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Introduction

The question of energy remains important and central for human being. Energy enters
greatly in all domains of human activities: food production, home heat and light, indus-
trial facility operations, public and private transportation demands, communication needs,
state safety requirement. The standard of living and energy consumption are intimately
linked so that the quality of life is correlated with a reasonable price of consumed energy.
The increasing demand of energy, the very limited energy resource accessibility by
the world will probably become worse in the next future. This situation is intensified
by environment requirements imposed to the portfolio energy resources available. Energy
sources having reduced greenhouse gases, limited waste disposal, cheap cost production
are then investigated to alleviate the world energy situation. Among world existing energy
source options [37]: coal, oil, natural gas, wind energy, solar power, hydroelectricity, and
nuclear fission energy, nuclear fusion power potentially fulfills the above standards.

I Nuclear fusion

Fusion is the thermonuclear reaction that consists of merging two light atoms to produce
a heavy one, and fast neutrons carrying a lot of energy as shown in Figure 1.

Deuterium Hélium
(@\ Fusionl/ %
& T o

Tritium Neutron

Figure 1: Fusion reaction [1].

Fusion is the process which powers the sun and the stars. In future fusion reactors
envisaged on Earth, energy will be released by gathering together hydrogen isotopes,
namely deuterium and tritium. These fuels are virtually unlimited. Deuterium is abundant
in ocean water. There is 1 atom of deuterium for every 6700 atoms of hydrogen [37]. It
will take 2 billions years to exhaust all the deuterium to operate fusion if we keep the
present rate of world energy consumption. Deuterium can be easily extracted from ocean
water at very low coast. Conversely, there is no natural tritium, it can be generated by
lithium reacting with neutrons directly in fusion reactor. Lithium is relatively abundant
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on Earth and resources are estimated to be sufficient for 20000 years at the current world
energy consumption. Nevertheless, this fusion reaction has two inconveniences: tritium is
a radioactive element and lithium is a harmful substance. However, according to fission
reactors, these situations are relatively minor, given that the half-life of tritium is 12.5
years compared with 2.4 x 107 years for uranium 236, 7.13 x 10% years for uranium 235,
4.5 x 10? years for uranium 236, 24000 years for plutonium 238, and still 6600 years for
plutonium 240 [65].

Moreover, no greenhouse emissions, no other poisonous chemical materials are emitted
into atmosphere by fusion reactions. Only the harmless inert gas helium is a product of
the fusion reaction. Therefore, fusion reaction is attractive with respect to environment.

Fusion energy is thus a sustainable power source with favorable economic, environ-
mental and safety attributes. Fusion occurs naturally at the extremely high pressures
and temperatures which exist at the center of the sun, 15 millions of degrees Celsius. At
the high temperatures experienced in the sun, any gas becomes a plasma, a mixture of
negatively charged electrons and either positively charged atomic nuclei or ions. In order
to reproduce fusion on earth, gases need to be heated to extremely high temperatures
whereby atoms become completely ionized yielding a hot plasma. In fact, the amount
of energy released and the number of thermonuclear fusion reactions in the volume of
plasma depend on the density of particles and their temperature. The reaction gain be-
comes higher than one when the energy released by fusion reactions is larger than the one
invested in the plasma heating and confinement. This is formulated in the Lawson crite-
rion relating the density n, temperature of the plasma and its confinement time 7 [52].
For deuterium-tritium plasma heated to the temperature of 10 keV or 108 K, this criterion
reads:

nt > 10?0 m3s.

This condition can be fulfilled in different ways. A tremendous mass insures through
gravitation forces a very large confinement time in stars. The confinement time is the lead-
ing factor of fusion achievement. On earth two methods are currently actively studied,
both experimentally, theoretically and numerically, to attain a large gain in fusion reac-
tions: Inertial Fusion Confinement, abbreviated ICF, and Magnetic Fusion Confinement,
known briefly as MCF. ICF leads to confine the plasma at extremely high density for a
short time whereas MCF yields to achieve low densities for the relatively long times of
several seconds. Comparison of the confinement times and densities in the two approaches
is given in Table 1. The two ways are the matter of the next two sections.

ICF MCF
Particle density n in cm ™3 10%6 10
Confinement time 7 in s 1071 | 10
Lawson criterion n7 in s em™3 | 10 101°

Table 1: Confinement parameters in ICF and MCF.

II Inertial Confinement Fusion

Inertial Confinement Fusion relies exclusively on mass inertia to hold a fusion plasma in a
small spherical volume for a short time corresponding to the time a sound wave needs to
propagate from the surface to the center [8, 65]. Put simply, during this short time, the
small volume of fuel is bringing to very high density, roughly about thousand times its solid
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density or liquid density, and high temperature by short energetic laser or ion beam pulses.
Two principal schemes of interest are nowadays investigated to achieve ICF. The former,
known as ablative implosive scheme, based on the action-reaction principle, consists in the
irradiation of deuterium-tritium spherical shell by the use of powerful laser beam neatly
set to obtain a symmetric illumination. Under the effect of the laser irradiation, the
outer part of the spherical shell is vaporized, yielding a coronal plasma, which in turn
expands towards the exterior: this is the so-called ablative process. By action-reaction
principle, the coronal plasma expansion pushes the internal part of the shell toward the
center in form of compressible waves. As the imploding material stagnates in the center,
its kinetic energy is converted into internal energy. At this instant, the fuel consists of
a highly compressed shell enclosing a hot spot of igniting fuel in the target center. A
thermonuclear burn starts from the hot spot, travels radially from the target center to the
periphery in the form of a wave, igniting then the whole fuel, which afterwards explodes.
This process constitutes the direct-drive ICF illustrated in Figure 2.

Figure 2: Direct drive of the laser beam to heat and compress the target [2].

An important problem in the implementation of direct-drive approach is the attain-
ment of a high irradiation symmetry and accordingly the symmetry of dynamic plasma
compression. In fact, a dissymetric irradiation of the target could be a seed of Rayleigh-
Taylor-type instabilities that would hinder the efficiency of the fusion operation. To over-
come this situation, another ablative implosive-type approach, known as indirect-drive,
process has been developed and shown in Figure 3. It consists in irradiation of cylindrical
metallic cavity, made of gold or high-Z materials, of few millimeters in diameter and one
centimeter long, the so-called hohlraum, from inside by using many intense laser beams.
The deposited energy in the hohlraum is transformed in X-rays and generates then a
isotropic and uniform illumination of the target inside the cavity [8, 56, 65].

<~\ / X rays from
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Figure 3: Indirect drive of the laser beam to heat and compress the target [3].

Two largest facilities have been constructed to access conditions for ICF: National
Ignition Facility (NIF) at Livermore in California in USA [47], and Laser Mégajoule
(LMJ) at Barp near Bordeaux in France [16]. The NIF is operational since 2009.
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In ablative scheme, the compression and ignition of the fuel are both dependent phases,
and own contradictory conditions to fulfill at the same time. In order to cope this situation,
the fast ignition concept has been developed [8, 56, 65]. The idea is to separate the
two phases. In particular, one starts by compressing the target by using either direct-
drive or indirect-drive, then launches a ultrahigh-power short-pulse laser [62] to burn the
compressed fuel [72]. Figure 4 shows this process for the direct-drive.

Figure 4: Fast ignition for the direct drive method [4].

IIT Magnetic Confinement Fusion

Since plasma particles have high temperature, a contact with a material vessel intended to
contain them will cool the plasma, leading to a possible fail of fusion reactions. Because
plasma particles are charged, their dynamics across magnetic field lines is bounded whereas
they move freely along magnetic field lines. The contact of plasma particles with the vessel
walls due to a transversal movement could be thus avoided while their escape from the
vessel by their helical trajectories along the magnetic field lines would still be plausible.
The idea of MCF approach is to confine the plasma particles in devices with appropriate
magnetic field configuration. There is plentiful magnetic configurations to maintain a hot
plasma in a bounded domain, depending on the magnetic coils arrangement. They can
split into two classes. The first one, known as open-ended confinement, is based on
straight disposition of the magnetic coils. Such as a scheme is unable itself to confine a
plasma since magnetic field lines are not closed, the device is then equipped with a driver
allowing to bring back inside in the machine possible charged particles arriving at its ends.
Open-ended confinement machines are thus MCF trap devices. Magnetic trap mirror [64],
field reversed configuration [37] are for instance open-ended confinement devices.

The second class aim at using closed magnetic field lines to hold the plasma in bounded
domain, thus it is termed toroidal confinement. In this way, magnetic coils are arranged
such that they produce a toroidal field. However, in such a configuration, the magnetic
field strength decreases with radius, which yields a radial velocity component and a drift
of the particles towards the outside. To confine the plasma for a relatively long time, the
field lines have to be twisted in such a manner as to lead to an absence of any radial field
component. Stellarator, spheromak, reversed field pinch, levitated dipole, are examples of
toroidal confinement devices [37].

Tokamak, a toroidal confinement machine, is the major device for MCF approach [19,
38, 50, 79]. The main principal magnetic field is the toroidal field, which is produced by
current external coils as illustrated in Figure 5. Tokamak approach also exploits largely
the fact that the plasma is held inside the device by a balance of the magnetic field force
and the gradient of the plasma pressure. As a consequence of this equilibrium, a poloidal
component of magnetic field is immediately required for the magnetic force. In a tokamak,
the poloidal field is principally generated by the plasma current, this current flowing in

the toroidal direction. These currents and fields are shown in Figure 5.

4
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Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 5: Representation of a tokamak [5].

Moreover, the above equilibrium implies that the plasma pressure p is constrained
to be not larger than a certain amount Byay of the magnetic energy B?/2u9, where the
plasma [S-parameter is given by:

Creating strong magnetic field is technically challenging and cost-intensive, leading to the
[B-parameter to be not too small. As matter of fact, finding confinement configurations
with 8 of a few percent constitutes current active research in MCF.

Controlled nuclear fusion reaction is expected to operate in a tokamak as follows. A
mixture of deuterium and tritium is injected into the vacuum vessel contained in the
tokamak. The mixture is heated externally until ignition is reached. There is three heating
mechanisms: ohmic heating through the plasma resistivity, heating by high-frequency
waves, heating by injection of beams of neutral particles. The two latter mechanisms
could be used at any time of the heating phase whereas the former one is only used in
the initial heating phase of the plasma, and then one of the two latter must take the
relay. At the same time of heating phase, the magnetic field is generated by passing an
electric current through coils wound around the torus. The plasma current produces a
poloidal magnetic field and the two fields combine to produce a magnetic field as displayed
in Figure 5. As soon as the plasma is heated to sufficiently high temperatures, it will
be ignite yielding a-particles and neutrons. The a-particles are stopped in the plasma,
provide additional plasma heating while the fusion mechanism continues running, whereas
the neutrons penetrate the blanket of absorbing material surrounding the torus. If the
confinement were ideal, the fusion operation could go until all fuel is used up.

However, the fusion process in a tokamak faces complex questions at each phase such

5
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as the stability requirement of the device [19, 38, 79], plasma heating, transport including
turbulence and various types of instabilities [37, 38, 79], and technological issues as the
design of coils supplying adequate magnetic fields.

Nevertheless, the quest of fusion energy with tokamak approach receives a great credit
to go forward in this way. The International Thermonuclear Experimental Reac-
tor, known as ITER, currently being built in Cadarache, France, is the largest tokamak
dedicated to fusion energy, as shown in Figure 6. The roles of the ITER facility are to
investigate burning plasma physics in long pulse, high-temperature, deuterium-tritium ex-
periment, and address and solve a number of fusion technology issues that will arrive in a
fusion reactor. The beginning of its operational phase is scheduled for 2025-2030 and the
construction of the demonstration fusion reactor DEMO [80] will follow if ITER is suc-
cessful. Finally, the commercial fusion reactor PROTO will be constructed upon DEMO
results.

Figure 6: Representation of the future ITER tokamak [6].

IV Fusion modeling

Issues on controlled thermonuclear fusion can be basically split into plasma physics and
technological requirements.

Technological issues are dependent of the approach chosen to achieve fusion. ICF techno-
logical demands roughly turned around high powerful laser, high-ion accelerators, targets.
These issues are described in [8, 27, 65] and references there in. MCF technological
requirements concern mainly the design of supraconductor coils magnets intended to gen-
erate high-toroidal magnetic fields, of efficient heating sources. However, ICF and MCF
schemes share the problem regarding material would be used to design the wall receiving
energetic neutrons that escape from ICF target or that MCF device vessel vacuum.

Fusion plasma physics is concerned with the description of charged particle dynam-
ics inside the considered device. There are three basics approaches to plasma physics:
particle theory, kinetic theory, and hydrodynamic theory.

The particle theory is using equations of motion for individual plasma particles, and with
the help simulation codes and appropriate averages the plasma physics is analyzed. This

6
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approach is also called N-body model, where N is assumed to represent the number of
plasma particles. As the fusion plasma owns very large number of particles, as quoted
in previous Sections, the accuracy of the model will require a large N in order simulate
the plasma. Despite the existence of codes dealing with N-body model, kinetic theory
is favored with respect to the particle approach, N-body model becoming thus the base
model of hierarchy ones to derive from it.

Kinetic theory is based on a set equations for distribution functions of the plasma particles
that encodes their dynamics in time, physical and velocities space, together with Maxwell
equations. Kinetic theories can accurately model such a system owning large number of
particles. However, numerical computations of kinetic theories are, in general, resource
consuming both in time and storage space, and are limited in a small computational do-
main of physical /velocities space [44]. Large information yielded by kinetic models are not
often accessible by experiment. Conversely fluid models constructed on velocity moments
provide pertinent plasma parameters on a large time and a large domain [54, 55|, which
fit with experimental data.

In the either hydrodynamic or fluid models the conservation laws of mass, momentum and
energy are coupled to Maxwell equations. One-fluid equations, two-fluid system, MHD
equations [24, 9, 10, 37, 38, 43, 42], two-temperature Euler system [26, 29, 51, 69, 7, 32]
are for instance fluid models.

Plasma modeling enables to study the plasma behavior which translates to three impor-
tant types of transport theory: heat conduction, particles diffusion, and magnetic field
diffusion. It infers that plasma modeling tackles the understanding and controlling of en-
ergy confinement. Analyzing waves contained in systems brought by the modeling gives
ways on choosing frequency waves that will heat the plasma.

V Organization of the manuscript

This work is a combination of plasma physics modeling and numerical analysis. It is
structured in four chapters and a conclusion. The first two deals with modeling whereas
the last two concern numerical analysis. The content is the following.

Chapter 1. In this chapter we recall the kinetic equation of a magnetized plasma and its
corresponding bi-fluid MHD equations. Then, using the non-dimensional scaling of the bi-
fluid MHD equations, we give the assumptions leading to the bi-temperature Euler model
and the ideal and resistive MHD ones. The proposed derivation of the bi-temperature
Euler model is more general than the ones suggested in [26, 37, 43, 51, 7].

Chapter 2. General principles of finite volume method are reviewed in this chapter, both
for structured and non-structured tessellations aimed at approximating the three models
derived previously. Having in the mind future applications to MCF in tokamak approach,
we study the modification of finite volume type method to approximate the solutions of
these models in a toroidal geometry. The scheme we proposed is based on recent works
reported in [21, 18]. However, such as application is not straightforward due to both the
complexity of the models and the unstructured tessellation used to adequately mesh the
toroidal geometry of the torus.

Chapter 3. The numerical strategy set up in Chapter 2 uses a relaxation scheme to
approximate the bi-temperature Euler model. In this chapter we give all steps leading to

7
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the construction of this relaxation scheme. Numerical tests are also proposed to assess the
performance of this scheme. This scheme has been accepted for publication [7].

Chapters 1-3 are gathered in [32] and published as internal report.

Chapter 4. The MHD equations coupled to the Maxwell’s equation which contains the
divergence-free constraint of the magnetic field, has to be maintained by the numerical
approximation. A strategy is designed ensuring that the magnetic field computed by stan-
dard Finite volume approximation will be solenoidal, both for Cartesian and cylindrical
coordinates. Various numerical tests on well-known standard problems in MHD in 2D-
geometry are performed in different geometries in order to validate the proposed numerical
method.

Conclusion. Finally, our conclusions are given in the last chapter. Forthcoming works
are also proposed.



Introduction

La question de I’énergie reste importante et centrale pour I’humanité. L’énergie entre
largement dans tous les grands domaines des activités humaines : la production de nourri-
ture, le chauffage et I’éclairage des habitations, les transports privés et publics, les usines
industrielles de production, les communications, la sécurité de I’Etat. Le niveau de vie et
la consommation d’énergie sont intimement liées si bien que la qualité de vie est corrélée
a un prix raisonnable de I'énergie consommeée.

L’augmentation des besoins en énergie ainsi la quantité tres limitée des ressources
énergétiques accessibles sur Terre s’empireront probablement dans les années a venir.
Cette situation est amplifiée par les normes environnementales exigées a 1’ensemble des
énergies disponibles. Les sources d’énergie a moindre effet de serre et quantité de déchets,
et a un cout de production relativement faible sont alors explorées. Parmi les différentes
sources d’énergie envisageables [37], le charbon, le pétrole, le gaz naturel, I’énergie éolienne,
I’énergie solaire, 1’énergie hydroélectrique, ainsi que la fission nucléaire, la fusion ther-
monucléaire controlée satisferait les criteres précédents.

I La fusion thermonucléaire controlée

La fusion est une réaction thermonucléaire qui consiste a mettre ensemble deux atomes
légers pour obtenir un atome plus lourd et des neutrons rapides transportant une grande
quantité d’énergie, comme le montre la figure 1.

Deuterium Hélium

(59\ Fusion - &9
DS

Tritium Neutron

Figure 1: La réaction de fusion [1].

C’est de la réaction de fusion de leurs composants chimiques que le soleil et les étoiles
s’auto-entretiennent. Dans les futurs réacteurs de fusion envisagés sur Terre, ’énergie sera
obtenue par la fusion de deux isotopes de I’hydrogene, le deuterium et le tritium. Les
réserves de ces combustibles sont relativement illimitées. Le deuterium est tres abondant
dans les océans. Il y a un atome de deuterium pour 6700 atomes d’hydrogene [?]. 1l
faudrait plus de 2 millions d’années pour épuiser tout le deuterium nécessaire a la fusion

9



Introduction

si on garde le niveau actuel de consommation d’énergie. Le deuterium peut étre extrait
aisément de l’eau des océans a un cout minimum. Au contraire, le tritium n’existe pas
naturellement sur Terre, il peut étre obtenu directement a partir de la réaction du lithium
et des neutrons du réacteur de fusion. Le lithium est relativement abondant sur Terre
et ses ressources sont estimées suffisantes pour les 20000 prochaines années. Néanmoins,
la fusion a deux inconvénients : le tritium est radioactif et le lithium est une substance
dangereuse. Cependant, ces deux situations sont relativement mineures en comparaison
aux données des réacteurs de fission, étant donné que la demi-vie du tritium est de 12,5
ans alors qu’elle est de 2,4 x 107 pour I'uranium 234, 7,13 x 10® ans pour 'uranium 235,
4,5 x 10° pour I'uranium 236, 24000 pour le plutonium 238, et de 6600 ans pour le pluto-
nium 240 [65].

De plus, il n’y a pas d’émission de gaz a effet de serre ainsi que d’autres substances
chimiques nocives dans ’atmosphere par la fusion thermonucléaire. Seul I’hélium, gaz
non nocif, est rejeté par la fusion. Ainsi, la fusion est une source d’énergie attrayante
respectant I’environnement.

La fusion est donc une source d’énergie viable ayant d’avantageuses qualités économiques,
environnementales et sécuritaires. La fusion se produit naturellement & des pressions et
températures extrémement élevées qui existent au centre du soleil : 15 millions de degrés
Celsius. A ces hautes températures présentes dans le soleil, tout gaz devient un plasma,
un mélange d’électrons chargés négativement et de nucléons ou encore d’ions chargés
positivement. Afin de reproduire la fusion sur Terre, les gaz doivent étre chauffés a des
températures extrémes auxquelles les atomes deviennent completement ionisés engendrant
ainsi un plasma chaud. En fait, la quantité d’énergie libérée et le nombre de réactions de fu-
sion thermonucléaire dépendent de la densité de particules ainsi que de leurs températures.
Le rendement de la réaction dépasse 1 lorsque I’énergie produite par la fusion est supérieure
a celle fournie pour confiner le plasma. Ceci est formulé par le critere de Lawson reliant
la densité n, la température T' au temps de confinement 7 [52]. Pour un plasma composé
de deuterium et de tritium chauffé & 10 keV soit 10% K, ce critére donne :

nr > 102 m3s.

Cette condition peut étre satisfaite de différentes manieres. Une masse énorme assure sous
I’action de forces gravitationnelles un long temps de confinement. Ce temps est un facteur
majeur pour obtenir des réactions de fusion. Actuellement, il existe deux méthodes faisant
I’'objet de recherche active a la fois expérimentale, théorique, et numérique pour atteindre
des rendements suffisamment grands pour la fusion : la Fusion par Confinement Inertiel,
abrégée FCI, et la Fusion par Confinement Magnétique appelée dénommée FCM. La FCI
confine des plasmas extrémement denses sur des temps tres court alors que la FCM se
propose d’obtenir la fusion avec des densités faibles sur des longs temps de confinement.
La comparaison des temps de confinement et des densités de ces deux approches est donnée
par le tableau 2.

FCI FCM
Densité de particules n in em™> | 10%° 10

Temps de confinement 7 in s 10~ | 10

Critere de Lawson n7 in s cm™3 | 10 10t

Table 2: Parametres de confinement de la FCI et de la FCM.
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Ces deux méthodes sont discutées dans les deux parties suivantes.

IT Fusion par Confinement Inertiel

La fusion par confinement inertiel se base exclusivement sur l'inertie des masses pour
maintenir les plasmas de fusion dans un petit volume sphérique pour un temps court
correspondant au temps nécessaire pour qu’une onde sonore se propage de la surface au
centre [8, 65]. Pour étre plus précis, pendant ce petit laps de temps, le volume de com-
bustible est amené a une tres grande densité environ mille fois supérieure & sa densité
solide ou liquide et a de hautes températures par des rayons lasers énergétiques a implu-
sions courtes ou de puissants faisceaux d’ions. Actuellement, deux méthodes sont étudiées
pour réaliser la FCI. La premiere connue sous le nom de schéma d’implosion ablatif est
basé sur le principe d’action-réaction et consiste a irradier un cible sphérique composé
de deuterium et de tritium par des rayons lasers de maniere a éclairer la cible de fagon
symétrique. Sous l'effet de I'irradiation, la coquille extérieure de la cible se vaporise créant
ainsi un plasma de couronne, qui se détend vers I’extérieur : ce processus est dit ablatif.
Grace au principe d’action-réaction, la détente du plasma de couronne pousse la par-
tie interne de la cible vers le centre sous la forme d’une onde de compression. Comme
I'implosion stagne au centre, son énergie cinétique est se transforme en énergie interne.
A cet instant, le combustible est constitué d’une coquille fortement comprimée enfermant
un point chaud de combustible allumé au centre de la cible. Un réaction thermonucléaire
se déclenche au centre du point chaud, se déplace radialement du centre vers la périphérie
de la cible, allume le reste du combustible qui ensuite explose. Ce processus est la FCI
par Pattaque directe, et illustré par la figure 2.

Figure 2: Attaque directe d’un laser pour chauffer et comprimer la cible [2].

Un probleme important dans I'implémentation de 'attaque directe est d’atteindre une
haute irradiation symétrique et donc une compression symétrique du plasma. En fait,
une dissymétrie de l'irradiation de la cible serait la source d’instabilités du type Rayleigh-
Taylor, qui diminueraient 'efficacité de la fusion. Afin de surmonter cette situation, une
méthode du type ablation-implosion, appelée attaque indirecte a été développée, elle est
montrée sur la figure 3. 1l s’agit de l'irradiation par I'intérieur via de nombreux faisceaux
laser intenses d’une cavité métallique et cylindrique, faite d’or ou de matériaux a grand
numéro atomique 7, de diametre de quelques millimetres et long d’un centimetre appelé
hohlraum. L’énergie déposée dans I'hohlraum est convertie en rayons X et génere alors
une irradiation isentropique et uniforme de la cible a l'intérieur de la cavité [8, 56, 65].
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Figure 3: Attaque indirecte d’un laser pour chauffer et comprimer la cible [3].

Deux grandes installations ont été construites pour accéder aux conditions de la FCI :
le National Ignition Facility (NIF) a Livermore en Californie aux USA [47], et le Laser
MégaJoule (LMJ) au Barp prés de Bordeaux en France [16]. Le NIF est opérationnel
depuis 2009.

Dans les schémas ablatifs, la compression et 'allumage du combustible sont deux
phases se déroulant simultanément et possédant pourtant des conditions contradictoires
a satisfaire en méme temps. Afin de faire face a cette situation, le concept d’allumage
rapide a été développé [8, 56, 65]. L’idée est de séparer les deux phases. En particulier,
la premiere phase commence par la compression de la cible par I'utilisation de 'attaque
directe ou indirecte puis de tirer de tres courtes impulsions lasers tres intenses [62] pour
allumer le combustible comprimé [72]. La figure 4 illustre I’allumage rapide par I'attaque
directe.

b.

C.

Figure 4: Allumage rapide pour 'attaque directe [4].

III La Fusion par Confinement Magnétique

Puisque les particules du plasma ont des hautes températures, un contact avec d’autres
matériaux refroidirait le plasma, conduisant & un possible arrét de la réaction de fusion.
Comme les particules du plasma sont chargées, leur dynamique le long des lignes d’un
champ magnétique est bornée, cependant elles déplacent librement le long de ces lignes de
champ. Le contact entre les particules du plasma avec les parois diit aux mouvements trans-
verses pourrait étre donc évité tandis que leurs trajectoires hélicoidales le long des lignes de
champ serait toujours possible. L’idée de I’approche FCM est de confiner les particules du
plasma dans des machines équipées de configurations de champs magnétiques appropriées.
Il existe une multitude de configurations de champs magnétiques pour maintenir le plasma
chaud dans un domaine borné, dépendant de la position des bobines magnétiques. Elles
peuvent se diviser en deux catégories. La premiere, appelée en anglais open-ended con-
finement, est basée sur une disposition droite des bobines magnétiques. De tels schémas
ne sont pas capable de confiner la plasma puisque les lignes de champ sont ouvertes, la
machine est alors équipée d’un mécanisme permettant d’y ramener les particules chargées
lorsqu’elles arrivent aux extrémités de la machine. Les machines open-ended confinement
sont donc des machines-pieges de la FCM. Les miroirs & pieges magnétiques [64], les con-
figurations & renversement du champ [37] sont des exemples de machines open-ended
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confinement.

La seconde catégorie de configuration se propose d’utiliser des lignes de champ fermées
pour maintenir le plasma dans un domaine borné, d’ou la dénomination de confinement
toroidal. Dans ce schéma, les bobines magnétiques sont disposées de telle fagon qu’elles
produisent un champ toroidal. Cependant, pour une telle configuration, l'intensité du
champ magnétique décroit avec le rayon, entrainant ainsi une génération de la composante
radiale de la vitesse et de la dérive des particules vers 'extérieur. Pour confiner le plasma
sur un temps relativement long, les lignes de champ s’incurveraient de maniere & maintenir
une abscence de champ radial. Parmi les machines a confinement toroidal, on peut citer
le stellarator, le spheromak, le pinch & champ renversé, le levitated dipole [37].

Le tokamak, un autre systéme a confinement toroidal, est la principale machine pour le
schéma de la FCM [19, 38, 50, 79]. Le champ magnétique principal est toroidal, produit par
des bobines extérieures comme le montre la figure 5. L’approche des tokamaks exploitent
largement le fait que le plasma est maintenu a l'intérieur de la machine par 1’équilibre entre
la force du champ magnétique et le gradient de pression du plasma. Dans un tokamak, le
champ poloidal est principalement généré par le courant du plasma, ce courant se déplacant
dans la direction toroidale. Ces courants et champs sont également illustrés sur la figure 5.

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

= \( _147

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 5: Représentation d’un tokamak [5].

De plus, I’équilibre cité précédemment implique que la pression du plasma p est con-

B2
trainte a ne pas dépasser une certaine fraction SBp.x de I’énergie magnétique 2 ou le
Ho
parametre 5 du plasma est donné par :
p
b=g
240

Créer un champ magnétique intense est un défi technique et trés couteux, menant a un
parametre 3 pas trop petit. En réalité, trouver une configuration du confinement avec
un S de 'ordre d’un relativement faible pourcentage constitue un sujet de recherche actif
pour la FCM.
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Introduction

La réaction du fusion nucléaire controlée se réaliserait dans un tokamak suivant la
procédure suivante. Un mélange de deuterium-tritium est injecté dans la chambre vide
contenu dans le tokamak. Le mélange est chauffé par I’extérieur jusqu’a ce que l'allumage
soit atteint. Il existe trois mécanismes pour le chauffage : le chauffage ohmique grace
a la résistivité du plasma, le chauffage par des ondes hautes fréquences, et le chauffage
par l'injection de faisceaux de particules neutres. Les deux derniers mécanismes pour-
raient étre utilisés a tout stade de la phase de chauffage alors que le premier s’utiliserait
uniquement pour 'initialisation de cette phase et ensuite un des deux autres mécanismes
prendrait le relais. Au méme moment de la phase de chauffage, le champ magnétique est
généré par le passage d’un courant électrique par les bobines placées le long du tore. Le
courant du plasma produit un champ magnétique poloidal et les deux champs se combinent
pour donner naissance a un champ magnétique comme celui illustré sur la figure 5. Des
que le plasma est chauffé a des températures suffisamment élevées, la réaction de fusion
se déclenche, libérant ainsi des particules « et des neutrons. Les particules a sont piegées
dans le plasma, fournissant alors un chauffage supplémentaire pendant que la réaction
de fusion continue de se dérouler, tandis que les neutrons pénétrent dans la couche de
matériau entourant le tore. Si le confinement est idéal alors la fusion continuera aussi
longtemps qu’il y aura du combustible.

Cependant, chaque phase du processus de fusion dans un tokamak est sujette a des
situations complexes, comme par exemple la stabilité nécessaire & la machine [19, 38, 79],
le chauffage du plasma, le transport incluant la turbulence et une variété d’instabilités
du plasma [37, 38, 79], ainsi qu’aux problémes techniques comme la forme des bobines
magnétiques fournissant un champ magnétique adéquat.

Néanmoins, la quéte de I’énergie de fusion par I'approche des tokamaks connait d’importants
engouements. L'International Thermonuclear Experimental Reactor, connue sous
le nom d’ITER, en cours de construction a Cadarache en France est le plus grand toka-
mak dédié a la fusion et schématisé sur la figure 6. Les roles d’ITER sont d’explorer tous
les champs de connaissances de la physique des plasmas chauds pour de longues impul-
sions, a de hautes températures, sur les expériences de deuterium-tritium, et de recenser
et de résoudre les problemes techniques qui arriveraient dans les réacteurs de fusion. Le
début de la phase opérationnelle est programmé pour 2025-2030 et la construction du
réacteur de démonstration DEMO [80] suivra si le projet ITER obtient des résultats
satisfaisants. Finalement, le réacteur commercial PROTO sera construit a partir des
résultats de DEMO.
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Figure 6: Représentation du futur tokamak ITER [6].

IV  Modélisation de la fusion

Les problémes liés a la fusion thermonucléaire controlée peuvent étre classées en deux
catégories : la physique des plasmas et les besoins technologiques.

