
HAL Id: tel-01551794
https://theses.hal.science/tel-01551794

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstraction and comparison of execution traces for
analysis of embedded multimedia applications

Christiane Kamdem Kengne

To cite this version:
Christiane Kamdem Kengne. Abstraction and comparison of execution traces for analysis of embedded
multimedia applications. Embedded Systems. Université de Grenoble; Université de Yaoundé I, 2014.
English. �NNT : 2014GRENM061�. �tel-01551794�

https://theses.hal.science/tel-01551794
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE
YAOUNDÉ I

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
préparée dans le cadre d’une cotutelle entre
l’Université de Grenoble et l' Université de Yaoundé I

Spécialité : Informatique

Arrêtés ministériels : 6 janvier 2005 - 7 août 2006

Présentée par

« Christiane KAMDEM KENGNE »

Thèse dirigée par Marie-Christine Rousset
et codirigée par Maurice Tchuente

préparée au sein des Laboratoire d'informatique de Grenoble
(LIG) & Laboratoire International de recherche en
informatique et mathématiques appliquées (LIRIMA)

dans les Écoles Doctorales EDMSTII

Abstraction et comparaison de
traces d’exécutions pour l'analyse
d'applications multimédias pour
système embarqués

Thèse soutenue publiquement le « 5 décembre 2014 »,
devant le jury composé de :

M. Laks V.S. LAKSHMANAN
Professeur à l'Université de Colombie-Britannique, Rapporteur
M. Pascal PONCELET
Professeur à l'Université de Montpellier 2, Rapporteur
M. Alexandre TERMIER
Professeur à l'Université de Rennes 1, Examinateur
Mme Céline ROBARDET
Professeure à l'INSA Lyon, Université de Lyon, Examinatrice
M. Éric GAUSSIER
Professeur à l'Université de Grenoble, Examinateur
Mme Marie-Christine ROUSSET
Professeure à l'Université de Grenoble, Directrice de thèse
M. Maurice TCHUENTE
Professeur à l'Université de Yaoundé I, Co-directeur de thèse
Mme Noha IBRAHIM
Maître de conférence à l'Université de Grenoble, Co-encadrante de thèse

Université Joseph Fourier – Université de Yaoundé I

Abstraction and comparison of execution traces for
analysis of embedded multimedia applications

présentée le 5 décembre 2014

Université de Grenoble Alpes, Université de Yaoundé I

pour l'obtention du grade de Docteur en Informatique

par

Christiane KAMDEM KENGNE

acceptée sur proposition du jury:

Pr Laks V.S. LAKSHMANAN, Rapporteur
Pr Pascal PONCELET, Rapporteur
Pr Alexandre TERMIER, Examinateur
Pr Céline ROBARDET, Examinatrice
Pr Éric GAUSSIER, Examinateur
Pr Marie-Christine ROUSSET, Directrice de thèse
Pr Maurice TCHUENTE, Co-directeur de thèse
Dr Noha IBRAHIM, Co-encadrante de thèse

Face à la roche, le ruisseau l’emporte toujours,

non pas par la force mais par la persévérance.

— H. Jackson Brown

À vous que j’aime si fort, mais qui êtes partis si tôt...

Maman, tata Appoline, tonton Pascal.

Remerciements

Je n’aurais jamais pensé qu’elles passeraient si vite ces années de thèse à Grenoble...C’est remplie

d’émotions que je souhaite par ces quelques mots exprimer ma gratitude aux personnes et entités qui

de près ou de loin, m’ont permise d’arriver jusqu’ici:

Mes directeurs de thèse Marie-christine Rousset et Maurice Tchuente. Vos questions et vos conseils

n’ont cessé de me recadrer dans mon travail. Je ne saurais assez vous remercier de l’opportunité que

vous m’avez donnée de travailler à vos côtés.

Noha, plus qu’une co-encadrante, tu as été une amie et une grande soeur. Tu m’as encouragée, m’a

motivée tout au long de cette aventure en dents de scie. Tu as eu confiance en moi, encore plus que

moi.

Merci Alex pour tout ce que tu m’as appris, grâce à toi et à tes blagues, j’ai réellement apprécié "fouiller

des données".

Washio Sensei, thank you for all that I have learned and all that I am learning by collaborating with you.

Les Laboratoire d’informatique de Grenoble (LIG) et Laboratoire International de recherche en infor-

matique et mathématiques appliquées (LIRIMA) qui m’ont accueillie en leur sein.

Je tiens à remercier les membres des équipes HADAS et SLIDE avec qui j’ai collaboré et échangé durant

mes recherches.

L’administration de l’Université de Yaoundé 1 qui m’a autorisée à suspendre mes fonctions d’enseignement

le temps de mes travaux de thèse.

Merci à la grande famille Toko Wato à laquelle je suis fière d’appartenir. Merci papa d’avoir toujours

été présent pour nous. Merci aux filles Kamdem, Diane, Sandrine, Aurélie, Patricia et Audrey: mieux

que mes soeurs vous êtes mes meilleures amies, et sans nos "divers" de tous les jours, la route au-

rait été bien laborieuse. Je te remercie Stéphane, de ta présence et de ton support qui restent sans pareil.

À vous Rodrigue et Simplice, Juliette, Léonie, Linda et Sandra, Blaise, Léon, Orléant et Serge, à mes

amis d’enfance, à ceux rencontrés au long du chemin, à vous qui avez partagé mon quotidien et mes

péripéties, à vous qui m’avez toujours soutenue, à vous qui avez une place si spéciale dans mon coeur,

à tous: Merci!

v

Abstract

Nowadays, due to the increasing complexity in both the applications and the underlying

hardware, it is difficult to understand what happens during the execution of these applications.

Tracing techniques are commonly used to gather and provide information on application

execution in the form of execution traces. The execution traces, which are sequences of events,

can be very large (easily millions of events), hard to understand and thus require specific

analysis tools. One critical case is the analysis of applications on embedded systems such as

set-top boxes or smartphones, especially for understanding bugs of multimedia applications.

In this thesis we propose two novel analysis techniques adapted to multimedia applications

on embedded systems.

The first method reduces size of trace given to the analysts. This method needs to group

sets of related events together. We propose an approach based on optimization and pattern

mining techniques to automatically extract a set of subsequences from an execution trace.

Our experiments showed that the method scales on large amounts of data and at the same

time, highlighted the practical interest of this approach.

Our second contribution consists in proposing a diagnosis method based on the comparison

of execution traces with reference traces. This approach is implemented in TED, our TracE

Diagnosis tool. Experiments conducted on real-life use cases of multimedia application

execution traces have validated that TED is scalable and brings added value to traces analysis.

We also show that the tool can be applied on reduced size traces in order to further improve

scalability.

Key words: execution trace, multimedia applications, sequence mining, optimisation, dissim-

ilarity measures, anomalies detection.

vii

Résumé

De nos jours, dû à la complexité croissante des applications et du matériel, il est difficile de

comprendre ce qui se passe durant l’exécution de ces applications. Les techniques de traçage

sont communément utilisées pour collecter et fournir les informations sur l’application sous

forme de traces d’exécution. Les traces d’exécution, qui sont des séquences d’événements,

peuvent être très volumineuses (elles atteignent facilement des millions d’événements), diffi-

ciles à comprendre et donc nécessitent des outils d’analyse spécifiques. Un cas critique est

l’analyse d’applications pour systèmes embarqués tels les décodeurs ou les smartphones,

en particulier pour comprendre les bugs d’applications multimédias. Dans cette thèse, nous

proposons deux nouvelles techniques adaptées aux applications multimédia sur systèmes

embarqués.

La première méthode réduit la taille de la trace donnée aux analystes. Cette méthode nécessite

de regrouper un ensemble d’événements connexes. Nous proposons une approche basée

sur des techniques d’optimisation et de fouille de motifs afin d’extraire automatiquement

un ensemble de sous-séquences d’une trace. Nos expérimentations ont montré que cette

méthode passe à l’échelle sur de gros volumes de données, et ont par la même occasion mis

en évidence l’intérêt pratique de cette approche.

La seconde contribution consiste en la mise en place d’une méthode de diagnostic basée

sur la comparaison de traces d’éxécution avec des traces de référence. Cette méthode est

implémentée dans TED, notre outil de diagnostic de traces. Les expérimentations faites sur

des cas d’utilisation concrets de traces d’exécution multimédia ont validé que TED passe à

l’échelle et apporte une plus-value à l’analyse de traces. Nous montrons aussi que l’outil peut

être appliqué sur des traces de taille réduite afin d’améliorer davantage le passage à l’échelle.

Mots clefs : trace d’exécution, applications multimedias, détection d’anomalies, fouille de

séquences, techniques

d’optimisation, mesures de dissimilarité.

ix

Contents

Remerciements v

Abstract (English/Français) vii

List of figures xii

List of tables xiv

1 Introduction 1

1.1 Challenges of trace analysis . 3

1.1.1 Execution trace generation . 4

1.1.2 Execution trace analysis . 4

1.2 Contributions of this thesis . 6

1.3 Outline . 7

2 Related work 9

2.1 Abstraction methods . 10

2.1.1 Abstraction techniques in data mining . 10

2.1.2 Discussion . 14

2.2 Sequence-based anomaly detection . 16

2.2.1 Overview of semi-supervised anomaly detection techniques 16

2.2.2 Discussion . 20

3 A method to abstract event sequences 23

3.1 Preliminaries and problem statement . 27

3.1.1 Notations . 27

3.1.2 Definitions . 27

3.1.3 Problem statement . 30

3.2 Finding maximum covering of frames . 31

3.2.1 Sequential pattern mining . 31

3.2.2 Approaches . 32

3.3 Experiments . 41

3.3.1 Experimental settings . 41

3.3.2 Comparison of scalability . 42

3.3.3 Comparison of coverage . 43

xi

Contents

3.3.4 Practical trace analysis . 45

3.4 Conclusion . 47

4 A dissimilarity-based comparison method to analyse event sequences 49

4.1 Dissimilarity-based diagnosis: problem statement and general approach 51

4.2 Our categorization of anomalies in audio/video decoding 52

4.3 Our proposal for specific dissimilarity measures 53

4.3.1 Preliminaries . 53

4.3.2 Occurrence dissimilarity . 54

4.3.3 Dropping dissimilarity . 55

4.3.4 Temporal distance . 57

4.3.5 Measure normalization and complexity . 61

4.4 TED: the execution TracEs Diagnosis tool . 61

4.4.1 Measure computation by portion of traces 61

4.4.2 Architecture of TED . 62

4.4.3 Use cases . 64

4.5 Experiments . 66

4.5.1 Experimental goals . 66

4.5.2 Experimental settings . 66

4.5.3 Experimental results . 67

4.6 Applying distances on reduced execution traces 70

4.6.1 Adapt dissimilarity measures on reduced execution traces 71

4.6.2 Experiments . 78

4.6.3 Discussion . 83

4.7 Conclusion . 83

5 Conclusion 85

5.1 Contributions summary . 85

5.2 Perspectives . 86

A French Summary 89

A.1 Introduction . 90

A.2 Une méthode pour abstraire les séquences d’événements 91

A.3 Une méthode de comparaison basé sur la dissimilarité pour analyser les sé-

quences d’événements . 92

A.4 Conclusion et perspectives . 92

Bibliography 101

xii

List of Figures

1.1 Growth in sales of tablets in France and in the world 2

1.2 Gstreamer pipeline . 3

1.3 An example of execution trace . 4

1.4 Three possibilities for application analysis . 5

1.5 Trace viewer Pajè - Figure credits: [CdKSB00] . 5

2.1 An example of code table . 11

2.2 Steps for window-based techniques . 17

2.3 Steps for Markovian techniques . 18

2.4 Steps for HMM techniques . 19

2.5 Classification of sequence-based techniques . 21

3.1 A trace with blocks . 26

3.2 Example of trace, frames and blocks . 27

3.3 A set of frames with a coverage:{〈〈B ,D〉〉, 〈〈B ,D〉〉, 〈〈D,C〉〉} 29

3.4 Knapsack problem . 31

3.5 Pattern growth in OneStepMultSon algorithm . 36

3.6 Pattern growth in OneStepOneSon algorithm . 38

3.7 Running Time . 42

3.8 Coverage . 44

3.9 Global View . 45

3.10 Blocks of fourth frame . 46

4.1 Measure computation by trace portion . 62

4.2 TED Architecture . 62

4.3 Example of preprocessing of data: from original trace, information in bold are

kept. 63

4.4 Scenario a . 65

4.5 Scenario b . 65

4.6 Running time . 69

4.7 Blocks and nonBlocks in a trace . 71

4.8 Reducing step - occurrence and dropping distances 72

4.9 Reducing step - temporal distance . 74

4.10 Adapted occurrence dissimilarity . 76

xiii

List of Figures

4.11 TED Architecture . 78

4.12 Reduced traces size . 80

4.13 Reduction step time (in seconds) . 81

4.14 Running time comparison . 82

4.15 An example of knowledge domain usage to label execution traces 84

5.1 Summary of the contributions . 86

xiv

List of Tables

2.1 Utility table (Items Price) . 13

2.2 Transaction table (Shopping transaction) . 13

2.3 Itemsets utilities . 13

2.4 Comparison of existing approaches. The parameter k is the number of found

patterns. 15

4.1 Common Audio/Video decoding problems. 52

4.2 Dynamic programming applied to an example . 60

4.3 Experimental dataset . 67

4.4 TED precision . 67

4.5 Description of traces to compare . 68

4.6 Comparison with DTW and LCS distances . 68

4.7 Comparison with DTW and LCS distances . 69

4.8 Useful notations . 76

4.9 Experimental dataset: reference traces . 79

4.10 Experimental dataset: names of suspicious traces 79

4.11 Time for discovering 10-bl ocks from reference traces 81

xv

1 Introduction

Contents

1.1 Challenges of trace analysis . 3

1.1.1 Execution trace generation . 4

1.1.2 Execution trace analysis . 4

1.2 Contributions of this thesis . 6

1.3 Outline . 7

This thesis proposes solutions for analyzing embedded multimedia applications. The

proliferation of embedded systems, from home boxes to tablets and smartphones, provides an

everywhere access to multimedia contents. Developing multimedia applications is an area of

high competition in which every second lost by a developer to debug the application amounts

a financial loss for companies. The survival of the companies depends on the ability of the

developers to quickly develop, debug, optimize software, and adapt to the constantly evolving

platforms.

Embedded systems

Embedded systems can be defined as information processing systems embedded into enclos-

ing products such as cars or telecommunication equipments. Such systems come with a large

number of common characteristics, including efficiency requirements [VGW02].

As it has been the case for personal computers, the computational power provided by con-

sumer electronics has not ceased to increase, motivated by ever increasing user demand.

According to statistics presented by some websites ([Zdn14]), during 2013 in France, tablets

were more widely sold than computers. Fig. 1.1(a) shows that more than six millions of tablets

(blue color on figure) were sold versus four millions and eighty thousands of computers (all

other colors).

In 2010, this part of the market was almost nonexistent. Fig. 1.1(b) presents the explosion of

tablets sales over the world since 2010. Between 2010 and 2012, sales had increased by a factor

of 6. This shows the interest of companies in quickly developing embedded applications, given

1

Chapter 1. Introduction

the amount of potential customers.

(a) Growth in sales of PCs and tablets in France (b) tablets world sales(millions)

Figure 1.1 – Figure credits: [Zdn14]

People nowadays use their smartphones or tablets to watch video in many situations: during

sport activities, while travelling, and so on. This situation increases the need to develop

applications for these systems. One of the most used are multimedia applications in which

video and audio decoding are the important tasks. That is why many companies are now

launched in the race for easier and faster debugging techniques.

Multimedia applications

The most common definition of multimedia application is an application which uses a collec-

tion of multiple media sources e.g. text, graphics, images, sound/audio, animation and/or

video. In other words, multimedia applications carry out a series of transformations to a

stream of data. These transformations (also called multimedia decoding) are not specific to a

particular multimedia application (media players, video recorders and so on). This facilitates

the reutilization of the decoding process.

A multimedia decoding is the process of rendering images and sounds on a screen, and the

result must be of good quality, without interruption between images or any delay between

picture and sound. This process deals with computations over frames. A frame is an image

rendered during a known time interval.

The software infrastructure found on multimedia embedded systems consists of three layers:

multimedia applications, the multimedia framework, and the operating system. Multimedia

applications are generally platform independent since they sit on top of multimedia frame-

works that isolate the application from the platform by providing the necessary services.

Multimedia frameworks are in communication with the platform-dependent components

of the operating system. Finally, the operating system is platform dependent since it has to

communicate directly with the platform devices through drivers.

Multimedia frameworks, such as Gstreamer [Gst14] or VLC [Vid14] , offer a wide variety of

processing elements that can be combined into a pipeline. The structure and the size of this

2

1.1. Challenges of trace analysis

pipeline depend on the type of multimedia application. An example of a pipeline for a simple

media player is shown in Fig. 1.2.

Figure 1.2 – Gstreamer pipeline for a simple media player - Figure credits: [Gst14]

The advantage of using such a framework to implement multimedia applications is that the

developer can easily add, for example, support to new data formats or sources, by using

plug-ins or components (piece of software that can be added to a bigger application and used

transparently).

These components could be classified into: protocols handling, sources (for audio and video),

formats (parsers, formaters, muxers, demuxers), codecs (coders and decoders), filters (convert-

ers, mixers, effects), sinks (for audio and video). For example, the demuxer is the component

responsible for multiplexing the stream. It is responsible for extracting the contents of a given

file/stream format, for instance AVI, OGG, MPEG2, WAV.

In Fig. 1.2, we can see a source component(file-source), a format component (demuxer), two

codecs components (vorbis-decoder for audio and theora decoder for video) and two sink

components (audio-sink and video-sink).

1.1 Challenges of trace analysis

Identifying the source and fixing the cause of unexpected or undesirable behavior in software

can be a tedious, time-consuming and expensive task for developers. Even a code that is

syntactically correct and functionally complete often leads to problems such as memory leaks

or daemon tasks that can impact performance or lead to incorrect behavior. These oversights

can be difficult to reproduce and even more difficult to locate, especially in large, complex

applications. The analysis of multimedia application traces can reveal important information

to enhance program execution comprehension. Many previous work [PR11],[Pou14],[Cue13]

showed that tracing is the default debugging and validation technique when working on

embedded systems. Tracing or trace recording implies detection and storage of relevant

events during run-time, for later off-line analysis. Tracing is less intrusive than interactive

debugging and cheaper than hardware solutions [KWK10]. However typical size of traces can

3

Chapter 1. Introduction

be in gigabytes, which hinders their effective exploitation by application developers.

1.1.1 Execution trace generation

An execution trace is defined as a sequence of events that represent the important moments

in the execution of the program. Fig. 1.3 shows an example.

Figure 1.3 – An example of execution trace

Traces are sequences of timestamped events produced by an application or a system. When

detecting property violations, trace information can provide the path that led to this state,

helping in discovering the cause of a disturbance. If an exhaustive search is not feasible, incom-

plete trace information may give clues to possible system behaviors. Different techniques exist

to observe the execution of a software running on an embedded system. These techniques

range from purely software-based to hardware-supported tracing techniques [KWK10].

Software-based tracing consists in instrumenting the code and inserting print statements in

order to obtain a log of the execution. Hardware-based tracing consists in having dedicated

hardware modules, where the components of the architecture can write their traces. For

example, a bus profiler can collect tracing information and send it through a dedicated trace

port.

1.1.2 Execution trace analysis

On-line execution traces are analysed on the fly, which means that they are analysed during

the system execution. There is another alternative which is off-line, and where the sequence

of events is stored in a file, that is used later for post analysis. In this work, we use off-line

execution traces because this approach enables multiple analysis on the same execution. On-

line analysis avoids to store the trace in a file, but gets potentially slower if several correctness

properties must be checked on the same trace. In this case, it might be faster to generate the

trace and perform all verifications off-line [GM04]. Fig. 1.4 presents three stages of application

debugging techniques which depend on the moment when the verification is done. Pre-

execution analysis uses the source code, live debugging considers on-line execution traces and

post-mortem debugging works with off-line execution traces.

4

1.1. Challenges of trace analysis

Code

writing

Code

execution

Results

validation

Pre-execution analysis

Live debugging

Post-mortem debugging

Figure 1.4 – Three possibilities for application analysis - Figure credits: [Pou14]

Generally, visualization tools help in the analysis of execution traces. They offer a graphical

representation of the trace and several analysis functionalities. The latter help in analyzing the

CPU time of each process, the memory used, etc. Different techniques have been proposed

to visualize execution traces [CZvD11] and Fig. 1.5 shows an example of Trace viewer Pajè

[CdKSB00].

The fact is that, because of the huge amount of information available, it is very difficult to

Figure 1.5 – Trace viewer Pajè - Figure credits: [CdKSB00]

analyze execution traces manually. For instance, the tool Parallel MJPEG [gue10] can produce

a trace file of 7 Gigabytes for less than 5 minutes of video decoding. Another example is the

STMicroelectronics video decoding application DVBTest which can produce a trace file of

1 Gigabyte for less than 10 minutes of playback. Viewers often face to thousand of pages

representing events. It is then essential to set up improved analysis techniques which deal

with data amount.

5

Chapter 1. Introduction

Therefore, our approach is to reduce the trace size in order to allow a better interpretation

by the developers. Obviously, this size reduction should not lead to a loss of information in

the trace. It must guide the developer in his analysis by presenting a trace more accessible in

terms of events to explore.

In the rest of this chapter, we present the contributions of this thesis as well as the context in

which this thesis was carried out. Finally, we present the organization of this document.

1.2 Contributions of this thesis

In this thesis, we propose two trace processing techniques that can be very useful when de-

bugging embedded multimedia applications: The first method aims to abstract the execution

traces in order to reduce its size and allows a better exploration. The idea behind this abstrac-

tion is to group sequences of events, and to replace these groups by meaningful blocks. In

this manner, the execution trace initially seen as a sequence of events becomes a sequence of

blocks, and is significantly reduced. The second method consists in detecting errors in a trace

(where the trace is a sequence of events or blocks). The error detection is done by comparing

the trace with a reference trace. This comparison aims to extract anomalies, i.e., patterns

contained in the trace and absent in the reference trace.

Our contributions can be summarized as follows:

� Abstraction of traces. The abstraction is done by using sequences of events called

blocks. We automatically extract these blocks from the trace by exploiting sequence

mining techniques. The application of a classical mining process provides a certain

quantity of block candidates. We only keep the most promising candidate blocks, i.e.,

blocks that ensure the best coverage of the original trace. We also propose an original

method that combines into a single step the block discovering and the trace covering

phases.

� Anomaly detection by comparison of traces. We propose to automatically provide a

diagnosis by comparing two execution traces. The former is a reference trace corre-

sponding to a correct behaviour, and the later the execution trace to analyse. We first

identify a family of anomalies that are likely to occur in multimedia applications. We

choose the most common types of anomalies and design a specific dissimilarity score

for each of them. These scores help the developer to know how far the execution trace

to analyse is from the correct behaviour. This highlights the anomalies contained in the

execution trace. We propose a version of comparison on reduced size traces.

6

1.3. Outline

1.3 Outline

This thesis is organized as follows:

• Chapter 2 presents the state of the art in sequence abstraction and the most used

methods in anomaly detection by comparison of sequences.

• Chapter 3 provides a method to abstract execution trace with a set of discovered event

sequences.

• Chapter 4 proposes a dissimilarity-based comparison method to analyse event se-

quences applicable to original traces and reduced traces.

• Conclusions and some perspectives are given in Chapter 5.

In the rest of the document, the terms trace, events sequence and execution trace are used as

synonyms.

List of publications

Journal :

1 - Sihem Amer-Yahia, Noha Ibrahim, Christiane Kamdem Kengne, Federico Ulliana,

Marie-Christine Rousset, SOCLE: Towards a Framework for Data Preparation in

Social Applications, Ingénierie des Systèmes d’Information 19(3): 49-72 (2014).

International conferences & workshops :

2 - