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Wei ZHOU

Instabilités de trajectoires de
sphères, ellipsoïdes et bulles

La thèse présente une étude numérique des instabilités de trajectoires de sphères, d'ellipsoïdes aplatis et
de  bulles  en  mouvement  libre  sous  l'action  de  la  gravité,  de  la  poussée  d'Archimède  et  des  forces
hydrodynamiques.

Le chapitre sur les sphères reprend, complète et étend l'étude numérique de Jenny et al. (2004) en se
concentrant sur la transition au chaos et sur les trajectoires chaotiques. Les résultats montrent la différence
entre le scénario de transition au chaos de sphères de faible et de grand rapport de densité. Plusieurs
grandeurs statistiques sont proposées afin de fournir une caractérisation quantitative des états chaotiques.
Elle  permettent  de  mettre  en  relation  les  états  ordonnées  et  chaotiques  et  offrent  une  possibilité  de
comparaison objective de données aléatoires d'origine numérique ou expérimentale.

L'étude, très extensive, du comportement d'ellipsoïdes aplatis établit le lien entre les disques et les sphères
en  faisant  varier  l'aplatissement  des  objets  depuis  infiniment  plat  jusqu'à  presque  sphérique.  Les  huit
diagrammes d'état présentés permettent de comprendre l'effet de la forme des ellipsoïdes sur le scénario
de transition.  Le cas d'ellipsoïdes presque sphériques montre que de faibles imperfections de la forme
peuvent avoir in impact significatif sur les trajectoires de sphères de très faible rapport de densité.

Pour les bulles considérées dans la limite de rapport de densité et  viscosité gaz/liquide nul,  l'étude se
concentre sur l'analyse de stabilité linéaire et aboutit à la courbe de stabilité marginale dans le plan des
paramètres nombre de Bond –  nombre de Galilée  en tenant  compte de la  déformation des bulles  au
moment de la perte de leur axisymétrie. Plus deux décades de nombres de Bond, entre 0,1 et 20, sont
couvertes. Les résultats montrent clairement l'effet de la déformation de la bulle sur le seuil de l'instabilité.

Mots clé : chute ou ascension libre, instabilités de trajectoires, sphère, ellipsoïdes aplatis, bulle déformable

The thesis presents a numerical study of path instabilities for spheres, oblate spheroids and bubbles moving
freely under the effect of the gravity, buoyancy and hydrodynamic forces.

For spheres, the parametric study of Jenny et al. (2004) is revisited, improved end extended with a special
focus on the chaotic states. The results reveal that the effect of density ratio responsible for different oblique
oscillating states of low and high frequencies has a significant impact both on the onset of chaos and on the
behavior of fully chaotic states. Several quantitative statistical quantities are proposed and shown to be
relevant for establishing the relation between chaotic and ordered states and for an objective comparison of
random data of numerical or experimental origin. 

The extensive study on freely moving spheroids establishes the link between disks and spheres by varying
the aspect ratio of spheroids from infinitely flat to almost spherical. The state diagrams provided for eight
different aspect ratios of spheroid show in detail how the transition scenario varies depending of the body
shape. The investigation of  almost spherical  spheroids reveals the specificities of the dynamics of  light
imperfect spheres. 

For the deformable gas bubble in the limit of zero gas/liquid density and viscosity ratio, a marginal stability
curve is given in the two-parameter plane of the Galileo and the Bond number indicating the critical Galileo
numbers for the loss of stability of vertical trajectories. The numerical investigation covers more than two
decades of Bond number going from 0.1 to 20. The results clearly show the crucial role of the surface
deformation. 

Keywords: free fall or ascension, path instability, transition scenario, sphere, oblate spheroids, deformable
bubble
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Résumé

Le comportement de particules individuelles peut avoir une grande influence sur celui des
systèmes d’un grand nombre particules intervenant dans de nombreuses applications du
domaine de l’environnement (sédimentation) ou de l’industrie (lits fluidisés, écoulements à
bulles). Il apparâıt que la trajectoire d’une particule individuelle, sphérique ou axisymétrique,
ou celle d’une bulle isolée, tombant ou montant dans un fluide newtonien, devient sous
certaines conditions non-verticale, instationnaire, voire chaotique. Ce phénomène s’explique
par des instabilités intervenant dans un système combinant les degrés de liberté du fluide
avec ceux de l’objet solide ou avec ceux de la surface libre de la bulle. L’apparition des
instabilités de trajectoire se répercutent à leur tour sur un système de grand nombre de
particules en changeant brutalement ses propriétés statistiques Uhlmann & Doychev (2014).

La thématiques des instabilités de trajectoire fait l’objet d”une série de travaux réalisés
au sein de l’équipe Mécanique des Fluides de l’ICube. La thèse de Mathieu Jenny (cf. les
articles Jenny et al. (2003, 2004); Jenny & Dušek (2004)) était le premier travail numérique
présentant le scénario de transition d’une sphère en mouvement libre dans un fluide newtonien
sous l’action de la gravité. Le diagramme d’état qui y est présenté a été plusieurs fois repro-
duit dans des travaux postérieurs (ex. Veldhuis et al. (2008)). La richesse du comportement
d’objets plats (disques, cartes) intriguait pendant de nombreuses années les expérimentateurs
Willmarth et al. (1964); Field et al. (1997) sans qu’on arrive à simuler numériquement le
système d’une manière fiable et précise. Les premiers résultats numériques ont été obtenu
par F. Auguste à l’IMF de Toulouse Auguste (2010) et une étude paramétrique exhaustive
a été effectué dans le cadre la thèse de M. Chrust (cf. articles Chrust et al. (2013, 2014)). La
volonté d’expliquer les résultats expérimentaux publiés après la thèse de M. Jenny a motivé
des simulations complémentaire. Une motivation supplémentaire venait de la nécessité de
fournir une base de données complète des trajectoires d’une sphère dès que les résultats de
l’équipe ont commencé à servir de bechmarks pour des méthodes numériques visant des si-
mulations de systèmes à grand nombre de particules Uhlmann & Dušek (2014). Il s’est avéré
nécessaire d’avoir des résultats plus précis, plus complets. En ce qui concerne la thèse de M.
Chrust, la méthode numérique développée dans son cadre a montré un potentiel permettant
d’envisager une étude multiparamétrique et a ouvert la question du lien entre le scénario
d’objets plats (disques) et celui de la sphère.

Les instabilités de trajectoires des bulles n’ont été abordées numériquement et théoriquement
jusqu’alors que sous des hypothèses simplificatrices Magnaudet & Mougin (2007a); Tchoufag
et al. (2013); Cano-Lozano et al. (2013) supposant une forme fixe de la bulle à l’apparition
des instabilités. Le récent article de Nature Communications Tripathi et al. (2015) est le
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iv RÉSUMÉ

premier à donner des résultats numériques pleinement tridimensionnels tenant compte de la
déformation de la surface de la bulle. L’ambition de l’article allant au delà de l’apparition de
l’instabilité, les information portant sur son seuil et ses caractéristiques restent, cependant,
trop sommaires.

La présente thèse aborde les sujets mentionnées ci-dessus.

Sphère

Le problème de la particule sphérique est numériquement le plus aisé et une version
légèrement améliorée du code développé pendant la thèse de M. Kotouc (cf. e.g. Kotouč
et al. (2009)) s’est avéré très efficace pour l’aborder. Le résulat de plusieurs centaines de
simulations peut être résumé sous la forme du diagramme d’état de la figure 1. Comme ex-
pliqué dans les articles précédents (ex. Jenny et al. (2003)), tous les systèmes comportant
une sphère homogène de masse volumique ρs et de diamètre d en chute ou en ascension libre
sous l’action de la gravité (d’accélération g), de la poussée d’Archimède et des forces hy-
drodynamiques dans un fluide newtonien (de masse volumique ρ et de viscosité cinématique
ν) asymptotiquement au repos et non confiné, peuvent être caractérisés par seulement deux

paramètres. Nous choisissons, à cet effet, le nombre de Galilée G =

√

∣

∣

∣

ρs
ρ − 1

∣

∣

∣
gd3/ν et le rap-

port des densités ρs/ρ. Pour chaque couple de paramètres nous résolvons numériquement les
équations de Navier-Stokes et représentons les états asymptotiques obtenus (c’est à dire, pour
une sphère lâchée au repos, bien après la phase d’accélération initiale) sur le diagramme de
la figure 1. Dans certains cas, en fonction des conditions initiales, deux états asymptotiques
différents ont été mis en évidence (bi-stabilité). C’est le cas d’une superposition partielle de
la zone chaotique et de la zone de trajectoires periodiques verticales. Hormis la délimitation
exacte de cette zone d’ordre dans le chaos (au centre de la figure), nous avons répondu à la
question de l’origine de deux fréquences des trajectoires obliques et oscillantes. La zone de
basse fréquence correspond aux systèmes où l’inertie des particules reste suffisamment faible
pour permettre à la particule d’effectuer des oscillations de grande amplitude et d’interagir
fortement avec le sillage. En revanche, dans la zone de haute fréquence, l’amplitude des oscil-
lations de la sphère est faible et le système possède essentiellement la dynamique du sillage
d’une sphère fixe. Finalement, nous avons essayé de fournir une quantification statistique des
états chaotiques afin de faciliter des comparaisons avec des expériences effectuées en général
pour des nombres de Galilée élevés. L’utilité d’une telle approche est illustrée par la figure
2 mettant en évidence une zone de grandes fluctuations de la vitesse horizontale (grands
G, faible rapport de densités) correspondant à des trajectoires presque hélicöıdales ayant
des fréquences proches des trajectoires observées expérimentalement Horowitz & Williamson
(2010). Ce volet de travail a été publié dans l’International Journal of Multiphase Flow Zhou
& Dušek (2015).

Ellipsöıdes de révolution (sphéröıdes)

Le code servant à simuler les trajectoires des ellipsöıdes de rotation avait été développé
dans le cadre de la thèse de M. Chrust mais la dynamique des ellipsöıdes restait à explorer.
Le problème a été paramétrisé par trois paramètres, le rapport d’aspect χ = d/a, d étant
le diamètre et a la longueur de l’axe de révolution, la masse adimensionnée m∗ = m/(ρd3)
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Figure 1 – Diagramme d’états dans le plan des paramètres G - ρs/ρ pour les trajectoires
d’une sphère. Les seuils des bifurcations sont représentés par des lignes, les couleurs marquent
les régimes indiqués dans la figure. Les symboles représentent les trajectoires effectivement
simulées. Pour la description détaillée des symboles : cf. l’article Zhou & Dušek (2015).

(mesurant l’inertie du solide), m étant la masse de l’ellipsöıde et ρ la masse volumique, et
G =

√

|m∗ − V ∗|gd3/ν le nombre de Galilée faisant intervenir l’accélération gravitationnelle
g, la viscosité cinématique du fluide ν et le volume adimensionné V ∗ = V/d3. L’étude s’est
limitée aux ellipsöıdes aplatis (χ ≥ 1), χ = 1 correspondant à la forme sphérique et χ = ∞ à
un disque infiniment plat (avec la masse distribuée légèrement non-uniformément). L’étude
a ainsi permis d’établir le lien entre le scénario de la sphère et celui du disque. Plusieurs mil-
liers de simulations ont été effectuées pour balayer les plans χ = ∞, 10, 6, 5, 4, 3, 2 et 1.1. Les
figures 3 et 4 représentent les exemples des plans χ = 6 et χ = 1.1. La forme de l’ellipsöıde
est schématisée en bas à gauche des figures. Le scénario sur la figure 3 est très proche de
celui d’un disque plat Chrust et al. (2013). Il est caractérisé par trois régimes dominants : des
trajectoires en zig-zag le long desquelles l’axe de l’ellipsöıde s’incline fortement par rapport
à la verticale (zone bleue de la figure 3), des trajectoires obliques avec l’ellipsöıde effectuant
périodiquement des culbutes (zone rouge) et une zone de transition (zone verte) d’intermit-
tence entre les deux régimes. L’article Chrust et al. (2013) a mis en évidence des régimes de
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Figure 2 – Moyenne quadratique des fluctuations de la vitesse horizontale de la sphère
(〈

(uh − 〈uh〉)2
〉)1/2

.

faibles oscillations qui peuvent passer inaperçues dans les expériences. Ces régimes existent
également pour les ellipsöıdes aplatis (zones magenta). Déjà pour les disques, plusieurs do-
maines de co-existence de régimes avait été mis en évidence. Ces zones de bi-stabilité sont
encore plus développées dans le cas d’ellipsöıdes de rapport d’aspect 6. En particulier on
remarque que les trois régimes caractérisés par de fortes amplitudes d’oscillations débordent
dans la zone de trajectoires verticales ce qui s’explique par l’inertie de l’objet solide. Sur
la figure 4 on reconnâıt les régimes du scénario de la sphère (figure 1). La seule différence
consiste dans le fait que dans les régimes obliques (régime stationnaire et régime oscillant -
zones grise, verte et jaune) l’ellipsöıde ne peut pas tourner sur lui même car même le faible
aplatissement l’en empêche. En revanche, ce même aplatissement permet la co-existence des
régimes typiques pour la sphère avec le régime d’oscillations en zig-zag qui apparâıt même
à des nombres de Galilée inférieurs au seuil du régime oblique stationnaire suite à une bi-
furcation de Hopf précédant (pour de faibles inerties) la bifurcation régulière intervenant au
G ≈ 110. Une fois la figure 4 commentée, il est intéressant de revenir à la figure 3. On peut
y remarquer le scénario de la sphère sous une forme embryonnaire. En effet, la ligne verti-
cale noire marquant l’instabilité primaire pour des masses adimensionnées inférieures à 0.25
correspond au seuil du régime oblique stationnaire qui se distingue par son indépendance de
l’inertie. On a pu également mettre en évidence plusieurs cas de régime oblique stationnaire
(triangles bleus près de la ligne ligne verticale) ainsi que de régime oblique oscillant (triangles
verts).

Bulle

L’étude de la bulle a été précédée par une étape d’adaptation extensif du code numérique.
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Figure 3 – Diagramme d’état pour des ellipsöıdes très aplatis (χ = 6). Signification des
couleurs : blanche : trajectoires verticales, rouge - régime périodique de chute accompagnée
de culbutes (“tumbling”), bleue - oscillations périodiques de grande amplitude d’inclinaison
de l’axe (régime“zig-zag”), verte - régime intermittent entre culbutes et oscillations, magenta
- modes périodiques, quasi-périodiques ou chaotiques avec faible amplitude d’inclinaison.

Figure 4 – Diagramme d’état pour des ellipsöıdes de forme presque sphérique (χ = 1.1).
Même signification de couleurs que figure 1 sauf la couleur bleue qui représente le régime
“zig-zag” comme sur la figure 3. 1.
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L’approche comportant un maillage 3D déformable a été retenue (méthode ALE). La descrip-
tion de la géométrie du maillage se fait, néanmoins, toujours par décomposition azimutale
spectrale ce qui permet au code de garder sa précision et son efficacité lorsque la perte
de l’axisymétrie du maillage accompagne celle de l’ensemble de l’écoulement. La bulle est
traitée comme un espace vide de volume constant délimité par une surface libre. Afin de
tenir compte de la condition de surface libre, la formulation faisant intervenir le tenseur de
contrainte dans les équation de Navier-Stokes (stress formulation) a dû être implémentée.
La discrétisation assure la stabilité numérique de l’algorithme malgré la présence des ondes
de surface.

Dans le cadre des hypothèses retenues, le problème ne comporte que deux paramètres,
le nombre de Bond Bo = ρgd2/σ, caractérisant les effets de tension superficielle, combi-
nant la gravité g, le diamètre de la bulle au repos (lorsqu’elle est sphérique) et la tension
superficielle σ, et le nombre de Galilée, défini, cette fois-ci comme G =

√

gd3/ν, avec ν la
viscosité cinématique du liquide ambiant. En absence de connaissances préliminaires fiables
(les études numériques précédentes ayant été effectuées sous hypothèses de bulles ‘rigides’),
sans parler des difficultés numériques impliquées par la nouveauté du sujet, nous avons décidé
de limiter l’étude essentiellement à l’analyse de stabilité linéaire de la montée verticale. La
nécessité de prendre en compte la déformation de la surface comme facteur essentiel de
l’instabilité apparâıt clairement sur la figure 5 montrant la forme de la bulle pour une insta-
bilité développée. Une forme légèrement triangulaire a été également obtenue dans quelques
travaux numériques où les bulles ont pu être simulées pleinement en 3D dans des régimes
supercritiques.

L’analyse de stabilité linéaire a été menée dans l’intervalle Bo ∈ [0.1, 10]. Dans l’ensemble
de cet intervalle, la bifurcation est du type de Hopf et son seuil (nombre de Galilée critique)
varie relativement peu en fonction du nombre de Bond. La bifurcation donne clairement
naissance a des trajectoires planes oscillantes dont la fréquence d’oscillation varie d’une
manière assez significative en fonction du nombre de Bond. Nous avons obtenu les seuils, les
fréquences au seuil et les modes linéaires au seuil pour 11 valeurs différentes du nombre Bond
ce qui nous a permis d’obtenir une courbe de stabilité relativement détaillée sur l’intervalle
considéré (figure 6).

Conclusion

Alors que l’étude des trajectoires des objets solides est à présent relativement complète, les
travaux portant sur le problème de la bulle devront être poursuivis après l’achèvement de la
présente thèse. Malgré l’impossibilité de capter les phénomènes accompagnés de changements
topologiques (extraction de bulles secondaires) l’étude pleinement non-linéaire apportera
certainement de nombreuses informations intéressantes. On peut également s’attendre à ce
que les problèmes de stabilité numériques soient moindres pour des gouttes et inclusions
fluides qui pourront également être simulées par le code obtenu.
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a)

b) c)

Figure 5 – Bulle déformée dans le régime saturé non-linéaire pour Bo = 1 et G = 100. a)
Vue du haut. La direction du déplacement vertical est indiquée par la ligne rouge. b) Vue
(presque) horizontale dans le plan de la trajectoire. La bulle s’approche du lecteur. c) Vue
(presque) horizontale perpendiculairement au plan de la trajectoire. La bulle se déplace vers
la droite.
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Figure 6 – Nombre de Galilée critique Gcrit de l’instabilité linéaire de l’ascension d’une
bulle en fonction du nombre de Bond
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Kotouč, M., Bouchet, G. & Dušek, J. 2009 Transition to turbulence in the wake of a fixed
sphere in mixed convection. J. Fluid Mech. 625, 205–248.

Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech.
572, 311–337.

Tchoufag, J., Magnaudet, J. & Fabre, D. 2013 Linear stability and sensitivity of the flow
past a fixed oblate spheroidal bubble. Physics of Fluids 25, 054108.

Tripathi, M. K., Sahu, K. C. & Govindarajan, R. 2015 Dynamics of an initially spherical
bubble rising in quiescent liquid. Nature Communications 6:6268.

Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at
intermediate galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech.
752, 310–348.
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Chapter 1

Introduction

1.1 Two phase flows of solid particles bubbles and drops

The intriguing phenomena of multiphase flows have been challenging human understanding
and imagination since the beginning of the world. In ancient times, far before the invention
of writing, people saw materials of the physical world as different forms of energies flowing
freely in space, which may be the origin of the famous “panta rei” of Heraclitus, a pre-
Socratic Greek philosopher, having inspired not only rheologists (Beris & Giacomin, 2014)
but also, more broadly, hinting to fluid flows. In the sky of deep quiet starry nights through
the unlimited extending space, we see stars traveling in the ambient interstellar gases through
varying states over large time scale during the formation of galaxies, which can be compared
to transitions of multiparticle flows and sedimentation processes within the human life cycle.
Bathing in the solar wind, our planet Earth keeps moving and rotating under the effect of
electromagnetic field of the Sun, giving the impression of similarities to the well studied
problem of flow past cylinders (Figure 1.1).

Figure 1.1: left: Milky Way, right: Earth’s magnetosphere, the solar wind flows from left to
right.

1
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Beside the interaction between cosmological bodies and interstellar environment, large
amount of particles under gravity-driven motion in a viscous flow is a phenomenon frequently
observed in nature and encountered in geology, life sciences and industries, such as cloud
formations, fall of rain, sedimentation, saltation and red blood cell aggregation. Sandstorm,
or saltation, is a process of particle transportation through which the particles vibrate,
leap, strike the ground, break up into smaller particles. As the wind goes beyond the
critical speed, mechanisms of suspension, saltation and creep occur (Squires (2007)). In
the ocean-atmosphere environment, fluxes of heat, moisture and momentum are exchanged
at the ocean-atmosphere interface, consequently ocean surface waves are generated which
eventually changes the wind speed near the surface. Under certain circumstances a tropical
cyclone, or violent hurricane, forms.

Figure 1.2: Yueya Quan (Crescent Lake) in the Gobi Desert, Dunhuang, China.

Given large scales of temporal and spatial evolution, a good understanding of these com-
plex systems is yet far from being fulfilled, though, experiments and simulations still provide
qualitative characteristics by simplifying the physical models. In sedimentation, earlier ex-
periments and simulations (Nguyen & Ladd (2005); Mucha et al. (2004)) for dilute systems
of suspensions at low Reynolds numbers, in a macroscopic view, focused on the effect of con-
finement on hydrodynamic interactions in the bulk suspensions and stratification. Nguyen
& Ladd (2005) suggested the crucial role of the container in determining the distribution of
suspensions, although the reason why macroscopic boundary conditions played a key com-
ponent of the dynamics was unclear. Mucha et al. (2004) used numerical simulations and
experiments showing “a critical stratification above which the characteristics of the density
and velocity fluctuations change significantly.”



1.1. TWO PHASE FLOWS OF SOLID PARTICLES BUBBLES AND DROPS 3

Figure 1.3: Left figure: top and side view of instantaneous flow field including 128 falling
particles at Reynolds number Re = 400 (reproduced from Kajishima & Takiguchi (2002)).
Right figure: simulation of a flow induced by clustering of spheres falling at Galileo number
Ga = 178. The grey tube-like structure shows a significantly downward accelerated flow, the
individual particles are visualized by the vorticity of their wakes (reproduced from Uhlmann
& Doychev (2014)).

Particle clustering at moderate Reynolds number (Re < 400) has been discussed by
Kajishima & Takiguchi (2002) showing the phenomenon of wake-induced clustering for higher
Reynolds numbers. They explained the formation of clustering as “the drag on particles
trapped in the wake of upstream ones is likely to be small than those falling individually”
and “approach ones present in lower position” (left Figure 1.3). Recently, Uhlmann &
Doychev (2014) provided the evidence of a significant change of the collective motion due
to onset of path instabilities of individual particles by in a massively parallel numerical
simulation involving 12 000 fully resolved spheres: “... it appears tempting to relate the
onset of clustering to the bifurcation point (from axisymmetric to planar oblique) of the
wake of an isolated sphere...”, and pointed out the effect of the settling velocity of a single
sphere: “it may be possible to approximate the particle settling velocity as the sum of two
contributions, adding the characteristic meso-scale velocity of the surrounding fluid to the
settling velocity value of an isolated sphere”. The quantitative knowledge of the behavior of
a single sphere helped not only to the understanding of the physics of the multiparticle flow
but also served as a useful benchmark to optimize numerical parameters for aforementioned
massive multiparticle simulation (Uhlmann & Dušek, 2014).

On the other hand, bubbly flows, frequently encountered in daily life as well as in industry,
have been receiving much attention. They play an important role in processes, for instance,
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of cavitation, two–phase heat transfer, nuclear and chemical reaction, smelting of metals.
Compared with the particle–laden flows, the small size, fast times scales and deformation
of rising bubbles makes the problem of gas–liquid interaction more difficult to investigate
experimentally and simulate numerically. Neglecting the bubble deformation, Esmaeeli &
Tryggvason (1998) carried out direct numerical simulations of rising bubbles at low Reynolds
number (Re = 1 − 2) in a periodic box, including up to 324 two-dimensional bubbles and
8 three-dimensional bubbles. They found that the original regular array of bubbles was
unstable and broke quickly in a “drafting, kissing and tumbling” (Fortes et al. (1987)) fashion.
Bubbly flows are also common issue in the study of cavitation similarly to the process of
boiling. The primary difference of both is that boiling occurs when the local vapor pressure
of the liquid rises above its local ambient pressure and increasing energy generate the phase
change to a gas, whereas in the case of cavitation, local pressure falls sufficiently far below
the saturated vapor pressure (Brennen (1995)).

Figure 1.4: Left: a falling water drop breaking (Villermaux & Bossa (2009)), right: cavitation
in the wake of a water jet at St. Anthony Falls Laboratory, University of Minnesota.

Other deformable bodies, drops and droplets, differentiate generally from bubbles by
the mechanisms of transition, coalescence and breakup. Besides the dependence on inertia
and surface tension, the size of bubbles and drops has been well discussed. In the case
of raindrops, Villermaux & Bossa (2009) have shown that the larger drops deform as they
interact with their surroundings during the fall and fragment into smaller drops, which
affect the distribution of sizes and limit the largest raindrops. Another important issue is
the vorticity induced by the bubble(drop) motion. In a recent paper, Tripathi et al. (2014)
compared similarities and differences between rising bubbles and falling drops and showed
that residual vorticity tends to lie in the lighter fluid, that is, to concentrate within a bubble
and outside of a drop.
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Despite the strong motivation given by the fact that multiparticle and bubbly flows play
a very important role in industrial and geophysical processes and that the motion of single
particles is essential for their understanding, the problem of a single particle moving freely
in a fluid is, to some extent, still an open topic, especially in the case of a bubble where
numerical parametric work is still scarce.

1.2 Phenomenological models

The essential for the understanding the dynamics of multiphase flows is to know how particles
move within the surrounding fluid and how their interfaces evolve under the mechanism of
fluid–particle interaction. To illustrate the mutual interactions of the fluid and solid phases,
consider the motion of a single particle immersed in a fluid. Fluid exerts a hydrodynamic
force on a particle at the same time when a particle disturbs the flow. In what follows, the
density and kinematic viscosity of the continuous phase are considered constant and the fluid
is assumed to be incompressible.The flow is then governed by the Navier–Stokes equations:

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∇2v (1.1)

and the continuity equations describing the conservation of mass

∇ · v = 0 (1.2)

whereRe = U∞d/ν is the Reynolds number representing an inverse of the non-dimensionalized
kinematic viscosity (ν). These equations have to be completed by the initial and boundary
conditions. The domain is considered to be infinite with the fluid being at rest on its limits.
In practice the domain is finite. However, its size should be sufficiently large so that the flow
is not altered due to the introduced confinement. The interaction between the solid and the
fluid is due to the no-slip boundary condition on its surface S, which moves with a velocity
u. This boundary condition is expressed by:

v|S = u + Ω× r|S (1.3)

where v|S is a velocity of the fluid, that is in contact with the solid, Ω is the angular velocity
of the solid and r is the position vector of a point on its surface.

The difficulty of solving the coupled solid-fluid problem consists in resolving all the scales
present in the problem. Moving particle introduces the energy to the surrounding fluid, that
in turn governs the evolution of large scale flow structures. The two-way coupling between
a particle and continuous phase is non-trivial and requires careful treatment.

Theoretical approaches to the modeling of multiparticle flows can be challenging since
they can additionally account for the interactions between particles. An approach consists
in considering both the fluid and solid phases as distinct media. The continuous phase
is resolved using Eulerian approach through the solution of the Navier Stokes equations
possibly augmented by a source term modeling the action of the solid phase on the fluid
one to account for a two way coupling. The solid phase is resolved using the Lagrangian
approach consisting in integration of Eq. (1.4). The forces F acting on a single particle listed
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in Eq. (1.6) are modeled phenomenologically (see Tanabe & Kaneko (1994); Mahadevan et al.
(1999); Caballina (2002)).

The three translational degrees of freedom of a particle obey the motion equation:

m
du

dt
= (m−mf )g + F (1.4)

where m and mf is the mass of a particle and that of a volume of the displaced fluid
respectively, u is the velocity of the center of mass of the particle and g represents the
vector of gravitational acceleration. In a sub-critical regime, a particle placed in a steady
homogeneous flow follows a vertical path. The driving force (resulting from gravity and
buoyancy) is counterbalanced by the hydrodynamic drag F = FD. The derivative on the
left hand side of Eq. (1.4) is equal to zero in this case. Non-dimensionalization of the drag
force yields the drag coefficient:

CD =
FD

1
2ρu

2S
(1.5)

where CD being the drag coefficient, ρ density of the fluid, u velocity of the body and S the
reference area.

As soon as the velocity of a particle starts to vary, the acceleration effects appear. More-
over, the shear of the flow must often be accounted for. The instantaneous force acting on
a particle contains, along with the drag force FD present before, supplementary terms:

F = FD + Fma + Fh + FL, (1.6)

where Fma, Fh and FL are the added mass, history and lift forces respectively. The added
mass force accounts for the inertial effects. It is a force exerted by a particle to accelerate
the surrounding fluid. It is expressed by:

Fma = Cmamf (
dv

dt
− du

dt
), (1.7)

with Cma being the added mass coefficient equal to Cma = 1/2 for a sphere (Magnaudet
et al., 1995). The history force, proposed independently by Boussinesq (1885) and Basset
(1888), represents the delay necessary for the flow to adapt to the boundary conditions
imposed by the motion of a particle. It can be expressed using the integral formulation (see
e.g. Magnaudet (1997)):

Fh =

∫ t

0
K(t− τ)(

∂v

∂τ
− ∂u

∂τ
) dτ, (1.8)

where the kernel K(t−τ) depends on the process of the diffusion of the vorticity. Calculation
of the history force is computationally expensive, however, especially for bubbles, it cannot
be neglected, when fluctuations of the relative velocities between phases become important
(Rivero et al. (1991)). If the vorticity is present in the flow, the lift force must be also
considered. It is expressed by:
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FL = −CLmf (u− v)× ω, (1.9)

where the vorticity in the absence of the rotation of a particle is given by ω = ∇ × v and
the lift coefficient is defined as:

CL =
FL

1
2ρu

2S
(1.10)

The problem consists then in the modeling of the drag and lift forces. There exist various
expressions of both dated from early in the last century. The well known drag coefficient for
a classical Stokes flow past a solid sphere is expressed as:

CD =
24

Re
. (1.11)

For a bubble the factor 24 is to be replaced by 18. For Reynolds numbers larger than
one and in more complicated configuration, the drag law obeys various empirical formulas of
increasing complexity. E.g. Moore (1963) provided a description of the flow in the asymptotic
limit of high Reynolds number for the regions of a thin boundary layer and a narrow wake
where the vorticity produced by the shear-free condition is confined resulting in the law

CD =
48

Re

(

1− 2.21

Re1/2

)

+O
(

Re−11/6
)

(1.12)

for Re > 50. Mei et al. (1994) proposed an empirical drag law for clean spherical bubbles:

CD =
16

Re

{

1 +

[

8

Re
+

1

2

(

1 + 3.315Re−1/2
)

]−1
}

. (1.13)

Due to the inertial effect of a three-dimensional motion the lift force is more difficult to
model. For an inviscid fluid and a spherical particle CL = 0.5 according to Auton (1983). For
moderate Reynolds numbers, CL is a function of shear present in the flow Aω = d|ω|/|u−v|
and tends to the asymptotic value as CL = 0.5 − 4.0Re−1 (Komori & Kurose (1996)). The
numerical results of Legendre & Magnaudet (1998) found that the empirical law in the range
of Reynolds number and shear rate 1 6 Re 6 500, 0 6 Sr 6 200 , respectively, follows as

CL(Re) =
1

2

(

1 + 16Re−1

1 + 29Re−1

)

. (1.14)

The above mentioned approaches are often used in industry to save the computational
costs. Many studies of last decades cited in the previous section lead to the conclusion that
in sedimenting flows reliable predictions can be obtained only if all the involved scales are
taken into account. This requires to resolve the boundary layers of the particles in the system
which can be achieved by direct numerical simulations, though it is still expensive within
the technology of today’s computing capacities. As emphasized in the previous section,
changes of behavior of individual particles may affect a complicated system of large amount
of particles. Transition scenarios of a single particle must thus be well elucidated first.
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Many experimental studies were motivated by the unavailability of accurate theoretical
models in the transitional regimes. The free fall of solids was intensively investigated. The
development of sophisticated optical techniques, namely of high-speed imaging, particle im-
age velocimetry (PIV) and of visualization methods and post-processing tools allowed for a
precise tracking of all 6 degrees of freedom of the body as well as for the measurement of
the velocity field (with the 3D PIV it is now possible to obtain velocity field in a volume).
Researchers focused their attention mainly on the prototypical bodies possessing an axis of
symmetry, namely on a sphere and on a disk. The advantage of considering these geometries
is that path instabilities are easy to recognize as deviation from vertical fall. Nonetheless,
the experimental approach also presents certain drawbacks for theoretical interpretations.
Namely, it is difficult to control precisely physical parameters of the system and the boundary
conditions, as well as to access in a non-intrusive manner all the relevant physical quantities.
Another issue is the high cost of experimental equipment.

It was shown that standard particle models do not predict the trajectories of a spheri-
cal particle that moves with a speed corresponding to transitional regimes (Karamanev &
Nikolov (1992)). At Reynolds numbers characteristic of the transition to turbulence in a
sphere wake (Re∞ > 135), experimental investigations (Karamanev et al. (1996)) give ev-
idence that free light spheres ascend following oblique or spiral trajectories and the mean
drag measured on the basis of the mean ascension velocity is greater than expected. The
effect appears to be the stronger the lighter the particles.

1.3 Non-straight-trajectories and path instabilities

One of the most impressive features of a freely falling or rising object in a fluid is its non-
straight trajectory, which seems a fundamental phenomenon for all bodies of any form start-
ing from a moderately large scale. The old wisdom of I Ching (易经, in Chinese, or Classic
of Changes) considers the world including Heaven, Earth, and living things as an indivisible
whole where any tiny variation in one scale will have effect on any other scales. By taking
extremely sophisticated law of changes, one can predict man’s destiny or the state of any
object in a given time. Very surprisingly, the incredible accuracy of these complicated theo-
ries of changes is based on one simple concept that everything is created by the interaction
of Yin and Yang, without being confused by apparently complicated features.

The research on non-straight-trajectories of falling objects can be of great interest in
scientific domains such as meteorology, biology, botany, especially in the study of seed dis-
persal, where falling seeds exhibit falling styles resembling that of disks. It focuses on the
mechanism of the vortices generated in the wake of the objects and its dynamic effect on the
body trajectories and shape oscillations (for deformable objects).

1.3.1 Path instabilities of non-deformable bodies

For objects falling or rising freely in a fluid it is known that, generally, as the Reynolds
number increases, the body can experience eventually, after the first bifurcation sets in,
various transition from steady oblique, steady oscillating, intermittent, tumbling, spiral to
chaotic. Figure 1.5 lists the falling styles of disks, paper cards and maple seeds reported
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(a) (b)

(c) (d)

(e)

Figure 1.5: Numerical and experimental observations of falling styles: (a) auto-gyration of
maple seeds (Varshney et al. (2012)); (b) tumbling with various periodicity of paper cards
(Anderson et al. (2005)) and fluttering, intermittent, tumbling, spiral trajectories of thin
disks ((c) Field et al. (1997); (d) Zhong et al. (2011); and (e) Chrust et al. (2013)).
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in literature. The most directly observed characteristics may be the deviation of the path,
direction of the rotation and the variation of the inclination angle for a non-spherical object.
However, rich amount of information retrieved from the numerical and experimental data
allows deeper understanding of the mechanism of the fluid-solid interaction.

The experiment of steel and lead disks falling in water and water/glycerol mixture per-
formed by Field et al. (1997) motivated further studies on the intriguing transition scenarios
of freely moving objects. Apart from the four classical falling states reported: steady verti-
cal fall, fluttering (zigzagging), intermittent and tumbling, additional helical and transitional
states for disks having small moments of inertia I∗ have been observed by Zhong et al. (2011)
experimentally (Figure 1.5(d)). After the primary bifurcation, vertically moving disks switch
directly to a planar zigzag motion, this motion is further destabilized by the growth of a
secondary oscillation in the normal direction, as this direction of oscillation rotates in the
meantime, the disk starts to spin around the revolution axis.

Direct numerical simulations predict even more subtle trajectories. Chrust et al. (2013))
evidenced, for light disks at higher Galileo numbers (m∗ = 0.25, G = 300), a periodic ver-
sion of the intermittent state between the regions of periodic fluttering and tumbling states
(Figure 1.5, bottom left). The switching of the sign of the angular and horizontal velocity
occurs periodically. A simulation starting form a tumbling state shows an angular velocity
of positive sign with oscillations be perturbed by a rapidly growing “sub-harmonic modula-
tion” resulting eventually in a change of the tumbling direction occurring, itself, periodically.
The resulting trajectory becomes vertical in the average but is more complicated than the
simple flutter. They also found a spiral tumbling motion for light disks at sufficient high
Galileo number (for instance, m∗ = 0.5, G = 400) where the tumbling state has its spiral
counter-part (Figure 1.5, bottom middle and right) making the projection of its trajectories
on the horizontal plane to be a large circle.

Periodically changing tumbling direction was evidenced also by Anderson et al. (2005)
who explored the path instabilities for thin paper cards with more attention concentrated on
the transition between fluttering to tumbling. By increasing the moment of inertia (I∗) they
observed that the paper cards experienced normal periodic fluttering (I∗ = 1.1), period-one
tumbling (I∗ = 1.4), period-two tumbling (I∗ = 1.45), periodic mixture of fluttering and
tumbling (I∗ = 1.6), chaotic dynamics (I∗ = 2.2) and small-amplitude broadside-on flutter-
ing (I∗ = 3.0) (Figure 1.5(b), from top to bottom, left to right for corresponding states).
They suggested that the bifurcation between broadside-on descent and oscillatory motion is
of supercritical Hopf type while that between fluttering and tumbling is a “heteroclinic” one
which leads to a logarithmic divergence of the period of oscillation.

For objects with asymmetric mass distribution, the situation becomes different. Varshney
et al. (2012) studied the trajectories of a falling maple seed using a high-speed camera (Figure
1.5(a)). They found that after releasing, the transition from rest goes through three stages:
a tumble about the span-wise direction, followed by a tilt towards the vertical axis, leading
to the gyration about the vertical axis and an opening of the cone angle before settling
to the asymptotic state with a constant angular velocity. An unexpected observation of
the same auto-gyration on a cut off wing of a maple seed made them measure carefully the
kinematics of falling seeds with intact and cut wings, and point out three essential ingredients
of observed helical motion, which are center of mass far away from the centroid of the seed,



1.3. NON-STRAIGHT-TRAJECTORIES AND PATH INSTABILITIES 11

a tilt initiated by aerodynamic damping and, in the asymptotic state, the balance between
aerodynamic force and the gravity and centrifugal force exerted on the seed. Another study
was also carried out (Varshney et al. (2013)) on falling parallelograms. Unlike maple seeds
which auto-gyrate but do not tumble, or rectangular cards which tumble but do not gyrate,
falling parallelograms exhibit coupled motion of auto-gyration and tumbling, similar to that
of above mentioned falling disks of small m∗ and high G.

1.3.2 Path instabilities of deformable bubbles

The fascinating phenomenon of zigzagging and spiraling rising bubbles have been attracting
scientists and artists over centuries. The circling vortices generated in the wake remind us
of the starry night of Van Gogh and even of a spiral galaxy. Studies on the characteristics
of freely rising bubbles were investigated both experimentally and numerically (Mougin &
Magnaudet (2002b); de Vries et al. (2002b); Ellingsen & Risso (2001); Zenit & Magnaudet
(2008); Veldhuis et al. (2008)) for the last decade. It is known that small bubbles of diameter
less than 1.5 mm rise in water vertically keeping their shape almost spherical by surface
tension, while larger bubbles exhibit oscillating trajectories of zigzag and helical forms.

Figure 1.6: Left: Leonardo’s sketch of the spiraling motion of a rising bubble (Prosperetti
(2004)); right: “Sphere spirals” by M.C. Escher.

Most preliminary studies focused mainly on profiles of non-deformable axisymmetric
bubbles. By considering the bubble shape as a non-deformable ellipsoid and varying the value
of aspect ratio (χ) which characterizes the shape, Mougin & Magnaudet (2002b) performed
numerical simulations showing the strong coupling between bubble rotation and two counter-
rotating vortices in its wake, which are believed as the primary cause of the path instability.
They found that beyond certain aspect ratio (χ = 2.2, below which the loss of vertical
motion can not occur) of bubble shape, the axisymmetric wake breaks into double-threaded
with much vorticity being generated at the bubble surface. In zigzagging regime the double-
threaded wake structure vanishes twice in one period making the bubble moving sideways
in opposite directions periodically under the wake-induced lift forces. Further explorations
(Magnaudet & Mougin (2007b); Zenit & Magnaudet (2008)) emphasized their suggestion of
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direct link of the primary path instability with the wake instability due to sufficient vorticity
generated by the oblate shape of the bubble. The instability results in a sideways motion
and a zigzagging path.

Figure 1.7: Experimental observations of two mutually perpendicular images of bubbles rising
in purified water with the bubble path indicated by the dot-dashed line and the bubble shape
indicated by the closed contours with an interval of 0.016 s, for Reynolds number equal to
a) 1062, b) 1197, c) 1289, d) 1674 (Veldhuis et al. (2008)).

Similarly, Tchoufag et al. (2013) carried out linear stability analysis of the flow past a fixed
spheroidal bubble to determine the regions of the flow most sensitive to perturbations. They
found that for two perturbation modes of different forms of streamwise vortices corresponding
to zigzag and helical motions, the sensitivity reaches the maximum in the core of the standing
eddy and near the separation line, respectively. Moreover, as long as the condition of aspect
ratio is fulfilled (χ > 2.2 for zigzag and χ > 2.41 for helical modes), the wake is found to be
unstable only within a finite range of Reynolds number. However, the absence of instability
for χ 6 2.2 for their spheroidal bubbles is in contrast with other results such as that of
Cano-Lozano et al. (2013) assuming also a fixed but a more realistic bubble shape.

It is obvious that if we address the problem of the path instability of a deformable body,
it is inevitable to discuss the effect of shape asymmetry and of shape variation resulting
from the inertia of the fluid and the effect of surface tension. Unlike rigid bodies, loss of
vertical motion can be caused either by unsteady vortices or shape asymmetry. Due to the
fact that they are closely correlated in the process, the effect of these two phenomena is
difficult to separate. The vortices can also be affected by shape asymmetry and vice versa as
has been discussed by Tripathi et al. (2015). In a recent numerical work accounting for real
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bubble deformation, they found that the path instability and shape asymmetry go hand in
hand and the onset of primary instability is directly related to switching between axi- and
asymmetric shapes. Similarly, the numerical results of Gaudlitz & Adams (2009) focusing on
the bubble shape variations during zigzagging rise showed that the main cause of the non-
straight trajectories and periodic vortex shedding, is accompanied with the shape oscillation
and results in a periodic asymmetric deformation.

1.4 Theory of the loss of axisymmetry in flows

Axisymmetric bodies fall (or rise) vertically if they are sufficiently small and their path
instabilities are accompanied by axisymmetry breaking of the surrounding flow. All flows
considered in this thesis are axisymmetric at low Reynolds numbers. This section is a brief
summary of the theory of axisymmetry breaking in flows presented in Ghidersa & Dušek
(2000), Jenny & Dušek (2004) and Chrust (2012). This theory is also the basis of the code
used in the thesis.

Figure 1.8: Problem geometry. U∞ is the inflow velocity and the z-axis points in the flow
direction.

The onset of the primary bifurcation making a particle losing its straight trajectories
is often preceded by a detachment of the boundary layer and a build up of a recirculation
zone. The linear stability analysis decomposes the problem of instability by considering an
axisymmetric base flow plus a perturbation term. It can be extended to a weakly non–linear
theory as was done for a jet by Danaila et al. (1998) or to describe the interplay of two
unstable eigenvalues as done by Meliga et al. (2009). Linear stability analysis was also used
to investigate the local sensitivity of the wake of a sphere, a disk and a spheroidal bubble by
Tchoufag et al. (2013).

It has been shown by Ghidersa & Dušek (2000) that the axisymmetry of the base flow,
equivalent to the fact that the linearized, fully three-dimensional, Navier–Stokes operator
commutes with the operator of rotation ∂/∂θ around the flow axis, implies that the linear
stability problem can be split up by projection onto subspaces characterized by a specific
azimuthal wavenumber m.

For axisymmetric flows the flow field is independent of θ, moreover, for non-swirling flows,
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there is no azimuthal velocity. The linear stability of an axisymmetric solution (V, P ),
V ≡ (Vz, Vr, Vθ)

T being the axisymmetric velocity field and P the pressure, consists in
studying a perturbed flow field

v = V + v′, p = P + p′, (1.15)

with an infinitesimal perturbation v′, p′ expressed via complex eigenmodes Φ,Π associated
with the eigenvalue λ:

v′ = αeλtΦ+ c.c., p′ = αeλtΠ.+ c.c., (1.16)

α being a small, but arbitrary, complex constant (c.c. standing for complex conjugate). The
perturbation is amplified or dampened depending on the solution of the eigenvalue problem:

λΦ+ L[V]Φ+∇Π = 0, (1.17a)

∇ ·Φ = 0, (1.17b)

obtained by the linearization of the Navier Stokes equations around the axisymmetric solution
(V, P ). L is a linear operator that commutes with the rotation operator ∂/∂θ, since the base
flow is independent of θ. Hence, both operators have common eigenfunctions which can be
expressed in the following form:

Φ(z, r, θ) = σ(m)φm(z, r) e
−imθ, (1.18a)

Π(z, r, θ) = πm(z, r) e
−imθ (1.18b)

where σ(m) = diag(1, 1,−i sgn(m)),m stands for the azimuthal wavenumber,m = 0,±1,±2, ...
and the array φm(z, r) ≡ (φm,z, φm,r, φm,θ) represents, respectively, the azimuthal modes of
the axial, radial and azimuthal velocity. The sign function sgn(m) is zero for m = 0. The
imaginary factor −i sgn(m) is related to the complex representation of plane rotations dis-
cussed by Jenny & Dušek (2004) which is better suited than the usual polar coordinates in
the plane normal to the symmetry axis.

In the general case of rotationally invariant swirling flows (Vθ(z, r) 6= 0) the eigenvalue
problem (Eqs. 1.17) breaks up into a sequence of independent eigenvalue problems in m-
subspaces:

λφm + Λm[V]φ+∇|m|πm = 0, (1.19a)

∇|m|πm · φm = 0, (1.19b)

The eigenvalues λ = λm depend obviously on m. The primary instability corresponds
to the first eigenvalue λm crossing the imaginary axis. In the absence of swirl Vθ = 0, the
linear operator of Eqs. (1.19) is, moreover, independent of the sign of m so that

Λm[V] = Λ|m|[V], λm = λ|m|, φm = φ|m|, πm = π|m|. (1.20)
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m = 0 m 6= 0
Im(λ) = 0 Steady axisymmetric Steady non-axisymmetric
Im(λ) 6= 0 Unsteady axisymmetric Unsteady non-axisymmetric

Table 1.1: Characteristics of the perturbed flow depending on the azimuthal wavenumber
and on the imaginary part of the first eigenvalue to become unstable.

Depending on the azimuthal wavenumber and on the imaginary part of the first eigenvalue
to become unstable, four scenarios summed up in Table 1.1 can be expected. Natarajan &
Acrivos (1993) showed that it is the steady non-axisymmetric case with m = ±1 that applies
to the sphere wake at the primary instability. For λ real, the corresponding eigensolution
of Eq. (1.19b) can be taken real (φ−m = φ̄m). Let us denote β the argument of the
complex number α representing the amplitude of the initial perturbation amplitude. The
flow perturbation that arises then has the form

v′ = 2 | α | eλ1t [φ1,z(r, z)cos(θ − β), φ1,r(r, z)cos(θ − β), φ1,θ(r, z)sin(θ − β)]T , (1.21a)

p′ = 2 | α | eλ1tπ1(r, z)cos(θ − β). (1.21b)

Eqs. (1.21) together with (1.18a) show that the perturbation is symmetric with respect to
the plane θ = β chosen arbitrarily by the initial conditions (by the initial perturbation of
the flow).

The nonlinear terms of the Navier–Stokes equations will generate higher-order harmonics
to the fundamental azimuthal mode Φ1. The perturbation will then be expanded into a full
Fourier series:

v′(z, r, θ) =
∞
∑

m=−∞
σ(m)v′

m(z, r)e
−imθ, (1.22a)

p′(z, r, θ) =
∞
∑

m=−∞
p′m(z, r)e

−imθ. (1.22b)

Note that m = 0 does not correspond to the whole axisymmetric mode but only to the
axisymmetric nonlinear correction of the base flow V. To describe the amplification of an
infinitesimal perturbation proportional to the real linear mode the following initial condition
can be assumed

v′
1 |t=0= αφ1, p′1 |t=0= απ1 (1.23)

with a very small complex constant α = aeiβ .
Being closely linked to the nonlinear theory of axisymmetry breaking in wakes of ax-

isymmetric bodies, the azimuthal Fourier expansion can thus be considered as an optimal
discretization for physical reasons. The axisymmetry gets broken if m > 0 (negative values
are equivalent if no swirl is present). The most unstable eigenvalue is mostly in the m = 1
sub-space, however, Kotouč et al. (2009) have evidenced regular bifurcations in m = 2 and
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m = 3 subspaces in the opposing flow past a heated sphere. The weakly non-linear effects at a
regular axisymmetry breaking bifurcation were described to the third order of the instability
amplitude A by Ghidersa & Dušek (2000) by a real Landau model:

dA

dt
= (λ− C|A|2)A, (1.24)

where λ is the real positive eigenvalue and C a real constant (as opposed to the Landau
model relevant to the Hopf bifurcation where the constants are complex). The amplitude A
is, however, complex. The bifurcation is supercritical if C > 0. The growth rate λ of the
instability is proportional to the parameter ε = (Re − Recrit)/Recrit close to the threshold
and the saturation amplitude |A| is proportional to

√
ε. The third order model makes it

clear that the phase of the amplitude is arbitrary. A real amplitude A corresponds to a flow
having a planar symmetry with respect to the plane defined by the real axis chosen in the
complex perpendicular plane. The arbitrary phase accounts for the arbitrary orientation of
the symmetry plane.

A weakly non-linear theory of the Hopf bifurcation was presented by Danaila et al. (1998).
The cited paper suggests a 5-th order model required for explaining a relatively complex
dynamics of a jet. A third order model is, however, sufficient to explain the existence of
helical and planar zigzagging trajectories arising at a Hopf bifurcation. A third order model
generalized to a simultaneous onset of a regular and a Hopf bifurcation was developed by
Fabre et al. (2008) and Meliga et al. (2009). If the unstable eigenvalue in the problem (1.19)
has a non zero imaginary part the instability generates two helical modes of opposite helicity
corresponding to the unstable (γ > 0) complex eigenpair γ ± iω. The helical modes are
characterized by complex amplitudes A+ and A−. Any two-dimensional vectorial quantity
in the plane normal to the base flow direction, say yOz plane, (e.g. the lift) is representable
as a complex function of time u+ = uy + iuz expressed as:

u+ = A+(t)e
iωt +A−(t)e

−iωt. (1.25)

A weekly non-linear third order approximation of the dynamics of the axisymmetry breaking
by a Hopf bifurcation yields the following two coupled equations for the amplitudes A±
(Danaila et al. (1998))

dA±
dt

=
[

γ − (C|A±|2 +D|A∓|2)
]

A±. (1.26)

where C and D are complex constants, the same in both equations with upper and lower
sign to account for the symmetry with respect to the change of the sign of helicity. A simple
calculation shows that Eqs. (1.26) have two types of asymptotic solutions:

a) one of |A+| or |A−| zero, the other equal to (γ/Cr)
−1/2,

b) both modules equal and |A+| = |A−| = [γ/(Cr +Dr)]
−1/2.

(Cr and Dr stand for real parts of C and D. Both Cr and Dr are assumed to be positive.)
For Cr < Dr the solution a) is stable and b) is unstable. The converse is true for Dr < Cr.
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The imaginary parts of C and D yield a non-linear shift of angular frequency. As a result,
Eq. (1.25) yields asymptotic states:

u+,∞ =
[

|A+,∞|ei(ω′t−ϕ+) + |A−,∞|e−i(ω′t−ϕ−)
]

(1.27)

where ω′ = ω+∆ω is the angular frequency of the limit cycle and ϕ± phase shifts determined
by the initial perturbation. The trajectory in the complex plane in the case a) is a circle
and in the case b) a straight line the inclination of which is given by the phase shifts, i.e. by
initial conditions. Danaila et al. (1998) show that higher order non-linear effects may result
in states with unequal amplitudes |A+,∞| 6= |A−,∞| yielding a flattened ellipse instead of a
straight line or a circle. (See Figure 1.9.)
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Figure 1.9: (Reproduced from Chrust (2012) Paths in the complex plane of the modeled
complex velocity of Eq. (1.27) for (a) a single non zero amplitude, A−,∞ = 0, (b) two equal
amplitudes |A+,∞| = |A−,∞| and (c) for |A−,∞| = 0.9|A+,∞|.

In regimes where the modulus of the amplitude of both helical modes is the same we find
a planar symmetry where the net helicity is zero. In the case of the wake of a thin disk at
sufficiently high Reynolds number, the lift oscillates with a zero mean value in the same way
as Figure 1.9(b). Similarly, the “zigzagging” trajectories, vertical in the average, correspond
to this case. Purely helical trajectories of Figure 1.9(a) and “flattened” helical trajectories
of Figure 1.9(c) correspond to a non zero helicity.

1.5 Wake of a bluff body

The instabilities in the wakes of fixed bluff body have been the first to be fully understood.
The rise to the von Kármán vortex street in the wake of a cylinder placed perpendicularly to
the flow has become a prototypical example of Hopf bifurcation, the latter having inspired the
first speculative scenario of transition to turbulence suggested by Landau & Lipschitz (1959).
Oscillations in wakes receive, however, also much attention from industry. For axisymmetric
bodies, like spheres, spheroids and cylinders, they help in the understanding of oscillating
paths of free particles.
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(a) Re < 5 (c) 40 < Re < 150 (e) 3× 105 < Re < 3.5× 106

(b) 5− 15 < Re < 40 (d) 150 < Re < 3× 105 (f) 3.5× 106 < Re

Figure 1.10: Sketch of transition of the vortical structures for an increasing Reynolds number
in the wake of a cylinder. (a) unseparated streaming flow; (b) a pair of fixed vortices; (c) a
laminar vortex street; (d) a turbulent vortex street; (e) narrowed and disorganized wake; (f)
a narrower reestablished turbulent vortex street (Lienhard (1966)).

1.5.1 Wake of a fixed cylinder

Motivated by various applications of cylinders in industry, the transition scenario of flow
past a fixed cylinder was well studied in the past. Fig. 1.10 illustrates the overall picture
of regimes of flow past a circular cylinder in which an unseparated streaming flow becomes
turbulent with increasing Reynolds number passing through stages of fixed vortices, laminar
vortex street until becoming turbulent with laminar and turbulent boundary layer. When the
Reynolds number is sufficiently small, the streaming flow keeps its unseparated characteristic
while as Re slightly increases, a pair of vortices arises in the wake. It is not until Re = 150
that an established two dimensional laminar vortex street gives way to fully three-dimensional
flow. Numerical linear analysis showed that the 2D flow becomes linearly unstable at Re =
188.5 (Henderson & Barkley (1996)). Up to Re = 3× 105 the previously laminar boundary
layer in front of the separation point undergoes transition to turbulent boundary layer and
the wake becomes narrow and disorganized. Beyond Re = 3× 106 a turbulent vortex street
is reestablished but is narrower than for 150 < Re < 3× 105.

1.5.2 Wake of a fixed sphere

For the problem of an unconfined sphere, experimental studies date back to the middle of
last century (Taneda (1956), Magarvey & Bishop (1961)). Further investigation (Nakamura
(1976), Sakamoto & Haniu (1990), Tomboulides et al. (1993), Sakamoto & Haniu (1995),
Ormières & Provansal (1999), Johnson & Patel (1999), Ghidersa & Dušek (2000), Gumowski
et al. (2008), Pier (2008)) focus on the range of moderate Reynolds numbers where the wake
of the sphere experiences bifurcations before settling to a chaotic state. Some of their results
are listed in Table 1.2 for the primary and secondary bifurcations and Table 1.3 for the
onset of quasi-periodicity and of chaos. Unlike the flow past a fixed cylinder which becomes
unsteady and loses its symmetry at a considerably lower Reynolds number Re = 46, the
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Figure 1.11: Patterns of vortex shedding in the wake of a sphere by Sakamoto & Haniu
(1990).

Figure 1.12: Dye visualization of the hairpin vortices at Re = 300. Near wake (bottom-left),
(x, y)-plane (top-right) and (x, z)-plane (bottom-right) by Johnson & Patel (1999).

primary bifurcation yields a steady state with a non–axisymmetric wake consisting of two
counter–rotating vorticity threads at Re1 = 212. The secondary Hopf bifurcation which
makes the double–thread becoming unsteady and triggers shedding of hairpin vortices from
the sphere is not observed until Reynolds numbers larger than Re2 = 270. The impressive
ladder–like chain of hairpin vortices oriented in one direction inspires Johnson & Patel (1999)
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to seek the forming mechanism. They conclude that, during the process, one loop of the
wake vortex is shed downstream while the other loop moves under its self–induced velocity
field across the wake to cut the next vortex loop free.

Authors Re1 Re2 St

Taneda (1956) 130
Magarvey & Bishop (1961) 210 270 0.1 (Re = 300)
Nakamura (1976) 190
Natarajan & Acrivos (1993) 210 277.5 0.113 (Re = 270)
Tomboulides et al. (1993) 210-212 250-285 0.136 (Re = 300)
Sakamoto & Haniu (1995) 300 0.15-0.165 (Re = 300)
Ormières & Provansal (1999) 180-200 275-280
Johnson & Patel (1999) 211 270-280 0.137 (Re = 300)
Ghidersa & Dušek (2000) 212 272.3 0.127 (Recrit)

0.135 (Re = 300)
Pier (2008) 210-220 270-280 0.135 (Re = 300)

Table 1.2: Published results in literature concerning the critical Reynolds number of primary
(Re1) and secondary (Re2) bifurcations and the Strouhal number (St) at the secondary
bifurcation.

Authors Re3 Stcrit St500 Stl1000 Sth1000
Achenbach (1974) 500 0.163-0.174 0.39
Kim & Durbin (1988) 360-375 0.171 0.187-0.202 0.33-0.37
Sakamoto & Haniu (1995) 420 0.175-0.18 0.195-0.205 0.29-0.34
Tomboulides & Orszag (2000) 300-500 0.045 0.167 0.195 0.35

0.136
Mittal (1999) 350-375 0.05 0.05

0.17-0.19 0.17-0.19
Ormières (1999) 390 0.12-0.13
Bouchet et al. (2006) 325 0.137

Table 1.3: Critical Reynolds number (Re3) for the third (chaotic) bifurcation and the
Strouhal number for Re = Re3, Re = 500 and Re = 1000, note that different frequen-
cies coexist.

The third bifurcation is of Hopf type and leads to quasi–periodicity (Bouchet et al.
(2006)). At Reynolds number Re = 500, Tomboulides & Orszag (2000) report one dominant
Strouhal number 0.167 with an existing lower frequency 0.045 which has been confirmed
by Bouchet et al. (2006) at the onset of the second Hopf bifurcation for Re = 325. This,
about 3 times smaller ratio, “appears to vary smoothly with the Reynolds number” which
characterizes quasi-periodicity. The same lower frequency is found (Mittal & Wilson (1999))
to be present at even higher Reynolds number for Re = 500, 650, 1000. At Reynolds number
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Re = 1000, about twice higher frequencies are observed (Achenbach (1974),Kim & Durbin
(1988),Sakamoto & Haniu (1995),Tomboulides & Orszag (2000)). When the Reynolds num-
ber exceeds 800, they report the appearance of small scales in the sphere wake due to a
Kelvin–Helmholtz instability of the separated shear layer.

The shape, size and corresponding variation of the cores of vortices have been examined
experimentally by Przadka et al. (2008) for 250 < Re < 310. They found that vortices are
elliptical and comparably as large as the sphere. Concerning the size of the recirculation zone,
by using the nonlinear dynamical systems theory Ghidersa & Dušek (2000) showed that the
recirculation zone of the axisymmetric average of the non-axisymmetric flow (m = 0 mode)
must be shallower and shorter compared to the base flow, which is also the case for the
time averaged wake of a cylinder as pointed out by Zielinska et al. (1997): the onset of the
bifurcation reverses the trend of growth of the recirculation zone: while in the subcritical
and steady base flow the recirculation length grows with increasing Reynolds number, the
time, or azimuthal, average of the unsteady or non-axisymmetric, supercritical flow has a
decreasing recirculation length.

Considering the fact that the global dynamics of shear flow depends closely on the local
instability characteristics, Pier (2008) carried out the local linear stability analysis for both
the axisymmetric and asymmetric base flows by the frequency damping method of Åkervik
et al. (2006). His results evidenced an absolutely unstable region (a “wave-maker”) in the
near wake which sustains fluctuations that develop in situ and feed waves into the down-
stream connectively unstable domain. He found that the absolutely unstable regions appear
for Re > Rea ≃ 130 (which may correspond to the threshold of Taneda (1956) of a faint
periodic motion “with a very long period”, listed in the first line of Table 1.2) and keep being
unstable beyond the primary bifurcation for Re > Re1 ≃ 212.

1.5.3 Wake of a fixed disk

Imagine that the cylinder present in the previous section has an axial length smaller than its
diameter and we turn it by 90 degrees letting its circular cross-section perpendicular to the
flow direction. We directly find that the flattened shape makes the observation of primary
bifurcation occur considerably earlier (at Re ≈ 160 for disk of aspect ratio χ = d/h = 3, d
being the diameter of the cross-section and h its axial length) than that of a sphere, moreover,
the transition process consists in several new regimes which do not exist for a sphere. Figure
1.13 illustrates newly found regimes, named “Knit-Knot” (Figure 1.13(c)) and “Yin-Yang”
(Figure 1.13(d)) modes by Auguste et al. (2010), for disk of χ = 3. The “Zig-Zig” mode
is that of a sphere above the secondary bifurcation. It does not exist for an infinitely flat
disk, where it is replaced by specific “Yin-Yang” (RSB -reflectional symmetry breaking, i.e.
periodic without planar symmetry) and “Zig-Zag” (unsteady symmetry preserving, standing
wave or planar periodic with zero mean lift) modes.

Some reported critical Reynolds numbers and the corresponding Strouhal numbers for
different aspect ratio listed in Table 1.4 show quite small discrepancies between numerical
results (except for χ = 10) in Table 1.4). Experiments face the difficulty of setting the cross-
section of a disk exactly perpendicular to the flow direction in experiments and the effect of
slightly imperfect axisymmetry in axial direction results in significant change concerning the
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selection of symmetry plane as already noted by Meliga et al. (2009). The effect of inclina-
tion angle on the onset of instability is further explored by Chrust et al. (2015) numerically
with joint experiments. They concluded that the vortex shedding is promoted (the critical
Reynolds number decreases) at inclination angles smaller than 20o while restrained for larger
inclinations (see Table 1.5). Non-negligible discrepancies between numerical and experimen-
tal results however subsist even if the inclination is accounted for. They are suggested to
be due to the confinement of the water tunnel and the presence of cylinder support in the
experimental set up.

The numerically computed Strouhal numbers reported in all oscillatory regimes for a
certain aspect ratio are also in a good mutual agreement (see Table 1.4). They are smaller
than that of a sphere. Co-existing frequency of about 3 times smaller than the leading one
is found in the transition to chaos similarly as for spheres.
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(a) Left: iso-surfaces of the streamwise vorticity of non-axisymmetric steady state (Re = 165);

right: azimuthal vorticity for axisymmetric flow (Re = 150).

(b) Periodic, reflectional-symmetry-preserving (or “Zig-Zig” mode) at Re = 182.

(c) Quasi-periodic pulsating (or “Knit-Knot” mode) at Re = 187.

(d) Periodic, reflectional-symmetry-breaking (or “Yin-Yang” mode) at Re = 195.

(e) Periodic mode with reflectional symmetry and zero mean lift (or “Zig-Zag” mode) at Re = 216.

Figure 1.13: Bifurcations in the wake of a flat cylinder (χ = 3) by Auguste et al. (2010).
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Shenoy & Kleinstreuer (2008)1, Chrust et al. (2010)2, χ = 10

state I II III IV V

Re1crit < 135 135 155 172 280

Re2crit < 129.6 129.6 136.6-138.7 154.4 188.8

St1 0.113

St2 0.115 0.114

Auguste et al. (2010)1, Chrust et al. (2010)2, χ = 3

state SS ‘Zig-Zig’ ‘Knit-Knot’ ‘Yin-Yang’ ‘Zig-Zag’ Chaotic

Re1crit 159.8 179.9 184.7 190.4 215.2 240

Re2crit 159.65 181-182 185-190 195-198 220-230 235-240

St1 0.109

St2 0.112 0.112 0.112 0.111

Fabre et al. (2008)1, Meliga et al. (2009)2,
Chrust et al. (2010)3, χ = ∞

state SS RSB SW QSP

Re1crit 115 121.5 139.6

Re2crit 116.92 124-125.2 142-143 165-170

St2 0.120 0.118

Re3crit 116.9 125.3 143.7

St3 0.121 0.118

Table 1.4: Published studies on bifurcations of fixed disks with various aspect ratio (χ). The
table recalls the original terminology of various papers.

State: I: steady axisymmetric, II: steady asymmetric, III: 3D, periodic, regularly rotating
separation region, IV: unsteady planar symmetric, V: unsteady, loss of planar symmetry, SS:
steady non-axisymmetric, RSB: reflectional symmetry breaking, SW: standing wave, QSP:
quasi-periodic.

Chrust et al. (2015), inclined disk (χ = ∞, 6)

φ 0 5 10 15 20 30 40 50 60

Renumχ=∞ 125.2 116.1 102.6 110.0 136.9 205.4

Renumχ=6 150.0 145.3 136.5 140.0 158.9 200.0 266.8

Reexpχ=6 166 164 162 154 145 163 212 280

Stnumχ=∞ 0.120 0.113 0.132 0.171 0.239 0.352

Stnumχ=6 0.120 0.117 0.130 0.154 0.205 0.254 0.321

Stexpχ=6 0.158 0.147 0.143 0.156 0.158 0.170 0.212 0.226

Table 1.5: Numerical and experimental results on the onset of the Hopf bifurcation for
inclined disks of aspect ratio χ = ∞ and χ = 6.

The effect of variation of aspect ratios has been studied experimentally by Bobinski et al.
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(2014). The observation confirms the increasing trend of the threshold of instability for
decreasing aspect ratio. For objects of other geometries, similar transition scenario in the
wake of cubes was evidenced (Saha (2004); Klotz et al. (2014)). By linear analysis of the
Fourier decomposition on streamwise vorticity, Klotz et al. (2014) suggest that the observed
irregular amplitudes of mode m = 4 are due to the characteristics of the body geometry
rather than instability effects connected with other modes, as the mode m = 4 contributes
most energy to the base flow whereas in cases of spheres and disks it is the mode m = 0.

1.6 Freely falling or rising spheres

As we have gained a global picture of how it looks like generally in the wake of a fixed sphere
from the previous section, let us now set the body free. From this moment on, we find that
it rises or falls because it is light or dense, i.e. its solid/fluid density ratio is smaller or larger
than one. We are very curious to know how much the transition scenario becomes different
and, more accurately, how much the values of bifurcation thresholds vary, if the scenario
remains close to that of a fixed sphere. The scenario turns out to be very different if we
compare the motion of a rising sphere to that of a falling one.

Early experiments of Magarvey & Bishop (1961) and Magarvey & MacLatchy (1965)
show vortex shedding very similar to that observed in the wake of a solid fixed sphere. At
density ratio 1 < ρs/ρ < 1.6 (ρs being the density of the body and ρ that of the fluid) and

Galileo number G ≈ 250 (G =
√

|ρsρ − 1|gd3/ν where g is the acceleration due to gravity,

d the diameter of the sphere and ν the kinematic viscosity) the observed Strouhal number
is 0.12. Another much smaller frequency St ≈ 0.07 is reported by Goldburg & Florsheim
(1966) at Re = 300 (G ≈ 220) and ρs/ρ = 1.12.

A globally clear diagram of the transition scenario of freely moving spheres did not
exist until the paper by Jenny et al. (2004) which provided a parametric numerical study
in the two–parameter plane of density ratios and Galileo numbers accompanied with joint
preliminary experiments. In the paper, the significant difference of the transition to a full
spatio-temporal chaos between rising and falling spheres is well demonstrated. For very
dense spheres, the results obtained are in agreement with the results of simulation of the
fixed sphere wake. The threshold of the primary (regular, axisymmetry breaking) bifurcation
is independent of the density ratio and lies only a little lower than that of a fixed sphere. The
difference between light and dense spheres appears at the onset of the secondary instability
yielding the oblique oscillating state. Jenny et al. (2004) found that the density ratio ρs/ρ =
2.5 seems to be the threshold delimiting the high and low frequencies at the onset of the
oblique oscillating state. Below this value spheres rise or fall with a low frequency whereas
denser spheres fall with an approximately 2.5 times larger frequency. The further transition
to chaos was also found significantly different for light and dense spheres. For light spheres
the trajectories tend to become zigzagging with low and high frequency (the latter appearing
inside the chaotic region of the parameter space). Irregular but close to helical trajectory were
evidenced for early chaotic regimes of dense spheres. The paper focuses also on differences
between experimental observations and the numerical results. For the two primary states, the
steady oblique and oblique oscillating ones, the agreement between numerics and experiment
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was found very good. However, the low-frequency periodic zigzagging state failed to be
observed experimentally. Jenny et al. (2004) provide an explanation in terms of a non-
uniform mass distribution of the spheres in the experiment.

Figure 1.14: Left: the family of periodic wake modes for rising and falling spheres. R
mode: steady oblique state (m∗ > m∗

crit, 270 < Re < 600, m∗ being the mass ratio of
sphere and fluid), 2R mode: vertical state comprising a double–sided chain of vortex rings
(m∗ > m∗

crit, Re > 600); right: creation of a three-dimensional rendering of the 4R mode in
the periodic zigzagging states (m∗ < 0.4, 260 < Re < 1550 and m∗ < 0.6, Re > 1550). The
color corresponds to the initial sign of the streamwise vorticity component: positive in red,
negative in blue (Horowitz & Williamson (2010)).

Further experimental work by Veldhuis & Biesheuvel (2007) confirmed the conservation
of the two earliest transitional states but did not evidence the the periodic zigzagging state.
In contrast, focusing on the problem of the occurrence of vortex induced vibration, Horowitz
& Williamson (2010) found that in a wide range of considered Reynolds number between 100
and 15000, there exists a critical mass ratio (m∗

crit ≡ ρs/ρ) below which the trajectories of the
spheres are planar, periodic and vertical in the mean. Their frequency is situated between
the numerically obtained high and low frequency zigzagging states. The value of m∗

crit is
nearly constant over two decades of Reynolds number (m∗

crit ≈ 0.4 for 260 < Re < 1550
and m∗

crit ≈ 0.6 for Re > 1550). Two modes of single- and double-sided vortex and a
new mode consisting in four vortex rings per cycle in the regime of zigzagging oscillation
are observed (Figure 1.14). The problem of vortex induced vibration (VIV) for moving
spheres was studied already by Govardhan & Williamson (2005) and their groups. In the
experiment they compared the cases of a (very light) tethered sphere and an elastically
mounted (of higher mass) one induced to vibrate under the action of their own vortical
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wake, respectively, in a transverse motion and both streamwise and transverse. They found
that when the oscillation frequency (f) is of the order of the static-body vortex shedding
frequency (fvo) two modes of periodic large-amplitude oscillation arise and are separated
by a non-periodic transition regime. The different responses to this regime between light
tethered and heavier mounted spheres are consistent with the large difference in the phase
of the vortex force between both, which is also consistent with the aforementioned, stronger
fluid – solid interaction. The question whether the behavior of tethered spheres is relevant
for the understanding of path oscillation of totally free spheres is, however, open.

1.7 Axisymmetric but aspherical bodies (disks, flat cylinders,
spheroids)

Spheres are of course not the only prototypical body considered concerning the path insta-
bilities. In this section we discuss mainly the motions of bodies having an axisymmetric but
aspherical shape.

Earlier experimental studies (Willmarth et al. (1964); Field et al. (1997)) brought the
fall of disks and of flat axisymmetric bodies to the spotlight. The visualizations of the
wake behind the disks and of intriguing non-straight paths motivated further investigations.
Using the particle–image–velocimetry (PIV) technique, Fernandes et al. (2007) found a good
agreement between the flow field of a freely rising disk of aspect ratio χ = 10 with that of a
fixed body obtained by DNS. They remark, however, a significant disagreement between the
predictions of the onset of oscillation by numerical simulations of the wake of a fixed cylinder
and their experimental observations for very flat cylinders of aspect ratio larger than 8. Ern
et al. (2011) suggest that small amplitude states precede the onset of flutter. They were
described as “possibly irregular or even chaotic”, which was further confirmed by numerical
simulations of Auguste (2010). The variety of observed trajectories was completed by Zhong
et al. (2011) who report a destabilization of the planar zigzagging yielding spiral trajectories
for disks having a small moment of inertia.

With their numerical simulations, Auguste et al. (2013) and Chrust et al. (2013) provide
each a state diagram of transition scenario for infinitely thin disk in Ar − I∗ and G −m∗

parameter planes, respectively. Ar is the Archimedes number Ar =
√

3/32Ugd/ν where
Ug =

√

2|ρs/ρ− 1|gh is the gravitational velocity and I∗ = (π/64)ρs/ρχ the dimensionless
moment of inertia. m∗ = m/ρd3 is the dimensionless mass and G stands for the Galileo
number defined for infinitely flat disks as G =

√

m∗gd3/ν. The transition scenario is quite
different from that observed in the wake of a fixed disk.

According to Chrust et al. (2013), the transition to chaos for a disk initially at rest
in a fluid can be generally characterized by four stages (vertical, flutter, intermittent and
tumbling) plus three additional distinct styles (spiral, quasi-vertical periodic and chaotic)
for very light disks and another two three-dimensional trajectories (tumbling-zigzagging and
spiral tumbling) for more massive disks. At sufficiently low Galileo number, disks follow a
vertical path, as soon as the primary bifurcation sets in, which occurs at a larger Galileo
number for lighter disks, they start to flutter and exhibit zigzagging states. The Strouhal
number in this regime can be as high as 0.6 for an infinitely light disk (m∗ = 0). In a
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(a) (b) (c)

(d) (e) (f)

Figure 1.15: Distinct moving styles of infinitely thin disks by Chrust et al. (2013), (a)
fluttering periodic state (m∗ = 0.1, G = 200); (b) intermittent (m∗ = 0.25, G = 110); (c)
tumbling (m∗ = 0.5, G = 160); (d) tumbling-zigzagging (m∗ = 0.25, G = 300);(e) spiral
(m∗ = 0.05, G = 300); (f) spiral tumbling (m∗ = 0.5, G = 400).

region of the parameter space delimited by 0.25 < m∗ < 2 and G > 50, the inclination angle
of fluttering disks exceeds 90 degrees but the tumbling is not yet stable enough to persist
in a periodic regime which results in an intermittent rotation with irregular interval and
changes of direction (green symbols in Figure 1.16). For more massive disks (m∗ > 0.5), as
the Galileo number further increases, periodic tumbling and tumbling-zigzagging trajectories
are evidenced. For very light disks (m∗ 6 0.05), quasi-vertical periodic (QVP) and chaotic
(QVC) states are found. They are characterized by a very small amplitude of the horizontal
velocity component. The Strouhal numbers of the QVP are approximately equal to 1/3 that
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of the flutter states. At higher Galileo numbers a non zero helicity systematically sets in.
The most beautiful spiral paths are evidenced at high Galileo numbers. The disk keeps a
constant inclination angle and a constant angular velocity along this trajectory (E.g. angle
of 25o and ωz = 0.635 at m∗ = 0.25 and G = 400). Special and intriguing spiral tumbling
trajectories are found to exist at sufficiently high Galileo numbers for all disks of any value of
dimensionless mass. The projection of the trajectory on the horizontal plane describes a large
circle and the pitch angle of the spiral is equal to 42.5o. In figure 1.16, the trajectories loosing
their planarity due to non zero helicity are represented by filled symbols (red triangles, green
squares and blue circles).
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Figure 1.16: The state diagram of an infinitely thin (χ = ∞) disk by Chrust et al. (2013).
Red triangles: tumbling; black squares: intermittent; blue circles: flutter; black crosses:
vertical. Small region of the coexistence of the vertical and oscillating states due to the
sub-critical effect is depicted by the left-most blue line. Dashed lines correspond to the
experimental results of Field et al. (1997) and Willmarth et al. (1964).

However, in the real world, disks are not“infinitely” thin. The issue to what extent a
disk can be considered “thin” and whether all characteristic values have a limit as the disk
becomes thinner and thinner is discussed in detail by Auguste et al. (2013) who compared
the thresholds of zigzagging state for flat cylinders of aspect ratio χ > 10 and found that for
a given I∗, the characteristics of zigzagging motion are still significantly different between
disks of χ = 25 and χ = 50. Considering the preliminary numerical results of freely moving
spheroids of large aspect ratios by Chrust (2012), presenting no such significant difference
between spheroids of aspect ratio ten end infinity, this sensitivity may be due to the sharp
corners in the geometry.
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As remarked by Chrust (2012), the interesting issue of the link between the characteristics
of infinitely thin disks and of spheres can be addressed by investigating spheroids of variable
aspect ratio. A fine numerical investigation of the variation of the scenario with the aspect
ratio of spheroids will be carried out in this thesis.

1.8 Bubbles and drops

The most important characteristic of bubbles and drops is their deformable shape. Depend-
ing on the values of the Galileo number G (or the Reynolds number Re) and the Bond number
Bo (same as the Eötvös number Eo), the shapes of bubbles and drops in unhindered grav-
itational motion in liquid before the breakup are classified into three categories: spherical,
ellipsoidal and spherical-cap. In general, bubbles and drops can be approximately consid-
ered as spheres when their size is tiny since the inertia forces are much smaller than surface
tension and viscous forces. Ellipsoidal bubbles and drops are oblate and convex when viewed
from inside, though in reality the shapes may be far from an axisymmetric ellipsoid. This is
the most often assumed shape in today’s numerical studies. Spherical-cap or ellipsoidal-cap
often correspond to large bubbles and drops which look similar to segments cut from spheres
or spheroids. They can be “dimpled” if the rear of the shape has an indentation, or “skirted”
if the indentation is large enough to form a thin envelop of dispersed fluid (Figure 1.17).

Figure 1.17: Simulated bubbles (red) by Hua & Lou (2007) compared to experimentally
observed shapes by Bhaga & Weber (1981).

The second important feature is that under certain conditions bubbles and drops break
up. The different corresponding regimes of breakup can be already noticed earlier from their
different trends to deformation. According to the studies reported in literature, bubbles often
dimple from the center (Bhaga & Weber (1981)) while drops possess a spherical-cap (Han &
Tryggvason (1999)). As a consequence, doughnut shaped bubbles are created by successively
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deeper dimpling until the pinch-off, whereas flattened drops break up into smaller fragments
under several modes including shear, bag and catastrophic breakup.

Figure 1.18 demonstrates a sequential picture of droplet deformation and fragmentation
by Jalaal & Mehravaran (2012). As the droplet falls, the deformation from the initial spheri-
cal shape to an oblate ellipsoid is followed by bag formation at the preliminary stages (figure
(a) to (c)). When the surface tension is not sufficient to hold the droplet in a stable shape,
the bag-like shape grows and breaks up, forming ligaments, liquid bridges and even smaller
droplets. A very thin disk-like core is left during the bag breakup. This core breaks up in
a short lapse of time. The process continues and fragments in each stage break up further
until all fragments reach a stable condition. Three modes of breakup evidenced in numerical
simulations by Tripathi et al. (2015) represented in Figure 1.19 suggest that bubble breakup
occurs at both moderate and high Galileo and for high Bond numbers. They also found
a new mode of breakup at high Galileo number and significant surface tension where even
smaller bubbles are ejected from the rim of the original one during when it recovers from
an initially elongated to a spherical cap shape. The strong vertical stretching gives rise to a
narrower skirt which results in an ellipsoidal rather than a cap-like bubble and a small tail
of satellite bubbles (Figure 1.19(c)).

Prior to the breakup, the kinematics and shape oscillations of bubbles and drops are
still only very partially understood. To determine the effect of rising on the dynamics of
inertial shape oscillations, axisymmetric numerical simulations were performed by Lalanne
et al. (2013) and the results were analyzed by spherical harmonic decomposition. Two major
differences between bubbles and drops were observed. Bubbles experience larger acceleration
and deform more and faster than drops due to the negligible mass, the shape oscillations of
bubbles cause much stronger velocity oscillations than those of drops.

As shown by experimental studies (Mougin & Magnaudet (2002b); Wu & Gharib (2002);
de Vries et al. (2002b); Shew et al. (2006); Veldhuis et al. (2008)), bubbles rising in a vertical
path develop a zigzagging motion in a plane which subsequently evolves into a spiraling
motion after a certain number of periods. The wake behind is found quite similar to that of
a fixed or moving solid body both in the zigzagging (characteristic by a regular generation
and shedding of alternate oppositely oriented hairpin vortices) and spiraling states (with a
twisted pair of streamwise vortex filaments).

An important issue consists in setting the stability limit of the vertical rise of bub-
bles. This loss of stability assumed to be directly related to the onset of the experimentally
observed non-vertical trajectories. Traditionally, this theoretical problem was addressed as-
suming a fixed spheroidal shape of the bubble (Mougin & Magnaudet, 2002b; Tchoufag et al.,
2013, see e.g.). Recently, Cano-Lozano et al. (2013) analyzed numerically the path instability
of axisymmetric bubbles of realistic shapes obtained by axisymmetric simulations for a set
of combinations of the Bond and Galileo numbers. The numerical results showed that, in
contrast to what was suggested by assuming a fixed ellipsoidal shape, the onset of zigzag-
ging motion is not limited to bubbles with high aspect ratios of deformation. The bubble
deformation can, however, be expected to play a direct role in the loss of axisymmetry of
the flow. Except for the coarse parametric investigation by Tripathi et al. (2015) a more
accurate study is still missing. This issue is addressed in this thesis where we provide a
precisely evaluated marginal stability curve of the onset of zigzagging state.
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Figure 1.18: Deformation and fragmentation of a liquid drop for: Eo = 288, Ohd =
0.05, Ohc = 0.05 and ρ∗ = 10 (Eo being the Eötvös number, Ohd and Ohc both Ohne-
sorge number based on droplet properties and continuous phase properties respectively find
out and mention the definitions!!!!, ρ∗ the density ratio between droplet and continuous
phase). Evolution in terms of non-dimensional time τ : (a) τ = 0.0, (b) τ = 0.1647, (c)
τ = 0.2642, (d) τ = 0.3574, (e) τ = 0.4434, (f) τ = 0.5183, (g) τ = 0.5924, (h) τ = 0.6728.
(Reproduced from Jalaal & Mehravaran (2012))

(a)

(b)

(c)

Figure 1.19: Time evolution of bubble breakup (dimensionless time from left to right t =1,
2, 4 and 5 for figures (a) and (b), t =2, 4, 6, 7, 8, 9 and 9.1 for figures (c)). (a) Bubble
breaking into a spherical cap and several small satellite bubbles, G = 70.7, Bo = 20, (b)
bubble changing in topology from dimpled ellipsoidal to toroidal, G = 70.7, Bo = 200, (c)
A new breakup mode for G = 500, Bo = 1 (Tripathi et al. (2015)). (Here G and Bo are

based on the equivalent bubble radius G =
√

gr3eq/ν and Bo = ρgr2eq/σ)
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1.9 Aims of this thesis

1. Extension of the study of freely moving spheres by Jenny et al. (2004) with special
focus on the onset of chaos and on the characterization of chaotic states.

2. Refinement of the parametric study on freely moving spheroids of various aspect ratios
ranging from 10 to 1.1 to establish a link between infinitely thin disks and spheres by
providing state diagrams in the G−m∗ parameters plane.

3. Establishment of the marginal instability curve determining the onset of zigzagging
motion of a deformable bubble.
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Chapter 2

Freely falling or ascending spheres

2.1 Introduction

The main issue in the investigation of the motion of a single sphere is the understanding of
the transition scenario. The state diagram appearing in the paper by Jenny et al. (2004)
(called JDB, in what follows) has been recognized as a useful tool of summarizing the existing
knowledge. Several points not fully explained in the paper combined with the new findings
reported in literature motivate an extension and improvement of the parametric study of the
JBD paper.

In the present chapter we address the following topics.

1. The threshold of the primary instability reported by the JBD paper has a progressive
growing trend as the solid/fluid density ratio (ρs/ρ) increases. The critical Galileo
numbers varies from G = 155.8 (corresponding asymptotic Reynolds number Re∞ ≈
205) for an infinitely light sphere (ρs/ρ = 0) to G = 160 (Re∞ ≈ 212) for a dense
sphere of ρs/ρ = 10, which obeys the intuition of considering dense spheres as fixed
whose primary instability occurs at Re ≈ 212. In contrast, the study on the steady
oblique state of moving spheres by Fabre et al. (2012) remarks the independence of
this threshold on the density ratio since the latter disappears in Eqs. (2.4,2.5) when
the time derivative vanishes. A set of more precise calculations need to be carried out
to verify that the thresholds are density independent.

2. In the oblique oscillating regime, the roughly estimated critical density ratio (ρs/ρ =
2.5) separating the low and high frequencies by the JBD paper needs to be examined
rigorously. It is also interesting to know more about the different characteristics of the
two frequencies to understand the mechanism of their formation.

3. For rising spheres, the JDB paper reported the existence of two zigzagging regimes
distinguished by significantly different frequencies. A closer examination of the exper-
imental results by Veldhuis & Biesheuvel (2007) and Horowitz & Williamson (2010),
seemingly confirming the existence of a zigzagging state, do not quantitatively agree
with numerical predictions. The low frequency, exactly periodic, zigzagging regime

35
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described and analyzed in much detail in the JDB paper was, actually, not evidenced
and Veldhuis & Biesheuvel (2007) raised the question whether the experimental obser-
vation did not correspond to the high frequency zigzagging regime. Neither of the two
corresponds to the extremely robust vibrating state of Horowitz & Williamson (2010).
The domain of strictly periodic zigzagging states is thus to be re-examined.

4. The transition to chaos after the loss of vertical trajectories is determined by the
existence of the two aforementioned regions of oblique oscillating states characterized by
low and high frequencies and an apparently questionable domain of perfect zigzagging
regime. A more precise state diagram delimiting each state in the two-parameter
(G− ρs/ρ) plane is needed.

5. A bi-stability between chaotic and a rapidly oscillating zigzagging trajectories was
evidenced in the JDB paper. A large region in the G − ρs/ρ parameter plane at
ρs/ρ < 1 was suggested as an estimation of this coexistence. To get a more precise
conclusion, it is worth exploring the rapidly oscillating periodic state inside the chaotic
domain.

6. The intriguing robust “vibrating” trajectories reported by Horowitz & Williamson
(2010) (see Figure 1.14, Chapter 1) can be expected to be confirmed by simulations.
This issue should be raised.

7. The extension of the investigation far into the chaotic domain makes it necessary to
distinguish differences in the chaotic states by providing a quantitative characterization
of random data.

8. As mentioned in Chapter 1, the motion of a single sphere has been used for bench-
marking of a multi-particle code. Should it be further used for benchmarking of more
complicated simulations, more accurate and more quantitative data is needed.

2.2 Mathematical formulation and numerical implementation

As described in previous papers (Jenny et al. (2004); Uhlmann & Dušek (2014)), the math-
ematical formulation consists of Navier-Stokes equations

∂v

∂t
+ [(v − u) · ∇]v +∇p =

1

G
∇2v, (2.1)

∇.v = 0, (2.2)

non-dimensionalized with respect to the sphere diameter d and to the reference velocity

Uref =

√

∣

∣

∣

∣

ρs
ρ

− 1

∣

∣

∣

∣

gd (2.3)
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coupled with motion equations

ρs
ρ

du

dt
=

6

π

∫

S
(τ · n− pn)dS − k, (2.4)

ρs
ρ

dω

dt
=

60

π

∫

S
rS × (τ · n− pn)dS, (2.5)

by the no slip boundary condition at the sphere surface S

v|S = u + Ω× r|S . (2.6)

In the above equations, v and u stand for the flow field and the translation velocity of the
sphere, respectively, both considered with respect to a fixed frame. ρ and ρs are the fluid
and solid densities. k is the vertical unit vector in the direction of effective gravity:

k = sign(ρs/ρ− 1)g/g (2.7)

τ denotes the viscous stress tensor 1
G(∇v +∇vT ). rS is the position vector on the sphere

surface and ω the angular velocity, both with respect to the sphere center, and n denotes
the normal vector to the sphere surface. The non-dimensionalization reduces the problem
parameters to the Galileo number

G =

√

∣

∣

∣

ρs
ρ − 1

∣

∣

∣ gd3

ν
(2.8)

and the density ratio ρs/ρ. Though an exactly unit density ratio implies, physically, an
infinitely large sphere diameter, this limit represents no singularity for the simulations. As
the result, it makes sense to speak about the density ratio 1. It is to be understood as
the case of a large sphere immersed in fluid of almost the same density. Such experimental
conditions are, indeed, often selected to increase the size of the immersed body. The physical
interpretation of the case ρs/ρ = 1 is such that if the real density ratio differs, e.g. by 2%
from 1 as it is the case in the paper by Fernandes et al. (2007), then the results given here
for exactly unit density ratio apply with a very good accuracy.

A cylindrical numerical domain accompanies the translational motion of the sphere, the
latter being allowed to rotate freely inside this domain. The numerical discretization is
based on a Fourier azimuthal decomposition combined with a spectral element discretization
of the radial-axial plane. The azimuthal decomposition is truncated at the mode m = 7
and the radial-axial plane is decomposed into 245 elements containing 6 times 6 collocation
points distributed similarly as in previous papers. The domain radius and height are those
of Jenny et al. (2004). The previously published results (e.g. Uhlmann & Dušek, 2014) prove
the accuracy and adequacy of the so defined numerical configuration for the considered
transitional regimes.

2.3 Primary and secondary instabilities

Since the publication of the first numerical papers (Jenny et al. (2003, 2004)), the primary
bifurcation state - the steady oblique regime - has been evidenced experimentally in the
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predicted parameter domain (Veldhuis & Biesheuvel (2007)) and its onset has been analyzed
theoretically (Fabre et al. (2012)). Fabre et al. (2012) remark that the threshold of the
primary, regular bifurcation is independent of the density ratio (since the latter disappears
in Eqs. (2.4,2.5) when the time derivative vanishes). They report a critical Archimedes
number Ar = 55.00. The relation to the Galileo number (Eqs. 2.8) being G =

√
8Ar, this

corresponds to Gcrit = 155.6. We find Gcrit = 155.8 (the corresponding asymptotic Reynolds
number Re∞ = 205.3). The time derivative vanishes for all steady oblique regimes so that
the latter depend only on the Galileo number and not on the density ratio. This new finding
reconciles the contradiction between the results of JBD paper and that of Fabre et al. (2012)
but raises another problem if, by intuition, we consider a highly dense sphere as fixed whose
critical Reynolds number at the primary instability is Recrit ≈ 212. The explanation consists
in noting that even a very dense sphere ends up by moving along an oblique trajectory and
by rotating. The difference consists only in the time scale of the transients.

Of course, the threshold of the secondary bifurcation leading to unsteadiness is no longer
independent of the density ratio. Its characteristics in terms of the critical values of velocities
and of oscillation frequency are given in Table 2.1. The velocities can be converted to
dimensional units using Uref of Eq. 2.3. The time unit is d/Uref . The provided values of the
vertical velocity make it possible to convert the Galileo to Reynolds number (Re = uzG) and
non-dimensionalized frequencies to Strouhal numbers (St = f/uz). The horizontal velocity
is roughly equal to 8 to 10% of the vertical one which yields an angle of about 4 to 6 degrees
with respect to the vertical direction.

ρs/ρ

0
0.2
0.5
1
1.3
1.7
2
2.5
3
4
10

Gcrit
167.18
169.23
172.52
178.55
182.5
187.35
190.69
196.08
195.19
195.18
195.06

uh
0.0969
0.1031
0.1108
0.1224
0.1275
0.1327
0.1356
0.1387
0.1383
0.1383
0.1384

uz
1.3355
1.3388
1.3443
1.3544
1.3622
1.3704
1.3763
1.3859
1.3843
1.3842
1.3838

ωh
0.0149
0.0151
0.015
0.0139
0.0129
0.0112
0.0099
0.0077
0.0081
0.0081
0.0082

f

0.0701
0.0667
0.0644
0.0672
0.0677
0.0711
0.0729

0.076/0.175∗

0.1741
0.1751
0.1771

Table 2.1: Critical Galileo number Gcrit, horizontal velocity uh , vertical velocity uz, angular
velocity of rotation ωh and frequency f at the onset of oblique oscillating regime. (∗ For the
density ratio of 2.5 both frequencies are present even at the threshold of unsteadiness. Note
that the critical Galileo number, terminal horizontal and vertical velocities are larger while
the angular velocity is smaller at the onset of the high frequency regime.)

The values of the critical Galileo numbers of the primary and secondary instabilities
were found by cubic interpolation of three smallest amplification rates as a function of the
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corresponding Galileo numbers. Two simulations for each Galileo number restarted from
previously obtained results below and above the secondary instability threshold (namely,
form the steady oblique and oblique oscillating states close to the threshold) prove that the
bifurcation is super-critical. Figure 2.1 shows an example of determination of the critical
Galileo number of the secondary instability for ρs/ρ = 0.2. The values of amplification rates
are directly extracted by examining the decreasing or increasing trend of the amplitude of
oscillations of horizontal velocity. The time dependence being very accurately exponential
it appears as a straight line in the logarithmic scale. The slope is equal to the amplification
rate γ.

2.4 Low and high frequencies

As can be seen in the following section 2.6, the type of oblique oscillating regime is deter-
minant for the transition to chaos. A contrasting behavior of “dense” and “light” spheres
was already evidenced in the JDB paper. The frequency of oscillation of spheres of density
ratio 3 and more was found almost three times higher than for spheres of density ratio 2 and
less. The results of Table 2.1 confirm this result. Both frequencies are marginally unstable
at ρs/ρ = 2.5 which results in a quasi-periodic behavior at the very threshold of the Hopf
bifurcation showing that the limit between the low and high frequency oblique oscillating
regime is quite accurately situated at ρs/ρ = 2.5 at their onset.

To understand the difference between the physical origin of the high and low frequency
oblique oscillating regimes, let us recall the recent paper by Tchoufag et al. (2014) showing
that two types of modes exist in systems involving a fluid - solid interaction: fluid and
solid modes. The former are characterized by dominant fluid oscillation while the latter are
typical for a strong fluid - solid interaction. This is what we observe in Figures 2.2 and 2.3.
Figures 2.2 (a) and (b) compare the vortical structures of the fluid mode at G = 199 and
for the density ratio of 3 with those of the wake of a fixed sphere obtained by freezing the
translation velocity and setting the rotation velocity to zero. There is virtually no difference
between both. Indeed, the frequency of the fluid mode is in agreement with values reported
for the fixed sphere wake. At Re = 300, the Strouhal number of the periodic regime of the
sphere wake was found between 0.135 and 0.137 (see Johnson & Patel (1999); Tomboulides
& Orszag (2000)). At the threshold (Recrit = 275) the Strouhal number given by Ghidersa
& Dušek (2000) is 0.127. Using the vertical velocity of Table 2.1, we obtain specifically for
ρs/ρ = 3 and G = 199 a Strouhal number of 0.129 and an average Reynolds number of 274.6.
The fixed sphere wake with frozen velocity 1.396 at G = 199 corresponds to the Reynolds
number Re = 277.9 and the Strouhal number of vortex shedding is 0.130. The increase of
frequency due to fixing the sphere velocity is thus negligible. The oscillations of the free
sphere reflect only a very limited reaction of the body to the oscillations of the wake. The
amplitude of velocity oscillations of the sphere is thus very small as can be seen in Figure
2.5.

In contrast, Figure 2.3 (a) shows a much longer wavelength in agreement with the smaller
frequency of the solid mode. Moreover, the vorticity is concentrated in the neighborhood
of the sphere. Note that the vorticity level in this figure had to be taken three times lower
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Figure 2.1: Calculation of the critical Galileo number at the secondary instabilities for
ρs/ρ = 0.2. (a) Horizontal velocity as a function of time at G = 168, (b) the amplification
rate is the slope of the dotted dashed line established by plotting the amplitude (red points)
in (a) in the logarithmic scale, (c) calculation of the critical Galileo number. Black points
represent the extracted values the amplification rates γ = −0.0141,−0.0025 and 0.0076 at
G = 168, 169 and 170, respectively, the red circle corresponds to the critical Galileo number
Gcrit = 169.23 found by cubic interpolation (blue dotted dashed line).

than in Figures 2.3(b) and 2.2 to capture visible structures in the whole represented domain.
As compared to the fluid mode, the oscillation of the horizontal velocity of the sphere has a
more than ten times higher amplitude (see Figure 2.5).

The transition to chaos of the fluid mode is characterized by a quasi-periodicity given
by the simultaneous presence of both the low and high frequency. They are, in general,
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(a) (b)

Figure 2.2: (a) High frequency (fluid) mode (G = 199, ρs/ρ = 3, stream-wise vorticity
levels: ±0.15 ). (b) Fixed sphere wake (frozen translation velocity of figure (a), no rotation,
Re = 277.9, same vorticity levels: ±0.15 as in (a).
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(a) (b)

Figure 2.3: (a) Low frequency (solid) mode (G = 196, ρs/ρ = 2, vorticity levels: ±0.05).
(b) Locked in, low and high frequency, periodic mode (G = 220, ρs/ρ = 3, vorticity levels:
±0.15).
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Figure 2.4: Co-existence of two frequencies at G = 215, ρs/ρ = 2, (a) high frequency (vor-
ticity levels: ±0.15), (b) low frequency (vorticity levels: ±0.15). (c) Comparison between
velocities of high (red) and low (blue) frequency modes. Note that the large difference of
motion of the sphere is not visible on the vorticity structures.
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Figure 2.5: Comparison of amplitudes of oscillations of the low frequency regime ρs/ρ = 2,
G = 196 (full blue line) and high frequency regime ρs/ρ = 3, G = 199 (dashed red line).
Note that the mean values are comparable.

incommensurable except when they lock in at the ratio of 3:1 and a periodic low frequency
regime reappears around G = 220. In this case, the solid mode dominates only in the
close wake whereas more downstream the vortical structures of short wave-length and high
intensity are seen in Figure 2.3 (b). Special cases of coexistence of both low and high
frequency regime have been found. The vorticity structures illustrated in Figure 2.4 for both
frequencies have practically the same shape yet the motion of the sphere is different.

The fact that the degrees of freedom of the sphere have little effect on the fluid mode
explains why the horizontal velocity is virtually independent of the density ratio at its onset
(see Figure 2.6(a)) while it grows with growing density ratio for the solid mode. The strong
oscillations of the solid mode have also a significant effect on the mean value of the horizontal
velocity which starts to decrease as soon as the oblique oscillating regime sets in. This is not
the case for the small oscillations of the fluid mode. (see Figure 2.6(b)).

The simulated regimes are represented in the state diagram of Figure 2.7. The high
frequency regime was evidenced at as low density ratio as 1.3 at Galileo number 215. At
this point of the state diagram it co-exists with a low frequency and a chaotic state. The
transition between low and high frequency regime at density ratio between 1.5 and 2.5 is
always progressive. As the Galileo number increases from the threshold of the low frequency
oblique oscillating regime the high frequency appears before the low frequency disappears
which yields a quasi-periodic oscillation. The low frequency reappears at the transition to
chaos. At first both, the high and low, frequencies are locked in at a ratio of 3 (at density
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Figure 2.6: (a) Horizontal velocity at the threshold of the oblique oscillating regime as a
function of the density ratio. (b) Horizontal velocity as a function of Galileo number for a
low density ratio (ρs/ρ = 0.5 - blue solid line) and a high density ratio (ρs/ρ = 4 - dotted red
line). The filled markers correspond to steady oblique regimes, the empty markers represent
the mean values. The thresholds of oblique oscillating regimes are given by dashed vertical
lines.

ratios from 2 to 4 and G = 220) then they become incommensurate and yield a quasi-periodic
regime with planar symmetry (see Figure 2.8) before the symmetry plane loses its stability
and the chaos sets in. The co-existence of both frequencies was remarked already by Veldhuis
& Biesheuvel (2007).
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Figure 2.7: State diagram in the G - ρs/ρ parameter space. Thresholds of bifurcations are
represented by lines, different colors represent regimes indicated in the figure. Overlapping
areas mean bi-stability. The overlapping of the chaotic area with zones of high and low
frequency oblique oscillating regimes (labeled as “planar or rotating”) is an area of bi-stability
of states with fixed and slowly rotating symmetry axis. The symbols represent the simulated
trajectories (in cases of coexistence of two or three regimes the symbols are artificially shifted)

Meaning of symbols. : vertical regime, : steady oblique, : low frequency oblique oscillating,

: low frequency quasi-periodic oblique oscillating, : high frequency oblique oscillating, : perfect

or slightly oblique zig-zag, : intermittent zig-zag, : vertical oscillating planar, : vertical quasi-

periodic, : periodic planar slightly inclined, : helical, : chaotic (or rotating plane in the bi-

stability domain).
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Figure 2.8: (a) Horizontal velocity for the density ratio ρs/ρ = 3. Solid blue line: periodic
low frequency oscillations at G = 220; dashed black line: high frequency oblique oscillating
state at G = 215 (frequency: 0.186); dash-dotted red line: quasi-periodic state at G = 225.
(b) Power spectrum of horizontal velocity for G = 220 (solid blue line) and G = 225 (dash-
dotted line).
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2.5 Various imperfect zigzagging trajectories

To our knowledge, the “low frequency” zigzagging state reported in the JDB paper corre-
sponds to no experimental evidence. In fact, the perfect periodicity and planarity of the
trajectory found in the cited paper for the low frequency zigzagging regime at ρs/ρ = 0.5
and G = 180 is rather an exception (see Figure 2.9). As the Galileo number further increases,
this perfect planarity gives way to a progressively slightly increasing inclination (shown in
Figure 2.10(d)). As a result, a great variety of regimes arises (see Figure 2.11 to 2.17), most
of them presenting trajectories having not much resemblance with the “perfect” zigzagging
regime on a large scale. At very small density ratios (0 and 0.2) the symmetry plane is at
first (with increasing Galileo number) conserved. The randomness is due to the intermit-
tency of switching of the sign of the horizontal velocity resulting in imperfect zigzagging (see
Figures 2.11 and 2.12). At higher Galileo numbers, the memory of the symmetry plane is
no longer perfect, which results in a non planar trajectory. The projection of the velocity
vector onto the horizontal plane describes a curve (see Figure 2.13 (c)), resulting in a non
zero mean horizontal velocity, not repeating with exact periodicity (Figure 2.13 (a)). On
a short time scale, the trajectory drifts sideways so that its plane appears inclined (Figure
2.13 (d)). On a large time scale the trajectory has an aperiodic wavy shape (Figure 2.13
(b)). Attention must be paid to very weakly unstable trajectories such as that represented
in Figure 2.14. It appeared as planar and periodic (albeit with a very small sub-harmonic
modulation, however, after a small perturbation it developed into a similar state as that
represented in Figure 2.13).

The density ratio of 0.5 is somewhat exceptional because of several periodic regimes
extending from the onset of zigzagging at G = 180 (the case of perfect planar zigzagging
trajectory reported in JDB) to about 200. However, except for G = 180, the trajectory is
not vertical on average but drifts sideways (its plane is oblique - see Figure 2.15 (a),(b)).
The reason is obvious from Figure 2.15 (a) showing that the sphere does not choose the
same vertical plane after the stage of vertical ascension which results in a non zero average
horizontal velocity.

A similar oscillation is visible in Figure 2.15 (c) for the density ratio ρs/ρ = 0.65 and
G = 195. On the scale of the trajectory represented in Figure 2.15 (d) only the variation of
the mean value has a visible impact and results in intermittent changes of the inclination of
the trajectory plane. At the density ratio 0.5, a sub-harmonic (double) period sets in (see
Figure 2.16) before an aperiodic oscillation of the shape of the path of the horizontal velocity
vector appears at G = 205.

For marginally buoyant spheres, the angle between the old and new plane selected after
the vertical ascension stage exceeds 90 degrees. At the scale of one oscillation period, the
shape of the path of the velocity vector in the horizontal plane assumes a “V” form. The
angle of “V” varies randomly and even changes sign (see Figure 2.17 (a)). As a result, on a
short time scale, the trajectory is oblique oscillating (albeit non planar) whereas on a large
time scale, at which the oscillations are not visible, it presents a random waviness similar to
that of trajectories of dense, falling spheres (see Figure 2.18).

To sum up, the zigzagging trajectories are rarely perfect and the transition to fully
random ones is progressive. There is no clear cut domain of zigzagging trajectories. What is
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Figure 2.9: Perfect zigzagging trajectories of spheres ρs/ρ = 0.5, G = 180. (a),(b) Horizontal
velocities as a function of time, (c) projection of the velocity vectors onto the horizontal plane,
(d) trajectory.

reported in the state diagram is a domain of almost planar trajectories delimited using the
criterion of isotropy described in Sec. 2.9.
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Figure 2.10: Almost perfect zigzagging trajectories of spheres ρs/ρ = 0.5, G = 185. (a),(b)
Horizontal velocities as a function of time, (c) projection of the velocity vectors onto the
horizontal plane, (d) trajectory.
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Figure 2.11: Horizontal velocities and trajectories of very light spheres. (a),(b): ρs/ρ = 0,
G = 176 (planar trajectory).
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Figure 2.12: Horizontal velocity and trajectory of very light spheres at ρs/ρ = 0.2, G = 180.
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Figure 2.13: Velocities and trajectories of very light spheres at ρs/ρ = 0.2, G = 190, (a)
horizontal velocities as function of time (vertical axis), (b) trajectory, (c),(d) zoom on last
50 time units of figures (a) and (b).
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Figure 2.14: Velocities and trajectories of very light spheres at ρs/ρ = 0.2, G = 200. (a),(c)
Horizontal velocities as a function of time, (b),(d) trajectory. Note that the temperately
appeared planar trajectory (b) is soon replaced by a three dimensional motion (d) whose
horizontal velocities behave similarly as the case in Figure 2.13(a).
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Figure 2.15: Velocities and trajectories of heavier but still buoyant spheres. Left column:
horizontal velocities as a function of time, right column: trajectory. (a),(b) ρs/ρ = 0.5,
G = 190 (last 6 periods), (c),(d) ρs/ρ = 0.65, G = 195.
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Figure 2.16: Quasi-periodic zigzagging trajectories of heavier spheres at ρs/ρ = 0.5, G = 200
(last 6 periods). (a),(b) Horizontal velocities as a function of time, (c) projection of the
velocity vectors onto the horizontal plane, (d) trajectory.
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Figure 2.17: Horizontal velocities and trajectory of heavier but still marginally buoyant
spheres at ρs/ρ = 1, G = 195.
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2.6 Transition to chaos

2.6.1 Light sphere

As shown in the previous section, for buoyant spheres (ρs/ρ ≤ 1) the oblique oscillating
regime was found to disappear due to vanishing horizontal velocity in the JDB paper. A
more thorough investigation of this process shows that, in general, a chaotic behavior sets
in already at this stage and that the density ratio of 1 is not a relevant distinction between
light and dense spheres. At moments when the horizontal velocity of the sphere vanishes, the
flow close to the sphere becomes temporarily axisymmetric which is accompanied with some,
albeit, limited freedom of selection of a new symmetry plane of the wake. As a consequence,
various imperfect zigzagging states exist before being replaced by fully three-dimensional
and chaotic one.

Considering the lower limit of the chaotic domain (in terms of the Galileo number) to be
given by the loss of stability of oblique oscillating states, the zigzagging regime described in
the JDB paper represents an exception. The existence of genuinely periodic zigzagging sates
was confirmed only in cases summed up in Table 2.2 and represented in the state diagram
(Figure 2.7). The regimes described as “zig-zag, oblique” correspond to imperfect but still
periodic zigzagging, an example of which is already represented in Figure 2.15 (a,b). They
can be considered as a periodic case standing between the intermittent planar zigzagging
(Figure 2.11 (a,b) and 2.12) and slightly oblique, not exactly planar, intermittent zigzagging
regimes of Figure 2.15 (c,d). A quasi-periodic regime was evidenced at the density ratio 0.5
and G = 200 (see Figure 2.16) before the onset of a fully chaotic one of the type of Figure
2.17. In spite of a relatively detailed sweep of the parameter plane, the perfect vertical
zigzagging regime was found only for ρs/ρ = 0.5, G = 180 (see Figure 2.9).

description (ρs/ρ, G)

zig-zag, oblique (0,178); (0.2,185); (0.5,185); (0.5,190); (0.5,195)
zig-zag, oblique, quasi-periodic (0.5,200)
zig-zag, vertical, periodic (0.5,180)

fast ZZ oblique (0,210); (0.2,230)

Table 2.2: Exceptional ordered regimes for light spheres in the chaotic domain.

The critical Galileo numbers of the onset of chaos, identified as the loss of stability of
the oblique oscillating regime, is reported in Table 2.3.

2.6.2 Dense sphere

For density ratios ρs/ρ ≥ 1.7 the transition to chaos is subcritical with a region of co-
existence of states with a fixed symmetry plane and states in which the symmetry plane
slowly rotates. In both cases, the same periodic and quasi-periodic oscillations with a main
frequency corresponding to the high frequency oblique oscillating regime are present. The
quasi-periodic oscillations contain the roughly three times slower frequency characteristic



2.6. TRANSITION TO CHAOS 59

ρs/ρ 0 0.2 0.5 1 1.3

Gcrit1 171 175 179 192 202
uz1 1.350 1.356 1.361 1.381 1.392

ρs/ρ 1.7 2 2.5 3 4 10

Gcrit1 228 224 228 230 234 240
Gcrit2 212 216 215 215 213 219
uz1 1.429 1.424 1.430 1.436 1.439 1.447
uz2 1.409 1.410 1.413 1.413 1.412 1.417

Table 2.3: Estimates of critical Galileo numbers Gcrit and corresponding mean vertical ve-
locities at the onset of chaos. For subcritical transition two values (upper and lower limit of
bi-stability) are provided.

for the low frequency oblique oscillating regime. It is, however, interesting to note that
a similar frequency was also reported in the fixed sphere wake by G. Bouchet & Dušek
(2006) at Re = 325 where no fluid-solid interaction was present. (Re = 325 is close to the
Reynolds number 330 based on the average vertical velocity at G = 230 and ρs/ρ = 10.)
The overlapping extends over an interval of Galileo numbers having widths of 10 to 20 (see
Table 2.3). The three-dimensional trajectories arising at the upper limit of the bi-stability
domain can be considered as fully chaotic (see Figure 2.18).

The almost helical chaotic trajectories of dense spheres were already reported in the JDB
paper. A detailed investigation of the non planar branch of the bi-stability shows, however,
really perfect spiral trajectories. The latter are, strictly speaking, quasi-periodic with fast
oscillation superimposed on the much slower rotation. The small amplitude of oscillation is
invisible on the scale of the pitch of the trajectory. To investigate this branch of bistability
we used a chaotic regime as an initial condition and we progressively lowered the Galileo
number until the branch lost its stability i.e. when the rotation stopped. Figure 2.19 and
2.20 represent rotating regimes for the density ratio of 4 and 10, respectively. Table 2.4
provides some quantitative data. It shows that frequency, amplitude of oscillations and
inclination/pitch angle given by the ratio of mean values of horizontal and vertical velocity
remain, in general, the same whether the symmetry plane rotates or not. The slow rotation
of the symmetry plane of the wake has little effect on the wake itself and on the frequencies
generated by fluid-solid interaction. It is to be noted that the period of rotation is extremely
long which may result in a pitch exceeding 1000d and very small curvature of the spirals.

Figure 2.21 shows how the lower limits of stability of supercritical states denoted Gcrit2
in Table 2.3 were determined.
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Figure 2.18: Loss of stability of the symmetry plane at ρs/ρ = 2 and G = 230. (a) Horizontal
velocity components as a function of time in a false 3D plot, (b) trajectory.
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ρs/ρ G f1 f2 ∆|uh| Trot 〈|uh|〉 R 〈|uh|〉/〈uz〉
2.5 215 0.059 0.178 0.025 135 0.1343 2.88 0.095

– 0.186 0.0041 0.1466 0.1040

3.0 215 0.060 0.178 0.022 167 0.135 3.59 0.096
– 0.186 0.0036 0.146 0.104

3.0 220 0.060 0.181 0.023 133 0.1335 2.82 0.094
0.060 0.179 0.0214 0.1351 0.095

4.0 214 0.060 0.179 0.017 403 0.137 8.80 0.097
– 0.187 0.0027 0.146 0.104

4.0 220 0.060 0.182 0.018 174 0.135 3.72 0.095
0.061 0.182 0.016 0.137 0.097

4.0 225 0.061 0.185 0.018 143 0.132 2.99 0.092
0.051 0.179 0.023 0.131 0.091

10.0 220 0.055 0.191 0.0015 1115 0.145 25.8 0.102
– 0.191 0.0015 0.145 0.103

10.0 225 0.056 0.190 0.0028 337 0.139 7.44 0.097
224 0.055 0.191 0.0016 0.144 0.101

10.0 230 0.054 0.186 0.0085 354 0.134 7.53 0.093
0.053 0.186 0.0089 0.138 0.096

Table 2.4: Quantitative characteristics of the bi-stability domain of dense spheres. Upper
lines: rotating symmetry plane, lower lines: fixed symmetry plane. f1: low oscillation
frequency, f2: high frequency, ∆|uh|: r.m.s. of fluctuations of the norm of the horizontal
velocity, Trot: period of rotation of the symmetry plane, 〈|uh|〉: mean value of the the norm
of the horizontal velocity, R: radius of the horizontal projection of the trajectory, 〈uz〉: mean
vertical velocity.
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Figure 2.19: Velocities and trajectories of spheres of density ratio ρs/ρ = 4 on the rotating bi-
stability branch. (a) G = 212: Settling to oblique oscillating state. (b,c,d) G = 214: slowly
rotating symmetry plane and periodic low frequency oscillations, (b) horizontal velocity
components as a function of time, (c) projection of the velocity vectors onto a horizontal
plane, (d) trajectory.
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Figure 2.20: Velocities and trajectories of spheres of density ratio ρs/ρ = 10 on the rotating
bi-stability branch. (a) Settling to oblique oscillating state atG = 215, (b,c,d) slowly rotating
symmetry plane and periodic high frequency oscillation at G = 220 (same types of figures as
2.19 (b,c,d)), (e) horizontal velocity components as a function of time, (f) projection of the
velocity vectors onto a horizontal plane in the case of quasi-periodic oscillation at G = 225.
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Figure 2.21: Angle of the (almost) symmetry plane represented by the argument α of ux+iuy
as a function of time for spheres of Figures 2.19 and 2.20. (a) ρs/ρ = 4, G = 212, (b)
ρs/ρ = 4, G = 214, (c) ρs/ρ = 10, G = 215, (d) ρs/ρ = 10, G = 220. Note that the angle of
trajectory plane tends to a constant value in (a) (see the inset in logarithmic scale) and (c)
for oscillations tending to a fixed symmetry plane while it reaches a constant slope in (b)
and (d) for the symmetry plane tending to rotate with constant angular velocity.
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2.7 Vertical oscillating regime in the chaotic domain

In this section we focus on the “periodic windows” known to be “interspersed between
chaotic clouds” in many dynamical systems such as the logistic map (see e.g. Strogatz
(1994)). The JDB paper reported the existence of a vertical periodically oscillating regime
at density ratios 0.5 and 0. The most striking feature of this periodic regime is its frequency,
roughly equal to 0.14 in the units introduced in Sec. 2.2. It was shown to be associated
to the least stable complex eigenpair of the linear operator describing the linear stability
of the axisymmetric fluid - solid system. At the secondary bifurcation giving rise to the
oblique oscillating regime, this eigenpair has no relevance because the primary instability
considerably modifies the flow from which this bifurcation arises. In the case of vertical
paths with rapid periodic oscillations the sphere motion remains essentially vertical because
(see below) the amplitude of oscillation appears to be very small. The present data show
that there exists a domain of parameters in which this regime appears as the only stable
one. The domain of stability and the characteristics of the vertical periodic trajectories were
investigated in detail. Some other ordered states were evidenced but the latter appear as
isolated particular cases, except, possibly, the helical regime described in Sec. 2.8.

The vertical trajectories presenting fast transverse oscillations are qualitatively very sim-
ilar to those of the high-frequency oblique oscillating regime. The trajectory is planar, i.e.
the wake has a fixed symmetry plane, its oscillations have a high frequency, small wave-
length and small amplitude similarly as in the oblique oscillating regime (see Figure 2.22).
The main difference consists in a zero mean value of horizontal velocity. Instead of oblique
oscillating, this regime can be called vertical oscillating. In the JDB paper, two different
simulations at ρs/ρ = 0.5 and G = 240 lead to the conjecture that the vertical oscillating
regime co-exists systematically with the chaotic one. This is not the case and Figure 2.23
representing a simulation over a much longer time interval (about 1000 time units) explains
the why. It can be seen that the mean value of velocity deviates, initially only very slowly,
from zero leading to a progressively more and more inclined plane of the trajectory. The
amplification of mean horizontal velocity finally leads to chaos. The state considered in JDB
as coexisting with a chaotic regime is thus unstable and appears to be either chaotic or
intermittently switching from vertical oscillating to chaotic on a very large time scale. In the
same manner, all vertical oscillating regimes represented in the state diagram of Figure 2.7
have been tested for bi-stability by running sufficiently long simulations starting each time
from at least two different initial conditions. With three exceptions ρs/ρ = 1, G = 250, 260,
and ρs/ρ = 1.3, G = 260, bi-stability could be excluded.

At density ratios smaller than 0.5 all trajectories resembling vertical oscillating ones
appeared to be intermittent except for two cases reported in Table 2.2 (ρs/ρ = 0, G = 210
and ρs/ρ = 0.2, G = 230). They are closely related to vertical oscillating regimes due to
their frequency, 0.134 and 0.145, respectively. Their specificity consists in a significantly non
zero mean horizontal velocity. The trajectory is not very far from planar (note the different
scales of horizontal axes in Figure 2.25 (a) used to make the three-dimensionality apparent).
The average horizontal velocity is close to 0.1 and is thus close to that of oblique oscillating
regimes. The main difference consists in the fact that the oscillations are perpendicular to the
mean value shift. This could be described as an RSB mode in terms of Fabre et al. (2008) or
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MMπ according to Meliga et al. (2009). The resulting trajectory is thus, practically, planar
in a plane inclined by 3.7o with respect to the vertical direction. The trajectory obtained at
ρs/ρ = 0.2 and G = 230 (Figure 2.25 (d)) is very similar. The mean value of the velocity
is offset perpendicularly to the mean direction of the velocity oscillations. The dynamics
is now significantly quasi-periodic. This might cast a doubt on the stability of this regime
but, in the case represented in Figure 2.25 (c), there is no trend to change over more than
500 time units. The state is found to co-exist with a chaotic one which might also indicate
intermittence on an extremely large time scale. Figure 2.26 shows that regimes lying below
the subdomain of vertical oscillating states of the parameter plane are intermittent with very
long characteristic times.
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Figure 2.22: Vertical oscillating regime at ρs/ρ = 0.5, G = 260. (a) Horizontal velocity in
the trajectory plane as a function of time, (b) trajectory in its plane.

The typical vertical oscillating trajectory represented in Figure 2.22 at ρs/ρ = 0.5and
G = 260 is very accurately vertical. Figure 2.22 (a) shows that the oscillation amplitude of
the velocity barely exceeds 0.1 (0.105), the period of oscillation is about 7, more accurately,
the frequency is 0.1416. The high frequency (not much lower than the frequency of the
high frequency oblique oscillating regime - 0.18) and the relatively small horizontal velocity
amplitude (as compared to chaotic fluctuations of neighboring chaotic states) yields a small
amplitude of oscillations of the trajectory with respect to the vertical direction (see Figure
2.22 (b)): 0.12 of the sphere diameter.

The domain of stability of the vertical oscillating regime is limited to spheres of interme-
diate density 0.2 < ρs/ρ < 2. The frequency of oscillations slightly grows (with increasing
density ratio and with growing Galileo number) from 0.141 at ρs/ρ = 0.5 and G = 250 to
0.150 at ρs/ρ = 1.7 and G = 290. In contrast, the amplitude (both of horizontal velocity and
of the trajectory oscillation) decreases quite significantly: by a factor of 1/2. The amplitude
of the vertical velocity never exceeds 0.001, i.e., given the vertical velocity varying only very
slightly around 1.5, it is less than 0.07 %. All vertical oscillating regimes have been found
very accurately planar and having an average horizontal velocity of less than 10−6. The
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loss of verticality and planarity is probably not completely abrupt at higher Galileo number
limit. At ρs/ρ = 0.5 and G = 290 we evidenced a slightly oblique trajectory plane inclined
by 0.55o with respect to the vertical direction (similarly as in Figure 2.15 (b)) but with
smaller inclination and much smaller amplitude of oscillations). At ρs/ρ = 1.7 and G = 300
the trajectory was no longer found planar and the periodicity was found to have given way
to quasi-periodicity. The intriguing pattern of oscillations is represented in Figure 2.24. The
fall of the sphere remains vertical in the average and the oscillation amplitude of both of the
horizontal velocity and of the trajectory is similar as for the perfectly planar and periodic
trajectory we evidenced at ρs/ρ = 1.7 and G = 290.

To sum up, the vertical oscillating regime is characterized by very small and fast oscil-
lations and its planarity and verticality are remarkably accurate. This behavior is due to
a symmetric vortex shedding described elsewhere as SW mode (Fabre et al. (2008); Meliga
et al. (2009)) resulting in a zero mean lift (Kotouč et al. (2009)) for a fixed body. The typical
wake structure is represented in Figure 2.27.
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Figure 2.23: Simulation of an initially vertical oscillating regime at ρs/ρ = 0.5, G = 240. (a)
Horizontal velocity vector as a function of time, (b) trajectory.
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Figure 2.24: Non planar vertical oscillating regime at ρs/ρ = 1.7, G = 300. (a) Horizontal
velocity vectors as a function of time, (b) trajectory. The figures are truncated to the last
100 time units of simulation.
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Figure 2.25: Trajectories oscillating in oblique plane. Left column: horizontal velocity vectors
as a function of time, right column: trajectory. (a,b): ρs/ρ = 0, G = 210 (only the last 50
time units are plotted), (c,d): ρs/ρ = 0.2, G = 230.
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Figure 2.26: Intermittent state at ρs/ρ = 0.2, G = 240. (a) Horizontal velocity vectors as a
function of time, (b) trajectory.
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Figure 2.27: Vortical structure of the wake of the vertical oscillating regime at ρs/ρ = 0.5
and G = 250. The represented levels of vorticity are ±0.25.
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2.8 Helical regime

For infinitely light spheres and at the upper limit of the considered Galileo number interval
we evidenced states promising to provide a link with the “vibrating” states observed by
Horowitz & Williamson (2010) for a very large variety of parameters corresponding to light
spheres. For this reason we put a special focus on these intriguing, very regular states far
above the onset of chaos. The trajectories are perfectly spiral, projecting like circles onto a
horizontal plane. The rotation periods are approximately 10 (in time units d/Uref ) which
results (with account of the average vertical velocity of about 1.4) in wavelengths close to
15 observed by Horowitz & Williamson (2010) . However, the trajectories are not planar
and the domain of their existence was found to be very restricted (see Figure 2.7.) For
massless spheres (ρs/ρ = 0) we started to observe the spiral trajectory at G = 375. The
vertical velocity being 1.408, this corresponds to the Reynolds number Re = 530, which
is already significantly above the experimentally evidenced threshold of vibrating states of
Horowitz & Williamson (2010) (reported to be about 260). Moreover, though the upper
limit of density ratio (critical mass) found in experiment was close to 0.4, we did not find
any regular spiral (let alone zigzagging planar) trajectory at the density ratio as low as
0.2. For this reason, we decided to reverify the numerical accuracy of the simulation by
doubling the number of azimuthal modes of the azimuthal Fourier expansion (by truncating
at the mode m = 15 instead of 7), by doubling also the number of collocation points of the
spectral element discretization (switching from 6×6 to 8×8 collocation points per spectral
element) and by increasing the number of spectral elements from 245 to 335. This increase
of numerical accuracy did not bring about any significant quantitative change of results. At
ρs/ρ = 0.1 and G = 500 we found a rotation period of 9.2, a horizontal velocity of 0.30 and
a vertical velocity of 1.506 (both velocities are practically constant in the helical regime) for
the “low” resolution and 9.2, 0.32 and 1.501, respectively, for the higher resolution. (The
investigation was continued with the higher resolution.) We evidenced the perfectly spiral
trajectory for the density ratio of 0.1 (as already mentioned) but no longer for 0.2 where the
ordered trajectories gave way to a chaotic behavior.

The most striking feature of the helical regime is the high regularity of the trajectory
despite the high Galileo number, i.e. also the Reynolds number (750 for ρs/ρ = 0.1 and G =
500). The characteristics of a typical trajectory (ρs/ρ = 0.1 and G = 500) are represented
in Figures 2.29 (a,b,c), quantitative data for three helical regimes are reported in Table
2.5. Figure 2.29 (d) shows the typical twisted wake. The helical regime stands out for an
exceptionally large horizontal velocity. While the typical horizontal velocity represents less
than 10% of the vertical one in oblique regimes (see Table 2.1), the same ratio amounts to
30% for the massless sphere and 20% for the sphere of density ratio 0.1. The helical shape
of the trajectory is not very far from an ideal spiral having a circular horizontal projection
(Figure 2.29 (b)). The norm of the velocity vector is practically constant (within about 1%).
The horizontal projection turns regularly with less than 2% r.m.s. fluctuations, the vertical
component is constant with about a half percent accuracy. The large horizontal velocity is
correlated with a drop of vertical velocity. The common features with the vibrating states
of Horowitz & Williamson (2010) are the perfect average verticality of the trajectories, the
pitch (very similar to their wavelength), the radius (in qualitative correspondence with the
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Figure 2.28: ρs/ρ = 0.1, G = 500: An initially planar trajectory resuming the helical shape.

r.m.s. of the horizontal projection of the vibrating trajectories) and the extreme regularity
of the trajectories. However, the drop of vertical velocity is insufficient to account for the
experimentally observed increase of drag coefficient. As for the difference of the shape of
trajectories, we attempted to test the stability of the planarity by simulating trajectories
starting from vertical rise (forced for the same parameters ρs/ρ = 0.1 andG = 500) perturbed
by an imposed horizontal velocity of 0.01 (0.6% of the vertical velocity). The trajectory
left the initially imposed plane already during the stage of amplification of axisymmetry
breaking without presenting any transient zigzagging character (see Figure 2.28) and settled
very rapidly to the helical shape.

(ρs/ρ, G) period ‖uh‖ ∆‖uh‖ uz ∆uz pitch radius CD
(0,400) 9.12 0.384 0.005 1.382 0.009 12.6 0.56 0.70
(0,500) 8.96 0.422 0.008 1.406 0.006 12.6 0.60 0.67
(0.1,500) 9.22 0.326 0.006 1.501 0.003 13.8 0.48 0.59

Table 2.5: Characteristics of three helical regimes. For the modulus of horizontal velocity
‖uh‖ and for the vertical velocity uz, the mean values over 5 periods are reported. The
corresponding root mean square deviations are denoted ∆. “Pitch” and “radius” refer to
the trajectory.
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Figure 2.29: Five periods of helical trajectory for ρs/ρ = 0.1 and G = 500. (a) horizontal
velocity components as functions of time, (b) path of the horizontal velocity vector, (c)
trajectory. Figure (b) shows the very small deviations from periodicity and from circular
form. Figure (d) represents iso-surfaces of stream-wise vorticity at levels ±1 at the end of
the time interval of figure (a).
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2.9 Chaotic states

The randomness of chaotic states limits the interest of graphic representations because each
sample is different. Nonetheless, the chaotic trajectories present features reminiscent of
neighboring ordered regimes. In Figure 2.30, three very different chaotic states are rep-
resented in terms of the time evolution of the horizontal velocity vector and as three-
dimensional paths. There are clear qualitative differences. The first represented state
(ρs/ρ = 0.5, G = 230) carries a fingerprint of intermittent oblique zigzagging of Figure
2.15 and 2.17, the second one (ρs/ρ = 0.5, G = 500) is intermittently helical (with turning
horizontal velocity vector of large magnitude), the last one (ρs/ρ = 2, G = 400) presents fea-
tures described in Sec. 2.6.2. A statistical approach is necessary to quantify the differences
independently of the random details. Moreover, in view of the presence of ordered states
within the chaotic domain, the quantitative characterization must apply both to ordered and
chaotic states. In what follows we evaluate the following statistical quantities in the entire
domain of unsteady (both ordered and chaotic) regimes:

• mean value of the horizontal velocity vector uh = (ux, uy)
T :

〈uh〉 ≡ (〈ux〉, 〈uy〉)T = lim
T→∞

1

T

∫ t0+T

t0

uh(t) dt; (2.9)

• root mean square of the horizontal velocity fluctuations u′
h = uh − 〈uh〉:

(

〈u′
h
2〉
)1/2

=

[

lim
T→∞

1

T

∫ t0+T

t0

(

u′
h

)2
dt

]1/2

; (2.10)

• correlation time Tcorr defined by the autocorrelation function

R(τ) = lim
T→∞

1

T

∫ t0+T

t0

(

u′x(t+ τ)u′x(t) + u′y(t+ τ)uy(t)
)

dt (2.11)

as the first time shift τ at which R vanishes:

Tcorr = min {τ ;R(τ) = 0} . (2.12)

The time averages are, actually, computed over finite time intervals but the statisti-
cal convergence is checked by monitoring the decrease of fluctuations of the averages with
increasing size of the time series.

The plotting of the computed values faces the problem of bi-stability. We make the
choice of plotting chaotic states whenever they are found to co-exist with ordered ones. In
the domain of bi-stability of the fixed and rotating symmetry plane (see sec. 2.6.2) we plot
the states with rotating symmetry plane representing a natural (albeit ordered) continuation
of chaotic regimes.

The plot of the norm of the mean value of the horizontal velocity vector (Figure 2.31) lets
the oblique oscillating states stand out. The quantitative evolution toward larger horizontal
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velocity when the density ratio increases, evidenced in Table 2.1, is also reflected in the
figure. The “exceptional” oblique oscillating state ρs/ρ = 0, G = 210, for which we did not
find a co-existence with a chaotic regime, also emerges. For the chaotic states, a theoretically
zero mean value is expected as expression of randomness.

In Figure 2.32, representing the r.m.s. of horizontal velocity fluctuations, the helical
regime strongly emerges in the right lower corner of the plot. This corresponds to the excep-
tionally large value of the horizontal velocity oscillations in this regime. It is, however, to be
noted that all chaotic regimes of light spheres at high Galileo numbers present above average
horizontal velocity fluctuations. In contrast, the domain of oblique oscillating states stands
out for below average fluctuations. This is due to the fact that what appears as dominant
fluctuations in the chaotic domain of falling spheres are randomized oblique trajectories. This
can be seen when the sum of the norm of the mean value and of the r.m.s. of fluctuations
of horizontal velocity is represented (Figure 2.33). The sharp distinction between oblique
oscillating and chaotic states disappears which means that the mean horizontal velocity of
oblique oscillating regimes is roughly the same as the amplitude of the horizontal velocity
fluctuations in the chaotic states. Since these fluctuations are, for dense spheres, related to
the slow rotation of the symmetry plane of the sphere wake, the chaotic trajectories appear
as oblique oscillating on short scale (see Figure 2.30 (f)). Figure 2.33 shows that only zigzag-
ging and vertical oscillating regime present relatively small horizontal velocity. In contrast,
chaotic states of light spheres have an above average horizontal velocity even in spite of the
fact that their trajectories are not helical. The island of vertical oscillating regimes in the
center of the graph represents an extreme case of very accurately vertical trajectories with
very small oscillations.

It may also be useful to quantify the planarity of the trajectories, especially for light
spheres for which the transition to chaos only partly destroys the planarity of trajectories.
For this purpose we computed the eigenvalues λ1 ≥ λ2 of the correlation matrix

〈uhuTh 〉 =
[

〈u2x〉 〈uxuy〉
〈uxuy〉 〈u2y〉

]

. (2.13)

For exactly planar trajectories λ2 = 0. In the case of perfect planar isotropy (helical or com-
pletely random trajectories) λ2 = λ1. The ratio 0 ≤

√

λ2/λ1 ≤ 1 measures the intermediate
cases. The use of this ratio allows us to redefine the zone of zigzagging states as chaotic state
with close to planar trajectories (see Figure 2.34). The zone was approximately reported in
the state diagram Figure 2.7 to show the link with the JDB paper.

To quantify the frequencies of aperiodic regimes we used the correlation time defined by
Eqs. (2.11) and (2.12). For a periodic and harmonic function and T → ∞ the time Tcorr is
exactly equal to a quarter of the period. We verified that 1/(4Tcorr) does not significantly
differ from the frequencies that can be directly obtained from the data of periodic regimes.
For aperiodic regimes the so defined frequency often corresponds to the highest peak of the
power spectrum density but it can rather be interpreted as the smallest significant frequency.
The correlation approach is more robust to the truncation of the analyzed time series than
the search of the highest peak of the power spectrum. Apart from the trivial confirmation
of the frequencies of strictly periodic regimes, Figure 2.35 shows that a significant subset of
chaotic regimes is dominated by fast oscillations connected to the vertical oscillating regime.
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For slowly rotating regimes the correlation time detects the frequency of the slow rotation
which is of the order of 0.01 or less.

There exists a significant amount of experimental data (e.g. Karamanev et al. (1996);
Horowitz & Williamson (2010)) showing a significant increase of the drag coefficient at the
transition to turbulence for light spheres. This effect is related to a significant reduction
of the vertical velocity taken as the basis for the computation of the drag coefficient. As
already mentioned in the JDB paper and in Sec. 2.8, numerical simulations failed, so far,
to confirm this observation quantitatively. A qualitative trend can, nonetheless, be seen
in Figure 2.36. The non-dimensionalized vertical velocity increases mainly in the diagonal
direction of the graph, i.e. both for increasing density ratio and Galileo number. In the lower
right corner of the plot, the helical regime significantly lowers the vertical velocity, but the
drop is insufficient to bring a quantitative agreement with experimental data (see Figure 12
of Horowitz & Williamson (2010) and Table 2.5). The r.m.s. of fluctuations of the vertical
velocity is generally very small, which gives a good sense to the Reynolds number based on
its average value. It is, however, interesting to note that for regimes presenting intermittent
switching between helical and vertical rise non negligible fluctuations of vertical velocity may
arise (see Figure 2.37).

In spite of some residual noise due to sometimes insufficient length of time series used in
the statistical post-treatment, the global characteristics provide physically relevant informa-
tion.
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Figure 2.30: Three examples of chaotic trajectories. Left column (a,c,e): horizontal velocity
vector as a function of time, right column (b,d,f): trajectories. (a,b) ρs/ρ = 0.5, G = 230,
(c,d) ρs/ρ = 0.5, G = 500, (e,f) ρs/ρ = 2, G = 400.
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Figure 2.31: Statistical characteristics of mean value of horizontal velocity vector ‖〈uh〉‖.
Markers represent the interpolated points.



80 CHAPTER 2. FREELY FALLING OR ASCENDING SPHERES

 

 

G

ρ
s
/ρ

f
         

160 180 200 220 250 275 300 350 400
  0

0.2

0.5

  1

1.3

  2

  3

  4

 10

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.32: Statistical characteristics of unsteady regimes of the r.m.s. of horizontal velocity
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. Markers represent the interpolated points.
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Figure 2.33: Sum of the mean value of horizontal velocity vector (Figure 2.31) and the r.m.s.
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Figure 2.34: Planar isotropy of horizontal velocity fluctuations in the horizontal plane (square
root of ratio smaller/larger eigenvalue of 〈uhuTh 〉).
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Figure 2.35: Frequency 1/(4Tcorr) (see Eqs. (2.11) and (2.12)).
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Figure 2.36: Mean value of vertical velocity ‖〈uz〉‖.
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Chapter 3

Freely falling or ascending
spheroids

3.1 Introduction

The motion of two prototypical bodies: a sphere and a disk have been studied in the literature
both numerically and experimentally. In the present thesis, we devoted the previous chapter
to provide additional information on the motion of a sphere. The PhD thesis by Chrust
(2012) focused on disks and flat cylinders. A brief summary of the underlying bibliography
was presented in section 1.7. Here, we recall some additional facts.

The study of Chrust (2012) had been largely motivated by existing, challenging and
sometimes controversial, experimental results. The experimental paper of Field et al. (1997)
(comprising the results of their own and earlier experiments: Willmarth et al. (1964), String-
ham et al. (1969)) demonstrated a variety of motion regimes of falling disks and interpreted
them from the viewpoint of the theory of deterministic chaos (Strogatz (1994)). They identi-
fied four distinct states depending on two dimensionless parameters: the non-dimensionalized
moment of inertia I∗ = I/(ρd5) (I being the moment of inertia with respect to an axis lying
in the plane of the disk) and the Reynolds number based on the mean vertical velocity um.
For low Reynolds numbers the fall was found to be steady and vertical almost independently
of I∗. At higher Reynolds number, a periodic regime consisting in a flutter of the disks and
a zigzagging trajectory was observed for small values of moment of inertia I∗. For values of
I∗ exceeding 0.04 the disks were observed to tumble over edge, again in a perfectly periodic
manner. This resulted in oblique trajectories. The fluttering state was characterized by the
authors as periodic oscillations with inclination angle φ smaller than π/2. The tumbling
motion was described as a side-wise drifting of a disk rotating in a given direction. The
authors stressed the true periodicity of this regime. The regions of the parameter plane
corresponding to purely tumbling and purely fluttering trajectories were found to be sepa-
rated by a “chaotic” sub-domain. The chaos was identified as intermittence due to irregular
switching between the flutter and the tumbling.

Flat, marginally buoyant (of density ratio 0.99) cylinders of aspect ratio χ = d/h, where d
is the cylinder diameter and h its height, were investigated more recently by Fernandes et al.

87
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(2007)). While, in agreement with expectations, the vertical rise of cylinders of aspect ratio
smaller or equal than 6 was found to loose its stability and give way to oscillations at smaller
Reynolds numbers than predicted by numerical simulation of the wake of a fixed cylinder of
the same aspect ratio, the experiments showed a very significant rise of the critical Reynolds
number for aspect ratios 10, 15 and 20. Given the relatively small non-dimensionalized
moment of inertia of flat cylinders, the observed non vertical regime was always fluttering.

The experiments of Field et al. (1997) stimulated a significant effort (Bönisch & Heuve-
line, 2007) to develop an appropriate simulation method capable to reproduce the observa-
tions with sufficient accuracy at acceptable costs to allow a parametric study. The challenge
of reproducing the experiments was raised by two recent theses: that by Auguste (2010)
and by Chrust (2012). Auguste (2010) showed the existence of small amplitude non-vertical
regimes preceding the appearance of large planar oscillations of very flat cylinders. These
trajectories, experimentally hard to be distinguished from vertical ones, were conjectured
to explain the surprising observation of Fernandes et al. (2007). A recent paper by Chrust
et al. (2014) confirmed this conjecture quantitatively.

The numerical method developed in the framework of the PhD thesis of Chrust (2012)
proved to be especially well suited for parametric investigations. In the paper by Chrust
et al. (2013) it was used to present a numerical counterpart of the experiments by Field et al.
(1997) by investigating the transition scenario of thin disks of infinite nominal aspect ratio χ
and of variable inertia. Instead of I∗, they characterize, equivalently, the disk inertia by the
non-dimensionalized mass m∗ = m/(ρd3), where ρ is the fluid density, d the disk diameter
and m its mass. The Reynolds number being based on an a priori unknown vertical velocity,
they introduce the Galileo number defined as

G =
√

|m∗ − V ∗|gd3/ν (3.1)

where V ∗ = V/d3 is the non-dimensionalized volume (accounting for buoyancy) and ν the
kinematic viscosity of the fluid. A good agreement with experiments was obtained and, more-
over, many additional facts were revealed. Most notable were the strong subcritical effects
leading to coexistence of stable states and a substantially different scenario for light (m∗ < 1)
and massive (m∗ > 1) disks. In particular, for disks characterized by non-dimensionalized
mass m∗ < 0.1 they evidenced weakly oscillating periodic and chaotic states filling a gap
between the loss of stability of the vertical fall and the onset of instability of a strong flutter
in the same manner as for flat cylinders. At m∗ = 0 the critical Galileo number of loss of
stability of the vertical fall was found to be 78 and the strong flutter was evidenced starting
only from G = 130. Moreover, again at m∗ = 0, the chaotic weakly oscillating state was
found to coexist with the strong periodic flutter in the wide interval 130 6 G 6 180. The
virtually experimentally unobservable, weakly oscillating states were shown to explain the
shape of the critical curve of Willmarth et al. (1964) characterized by a strong upward shift
of the observed onset of oscillations (flutter) of very light disks. The spiral trajectories of
Zhong et al. (2011) were also evidenced. The different trajectories evidenced in the Physics
of Fluids paper by Chrust et al. (2013) are reproduced in Figure 1.15. The names referring
to the styles will also be used in the present chapter.

There is no obvious analogy between the scenario of spheres and disks. For this reason,
Chrust (2012) states the interest of investigating intermediate particle shapes represented by
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oblate spheroids of aspect ratios (defined as χ = d/a) where d is the diameter and a the length
of the axisymmetry axis of the spheroid) going from infinity to 1. A preliminary attempt to
provide information on the scenario of spheroids of intermediate aspect ratios showed that
the investigation of the three parameter space is a significant numerical challenge. In the
present chapter this challenge is raised. We aim to establish an understandable link between
the transition scenario of a thin disk and that of a sphere. The limit cases are represented by
a spheroid of infinite aspect ratio, which is not exactly equivalent to the homogeneous disk of
Chrust et al. (2013). Due to a non uniform mass distribution, its non-dimensional moment
of inertia is m∗/20 instead of m∗/16. This does not radically change the scenario but the
quantitative differences require a specific investigation of this case. At the opposite limit of
the aspect ratio interval, we face the qualitative difference between a perfect sphere which
can “roll” and a slightly oblate body. For this reason we consider the aspect ratio χ = 1.1 as
the limit case. Between these two extreme values we consider aspect ratios 10,6,5,4,3 and 2.
In each considered plane of χ = const., the scenario presents significant particularities. The
whole study is illustrated by eight state diagrams which demonstrate the transition scenario
in the three-parameter space.

3.2 Mathematical formulation and numerical method

In order to obtain a body fitted mesh close to the moving body and cylindrical mesh trans-
lated along with the wake, the computational domain is decomposed into a relatively small
spherical sub-domain rotating with the body, connected to the remaining cylindrical sub-
domain by a spherical function expansion at the common interface (see Figure 3.1). We
adapt the fully implicit fluid-solid coupling described earlier (Jenny & Dušek (2004)) to the
configuration of spheroids. The resulting numerical code remains both accurate and efficient
in the same way as the version used for the simulation of a freely moving sphere.

We assume the fluid to be incompressible and Newtonian with constant kinematic vis-
cosity ν. The motion of a homogeneous rigid spheroid, of diameter d and the length of the
polar axis a, is driven by gravity and buoyancy. A very thin spheroid of finite mass m can
be considered to be made of an infinitely dense material and to have a zero volume. From
this viewpoint the buoyancy effects would be negligible as it is the case for experiments in
the air. In water, however, the solid/fluid density ratio (ρs/ρ) remains small and buoyancy
combined with gravity results in an effective gravitational acceleration geff = (1− ρ/ρs)g,
where g is the gravitational acceleration. The definition of geff covers both falling and
ascending spheroids. Note that the present definition differs by the factor ρ/ρs from that
used for the simulation of freely moving spheres focusing mostly on the case of light spheres,
i.e., ρs/ρ < 1. Flat ascending spheroids have small inertia and, from the viewpoint of para-
metric investigation, are equivalent to “infinitely light spheroids”. The mathematical limit
of spheroids of infinite aspect ratio a ≪ d requires, strictly speaking, ρs/ρ → ∞. In experi-
mental configurations this limit is often hard to achieve (e.g., in water) but, virtually in all
cases of falling spheroids, the density ratio ρ/ρs < 1 has been used. The ratio ρ/ρs thus
represents a more or less significant correction of the gravity. The fluid is assumed to adhere
perfectly to the solid body surface. The fluid medium is considered infinite and quiescent
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Figure 3.1: Geometry of the problem. geff : vertical vector of effective gravity oriented
downward or upward for falling or ascending bodies, (xfix, yfix, zfix): fixed reference frame,
(xc, yc, zc): vertically translated frame, and (xs, ys, zs): frame of the spherical sub-domain
rotating with the body. Numerical parameters: radius of the spherical sub-domain Rs = d,
Rc = 8d, Lu = 12d, Ld = 25d.

far from the moving body.
The velocity vector is considered with respect to a fixed reference frame. The axes of

the cylindrical sub-domain remain parallel to this fixed frame while those of the spherical
sub-domain rotate, in which the velocity field is described by its projection onto the local
rotating frame. The outer boundary conditions are a Dirichlet (zero velocity) condition at
the inflow boundary (bottom basis in Figure 3.1) and zero Neumann boundary conditions
simulating no-stress conditions at the outflow (on top basis) and on the cylindrical surface.

The non-dimensionalization is based on the scale of the force resulting from the weight
and buoyancy (m− ρV )g, where m is the mass and V the volume of the body. This force
defines the velocity scale

Uref =
√

|m∗ − V ∗|gd (3.2)

where m∗ and V ∗ stand for the non-dimensionalized mass and volume of the body

m∗ =
m

ρd3
, V ∗ =

V

d3
. (3.3)

In that case, the fluid equations write

∂v

∂t
+ [(v − u− ω × r) · ∇]v + ω × v = −∇p+ 1

G
∇2v (3.4)



3.3. RESULTS 91

and
∇ · v = 0 (3.5)

where u is the translation velocity of the body center, ω is the angular velocity of the rotating
spherical sub-domain. The Galileo number G appearing in Eq. 3.4 is given by

G =
Urefd

ν
=

√

|m∗ − V ∗|gd3
ν

=

√

m∗geffd3

ν
(3.6)

The solid body equations then write the non-dimensionalized movement equations:

m∗
(

du

dt
+ ω × u

)

= Ffl(v, p) + kfix (3.7)

αI∗
dΩ3

dt
= Mflz (3.8)

I∗
(

dΩ+

dt
− iαΩ+Ω3

)

= Mfl+ (3.9)

where kfix is the vertical unit vector pointing upward or downward for falling or ascending
bodies, respectively. Eqs. 3.8 and 3.9 are written for complex (U(1), see e.g. Jenny & Dušek
(2004)) coordinates of angular velocity Ω+ = Ωx+iΩy and torqueMfl+ =Mflx+iMfly. The

angular velocity vector of the spherical sub-domain has the components ω = (Ωx,Ωy, 0). Due
to the axisymmetry of spheroid, the body fitted mesh is not required to follow the rotation
about its axis. The non-dimensionalized moment of inertia is defined as

I∗ = m∗
(

1

χ2
+ 1

)

/20. (3.10)

where the aspect ratio χ = d/a defined earlier. The full system of Navier-Stokes equations 3.4
and 3.5 and of motion equations 3.7 through 3.9 depends on three dimensionless parameters:
the Galileo number G, dimensionless mass m∗ and aspect ratio χ.

As described in Chapter 4 of Chrust (2012), the meshes tested and used for spheroids were
adapted for the implementation of the spherical interface. The radius of the interface was
close to be 1d for all simulations, they were run with the azimuthal Fourier decomposition
and the spherical function expansion truncated at M = 15 and ℓmax = 15, respectively. The
detailed explanation of the numerical method is provided in Chapter 3 of Chrust (2012).

3.3 Results

The transition scenario of freely falling or ascending spheroids can be characterized by a
set of bifurcating asymptotic states. They correspond to stable asymptotic regimes reached
in an infinite time horizon by the solid-fluid system for a fixed set of state parameters. In
practical situations “infinite” means extremely diverse time scales given by the stability of
the state. The latter decreases dramatically close to bifurcations and at the onset of chaos,
not all bifurcating states are really observable in laboratory experiments. Given the objective
to detect asymptotic states, the initial conditions of the simulations are chosen using already
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symbol description

Steady vertical

States of the scenario of a perfect sphere (see Ch. 2)

Steady oblique
Low frequency oblique oscillating
High frequency oblique oscillating
Perfect or slightly oblique zigzag
Zigzag 3D

States of the scenario of a disk (Chrust et al., 2013))

Flutter
Planar “zigzagging” motion accompanied by fast oscillations with significant
inclination angles (φ) typically larger than 30o.
Helical
Purely helical or bi-periodic states resulting from a slow rotation of the symmetry
plane (typical for large Galileo numbers at small dimensionless masses.)
Intermittent
See section 1.7.
Tumbling
See section 1.7.
Spiral tumbling
See Figure 1.15.
Vertical periodic of small amplitude
(Replace the magenta asterisks of Figure 1.16.) Fluid modes with very small
amplitudes of the solid body oscillations.
Chaotic
Denotes all 3D trajectories with more complicated than bi-periodic dynamics.

States of spheroids of intermediate aspect ratio

Switching of oblique oscillating and vertical periodic in perpendicular
directions (see sections 3.3.6 and 3.3.7)
Vertical periodic of intermediate amplitude
Periodic fluid modes separated from the flutter by a jump of amplitude and
frequency for high aspect ratio. At intermediate aspect ratio, the transition
between both is progressive and an arbitrary criterion based on the amplitude
of inclination angle (φ) is used.
Planar, quasi-periodic
All planar aperiodic states, vertical in the average or oblique.
Oblique periodic
Planar, periodic, only slightly drifting in the horizontal direction in contrast with
oblique oscillating states for which the mean horizontal velocity dominates.

Table 3.1: Description of symbols presented in the state diagrams of various aspect ratios.
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known results. This allows us not only to save CPU time but is the only practical way how
to track branches of coexisting solutions in the many cases of subcritical bifurcation that
occur in our study.

This section is organized in eight subsections corresponding to each aspect ratio studied
varying from infinity to 1.1 to establish a link between transition scenario of a freely falling
or ascending thin disk and that of a sphere. For each subsection, we provide a state diagram
in the two-parameter G −m∗ plane.The used symbols are listed in Table 3.1. Their choice
respects the symbols used in chapter 2 and in the Physics of Fluids paper by Chrust et al.
(2013). Figures illustrating the trajectory styles of Table 3.1 will be presented in the following
sections.

3.3.1 χ = ∞
As can be expected, the transition scenario of a spheroid of aspect ratio χ = ∞ resembles
strongly to that of an infinitely thin disk. As already stated, this is due to the slightly smaller
moment of inertia I∗ = m∗/20 instead of m∗/16. For m∗ = 0 this makes no difference and
the lowest line of states in Figure 3.2 is directly reproduced from Figure 1.16. Progressively,
as the non-dimensionalized mass (i.e. the inertial effects) increases, the difference between
the disk and infinitely flat spheroid becomes more apparent but, qualitatively, the state
diagram (Figure 3.2) contains the same four distinctive dominant regimes: vertical, fluttering
(zigzagging), intermittent and tumbling, plus three oscillating states of small amplitude:
vertical quasi-periodic, vertical periodic and chaotic. We shall call the latter fluid modes in
agreement with the discussion of Chapter 2.

The symbols and colors used in Figure 3.2 correspond to those of Chrust et al. (2013)
except for the stars denoting vertical trajectories periodically oscillating with very small
amplitudes (quasi-vertical periodic trajectories) in the paper by Chrust et al. (2013), which
have been replaced by magenta dots. The state diagram is dominated by the region of
flutter, i.e. of states with planar oscillating trajectories distinctive by significant oscillations
of the body axis. The minimal amplitude of theses oscillations measured by the sine of
the inclination angle is 0.22 at m∗ = 5 and G = 37 so that there is no ambiguity with
periodic “fluid modes” having amplitudes of at most 0.05. A typical example is the case
m∗ = 0.025, G = 100 where both states co-exist. The flutter has an amplitude of the sine of
inclination angle of 0.46 whereas the fluid mode oscillates with an amplitude of only 0.054.
As mentioned by Chrust et al. (2013), the fluid modes become chaotic at higher Galileo
numbers. The amplitude of oscillations of the body axis remains, however, small. E.g. at
m∗ = 0, G = 150, the r.m.s. is 0.039. The tumbling and the intermittent states do not require
any additional comment to what was stated by Chrust et al. (2013). The overlapping of the
flutter and tumbling extends farther towards higher Galileo numbers for m∗ = 5, which is
obviously due to the lower moment of inertia allowing the flutter to keep a stability before
switching to tumbling.

The primary bifurcation (the threshold is represented by the solid black line) was found
always of Hopf type and subcritical for m∗ ≥ 0.05 in the same way as for disks. The
subcritical nature of the bifurcation explains the bi-stability band of the flutter and of vertical
states. The band seems to disappear for m∗ > 1 but it can be assumed that the bifurcation
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is still subcritical because we were unable to find saturated states with small amplitude at
m∗ = 2 and 5. E.g., at m∗ = 2, the threshold of the bifurcation lies at Gcrit = 35.3 and at
G = 36 the saturated state is already a flutter with amplitude of the sine of inclination angle
of 0.25. In contrast, the bifurcation is supercritical when it gives rise to fluid modes at very
small m∗. Interestingly enough, the small amplitude of motion of the body is practically
equivalent to a steady state and results in an inertia independent critical Galileo number.

The most salient specificity of the infinitely flat spheroid is the coexistence of vertical,
relatively weakly oscillating trajectories with the tumbling regime. In spite of the obvious
differences as compared to fluid modes at very small non-dimensionalized masses that can
be seen in Figure 3.3 consisting in a larger amplitude of oscillation of the body axis and the
fact that we did not evidence any periodic trajectory for these new states, we consider they
can be qualified as fluid modes as well. To mark the difference, we denote the planar quasi-
periodic states by an asterisk. More detailed quantitative information is presented in Table
3.2. Similarly as for very light bodies, the trajectories become three-dimensional and chaotic
at higher Galileo numbers. To check that this co-existence was not missed when studying the
disks, we tested whether these fluid modes resist if I∗ is set equal to that of a homogenous
disk. A result of such a test can be seen in Figure 3.4. The initially quasi-periodic oscillations
give clearly the way to tumbling (angular velocity keeping the same sign).

The mentioned differences between the behavior of an infinitely flat spheroid and of a
disk are, nevertheless, relatively minor. The scenario of infinitely flat spheroid can thus be
considered as a good starting for the investigation of the effect of the shape variation between
a disk and a sphere.

A remarkable feature common to disks and spheroids of high to moderate aspect ratio is
the independence of the scenario on the Galileo number starting from a relatively moderate
value of about 100. This relative independence on G was already noticed by Field et al.
(1997), it is clearly demonstrated in Figure 1.16 reproduced from Chrust et al. (2013). In
the same way, the lines separating different regimes tend to be horizontal in Figure 3.2 in
the right of the diagram.

(m∗, G) ūz Auz Auh St φmax(
o)

(0, 100) -1.446 0.004 0.050 0.102 1.598
(2, 100) -1.376 0.020 0.123 0.119∗ 26.25
(5, 100) -1.437 0.008 0.010 0.119∗ 3.963

Table 3.2: Quantitative data for vertical periodic and quasi-periodic states. Meaning of
symbols: ūz – mean vertical velocity; Auz , Auh – amplitude of oscillations of the vertical
and horizontal velocity; St – the Strouhal number; φmax – the maximum inclination angle
with respect to the vertical direction. The values marked by ∗ are dominant frequencies of
quasi-periodic states.
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Figure 3.3: The comparisons of the horizontal velocity (figure (a)) and inclination angle (b)
for the vertical quasi-periodic and vertical periodic states. Red: m∗ = 0, G = 100, blue:
m∗ = 2, G = 100, black: m∗ = 5, G = 100.
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Figure 3.4: Angular velocity of the rotation of homogeneous disk at m∗ = 5, G = 150.
Simulation restarted from the fluid mode of an infinitely flat spheroid at the same point of
the parameter plane.
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3.3.2 χ = 10

The effect of body shape on the characteristics of a freely moving spheroid is already signifi-
cant for as flat a spheroid as that of aspect ratio 10 as can be seen in Figure 3.6. In the lower
part of the figure (m∗ < 0.3) we observe an upward shift of the primary bifurcation threshold
to Gcrit = 91.0. More importantly, the primary bifurcation is regular, i.e. the real eigenvalue
has become more unstable than the complex eigenpair. This explains why exactly the same
critical Galileo number was found for m∗ = 0, 0.1 and 0.25. The secondary Hopf bifurcation
follows at a critical Galileo slightly above 92. We evidenced also two oblique oscillating
states at m∗ = 0.1, 0.25 and at G = 96, 98) for both m∗ values. Figure 3.5 sheds some
light on the sequence of instabilities. It represents the evolution of inclination of the body
axis as a function of time starting from a vertical state. The faster growth of the primary
instability (exponential growth) and the slower growth of oscillations can be easily seen in
the initial stage of the simulation. The primary instability saturates at sin(ψ) ≈ 0.066 (less
than 4◦). Subsequently only the amplitude of oscillations (of the secondary instability) goes
on growing. During this stage, the mean value decreases. It may be expected to ultimately
disappear to yield a vertical periodic state. In the case of Figure 3.5), the steady mean value
is, however, only partially absorbed by non-linear effects and an oblique oscillating asymp-
totic state is reached. By restarting using as initial state at G = 100 we verified that at this
Galileo number (G = 96) the vertical periodic state is not stable. However, at G = 98 we
found a co-existence of both, a vertical and an oblique oscillating state. The same holds for
m∗ = 0.25. For this higher non-dimensionalized mass, the steady oblique state (at G = 94)
and oblique oscillating states (at G = 96, 98, 100 and 105) were found to co-exist with the
vertical periodic one ( at G = 98, 100 and 105 they are quasi-periodic). This means that
there is no progressive evolution from the steady oblique to vertical periodic regime via an
oblique oscillating state, the mean value of which would tend to vanish progressively. Instead
a subcritical bifurcation is at the origin of the vertical periodic state.

It may be objected that such a detailed investigation might lack physical relevance.
However, the steady oblique primary bifurcation states, together with oblique oscillating
one, represent something like an embryonic sphere-like scenario. This brings the explanation
of the inertia independent primary bifurcation threshold and shows that even for a very flat
spheroid there is a link, albeit very weak, with the dynamics of a perfect sphere. It is to be
noted that the frequency of asymptotic oscillations in Figure 3.5 is 0.17. Given the different
non-dimensionalization accounting for the body shape, it is preferable to convert this value
to Strouhal number based on the average vertical velocity which is 1.53 in this case. This
results in a Strouhal number of 0.11, corresponding rather to that of fluid modes (St = 0.13)
than solid-fluid modes (St = 0.05) of the sphere. This justifies not only the choice of the
yellow symbols but, more generally, the label “fluid modes” for the entire lower magenta
sub-domain of the diagram.

A next striking feature of the diagram is the extent of the sub-domain of the flutter.
This is due essentially to the very significant shift of the primary bifurcation threshold to
higher Galileo numbers. The lowest threshold, Gcrit = 78.0, was found at m∗ = 1.5, whereas
for infinitely flat spheroid the lowest critical Galileo number was Gcrit = 35.3 (at m∗ = 2.
In contrast the domain of existence of the flutter did not shrink so much which results in
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the large bi-stability domain. The extent of the bi-stability domain of the flutter and of the
steady vertical states is impressive. The stability domain of the flutter overlaps also with
the intermittent and tumbling subdomains, which results into three co-existing states for
some problem parameters. Also the tumbling (and partly intermittent) domain extends far
downward (for G) and overlaps with the domain of vertical states. It can be conjectured
that the better aerodynamic shape than that of an infinitely thin spheroid might explain
why the two unsteady regimes are sustained when the Galileo number is reduced (i.e, the
viscous effects increase).

Three different symbols for seemingly qualitatively the same regimes, in which the center
of the spheroid describes an oscillating, in the average vertical, trajectory, appear in the state
diagram 3.6. An example of “vertical periodic” state is given in Figure 3.7. Its specificity
consists in very small angles of inclination of the body axis (less than 6◦ in the figure).
Similarly as for the infinitely flat spheroid, the flutter can be unambiguously distinguished
from vertical periodic fluid modes by the much larger amplitude of the inclination of the
body axis (see Figures 3.8 and 3.9). The maximal sine of inclination in Fig. 3.9 is 0.19
to be compared with a flutter for the same m∗ at G = 65 having an amplitude of 0.77
which is also close to that of Fig. 3.8. In contrast, the periods of both the flutter and of
the fluid mode are not very different for the same inertia (see Table 3.3). The comparison
of Figures 3.7 and 3.9 explains why we use the same denomination for weakly oscillating
states in the lower part of the diagram and in the co-existence domain for high m∗. The
primary bifurcation becomes manifestly subcritical for m∗ ≥ 0.5. In the domain of flutter
we evidenced, in some cases, a destabilization of the planar trajectories for higher Galileo
numbers. The states where this destabilization was positively evidenced are represented as
helical and marked by filled blue circles in the diagram 3.6. The observed trajectories are,
however not mono-periodic and purely helical like in the paper by Chrust et al. (2013), but
their projection onto the horizontal plane is rather represented by a turning flat ellipse. As
the result, such dynamics is, strictly speaking, quasi-periodic. An example is represented in
Figure 3.12. The kino-gram of the motion shows that the trajectory remains actually very
close to that of a flutter.

At the interface between the domain of flutter and of tumbling (Figure 3.10) states typical
for their mostly irregular switching between a zigzagging (fluttering) stage and tumbling were
evidenced in the same way as by Field et al. (1997) and Chrust et al. (2013) and in Section
3.3.1 (see Figure 3.11 a)). Chrust et al. (2013) already noted that in numerical simulations
the intermittency becomes periodic with a given number of tumblings alternating in each
direction. An example is given in Figure 3.11 b) where the body tumbles five times over
edge before changing the rotation direction.
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(m∗, G) ūz Auz ūh Auh φmax(
o) period

(0.25, 100) -1.54 0.005 0 0.078 6.1 4.07
(0.25, 115) -1.38 0.37 0 0.770 49 3.11
(0.75, 200) -1.33 0.45 0.97 0.32 90 2.18
(2, 65)∗ -1.41 0.09 0 0.24 50 5.76
(2, 100)∗∗ -1.420 0.005 0 0.061 11.1 5.30

Table 3.3: Quantitative data characterizing selected periodic states for aspect ratio χ = 10.
Same meaning of symbols as in Table 3.2.∗: flutter, ∗∗: fluid mode.
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Figure 3.5: Evolution to the oblique oscillating regime for χ = 10, m∗ = 0.1 and G = 96.
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Figure 3.7: Vorticity structures and trajectory of vertical periodic state of spheroid of aspect
ratio 10 at m∗ = 0.25, G = 100 (sinψmax = 0.1, vorticity level: ωz = ±0.4).

Figure 3.8: Vorticity structures and trajectory of a flutter of spheroid of aspect ratio 10 at
m∗ = 0.25, G = 115; sinψmax = 0.75, vorticity level ωz = ±0.8.
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Figure 3.9: Vorticity structures and trajectory of a fluid mode of spheroid of aspect ratio 10
at m∗ = 2, G = 100 (sinψmax = 0.19, vorticity level ωz = ±0.8).

Figure 3.10: Vorticity structures and trajectory of a tumbling state of spheroid of aspect
ratio 10 at m∗ = 0.75, G = 200 (vorticity level: ωz = ±2).
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Figure 3.11: “Intermittent” trajectories of spheroid of aspect ratio 10. a) At m∗ = 0.75 and
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horizontal plane of a trajectory with non zero helicity for χ = 10 and at m∗ = 0.1, G = 250.
Red circle indicates the location of the end of time series.
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A little exploration in the domain of vertical falls reveals an interesting analogy of in-
finitesimal perturbations of vertical trajectories. The various falling styles observed for
spheroids of high and low non-dimensionalized masses illustrated in Figures 3.13 through
3.15 demonstrate that the same linear modes appearing as unstable above the instability
threshold are also the most receptive to numerical disturbances (of the order of the double
precision machine accuracy). It may be expected that stronger and realistic disturbances
may have a similar effect. The problem of receptivity of linearly stable flows was addressed
e.g. in the paper by Säıdi et al. (2011). Quantitative data of the periods of horizontal oscil-
lations and vertical velocities confirm the close relation between the excited states and the
instabilities (Table 3.4).

(m∗, G) T uz regime

(0, 70) 1.7647 -1.4236 vertical
(0, 300) 1.5484 -1.4914 helical

(0.1, 70) 2.7212 -1.4236 vertical
(0.1, 300) 2.3035 -1.4003 helical

(0.25, 50) 3.4587 -1.3006 vertical
(0.25, 175) 3.4270 -1.3829 flutter

(0.5, 40) 3.8087 -1.2204 vertical
(0.5, 78) 3.8257 -1.2200 flutter

(0.75, 50) 4.2642 -1.2204 vertical
(0.75, 250) 4.2100 -1.2714 tumbling

(1.5, 75) 5.1816 -1.4507 vertical
(1.5, 105) 5.1386 -1.4408 flutter

(2, 70) 5.9887 -1.4236 vertical
(2, 100) 6.0208 -1.4620 tumbling

Table 3.4: Comparison of period of horizontal oscillations T (half period for tumbling)
and vertical velocity uz for spheroids of “steady vertical” falls and states at higher Galileo
numbers for various non-dimensionalized masses.
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Figure 3.13: Various styles of “steady vertical” fall for spheroids. Projection of velocity
vectors onto a horizontal plane and trajectory of spheroids at m∗ = 5, G = 80 (figure (a,b)),
m∗ = 2, G = 80 (c,d) and m∗ = 0, G = 70 (e,f).



106 CHAPTER 3. FREELY FALLING OR ASCENDING SPHEROIDS

450 500 550 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−16

t

u
x
  

(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−16

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−16

u
x

u
y
  

(c)

−1

−0.5

0

0.5

1

x 10
−16

−2

−1

0

1

x 10
−16

−300

−200

−100

0

xy

z  

(d) (e)

Figure 3.14: Horizontal velocity as a function of time (figure (a)), projection of velocity
vectors onto a horizontal plane (c), trajectory (d), top and side views (b,e) of vorticity
structures (vorticity level: ±1.5× 10−17) for spheroids of m∗ = 0.25, G = 50.
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Figure 3.15: Horizontal velocities as a function of time (figure (a)), projection of velocity
vectors onto a horizontal plane (c), trajectory (d), top and side views (b,e) of vorticity
structures (vorticity level: ±10−17) for spheroids of m∗ = 0.5, G = 40.
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3.3.3 χ = 6

At the primary bifurcation, the state diagram 3.16 hints to a similar situation as at χ = 10:
the primary bifurcation is regular at m∗ ≤ 0.25. However, for this smaller aspect ratio,
the transition from the steady oblique to vertical periodic state is progressive. This is
illustrated, at m∗ = 0.1, in Figure 3.17). The threshold of the primary, regular bifurcation
is 90.1 independently of m∗ (provided m∗ ≤ 0.25). For G = 92 we find an exponentially
increasing inclination reaching a steady asymptotic value of about 3◦ (0.058 rad). The inset
demonstrates the stage of linear growth. At G = 94 we are above the Hopf bifurcation
threshold. The oscillation appears after the saturation of the primary instability is reached.
Its effect consists in a reduction of the mean value similarly as in Figure 3.5. The decrease
stops, however, before the mean value completely disappears. The asymptotic state is clearly
characterized by a mean inclination of about 0.05 radians and an amplitude of oscillation of
about 0.02. The same holds (qualitatively) for the horizontal velocity which results in an
oblique oscillating regime. With growing Galileo number, the mean value ends up vanishing.
This is the case at G = 96. A doubt may subsist if the asymptotic state has an exactly
zero value. For this purpose the dependence of the mean value on time is represented in the
inset. It clearly shows an exponential convergence to zero. At m∗ = 0 the oblique oscillating
state looses its mean value at G = 98, while, at m∗ = 0.25, we observe an oblique oscillating
regime at G = 92 and a vertical periodic one at G = 94 already. It means that the thresholds
shift downward to the critical Galileo number of the primary bifurcation. This is coherent
with the fact that this scenario is no longer observed at m∗ = 0.5.

Unlike for a disk and very flat spheroids of aspect ratios larger or equal than 10, the
primary bifurcation is not subcritical at higher non-dimensionalized masses. It continues to
be supercritical but of Hopf type giving rise directly to vertical periodic fluid states. In the
interval 0.25 ≤ m∗ < 1.8, the vertical periodic fluid modes undergo a next bifurcation yielding
states with a significant flutter or directly intermittent or tumbling trajectories. As a result,
even in the interval 0.5 ≤ m∗ ≤ 1.2 a narrow “channel” of fluid modes connects the lower
area to the upper one, which co-exists with tumbling states. This may be considered as an
additional confirmation of the conjecture formulated in the previous sub-section consisting in
establishing an analogy between fluid states at small and high inertia. The second bifurcation
threshold is marked by the solid magenta line delimiting the fluid modes from higher Galileo
numbers. This bifurcation is subcritical and the branch of fluttering states extends toward
low Galileo numbers and the bi-stability domain overlaps, albeit less than for χ = 10, with
the domain of steady vertical trajectories. The progressive transition from a steady vertical
regime to flutter with increasing Galileo number is illustrated in Figure 3.18 for m∗ = 1.
The exponential decay of small oscillations of the sine of the inclination angle of body axis
at G = 80 proves the linear stability of the steady vertical mode. At G = 85, the Hopf
bifurcation sets in and saturates at an amplitude less than 0.05 typically for the vertical
periodic fluid mode. At G = 90 this mode becomes unstable. The new bifurcation is
subcritical as can be seen from the super-exponential growth of the amplitude (Figure 3.18,
graph of the logarithm of amplitude at G = 90). The last plot (e) shows the stability of the
flutter (sine of inclination of 0.8) at the same Galileo number as that of the fluid mode (b)
at G = 85.
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For higher Galileo numbers, we observe the trend of the intermittent domain to disappear
with decreasing aspect ratio. While the overlapping of flutter with vertical regime gets
significantly reduced, there is practically no change in the extent of the stability domain of
tumbling towards small Galileo numbers.

(m∗, G) ūz Auz ūh Auh φmax(
o) period

(0.1, 100) -1.56 0.002 0 0.03 3.96 4.88
(0.25, 110) -1.52 0.003 0 0.05 5.93 4.48
(0.25, 115) -1.42 0.088 0 0.31 34.92 3.46
(1, 75) -1.39 0.091 0 0.24 41.96 4.58

(1.5, 150) -1.47 0.008 0 0.087 18.71 4.51
(2, 150)∗ -1.39 0.18 0.80 0.12 90 5.26
(2, 150)∗∗ -1.48 0.002 0 0.052 11.0 4.60

Table 3.5: Quantitative data characterizing selected periodic states for aspect ratio χ = 6.
Same meaning of symbols as in Table 3.2.∗: tumbling (period corresponding to a full rotation
by 2π), ∗∗: fluid mode.
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Figure 3.17: Evolution of the inclination of the axis of spheroid starting from a steady vertical
state at m∗ = 0.1 and G = 92, 94 and 96. Inset of the figure at G = 96: horizontal axis:
time, logarithmic vertical axis: mean value of sinψ per oscillation.
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Figure 3.18: Evolution of the inclination of the axis of spheroid starting from a steady vertical
state at m∗ = 1. G = 80: stability of the steady vertical state. G = 85: convergence to
vertical periodic state with small amplitude of oscillation (fluid mode). G = 90: secondary
Hopf bifurcation saturating in the flutter. The G = 90, log of amplitude plot (figure d)
demonstrates the sub-criticality. G = 85 flutter: coexisting flutter at G = 85.



3.3. RESULTS 113

3.3.4 χ = 5

The specificities of the scenario for χ = 5 as compared to χ = 6 are the following (see top
Figure 3.20):

• The regular bifurcation for small m∗ is no longer present. The primary bifurcation is
a Hopf one for all non-dimensionalized masses.

• The subcritical bifurcation, accompanied by a jump in amplitude of oscillation and by
bi-stability, between the flutter and fluid modes is limited only to m∗ ≥ 0.5 and Galileo
numbers smaller than 110. This is illustrated by Figure 3.19 showing that atm∗ = 0.75
their is a bi-stability between large amplitude (flutter) and small one (fluid mode), at
m∗ = 0.5 there is still a jump, while at m∗ = 0.25 the amplitude grows continuously
with Galileo number. The flutter overlaps only very little with the vertical states.

• The domain of intermittence becomes very narrow and close to vanishing.
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Figure 3.19: Sine of the inclination angles (ψ) as a function of Galileo number for spheroids
of m∗ = 0.25, 0.5 and 0.75.
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χ = 5

χ = 4

Figure 3.20: State diagrams for spheroids of χ = 5 and 4.
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3.3.5 χ = 4

At aspect ratio χ = 4 (bottom Figure 3.20), only a few intermittent states bordering the
tumbling domain were evidenced. The flutter still arises via subcritical bifurcation from fluid
modes, but only at m = 0.75, and its bi-stability domain with fluid modes is largely reduced.

3.3.6 χ = 3

The most remarkable feature of the aspect ratio 3 is the reappearance of the regular primary
bifurcation. In contrast with very flat spheroids, it sets in for high inertia m∗ = 3, 4, 5.
The m∗ independent critical Galileo number is then 90.6. The specificity of the secondary
bifurcation (at χ = 3 and also χ = 2) consists in the instability of the oblique oscillating
state. (See Figure 3.21). Instead of saturating to yield a constant mean value and amplitude,
it grows until the mean value vanishes and a vertical periodic state appears. The latter is not
stable either. A steady oblique state in the perpendicular direction arises and the selection
of the new symmetry plane of the wake makes the oscillation in the previous direction
vanish. The steady oblique state grows until oblique oscillations appear and the cycle repeats
regularly. It can be expected that in presence of sufficient random noise the repetition would
not be periodic but rather intermittent. In the example of Figure 3.21, it can also be seen that
the direction of the steady oblique growth in the perpendicular plane is selected arbitrarily.
The frequency of oscillation only slightly varies (by less than 10%) over the whole cycle. The
typical Strouhal is 0.11, i.e. the same as for the oblique oscillating state existing for small
inertia at aspect ratios χ ≥ 6.

Next, we remark the complete disappearing of the flutter, which could be distinguished,
at least partially, by a discontinuity from fluid modes at higher aspect ratios. As can be
seen in Table 3.7 no vertical periodic state has an amplitude of inclination of the body axis
exceeding 30◦ (sine larger than 0.5). There is thus no longer a continuous transition to the
tumbling state. For a constant aspect ratio the tumbling regime can be reached by selecting
m∗ and Galileo number in the small subdomain where tumbling does not co-exist with fluid
modes and then vary the parameters on the tumbling branch.

Table 3.6 provides quantitative data on some selected periodic states.

(m∗, G) ūz Auz ūh Auh φmax(
o) period

(0, 100) -1.48 0.007 0 0.14 13.08 4.45
(1, 100) -1.57 0.0009 0 0.024 4.85 5.03
(1, 125) -1.56 0.005 0 0.056 11.94 4.57
(1, 150)∗ -1.67 0.3 0.85 0.16 90 5.6
(1, 150)∗∗ -1.56 0.012 0 0.084 17.1 4.38
(5,70)∗ -1.79 0.12 0.45 0.07 90 12.3

Table 3.6: Quantitative data characterizing selected periodic states for aspect ratio χ = 3.
Same meaning of symbols as in Table 3.2. ∗: Tumbling, ∗∗: fluid mode.
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Figure 3.21: χ = 3,m∗ = 5, G = 105: Example of a trajectory switching periodically from
a vertical periodic to steady oblique and oblique oscillating state. a) Horizontal projections
Nx, Ny of the unit vector of the body axis as function of time, b) trajectory.
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3.3.7 χ = 2

The primary supercritical Hopf bifurcation was evidenced only up to m∗ ≤ 0.25 for this
aspect ratio. For m∗ ≥ 0.5, the primary bifurcation is already regular and the sphere-like
scenario sets in at first two bifurcations. The m∗ independent critical Galileo number is 94.3.
The secondary, Hopf bifurcation leads, again, to a switching between steady oblique, oblique
oscillating and vertical periodic states. The period of this switching varies significantly
depending on the parameters but is remarkably regular (see Figure 3.23), which can be
explained by the absence of random noise.

We evidenced no mono-stable tumbling sub-domain for the aspect ratio 2. Table 3.7
shows that, again, no vertical periodic state has an amplitude of inclination of the body
axis exceeding 30◦. There is thus no longer any direct transition to tumbling possible for
bodies of this aspect ratio just by changing their Galileo number. This might mean that a
simple acceleration from the rest will not yield a tumbling unless the rotation is externally
triggered. Then, however, it will remain self-sustained in the parameter domain represented
in the diagram 3.24. At the edge of the domain of stability of the tumbling mode we still
evidenced several cases of intermittent behavior (green squares). Table 3.7 shows also that
the oblique oscillations have a frequency close to that of fluid modes of the sphere.

(m∗, G) ūz Auz ūh Auh φmax(
o) period

(0.1, 100) -1.53 0.017 0 0.23 16.48 5.28
(0.5, 150) -1.65 0 0 0.13 12.07 4.73
(1, 150) -1.68 0 0 0.072 46.73 4.64
(2, 150)∗ -1.75 0.13 0.77 0.053 90 3.71
(2, 150)∗∗ -1.72 0 0 0.046 12.75 4.72

Table 3.7: Quantitative data characterizing selected periodic states for aspect ratio χ = 2.
Same meaning of symbols as in Table 3.2. ∗: Tumbling, ∗∗: fluid mode.
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Figure 3.23: χ = 2,m∗ = 2, G = 110: a) Horizontal projections Nx, Ny of the unit vector of
the body axis as function of time, b) trajectory. c),d) m∗ = 5, G = 120.
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3.3.8 χ = 1.1

The transition scenario of a spheroid of aspect ratio χ = 1.1 is close to that of a sphere
for sufficiently dense spheroids. The symbols and colors used in Figure 3.25 correspond to
those in Figure 2.7 of the previous chapter. The present case of almost spherical body can
be quantitatively compared to a perfect sphere by converting the non-dimensionalization. If
we neglect the small difference of aspect ratio, the present reference velocity (3.2) and that
used for the perfect sphere (2.3) differ by the factor

√

π/6 (i.e. Uref =
√

π/6Uref,sphere).
As the result, the Galileo number defined by Eq. (3.6) is smaller by this factor and the
velocities and frequencies are larger by its inverse. The primary bifurcation threshold (that
of the steady oblique regime) found to be G∗

crit = 155.8 (independently of the density ratio)
becomes Gcrit = 112.7 in terms of the definition (3.6). For an almost spherical spheroid
of aspect ratio χ = 1.1 this threshold lies at Gcrit = 110.8 and is represented by the black
vertical line separating the domain of steady vertical trajectories (black crosses) from that
of steady oblique regimes (rightward pointing black triangles). The horizontal velocity does
not exceed 10% of the vertical one, similarly as for the perfect sphere. It is to be noted
that, unlike the perfect sphere, the spheroid does not rotate. This fact has, however, a very
limited impact on the onset of the primary instability.

The secondary Hopf bifurcation leads to two different oblique oscillating regimes with
two different frequencies as already stated for the sphere by Jenny et al. (2004). The more
accurate recent investigation of chapter 2 evidenced the high frequency at as low a density
ratio as 1.7. In the present context, the density ratio is replaced by the non-dimensionalized
mass whose value differs by the factor π/6 from the density ratio in the case of a perfect
sphere, i.e. the limit between buoyant and falling spheres corresponds to m∗ = 0.52 and the
density ratio 1.7 corresponds to m∗ = 0.9. The slightly aspherical shape is enough to shift
the threshold between the low and high frequency states to about m∗ = 2 (i.e. about twice
as high). As already mentioned, the present definition of reference velocity (3.2) implies
that non-dimensionalized frequencies should be larger by the factor

√

6/π than those found
for a perfect sphere. The non-dimensionalized frequency of the low frequency regimes of a
sphere was found to be slightly less than 0.07 (see Jenny et al., 2004) at the Hopf bifurcation
threshold whereas that of the high frequency was slightly less than 0.18 which was shown
to correspond to the vortex shedding frequency of the fixed sphere wake in chapter 2. In
terms of the present non-dimensionalization, these values are equivalent to 0.097 and 0.249,
respectively. This agrees very well with those obtained for the spheroid of aspect ratio 1.1
in the green (low frequency) and yellow (high frequency) filled domains in Figure 3.25. The
low frequency varies from 0.09 (at m∗ = 2) to 0.11 (at m∗ = 0) whereas the high frequency
is practically constant and equal to 0.25. A small domain of “zigzagging” regimes was
also evidenced (cyan domain). These regimes were shown by Jenny et al. (2004) to result
from the oblique oscillating regime by toggling to the opposite side of the vertical when the
oscillation amplitude is large enough to make the horizontal velocity momentaneously vanish.
In Chapter 2, they were shown to be only exceptionally perfectly periodic and planar. For the
spheroid of aspect ratio 1.1, the trajectories are also more often rather three-dimensional and
irregular on large time scales with very low characteristic frequencies (0.03 - 0.04, i.e. about
2.5 to 3 times smaller than the low frequency oblique oscillating regime. They represent a
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transition between periodic oblique oscillation regimes and chaotic regimes (represented by
magenta symbols in Figure 3.25). Table 3.8 confirms a satisfactory quantitative agreement
between dynamical characteristics of regimes of an almost spherical spheroid and of a perfect
sphere for comparable non-dimensionalized masses and Galileo numbers.

In spite of this close similarity to the scenario of a perfect sphere, the diagram of Figure
3.25 still presents features typically for flat bodies for very small inertia (m∗ roughly smaller
than 0.25). We evidenced a bounded area of linear instability below the threshold of the
steady oblique regime for m∗ < 0.1. In Figure 3.25 the area is delimited by a solid blue line
from lower Galileo numbers and by a dashed blue line from higher Galileo numbers, corre-
sponding, for increasing Galileo numbers at constant m∗, respectively, to a destabilization
and re-stabilization of the vertical trajectory. The lines determine the threshold of the Hopf
bifurcation yielding a planar oscillating trajectory, vertical in the average. The frequency
is slightly higher than in the oblique oscillating regime: 0.12 to 0.14 as compared to 0.10.
At saturation, the oscillations of the body are (unlike the fluid modes discussed elsewhere)
significant - about 20 degrees for the oscillating states evidenced at G = 90 and correspond
thus to the “flutter” of flat bodies. The bifurcation corresponding to the re-stabilization,
i.e. setting in for decreasing Galileo numbers, is subcritical. As a result the flutter remains
stable outside the described small subdomain of linear instability of the vertical ascension.
The domain of stability of this regime is delimited by the solid blue line and is filled in blue.
It partially coexists with the states characteristic for a spherical body.

Perfect spheres with little inertia have been shown to describe mostly chaotic trajectories
for higher Galileo numbers except for an “island” of vertical oscillating trajectories situ-
ated around the parameter point (in present non-dimensionalization) m∗ = 0.5, G = 200.
The frequency of oscillation at this point was found to be 0.2 (again in the present non-
dimensionalization). The spatial amplitude of oscillation about the vertical direction is very
small for this state - about 0.1 of the sphere diameter so that these trajectories may be
appropriately called “quasi-vertical”. At a close point m∗ = 0.25, G = 200, the trajectory
of the spheroid of aspect ratio 1.1 presents completely different characteristics. The oscilla-
tion frequency is 0.125 (instead of 0.2) and the amplitude of excursions with respect to the
vertical direction is equal to 1 d. This shows that the flutter of the spheroid has nothing to
do with the periodic quasi-vertical regime of a perfect sphere. The motion of the spheroid
is also marked by a very large amplitude of oscillations of the spheroid axis (70 degrees)
indicating that the aspherical shape, albeit only slightly flattened, has a decisive impact on
the dynamics of rising bodies with small solid/fluid density ratio.
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spheroid of aspect ratio χ = 1.1 and sphere

(m∗, G) uz uh Auh sinψ Asinψ f Ωh AΩh

(0.25,115) 1.81 0.098 0 0.078 0 steady
(0.26, 116) 1.83 0.088 0 steady 0.016 0

(0.25,120) (oo) 1.83 0.12 0.046 0.090 0.042 0.096
(0.26, 126) 1.86 0.15 0.043 0.087 0.020 0.013

(0.5,130) (zz) 1.86 0 0.25 0 0.21 0.043
(0.26,130) 1.86 0 0.27 0.033 0.054

(1,120) 1.83 0.133 0 0.101 steady
(1.05,123) 1.85 0.146 0 steady 0.015 0

(2.5,140) (oohf) 1.89 0.185 0.0029 0.122 0.0007 0.24
(2.1,145) 1.92 0.196 0.0026 0.25 0.010 0.0006

(2,300)∗ 2.15 0.03 0.14 0.01 0.10 0.08
(2.1,270)∗ 2.16 0.03 0.11 0.09 0.006 0.018

vertical oscillating states of spheroid χ = 1.1

(m∗, G) uz uh Auh sinψ Asinψ f

(0.025, 90) 1.62 0 0.31 0 0.34 0.13
(0.025, 110) 1.61 0 0.49 0 0.56 0.14
(0.35,175) 1.76 0 0.60 0 0.78 0.124
(0.35,175)∗ 1.95 0 0.19 0 0.19 0.095

Table 3.8: Top: comparison of some characteristic regimes of a spheroid of aspect ratio
χ = 1.1 (upper lines) and of a sphere (lower lines). oo - oblique oscillating, zz - low frequency
periodic zigzagging, oohf - oblique oscillating, high frequency. (Parameters relevant for the
sphere are converted to the non-dimensionalization of the present chapter). uh: (average)
horizontal velocity, Auh : horizontal velocity amplitude, sinψ: (average) sine of inclination,
Asinψ: amplitude of oscillations of the body axis in terms of the sine of inclination, f :
frequency, Ωh: (average) horizontal projection of angular velocity, AΩh

: amplitude of Ωh.
∗: non-periodic states - amplitudes replaced by r.m.s. and frequency by the peak of power
spectrum corresponding to the most visible oscillations. Bottom: characteristics of some
vertical oscillating states of spheroid of χ = 1.1.
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3.3.9 Conclusion

The investigation of the three-parameter space was conducted in parameter planes of constant
aspect ratio. This choice is, of course, arbitrary and the parameter space might be swept
differently depending on the application. E.g., for spheroids manufactured of the same
material and investigated in the same fluid, a ρs/ρ = const subset of parameters would be of
interest. This surface does not correspond to any of the three parameters of our study taken
as constant. (The non-dimensionalized mass involves the aspect ratio in its definition.) In
spite of that, we hope that not only the investigation of individual χ = const planes was
carried sufficiently into detail but that the spacing between the aspect ratios is not too coarse
to prevent a potential user of our results from a reliable interpolation. Since our results might
be of use for various benchmarking purposes, the generated time series will be made available
in the form of matlab files.

The primary instability threshold can be represented as a function of two variables in
the χ−m∗ plane. We present this comprehensive information in Figure 3.26.

The scenario is strongly marked by subcritical effects making sometimes several totally
different regimes co-exist for the same set of parameters. This opens the problem of recep-
tivity in experimental application where noise is never absent. The numerical reproductivity
of results might depend on the choice of initial conditions. The evolution from very thin
to almost spherical spheroids involves an intriguing presence of a regular primary bifurca-
tion not only for small aspect ratios when the body shape is close to that of a sphere but
also for very flat spheroids provided their inertia is small enough. The two basic regimes
of falling disks: the flutter and the tumbling remain of importance throughout the whole
scenario. Especially the robustness of the tumbling, evidenced down to the aspect ratio of
2, is remarkable.

The investigation of the spheroid of aspect ratio 1.1 indicates the case of a perfect sphere
cannot be obtained as a simple mathematical limit extrapolating the dynamics of spheroids.
The behavior of the spheroid of aspect ratio 1.1 shows the existence of very significant
oscillations of the body axis for ascending bodies of very low solid/fluid density ratio making
almost spherical spheroids very different from perfect spheres. This might be a hint for the
explanation of the zigzagging trajectories observed by Horowitz & Williamson (2010) that
we failed to explain using the results of simulations of freely moving perfect spheres. In
contrast, the agreement of simulations and experiments carried out with flat bodies is very
satisfactory (see e.g Chrust et al., 2014). More broadly, an ideal spherical body is perhaps
not an ideal prototype representing solid bodies of arbitrary shapes.
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Chapter 4

Bubble rising in a quiescent liquid

4.1 Introduction

The knowledge of the behavior of a single bubble is fundamental for understanding bubble
flows present in many practical applications. The collective effects in these flows can be
strongly affected by path instabilities enhancing horizontal dispersion and flow turbulence.
Though, in agreement with expectations, very small bubbles follow straight vertical trajec-
tories, experimental observations evidenced either zigzagging or spiral trajectories (Lunde &
Perkins, 1998; Brücker, 1999) of millimetric bubbles in water. The prediction of the onset
of non straight trajectories and of their form was identified as a basic issue. Experimental
observations encountered several difficulties due to the small size of bubbles and due to the
effect of contamination of bubbles in water (Duineveld, 1995) on the bubble shape and on
their motion. This, in its turn, motivated an effort to bring answers by numerical means.

The simplest mathematical description of a gas bubble in a liquid consists in ignoring
the gas motion in the limit of zero density and viscosity (see e.g. Batchelor, 1967, ch. 4.9) by
considering it as a constant volume enclosed by a variable free surface. In this approximation,
the mathematical problem depends only on two independent parameters. In this chapter we
choose the Galileo number Ga =

√

gd3/ν and the Bond number Bo = ρgd2/σ where g
stands for the gravity, d for the equivalent diameter, ν and ρ the kinematic viscosity and the
density of the fluid and σ for the surface tension.

Many experimentally observed regimes were at too high Galileo numbers to provide
information on the instability onset (at Ga = 390 and Bo = 0.85 in Ellingsen & Risso
(2001) and for Ga > 500 in Veldhuis et al. (2008)). Only relatively few observations provide
data allowing the estimation of the likely loss of stability of straight vertical trajectories.
Oscillating trajectories of bubbles in pure water were observed starting from the size given
by equivalent radius of 0.81 mm, which corresponds to Ga = 200 and Bo = 0.35, by de Vries
et al. (2002a). Zenit & Magnaudet (2008) and Zenit & Magnaudet (2009) (using silicon oil)
have evidenced an onset of zigzagging trajectory between regimes given by Bo = 2, Ga = 150
and Bo = 2.5, Ga = 176 in the first cited paper and between Bo = 3.2, Ga = 85 and
Bo = 3.9, Ga = 99 in the second one.

Facing the numerical difficulties, much numerical work tried to introduce simplifications
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to bring the problem within the scope of available numerical tools. The experimental ob-
servation of relatively invariable ellipsoidal shapes by Ellingsen & Risso (2001) (bubbles in
water, Ga = 390, Bo = 0.8) led to a series of numerical investigations (Mougin & Magnaudet,
2002a; Magnaudet & Mougin, 2007a; Tchoufag et al., 2013) of free or fixed bubbles having a
fixed ellipsoidal shape, the aspect ratio χ of which replaced the role of the Bond number in
the parametric study. The common feature of the obtained results consists in predicting a
minimal aspect ratio χ > 2.2 for the instability to be possible at all. Fully three-dimensional
simulations involving a dynamically varying 3D bubble shape are within the possibilities of
present day methods, namely involving immersed boundary and level set methods (see e.g
Koebe et al., 2003; Gaudlitz & Adams, 2009). This type of simulation remained, however,
until recently, too costly for parametric studies and the work was mostly presented rather as
numerical achievement than serious physical investigation (see also Tuković & Jasak, 2012).

An interesting compromise was recently considered by Cano-Lozano et al. (2013) who
used fixed but realistic shapes of axisymmetric bubbles to predict a marginal stability curve
of their vertical paths assuming that they behave as undeformable objects at the onset
of instability. This assumption might still be unrealistic since the only force opposed to
the deformation is the surface tension allowing a high flexibility of the free surface and
rich dynamics including surface waves. Nevertheless, the obtained results show that an
instability exists down to a Bond number of 0.2 when, at the obtained onset, the bubble
aspect ratio is only 1.5. A parametric study of the behavior of fully three-dimensional bubbles
was recently published by Tripathi et al. (2015). The used VOF method allowed them to
account even for the bubble breakup at highly supercritical regimes. At the onset of non
axisymmetry, two regimes - the already well documented, zigzagging one and a new steady
one reported to appear at Bo > 40 - have been evidenced. The focus of the paper being set
on spectacular cases of bubble breakup at very high Bond numbers (up to 500) there are
only a few of points close to the separation line between the vertical and oscillatory regime,
corresponding to experimental observations (called II). An accurate investigation of the very
onset of instability is thus still missing.

In this chapter, we mainly concentrate on the linear analysis of stability of steady vertical
trajectories of bubbles, similarly as Cano-Lozano et al. (2013) have done, but without the
restrictive assumption of fixed bubble shape. I.e. the degrees of freedom of the deformable
bubble surface are allowed to participate in the loss of axisymmetry and in the loss of
steadiness of the flow. In the case of free sphere (Jenny et al., 2003), the additional degrees
of freedom due to the sphere free motion changed the threshold of the primary bifurcation but
not very significantly because the arising non-axisymmetric state was steady. For the bubble,
the linear analysis confirms the expectations that the instability is due to a Hopf bifurcation
triggering oscillations in the whole investigated range of Bond numbers. It appears, however,
that the instability is accompanied with a deformation of the axisymmetric form of the bubble
and that the latter is far from behaving like a rigid body. As remarked in the conclusion,
the results are to be understood as a lower bound for the critical Galileo numbers at which
easily observable oscillations are to be expected.
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4.2 Mathematical formulation and numerical method

Unlike for previous chapters, the problem of the rising bubble required a significant ef-
fort of algorithmic development. This was due to the expected dynamically varying three-
dimensional shape of the bubble and by the necessity to account for the stress boundary
condition at the bubble surface. Neither of these features could be directly accommodated
in the existing versions of the numerical code mentioned in previous chapters. For this rea-
son, we initially considered the possibility of using another existing code. A finite volume
and a finite element code were taken under consideration, however, none of them provided
readily available accurate treatment of the free surface. Moreover, similarly as in the case
of the sphere and spheroids, the expected three-dimensionality is the result of axisymmetry
breaking of an originally axisymmetric flow so that the use of the spectral azimuthal de-
composition remains indicated as the most efficient approach. As a result, an adaptation
of the spectral – spectral-element code was undertaken. The description of the technical
details does not fit the result oriented scheme of the previous chapters. For this reason, it
has been relegated to the appendix (Appendix 6.1 and 6.2). It will serve as reference for
future work consisting in further optimization of the new code and its exploiting above the
primary instability threshold, which is the main topic of the present chapter.

4.2.1 Governing equations

Taking the bubble as a void of constant volume V , we solve the flow only in the liquid
phase. Newtonian liquid of density ρ and kinematic viscosity ν delimited by a free surface
with constant surface tension σ is considered. The flow in the liquid obeys the usual set of
incompressible Navier-Stokes equations. For the purpose of numerical simulations, the latter
will be non-dimensionalized using the equivalent diameter d (V = πd3/6) as length scale,
the gravitational acceleration to define the velocity scale as Ug =

√
gd and the density ρ to

define the pressure scale ρU2
g . The non-dimensionalized Navier-Stokes equations are written

in the frame translated with the velocity ub of the bubble center while the velocity field is
expressed in a fixed frame. This results in equations

∂v

∂t
+ [(v − u) · ∇]v + ∇p − ∇ · ( 2

Ga
τ ) = 0 (4.1)

and
∇ · v = 0 (4.2)

where v stands for the flow velocity, τ = 1/2 (∇v + ∇vT ) for the strain rate tensor, p for
the dynamic pressure and the Galileo number Ga has been introduced in Sec. 3.1. u is the
mesh velocity with respect to the fixed frame composed of the translation velocity of the
bubble center ub and the velocity field of the mesh deformation udef (u = ub + udef ). The
non-dimensionalized form of the dynamic boundary condition at the bubble surface Sb can
be written as

−pn+
2

Ga
τ · n− 1

Bo
κn = −(pb − z)n (4.3)

with n the unit normal vector (pointing inside the bubble), pb the pressure inside the bubble
due to surface tension and bubble motion and z the vertical Cartesian coordinate along a
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downward pointing axis. This term appears after extraction of the hydrostatic pressure in
Eq. (4.1). The pressure component proportional to −z clearly drives the bubble motion.
κ stands for the curvature and the Bond number Bo was also introduced in Sec. 3.1. The
kinematic equation at the bubble surface consists in propagating the bubble surface along
its normal with velocity equal to the normal projection of the velocity field:

∂xb
∂t

= [(v − ub) · n]n. (4.4)

The bubble incompressibility is equivalent to the zero volume flux through the bubble surface
∫

Sb

v · n dS = 0. (4.5)

Finally, the bubble velocity ub is given by the requirement that the velocity of the geometrical
center of the bubble surface propagated according to Eq. (4.4) be zero:

∫

Sb

[(v − ub) · n]n dS = 0. (4.6)

4.2.2 Numerical method

Eqs. (4.1) through (4.6) are solved in a vertically oriented cylindrical domain with a Cartesian
frame Oxyz, the origin O of which coincides with the bubble center similarly as depicted
in Jenny & Dušek (2004) (see also Figure 6.1 in Appendix 6.2). The points at the bubble
surface keep their polar and azimuthal angles ψ, θ they had initially when the bubble shape
was spherical. This yields a parametrization x = x(ψ, θ) ≡ x(ξ) (ξ = ξ1, ξ2 ≡ ψ, θ). The
differentiation of the parametrization yields tangent vectors xψ, xθ, the normal vector N =
xψ × xθ, the covariant metric tensor gα,β = xα · xβ , (α, β = 1, 2) and the surface element
dS =

√
g d cos(ψ)dθ where g = det{gα,β}. The normalized normal vector (pointing inside

the bubble) in Eqs. (6.28) and (4.4) is obtained as n = −N/
√
g. For the curvature we use

the formula:

κn =
1√
g

∑

α,β

∂

∂ξα

(√
g gα,β

∂x

∂ξβ

)

. (4.7)

with gα,β standing for the contravariant metric tensor. To keep the bubble at the origin of
the computational domain, we require that

∫

Sb
[(v − ub) · n]ndS = 0, which provides the

bubble velocity ub. The boundary conditions at the outer domain boundary intended to
simulate an unconfined quiescent fluid consist in setting a zero flow velocity at the upper
(upstream) cylinder basis and at the lateral boundary and in a zero stress outflow boundary
condition at the bottom (downstream) cylinder basis.

The spatial discretization follows the lines described by Ghidersa & Dušek (2000) who
showed that the azimuthal Fourier decomposition is an optimal choice of extending an ax-
isymmetric discretization to represent a 3D flow appearing at the onset of axisymmetry-
breaking. The axial-radial plane is broken up into spectral elements (Patera, 1984). The
configuration of the deformable bubble requires to account for a non-axisymmetric and mov-
ing boundary. This is done in physical space (i.e. on a 3D mesh after summing the azimuthal
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modes) by an ALE approach consisting in propagating the bubble deformation within a
sphere of radius Rs (chosen as Rs = d) by a linear interpolation. The transformation
x(R,ψ, θ) between the axisymmetric spherical mesh and the deformed one is also decom-
posed using the combination of azimuthal Fourier and spectral element decompositions. The
principle of the deformation of the radial-axial mesh is illustrated in Figure 4.1. For a 3D
bubble, the mesh deformation represented on the right of Figure 4.1 varies in the azimuthal
direction. All discretized variables are stored in the form of azimuthal modes parametrized
on the undeformed mesh. Inside the deformed spherical sub-domain, the parametrization is
equivalent to that of spherical coordinates R,ψ, θ where R is the distance from the origin in
the undeformed mesh R =

√
r2 + z2 where r and z are the radial and axial coordinates. A

scalar variable f(R,ψ, θ) is represented as

f(R,ψ, θ) =

M
∑

m=−M
fm(R,ψ) e

−imθ, (4.8)

the truncation M being one of the numerical parameters of the method. Horizontal projec-
tions of vectorial variables are treated as complex numbers in the complex plane spanned by
the horizontal axes and are stored as coefficients of expansion:

v+ = vx + i vy = eiθ
M
∑

m=−M
v+,m(R,ψ) e

−imθ. (4.9)

The degree of non-orthogonality is measured by the smallest sine of angle of coordinate lines.
In Figure 4.1 this value is 0.88 and it remains larger than 0.7 even for the most deformed
shapes (at Bo = 20). This is achieved by keeping a uniform discretization in the polar
direction when the bubble deforms. (I.e., denoting s the arc-length of the meridian of the
average axisymmetric bubble, we require that ds/dψ remains independent of ψ.) It can be
concluded that the non-orthogonality of the mesh deformation does not reduce the numerical
accuracy.

The time-discretization is based on the time-splitting approach (see also Patera, 1984)
yielding a globally only first order accuracy with an error proportional to ∆t/G. In spite
of that, combined with a third order explicit (Adams-Bashforth) treatment of advective
terms setting a considerable restriction on the time step, the time-splitting method proved
to provide a very satisfactory accuracy (see Uhlmann & Dušek, 2014) in the past. The
underlying idea of the time-splitting formulation consists in assuming that viscous effects are
small as compared to the pressure ones. This assumption amounts to splitting the boundary
condition (4.3) into a Dirichlet pressure boundary condition neglecting the viscous stress and
a Neumann boundary condition for the viscous stress when solving for velocity. An essential
ingredient is an implicit treatment of the curvature allowing us to obtain numerical stability
by letting the surface waves to decay. The deformable bubble boundary requires, especially
for small Bond numbers leading to very stiff dynamics, an additional time-step restriction.
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Figure 4.1: Left: undeformed spectral element mesh (mesh0), right: 2D mesh deformation
around an axisymmetric bubble at Ga = 100 and Bo = 1.

4.3 Numerical validation

The numerical implementation has many numerical parameters. By taking up the same
domain extent as in previous work we rely upon the tests carried out by Chrust (2012) and
Kotouč (2008). It appears that, actually, the size of domain could even be reduced because
the free surface generates much less vorticity than solid bodies. Next, the decomposition
of the axial-radial plane of the mesh0 was also thoroughly tested in previous work. Given
the fact that curvature plays a central role in dynamics of the free surface we, nonetheless,
test the effect of mesh refinement at the bubble equator where the curvature is the largest
and varies the most rapidly. We also test the effect of internal refinement of elements by
increasing the number of collocation points of the spectral element discretization to track
possibly insufficient spatial resolution of the bubble surface. The spatial discretization de-
pends also on the truncation of the azimuthal Fourier expansion. However, the present work
focuses essentially on linear analysis for which only modes 0 and 1 are sufficient. The time
discretization is tested by varying the time step. Finally, the comparison with available
axisymmetric data by Cano-Lozano et al. (2013) is presented.

4.3.1 Mesh refinement

The effect of mesh refinement was tested in two ways. A global mesh refinement is easily ob-
tained by increasing the number of collocation points. We considered 6, 8 and 10 collocation
points per spatial direction of spectral elements. The relative difference of amplitudes was
less than 0.001 on a time interval of 7 periods (for a test at Bo = 1 and Ga = 100). Such
a difference corresponds to an error of less than 10−4 in the determination of the growth
rate. The observed variation of the growth rate as a function of Galileo number being
dγ/dGa = 0.011 at Bo = 1, an increase of the number of collocation points cannot improve
the obtained critical Galileo numbers by more than 10−3. Three different meshes locally re-
fined at the bubble surface, with 16, 20 and 30 elements (96, 120 and 180 collocation points)
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Figure 4.2: a): Amplification rate, b): period as a function of the time step for Bo = 1 and
Ga = 110. (Solid line: linear regression)

along the bubble surface, were also developed and their effect on the instability investigated.
The meshes are referred to as mesh0, mesh1 and mesh2, respectively. Their total number
of spectral elements is 245, 277 and 387. We found a 5 × 10−4 difference of amplification
rate between mesh0 and mesh1 at Bo = 1, Ga = 100 and 3× 10−4 difference between mesh1
and mesh2 at Bo = 10, Ga = 120, where we expected the effect of spatial resolution to be
more significant due to the sharp peak of curvature arising along the bubble equator. In
conclusion, the spatial resolution is sufficient in order not to influence the results. For Bond
numbers smaller or equal to 1, mesh0 was used, for Bo larger or equal to 2 we preferred
mesh1 to capture the curvature in reliable manner. At least one simulation for each Bond
number was also checked on mesh2.

4.3.2 Time step

In contrast with the spatial discretization, the time step dependence appeared to be non-
negligible. The time step convergence of the amplification rate and of the period of oscillation
of the perturbation is clearly of first order as expected (see Figure 4.2) due to the first order
accuracy of the time-splitting method. Figure 4.2 a) shows that a larger time-step leads to a
smaller amplification rate, i.e. to an overestimation of the critical Galileo number. The very
accurately linear dependence of amplification rates on the time step allowed us to eliminate
this effect by extrapolating to ∆t = 0 using systematically two different time steps. (The first
results were obtained with some sufficiently small time-step and then they were improved
using a halved step.)

4.3.3 Validation

The used code represents a relatively limited evolution of the code used extensively for
exploring the path instabilities of disks and flat cylinders (Chrust et al., 2013, 2014). This
previous version was validated by comparison to results obtained by by Auguste (2010)
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and Auguste et al. (2013) using a completely different code. A very similar version of
the code was also validated by comparison with an IBM code (Uhlmann & Dušek, 2014).
The most significant modifications consisted in implementing (i) a stress formulation (ii)
the dynamic boundary condition (4.3) combined with the three-dimensional deformation
of the spherical subdomain. The validation of the stress formulation is easily obtained by
checking that it does not modify the results for solid bodies. As for the point (ii), there is no
difference in the treatment of axisymmetric and non-axisymmetric bubbles. The whole code
is written with an arbitrary truncation of the azimuthal Fourier expansions (4.8) and (4.9).
The mesh deformation is implemented in the physical space in which there is technically no
difference between an axisymmetric and non-axisymmetric solution. The truncation of the
azimuthal expansion, hence the number of discretization points in the azimuthal direction
of the physical space, is variable and the (absence of) effect of its variation was tested. In
absence of comparable three-dimensional data, the axisymmetric results by Cano-Lozano
et al. (2013) provide a good test.

The investigation of the marginal stability curve leads us to focus on regimes close to
Ga = 100. There is a graphic table of axisymmetric bubble shapes in Figure 3 of the
paper by Cano-Lozano et al. (2013) mentioning the aspect ratios at different Bond and
Galileo numbers. We superimposed the shapes of the second line of their Figure with our
bubble shapes in Figure 4.3. The agreement is very good but it might be objected that the
resolution of the shapes reproduced from Cano-Lozano et al. (2013) is insufficient. Table 4.1
reproducing the available quantitative data is more convincing. A special attention should
be paid to the excellent agreement of the upstream and downstream curvatures, showing
that the computed shapes are very accurately identical. (The only possible objection might
concern a lack of agreement between the aspect ratios at Bo = 20. At this Bond number,
the aspect ratio, defined as the ratio of the diameter of the horizontal projection and of the
length measured along the symmetry axis, becomes large because of the upstream dimple.
The very good agreement in the upstream curvature shows that very likely the actual shapes
are the same.) The agreement of our data and of the axisymmetric data obtained by a totally
different code (Gerris - based on the VOF method) confirms the soundness of the treatment
of the deformable bubble surface. The only new feature is that this treatment is not limited
to axisymmetry.

4.4 Linearly unstable mode

In this chapter we focus on the linear regime and the linear perturbation mode. It is one
of the advantages of the spectral azimuthal expansion to enable such an investigation in an
efficient manner. On the other hand, the development of the code has not yet advanced
sufficiently to allow for a large scale investigation of the non-linear phenomena.

Limiting the description of the results to the bubble shape, let us express the shape
of the bubble as a sum of axisymmetric shape xb,axi and of a linear perturbation x′

b as
xb = xb,axi+x′

b. (The velocity and pressure fields decompose in the same way.) In Ghidersa
& Dušek (2000) it is shown that axisymmetry breaking can occur potentially in any azimuthal
subspacem > 0. Though the expected zigzagging trajectory indicates that the most unstable
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a) Bo = 0.2 b) Bo = 0.5 c) Bo = 1
d) Bo = 2

e) Bo = 5 f) Bo = 10 g) Bo = 20

Figure 4.3: Computed axisymmetric shapes at Ga = 100 and at Bond numbers indicated in
the figure (red lines) compared to shapes of Fig. 3 Cano-Lozano et al. (2013) (gray).

Bo 0.1 0.2 0.5 1 2 5 10 20

AR 1.11 1.20 1.39 1.60 1.88 2.43 3.20 6.15
1.09 1.19 1.38 1.59 1.86 2.40 3.19 5.22

uz 2.80 2.55 2.11 1.73 1.42 1.09 0.90 0.72
2.64 2.51 2.03 1.74 1.42 1.09 0.92 0.74

κfront 0.86 0.76 0.61 0.46 0.32 0.16 0.03 -0.29
0.86 0.76 0.60 0.46 0.33 0.16 0.03 -0.27

κback 0.90 0.84 0.74 0.65 0.56 0.39 0.19 0.01
0.94 0.84 0.74 0.65 0.55 0.38 0.17 -0.01

Table 4.1: Comparison of our axisymmetric data (upper lines) with those by Cano-Lozano
et al. (2013) (lower lines in italics) at Ga = 100.
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is the m = 1 space we did not truncate our decomposition to M = 1 and investigated the
amplification of modes m ≤ 7 at Bo = 1. In agreement with expectation, the instability
arises in the m = 1 subspace. Due to the switching between the spectral and physical space
implemented to account for a possible three-dimensional geometry, the m > 0 azimuthal
modes are not exactly zero even if the solution is axisymmetric unlike it was the case in
Ghidersa & Dušek (2000). As the result, the instability emerges naturally from numerical
noise without any additional perturbation. It is easy to see that the m = 1 mode emerges as
the first. Higher modes emerge only later, their amplitude is proportional to the m-th power
of the amplitude of the linearly unstable mode and their amplification rates are multiples of
the linear amplification rates which is typical for non-linear slave modes associated to the
linear mode. As long as the linearly unstable mode remains small (we limit ourselves to
amplitudes not exceeding 10−6), the solution behaves like a superposition of the base flow
(axisymmetric solution) and of a linear perturbation even if the coupling between different
modes is not inhibited.

The linear perturbation is thus obtained directly as them = ±1 terms of expansions (4.8)
and (4.9) used for the spatial discretization, the m = 0 term standing for the axisymmetric
solution.

z′b =
(

cz,1(ψ, t) e
−iθ + c.c.

)

x′b,+ =
(

c+,1(ψ, t) e
−iθ + c+,−1(ψ, t) e

iθ)
)

eiθ. (4.10)

where c.c. denotes the complex conjugate term. The horizontal projection of the shape
deformation is expressed as x′+ = x′ + iy′ in the complex plane.

Unless non-linear effects set in, the two helical modes c+,1(ψ, t) e
−iθ and c+,−1(ψ, t) e

iθ

can have arbitrary amplitudes. It appears that they arise with equal amplitudes which makes
the trajectory planar and the solution to have a planar symmetry starting from the linear
regime. Since this is the most widely observed form of bubble trajectories we shall limit
the description of the linear mode to this case. The orientation of the symmetry plane is
determined arbitrarily by initial conditions. Denoting α its angle of rotation w.r.t. xOz
plane, it appears that the complex coefficients in Eqs. (4.10) can be expressed in terms of
only two real functions az, a+.

cz,1 = az(ψ, t) e
iα; c+,±1 = a+(ψ, t) e

±iα. (4.11)

The time dependence is driven by the eigenvalues λ± = γ ± iω characteristic for a Hopf
bifurcation. They can be obtained, e.g., from the time series of horizontal velocities in the
linear regime (see the left half of Figure 4.6 b) as their period T = 2π/ω and amplification
rate γ. Integrating over an oscillation period:

Cz,±(ψ) =
1

T

∫ t0+T

t0

az(ψ, t) e
−λ±(t−t0) dt, (4.12)

C+,±(ψ) =
1

T

∫ t0+T

t0

a+(ψ, t) e
−λ±(t−t0) dt, (4.13)
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Figure 4.4: a): Linear mode of the shape perturbation expressed in terms of two complex
coefficients (4.14) and (4.15) at Bo = 1 and Ga = 100, represented as functions of arc length
of the axisymmetric shape illustrated by the solid blue line of figure b). (The z axis points
upward, s = 0 corresponds to the bottom point.) The coefficients are normalized so that
C+,+ = 1 at the maximum of its absolute value. The red dotted line in figure b) shows the
effect of perturbation by 1% of the unstable mode of figure a).

we get the part of eigenfunctions describing the shape deformation. Replacing, further,
az = Cz,+ e

λ+t + c.c and similarly for a+, in Eq. (4.11), we arrive at the expression of the
shape perturbation in terms of unstable eigenfunctions in the form:

z′b = 2Cz,+(ψ) cos(θ − α) eλ+t + c.c. (4.14)

and

x′b,+ =
[

2C+,+(ψ) cos(θ − α) eλ+t + c.c.
]

eiθ (4.15)

The coefficients Cz,± and C+,± are genuine complex functions expressing the fact that the
bubble surface, as a soft object, does not oscillate in phase. To represent them independently
of the (arbitrary) parametrization by ψ, we introduce the parameter s as the arc-length of

the curve defining the axisymmetric shape, ds =
√

dz2b,axi + dr2b,axi, measured from the rear

(bottom) intersection with symmetry axis. The resulting functions are represented in Figure
4.4. To illustrate the effect on the bubble shape, we represent the superposition of the
axisymmetric shape and 0.01 × the perturbation (4.14) and (4.15) in the trajectory plane
(θ = α) and at t = 0 (i.e. the moment corresponding to the phase for which the Figure 4.4
a) is represented). The red dotted line in Figure 4.4 b) shows that the instability yields a
horizontal shear at the equator. This shear is obviously related to the fact that the vertical
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velocity component Cz,+ is almost zero at the equator while, if the bubble oscillated without
deformation, there should be a maximum of amplitude.

4.5 Marginal stability curve

In previous work (e.g. Mougin & Magnaudet, 2002a; Tchoufag et al., 2013; Cano-Lozano
et al., 2013) the thresholds of path instabilities of rising bubbles were estimated under the
assumption of various but un-deformable shapes. It is not surprising to find different insta-
bility thresholds if the shape deformation is accounted for. In Figure 4.5 we represent the
threshold of the zigzagging motion in the Bond – Galileo number parameter plane obtained
by the linear stability analysis described above in the interval of Bond numbers going from
0.1 to 20. In the same graph we reported the curve obtained by Cano-Lozano et al. (2013)
and that drawn in the state diagram of Tripathi et al. (2015). We also reported the states
actually simulated by Tripathi et al. (2015) situated close to our marginal stability curve.
Three experimental results are also represented.

For Bo > 1 there is a qualitative agreement between all results including the experi-
mental data by Zenit & Magnaudet (2009). For small Bond numbers, the marginal stability
curve of Cano-Lozano et al. (2013) rises almost twice as high as our curve. However, the
(approximately drawn) curve of Tripathi et al. (2015) follows relatively well the mean trend
of our data. The data of Tripathi et al. (2015) seem to place the critical Galileo number
between 80 and 100, close to Bo = 4 the experimental data by Zenit & Magnaudet (2009) let
us conclude to a threshold at about 90. The most striking feature of the marginal stability
curve we present in Figure 4.5 is its non monotonous trend. However, globally, our curve
does not depart very far from Ga = 100. It reaches a minimal critical Galileo number of
about 73 between Bo = 2 and 3. For higher Bond numbers the curve starts to rise and
reaches a maximum of slightly more than Ga = 100 at Bo = 8 before dropping to less than
70 at Bo = 20.

Exhaustive information on the bubble aspect ratio, terminal rising velocity, internal
pressure, period of oscillation and maximal curvature is provided in Table 4.2.

4.6 Some preliminary non-linear results

As widely accepted, the instability leads to a planar zigzagging trajectory. This cannot be
shown by linear analysis but the trajectory of a bubble reaching the saturation of the insta-
bility represented in Figure 4.6 does not depart from planarity and confirms this observation.
Before the non-linear effects, leading to instability saturation, set in, the vertical velocity,
the aspect ratio and the bubble pressure remain constant while the horizontal velocities and
the non-axisymmetric perturbation of the bubble shape grow exponentially. The bubble
shape deforms significantly when the instability saturates (see Figure 4.7). Though the in-
vestigation of saturated trajectories goes beyond the scope of this chapter, three conclusions
can be drawn from Figure 4.7: i) the bubble remains essentially horizontal, ii) the shape
significantly deforms at the equator, iii) the oscillation of the trajectory has a very small
amplitude and is mainly to be put on account of the shape oscillation. All these features
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Figure 4.5: Critical Galileo number Gacrit of the onset of linear instability as a function
of the Bond number. Full blue lines: interpolation of results from Table 4.2, dashed line:
reproduced from Tripathi et al. (2015).
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Bo

0.1
0.2
0.3
0.5
1.0
2.0
3.0
4.0
6.0
7.0
8.0
10
13
17
20

Gacrit
116.7
106.7
101.3
94.3
82.1
73.7
74.6
79.0
91.1
99.4
102.6
101.2
88.9
75.1
70.5

AR

1.14
1.22
1.28
1.37
1.49
1.68
1.88
2.08
2.49
2.72
2.90
3.22
3.53
3.81
4.02

uz
3.09
2.64
2.38
2.07
1.66
1.34
1.20
1.12
1.02
0.99
0.96
0.90
0.82
0.75
0.71

pb
37.6
18.21
11.87
6.86
3.27
1.54
0.98
0.70
0.44
0.41
0.36
0.30
0.24
0.19
0.17

T

1.29
1.54
1.71
1.97
2.48
3.22
3.80
4.33
5.40
5.42
5.65
5.83
5.80
5.86
6.05

κmax
4.43
4.70
4.90
5.27
5.76
6.57
7.41
8.27
9.92
10.76
11.31
11.98
12.31
12.80
13.35

Table 4.2: Critical Galileo numbers Gacrit and values of aspect ratio (AR), rising velocity
uz, bubble pressure pb, period of oscillation T and maximum curvature κmax at the onset of
instability.

contradict the experimentally observed trajectories like those of Veldhuis et al. (2008) where
very large oscillation amplitudes are reported, the bubble does not necessarily present shape
oscillations (Figure 1 (a) of the cited paper) but significantly tilts. The regimes of these bub-
bles correspond, however, to Reynolds numbers of the order of 1000. At smaller Reynolds
(Galileo) numbers, the experimentally observed amplitude is much smaller. Zenit & Mag-
naudet (2009) report amplitudes of only about two tenth of equivalent bubble diameter. As
for the shape of axisymmetric bubbles there is a good agreement between the experimen-
tal observation of Zenit & Magnaudet (2008) and the numerical data but experimental 3D
shapes are not available. The simulations of Tripathi et al. (2015) indicate strong 3D de-
formations, however, the figures are available only at high Galileo numbers. The link of the
linear analysis with the experimentally observed trajectories may also be complicated by the
existence of a weakly oscillating regime or by a subcritical nature of the primary bifurcation
as it is the case for disks and thin cylinders.

4.7 Conclusions

In this chapter, we presented the marginal stability curve of the path instability of gas bubbles
rising in a quiescent Newtonian liquid. The mathematical model makes a full abstraction
of the dynamics of gas inside the bubble but the bubble surface is realistically modeled by
standard free-surface boundary conditions and no limits are set to its deformation. The
corresponding mathematical formulation is in agreement with what is considered as an ideal
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Figure 4.6: Saturating trajectory at Bo = 1 and Ga = 100. a) Trajectory. b) Horizontal
velocity as a function of time. c) Vertical velocity.
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a)

b) c)

Figure 4.7: Deformed bubble in the (almost saturated) non-linear regime at Bo = 1 and
Ga = 100. a) View from above. The horizontal drift direction is represented by the red
(dark) line. b) Almost horizontal view along the trajectory plane. The bubble moves towards
the reader. c) Almost horizontal view perpendicular to the trajectory plane. The bubble
moves to the right.
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bubble in the literature. The investigation is carried out in the Bond – Galileo number two-
parameter plane and the obtained thresholds, guaranteed within less than one Galileo number
unit, are results of a linear analysis. A relatively good agreement with recent comparable
results by Tripathi et al. (2015) is obtained and, while the scope of investigation in the Bo−
Ga is much less ambitious, a significantly more accurate information on the instability onset is
provided. Investigation of non-linear effects at Galileo numbers above the marginal stability
curve of Figure 4.5 goes beyond the scope of the present work but, as shown in Figure 4.7,
rises some questions concerning the most often reported observations at high Galileo number.
A significant effort to simulate strongly non-linear regimes has to be developed in further
work. If the supercritical nature of the Hopf bifurcation is confirmed, the present data may
serve as a lower bound for Galileo numbers at which oscillating trajectories can be expected
to appear. While not much of surprise is to be expected at Bond numbers smaller than 0.1
where the trend of the critical Galileo number is very clearly exponential if represented in a
purely logarithmic scale, very large Bond numbers remain a numerical challenge because of
the large bubble deformation. The presented linear analysis can, nonetheless be pushed to
Bo ∼ 50 without too much difficulty, however, the physical sense of such exploration becomes
questionable because the dimple of the bubble deepens until reaching a toroidal shape. This
not only sets a limit to the ALE method (though this stage can be circumvented by letting the
surface tension progressively decrease starting from an already obtained asymptotic state)
and may result in a bubble breakup well before reaching the asymptotic regime.
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Chapter 5

Conclusions and perspectives

The understanding of the transition of motion of isolated bodies is essential for understanding
multi particle flows. The present thesis studies the characteristics of various transition
scenarios of freely moving bodies under the effect of gravity, buoyancy and hydrodynamic
forces. The numerical results reveal the multiformity and beauty of motions of solid bodies
of variable shapes and give some preliminary idea on the behavior of bubbles.

As a perfect body, sphere has a completely singular scenario compared to that of a disk
and oblate spheroids. High and low frequency oblique oscillating regimes are identified as
fluid modes and solid modes with dominant solid-fluid interaction. The separation between
them is accurately identified and is shown to depend on both the density ratio and the
Galileo number. For dense spheres, the transition to chaos is shown to be accompanied by
an intriguing coexistence between planar and rotating oscillations which are evidenced just
after spheres lose their steady oblique motion and oscillate with a high frequency. In contrast,
oblique oscillating trajectories of light spheres become chaotic due to the increase of their
amplitude of oscillations making them start to rise vertically for short moments. At these
vertical stages, the trajectories end up by loosing their planarity and become chaotic. The
region of chaotic regimes is, however, not homogeneous. Several cases of “order in chaos”
are evidenced. The most prominent are vertical periodic trajectories with fast oscillations.
Several isolated perfect zigzagging and zigzagging – rotating trajectories mark the transition
of light spheres. Very regular helical regimes are found for high Galileo numbers and very
light spheres. the challenge of a quantitative characterization of the chaotic domain is raised
by suggesting several possibilities of relevant statistical post-treatment of simulated data.

The significant difference between scenarios of a sphere and that of a disk motivates
the study of freely moving oblate spheroids of intermediate aspect ratio. The attempt to
provide a link is based on the variation of aspect ratios of spheroids from infinity to 1.1
which corresponds, respectively, to an infinitely thin (inhomogeneous) disk and an almost
spherical body. Parameter planes for 8 aspect ratios are studied and results are presented in
the form of 8 state diagrams. Impressive subcritical effects responsible for several regions of
coexistence of very different regimes are evidenced. The most present regimes, known from
previous work, are the “flutter” and the “tumbling” states. These states characteristic of a
strong solid-fluid interaction are accompanied by a variety of less spectacular fluid modes,

145
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which are equally important for the understanding of the scenario. A fascinating analogy of
infinitesimal oscillations of vertical trajectories sustained only by numerical noise and fully
non linear supercritical trajectory patterns indicate hint to the relevance of linear modes
far above the primary instability thresholds. The correspondence and similarity between
spheroids of aspect ratio χ = 1.1 and spheres is far less satisfactory than that of flat spheroids
and infinitely thin disks, which shows the specificity of perfectly spherical bodies.

The investigation of the marginal stability curve for a deformable gas bubble in this thesis
provides the critical parameters of the onset of instability in the Bond - Galileo number two
parameter plane. The results present a big discrepancy compared to older theory based on
a prescribed ellipsoidal bubble shape, which is not surprising since bubbles always vary the
shape. The bubble shape oscillates strongly in the stage of acceleration and very quickly
settles to an asymptotic asymmetric shape which is far from ellipsoidal. A better agreement is
obtained with theory assuming fixed realistic axisymmetric shapes. The remaining difference
is to put on account of the shape variation accompanying the instability. A significant effort
to simulate strongly non-linear regimes is still to be developed in further work.

The use of theoretically idealized results in understanding the real world is always inter-
esting in spite of the fact that real situations are not always ideal. More complex situations
make, however, the use of such results tricky. Suppose that, one day, a consensus establishes
for precise critical values of the onset and loss for every certain regime of bodies of every
different shape, will it be easy to predict multiphase flows under complicated disturbances of
infinite variety of real world situations? Sometimes astounding predictions are formulated.
Astrophysicists claim that if there had not been one more electron in one billion electron-
positron pairs on Earth 10 billion years ago, we would not have been existed. The study of
the transition of a single particle has certainly a less accurate link with large scale properties
of multi particle flows but represents its cornerstone. It shows how fast the high regularity
of space and time can be disturbed to lead to very complex local space-time behaviors.
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Appendix

6.1 Mathematical formulation of the problem of a rising bub-
ble

6.1.1 Freely moving fluid inclusion

The bubble is a special case of fluid inclusion. Typically, a fluid inclusion is formed by a
small amount of liquid immersed in another liquid with which it does not mix like a drop
of oil in water, a bubble of gas in a liquid or a drop of liquid in a gas. The ambient fluid
will be considered unconfined and quiescent except for the motion induced by the moving
inclusion. For the purpose of numerical treatment the domain of ambient fluid will be
finite but the so induced confinement will be checked to have no effect on the simulated
dynamics. Our computational domain Ω is a vertical cylinder of height L = Lin + Lout
and radius Rc translated with the inclusion with its axis kept vertical (see figure 6.1). The
boundary conditions at the cylinder surface simulates a quiescent fluid at the inflow cylinder
basis and on lateral cylindrical surface and a no stress condition at the outflow. While the
computational domain accompanies the motion of the inclusion, the flow velocity is defined
with respect to a fixed frame. The domain Ω breaks up into the subdomains :

Ω = Ωi ∪ Ωe (6.1)

the index i referring to the volume occupied by the inclusion and e to the external fluid. The
interface ∂Ωi is denoted S.

The following Navier Stokes equations hold within each subdomain (j = 1, 2; 1 ≡ i, 2 ≡
e):

∇ · v = 0 (6.2)

∂v

∂t
+ [(v − u) · ∇]v + ∇ p

ρj
− ∇ · [(µj/ρj)τ ] = g (6.3)

the densities ρj and dynamic viscosities µj being considered constant both in time and space.
The pressure includes the hydrostatic pressure of the external fluid ∇ps = ρeg which can be
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Figure 6.1: Computational domain represented for a rising bubble

extracted for a bubble. τ stands for twice the strain rate tensor:

τ = ∇v + (∇v)T (6.4)

and u is the velocity of the center of the inclusion. At the interface, the following conditions
are satisfied:

vi = ve onS (6.5)

σi · n = σe · n− ηκn onS (6.6)

where κ is the curvature of S, n is the unit normal vector to S and σi stands for the stress
tensor the Cartesian components of which are defined as

σk,ℓ = −pδk,ℓ + µ

(

∂vk
∂xℓ

+
∂vℓ
∂xk

)

. (6.7)
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The interface moves with respect to the reference frame proportionally to the normal pro-
jection of the relative velocity

∂xS
∂t

= [(v − u) · n]n. (6.8)

where xS denotes a position vector at the interface. The center of the inclusion will be
required to coincide with the origin of the frame. For his reason, it’s relative velocity must
be zero, which defines the constraint

∫

Sb

[(v − u) · n]n dS = 0 (6.9)

allowing the computation of u. The z axis of the local frame (O, x, y, z) is oriented opposite
to the inclusion motion, i.e. downward for a rising bubble. As a consequence, the inflow
cylinder basis has a negative coordinate z = −Lu, the outflow basis is defined by z = Ld
where Lu and Ld denote the upstream and downstream domain lengths (Lu+Ld = L). The
following boundary conditions hold at the cylinder surface:

v|z=−Lu,r=R
= 0 (6.10)

(p+ τ · n)|z=Ld
= 0. (6.11)

Extraction of hydrostatic pressure of the external domain

The hydrostatic pressure of the external liquid

ps = ρeg · x = sign(ρe − ρi)ρegz (6.12)

can be extracted by writing

p = p̃+ ρeg · x. (6.13)

As a consequence ∇ p
ρe

= ∇ p̃
ρe

+ g, ∇ p
ρi

= ∇ p̃
ρi

+ ρe
ρi
g and equation (6.3) becomes

∂v

∂t
+ [(v − u) · ∇]v + ∇ p̃

ρj
− ∇ · ((µj/ρj)τ ) = gj (6.14)

where

ge = 0; gi = (1− ρe/ρi)g (6.15)

In what follows, we focus on ascending inclusions and bubbles ρe > ρi. In this case we
write the equations in the internal domain rather

ρi
ρe

[

∂v

∂t
+ [(v − u) · ∇]v

]

+ ∇ p̃

ρe
− ∇ · [(µi/ρe)τ ] = −(1− ρi/ρe)g, (6.16)

which makes it possible to take the limit ρi/ρe → 0.

Nondimensionalized equations
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The non-dimensionalization will be carried out with respect to the properties of the
external fluid. The viscosity and density of the inclusion is then described by the ratios:
µi/µe and ρi/ρe. The length scale is defined by the effective diameter of the inclusion

d = (6Vi/π)
1/3 (6.17)

equal to its diameter when at rest in the absence of gravity. The non-dimensionalized position
vector is

x∗ = x/d. (6.18)

The ratio of apparent weight of the inclusion and of the mass of the displaced external fluid
defines the acceleration scale: |1−ρi/ρe|g. This yields the velocity scale

√

|1− ρi/ρe|gd used
to non-dimensionalize of the velocity and pressure fields:

v∗ =
v

√

|1− ρi/ρe|gd
. (6.19)

p∗ =
p̃

|ρe − ρi|gd
(6.20)

If we omit the ‘∗’, the non-dimensionalized equations write as follows. In the external sub-
domain Ωe:

∂v

∂t
+ [(v − u) · ∇]v + ∇p − ∇ · [ 1

G
τ ] = 0; on Ωe (6.21)

and inside the inclusion:

ρi
ρe

[

∂v

∂t
+ [(v − u) · ∇]v

]

− ∇ · (µi
µe

1

G
τ ) + ∇p = −k; on Ωi. (6.22)

Eq. (6.2) still holds everywhere. k is the unit vector in the direction of the z-axis and G is
the Galileo number

G =

√

|1− ρi/ρe|gd3
νe

. (6.23)

The conditions at interface remain given by Eqs. (6.5,6.6,6.9) with the stress tensor given by
Eq. (6.7) with ρ and µ replaced, respectively, by 1 and 1/G in the external sub-domain and
by ρi/ρe and µi/(µeG) inside the inclusion. The stress discontinuity condition (6.6) writes:

σi · n = σe · n− 1

Bo
κn onS (6.24)

where the modified Bond number is defined as

Bo =
|ρe − ρi|gd2

σ
(6.25)

and σ is the interfacial tension.
The problem of an inclusion depends on four physical parameters: G,Bo, ρi/ρe and µi/µe.

Case of a bubble
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In the external domain, Eq. (6.21) holds as it is. For an air bubble, at normal conditions
ρi/ρe ≈ 0.0013 and µi/µe ≈ 0.018. Eq. (6.22) then reduces, with a good approximation, to

∇p = −k; ⇔ p = −z + pb (6.26)

where pb is a uniform pressure inside the bubble due to capillarity and external dynamic
pressure. The capillary pressure inside a spherical air bubble of 1 mm diameter in water
represents less than 0.003 of normal atmospheric pressure so that the volume of the bubble
remains very accurately constant for dynamic pressure variations. As a result, a gas bubble
can be considered as a void of constant volume in a liquid. The constant volume can be
expressed as the constraint of zero volume flux at the bubble surface Sb:

∫

Sb

v · n dS = 0. (6.27)

The dynamic condition (6.24) at interface becomes a boundary condition:

−pn+
1

G
τ · n− 1

Bo
κn = −(pb − z)n. (6.28)

The Galileo and Bond numbers simplify to:

G =

√

gd3

ν
; Bo =

ρgd2

σ
(6.29)

where ρ stands for the liquid density and σ for the surface tension and ν for the kinematic
viscosity. Physically, the role of the bubble pressure pb is to maintain the constant volume,
mathematically it’s a Lagrangian multiplier enabling the constraint (6.27). The bubble
surface will be described by the position vector xb obeying the equation:

∂xb
∂t

= [(v − ub) · n]n (6.30)

where ub stands for the bubble velocity satisfying

∫

Sb

[(v − ub) · n]n dS = 0. (6.31)

6.1.2 Semi-discrete equations and weak formulation

In what follows, the case of the bubble will be considered. For a better readability, we
assemble the system of equations to be solved. It is given by Eqs. (6.2,6.21) with boundary
conditions (6.10,6.11) at the outer computational domain boundaries and the condition (6.28)
at bubble surface. In addition, the equation of propagation of the bubble surface (6.30) with
the incompressibility constraint (6.27) and with the condition defining the bubble velocity
with respect to the fixed frame (6.31) are to be accounted for. This yields the following
system of equations:
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∂v

∂t
+ [(v − ub) · ∇]v + ∇p − ∇ · [ 1

G
τ ] = 0; (6.32)

∇ · v = 0; (6.33)

with outer boundary conditions

v|z=−Lu,r=R
= 0, (6.34)

p|z=Ld
= 0; τ · n|z=Lout

= 0, (6.35)

and constraints and boundary conditions at the bubble surface Sb:
∫

Sb

v · n dS = 0, (6.36)

−pn+
1

G
τ · n− 1

Bo
κn = −(pb − z).n, (6.37)

∂xb
∂t

= [(v − ub) · n]n, (6.38)
∫

Sb

[(v − ub) · n]n dS = 0. (6.39)

The normal vector n will be oriented outward of the computational domain according to the
standard convention.

Considering the advective terms to be treated explicitly (the third order Adams-Bashforth
extrapolation will be used), we choose the time discretization of Eqs. (6.32,6.33) written in
the form:

v(n+1) − v(n)

∆t
+ ([(v − u) · ∇]v)(n) + ∇p(n+1) − ∇ · ( 1

G
τ
(n+1)) = 0 (6.40)

∇ · v(n+1) = 0 (6.41)

(n) denoting known values at the previous step and (n + 1) values to be computed at the
current step.

In the weak formulation, the term ∇p(n+1) − ∇ · ( 1
Gτ

(n+1)) yields:

∫

Ω
w [∇p(n+1) − ∇ · ( 1

G
τ
(n+1))] dΩ =

∫

Ω

[

−(∇ ·w)p(n+1) + ∇w · 1

G
τ
(n+1)

]

+

∫

Sb

w (pn− 1

G
τ
(n+1)n)dS (6.42)

where w is a test vector field. The boundary condition (6.35) amounts to considering the
surface term equal to zero at the outflow of the domain and the condition (6.37) at the
bubble surface is accommodated by setting:

∫

Sb

w (pn− 1

G
τ
(n+1)n)dS =

∫

Sb

w · n (p
(n+1)
b − z − 1

Bo
κ(n+1))dS (6.43)
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Two additional quantities to be solved for at the time step n+1 appear: the bubble pressure

p
(n+1)
b and the curvature κ(n+1). The internal bubble pressure pb is a Lagrange multiplier

making the flow field satisfy the volume conservation constraint (6.36)

∫

Sb

v(n+1) · n dS = 0. (6.44)

The bubble surface propagates with the velocity [(v− u) · n]n with respect to the mesh
assumed to move with the translation velocity ub with respect to the fixed frame. The center
of the bubble will be related to the new velocity v(n+1) by the relation

∫

S
[(v(n+1) − ub) · n]n dS = 0 (6.45)

where n is the normal vector of the geometry determined at the previous time-step. Written
equivalently in coordinates:

(

∫

S
ni nj dS)ub,j =

∫

S
(v(n+1) · n)ni. (6.46)

the relation (6.45) amounts to solving a linear system of three equations.

Implicit treatment of the curvature

Special care is necessary to the treatment of the curvature in order to avoid numerical
instability due to capillarity waves. The bubble surface will be parametrized by the polar
and azimuthal angles (ψ and θ, respectively) of its initially spherical shape. In what follows,
we use the formula determining the curvature and the normal vector of a surface xb(ξ)
parametrized by two parameters ξα, α = 1, 2, (ξ1 = ψ and ξ2 = θ):

κni = − 1√
g

∑

α,β

∂

∂ξα

(

gα,β
√
g
∂xib
∂ξβ

)

(6.47)

where i = 1, 2, 3 are the Cartesian components. The metric tensor gα,β is

gα,β =
∂x

∂ξα
· ∂x
∂ξβ

, (6.48)

g stands for its determinant and gα,β is its contravariant counterpart (inverse matrix of
{gα,β}).

In appendix 6.3 we show that in the approximation of irrotational flow of an inviscid
fluid the problem reduces to a set of uncoupled equations for undamped linear oscillators:

d2Bℓ,m
dt2

+
σ

ρ

ℓ(ℓ+ 1)2

R3
Bℓ,m = 0. (6.49)

From the numerical view-point, an explicit time-discretization of Eqs. (6.49) is numerically
unstable. Indeed, an equation of undamped oscillator ẍ + ω2x = 0, transforms to a first
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order complex equation ż = iωz by setting z = x− i
ω ẋ. An explicit time discretization with

time step ∆t amounts to iterations z(n+1) = (1 + iω∆t)z(n) with a factor larger than 1 in
absolute value. A sufficient damping may compensate the growth but, in our case, we need
an algorithm assuring the decay of surface waves whatever the damping. The semi-implicit
formula brings about neither amplification nor damping and the implicit one yields a factor
of absolute value 1/

√
1 + iω∆t ≈ 1− 1

2(ω∆t)
2 smaller than one. The implicit formula is thus

to be preferred.

Our problem (Eqs. (6.32) through (6.39)) can be modeled as a damped oscillator written
in the form

dv

dt
+ bv + ω2x = 0, (6.50)

dx

dt
= v, (6.51)

the first equation modeling the flow equations and the second one the bubble surface prop-
agation. The elastic term ω2x in Eq. (6.50) plays the role of the curvature in Eq. (6.37).
The explicit treatment of this term leads to the time-stepping algorithm

(1 + b∆t)v(n+1) = v(n) − ω2∆t x(n) (6.52)

x(n+1) −∆t v(n+1) = x(n) (6.53)

while the implicit approach with x(n) replaced by x(n+1) = x(n) + ∆t v(n+1) in Eq. (6.52)
yields

(

(1 + b∆t+ ω2(∆t)2
)

v(n+1) = v(n) − ω2∆t x(n) (6.54)

x(n+1) −∆t v(n+1) = x(n). (6.55)

A simple calculation shows that, for zero damping b = 0, algorithm (6.52,6.53) behaves
like the semi-implicit formula applied to the undamped complex oscillator while algorithm
(6.54,6.55) yields (up to terms of order O((∆t)2))) the factor 1 − 1

2(ω∆t)
2 characteristic of

the implicit formula.

It is easily seen that, in spite of all the effort aiming at a better numerical stability, the
non-linearities make the implicitation only partial which results in a destabilizing effect, if
the curvature in Eq. (6.37) is simply replaced by its value obtained from the geometry at
previous time-step. The viscosity is insufficient to ensure the stability as soon as the Galileo
number exceeds the value of about 10 (for Bo=1).

Following the considerations of the model problem, Eq. (6.38) will be used to propagate
the bubble surface once the new velocity field has been obtained, i.e., in the first order
version,

x
(n+1)
b = x

(n)
b +∆t

[

(v(n+1) − u
(n+1)
b ) · n

]

n. (6.56)

(Actually the third order Adams-Bashforth extrapolation has been used, nevertheless, the
more accurate formula brings no visible additional improvement.) Upon substitution to Eq.
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(6.47), the curvature term can be written as

κ(n+1)n = − 1√
g

∑

α,β
∂
∂ξα

(

gα,β
√
g
∂x

(n)
b

∂ξβ

)

− ∆κn, (6.57)

∆κn = −∆t 1√
g

∑

α,β
∂
∂ξα

[

gα,β
√
g ∂
∂ξβ

(

(v(n+1) − u
(n+1)
b ) · n

)

n
]

. (6.58)

In weak formulation

−
∫

Sb

(w · n)κ dS =

∫

Sb

∂w

∂ξα
·
(

gα,β
∂x

∂ξβ

)

dS. (6.59)

This results in the weak formulation of the boundary condition (6.43)

∫

Sb
w (pn− 1

Gτ
(n+1)n)dS =

∫

Sb
w · n p(n+1)

b dS + ∆t
Bo

∫

Sb

∂(w·n)n
∂ξα ·

(

gα,β ∂(v
(n+1)·n)n
∂ξβ

)

dS

−
∫

Sb
(w · n) (z + 1

Boκ
(n))dS (6.60)

where the first two terms on the RHS containing the unknowns pb and v(n+1) contribute to
the problem matrix and the last term contributes to the RHS term.

Weak formulation of the linear problem at step n+ 1

The considerations described above result in the following weak formulation of the linear
problem to be solved at each time-step:

∫

Ω

[

1

∆t
w · v(n+1) +∇w · 1

G
τ
(n+1) − (∇ ·w)p(n+1) − Φ∇ · v(n+1)

− w · [ 1
∆t

v(n) − ((v − ub) · ∇v)(n)]

]

dΩ +

p
(n+1)
b

∫

Sb

w · n dS +
∆t

Bo

∫

Sb

∂(w · n)n
∂ξα

·
(

gα,β
∂(v(n+1) · n)n

∂ξβ

)

dS

a

∫

Sb

(v(n+1) · n)dS −
∫

Sb

(w · n) (z + 1

Bo
κ(n))dS

v(n+1) = 0 on inflow; p(n+1) = 0 on outflow. (6.61)

where w is a vectorial test function, Φ a scalar test function and a a scalar test variable.
Once solved, the resulting velocity field v(n+1) is used to calculate the bubble velocity (Eqs.
(6.45,6.46)) and the bubble surface is moved using Eq. (6.56).

6.1.3 Time splitting formulation

The weak formulation (6.61) provides, after appropriate discretization and by variation with
respect to discretized test functions and the variable a, a single linear problem to be solved,

yielding directly the new velocity and pressure fields as well as the bubble pressure p
(n+1)
b .

The obtained ‘augmented’ matrix is, however, badly conditioned and the code ought to
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have been significantly reformulated for the purpose while, in its previous versions, the
time splitting formulation gave entire satisfaction for flows if fluids having low viscosity. It
involves significantly simplified matrix inversions resulting in reduced computing costs. Its
implementation required some additional tradeoffs discussed in this section.

The time splitting formulation consists in separating the computation of velocity and
pressure updates by splitting the velocity increment v(n+1) − v(n) into two terms

v(n+1) − v(n) = (v(n+1) − v̂) + (v̂ − v(n)) (6.62)

and by approximating the coupled system of equations (6.32, 6.33) in the following manner:

v̂ − v(n)

∆t
+ ([(v − u) · ∇]v)(n) + ∇p(n+1) = 0, (6.63)

∇ · v̂ = 0, (6.64)

v(n+1) − v̂

∆t
− ∇ · ( 1

G
τ
(n+1)) = 0. (6.65)

The inaccuracy of the formulation, due to the not exactly zero divergence of velocity, is
proportional to ∆t/G so that, for short time step and sufficiently large Galileo number, it
can be expected to be acceptable. Eqs. (6.63, 6.64) yield a Poisson problem for the pressure:

∇2p(n+1) = ∇ ·
(

v(n)

∆t
− ([(v − u) · ∇]v)(n)

)

(6.66)

for which it is necessary to define boundary conditions compatible with the condition (6.37)
at the bubble surface. The idea of Eqs. (6.63) and (6.64) consists in ignoring the viscosity
effects in the computation of the pressure. Continuing along the same line, we can reduce
the boundary condition (6.37) by discarding the viscous term and set a Dirichlet pressure
boundary condition at the bubble surface:

p(n+1)|Sb
=

(

p
(n)
b − z − 1

Bo
κ(n)

)

. (6.67)

assuming the bubble pressure pb to be known.
At the inflow no modification of the boundary conditions used for simulating solid bodies

is required and is described in previous work (Chrust, 2012). A Dirichlet boundary condition
defining the velocity results in a Neumann condition for the pressure

∂p(n+1)

∂n

∣

∣

∣

∣

∣

Sinflow

=

(

v(n)

∆t
− ([(v − u) · ∇]v)(n)

)

· n−
v|Sinflow

∆t
· n. (6.68)

The velocity field at the next step v(n+1) is obtained by solving the Helmholtz problem
(6.65) completed by standard Dirichlet and Neumann conditions v = 0 and τ · n = 0, set,
respectively, at the inflow and outflow of the domain (see Eqs. (6.34) and (6.35)).
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At the bubble surface we require the implicit treatment of the curvature. The pressure
boundary condition (6.67) combined with the dynamic boundary condition (6.43) yields:

1

G
τ
(n+1) · n

∣

∣

∣

∣

Sb

= +
1

Bo
∆κn (6.69)

where ∆κ is the curvature correction (6.58). Physically, this condition assumes that surface
waves are dissipated by viscosity. This results in the weak formulation of the velocity problem

∫

Ω

[

1

∆t
w · v(n+1) +∇w · 1

G
τ
(n+1)

]

dΩ +

∆t
1

Bo

∫

Sb

g(n),α,β
∂(n ·w)n

∂ξα
∂(n · v(n+1))n

∂ξβ

√

g(n)d2ξ −
∫

Ω

1

∆t
w v̂ dΩ = 0. (6.70)

The bubble pressure p
(n+1)
b is obtained by requiring the volume flux through the bubble

surface to be zero. This is done in the following way. After updating the deformable mesh
(see the next section), the effect of a unit pressure variation at the bubble surface on the
velocity field is computed by setting all variables to zero and by solving first the pressure
equation for a unit pressure boundary condition and by computing the corresponding flow
field afterward. This yields the corresponding volume flux. The solved problem being linear,
the obtained information is then used to adjust the bubble pressure and update the velocity
field to respect the zero volume flux condition. If the mesh were fixed, this solution would be
needed only once at the beginning of the computation. However, the mesh deforms slightly
at each time step which makes the solution of the pressure and velocity equations depend
on the mesh deformation. The procedure must thus be done at each time step. The solver
being iterative, the accuracy of resolution can be adjusted to the global accuracy required
at a time step for the velocity and pressure fields. Since the mesh deforms only a little at a
single time-step, the computing costs can be made much smaller than those of the pressure
and velocity computation itself.

6.2 Bubble: numerical method of solution

The cylindrical domain of figure 6.1 around an undeformed spherical bubble is discretized
using a Fourier decomposition in the azimuthal direction and a spectral element decompo-
sition in the radial-axial plane. An example of the mesh in the radial axial plane is given
in figure 6.2. Three meshes with 16, 20 and 30 elements along the bubble surface (245, 277
and 387 elements totally, named mesh0, mesh1 and mesh2) were created. They differ only
in a close neighborhood of the bubble as seen in the details represented in figure 6.3.

If the bubble is spherical, the 3D mesh is obtained by revolution of radial-axial plane
about the axis. The idea of capturing the bubble deformation is based on the ALE approach
consisting in following the bubble deformation by the mesh. Since the size of the bubble
is small compared to the size of the whole computational domain, it is not necessary to
propagate its deformation everywhere. It is sufficient to deform the mesh only inside a
sphere of radius large enough to contain the bubble after it has deformed. It appeared that
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Figure 6.2: Spectral element mesh in the radial-axial plane

Figure 6.3: From left to right: detail of mesh16, mesh20 and mesh30.

a radius Rs equal to the diameter of the spherical bubble was sufficient for all considered
Bond numbers. The intersection of this sphere with the axial-radial plane is represented by
the thick half circle in the left figure 6.3. An idea of the deformed mesh is provided in figure
6.4. The figure 6.4 was obtained for an axisymmetric bubble but a similar mesh arises in

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.8

1
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Figure 6.4: Deformed mesh around an axisymmetric bubble at Bo = 1 and G = 100.



6.2. BUBBLE: NUMERICAL METHOD OF SOLUTION 159

different azimuthal directions also if the bubble is non-axisymmetric. The difference between
non-axisymmetric and axisymmetric shape consists in variable deformation depending on the
azimuthal angle. The deformed mesh is parametrized by keeping track of the positions of
the moving meshpoints as functions of their position on the undeformed mesh (see section
6.2.3 for more details), i.e. the undeformed mesh is maintained as reference and the mesh
deformation is represented as additional vector field on the undeformed cylindrical mesh.
The same cylindrical mesh is used for describing the pressure and velocity fields, which
reduces the necessary modification of the code used in the previous PhD thesis by Chrust
(2012).

Outside the deformed spherical sub-domain, the principles of the discretization are the
same as described in the PhD thesis by Chrust (2012). The stress boundary condition at the
bubble surface required, however, a stress formulation (involving the deformation velocity
tensor) of the Navier-Stokes equations. We describe the way how the variables are stored in
sub-section 6.2.1 and the implementation of differential operators in sub-section 6.2.2. The
mesh deformation is addressed in sub-section 6.2.3.

6.2.1 Storage of variables

To explain the representation of vectors, we shall focus on the velocity field. The Cartesian
coordinates (with origin at the center of the spherical sub-domain) will be named z for the
projection onto the cylinder axis and x, y for the projection onto the normal plane. The
cylindrical coordinates are obtained by parametrizing the xOy plane by polar coordinates
r, θ so that x = r cos θ and y = r sin θ. In cylindrical coordinates, vectors are expressed
by their axial, radial and azimuthal projections, e.g. vz, vr, vθ instead of vz, vx, vy. The
periodicity of all variables with respect to θ allows the use of Fourier expansion (shown by
Ghidersa & Dušek (2000) to be optimal for the description of axisymmetry breaking in flows
as already mentioned in the Introduction.) An old numerical paper by Orszag (1974) shows
that the Fourier expansion is not to be applied to the radial and azimuthal components but
to their complex combination vr + i vθ. The complex representation is also more convenient
for the description of rotations about the symmetry (z) axis. Mathematically, it amounts
to switching from an O(2) representation (by 2 × 2 real matrices) of the rotation group to
the U(1) representation in the complex plane where rotations are simply given by multipli-
cations by complex units (see Jenny & Dušek, 2004). The U(1) representation is used in the
transverse xOy plane. The projection z being invariant with respect to rotations about the
axis, it behaves in the same way as a scalar (like the pressure).

In U(1) representation, the transverse velocity components are replaced complex combi-
nations in the following way:

v± = vx ± ivy; ṽ± = vr ± ivθ. (6.71)

The − component is redundant but useful after decomposition into complex Fourier modes.
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The cylindrical version is denoted by tilde. The transformation is defined by the matrix

L =





1 0 0
0 1 −i
0 1 i





vU(1) = LvO(2).

The U(1) representation yields a simple transformation:

v± = e±iθṽ±. (6.72)

To write the transformation of the whole velocity vector in a compact way, define

d(θ) = diag(1, e−iθ, eiθ).

Then
v = d(θ)ṽ (6.73)

where

v =





vz
v−
v+



 ; ṽ =





vz
ṽ−
ṽ+



 .

In our discretization we work with Fourier modes of truncated Fourier expansions:

vz =

M
∑

m=−M
cz,m(z, r) e

−imθ (6.74)

ṽ− =
M
∑

m=−M
c−,m(z, r) e

−imθ (6.75)

ṽ+ =
M
∑

m=−M
c+,m(z, r) e

−imθ (6.76)

M being the largest Fourier mode taken into account. The following redundancies make it
possible to reduce the storage to positive indexes only:

cz,−m(z, r) = cz,m(z, r); c±,−m(z, r) = c∓,m(z, r).

The scalars (e.g. pressure) are stored in the same way as vz. We store cz,m, c−,m and c+,m
for 0 ≤ m ≤M .

6.2.2 Differential operators on undeformed mesh

The spectral accuracy of the code is obtained by taking the θ derivatives in spectral space.
Their implementation is described in previous work (e.g. Jenny & Dušek, 2004) except for
the stress formulation required in the present case.
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The gradient of the velocity vector defined in Cartesian coordinates and U(1) represen-
tation is expressed as:

∇v =





∂vz
∂z

∂v−
∂z

∂v+
∂z

∇−vz ∇−v− ∇−v+
∇+vz ∇+v− ∇+v+



 . (6.77)

In Eq. (6.77), ∇± stand for

∇± =
∂

∂x
± i

∂

∂y
. (6.78)

The transformation to O(2) representation is obtained by a simple matrix multiplication

[∇v]O(2) = L−1∇vLT
−1

; L−1 =





1 0 0
0 1

2
1
2

0 i
2

i
2



 . (6.79)

The transformation of the gradient of the axial component of velocity to cylindrical
coordinates is the same as for a scalar:

∇vz = d(θ)∇̃vz (6.80)

where ∇ and ∇̃ are the gradient in Cartesian coordinates and cylindrical coordinates, re-
spectively, both in U(1) representation:

∇ =





∂
∂z
∇−
∇+



 ; ∇̃ =





∂
∂z

∇̃−
∇̃+



 ; ∇̃± =
∂

∂r
± i

∂

∂θ
. (6.81)

For the + and − transverse U(1) components we get (see also Eq. (6.72):

∇±v+ = e±iθ∇̃±
(

eiθṽ+

)

= e±iθeiθ
(

∇̃± ∓ 1

r

)

ṽ+ (6.82)

and

∇±v− = e±iθ∇̃±
(

e−iθṽ−
)

= e±iθe−iθ
(

∇̃± ± 1

r

)

ṽ−. (6.83)

This yields the transformation

∇v = d(θ)∇̃ṽd(θ) (6.84)

where

∇̃ṽ =









∂vz
∂z

∂ṽ−
∂z

∂ṽ+
∂z

∇̃−vz
(

∇̃− − 1
r

)

ṽ−
(

∇̃− + 1
r

)

ṽ+

∇̃+vz

(

∇̃+ + 1
r

)

ṽ−
(

∇̃+ − 1
r

)

ṽ+









. (6.85)
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The operations ∇̃± ± 1
r are available in the code in the form of gradients which we denote

as:

∇̃v− =









∂ṽ−
∂z

(

∇̃− − 1
r

)

v−
(

∇̃+ + 1
r

)

v−









(6.86)

∇̃v+ =









∂ṽ+
∂z

(

∇̃− + 1
r

)

v+
(

∇̃+ − 1
r

)

v+









. (6.87)

It is easily seen than the O(2) representation is

L−1∇̃ṽLT
−1

=





∂vz
∂z

∂vr
∂z

∂vθ
∂z

∂vz
∂r

∂vr
∂r

∂vθ
∂r

1
r
∂vz
∂θ

1
r
∂vr
∂θ − vθ

r
1
r
∂vθ
∂θ + vr

r





as expected.
The gradients are available in the code in terms of Fourier modes (in spectral repre-

sentation). The U(1) representation makes the singularity 1/r removable. The Fourier
transformations (6.74, 6.75, 6.76) yield the gradients in physical space. Equations (6.79),
(6.84) and (6.85) then provide the transformation from gradients in cylindrical coordinates
transformed to physical space to Cartesian coordinates in usual O(2) formulation.

Stress formulation

To obtain the diffusion term of Navier-Stokes equations in the non-stress formulation it
is sufficient to write a variation of the functional

a(w,v) =

∫

Ω
∇̃w̃ · ∇̃ṽ dzrdrdθ.

E.g. the ṽ+ equation results from variation with respect to w̃+ i.e.:

∇̃† · ∇̃ṽ+ =

[

− ∂2

∂z2
+

1

2

(

∇̃†
− +

1

r

)(

∇̃− +
1

r

)

+
1

2

(

∇̃†
+ − 1

r

)(

∇̃+ − 1

r

)]

ṽ+.

This yields the Laplacian operator

− ∂2

∂z2
− 1

r

∂

∂r
r
∂

∂r
+

1

r2

(

i
∂

∂θ
− 1

)2

which is easily seen taking into account the formula:

∇̃†
± = −1

r

∂

∂r
r ± i

1

r

∂

∂θ
. (6.88)

The stress formulation consists in replacing ∇̃ṽ by ∇̃ṽ + ∇̃ṽT . I.e. the viscous term
becomes:
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∇̃† ·
(

∇̃ṽ + ∇̃ṽT
)

(6.89)

where ∇̃† stands alternatively for the adjoint operators in the columns of the expression for
the velocity gradient (6.85).

In appendix 6.4, it is shown that
∇̃† · ∇̃ṽT

is zero due to the vanishing divergence.
The implementation in spectral representation is given in detail in appendix 6.5.

6.2.3 Description of bubble surface and domain deformation

The bubble surface can be described by the position vector parametrized by spherical coor-
dinates

x(b) = xb(ψ, θ) =







z(b)

x̃
(b)
−
x̃
(b)
+






(6.90)

where ψ is the polar angle obtained on the undeformed mesh from the transformation:

z = 0.5 cosψ,

r = 0.5 sinψ. (6.91)

In the same way as the velocity vector (6.74, 6.75, 6.76), the position vector will be expanded
into Fourier modes:

x̃(b) =
M
∑

m=−M
c(b)m (ψ) e−imθ (6.92)

where

c(b)m =





zb,m
xb,−,m
xb,+,m



 . (6.93)

With the help of a spherical function expansion used instead of the Fourier decomposition
(6.92), it can be shown that the Fourier modes have the same behavior at the axis as that
of velocity (see Ghidersa & Dušek, 2000), i.e.

zb,m ∼ (sinψ)m

xb,±,m(ψ) ∼ (sinψ)|m∓1|, (6.94)

(6.95)

which enables the removal of singularities at the axis.
The mesh will be deformed by interpolating between the bubble surface defined in the

undeformed mesh by the radial spherical coordinate η = η1 = 0.5 and a fixed spherical
surface of radius η2

x(s) = η2n
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where

n =





cosψ
sinψ cos θ
sinψ sin θ



 .

A simple linear interpolation is used

x =
η2 − η

η2 − η1
x(b) +

η − η1
η2 − η1

x(s) (6.96)

resulting in the transformation
x = x(η, ψ, θ).

To define the transformation of gradients, we need the Jacobian matrix :

∂x

∂η
= Nη =

1

η2 − η1

(

x(s) − x(b)
)

; (6.97)

∂x

∂ψ
= ηNψ =

η2 − η

η2 − η1

∑

m

∂c
(b)
m

∂ψ
e−imθ +

η − η1
η2 − η1

η2 nψ; (6.98)

∂x

∂θ
= η sinψNθ =

η2 − η

η2 − η1

∑

m

(−im) c(b)m e−imθ +
η − η1
η2 − η1

η2 sinψ nθ (6.99)

where

nψ =
∂n

∂ψ
; nθ =

1

sinψ

∂n

∂θ

and the vectors Nη,Nψ,Nθ are identical with the unit orthonormal vectors of spherical
coordinates if the mesh is undeformed. They are obtained in cylindrical coordinates and
transformed to Cartesian ones using Eq. (6.73). Eqs. (6.98) and (6.99), restricted to the
bubble surface (η = 0.5), yield also the tangent vectors at the bubble surface and the metric
tensor (6.48).

The inverse of the Jacobian matrix:

JT =

[

∂x

∂η
,
∂x

∂ψ
,
∂x

∂θ

]

(6.100)

is

J−1 =
1

det(J̃)

[

Nψ ×Nθ,
1

η

(

Nθ ×
∂x

∂η

)

,
1

η sinψ

(

∂x

∂η
×Nψ

)]

. (6.101)

Gradients

A scalar gradient writes as:

∇f =
1

det(J̃)

[

(Nψ ×Nθ)
∂f

∂η
+

(

Nθ ×
∂x

∂η

)

1

η

∂f

∂ψ
+

(

∂x

∂η
×Nψ

)

1

η sinψ

∂f

∂θ

]

. (6.102)

Introducing the cylindrical coordinates r = η sinψ, z = η cosψ we get:
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∂f

∂η
= cosψ

∂f

∂z
+ sinψ

∂f

∂r
,

1

η

∂f

∂ψ
= − sinψ

∂f

∂z
+ cosψ

∂f

∂r
.

This results in the gradient in deformed cylindrical coordinates written as follows:

∇f = J̃−1





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









∂f
∂z
∂f
∂r
1
r
∂f
∂θ



 . (6.103)

where

J̃T =

[

∂x

∂η
,Nψ,Nθ

]

. (6.104)

As already mentioned, the stored velocity field components are ṽ± = e∓iθv± where v±
are U(1) Cartesian components. The velocity vector will be projected onto a fixed Cartesian
basis. It will not be submitted to the coordinate deformation unlike the usual approach
consisting in projecting onto the local basis of coordinate vectors (6.97,6.98,6.99). As the
result, its components are differentiated like scalars.

In short-hand notation

∇f = K





∂
∂z

∇̃−
∇̃+



 f ≡ K∇̃f (6.105)

∇v+ = eiθK∇̃ṽ+ (6.106)

where

K = J̃−1





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









1 0 0
0 1

2
1
2

0 i
2 − i

2



 . (6.107)

The matrix K has the following form if no deformation is present:

K0 = J̃0
−1





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









1 0 0
0 1

2
1
2

0 i
2 − i

2



 =





1 0 0
0 1

2e
−iθ 1

2e
iθ

0 i
2e

−iθ − i
2e
iθ



 (6.108)

where J̃0
−1

is the Jacobian matrix of undeformed spherical coordinates:

J̃0
−1

=





cosψ − sinψ 0
sinψ cos θ cosψ cos θ − sin θ
sinψ sin θ cosψ sin θ cos θ



 . (6.109)

It is to be noted that

K†
0K0 = diag(1, 1/2, 1/2). (6.110)
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The factors 1/2 must be compensated since they are already included in the implemented di-
vergence operator. The matrix (6.109) being orthogonal, the matrix elements of the Jacobian
matrix of transformation from deformed to undeformed spherical coordinates:

J−1
def = J̃−1J̃0 (6.111)

is identity for an undeformed mesh. The modification of the matrix K0 due to the mesh
deformation writes then

K = J−1
def K0, (6.112)

i.e. the mesh deformation is totally accounted for by the matrix field (6.111). Alternatively
to Cartesian coordinates, cylindrical coordinates can be used. In that case the matrix (6.108)
is simply replaced by

K̃0 = J̃0
−1





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









1 0 0
0 1

2
1
2

0 i
2 − i

2



 =





1 0 0
0 1

2
1
2

0 i
2 − i

2



 . (6.113)

The matrix field K defines the viscous term in the stress formulation in the way described
in appendix 6.6.

6.3 Capillarity waves on a spherical free surface

To understand the origin of capillarity waves on a spherical surface, let us consider the
standard approach of infinitesimal waves in the approximation of irrotational flow of an
inviscid fluid. In 2D, this approach leads to the textbook description of capillarity waves.
Be φ the velocity potential

v = ∇φ. (6.114)

The incompressibility condition (6.33) yields the Laplace-Poisson equation

∇2φ = 0 (6.115)

with boundary conditions v → 0, i.e. φ→ 0 for r → ∞ and the dynamic condition (Bernoulli
equation)

∂φ

∂t
+
p

ρ
= const. (6.116)

at the bubble surface. (In the Bernoulli equation (6.116) the non-linear term (∇φ)2/2 is
dropped out at linearization and purely capillarity waves (without gravity effects) are con-
sidered. The pressure depends on the curvature:

p = p0 − σκ (6.117)

p0 being the static pressure inside the bubble. If differentiated with respect to time, Eq.
(6.116) yields the wave equation

∂2φ

∂t2
− σ

ρ

∂κ

∂t
= 0. (6.118)



6.3. CAPILLARITY WAVES ON A SPHERICAL FREE SURFACE 167

The velocity potential can be expanded into spherical functions

φ =
∑

ℓ,m

ϕℓ,m(r, t)Yℓ,m(ψ, θ), (6.119)

which reduces Eq. (6.115) to a set of ordinary differential equations

(

1

r2
∂

∂r
r2
∂

∂r
− ℓ(ℓ+ 1)

r2

)

ϕℓ,m = 0 (6.120)

with boundary condition at infinity:

ϕℓ,m(r, t) → 0; r → ∞. (6.121)

The solution is:

ϕℓ,m(r) = Bℓ,m(t) r
−ℓ−1; ℓ > 0; (6.122)

(ϕ0,0(r) = 0). The bubble surface will be parametrized

xb = r(ψ, θ)ur(ψ, θ) (6.123)

where ur is the radial unit vector in spherical coordinates and r = R+∆r(ψ, θ) is a weakly
perturbed sphere radius. Using the parametrization (6.123) in the formula for the curvature
(6.47) and linearizing the result with respect to derivatives of ∆r we get:

κ =
2

R
− 1

R2

(

1

sinψ

∂

∂ψ
sinψ

∂r

∂ψ
− 1

sin2 ψ

∂2r

∂θ2

)

+O((∆r)2). (6.124)

If differentiated with respect to time, the expression for κ depends on

dr

dt
= vr =

∂φ

∂r
. (6.125)

Eq. (6.118) becomes

∂2φ

∂t2
+
σ

ρ

1

R2

(

1

sinψ

∂

∂ψ
sinψ

∂

∂ψ
− 1

sin2 ψ

∂2

∂θ2

)

∂φ

∂r
= 0 (6.126)

and, with account of the decomposition (6.119,6.122), leads to the set of second order ordi-
nary differential equations equivalent to undamped oscillators

d2Bℓ,m
dt2

+
σ

ρ

ℓ(ℓ+ 1)2

R3
Bℓ,m = 0. (6.127)

with the angular frequencies of oscillation of eigenmodes ℓ,m equal to

ωℓ =

(

σℓ(ℓ+ 1)2

ρR3

)1/2

. (6.128)
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6.4 Divergence of transposed velocity gradient

In the vz equation the corresponding additional term is obtained by replacing the first column
of the velocity gradient (6.85) by the first line (to account for the transposed):

∇̃† · ∂
∂z

ṽ

where ∇̃ is the scalar gradient operator. Since the z − derivative commutes with ∇̃† we get

∂

∂z
∇̃† · ṽ = 0

The situation is less straightforward for transverse components v+ and v−. Take

∇̃† ·









∇̃+vz
(

∇̃+ + 1
r

)

ṽ−
(

∇̃+ − 1
r

)

ṽ+









. (6.129)

The operator ∇̃ is, this time, that acting on v+ in the third column of velocity gradient
(6.85). This allows us to write the expression (6.129) in more detail as:

− ∂

∂z
∇̃+vz +

1

2

(

∇̃†
− +

1

r

)(

∇̃+ +
1

r

)

ṽ− +
1

2

(

∇̃†
+ − 1

r

)(

∇̃+ − 1

r

)

ṽ+. (6.130)

Using Eq. (6.88) it can be shown that:

(

∇̃†
− +

1

r

)(

∇̃+ +
1

r

)

= ∇̃+∇̃†
−

and
(

∇̃†
+ − 1

r

)(

∇̃+ − 1

r

)

= ∇̃+∇̃†
+.

As the result, expression (6.130) becomes:

∇̃+

[

− ∂

∂z
vz +

1

2
∇̃†

−ṽ− +
1

2
∇̃†

+ṽ+.

]

= 0

because the expression in the square brackets is the divergence of the velocity.

6.5 Stress formulation in spectral representation

Eq. (6.85) after decomposition into Fourier modes writes:

∇̃ṽm =





∂vz,m
∂z

∂ṽ−,m

∂z
∂ṽ+,m

∂z
(

∂
∂r − m

r

)

vz,m
(

∂
∂r − m+1

r

)

ṽ−,m
(

∂
∂r − m−1

r

)

ṽ+,m
(

∂
∂r +

m
r

)

vz,m
(

∂
∂r +

m+1
r

)

ṽ−,m
(

∂
∂r +

m−1
r

)

ṽ+,m



 . (6.131)
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and the symmetrized version is:

(

∇̃mṽ + ∇̃mṽ
T
)

=










2
∂vz,m

∂z

∂ṽ
−,m

∂z
+

(

∂
∂r

− m
r

)

vz,m
∂ṽ+,m

∂z
+

(

∂
∂r

+ m
r

)

vz,m
∂ṽ
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.(6.132)

The storage of gradients avoiding redundancies consists in storing only positive modes
for scalar quantities and positive and negative modes of of ∇̃+. I.e.:

Sz,z,m = 2
∂vz,m
∂z

; m = 0 . . .M, (6.133)

Sz,+,m =
∂ṽ+,m
∂z

+

(

∂

∂r
+
m

r

)

vz,m; m = −M . . .M, (6.134)

S+,z,m =
∂ṽ+,m
∂z

+

(

∂

∂r
+
m

r

)

vz,m; m = −M . . .M, (6.135)

S+,−,m =

(

∂

∂r
− m− 1

r

)

ṽ+,m +

(

∂

∂r
+
m+ 1

r

)

ṽ−,m; m = −M . . .M, (6.136)

S+,+,m = 2

(

∂

∂r
+
m− 1

r

)

ṽ+,m; m = −M . . .M. (6.137)

6.6 Stress formulation on the deformed mesh

In Cartesian coordinates the functional of the weak formulation of the viscous term writes:

a(w,v) =

∫

Ω
∇wµ

(

∇v +∇vT
)

dΩ

=

∫

Ω

[

∇wzµSz +∇w−µS− +∇w+µS+

]

dΩ

=

∫

Ω

[

K∇̃wzµSz + eiθK∇̃w−µS− + e−iθK∇̃w+µS+

]

dΩ

=

∫

Ω

[

∇̃wzK†µSz + ∇̃w−K
†eiθµS− + ∇̃w+K

†e−iθµS+

]

dΩ

=

∫

Ω

[

∇̃wzK†µSz + ∇̃w−K
†eiθµS− + ∇̃w+K

†e−iθµS+

]

det(J̃)rdrdzdθ

=

∫

Ω

[

wz∇̃†IK†µSz +∇w−∇̃†IK†eiθµS− + w+∇̃†IK†e−iθµS+

]

det(J̃)rdrdzdθ

where
I = diag(1, 2, 2) (6.138)
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and µ stands for the viscosity. In the undeformed case

diag(1, 2, 2)K†
0 =





1 0 0
0 eiθ −i eiθ
0 e−iθ ie−iθ



 = K−1
0 , (6.139)

i.e.
IK† = K−1

0 (Jdef
−1)T . (6.140)

This yields the following operators:
z-component operator:

∇̃†IK†µMSz,

minus component operator:

∇̃†IK†eiθµMS−

and plus component operator:

∇̃†IK†e−iθµMS+

where ∇̃† are the divergence operators already implemented in cylindrical coordinates and
M is the mass matrix representing dΩ = det(J̃)rdrdzdθ, i.e.

M = diag

(

1

nθ
det(J̃)Br,z

)

where Br,z are the integration weights in radial-axial plane and nθ is the number of points
on the circle of fft (2M + 1 or 2M + 2).
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