Les enjeux technologiques dépendent de ’approche choisie pour atteindre la fusion.
Les besoins technologiques de la FCI sont essentiellement liés & la puissance du laser,
aux grands accélérateurs d’ions, et des cibles. Ces problemes sont décrits et référencés
dans [8, 27, 65]. Les technologies nécessaires a la FCM concernent principalement la pro-
duction de bobines magnétiques super-conductrices dédiés génération de champs toroidaux
intenses, et a la conception de sources efficaces de chauffage. Cependant, la FCI et la FCM
partagent les mémes problématiques sur les matériaux a utiliser pour concevoir les parois
des murs supportant des neutrons énergétiques qui s’échapperaient de la cible de la FCI
et de la chambre a vide de la machine FCM.

La Physique des Plasmas de fusion se consacre a la description de la dynamique des
particules chargées a l'intérieur de la machine considérée. Il y a trois approches classiques
pour décrire la comportement des particules des plasmas : la théorie particulaire, la
théorie cinétique, et la théorie hydrodynamique.

La théorie particulaire s’intéresse aux équations de mouvement de chaque particule
individuelle du plasma, et avec ’aide de codes de simulation et des moyennes appropriés,
la physique des plasmas est analysée. Cette théorie est également appelée modele a N
corps ou N est supposé représenter le nombre de particules dans le plasma. Comme un
plasma de fusion possede un tres grand nombre de particules, la précision de ce modele
demande un N suffisamment grand pour simuler le plasma. Malgré I'existence de codes
traitant le modele a N corps, la théorie cinétique est largement préféré a celle du modele
a N corps. Le modele & N corps devient alors dans ce cadre le modele de base a partir
duquel sera dérivée une hierarchie de modeles.
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Introduction

La théorie cinétique repose sur un ensemble d’équations sur les fonctions de distribu-
tions des particules du plasma, qui encodent leur dynamique au cours du temps, dans
I’espace physique et celui de vitesses, et couplé aux équations de Maxwell. Les théories
cinétiques modélisent avec une notable précision un systéme possédant un grand nombre
de particules. Cependant, les codes cinétiques requierent en général de grandes ressources
a la fois pour 'espace stockage et le temps de calcul, et ils sont limités aux petits do-
maines de calcul de ’espace des phases. Les modeles cinétiques donnent un grand nombre
d’informations qui ne sont pas toujours accessibles au cours des expériences. Inverse-
ment, les modeles fluides, obtenus comme moments en vitesses des fonctions de distri-
bution des particules, fournissent des parameétres pertinents du plasma sur de grandes
échelles de temps et grands domaines de calculs [54, 55] qui correspondent aux résultats
des expériences.

Dans les modeles hydrodynamiques ou fluides, les lois de conservation de la masse, de la
quantité de mouvement, et d’énergie sont couplés aux équations de Maxwell. Les équations
mono-fluides, les systémes bi-fluides, les équations de la MHD [24, 9, 10, 37, 38, 43, 42],
les équations d’Euler bi-températures [26, 29, 51, 69, 7, 32] sont des exemples de modeles
fluides.

La modélisation des plasmas permet d’étudier le comportement du plasma qui traduit
les trois grandes théories de transport : la chaleur par conduction, la diffusion de partic-
ules, et la diffusion du champ magnétique. Il en résulte que la modélisation des plasmas
s'intéresse a la compréhension et au controle de ’énergie confinée. L’analyse des ondes
des systemes obtenus grace a la modélisation permet également un choix raisonné des
fréquences auxquelles le plasma serait chauffé.

V Organisation du manuscrit

Ce travail est une combinaison de la modélisation de la Physique des Plasmas, et de
I’Analyse Numérique. Il est composé de quatre chapitres et d’une conclusion. Les deux
premiers traitent de la modélisation alors que les deux derniers concernent 1’Analyse
Numérique. Le contenu est le suivant.

Chapitre 1. Dans ce chapitre, on rappelle la théorie cinétique d’un plasma magnétisé
et des équations de la MHD bi-fluides correspondants. Ensuite, en adimensionnant les
équations de la MHD bi-fluide, nous donnons des hypotheéses conduisant aux équations
d’Euler bi-températures, et aux équations de la MHD idéale et résistive. La dérivation
proposée pour les équations d’Euler bi-températures est plus générale que celle suggérées
dans [26, 37, 43, 51, 7].

Chapitre 2. Les principes de la méthode volumes finis sont revus dans ce chapitre a
la fois pour des maillages structurés et non-structurés. En gardant a l’esprit de futures
applications a la FCM pour I'approche des tokamaks, nous avons étudié les modifications
de la méthode volumes finis pour approcher les solutions de ces modeles en géométrie
toroidale. Les schémas que nous avons proposés se basent sur le travail récent rapporté
dans [21, 18]. Cependant, de telles applications ne sont pas directes tant par la complexité
des modeles que par 'utilisation de maillages non-structurés afin de décrire correctement
la géométrie toroidale du tore.

Chapitre 3. La stratégie numérique mise en place dans le chapitre 2 utilise un schéma
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de relaxation pour approcher numériquement le modele d’Euler bi-températures. Dans
ce chapitre, nous donnons toutes les étapes permettant de construire ce schéma de relax-
ation. Des tests numériques sont alors proposés pour éprouver la précision de ce schéma.
Ce chapitre a été accepté pour publication [7].

Les chapitres 1-3 sont rassemblés dans [32] sous la forme d’un rapport interne.

Chapitre 4. Les équations de la MHD qui sont couplés aux équations de Maxwell con-
tiennent la contrainte de divergence nulle du champ magnétique qui doit étre maintenue
tout au long de la simulation numérique. Une stratégie est construite permettant de cal-
culer le champ magnétique avec des méthodes volumes finis a la fois pour les coordonnées
cartésiennes et cylindriques. Différents cas-tests standards de la MHD sont proposés pour
des géométries 2D afin de valider la méthode proposée.

Conclusion. Enfin, nos conclusions sont données dans ce dernier chapitre. Des perspec-
tives & nos travaux sont également proposés.
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Résumé

La simulation numérique est de plus en plus présente dans la plupart des domaines sci-
entifiques. Cette technique consiste a résoudre des modeles mathématiques décrivant
différents phénomenes physiques. Dans cette thése, on s’intéressera a la mise en place de
schémas numériques pour résoudre trois systemes d’équations différents : les équations
d’Euler bi-températures, et les équations de la MHD résistive et idéale.

Le chapitre 1 se concentre sur ’établissement de ces trois modeles fluides. Pour cela,
on repart des équations de Boltzmann qui décrit le comportement des ions et des électrons
a I’échelle microscopique :

Oufoct v Vfa+ = (B4 x B) - Vufo = Co + Cap
(0%
La fonction f, est appelée fonction de distribution, et elle décrit le comportement de
I’espece o = e, i en fonction du temps, de la physique, et de 'espace des vitesses. Cette
équation prend aussi en compte les interactions au sein d’une méme espece avec I’opérateur
de collision C, , ainsi que celles entre les deux especes avec 'opérateur de collision C, g.
Dans les modeles cinétiques, les vitesses sont notées v alors que pour les modeles fluides
elles seront appelées u.
En prenant les différents moments de vitesse de cette équation, on obtient des lois de
conservation pour les densités, les vitesses, et les énergies de chacune des deux especes que
I’on couple aux quatre équations de Maxwell. On a alors le modele de la MHD bi-fluide.
Apres avoir reformulé le systeme d’équation dans le régime quasi-neutre, on I’adimen-
sionne faisant ainsi apparaitre certains parametres tels que le parametre plasma 3, les
longueurs inertielles des ions et des électrons 5;}, et le nombre de Reynolds magnétique R,,.
Suivant les phénomenes physiques que 1’on cherche a observer, différentes limites du modele
bi-fluide peuvent étre données. Dans cette thése, nous nous intéresserons a trois limites
de ce modele.
La premiére limite donnée correspond a des plasmas dans lesquels les effets hydrody-
namiques sont bien plus important que les effets magnétiques ce qui correspond a supposer
que le parametre plasma [ est trés grand. Le domaine d’application de cette limite est
celui de la FCI. Le modele obtenu est alors celui d’Euler bi-températures :

o+ V- (pu) = 0,
Oy(pu) + V- (pu@u) +V(pe +p;) = 0,
O+ - ((E + pe +pi) -0
9t (peSe) + V - (peSen) = pz_l('Y - 1)”2(E - Te).

Il s’agit d’'un modele mono-fluide ou celui est considéré comme un mélange d’ions et
d’électrons que l'on distingue uniquement par leur température. En effet, I’équation
sur l'entropie électronique fait apparaitre des termes d’échange thermique entre les deux
especes.

Les deux autres modeles étudiés sont deux modeles MHD mono-fluide ot on ne différencie
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plus les ions des électrons. On se place maintenant dans le domaine de la FCM en sup-
posant que les longueurs inertielles des ions et des électrons sont tres petites. Pour le
premier de ces deux modeles MHD, on ajoute 'hypotheése que le nombre de Reynolds
magnétique est borné et on obtient ainsi les équations de la MHD résistive :

Op+ V- (pu) = 0,

Oh(pu)+ V- -[puru—-BxB|+Vpr = 0,

0l +V - [(ér+pr)u— (u-B)B] = nV-(Bx(VxB)),
0B+ V- -[B®u—-u® B] = nV’B.

Pour le second modele, le plasma est vu comme un conducteur parfait ce qui se traduit
par 'hypothese que le nombre de Reynolds magnétique est tres grand. Ce modele est alors
appelé le modele de la MHD idéale :

Op+ V- (pu) =
O(pu) + V- [pu@u—B®B|+ Vpr
Wér +V - [(Er +pr)u— (u-B)B|

0B+ V- -[B®u—u® B] =

I
cooo

Afin de résoudre numériquement les trois systémes d’équations précédents, on s’intéresse,
dans le chapitre 2, a la modélisation géométrique des domaines de calculs afin de pouvoir
écrire des méthodes type volumes finis.

Pour cela, on considere un systeme de lois de conservation écrit sous la forme

U+ V- F(U) =0.

On maille ensuite le domaine de calculs. Afin d’approcher la solution de la loi de conserva-
tion, on peut soit 'approximer au centre de chaque élément du maillage, c’est I’approche
cell-centered, soit I’approcher en chaque point du maillage avec I’approche vertex-centered.
Ici, les calculs seront faits pour ces deux approches avec différents types de maillages pour
des géométries cartésiennes.

Dans cette these, on garde a ’esprit 'application aux tokamaks. Sa géométrie est basée sur
celle d’un tore que ’on voit comme une section 2D en rotation autour de 'axe Z. Ainsi, les
coordonnées cylindriques semblent bien plus adaptées que les coordonnées cartésiennes. 11
nous faut donc écrire des méthodes volumes finis pour ce type de géométrie pour les deux
approches citées précédemment. Or, cela n’est pas si simple. En effet, pour des variables
vectorielles lorsque que ’on projette leur équation de conservation sur la base cylindrique,
des termes sources, dus a la dérivation de la base cylindrique, apparaissent. Ces termes
peuvent étre pris en compte de différentes manieres.

L’une d’elles serait de manipuler les équations afin de supprimer autant que possible les
termes sources dans les équations. Ce choix sera appliqué aux équations de la MHD idéale
pour l'approche cell-centered.

La seconde serait de reprendre la définition originale de la divergence pour cette base :

1
V-FU)= Eak(RF(U) -e"),
en utilisant la convention d’Einstein pour la somme. Ainsi, la formulation forte des
équations conservatives peut étre gardée. On présentera ce choix pour I’approche vertez-

centered pour la géométrie toroidale 3D. Pour cette modélisation 3D, on se basera sur le
maillage 2D d’une section de tore que ’on mettra en rotation autour de 'axe Z définissant

20



Résumé

alors des éléments 3D.
De maniere générale, pour les deux approches décrites, la solution approchée au temps
t"*1 en une cellule de controle §; peut s’écrire sous la forme suivante :

n n At n n
Ul = U T > F(UP, U7, ng;) 091,
JEV()

ou V(i) est 'ensemble des voisins de i et F'(U", U}, n;;) est le flux numérique. Ces derniers
seront calculés avec des flux utilisant des solveurs de Riemann dans les chapitres 3 et 4.

Intéressons-nous tout d’abord & la construction d’un schéma numérique pour résoudre
les équations d’Euler bi-températures. Pour ce faire, on se basera sur les méthodes des
schémas de relaxation pour l’équation d’Euler. Cela consiste a remplacer les pressions
électroniques et ioniques par des variables dite de relaxation. Il en résulte le systeme
relaxé suivant

( Op+ V- (pu) = 0,
O(pu)+V-(pu®@u)+V(re+m) = 0,
HE+V - [(8 + 7re + ;) ul = 0,
e(pe e> V- (peSen) = (y=D)pl (T - T)
O (pme [(pﬂe + a’c.) u] = v(pe — Te),
8t(p7rz [ pTi +a Cz) ] = V(pi - 7Ti)7

( Oi(pa) + V - (pau) = 0.

Ce systeme est mis sous la forme
U+ V-FU)=S,),

que 'on résout en deux étapes. Tout d’abord, avec une méthode volumes finis vertez-
centered ou les flux numériques sont obtenus par la résolution exacte du probleme de
Riemann aux interfaces, on calcule la solution approchée du systeme

oU+V-FU)=0.
Ensuite, on prend la limite ¥ — 0 et on résout le systeme
U = S,(U).
Ce qui revient a résoudre pour les variables de relaxation et les températures

atTe = Vei(Ti_Te)a

oT; = _Vie(ﬂ - T8)7
Te = DPe,
Uy = Di-

En pratique, a chaque fin de pas de temps, on calcule la solution exacte des équations
différentielles couplées des températures électroniques et ioniques. Puis, les variables de
relaxation sont recalculées avec les nouvelles pressions du systeme a ’aide des lois d’états.
Ce schéma sera testé en géométrie cartésienne et toroidale. Les résultats seront alors dis-
cutés.

Ré-intéressons-nous maintenant aux équations de la MHD idéale et résistive. Rap-
pelons aussi que ces équations sont couplées aux équations de Maxwell parmi lesquelles on
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trouve la contrainte de divergence nulle du champs magnétique qu’il faut maintenir tout
au long de la simulation. Il a été montré qu’en général dans les simulations numériques
dans les cas 2D et 3D, on a

0, (V - B) # 0.

C’est pour cela que dans le chapitre 4, on s’intéresse a la construction d’'un schéma
numérique pour résoudre les équations de la MHD idéale et résistive tout en conservant
V -B = 0 au cours du temps.
Afin de maintenir la contrainte de divergence nulle, le champs magnétique peut s’écrire
sous la forme

B =Vax Vg,

ol les grandeurs « et 3 sont appelées potentiels d’Euler. Ici, ces schémas seront présentés
uniquement pour des géométries 2D cartésiennes et cylindriques en supposant 1’invariance
par translation dz- = 0. Le champs magnétique peut alors se réécrire sous la forme :

B =B.,e, + V¢ X e,,

ou 9 est un potentiel d’Euler. Ainsi avec cette expression, on assure que le champs
magnétique est a divergence nulle. La méthode proposée dans un premier temps pour les
équations de la MHD idéale est elle aussi basé sur celle des schémas de relaxation. En
effet, cette fois-ci le champs magnétique jouera le role de variable de relaxation, et on
ajoutera au systeme initiale I’équation du potentiel ). Le nouveau systeme considéré est
alors
Op+ V- (pu) =
O(pu) + V- (pu@u—-B®B)+ Vpr =
0ér+ V- [(&r —I—pT) u-— (u . B)B] =
0B+ V- -[B®u—u® B] = 0,
9 (py) +V - (pypu) = 0

Durant une étape de transport, on appliquera les méthodes volumes finis en approche cell-
centered pour résoudre ce systeme, les flux numériques seront calculés avec soit un flux
de Rusanov, soit un flux type HLL, soit un flux HLLD. Enfin, on projettera le gradient
de 3 sur le champs magnétique afin de le ré-évaluer correctement et de maintenir la
contrainte V-B = 0. Les dérivés du potentiel seront approchées avec des différences finies
centrées d’ordre 2.

Pour les équations de la MHD résistive, des termes sources viennent s’ajouter dans les
équations de I’énergie totale, de Faraday, et du potentiel 1. Ainsi, le nouveau systeme a
résoudre est

coc oo

Op+ V- (pu) = 0,

O(pu) + V- -(pueu—-BB)+Vpr = 0,
8t5T+V~[(5T+pT)u—(u'B)B] = T)V-[BX(VXB)},
dB+V-B®u—u®B]| = nV?B,

O(p) + V- (pypu) = MV

La méthode numérique présentée est adaptée de celle pour la MHD idéale. En effet, une
étape intermédiaire est ajoutée pour traiter les termes résistifs. Pour ce faire, a la place
de traiter les variables conservatives, on réécrira le systeme a résoudre pour les variables
physiques :

atp = 0,

(9tu = O,

Op = (y=1n[(VB.)* + (V*)?],
at-BZ = V2Bza

oy = V.
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On remarque que seule la composante B, du champs magnétique apparait dans ce systeme.
En effet, comme le potentiel ¢ sera projeté sur le champs magnétique, il est donc inutile
de résoudre les termes résistifs des deux autres composantes du champs magnétiques.
Le systeme précédent sera résolue de maniere implicite a I'aide des méthodes de type
différences finies a 'ordre 2 ainsi qu’a 'ordre 4.

Les deux schémas précédents seront appelés schéma avec projection en opposition au
schéma sans projection dans lesquels la projection du potentiels ¢ ne sera pas appliquée
et cette derniere variable sera considérée comme indépendante du champs magnétique.
Ces deux schémas seront ensuite testés ainsi que comparés avec les résultats de la littérature.
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Chapter 1

Fluid models

In this chapter, we consider a charged plasma composed of electrons and one species of
ions. The physics linked to such a plasma can be described at different scales: microscopic,
macroscopic, or mezoscopic. First, we present the kinetic model describing the evolution of
particles of each species in the phase space. Then, this model is derived to obtain a bi-fluid
MHD model. Finally, in the two last Sections, we obtain all the different models studied
in this thesis in Chapters 3 and 4 under some assumptions and give some mathematical
properties of those resulting systems.

I Plasma modeling

In this Section, we present the kinetic model leading to the bi-fluid MHD equations.
First, we present the kinetic model for two species: the electrons denoted e, and the ions
denoted i. Then, we give the definitions of some macroscopic quantities. Those definitions
are then used to derive the kinetic equations leading to the bi-fluid macroscopic equations.
Finally, the Maxwell equations are added to the bi-fluid ones in order to obtain the bi-fluid
MHD equations.

I.1 Kinetic model

The plasma is composed of electrons and ions submitted to an electric field E € R? and to
a magnetic field B € R3. The kinetic model describes at the microscopic scale the behavior
of the particles in the plasma [24]. To each species a = e, 1, is associated a distribution
function f,. This function depends on the time ¢ € R, on the position x € R3, and on
the velocity v € R3. The distribution function is solution of the Boltzmann equation

8tf0< +v- vfa + %(E + v X B) ° vvfoc - Coz,a + Ca,ﬁ7 (Ck,ﬁ) = <67i)7 (2‘76)7 (11)

(0%
where C,, o represents the collisions between « particles, and C,, g represents the collisions
between « particles and [ particles. The operator V, is the gradient operator in the
velocity space. The Lorentz force applied to the plasma is defined by
aq = 2 (E+vxB),
Me

where ¢, is the charge associated to the species «, and m,, is its mass.

The minimal required properties that collision operators must fulfill are to conserve
the mass per species, the total momentum, and the total energy. Hence, we have

maCapdv =0, a=e,i, B=e,i, (1.2)
R3
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Chapter 1. Fluid models

mavCqy gdv —I—/ mgvCgodv =0, a=e,i, B =e,i, (1.3)
R3 R3
1 1
§mav20a7gdv +/ §m5v2C’57adv =0, a=e,i, §=e¢,i. (1.4)
R3 R3

The relations (1.3) and (1.4) show that the collision operator C,, also conserves the
momentum and the energy of each species

MaVCa,adv =0, a =e,1,
R3

§mav2(§’a’adv =0, a=e,i.
R3

1.2 Macroscopic quantities

The macroscopic quantities are obtained with the extraction of the different moments of
the distribution function. For example, the density n,, the velocity u,, and the total
energy &, of the species a = e, 7 are respectively given by the zeroth, the first, and the
second moments of f,:

Ng = / fadv, (1.5)
R3
1
u, = — v fodv, (1.6)
Na JR3
1 3 1
Eoa = —maV2 fadv = “nokpTy + fpaug[, (1.7)
s 2 2 2

where po = NaMa, Ty is defined as the temperature of the species, and kg = 1.3806 x
10~23J. K~ is the Boltzmann constant.
We also introduce the velocity of the mixture and the temperature of the mixture with

u = Pelle T Pt i piUi, (1.8)
p
3 1 3
JksT = 3 |5palul — ) + SnakoTs) .
a=e,i
where n = ne +n; and p = pe + p;-
The total charge and the current are defined by
p= / Gefedv + / i fidv = nege + nigi,
R3 R3
3= [ avtave [ avhiv =+ g (1.9
R R

I.3 Collision operators

There are a great number of collision operators. In this model, we limit ourselves to BGK
type operators [17]. Then, the two collision operators are written in the form

1
Ca,oc = E(Ma_foc)a
Cop = — (Ma— 1)
a,f = Tag « a) s
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I. Plasma modeling

1
where — is the frequency of collision between particles of the same species . The
Ta

1 1
frequency of electron/ion collisions —, the frequency of ion/electron collisions is —.
Tei Tie

The functions M, and M, are two Maxwellian distributions defined in [7] by

B Ney (Vv —ug)?
Ma(foz) — (27Tk7BTa/ma)3/2 €xXp <_Mm> )

_ N Na _ﬂ
Ma(fe, fi) = (2rkpT /ma)3/2 exp < 2kBT/ma> )

where
= TiePeUe + Teipiui’ (110)
TiePe + TeiPi

3 1 . 1 _
. §kB(7—ieneTe + Teiniﬂ) + iTiepe(uez - u2> + §Teipi(ui2 - u2>
T = . (1.11)

§/€B(Tz‘ene + Tein;)

The variables 1 and T are chosen such as the three following moments are

MaMeadv = MaMadV = pa, (1.12)
RR3 R3

MaVModv = paug, / MaVMadv = pa, (1.13)
R3 R3

1 3 1 1 — 3 — 1 _
- §mav2/\/ladv = §nakBTa + §pau§, /R3 §mav2/\/ladv = §nakBT+ §pau2. (1.14)

We define F,, g3 and W, g the first and the second moments of the collision operator
Ca,g with

Fop= mavCq gdv, (1.15)
R3

1
Wag = / —maviCy gdv. (1.16)
) R3 2 ’
According to the properties (1.3) and (1.4) we have
Fie = —Feiy, Wie = —We;.

Using the results (1.10)-(1.13) we have

I PepPi
Fo,=—@{W—u)=——(u; —u,), 1.17
“ Tei( e) TiePe +Teipi( ’ e) ( )
13 1, L)
Wez = *nekB(T - Te) + *P(U- - ue) ’
Tei | 2
(1.18)
1 TieNeUi + TeiNiU
g J— elte Uy e’y HUe
— (T, — T F...|=
VeilTi ) + Fei [2 ( TieNe + Teilli >] ’
where 5
VE = kel (1.19)

p— B _—,
ei
2 TieNe + TeiNy
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Chapter 1. Fluid models

In order to simplify the expression (1.18), we define

1
Wa,g = / —me(V — ua)QCa,de,
R3 2

Then, we have

WauB = Wa75 + FQUB ' uO“ (1'20)
where
A 1 TeiPi Tielle
W.:, = g.T-—T 4+ = et F. - . ,
“ Vez( ! e) 2 |:7—iepe + Teipi + TieNe + TeiNy “ (UZ ue)
(1.21)
W‘ — —S-T'—T - efMe erlly F... L ]
* veilTi = Te) 2 |:Tiepe + Teipi * TieNe + Teini| (u; ~ue)

1.4 Moment equations

In this subsection, we extract the zeroth, first, and the second moments of (1.1) to obtain
the macroscopic equations. Since we have

1o (B4 vxB)-Vyfa=Vy- [T‘f:‘(E+va)fa],

m()é «

then the equation (1.1) can be rewritten as

O fa+V-(Vfa)+Vy- [g:(E + v X B)fa] = Coa + Cop. (1.22)

i Mass conservation equation

The mass equation per species a = e, is obtained by taking the zeroth moment of (1.22)
meaning that we multiply it by the mass m, and integrate the results over the velocity
space

/Rgma[atfa-i-V-(vfa)+Vv.(aafa)}dv_/

ma (Coa+ Ca)dv.  (1.23)
R

According to (1.2), the two collision operators conserve the mass per species. Hence, the
right side of (1.23) is zero. For the left side, as the distribution function is supposed to
be zero at the infinity, the integral of the velocity divergence is also zero. For the two last
terms, we use the definitions (1.5) and (1.6). Hence, the mass conservation equation per
species is

Otpa + V- (paug) =0, a = e,i.

ii Momentum equation

To obtain the momentum equation for each species a = e, i, the equation (1.22) is multi-
plied by m,v and integrated over the velocity space

/ mav(atfa +V. (Vfa) +Vy- [aafa] )dV = / maV<Ca,a + Ca,ﬁ>dv'
R3 R3
According to the relation (1.3) and (1.15), we have
/ MV (Ca,a + C'a75> dv =F,pz. (1.24)
R3
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I. Plasma modeling

Writing that

mavvv . (aafa) = Vv . (mav & aafa) - maaafa7

we deduce that the integral with the velocity divergence is

MmaVvVy - (anfa) dv = —¢ana(E +uy x B). (1.25)
R3

Concerning the spatial divergence term, we remark that
VROV=(V—u,)®(V—u,) + VR Uy + Uy @V — U, U,

Then, we obtain

MV @ Vfodv = pouy ® Uy + P:a, (1.26)
RS

where P:a is the pressure tensor defined by

= Ma(V— Uq) ® (V—uy) fadv.
R3

g

The scalar pressure is then defined by

1 —
Pa = —trace ( P, > .
3
Therefore, the total energy of the species v (1.7) writes

3 1
Ea = ipa + §Pau(2)u

and the ideal gas law that links the temperature and the pressure of the species « is
nakBTo = pa. (1.27)

Finally, the pressure tensor rewrites

= pa?‘}‘ H:ou

S

where T is the identity tensor and H:a is known as the stress tensor. Hence the rela-
tion (1.26) becomes

MaV @ VfadV = pally ® Uy + pal + H:a (1.28)
R3

Using the results (1.6), (1.24), (1.25), and (1.28), we get the momentum equation of
the species a = e, 1

8t<pozua) +V- (paua ® ua) + Vpa = Qana<E +uq X B) -V ﬁa+ Fa,,@-
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Chapter 1. Fluid models

iii Energy equation
In this part, we extract the second moment of (1.22) in order to obtain the equation on

1
the total energy per species o = e,4. Hence, we multiply by imO‘VQ the kinetic equation

and integrate the result over the velocity space

%mav2 [8tfa + V- (vfa)+ Vy - (anfa) } dv = %mav2 (Ca,a + C'aﬁ) dv. (1.29)

R3 R3

Let us first concentrate on the right side of (1.29). According to (1.20), we have

1 N
SMav? (Casa+ Cag)dv = Wag + Fos - . (1.30)

R3

Concerning the last left term of (1.29) we remark that

1 1
§mav2vv : [aafa] =Vy- |:2mav2aafa:| — MaV - ag fa,

hence we have

1
—mav3Vy - [aafa] AV = —qanoE - u,. (1.31)
R3 2

Indeed, as the force q—av x B and the velocity v are perpendicular, then this force does
m

(o4
not produce work. Using the same method as the one for the momentum equation, the
spatial divergence term is

1 p—
V. < 2mav2vfadv> =V [(Ea+pa)ta] + V- Qo + V- ( Haua> , (1.32)
R3
where Q, is the heat flux of the species a given by

Q. = /R3 %ma(v — ua)2(v —ug) fadv.

Finally, with the definition (1.7) and the results (1.30)-(1.32), the total energy equation
of the species a = e, 1 is

0t +V - [(Ea +pa) ua] +V-Q4=¢nE-u,—V- ( H:aua> + Wa,ﬁ + Faﬂ cUg-

1.5 Maxwell equations

To complete the kinetic model, we add the four Maxwell equations to (1.1)

o:B = —-VxE, (1.33.a)
1

g@tE +pod = V xB, (1.33.)
eV -E = P, (1.33.¢)
V-B = 0, (1.33.d)

where ¢ is the permittivity of free space, g is the permeability of free space, and the speed

of light in the vacuum is denoted ¢ = . To the Maxwell system is associated an

VEoko
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I. Plasma modeling

B
electromagnetic energy conservation equation: take the scalar product of (1.33.a) with —,

Ho
E
take the scalar product of (1.33.b) with —, add the resulting equations to obtain
Ho
B
0 +V-Ex —=-E-J, (1.34)

Ho
where the electromagnetic energy is defined by:
1 1
Erm = *€0E2 + — B2
2 2410
Since plasma particles move with velocities much smaller than the light celerity ¢ = 3 X

1
10%m.s™1, it is usual to neglect in (1.33.b) the displacement current —0E. Hence, the
c

Maxwell equations become

6,5B = —VXE,

J — VxB,
SSV‘E _ (1.35)
V.-B = 0.

One can check that (1.34) remains valid except that the electromagnetic energy is now
defined by

1
Eom = 7—B?,
240

that is the electric energy is considered negligible in front of the magnetic one.

1.6 Bi-fluid MHD equations

The bi-fluid MHD equations are composed of the hydrodynamic equations and the low
frequency Maxwell equations (1.35). Then, the bi-fluid MHD equations are given by the
following system

Ogpe +V - (peue) = 0, (1.36.(1)
Opi +V - (piw) o = 0, (1.36.b)
Ot(pete) + V- (peue @ u) + Vpe + V;Hie = gene(E+u. x B) + F;, (1.36.c)
Ay(piwi) +V - (piw; ® w;) + Vp; + V- II; = ¢ni(E+u; x B) — F;, (1.36.d)
81586 + V. [(ge + pe)ue] + V- (ﬁeue) + V. Qe = qeneE - Ue + Wei + Fei * Ug, (1366)
& +V- [(51 + pi)ui] + V- (ﬁui) +V-Q; = qgn;E-u; + V,Vie —F¢i-u;, (1.36.f)
0;B = —VxE, (1.36.9)
od = V x B, (1.36.h)
eV -E = P, (1.36.7)
v-B = 0 (1.36.5)

Using the definition of the velocity of the mixture u in (1.8) and the one of the current J
in (1.9), the two momentum equations can be replaced by one equation for the total
momentum and one equation for the current J. First, we write the electronic and ionic
velocities as a function of u and J
1
u, = (pgiw —m;J),
ne(me(h - miQB)

(1.37)
1
u; = pgeu — med).
ni(Mige — Meq;) ( )
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Chapter 1. Fluid models

Then, the total momentum equation writes
O(pu)+V-(puu)+V-[pu. ® (u—1u;) + peu; ® (u—u.)] +Vp+V-I=pE+JxB, (1.38)

where p = p. + p; is the total pressure and o= ﬁe + ﬁz is the total stress tensor.
For the current equation, the momentum equations per species are rewritten in the
following form

1 = n 1
d(neue) + V- (neue @ ue) + — (Vpe +V- He) = delte <E 4+ U, X B) + —F., (1.39)
me me me
1 = qin; 1
at(niul-) + V- (niul- ® ui) + — (sz +V- Hl> = (E +u; X B) — —F,, (1.40)

By multiplying the equation (1.39) by ¢. and the equation (1.40) by ¢; and finally summing
both of them, the result leads to the generalized Ohm’s law

niq;

n = T
I + V - [negeue @ ue + nigiv; @ w;] + Te)q@ (Vpe +V- He) + i (sz' +V- Hz’)
e 7
_ <(neQe) + (nlq’) )E + <me@ue + (nZ%) lli) x B+ <neqe - anz) F.,

Pe Pi e Pi Pe Pi
(1.41)
The total energy of each species a = e, ¢ are defined by &,
P 1
Ey = - “ T+ 5paug, (1.42)

where 7, is the adiabatic index of the species a.. This definition is consistent with the one
of the kinetic definition (1.7) if these indexes correspond to the mono-atomic case

Ve=Yi=7="7 (1.43)

The total energy is defined as the sum of the total energy of the species:

i + 1 1
Pirle 1 p? + - peu?, (1.44)

E=&+E=T 1+, :

and the total mechanical energy is obtained by summing the energy equation of the ions
and electrons:

8t8+V-[(56+Pe)ue+(5i+pi)ui}+V~(H:6ue+ﬁui)+v-(Qe+Qi) - E.J. (145

Comparing this equation with (1.34), we see that the source term E - J represents a
transfer of energy between mechanical energy and electromagnetic one. An equivalent
relation to (1.45) in term of total energy, mechanical + electromagnetic, can therefore be

B frm— p—

OEr+ V- | (€ + pe)ue + (& +pi)u; + E X u] +V- (Heue + Hiui) +V-(Qc+Q;) =0, (1.46)
0

where the total energy is now defined as the sum of the mechanical and electromagnetic

energies
1 Pi + De 1 9 1 2 1
Er=E&+E+-—B*= Sou; + o P
T i+ 6+2H0 1 +2pzuz+2peue+2M0
Observe that this equation is under conservative form as it should be: the total energy is a

conserved quantity that can only change due to fluxes through the boundary of the domain.

B2 (1.47)
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I. Plasma modeling

Instead of the equations (1.36.e)-(1.36.f) we can also use the definition (1.42) to get
an equation for each pressure

OPa +Uq - Vpo + 0oV -ug + (v — 1) ﬁa :Vua +V-Qq| = (v — 1)Wyp. (1.48)

In the same way, by summing the equation of the electronic pressure and the ionic pressure
and the relation (1.21), an equation for the total pressure can be obtained:

Oi(pe + pi) +u-V(pe +pi) +¥(pe +pi))V-u+ (v —1) [ﬁ:Vu+V~Q}

2w~ )V, + 2 (u = ) Vi 7 [pev - (Z"(u - uz->) v (’;(u - ue>>]

+(y—1) [He LV (pi(u — ui)) +10;: V (pe(u = ue))} = (= DFei - (w; —uc).

Pe pi

For smooth (C?) solutions, it is mathematically equivalent to use in (1.36) instead of the
two equations for the mechanical energies of the species, the two pressure equations (1.48)
or the total energy equation and one pressure equation or any two independent equations
derived from any combination of these equations. However, for discontinuous solutions,
these combinations are not equivalent. In the sequel, we will choose for one of these two
equations, the total energy equation (1.46) since this one has a clear physical meaning.
We must then supplement it by another equation. A rigorous procedure [13] would be to
choose this equation based on the analysis of traveling wave solutions of the system (1.36).
However, this analysis presents formidable mathematical difficulties that are far beyond
the scope of this work. Instead we will complement equation (1.46) by an equation for the
electronic entropy. For discontinuous solutions, this implies (see the next Section III) that
we assume that the electronic entropy remains constant through a shock. Although this
assumption has no physical justification, it is reasonable since the mass of the electrons is
considerably smaller than the one of the ions. Thus one can expect that the changes in the
electronic entropy will have a minimal impact on the behavior of the other macroscopic
quantities. This assumption has also been used in different context than plasma physics
for instance in the modeling of multiphase flows where the hypothesis that the entropy of
the lighter species is constant has shown to give results in reasonable agreement with the
experiments [39]. Thus, we define the electronic entropy by

Se = pepe_v- (149)

By using the equation of the electronic pressure (1.48), we get
Ou(peSe) +V - (peSeue) +pt 7 (y = 1) [Tt Vue + V- Qe| = o7/ (7 = 1)Weir - (1.50)

With the results (1.38), (1.41), (1.46), and (1.50), an equivalent system for smooth
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Chapter 1. Fluid models

solution to the bi-fluid MHD equations (1.36) can therefore be

Orpe +V - (peue) = 0,

depi +V - (piwi) =0, _

d(pu)  +V-(pueu)+V-[pu.® (u—-w)+peu; @ (u—u.)]+Vp+ V-1
—5E+J xB,

0,J V- [regete ® e+ niga; @ w) + 2 (Vp + V- TL) + P8 (Vp 49T

i
(k| Py, ((neqaf o ) ()
pe pz pe pz pe pz

B — —
& 1V. {(5e +pe)te + (& + pi)u; + E x u] +V- (Heue T Hiui>
0
+V-(Q. + Qi) =0,

at(pese) +v . (peSeue) + Pi_v(W - 1) |:ﬁe : Vue + A Qei| = pi_’}/(’y - 1)Wei7

atB Z—VXE,
110d -V x B,
eV -E =p,
V-B =0.

(1.51)

II Bi-fluid MHD equations in quasi-neutral regime

In this Section, we consider the quasi-neutral regime in the bi-fluid MHD system. Assum-
ing that the constant €q is very small, we suppose that the net charge is near zero

eoV-E =0,
hence we have
P = nege +nigi = 0. (1.52)
This hypothesis corresponds to quasi-neutral plasma. Then, we only need one equation
on density. The charges g. and ¢; are given by
GQe = —€, Gi = Ze,

where e = 1.6022 x 1071°C is the elementary charge, and Z is the ion charge state. Here,
we consider the case Z = 1 corresponding to hydrogen isotopes as Deuterium and Tritium.
Then, we deduce from (1.52)

Ne = N3 =n,
Me m;
u = Ue U,
Me + My Me + My
J = ne(u; —u.).

Then, the system (1.37) becomes

u = u——J,
ne

(1.53)
u = u+&J,
ne
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II. Bi-fluid MHD equations in quasi-neutral regime

where ¢, is the mass fraction of the species o = e, given by

Pa Ma
Cqg=— = —.
P Me + M

With these results, the momentum equation of system (1.51) becomes

elllg 1 =
Bi(pu) + V- (pueu) + —< "y . <ne2J®J> FVp+V-T=IxB. (154

Me + My

The vector Fe; given in (1.17) is rewritten in function of the current J

F.; = Mellli g, (1.55)

(TieMe + Teimy)e

therefore the Ohm’s law becomes with quasi-neutrality simplifications

i/lte 1 e \Thy — Me 1
mm[(&:J+V-(u®J+J®u))}—mm(m m)V-<2J®J>
i L€ ne

me +m (me +m;)?
= = m’L - m€
Feo [vpﬁv-n,} S [vpejuv-ne} :ne[EJruxB—nJ] _MmizMey B,
m; + Me
(1.56)
where 7 is the isotropic resistivity of the plasma and is defined by
n= Mille (1.57)

ne?(Tieme + Teimi).

Concerning the total energy, by using the system (1.53), the definition of the resistiv-
ity (1.57), and the result (1.55), we get

B 1
oéEr +V - |:(5 + Pe —f-pi)u +E x :| + V- |:<Ce(5i +p,~) — Ci(ge +pe)>J:|
Ko ne

+V - (Hzeue —i—ﬁui) +V-(Qe+ Qi) =0.

For the electronic entropy, we simplify the results (1.21) with the quasi-neutrality
hypothesis

Wei = VE(T; — To) + Cnd?,
where

(1.58)

1[ TeiM; L Tie ]7

Cei = 5
TieMe + TeiMy; Tie + Tei

2

and finally, the electronic entropy equation of system (1.51) becomes

1 —
at(pese) +V- (peSeu) -GV (nepeSeJ) + pé*’Y(,y - 1) [He :Vu+ V- Qe}

= 1
—cipe (Y= DI : V <neJ) =pe (v —1) [sz(TZ —T.) + CemJQ} :
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Chapter 1. Fluid models

Then, the bi-fluid MHD system (1.51) writes with the quasi-neutrality assumption
Op+ V- (pu) =0,

Bi(pu) + V- (pu@u) + —eM

1 =
A <2J®J)+Vp+V~H_J><B,
Me + M, ne

Me + My (me +my;)?

) 1 (i, — 1
W[(aﬂw_(umﬂm))} _ memi(mi —me) o (2J®J>
e ne

+ce [VpH—V-ﬁZ} — ¢ [Vpe—i—v-ﬁ} —ne[E—i—uxB nJ} —HJXB,
Oér + V- [(5+pe+pl u+Ex} { ceé' +pl)ci(€e+pe)>nle‘]]

+V - (Mo + g ) + V- (Qe + Qi) =

1 —
0u(peS.) + V- (peSow) — 7 - (peseJ> Fp0 ) [l Vu+ V- Q]

_ = 1
—eapt = D5 ¥ (L3) = = ) AT~ T+ Gnd?).

B =-V xE,
1o = V x B,
V-B=0.

In the sequel, we will neglect the dissipative effects in the previous system in order
to concentrate on the first-order part of the system. Neglecting dissipative terms usually
means that we are mainly interested in the short term behavior of the system since dis-
sipative phenomena are generally associated to large time scales. Therefore, the system
that we will consider from now on is

dp+ V- (pu) =0,
di(pu) + V- (pu@u) + —< . <J®J> +V(pe +p;) = x B,

Me + My ne2

m;me |1 mem;(m; — me) 1
mywm[e@ﬂ+v m®J+J®uU]— (et v QMJ®J>
my;

+c.Vp; — c;Vpe = ne [E +uxB-— 77.]} — 7J x B,

m; + Me

B 1
T +V - [(5 + pe +pi)u+ E x ] +V- |:(Ce(5i +pi) —ci(&e +pe)> J] =0,
Ho ne

1
Ot(peSe) +V  (peSen) — ¢V - <n€peSeJ> = péi’y('y -1) [Vegz(Tz —Te) + gem‘]Q] J

OB =—-V xE,
/L()J:VXB,
V-B=0.

(1.59)

IIT Bi-temperature Euler model

In this Section, we present the derivation of bi-temperature Euler equations from the
bi-fluid MHD equations in quasi-neutral regime. In this model, only one density and
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III. Bi-temperature Euler model

one velocity are used but the two species can have different temperatures. In addition
to the quasi-neutrality assumption, the fundamental hypothesis leading from the bi-fluid
MHD system to the two temperature Euler model is that the dynamical pressure largely
dominates the electromagnetic effects (large ). Hence, all the terms involving the current
can be neglected. We conclude this Section by a mathematical study of the resulting
equations.

III.1 Derivation of the bi-temperature model

The system (1.59) contains two momentum equations: one for the total momentum (ions
+ electrons) and one for the current density J. Our goal now is to eliminate the fast part of
the dynamics related to the movement of the electrons while keeping the possibility for the
ions and electrons to have different temperatures. To establish the range of validity of this
simplification, we introduce non-dimensional parameters and to this end, we first begin to
introduce reference quantities in order to express (1.59) in non-dimensional form. First,
we denote respectively, Lo, no, Tc0, Ti,0, and By the reference length, density, electronic
temperature, ionic temperature, and magnetic field. Then, since we are interested in
phenomena where the velocities can be large, we introduce a reference velocity ug defined

as:
[kp(Tep + T
g = | FBTe0 + Tio). (1.60)
Me + My

Later on, we will see that this velocity corresponds to the speed of sound of the ion-electron
mixture. Thus, this choice of velocity scale means that we are interested in phenomena
where the material velocity is comparable to the speed of sound. The time scale is chosen

such that
Ly
to = —_
g

and this implies as usual that this choice of scales leaves unchanged the continuity equation
and the material derivatives. Then from the state laws (1.27), the pressure scales are
defined by

Pa,0 = nokpTa .- (1.61)

From the Maxwell-Ampere equation, we will also use the following scaling to define the

reference current:
By

Lopo
Then each variable is re-defined in term of reference quantities and non-dimensional vari-
ables as:

Jo

= T N f = ) =
to Ly Uo (me +mi)no” ~ ¢ Tuo By

where a super tilde ~ denotes a non-dimensional variable.

The momentum equation can be re-written in the following form

MeMy; Bg ~ 1~ ~
V. |=d®d
(me 4+ m;)? n3e2pdLud [ ©

0,(p0) + V- (U@ ) + =

(1.62)

kpTeop o~ kpTip <~ B3 < B

(me +mi)ud """ (me +mi)ud " pono(me + m;)ud

i
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Chapter 1. Fluid models

Let us define the (total) plasma 3 parameter by:

(me + m;)noud _ nokp(Tep + Tip)
B/ o B§ /1o

The plasma 3 is a well known non-dimensional parameter used in plasma physics, it

measures the ratio between the dynamic pressure and the magnetic pressure’.

We also introduce the (electron) plasma frequency by:

B= (1.63)

2 2.2
w2 =0 et (1.64)

EQMe Me

as well as the length scale:
2
c m

2 =— = c . 1.65
e w;%e Tl[)ez,u[) ( )

This ratio is called the electron skin depth? in [37] while it is denoted electron inertial
length [48] p.28 and in other references. According to [36] the value of the plasma frequency
wpe Vvaries between 6.10' in tokamaks and 6.10' in inertial confinement experiments
while [48] gives the value of 6.10'* for laser plasma. Therefore the electron skin depth is
always small in fusion plasma. Similar definitions exist to define the ion plasma frequency
and inertial length:

2 2.2
npe noe~c~ o C my
Eom; m; wpi noe” 1o

[\

The ratio between the ion and electron inertial lengths \/m;/m. ~ 40 and thus the elec-
tron inertial length is significantly smaller than its ion counterpart.

Remark: Another commonly used parameters in magnetized plasma are the Larmor radii
defined by:

MeiVe
Pei = %06”7 (1.67)
o k;BTe,i ey . .
where v, ; = | ——— are the thermal velocities of respectively the electrons and ions. We
Mej;
note the following relation between inertial lengths, plasma 8 and Larmor radii:

2 2
pe,z’ - 566,1'7

and thus the non-dimensional form of the governing equations can also be done in term
of Larmor radii instead of inertial lengths. Here we choose to use the inertial lengths in
order to separate the magnetic effects from the electric ones.

Now let us introduce the non-dimensional version of the inertial lengths by:

5(:‘,i
Lo

B3 /20
given in this section is of no importance since in the sequel we are considering the asymptotic form of the
equation obtained when 8 — +o0

2not to be confused with the resistive skin depth

Lthis parameter is usually defined as 8 = , the difference by a factor 2 with the definition
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III. Bi-temperature Euler model

With these definitions and the choice (1.60) of the velocity scale, we can re-write (1.62) as

Oi(pu) + V- (pU @) + ci(%)Q% : [%3@3]
(1.69)

T, ~ T, ~_ 1~ =
&0 Vpe%—#Vpi:—JxB.

_i_i
Teo+Tip Teo+Tip B

This expression establishes that except for small 5 the factor in front of the quadratic
term in the current in the equation (1.69) is small and therefore the current term can be
neglected in this equation. Note that this result is valid independently of the mass ratio
between electrons and ions. In particular, this result does not rely on the usual assump-
tion that the electrons can be considered as mass-less. Actually, in the sequel, as we will
consider large plasma (3 parameter, we do not need any assumption on the inertial length
except that it is bounded.

We have now to consider the entropy equation. Nevertheless, since this is equivalent,
we will work here with the electronic pressure equation

1 1
Ope+1u-Vpe+yp.V-u—c; %J - Vpe + PV - (neJﬂ = (y=1) [V5(Ti — T2) + Caind?] .

We recall definition (1.19) giving the expression of the temperature relaxation coefficient
(note that (v — 1)~! = 3/2 in the mono-atomic case)

£ kB n
Y =1 7ei + Tie’

and that the resistivity (1.57) is given by

miMme

T e (rieme + Teimy)”

Hence, we deduce that the non-dimensional electronic pressure equation can be written

~ o~ o~ 6 1~ ~ _ o~ (1~
0tpe+u-Vpe+7peV-u—\/C7\/%[ J-Vpe+vpev-<ﬁJ>]

n

Tio~  ~\ -¢ ( Tw) (08)% =
= (2O T ) 05+ (v — 1) [ 1+ 22 72,
(Te,O > (7 )C Te,() ﬁ 1

where the non dimensional temperature relaxation coefficient is defined as

(1.70)

~& n

V= —
ei ~ ~
Tei 1 Tie

where Te; = Te;up/ Lo, and T;e = et/ Lo denote the non-dimensional temperature relax-
ation times while the non-dimensional resistivity is

~ m;
= —= — . 1.71
g n(Tieme + Teimi) ( )

We notice that in this equation, (.; does not change. Indeed, according to its defini-
tion (1.58), (; is already a non-dimension variable.

Note that in this equation the advective terms involving the current are multiplied by
the ion inertial length. Symmetrically the corresponding term in the ion pressure equation
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Chapter 1. Fluid models

will involve the electron inertial length.
The last term in equation (1.70) corresponds to Ohmic heating and is representative of
the transfer between electromagnetic and internal energy.

According to the definition of the electronic entropy (1.49), the non-dimensional cor-
responding variable is

Se = P; "Pes
then, the equation (1.70) re-writes
-~ 5 ~ | puS.~
0upeS.) +V - (7e5t) — Ve 5V Peoey

(1.72)

o Tio~ ~)\ - Tio\ (65)% ~
— A= | 20 £ _ . =10 e 2
Pe [(Te,oT’ Te> Ve + (v = e (1 + Te,o) 5 nJ } :

We now consider the total energy equation (1.59). With the choice of the velocity
scaling (1.60), the kinetic energy is of the same order as the thermal energy and therefore
we choose to define the non-dimensional total energy and the non-dimensional total energy
by species by:

E =no(me + mi)ugé', Ea = nokBTo 00, o = e,i.

The choice of a scale for the electric field is delicate. Faraday’s law favors the use of the
scaling N
E = BywE. (1.73)

and this is the choice that is usually done in MHD. However, since Faraday’s law involve
the curl of E, we see that the gradient part of E (if it exists) has no reason to scale with
Byug. To take this possibility into account, we will set

E= HBou()E,

leaving for the present time the parameter s unspecified®. With these choices, we obtain:

~ ~ ]§2 ~ ~ TeO . ,TiO e~ rE x B
| E+=—=|+V-|E+—L F+—L pra+ ==
t( 26) o 4 T T T+ T
(1.74)
1 o To . & To o~ . & )3
— V| (edr—" i+ &) — Jadr—=2 (5. +&)) 2| =o0.
VB (f e0 +Tio ® )=V e0+Tip » ) n]

Again, the terms containing the current are multiplied by expressions involving the
inertial lengths.

It remains to consider the electron momentum equations or alternatively the equation
governing the evolution of the current. For the Ohm’s law, the same scaling procedure

3To be more specific, we note that E being a 3-D vector field, the 3 components of this vector have
no reason to have the same scales. In particular, Ohm’s law shows that the parallel component (defined
as E - B/|B|) of the electric field has no reason to scale with Boug. A detailed analysis would therefore
imply to use different scalings according to the different spatial directions. Here we simplify this analysis
by introducing an additional parameter
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III. Bi-temperature Euler model

gives:

VCeo:J x B

rE+uxB = (6% + \/aé*\/ﬁ -

V@i B TR+ Vet B L

e,0 + 1, e0+Tzo
(1.75)

1 r~~ ~ ~  ~
sR\2 5 = ~
+ci(g) ~ [8tJ+V (u®J+J®u)}
o @)1 155
+/ci(e — ce) NG -V ,ﬁJ®J .

n

II1.2 The bi-temperature model for large § parameter

In equations (1.69), (1.70), (1.74), and (1.75), the non-dimensional parameters c;, d; ;, 3,
and k appear. According to the different values of these parameters, the equations can
take many different limiting forms describing a huge range of phenomena. Ideal MHD for
instance, corresponds to situations where d; ; — 0 while 3 stays bounded. In this Section,
with applications to laser plasma in mind, we will consider phenomena characterized by
very large plasma [ parameter where the dynamical pressure is far larger than the magnetic
one. Although the model considers two different temperatures, we will also assume that
these temperatures remain comparable and that the ratio T; o /T, o remains bounded. We
then formally consider the limit 5 — 400 in equations (1.69), (1.74) and (1.72) and we
obtain the system:

Op+ V- (pu) = 0,

at(pu) + V- (pu ® u) + V(pe +pi> = 0, (1 76)
€ +V - [(€ + pe + pi) ul = 0, :
9i(peSe) + V - (peSen) = p 1('}’ - 1)”51’(Ti - Te).

The system (1.76) has been obtained with the assumption that x/8 — 0. In this case, we
emphasize that (1.76) is a closed system: corresponding to the hypothesis of large 3 the
electromagnetic energy becomes negligible with respect to the mechanical one. Moreover
in the definition of the mechanical energy (1.44)

Pi + Pe 1 2 1 2 Pi + De 1 2 metmn; J?
g: —0: U — = — —_—,
N1 Pt T et 1 e L T ne?

(1.77)

the last term is of order O(c;(6¥)?/) and thus must be neglected.

Let us remark that to obtain (1.76), we do not need to consider Ohm’s law (1.75). In
this sense, (1.76) is independent of the precise form of Ohm’s that is used. However if we
check for consistency the behavior of Ohm’s law in the limit 8 — +o00, we will get at the
higher order in 5:

Teo

——m@fﬁ Vb + Vi B 60+T vpl, (1.78)

and this relation establishes that the parameter x (ratio between the electric field and the
product uoBy) has to scale with 67/ in the § — +o0 limit. Therefore the ratio x/3 — 0
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Chapter 1. Fluid models

when 8 — +o00 and the scaling is self-consistent.

Note also that in this derivation of (1.76), we have never used any assumption on the
electron mass. This system is therefore also relevant in the case where instead of electrons,
a mixture of positive and negative ions is considered. However, in this case, there is no
definite reason to choose the electronic entropy equation to close the system and another
choice can be more physically relevant.

The system (1.76) can be also established using different assumptions. In [7], a bi-fluid
model in the absence of any magnetic field is considered with the assumption that the
two species have the same velocity. Then the comparison of the momentum equations
from (1.36) (with ue = u; = u) implies Ohm’s law (1.78) from which a non-conservative
system equivalent for smooth solutions to (1.76) is derived. The same assumption (with
in addition m, = 0) is also used in [26].

System (1.76) is also considered in [69], with the assumption that the electron mass is
small. The derivation we have presented here seems more general and do not rely on the
strong assumptions of the absence of current and magnetic field and that the two species
have the same velocities. It only requires quasi-neutrality and that the magnetic effects
are weak.

Let us now check that the characteristic value of laser plasma agree with our assump-
tions on the values of the non-dimensional parameter. According to the NRL [48], the
order of value of density, temperature are of the order of

ng = 10%m3,
T./ip = 100eV =1.1605 x 10°K.

Therefore, the electron and ion inertial lengths are

§f = 5.31x1074
5 2.28 x 1072.

The reference velocity and the size of a target are then given by

ug 1.38 x 10°m.s7 1,
Ly = 2x1073m.

Then, the characteristic time is given by
to=1,72 x 107 %s.

The NRL [48] gives also in page 40, the collision frequency electron/ion:

1
— =2x102s7!, 7, =5 x 107 s,
Tei

Then for short time simulation it is interesting to study the thermal equilibrium.
The next subsection is devoted to a study of the mathematical properties of this system.
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III. Bi-temperature Euler model

I11.3 Properties of the bi-temperature Euler model

This subsection presents a mathematical study of (1.76) for the mono-atomic case (1.43).
In [26], a mathematical study of the multi-fluid system with the equation on the electronic
entropy is also presented. Since the bi-temperature Euler system is invariant by rotation,
then it is sufficient to study the 1-D system in the z-direction

( Oip + Ox(pu) =
O (pu) + 9 (pu® + pe + pi)
9(pv) + Oz (puv)

Il
coooo

Oh(pw) + Dy (puww) =, (1.79)
NHE + 0z [(E +pe+pi)u] = 0,
\ 8t(pese) + 8x(peSeu) (7 - 1)V§¢Pé_7(Tz‘ - Te)‘
The system (1.79) is written in the form
U + 0, F(U)=5S(U),
where
[ o] I pu T [ 0 T
pu pu? + pe + p; 0
B pv _ pUuv _ 0
g (€ +pe +pi)u 0
L peSe | | peSeu | L (’Y — 1)”2#’%_7(1’1‘ - Te) J

In order to determine the eigensystem of the problem, we compute A(U) = 0y F(U) known
as the Jacobian and get

0 1 0 0 0 0
1302 4 1 (02 + w?) (3 —")u 1-vv (QI-y)w -1 0
—Uuv v U 0 0 0
—UwW w 0 U 0 0
2 2
U f,yc_sl +77_2(u2+112+w2)] ,YC_Sl +¥u2+# (I1—y)uv (1-—7uw ~yu 0
| —CeSett CeSe 0 0 0 u |
This matrix has three different eigenvalues given by
Al = u-—cs,
)\2 = u, (1.80)
A3 = U-+cs,

where ¢, is the sound speed of the mixture

Pe + Di
Cs — Y .
\ p

Those eigenvalues and the definition of the sound speed of the mixture correspond to the
one given in [26]. The eigenvalue A2 has an order of multiplicity of 4, and the eigenvectors
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R1, Ro, and R3, respectively associated to A1, Ag, and Ag, are given by

( i 1

(1.81)

R3 — 2

CeSe

With the results (1.80) and (1.81), we find that the waves A; and A3 are genuinely non
linear and consequently those two waves can be shock or rarefaction waves. Concerning
the wave Ao, the computations lead to determine that this wave is linearly degenerate
meaning that it is a contact discontinuity.

We now consider the Riemann problem with the initial data Uy, and Ug associated to
the homogeneous conservative system

U + 8, F(U) =0.

The intermediate states are denoted U; and U}, (see Figure 1.1). The Riemann invariants
associated to each waves are

_ 2
(U - CS) — wave @ v, w, Pep;77 PiP; ’Y’ and u + 7105,
v —
u — wave t u, and pe + p;,
(u+cs) —wave : v, w, pep,”, pip; |, and u — o~ 165

For the 1-wave, associated to the u — c; eigenvalue, the shock and the rarefaction
conditions are given by

M(Ur) <81 < M(Uj) Rarefaction condition,
M(UL) >51> M(Up) Shock condition,

where S; is the speed of the 1-wave. To compute, the intermediate state U] in the case
of a 1-shock the Rankine-Hugoniot relation has to be used

F(UL) - F(UL) =5 (U, -Ug).

The Rankine-Hugoniot condition is not any more valuable for the 1-rarefaction and then
the Riemann invariant of A; are used to compute U;.
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Likewise, the shock and the rarefaction conditions for the 3-wave, associated to the
u 4 cs eigenvalue, are given by

A3(Up) < 83< A3(Ugr) Rarefaction condition,
X3(Uf) > 83> A3(Ur) Shock condition,

where S5 is the speed of the 3-wave. The Rankine-Hugoniot relation for the 3-shock is
given by
F(Ug) — F(Ur) = 53 (Ug — Ur) .

For the 3-rarefaction, we use the Riemann invariants of A3 to get Uy. The four different
cases are shown in Figure 1.1.

Ur Ur Ur Ug

U, UL Ur

Ur
(c) (d)

Figure 1.1: The four cases of Riemann problem for the bi-temperature Euler equation:
(a) 1-Rarefaction and 3-Shock, (b) 1-Shock and 3-Rarefaction, (c¢) 1-Rarefaction and 3-
Rarefaction, (d) 1-Shock and 3-Shock.

IV  Mono-fluid MHD models

In this Section, we go back to the bi-fluid MHD equations in quasi-neutral regime (1.59),
and consider a different assymptotic regime leading to some mono-fluid MHD models.
These mono-fluid MHD models assume that the ion and electron depth skin are small
leading to the ideal and the resistive MHD models in contrast to section 111, we will now
consider that the plasma g parameter is finite. Finally, a mathematical study of the ideal
MHD model properties is performed at this end of this section.

IV.1 Non-dimensional bi-fluid MHD model

In this subsection, we use the same notations and definitions as the ones of subsection II1.1.

We are now interested by phenomena where the hydrodynamics effects are comparable
to the magnetic ones, meaning that we suppose that the § parameter is bounded. In fact,
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here we assume that
8= 1.
We deduce from this hypothesis that the reference velocity ug in (1.60) can also be defined

as
Bo/+/
wy = —BUVHO (1.82)
no(me + m;)

We will see later that this velocity corresponds to the Alfvén speed.

First, starting from the total energy and the electronic entropy equations of sys-
tem (1.59), we write the two non-dimensional equations on each pressure:

~ o~ 1~ ~_ o~ 1~
Oipe + 0-Vpe —/cib; [ﬁJ-meL'ypeV-(ﬁJ)]

Tio~ ~7_ ~
= |FRE T - Do
e,0

~ o~ 1~ ~_ o~ 1~

dpi + u-Vp;—/ced; [ﬁJ'Vpﬁva(ﬁJﬂ
Te,O
Tio

7 - ﬁ] P+ (y — 1) (87272,

where

|: Tei M Tie :|
)
TieMe + TeiMy Tie + Tei

Co = 1|: Tiellle T Tei :|
ie = 5 .

TieMe + TeiMy; Tie + Tei

N |

Then, the non-dimensional equations on the difference and the sum of the two pressure
ones are

i(Pe+pi) + U-VPe+pi)+7Pe+pi)V -1 — fJ V (V&6 Pe + /a0 D3)
—  (V/€i0; Pe + \/ce0, D, ( )
5

n
Tep —Tio
TeoTia (0T~ TeoT)
N~ o~ ~ O/~ = ~  ~\O 1~ o *~ *~
0c(pi = Pe) + -V (D = Pe) +7(Di = Pe)V -0 = = -V (VeeTepi — /i Pe)

~ (1~

- asm - vasi) ¥ (£3)

Teo+Tip

- _ &  “uY (T:L',Oj:i — Te,OTe> ;,i + ('7 - 1)(Cie - (ie)(5:)2ﬁj2
Te,OTIi,O

—1)(67) 2532,

According to [68], experiments show that in a tokamak the temperatures and the
density are
{ Te,0 = T;o=10—12keV = 1.30 x 103K,

ng = 10%9m 3.

Then, the relaxation time is
1

x4 x10%7!
Tei 1 Tie
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Then, this term can be considerate large. By using the previous equation with the limit
of small electron inertial length, we deduce that

T, ~T;.

Therefore, instead of considering a bi-fluid MHD model, we suppose that we have a single-
fluid as a mixture of electrons and ions with a single temperature and pressure defined as
follow

{T = L =5 (1.83)

P = DPe = Di
linked by the relation
p=nkpgT.

Then, the non-dimensional temperature and pressure write

{T = ToT,
p = nokpTop,

where Ty = Ty e = Tp,i. Therefore, the non-dimensional momentum equation (1.69) be-
comes

~ ~ » ~ [1~ ~ ~ o~ o~
d(pu) + V- (pu® ) + ¢;(67)V - [ﬁJQ@J] +Vp=JxB. (1.84)

Concerning the scaling of the electric field E, we will use the usual MHD scaling (1.73)
in this part. Thus, the total energy equation (1.74) is now

HhEr 4V - [<§+ﬁ>ﬁ+ﬁx]§}

SN

1~
V-
+2

(1.85)
(veeo: (@ +p) - veasi E.+7) ]

- - 1~
where Ep = & + §B2.

We are now interested in the Ohm’s law (1.75). First, we rewrite the non-dimensional
resistivity (1.71) in the following form

1 .
n=—n,
Mo

where 79 is defined in [37] p240

V2 i

T 1273/2 50T3/2

o )\eiv

and 7 is still given by (1.71). We remark that in the above definition of 7y, the electron
inertial length is contained. This definition is also simplify with the relation

b

_ -8
o = 6.5 x 10 7372

Qm,

where T is express in keV. We now introduce the magnetic Reynolds number

_ ko Loug
Tlo

R,
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According to the NRL formulary [48], this number represents the ratio between the flow
velocity and the magnetic diffusion one. Using the same process as before, we obtain that
the non-dimensional Ohm’s law (1.75) becomes

L i B
BraxB = il + (Ve - ao) o
1 . ol
"9 (Veidi — /eede) ﬁvp
(1.86)
1 r~~ ~ /- -
(SF\2 . ~ ~
+ci(6¢) ~ [at-]‘f'v <J®u+u®J>}

E (e — ) (07)267 =% - [Ei ® 5} .
n n

In Chapter 4, we will work only with the non-dimensional MHD models. Then, from
now we do not use anymore the super tilde ~ for the non-dimensional variables in order to
simplify the notation.

Using the results (1.84)-(1.86), we write that the non-dimensional single-fluid MHD
equations are

Oep + V-(pu) =0,

1
d(pu) + V-(pu®u)+ ¢(65)°V - [nJ®J] +Vp=JxB,

0ér + V- -[(E+p) u+E xB| (1.87)

v ooV {(@52(& + ) — V@S (Ee + ) ﬂ =0,

o:B + VxE=0.

\

To this system, the non-dimensional Maxwell-Ampere, the divergence-free constraint, and
the Ohm’s law (1.86) are added:

V x B = J,

V-B = 0,

E+uxB = };nnJ+(ﬁ5f—@5:)J>;B
! x . (1.88)
—5 (Ved] = /eed?) ~Vp
+Ci(5z)2%[5t~]+v-(J®u+u®3)]

(e — ) (621 [1J ® J] .
mn n

\

In systems (1.87) and (1.88), the parameters 0} ,, c.;, and R, appear. Then, as

ez’
we have noticed in II1.2, the different values of these parameters correspond to different
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limiting models. For example, from the Ohm’s law of (1.88), considering that §} — 0 we
can obtain the three different models:

1 JxB
Hall MHD: E+uxB = ——nl+ N7 ekt v/
m n

Resistive MHD: E4+uxB = nJ,

{ Ideal MHD: E+uxB = 0.

The two next subsections are devoted to the limit of the resistive and ideal MHD models.

IV.2 Resistive MHD model for small §*. and bounded R,,

et

To obtain the single-fluid MHD system, assuming in addition that 67 — 0, we get

Op+ V- (pu) = 0,
O(pu) + V- (pu®u)+ Vp = Jx B, (1.89)
wer+V-[(E4+p)u+ExB] = 0, '
GtB +VxE = 0.
The Ohm’s law from the closure system (1.88) is now
1
E B=—nJ.
+u X Rmn

1 JxB
The resistive term ——nJ is of the same order or smaller that the Hall term ¢;6; .

One can therefore askmwhy this term is kept while the Hall term is neglected. The reason
is that in the direction if the magnetic field , the Ohm’s law becomes

B 1 B

Pppe— } 777']- [—

Bl Rn [B[
and the Hall term, as well as the u x B term, disappears. Thus, the only term that
correct the electric field in the parallel direction is the resistivity term. Although small,
this term is responsable of some important physical phenomena like for instance magnetic
reconnection [79]. To take this into account, R, is assumed bounded and therefore the

Ohm’s law writes
E+uxB=nJ. (1.90)

In order to use finite volume method to solve the resistive MHD equations in Chapter 4,
we derive the system (1.89) to get a system as conservative as possible. Then, in the
momentum equation, we replace the current J by the Ampere’s law of system (1.88), then
the right side of this equation is given by

JxB:(VxB)xB:V-(B@B)—vGB?).

We now introduce the total pressure that is the sum of the hydrodynamical pressure and
of the magnetic one with

1
pr=p+ §B2-

We deduce from these results that the momentum equation can be rewritten in the fol-
lowing conservative form

Oh(pu)+ V- -[pu@u—BxB|+ Vpr =0. (1.91)
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In the energy equation, we replace both the electric field E and the current J by respec-
tively the Ohm’s law (1.90) and the Maxwell-Ampere equation. Thus, the cross product
E xBis

E x B=Bu—- (u-B)B +7(V x B) x B.

Then we have
HEr +V - [(Er+pr)u—(u-B)B] =V - (B x (V x B)). (1.92)
By using the same process, we first write that
VXxE=Vx(Bxu+nJ)=V-Beu—-u®B]-nV’B+Vnx (VxB).
Therefore, the Maxwell-Faraday equation is also
OB+V-B®u—-u®B]=nV?’B-Vyx (VxB). (1.93)

With the results (1.91)-(1.93), the system (1.89) becomes

atp+v(pu) = 07

O(pu)+ V- -[puu—-BxB]+Vpr = 0,

OEr +V - -[(Er+pr)u—(u-B)B] = V-(nBx(VxB)),
OB+ V- -B®u-u B] = nV?’B - Vn x (V x B).

The numerical test of Chapter 4 will consider an uniform resistivity 7. Then the previous
system becomes

8tp+v(pu) = 07

O(pu)+ V- -[pu@u—-BxB]+Vpr = 0, (1.94)
er +V - -[(Er+pr)u—(u-B)B] = nV-(Bx (VxB)), '
OB+V-B®u-u®B]| = nV’B.

We note that the previous system have been obtained without assuming m., — 0. The
derivation is more general than the ones of [37, 43, 51].

IV.3 1Ideal MHD model from small ¢;; and large R,,

The ideal MHD model is the most basic mono-fluid MHD model. This model is usually
use to determine equilibrium and properties about the stability of the plasma [42].

i Conservative system

Likewise the resistive MHD model, we still formally consider the limit §7;, — 0. The
difference between the two models comes from the magnetic Reynolds number which is
now supposed to be large. The plasma in this model is then considered to be a perfect
electric conductor. Ohm’s law changes which is now

E+uxB=0. (1.95)

By using the same method as the one for the resistive MHD equations. The conservative
form of the ideal MHD equations is given by

Op+ V- (pu) =
Oh(pu)+ V- -[puu—-BeB|+ Vpr =
HEr+V - [(Er+pr)u— (u-B)B] =
0B+V-B®u—-ug B] =

(1.96)

cooo
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IV. Mono-fluid MHD models

We now perform a mathematical study of this system as we have done for the bi-temperature
Fuler model.

We notice that in system (1.94) and (1.96), the divergence-free constraint on the mag-
netic field does not appear explicitely. Indeed, this subject will be discuss in Chapter
4.

ii Properties of the ideal MHD model

The mathematical study of the ideal MHD equations is for instance presented in [25, 42].
Here, we will present some properties about the different waves of the system. Likewise
the bi-temperature Euler model, the system (1.96) is invariant by rotation. Then, we
rewrite the system in the form

Op + 0z(pu) =
Or(pu) + Ox(pu? + pr — B?) =
615([)’0) + 636([)1“} — BlBg)

O¢(pw) + Oz (puw — B1B3)

Or + 0, (Er + pr)u — (u-B)By]
0; B

0y By + 0, (UBQ — UBl) =
0; B3 + 0, (uB;:, — ’LUBl) =

SO0 oo o0 oo

where (u,v,w)” are the component of u, and (By, By, B3)” are the ones of the magnetic

field B. According to this system Bj is constant then we consider the system

U + 0, F(U) =0,

where

[ p ] [ pu 1
pu pu? + pr — B}
pU puv — By Bs

U=| pw |, F(U)= puw — By Bs

Er (Er+pr)u—(u-B)B;
B2 'LLBQ — ’UBl

L Bg | uBg — wB1

The Jacobian A(U) = 9y F(U) is given by

i 0 1 0 0 0 0 0 7
7Y=3 5 -1, 54 2
5w+ = +w) B-yu Q-7 Q-YNw 7-1 (2-7)B2 (2-7)Bs
—uv v u 0 0 —B; 0
—uw w 0 U 0 0 —B;
as51 a52 a53 a54 Yu as56 as7
B; —uB B B
vb1 —uba 22 _ 21 0 0 u 0
P P p
Bi —uB B B
] ] 0 2L u 0
L p p p :
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Chapter 1. Fluid models

where
( o ’Y*Q 2 C 2 2 BlBQ BlBg
as1 = 5 -1 vy, | u+ ’ v+ ) w,
3—2 02 4+ w?
asy = 5 7U2+ D) +U2—Cz,
BB
asy = (1—7)uw— =12,
P
BB
asy = (1 —7)uw — L 3,
p
ase = (2—’}’)7132—2)31,
( as7 = (2—7)uB3 —why,
where ) )
B B
02:727 0(21:717 ngi'
P 4 4

With those results, we have that the Jacobian A(U) is diagonalizable and the eigenvalues
are given by
A< A2 S A3 <A < A5 < Ag S A7

>\1,7 = u-+ Cf,
)\2,6 = U Cq,
A35 = uFcs,
)\4 = u,
where ) )
¢+ 1
cts = — 5\/(c? + v2)2 — 4c2c2. (1.97)

The waves of the MHD equations are composed of two fast waves at the speeds A1 and A7,
two Alfvén waves at the speeds Ao and Ag, two slow waves at the speeds A3 and A5 and an
entropy wave at the speed A4. All this data are summarized in Figure 1.2. In [25], Brio
and Wu explain that as the MHD system is not convex, then the waves can not genuinely
non linear or linearly degenerate. Moreover, the Riemann problem solution may contain
compound waves or over compressive shocks.

Contact, A4

Slow, A3
Alfvén, Ao

Fast, A\;

Figure 1.2: Riemann fan of the ideal MHD system.

52



V. Conclusions

IV.4 Discussion on the assumptions leading to MHD models

For the ideal and resistive MHD models, we have supposed that the inertial lengths are
small. Let us take the example of the Iter tokamak. In [37], Friedberg summarizes all the
different parameters of this future device for the center of the plasma at page 641. For
the edge of the plasma, we use the parameters given in [20] at page 160. With those data,
we compute the electronic and ionic inertial lengths values at the center, at the edge of

the tokamak and the results are presented in Table 1.1. We also report the ratio n

Tei T Tie
given in [68].
At the center and the edge of the plasma, we remark that the inertial length of the ions
is not that small, around 10~2. Then, only the transport terms in the Ohm’s should be

neglected
JxB 1 1
— — =07 —=Vp.

n 2\/67 "n p
According to Table 1.1, the magnetic Reynolds number is very large, and the Hall MHD
should be a model more appropriate for tokamaks that the ideal or resistive one. However,
as many important physical phenomena are occuring in toakamak are well represented by
resistive and ideal MHD models, these models are of wide use in this domain and will be
considered in this work.

1
E+uxB=—nJ+./c;
R,

Center Edge
no(m=3) 0.91 x 10%° 1019
T.(keV) 11.2 0.04998
By(T) 5.3 5.3
no(Qm) 1.73 x 1077 5.82 x 1070
ugp(m.s—1) 1.2115 x 107 | 3.4479 x 107
5 2.7853 x 10~% | 8.4022 x 10~*
& 1.19 x 1072 | 3.6003 x 102
R, 1.7559 x 10™ | 1.4896 x 107
1 —1 4 4
—(s7h 4 x 10 4 %10
Tei + Tie

Table 1.1: Value of the inertial lengths and resistivity for the tokamak Iter at the center,
and at the edge of the plasma.

V Conclusions

In this Chapter, starting from a kinetic description of the plasma, we have derived three
different fluid models: bi-temperature Euler, ideal MHD, and resistive MHD models. The
first one consider the ion-electron mixture as a single fluid but retains two temperature
or energy equations to describe the thermodynamics of the mixture. The two others are
also mono-fluid models but this time we keep only one energy equation. The derivation of
those models corresponds to different asymptotic regimes depending of the values of the
parameters (3, 5;‘71, and R,,.

After presenting the finite volume method in Chapter 2, we will present numerical
schemes to approximate solutions of these three models in Chapter 3 and 4.
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Chapter 2

Finite volume method

This chapter is devoted to finite volume-type methods. First, we give the general form
of the method for two different approaches: cell-centered made of rectangles, and vertex-
centered with triangular elements. Finally, these two approaches are adapted to the cylin-
drical coordinates. In fact, in the case of the cell-centered approach, the goal is to write a
finite volume method for the toroidal geometry.

I Generalities on finite volume method

After re-calling the principle of finite volume methods, we give two examples in Cartesian
coordinates: the cell-centered approach, and the vertex-centered one.
I.1 Principles of finite volume method

Here, we consider a general hyperbolic conservative system written in the form
U+ V-FU)=0. (2.1)

A tessellation is used to mesh the computational domain. Then, the control cells {2 are
constructed. Let € be a typical control cell. We suppose that the solution U is known
on the control cell ) at the time t". In order to have the solution Ug“ at the time
t"tl = " + At where At is obtained with a CFL-type condition [41, 53, 73, 45], the
equation (2.1) is integrated over € x [t™, "]

Jodo

which is equivalent to

/U T dQ — /Uxt"dQ+/
tn

The solution U is defined as the average of U on the control cell €2

tn+1 tn+1

xtﬁam+/ /<7F%ﬂxwmaﬁ_o

tn+1

/v £)dQdt =0.  (2.2)

1
c@:/U@wmmqm:/m. (2.3)
12| Jo Q

Hence, the equation (2.2) is equivalent to

tn+1

%H_%_MIW(/V t))dQdt.



Chapter 2. Finite volume method

In our numerical tests, we only use explicit numerical fluxes then we have

At
Ug = Vg~ i [ VP )as 24)

The computation of the numerical flux term / V-F(U(x,t"))d2 depends on the approach

and of the control cell form. The two next subsections are devoted to the computation of
the numerical flux for both cell-centered and vertex-centered approaches.
1.2 2-D cell-centered finite volume on rectangular mesh

The computational domain is a rectangle meshed with quadrangle elements aligned with
the x and y-direction. Let N, respectively N, be the number of control cells in the z,
respectively y-directions. For ¢ = 1..N,, and j = 1..N,, a typical control cell is now
denoted 2; ; [41] and shown in Figure 2.1:

Qij = [Ti_1/2,Tiy1/2] X [Yj—1/2:Yj1/2)s 1 = 1. Nz, j = 1..Ny.
The center point (z;,y;) of the cell is given by

Ti—1/2 T Tiy1/2

Z; = f’ 7/:]-N337
(2.5)
Yj—1/2 T Yjr1/2 .
y = SRR =L,

We also define the space increments in x and y-directions

{ Az, = Lit1/2 = Li—1/2) i = 1..Ng,
) =1..

Ay; = Yjr12 —Yj—172, J = 1.Ny.
($i—1/2vyj+1/2 xi+1/27yj+1/2)
IE‘_ 9 ; €T s .
(z; 172 Yj—1/2 Az i+1/25 Y5 1/2)

Figure 2.1: Representation of a control cell €); ; in the cell-centered approach.

According to the Cartesian coordinates, we rewrite the divergence as
V-F(U) = 0,Fy(U) + 0,F,(U).
With all this description, we have

Q5| = Az; Ay,
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I. Generalities on finite volume method

and the equation (2.4) becomes

At Tit1/2 Yj+1/2
Uff;rl =up, - AA/ /] 0 Fo(U)dzdy
LiRYj i—1/2 Yj—1/2
(2.6)
/ i+1/2 /yj+1/2 )d d
ray,
szij Ti—1/2 1/2
where U"; is computed with the definition (2.3)
U / i+1/2 /y]+1/2 ”)d d
) (z,y,t")dzdy.
W AxlAyJ Ti—1/2 1/2
The equation (2.6) rewrites
At Yj+1/2
U =V - my / / (Fe(U@isnjor9,8)) = B (Ui oy, t)) | dy
Al e F,(U t" F,(U ™) )| d
A:L;Z‘ij/%_l/2 [y( (xayj—i-l/Qv ))_ y( ($7yj—1/2a ))} Z.
(2.7)
The numerical fluxes are defined by
" 1 /yj+1/2F (U( ) d
; e Tiv1/29Y, ) Y,
z,i+1/2,] ij o z i+1/
N 1 i+1/2 n
Fy7z‘,j+1/2 = Awi/ Fy<U($vyj+1/2’t )>d'33'
Ti—1/2

Those numerical fluxes are obtained with a Riemann type scheme in the numerical tests.
Finally, the finite volume method for this 2-D cell-centered geometry is
Un+1 Un At (

A
Ax; t (

zir1/2j ~ 31—1/2,3') ~ag gz = F in,j_uz) :
j
In this case, the CFL condition is given by

At
)\ma:c 7
h

min

<1

There are a large various ways of choosing the coefficient Ap,q. [12, 31, 74]. For instance,
this coefficient A4, can be defined as the maximum of wave all over the computational
domain. Indeed, for a cell €; ;, we denote

Amaxi': /\,A?:8FUZ”
i Aefq?o??f;gj)(’ ), Aij = uF(U})

Then we have
Amaz = i:l..]\Ifggil..Ny(Ama%iJ)' (2'8)

The variable hy,;y, is given by

Pomin = mMin(AZmin, AYmin); ATmin = . rrlll% (Ax;), AYmin = ; Hlnn (Ay;).
x - y
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Chapter 2. Finite volume method

In Chapter 4, the numerical tests are also performed at the second order in space for the
cell-centered approaches. Here, the second order is based on MUSCL-type method [76,
41]. It consists to use a piecewise linear reconstruction of the solution U instead of a
piecewise constant solution. Figure 2.2 gives a 1-D example of such a reconstruction. In
2-D Cartesian geometry, then the linear solution on the control cell €); ; is given by

Uij(z,y) = U + (v — 2:)6:Ui j + (y — y;)6, Ui 5,

with
n T
6 U . _ 1“1‘11] i_lvj
Ui, =
! Tit1 — Ti—1
. . (2.9)
SU . — Ui — Ul
yVijg = :
Yji+1 — Yj—1
At the first order in space, the numerical fluxes F /2.j and F 7?], +1/2 are computed with

Riemann-type flux. In other words, to determine F] h /2.j

). At second order in space, the left and right

at the interface (z;41/2,y;) we

consider the Riemann problem (U, U"

450 Uit
state of the Riemann problem are now (U;_l/lj, Uz’il/Q,j) where
_ Az;
Ui+1/27j = Ui,j($i+1/2>yj) = Uﬁj + TZCSmUi,j»
Awiyq
Ukio; = Uisjl@ipyay) = Uy — —5 2Uit1;-

However, some physical properties, such as the positivity of densities and pressures, have
to be preserved during the reconstruction of the solution. Then, we use the minmod
limiter: the coefficient 0,U; ; of (2.9) is re-computed with

n.o . _yn ygnr _ygr, .
. i+1, 7, %, 1—1,

0.U; ; = minmod | 0,U; ;, J A 2,
Ti+1 — T4 Ti — Ti—1

where the minmod function is
minmod(a, b, ¢) = min(0, max(a, b, ¢)) + max(0, min(a, b, c)).

Likewise the z-direction, the two states at the interface (z;,y;41 /2) are denoted U,

i,j+1/2
and Uf] 172 and are given by
_ Ay
Uijpie = Uii@oyinp) = Uli+ —76,U;,
Ayjt
Ufjﬂ/z = Uijri(i,yje12) = Uijy — TJ%UM‘H-

where we also limit d,U; ; with the minmod function

Ur. . —yUr Ur —U"
0yU; j = minmod <(5in,3', Lt wl b = 1) .
Yi+1 — Y5 Yj —Yj—1

Usually, a second order in space scheme is also coupled to a second order time method.
In the numerical implementation, we use the following second order Runge-Kutta-type
method for the time integration. Knowing the solution U;* at the time ¢", we first compute
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I. Generalities on finite volume method

U; with (2.7). Then, we re-use this formula (2.7) in which we have replaced U}* by U,
and the numerical fluxes are obtained from the states UZ-/. The result of this second step
is called Ui”. Finally, the solution UZ”H at the time ¢"*! is given by

1 "
Uf+1:§<Uf+Ui).

Remark: For the ideal MHD equations, the equations on the x and y-components of the
magnetic field are given by:

0: B, + 0y(vBy —uBy) = 0,
0B, + 0y(uBy—vB;) = 0.

Since B, respectively B, does not have a z-derivative, respectively an y-one, then, the
variable B, respectively B, is not reconstructed in the z-direction, respectively the y-
direction.

UiZ1)2
. /
i—1
Ut
U»L(JL') =U"+ (E — mz)ézUz i+1/2
T
Ti—1 Lid1/2 T Lif1/2 Tit+1

n
i+1

Ui
\

i+1/2

Figure 2.2: Piecewise linear reconstruction for the 1-D case.

1.3 2-D vertex-centered finite volume on a triangular mesh

Here, we consider a triangulation of the computational domain. We denote N the number
of triangles and N, the number of points in the mesh. For the vertex-centered approach [41,
78, 45], the control cells are constructed in the following way. Let us first consider a
vertex 4, with ¢ = 1..N,,, the control cell associated is denoted €2;. Then,

0= J 9

TEVT(3)

where V7 (i) is the set of the triangles in which ¢ is a vertex, and Q7 is a subset of the
triangle 7. To build €7, the triangle 7 is divided in six equal triangles, which means that
those triangles are formed with the three medians of the triangle. Then, Q7 is given by
the two resulting triangles which share the vertex i (see Figure 2.3). Thus the surface of
the control cell is

1
2l=1 Y (210)
TEVT (1)

where |7] is the surface of the triangle 7.
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Chapter 2. Finite volume method

Figure 2.3: Representation of a control cell €2; in the vertex-centered approach.

Concerning the flux term of (2.4), we have

(/ V-F(U(&tﬂ)dQ:: F(U)nd(dQ),
Q; o9
where 0f); is the boundary of the control cell ;. According to the Figure 2.3, 0€; is

o = | J o9y,

FeV(@)
where V(i) is the set of the neighbor point of i, and
Hence we have
L/ v.F(U@gﬂ)mlz 3 /1 F(U)nd(9).
i jev(i) 9

The numerical flux is defined as

FZ](UZn, U;-l, Ilij) F(U)nd((‘)Q), ‘8913’ = / d(@Q),

ij

10941 Joa,

where
1

B ”faﬂij ndoQ|| O,

Finally the finite volume scheme for this vertex-centered approach is

I’Iij

ndos). (2.11)

At|0;
Ut =g - Z MF(U[‘,U}l,nij)v
jeve

where the numerical fluxes are computed with a Riemann type scheme. The CFL condition
is given by
09251
A ——= | At < 1.
maz , N, < || -

Likewise the cell-centered approach, the numerical tests using the vertex-centered ap-
proach have been performed at the second order in space. To do so, we still base the
reconstruction method on a MUSCL-type method. According to [45], for ¢ and j two
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II. Cell-centered approach for cylindrical coordinates

neighboring points, the initial data (Ui;, U ]Jg ) used to compute the numerical fluxes at the
interface are given by

%

U: = U+ =(VU);-(iy),

1
ij 5
n 1 =
Uj’:- = Uj —§(VU)]~‘(1‘7).

It exists several ways to compute the gradient (VU);, in numerical simulations the average
nodal gradient is chosen:
> VU7l

TEVT (3)

1
(VU),; =
€2

Finally, the minmod limiter is applied to correct the gradient and to insure positive densi-
ties and pressures. Once again, a second order Runge-Kutta method is used for the time
integration.

IT Cell-centered approach for cylindrical coordinates

By keeping in mind the tokamak application, we are now interested in the adaptation of
the cell-centered approach to the cylindrical coordinates. All the computations of this
section are given for the ideal MHD equations (1.96) case.

II.1 Ideal MHD equations in cylindrical coordinates

In Figure 2.4, the cylindrical coordinates are denoted (R, y,Z), the canonical basis is
(er,ey,,ez), and a vector A is represented by

A= AReR + A¢e¢ + Azez.
Let us now consider two vectors A and B, the tensorial product is given by
ARBR ARBQ ARBZ

ARB= A¢BR A¢B¢ AQPBZ
AzBpgr Asz AzBy

Let T be a tensor given by

_ Trr Try Trz
T=|T,r Ty T,z |,
Tzr Tz, Tzz

then, the divergence of tensor is

(V . T)R = E(‘)R(RTRR) + EQ@Tmp + 07TRz — RTSDSD’
(v T)SO = OR(BT,R) + 50, Tpp + 07 Tp7 + 7T, (2.12)
{ (V . T)Z = E(?R(RTZR) + anTZ‘p + 0715 4.
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Chapter 2. Finite volume method

The translation invariance dz- = 0 is assumed, then the ideal MHD equations (1.96)
writes

9 (Rp) + Or(Rpur) + 9,(puy) =0,
di(Rpug) + Or R (put, + pr — BE)| + 0, [puru, — BrBy| = puy, + pr — B2

(,D’
O0¢(Rpuy) + Or [R (puruy, — BrBy)] + 0, [puw +pr — Bi} = — (pupuy, — BrB,),
O
O (REr) + aR[ ((5T +pr)ug — (u- B)BR)} +0, [(5T +pr)u, — (u-B)B,| =0,
Oi(RBR) + 0, (upBr — urBy) = 0,

O
O

(

(

(

(Rpuz) + Or [R (puruz — BrBz)| + 0, [pu,uz — B,Bz] =0,

(

(R

(RB@) + 8}{ [ (URB@ — uchR)] = uRB@ — uwBR,

(RBz) + 83[ (URBZ — UZBR)] + Bgo (ug,BZ — UZBQD) =0.
(2.13)

This system has some artificial source terms, and in order to suppress some of them, the

tangential momentum equation is multiplied by R and yields to
(R pu,) + Og [RQ (puruy, — BrBy)] + 9, [R (pui +pr—B,)| =0. (2.14)

By developing the R-derivative in the tangential magnetic field equation, we also obtain
a source term-free equation

0B, + Or(urBy, — Byug) = 0. (2.15)

Up to our knowledge, a process to suppress the source term of the radial momentum equa-
tion can not be applied. By replacing, the tangential momentum and tangential magnetic
field equations of (2.13) by the equations (2.14) and (2.15), we obtain the following system

( 0:(Rp) + Or(Rpur) + 9y(puy) = 0,
O (Rpur) + Or [R (pu2R +pr — B})| + 9, [puruy, — BrBy| = puy, + pr — B2,
O (R?pu,) + O [R? (puruy, — BrBy)| + 9, [R (pud + pr — B,)| =0,
Oy(Rpuz) + Or [R (puruz — BrBz)] + 0, [puy,uz — BoBz] =0,
Oy(RET) + O [R((ET 4 pr)un — (u- B)BR)} + 0, [(5T + pr)ug — (u- B)B(p} —0,
8t(RBR) + 8@ (U¢BR — uRBw) =0,
8tB¢ + Or (’LLRBQP - ’LL(,DBR) =0,
8t(RBz) + Ogr [R (URBZ — ’U,ZBR)] + 690 (’U,@BZ — UZBcp) =0.

(2.16)

The previous system is written in the following form

OU + OrFr(U) + 0,F,(U) = S(U),
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II. Cell-centered approach for cylindrical coordinates

where

Rpupr

R? Pl
Rpuyz
REF
RBpr

RByz

ez®

Fr(U) =

Rpur
R(pu%, + pr — BE)
R%*(puru, — BrB,)
R(puruz — BrBz)
R[((E'T -+ pT)uR — (u . B)BR]
0
’LLRB@ — UthR
R(urBz —uzBRr)

Pl
purt, — BrB,
R(pu, +pr — B2)
puyuz — B,Bz
(& +pT)u<,o —(u- B)Bso
uwBR - URBap
0
’U,@BZ — UZBap

Figure 2.4: Cartesian and cylindrical basis representation.

I1.2 Cell-centered approach in a circular mesh

(2.17)

After writing the ideal MHD equations in the cylindrical coordinate system, a finite
volume-type method using the cell-centered approach is designed to approximate the so-
lution of the MHD system. The computational domain is now a disc still meshed with
quadrangle elements aligned with the R and @-directions. Npg represents the number of
cells in the R-direction and N, is the ¢-one. Then a typical control cell €2; ; is shown
in Figure 2.5 for ¢ = 1..Npg, and j = 1..N,. The vertex of the control cells are denoted

(Ri+1/2)0§i§NR, and (@j“/?)OSjSN@ where

0 < Ryp
0 = w12

<
<

< Ripip <

< @iz S

< Rnpi1/2
<

ON,+1/2 = 2,

where periodic boundary conditions are used in the p-direction. Using the definition (2.5),
the cell center in cylindrical coordinates is given by

R;

¥Pj

Ri 12+ Riy1)2

2

Pj—1/2 T Pjt+1/2

2

. i=1.Ng,

, j=1.N,.
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Chapter 2. Finite volume method

According to (2.16), the 2-D ideal MHD equations in cylindrical coordinates can be written
in three different forms

Owu + Orfr(u) 4 O0p fo(u) s(u), u= By,
at(RU) +8R(RfR(U)) +a§0f<,0(u) = S(U), (AS {p:puR7puZ7gTaBR>BZ}7
OL(R2u) + O (R fr(w) + Oy(Rfp(w) = s(w), u=pup.

(2.18)
where fr(u), fo(u), and s(u) are the corresponding values given in (2.17). The three
forms of the cylindrical equations leads us to define the space increments by

Rit1/2

(AR)ix = / RFIR, i=1..Np, k=0..2,
Ri_1/o .

(AQ); = @jt12—Pj-1/2, J=1..Ny.

(2.19)

The first equation of (2.18), has the same form as a Cartesian one with a source term.
Then, by integrating this equation over ; ; x [t",t"*1] for i = 1...Ng and j = 1...N,, we
have

(AR);o(Ap); (i = uy) + AUAQ); [J11105(0) = FRi s m(u)}

+At(AR)io [fg,i,jﬂ/z( )= [ jo1e(u / /t R, e, ))dthd%

Evhere the average solution v;'; and the numerical fluxes fp Rit1/2,) and f /2 e given
y

e, )
u? j = ’LL(R, 2 tn)de('pv
7 (AR)io(Ap); Ja,
" 1 Pi+1/2 n
fR i+1/2 ](u) = Ao fr (U(Ri+1/27 @t )>d907 (2.20)
' ’ ( ¥ Pij—1/2
f (u) - / R ( (R t"))dR
KN u) = U(LT, Q41725 ) .
\ ©,i,5+1/2 (AR); 0 Rivyo ¢ j+1/
The time integral of the source term is evaluated in ", then we have
1
BN 0Y) . — / s(u(R, @,t"))d}zd@. (2.21)
7 (AR)i0(Av)j Ja,,
Finally, the finite volume method in cylindrical coordinates writes
“zjl =5 m [fR,i+1/2,j(u) - fR,i—l/Q,j(u)]
(2.22)
At

(Ap); [f pig1/2() = fg,i,j—l/Q(U)] + At s} (u).

Let us now focus on the second equation of (2.18), we integrate it over €; ; x [t", "]

/ /t /Q 8R<RfR(u(R, ¢,t>)>de¢dt
/t o /Q Op o (w(R.,1) ) dRdipdt = /t . / ¢,1) ) dRdigdt.

g+l nt1

ROwu(R, ¢, t)dtdRdy + /
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II. Cell-centered approach for cylindrical coordinates

Then, we have for explicit numerical fluxes:

/ u(R,w,t”“)Rdego—/ u(R, ¢, t")RARdy
inj Qi,j

Pji+1/2
+At/ [Riﬂ/sz (U(Riﬂ/%%tn)) - Ri1/2fR<u(Ri1/27907tn)):|d§0
)

j—1/2

Rii1/2
+At/ [fcp (U(R, <Pj+1/27t)) — fo (U(R, @j—l/Q?t)):|dR
R; _1/2

tn+1
= / / s (u(R, ©, t)) dRddt.

In this case, we deduce that the average solution w;’; is

@
Uy = e u(R, @, t")RdRdp.
1= AR (Bg); Jo, "o

The explicit numerical fluxes and the source term are still defined by the relation (2.20)
and (2.21).Finally, the numerical scheme writes
At

u?jl =u; — (AR |:Ri+1/2fR,i+1/2,j(u) - Ri—l/QfR,i—l/Z,j(u)]

— (AA;)j m [fw,z}j+1/2(u) - fgp,i,j_l/Q(U):| (2.23)

)

(AR)io ,

(AR)i,l Si,j(u)'

+ At

For the last equation of (2.18), we use the same method as the two previous ones. We
obtain that the finite volume method is

n n At N .
ui,j_l =W~ m |:R?+l/2fR,i+l/2,j (U> - R?_]_/QfR7i_]_/2’j (u)]
At (AR)ia [ ,p .
~ (Ay); (AR)ia [ origr12(w) = f¢7i7j_1/2(u):| (2.24)
(AR)io
A PO
+ t(AR)i’g Sz,j (U),
where 1
. = - R’ ’tTL R2de ,
U (AR)i2(Ap); /Q] u(R, ¢, t") 2

f (u) 1 /RM/Zf ( (R t ))RdR
ni j u = u y Pj ) " )
©,0,54+1/2 (AR)Z,l Ri—l/? ¥ J+1/2

the radial numerical flux fz ., /2’j(u), and the source term s';(u) are given by (2.20)
and (2.21).
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Chapter 2. Finite volume method

The relations (2.22)-(2.24) can be generalized with the following formula

uz;rli = Uik — (AR); 1 [R§+1/2f37¢+1/2,j(u) - R§—1/2fR,z'—1/2,j(U)]
At n n
Hi ke (Ap); [ 4p,i,j+1/2,k(u) - f@,i,j1/2,k(u):| (2.25)
AR);
+ AtEAR;’Zst(u), k=0.2,

where the average solution on (; ; is

§ 1 /Ri+1/2 /‘Pj+1/2 (R t”) deRd
ul = e e\ @, -
Jok (AR)i k(Ap); Ri_1y2 J@j_1)2

The numerical fluxes are given by

n 1 Pi+1/2 n
fR,i—i—l/Q,j(u) = / fR(u(Ri+1/2a ©, 1 ))d%
%)

(A(p)] j—1/2
1 Riy1/0 "
AR)o /R fo (U(R, Pit1/2,t ))dR, k=0,
% i—1/2

fg,z‘,j+1/2,k(u)
1 Rity2 ny) pk—1
/ fcp(u(Ra Vjr1/2:t ))R dR, k=1,2.

(AR)UQ*l R _1/2
The source term is
ij(u) S — /RMN /%1/2 ( (R, o, t™) )de
Si Au) = S|u ,‘Pa (10
7 (AR)@O(ASO)J' Ri—1/2 Pj—1/2
Finally, the function p; j, is defined by
1, k=0,
Wik = A
(AR)ik1 ) _ 1,2

According to (2.25), the CFL condition is given by

At
>\maz g 1’
h

min

where Ajq. 1S the one of relation (2.8), and Ay, is

hmin =

(AR); k,

min -_—
i=1..Ng,j=1..N,,k=0..2 i ke
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III. Vertex-centered approach for the toroidal geometry

Figure 2.5: Representation of a cell €); ; in the cylindrical coordinates for the cell-centered
approach.

III Vertex-centered approach for the toroidal geometry

After presenting the adaptation of the cell-centered approach to the cylindrical coordinates,
we now focus to write a vertex-centered finite volume-type method for a fully 3-D toroidal
geometry. First, the mathematical and geometrical properties of a torus are used to design
the 3-D mesh. Finally, we give the computations related to volume, surface, and unitary
normal necessary to write the finite volume method.

I1I.1 Cylindrical coordinates for toroidal problem and divergence form

The toroidal geometry is particularly useful for simulations taking place in a tokamak.
Indeed, a tokamak can be modeled as a 2-D plane in rotation about an axis [18]. The
2-D plane is named poloidal plane. Hence, the axisymetric feature of a tokamak makes
pertinent to use cylindrical coordinates.

Let us consider the Cartesian coordinates of a tokamak point x = (z,y,2)7. The
relation between its Cartesian coordinates and its cylindrical coordinates (R, Z, )7 is
given by

r = Rcosy,
y = Rsingy,
z = 4,

where R € R, ¢ € [0,27[, and Z € R.
The mapping ¥ : R3 — R3 x = (z,y,2)7 — (R, Z, )T leads to the following
covariant basis:

er = Ogrz e;+ Ory ey + ORrz €,,
ez = Ozxe,+0zye,+0zze,,
e, = Oyre;+0,yey+0,ze;,

where (e, ey, e;) is the canonical base of R3. The Jacobian determinant of ¥ is
ER-(€¢X62)2R>O,

which means that the transformation W is one-to-one. The scaled covariant basis is useful
and is given by

ER e ez e 6‘»9
= 7 = 7= = 7= -
ler]’ lezll” ™ el

erp =
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Chapter 2. Finite volume method

It is also worthwhile to define the contravariant basis associated to the transformation W.
The contravariant basis (7,4, &%) is defined by duality relations

&6 = oL,

where 5}6 is the Kronecker’s symbol and k,l = R, Z, .
In cylindrical coordinates, the divergence operator writes for a vector V = Vzegr +

Vzez + Ve,

1

1
V-V = E&g(RVR) + 07V, + R&pr.
We re-call that for a tensor
_ Trr Trz Try
T=|1Tzr Tzz Tz, |,
Tor Tpz Ty
the divergence operator writes
= 1 1 1
(V-T)r = EaR(RTRR) + EOQDTR@ +0zTRz — ETW’
= 1 1
(V . T)Z = EaR(RTZR) + EacpTZgo + 8Z]—'ZZ7
= 1 1 1
(V . T)SO - E8R<RT¢R> + E(’?@Tww + aszz + ETR(F

The projection onto the cylindrical base (eg,ez,e,) of the vectorial equation

OV +V-T =0,
gives
O (RVR) + Or(RTRR) + 0z(RTrz) + 0,Tr, = Ty,
875(RVZ) + 8R<RTZR) + az<RTzz) + 8¢TZ¢ = 0,
at(RV@) + 8R(RT¢R) + Bz(RTWZ + a‘PT%ﬂ = fTR@.

Then, artificial source terms are created by the spatial variation of the local basis. This
remark has also been made in the previous Section for the case of the ideal MHD equations.
Therefore, to keep the strong conservative form of (2.1), we use the general definition of
the divergence operator as it has been done in [18, 21]

1
V.V =0 (RV-&),
Rk
where V is either a vector or a tensor. In this formula, the Einstein summation convention
is used. Taking V = U and T = F(U), using the above definition of the divergence
operator and considering R time independent lead to a conservative form of (2.1) which
writes:

O (RU) + (RF(U) ~é’k> —0. (2.26)
Finally, the finite volume-type method is applied to this equation.
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III. Vertex-centered approach for the toroidal geometry

I11.2 Mesh design and adaptation to the finite volume method

To design the 3-D toroidal mesh, the axisymmetry of toroidal geometry, we start from a
2-D mesh which represents the mesh of a section (R, Z) of the torus [18, 21], also known
as poloidal plane. The 3-D elements are obtained by the rotation of the poloidal ones
around the Z-axis. Therefore, the ¢ or toroidal direction is modeled by the interval
[0,27]. This interval is then divided by Ny, segments by the points (¢;41/2)0<j<N,an
where ¢y /5 = ¢ Nytan+1/2 =0 with a 27-periodicity where the centers are given by

_ Pi-1/2 + Qjit1/2

Pj 9 j= 1'~-Nplan-

For practical implementation, we only need the 2-D mesh of the poloidal plane. To con-
struct a typical 3-D curved control cell, we first use the global numbering

1= (i2D - 1)Nplan +J, i2p = 1..Nap, j = 1-‘Nplan‘

where Nyp is the number of point in the initial 2-D mesh, iop represent the number of the
2-D control cell 92253 in the poloidal plane, and j locate this plane in the toroidal direction.
Then, the 3-D control cell €2; obtained by the rotation of Q?Q% around the Z-axis between
the toroidal angles ¢ = ¢;_1/2 and ¢ = ;112 :

Qi =20 X [pj_1/9, 0j41/2)-

According to this description, we have coupled a 2-D vertex-centered approach to a cell-
centered one in the third direction. All of this is summarized in Figure 2.6 where Ry is
the major radius of the torus. Then the radial coordinate can be rewritten as

R=Rg+r, reRT,

In numerical simulation, r is the first coordinate of the 2-D initial mesh to which we add
the major radius value to obtained the right radial coordinate in the torus.
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Chapter 2. Finite volume method

Ry 19p — 1 12D 19p +1

Figure 2.6: Projection on e, of the €2; cell control.

The finite volume method for the hyperbolic system (2.26) using explicit time integra-
tion writes

/ RU(R, Z,p,t" ™ dRdZdyp — / RU(R, Z,,t")dRdZdy
Ql‘ Qi

LA /Q O [RE(U(R, Z,p,1M)) 8] a2 = 0. (227

Hence, the average value U;* is given by

1
unr

: :\QI/ RU(R, Z, ¢, t")dRdZdy, \Qi|:/ RARAZdyp.

According to the mesh design, the expression of the cell control volume writes
Pi+1/2 9D
19| = / RdARdZ / do | = |, |Ap;,
Qzb Pj—1/2
19D J
where Ap; = @;1/9 — ©j_1/2, ] = 1...Npian- The surface |Q?£D\ is given by
]' T
QD)=2 3 R,
TEVT (iZD)
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III. Vertex-centered approach for the toroidal geometry

with .
R, = RlzD + (RlzD + Rsz)

2D

with lop and map are the two other vertices of the triangle 7, and V7 (isp) is the 2-D set
of the triangle having isp as a vertex.
The last term of (2.27) writes

/Qi O [RF(U(R, Z,go,t")) .’ék} Q) = /8Q R [F(U(R, Z,ap,t”)) .a’f} <n-€k) o).

Writing that 0Q; = |J 90! where 90 are boundaries of the cell ;, we have

/MR[F(U(R,Z,MTL)) & (n-&") do0 = Z / U(R. Z.pt") -] (n-) o0,

o0be

In the rest of this subsection, (eg j,ez,e, ;) is the cylindrical basis at the angle ;. In
order to approach correctly flux integrals, we present here the different types of boundary
surfaces and the computation linked to it. The boundary surfaces 89? can be divided into
three types:

e The surfaces (9(2;“ of outgoing normal n = e, 1,2,
e The surfaces 9€2; of outgoing normal n = —e, ;_1 /2,
e The curved surfaces S; directed along the toroidal direction e,

with 0€; = 89? J0Q; [JS;. To be more precise, the two first types of surfaces are similar
and we have
+ 2D
0 = Q77
and
/ R [F(U, R, Z, o, t") - ’é’f} (n-8")doQ = F <UZ-”, ur, ie%l/z) / dRdZ.
oaf

2D
2D

We deduce from (2.10) that

1
o0l =5 > I,

TEVT (i2p)

and
/iR[F(U,R,Z,cp,t”)@k} (n-&)doQ = [0QF|F (U7, U + ey j41)2) »
o0

where | = i + Npqp, for 6QZ'-F and | = ¢ — Npjqn for 0€2; are the two neighbors of ¢ in the
p-direction.
Finally, the surface S; is the rest of the boundary surfaces. It can be described as

si= | Szz,

ley2D (4

where V2P (i) is the set of the neighbors of i in the poloidal plane. For [ € V2P (i), the
surface S;; is given by

S = H RL.D (Sz‘QlD) 9122% ﬂ leD’

wE[pi_1/2:¢541/2]
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Chapter 2. Finite volume method

where iop and lyp are the poloidal number of ¢ and [, and the operator R¢(Si21D ) is the
rotation of SZ.QZD around the Z-axis about the angle ¢. To compute the numerical flux over
the surface S;;, we write its unitary normal in the Cartesian coordinates

NpR COS Y
n=| ngrsingp
nz

Then we have
/S [RF(U(R, Z, gp)) .gkz] (n.gk> dS = S| F (U, U ny),
il

where F(U",Ul*,n;) is the numerical flux determined with a Riemann-type scheme, and
n;; is the average unitary normal of S;; given by the definition (2.11)

1 1 D Pj+1/2 NRCOS@
n; = / ndS = RdS? / nrsing | dy,
Aw:
2np sin % COS
2D
|Sii . Apj
N 2np sin sing; |’
nzAp;
where
1820 | = / RdS?P (S| = / RdS.
82P Sit
Using the form of S;;, we deduce that
|Sitl = Ap;|SFPI.
Then, the normal n;; becomes
A
Bing cos ¢, Bing sin ;%
n; = | Bjngsing; =| nz » Bi = =R
nyz 4,0]
(emveyvez) (eR,j7627e(P,j) 2

Finally, the finite volume method for the toroidal geometry writes

1eV2D (i) d

TN [F (Ui’ i+Nplan7e¢7j+1/2) _F(Ui—Nplan’Ui aem—l/z)]-

For a scalar variable u, its average value over a control cell €); is given by

ol
U = — Rud).
1] Jo,
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III. Vertex-centered approach for the toroidal geometry

The one of a vectorial variable u is

1 U
u; = / R Uz dQ).
4l Jo, |,
©

(eR7eZ 7e50)

As the cylindrical basis is moving in the control cell €2; and the finite volume method is
applied to the entire vector, we have also to compute the average value of this basis in €2;.
Hence, we have

~ 1
€r; = / ReRdQ = ﬁjeRj,
’ 1] Jo, ’
~ 1
er = — Rede = er,
’ 1] Jo, ’
~ 1
€pi = T Reg,dQ = Bje@j.
(7 %] Jo, ’
Thus the average value of the vector u on €; is
Bjur,i
u; = Uz,
Bjug,i

We define the function u;?

Fi=V 1 if k=2

Then, the finite volume method for each component of the vector u writes

S;
e, - Y (' 1 Fww,nm)

klO).
lEVZD(i) lu’] ’QZ‘

- o [F (Uz' ; i+Nplanaeg0,j+1/2) - F (Uiprla,L’Ui aego,jq/z)} :
My €]

This finite volume method for toroidal geometry has also been tested at the second
order in space. To compute the gradient in this 3-D geometry, we have used the method
presented in subsection 1.3 for its poloidal part: (R, Z)-coordinates. As the mesh of the
toroidal direction is cell-centered, we will use the method of subsection 1.2 to determine
the gradient the o-direction. However, we have to be careful with the toroidal direction
of the gradient: since the local basis is moving, then for a vectorial variable we have to
take into account the derivative in p-direction. To be more precise, by using the relations

O.,er = e,, 0,ez =0, and J,e, = —eg,
we obtain that the variation in the toroidal direction of each component of a vector u is
dpUR + Uy
5¢u = 5s0uZ ,
dply — UR

the notation d, represent the variation of a variable in the toroidal direction.
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Chapter 2. Finite volume method

IV  Conclusions

In this chapter, we have presented two different 2-D approaches of finite volume-type
methods in Cartesian geometry. Then, the cell-centered approach is adapted to the cylin-
drical coordinates under the translation invariance dz- = 0 assumption. I, the case of the
ideal MHD equations, the projection of the vectorial variable equations on the cylindrical
basis creates artificial source terms. We have suppress as much as possible those terms in
the equations and proposed a finite volume method adapted to the new ideal MHD system
equations. The numerical results of this methods are given in Chapter 4.

Finally, a fully 3-D finite volume method is designed by coupling a 2-D vertex-centered
approach in the poloidal plane (R, Z) to a cell-centered one in the toroidal direction ¢.
In order to avoid artificial source terms, the divergence operator is written in its original
definition [18, 21]. This method will be tested for the bi-temperature Euler equations in
Chapter 3.
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Chapter 3

Relaxation scheme for the
bi-temperature Euler model

In this chapter, a numerical scheme is designed to solve the bi-temperature Euler conserva-
tive equations (1.76). Using the rotational invariance of this system, a relaxation scheme
is built for the 1-D equations. The numerical scheme and the numerical experiments are
presented for the mono-atomic case (1.43).

I Presentation of the scheme

Let us first give the principle of the proposed relaxation-type scheme which is based on
the relaxation one of the mono-temperature Euler equations [22, 53, 73, 15, 14]. For the
bi-temperature FEuler equations, this scheme has been written for the non-conservative
system in [7]. Here, we detail the scheme for the conservative one. The system is relaxed
one the electronic and ionic pressures which are replaced by the two relaxation variables 7,
and 7; in the equations. Thus, the relaxed system writes

Op + O0z(pu) =
O (pu) + 0p(pu? + e +m;) =
9 (pv) + Oz (puv)

O(pw) + Oz (puw)

€ + 03 [(€ + me + i) U]
at(pese) + az(peseu)

I
coooo

1—
Y= 1)”2’06 A/(TZL - T€)7

—~

2

a“c

OsTre + TB%U 4 U0y, = v(pe—Te),
CL2C7;

Oy + T(“)Iu + u0ym; = v(pi—mi).

According to [7], the parameter a has to satisfy the following stability condition

N _ [VPa .
a = pmaX(Cs,ea Cs,i)a Cs,a = , & =2¢6,1,

Pa

known as Whitham subs-characteristic condition. In order to have a more precise solution,
the parameter a can be chosen as non-uniform variable solution of a transport equation.
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Chapter 3. Relaxation scheme for the bi-temperature Euler model

Therefore, the relaxed system becomes

( Oip + Oz(pu) =0
Oy (pu) + Op(pu + o + 1) = 0
9(pv) + Oz (puv) = 0,
O (pw) + O (puw) =0
HE+ 0 [(E+me+mi)ul] = 0

8t(PeSe) ;L 3:1:(/3656“) = ('Y - 1)”2’/);77(1} - Te),
OsTre + %&Eu + uO,m, = V(pe—Te),

Oy + %&Eu 4+ u0,m; = v(p;—m),

O¢(pa) + 0. (pau) = 0.

The system is now written in the hyperbolic conservative form

aU + 9, F(U) = S, (U),

where
[ ] i pu 1 [ 0 ]
pu pu? + T + 0
pv puv 0
pw pUW 0
U= & , FO)=| (E+met+m)u |, S,(U) = 0
peSe peSetl (7 - 1>Vegipé_7(Ti - Te)
pre (pre + a?c.)u v(p. — )
T (pmi + a*ci)u v(pi — i)
L pa | L pau ] 0

The relaxation scheme is divided in two steps: a transport step and a projection one.
During the transport step, the system

U + 8,F(U) = 0, (3.1)

1

is solved with a Riemann-type scheme. Then, for the projection step, we take the limit — —
v

0 and solve

U = 5,(0). (3.2)
II Transport step

In this Section, we give the properties of the relaxed system (3.1). Then, to compute the
relaxation flux, we solve the Riemann problem at the interfaces.

II.1 Properties of the relaxed system

In this part, we construct the numerical flux of the Godunov scheme for the system (3.1).
First, the system is rewritten in the form

aU + AU)3,U = 0,
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where A(U) is the Jacobian of F/(U) and is given by

=
I

_ (u2 + ﬂerrm )

—uv
—uw
u

5 [+ 2(me + mi)]

—CeUSe

2

—Uu <7re + 3cea>
)
2

—u (m + SCia>
P

—au

1
;(5 + e + ™ — au)
CeSe
a2
Te + Ce—
T + Ci—
p

a

2u

w
1
;(S—I—We—i—m‘)

CeSe

0 0
0 0
u 0
0 u
0 0
0 0
0 0
0 0
0 0

(
)\1 = u_ga
P
)\2 = u,
)\3 = ’LLJrg
P

D=
Al

00 u 0 2%
p
00 0 u 228
p
000 0 u

1
;(5 + e + ™ + au)
CeSe
a2
Te + Ce—
T + Ci—
p

a

7



Chapter 3. Relaxation scheme for the bi-temperature Euler model

The three waves are linearly degenerated hence, they are contact discontinuities. The
Riemann invariants are

a a a® a®
(u——)—wave : u——, v, w, a, Se, Me + Ce—, T + C;—,
p p p
1 1
2 2
and € — e — T
2c.a? ¢ 2c;a? Y’
u — wave : u, and m + 7,
a a 2 a®
(u+—)—wave : u+—, v, w, a, Se, Te + Ce—, T + ¢;—,
p P p
1 1
and € — 2 2

2¢.a? e ™ 2¢;a? Ti>
where ¢ is the total internal energy defined by
PE = pe€e + Pi€is Pafa = (Y — 1)Pa, a = e,i.

In [7], the Riemann invariants are almost the same ones. Indeed, for the (u — 2) and
p

a
(u + —)-waves, instead of giving the Riemann invariants on the internal energy of each

species, we give the ones on the electronic entropy and on the total internal energy. This
difference comes from the fact that we have considered the conservative system instead of

the non-conservative one.

I1.2 Relaxation flux

After computing the Riemann invariants of each waves, we have now to solve the Riemann
(Ur,Ug) to determine the numerical fluxes at the interface of control cells. First, let us
compute the two intermediate states U}, and Up shown in Figure 3.1. Since the three
waves are contact discontinuities, then the Riemann invariants are used to obtain the two
intermediate states. For example, u and (m, + 7;) are the invariants of the 2-wave then

we have
* _ * _
{ ul = uj =

Ter T = TertTpr =

u*,
.

For the rest of the Riemann invariants we obtain the following system for the 1-wave

arg, " ary,
PL PrL
2 2
a a
L * L
Te,I T Ce—— = Mo+ C—
PL PrL
(3.4)
2 2
_ * ar,
L+ ¢i— = TiL + ¢ )
L L
. 1 2 1 _ * 1 * 2 1 * \2
€L 2ea2 el T 5.2 L — €L 2 a2 ( e,L) SYpe) ( z‘,L)
L ceat, ciay ceat, ciaf
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The 3-wave Riemann invariants give the last system

aRr aRr
UR + — = . P
PR PR
2 2
a a
L R
Te,R + Ce— = 7TZ7R+Cef*,
PR PR
(3.5)
a2 a2,
*
ﬂ-i,R—i_Cii = Wi,R+CiT7
PR PR
1 1 1 1
2 2 * * 2 * 2
€R — TeR™ 5. 2 R — ER— 7(7%,1%) - 7(7%,}2) .
L 2cea%z QCZ‘CL%% QCea% 2c,~a%z

By solving simultaneously the three previous systems (3.3)-(3.5), we obtain

ar(ur —ur) + (e, + i) — (Me,r + Ti.R)

ar(ar + ag)

I

ar(ur —ur) + (me,r + miR) — (Te,r, + i)

1 1
e
P,  PL
1
T T
PR PR

. apup +agug + (7

ar(ar, + ar)

9

L+ 7in) = (Te,r + T R)

ar +ar

ar(ur —ur) + (e, + i) — (Me, R + Ti.R)

)

*
Ta I, = Ta,L — CalL

ar,(up —ur) + (me,r + mi,r) — (Te,r, + i L)

) a:€7i7
ar, +ar

%
ﬂ—a,R = 7Ta,R — CqQR

*
Err = €K +
K 2ceay,

5 3 [(W;K)Q - WZ,K] +

) a:evia
ay, + ar

W[(W’ZK)Z_W’LQ,K]’ K:L,R
UK

Hence, the two intermediate state U}, and Uf can be computed and, the solution of the

Riemann problem is given by

U if

. Ur if
U= Up if
Ur if

Finally, the flux of the relaxation scheme is

F*

=F

0 < A,
A1 <0< A,
A2 <0 < Az,
s < 0.

7).

To keep a physical result with positive densities and positive internal energies, the param-

eter a has to fulfill the following conditions

—PR [(We,R +

pr [(e,r + Ti.R) — (Te,r 4+ i) — ar(ur — ug)],
R)— (Mer+mip)+ar(ug —ur)].
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Figure 3.1: Riemann fan for the relaxed system (3.1).

IIT Projection step

1
After taking the limit — — 0 in the equations (3.2), the resulting system is re-written as
v

function of the physical variables (p, u, v, w, e, Ty, Te, T;) "
( 8t,0 = 0,
6t'LL = 0,
8tv = 0,
dw =0, (3.6)
Te = DPe;
Uy = Di
T, = Vez'(tri - T€)7
ath‘ - _Vie(T’i - T€)7

where the temperature is in electron-Volt (eV). The coefficient v,z is related to the coef-
ficient v&; defined in (1.19)

£

Vap = (fy_ 1)nyekti Q= 67i.
«a

For practical implementation, we use the value of the coefficient v, given by the NRL
formulary [48] at the page 34

elllg >\ei _
Vag = 1.8 x 10719V IeMil5 el -1 (3.7)
(miTe + Tne,-ri)g/2

and \¢; is the Coulomb logarithm also defined by the NRL formulary [48] given at the

same page
23—1n<vne> C e T < 10eV,
- .

m
e 1

Aei = (3.8)
2 (V).

e

Tty < 10eV < T..

my;

In (3.7) and (3.8), the temperatures T¢, and 7T; are in eV, the mass are expressed in g,
and n, is in em 3.
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The final temperatures 7"+ and T;"*! are given by

Vei o Vied™ + v T
T = — (TP — TMe (veitvie) At | Zete D TATE
V@i+yie V6i+yi€
Tl Vie (T — Ten)ef(veﬁrwe)ﬁt + M
t Vei+Vie Vei+Vie

where T?" and T are the temperatures obtained with the transport step. We then get the

relaxation time t,.;q; given by
1

Vei + Vie
At this end, we compute the new total energy and the new electronic entropy with (1.27),
(1.44), and (1.49) in the S.I. units. To do so, the temperatures need to be express in
Kelvin (K). The relation between the temperature 7¢" in eV and the temperature T in
K is given by

(3.9)

trelaz =

TK =1.1604 x 10*17¢ .

According to (3.6), the difference between the two temperatures (7; — T¢) is solution

of the equation
815(’TZ - Te) = _(Vei + Vie)(Ti - Te)‘

Therefore, at the end of the projection step, the difference T; — T, is
Tz‘n—H _ Ten+1 — (Tzn _ Ten)e*(vci+l/ic)ﬁt‘

It means that if at the beginning of the projection step, the electronic and ionic tempera-
tures are equals, then this thermal equilibrium T; = T, is preserved during this step.

IV  Numerical tests

For all numerical tests, the computations have been done with a second order in time
and space scheme. The time integration has used a second order the Runge-Kutta while
second order in space space used a MUSCL method on non-structured meshes described
in [45] and re-called in Chapter 2.

IV.1 Shock tube

This test case is inspired by the well-known Sod’s tube for Euler equations [70] and intends
to test the transport step of the proposed numerical method. This test has been run in
a 2-D setting on a square [0, 1] x [0, 1] meshed with 200 x 5 points. The computation is
carried out until ¢ = 8.6289 x 10~8s. The initial data writes

(UL, if 2<05,
Ulz,y) = { Ug, if z>0.5,

where Uy, and Ug are given in Table 3.1. The initial data of the density are the usual ones,
and the initial temperatures are chosen in order to keep as in [70] a ratio of 10 between
the pressures of the left and right states.

P u T.(K) T;(K)
Ur, 1 0 | 1.04436 x 10% | 1.27644 x 108
Ur | 0.125 [ 0 | 81228 x 107 | 1.04436 x 10%

Table 3.1: Initial data for the shock tube problem.
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This solution of this problem contains three different waves: one rarefaction, one con-
tact discontinuity, and one shock.

In order to test the transport part of the numerical method, the simulation is first
realized without any source term: v.; = 15 = 0. The results are given in Figure 3.2.
As expected, the solution is 1-D, and although the simulation has been done on a 2D
mesh, the numerical scheme does not generate transverse velocities. The density follows
correctly the three waves. We observe an overshoot of temperatures at the beginning of
the contact discontinuity around x = 0.64. With respect to the entropies, it is seen that
as it has been shown by the mathematical study of the bi-temperature Euler equations,
the electronic entropy is constant across the shock wave at x ~ 0.84 in Figure 3.2 while
on the opposite the ionic entropy jumps across the shock.

In a second simulation, we now add the temperature relaxation source terms where vg;
and v;. are given by (3.7). The obtained results on the electronic and ionic temperatures,
pressures, and entropy are given in Figure 3.3 again for t = 8.6289 x 10~8s. According to
Table 3.1, the equilibrium times for the left and the right states are

tegr = 2.39x 1078,
teqr = 1.21x1077s,

and therefore, the computation is stopped before the time where the two temperatures
should have attained a common value. This time is also called thermal equilibrium time
and corresponds to the relaxation time (3.9) denoted t¢q. Actually, the results show that
on the left side where the relaxation time is smaller the thermal equilibrium is reached
before the contact discontinuity while the two temperatures are still significantly different
on the right side.

We can also see that the temperature relaxation modifies the entropies and that the
electronic entropy is not any more constant across the shock wave. By comparing Fig-
ures 3.2 and 3.3, this effect is less apparent for the ionic entropy that seems to be less
affected by the temperature relaxation. One can suspect that this behavior is probably a
direct consequence of the large difference of mass between the two species.

The numerical method gives satisfactory results on this problem and thus validate the
numerical treatment of the transport step.
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Figure 3.2: Shock tube problem at t = 8.6289 x 10™8s with v.; = v4. = 0. Solution at
y = 0.5. Left-Top: Density, Right-Top: z-velocity in red, and y-velocity in blue, Left-
Center: Electronic (red) and ionic (blue) temperatures, Right-Center: Electronic (red)
and ionic(blue) pressures, Left-Bottom: Electronic entropy, Right-Bottom: Ionic entropy.
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Figure 3.3: Shock tube problem at t = 8.6289 x 1078s with v; # 0, v # 0. Solution
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IV.2 Implosion

This test case is inspired from [28] and adapted to the bi-temperature Euler equations.
Indeed, the density and velocity initial data are the same as the ones used in [28]. The
physical motivation of this test is to simulate a laser beam shooting a target in order
to initiate a fusion reaction. Then, for this test, the temperatures are chosen in order
to be in the laser plasma domain given in page 41 of the NRL formulary [48]. From a
computational point of view, we test in this simulation the capability of the numerical
scheme to handle shock focusing and reflection leading to a large and fast increase of the
density. The initial data is given by

UL if R<05, s
U(””’y)_{ U if R>05, @ 1= V& +ys

where the data Uy, and Ug are given in Table 3.2.

This test has been computed in a 2-D Cartesian geometry on a simulation domain equal
to a quarter of disc of radius equal to 1 meshed by 33153 points. The mesh is a refined
version of the mesh presented in Figure 3.4. Since we want to compute the reflection of
the shock wave at the origin, it has not been possible to use a polar grid that contains
very small cells at the origin and thus implies the use of very small time steps. The mesh
used is a good approximation of a polar mesh: the constant radius lines are almost mesh
lines. However, this is not exactly true and will lead to some numerical artefacts.

This problem contains three cylindrical waves propagating towards the origin: first
a shock, followed by a contact discontinuity leaving behind it a rarefaction wave. After
interacting with the origin the shock will be reflected back and will propagate towards the
exterior. Eventually, the reflected shock will interact with the contact discontinuity that
is still propagating towards the center. At the initial time, the equilibrium temperature
times for the left and the right states are

tegr. = 1.34x1071%,
teqr = 2.97x107%s,

that are quite small. Figures 3.5 and 3.6 present the results obtained at the time ¢; =
4.0901 x 10~7s before the interaction of the shock with the origin. Since t; is significantly
larger than the temperature relaxation times, the electronic and ionic temperatures had
time to relax to a common value as shown on the color plot of Figure 3.5 and the 1-D plot
of Figure 3.6 and the electronic and ionic pressures and temperatures are the same.

Since the initial data depends only on R, we expect a 1-D solution in a cylindrical
coordinates system R, . As shown in Figures 3.5 and 3.7, this property is satisfied by
the simulation except on the contact discontinuity where small wiggles appears. These
wiggles grow along time. This loss of the 1-D character of the solution is not seen on the
propagation of the shock wave but appears on the contact discontinuity. It is likely that
these wiggles are initiated by the fact that the mesh is not exactly aligned with the initial
data and that they are amplified by some kind of Richtmyer-Meshkov type instability
although we do not claim that they have a physical origin.

Figures 3.7 and 3.8 present the results at t = to = 6.22 x 10~ s shortly after the
reflection of the shock. The density and pressure at the origin have increased by a factor
ten and a zone of positive velocity can be noticed while the contact discontinuity is still
moving towards the center.
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Finally at t = t3 = 8.4973 x 10~ "s the shock begins to interact with the contact discon-
tinuity. In Figure 3.9 are displayed the evolution of the density contours at times t1, to, t3,
that show the development of instabilities on the contact discontinuity with mushroom
shapes. However the mesh resolution for this computation is too coarse to pretend to
capture a true physical instability and the contact is smeared over several cells. This is
a well-know problem in the computation of linearly degenerate-waves by Fulerian meth-
ods and is often taken as an argument to prefer Lagrangian methods for multi-material
problems and specially for ICF simulations [57, 58, 40].

plu| T.(K) T:(K)
U 2.3 x 10° | 1.7406 x 10°
Ur|1]0]23x107 | 1.7406 x 107

—_
=}

Table 3.2: Initial data for the implosion problem.
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Figure 3.4: Implosion problem, Similar mesh with 2145 points as the one used in numerical
simulation. The mesh used in Section ['V.2 has been obtained by a refinement of a factor 4
from the present one and contains 33153 (=~ 4 x 4 x 2145).
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Figure 3.9: Implosion problem, Density, Left: 1-D fields at y = x, Right: 2-D isolines at
p =1 (black), p = 1.585 (violet), p = 2.369 (blue), p = 4.259 (green), and p = 6.047 (red).
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IV.3 Sedov injection in 2-D Cartesian geometry

For this test case, a Sedov problem is considered in a uniform medium with cylindrical
axisymmetry. It consists the deposit of an intense energy spot in the center of the disc of
the uniform medium. Here, we adapt this test from [57, 58] to the bi-temperature model
with

T, = 1.7406 x 107K,
T, = b5.802 x 10K,

the injection temperature of the electrons and the ions. The temperatures of the rest of
the domain are
T. =T; =2.901 x 10 K.

p = 1
u = 0.

In [57, 58], the domain is a quarter of disc of radius equal to 1. In this simulation, the
computational domain is a complete disc of radius equal to 1 meshed with 8321 points with
a mesh similar to the one of Figure 3.4. Such a mesh has the property that the points are
almost aligned in the R-direction but avoid small cells at the center of the domain. Note
also that in contrast with polar meshes, the origin is not a singular point and therefore,
since the computation is done on the whole disc, there is no boundary conditions to enforce
at the center of the disc which is an interior point. The injection of energy takes place in
the cell containing the disc center. The final time of the computation is chosen in order
to compare the results to the ones obtained in [57]. Figures 3.10 shows the computed
results at ¢t = 9.7634 x 107 %s that consists of an expanding shock wave. Likewise the
implosion problem, the initialization is 2-D in the Cartesian coordinates and the expected
solution is 1-D in cylindrical coordinates. As shown in Figure 3.10, the numerical solution
respects this property. This is what was expected from the previous test since the loss of
the cylindrical symmetry of the computation was shown to occur on contact discontinuity
but not on propagating shock waves. Figure 3.11 presents the results of the density and
temperatures at three different times.

In Figure 3.11, at the final time, the maximum of density is about 1.2, whereas in [58]
the density reaches a maximum around 3.5 and it is shown in [40] that the exact density
reaches a maximum of 6. This is due to the fact that the mesh used here is not fine
enough.

The rest of the data is given by

Concerning the equilibrium between the electronic and ionic temperatures, at the
initialization and at the end of the simulation, the relaxation times to reach the same
temperature at the injection cell are

tinit = 1.3 x107 %,
tenda = 2.2x107 9.

Therefore, the equilibrium is reached soon after the beginning of the simulation. Fig-
ure 3.11 gives a zoom near the origin of the 1-D profiles of the two temperatures at two
different times in the beginning of the simulation: The two temperatures attain rapidly
a common value on the whole domain as the expanding shock propagates from the disc
center.

This test has shown that the numerical method is able to compute a strong expanding
shock wave on a 2D Cartesian mesh with no loss of the 1-D cylindrical character of the
solution.

92



IV. Numerical tests

Figure 3.10: Sedov injection in 2-D Cartesian geometry at t = 9.7634 x 107 6s. Left:
Density, Center: Electronic pressure, Right: Ionic pressure.

[

0.545

Figure 3.11: Sedov injection in 2-D Cartesian geometry. 1-D profiles at Left: ¢ = 6.73 X
10705, Middle: t = 6.73 x 107%s, Right: t = 9.7634 x 10765, Top: Density. Bottom:
Electronic (red) and Ionic (blue) temperatures.
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IV.4 Sedov injection in a poloidal plane of a torus with axisymmetry
initialization

We are now interested in testing the 3D numerical method in cylindrical (R, Z, ¢) geometry
that we have presented in Section III of Chapter 2. For this, we re-run the previous test
where now the considered disc is contained in the poloidal plane of a torus. We assume
that the major radius of the torus is 5 and consider two simulations. The first one is a 2D
one where we assume that all derivatives in the ¢-direction are zero and therefore we use
only one poloidal plane to define the computational domain. The second simulation is a
true 3D computation where 20 poloidal planes have been used to discretize the toroidal
direction. In this case, the initial conditions are axisymmetric in the ¢-direction, and do
not depend on ¢. Therefore, we expect the solution to be axisymmetric for all £ > 0. The
goal of this test is to check that the numerical method does not generate artificial toroidal
velocities and does not destroy the axisymmetric character of the solution.

The results are presented at ¢ = 9.7634 x 10755 in Figures 3.12.

With respect to the previous simulation, we observe that in a toroidal geometry, the
solution is not anymore 1-D in a R, ¢-coordinate system. Indeed, we can see that the
wave is moving faster on the center of the torus side than on the exterior side. This
phenomenon is due to the centripetal force in the torus. On the maximum value of the
pressures and the density, we note small differences: the maximum density in the Cartesian
case, respectively in the axisymmetric case, is 1.168, respectively 1.145. Then time when
the ionic and electronic temperatures become equal is also slightly changed: it is now of
5.5 x 10785 instead of 5 x 10~®s in the Cartesian case.

As shown in Figure 3.12, the 3-D results are extremely close to the 2-D ones. Indeed
there is only a difference of 1 x 1073 on the extrema of the density of each cases. Moreover,
no toroidal velocities has been generated in the 3-D as shown in Figure 3.13 and the
solution remains axisymmetric.

We find in the last three runs that our numerical method is able to handle both
Cartesian and cylindrical geometries. Indeed, we obtain comparable solutions between
the two 2-D runs and the difference observed in the cylindrical runs is due to force created
in this geometry. Finally, the 3-D toroidal numerical method has also been validated in
getting really close results to the 2-D axisymmetric run.
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Figure 3.12: Sedov injection in axisymmetric toroidal geometry at ¢ = 9.7634 x 107 %s.
Comparison of the 2-D axisymmetric and 3D computations. Left: 2-D run, Right: 3-D
run, Top: Density, Center: Electronic pressure, Bottom: Ionic pressure.
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Figure 3.13: Sedov injection in 3-D toroidal geometry, toroidal velocity u, at ¢t = 9.7634 x
10~ %5 along Z = 0.
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IV.5 Triple point problem in a rectangular computational domain

The goal of this next experiment is to emphasize that in absence of temperature relax-
ation, the solution of the bi-temperature model is not identical to the solution of a single
temperature model even if the electronic and ionic temperatures are initially equal.

Then, we consider a three state problem, inspired by the test case carried out in [40]
and compare their results to the ones of the relaxation scheme. The electronic and ionic
pressures are chosen to be equal and correspond to the same total pressure as the one
fixed in [40]. The other difference between the two tests is that in our test, the adiabatic
index y is uniform and set equal to 5/3.

The computational domain is the rectangle [0, 7] x [—3, 3] meshed with 70 x 60 points
with symmetric elements around the z-axis. The domain is divided in three different sub-
domains y, s, and 3. The sub-domain € is given by the rectangle [1, 7] x [—1.5,1.5]
and contains a high-density and low-pressure fluid. The sub-domain 23 corresponds to
the rectangle [0, 1] x [—3,3] and is composed of a high-density and high-pressure fluid.
Finally, the sub-domain €23 is the rest of the domain and contains a low-density and low-
pressure fluid. This description is summarized in Figure 3.14. In this test, the pressures,
time, and density are not express in the S.I. units and have been scale to agree with ICF
characteristic ones.

In [40], the evolution of this three-state problem is described: the intersections of the
three sub-domains Q1, Q9, and Q3 are located at (1, —1.5)7 and (1,1.5)”, those two points
are named triple points. Let us first consider a point located on the interface between ()
and 2, far from the triple points, the initial data generate three waves which are a contact
discontinuity, a rightward shock, and a leftward rarefaction. This is also the case for a
point on the interface between 9 and 23 far from the triple points. In the case of the
interface between 2; and 23, it produces a contact discontinuity. Around the triple points,
the situation is quite tricky. Since the different waves are interacting together it leads to
a complex 2-D fluid flow. As it is pointed out in [40], the two rightward shock waves of
and 3 are not moving at the same sound speed due to their difference of density. Indeed
we have p3cs 3 < p1cs,1, then the rightward shock of €23 is moving faster than the €21 one.
This creates a strong shear leading to a Kelvin-Helmholtz instability and to the formation
of a vortex.

In our simulation, we set ve; = ;. = 0 and leave the ionic and electronic temperatures
evolve independently. In Figure 3.15, we compare the results of the internal energy of the
mixture given by

Lpe + p;
y—=1 »p

at the time 3.5 and 5 with the results of [40]. We can see that at ¢ = 3.5 the results obtained
with the relaxation scheme for the bi-temperature Euler equations are quite different from
the ones of [40] (note that in Figure 3.15 the results of [40] are obtained by two different
numerical methods, this is why their results are not symmetric with respect to the y =0

i — de . . .
at two successive times which shows

axis.) Indeed, Figure 3.16 displays the ratio

that the temperatures do not remain identical al?:hough T; = T, at the initialization, and
without the use of thermal exchange in the equations. The same result can be inferred
from Figure 3.17 that shows the density, the electronic temperature, and the ionic one at
t = 3.5 and t = 5.0. This is due to the fact that in the transport step, the electronic entropy
jump is assumed to be zero across a shock. Therefore the discontinuous solutions of the
two-temperature model are not the same than the ones of the mono-fluid Euler equations
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and even if the initial temperatures are equal, in the presence of discontinuous solutions,
the bi-temperature Euler model is not equivalent to the mono-fluid Euler model. As we
show in Section III, the projection step insure the preservation of the thermal equilibrium.

Likewise the shock tube, we then re-run this test with the thermal exchange terms.
As expected, the electronic and ionic temperatures stay equal during all the simulation.
In Figure 3.18, we give the final temperature of the case with thermal exchange which we
compare to the electronic and ionic temperatures of the case without thermal exchange,
those 2-D plots are given at the same scale for each time. In all the cases, the final
shape of the temperatures are close to each other. Moreover, the balanced temperature is
approximately the average of the electronic and ionic temperatures of the first test. We
also compare their densities in Figure 3.19. Likewise, the results are close to each other.
Indeed, in the case with thermal exchange, the extrema of the density at t = 3.5 are 0.2119
and 3.456 instead of 0.2120 and 3.442 for the case ve; = v;e = 0.

Then this numerical test has shown the importance of the thermal exchange terms in
the equations. Indeed, it seems that the balanced temperature corresponds to an average
of the electronic and ionic temperatures when those ones are computed without thermal
exchange.

1,3 7,3
(0.3) Q2( ) (7,3)
Q3
p=0.125, p. = 0.05, p; = 0.05
(7,1.5)
p=1
.= 0. p=1, p. = 0.05, p; =0.05
; = 0.5 9
(7,—1.5)
p=0.125, p. = 0.05, p; = 0.05
Q3
(07 _3)
(1,-3) (7,-3)

Figure 3.14: Initialization of the triple point problem in a rectangle.
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Figure 3.15: Triple point problem total internal energy at ¢t = 3.5 (left) and at ¢ = 5.0
(right), Top: Results from [40] for mono-temperature Euler equations where the top of
the domain is obtained with the Volume of Fluid method and the bottom of the domain
with the concentration equations, Bottom: Relaxation scheme for bi-temperature Euler
equations with ve; = v = 0.

T, — T
Figure 3.16: Triple point problem without thermal exchange, ve; = v = 0, % 2-D

field at ¢t = 3.5 (Left), and ¢ = 5.0 (Right).
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Figure 3.17: Triple point problem with ve; = v = 0 at ¢ = 3.5 (Left), and ¢t = 5 (Right).
2-D fields of Top: Density, Middle: Electronic temperature, Bottom: Ionic temperature.
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Figure 3.18: Triple point in a rectangular domain at ¢ = 3.5 (left) and ¢t = 5.0 (right).
Comparison between the temperature of the case ve; # 0 and v;e # 0 (Top) and the
electronic (middle) and ionic (bottom) temperatures of the case ve; = v = 0.
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Figure 3.19: Triple point in a rectangular domain at ¢ = 3.5 (left) and ¢t = 5.0 (right).
Comparison between the density of the case ve; # 0 and v, # 0 (Top) and the one of the
case Ve = vje = 0 (Bottom).
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IV.6 Triple point problem in a disc in 2-D Cartesian geometry

Here we consider a triple point problem in a different geometry as a preliminary test for
studying some problems of injection in tokamaks where very cold and dense cryogenic Deu-
terium/Tritium mixtures known as pellets are injected in a hot plasma. We first consider
a problem in Cartesian geometry. The computational domain is now a disc of radius 1
meshed with 1435 cells. Figure 3.20 and Table 3.3 summarize the setting of the problem:
the sub-domain §2; is initially a domain of high density and low temperatures, it is given
by the disc of radius 0.1414 of center point (0.5, —0.5). The sub-domain Q3 is character-
ized by a low density and high temperatures and defined by the disc of center (0,0) and
radius equal to 0.707 without the part {2; of this disc. Finally, the sub-domain €2 is the
rest of the computational domain, its density and temperatures are chosen to be between
the density and temperatures of the other two domains.

p | u T.(K) T;(K) pe + pi(Pa)
Q| 3 |0 3.4812x10% | 2.3208 x 10° | 1.4348 x 10!
Qo | 1 [0 278496 x 107 | 1.85664 x 107 | 3.8262 x 10!
Q3 10510 34812 x 107 | 2.3208 x 107 | 2.3914 x 10T

Table 3.3: Initial data of the three states of the triple points problem.

9))

Figure 3.20: The three domain of the triple point problem in the (R, Z) plane.
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We first comment on the differences in ionic and electronic temperatures for this test
case. According to the formula (3.7) giving the temperature relaxation times, the equilib-
rium time varies as T%/2. More precisely, at time ¢ = 0, the temperature relaxation times
in the three domains are

tg, = 851x107ts,
tg, = 3.86x 107 s, (3.10)
to, = 1.00 x 1078s.

Hence we expect temperature equilibrium to be reached rapidly in domain 2; while
domain 23 will be the last one where temperature equilibrium will occur.

. — T,
! ° at three different times.

Figure 3.21 displays the ratio

e

E_Te

Figure 3.21: Triple point problem in Cartesian geometry. 2-D fields at t =
e

2.1 x 10725 (left), t = 4.7 x 107%s (middle), and ¢ = 1.35 x 10~ %s (right).

At t = 2.1 x 1075, we can see that only the sub-domain Q; gets equal temperatures.
Then, at t = 4.7 x 10™%s, the cold and the intermediate sub-domains have reached the
equilibrium. Finally, after ¢t = 1.35 x 10~%s, the electronic and the ionic temperatures are
equal in all the domain.
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Figure 3.22: Triple point problem in Cartesian geometry. Initial data (Left) and solution
at t = 1.1574 x 1075s (Right). Top: Density, Center: Electronic temperature, Bottom:

Total pressure.
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The results are at ¢t = 1.1574 x 107°s, and are given in Figure 3.22. The initial cold
and dense domain 2; corresponds to a zone of low pressure. Therefore it has been crushed
by the high pressure neighboring zones and has expanded mainly in the angular direction.
Another noticeable result is that at this time, the density and temperatures have been
smoothed out: while the initial density was in the interval [0.5, 3], it is now between 0.5321
and 2.032 and the same smoothing effect can be noticed for the temperature. This effect
is mainly due to pressure reflection on the boundary of the domain. Indeed, a rough
estimate of the sound speed at time t = 0 (cs ~ 8.92816 x 10°m.s~!) shows that at
t = 1.1574 x 10~ s, pressure waves have crossed the domain around 5 times leading to a
smoothing of the density and temperature fields.

IV.7 Triple point problem in the plane of a torus with axisymmetry
initialization

As in Section V.4 we now reproduce the previous test case in the geometry of a torus.
The aim of this test case is to see the influence of the geometry. We set the major radius
of the torus at 3. As in Section IV.4, we have performed two simulations: the first one is a
pure 2-D axisymmetric computation while the second is a true 3-D one where the toroidal
direction has been discretized with 20 planes. As in Section IV.4 we have checked that the
3-D runs maintain the 2-D axisymmetric character of the solution and that no toroidal
velocities have been created.

Since the results between the 3-D and the 2-D axisymmetric are extremely close, we
present only the ones of the 2-D axisymmetric simulation.

The results are given in Figure 3.23. We see that the average domain {29 expends more
to the initial hot domain in the area closer to the center of the torus. This phenomenon
can be due to centripetal or centrifugal forces. Moreover, the final temperatures are quite
different of the 2-D Cartesian case. Indeed, for the cold domain, we obtain 8.738 x 106K
for the electronic and ionic temperatures of the cold domain instead of 9.055 x 106K.
Then, we can suppose that the evolution is slower in the cylindrical case than in the
Cartesian one. We also remark, that the final shape of the cold domain €2 is not anymore
symmetric and the temperature is hotter closer to torus center than to the exterior side.
Likewise, the density is higher in the torus center zone than the exterior, and the final
value of the domain 2 is 2.092 instead of 2.032. In fact, the cold domain seems to move
to the exterior of the torus. At the end of the simulation, as expected the electronic and
ionic temperatures are balanced. In Figure 3.24, we compare the velocity in the poloidal
plane (R, Z) to the one of the Cartesian run. We can see that for the cylindrical geometry,
the velocity is around twice the maximum of velocity of the Cartesian run. Indeed, around
the border between the hot domain and the average domain closer to the center of the
torus, the velocity of the axisymmetric run is about four times the one of the Cartesian
geometry.

It follows from the above two last numerical tests that the geometry is an important
input, since it largely modifies quantitatively and qualitatively the behavior of the velocity
field, and this the whole set of results.
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Figure 3.23: Triple point problem at ¢ = 1.1574 x 107°s. Comparison of the results
obtained in Cartesian geometry and in a torus. Left: 2-D axisymmetric run, Right: 2-D
Cartesian run. Top: Density, Center: Electronic temperature, Bottom: Total pressure.
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-0.5-

Figure 3.24: Triple point problem at ¢t = 1.1574 x 10~°s. Comparison of the results
obtained in Cartesian geometry and in a torus. Velocity vectors with density contours.
Left: 2-D axisymmetric run, Right: 2-D Cartesian run.

IV.8 Triple point problem in 3-D toroidal geometry

Here, we propose a fully 3-D numerical test in toroidal geometry. This test is based on
the two previous cases, but instead of having an axisymmetric initialization, we consider
that the initial cold and dense zone is a small cylinder. The periodic toroidal direction is
meshed in a regular manner with 20 points and we assume that the zone where the cylinder
is localized corresponds to the angular domain [0,3 x 27/20]. In the domain where the
cylinder is localized, a three state initialization is used while in the rest of the domain the
fields are described by two different states. The different domains of the poloidal plans are
described in Figures 3.25 and 3.26, and the initialization used for the domain €21, {29, and
Q3 is given in Table 3.3. The three poloidal planes that intersect the cylinder as numbered
as the poloidal planes 1, 2, and 3. Then, the two neighboring planes are numbered the
planes 4 and 20.

Figure 3.27 to Figure 3.29 display the results in the planes 1 to 3, 4 and 20 and 10. Its
shows that the extrema are reduced with respect to the 2D case. For instance, in the 3D
case, the extrema are 0.46 and 1.867 instead of 0.5051 and 2.092 in the 2D axisymmetric
case. But, globally, the evolution of the solution is similar to the one described for an
axisymmetric initial state except for the total pressure. We can however note that we
have a 3 dimensional effect in the toroidal direction leading to a increased smoothing of
the extrema in the 3D case although this effect seems to be weak, up to this time. Such a
computation would require a much denser mesh in the toroidal direction to give meaningful
results.
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Figure 3.25: Triple point problem initial domain in 3-D toroidal geometry. Left: for the
poloidal planes 1 to 3. Right: for the rest of the poloidal planes (4 to 20).
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Figure 3.26: Triple point problem initialization. Top: Poloidal planes 1 to 3, Bottom:
Poloidal planes 4 to 20. Left: Density, Center: Electronic temperature, Right: Total
pressure.
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Figure 3.27: Triple point problem in 3-D toroidal geometry. Density at t = 1.1574 x 107
Top-Left: Plane 1, Top-Center: Plane 2, Top-Right: Plane 3, Bottom-Left: Plane 4,
Bottom-Center: Plane 20, Bottom-Right: Plane 10.

Figure 3.28: Triple point problem in 3-D toroidal geometry. Electronic temperature at
t = 1.1574 x 10~°s. Top-Left: Plane 1, Top-Center: Plane 2, Top-Right: Plane 3, Bottom-
Left: Plane 4, Bottom-Center: Plane 20, Bottom-Right: Plane 10.
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L.,

Figure 3.29: Triple point problem in 3-D toroidal geometry. Total pressure at t = 1.1574 x
10~s. Top-Left: Plane 1, Top-Center: Plane 2, Top-Right: Plane 3, Bottom-Left: Plane
4, Bottom-Center: Plane 20, Bottom-Right: Plane 10.

V Conclusions

In this Chapter, we have studied a numerical scheme for the approximation of T;-T, model
of Chapter 1. This model considers the ion-electron mixture as a single fluid but retains
two temperature or energy equations to describe the thermodynamics of the mixture.
We have proposed a relaxation scheme to solve the bi-temperature Euler equations in
Cartesian as well as in cylindrical coordinates by a finite volume method. The interest
for cylindrical coordinate system is motivated by possible future applications to MCF and
tokamaks.

Finally, we have presented several different numerical tests using the two coordinate
systems and different geometries. The results have shown that the numerical scheme
is able to simulate problems with large densities and pressure differences as well as fast
phenomena. In the geometry of a torus, the proposed finite volume method has been tested
on 3D test cases and has demonstrated its capability to respect the axisymmetric character
of the solutions which is an important point for MCF applications. Future work on this
topic will involve its extension to bounded plasma [ parameter and the introduction of
magnetic field and dissipative terms.
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Chapter 4

On Euler potential for MHD
models

The aim of this Chapter is to built a numerical strategy able to solve the ideal and resistive
MHD equations and to maintain the V - B = 0 constraint. There exists a lot of strategies
dealing with the divergence-free constraint and we re-call some of them in a first part.
Using those methods, we propose a numerical scheme for the ideal and resistive MHD
models and finally we test it with well-known MHD numerical tests both for Cartesian
and cylindrical coordinates.

I Issues on the divergence-free constraint

We have seen in Chapter 1 that the MHD equations are a combination of the hydrodynamic
equations and of the Maxwell’s one (1.35). By taking the divergence of the Maxwell-
Faraday equations we obtain

H(V-B)=-V - (VxE)=0,
that shows that if
V-B=0,att=0 =Vt, V-B(t) =0.
This equation is a main issue in the numerical approximation of solutions of MHD equa-
tions. It has been reported in [11, 23, 42], that without cautions, the errors on V- B grow

in time leading to an nonphysical system.

Nowadays, there exists two families of methods to solve the divergence-free problem:
vector potential A, and divergence cleaning-type methods.

I.1 Vector potential A method

This method consists to use the property V- (V x ) = 0 in order to re-write the magnetic
field B under the form of the curl of a vector potential A:

B=VxA.
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In [42], the magnetic field B is replaced by A in the ideal MHD system (1.96), the resulting
system is then given by

op+ V- (pu) = 0,
8t(pu)—i—V~[pu®u—(V><A)®(V><A)]+V[p—f—;(VXA)Q] = 0,
Her+V-[(E+p+(VxAPH)u—[u-(VxA)V xA] = 0,
OA —ux (VxA) = —VU,

where U is the electric potential.

With this method, we insure to maintain the divergence-free constraint. However, as
we can see in the previous system the spatial derivative order has increased of one order,
and in the induction equation, the electric potential U appears and has to be computed by
the choice of a gauge condition. As it is pointed out in [42], the boundary conditions have
to be evaluated for A instead of B in ghost cells. This problem is not so obvious however
it can be solved by imposing the flux at the boundary interfaces. Finally, for numerical
scheme using Riemann solver, it can be difficult to use the vector potential A as a basic
variable instead of the magnetic field B.

1.2 Powell’s source term

Originally presented in [66], in this method a source term proportional to the divergence
of the magnetic field is added to ideal MHD equations. The result is given by

Op+ V- (pu) = 0,

d(pu) +V-[puu-B@B]|+Vpr = —(V-B)B, (4.1)
0Er +V - [(6T —I—pT) u— (u . B)B] = —(V . B)u - B, )
B+V-[B®u—u® B] = —(V-B)u.

In this method the source term is coming from the transformation of the MHD equations
into conservative form and then (1.96) and (4.1) are equivalent.

According to [75], this method can generate incorrect jump across discontinuities. This
problem can be solved by using the source term only in the Maxwell-Faraday equations
and leaves the momentum and energy equations source term-free, as proposed in [42].
Moreover, in [67], it has been shown that this strategy is easily incorporated for grid-
adaptive computations.

I.3 Generalized Lagrange Multiplier

Among the existing methods dealing with the V-B = 0 constraint, we have also the Gen-
eralized Lagrange Multiplier, shortly named GLM, presented in [30, 63]. In the Maxwell-
Faraday equation, the Lagrange Multiplier ¥ is added leading to

0B+V-Bu—u®B|+ V¥ =0. (4.2)
The divergence-free constraint becomes
D(¥)+V-B=0, (4.3)

where D is a linear differential operator chosen in order that the initial and boundary
condition of ¥ is a good numerical approximation of (4.2) and (4.3). Then, the operator

D is given by
1 1
“h =7
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where ¢j, and ¢, are respectively hyperbolic and parabolic correctors.

Likewise the Powell’s source term method, the GLM one is easily incorporated in
computations with Riemann type fluxes. In this method, the divergence is set to zero for
one approximation, but as we have seen in the previous method, V - B appears several
times.

1.4 Contrained transport method

Another strategy dealing with divergence-free constraint consists to maintain V- B = 0
in one discretization by insisting on the machine precision accuracy [42]. This method is
named constrained transport and was originally presented in [33]. This method has been
re-used in many MHD codes [11, 77].

In [11], a 3-D cell-centered finite volume method, where the control cells are aligned
with the x, y, and z-directions, is developed. Writing the Maxwell-Faraday equations over

a control cell S
Gt/BdS: —% EdoS,
S oS

the different components of B are computed at different locations of the control cell.
All this explanation is summarized in Figure 4.1. The constrained transport method
can be used for more general systems owning a divergence-free equation on one of its
physical variables. In this frame, examples of procedure have been developed in [35] for
2-D geometries.

This method gets the same advantages than the two previous one, but the adaptation of
this strategy to unstructured meshes can be tricky.
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Figure 4.1: Localization of the magnetic and electric fields for the contrained transport
method. Source: [11].
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II An alternate method for divergence-free problem

This section proposes an alternate method to the ones presented in the previous section.
The representation of the magnetic field in term of vector potential A is then used with
A = oV and we get [71]:

B =Vax Vg,

where «, and  are named Euler potentials. It has been shown in [71] that the Euler
potentials are solutions of simple transport equations in the case of ideal MHD model:

oa+u-Va = 0,
8tB+U'VB = 0.

This strategy designed is presented here only for 2-D geometry under the translation
invariance d,- = 0 assumption. With this hypothesis, the magnetic field can be re-written
in the following form:

B = B.,e, +e, x Vi, (4.4)

where 1 is an Euler potential, and B, is a constant. Therefore, the Maxwell-Faraday
equation of (1.35) can be written in the following form

V x [E — 8t1/1ez] =0.

Hence, we have
ope, — E=VU.

According to the translation invariance d,- = 0, we have
oy —E, =0.

We now replace the z-component of the electric by the ideal Ohm’s law (1.95) and the
resistive one (1.90)

Ideal MHD: oY+u-Vy = 0,
Resistive MHD: 0y +u-Vy = nVZyp.

Those equations are rewritten in the conservative form

{Ideal MHD: O(py) +V - (ppu) = 0, (4.5)

Resistive MHD:  9;(ptp) + V - (pypu) V2.

The main idea of the method that we design in this chapter is to solve the extended
system composed of the MHD equations and the Euler potential one to built a numerical
scheme based on the relaxation-type method. First, this numerical strategy is presented
for the ideal MHD model in the next Section. Next, we adapt the scheme for the resistive
MHD model in Section IV. Finally, those two numerical schemes using Euler potentials
are tested for both Cartesian and cylindrical geometry in Section V.
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IIT Numerical resolution of ideal MHD equations with Eu-
ler potential

The numerical scheme designed in this Section is called scheme with projection.

IT1.1 Presentation of the scheme

Let us consider the ideal MHD equations (1.96) coupled to the corresponding Euler po-
tential equation (4.5)

Op+V - (pu) =
d(pu) + V- (pu®@u—-B®B)+ Vpr
atET—l—V-[(ST—i—pT)u—(u-B)B} =
0B+V - (Bu—u®B)
O (pp) +V - (ptpu) =

co o oo
—~
o
D
~—

This system is redundant: the last equation of the previous system is equivalent to the
ones on the two first components of the magnetic field. We propose a two-step scheme
similar to the one presented in Chapter 3. The two step of the scheme with projection are
given by:

e Transport step: During this step, the system (4.6) is solved with a finite volume-type
method.

e Projection step: Using the definition (4.4), the magnetic field B is projected on the
gradient of ¢.

The detail of the computations made in those two steps are given in the two next subsec-
tions.

II1.2 Transport step

As the system (4.6) is invariant by rotation, we limit ourselves to the 1-D ideal MHD
equations in the x-direction:
U + 0, F(U) =0,

where

)

P . pu? + pp — B2puv

pw puw

U= Z, , FU)=| (&r+pr)u—(u-B)B,

T

B uBy —vB,
Y uB, —wB,

B, b

L Y - P il

Since the x-magnetic field equation in this 1-D case is 9B, = 0, then this variable does
not evolve during the transport step, thus we do not report this equation in the previous
system. To solve this system, we use the cell-centered finite volume method of Chapter 2
where the numerical fluxes are obtained with one of those three Riemann-type scheme:
Rusanov, HLL, and HLLD fluxes.
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i Rusanov flux

In [49], the Riemann problem (Ur, Ugr) with one intermediate state U* is used to compute
the Rusanov flux, as shown in Figure 4.2. First, the maximal wave speed Apax is defined
as follow:

Amax = maX(uL¢ UR) + maX(Cf,L, Cf:R>’

where ¢y has been defined in (1.97). The slopes Sy, and Sg of Figure 4.2 are chosen to be
symmetric:
SR = _SL = Amax-

Finally, the Rankine-Hugoniot relation is used to obtain the flux of the intermediate state
which corresponds to the Rusanov flux:

FRusanov —

)\mam
(FL—I-FR)— 9 (UR—UL),

N[

where

Fx = F(Ug), K =L, R.

Since the Euler potential equation is a simple transport one, then its Rusanov flux is
replaced by an upwind one

B prLu[n FRuscmov (,0) > 07
F(PT/J) - { prRuRa FRusanov(p) < 0. (47)
SL SR
U*
Ur
Ur

Figure 4.2: Riemann fan with one intermediate state.

ii HLL flux

Likewise the Rusanov flux, the HLL flux , originally presented in [46], is a Riemann solver
with one intermediate state, but the two slopes of this problem are not anymore symmetric.
Then, the slopes S;, and Sg of Figure 4.2 are now:

St min(ur,ur) — maX(CﬁLv nyR)a (4 8)
Sp = max(ur,ur)+ max(cyr,crR). .

We denote by Fr, and Fp the fluxes F(Ur) and F(Ug). In [46], by using Rankine-Hugoniot
relation, the intermediate state U* is given by

_ SRUR — S5pUL — (Fr — F1)

v Sr—SL ’

(4.9)
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then its flux is
F*—Fr,=S,(U"-Up),

where F* is the flux of the intermediate state U*. The previous relation leads to

_ SpSr(Ur —UL) = Sp.Fr+ SRFL

F*
Sr— S
Then, the HLL flux is determined by
Fr, 0<5g,
FHLL — 0 p* 87 <0< Sg, (4.10)
Fr, Sgr<0.
By denoting
SE = min(O, SL),
SE = max(0,Sg),

the HLL flux (4.10) can be generalized with

prin _ SiFL—SpFr+ SpSp(Ur = UL)
Sk~ 51 |

Likewise the Rusanov flux, the HLL one of the Euler potential v is replaced by the
upwind flux (4.7).

iii HLLD flux

In [61], Miyoshi and Kusano design a Riemann solver with four intermediate states for
the ideal MHD equations. The left and right states of the Riemann problem are denoted
(Ur,Ug), and the four intermediate states (U}, U}, U, Uf), this problem is represented
in Figure 4.3. In this paper, we give the computation of all the variables of the four
intermediate states [61].

Likewise the HLL flux, the slope Sz, and Sg are given by the relation (4.8). The choice
of the middle wave Sjs is based on the HLL scheme, then using the result (4.9) for the
density and the normal momentum we have

(Sr —ur)prur — (Sr —ur)prur — [(pr)r — (p7)L]
(Sr —ur)pr — (St —ur)pL .

Sy =

The velocity u is chosen constant along all the intermediate states with

u' =Sy =u; =up =up=up.

A similar assumption is made for the total pressure
*

_ k% ok ok o kk
br = Prr=DPrr=Prr=PrR

(Sr —ur)prpr,L — (S —ur)prpr,r + prpr(Sr — ur)(SL — ur)(ur — ur)
(Sr —ur)pr — (SL —ur)pL

We are now interested in determine the intermediate states U; and Up. For K = L, R,
we use the Rankine-Hugoniot relation at the speed S = Sk

Sk(Uk — Ug) = F — Fy,
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which is equivalent to

( Sk(pf — PK) = piU” — PRUK,
Sk(pPkvk — prvK) = (puv — BB, i) — (prukvk — BBy k),
SK(pKwK prWE) = (phuwi — BxB;K) — (prukwg — BB ),
Sk(Erx — Enk) = [(é7.x +p7) u" + (uj - Bi) By ]
—(érx +prr)uk — (uk - Bi) By,
SK(B;,K — Byk) = (B;,KU* — Bavg) — (By,guk — Bavk),
SK(B;K — Bz,K) = (B:,Ku* — wa}{) — (BZ’KUK — Bywg),
| Sk(Pk¥i — PrVK) = PRV — pPrVKUK.
The solution is then given by
Sk —u
P*K = PKﬁ 1/)?( = g,
B* . — B, Kk B B, k
* — _ Blu * — _ B»LKi
K K px(Sk —uk)’ e K K (Skx —uK)’
(Sx —uk)® —cl g (Sx —uK)? =l i
Bix = B K Bx = B, LU
vK P (Sk —u) (S —uk) — 2 0 K Sk —u)(Sk —uK) — 2

. Sk —urx  ppu* —prrukx — By [(u) - Bj) — (uk - Bg)]
vk = ErK - T * '
’ Sk —u Sk —u

In the case of (Sg — u*)(Sk — uk) — ciK ~ 0, the choice of the tangential velocities and
magnetic fields are given by

* * * *
Vg = VK, Wi = wk, By g =By, B, x = B k.

The slopes ST and S} are chosen to correspond with the two Alfvén waves of the ideal
MHD equations

S =u' =iy, Sp=ut+ i
The Rankine-Hugoniot relation in Sys leads to

ok _ *o% _ **
BZ,L - Bz,R - Bz )
vr = vg = o™,
wit = wip = w.
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For K = L, R, the Rankine-Hugoniot relation in S% leads to

P = Pk
kK = Yk =Yk,
e /PRVE — \/PIV] + sgn(BI)(B;‘yR — B;L)
pj + ’
o = [PRWE — \/Prw] + sgn(BI)(B;R — B;L)

NN |
T = Erotsgn(Bx)y/pp (W -BY) — (ur - By,
T = Err—sgn(Be)y/pR (W - BT) — (up - BR),

B VPrBy r — /PLB, 1+ s9n(Be)\/pLpR(VE — V1)
Yy

pr,+

9

BW?fWW;Vﬁ;Lﬂm )L (1~ i)
z

PL+

i

where sgn(B,) is the sign function defined by

1, B,>0,
sgn(Be) = { "1 B.<o0
) x .

Finally, the four intermediate fluxes are given by

Fy = Fp+S.(Uj-Up),
Fr* Fr+S;U* — (8] —Sp)Ujp — S Uy,
Frr = Fr+ SRUR — (S — Sr)Uf — SrUR,
FE = FR—FSR(U}*%—UR).

(4.11)

Therefore, the HLLD flux is

( FL, 0<SL,
Fi, S,<0<5;,
FHLLD _ Fr*, S7 <0< Sy,

FE, Sy <0< Sk,
Fi, S <0< Sp,
Fr, Sgr<0.

According to the previous computations, the Euler potential in the intermediate states
are V3 = ¢} = i for K = L, R. Then, the relation (4.11) gives that the HLLD flux of
the conservative variable pi) is:

HLLD _ pHLLD Y, 0<u®,
FUELD () = pie(p) f 0 05

This flux corresponds to an upwind flux. Then, we do not need to change the flux of the
Euler potential as it has been done for the Rusanov and HLL flux.
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St ST Sm Sk Sr

Ui\ Ur* Ur/ Ug

Ur U

Figure 4.3: Riemann fan with four intermediate states.

II1.3 Projection step

At the end of the transport step, the intermediate solution is denoted U™T1/2. To obtain
the final solution U™ of the scheme with projection, it remains to project the magnetic
field B on the gradient of the Euler potential Vi with the definition (4.4). This step is
written in function of the physical variables (p,u,p, B, )"

pn+1 — pn+1/2,

! — un—|-1/27

pn+1/2 — pn—i-l’ (412)
wnJrl — wn+1/2’

B = B, te, x (Vy)nH1/2

In numerical experiments, we use the cell-centered approach with a uniform mesh both
for Cartesian and for cylindrical coordinates.

i Cartesian coordinates

In order to evaluate the gradient of 1, we use a second order central finite difference.
Then, for Cartesian coordinates, we have

Vit1,j — Yi-1y
(Oz)ij AT
(Vo)ij= | B)ij | = | Yigtt —¥ij—1 || i=1.N,, j=1.N,, (4.13)
0 2Ay
0

where Az and Ay are the uniform space steps in the z and y-directions. Using the
definition (4.4) in Cartesian coordinates we have

_8y¢
B=| 0,0 |. (4.14)
B,
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IV. Numerical resolution of resistive MHD equations

Therefore, using the results (4.13) and (4.14), the system (4.12) becomes for ¢ = 1..N,
j=1.N,

n+l n+1/2
Pij = Pij A
n+1 . n+1/2
Wig = Wiy
nt+l n+1/2
Pij = Pij >
wn—i—l _ wn+1/2
i Vg o
n+l _ ntl

npt o Yigs ¥
i, 2Ay ’

wn—&—l —¢n+1
ntl _ Yty T Ve
yaivj 2A:L- ’
n+l n+1/2
Zig T Pz

ii Issue for cylindrical coordinates

In cylindrical coordinates, the gradient of the Euler potential writes

1aR¢
Vi = = 1)
0

Likewise the Cartesian coordinates, we use central finite differences to evaluate the gradient
in the center of the control cell Q; ;, i = 1..Ng, j = 1..N,. Therefore the system (4.12)
writes

n+1 . n+1/2

Pij = Pij A
n+1 - n+1/2

Wig = Wiy

Pig = Pij o

wn—i—l _ ¢n+1/2
i Yigo o

n+1 n+1
nt1 Vi — Vi
Rij — )
0] 2R; A
w?’b"rl‘ _ w’(l-ﬁ-l'

n+l _ i+1,5 i—1,j
8072'7]4 - 2AR ’
n+l __ n+1/2
zig = Bzif

where AR and Ay are defined in (2.19) in the uniform case with & = 0.

IV Numerical resolution of resistive MHD equations
After writing the scheme with projection for the ideal MHD equations we are now inter-

ested to adapt this scheme to the resistive MHD model. The notations are the same as
the ones used in the previous section.
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IV.1 Presentation of the proposed scheme

The scheme with projection for the resistive MHD consider the system (1.94) coupled to
the second equation of (4.5)

o+ V- (pu) = 0,

O(pu)+ V- (pu@u—-B@B)+Vpr = 0,

HEr +V - [(€r + pr)u — (u- B)B| = nV-[Bx (V x B)], (4.15)
B+V-(B®u—u®B) = nV’B,

A(pp) +V - (pypu) = V3.

We propose a method based on the one for ideal MHD equations given in Section III.
Indeed, we construct a three step scheme:

e Transport step: this step is identical to the corresponding one of Section III.

e Resistive step: it consists to solve with an implicit scheme the resistive source terms
of (4.15).

e Projection step: this step is identical to the corresponding one of Section III.

IV.2 Presentation of the resistive step

This part is devoted to the computations made for the resistive step in the scheme with
projection step. It consists to solve the following system

Op = 0,

at(pu) = 0,

0ér = nV-Bx(VxB), (4.16)
0;B = 1nV?B,

dh(pp) = V3.

We recall that the system (4.16) is a redundant system. In this step, since the next one is
the projection step then we will not modify the two first components of B. Likewise the
projection step, we will not work with the conservative variables (p, pu, &, B, pv»)T but
with the following physical variables (p, u, p, B.,%)T. Then, the system (4.16) becomes:

ap = 0,

atll = 0,

op = (v—Dn[(VB.)? +(V*)?],
B, = V?B,,

oy = V.

Then, the solution of the resistive step is obtained with an implicit step. The time step
At is the same one of the one of the transport step. We now denote U1/3 the solution of
the transport step and U™12/3 the one of the resistive step. Finally, the previous system
is approximated with

( pn+2/3 — pn+1/3’
un+2/3 — un+1/3,
2
prt2/3 — s (v — 1)nAt [(VBZ)nJrQ/?)]

v — DAt |:(v2w)n+2/3]2’ (4.17)

B;L+2/3 _ 7’]At (vZBZ)n+2/3 _ B?+1/3,
23 At (VQw)”'FQ/?) — ntl/3,
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IV. Numerical resolution of resistive MHD equations

where (pt2/3 unt2/3 pnt2/3, B?H/P’, "2/ T is the solution of the resistive step.

IV.3 Resistive step in Cartesian coordinates

Let us first detail the resistive step for the Cartesian coordinates. Under the hypothesis
of translation invariance 0,- = 0, the gradient and the Laplacian of a scalar f write

Ouf
Vi=|of |, Vif=0f+0f.
0

This step has been developed at the second and the fourth order in space. In this Subsec-
tion, we focus on the three last equations of (4.17).

i Order 2

We consider a control cell €; ;, ¢ = 1..N,, j = 1..N,, then the first and second derivatives
at the second order in space of a scalar f are given by the approximations

Ouf)i; =~ fiv1j — fic1j

2Ax ’
(4.18)
ficig —2fi5 + firry
@Ry, ~ FtaTHutheg
Therefore the three last equations of (4.17) can be rewritten in the form
+1/3 +2/3 At 1 ont2/3 +2/3 +2/3]
=R - A2 {fzn—l,j/ —2f1 ]
At 2/3 2/3 2/3] (4.19)
15 2 2?4 AP £ et Ba,
19/3 At +2/3 +2/372
piy =t 4 - DAz [BZH{J - BZz’—{,j_
At +2/3 +2/372
+ 00y - 1)4Ay2 [Bzi7j+1 - an,i,j—l_
(4.20)
1 2/3 2/3 2/3
+ (- 1)77At[m <¢?—+13/ - 2¢er ANt 1/’?:—13/ )
1 +2/3 +2/3 +2/3\ 12
A2 (¢Zj—1 =205 i ” )
By using the global numbering
k=(i—1)N,+j, i=1.N,, j=1.N,,
and by writing
f=(fh<w<non, = (fijh<i<ng, 1<j<n,. [ € {B: ¥},
the equation (4.19) can be rewritten in the following vectorial form
fn+1/3 —I—BCf _ (I—I—A)fn+2/3, (4'21)
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Chapter 4. On Euler potential for MHD models

where the matrix I is the identity one, and A is given by

D B « */By
A=|B p=| P , B=—B,I,
.. . B .. . _By
B D By «
with
« = 2(Bx+ﬁy),
_ nAt
e = 2,
_ nAt
kﬁy Ay

In the equation (4.21), the vector BC represents the boundary conditions of the variable
f € {B.,v} in the ghost cells of the mesh, and writes

— BC}7Z‘ -
1
0 BCf,y
BCy = BCyy + BCyy, BCpy = : » BCry = : ;
Ny
ON:C Bcﬁy
L BCf,z i
where
fo1 INet1,1
BCj, =8| i |,BCyz=5 : :
Jo.n, IN.+1,N,
[ fio ]
0
BC}, =By : , 0= 1.,
0
L fiN,+1 ]

where for ¢« = 1.N; and j = 1..Ny, foj, fn,+1, fio, and f; n,+1 are the boundary
conditions of f given in the ghost cell shown in Figure 4.4.

As the matrix A is a diagonally dominant and symmetric, we are a sure to obtain a
solution of the equation (4.21) by using the conjugate gradient method. Then, we have

n+2/3
2

the new Euler potential ¢"*2/3 and the new z-magnetic field B . Therefore, we can

now compute the final pressure p"*+2/% by using the formula (4.20).

ii Order 4

The computations of the solution of the resistive step have also been tested at the fourth
order in space. Let us first write the approximations of the first and second order deriva-
tives in the z-direction for a scalar f

1
(Ouf)iy = ToAL [fi—Q,j —8fi—1,; + 8fit1; — fi+2,j}a
(4.22)
1
(Ouf)iy =~ T9AL2 [ — fi—2,j +16fi_1; —30f; ; +16f; j — fi+2,j]
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Figure 4.4: Representation of the ghost cells for a Cartesian mesh.

Then, the equation on the z-magnetic field and the Euler potential in the system (4.17)
writes at the fourth order in space

n_ ent2/3 nAt
fis = 1is 12Ax2
_ nAt {
12A92
fe{B: v}

- 9/3 2/3 2/3 +2/3
|: f?—?,j/ 16fz'711,]'/ - 30f77.7 / 16.]2711’]/ ZZ 27j/ ]
o3 9/3 2/3 2/3 +2/3
[ Ui R e Y A e e }
(4.23)

By using the same method as the second order, the previous equation can be written in
the form (4.21) where the matrix A is now

D B C
B
A = ¢
I C
[ o —168,
-168,
D = By

C
S
B D_
By ]
By
—168,
By —168, o

Ba

By

—165,1,

Bal,

30(8z + By),

nAt
12A22°

nAt
12A92°
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The boundary conditions on the ghost cells are given by

[ BCi, ]
BC3,
1
0 BCf’y
BCf - BCf@ + BOf’yy Bcf,x = ’ BCf,y = ’
Ny
0 Bcf,y
No—1
BCf71.
Ny
i Bnyw ]
with
—f-11+ 1601 foa
BC}‘7$ = Bm E ) BC%’I = 7/81’ E 9
—f-1,n, +16foN, fo.n,
fNa+1,1 16 fN,+1,1 — fNa+2,1
BC: = -, : : BCy: = B, :
INo+1,8, 16fN,+1,N, — fN.+2,N,
In the y-direction, the boundary conditions are
[ —fi-1+16fip
—fio
0
BCY, = By : ,i=1..N,.
0
—fi,N,+1
| 16fi N, +1 — fing+2 |

Likewise the second order, the matrix A keeps the property of diagonally dominant sym-
metric matrix, then we still solve the system (4.21) with a conjugate gradient solver. To
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determine the pressure p"+2/3, at the fourth order the equation (4.20) becomes

+2/3 +2/3 +2/3 +2/3 +2/3
n+2/3 _ n+1/3 ( 1)At _w?—lj/' + 16¢?—1,J/' — 30w2j / + 16wz‘n+1,1/' — w?—i—lﬁ/'
Pig TRy T T 12A42
2/3 2/3 2/3 2/3 2/372
|V 160 - Sul 16w - i
12Ay2
(v — )nAt | 12
TN +2/3 +2/3 +2/3 1+2/3
T 144Az2 BZP%»J’ B 83217473‘ + SB:,iJr{,j B BZHé,j
(v — nAt | 12
T Um +2/3 +2/3 +2/3 +2/3
Slaiage | PGl s sBL - B

(4.24)

IV.4 Resistive step in cylindrical coordinates

In cylindrical coordinates, with the translation invariance dz- = 0, the gradient and the
Laplacian of a scalar write

Orf

1 1 1
Vf= R gof ) V2f: EaR (RaRf)‘i‘@azf‘
0

Likewise the Cartesian coordinates, we give the resolution of the resistive step at the
second and the fourth order in space.

i Order 2

First, we focus on the R-derivative approximation in the Laplacian. By developing the
R-derivative terms in the Laplacian, we have

1 1
—Or (RORf) = —Orf + 0% . (4.25)
R R
By using the formula (4.18), we obtain for ¢ = 1..N, and j = 1..N,
1 1
<R3R (RaRf)>i,j = RAR? |:Rz‘—1/2fi,j —2R; fij + Rz‘+1/2fi,j:|'

Therefore, the approximation of the Laplacian at the second order in the case of cylindrical

coordinates is
1 1
(VQf)m- = RAR [Ril/in,j —2Rifi; + Ri+1/2fi,j] + R2AG?
In the system (4.17), the solution for the Z-magnetic field and the Euler potential is
then given by

|:fi,j—1 —2fi;+ fi,j—&-l} .

n+1/3  nt2/3 nAt n+2/3 n+2/3 n+2/3
fig =1 T RAR [Rz'l/inLj —2Rifi; 7+ Riyajafig }
4.26
nAt fn+2/3 B 2fn+2/3 " fn+2/3 ( )
ReAge [fia—t 2 W
f € {BZ7w}
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For ¢ = 1..Ng, we denote by «a;, 8g, and 3,; the parameters

a; = 2(Bri+ Bei)
o nAt
BR,I - R/LAR2 9
_ nAt
Poi = Ragr

By using the global numbering
k=(i—-1)N,+j, i=1.Ng, j=1.N,,
the equation (4.26) can be rewritten in the general form
3+ BOy = (I+ A)fr2/3, (4.27)

1/3 2/3
where frt1/3 = (f:+ / )1<k<NgN,, and frt2/s — (f]zH_ / )1<k<NgpN,- The boundary
conditions are given by ghost cells, and we have

- BC} R -—
’ 1
0 BCf,so
BCf:BCfVRqLBCf’@, BCf’R: , BCf#,: ,
N,
0, BCg
| BCyR |
with
Joa INp+1,1
BCj = BriRi)s : ; BC}YE = BrRNz BNp+1/2 : )
fon, INr+1,N,
for the y-direction we have
[ fio ]
0
BCY, = By, : . i=1.Npg.
0
L fiNg+1

In the system (4.27), the matrix A is given by
Dy B

By, . -
A=| 72 ,
- Bnp—1
By, Dy

R
where the different blocks of this matrix are given by

(07 *Btp,i

D= | Pei h . i=1.Ng,
- . _ﬁgo,i

_Bgo,i (67
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B; = R;_1/3Bril, i=2.Ng.
Contrary to the Cartesian case, the matrix A for the cylindrical coordinates is not anymore
symmetric. Therefore, the conjugate gradient method can not be used anymore to solve the
system (4.27). In the numerical tests presented in section V, we have restricted ourselves
to Cartesian geometries. A poibility is the GMRES method.
Let us now consider the computation of the pressure given in system (4.17), by using
the expression of the Laplacian and the gradient in cylindrical coordinates, we have

Ri1 i 27 — 2R 4 Ry ot
RAR?

{ B = Rii1)2Bril, i=1.Np—1,

+2/3 +1/3
P =+ (v =t

+2/3 +2/3 2
+w2j,{ — 2
R2Ap?

(7 - 1)77At n+2/3 Bn+2/3 2
+ AAR? Zi+1l,j — T Zi-1,j
(v = )nAt [ _nto/3 g2/ 2
T URAg? |Pzisn T Pzig-a|
K

ii Order 4

In this part, we adapt the four order Cartesian resistive step to the cylindrical coordinates.
Likewise the second order, we use the form (4.25) to approximate the R-derivative of the
Laplacian with the fourth order formula (4.22). Then, for a scalar f, we have

(V2f). = —Ri—1fi—2j +16R;_y)2fi—15 — 30R;fij + 16R; 1 /2 fiv1; — Riv1fivay

+*fi,j72 +16f; ;-1 —30fi; +16fi j11 — fij+o
R2Ap? '

Therefore, in the cylindrical coordinates the results (4.23) becomes for f € {Bz, v}

n+1/3 _ m+2/3 nAt n+2/3 n+2/3 n+2/3
fig =1 +m [— Ri1fi_9;" +16R;_1)0f; 1" — 30R; f;

2/3 2/3
+16Ri+1/2f£|-+17]‘/ _Ri+1fz~_g7j‘/

nAt

n+2/3 n+2/3 n+2/3 n+2/3 n+2/3
+W |:_ fivj—Q + 16fi,j—1 - 3Ofi7j + 16f — .

4,j+1 4,42

We write this equation into the vectorial form (4.21), where the matrix A is now

Dy B C;
B2 Bi _IGBR,iRH-l/QI; 1= 1..NR — 17
. Cs B; = —16PgiR;_1/51, i=2..Ng,
C ") G = PBriRinl, i=1.Ng—2,
Ngr—2 ~ d ‘
C; /8R7iRi+1/217 i = 3..Ng,
Bnp-1

Cn, By, Dn,
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for i = 1..Ng, we have

o Poi Poi (i = 30(Rifri+ Bpi),
—165%1 : '
4 o nAt
D, = B%Z R BRJ o 12RiAR27
/Bcp,i A
nAt
. —1608,, Bei = a3
’ ’ 12R2Ap?
L Bap,i _16590,1' (87 ] i2¥
The boundary conditions are given by
[ BCp
BCi g
0 BC},,
BC = BCf,R —i—BCf,Lp, BCﬁR = ) BCf,Lp = )
N
0 BCyg
Np—1
BCfE
N
| BCrk |

with

30}7 R

BCJ% R

Np—1
BCf7}I%

N
BCf7}I%

Ry
RNR+1
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Finally, the boundary conditions in the yp-direction are

—fi—1+16fi0
—fi0
0

BC%,, = By, : , i =1..Ng.
0
—JiNg+1
| 16fiN,+1 — fiN 42

By using the same method as the fourth order for the Cartesian coordinates, the
results (4.24) giving the new pressure p"t2/3 becomes for the cylindrical coordinates

n+2/3 _ ’(L-‘,—l/S (’Y - 1)77At [Bn+2/3 B 83”4_2/3, + 8Bn+2/3 . Bn+2/3 }2

Pij Pij T IIAR? Zi—2,j Zji—1, Zji+l,j — PZi42,j

(v — 1)nAt {Bn+2/3 _ 8Bt/ | gpnt/s _ pnt2/s r

T44ARZA L2 Zij—2 Zjij—1 Z,i,j+1 AR
1

+(y — 1)nAt TRAR? i—2.5 i—1,]

1 n
< ~ R+ 16R;_1/20 e

J

f3ORﬂ/JZj2/3 + 16Rz‘+1/21/1?:127/3 - Rz’+11/);f22,]/-3>

n+2/3 n+2/3 n+2/3 n+2/3 n+2/372
+—¢z‘,j—2 +16v; ;757 =309, 777 + 169, 7 — ;1 ]
12RZ2Ag? ’

In this Section, we have presented two different numerical methods to solve the resistive
step in cylindrical coordinates. For now, those method have not yet been implemented for
numerical tests.

V  Numerical results

This section is devoted to the numerical tests made for ideal and resistive MHD. In the
results, the scheme with projection for ideal and resistive MHD is compared to scheme

5
without the projection step. For all the tests, we have set the adiabatic index to 3"

V.1 Brio-Wu problem for ideal MHD

Originally presented by Brio-Wu [25] for the 1-D ideal MHD equations, this numerical
test is based on the Sod’s tube [70] for Euler equations. Indeed, it contains the same
hydrodynamics initialization as the one of [70] and a magnetic field is added. The initial

condition writes
Up, x=<0.5,

Ulz) = { Ugr, x> .0.5.

where Uy and Ug are given in Table 4.1. This experiments permits to observe how
the different schemes are able to capture the different waves of the problem: shocks,
rarefactions, and contact discontinuities. In the results a 1-D reference solution has been
computed with the HLLD scheme without projection where the domain [0, 1] is meshed
with 2000 cells.
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p ul p B, | By | B,
U 1 0] 1 [075] 1 0
Ur 0125001075 —-11] 0

Table 4.1: Initial data of Brio-Wu problem.

First, the simulations are run in 1-D Cartesian geometry on the domain [0, 1]. Then,
the definition (4.4) rewrites

B = B,e; + 0,ve, + B.e..
Therefore, the Euler potential equation becomes

9 (pY) + 0x(pthu) = Bypu.

In the numerical experiments reported below, this source term is computed using a simple
numerical quadrature. We deduce from Table 4.1 that the initialization of the Euler
potential is given by

x, x < 0.5,
11—z, z>0.5.

Y(z) = { (4.28)

The computations are performed over [0, 1] meshed by 100 points until ¢ = 0.1. Fig-
ures 4.5 to 4.10 compare the scheme with and without projection for the Rusanov, HLL,
and HLLD fluxes at the first order in time and space and the second order too.

At the first order in time and space, the Rusanov scheme with and without projection
is not able to capture precisely enough the solution. The same remark can also be made for
the HLL scheme with and without projection. Moreover, the HLL flux shows oscillations
between x = 0.35 and & = 0.9 specially for the scheme with projection. The HLLD schemes
with and without projection have the closest results solution to the reference solution but
those results are not precise enough. For the y-magnetic field, for the three different fluxes,
the schemes without projection get better results than the scheme with projection. This
phenomenon is due to the fact that for the 1-D MHD equations, the magnetic field B is
always satisfying the divergence-free constraint. Then, in the scheme with projection, B,
is evaluated with two numerical approximations: first, the Euler potential is computed
in the transport step, and in a second time from the Euler potential approximation, we
evaluate with finite differences B,. Whereas, in the scheme without projection, B, is only
computed in the transport step, then we have made only one approximation.

As the results of the first order in time and space are not good enough, we re-run the
test at the second order in time and space. Those new results are referred in Figures 4.8
to 4.10. The Rusanov schemes have the less precise results. Indeed, for the density the
wave located at x = 0.55 is not captured at all. The oscillations of the HLL schemes are
smaller and happen in a smaller domain: between x = 0.35 and = = 0.6. Finally, for the
HLLD schemes, the results are really better than the two other fluxes. We can see that
the HLLD scheme with projection present some overshoot around x = 0.5 for the pressure
and the y-velocity.
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Figure 4.5: 1-D Brio-Wu problem, Solution at ¢t = 0.1, O(1) Rusanov flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.
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Reference Reference
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Figure 4.6: 1-D Brio-Wu problem, Solution at ¢ = 0.1, O(1) HLL flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.

136



V. Numerical results

Reference Reference
11 Without projection 14 Without projection
With projection With projection
0.8 08
06 ¢ 0.6
0.4 ¢ 0.4
0.2 t 0.2
0 ' ' L ' L 0 L L L L ' L L ' L
9] 01 02 03 04 05 06 07 08 0.9 1 4] 01 02 03 04 05 08 07 08 0.9 1
Reference —— Reference ——
Without projection —— 0.5 Without projection ——
08 L With projection —— With projection ——
0.6 | o
0.4 0.5
0.2 r
-1
0t
-1.5
02 t+
0.4 2
9] 01 02 03 04 05 06 07 08 0.9 1 4] 01 02 03 04 05 08 07 08 0.9 1
T T T T T T ; T T 0.6 T T T T T T ; T T
1 1 Reference —— Referesnce ——
Without projection —— Without projection ——
With projection —— 05 With projection ——
05 ¢ 0.4
03
0
0.2
05 0.1
4]
-1
0.1
0 01 02 03 04 05 06 07 08 0.9 1 4] 01 02 03 04 05 06 07 08 0.9 1

Figure 4.7: 1-D Brio-Wu problem, Solution at ¢ = 0.1, O(1) HLLD flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.
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Figure 4.8: 1-D Brio-Wu problem, Solution at t = 0.1, O(2) Rusanov flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.
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Figure 4.9: 1-D Brio-Wu problem, Solution at ¢ = 0.1, O(2) HLL flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.
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Figure 4.10: 1-D Brio-Wu problem, Solution at ¢ = 0.1, O(2) HLLD flux with and with-
out projection, Top-Left: Density, Top-Right: Pressure, Middle-Left: x-velocity, Middle-
Right: y-velocity, Bottom-Left: y-magnetic field, Bottom-Right: Euler potential.
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Figure 4.11: 2-D Brio-Wu problem, Fuler potential ¢ at ¢ = 0.1. HLLD flux with projec-
tion, Left: Order 1 in time and space, Right: Order 2 in time and space.

As the z-magnetic field is not zero, then according to (4.4), ¥ should depend of the
z and y coordinates. Then, we re-run this test in 2-D in the square [0,1] x [0, 1] meshed
with 100 x 10 cells. According to Table 4.1, the new Euler potential is given by

T/J(ﬂfvy) = w(«”?) — 0.75y,

where ¢(z) is the initialization of ¥ in the 1-D run given in (4.28). As expected, all the
physical variables except the Euler potential obtained the same results as the 1-D case.
Its new final solution is given in Figure 4.11 for the HLLD scheme with projection at the
first and second order in time and space. We observe that both of schemes keep a linear
relation between the different isolines in the y-direction.

Finally, we have shown that the HLLD schemes at the second order in time and space
obtain the best results. Thus, in the rest of the numerical test, we will only use this
numerical flux.

V.2 Orszag-Tang problem for ideal MHD

The Orszag-Tang problem is a classical 2-D test for ideal MHD. In this test, we can
observe shock waves and this test permits to test the robustness of a scheme as it is shown
in [59, 61, 77]. The initial data are the same as the ones of [59] and are referred in Table
4.2. The computation domain is the square [0,1] x [0, 1] meshed by 512 x 512 cells with
periodic boundary conditions. According to Table 4.2, the Euler potential is initialized
with

1 1
Y(x,y) = —=— cos(2my) — — cos(4nx).
2 4

The computations are performed until ¢ = 0.5 and ¢ = 1.0 with the HLLD flux at the
second order in time and space. In order to keep physicals results, the pressure and the
density are forced to be strictly positive. Moreover, for the second order in space, the
normal component of the magnetic field is kept at the first order in space. In this test, we
compare the scheme with projection to the one without projection.
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p | uy) | vy |w|p@y) | Bu(r,y) | By(x,y) | B

v | —sin(27y) | sin(27z) | 0 07 —sin(27y) | sin(4rz) | 0

Table 4.2: Initial data of Orszag-Tang 2-D problem.

Figure 4.12 compares the scheme with projection to the one without projection at ¢t =
0.5 for the density and the pressure. We observe that for the scheme without projection,
the pressure need to be forced to stay positive, and the results of this scheme are not
satisfying. For the scheme with projection we can see that we do not need the criteria
to enforce strictly positive density and pressure. Density and pressure remain positive
during the time of the simulation. In Figure 4.13, we plot the pressure along y = 0.3125
at t = 0.5. We observe that the scheme without projection show large oscillations around
shock waves at x = 0.25 and x = 0.7. Moreover, in Figure 4.14 we observe that V - B has
blown up leading to the crash of the simulation before t = 1.0. By comparing our results
to the ones of [77] with contrained transport method of Balsara and Spicer [11], we see
that we obtain similar results.

Figure 4.15 presents the pressure and the density field at ¢ = 1.0 by the scheme with
projection. We observe that we get a similar results to the one of [77] but we do not get
the same value at the center of the computational domain: 4.7 for the pressure instead
of 6 in [77].

In Figure 4.14, we compare the 2-D field of V - B for the two schemes at t = 0.5, we
also give the evolution of the L? and L norms of the divergence of the magnetic field.
Those two norms are given by

Nz Ny
IV-Bllz = | > 1Ci (V- B)iyl’, V- Bl = max [(V-B)y).
i=1 j=1 T eI =y

We can see that for the scheme with projection, the divergence of B stay really close to
zero during all the simulation, meanwhile the scheme without projection has a blow-up of
the divergence leading to an nonphysical results.

We have shown that only the scheme with projection is able to give comparable results
to the ones of [77]. This scheme get satisfactory results by comparing with the ones of [77].
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Figure 4.12: Orszag-Tang problem, HLLD O(2), ¢ = 0.5, Top: Density field, Bottom:
Pressure field, Left: Scheme without projection, Right: Scheme with projection.
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Figure 4.13: Orszag-Tang problem, HLLD O(2), t = 0.5, Pressure along y = 0.3125, Red:
Scheme without projection, Blue: Scheme with projection.

143



Chapter 4. On Euler potential for MHD models
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Figure 4.14: Orszag-Tang problem, HLLD O(2), Top-Left: V - B field at ¢t = 0.5 scheme
without projection, Top-Right: V-B field at t = 0.5 scheme with projection, Bottom-Left:
|V - B||12(t), Bottom-Right: ||V - B||so(t),

Figure 4.15: Orszag-Tang problem, HLLD O(2) with projection, ¢ = 1.0, Left: Density
field, Right: Pressure field.
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V.3 Kelvin-Helmholtz instabilities for ideal MHD

The Kelvin-Helmholtz instabilities [59] show a nonlinear evolution of the 2-D MHD equa-
tions and are resulting from velocity shears. The initial data are the same one as the one
of [77] and are given in Table 4.3 where the Mach number is M = 1, the width of the
region of large sleep shear velocity gradient is yg = 0.05, and ¢, = 0.1 is the Alfvén speed.
At t = 0, a single-mode perturbation is added to the tangential velocity v

2
vp(x,y) = 0.01sin(27z) exp (—g2> , o =0.01.

The aim of this test is to see how the different schemes make evolve the perturbation
into turbulence flows and maintain the divergence-free constraint. The computational
domain is the rectangle [0,1] x [-1,1]. At the top and the bottom of the domain, the
boundary conditions are reflecting ones. For the left and right boundaries, there are set
to periodic boundaries. We also introduce the ratio of the poloidal magnetic field over the

toroidal one by
/ B2 2
Bpol B Bz + By

Btor B Bz

P) u(z,y) viw|p By By B; Y(z,y)

M
1| tanh(J) | 0|0

cacos (5) /P | 0 | casin(F)y/p | —cacos(5)y/py

2=

Table 4.3: Initial data of Kelvin-Helmholtz instabilities.

First, we compare the schemes with and without projection at four different times:
t =50,t=280,t =120, and t = 20.0. the computation domain is meshed with
256 x 512 cells. The results are given in Figure 4.16. We can see that for the scheme
without projection that at ¢ = 5.0 some instabilities began to appear leading to a non-
exploitable results for the rest of the simulation. Concerning the scheme with projection,
we observe that there is no such instabilities and then we can observe the turbulence in
the computation domain the four different time. By comparing our results to the ones of
Vides [77], we observe that for ¢ = 5.0 we have similar results as the ones of the constrained
transport method, but for the rest of the visualization time, the turbulence of the scheme
with projection are not developing in the same way.

In Figure 4.17, we present the evolution of ||V - B||;2 and ||V - Bl in function of
time, we observe that only the scheme with projection is able to keep the divergence-free
constraint of the magnetic field. Likewise the Orszag-Tang problem, the divergence of B
for the scheme without projection has blown up leading to non-satisfactory results.

Finally, we re-run the test for two meshes: 64 x 128 cells, and 128 x 256 cells. We give
the solution for the scheme with projection at ¢t = 5.0, t = 8.0, t = 12.0, and ¢ = 20.0 and
compare the results in Figure 4.18. We can see for the 64 x 128 cells mesh no turbulence
effect are captured. In fact, more the mesh is precise more the turbulence can be captured.
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(a) Without projection

B
Figure 4.16: Kelvin-Helmholtz instabilities for ideal MHD, Ratio BPOl, 256 x 512 mesh,

t
O(2) HLLD flux. Column 1: ¢ = 5.0, Column 2: ¢ = 8.0, Column 3: (tw: 12.0, Column 4:
t = 20.0.
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Figure 4.17: Kelvin-Helmholtz instabilities for ideal MHD, 256 x 512 mesh, O(2) HLLD
flux. Left: ||V - B||2]|(¢), Right: ||V - B||oo(?).
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(a) 64 x 128 mesh grid

B
Figure 4.18: Kelvin-Helmholtz instabilities for ideal MHD, Ratio Bp Ol, O(2) HLLD flux

t
with projection. Column 1: ¢ = 5.0, Column 2: ¢ = 8.0, Column 3: t = 12.0, Column 4:
t = 20.0.

V.4 Kelvin-Helmholtz instabilities for resistive MHD

We are now interested to compare our resistive step at the second and the fourth order for
the scheme with projection. Therefore, we re-run the previous case for the resistive MHD
equations as it has been done in [60]. The initial data are the same as the previous test,
and given by Table 4.3. We have run this test for n =5 x 107* and n = 1073,

B
2ol for ) = 5 x 1074, This Figure compares the

Figure 4.19 presents the results of

tor
scheme with projection at the second order and the fourth order of the resistive step.
We observe that the shape of the solution for the two order are similar for each time.
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. . Bypal
Nevertheless, we can observe some differences between the extrema of the ratio —2—.

Indeed at t = 5.0, the extrema of the fourth order are 0.01153 and 2.759, instead of O.1t2051
and 2.762 for the second order. At the final time of the simulation, this difference is bigger,
1.280 and 0.001084 are the extrema of the fourth order, and the second order get 1.296
and 0.0003226 for the extrema. We also observe that the fact to add the resistive term in

the MHD equations for this test reduce the turbulence that we have observed in the case
of ideal MHD.

The Figure 4.20 shows the results for n = 1.0 x 1073, and we observe a huge difference
with the case = 5.0 x 1074, Indeed, we do not observe anymore the shear effect in
the center of the computational domain, at ¢ = 20.0 that we were able to see in the first
case. Let us now compare the fourth and the second order of the resistive step of the

B
scheme with projection. At ¢t = 5.0, the ratio P9l evolved between 0.009043 and 2.249

for the fourth order and between 0.009202 and 22%6 for the second one. Likewise the case
n = 5.0 x 1074, this difference grows with time along the simulation, indeed at t = 20.0,
the extrema of the fourth order are 0.004414 and 1.041, and the ones of the second order
are 0.004267 and 1.050.

oot 1.0

ol

B
Figure 4.19: Kelvin-Helmholtz instabilities for resistive MHD, = 5 x 1074, Ratio —2=,
tor

HLLD O(2), Top: Order 2 for the resistive step, Bottom: Order 4 for the resistive step,
Column 1: t = 5.0, Column 2: ¢ = 8.0, Column 3: ¢t = 12.0, Column 4: ¢ = 20.0.
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Figure 4.20: Kelvin-Helmholtz instabilities for resistive MHD, n = 1073, Ratio LOZ,
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HLLD O(2), Top: Order 2 for the resistive step, Bottom: Order 4 for the resistive step,
Column 1: t = 5.0, Column 2: ¢t = 8.0, Column 3: ¢ = 12.0, Column 4: ¢t = 20.0.
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V.5 Screw pinch equilibrium with uniform density in cylindrical coor-
dinates for ideal MHD

The screw pinch equilibrium corresponds to a fusion plasma test. It consists to maintain
a stationary solution and to observe how the numerical scheme is able to keep it. All the
theory of this test is explained by Fiedberg in Chapter 5 of [38]. Here, we suppose that the
solution is only depending on the radial coordinates R and that there is no radial magnetic
field Bg, and no velocity u. The Z-component of the magnetic field is chosen constant.
Hence, the only remaining equation from the MHD equations is the radial momentum
equation given by
Or(Rpr) = pr — B2.

One solution of this equilibrium is given in Table 4.4 where Ry = 10 and it is represented
in Figure 4.21. The computation domain is the disc of radius equal to 1 meshed with
[100 x 10] cells aligned with the R and ¢-directions.

The simulation is ended when a steady state is reached or after 10° time iterations.

R
The steady state is defined by s < 1072 where
Res0
{ ResO = |[(pur)' — (pur)°| 2,
Res = |[(pur)"™" — (pur)"| L2

Figures 4.22 to 4.24 present the results obtained for the Rusanov, HLL, and HLLD
fluxes at the first order in time and space, and compare the scheme with projection to the
one without projection. We observe that for the Rusanov and the HLL fluxes the scheme
with projection get the closest result. Indeed, Figure 4.25 shows that only the scheme
with projection has reached the steady state and then the solution of the Rusanov and
HLL scheme without projection are given after 10° time iterations. For the one without
projection, there were around 30000 time iterations. For the HLLD flux, we can see in
Figure 4.24 that the scheme with and without projection get really close results, then to
determine which one of the two scheme get the best results we present the evolution of
the residu and the one of B, relative error in Figure 4.26. The relative error is defined by

Err — HBZ — BfoxaCtHLz
= HBexactH 9
© L

The HLLD scheme with and without projection has converged after the same number
of time iterations. But the relative error on the tangential magnetic field show that the
scheme without projection is more precise than the one with projection. One reason is
that the solution is 1-D in the radial direction, therefore the divergence stays free: For the
scheme without projection B, is evaluated only with the HLLD flux, whereas with the
one with projection we first evaluate 1) with the HLLD flux then we approximate drt to
get B,.

We now re-run the test at the second order in time and space. The results are given
in Figures 4.27 to 4.29. First, for the Rusanov and the HLL schemes, the scheme without
projection gets much better results than at the first order but it still less precise than the
one with projection. The residu of the Rusanov and HLL schemes shows that the scheme
without projection still does not reach the convergence criteria. The HLL scheme with
projection also does not attain the criteria as it is shown in Figure 4.30 but it get stable
after 10? time iterations. For the HLLD flux, the two schemes still get close results and
Figure 4.31 shows that the scheme without projection is the most precise.
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plul pR) Br | By(R) | Bz Y(R)

1 R 1 2
6RZ(3R2+1)2 Ro(3R2+1) 1 mln(?’R +1)

Table 4.4: Initial data of screw pinch equilibrium.

Figure 4.21: Screw pinch equilibrium: Exact solution. Left: Pressure, Right: ¢-magnetic
field.

0.0018 0.03
Exact
0.0015 Without projection
. With projection 0.025
0.0014
0.02
0.0012
0.001 0.015
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0.0002 0 Exact
Without projection
With projection
0 -0.005
o] 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 4.22: Screw pinch equilibrium in cylindrical coordinates, All R. Rusanov O(1).
Left: Pressure, Right: B,.
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0.0018 0.03
Exact
Without projection
0.0016 With projection
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Figure 4.23: Screw pinch equilibrium in cylindrical coordinates, All R. HLL O(1). Left:
Pressure, Right: B,.
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Figure 4.24: Screw pinch equilibrium in cylindrical coordinates, All R. HLLD O(1). Left:
Pressure, Right: B,.
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Figure 4.25: Screw pinch equilibrium in cylindrical coordinates. First order in time and
space. Comparison of the scheme with projection and of the one without projection. Left:
Rusanov flux, Right: HLL flux.
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Figure 4.26: Screw pinch equilibrium in cylindrical coordinates. O(1) HLLD flux. Evolu-
tion of Left: the Residu in function time iteration. Right: Relative error of B, in function
of time.
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Exact
Without projection
0.0018 With projection
0.025
0.0014
0.0012 0.02
0.001
0.015
0.0008
0.0006 0.01
0.0004
0.005
0.0002 Exact
Without projection
With projection
0 o]
o] 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 4.27: Screw pinch equilibrium in cylindrical coordinates, All R. Rusanov O(2).
Left: Pressure, Right: B.
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Figure 4.28: Screw pinch equilibrium in cylindrical coordinates, All R. HLL O(2). Left:
Pressure, Right: B,.
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Figure 4.29: Screw pinch equilibrium in cylindrical coordinates, All R. HLLD O(2). Left:
Pressure, Right: B.
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Figure 4.30: Screw pinch equilibrium in cylindrical coordinates. Second order in time and
space. Comparison of the scheme with projection and of the one without projection. Left:
Rusanov flux, Right: HLL flux.

le-9 — 7e-05
‘Without projection
With projection
6e-05
le-10
5e-05
4e-05
le-11
3e-05
2e-05
le-12
le-05
Without projection
With projection
le-13 0
0 20000 40000 60000 0 2 4 6 8 10 12 14

Figure 4.31: Screw pinch equilibrium in cylindrical coordinates. O(2) HLLD flux. Evolu-
tion of Left: the Residu in function time iteration. Right: Relative error of B, in function
of time.
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V.6 Screw pinch equilibrium with uniform density in Cartesian coordi-
nates for ideal MHD

We are now interested in re-running the test of subsection V.5 but this time we use the

Cartesian coordinates. The new computational domain is the square [—1,1] x [—1,1]

meshed by 200 x 200 cells. According to Table 4.4, the magnetic field B in Cartesian

coordinates is

-y
Ro(3R%2 +1)

B(z,y)=| ___* , R? =22+ 42, Ry = 10.
Ry(3R%2+1)

- 1 = (e$7eyvez)

As in Section V.5 the HLLD scheme gets the best results, we test here only the HLLD
scheme at the second order in time and space and compare the scheme with projection
to the one without projection. The aim of this test is to see how many time iterations
the two schemes are able to maintain the screw pinch equilibrium by using the Cartesian
coordinates.

Figure 4.32 gives the evolution of the relative error of the pressure in function of Alfvén
time. To define the Alfvén time, we re-call the definition of Alfvén speed (1.82)

Bo/vko
V' 1no(me +m;)

ug =

Then, the Alfvén time is defined by

L
ta = —0.
uo

In the simulation, By and Lg are set with the following values

By = 1T,
Ly = 1m.

Figure 4.32 shows that the scheme without projection has crashed in the beginning
of the simulation around 15 Alfvén times and after 7500 time iterations. Indeed the
pressure relative error has grown up to 100. Meanwhile the scheme with projection run
the simulation until 2000 Alfvén time which corresponds to 0.91ms after 9 x 10° time
iterations. As we can observe in Figure 4.33 that none of those two schemes were able to
keep physical results, indeed both of them must use the same criteria as the one used in
subsection V.2 to have a strictly positive pressure. However, we observe that the scheme
without projection seems to get a 1-D solution in the cylindrical geometry as we expected.
For the scheme with projection, the solution present some oscillations leading to the loss
of the 1-D character in the cylindrical geometry. This can be explained by the fact that
the scheme without projection has done less time iterations than the one with projection
and then the solution does not have time to smooth by the first scheme.

This test has shown the influence of the geometry and of the mesh to maintain an 1-D
equilibrium in function of the R coordinates. Indeed, by using a mesh aligned with the
cylindrical (R, ¢) coordinates the two schemes converge to a steady solution close to the
exact one. But, for a Cartesian mesh aligned with the x and y-directions, none of the
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schemes maintains a suitable solution. Moreover, the 2-D Cartesian computations have
shown that the scheme with projection keep more time a physical solution around 0.91ms.
In practice, we want a scheme able to maintain this equilibrium several ms then, we have
to find a way to improve the scheme with projection.

le2

Without projection
With projection

19_6 L L L L L
0 200 400 B00 800 1000 1200 1400 1600 1800 2000

Figure 4.32: Screw pinch in Cartesian geometry. Comparison of the HLLD scheme with
and without projection at the second order in time and space. Relative error of the
pressure in function of Alfvén time.

Im‘m

—o0279

6.000e-41

Figure 4.33: Screw pinch equilibrium in Cartesian geometry for ideal MHD. Comparison
of the HLLD schemes with and without projection. Final pressure field, Left: Scheme
with projection, Right: Scheme without projection.
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V.7 Screw pinch equilibrium with uniform density in Cartesian coordi-
nates for resistive MHD

We next reproduce the test of subsection V.6 but this time we run it for the resistive MHD
equations to see if the scheme is able to keep the equilibrium on a longer time simulation.
We still set the maximum of time iteration at 2.5 x 10%. The computational domain is the
same as the previous test. For the resistivity, in [34] the authors set the resitivity between
10~* and 107 then we choose to take = 1076, We still use the HLLD schemes at the
second order in time and space.

For the resistive MHD model, the solution is not stationary. However, by using the
equation containing the resistive terms, we get that the resistive time is defined by:

L
ty = =2,
o
where Lg is the reference lengths given in the previous test, and 7 is the reference resis-
tivity given by the following relation:

no=6.5x10"% !

o = 0. —2790

T3/?

where T; is in keV. To determine 79, we use the data of Table 1.1 in the center of the
tokamak with T, = 11.2keV. We obtain that the resistive time is

ty = 5.77 x 10%s,
whereas with the Alfvén time given in the previous test is
ta=4.58%10""s.

Since we have t,, >> t4, then the solution should stay close to the initial solution during
the simulation.

For this simulation, all the schemes have performed 2.5 x 10® time iterations, and the
results are presented in Figures 4.34 and 4.35. Globally, we observe that the use of the
resistive MHD equations give better results that the ones obtained with the ideal MHD
equations.

Figure 4.34 compares the pressure relative errors of the scheme with and without
projection and the second and fourth order of the resistive step. First, we observe that
the two orders of resistive step get close results to each other. For the scheme without
projection, we see in Figure 4.34 that the simulation ended around 250 Alfvén time.
Meanwhile with the same number of time iterations the scheme with projection almost
reaches 3500 Alfvén time ~ 1.6ms. Both of these schemes have a final relative error around
1.

The final pressure of the four simulations is given in Figure 4.35. Likewise we have
said before the results between the two orders of the resistive step does not change the
results a lot. The main differences are coming from the use of the projection step or
not. Indeed, the final shape of the pressure are totally different between the scheme with
projection and the one without. Moreover, the scheme without projection seems to have
lot of oscillations closer to the center of the computational domain than at its exterior.
At the second order in the resistive step, the extrema of the pressure are 2.759 x 10714
and 0.00285 for the scheme without projection instead of 1.352 x 1076 and 0.001910 for
the one with projection. The final shape of the scheme with projection show some issue in
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the four corners of the computation domain and around the points (0, —1), (0,1), (—1,0),
and (1,0).

Using the resistive MHD equations instead of the ideal MHD ones improves the re-
sults. The use of the Cartesian coordinates yields to the loss of the 1-D character of the
equilibrium. One solution could be to add the Hall effect in the Ohm’s law. To go further,
it will be interested to re-do this test in the (R, Z) planes as it has be done in [34].

lel lel

1le0 1le0
le-1l le-1l
le-2 le-2
le3 le3
le4 le4
le-5 le-5
Without projection Without projection
With projection With projection
le6 le6

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Figure 4.34: Screw pinch in Cartesian geometry for resistive MHD with = 1.0 x 1076,
Comparison of the HLLD scheme with and without projection at the second order in time
and space. Relative error of the pressure in function of Alfvén time. Left: Resistive step
at the second order, Right: Resistive step at the fourth order.
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Figure 4.35: Screw pinch equilibrium in Cartesian geometry for resistive MHD. n = 1.0 x
107%. Comparison of the HLLD schemes with and without projection. Final pressure
field, Left: Scheme with projection, Right: Scheme without projection. Top: Resistive
step at the second order, Bottom: Resistive step at the fourth order.
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VI Conclusions

In this Chapter, we have designed a numerical scheme for the ideal and resistive MHD
models of Chapter 1. This numerical scheme deals with a strategy to treat the divergence-
free constraint. This method is a mixture of the vector potential and divergence cleaning-
type methods [42, 30, 66, 63]. Indeed, we have a redundant system containing equations
on the magnetic field and on the vector potential. We have used the cell-centered finite
volume method both in Cartesian and cylindrical coordinates.

Finally, we have performed numerical tests using the two coordinate systems. The
results have shown that the scheme with projection is able to maintain V - B = 0 for 2-D
tests and is able to handle instabilities as the Kelvin-Helmholtz ones. The last test of this
Chapter consists in observing how the numerical method is able to keep the screw pinch
equilibrium. We have noticed that only the cylindrical case converges to a final solution
close to the equilibrium. For the Cartesian geometry, the use of the resistive terms in the
equations allow a more long time simulation than the ideal MHD equations for the scheme
with projection.

One future work will be to adapt this method to the vertex-centered finite volume
method of Chapter 2 which has been tested for bi-temperature Euler model in Chapter 3
in order to perform more MCF tests in a torus.
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The work presented in this thesis deals the simulations of fusion plasma applied to toroidal
geometry. The behavior of plasma involves different physical phenomena at different time
scale, then we have to take it into account in the choice of the model to simulate a plasma.

In Chapter 1, we have obtained the bi-temperatures Euler model and the MHD models
based on the same kinetic model. The bi-temperature Euler model is mono-fluid model
in which the electrons and the ions are distinguished by their temperatures or energies.
This model describes phenomena where the magnetic effects are neglected in front of the
hydrodynamics ones, then this models correspond better to the Inertial Confinement Fu-
sion point of view. However, for Magnetic Confinement Fusion which is the method use
for tokamak devices, the magnetic effects can not be anymore neglected. Then, we have
shown the assumptions yielding to the ideal and resistive magnetohydrodynamic mod-
els. Those two models are also mono-fluid models but the two species are not anymore
distinguishes with their temperatures or energies. During the derivation of the bi-fluid
magnetohydrodynamic models, we have never used the hypothesis of weak electron mass
as it is usually done [37, 43, 51]. Moreover, the kinetic model has been coupled with the
four Maxwell’s equations and has taken into account the magnetic field, then the obtention
of the bi-temperature Euler model is more general than the one of [7].

Next, Chapter 2 has presented the finite volume method used to approximate solu-
tions of the three models with two 2-D different approaches: the cell-centered one, and
the vertex-centered one. The cell-centered approach has been adapted to the cylindrical
coordinates. The use of cylindrical coordinates introduces some artificial terms when the
vectorial equations are projected on its basis. Then, we have shown a process to remove
as much as possible those terms in the ideal magnetohydrodynamic equations. Finally,
to model a torus, we have presented the derivation of the 2-D vertex-centered approach
to obtain a 3-D finite-volume method adapted to the toroidal geometry. To avoid to deal
with artificial source terms in the numerical, we have used the strong conservative form of
the equations as it has been done in [18, 21]. Both approaches have been extended to the
second order in space and time scheme. The second space order is based on MUSCL-type
method, meanwhile the time integration uses a second order Runge-Kutta method.

Chapter 3 was devoted to the design of a numerical method to approximate solution
of the bi-temperature Euler equations. We have proposed a relaxation-type scheme based
on the one for Euler equations. In a first step, by using relaxation variables instead of the
two pressures, the transport part of the system is solved by using an exact Riemann solver
to compute the numerical fluxes. Then, during the second and last step of the scheme, we
have treated the thermal exchange and given some properties on the equilibrium of the
temperatures. Finally, this numerical scheme has been tested for Cartesian and cylindri-
cal geometries. The results have been compared to the ones of the literature and discussed.
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Finally, in Chapter 4 we have developed a numerical scheme to solve the two mono-
fluid magnetohydrodynamic models for 2-D geometries. In this numerical scheme, the
condition V - B = 0 has been taking into account. Indeed, by introducing the Euler po-
tential and to add its equations in the initial system, we have worked with a redundant
system. First, the proposed numerical method for ideal magnetohydrodynamic equations
is based on the relaxation schemes, indeed, the two first components of the magnetic field
have played the role of the relaxation variables since their are re-evaluated with the Euler
potential during a projection step. Then, this numerical method is adapted to the resistive
MHD equations. In fact, we have added an implicit step in the scheme to deals with the
resistive terms of the model. Those two schemes have been tested and discussed.
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Le travail présenté dans cette these traite de la simulation de plasma de fusion adapté a
la géométrie toroidale. Le comportement du plasma fait intervenir différent phénomenes
physiques & différentes échelle de temps que nous avons du prendre en compte dans le
choix des modeles pour modéliser le plasma.

Dans le chapitre 1, nous avons obtenus le modele d’Euler bi-températures et les
modeles MHD & partir du méme modele cinétiques. Le modele d’Euler bi-températures
est un modele mono-fluide dans lequel les électrons et les ions sont distingués par leur
température ou énergies. Ce modele décrit des phénomenes dans lesquels les effets du
champs magnétiques sont négligeables par rapport a les effets hydrodynamiques, ainsi
ce modele s’adapte plus a la fusion par confinement inertiel. Cependant, pour la fusion
par confinement magnétiques qui est la méthode utilisée dans les tokamaks, les effets
magnétiques ne peuvent pas étre négligés. Ainsi, on a donné les hypotheéses permettant
d’obtenir les modeles de MHD idéales et résistives. Ces deux modeles sont des modeles
mono-fluides ol les deux especes ne plus distinguées par leurs températures. Lors de la
transformation du modeéle magnétohydrodynamique bi-fluide, nous n’avons jamais sup-
posé que la masse des électrons est petite comme cela a été fait dans [37, 43, 51]. De plus,
le modele cinétique a été couplé aux quatre équations de Maxwell prenant en compte le
champs magnétiques lors de 'obtention du modele d’Euler bi-températures ce qui est plus
général que la méthode utilisée dans [7].

Ensuite, le chapitre 2 a présenté la méthode volume finis utilisée pour approximer les
solutions des trois modeles avec deux approches différentes : ’approche cell-centered, et
I’approche vertex-centered. L’approche cell-centered a été adaptée aux coordonnées cylin-
driques. Leur utilisation introduit des termes sources artificiels dans les équations vecto-
rielles lorsque celles-ci sont projetés sur sa base. Ensuite, nous avons montré un procédé
pour supprimer autant que possible ces termes. Finalement, nous avons adapté I’approche
2-D vertex-centered pour obtenir une méthode volume finis 3-D pour la géométrie toroidale.
Afin d’éviter d’avoir des termes sources artificiels, nous avons utilisés la formulation con-
servative forte des équations comme cela avait été fait dans [18, 21]. Ces deux méthodes
numériques ont aussi été formulées pour le second ordre en espace et en temps. Le second
ordre en espace s’est servi du méthode du type MUSCL pendant que I'intégration en temps
a été approchée par une méthode Runge-Kutta d’ordre 2.

Le chapitre 3 a été consacré a la construction d’'une méthode numérique pour approx-
imer les solutions des équations d’Euler bi-températures. Nous avons proposé un schéma
du type relaxation basé sur celui pour les équations d’Euler. Duant une premiere étape en
utlisant des variables de relaxation a la place des deux pressions, la partie transport dans
les équations est résolue en utilisant un solveur de Riemann exact pour calculer les flux
numériques. Ensuite, lors d’une seconde et derniere étape du schéma, nous avons traité les
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termes d’échanges thermiques et donné des propriétés de ’équilibre des températures. Fi-
nalement, le schéma numérique a été testé pour les géométries cartésiennes et cylindrique.
Les résultats obtenus ont été comparés a ceux obtenus dans la littérature et discutés.

Enfin, dans le chapitre 4, nous avons développé un schéma numérique pour résoudre
les deux modeles magnétohydrodynamiques mono-fluide pour des géométries 2-D. Dans ce
schéma numérique, la condition V - B = 0 est prise en compte. En effet, eb définissant le
potentiel d’Euler et ajoutant son équation au systéme initial, nous avons travaillé avec un
systeme redondant. Tout d’abord, la méthode numérique proposée pour les équations de la
MHD idéale s’est basée sur celle des schéma de relaxation ou les différentes composantes du
champs magnétique ont joué le role des variables de relaxation puisqu’elles sont réévaluées
a chaque pas de temps a partir du potentiel d’Euler. Ensuite, on ’a adaptée aux équations
de la MHD résistive. En fait, nous avons ajouté une étape intermédiaire implicite au
premier schéma pour traiter les termes résistifs du modele. Ces deux schémas ont été
testés et commentés.
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Modélisation MHD et Simulation Numérique par des Méthodes Volumes Finis.
Application aux Plasmas de Fusion

Ce travail traite de la modélisation des plasmas de fusion qui est ici abordée a ’aide d’un
modele Euler bi-températures et du modele de la magnétohydrodynamique (MHD) idéale
et résistive. Ces modeles sont tout d’abord établis a partir des équations de la MHD bi-
fluide et nous montrons qu’ils correspondent a des régimes asymptotiques différents pour
des plasmas faiblement ou fortement magnétisés. Nous décrivons ensuite les méthodes
de volumes finis pour des maillages structurés et non-structurés qui ont été utilisées pour
approcher les solutions de ces modeles. Pour les trois modeles mathématiques étudiés dans
cette these, les méthodes numériques reposent sur des schémas de relaxation.

Afin d’appliquer ces méthodes aux problemes de fusion par confinement magnétique,
nous décrivons comment modifier les méthodes de volumes finis pour les appliquer a des
problémes formulés en coordonnées cylindriques tout en gardant une formulation conser-
vative forte des équations. Enfin nous étudions une stratégie pour maintenir la contrainte
de divergence nulle du champ magnétique qui apparait dans les modeles MHD. Une série
de cas tests numériques pour les trois modeles est présentée pour différentes géométries
afin de valider les méthodes numériques proposées.

Mots-clés : Magnétohydrodynamique, Equations d’Euler bi-températures, Méthodes vol-
umes finis, Schéma de relaxation, Contrainte de divergence nulle.

MHD Modeling and Numerical Simulation with Finite Volume-type Methods.
Application to Fusion Plasma

This work deals with the modeling of fusion plasma which is discussed by using a bi-
temperature Euler model and the ideal and resistive magnetohydrodynamic (MHD) ones.
First, these models are established from the bi-fluid MHD equations and we show that they
correspond to different asymptotic regimes for lowly or highly magnetized plasma. Next,
we describe the finite volume methods for structured and non-structured meshes which
have been used to approximate the solution of these models. For the three mathematical
models studied in this thesis, the numerical methods are based on relaxation schemes.

In order to apply those methods to magnetic confinement fusion problems, we explain how
to modify the finite volume methods to apply it to problem given in cylindrical coordi-
nates while keeping a strong conservative formulation. Finally, a strategy dealing with
the divergence-free constraint of the magnetic filed is studied. A set of numerical tests fir
the three models is presented for different geometries to validate the proposed numerical
methods.

Keywords: Magnetohydrodynamics, Bi-temperature Euler equations, Finite Volume
method, Relaxation scheme, Divergence-free constraint.
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