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A B S T R A C T

In the era of Big Data, we need efficient and scalable machine learning algo-

rithms which can perform automatic classification of Tera-Bytes of data. In this

thesis, we study the machine learning challenges for classification in large-scale

taxonomies. These challenges include computational complexity of training

and prediction and the performance on unseen data. In the first part of the the-

sis, we study the underlying power-law distribution in large-scale taxonomies.

This analysis then motivates the derivation of bounds on space complexity of

hierarchical classifiers. Exploiting the study of this distribution further, we

then design classification scheme which leads to better accuracy on large-scale

power-law distributed categories. We also propose an efficient method for

model-selection when training multi-class version of classifiers such as Support

Vector Machine and Logistic Regression. Finally, we address another key model

selection problem in large-scale classification concerning the choice between flat

versus hierarchical classification from a learning theoretic aspect. The presented

generalization error analysis provides an explanation to empirical findings

in many recent studies in large-scale hierarchical classification. We further

exploit the developed bounds to propose two methods for adapting the given

taxonomy of categories to output taxonomies which yield better test accuracy

when used in a top-down setup.
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1
I N T R O D U C T I O N

1.1 big data and large-scale learning

With an increasing amount of data from various sources such as web advertizing,

social media and images, automatic classification of unseen data to one of tens

of thousand target classes has caught the attention of the research community.

This is due to the tremendous growth in data from various sources such as social

networks, web-directories and digital encyclopedias. Some of the interesting

facts which emphasize the need for effective automated organization of data

are the following:

• Around one thousand new articles that are added everyday to english

Wikipedia

• Approximately 100 hours of video is uploaded to Youtube every minute

• Close to 20,000 of scientific articles are added to PubMed1 every week

In order to maintain interpretability and to make these systems scalable, digital

data are required to be classified among one of tens of thousands of target cate-

gories. Directory Mozilla2, for instance, lists over 4 million websites distributed

among close to 1 million categories. In the more commonly used Wikipedia,

which consists of over 30 million pages, documents are typically assigned to

multiple categories which are shown at the bottom of each page. The Medical

Subject Heading hierarchy of the National Library of Medicine is another in-

stance of a large-scale classification system in the domain of life sciences. In

order to minimize the amount of human effort involved in such large-scale

scenarios, there is a definite need to automate the process of classification of

data into the target categories. To effectively address the computational barriers

posed by the Big Data, the classical techniques of learning from data need to be

adapted in order to tackle large-scale classification problems.

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://www.dmoz.org/
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In the context of large-scale hierarchical classification (LSHC), open challenges

like the Pascal Large Scale Hierarchical Text Classification (LSHTC) 3 and

Imagenet Large Scale Visual Recognition Challenge (ILSVRC) 4 have been

organized. In the domain of life-sciences, the BioAsQ challenge 5 has been

organized for classifying the medical abstracts. These challenges play an

important role in evaluating the current state-of-the-art techniques for large-

scale classification. Table 1 shows the statistics of the various datasets released

as part of the LSHTC and BioAsQ challenge.

Dataset Training

instances

Categories Features Parameters

(in GB)

DMOZ-2010 128,710 12,294 381,580 4.3

DMOZ-2011 394,756 27,875 594,158 15.4

DMOZ-2012 383,408 11,947 348,548 3.8

SWiki-2011 456,886 36,504 346,299 11.7

LWiki-2013 2,817,603 325,056 1,617,899 489.7

BioAsQ-2013 10,876,004 26,563 444,085 10.9

Table 1: LSHTC and BioAsQ datasets and their properties

In the next section, we highlight in detail the research challenges posed by

classification problems for the datasets at the scale as shown in this table.

1.2 challenges in large-scale supervised arning

Most machine learning methods and algorithms have focused primarily on

datasets which are of the order of the UCI datasets A. Asuncion [2007]. However,

given the scale of modern datasets as demonstrated by LSHTC datasets, the

nature of classification task is quite different as compared to that for smaller

datasets such as UCI. Some of the interesting research problems posed for

machine learning methods involving large-scale datasets are the following:

3 http://lshtc.iit.demokritos.gr/
4 http://www.image-net.org/challenges/LSVRC/2011/
5 http://www.bioasq.org/
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1.2.1 Cardinality of Training and Feature set sizes

The number of training examples in modern large-scale learning problems

are of the order of millions. This characteristic of the data poses significant

computational challenges in the following ways :

• Scale of convex optimization problems : The intermediate convex opti-

mization problems involving minimizing convex surrogate losses such

as Hinge loss and Logistic loss Zhang [2004b], Tewari and Bartlett [2007],

Bartlett et al. [2006]are in high dimensional spaces. As a result, many

off-the-shelf solvers such as LibSVM Chang and Lin [2011] run out of

memory and hence cannot be applied directly. In its own right, this has

led to the growth of new optimization-based techniques such as sequential

dual method Keerthi et al. [2008] and trust-region based Newton method

Lin et al. [2008] for large-scale learning.

• Hyper-parameter Tuning : Tuning the hyper-parameters such as the

regularization λ parameter in Support Vector Machines Hastie et al. [2004]

by the standard technique of k-fold cross-validation can be extremely

computationally intensive. As another instance, on the Wikipedia-2011

dataset from the LSHTC challenge which has approximately 0.5 million

training documents among 36,000 categories, 5-fold cross-validation to

learn the parameter λ will take around one month on a single quad-core

machine with standard hardware.

1.2.2 Large number of Target Categories

Learning with large number of target categories poses a relatively new challenge

in machine learning as compared to large-scale learning for binary classification

or classification with few tens of categories. Large-scale learning involving

classification among fewer categories has been well understood theoretically

Bottou and Bousquet [2008] and also stochastic version SVM solvers such as

Pegasos Shalev-Shwartz et al. [2011] are available. However, learning with tens

of thousand target categories involves:

• Billions of parameters to learn : Large-scale learning involving large

number of target categories requires to learn one high dimensional weight

vector for each category. For instance, for one of the LSHTC datasets,

having 12,294 categories in a feature set of size 347,256 one needs to learn

12, 294× 347, 256 = 4.2 billion parameters. In this context, the recent study

by Gopal and Yang [2013a] presents a technique to learn Regularized

Logistic Regression classifier by replacing the Logistic loss by an upper

bound which can be easily parallelized.
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• Class imbalance : One-vs-Rest framework, as studied in Rifkin and Klau-

tau [2004], Allwein et al. [2001] and implemented in most modern solvers

such as Liblinear Fan et al. [2008], is one of the standard methods to

handle large number of categories. However, when dealing with large

number of target categories makes the individual binary classification

problem highly imbalanced and hence makes learning effective decision

boundaries further difficult. Due to the high-dimensionality of the clas-

sification problems, conventional methods for handling class-imbalance

such as those proposed in Chawla et al. [2011], Tang et al. [2009b] are not

effective in large-scale problems.

• Complexity of Inference : For large number of target categories, the

inference time becomes significantly important. For instance, to classify

a test instance among K categories under the One-vs-Rest framework,

one needs to evaluate O(K) classifiers Harchaoui et al. [2012], Perronnin

et al. [2012]. This could be significantly high for large-scale classification

problems involving tens of thousand categories. Many recent works such

as Bengio et al. [2010], Gao and Koller [2011], Deng et al. [2011], Yang and

Tsang [2012] have focused on learning a tree-based taxonomy of categories

which aim at reducing the complexity of inference to O(lg(K)).

• Universal consistency : Another short-coming of the easily parallelizable

One-vs-Rest framework is that it does not satisfy universal consistency

property Tewari and Bartlett [2007]. On the other hand, the multi-class

SVM proposed in Crammer and Singer [2002] enjoys good theoretical

guarantees but is not separable into binary problems and hence not

directly parallelizable.

1.2.3 Power-law behavior of Data

As shown in Figure 1 for the distribution of Wikipedia dataset from the LSHTC

challenges, the distribution of data among categories follows power-law distri-

bution. It has also been studied in the work of Liu et al. [2005] for large-scale

web directories such as DMOZ and Yahoo! directory. Formally, let Nr denote

the size of the r-th ranked category (in terms of number of documents), then :

Nr = N1r−β (1.2.1)

where N1 represents the size of the 1-st ranked category and β > 0 denotes

the exponent of the power law distribution. As a result, a large fraction of

categories consist of very few documents in them. For instance, as discussed in

Gopal and Yang [2013b], 76% of the categories in the Yahoo! directory have less

than 5 documents in them and these are commonly referred to as rare categories.

Another interpretation of this behavior is that the average number of documents

4



 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000

N
u

m
b

e
r 

o
f 

D
o

c
u

m
e

n
ts

Rank of Category

Distribution of Data

Figure 1: Distribution of 456,866 training instances (for a Wikipedia subset from

LSHTC) among 36,000 categories in the training data, with X-axis rep-

resenting the rank (by number of documents) of categories and Y-axis

the number of documents in those categories. Approximately 15,000

of the 36,000 categories have ≤ 5 documents, with 4,000 categories

having just 1 document in the training set.

per category decrease as the number of categories grow. This property of dataset

leads to following problems in being to learn good classifiers:

• Due to insufficient data, it is difficult to learn good decision boundaries

for rare categories.

• The class-imbalance problem is further aggravated in such power-law

category systems.

As a result, a test instance which actually belongs to one of the rare categories

is assigned to a bigger category. On one hand, this leads to high False Positive

rate for bigger categories, and on the other hand, rare categories are lost in the

classification process. This is shown for one of the datasets in Figure 2. For

the distribution induced by the SVM classifier, observations in Figure 2 which

demonstrate the high False-positive rate for large categories and inability to

detect rare categories in such distributions are :

• On the left side of the plot, the graph for the distribution induced by

the SVM classifier starts higher and remains higher as compared to true

distribution, but drops much sharply on the right part, and

• Comparing the tails of the distributions on the right side of the plot, the

true distribution has a fatter tail as compared to the induced distribution,

i.e., it has many more categories of 1 or 2 documents as compared to the

distribution induced by the SVM classifier.
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Figure 2: Comparison of distribution of test instances among categories in

the true distribution and in the distribution induced by a flat SVM

classifier; the X-axis represents the rank of categories (by number of

documents) and Y-axis the number of documents in those categories.

Categories with same number of documents effectively have same

rank.

1.2.4 Exploiting Semantic Structure Among Categories

Typically, categories in large-scale systems have an inherent semantic structure

among themselves. For instance, DMOZ is in the form of a rooted tree where

a traversal of path from root-to-leaf depicts transformation of semantics from

generalization to specialization. More generally parent-child relationship can

exist in the form of directed acyclic graphs, as is found in the taxonomies such

as Wikipedia. The tree and DAG relationship among categories is illustrated

for DMOZ and Wikipedia taxonomies in Figure 3.

Given the taxonomy structure, various approaches such as Gopal and Yang

[2013b], Cai and Hofmann [2004], Dekel [2009] have been proposed which

exploit this additional information differently. The taxonomy information

among categories can mitigate the data-imbalance problem Babbar et al. [2013a]

particularly in large-scale power-law distributed categories. Furthermore, one

needs to evaluate only O(lg(K)) classifiers in tree-based classifiers, also it has

been shown in the work of Liu et al. [2005] that the training time complexity of

hierarchical classification is lower than that for flat classification.

However, the usage of taxonomy may have some undesirable impact on the

classification performance of the top-down cascade, such as:

• Propagation Error : Using the top-down cascade of classifiers deployed

in the taxonomy leads to the propagation of classification error from top-
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Figure 3: DMOZ and Wikipedia Taxonomies

levels towards the leaves. This cause of error is significant since the top-

level categories are quite generic in nature and hence considerable overlap

among them in feature space. For instance, the Sports and Entertainment

nodes in Yahoo! directory are likely to a have a high degree of common

vocabulary between them. The application of Refined Experts as studied in

the work by Bennett and Nguyen [2009] aims to handle the propagation

error in an effective manner.

• Noisy Taxonomies The taxonomy structure given a-priori as part of the

training data may not be best suited to yield high classification accuracy

due to the following reasons:

1. Large-scale web taxonomies are designed with an intent of better

user-experience and navigability, and not for the goal of classification.

2. Taxonomy design is subject to certain degree of arbitrariness based

on personal choices and preferences of the editors.

3. The large-scale nature of such taxonomies poses difficulties in manu-

ally designing good taxonomies for classification.

In the recent work by Dekel [2009] on relatively smaller taxonomies, the

impact of arbitrariness on loss-function design is minimized by appropri-

ately calibrating the edge distance between the true and predicted class.

In similar spirit of taxonomy adaptation, approaches based on flattening

the hierarchy such as Malik [2009], Wang and Lu [2010], have been pro-

posed in LSHTC for large-scale settings which lead to improvement in

classification accuracy as compared to using the original hierarchy.

1.3 contributions

In machine learning, a significant part of effort from a pedagogical view-point

Schölkopf and Smola [2002], Bishop et al., Devroye [1996], Hastie et al. [2001]

and also from the attempt to develop new methods towards addressing research

challenges in machine learning Koller and Sahami [1997], McCallum et al. [1998],

7



Blei et al. [2003], McAllester [1998], Bousquet and Elisseeff [2002] have focused

on relatively smaller sized datasets. In the light of the availability of Big data

and the need to separate useful information from noise, the challenges posed

by large-scale classification particularly in the presence of large number of

target categories need to be addressed effectively. As discussed in the previous

section, most naturally occurring large-scale datasets exhibit fit to power-law

distribution and also have semantic structure among the target categories.

In this direction, we attempt to address some of the theoretical aspects of

this research challenge as well as also from the view-point of developing

new methods for classification in large-scale taxonomies. Specifically, our

contributions in this thesis are the following:

• We first study the distribution of data in large-scale taxonomies and vari-

ous generative models which give rise to the fit to power-law distribution

of documents among categories in large-scale taxonomies. We refer to the

famous model by Yule Yule [1925] which is governed by the assumption

that a new elements joins an existing category with the probability that is

proportional to its current size. In the context of large-scale taxonomies,

we also study other models such as those based on Preferential attach-

ment Barabási and Albert [1999]. We complete our analysis of power-law

behavior in large-scale taxonomies by deriving an analytical form for the

upper bound of space complexity of hierarchical classification technique

and provide a comparison to space complexity of flat classification. This

work has been published in the Special Information Group on knowledge

Discovery and Data Mining (SIGKDD) Explorations Journal, 2014.

• Secondly, we exploit the distribution of data in large-scale category sys-

tems to address the three challenges for classification, (i) classification

accuracy, (ii) training time via model selection and hyper-parameter tun-

ing, and (iii) prediction time. Addressing the problem depicted in Figure

2 which is faced by most state-of-the-art methods, we propose a sim-

ple but non-trivial upper bound on the accuracy of a classifier which

classifies instances among tens of thousand power-law distributed cate-

gories. Our soft-thresholding based method for ranking target categories

by their posterior probabilities is published in Special Information Group

on Information Retrieval (SIGIR) 2014 Babbar et al. [2014]. Exploiting

the accuracy upper bound further, we also demonstrate efficient method

for model-selection as an alternative to computationally expensive k-fold

cross-validation. Using the sample complexity bounds for discriminative

and generative classifiers as derived in Ng and Jordan [2001], we also

propose a method to combine Support Vector Machine and Naive Bayes

classifiers in a top-down cascade which leads to faster training and predic-

tion in large-scale hierarchical classification. This work Babbar et al. [2012]

8



and its variant Partalas et al. [2012] were published in Conference on

Information and Knowledge Management (CIKM) 2012, and International

Conference on Neural Information Processing (ICONIP) 2012 respectively.

• Lastly, we address the problem of flat versus hierarchical classification in

large-scale taxonomies from a learning theoretic point of view. The goal in

this problem is to learn from the training data to choose one of strategies,

(i) use flat classification, i.e., ignore the given taxonomy structure alto-

gether, or (ii) perform hierarchical classification with classifiers deployed

in a top-down cascade. This research challenge, even though fundamental

to the nature of classification problem in large-scale taxonomies, has not

been addressed earlier from a learning-theoretic aspect. To our knowledge,

our work Babbar et al. [2013a] in Neural Information Systems (NIPS) 2013,

was the first such attempt towards this problem wherein we developed

Rademacher complexity based generalization error bounds to study this

problem. In order to handle the noisy taxonomies, we further exploit the

developed bounds for designing techniques using which the given can

be adapted to learn a new taxonomy which leads to better classification

accuracy. This can also be viewed as synchronization of two parts of the

training data, (i) in the form of input, output pairs 〈x, y〉, and (ii) as given

by the taxonomy. This work was published in International Conference

on Neural Information Processing (ICONIP) 2013. The work presented in

this chapter is currently under revision after first round of reviews from

Journal of Machine Learning Research (JMLR).

1.4 outline

The brief outline of the this thesis is as follows:

• In Chapter 2, we review the current state-of-the-art for large-scale super-

vised classification for flat and hierarchical classification. Even though,

our focus is primarily on mono-label classification throughout the thesis,

we also briefly mention some of the multi-label approaches for large-scale

classification.

• We present in Chapter 3, various generative models which lead to the fit

to power-law distribution of documents among categories in large-scale

taxonomies. We also present an analytical study of the space complexity

of hierarchical classification.

• In Chapter 4, we also derive non-trivial upper bound on the accuracy of a

classifier which is particularly useful in large-scale power-law distributed

9



categories. Based on this upper-bound, we propose techniques for better

classification accuracy and efficient model selection.

• In Chapter 5, we present the learning theoretic bounds for top-down hier-

archical classification and address the flat versus hierarchical classification

problem in large-scale taxonomies. We also propose two methods for

taxonomy adaptation by hierarchy pruning which is shown to yield better

classification accuracy than the hierarchy of classes given a-priori.

• Finally, we conclude this thesis and present some of the perspectives.
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2
S TAT E - O F - T H E - A RT R E V I E W

Classification of data into large-number of categories has assumed considerable

significance over the last few years. This is due to considerable growth in data

from various sources such as social media, commercial products and descrip-

tions, images data from uploaded photos and videos, and from collaborative

encyclopedias. For instance, enterprises such as Amazon and ebay have product

hierarchies which are aimed at providing easy access to customers for searching

the desired product and also other products which are closely related to itself.

Furthermore, motivated by the challenge of fine-grained classification in the

context of images, classification into large number of categories has become

quite important.

As a result, the process of automatic classification is no longer restricted to

small scale datasets with two or few tens of labels. In view of emerging

commercial interests in large-scale problems and also public availability of such

datasets, recent research interest in machine learning for tens of thousand target

categories has increased considerably. This is also evident from large number

of scientific publications in large-scale learning and big data every year which

address various aspects of large-scale learning. Furthermore, big data has been

the theme of many conferences and workshops in the recent years.

It is important to note that by large-scale learning we refer to large-number

of target categories and focus on classification challenges arising out of such

machine learning setting. By large-scale learning, we do not imply problem

settings with binary classification problem such as when spam versus non-spam

classification for a large corpus is performed. Even though classification for

binary problem or with few tens of target categories on large datasets are

interesting and have been studied (from the point of view of stochastic training)

theoretically (Bottou and Bousquet [2008], Zhang [2004a]) and empirically

(Shalev-Shwartz et al. [2011]).

Going beyond the classical problem in machine learning of designing a classifier

with low generalization error, other metrics of evaluation such as prediction

time, training time, and space complexity of the model become important in

order the assess the quality of a classifier. The immediate approach to handle

large number of categories is to consider them as many independent binary

classification problems as the number of target categories, which is also referred
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to as One-versus-Rest as discussed primarily in Rifkin and Klautau [2004],

Allwein et al. [2001]. For SVM classifier, the method proposed by Weston [1998]

to handle multi-class problems is by adding constraints for every category and

thereby the number of constraints grow quadratically with number of target

categories. Another approach for handling multi-class problems which is based

on the generalized notion of margin for multi-class problems is proposed in

Crammer and Singer [2002].

However, these multi-class approaches have prediction time which is linear in

the of number of categories, i.e., O(K) for K categories. For large number of

target categories, in the range of tens of thousand, it is desired to have prediction

time which is sublinear in the number of categories. Typically, for large number

of categories, there exists a semantic structure among categories in the form

of rooted tree or a directed cyclic graph. This can be viewed in the form of

parent-child relationship which also depicts a transition from general categories

to special categories when one traverses the path from root towards the leaves.

In the light of the inherent existence of the semantic structure among categories,

there has been significant research focus on hierarchical classification systems.

In the next sections, we discuss the state-of-the-art methods for large-scale

learning. Since flat classification is a special case of hierarchical classification in

which case the taxonomy structure is ignored, we give below the more general

formulation in terms of setup for hierarchical classification.

2.1 flat classification

Flat approaches to large-scale learning ignore the hierarchical structure among

the categories. This makes them simpler to interpret and implement. However,

these approaches may suffer from data-imbalance problem particularly in the

presence of power-law distributed category systems.

2.1.1 Binary classification and One-vs-Rest

Most recent studies have focused on Support Vector Machines (SVM) and

Logistic Regression (LR) for large-scale learning. These discriminative learning

algorithms minimize a combination of empirical error and model complexity.

The template of the objective function which is minimized is of the following

form:

ŵ = arg min
w

Remp(w) + λ Reg(w) (2.1.1)

where Reg(w) is the regularization term to avoid complex models and Remp(.)
represents the empirical error.
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In binary classification, the training set is of the form (xi, yi), i = 1 . . . m, yi ∈
{−1,+1}. For SVM classifier, the 0-1 loss Remp(.) is replaced by its convex

surrogate called the hinge-loss which is given by (max(0, 1− yiw
Txi)). For

Logistic Regression Remp(.), the convex surrogate is based on logistic loss

(log(1 + exp(−yiw
Txi))). Reg(w) is typically of the form 1

2wTw, unless sparse

solution is desired in which case it is replaced by |w|. The hyper-parameter λ

controls the trade-off between the empirical error and regularization term.

More specifically, the optimization problem for learning binary L2-regularized,

L1-loss SVM classifier is given by

min
w

λ

2
||w||2 +

m

∑
i=1

(max(0, 1− yiw
Txi))

On similar lines, the L2-regularized, L2-loss SVM classifier

min
w

λ

2
||w||2 +

m

∑
i=1

(max(0, 1− yiw
Txi))

2

The L1-loss and L2-loss relaxations are shown in Figure 2.1.1. The L2-regularized,

Logistic Regression classifier is given by

min
w

λ

2
||w||2 +

m

∑
i=1

log(1 + exp(−yiw
Txi))

To handle multi-class problems under the One-vs-Rest framework, one binary

classifier which is parameterized by the weight vector wk is learnt for each

of the K target categories. The training data is transformed K times for the

construction of each binary problem such that while learning wk the training

instances which belong to category k are labeled +1 and all the other training
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instances are labeled −1. At inference time, to estimate the target category of

instance x, the predicted category is the one which satisfies arg maxk wT
k x. This

approach has the following salient features:

• It is simple to interpret and more importantly, easily parallelizable which

is a desirable property for training classifiers in settings with large number

of target categories.

• It has been shown in the work of Rifkin and Klautau [2004], that when

the binary classifiers are properly calibrated, the One-vs-Rest classifier

can perform at par with other approaches such as One-versus-One and

approaches based on Error Correcting Output Codes (Dietterich and

Bakiri [1995]).

• A major drawback One-vs-Rest framework is that it does not satisfy

universal consistency property Tewari and Bartlett [2007] and hence does

not enjoy strong theoretical guarantees.

2.1.2 Crammer-Singer Multi-class SVM

The approach studied in Crammer and Singer [2002] proposed a more natural

way to handle to multi-class problem instead of considering them as indepen-

dent binary problems. For given training data in the form of instance-label pairs

(xi, yi), i = 1 . . . m, yi ∈ {1 . . . K}, the formulation of the optimization problem

under this framework is given by

min
wk,ξi

||wk||2 + C
m

∑
i=1

ξi

The constraints for the above optimization problem are given by, ∀i = 1 . . . m

wT
yi

xi −wT
k xi ≥ 1− ek

i − ξi, and ξi ≥ 0

where

ek
i =

{
1 if yi = k

0 otherwise

The decision function is given by

arg max
k=1...K

wT
k x
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The primal optimization problem as given above is typically solved from its

dual formulation. The dual is given by the following

min
α

1
2 ∑

K
k=1 ||wk||2 + ∑

m
i=1 ∑

K
k=1 ek

i αk
i

subject to ∑
K
k=1 αk

i = 0, ∀i = 1 . . . m

αk
i ≤ Ck

yi
∀i = 1 . . . m, ∀k = 1 . . . K

(2.1.2)

where

wk =
m

∑
i=1

αk
i xi∀k, α = [α1

1 . . . αK
1 , . . . , α1

m . . . αK
m]

T

and

Ck
yi
=

{
0 if yi 6= k

C otherwise

Sequential dual method for solving the dual optimization problem in (mc-

svm-dual-chap2) was proposed in Keerthi et al. [2008] for handling large-scale

problems.

Unlike the one-vs-rest framework of handling multi-class problems, this formu-

lation has strong theoretical guarantees such as universal consistency Tewari

and Bartlett [2007], Zhang [2004b], Bartlett et al. [2006]. However, it suffers

from two major disadvantages in the context of large-scale learning :

• Since it learns the parameters wk simultaneously for each target category,

it is not inherently parallelizable, and hence may lead to extremely high

training time. In a typical large-scale setting, since the dimensionality of

each wk is of the order of hundreds of thousand, and for a classification

problem involving few tens of thousand categories, the total number of

parameters are in the range of billions. Therefore, being able to parallelize

the training procedure is highly desirable property.

• Furthermore, the memory requirements of this method are quite high as

the tasks cannot be split across categories.

2.1.3 Parallelizable Multinomial Logistic Regression

To handle the drawbacks mentioned for the multi-class SVM in the formulation

proposed by Crammer-Singer, the recent study in Gopal and Yang [2013a]

proposes a method to parallelize the optimization of the objective function. For

regularized multinomial logistic regression, the probability for instance x to

belong to category k is given by
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P(y = k|x) = exp(wT
k x)

∑
K
k′=1 exp(wT

k′x)

Let W = {w1, . . . , wK} denote the matrix of weight vectors, then the training

objective in this framework is given by

min
W

λ

2

K

∑
k=1

||wk||2 −
K

∑
k=1

N

∑
i=1

ek
i wT

k xi +
N

∑
i=1

log(
K

∑
k′=1

exp(wT
k′x)) (2.1.3)

As such the objective function given by the above equation is not parallelizable

due to the coupling of all the class-level parameters together inside a log-sum-

exp function. The authors use the concavity of the log-function to replace the

objective in 2.1.3 by a parallelizable version. The log concavity bound is given

by

log(γ) ≤ aγ− log(a)− 1, ∀γ, a > 0

Using the above bound and introducing parameters ai for each training instance,

the log-partition function for instance i is bounded as follows :

log(
K

∑
k=1

exp(wT
k xi)) ≤ ai

K

∑
k=1

exp(wT
k xi)− log(ai)− 1

From the above substitution and denoting by a the vector of ai, i = 1 . . . m, the

new objective function is given by

min
W,a

λ

2

K

∑
k=1

||wk||2 +
N

∑
i=1

[
−

K

∑
k=1

ek
i wT

k xi + ai

K

∑
k=1

exp(wT
k xi)− log(ai)− 1

]
(2.1.4)

The above objective is parallelizable, even though non-convex. However, the

authors shows that the new obejctive function in Equation 2.1.4 has many

desirable properties such that it can be exploited to obtain the solution to the

original ojective function in Equation 2.1.3.

