and thus consistent with the known regulatory network. We then fitted the

quantitative regulation functions (Eqs. 3.1-3.2) for both tar (Figure B.3) and flgM

(Figure B.4). Except for the ∆csgD −M9 condition, the model is not able to match

the expression peaks.

We also tested if addition of global regulatory effects to protein concentrations of

FliA and FlgM reconstructed for invalid half-lives (very stable half-lives, such as re-

porter protein half-lives) could improve the fit enough to match the expression peaks

in all conditions (model of Eqs. 3.2-3.3). Although the fit improves a little bit quanti-

tatively (Q = 32 vs. Q = 36) in the case of tar (Figure B.5), the model is not able to

account for the expression dynamics in any of the conditions considered. Moreover, the

model cannot obtain a good fit for flgM (Q = 41). The results are shown in Figure B.6.
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B. ADDITIONAL INFORMATION ON IDENTIFICATION OF GENE
REGULATION FUNCTIONS FROM ESTIMATES OF PROTEIN
CONCENTRATIONS
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Figure B.1: Minimal patterns of regulatory interactions for tar over a range

of physiologically realistic half-lives. The minimal regulatory patterns for the gene

tar in the motility network of Figure 3.7 as a function of the half-lives of FliA and FlgM.

The plots correspond to the five experimental conditions considered (∆rpoS -M9, ∆cpxR-

M9, ∆csgD-M9, ∆csgD-LB, and WT-LB) as well as the pooling of the data sets from all

five conditions. The dot in the center of each region in the plots corresponds to a tested

combination of half-lives of FliA and FlgM, and thus to specific protein concentration

profiles computed from the kinetic model of gene expression (Section 3.2.4). The minimal

regulatory patterns were obtained by applying the minimal sign pattern algorithm (Porreca

et al., 2010a). The color codes represent the different categories of minimal signal patterns

inferred. A region is colored green if the expected regulatory patterns is among the minimal

sign patterns returned by the algorithm, and yellow if it is compatible with the returned

sign patterns. A region is colored red if none of the returned sign patterns is consistent

with the data. Two examples of inconsistent sign patterns are shown. The values of the

half-lives are represented in log.
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Figure B.2: Minimal patterns of regulatory interactions for flgM over a range

of physiologically realistic half-lives. The minimal regulatory patterns for the gene

flgM in the motility network of Figure 3.7 as a function of the half-lives of FliA and FlgM.

Similarly to Figure 3.14, the plots correspond to the four of the experimental conditions

considered (∆rpoS -M9, ∆cpxR-M9, ∆csgD-M9, ∆csgD-LB) as well as the pooling of the

data sets from all five conditions. The condition WT-LB was not used in the analysis

of the regulation of the flgM promoter. The dot in the center of each region in the

plots corresponds to a tested combination of half-lives of FliA and FlgM, and thus to

specific protein concentration profiles computed from the kinetic model of gene expression

(Section 3.2.4). The minimal regulatory patterns were obtained by applying the minimal

sign pattern algorithm (Porreca et al., 2010a). The color codes represent the different

categories of minimal signal patterns inferred. A region is colored green if the expected

regulatory patterns is among the minimal sign patterns returned by the algorithm, and

yellow if it is compatible with the returned sign patterns. A region is colored red if none of

the returned sign patterns is consistent with the data. Two examples of inconsistent sign

patterns are shown. The values of the half-lives are represented in log.
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Figure B.3: Fits of regulation function of tar to reporter gene data when re-

constructing protein concentrations from the reporter gene data and ignoring

global physiological effects. The regulation function of Eqs. 3.1-3.2 was fit to the data

using the promoter activity for tar (Figure 3.3) and concentrations of FliA and FlgM

reconstructed from the activities of their promoters for physiologically realistic half-lives

(Figure 3.12 and Figure 3.13). The parameters were estimated using a multistart global

optimization algorithm (see Section 3.2.5 for details). The best fit is shown, for mea-

sured half-lives of FliA and FlgM of 30 min and 18 min, respectively (solid line, Q = 36,

(k0, k1, n, θ,K) = (13.6, 206.8, 1.9, 3985, 223700)).
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Figure B.4: Fits of regulation function of flgM to reporter gene data when

reconstructing protein concentrations from the reporter gene data and ignoring

global physiological effects. The regulation function of Eqs. 3.1-3.2 was fit to the

data using the promoter activity for flgM (Figure 3.3) and concentrations of FliA and

FlgM reconstructed from the activities of their promoters for physiologically realistic half-

lives (Figure 3.12 and Figure 3.13). The parameters were estimated using a multistart

global optimization algorithm (see Section 3.2.5 for details). The best fit is shown, for

measured half-lives of FliA and FlgM of 30 min and 18 min, respectively (solid line, Q = 27,

(k0, k1, n, θ,K) = (31.2, 246.8, 3, 2353, 223700)).
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Figure B.5: Fits of regulation function of tar to reporter gene data when re-

constructing protein concentrations from the reporter gene data for reporter

half-lives and including global physiological effects. The regulation function of

Eqs. 3.2-3.3 was fit to the data using the promoter activity for tar (Figure 3.3), concen-

trations of FliA and FlgM reconstructed from the activities of their promoters for reporter

half-lives (Figure 3.12 and Figure 3.13), and the activity of the constitutively expressed

pRM promoter quantifying global physiological effects (Figure 3.8). The parameters were

estimated using a multistart global optimization algorithm (see Section 3.2.5 for details).

The best fit is shown, for very stable half-lives of FliA and FlgM of 18 h (solid line, Q = 32,

(k0, k1, n, θ,K) = (0.3, 4.5, 3, 83969, 27303)).
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Figure B.6: Fits of regulation function of flgM to reporter gene data when

reconstructing protein concentrations from the reporter gene data for reporter

half-lives and including global physiological effects. The regulation function of

Eqs. 3.2-3.3 was fit to the data using the promoter activity for flgM (Figure 3.3), concen-

trations of FliA and FlgM reconstructed from the activities of their promoters for reporter

half-lives (Figure 3.12 and Figure 3.13), and the activity of the constitutively expressed

pRM promoter quantifying global physiological effects (Figure 3.8). The parameters were

estimated using a multistart global optimization algorithm (see Section 3.2.5 for details).

The best fit is shown, for very stable half-lives of FliA and FlgM of 18 h (solid line, Q = 41,

(k0, k1, n, θ,K) = (0.04, 11.4, 3, 24347, 27303)).
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C. Computation of active FliA

The active regulator in the FliA-FlgM module is free FliA, that is, FliA not bound to

FlgM. The active concentration of FliA can be computed from the total concentration

of FliA using Eq. 2 in the main text, given a value for the equilibrium constant K

and possibly the half-lives of FliA and FlgM, estimated by fitting the model to the

tar data. This has been done for all situations considered here: (i) replacing protein

concentrations by promoter activities; (ii) replacing protein concentrations by promoter

activities, while taking into account global physiological effects; (iii) computing protein

concentrations for the reference half-lives of FliA and FlgM, while taking into account

global physiological effects; (iv) computing protein concentrations for optimized half-

lives of FliA and FlgM, while taking into account global physiological effects. The

results are shown in Figures C.1-C.4. Notice that in some of the experimental con-

ditions, FliA is only partially active when protein concentrations instead of promoter

activities are used.
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Figure C.1: Free and total concentration of FliA when using promoter activ-

ities. The concentration of free FliA (solid line, green) is computed by means of Eq. 3.2

in Chapter 3, for the optimal fit shown in Figure 3.5 in Chapter 3. The shaded regions

represent the confidence intervals of total FliA and correspond to the mean of the promoter

activities for 6 replicates ± twice the standard error of the mean. The threshold parameter

θ is shown as a dashed green line.
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Figure C.2: Free and total concentration of FliA when using promoter activities

and including global physiological effects. The concentration of free FliA (solid

line, green) is computed by means of Eq. 3.2 in Chapter 3, for the optimal fit shown in

Figure 3.10 in Chapter 3. The shaded regions represent the confidence intervals of total

FliA and correspond to the mean of the promoter activities for 6 replicates ± twice the

standard error of the mean. The threshold parameter θ is shown as a dashed green line.
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Figure C.3: Free and total concentration of FliA when using reconstructed pro-

tein concentrations for the measured reference half-lives, and including global

physiological effects. The concentration of free FliA (solid line, green) is computed by

means of Eq. 3.2 in Chapter 3, for the optimal fit shown in Figure 3.16 in Chapter 3. The

shaded regions represent the confidence intervals of total FliA and correspond to the mean

of the promoter activities for 6 replicates ± twice the standard error of the mean. The

threshold parameter θ is shown as a dashed green line.
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Figure C.4: Free and total concentration of FliA when using reconstructed

protein concentrations for physiologically-realistic half-lives estimated from the

data, and including global physiological effects for tar regulation function. The

concentration of free FliA (solid line, green) is computed by means of Eq. 3.2 in Chapter 3,

for the optimal fit shown in Figure 3.18 in Chapter 3. The shaded regions represent the

confidence intervals of total FliA and correspond to the mean of the promoter activities for

6 replicates ± twice the standard error of the mean. The threshold parameter θ is shown

as a dashed green line.
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D. Parameter estimation

The kinetic model for the regulation of FliA-dependent genes (tar and flgM ) is devel-

oped as a function of the total concentration of FliA and FlgM and ignores (Eq. D.1)

or includes (Eq. D.2) global physiological effects:

f(t) = k0 + k1

pnA,free
pnA,free + θn

, (D.1)

f(t) = fconst(t)

[
k0 + k1

pnA,free
pnA,free + θn

]
, (D.2)

We analyse next the properties of the sigmoidal function (Eq. D.3) contained by the

kinetic models above with respect to the parameter values estimated for θ.

fsig(pA,free, θ, n) =
pnA,free

pnA,free + θn
, (D.3)

Figures D.1 and D.2 show explicitly how the estimated value of the θ parameter

changes when using promoter activities of FliA and FlgM instead of their protein

concentrations (model Eq. D.1), when including global physiological effects (model

Eq. D.2), and when using protein concentrations and the global physiological effects

(model Eq. D.2). As expected, when not using protein concentrations in the regulation

function, neither for tar (Figure D.1-A,B) nor flgM (Figure D.2-A,B) the estimated

value of θ is not in the range of FliA concentration.
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Figure D.1: Sigmoids for identified parameters for tar regulation. The sigmoidal

functions (Eq. D.3) (•, blue) shown in Figures A-G are computed using identified param-

eters (k0, k1, n, θ,K) for tar regulation in the case when A: promoter activities for fliA

and flgM replace protein concentrations of FliA and FlgM, respectively, B: promoter ac-

tivities for fliA and flgM replace protein concentrations of FliA and FlgM, respectively,

and global physiological effects are added, C: protein concentrations of FliA and FlgM

are reconstructed from the activities of their promoters for physiologically realistic half-

lives (30 min for FliA and 18 min for FlgM) and global physiological effects are added,

D: protein concentrations of FliA and FlgM are reconstructed from the activities of their

promoters for physiologically realistic half-lives (50 min for FliA and 27 min for FlgM)

and global physiological effects are added, E: protein concentrations of FliA and FlgM

are reconstructed from the activities of their promoters for physiologically realistic half-

lives (27 min for FliA and 9 min for FlgM) and global physiological effects are added,

F: protein concentrations of FliA and FlgM are reconstructed from the activities of their

promoters for estimated half-lives from the data and global physiological effects are added;

FliA half-lives values are (50 min, 24 min, 24 min, 35 min, 45 min) in (∆rpoS, ∆cpxR,

∆csgD-M9, ∆csgD-LB, WT-LB) conditions, respectively and FlgM half-lives are equal to

(27 min, 18 min, 24 min, 18 min, 18 min), G: protein concentrations of FliA and FlgM are

reconstructed from the activities of their promoters for estimated half-lives from the data

and global physiological effects are added; FliA (40 min, 40 min, 24 min, 1 h, 45 min) and

FlgM (11 min, 27 min, 13 min, 24 min, 18 min) half-lives are similar to the previous case.

The parameters θ of the sigmoids are shown in dashed, red lines.
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Figure D.2: Sigmoids for identified parameters for flgM regulation. The sig-

moidal functions (Eq. D.3) (•, blue) shown in Figures A-G are computed using identified

parameters (k0, k1, n, θ,K) for flgM regulation in the case when A: promoter activities for

fliA and flgM replace protein concentrations of FliA and FlgM, respectively, B: promoter

activities for fliA and flgM replace protein concentrations of FliA and FlgM, respectively,

and global physiological effects are added, C: protein concentrations of FliA and FlgM

are reconstructed from the activities of their promoters for physiologically realistic half-

lives (30 min for FliA and 18 min for FlgM) and global physiological effects are added,

D: protein concentrations of FliA and FlgM are reconstructed from the activities of their

promoters for physiologically realistic half-lives (24 min for FliA and 27 min for FlgM)

and global physiological effects are added, E: protein concentrations of FliA and FlgM are

reconstructed from the activities of their promoters for physiologically realistic half-lives

(27 min for FliA and 9 min for FlgM) and global physiological effects are added, F: protein

concentrations of FliA and FlgM are reconstructed from the activities of their promoters for

estimated half-lives from the data and global physiological effects are added; FliA half-lives

values are (24 min, 35 min, 27 min, 50 min) in the (∆rpoS, ∆cpxR, ∆csgD-M9, ∆csgD-LB)

conditions, respectively, and FlgM half-lives are equal to (27 min, 11 min, 11 min, 9 min),

G: protein concentrations of FliA and FlgM are reconstructed from the activities of their

promoters for estimated half-lives from the data and global physiological effects are added;

FliA (24 min, 35 min, 27 min, 27 h) and FlgM (18 min, 13 min, 20 min, 27 min) half-lives

are similar to the previous case. The parameters θ of the sigmoids are shown in dashed,

red lines.
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E. Additional information on plas-

mid construction

In order to account for the global physiological effects we used the vector from the li-

brary developed at the Weizmann Institute (Zaslaver et al., 2006) and we constructed a

reporter for the constitutive promoter pRM of the phage lambda. The pRM promoter

region was cloned into the pUA66gfp plasmid backbone using the Gibson Assembly

method (Gibson, 2011) and the primer sequences detailed in the table below (Ta-

ble E.1).

Plasmid Primer sequence

pUA66pRM-gfp pRM-fw: GAGGC CCTTT CGTCT TCACC

TCGAG CCTAT CACCG CCAGA

pRM-re: TTCTT AAATC TAGAG GATCC

GGTTT CTTTT TTGTG CTGAT

gfp-fw: ATCAG CACAA AAAAG AAACC

GGATC CTCTA GATTT AAGAA

gfp-re: TCTGG CGGTG ATAGG CTCGA

GGTGA AGACG AAAGG GCCTC

Table E.1: Primers used for the construction of pUA66pRM-gfp plasmid. The

pUA66pRM-gfp plasmid was constructed with the Gibson Assembly method Gibson (2011).

The pUA66gfp plasmid backbone was amplified using the primers gfp-fw and gfp-re. The

pRM promoter region was amplified from the pZE1RMgfp plasmid Berthoumieux et al.

(2013b) using the primers pRM-fw and pRM-re. pRM-fw and pRM-re contain the XhoI

and BamHI restriction sites, respectively, allowing the insertion of the amplified DNA

between these two sites on the pUA66gfp plasmid.
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