2.1.4 Trace-norm for large-scale learning

Another important insight for large-scale classification in the context of image

data has been done in Harchaoui et al. [2012], wherein the authors perform

singular value decomposition on the matrix of weight vectors W and show

that it has a rank which is much lower than K. Motivated by this observation,

they propose a learning objective which captures the low-rank embedding of

the target categories. This is achieved by adding a low-rank enforcing penalty

in the form of trace norm regularization to the Frobenius norm penalty. The

learning objective considered in this work is of the form
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Figure 5: Spectrum of classification weight matrix W learned on an Imagenet

subset as shown in Harchaoui et al. [2012]

min
W

λ1rank(W) + λ2||W||2 + Rm(W) (2.1.5)

where Rm(W) denotes the empirical risk

Rm(W) =
1

m

m

∑
i=1

L(W; xi, yi)

and the authors take multi-class logistic loss as the loss function to compute

the empirical loss which has the following form

L(W; x, y) = log(1 + ∑
k∈1...K/y

exp{wT
k x−wT

y x})

Since the objective function in 2.1.5 is non-smooth and non-convex, it is relaxed

by replacing the rank(W) by its tightest convex surrogate i.e., the trace norm.

The new objective function is given by

min
W

λ1||W||σ,1 + λ2||W||2 + Rm(W) (2.1.6)

where ||W||σ,1 denotes the trace-norm of W. The objective function in the above

equation is convex but is non-differentiable due to the low-rank enforcing

penalty. The authors demonstrate the similarity of this objecitve to sparse

logistic regression for binary problems Hastie et al. [2001].

2.1.5 Other Approaches and Theoretical Studies

The work in Perronnin et al. [2012] is based on using One-versus-Rest classifier

for large-scale image data from ILSVRC challange. They authors propose
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some important recommendations for using One-vs-Rest strategy for image

classification to achieve state-of-the-art performance using dense Fisher Vector

representation of images Sánchez et al. [2013], Perronnin and Dance [2007]. The

proposed recommendations include:

• Learning with stochastic gradient descent is well suited for large-scale

datasets

• Early stopping can be used as an effective mechanism to achieve regular-

ization

• A small-enough step-size w.r.t. the learning rate is sufficient for good

performance

In the recent study by Weston et al. [2013], the authors propose a label par-

titioning technique for sub-linear ranking involving large-number of labels.

Another quite recent study for large-scale classification have been studied in the

work of Gupta et al. [2014], wherein the authors propose to approximate the

expected error with a different empirical loss called the empirical class-confusion

loss. For the large-scale online training, they show that an online empirical

class-confusion loss can be implemented for stochastic gradient descent by

ignoring stochastic gradients corresponding to a repeated confusion between

classes.

From a learning theoretic view-point, the work in Daniely et al. [2012] compares

various multi-class approaches including multi-class SVM, One-vs-Rest, One-

vs-One and tree-based classifiers Beygelzimer et al.. Some of the important

findings of this study are the following:

• The estimation errors of One-vs-Rest, multi-class SVM, and tree-based

classifiers are approximately close to each other,

• The authors prove that the hypothesis class of multi-class SVM essentially

contains the hypothesis classes of both One-vs-Rest and tree-based clas-

sifiers. Furthermore, these inclusions are strict and since the estimation

errors of these three methods are roughly the same, it follows that the

multi-class SVM method dominates both One-vs-Rest and tree-based

classifiers in terms of achievable prediction performance, and

• They also show that the hypothesis class of One-vs-One essentially con-

tains the hypothesis class of multi-class SVM, and that there can be a

substantial gap in the containment.

The work in Guermeur [2007] also provides important theoretical insight into

the VC-theory for multi-class classification. In the context of large-scale multi-

label classification various approaches such as Agrawal et al. [2013], Yu et al.

[2013], Hariharan et al. [2010], Cisse et al. [2013].
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2.2 hierarchical classification

In hierarchical classification, in addition to the input-output pairs, we are

also given the taxonomy of classes which represents the underlying semantic

structure. Formally, we use the following setup for understanding hierarchical

classification and the approaches proposed to handle such problems.

Let X ⊆ R
d be the input space and let V be a finite set of class labels. We

further assume that examples are pairs (x, v) drawn according to a fixed but

unknown distribution D over X ×V. In the case of hierarchical classification,

the hierarchy of classes H = (V, E) is defined in the form of a rooted tree,

with a root ⊥ and a parent relationship π : V \ {⊥} → V where π(v) is the

parent of node v ∈ V \ {⊥}, and E denotes the set of edges with parent to

child orientation. For each node v ∈ V \ {⊥}, we further define the set of

its sisters S(v) = {v′ ∈ V \ {⊥}; v 6= v′ ∧ π(v) = π(v′)} and its daughters

D(v) = {v′ ∈ V \ {⊥}; π(v′) = v}. The nodes at the intermediary levels of

the hierarchy define general class labels while the specialized nodes at the leaf

level, denoted by Y = {y ∈ V : ∄v ∈ V, (y, v) ∈ E} ⊂ V, constitute the set of

target classes. Finally for each class y in Y we define the set of its ancestors

P(y) defined as

P(y) = {vy
1, . . . , v

y
ky

; v
y
1 = π(y)∧∀l ∈ {1, . . . , ky− 1}, v

y
l+1 = π(v

y
l )∧π(v

y
ky
) =⊥}

Given a new test instance x, the goal is to predict the class ŷ. In top-down

hierarchical classification, the classifier (such as SVM) is learnt at every decision

node in the tree as is shown in Figure 2.2.1. The various state-of-the-art

methods differ in the way they learn the classifier at each node. In the case of

flat classification, the hierarchy H is ignored, Y = V, and the problem reduces

to the classical supervised multi-class classification problem.

2.2.1 Pachinko-machine based deployment of classifiers

In Pachinko-machine based top-down deployment of classifiers the decisions

are made at each level of the hierarchy. This method selects the best class at

each level of the hierarchy and iteratively proceeds down the hierarchy until a

leaf node is reached. This is typically done by making a sequence of predictions

iteratively in a top-down fashion starting from the root . At each non-leaf node

v ∈ V, a score fc(x) ∈ R is computed for each daughter c ∈ D(v) and the child

ĉ with the maximum score is predicted i.e. ĉ = arg maxc:(v,c)∈E fc(x).

For SVM classifier, fc(x) is modeled as a linear classifier such that fc(x) = wT
c x.

To learn a one-versus-rest L2-regularized, L2-loss SVM-based discriminative
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Figure 6: Top-down deployment of SVM classifiers

classifier for node v, the following optimization problem is solved for each

daughter c of v

min
wc,ξ

λ

2
||wc||2 +

mv

∑
i=1

ξ2
(i,c)

The indices i above are such that ∀i, 1 ≤ i ≤ mv, yi ∈ Lv, were Lv denotes

the set of leaves in the subtree rooted at node v and mv denotes the number

of training examples for which the root-to-leaf path passes through the node

v. Furthermore, if yi ∈ Lc and (v, c) ∈ E, then the constraints for the above

optimization problem are given by, ∀i

wt
cxi ≥ 1− ξ(i,c), and ξ(i,c) ≥ 0

This method has the advantage that it is faster to train and is very natually

parallelizable owing to the independence of optimization problems at each

node in the taxonomy. Furthermore, due to the tree-nature of the problem, the

number of predictors that one needs to evaluate is logarithmic in the number of

target categories. This method is shown to yield competetive performance on

large-scale datasets as shown in the work of Liu et al. [2005], Dumais and Chen

[2000]. However, many variants of this methods have been proposed recently.

2.2.2 Tree-loss based optimzation

In the recent work of Bengio et al. [2010], the authors observe that in a hierar-

chical setup, the final prediction can be wrong due to mis-classification at any

node in the root to leaf path. This is unlike the Panchinko machine model in

which each mis-classification at every node is accounted individually. With this

insight as the motivation, they propose a tree-loss based optimization wherein

the slack variable is shared acorss all nodes along each of the root to leaf path

in the tree.

Denoting by bj(x) as the index of the best node (w.r.t. to the decision function)

in the hierarchy at depth j Specifically, the loss function, called tree loss, on the

training data is given by
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Remp( ftree) =
1

m

m

∑
i=1

max
j∈B(x)

I(yi ∈ lj)

where B(x) = {b1(x) . . . bD(x)(x)} and D(x) denotes the depth in the tree for

final prediction of instance x. Assuming that internal nodes of the tree are

indexed by j and lj denotes the set of leaves under the sub-tree rooted at node j.

Replacing the 0-1 loss function in the form of indicator function and adding

the 2-norm regularizer, the optimization objective is given by

|V|
∑
j=1

(
γ||wj||2 +

1

m

m

∑
i=1

ξij

)
(2.2.1)

such that

∀i, j

{
Cj(yi) f j(xi) ≥ 1− ξij

ξij ≥ 0

where Cj(yi) = 1 if yi ∈ lj and -1 otherwise.

To take into account the tree loss, the above optimization as given Equation

2.2.1 is modified by introducing a slack variable which is shared across all

the decision nodes for a given training instance. This leads to the following

tree-loss based optimization objective

γ
|V|
∑
j=1

||wj||2 +
1

m

m

∑
i=1

ξi (2.2.2)

such that

fr(xi) ≥ fs(xi) + 1− ξi, ∀r, s : yi ∈ lr ∧ yi /∈ ls ∧ (∃p : (p, r) ∈ E ∧ (p, s) ∧ E)
(2.2.3)

ξi ≥ 0, ∀i = 1 . . . m (2.2.4)

2.2.3 Recursive Regularization

In this recently proposed strategy Gopal and Yang [2013b], the hierarchy

structure is incorporated into the optimization problem in the form a regularizer.

In the hierarchical approaches, the weight vector is required to be learnt at

each node of the hierarchy tree. Therefore, let the matrix W be such that

its columns represent the weight vectors at each of the decision nodes, i.e.,

W = {wv, v ∈ V}. The regularization term for the optimization problem at

each node is such that it encourages the weight vector of a node to be close
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to that of its parent node. The framework is proposed for SVM and Logistic

Regression classifier, and for SVM is given by the following:

HR-SVM

min
W

∑
v∈V

1

2
||wv −wπ(v)||2 + C ∑

v∈Y

m

∑
i=1

(1− Cv(yi)w
T
v xi)+ (2.2.5)

For each non-leaf node v /∈ Y , differentiating (2.2.5) wrt wv, it leads to a

closed-form update for wv, which is given by

wv =
1

|D(v)|+ 1


wπ(v) + ∑

c∈D(v)

wc


 (2.2.6)

where D(v) denotes the daughters of node v.

For each leaf node y ∈ Y , the following is solved:

min
wy

1

2
||wy −wπ(y)||2 + C

m

∑
i=1

ξiy (2.2.7)

subject to

ξiy ≥ 0, ξiy ≥ 1− Cy(yi)w
T
y xi, ∀i = 1 . . . m

The above optimization is solved by dual co-ordinate descent as proposed in

Hsieh et al. [2008]. The dual of the above optimization problem is given by

min
α

1

2

m

∑
i=1

m

∑
j=1

αiαjCy(yi)Cy(yj)x
T
i xj −

m

∑
i=1

αi(1− Cy(yi)w
T
π(y)xi), ∀i = 1 . . . m

(2.2.8)

0 ≤ αi ≤ C, ∀i = 1 . . . m (2.2.9)

The update for each dual variable in the above optimization problem can be

derived in closed form. This can be derived by substituting αi in equation (2.2.3)

by αi + d and dropping all terms which do not depend on d, and then solving

the following problem in one variable.

min
d

1

2
d2(xT

i xi) + d

(
m

∑
i=1

αiCy(yi)xi

)T

xi − d(1− Cy(yi)w
T
π(y)xi) (2.2.10)

0 ≤ αi + d ≤ C (2.2.11)

For Logistic Regression classifier at the inner nodes of the tree, the optimization

problem is given by the following :

HR-LR
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min
W

∑
v∈V

1

2
||wv −wπ(v)||2 + C ∑

v∈Y

m

∑
i=1

log(1 + exp(−Cv(yi)w
T
v xi) (2.2.12)

The update for each non-leaf node is same as in HR-SVM. For the leaf nodes y,

the objective function is given by

min
wy

1

2
||wy −wπ(y)||2 + C

m

∑
i=1

log(1 + exp(−Cy(yi)w
T
y xi)) (2.2.13)

The gradient of the above can computable in the closed form and is given by

G = wy −wπ(y) − C
m

∑
i=1

1

1 + exp(Cy(yi)wT
y xi)

Cy(yi)xi (2.2.14)

Since the gradient can be computed in closed-form it is possible to directly apply

quasi newton methods such as Limited-memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) Liu and Nocedal [1989] to solve the above optimization prob-

lem. The authors also propose a fast and easily parallelizable method which

can exploit a parallel computing infrastructure such as Hadoop.

2.2.4 Hierarchical Classification by Orthogonal Transfer

Unlike the work presented in Gopal and Yang [2013b], Cai and Hofmann

[2004], which is based on the similarity of parameters for parent-child pair of

nodes, another line of work which is based on notion of dis-similarity between

parent-child pairs is studied in Xiao et al. [2011]. In this strategy, the authors

propose to add a regularization terms which tends to encourage the weight

vector of a child node to be different from that its ancestor. Given the training

set {(xi, yi)}m
i=1 and the taxonomy H = (V, E) of categories such that nodes

(except the root) of the taxonomy are indexed from 1 to |v− 1|, the optimization

problem to learn the weight vector at the internal nodes is given by

|V|−1

∑
v=1

Kvv||wv||+
|V|−1

∑
v=1

∑
v′∈P(v)

Kvv′ |wT
v wv′ |+

C

m

m

∑
i=1

ξi (2.2.15)

The constraints are given by the following

wT
v xi −wT

v′xi ≥ 1− ξi, (∀v′ ∈ S(v), ∀v ∈ P(yi), ∀i = 1 . . . m) (2.2.16)

ξi ≥ 0, ∀i = 1 . . . m (2.2.17)
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The terms Kvv′ |wT
v wv′ | encourage the weight vector of parent-child node pairs

to be orthogonal to each other by penalizing the dot product between the weight

vectors. The entering of symmetric matrix K are chosen as follows:

Kvv′ =





|D(v)|+ 1 if v = v′

α if v ∈ P(v′)
0 otherwise

where α is set to 1 to make the problem convex Boyd and Vandenberghe [2009].

The authors propose a regularized dual averaging method Nesterov [2009] for

solving the above optimization problem.

2.2.5 Other techniques and applications of hierarchical classification

The authors in Cissé et al. [2012] use the hierarchical information to learn com-

pact binary codes for the categories by using auto-encoder based architecture

for learning the representation. The induced binary problems are empirically

shown to be easier than those induced by the randomly generated codes by

ECOC giving competitive performances compared to classical One-versus-Rest

method and ECOC. An incremental reranking based framework for hierarchical

classification has been proposed for small-scale problem involving Reuters

Corpus Volume 1 (RCV1) in the work by Ju and Moschitti [2013]. The reranker

technique exploits category dependencies, which allow it to recover from the

propagation errors while its top-down structure results in faster training and

prediction time.

Hierarchical classification has also been studied for multi-label problem in

the works such as Bi and Kwok [2012b, 2011, 2012a]. Many recent studies

have applied hierarchical classification in variety of domains in order to tackle

large-scale problems. Hierarchical classification in the context of e-commerce

has been studied by using cost-sensitive penalties in the work by Chen and

Warren [2013]. The recent work in Ren et al. [2014] proposes to employ a

multi-label hierarchical classification frame-work for classification of social text

streams, wherein the authors address the challenges of concept drift, short-text

and complicated relationships among category labels. A recent study wherein

the authors study various evaulation measures for hierarchical classification is

given in Kosmopoulos et al. [2013].

2.3 taxonomy adaptation

Various approaches for hierarchical classification such as Cai and Hofmann

[2004], Dekel et al. [2004] utilize the distance in the hierarchy to design the loss
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function such that loss incurred on a mis-classification is proportional to the

distance in the hierarchy between the actual and predicted label. Hence, the

classifiers are designed to minimze the regularized version of this loss function.

However, as studied in Dekel [2009], the distance in the tree may not be a

good representation of the difference between the true and predicted label. The

given hierarchy may have non-uniformity and unbalanced nature due to the

following reasons:

1. Large-scale web taxonomies are designed with an intent of better user-

experience and navigability, and not for the goal of classification.

2. Taxonomy design is subject to certain degree of arbitrariness based on

personal choices and preferences of the editors.

3. The large-scale nature of such taxonomies poses difficulties in manually

designing good taxonomies for classification.

2.3.1 Distribution Calibration

As a result, Dekel [2009] proposed a distribution calibrated approach in which

the underlying distribution over labels is used to set the edge weights in a

way that adds balance to the taxonomy and compensates for arbitrariness in

taxonomy design. For each y ∈ Y , let p(y) denote the marginal probability of

the label y in the distribution D. For each v ∈ V, define p(v) = ∑y∈Y∩τ(v) p(y),
where τ(v) denotes the set of all nodes which are in the subtree rooted at node

v. Unlike the work in Dekel et al. [2004], where each edge is weighted with

unit weight for computing the tree-distance loss, the edge between nodes v and

π(v) in the distribution calibrated framework is given by log(p(π(v))/p(v)).
The weighted tree-distance loss between the labels y and y′ is given by the

following:

l(y, y′) = 2 log(p(λ(y, y′)))− log(p(y))− log(p(y′)) (2.3.1)

where λ(y, y′) represents the lowest common ancestor in the tree of the leaf

nodes y and y′. Based on this loss-function, the authors propose a calibrated

definition of statistical risk for hierarchical classification. For a classifier f , its

risk is given by R( f ) = Ex×y∼D [l( f (x), y)]. Defining q( f , v) = P( f (x) = v)
which denotes the probability that f outputs node v, when x is drawn according

to the marginal distribution of D over X . and r( f , v) = P(λ( f (x), y) = v),
the probability that the lowest common ancestor of f (x) and y is v when

(x× y) ∼ D. The risk R( f ) can be re-written using Equation 2.3.1 as the

following:

R( f ) = ∑
v∈V

(2r( f , v)− q( f , v)) log(p(v))− ∑
y∈Y

p(y) log(p(y)) (2.3.2)
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Figure 7: Top-level flattening of hierarchy

The second term in the above equation (denoted by H(Y)) represents the

Shannon entropy of the label distribution and is independent of the classifier f .

Assuming that the sample size is infinite and harmonic number hn is defined

by hn = ∑
n
i=1

1
i , with h0 = 0. Defining the following variables :

Ai = min{j ∈ N : yi+j ∈ τ( f (xi))} − 1

Bi = min{j ∈ N : yi+j ∈ τ(λ( f (xi), yi))} − 1

A1+2 is the index of the first example after (x1, y1) whose label is contained in

the subtree rooted at f (x1), and B1+2 is the index of first example whose label

is contained in the subtree rooted at λ( f (x)i, yi). Writing R̄( f ) = R( f )− H(Y)
and L1 = hA1

− 2hB1
, the authors show that L1 is an unbiased estimator for

R̄( f ). Furthermore, they also present technique for reducing the variance of this

estimator and present an algorithmic reduction from hierarchical classification

to cost-sensitive classification.

2.3.2 Hierarchy Flattening

In view of the arguments given in the previous section about the susceptibility

of the given hierarchy to noise and arbitrariness, there is a need to exploit the

information provided by the large-scale hierarchy in a more cautious manner.

The given taxonomy H = (V, E) can be altered in some ways to maintain the

original hierarchical relationship such as by removing a node v and directly

connecting π(v) to D(v). A particular case of altering the taxonomy has been

studied in the works of Malik [2009], Wang and Lu [2010] wherein the authors

propose to remove certain layers in the taxonomy and replacing the nodes in that

layer by their children. This is also shown in figure 7 wherein the first layer is

flattened. Authors in Malik [2009], Wang and Lu [2010] show that flattening can

lead to improvement in classification at the cost more training time. However,

they provide no formal framework on which layer to flatten and how to identify

which need to be flattened. This is one of the key problems which will study in

this thesis and present theoretically well-founded approaches to identify the

nodes to prune.
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2.4 taxonomy learning

While dealing with large-number of target categories, many recent works have

focused on the problem of learning the taxonomy when no taxonomy is given

a-priori. This is particularly important from the point of view of computational

complexity of prediction. One of the initial studies in this direction is conducted

in Beygelzimer et al. [2009], wherein the authors present an online algorithm for

learning the hierarchical structure with local probability estimators at internal

nodes of the induced hierarchy. We next discuss two approaches for learning

the hierarchical structure which have been quite successful in addressing this

research challenge.

2.4.1 Relaxed discriminative learning

In this strategy Gao and Koller [2011], the hierarchical structure and the local

classifiers at the induced nodes are learnt jointly in two-step iterative procedure

which is similar in spirit to the Expectation-Maximization paradigm. For an

induced node v, suppose lv denotes the set of leaves under sub-tree rooted at

v. The first step involves splitting lv into two easily distinguishable mutually

exclusive subsets S+
y and S−y . Relaxed learning implies that those categories

which are not easily separable are put in the set S0
y. The three mutually exclusive

category subsets are colored with coloring variables uk ∈ {−1, 0,+1} In the

second step, assuming the induced split, the parameters of the binary classifier

at each node are learnt using margin-based algorithm such as SVM. Given the

input training set {(xi, yi)}m
i=1, the local training data Sv at each node consists

of S+
x = {xi : yi ∈ S+

y } and S−x = {xi : yi ∈ S−y }.
In order to encourage balanced splits and taxonomies with unusally high depths

which will increase the model complexity considerably, the authors propose

the optimization problem at each node :

min
w,b,{µk},{ξi}

1
2 ||w||2 + C ∑

m
i=1 |µyi

|ξi − A ∑
m
i=1 |µyi

|

subject to µk ∈ {−1, 0,+1}∀k ∈ Y
µyi

(wTxi + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

−B ≤ ∑
|
k=1 Y|µk ≤ B

∑
|Y|
k=1 1{µk > 0} ≥ 1 and ∑

|Y|
k=1 1{µk < 0} ≥ 1

(2.4.1)
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The last term in the objective function −A ∑
m
i=1 |µyi

| encourages more cate-

gories to be part of the binary classification problem, in order to avoid trivial

solutions. The third constraint is aimed at achieving balanced splits, while the

last contraint enforces that each split consists of atleast one positive and one

negative category. The above optimization problem is solved in an EM-like

fashion, but fixing the coloring in the first step, and learning the binary SVM. In

the second step, after having learnt the weight vector w, the coloring problem

is solved. By using the framework as given in Cristianini [1998], Platt et al.

[1999], Bennett et al. [2000], the authors also provide theoretical guarantees on

the generalization performance of their algorithm.

2.4.2 Fast and balanced approach to taxonomy learning

This approach proposed in Deng et al. [2011], attempts to learn jointly the

split among categories and the paramters of the classifier at that node. This is

formulated as a problem of maximizing the accuracy of a local classifier subject

to efficieny constraints. The efficiency is measured in terms of ambiguity which

is defined as the size of the label set lv of the node v with respect to the size its

parent’s label set lP(v).

Let at the current node v, let Q be the pre-specified branching factor and

K = |lv|. Also let P denote the splits of v which can be also be seen as a

partition matrix, i.e. P ∈ {0, 1}Q×K such that Pqk = 1 if category k appears in

the label set of the child q, and Pqk = 0 otherwise. For each child q ∈ D(v),
there exists a one-vs-rest binary classifier, which therefore leads to a matrix

with Q columns denoted W.

At node v, such that the given training instance x, y such that y ∈ lv, let

v̂ = arg maxq∈D(v) fq(x) be the winning child. For parameters W and P, the

loss at the current node is L(W, x, y, P) = 1− Pq̂y. When the partitions are fixed,

this leads to a one-vs-rest multiclass problem at v. Practically, a regularized

version of of the following convex relaxation is solved :

L̃(W, xi, yi, P) = max
q∈Ai,r∈Bi

{wT
r xi −wT

q xi} (2.4.2)

The efficiency of the hierarchy measured in terms of the ambiguity constraints

which encourage balanced partitions. For a given example (x, y) and paramters

P and W, the ambiguity is given by

A(W, x, P) =
1

K

K

∑
k=1

P(q̂, k) (2.4.3)
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The final optimization problem consisting of accuracy and efficiency constraints

is given by

minimizew,P
1
2 ||w||2 + C ∑

m
i=1 L̃(W, xi, yi, P)

subject to 1
m ∑

m
i=1 A(W, x, P) ≤ ǫ

P ∈ {0, 1}Q×K

(2.4.4)

The proposed algorithm iteratively minimizes the classification error and am-

biguity at each node. The integer constraints are replaced by continuous

range relaxation and rounding, which utlimately leads to good performance on

datasets drawn from the ILSVRC challenge.

2.5 power-law in large-scale taxonomies

In order to study the growth process of large-scale taxonomies, model based

on preferential attachment are most appropriate. This model is based on the

seminal model by U. Yule Yule [1925], originally formulated for the taxonomy

of biological species. It applies to systems where elements of the system are

grouped into classes, and the system grows both in the number of classes, and

in the total number of elements (which are here documents or websites). In its

original form, Yule’s model serves as explanation for power law formation in

any taxonomy, irrespective of an eventual hierarchy among categories. Similar

dynamics have been applied to explain scaling in the connectivity of a network,

which grows in terms of nodes and edges via preferential attachment Barabási

and Albert [1999]. Recent further generalizations apply the same growth process

to trees Klemm et al. [2005], Geipel et al. [2009], Tessone et al. [2011].

Power-law behavior in large-scale web taxonomies was first studied in the

work by Yang et al. [2003], Liu et al. [2005] wherein the authors empirically

show that the distribution of documents among categories at each level of the

hierarchy exhibits fit to the power-law distribution. As a result, a large fraction

of categories consist of very few documents in them.

Let Nlr denote the size of the r-th ranked category (in terms of number of

documents), then :

Nlr = Nl1r−βl (2.5.1)

where Nl1 represents the size of the 1-st ranked category at level l and βl > 0

denotes the exponent of the power law distribution at this level. The fit of the

distribution of documents among categories to the power-law distribution (for
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Figure 8: Category size distribution for each level of the LSHTC2-DMOZ

dataset.

various levels) is also shown in Figure 8 for the DMOZ dataset derived from

LSHTC challenge.

2.5.1 Training-time complexity

The authors in Liu et al. [2005] compare the training time complexity of flat

and hierarchical classification techniques. As shown in Joachims [1999], Platt

[1999], the computational complexity of training SVM grows super-linearly

with number of training instances. Therefore, for flat classification under the

one-vs-rest setup, with m documents in the training set which are distributed

among K categories, the training time complexity is given by

Q f lat = K×O(mc), c > 1 (2.5.2)

The training time complexity of hierarchical SVM is given by

Qhier =
L

∑
l=1

ml

∑
r=1

bl ×O(mc
lr) (2.5.3)

where bl is the branching factor at level l and mlr is the number of documents

in the r-th ranked category at level l. Using Equation(2.5), Liu et al. [2005]
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show that the computational complexity of training hierarchical SVM is upper

bounded by

Qhier ≤


b0 +

L

∑
l=1

bl
cβl−1

(
cβl −m

1−cβl

l

)

[
1

βl−1

(
1− (ml + 1)1−βl

)]c


×O(mc)

=
1

m


b0 +

L

∑
l=1

bl
cβl−1

(
cβl −m

1−cβl

l

)

[
1

βl−1

(
1− (ml + 1)1−βl

)]c


×Q f lat

(2.5.4)

where L is the total number of levels in the taxonomy, βl is the power-law

exponent at level l and bl denotes the average branching factor at level l.

The authors also empirically demonstrated that on the Yahoo! taxonomy

Q f lat ≈ 600× Qhier. Essentially, they concluded that for large-scale datasets

involving tens of thousand categories, training flat SVM is virtually infeasible

without a distributed computing infrastructure.

2.6 conclusion

Large-scale learning with tens of thousand target categories is an interesting

research direction and gaining increasing attention in academic and industrial

research. In this chapter, we presented state-of-the-art approaches proposed

to handle large-number of target categories. These include approaches which

exploit the semantic structure (hierarchical approaches) and those which ignore

this information (flat techniques). We also mentioned in detail some of the

successful techniques for building taxonomies when no semantic structure is

provided a-priori. We also discussed the relationship of power-law distribution

in large-scale web-taxonomies. One of the major contribution of this thesis is

to study in more detail role of this distribution and exploit it for designing

effective classification strategies.
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3
D I S T R I B U T I O N O F D ATA I N

L A R G E - S C A L E TA X O N O M I E S

In many of the large-scale physical and social complex systems

phenomena fat-tailed distributions occur, for which different gen-

erating mechanisms have been proposed. In this chapter, we study

models of generating power law distributions in the evolution of

large-scale taxonomies such as Open Directory Project, which con-

sist of websites assigned to one of tens of thousands of categories.

The categories in such taxonomies are arranged in tree or DAG

structured configurations having parent-child relations among them.

We first quantitatively analyze the formation process of such tax-

onomies, which leads to power law distribution as the stationary

distributions. In the context of designing classifiers for large-scale

taxonomies, which automatically assign unseen documents to leaf-

level categories, we then highlight how the fat-tailed nature of these

distributions can be leveraged to analytically study the space com-

plexity of hierarchical top-down classifiers. We then compare the

space complexity of flat versus hierarchical classifiers, both em-

pirically and analytically. In this respect, this study complements

earlier works which have compared the computational complexity

of training time for these two classification strategies.

3.1 introduction

With the tremendous growth of data on the web from various sources such as

social networks, online business services and news networks, structuring the

data into conceptual taxonomies leads to better scalability, interpretability and

visualization. Yahoo! directory, the open directory project (ODP) and Wikipedia

are prominent examples of such web-scale taxonomies. The Medical Subject

Heading hierarchy of the National Library of Medicine is another instance of a

large-scale taxonomy in the domain of life sciences. The taxonomies consist of

classes arranged in a hierarchical structure with parent-child relations among

them and can be in the form of a rooted tree or a directed acyclic graph.
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Figure 9: DMOZ and Wikipedia Taxonomies

ODP for instance, is in the form of a rooted tree, lists over 5 million websites

distributed among close to 1 million categories and is maintained by close

to 100,000 human editors. Wikipedia, on the other hand, represents a more

complicated directed graph taxonomy structure consisting of over a million

categories. In this context, large-scale hierarchical classification deals with the

task of automatically assigning labels to unseen documents from a set of target

classes which are represented by the leaf level nodes in the hierarchy. The tree

and DAG relationship among categories is illustrated for DMOZ and Wikipedia

taxonomies in Figure 3.1.

In this chapter, we study the distribution of data and the hierarchy tree in large-

scale taxonomies with the goal of modeling the process of their evolution. This

is undertaken by a quantitative study of the evolution of large-scale taxonomy

using models of preferential attachment, based on the famous model proposed

by Yule Yule [1925] and showing that throughout the growth process, the

taxonomy exhibits a fat-tailed distribution. We apply this reasoning to both

category sizes and tree connectivity in a simple joint model. Formally, a random

variable X is defined to follow a power law distribution if for some positive

constant a, the (complementary cumulative distribution) is given as follows:

P(X > x) ∝ x−a

Power law distributions are found in a wide variety of physical and complex

social systems, ranging from city population, distribution of wealth to citations

of scientific articles Newman [2005a]. It is also found in network connectivity,

where the internet and wikipedia are prominent examples Song et al. [2005],

Capocci et al. [2006]. Our analysis in the context of large-scale web-taxonomies

not only leads to better visualization of such large-scale data, but we further

leverage this additional meta-information to present a concrete analysis of space

complexity for hierarchical classification. In order to tackle the challenges posed

by ever increasing scale of training data size in terms of number of documents,

feature set size and number of target classes, space complexity of the trained

classifiers plays a crucial role in the applicability of classification systems in

many applications of practical importance.
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The space complexity analysis provides an analytical comparison of the trained

model for hierarchical and flat classification, which can be used to select the

appropriate model a-priori for the classification problem at hand, without

actually having to train any models. Exploiting the power law nature of

taxonomies to study the training time complexity for hierarchical Support

Vector Machines has been performed in Yang et al. [2003], Liu et al. [2005]. The

authors therein justify the power law assumption only empirically, unlike our

analysis in Section 3.3 wherein we describe the generative process of large-scale

web taxonomies more concretely, in the context of similar processes studied

in other models. Despite the important insights of Yang et al. [2003], Liu et al.

[2005], space complexity has not been treated formally so far.

The rest of this chapter is organized as follows. Related work on reporting

power law distributions and on large scale hierarchical classification is presented

in Section 3.2. In Section 3.3, we recall important growth models and quanti-

tatively justify the formation of power laws as they are found in hierarchical

large-scale web taxonomies by studying the evolution dynamics that generate

them. Building on the explanation for the class size distribution in terms of dis-

tribution of websites, we then appeal to Heaps’ law in Section 3.4.1, to explain

the distribution of features among categories which is then exploited in Section

3.4 for analyzing the space complexity for hierarchical classification schemes.

The analysis is empirically validated on publicly available DMOZ datasets from

the Large Scale Hierarchical Text Classification Challenge(LSHTC)1 and patent

data (IPC) 2 from World Intellectual Property Organization.

3.2 related work

Power law distributions are reported in a wide variety of physical and social

complex systems Newman [2005b]. Furthermore, it has been shown in the work

of Faloutsos et al., Capocci et al. [2006] that internet topologies exhibit power

laws with respect to the in-degree of the nodes. Also the size distribution of

large-scale web category systems, measured in terms of number of websites, ex-

hibits a fat-tailed distribution, as empirically demonstrated in Yang et al. [2003],

Liu et al. [2005] for the Open Directory Project (ODP). Various models have

been proposed for generating power law distributions, a phenomenon that may

be considered fundamental in complex systems as the normal distribution in

statistics Richmond and Solomon [2001]. However, in contrast to the derivation

of normal distribution via the central limit theorem, models explaining power

law formation all rely on an approximation. Some explanations are based on

1 http://lshtc.iit.demokritos.gr/
2 http://web2.wipo.int/ipcpub/
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phase transitions or on multiplicative noise Wilson and Kogut [1974], Takayasu

et al. [1997].

In order to study the growth process of large-scale taxonomies, model based

on preferential attachment are most appropriate. This model is based on the

seminal model by U. Yule Yule [1925], originally formulated for the taxonomy

of biological species. It applies to systems where elements of the system are

grouped into classes, and the system grows both in the number of classes, and

in the total number of elements (which are here documents or websites). In its

original form, Yule’s model serves as explanation for power law formation in

any taxonomy, irrespective of an eventual hierarchy among categories. Similar

dynamics have been applied to explain scaling in the connectivity of a network,

which grows in terms of nodes and edges via preferential attachment Barabási

and Albert [1999]. Recent further generalizations apply the same growth process

to trees Klemm et al. [2005], Geipel et al. [2009], Tessone et al. [2011]. In this

body of work, we explain an approximate power-law in the child-to-parent

category relations by the model proposed by Klemm et al. [2005]. Furthermore,

we combine this formation process in a simple manner with the original Yule

model in order to explain also a power law in category sizes, i.e. we provide

a comprehensive explanation for the formation process of large-scale web

taxonomies such as DMOZ.

In addition to prediction accuracy, other metrics of performance such as predic-

tion and training speed as well as space complexity of the model have become

increasingly important. This is especially true in the context of challenges posed

by problems in the space of Big Data, wherein an optimal trade-off among such

metrics is desired. The significance of prediction speed in such scenarios has

been highlighted in recent studies such as Bengio et al. [2010], Gao and Koller

[2011], Partalas et al. [2012], Bottou and Bousquet [2008]. The prediction speed

is directly related to space complexity of the trained model, as it may not be

possible to load a large trained model in the main memory due to sheer size.

In order to study the space complexity of large-scale hierarchical classifiers, we

further infer a third scaling distribution for the number of features per category.

This is done via the empirical Heaps’s law Egghe [2007], which consists of a

scaling law between text length and the size of its vocabulary. Despite its direct

impact on prediction speed, no earlier work has focused on space complexity

of hierarchical classifiers.

Some of the earlier works on exploiting hierarchy among target classes for the

purpose of text classification have been studied in Koller and Sahami [1997],

Cai and Hofmann [2004] and Dekel et al. [2004] wherein the number of target

classes were limited to a few hundreds. However, the work by Liu et al. [2005] is

among the pioneering studies in hierarchical classification towards addressing

web-scale directories such as Yahoo! directory consisting of over 100,000 target
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classes. The authors analyze the performance with respect to accuracy and

training time complexity for flat and hierarchical classification. Additionally,

while the existence of power law distributions has been used for analysis

purposes in Yang et al. [2003], Liu et al. [2005] no thorough justification is given

on the existence of such phenomenon. Our analysis in Section 3.3, attempts to

address this issue in a quantitative manner. More recently, other techniques for

large-scale hierarchical text classification such as Bennett and Nguyen [2009],

Xue et al. [2008], Gopal et al. [2012] have been proposed.

3.3 power-law distribution in large-scale tax-

onomies
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Figure 10: Category size vs rank distribution for the LSHTC2-DMOZ dataset.

We begin by introducing the complementary cumulative size distribution for

category sizes. Let Nk denote the size of category k (in terms of number of

documents), then the probability that Nk > N is given by

P(Nk > N) ∝ N−β (3.3.1)

where β > 0 denotes the exponent of the power law distribution3. Empirically,

it can be assessed by plotting the rank of a category’s size against its size (see

Figure 10). The derivative of this distribution, the category size probability

density p(Nk), also follows a power law with exponent (β + 1), i.e. p(Nk) ∝

N
−(β+1)
k .

Two of our empirical findings are a power law for both the complementary

cumulative category size distribution and the counter-cumulative in-degree

3 To avoid confusion, we denote the power law exponents for in-degree distribution and feature

size distribution γ and δ.
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Figure 11: Indegree vs rank distribution for the LSHTC2-DMOZ dataset.

distribution, shown in Figures 10 and 11, for LSHTC2-DMOZ dataset which is

a subset of ODP. This dataset4 contains 394, 000 websites and 27, 785 categories.

The number of categories at each level of the hierarchy is shown in Figure 12.
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Figure 12: Number of categories at each level in the hierarchy of the LSHTC2-

DMOZ database.

We explain the formation of these two laws via models by Yule Yule [1925] and

a related model by Klemm Klemm et al. [2005], detailed in sections 3.3.1 and

3.3.2, which are then related in section 3.3.3.

3.3.1 Yule’s model

Yule’s model describes a system that grows in two quantities, in elements

(documents or websites in case of web directories such as DMOZ) and in classes

to which the elements are assigned. It assumes that for a system having κ

4 http://lshtc.iit.demokritos.gr/LSHTC2 datasets
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classes, the probability that a new element will be assigned to a certain class,

say k, is proportional to its current size,

p(k) =
Nk

∑
κ
k′=1 Nk′

(3.3.2)

It further assumes that for every m elements that are added to the pre-existing

classes in the system, a new class of size 1 is created5.

The described system is constantly growing in terms of elements and classes, so

strictly speaking, a stationary state does not exist Mandelbrot [1959]. However,

a stationary distribution, the so-called Yule distribution, has been derived

using the approach of the master equation with similar approximations by

Simon [1955], Newman [2005a], Klemm et al. [2005]. Here, we follow Newman

Newman [2005a], who considers as one time-step the duration between creation

of two consecutive classes. From this follows that the average number of

elements per class is always m + 1, and the system contains κ(m + 1) elements

at a moment where the number of classes is κ. Let pN,κ denote the fraction of

classes having N elements when the total number of classes is κ. Between two

successive time instances, the probability for a given pre-existing class i of size

Ni to gain a new element is mNi/(κ(m + 1)). Since there are κ pN,κ classes of

size N, the expected number such classes which gain a new element (and grow

to size (N + 1)) is given by :

mN

κ(m + 1)
κ pN,κ =

m

(m + 1)
N pN,κ (3.3.3)

The number of classes with N websites are thus fewer by the above quantity,

but some which had (N − 1) websites prior to the addition of a new class have

now one more website. This step depicting the change of the state of the system

from κ classes to (κ + 1) classes is shown in Figure 13. Therefore, the expected

number of classes with N documents when the number of classes is (κ + 1) is

given by the following equation:

(κ + 1)pN,(κ+1) = κ pN,κ +
m

m + 1
[(N − 1)p(N−1),κ − NpN,κ] (3.3.4)

The first term in the right hand side of equation 3.3.4 corresponds to classes with

N documents when the number of classes is κ. The second term corresponds

to the contribution from classes of size (N − 1) which have grown to size N,

this is shown by the left arrow (pointing rightwards) in Figure 13. The last

term corresponds to the decrease resulting from classes which have gained an

element and have become of size (N + 1), this is shown by the right arrow

5 The initial size may be generalized to other small sizes; for instance Tessone et al. [2011]

consider entrant classes with size drawn from a truncated power law.
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Variables

Nk Number of elements in class k

κ Number of classes

pN,κ Fraction of classes having N elements when the total number of

classes is κ

Constants

m Number of elements added to the system after which a new class

is added

Indices

k Index for the class

Table 2: Summary of notation

(pointing rightwards) in Figure 13. The equation for the class of size 1 is given

by:

(κ + 1)p1,(κ+1) = κ p1,κ + 1− m

m + 1
p1,κ (3.3.5)

As the number κ of classes (and therefore the number of elements κ(m + 1))
in the system increases, the probability that a new element is classified into a

class of size N, given by Equation (3.3.3), is assumed to remain constant and

independent of κ. Under this hypothesis, the stationary distribution for class

sizes can be determined by solving equation (3.3.4) and using equation (3.3.5)

as the initial condition. This is given by

pN = (1 + 1/m)B(N, 2 + 1/m)

where B(., .) is the beta distribution. It has been termed Yule distribution Simon

[1955]. Written for a continuous variable N, it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density function is between 2 and

3. Its cumulative size distribution P(Nk > N), as given by equation (4.1.1), has

an exponent given by

β = (1 + (1/m)) (3.3.6)

which is between 1 and 2. The higher the frequency 1/m at which new classes

are introduced, the bigger β becomes, and the lower the average class size. This

exponent is stable over time although the taxonomy is constantly growing.
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Figure 13: Illustration of equation 3.3.4. Individual classes grow constantly i.e.,

move to the right over time, as indicated by arrows. A stationary

distribution means that the height of each bar remains constant.

3.3.2 Preferential attachment models for networks and trees

A similar model has been formulated for network growth by Barabási and

Albert Barabási and Albert [1999], which explains the formation of a power law

distribution in connectivity degree of nodes. It assumes that the networks grow

in terms of nodes and edges, and that every newly added node to the system

connects with a fixed number of edges to existing nodes. Attachment is again

preferential, i.e. the probability for a newly added node i to connect to a certain

existing node j is proportional to its number of existing edges of node j.

A node in the Barabási-Albert (BA) model corresponds to a class in Yule’s

model, and a new edge to a newly assigned element. Every added edge counts

both to the degree of an existing node j, as well as to the newly added node

i. It is always counted twice, so the existing nodes j and the newly added

node i grow always by the same number of edges. This is why m = 1 and

consequently β = 2 in the BA-model, independently of the number of edges that

each new node creates.

This seminal model has been extended in many ways. For hierarchical tax-

onomies, we use a preferential attachment model for trees by Klemm et al.

[2005]. The authors considered growth via directed edges, and explain power

law formation in the in-degree, i.e. the edges directed from children to parent in

a tree structure. In contrast to the BA-model, newly added nodes and existing

nodes do not increase their in-degree by the same amount, since new nodes

start with an in-degree of 0. Leaf nodes thus cannot attract attachment of nodes,
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and preferential attachment alone cannot lead to a power-law. A small random

term ensures that some nodes attach to existing ones independently of their

degree, which is the analogous to the start of a new class in the Yule model.

The probability vi that a new node attaches as a child to the existing node i of

with indegree di becomes

vi = w
di − 1

D
+ (1− w)

1

D
, (3.3.7)

where D is the size of the system measured in the total number of in-degrees.

w ∈ [0, 1] denotes the probability that the attachment is preferential, (1− w)
the probability that it is random to any node, independently of their numbers

of indegrees. As it has been done for the Yule process Simon [1955], Newman

[2005a], Geipel et al. [2009], Tessone et al. [2011], the stationary distribution is

again derived via the master equation (3.3.4). The exponent of the asymptotic

power law in the in-degree distribution is β = 1 + 1/w. This model is suitable

to explain scaling properties of the tree or network structure of large-scale

web taxonomies, which have also been analyzed empirically, for instance for

subcategories of Wikipedia Capocci et al. [2006].

3.3.3 Model for hierarchical web taxonomies

We now apply these models to large-scale web taxonomies like DMOZ. Em-

pirically, we uncovered two scaling laws: (a) one for the size distribution of

leaf categories and (b) one for the indegree (child-to-parent link) distribution

of categories (shown in Figure 11). Since (a) and (b) arise jointly, we propose

here a model generating the two scaling laws in a simple generic manner. A

combination of the two processes detailed in subsections 3.3.1 and 3.3.2 may

describe the growth process: websites are continuously added to the system,

and classified into categories by human referees. At the same time, the cate-

gories are not a mere set, but form a tree structure, which grows itself in two

quantities: in the number nodes (categories) and in the number of in-degrees of

nodes (child-to-parent edges).

Based on the rules for voluntary referees of the DMOZ how to classify websites,

we propose a simple combined description of the process. The database grows

in three quantities:

(i) Growth in websites. New websites are assigned into category k, with

probability p(k) ∝ Nk (Figure 14). This assignment happens independently

of the hierarchy level of category k. However, only leaf categories may

receive documents.

(ii) Growth in categories. With probability 1/m, referees assign a website into

a newly created category, at any level of the hierarchy (Figure 15). This
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Figure 14: A website is assigned to existing categories with p(k) ∝ Nk.

assumption would suffice to create a power law ignoring category size

distribution, but since a tree-structure among categories exists, we also

assume that the event of category creation is also attaching to the tree

structure. The probability v(di) that a category is created as the child of a

certain parent category i can depend in addition on the in-degree di of that

category.

2

2 3

0 0 0 0 0
0

Figure 15: (ii): Growth in categories is equivalent to growth of the tree structure

in terms of in-degrees.

(iii) Growth in children categories. Finally, the hierarchy may also grow in terms

of levels, since with a certain probability (1− w), new children categories

are assigned independently of the number of children, i.e. its in-degree di

of the category i. (Figure 16). Like in Klemm et al. [2005], the attachment

probability to a parent i is therefore

vi = w
di − 1

D
+ (1− w)

ǫi

D
. (3.3.8)

Equation (3.3.7) where ǫi = 1 would suffice to explain power law in-

degrees di and in category sizes Ni.

2

2 4

0 0 0 01

0

3

Figure 16: (iii): Growth in children categories.

To link the two processes more plausibly, it can be assumed that the

second term in equation (3.3.8) denoting assignment of new ‘first children’

depends on the size Ni of parent categories,

ǫi =
Ni

N
, (3.3.9)

since this is closer to the rules by which the referees create new categories,

but is not essential for the explanation of the power laws. It reflects that
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the bigger a leaf category, the higher the probability that referees create a

child category when assigning a new website it.

To summarize, the central idea of this joint model is to consider two measures

for the size of a category: the number of its websites Ni (which governs the

preferential attachment of new websites), and its in-degree, i.e. the number of

its children di, which governs the preferential attachmet of new categories. To

explain the power law in the category sizes, assumptions (i) and (ii) are the

requirements. For the power law in the number of indegrees, assumptions (ii)

and (iii) are the requirements. The empirically found exponents β = 1.3 and

γ = 1.9 yield a frequency of new categories 1/m = 0.3, and a frequency of new

indegrees (1− w) = 0.9.

3.3.4 Other interpretations

Instead of assuming in Equations (3.3.8) and (3.3.9) that referees decide to open

a single child category, it is more realistic to assume that an existing category is

restructured, i.e. one or several child categories are created, and websites are

moved into these new categories such that the parent category contains less

websites or even none at all. If one of the new children categories inherits all

websites of the parent category (see Figure 17), the Yule model applies directly.

If the websites are partitioned differently, the model contains effective shrinking

of categories. This is not described by the Yule model, and the master Equation

(3.3.4) considers only growing categories. However, it has been shown Tessone

et al. [2011], Metzig and Gordon [2014] that also models including shrinking

categories also lead to the formation of power laws. Further generalizations

compatible with power law formation are that new categories do not necessarily

start with one document, and that the frequency of new categories does not

need to be constant.

Figure 17: Model without and with shrinking categories. In the left figure, a

child category inherits all the elements of its parent and takes its

place in the size distribution.
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Figure 18: Category size distribution for each level of the LSHTC2-DMOZ

dataset.

3.3.5 Limitations

However, Figures 10 and 11 do not exhibit perfect power law decay for several

reasons. Firstly, the dataset is limited. Secondly, the hypothesis that assignment

probability (3.3.2) depends uniquely on the size of a category might be too

strong for web directories, in view of changing importance of topics. This may

lead to big categories which receive only few new documents or none at all.

In the work of Dorogovtsev and Mendes [2000], the authors have studied this

problem by introducing an assignment probability that decays exponentially

with age. For a low decay parameter they show that the stronger this decay,

the steeper the power law; for strong decay, no power law forms. A last reason

might be that referees re-structure categories in ways strongly deviating from

the rules (i)- (iii).

3.3.6 Statistics per level in the hierarchy

The tree-structure of a database allows also to study the sizes of class belonging

to a given level of the hierarchy. As shown in Figure 12 the DMOZ database

contains 5 levels of different size. If only classes on a given level l of the

hierarchy are considered, we equally found a power law in category size

distribution as shown in Figure 18. Per-level power law decay has also been

found for the in-degree distribution. This result may equally be explained

by the model introduced above: Equations 3.3.2 and 3.3.8 respectively, are

valid also if instead of p(k) one considers the conditional probability p(l)p(i|l),
where p(l) =

∑
κ
i′=1,l

Ni′ ,l
∑

κ
i′=1

Ni′
is the probability of assignment to a given level, and

p(i|l) = Ni,l

∑
κ
i′=1,l

Ni′ ,l
the probability of being assigned to a given class within that
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Figure 19: Number of features vs number of documents of each category.

level. The formation process may be seen as a Yule process within a level if

∑
κ
i′=1,l Ni′,l is used for the normalization in Equation 3.3.2, and this formation

happens with probability p(l) that a website gets assigned into level l. Thereby,

the rate at ml at which new classes are created need not be the same for

every level, and therefore the exponent of the power law fit may vary from

level to level. Power law decay for the per-level class size distribution is a

straightforward corollary of the described formation process, and will be used

in Section 5 to analyse the space complexity of hierarchical classifiers.

3.4 space complexity analysis

The fit of power law distribution to large-scale web taxonomies highlights the

underlying structure and semantics which are useful to visualize important

properties of the data especially in big data scenarios. In this section we

focus on the applications in the context of large-scale hierarchical classification,

wherein the fit of power law distribution to such taxonomies can be leveraged

to concretely analyze the space complexity of large-scale hierarchical classifiers

in the context of a generic linear classifier deployed in top-down hierarchical

cascade.

3.4.1 Relation between category size and number of features

Having explained the formation of two scaling laws in the database, a third

one has been found for the number of features in each category (see Figure 21).

This is a consequence of the law in category sizes, shown in Figure 19. The

result is closely related to the empirical Heaps’ law Egghe [2007], stating that
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the number of distinct words R in a document is related to the length n of a

document as follows

R(n) = Knα (3.4.1)

where the empirical α is typically between 0.4 and 0.6. For the LSHTC2-large

dataset, Figure 20 shows that for the collection of words and the collection

of websites, similar exponents are found. An interpretation of this result is

that the total number words in a category can approximately be measured by

the number of websites in a category, although not all websites have the same

length.
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Figure 20: Heaps’ law: number of distinct words vs. number of words, and vs

number of documents.

Figure 20 (b) shows that bigger categories contain also more features, but this

increase is weaker than the increase in websites. This implies that less very

large categories exist, which is also reflected in the higher exponent δ = 1.9

of a power-law fit in figure 19, (compared to the slower decay of the category

size distribution in terms of number of documents shown in figure 10 where

β = 1.3). Comparison of the exponents empirically yields that δ · α = 1.1 which

is lower than the empirical β = 1.3, but in the same order of magnitude.

In the following sections we first present formally the task of hierarchical

classification and then we proceed to the space complexity analysis for large-

scale systems. Finally, we empirically validate the derived bounds.

3.4.2 Space Complexity of Large-Scale Classification

The prediction speed for large-scale classification is crucial for its application in

many scenarios of practical importance. It has been shown in Yang et al. [2003]

that hierarchical classifiers have lower computational complexity of training as

compared to flat classifiers. Furthermore, it has also been emphasized in the

work of Bengio et al. [2010], Gao and Koller [2011] that prediction time can be

logarithmic in the number of classes for top-down classification as compared
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to flat classification. However, given the large physical memory of modern

systems, what also matters in practice is the size of the trained model with

respect to the available physical memory. To our knowledge, this aspect on

space complexity of large-scale hierarchical classifiers has not been formally

addressed so far. We, therefore, compare the space complexity of hierarchical

and flat methods which governs the size of the trained model in large-scale

classification. The goal of this analysis is to determine the conditions under

which the size of the hierarchically trained linear model is lower than that of

flat model.

For the space complexity in hierarchical classification, we use the notational

setup as discussed in Section 2.2. For classifying an example x, we consider a

top-down classifier making decisions at each level of the hierarchy, this process

sometimes referred to as the Pachinko machine selects the best class at each

level of the hierarchy and iteratively proceeds down the hierarchy. The hierar-

chical relationship among categories implies a transition from generalization

to specialization as one traverses any path from root towards the leaves. This

implies that the documents which are assigned to a particular leaf also belong

to the inner nodes on the path from the root to that leaf node. In the case of flat

classification, the hierarchy H is ignored, Y = V, and the problem reduces to

the classical supervised multiclass classification problem.

As a prototypical classifier, we use a linear classifier of the form wTx which

can be obtained using standard algorithms such as Support Vector Machine

or Logistic Regression. In this work, we apply one-vs-all L2-regularized L2-

loss support vector classification as it has been shown to yield state-of-the-art

performance in the context of large scale text classification Fan et al. [2008]. For

flat classification one stores weight vectors wy, ∀y and hence in a K class problem

in d dimensional feature space, the space complexity for flat classification is:

SizeFlat = d× K (3.4.2)

which represents the size of the matrix consisting of K weight vectors, one for

each class, spanning the entire input space.

We need a more sophisticated analysis for computing the space complexity

for hierarchical classification. In this case, even though the total number of

weight vectors is much more since these are computed for all the nodes in the

tree and not only for the leaves as in flat classification. Despite this, the size of

hierarchical model can be much smaller as compared to flat model in the large

scale classification. The main insight behind this phenomenon is that when the

feature set size is high (top levels in the hierarchy), the number of classes is

less, and on the contrary, when the number of classes is high (at the bottom),

the feature set size is low.
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In order to analytically compare the relative sizes of hierarchical and flat models

in the context of large scale classification, we assume power law behavior with

respect to the number of features, across levels in the hierarchy. More precisely,

if the categories at a level in the hierarchy are ordered with respect to the

number of features, we observe a power law behavior. This has been validated

from our analysis in the previous section 3.4.1 based on Heaps law and also

been verified empirically as illustrated in Figure 21 for various levels in the

hierarchy, for one of the datasets used in our experiments. More formally, the

feature size dl,r of the r-th ranked category, according to the number of features,

for level l, 1 ≤ l ≤ L− 1, is given by:

dl,r ≈ dl,1r−βl (3.4.3)

where dl,1 represents the feature size of the category ranked 1 at level l and

β > 0 is the parameter of the power law. Using this ranking as above, let bl,r

represent the number of children of the r-th ranked category at level l (bl,r is

the branching factor for this category), and let Bl represents the total number of

categories at level l. Then the size of the entire hierarchical classification model

is given by:

SizeHier =
L−1

∑
l=1

Bl

∑
r=1

bl,rdl,r ≈
L−1

∑
l=1

Bl

∑
r=1

bl,rdl,1r−βl (3.4.4)

Here level l = 1 corresponds to the root node, with B1 = 1.
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Figure 21: Power-law variation for features in different levels for LSHTC2-a

dataset, Y-axis represents the feature set size plotted against rank of

the categories on X-axis

We now state a proposition that shows that, under some conditions on the

depth of the hierarchy, its number of leaves, its branching factors and power law

parameters, the size of a hierarchical classifier is below that of its flat version.

Proposition 1. For a hierarchy of categories of depth L and K leaves, let β =

min1≤l≤L βl and b = maxl,r bl,r. Denoting the space complexity of a hierarchical
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classification model by Sizehier and the one of its corresponding flat version by Size f lat,

one has:

For β > 1, if β >
K

K− b(L− 1)
(> 1), then

Sizehier < Size f lat

(3.4.5)

For 0 < β < 1, if
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then

Sizehier < Size f lat

(3.4.6)

Proof. As dl,1 ≤ d1 and Bl ≤ b(l−1) for 1 ≤ l ≤ L, one has, from Equation 3.4.4

and the definitions of β and b:

Sizehier ≤ bd1

L−1

∑
l=1

b(l−1)

∑
r=1

r−β

One can then bound ∑
b(l−1)

r=1 r−β using (Yang et al. [2003]):

b(l−1)

∑
r=1

r−β
<

[
b(l−1)(1−β) − β

1− β

]
for β 6= 0, 1 (3.4.7)

leading to, for β 6= 0, 1:

Sizehier < bd1

L−1

∑
l=1

[
b(l−1)(1−β) − β

1− β

]

= bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)
− (L− 1)

β

(1− β)

]
(3.4.8)

where the last equality is based on the sum of the first terms of the geometric

series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1
(b(1−β)−1)(1−β)

< 0. Therefore, inequality

(3.4.8) can be re-written as:

Sizehier < bd1(L− 1)
β

(β− 1)

Using our notation, the size of the corresponding flat classifier is: Size f lat = Kd1,

where K denotes the number of leaves. Thus:

If β >
K

K− b(L− 1)
(> 1), then Sizehier < Size f lat
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which proves Condition (3.4.5).

The proof for Condition (3.4.6) is similar: assuming 0 < β < 1, it is this time

the second term in Equation 3.4.8 (−(L− 1) β
(1−β)

) which is negative, so that

one obtains:

Sizehier < bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)

]

and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then Sizehier < Size f lat

which concludes the proof of the proposition.

It can be shown that condition 3.4.6 is satisfied for a range of values of β ∈
]0, 1[. However, as is shown in the experimental part, it is condition 3.4.5 of

Proposition 1 that holds in practice. In order to empirically validate the claim

of Proposition 1, we measured the trained model sizes of a standard top-down

hierarchical scheme (TD), which uses a linear classifier at each parent of the

hierarchy, and the flat one.

We use the publicly available DMOZ data of the LSHTC challenge which is

a subset of Directory Mozilla. More specifically, we used the large dataset of

the LSHTC-2010 edition and two datasets were extracted from the LSHTC-2011

edition. These are referred to as LSHTC1-large, LSHTC2-a and LSHTC2-b

respectively in Table 11. The fourth dataset (IPC) comes from the patent

collection released by World Intellectual Property Organization. The datasets

are in the LibSVM format, which have been preprocessed by stemming and

stopword removal. Various properties of interest for the datasets are shown in

Table 11. Table 4 shows the difference in trained model size (actual value of the

model size on the hard drive) between the two classification schemes for the

four datasets, along with the values defined in Proposition 1. The symbol ▽
refers to the quantity K

K−b(L−1)
of condition 3.4.5.

Dataset #Training Inst. #Test Inst. #Classes #Feat. Tree Depth

LSHTC1-large 93,805 34,880 12,294 347,255 6

LSHTC2-a 25,310 6,441 1,789 145,859 6

LSHTC2-b 36,834 9,605 3,672 145,354 6

IPC 46,324 28,926 451 1,123,497 4

Table 3: Datasets for hierarchical classification with the properties: Number of

training/test examples, target classes and size of the feature space.
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Dataset Sizehier SizeFlat β b ▽
LSHTC1-large 2.8 90.0 1.62 344 1.12

LSHTC2-a 0.46 5.4 1.35 55 1.14

LSHTC2-b 1.1 11.9 1.53 77 1.09

IPC 3.6 10.5 2.03 34 1.17

Table 4: Model size (in GB) for flat and hierarchical models along with the

corresponding values defined in Proposition 1. The symbol ▽ refers to

the quantity K
K−b(L−1)

As shown for the three DMOZ datasets, the trained model for flat classifiers can

be an order of magnitude larger than for hierarchical classification. This results

from the sparse and high-dimensional nature of the problem which is quite

typical in text classification. For flat classifiers, the entire feature set participates

for all the classes, but for top-down classification, the number of classes and

features participating in classifier training are inversely related, when traversing

the tree from the root towards the leaves. As shown in Proposition 1, the power

law exponent β plays a crucial role in reducing the model size of hierarchical

classifier.

The previous proposition complements the analysis presented in Yang et al.

[2003] in which it is shown that the training and test time of hierarchical classi-

fiers is importantly decreased with respect to the ones of their flat counterpart.

In this work we show that the space complexity of hierarchical classifiers is also

better, under a condition that holds in practice, than the one of their flat coun-

terparts. Therefore, for large scale taxonomies whose feature size distribution

exhibit power law decay, hierarchical classifiers should be better in terms of

speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical classifier is lower

than flat classifiers.

2. For K classes, only O(log K) classifiers need to be evaluated per test

document as against O(K) classifiers in flat classification.

3.5 conclusion

In this work we presented a model in order to explain the dynamics that exist

in the creation and evolution of large-scale taxonomies such as the DMOZ

directory, where the categories are organized in a hierarchical manner. More

specifically, the presented process jointly models the growth in the size of the
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categories (in terms of documents) as well as the growth of the taxonomy in

terms of categories, which to our knowledge have not been addressed in a joint

framework. From this, we derive with the help of Heaps’s law a third scaling

law in the features size distribution of categories which we then exploit for

performing an analysis of the space complexity of linear classifiers in large-scale

taxonomies. We provided a quantitative analysis of the space complexity for

hierarchical and flat classifiers and proved that the complexity of the former is

always lower than that of the latter. The analysis has been empirically validated

in several large-scale datasets from publicly available web-taxonomies. The

space complexity analysis can be used in order to estimate beforehand the

size of trained models for large-scale data. This is of importance in large-scale

systems where the size of the trained models may impact the inference time.
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4
E X P L O I T I N G D ATA - D I S T R I B U T I O N F O R

L E A R N I N G

Using the power-law distribution of data among categories in large-

scale category systems, we study two algorithms which aim at

achieving (a) better classification accuracy, and (b) efficient model-

selection leading to faster training. The fit to power-law distribution

implies that a significant fraction of categories, referred to as rare cat-

egories, have very few documents assigned to them. For large-scale

datasets which exhibit this property, it leads to the following two

challenges, (i) categories with extremely few training documents

in them make it harder for learning algorithms to learn effective

decision boundaries which can correctly detect such categories in

the test set, and (ii) computational complexity of hyper-parameter

tuning for learning algorithms such as SVM by the commonly used

k-fold cross-validation is extremely high. We present techniques

which exploit the power-law distribution of documents among cate-

gories to address these challenges. More concretely, (i) we propose a

soft-thresholding based framework for classification which leads to

better classification in the presence of rare categories and secondly,

(ii) we present a computationally efficient model selection in large-

scale classification. Finally, in the context of large-scale hierarchical

classification, we propose a method which effectively combines dis-

criminative and generative classifiers by leveraging the variation in

the number of training examples to the number of features at nodes

in the root to leaf path in the hierarchy. The classifier ensemble leads

to faster training and prediction, without sacrificing significantly on

classification accuracy. The empirical evaluation on publicly avail-

able large-scale datasets from the LSHTC challenge demonstrate that

the proposed methods address effectively the challenges of better

classification accuracy and lower computational complexity.
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4.1 soft-thresholding for classification in

power-law distributed categories

Due to the tremendous growth in data from various sources such as social

networks, web-directories and digital encyclopedias, big data analytics and

large scale learning have gained increasing importance in recent years and

have become a key focus of academia and industry alike. Directory Mozilla,

for instance, lists over 5 million websites distributed among close to 1 million

categories. Another commonly used instances of large-scale encyclopedias

and category systems include Wikipedia and Medical Subject Heading hier-

archy of the National Library of Medicine is another instance of a large-scale

classification system in the domain of life sciences In order to minimize the

amount of human effort involved in maintaining such large-scale scenarios,

there is a definite need to automate the process of classifying data into the target

categories. However, as studied in the previous chapters that most large-scale

category systems exhibit fit to power-law distribution. This attribute of large-

scale datasets poses major research challenge for building good classification

systems.

4.1.1 Power-law distribution

As discussed in Chapter 3, and also shown empirically in the work by Yang et al.

[2003], Liu et al. [2005] that the distribution of documents among categories in

large category systems exhibits a fit to power-law distribution. Formally, let Nr

denote the size of the r-th ranked category (in terms of number of documents),

then :

Nr = N1r−β (4.1.1)

where N1 represents the size of the 1-st ranked category and β > 0 denotes the

exponent of the power law distribution. The fat-tailed power law distribution

highlights the fact that many categories have very few documents assigned to

them. For instance, 76% of the categories in the Yahoo! directory have less than

5 documents in them Gopal and Yang [2013b].

Due to the fat-tailed power law distribution, a large number of categories have

very few documents assigned to them. It is, therefore, statistically harder to

learn good decision boundaries for these categories. The decision boundaries

of the bigger categories are more attractive as compared to the rare categories.

As a result, a test instance which actually belongs to one of the rare categories

is assigned to a bigger category. On one hand, this leads to high False Positive

rate for bigger categories, and on the other hand, rare categories are lost in the

56



 1

 10

 100

 1  10  100  1000

N
u

m
b

e
r 

o
f 

D
o

c
u

m
e

n
ts

Rank of Category

True distribution
Distribution induced by a flat SVM classifier

Figure 22: Comparison of distribution of test instances among categories in

the true distribution and in the distribution induced by a flat SVM

classifier; the X-axis represents the rank of categories (by number of

documents) and Y-axis the number of documents in those categories.

Categories with same number of documents effectively have same

rank.

classification process. This is shown for one of the LSHTC datasets in Figure

22, which depicts

1. The true distribution of test instances among target categories denoted by

grey triangles, and

2. The distribution of documents among categories induced when a flat

(multi-class) SVM classifier is used for classification, denoted by solid

black squares.

For the distribution induced by the SVM classifier, observations in Figure 22

which demonstrate the high False-positive rate for large categories and inability

to detect rare categories in such distributions are :

• On the left side of the plot, the graph for the distribution induced by

the SVM classifier starts higher and remains higher as compared to true

distribution, but drops much sharply on the right part, and

• Comparing the tails of the distributions on the right side of the plot, the

true distribution has a fatter tail as compared to the induced distribution,

i.e., it has many more categories of 1 or 2 documents as compared to the

distribution induced by the SVM classifier.

More concretely, the category with the maximum number of documents in the

true distribution has 78 documents (denoted by bigger solid square in black

on Y-axis), while in the induced distribution it has 176 documents (denoted

by bigger solid triangle in grey on Y-axis). Furthermore, the actual number of
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categories in the test distribution is 1139, while the flat SVM classifier is able to

detect merely 574 categories.

4.1.2 Related work and our contributions

Not only limited to flat SVM classifier, the state-of-the-art methods such as

Gopal and Yang [2013b] also suffer from these two problems mentioned which

is also apparent in low values of the Macro-F1 measure achieved by these

methods. The work by Liu et al. [2005] is among the pioneering studies in

classification of power-law distributed web-scale directories such as the Yahoo!

directory consisting of over 100,000 target classes. For similar category systems,

classification techniques based on refined experts and deep classification have been

proposed in Bennett and Nguyen [2009] and Xue et al. [2008] respectively. More

recently recursive regularization based SVM (HR-SVM) has been studied in

Gopal and Yang [2013b] wherein the optimization problem for learning the

discriminant functions exploits the given taxonomy of categories. This approach

represents the current state-of-art as it performs better than most techniques

on large-scale datasets released as part of the Large Scale Hierarchical Text

Classification Challenge in last few years 1. Other studies related to large-scale

learning are presented in works such as Perronnin et al. [2012], Bengio et al.

[2010], Gao and Koller [2011], Deng et al. [2011]. However, the above studies

do not focus on the specific problem of rare-category detection in large-scale

power-law distributed category systems, which is the focus of this section.

To address the problem of rare-category detection in large-scale power-law

distributed category systems, we propose an easy to implement method which

performs post-processing on the posterior probabilities of categories given the

instance. More concretely, we proceed as follows, (i) we propose a simple but

useful upper bound on the accuracy of any classifier which classifies documents

into target categories and hence induces a distribution of documents among

them, and (ii) we then present a soft-thresholding based algorithm which aims

to increase the value of the bound bound on the accuracy derived in the first step

and thereby favoring rare categories. This scheme performs better than the state-

of-the-art HR-SVM technique in both Micro-F1 and Macro-F1 measures, and

especially for the latter, at a much lower computational complexity. Also, the

relative improvement in the total number of categories detected in classification

is as high as 20% on some datasets.

1 http://lshtc.iit.demokritos.gr/
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4.1.3 Accuracy Bound on Power-law Distributed Categories

Now we propose an upper bound on the accuracy of a given classifier C. Unlike

most learning theoretic error bounds Vapnik [1998], Mohri et al. [2012], the

nature of this bound is quite simple and is particularly suited for classification

problems with a large number of target categories. The derivation of the upper

bound on the accuracy of the classifier C is based on the distribution of unseen

instances induced by it among the target categories.

We consider mono-label multi-class classification problems, where observations

x lie in an input space X ⊂ R
d and belong to one and only one category from

a discrete set Y of labels, where |Y| > 2. We suppose that examples are pairs

of (x, y), with y ∈ Y , identically and independently distributed (i.i.d) according

to a fixed, but unknown probability distribution D over X × Y . We further

assume to have access to a training set Strain = {(x(i), y(i))}m
i=1 also generated

i.i.d with respect to D. In the context of text classification, x(i) ∈ X denotes

the vector representation of document i and its label y(i) ∈ Y represents the

category associated with x(i). Using the statistics of the training data, we first

provide confidence intervals for the estimate of the prior probability for each

category.

Lemma 1. Let m denote the total number of instances in the training set such that

the category yℓ consists of mℓ instances. Let pyℓ denote the true prior probability for

category yℓ ∈ Y and mℓ

m , p̂yℓ its empirical estimate. Then ∀δ, such that 0 < δ ≤ 1,

with probability at least (1− δ), the following upper bound holds simultaneously for

all categories,

∀yℓ ∈ Y , pyℓ ≤ p̂yℓ +

√
log |Y|+ log 1

δ

2m
(4.1.2)

where the probability is computed with respect to repeated samples of the training set.

The above lemma can be proved by applying Hoeffding’s inequality and then

union bound for it to hold simultaneously for all |Y| categories.

Proof. Using Hoeffding’s inequality for random variables bounded in the inter-

val [0, 1], we have

∀ǫ > 0, Pr(pyℓ − p̂yℓ > ǫ) ≤ exp

(
−2m2ǫ2

m

)
=

δ

|Y|
where Pr(e) represents the probability of event e. Solving for the deviation ǫ in

terms of δ gives the required inequality on the right hand side. It can similarly

be proved for the inequality on the left hand side. The log |Y| factor in the

bound is a result of fact that the bound should hold simultaneously for all |Y|
categories.
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Using the bound in inequality (4.2.2), we now present a probabilistic upper

bound on the accuracy of a classifier C evaluated on an independent set S

which is also generated i.i.d. from D.

Theorem 1. Let S = {(x(j), y(j))}n
j=1 be a set generated i.i.d. from D. Let nC

ℓ
be the

number of examples in S assigned to category yℓ by the classifier C which is trained

on Strain. Then for any 0 < δ ≤ 1, the following bound on the accuracy of C over S,

denoted by Acc(C), holds with probability at least (1− δ):

Acc(C) ≤ 1

|S|
|Y|
∑
ℓ=1

min{( p̂yℓ × |S|), nC
ℓ
} , B(Acc(C)) (4.1.3)

where p̂yℓ denotes the estimate on the prior probability of the category yℓ in the training

set as computed in Lemma 2.

Proof. For ℓ = 1, ( p̂y1
× |S|) represents a probabilistic upper bound on the

number of instances in category y1 and using Lemma 2, the bound holds with

probability (1− δ/|Y|), where |S| denotes the size of S. Clearly, the maximum

number of instances for category y1 that can be correctly classified by C is given

by min{( p̂y1
× |S|), nC

ℓ
}. Summing over all |Y| categories gives an upper bound

on the total number of instances that can possibly be correctly classified by C

with confidence atleast (1− δ). The maximum accuracy rate of classifier C is,

therefore, given by right hand side of (4.1.3).

Even though the bound given in Equation (4.1.3) seems loose, it is indeed quite

useful when learning classifiers on a large number of target categories which

are power-law distributed. For the dataset used in Figure 22, the actual accuracy

of the flat classifier is 0.45 and the upper bound as given by Equation 4.1.3 is

0.64. In the next section, we propose a ranking-based algorithm which aims at

improving this upper bound. Intuitively, for a given test instance, instead of

predicting the top-ranked category in terms of posterior probabilities, our algo-

rithm performs a soft-thresholding by ranking them and then post-processing

the result by majority voting to encourage highly ranked rare categories. As

shown in our experiments that the resulting method not only leads to higher

value of the upper bound (0.71 for the dataset used in Figure 22) but also tends

to have higher values of both Micro-F1(= accuracy) and Macro-F1 measure.

4.1.4 Soft-thresholding Algorithm for Higher Bound-value

The min(., .) function in the bound derived in equation (4.1.3) has two argu-

ments, where the first argument corresponds to the estimate of the number of

instances in category ℓ and the second argument is the number of instances
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assigned to this category by the classifier C. As a result, a higher value of

the bound is achieved for C, if the two arguments are close to each other for

large number of categories. On the other hand, if C assigns a large number of

false-positives to categories which have large number of training instances in

them, the value attained by the bound will be lower since :

1. For most of the large categories, the first argument in min(., .) will be

accounted towards computing the bound. This is due to the fact that

these categories will attract many false-positives from small categories

and hence making the second argument of min(., .) bigger.

2. For a large fraction of the small categories which have false-negatives, the

second argument in min(., .) will be close to zero and will be used in the

computation of the bound.

The two problems correspond to the left and right portions respectively in

Figure 22 for the distribution induced by the flat SVM classifier. As also shown

in our experiments, the bound on the accuracy as given by equation (4.1.3) also

captures the variation in the true accuracy and hence can be used as its proxy.

Therefore, when dealing with large number of target classes the bound on the

accuracy represents a criterion which can be improved in order to obtain better

classification. It may be noted that the bound represents a necessary condition

for a classifier C to have high accuracy. It does not provide a sufficient condition

since it is possible in an adversarial setup to achieve an upper bound of 1 by

simply assigning the test instances to categories in the same proportion as in

the training set.

With the aim of having a higher value of the accuracy bound, (in equation (4.1.3))

by reducing the False positive rate for top-ranked categories and detecting more

of the rare categories, we present an efficient algorithm which achieves better

measures for Micro-F1 and Macro-F1. Given the training set Strain, we first

train a multi-class SVM (using Liblinear) which can give probabilistic output.

When predicting the category associated to the test instance x, the algorithm

first computes the class posterior probabilities ( p̂yl
|x), ∀1 ≤ l ≤ |Y| and ranks

the categories according to posterior probabilities. Let yr1 = arg maxyl∈Y ( p̂yl
|x)

be the first-ranked category and yr2 = arg maxyl∈{Y−yr1}( p̂yl
|x) is the second-

ranked category. Also, let myr1
and myr2 be the number of training instances

in these categories in the training set Strain. For the instance x, we define a

predicate pred(x) which is true if and only if the following conditions are

satisfied :

1. the difference ( p̂yr1
|x)− ( p̂yr2 |x) ≤ ∆, and

2. myr1
/myr2 ≥ R.

If pred(x) evaluates to true, it implies that x may be wrongly classified by the

flat SVM classifier to category yr1. In this scenario, a majority-voting based
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re-prediction to distinguish the top two categories for x is performed as follows. An

instantaneous training set is created by randomly under-sampling the top-ranked

category to match the number of training instances in the rare category, and all

the training instances from the rare category are used. Using this instantaneous

training set, a binary classifier is then trained and the class of the instance x is

re-predicted. The above process of creation of instantaneous set, training and

prediction is repeated an odd number of times and one of the categories from

{yr1, yr2} with majority votes is finally predicted. This post-processing of the

output is performed for a small fraction of the instances in the test set for which

pred(x) evaluates to true. Moreover, since it involves only top-two categories, it

adds only marginal computational cost as compared to learning the multi-class

SVM for all the categories. The proposed soft-thresholding based re-ranking

procedure is given below in Algorithm 1:

Algorithm 1 Proposed Algorithm

Input: Training data Strain and Test data Stest

Output: Labels for Stest

Learn Multiclass SVM (Crammer-Singer algorithm Crammer and Singer

[2002])

for each test instance x ∈ Stest do

Predict posterior probabilities ( p̂yl
|x), ∀1 ≤ l ≤ |Y|

if pred(x) is true then

Create instantaneous training set t (odd) times

To distinguish {yr1, yr2}, learn t binary classifiers

Re-predict instance x with each binary classifier

Output from {yr1, yr2} the one with majority votes

else

Output category arg maxyl∈Y ( p̂yl
|x)

end if

end for

return Labels ∀x ∈ Stest

As shown in our experiments, re-ranking the class posterior probabilities based

on this algorithm yields significant improvement in the Macro-F1 and Micro-

F1 measures as compared to state-of-art methods. The parameters ∆ and R

used in Algorithm 1 are chosen by cross-validation and we observed that even

intuitive values such as R = 5 and ∆ = 1/(10× |Y|) give comparable results

as compared to state-of-the-art HR-SVM method. It may also be noted that

the proposed algorithm can be extended to consider top-k categories instead of

top-2, which is one of our future works.

Is it similar to handling class-imbalance? It may be noted that the nature of

class imbalance problem posed in the large-scale datasets with thousands of
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power-law distributed categories is different from the traditional classification

problems in low-dimensional space such as in UCI datasets. A typical rare

category in large-scale category systems consists of 2-to-4 instances and spans

a very low dimensional sub-space of a few hundreds of features in the entire

feature space which could be as big as hundreds of thousand dimensions, as

shown in Table 11. This is in contrast to conventional imbalanced data-sets

which lie in feature spaces of few tens of dimensions and all classes span the

entire dimensionality of the entire feature space. As a result, the conventional

methods of handling class-imbalance such as class-wise penalty in SVM (which

penalizes a mis-classification for a class inversely in the ratio of number of

instances in that class) do not improve classification in such settings. We tested

this technique on our datasets and the results were poorer as compared to

normal class-insensitive penalization. We therefore did not pursue this strategy

any further.

4.1.5 Experimental Evaluation

Dataset Training/Test

instances

Categories

|Y|
Features d

LSHTC-2010-s 4,463/1858 1,139 51,033

LSHTC-2010-l 128,710/34,880 12,294 381,580

LSHTC-2012 383,408/103,435 11,947 348,548

Table 5: LSHTC datasets and their properties

We present empirical results on publicly available Directory Mozilla (DMOZ)

datasets from the LSHTC challenge in 2010 (s and l suffixes correspond to

smaller and larger versions) and 2012. The statistics of the data are shown

in Table 11. The number of features, denoted by d, represents the number of

distinct words in the vocabulary after stemming and stop-word removal. The

datasets are in the LibSVM format with term-frequency information for each

document.

The metrics used for comparison are Micro-F1 measure and Macro-F1 measure,

which are computed as follows:

• Micro-F1 : It is an instance based evaluation measure and weighs higher

those categories which have higher fraction in the test set. Let TPy, FPy

and FNy denote respectively the true-positives, false-positives, and false-
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negatives for the class label y ∈ Y . Then Micro-F1 measure is given

by

P =
∑y∈Y TPy

∑y∈Y TPy + FPy

R =
∑y∈Y TPy

∑y∈Y TPy + FNy

Micro− F1 =
2PR

P + R

• Macro-F1 : It is a category-based evaluation measure and weighs all

categories equally and hence is more sensitive to the ability of the classifier

to detect rare-categories. It is given by

Py =
TPy

TPy + FPy

Ry =
TPy

TPy + FNy

Macro− F1 =
1

|Y|∑ y ∈ Y 2PyRy

Py + Ry
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Figure 23: Comparison of distribution of test instances among categories for

the method proposed in Algorithm 1 and SVM baseline. X-axis

representing the rank (by number of documents) of categories and

Y-axis the number of documents in them.

The parameters ∆ and R used in Algorithm 1 are chosen by cross-validation

and we observed that even intuitive values work well in practice. In Table 6,

we compare the algorithm proposed in Section 4.1.4 with HR-SVM from the

recent work in Gopal and Yang [2013b] and also against the SVM-baseline.
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Dataset Algorithm 1 HR-SVM

Gopal and

Yang [2013b]

CS-SVM

LSHTC-2010-s

Micro-F1 47.36†† 45.31 45.15

Macro-F1 32.91†† 28.94 29.40

B(Acc(C)) 0.71 0.63 0.64

Categories detected 658 570 574

Training Time 1.1x 1.7x 1x

LSHTC-2010-l

Micro-F1 46.67†† 46.02 45.82

Macro-F1 34.65†† 33.12 32.63

B(Acc(C)) 0.77 0.73 0.72

Categories detected 8523 8102 8039

Training Time 1.1x 1.6x 1x

LSHTC-2012

Micro-F1 57.78†† 57.17 56.44

Macro-F1 34.15†† 33.05 31.59

B(Acc(C)) 0.76 0.72 0.70

Categories detected 8220 7965 7882

Training Time 1.1x 1.6x 1x

Table 6: Comparison of Micro-F1 and Macro-F1 for the proposed algorithm,

HR-SVM and CS-SVM (Crammer-Singer). The training time is shown

as a multiple of time taken by the SVM-baseline. The variation of the

bound value derived in Equation 4.1.3 and the number of categories

detected by each method is also shown. The significance-test results

(using Micro sign test for Micro-F1 measure and using Macro t-test for

the Macro-F1 measures, as proposed in Yang et al. [2003]) are denoted

for a p-value less than 1%.

Comparison of the approaches shows that the proposed method, aimed at

improving the value of the accuracy bound (4.2.2) yields improvement over

the state-of-the-art HR-SVM technique. The results of the significance test are

shown with respect to HR-SVM Gopal and Yang [2013b] and SVM-baseline, and

†† represents significant improvement over both the methods. Since our method

is explicitly targeted at rare category detection, the improvement in Macro-F1

measure is particularly significant, which confirms that the method is able to

correctly recognize rare categories. For instance, the relative improvement in

Macro-F1 over HR-SVM for LSHTC-2010-s dataset is close to 15%. This is also
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confirmed by the comparison of the number of detected categories for each of

the three methods. For the LSHTC-2010-s dataset, the relative increase in the

number of detected categories is almost as high as close to 20%.

Figure 23 shows the distribution of test instances induced by the method

proposed in Algorithm 1 for the LSHTC-2010-s dataset. On comparing Figure

23 with Figure 22, we observe that the distribution induced by our method is

much closer to the true distribution as compared to the flat SVM classifier. Two

important observations follow from the comparison:

• The left part of the plot shows that bigger categories have a lower False

positive rate as compared to SVM classifier.

• The tail of the distribution shows that our method detects more rare

categories, which further confirms better rate of Macro-F1 measure as

compared to state-of-art methods.

To compare the computational cost of each method, training times are also

shown in Table 6. The comparison to HR-SVM shows that our method enjoys

favorable performance in terms of computational complexity. Since Algorithm 1

uses flat baseline as a first step, and re-training is performed only for a fraction

of test instances (in on-line fashion), its cumulative training time is slightly

more than that for flat-baseline.

4.1.6 Remarks

In this section, we focused on the specific problem of rare-category detection in

large-scale power-law distributed category systems. However, for classification

in large-scale category systems consisting of tens of thousand classes in few

hundred thousand dimensional feature spaces, we are still faced with many

computational bottlenecks. One them being the computational complexity of

k-fold cross-validation for hyper-parameter selection such the λ parameter in

SVM training. For instance, on one of the LSHTC datasets consisting of 0.5

million training documents among 36,000 categories, 5-fold cross-validation

to learn the parameter λ will take around one month on a single quad-core

machine with standard hardware. In the next section, we discuss in detail on

this research challenge and also propose a computationally-efficient method for

hyper-parameter tuning in the context of power-law distributed categories.
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4.2 efficient model-selection in big data

In the first part of this chapter, we proposed a method to deal with the skewness

of data in large-scale category systems from the classification accuracy view-

point. Another challenge posed by such datasets is the sheer scale of the

classification task and hence, the scalability of typically used classification

algorithms such as Support Vector Machines and Logistic Regression. Since the

number of target classes is of the order of tens of thousands and feature set size

corresponding to the vocabulary is of the order of hundreds of thousands, it

is also computationally expensive to learn such discriminative classifiers. As

also discussed in the recent work by Gopal and Yang [2013a], the LSHTC-large

dataset having 12,294 categories in a feature set of size 347,256 one needs

to learn 12, 294× 347, 256 = 4.2 billion parameters. In such scenarios, model-

selection techniques such as k-fold cross-validation to tune the regularization

parameter λ of SVM classifier for 7 values {10−3, 10−2, . . . , 102, 103} for k = 5

would require the process of learning 4.2 billion parameters 35 times. As

another instance, on the Wikipedia-2011 dataset used in our experiments which

has approximately 0.5 million training documents among 36,000 categories,

5-fold cross-validation to learn the parameter λ will take around one month on

a single quad-core machine with standard hardware.
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Figure 24: Distribution of 456,866 training instances (for a Wikipedia subset)

among 36,000 categories in the training data, with X-axis representing

the rank (by number of documents) of categories and Y-axis the

number of documents in those categories. Some of the characteristics

of the data : (i) The categories with maximum number of documents

in the training distribution has 11,400 documents, (ii) Approximately

15,000 of the 36,000 categories have ≤ 5 documents, with 4,000

categories having just 1 document in the training set.
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Due to the presence of a large number of rare categories in power-law distributed

category systems, training on a fraction of the given data (for better computa-

tional efficiency) is also not desirable. This method ignores useful information

especially for such categories and hence leads to a sub-optimal choice of the

hyper-parameter λ, as is also verified in our experiments. As a result, model

selection for classification in large-scale web directories suffer from two major

challenges:

• Using the entire data makes the process of model selection (such as k-fold

cross-validation) computationally expensive,

• Using a fraction of data for computational efficiency leads to sub-optimal

parameter choice.

Therefore, conventional techniques in machine learning offer no promising

alternative to computationally expensive k-fold cross-validation Mohri et al.

[2012] for large-scale web directories. The large-scale nature of the problem,

coupled with the scarcity of sufficient number of training instances for the rare

categories poses a research and engineering challenge in order to design scalable

systems with good prediction performance.

In this work, to address the issues of computational complexity of model

selection, we propose an efficient alternative to cross-validation. Specifically,

our contributions are the following: (i) We show that the accuracy bound

developed in the first part of this chapter naturally motivates an efficient

scheme for hyper-parameter tuning, and (ii) we demonstrate empirically that

by employing the proposed technique, one can speed-up the hyper-parameter

search by a factor of k as compared to k-fold cross-validation.

4.2.1 Related Work

The work by Liu et al. [2005] is among the pioneering studies for classification

of web-scale directories such as the Yahoo! directory consisting of thousands

of target categories. The authors study the distribution of documents among

categories and verify the fit to power-law distribution in such taxonomies. They

apply this phenomena to analyze the performance with respect to accuracy

and training time complexity for flat and hierarchical classification. Other

techniques have been recently proposed for classification in large-scale settings

such Bennett and Nguyen [2009], Xue et al. [2008], Gopal et al. [2012].

The HR-SVM based technique proposed in Gopal and Yang [2013b] represents

the current state of art for most of the bench-mark datasets. However, this relies

on computationally expensive cross-validation to search for the appropriate

value of the regualrization parameter λ in the range {10−3, 10−2, . . . , 102, 103}.
Therefore, for classification problems involving tens of thousand of target
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categories and training documents in the range of hundreds of thousand,

this mandates the use of high performance and parallel-processing based

computing systems such Hadoop. Even though k-fold cross-validation is easily

parallelizable, our method can also exploit a parallel computation infrastructure

and is more efficient in this set-up as well. We would also like to note that

efficiency in model selection by exploring the regularization path of SVM has

been studied in Hastie et al. [2004], Friedman et al. [2010]. However, the aim in

those works is to be able to perform cross-validation in finite number of points

instead of R+. Though related on a high-level, the focus of contribution in

these works is quite different to the problem addressed in our work.

4.2.2 Accuracy Bound for Classification in Large Number of Categories

In this section, we recall from the previous section, the upper bound on the

accuracy of a given classifier C. In our experiments, we show that this bound

serves as a good proxy for the actual accuracy of C, and further exploit this

intuition to perform model selection.

Using the problem setup from the first part of this chapter, we recall the first

result from the previous section wherein we present confidence interval on

estimate of the prior probability for each category in a large-scale category

system.

Lemma 2. Let m denote the total number of instances in the training set such that

the category yℓ consists of mℓ instances. Let pyℓ denote the true prior probability for

category yℓ ∈ Y and mℓ

m , p̂yℓ its empirical estimate. Then ∀δ, such that 0 < δ ≤ 1,

with probability at least (1− δ), the following upper bound holds simultaneously for

all categories,

∀yℓ ∈ Y , pyℓ ≤ p̂yℓ +

√
log |Y|+ log 1

δ

2m
(4.2.1)

where the probability is computed with respect to repeated samples of the training set.

Using this inequality, we re-call the result from the previous section which

presents a probabilistic upper bound on the accuracy of a classifier C. The goal

of a classification algorithm, such as a Support Vector Machine, is to learn a

classifier C which maximizes the accuracy on the test set Stest.

Theorem 2. Let Stest = {(x(j), y(j))}n
j=1 be the test set which is also generated i.i.d.

from D. Let nC
ℓ

be the number of examples in Stest assigned to category yℓ by the
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classifier C which is trained on Strain. Then for any 0 < δ ≤ 1, the following bound on

the accuracy of C over Stest, denoted by Acc(C), holds with probability at least (1− δ):

Acc(C) ≤ 1

|S|
|Y|
∑
ℓ=1

min{( p̂yℓ × |Stest|), nC
ℓ
} , B(Acc(C)) (4.2.2)

where p̂yℓ denotes the estimate on the prior probability of the category yℓ in the training

set as computed in Lemma 2.

Equation (4.2.2) shows that a classifier C is likely to have higher value of

the bound provided nC
k is close to ( p̂yk

× |Stest|), ∀k. On the other hand, a

classifier which assigns a large number of false-positives to large classes due to

imbalanced nature of the problem will be penalized because of the following

two reasons :

1. The bound involves min(., .) and for a large class k with lots of false-

positives, the first term in min(., .) will be accounted towards the compu-

tation of the bound, and

2. For small classes which have false-negatives, the second term in min(., .)
will be close to zero and will be used in the computation of the bound.

As also shown in our experiments, the bound on the accuracy as given by

equation (4.2.2) captures the variation in the true accuracy. Therefore, when

dealing with large number of target classes the bound on the accuracy can be

viewed as a proxy for the test set accuracy.

4.2.3 Using accuracy bound as alternative to k-fold cross-validation

Training process of effective learning algorithms such as SVM or Logistic Re-

gression requires learning billions of paramters for web-scale datasets. These

discriminative learning algorithms minimize a combination of empirical er-

ror and model complexity. The template of the objective function which is

minimized is of the following form:

ŵ = arg min
w

Remp(w) + λ Reg(w) (4.2.3)

where Reg(w) is the regularization term to avoid complex models and Remp(.)
represents the empirical error. For SVM classifier, Remp(.) is based on hinge-loss

(max(0, 1− yiw
Txi)) and for Regularized Logistic Regression Remp(.) is based

on logistic loss (log(1 + exp(−yiw
Txi))). The hyper-parameter λ controls the

trade-off between the empirical error and regularization term.

Algorithm 2 demonstrates model selection via k-fold cross-validation for learn-

ing the hyper-parameter λ. The inner for-loop requires the computationally

expensive process to be repeated k times for each value of the hyper-parameter.

70



Algorithm 2 Model selection using k-fold cross-validation

Require: Training data Str = {(x(i), y(i))}m
i=1, learning algorithm such as SVM

Randomly permute the training data instances

Split Str into k parts

for each value of λ ∈ {10−3, 10−2, . . . , 102, 103} do

for (l = 1; l ≤ k; l ++) do

Train on all parts except the l-th part

Test on the l-th part and compute accuracy accλ
l

end for

Compute average accuracy(= 1
k ∑

k
l=1 accλ

l ) for current value of λ

end for

Return the value of λ with highest accuracy

Algorithm 3 Model selection using accuracy bound (4.2.2)

Require: Training data Str = {(x(i), y(i))}m
i=1, Stest = {(x(j), y(j))}n

j=1 and learn-

ing algorithm such as SVM

Randomly permute the training data instances

for each value of λ ∈ {10−3, 10−2, . . . , 102, 103} do

Train an SVM model using Str

Test the model on Stest

Compute the accuracy bound (4.2.2) for each value of λ

end for

Return the value of λ with highest accuracy bound

Algorithm 3 presents an alternative to k-fold cross-validation based on the

accuracy bound derived in equation (4.2.2) that can instead be employed for

tuning the hyper-parameter λ. For a given learning algorithm (such as SVM),

different settings of the hyper-parameter (λ) are likely to yield a different

classifier (separating hyper-plane). Tuning the hyper-parameter is, therefore,

reduced to the problem of finding a classifier which yields highest value of the

bound in equation (4.2.2) on the test set.

The advantage of this strategy is that it avoids the need to repeat the process k

times and hence its computational cost is same as 1-fold cross-validation. As

shown in our experiments, this strategy for model selection works well and

chooses the same value as found by k-fold cross-validation. For each value of λ,

it computes the upper bound derived in equation (4.2.2) and selects the value

with the highest value for the bound.

k-fold cross-validation on fraction of training data In large-scale scenarios,

one common alternative to speed-up model selection process such as k-fold

cross-validation is to use a fraction of data instead of using the entire data. We
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Dataset #Training/#Test

instances

#Categories #Features #Parameters

DMOZ-2010-s 4,463/1,858 1,139 51,033 58,126,587

DMOZ-2011 36,834/9,605 3,672 145,354 533,739,888

DMOZ-2010-l 128,710/34,880 12,294 381,580 4,691,144,520

Wiki-2011 456,866/81,262 36,504 346,299 12,641,298,696

IPC 46,324/28,926 451 1,123,497 506,697,147

Table 7: Datasets used, along with their properties: Number of training in-

stances, test instances, target categories, size of the feature space and

number of parameters learnt. Each of the DMOZ datasets and IPC

dataset has 1 label per training/test instance, while the Wikipedia

dataset has 1.85 labels on average for the training set.

employ linear2 SVM in our experiments and the computational complexity of

linear SVM is linear in number of training instances. Therefore, one can only

select (1/k) fraction of training data such that the computational complexity

of training an SVM using k-fold cross-validation (Algorithm 2) is same for the

proposed method (Algorithm 3).

However, this leads to sub-optimal choice of the hyper-parameter as was

observed in our experiments. This is primarily due to the fact that all datasets

(except one) exhibit fit to power-law distribution as shown in Figure 24 such

that most categories have few documents assigned to them. For instance, on

the Wikipedia dataset approximately 40% of the categories have less than 6

documents in them. As a result, using a small fraction of the training data

makes the task of learning a good classifier even more difficult for such rare

categories. Therefore, using a fraction of the training data for computational

efficiency is undeseriable in large-scale datasets with large number of categories.

4.2.4 Experimental Evaluation

Dataset Description

We used several publicly available datasets to empirically verify the applicability

of the bound derived in equation (4.2.2) as a an efficient alternative to k-fold

cross-validation. The datasets used for our experiments are the following:

• DMOZ-subsets which are derived from Directory Mozilla and are avail-

able from the 2010 and 2011 editions of the LSHTC challenge.

2 In large-scale and high dimensional data, as in document classification, which is almost linearly

separable, computationally efficient linear SVM performs at par with kernel versions.
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• IPC dataset which corresponds to patent categorization from International

Patent Classification 3

• Wikipedia which is derived from Wikipedia and also available from the

2011 edition of the LSHTC challenge.

The important statistics of the datasets (such as the sizes of the training/test sets,

feature set, number of target categories and number of parameters to be learnt)

are shown in Table 11. For instance, the smallest dataset (DMOZ-2010-small)

considered in our experiments has approximately 58 million parameters and

the largest one (Wikipedia-2011) has approximately 12 billion parameters.

The DMOZ datasets are a subset of the Directory Mozilla and are single-labled

datasets, i.e. each training/test instance is associated to a single target category.

The Wikipedia subset which is much bigger in size is multi-labeled with average

labels per instance in the training set being 1.85. For the multi-labeled Wikipedia

dataset, we trained one binary SVM for each class. In order to select the number

of labels for each test instance we used the meta-labeler approach which learns

a regression model that predicts the number of labels Tang et al. [2009a]. For

each test instance the decisions of the binary SVMs are ordered according to

their confidence and we keep the first k′ labels, where k′ is the number of labels

that is predicted by the meta-labeler model.

The IPC dataset is also a single labeled dataset which consists of relatively

fewer target categories as compared to DMOZ and Wikipedia datsets. Another

difference of the IPC dataset (as compared to DMOZ and Wikipedia dataset) is

that it does not exhibit fit to power-law distribution.

Methods Compared In order to empirically measure the effectiveness of the

proposed method for efficient model selection in large-scale classification prob-

lem, we present two sets of comparisons:

• Proposed Algorithm 3 vs k-fold cross-validation : We first verify the

ability of our method proposed to find the same hyper-parameter as by

k-fold cross-validation.

• Using entire training data vs 1
k fraction : We also empirically verify the

effectiveness of k-fold cross-validation on 1
k of the training data.

The classifier applied (on all but the multi-label Wikipedia dataset) is the Multi-

class SVM as proposed in Crammer and Singer [2002] and implemented in

Liblinear package Fan et al. [2008]. The hyper-parameter considered is the

trade-off parameter λ between the empirical error (measured by ξi’s) and multi-

3 http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/wipo-

alpha-readme.html
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class margin (measured by wk’s) in following optimization problem which has

the form of the template equation (4.2.3):

min
wk,ξ

m

∑
i=1

ξi +
λ

2

K

∑
k=1

wT
k wk

subject to

wT
yi

xi −wT
k xi ≥ ek

i − ξi, ∀i = 1, . . . , M and ξi ≥ 0

where

ek
i =

{
0 if yi = k

1 if yi 6= k
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Figure 25: Variation (with λ) of cross-validation accuracy (CV-accuracy), ac-

curacy bound derived in equation 4.2.2 on the DMOZ-2010-small,

DMOZ-2011-subset, IPC and DMOZ-2010-small datasets.The value

of λ which attains the best test-set accuracy along with the corre-

sponding accuracy value is displayed by the solid-black square.
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4.2.5 Results

Algorithm 3 vs k-fold cross-validation Figure 25 shows the variation of cross-

validation accuracy and the bound derived in equation (4.2.2) with the variation

in λ in the range {10−3, 10−2, . . . , 102, 103} for the DMOZ and IPC datasets. The

effectiveness of Algorithm 3 based on the bound derived in equation (4.2.2) for

hyper-parameter tuning is demonstrated by the following two observations:

• The extent of variation in the bound with the change in λ mimics the

variation in cross-validation accuracy. This suggests that this accuracy

bound serves as a reliable proxy to measure the degree of variation in

cross-validation accuracy.

• The hyper-parameter value which maximizes the bound and cross-validation

accuracy is same for all datasets. Moreover, it also coincides with the

hyper-parameter value which maximizes the test-set accuracy. This is

shown in the solid-square dot in each of the sub-figures.

For the Wikipedia dataset, it was not possible to perform k-fold cross-validation

for all values of the hyper-parameter in the range {10−3, 10−2, . . . , 102, 103}, and

hence only two values (10−2 and 102) were chosen on this dataset. Therefore,

for large-scale datasets it may be computationally infeasible to perform cross-

validation without using parallel computing infrastructure such as Hadoop.

However, it may be noted that if a parallel computing platform is available,

the proposed algorithm (Algorithm 3) can also benefit from it. The for-loop in

the algorithm can be easily parallelized and the bound can be simultaneously

computed for all settings of the hyper-parameter.

k-fold cross-validation on entire data vs 1
k fraction Table 8 presents the best

parameter value selected by the cross-validation method that uses all the

training data and the one that uses only 1/5 of the data (denotes by CV1/5)

across all datasets. For each value, we also report the corresponding accuracy

in the test set.

Dataset λCV . λCV1/5
Accuracy(CV) Accuracy (CV1/5)

DMOZ-2010-s 1.0 10.0 45.15 44.94

DMOZ-2011 1.0 10.0 54.01 53.84

DMOZ-2010-l 10.0 10.0 45.26 44.17

IPC 10.0 1.0 54.22 53.59

Table 8: Parameter values and corresponding accuracy on the test set for λ

obtained from cross-validation using the entire training data and its

variation using 1/5 of the available data (CV1/5). With bold typeface

the best parameter values and accuracies.
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From the results it is clear that when reducing the available data in order to

reduce the computation cost the model selection method makes sub-optimal

decisions. In most of the cases, using the CV1/5 method was unable to select the

best parameter value. As reducing the training data the method is more biased

but also the variance increases making more difficult the estimation of the

performance. Even though the CV1/5 has the same complexity as our method it

leads to sub-optimal model selection and thus to inferior performance.

4.2.6 Remarks

In this section, we have highlighted the computational issues of k-fold cross-

validation in large-scale datasets which are power-law distributed. The datasets

such as Directory Mozilla are large-scale as well as consist of a large fraction

of rare categories. We proposed an efficient alternative method to k-fold

cross-validation for hyper-parameter selection in these scenarios, wherenin

the proposed method exploits the side-information as given by the proposed

bound. This can be seen as an instance of general paradigm of extracting

latent information in Big Data to tackle the bottle-necks such as computational

complexity of learning.

4.3 data-dependent classifier selection

With an increasing amount of data from various sources such as web advertizing,

social media and images, automatic classification of unseen data to one of tens

of thousand target classes has caught the attention of the research community.

In flat classification, no relationship is assumed between the target classes

and K classifiers are learnt, one for each of the K classes. If some semantic

structure exists among the classes, such as hierarchical, as in a rooted tree

(Figure 26), a multi-class classifier is trained on each of the non-leaf node in the

tree to distinguish between each of its children. For large-scale classification,

hierarchical strategies have two main advantages over flat classification:

• To classify a test instance, one needs to evaluate only O(log(K)) classifiers,

as against O(K) for flat classification, and

• As shown in Chapter 5, hierarchical classification may lead to better (in

general comparable) predictive performance as compared to flat tech-

niques Liu et al. [2005], Babbar et al. [2013a]
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Figure 26: Sample Taxonomy of Classes

In the context of large-scale hierarchical classification (LSHC), open challenges

like the Pascal Large Scale Hierarchical Text Classification (LSHTC) 4 and

Imagenet Large Scale Visual Recognition Challenge (ILSVRC) 5 have been

organized. In LSHTC for instance, the classes from the DMOZ and Wikipedia

taxonomies are arranged in a rooted tree and directed acyclic graph respectively.

The taxonomy thereby implicitly defines the semantic relationship among the

classes. The publicly available DMOZ dataset, from the LSHTC challenge,

contains around 400,000 training documents from the 27,875 target classes on

the leaf nodes of the hierarchy tree with an extremely sparse representation

involving 594,158 features. Outside of the LSHTC, various other approaches

have also been proposed for large scale hierarchical classification, which have

met with varying degrees of success (e.g., Bennett and Nguyen [2009], Xue et al.

[2008], Gopal et al. [2012], Gopal and Yang [2013b]).

In terms of classification accuracy, discriminative learning algorithms such

as SVM and Logistic Regression (LR) are known to learn better classifiers as

compared to generative learning algorithms such as Naive Bayes. For this

reason, discriminative classifiers have been on the fore-front when dealing with

classification, as can be found in the works of Bengio et al. [2010], Perronnin

et al. [2012], Cai and Hofmann [2004], Gopal and Yang [2013b]. Given train-

ing set consisting of a set of (x, y) pairs, unlike generative classifiers which

model the joint probability p(x, y) and then use Bayes rule to compute p(y|x),
discriminative classifiers model the posterior p(y|x), directly.

Discriminative versus Generative Classifiers As has been mentioned in the

seminal work of Vapnik Vapnik [1998] about the choice of discriminative over

generative classifiers, ”one should solve the classification problem directly and

never solve a more general problem as an intermediate step”. This is in-line

with our earlier observation on usage of discriminative classifiers such as SVM

and LR over generative classifiers. On the other hand, Naive Bayes, which is

one of most widely used generative classifier, has the following advantages

over discriminative classifiers:

4 http://lshtc.iit.demokritos.gr/
5 http://www.image-net.org/challenges/LSVRC/2011/
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• It has faster training time since learning the classifier amounts to counting

occurrence of a word in training set. This is unlike SVM and LR classifiers,

which require solving high dimensional optimization problems and hence

have much higher computational complexity.

• In large-scale category systems since most words occur only in a small

fraction of categories, the probability of a word occurring in a class takes

default values for most 〈word, class〉 pairs. As a result, one can store the

model for Naive Bayes classifier in an extremely sparse format which

further leads lower space complexity and hence faster prediction time.

Therefore, in the context of large-scale taxonomies such as DMOZ, there is a

tradeoff between prediction accuracy and computational complexity of training

and prediction. In this part of the chapter, we study the tradeoffs between

using generative models such as multinomial Naive Bayes, on one hand, and

discriminative models such as Support Vector Machines (SVM) or Logistic

Regression, on the other hand.

Furthermore, in the work on the theoretical properties relating to the sample

complexity of Naive Bayes classifier as done in Ng and Jordan [2001], it has been

shown that it can perform comparable or better than LR when the number of

training instances is sub-linear (such as logarithmic) in the number of features.

This implies that there are regimes of operation under which Naive Bayes

classifier may be preferable as compared to discriminative classifiers. Therefore,

under such circumstances, one can instead deploy Naive Bayes to get faster

training and prediction speed without loosing on classification accuracy. In this

part of the chapter, we discuss the variation of ratio of training sample size to

the feature set size from the root of hierarchy towards the leaves. The variation

in this ratio represents a difference in the regime which suits discriminative

and generative classifiers differently. Therefore, to build an overall classification

scheme, it is imperative to use classifiers which suit that particular local regime

of operation. This leads to an ensemble of discriminative and generative

classifiers deployed in a top-down hierarchical cascade useful scenario in which

one could combine both types of models in the larger hierarchy to get the best

of both worlds. An illustration of such a scheme of combining classifiers is

shown in Figure 27 wherein on the left only SVM classifier is deployed and on

the right a combination of SVM and Naives Bayes classifier is deployed.

In the light of the theoretical insight given in Ng and Jordan [2001], we now

study the data distribution in large-scale taxonomies which determine choice of

deploying discriminative (SVM) or generative classifier (NB) at various nodes

in the top-down cascade.
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Figure 27: Top-down deployment of classifiers in uniform and hybrid fashion

4.3.1 Sample Complexity and LSHC

For hierarchical classification, let X ⊆ R
d be the input space and let V be a

finite set of class labels. We further assume that examples are pairs (x, v) drawn

according to a fixed but unknown distribution D over X × V. In the case of

hierarchical classification, the hierarchy of classes H = (V, E) is defined in the

form of a rooted tree, with a root ⊥ and a parent relationship π : V \ {⊥} → V

where π(v) is the parent of node v ∈ V \ {⊥}, and E denotes the set of edges

with parent to child orientation. For each node v ∈ V \ {⊥}, we further define

the set of its sisters S(v) = {v′ ∈ V \ {⊥}; v 6= v′ ∧ π(v) = π(v′)} and its

daughters D(v) = {v′ ∈ V \ {⊥}; π(v′) = v}. The nodes at the intermediary

levels of the hierarchy define general class labels while the specialized nodes

at the leaf level, denoted by Y = {y ∈ V : ∄v ∈ V, (y, v) ∈ E} ⊂ V, constitute

the set of target classes. Finally for each class y in Y we define the set of its

ancestors P(y) defined as

P(y) = {vy
1, . . . , v

y
ky

; v
y
1 = π(y)∧∀l ∈ {1, . . . , ky− 1}, v

y
l+1 = π(v

y
l )∧π(v

y
ky
) =⊥}

Given a new test instance x, the goal is to predict the class ŷ. We consider

a top-down deployment of classifiers making decisions at each level of the

hierarchy, this process sometimes referred to as the Pachinko machine selects

the best class at each level of the hierarchy and iteratively proceeds down the

hierarchy until a leaf node is reached. At each non-leaf node v ∈ V, a score

fc(x) ∈ R is computed for each daughter c ∈ D(v) and the child ĉ with the

maximum score is predicted i.e. ĉ = arg maxc:(v,c)∈E fc(x). In the case of flat

classification, the hierarchy H is ignored, Y = V, and the problem reduces to

the classical supervised multi-class classification problem.

For our analysis, we focus on linear SVM and Multinomial Naive Bayes (NB)

representing discriminative and generative models respectively. In SVM, fc(x)
is modeled as a linear classifier such that fc(x) = wT

c x. To learn a one-versus-
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rest L2-regularized, L2-loss SVM-based discriminative classifier for node v, we

solve the following optimization problem for each daughter c of v

min
wc,ξ

λ

2
||wc||2 +

mv

∑
i=1

ξ2
(i,c)

The indices i above are such that ∀i, 1 ≤ i ≤ mv, yi ∈ Lv, were Lv denotes

the set of leaves in the subtree rooted at node v and mv denotes the number

of training examples for which the root-to-leaf path passes through the node

v. Furthermore, if yi ∈ Lc and (v, c) ∈ E, then the constraints for the above

optimization problem are given by, ∀i

wt
cxi ≥ 1− ξ(i,c), and ξ(i,c) ≥ 0

For the standard NB model in which predicted class is the one with maximum

posterior probability, i.e.

ĉ = arg max
c:(v,c)∈E

Pr(c|x), s.t. Pr(c|x) ∝ Pr(c)Pr(x|c)

and the probabilities are replaced by their maximum likelihood estimates,

taking Laplace smoothing into account.

Classical Results on sample complexity

With SVM and Naive Bayes as defined described as our representative discrimi-

native and generative classifiers, we now present relevant results from statistical

learning theory Vapnik [1998] which deal with the sample complexity of these

learning algorithms.

Proposition 2. Vapnik [1998] For a binary classification problem in d-dimensional

feature space with m training examples, let fG and fD represent the classifiers learnt

by fitting generative and discriminative model respectively. Further, let fG,∞ and fD,∞

denote their corresponding asymptotic versions i.e. functions learnt when the sample

size approaches infinity. Let ε(.) be the function representing the generalization error of

its argument, then these results can be summarized as follows :

1. ε( fD,∞) ≤ ε( fG,∞);

2. ε( fD) ≤ ε( fD,∞) + O

(√
d
m log m

d

)
holds with high probability over random

samplings of the m-sized training set.

Proposition 3. Ng and Jordan [2001] For a binary classification problem in d-

dimensional feature space with m training examples, let fG represents the classifier

learnt by fitting generative and fG,∞ denotes its asymptotic version. Let ε(.) be the func-

tion representing the generalization error of its argument, then with high probability

:

ε( fG) ≤ ε( fG,∞) + G

(
O

(√
1

m
log n

))
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where G(τ) is upper bounded by Prx[lG,∞(x) ∈ [−dτ, dτ]] and lG,∞(.) represents the

discriminant function corresponding to the decision function fG,∞(.).

These two above results provide us with the following insights:

1. The asymptotic generalization error of discriminative classifier is smaller

than that of a generative classifier,

2. Under finite training set sizes, in order to achieve the same generaliza-

tion error as under asymptotic regime, discriminative classifier requires

training instances which is atleast linear in the number of features, and

3. Under finite training set sizes, in order to achieve the same generalization

error as under asymptotic regime, generative classifier requires training

instances which is atleast logarithmic in the number of features

Taking into account these important theoretical insights, we study the variation

of ratio of number of features to number of training examples at the different

classification problem from the root to the leaves of the tree-based taxonomy as

shown in Figure 27.

Data heterogeneity in large-scale taxonomies

For a multi-class classification problem at node v of the hierarchy, let dv denote

the dimensionality of the feature space and mv denote the number of training

documents for which the root-to-leaf path goes through node v. Let their ratio

for node v be denoted by rv, i.e. rv = dv
mv

.

In the context of large scale hierarchical classification, such as DMOZ, there

is a wide spectrum over which rv varies. For the classification problem corre-

sponding to a node v at the top levels of the hierarchy tree, the ratio rv is much

higher as compared to its value for nodes at lower levels. Figure 28 shows the

variation of average value of rv for DMOZ dataset when plotted against the

hierarchy levels. Each piece-wise linear curve in the plot corresponds to the

class size range of the multi-class problem. Two important properties of the

dataset, one of which follows from Figure 28, are: (i) The ratio rv increases

towards the leaves, and (ii) Almost 97% of the multi-class problems involve 2-15

classes. This shows that the nature of the learning problem posed is different in

different parts of the hierarchy tree.

As a consequence of the above arguments, this implies the following design

choices to build component classifiers for large scale hierarchical classification.

We also briefly mention our observation for each of them in case of DMOZ

data:

• On the nodes which are close to the root (including the root itself), we are

close to the regime of asymptotic operation. Therefore using argument (1)

from above, one should deploy discriminative classifiers such as SVM or

logistic regression.
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Figure 28: Variation in ratio of feature set size to training sample size with the

hierarchy level. Level 2 corresponds to the children of root node and

level 5 to the level that leads to leaves.

Observation for DMOZ : As shown in Figure 30, for level 1 and 2, SVM

does indeed performs better and achieves much higher accuracy than NB

classifier.

• Argument (3) above suggests that one should deploy NB classifier for the

sub-problems lower down the hierarchy since for most of the nodes, m is

upper bounded by lg(d) i.e. m = O(lg(d)).
Observation for DMOZ : As shown in Figure 30, for levels 4 and 5, NB

cannot surpass the accuracy of SVM in this regime, which could be the

result of argument (1). Importantly, however, the accuracy gap between

the two classifiers is much smaller in this regime.

This indicates that, for lower levels in large hierarchy, NB is competitive to

SVM and one can still employ NB instead of SVM, provided it can excel on

metrics other than accuracy. In the next section, we discuss the deployment of

an ensemble of NB and SVM classifiers in the top-down hierarchy tree.

Adaptive Classifier Selection

From the above observations for the DMOZ dataset, in order to perform well

on the various measure of interest i.e., including (i) prediction accuracy, (ii)

training time to train the classifiers, (iii) compact model size, and (iv) faster

prediction speed, one therefore combine NB and SVM classifier in top-down

cascade. This is illustrated in Figure 29 for a tree-based taxonomy with SVM

classifier at the top-levels and NB classifier at the bottom levels. Since the NB

classifier is faster to train and leads to more compact models, one can load all

the classifiers of the hierarchy in the physical memory and can get massive

speedup for prediction, without sacrificing on prediction accuracy.
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Figure 29: Hybird Classifier deployment using Adaptive Selection

Furthermore, depending on the relative priority to satisfy the conflicting con-

straints of accuracy and run-time, we can get best of both models by combining

SVM and NB classifiers in an adaptive way. For node v in the hierarchy, this

can be achieved by using a threshold τv for the feature set size to sample size

ratio rv. The threshold value τv determines the choice of the classifier in the

following way

Classifier at node v =

{
Naive Bayes if rv ≥ τv

SVM otherwise

The parameter τ = {τv}, ∀v ∈ V , thus controls the tradeoff between accuracy

of the overall classification system and the response time for training and

prediction. Even though the above thresholding strategy is a simplification

of the classifier selection criterion in section 4.3.1, it works well in practice as

shown in our experiments and presented in more detail in section 4.3.3.

4.3.2 Experimental Setup

The experiments were performed on a Linux system with 24GB physical mem-

ory and 1TB hard-disk. We use the publicly available DMOZ data set from

the LSHTC, 2011. The dataset, after having been preprocessed by stemming

and stopword removal, appears in the LibSVM format. Table 9 presents the

numeric values corresponding to the important properties of the dataset. Since

the average number of labels per document is 1.02, we consider it as single-label

classification problem for our purpose.

We use Liblinear Fan et al. [2008] to train the models for L2-regularized L2-loss

support vector classification. The models are trained for all 7,574 non-leaf

nodes in the hierarchy for One-Vs-All classification. For NB classifier, we

implement the standard multinomial Naive Bayes using Laplace smoothing.

Predictions are done in a top-down manner starting at the root node till the

class corresponding to a leaf node is finally predicted.

Table 10 shows the different classification mechanisms to build the overall

classifier, which include, (i) SVM classifier for the entire hierarchy, (ii) Adaptive
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Property Name Value

Total number of training examples 394,756

Size of the Overall Feature Space 594,158

Number of Target Classes (|Y|) 27,875

Number of Nodes in the Hierarchy (|V|) 35,449

Size of training file on Disk 586.3 MB

Depth of Hierarchy Tree 6

Total number of multiclass classifiers 7,574

Number of classifiers at depth 5 5,055

Table 9: Training Data Properties

Model employed Accuracy

in %

Training

Time

(hours)

Test

Time

(secs)

SVM for entire hierarchy 35.6 35 20

Adaptive Selection, τ = 60 35.2 22 12

Adaptive Selection, τ = 30 34.7 12 5

SVM with NB for last level 32.4 14 4

NB for entire hierarchy 22.2 0.25 0.5

Table 10: Tradeoff between Prediction Accuracy in %, Total Training for entire

dataset in hours, and Average Test Time per Instance in seconds

classifier selection strategy based on threshold value, (iii) Static classifier selec-

tion by deploying NB classifier at lower levels, and finally (iv) NB classifier for

the entire hierarchy. By employing SVM-only classification system, the accuracy

(35.6%) is comparable to the best participant (38.8%) in LSHTC for the DMOZ

track. However, we would like to point out that the objective of our work does

not coincide with the participants’ in the LSHTC challenge since the major

focus of the challenge is on accuracy related metrics. As a result, some of the

participants do not necessarily utilize the hierarchy completely as in Madani

and Huang [2010] or may employ some post-processing for higher accuracy.

On the other hand, we take a more principled approach leading to a more

robust and interpretable analysis which is also applicable to other large scale

hierarchical classification problems involving more complex topologies such

as directed acyclic graphs. Moreover, we aim to study the tradeoffs involving

various constraints which could be used to tune the desired behavior for a large

scale hierarchical classification system.
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4.3.3 Results and Analysis
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Figure 30: Difference of SVM and NB accuracy, (SVM - NB), in % for each

hierarchy level. Level 1 corresponds to the root and level 5 to the

level leading to leaves.

Table 10 shows the tradeoffs as we go from a fully discriminative framework

to a fully generative one. When replacing the SVM classifiers (row 1) at the

outer-most periphery of the hierarchy by NB (row 4), there is a 10% decrease

in accuracy while the gain in prediction speed is close to 500%. This property

could be leveraged to make robust real-time predictions such as for large

scale Question-Answering systems or data stream environments which need

real-time response for acceptable behavior. Also, there is an almost 3-fold

improvement in training time as a result of this adaptation.

The gain in speed-up for training and test time is achieved as a result of more

compact models built by NB as compared to SVM from same training data. All

the NB models can, therefore, be loaded in the physical memory for predictions.

For SVM, the total size of all the models is almost twice the physical memory

size and hence the models for only the top two levels can be loaded in the

physical memory.

The adaptive classifier selection as shown in row 2 and 3 of Table 10 was

computed based on a uniform threshold value of τv = 60 and τv = 30, ∀v ∈ V .

Increasing the threshold value would select more SVM classifiers and thereby

leading to better accuracy but slower training and test time. Decreasing it

would correspond to more NB classifiers in the hierarchical framework, which

leads to better run-time performance but lower accuracy.

Comparison between the adaptive classifier selection strategy and the static

rule of applying NB classifier for the last level, rows 3 and 4 of Table 10, reveals

another interesting observation. The prediction accuracy is noticeably higher
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by employing the adaptive strategy, for comparable values of training and

prediction time.

Figure 30 shows the variation of difference in accuracy of SVM and NB classi-

fiers when plotted against levels in the hierarchy. As per the arguments given

in section 4.3.1, SVM outperforms NB at the levels near the root node of the

hierarchy. However, NB catches up with SVM for the classifiers at level 4 and

level 5 of the hierarchy but it is not able to surpass SVM accuracy. This could

be due to argument (1), i.e. ε( fD,∞) ≤ ε( fG,∞), which implies that asymptotic

generalization performance of SVM is better than that of NB.

4.3.4 Remarks

In this section, we proposed a method to combine SVM and NB classifier in

a top-down cascade to address together the requirements of high prediction

accuracy as well as prediction and training time. The proposed method is based

on well founded theoretical results on the sample complexity of generative

and discriminative classifiers. It also provides a parameter which can be used

to tune the extent of the desired trade-off between prediction accuracy and

computational complexity of training and prediction.

4.4 conclusion

In this chapter, we presented applications of exploiting data distribution in

large-scale web-taxonomies for designing machine learning algorithms. We

focused on classification accuracy and training time in power-law distributed

datasets consisting of rare categories. Our soft-thresholding based method

aims to achieve higher values for the bound developed earlier in the chapter.

The proposed method leads to improvement in classification accuracy and rare

category detection for large-scale power-law distributed datasets. It not only

performs better than state-of-art methods but is also easier to implement and

efficient in terms of computational complexity. For large-scale datasets such

as Wikipedia and Directory Mozilla, we use the developed bound further and

propose an efficient alternative to k-fold cross-validation in these scenarios. This

work can be seen as an instance of general paradigm of extracting latent infor-

mation in Big Data to tackle the bottle-necks such as computational complexity

of learning. Lastly, we presented tradeoffs between conflicting constraints of

prediction accuracy and computing resources which are crucial for the design

of large scale hierarchical classification systems. Our analysis was based on

utilizing the heterogeneity in large scale web directories, such as DMOZ, for
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designing effective local classifiers. We also presented an adaptive classifier

selection strategy which can be employed to tune the extent of tradeoff.
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5
F L AT V E R S U S H I E A R C H I C A L

C L A S S I F I C AT I O N I N L A R G E - S C A L E

TA X O N O M I E S

In this chapter, we study flat and hierarchical classification strategies

in the context of large-scale taxonomies. Addressing the problem

from a learning-theoretic point of view, we first propose a multi-class,

hierarchical data dependent bound on the generalization error of

classifiers deployed in large-scale taxonomies. This bound provides

an explanation to several empirical results reported in the litera-

ture, related to the performance of flat and hierarchical classifiers.

Based on this bound, we also propose a technique for modifying

by pruning the given taxonomy which leads to a lower value of

the upper bound as compared to the original taxonomy. We then

present another method for hierarchy pruning by studying approx-

imation error of a family of classifiers, and derive from it features

used in a meta-classifier to decide which nodes to prune. We finally

illustrate the theoretical developments through several experiments

conducted on two widely used taxonomies.

5.1 introduction

With the rapid surge of digital data in the form of text and images, the scale

of problems being addressed by machine learning practitioners is no longer

restricted to the size of training and feature sets, but is also being quantified

by the number of target classes. Classification of textual and visual data into

a large number of target classes has attained significance particularly in the

context of Big Data. This is due to the tremendous growth in data from various

sources such as social networks, web-directories and digital encyclopedia.

Directory Mozilla (DMOZ)1, Wikipedia and Yahoo! Directory2 are instances

of such large scale textual datasets which consist of millions of documents

which are distributed among hundreds of thousand target categories. Directory

1 www.dmoz.org

2 www.dir.yahoo.com
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Figure 31: DMOZ and Wikipedia Taxonomies

Mozilla, for instance, lists over 5 million websites distributed among close to 1

million categories, and is maintained by close to 100,000 editors. In the more

commonly used Wikipedia, which consists of over 30 million pages, documents

are typically assigned to multiple categories which are shown at the bottom of

each page. The Medical Subject Heading(MESH) 3 hierarchy of the National

Library of Medicine is another instance of a large-scale classification system in

the domain of life sciences.

The target classes in such large-scale scenarios typically have an inherent hierar-

chical structure among themselves. DMOZ is in the form of a rooted tree where

a traversal of path from root-to-leaf depicts transformation of semantics from

generalization to specialization. More generally parent-child relationship can

exist in the form of directed acyclic graphs, as is found in the taxonomies such

as Wikipedia. The tree and DAG relationship among categories is illustrated

for DMOZ and Wikipedia taxonomies in Figure 31.

Due to the sheer scale of the task of classifying data into target categories,

there is a definite need to automate the process of classification of websites in

DMOZ, encyclopedia pages in Wikipedia and medical abstracts in the MESH

hierarchy. However, the scale of the data also poses challenges for the classical

techniques which need to be adapted in order to tackle large-scale classification

problems. In this context, one can exploit the taxonomy of classes as in the

divide-and-conquer paradigm in order to partition the input space.

Various classification techniques have been proposed for deploying classifiers

in such large-scale scenarios, which differ in the way they exploit the given

taxonomy. These can be broadly divided into four main categories :

• Hierarchical top-down strategy with independent classification problems

at each node

• Designing the loss-function by taking hierarchy information into account

• Simplifying the given hierarchy, such by partially flattening the hierarchy

3 https://www.nlm.nih.gov/mesh/
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• Ignoring the hierarchy information altogether and training flat classifiers,

one for each target class

Hierarchical models for large scale classification however suffer from the fact

that they have to make many decisions prior to reach a final category, which

leads to the error propagation phenomenon causing a decrease in accuracy.

This is mainly due to the fact that the top level classes in large scale taxonomies

are quite general. For example, Business and Shopping categories in DMOZ are

likely to be confused while classifying a new document. Moreover, since the

classification is not recoverable, it leads to the phenomena of error propagation

and hence degrades accuracy at the leaf level. On the other hand, flat classifiers

rely on a single decision including all the final categories, a single decision

that is however difficult to make as it involves many categories, potentially

unbalanced. It is thus very difficult to assess which strategy is best and there

is no consensus, at the time being, on to which approach, flat or hierarchical,

should be preferred on a particular category system.

In this chapter, we study to address the problem of choosing between the two

strategies from a learning-theoretic viewpoint. We introduce bounds based on

Rademacher complexity for the generalization errors of classifiers deployed

in large-scale taxonomies. These bounds explicitly demonstrate the trade-off

that both flat and hierarchical classifiers face in large-scale taxonomies and

provide an explanation to several empirical findings reported in previous

studies. Motivated by these bounds, we then propose a strategy for taxonomy

adaptation which modifies the given taxonomy by pruning nodes in the tree to

output a new taxonomy which is better suited for the classification problem.

We also present approximation error based bounds for Logistic Regression and

Naive Bayes classifiers deployed in large-scale taxonomies. Based on these

bounds, we then propose a meta-learning strategy for hierarchy pruning which

is applicable for both discriminative and generative classifiers. With the aim

of synchronizing the taxonomy with the training set comprising of the set of

input-output pairs, we provide a detailed analysis of classification accuracy for

both the hierarchy pruning strategies. Contrary to Dekel [2009] that reweighs

the edges in a taxonomy through a cost sensitive loss function to achieve this

goal, we use here a simple pruning strategy that modifies the taxonomy in an

explicit way.

Th chapter is organized as follows: In section 5.2 we review the recently

proposed approaches in the context of large-scale hierarchical text classification.

Since the formal framework presented in this chapter is based on Rademacher

complexity, we recall the concepts related to function class complexity in

Section 5.3. We refer to the excellent text by Mohri et al. [2012] in order to

present the background related concepts. We introduce the notations used

in Section 5.4 and then study flat versus hierarchical strategies by studying
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the generalization error bounds for classification in large-scale taxonomies.

Approximation error for multi-class versions of Naive Bayes and Logistic

Regression classifiers are presented in Section 5.5.1 and Section 5.5.2 respectively.

Based on these bounds, the two pruning strategies are presented in Section 5.4.2

and Section 5.5.3 Section 5.6 illustrates these developments via experiments

conducted on several taxonomies extracted from DMOZ and the International

Patent Classification. The experimental results are in line with results reported

in previous studies, as well as with our theoretical developments. Finally,

Section 5.7 concludes this study.

5.2 related work

Large-scale classification, involving tens of thousand target categories, has

assumed significance importance in the era of Big data. Many approaches for

classification of data in large number of target categories have been proposed

in the context of text and image classification. These approaches differ in the

manner in which they exploit the semantic relationship among categories. In

similar vein, open challenges such as Large-scale Hierarchical Text Classification

(LSHTC) and Large Scale Visual Recognition Challenge (ILSVRC) have been

organized in recent years.

Some of the earlier works on exploiting hierarchy among target classes for the

purpose of text classification has been studied in Koller and Sahami [1997]

and Dumais and Chen [2000]. These techniques use the taxonomy to train

independent classifiers at each node in the top-down Pachinko Machine manner.

Parameter smoothing for Naive Bayes classifier along the root to leaf path was

explored by McCallum et al. [1998]. The work by Liu et al. [2005] is one of first

studies to apply hierarchical SVM to the scale with over 100,000 categories in

Yahoo! directory. More recently, other techniques for large scale hierarchical

text classification have been proposed. Prevention of error propagation by

applying Refined Experts trained on a validation was proposed in Bennett

and Nguyen [2009]. In this approach, bottom-up information propagation

is performed by utilizing the output of the lower level classifiers in order to

improve the classification of top-level classifiers. Deep Classification Xue et al.

[2008] proposes hierarchy pruning to first identify a much smaller subset of

target classes. Prediction of a test instance is then performed by re-training

Naive Bayes classifier on the subset of target classes identified from the first

step.

Using the taxonomy in the design of loss function for maximum-margin based

approaches have been proposed in Cai and Hofmann [2004], Dekel et al. [2004],

where the degree of penalization in mis-classification depends on the distance
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between the true and predicted class in the hierarchy tree. Another recent

approach by Dekel [2009] which proposes to make the loss function design

robust to class-imbalance and arbitrariness problems in taxonomy structure.

However, these approaches were applied to the datasets in which the number

of categories were limited to a few hundreds. Recent approaches wherein

target categories in the range of thousands and beyond have been proposed

which include Bayesian modeling of large scale hierarchical classification Gopal

et al. [2012] in which hierarchical dependencies between the parent-child nodes

are modeled by centering the prior of the child node at the parameter values

of its parent. Also, recursive-regularization based strategy for large-scale

classification has been proposed in Gopal and Yang [2013b].

Hierarchy simplification by flattening entire layer in the hierarchy has been

studied from an empirical view-point in Wang and Lu [2010], Malik [2009].

These strategies for taxonomy adaptation by flattening do not provide any

theoretical justification for applying this procedure. Moreover, they offer no

clear guidelines regarding which layer in the hierarchy one should flatten.

In contrast, our strategy for taxonomy adaptation has the advantage that, (i)

it is based on a well-founded theoretical criteria, and (ii) its application in

a node-specific sense rather than applying to an entire layer. The study in

Weinberger and Chapelle [2008] introduces a slightly different simplification of

the hierarchy of classes, and it achieves this by an embedding the classes and

documents into a common space.

Apart from accuracy, other important factors while evaluating the classification

strategies for large scale classification are training and prediction speed. Learn-

ing the hierarchy tree from large number of classes in order to make faster

prediction has also attained significance as explored in the recent works such

as Bengio et al. [2010], Beygelzimer et al. [2009], Gao and Koller [2011]. The

aim in these approaches is to achieve better prediction speed while maintaining

the same classification accuracy as flat classification. On the other end of the

spectrum are flat classification techniques such as employed in Perronnin et al.

[2012] which ignore the hierarchy structure altogether. These strategies are

likely to perform well for balanced hierarchies with sufficient training instances

per target class and not so well in truly large-scale taxonomies which suffer

from the problem of rare categories. In this respect, our work is unique in the

sense that by performing selective hierarchy pruning we improve accuracy over

the fully hierarchical strategy while not sacrificing the training and prediction

speed.

93



5.3 rademacher complexity : a review

In this section, we review some concepts related to Rademacher complexity

which is a framework to measure the complexity of a function class.

Let X denote an input space and Y denote the set of target labels. Let function

class F and f ∈ F maps an input x ∈ X to Y . Also, by L : Y × Y → R we

denote a loss function. For each f ∈ F , we can associate a function g that

maps (x, y) ∈ (X ×Y) to L( f (x), y). We denote by G the family of loss functions

associated to the function class F .

In the light of the above setup, the Rademacher of a function class can be

seen as its ability to fit random noise. Higher the Rademacher complexity of a

function class, more likely it is to overfit. Formally, it is defined as follows:

Definition 1. Empirical Rademacher Complexity Mohri et al. [2012]

Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zm) a fixed

sample of size m with elements in Z. Then, the empirical Rademacher complexity of G

with respect to the sample S is given by

R̂m(G) = Eσ

[
sup
g∈G

1

m

m

∑
i=1

σig(zi)

]
(5.3.1)

where σ = (σ1, . . . , σm)T, where σi are independent random variables each having

value in {−1,+1} with equal probability.

For the finite sample S, let gS denote the vector of values taken by the function

g, i.e., gS = (g(z1), . . . , g(zm))T. Then, Rademacher complexity of the function

class G is also denoted by

R̂m(G) = Eσ

[
sup
g∈G

〈σ, gS〉
m

]
(5.3.2)

where 〈, 〉 denotes the dot product and is a measure of correlation between gS

and random noise. The supremum denoted by supg∈G
〈σ,gS〉

m is a measure of

degree of correlation of random noise with the function class G.

Definition 2. Rademacher Complexity Mohri et al. [2012]

For a sample size m ≥ 1, the Rademacher complexity of G, denoted Rm(G), is the

expectation of the empirical Rademacher complexity over all samples of size m which

are drawn from the underlying distribution D, i.e.,

Rm(G) = ES∼Dm

[
R̂m(G)

]
(5.3.3)
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Based on the above notions of Rademacher complexity of a function class, we

now give a standard result which relates the expected value of the composing

functions to the empirically observed value and the Rademacher complexity of

the function class.

Theorem 1. Mohri et al. [2012] Let G be a family of functions mapping from Z to

[0, 1]. Then, for any δ > 0, with probability atleast 1− δ, each of the following holds

∀g ∈ G:

E [g(z)] ≤ 1

m

m

∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m
(5.3.4)

E [g(z)] ≤ 1

m

m

∑
i=1

g(zi) + 2R̂m(G) + 3

√
log 2

δ

2m
(5.3.5)

Based on the above results for Rademacher complexity of a function class, we

now present a generalization error bound for classifier deployed in a taxonomy

in a top-down manner. We then compare it to the standard result for general-

ization error bound for flat multi-class classification and attempt to address the

problem of flat versus hierarchical classification in large-scale classification.

5.4 flat vs hierarchical classification : a learn-

ing theoretic view-point

Let X ⊆ R
d be the input space and let V be a finite set of class labels. We

further assume that examples are pairs (x, v) drawn according to a fixed but

unknown distribution D over X ×V. In the case of hierarchical classification,

the hierarchy of classes H = (V, E) is defined in the form of a rooted tree,

with a root ⊥ and a parent relationship π : V \ {⊥} → V where π(v) is the

parent of node v ∈ V \ {⊥}, and E denotes the set of edges with parent to

child orientation. For each node v ∈ V \ {⊥}, we further define the set of

its sisters S(v) = {v′ ∈ V \ {⊥}; v 6= v′ ∧ π(v) = π(v′)} and its daughters

D(v) = {v′ ∈ V \ {⊥}; π(v′) = v}. The nodes at the intermediary levels of

the hierarchy define general class labels while the specialized nodes at the leaf

level, denoted by Y = {y ∈ V : ∄v ∈ V, (y, v) ∈ E} ⊂ V, constitute the set of

target classes. Finally for each class y in Y we define the set of its ancestors

P(y) defined as

P(y) = {vy
1, . . . , v

y
ky

; v
y
1 = π(y)∧∀l ∈ {1, . . . , ky− 1}, v

y
l+1 = π(v

y
l )∧π(v

y
ky
) =⊥}

For classifying an example x, we consider a top-down classifier making de-

cisions at each level of the hierarchy, this process sometimes referred to as
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the Pachinko machine selects the best class at each level of the hierarchy and

iteratively proceeds down the hierarchy. In the case of flat classification, the

hierarchy H is ignored, Y = V, and the problem reduces to the classical

supervised multiclass classification problem.

5.4.1 A hierarchical Rademacher data-dependent bound

Our main result is the following theorem which provides a data-dependent

bound on the generalization error of a top-down multiclass hierarchical classifier.

We consider here kernel-based hypotheses, with K : X ×X → R a PDS kernel

and Φ : X → H its associated feature mapping function, defined as :

FB = { f : (x, v) ∈ X ×V 7→ 〈Φ(x), wv〉 | W = (w1 . . . , w|V|), ||W||H ≤ B}

where W = (w1 . . . , w|V|) is the matrix formed by the |V| weight vectors

defining the kernel-based hypotheses, 〈., .〉 denotes the dot product, and

||W||H =
(
∑v∈V ||wv||2

)1/2
is the L2

H
group norm of W. We further define the

following associated function class:

GFB
= {g f : (x, y) ∈ X × Y 7→ min

v∈P(y)
( f (x, v)− max

v′∈S(v)
f (x, v′)) | f ∈ FB}

For a given hypothesis f ∈ FB, the sign of its associated function g f ∈ GFB

directly defines a hierarchical classification rule for f as the top-down classifica-

tion scheme outlined before simply amounts to: assign x to y iff g f (x, y) > 0. The

learning problem we address is then to find a hypothesis f from FB such that

the generalization error of g f ∈ GFB
, E(g f ) = E(x,y)∼D

[
✶g f (x,y)≤0

]
, is minimal

(✶g f (x,y)≤0 is the 0/1 loss, equal to 1 if g f (x, y) ≤ 0 and 0 otherwise).

The following theorem sheds light on the trade-off between flat versus hier-

archical classification. The notion of function class capacity used here is the

empirical Rademacher complexity Bartlett and Mendelson [2002].

Theorem 2. Let S = ((x(i), y(i)))m
i=1 be a dataset of m examples drawn i.i.d. according

to a probability distribution D over X × Y , and let A be a Lipschitz function with

constant L dominating the 0/1 loss; further let K : X ×X → R be a PDS kernel and

let Φ : X → H be the associated feature mapping function. Assume that there exists

R > 0 such that K(x, x) ≤ R2 for all x ∈ X . Then, for all 1 > δ > 0, with probability

at least (1− δ) the following hierarchical multiclass classification generalization bound

holds for all g f ∈ GFB
:

E(g f ) ≤
1

m

m

∑
i=1

A(g f (x
(i), y(i))) +

8BRL√
m

∑
v∈V\Y

|D(v)|(|D(v)| − 1) + 3

√
ln(2/δ)

2m

(5.4.1)
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where |D(v)| denotes the number of daughters of node v.

Proof Exploiting the fact that A dominates the 0/1 loss and using the

Rademacher data-dependent generalization bound presented in Theorem 4.9 of

Shawe-Taylor and Cristianini [2004], one has:

E(x,y)∼D
[
✶g f (x,y)≤0 − 1

]
≤ E(x,y)∼D

[
A ◦ g f (x, y)− 1

]

≤ 1

m

m

∑
i=1

(A(g f (x
(i), y(i)))− 1) + R̂m((A − 1) ◦ GFB

,S)

+3

√
ln(2/δ)

2m

where R̂m denotes the empirical Rademacher complexity of (A − 1) ◦ GFB
on

S . As x 7→ A(x) is a Lipschtiz function with constant L and (A − 1)(0) = 0,

we further have:

R̂m((A − 1) ◦ GFB
,S) ≤ 2LR̂m(GFB

,S)

with:

R̂m(GFB
,S) = Eσ


 sup

g f∈GFB

∣∣∣∣∣
2

m

m

∑
i=1

σi g f (x
(i), y(i))

∣∣∣∣∣




= Eσ

[
sup
f∈FB

∣∣∣∣∣
2

m

m

∑
i=1

σi min
v∈P(y(i))

( f (x(i), v)− max
v′∈S(v)

f (x(i), v′))

∣∣∣∣∣

]

Let us define the mapping c from FB ×X ×Y into V ×V as:

c( f , x, y) = (v, v′) ⇒ ( f (x, v′) = max
v′′∈S(v)

f (x, v′′))

∧ ( f (x, v)− f (x, v′) = min
u∈P(y)

( f (x, u)− max
u′∈S(u)

f (x, u′)))

This definition is similar to the one given in Guermeur [2010] for flat multiclass

classification. Then, by construction of c:

R̂m(GFB
,S) ≤ 2

m
Eσ


 sup

f∈FB

∑
(v,v′)∈V2,v′∈S(v)

∣∣∣∣∣∣ ∑
i:c( f ,x(i),y(i))=(v,v′)

σi( f (x(i), v)− f (x(i), v′))

∣∣∣∣∣∣



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By definition, f (x(i), v)− f (x(i), v′) = 〈wv −wv′ , Φ(x(i))〉 and using Cauchy-

Schwartz inequality:

R̂m(GFB
,S) ≤ 2

m
Eσ


 sup
||W||H≤B

∑
(v,v′)∈V2,v′∈S(v)

∣∣∣∣∣∣
〈wv −wv′ , ∑

i:c( f ,x(i),y(i))=(v,v′)

σiΦ(x(i))〉

∣∣∣∣∣∣




≤ 2

m
Eσ


 sup
||W||H≤B

∑
(v,v′)∈V2,v′∈S(v)

‖wv −wv′‖H

∥∥∥∥∥∥ ∑
i:c( f ,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H




≤ 4B

m ∑
(v,v′)∈V2,v′∈S(v)

Eσ



∥∥∥∥∥∥ ∑

i:c( f ,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H




Using Jensen’s inequality, and as, ∀i, j ∈ {l|c( f , x(l), y(l)) = (v, v′)}2, i 6=
j, Eσ

[
σiσj

]
= 0, we get:

R̂m(GFB
,S) ≤ 4B

m ∑
(v,v′)∈V2,v′∈S(v)


Eσ




∥∥∥∥∥∥ ∑
i:c( f ,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥

2

H







1/2

=
4B

m ∑
(v,v′)∈V2,v′∈S(v)


 ∑

i:c( f ,x(i),y(i))=(v,v′)

∥∥∥Φ(x(i))
∥∥∥

2

H




1/2

=
4B

m ∑
(v,v′)∈V2,v′∈S(v)


 ∑

i:c( f ,x(i),y(i))=(v,v′)

K
(

x(i), x(i)
)



1/2

≤ 4B

m ∑
(v,v′)∈V2,v′∈S(v)

(
mR2

)1/2

=
4BR√

m
∑

v∈V\Y
|D(v)|(|D(v)| − 1)

Plugging this bound into the first inequality yields the desired result. �

For flat multiclass classification, we recover the bounds of Guermeur [2010]

by considering a hierarchy containing a root node with as many daughters

as there are categories. Note that the definition of functions in GFB
subsumes

the definition of the margin function used for the flat multiclass classification

problems in Guermeur [2010], and that the factor 8L in the complexity term

of the bound, instead of 4 in Guermeur [2010], is due to the fact that we are

using an L-Lipschitz loss function dominating the 0/1 loss in the empirical

Rademacher complexity.

Flat vs hierarchical classification in large-scale taxonomies. The generaliza-

tion error is controlled in inequality (5.4.1) by a trade-off between the empirical
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error and the Rademacher complexity of the class of classifiers. The Rademacher

complexity term favors hierarchical classifiers over flat ones, as any split of

a set of category of size K in p parts K1, · · · , Kp (∑
p
i=1 Ki = K) is such that

∑
p
i=1 K2

i ≤ K2. On the other hand, the empirical error term is likely to favor

flat classifiers vs hierarchical ones, as the latter rely on a series of decisions

(as many as the length of the path from the root to the chosen category in Y)

and are thus more likely to make mistakes. This fact is often referred to as the

propagation error problem in hierarchical classification.

On the contrary, flat classifiers rely on a single decision and are not prone

to this problem (even though the decision to be made is harder). When the

classification problem in Y is highly unbalanced, then the decision that a flat

classifier has to make is difficult; hierarchical classifiers still have to make

several decisions, but the imbalance problem is less severe on each of them.

So, in this case, even though the empirical error of hierarchical classifiers may

be higher than the one of flat ones, the difference can be counterbalanced by

the Rademacher complexity term, and the bound in Theorem 2 suggests that

hierarchical classifiers should be preferred over flat ones.

On the other hand, when the data is well balanced, the Rademacher complexity

term may not be sufficient to overcome the difference in empirical errors due to

the propagation error in hierarchical classifiers; in this case, Theorem 2 suggests

that flat classifiers should be preferred to hierarchical ones. These results have

been empirically observed in different studies on classification in large-scale

taxonomies and are further discussed in Section 5.6.

Similarly, one way to improve the accuracy of classifiers deployed in large-scale

taxonomies is to modify the taxonomy by pruning (sets of) nodes Wang and Lu

[2010]. By doing so, one is flattening part of the taxonomy and is once again

trading-off the two terms in inequality (5.4.1): pruning nodes leads to reduce

the number of decisions made by the hierarchical classifier while maintaining

a reasonable Rademacher complexity. Motivated from the Rademacher-based

generalization error bound presented in Theorem 2, we now propose a method

for pruning nodes of the given taxonomy. The output of this procedure is a

new taxonomy which leads to improvement in classification accuracy when

used for top-down classification.

5.4.2 Lowering the bound by hierarchy pruning

In this section, we present a strategy which aims to adapt the given hierarchy of

classes by pruning some nodes in the hierarchy. An example of node pruning is

shown in Figure (figure 32). The rationale behind adapting the given hierarchy

H = (V, E) to the set of input/output pair (x, y) is that
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Pruning

Figure 32: The pruning procedure; the node in black is replaced by its children.

• Large-scale taxonomies, such as DMOZ and Yahoo! Directory, are de-

signed with an intent of better user-experience and navigability, and not

necessarily for the goal of classification.

• Taxonomy design is subject to certain degree of arbitrariness based on per-

sonal choices and preferences of the editors. Therefore, many competing

taxonomies may exist

• The large-scale nature of such taxonomies poses difficulties in manually

designing good taxonomies for classification.

In view of the generalization error bound derived in Theorem 2, adapting the

given taxonomy of classes is aimed at achieving a better trade-off between the

empirical error and the error attributed to Rademacher complexity. In other

words, adapting the given taxonomy H to the set of input output pairs (x, v)
aims at achieving a lower value of the bound derived in Theorem 2 as compared

to that attained by using the original hierarchy. For a node v with parent π(v),
pruning v and replacing it by its children will increase the number of children

of π(v) and hence the associated Rademacher complexity but will decrease the

empirical error along that path from root to leaf. Therefore, we need to identify

those nodes in the taxonomy for which increase in the Rademacher complexity

is among the lowest so that a better trade-off between the two error terms is

achieved than in the original hierarchy. For this purpose, we turn to the bound

on the empirical Rademacher complexity of the function class GFB
.

In the derivation of Theorem 2, the empirical Rademacher complexity was

upper bounded as follows:

R̂m(GFB
,S) ≤ 2

m
Eσ


 sup
||W||H≤B

∑
(v,v′)∈V2,v′∈S(v)

‖wv −wv′‖H

∥∥∥∥∥∥ ∑
i:c( f ,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H




From the above bound, we define a quantity C(v) for each node v

C(v) = ∑
(v,v′)∈V2,v′∈S(v)

‖wv −wv′‖H

Essentially, C(v) denotes the confusion of node v with its sibling nodes. This

is so, since more the category denoted by node v is confused with its siblings,
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lower the attained margin by the separating hyper-plane and hence, higher

the norm given by ‖wv‖H
. The above bound suggests that the error due to

Rademacher complexity term can be reduced by pruning those nodes v in the

taxonomy for which C(v) is maximal. This strategy identifies the candidate

nodes which when pruned lead to decrease in the error due to propagation at

cost of minimum increase in the error due to Rademacher complexity. Pruning

the most confused nodes leads to short-circuiting those root-to-leaf paths which

are likely to lead to classification error. In practice, we focus on pruning

the nodes in the top-two layers of the taxonomy since nodes in these levels

represent generic categories which are typically over-lapping in nature. The

pruning process as an algorithmic procedure is shown in Algorithm 4, where

the variable ∆ is used to stop the pruning process in an inner iteration.

Algorithm 4 The proposed method for hierarchy pruning

Require: a hierarchy G, Training set S consisting of (x, y) pairs, x ∈ X and

y ∈ Y
Train SVM classifier at each node of the tree

∆← 0

for v ∈ V do

Sort its child nodes v′ ∈ D(v) in decreasing order of C(v′)
Flatten 1st and 2nd ranked child nodes, say v′1 and v′2
∆ = C(v′1)− C(v′1)
vprev ← v′2 ⊲ Set the previous flattened node to v′2
for v′ ∈ V − {v′1, v′2}, (v, v′) ∈ E do

if C(vprev)− C(v′) < ∆ then

Flatten v′

∆← C(vprev)− C(v′)
vprev ← v′ ⊲ Set the previous flattened node to v′

else

break

end if

end for

end for

return Pruned taxonomy G ′

The above criterion for pruning the nodes in a large-scale taxonomy is also

similar in spirit to the method introduced in Babbar et al. [2013b] which

is motivated from the generalization error analysis of Perceptron Decision

Trees Bennett et al. [2000]. Furthermore, this is also related to margin-based

techniques for construction of taxonomies as developed in Bengio et al. [2010], Gao

and Koller [2011], Yang and Tsang [2011]. As shown in the experiments on large-
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scale datasets by using SVM and Logistic Regression classifiers, applying this

strategy outputs a new taxonomy which leads to better classification accuracy

as compared to the original taxonomy. However, this method of hierarchy

pruning has two following disadvantages :

• Higher computational complexity since one needs to learn the weight

vector wv for each node v in the given taxonomy. As a result, the process

of identifying these nodes can be computationally expensive for large-

scale taxonomies.

• It is restricted only to discriminative classifiers such as Support Vector

Machines and Logistic Regression.

Therefore, we next present a meta-learning based pruning strategy for hierarchy

pruning which avoids this initial training of the entire taxonomy, and also is

applicable to both discriminative and generative classifiers.

5.5 meta-learning based pruning strategy

In this section, we present a meta-learning based generic pruning strategy which

is applicable to both discriminative and generative classifiers. The meta-features

for the instances are derived from the analysis of the approximation error

for multi-class versions of the two well-known generative and discriminative

classifiers: Naive Bayes and Logistic Regression. We then show how this

generalization error is combined in a typical top-down cascade. Based on

these analyses, we identify the important features that control the variation of

the generalization error and determine whether a particular node should be

flattened or not. We finally train a meta-classifier based on these meta-features,

which predicts whether replacing a node in the hierarchy by its children (figure

32) will improve the classification accuracy or not.

5.5.1 Asymptotic approximation error bounds for Naive Bayes

Let us first consider a multinomial, multiclass Naive Bayes classifier in which the

predicted class is the one with maximum posterior probability. The parameters

of this model are estimated by maximum likelihood and we assume here that

Laplace smoothing is used to avoid null probabilities. Our goal here is to derive

a generalization error bound for this classifier. To do so, we recall the bound for

the binomial version (directly based on the presence/absence of each feature in

each document) of the Naive Bayes classifier for two target classes (Theorem 4

of Ng and Jordan [2001]).
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Theorem 3. For a two class classification problem in d dimensional feature space with

m training examples {(xi, yi)}m
i=1 sampled from distribution D, let h and h∞ denote

the classifiers learned from the training set of finite size m and its asymptotic version

respectively. Then, with high probability, the bound on misclassification error of h is

given by

E(h) ≤ E(h∞) + G

(
O

(√
1

m
log d

))
(5.5.1)

where G(τ) represents the probability that the asymptotic classifier predicts correctly

and has scores lying in the interval (−dτ, dτ).

We extend here this result to the multinomial, multiclass Naive Bayes classifier,

for a K class classification problem with Y = {y1, . . . yK}. To do so, we first

introduce the following lemma, that parallels Lemma 3 of Ng and Jordan [2001]:

Lemma 1. ∀yk ∈ Y , let P̂(yk) be the estimated class probability and P(yk) its

asymptotic version obtained with a training set of infinite size. Similarly, ∀yk ∈ Y
and ∀i, 1 ≤ i ≤ d, let P̂(wi|yk) be the estimated class conditional feature probability

and P(wi|yk) its asymptotic version (wi denotes the ith word of the vocabulary). Then,

∀ǫ > 0, with probability at least (1− δ) we have :

|P̂(yk)− P(yk)| < ǫ, |P̂(wi|yk)− P(wi|yk)| < ǫ

with δ = Kδ0 + d ∑
K
k=1 δk, where δ0 = 2 exp(−2mǫ2) and δk = 2d exp(−2dkǫ2). dk

represents the length of class yk, that is the sum of lengths (in number of occurrences)

of all the documents in class k.

The proof of this lemma directly derives from Hoeffding’s inequality and the

union bound, and is a direct extension of the proof of Lemma 3 given in Ng

and Jordan [2001].

Let us now denote the log-likelihood of the vector representation of (a docu-

ment) x in class yk by l(x, yk) :

l(x, yk) = log

[
P̂(yk)

d

∏
i=1

P̂(wi|yk)
xi

]
(5.5.2)

where xi represents the number of times word wi appears in x. The decision of

the Naive Bayes classifier for an instance x is given by:

h(x) = argmax
yk∈Y

l(x, yk) (5.5.3)

and the one for its asymptotic version by:

h∞(x) = argmax
yk∈Y

l∞(x, yk) (5.5.4)
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Lemma 2 suggests that the predicted and asymptotic log-likelihoods are close

to each other, as the quantities they are based on are close to each other. Thus,

provided that the asymptotic log-likehoods between the best two classes, for

any given x, are not too close to each other, the generalization error of the Naive

Bayes classifier and the one of its asymptotic version are close to each other.

Theorem 4 below states such a relationship, using the following function that

measures the confusion between the best two classes for the asymptotic Naive

Bayes classifier.

Definition 3. Let l1
∞(x) = maxyk∈Y l∞(x, yk) be the best log-likelihood score obtained

for x by the asymptotic Naive Bayes classifier, and let l2
∞(x) = maxyk∈Y\h∞(x) l∞(x, yk)

be the second best log-likelihood score for x. We define the confusion of the asymptotic

Naive Bayes classifier for a category set Y as:

GY (τ) = P(x,y)∼D(|l1
∞(x)− l2

∞(x)| < 2τ)

for τ > 0.

We are now in position to formulate a relationship between the generalization

error of the multinomial, multiclass Naive Bayes classifier and its asymptotic

version.

Theorem 4. For a K class classification problem in d dimensional feature space with a

training set of size m, {x(i), y(i)}m
i=1, x(i) ∈ X , y(i) ∈ Y , sampled from distribution

D, let h and h∞ denote the Naive Bayes classifiers learned from a training set of

finite size m and its asymptotic version respectively, and let E(h) and E(h∞) be their

generalization errors. Then, ∀ǫ > 0, one has, with probability at least (1− δY ):

E(h) ≤ E(h∞) + GY (ǫ) (5.5.5)

with:

δY = 2K exp

( −2ǫ2m

C(d + dmax)
2

)
+ 2n exp

(
−2ǫ2dmin

C(n + dmax)
2

)

where dmax (resp. dmin) represents the length (in number of occurrences) of the longest

(resp. shortest) class in Y , and C is a constant related to the longest document in X .

Proof (sketch) Using Lemma 2 and a Taylor expansion of the log function, one

gets, ∀ǫ > 0, ∀x ∈ X , ∀k ∈ Y :

P

(
|l(x, yk)− l∞(x, yk)| <

√
C

ǫ

ρ0

)
> 1− δ

where δ is the same as in Lemma 2,
√

C equals to the maximum length of a

document and ρ0 = mini,k{P(yk), P(wi|yk)}. The use of Laplace smoothing
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is important for the quantities p(wi|yk), which may be null if word wi is not

observed in class yk. The Laplace smoother in this case leads to ρ0 = 1
d+dmax

. The

log-likelihood functions of the multinomial, multiclass Naive Bayes classifier

and the one of its asymptotic version are thus close to each other with high

probability. The decision made by the trained Naive Bayes classifier and its

asymptotic version on a given x only differ if the distance between the first two

classes of the asymptotic classifier is less than two times the distance between

the log-likelihood functions of the trained and asymptotic classifiers. Thus,

using the union bound, one obtains, with probability at least (1− δ):

E(h) ≤ E(h∞) + GY
(

ǫ
√

C(d + dmax)
)

Using a change of variable (ǫ′ = ǫ
√

C(n + dmax)) and approximating

∑
K
k=1 exp(−2nkǫ2) by exp(−2dminǫ2), the dominating term in the sum, leads to

the desired result. �

5.5.2 Asymptotic approximation error bounds for Multinomial Logistic Regression

We now propose an asymptotic approximation error bound for a multiclass

logistic regression (MLR) classifier. We first consider the flat, multiclass case

(V = Y), and then show how the bounds can be combined in a typical top-

down cascade, leading to the identification of important features that control

the variation of these bounds.

Considering a pivot class y⋆ ∈ Y , a MLR classifier, with parameters β =
{βy

0, β
y
j ; y ∈ Y \ {y⋆}, j ∈ {1, . . . , d}}, models the class posterior probabili-

ties via a linear function in x = (xj)
d
j=1 (see for example Hastie et al. [2001] p.

96) :

P(y|x; β)y 6=y⋆ =
exp(β

y
0 + ∑

d
j=1 β

y
j xj)

1 + ∑y′∈Y ,y′ 6=y⋆ exp(β
y′
0 + ∑

d
j=1 β

y′
j xj)

P(y⋆|x; β) =
1

1 + ∑y′∈Y ,y′ 6=y⋆ exp(β
y′
0 + ∑

d
j=1 β

y′
j xj)

The parameters β are usually fit by maximum likelihood over a training set S of

size m (denoted by β̂m in the following) and the decision rule for this classifier

consists in choosing the class with the highest class posterior probability :

hm(x) = argmax
y∈Y

P(y|x, β̂m) (5.5.6)
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The following lemma states to which extent the posterior probabilities with

maximum likelihood estimates β̂m may deviate from their asymptotic values

obtained with maximum likelihood estimates when the training size m tends to

infinity (denoted by β̂∞).

Lemma 2. Let S be a training set of size m and let β̂m be the maximum likelihood

estimates of the MLR classifier over S . Further, let β̂∞ be the maximum likelihood

estimates of parameters of MLR when m tends to infinity. For all examples x, let R > 0

be the bound such that ∀y ∈ Y\{y⋆}, exp(β
y
0 + ∑

d
j=1 β

y
j xj) <

√
R; then for all

1 > δ > 0, with probability at least (1− δ) we have:

∀y ∈ Y ,
∣∣∣P(y|x, β̂m)− P(y|x, β̂∞)

∣∣∣ < d

√
R|Y|σ0

δm

where σ0 = maxj,y σ
y
j and (σ

y
j )y,j represent the components of the inverse (diagonal)

Fisher information matrix at β̂∞ and are different from σi used in Section 5.4 wherein

these represented Rademacher random variables.

Proof (sketch) By denoting the sets of parameters β̂m = {β̂y
j ; j ∈ {0, . . . , d}, y ∈

Y\{y⋆}}, and β̂∞ = {βy
j ; j ∈ {0, . . . , d}, y ∈ Y\{y⋆}}, and using the inde-

pendence assumption and the asymptotic normality of maximum likelihood

estimates (see for example Schervish [1995], p. 421), we have, for 0 ≤ j ≤ d

and ∀y ∈ Y \ {y⋆}: √m(β̂
y
j − β

y
j ) ∼ N(0, σ

y
j ) where the (σ

y
j )y,i represent

the components of the inverse (diagonal) Fisher information matrix at β̂∞.

Let σ0 = maxj,y σ
y
j . Then using Chebyshev’s inequality, for 0 ≤ j ≤ d and

∀y ∈ Y\{y⋆} we have with probability at least 1 − σ0/ǫ2, |β̂y
j − β

y
j | < ǫ√

m
.

Further ∀x and ∀y ∈ Y \{y⋆}, exp(β
y
0 + ∑

d
j=1 β

y
j xj) <

√
R; using a Taylor

development of the functions exp(x + ǫ) and (1 + x + ǫx)−1 and the union

bound, one obtains that, ∀ǫ > 0 and y ∈ Y with probability at least 1− |Y|σ0

ǫ2 :∣∣∣P(y|x, β̂m)− P(y|x, β̂∞)
∣∣∣ < d

√
R
m ǫ. Setting |Y|σ0

ǫ2 to δ, and solving for ǫ gives

the result. �

Lemma 2 suggests that the predicted and asymptotic posterior probabilities are

close to each other, as the quantities they are based on are close to each other.

Thus, provided that the asymptotic posterior probabilities between the best two

classes, for any given x, are not too close to each other, the generalization error

of the MLR classifier and the one of its asymptotic version should be similar.

Theorem 5 below states such a relationship, using the following function that

measures the confusion between the best two classes for the asymptotic MLR

classifier defined as :

h∞(x) = argmax
y∈Y

P(y|x, β̂∞) (5.5.7)
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For any given x ∈ X , the confusion between the best two classes is defined as

follows.

Definition 4. Let f 1
∞(x) = maxy∈Y P(y|x, β̂∞) be the best class posterior probability

for x by the asymptotic MLR classifier, and let f 2
∞(x) = maxy∈Y\h∞(x) P(y|x, β̂∞)

be the second best class posterior probability for x. We define the confusion of the

asymptotic MLR classifier for a category set Y as:

GY (τ) = P(x,y)∼D(| f 1
∞(x)− f 2

∞(x)| < 2τ)

for a given τ > 0.

The following theorem states a relationship between the generalization error of

a trained MLR classifier and its asymptotic version.

Theorem 5. For a multi-class classification problem in d dimensional feature space

with a training set of size m, {x(i), y(i)}m
i=1, x(i) ∈ X , y(i) ∈ Y , sampled i.i.d. from

a probability distribution D, let hm and h∞ denote the multiclass logistic regression

classifiers learned from a training set of finite size m and its asymptotic version

respectively, and let E(hm) and E(h∞) be their generalization errors. Then, for all

1 > δ > 0, with probability at least (1− δ) we have:

E(hm) ≤ E(h∞) + GY

(
d

√
R|Y|σ0

δm

)
(5.5.8)

where
√

R is a bound on the function exp(β
y
0 + ∑

d
j=1 β

y
j xj), ∀x ∈ X and ∀y ∈ Y ,

and σ0 is a constant.

Proof (sketch) The difference E(hm)−E(h∞) is bounded by the probability that

the asymptotic MLR classifier h∞ correctly classifies an example (x, y) ∈ X × Y
randomly chosen from D, while hm misclassifies it. Using Lemma 2, for all

δ ∈ (0, 1), ∀x ∈ X , ∀y ∈ Y , with probability at least 1− δ, we have:

∣∣∣P(y|x, β̂m)− P(y|x, β̂∞)
∣∣∣ < d

√
R|Y|σ0

δm

Thus, the decision made by the trained MLR and its asymptotic version on an

example (x, y) differs only if the distance between the two predicted classes of

the asymptotic classifier is less than two times the distance between the posterior

probabilities obtained with β̂m and β̂∞ on that example; and the probability of

this is exactly GY

(
d

√
R|Y|σ0

δm

)
, which upper-bounds E(hm)− E(h∞). �

Note that the quantity σ0 in Theorem 5 represents the largest value of the

inverse (diagonal) Fisher information matrix (Schervish [1995]). It is thus the
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Figure 33: The pruning procedure for a candidate class node u (in black). After

replacing the candidate node by its children, the new category set

Y Fl(u) contains the classes from both the daughter and the sister

category sets of u.

smallest value of the (diagonal) Fisher information matrix, and is related to the

smallest amount of information one has on the estimation of each parameter β̂k
j .

This smallest amount of information is in turn related to the length (in number

of occurrences) of the longest (resp. shortest) class in Y denoted respectively

by dmax and dmin as, the smaller they are, the larger σ0 is likely to be.

5.5.3 A learning based node pruning strategy

Let us now consider a hierarchy of classes and a top-down classifier making

decisions at each level of the hierarchy. A node-based pruning strategy can be

easily derived from the approximation bounds above. Indeed, any node v in the

hierarchy H = (V, E) is associated with three category sets: its sister categories

with the node itself S′(v) = S(v) ∪ {v}, its daughter categories, D(v), and the

union of its sister and daughter categories, denoted F(v) = S(v) ∪D(v).

These three sets of categories are the ones involved before and after the pruning

of node v. Let us now denote the MLR classifier by h
S′v
m learned from a set

of sister categories of node v and the node itself, and by hDv
m a MLR classifier

learned from the set of daughter categories of node v (h
S′v
∞ and hDv

∞ respectively

denote their asymptotic versions). The following theorem is a direct extension

of Theorem 5 to this setting.

Theorem 6. With the notations defined above, for MLR classifiers, ∀ǫ > 0, v ∈ V \ Y ,

one has, with probability at least 1−
(

Rd2|S′(v)|σS
′(v)

0

m
S′(v)ǫ

2 +
Rd2|D(v)|σD(v)

0

mD(v)ǫ
2

)
:

E(hS
′
v

m ) + E(hDv
m ) ≤ E(hS

′
v

∞ ) + E(hDv
∞ ) + GS′(v)(ǫ) + GD(v)(ǫ)
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{|Y ℓ|, mY ℓ , σY
ℓ

0 ;Y ℓ ∈ {S′(v),D(v)}} are constants related to the set of cate-

gories Y ℓ ∈ {S′(v),D(v)} and involved in the respective bounds stated in

Theorem 5. Denoting by hFv
m the MLR classifier trained on the set F(v) and by

hFv
∞ its asymptotic version, Theorem 6 suggests that one should prune node v if:

GF(v)(ǫ) ≤ GS′(v)(ǫ)+GD(v)(ǫ) and
|F(v)|σF(v)

0

mF(v)
≤ |S

′(v)|σS′(v)
0

mS′(v)
+
|D(v)|σD(v)

0

mD(v)

(5.5.9)

Furthermore, the bounds obtained rely on the union bound and thus are

not likely to be exploitable in practice. They nevertheless exhibit the fac-

tors that play an important role in assessing whether a particular trained

classifier in the logistic regression family is close or not to its asymptotic

version. Each node v ∈ V can then be characterized by factors in the set

{|Y ℓ|, mY ℓ , dY
ℓ

max, dY
ℓ

min, GY ℓ(.)|Y ℓ ∈ {S′(v),D(v),F(v)}} which are involved in

the estimation of inequalities (5.5.9) above. We propose to estimate the confusion

term GY ℓ(.) with two simple quantities: the average cosine similarity of all the

pairs of classes in Y ℓ, and the average symmetric Kullback-Leibler divergences

between all the pairs in Y ℓ of class conditional multinomial distributions.

Algorithm 5 presents the process of learning the hierarchy pruning by learning

a meta-classifiers from the meta-features as mentioned above. The procedure

for collecting training data associates a positive (resp. negative) class to a

node if the pruning of that node leads to a final performance increase (resp.

decrease). A meta-classifier is then trained on these features using a training

set from a selected class hierarchy. After the learning phase, the meta-classifier

is applied to each node of a new hierarchy of classes so as to identify which

nodes should be pruned. A simple strategy to adopt is then to prune nodes in

sequence: starting from the root node, the algorithm checks which children of

a given node v should be pruned by creating the corresponding meta-instance

and feeding the meta-classifier; the child that maximizes the probability of the

positive class is then pruned; as the set of categories has changed, we recalculate

which children of v can be pruned, prune the best one (as above) and iterate

this process till no more children of v can be pruned; we then proceed to the

children of v and repeat the process.

5.6 experimental analysis

We start our discussion by presenting results on different hierarchical datasets

with different characteristics using MLR and SVM classifiers. The datasets we used

in these experiments are two large datasets extracted from the International
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Algorithm 5 The pruning strategy.

procedure Prune Hierarchy(a hierarchy H, a meta-classifier Cm)

clist[]← H.root; ⊲ Initialize with root node

for j = 1 . . . clist.size() do

list[]← Ch(clist[j]); ⊲ Candidate children

while !list.isEmpty() do

index ← MERGE(clist[j],list,Cm);

if index == null then

break;

end if

list.remove(index);

end while

clist.add(Ch(clist[j])); ⊲ Adds next level parents

end for

export new hierarchy;

end procedure

function Merge(a parent p, list of children L,Cm)

max ← −Double.MAX

for i = 1 . . . L.size() do

ins← createMetaInstance(p, L[i]);

probs[]← Cm(ins);

if probs[0] > max then

max ← probs[0] ⊲ The prob. for the positive class is stored in probs[0]

index ← i;

end if

if max > 0.5 then

merge p and L[index];

return index;

end if

end for

return null;

end function

Patent Classification (IPC) dataset4 and the publicly available DMOZ dataset

from the second PASCAL large scale hierarchical text classification challenge

(LSHTC2)5. Both datasets are multi-class; IPC is single-label and LSHTC2

multi-label with an average of 1.02 categories per class. We created 4 datasets

from LSHTC2 by splitting randomly the first layer nodes (11 in total) of the

4 http://www.wipo.int/classifications/ipc/en/support/

5 http://lshtc.iit.demokritos.gr/
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Dataset # Tr. # Test # Classes # Feat. Depth CR Error ratio

LSHTC2-1 25,310 6,441 1,789 145,859 6 0.008 1.24

LSHTC2-2 50,558 13,057 4,787 271,557 6 0.003 1.32

LSHTC2-3 38,725 10,102 3,956 145,354 6 0.004 2.65

LSHTC2-4 27,924 7,026 2,544 123,953 6 0.005 1.8

LSHTC2-5 68,367 17,561 7,212 192,259 6 0.002 2.12

IPC 46,324 28,926 451 1,123,497 4 0.02 12.27

Table 11: Datasets used in our experiments along with the properties: number

of training examples, test examples, classes and the size of the feature

space, the depth of the hierarchy and the complexity ratio of hier-

archical over the flat case (∑v∈V\Y |D(v)|(|D(v)| − 1)/|Y|(|Y| − 1)),

the ratio of empirical error for hierarchical and flat models.

original hierarchy in disjoint subsets. The classes for the IPC and LSHTC2

datasets are organized in a hierarchy in which the documents are assigned to

the leaf categories only. Table 11 presents the characteristics of the datasets.

CR denotes the complexity ratio between hierarchical and flat classification,

given by the Rademacher complexity term in Theorem 2:(
∑v∈V\Y |D(v)|(|D(v)| − 1)

)
/ (|Y|(|Y| − 1)); the same constants B, R and L

are used in the two cases. As one can note, this complexity ratio always

goes in favor of the hierarchal strategy, although it is 2 to 10 times higher

on the IPC dataset, compared to LSHTC2-1,2,3,4,5. On the other hand, the

ratio of empirical errors (last column of Table 11) obtained with top-down

hierarchical classification over flat classification when using SVM with a linear

kernel is this time higher than 1, suggesting the opposite conclusion. The error

ratio is furthermore really important on IPC compared to LSHTC2-1,2,3,4,5.

The comparison of the complexity and error ratios on all the datasets thus

suggests that the flat classification strategy may be preferred on IPC, whereas

the hierarchical one is more likely to be efficient on the LSHTC datasets. This

is indeed the case, as is shown below.

To test our simple node pruning strategy, we learned binary classifiers aiming

at deciding whether to prune a node, based on the node features described in

the previous section. The label associated to each node in this training set is

defined as +1 if pruning the node increases the accuracy of the hierarchical

classifier by at least 0.1, and -1 if pruning the node decreases the accuracy by

more than 0.1. The threshold at 0.1 is used to avoid too much noise in the

training set. The meta-classifier is then trained to learn a mapping from the

vector representation of a node (based on the above features) and the labels
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LSHTC2-3 LSHTC2-4 LSHTC2-5 IPC

MNB MLR SVM MNB MLR SVM MNB MLR SVM MNB MLR SVM

FL 73.0↓↓ 52.8↓↓ 53.5↓↓ 84.9↓↓ 49.7↓↓ 50.1↓↓ 83.9↓↓ 54.2↓↓ 54.7↓↓ 67.2↓↓ 54.6 44.6

RN 61.9↓↓ 49.3↓↓ 51.7↓↓ 70.5↓↓ 47.8↓↓ 48.4↓↓ 69.0↓↓ 53.2↓↓ 53.6↓ 64.3↓↓ 54.7↓ 45.8↓↓

FH 62.0↓↓ 48.4↓↓ 49.8↓↓ 68.3↓ 47.3↓↓ 47.6↓ 65.6↓ 52.6↓ 52.7 64.4↓ 55.2↓ 46.5↓↓

PR-B - 48.1 49.5 - 46.6 46.5 - 52.2 52.2 - 54.5 45.0

PR-M 61.3 48.0 49.3 65.4 46.9 47.2 64.8 52.2 52.3 63.9 54.4 45.0

Table 12: Error results across all datasets. Bold typeface is used for the best re-

sults. Statistical significance (using micro sign test (s-test) as proposed

in Yang and Liu [1999]) is denoted with ↓ for p-value<0.05 and with
↓↓ for p-value<0.01.

{+1;−1}. We used the first two datasets of LSHTC2 to extract the training

data while LSHTC2-3, 4, 5 and IPC were employed for testing.

The procedure for collecting training data is repeated for the MLR and SVM

classifiers resulting in three meta-datasets of 119 (19 positive and 100 negative),

89 (34 positive and 55 negative) and 94 (32 positive and 62 negative) examples

respectively. For the binary classifiers, we used AdaBoost with random forest

as a base classifier, setting the number of trees to 20, 50 and 50 for the MLR and

SVM classifiers respectively and leaving the other parameters at their default

values. Several values have been tested for the number of trees ({10, 20, 50, 100

and 200}), the depth of the trees ({unrestricted, 5, 10, 15, 30, 60}), as well as the

number of iterations in AdaBoost ({10, 20, 30}). The final values were selected

by cross-validation on the training set (LSHTC2-1 and LSHTC2-2) as the ones

that maximized accuracy and minimized false-positive rate in order to prevent

degradation of accuracy.

We consider three different classifiers which include Multinomial Naive Bayes

(MNB), Multi-class Logistic Regression (MLR) and Support Vector Machine (SVM)

classifiers. The configurations of the taxonomy that we consider are fully flat

classifier (FL), fully hierarchical (FH) top-down Pachinko machine, a random

pruning (RN), and the two proposed pruning methods which include (i) Bound-

based pruning strategy (PR-B) given in Section 5.4.2 and (ii) Meta-learning

based pruning strategy (PR-M) proposed in Algorithm 5. For the random

pruning we restrict the procedure to the first two levels and perform 4 random

prunings (this is the average number of prunings that are performed in the

PR-M and PR-B strategies). For each dataset we perform 5 independent runs

for the random pruning and we record the best performance. For MLR and SVM,

we use the LibLinear library Fan et al. [2008] and apply the L2-regularized

versions, setting the penalty parameter C by cross-validation.
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LSHTC2-3 LSHTC2-4 LSHTC2-5 IPC

MNB MLR SVM MNB MLR SVM MNB MLR SVM MNB MLR SVM

FL 17.1↓↓ 31.1↓↓ 31.6 ↓↓ 15.1↓↓ 33.1 ↓↓ 32.9↓↓ 15.0↓↓ 29.2↓↓ 29.1↓↓ 25.8 ↓↓ 47.9 45.6

RN 20.2↓↓ 32.2↓↓ 31.9↓ 19.2↓ 33.6 ↓ 33.2↓↓ 18.1↓ 29.9↓↓ 29.9↓↓ 26.1 ↓ 45.2↓↓ 43.8↓↓

FH 22.1↓ 32.8↓ 32.2 20.1↓ 34.1↓ 33.7↓ 18.9↓ 30.5↓ 30.7 26.2 ↓ 44.2↓ 42.4↓

PR-B - 33.1 32.3 - 34.7 34.4 - 31.8 31.9 - 48.1 43.8

PR-M 22.4 33.2 32.4 21.2 34.8 34.3 19.3 31.7 31.8 26.5 48.2 43.7

Table 13: Macro-F1 results across all datasets. Bold typeface is used for the best

results. Statistical significance (using macro-level t-test as proposed in

Yang and Liu [1999]) is denoted with ↓ for p-value<0.05 and with ↓↓

for p-value<0.01.
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Figure 34: Number of classes (on X-axis) which have the specified number of

documents (on Y-axis) for LSHTC2-3 dataset and IPC dataset

5.6.1 Flat versus Hierarchical classification

The accuracy results (Micro-F1 measure) on LSHTC2-3,4,5 and IPC are reported

in Table 12. On all LSHTC datasets flat classification performs worse than the

fully hierarchy top-down classification, for all classifiers. These results are in

line with complexity and empirical error ratios for SVM estimated on different

collections and shown in table 11 as well as with the results obtained in Liu et al.

[2005], Dumais and Chen [2000] over the same type of taxonomies. Further,

the work by Liu et al. [2005] demonstrated that class hierarchies on LSHTC

datasets suffer from rare categories problem, i.e., 80% of the target categories in

such hierarchies have less than 5 documents assigned to them.

As a result, flat methods on such datasets face unbalanced classification prob-

lems which results in smaller error ratios; hierarchical classification should be
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preferred in this case. On the other hand, for hierarchies such as the one of IPC,

which are relatively well balanced and do not suffer from the rare categories

phenomenon, flat classification performs at par or even better than hierarchical

classification. The difference in the distribution of data among leaf-level cate-

gories for the LSHTC datasets and IPC dataset is illustrated in Figure 34 on

log-log scale. As one can note, in most categories IPC have a lot (from tens to

few hundreds) of documents which belong to them as denoted by the triangles.

On the other hand, LSHTC2-3 dataset has a lot of classes with a small number

(1 or 2) of documents as shown by the high concentration of solid dots near the

Y-axis. The relative performance between the flat and top-down approaches

on the two kinds of datasets is in agreement with the conclusions obtained in

recent studies, as Bengio et al. [2010], Gao and Koller [2011], Perronnin et al.

[2012], Deng et al. [2011], in which the datasets considered do not have rare

categories and are more well-balanced. The class-based performance (Macro-F1

measure) are given in Table 13.

5.6.2 Effect of pruning

The proposed hierarchy pruning strategies aim to adapt the given taxonomy

structure for better classification while maintaining the ancestor-descendant

relationship between a given pair of nodes. We compare the two strategies, one

based on minimizing the rademacher-based generalization error bound (PR-B)

and another based on meta-learning (PR-M) against the random pruning (RN)

and fully hierarchical (FH) classification. As shown in Table 12, the proposed

pruning strategies lead to statistically significant better results for all three

classifiers compared to both the original taxonomy and a randomly pruned one.

A similar result is reported by Wang and Lu [2010] through a pruning of an

entire layer of the hierarchy, which can be seen as a generalization, even though

empirical in nature, of the pruning strategy retained here. Another interesting

approach to modify the original taxonomy is presented by Zhang et al. [2006].

In this study, three other elementary modification operations are considered,

again with an increase of performance.

For MNB classifier, one can notice that the proposed pruning method (PR-M)

based on meta-learning has the best performance in all datasets achieving

significantly better results compared to its rivals. This shows that flattening

the hierarchy can boost the performance, even in situations where the fully

hierarchical classifier is better than its flat version (this is the case for all the

datasets considered for MNB). The random pruning achieves slightly better

accuracies than FH in LSHTC2-3 and IPC datasets, but is in general in between

the performance of the flat classifier and its fully hierarchical version. Statistical

significance tests report significant differences in favor of the proposed approach
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(PR-M). We also observe that all hierarchical methods consistently outperform

the flat case. This is an expected result as the flat MNB classifier suffers from

the problem of unbalanced data. The difference between the performance of

the flat MNB classifier and its hierarchical versions is less marked for the IPC

dataset.

For MLR and SVM classifiers, both pruning approaches have better performance

in all datasets compared to its rivals, the difference being significant in all

cases but with the flat classifier on IPC. One can also notice that due to the

balanced nature of the IPC dataset, the performance of the flat classifier is close

to that of hierarchical methods. For the same reason, random pruning is also

more effective in the IPC dataset as compared to other datasets. Comparing

the respective behaviors of the MLR and SVM against MNB, one can note that MLR

and SVM are more robust to variations in the taxonomy as compared to MNB.

This is reflected in much lesser variation in the accuracy for these classifiers

under different configurations of the hierarchy. Lastly, and not surprisingly, the

performance of MLR and SVM are much better than that of MNB on all the datasets

considered here.

5.6.3 Effect of number of pruned nodes for meta-learning based pruning strategy

For studying how the performance changes according to the number of pruned

nodes, we record the accuracy of the proposed pruning method for 1 to 4

number of prunings. Note that pruning of nodes is done in sequence and is

not independent. The results for both MNB and MLR are depicted in Figures 35

and 36, with a comparison to the FH method. The comparison with SVM is not

explicitly shown as its behavior is similar to MLR classifier.

Interestingly, across all datasets, the proposed method has better performance

than FH for all number of prunings for both MNB and MLR. This shows that

the proposed method is able to select appropriate nodes in the hierarchy for

pruning. Additionally, we note that in the majority of cases the first pruned

node provides a higher increase in accuracy than the following nodes. This is

an expected behavior as the first prunings are typically performed at the upper

level and thus tend to have a higher impact (as they will be used in more in

the classification of more documents) than the nodes pruned done at lower

levels. We want to stress here the fact that the performance with respect to the

number of pruned nodes is affected by several factors, as the accuracy of the

meta-classifier, the level of the hierarchy where the nodes are pruned and their

sequence. For example, in dataset LSHTC2-4 (Figure 35), there is a drop of

performance after the first flattening which we believe is due to false positives

provided by the meta-classifier. As shown for MLR in Figure 36 and across
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Figure 35: Accuracy performance with respect to the number of pruned nodes

for MNB on different test sets.

all datasets that the behavior of the pruning method is more stable without

decrease in the final performance.

5.7 conclusion

We have studied in this chapter flat and hierarchical classification strategies

from a learning-theoretic view point in the context of large-scale taxonomies,

through error generalization bounds of multiclass, hierarchical classifiers. The

first theorem we have introduced provides an explanation to several empirical

results related to the performance of such classifiers. We also introduced two

methods to simplify a taxonomy by selectively pruning some of its nodes, (i)

by exploiting the bound developed in the first theorem, and (ii) by designing a
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Figure 36: Accuracy performance with respect to the number of pruned nodes

for MLR (down) on different test sets.

meta-learning technique which is based on the features derived from from the

approximation-error based generalization bounds proposed in Sections 5.5.1

and 5.5.2. The experimental results reported here (as well as in the previous

works) are in line with our theoretical developments and justify the pruning

strategy adopted.

In addition to theoretically addressing the flat versus top-down classification

for large-scale taxonomies, the focus of this work is also on the problem of

aligning the taxonomy of classes to the set of input-output pairs. This can be

useful in designing better taxonomies for large-scale classification problems.

Lastly, this suggests that our theoretical development can also be exploited to

grow a hierarchy of classes from a (large) set of categories, as has been done in

several studies (e.g. Bengio et al. [2010]). We plan to explore this in future work.
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6
C O N C L U S I O N A N D P E R S P E C T I V E S

In the era of Big Data, we need efficient and scalable machine learning al-

gorithms which can perform automatic classification of Tera-Bytes of data in

large-scale category systems. In Chapter 1, we discussed such category sys-

tems including Yahoo! directory, Wikipedia, Amazon Product Hierarchy and

National Library of Medicine among others. Therein, we also presented some

of the research challenges associated with large-scale supervised classification.

In addition to the computational complexity of training and prediction, the

test set performance of state-of-the-art classification algorithms suffers due to

the power-law distribution in most naturally occurring large-scale datasets.

Furthermore, being able to detect rare categories remains a practical challenge

for such datasets. We covered some of the important state-of-the-art methods

to address these problems in Chapter 2.

In Chapter 3, we studied the generative mechanisms in large-scale taxonomies

which lead to power-law distribution of documents among categories. This

was based on the famous Yule’s model and model based on Preferential at-

tachment. This study offers useful insights about the structure of large-scale

web-directories. Furthermore, we used the fit to power-law distribution to

study the space complexity of large-scale hierarchical classification systems.

We further leverage the distribution of data in large-scale category systems, and

in Chapter 4, we have presented algorithms to tackle some of the challenges

in large-scale learning. The soft-thresholding based classification method not

only leads to better performance when measured by Micro-F1 and Macro-F1

measures but achieves this at a much lower computational cost as compared

to the state-of-the-art methods. We also proposed an efficient model selection

method for determining the regularization parameter in learning One-vs-Rest

SVM classifier for large-scale power-law distributed category systems.

Finally, we address another key model selection problem in large scale clas-

sification concerning the choice between flat versus hierarchical classification

from a learning theoretic aspect. The presented generalization error analysis

provides an explanation to empirical findings in many recent studies in large-

scale hierarchical classification. We further exploit the developed bounds to

propose two methods for adapting the given taxonomy of categories to output

taxonomies which yield better test accuracy when used in a top-down setup.
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Large-scale learning is a relatively recent phenomena in the field of machine

learning and offers interesting research directions. From the point of the work

presented in this thesis, there are certainly some perspectives for future work.

Building a taxonomy of categories from ground-up has been proposed in the

form of computationally-intensive approaches such as Bengio et al. [2010],

Gao and Koller [2011], Deng et al. [2011]. In this direction, our generalization

error analysis can possibly be extended to design efficient mechanisms for

building hierarchies. The trade-off between the empirical error and rademacher

complexity for a top-down classifier can be used to group similar categories

together while restricting the depth of the tree at the same time. Furthermore,

PAC-Bayesian analysis could be applied to study the model selection problem

of selecting the regularization parameter in large-scale linear SVM. This would

eliminate the need for test set while selecting the regularization parameter.

Also, we have focused on single-labels datasets in this thesis, one interesting

extension of this work is to address the problems in multi-labeled domains.

In this respect, extending the theoretical framework in Chapter 5, to multi-

label classification setting can be challenging since there can be more than one

correct root-to-leaf paths. Effective detection of rare categories in large-scale

learning remains an important challenge. In this direction, formalization of

soft-thresholding based framework by using the power-law distribution as prior

knowledge can lead to interesting solutions which are specialized for detecting

rare categories.
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal

of Machine Learning Research, 2:499–526, 2002.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2009.

Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with

support vector machines. In Proceedings of the thirteenth ACM international

conference on Information and knowledge management, pages 78–87, 2004.

Andrea Capocci, Vito DP Servedio, Francesca Colaiori, Luciana S Buriol, Debora

Donato, Stefano Leonardi, and Guido Caldarelli. Preferential attachment in

the growth of social networks: The internet encyclopedia wikipedia. Physical

Review E, 74(3):036116, 2006.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. arXiv

preprint arXiv:1106.1813, 2011.

Jianfu Chen and David Warren. Cost-sensitive learning for large-scale hierar-

chical classification. In Proceedings of the 22nd ACM international conference on

Conference on information & knowledge management, pages 1351–1360. ACM,

2013.
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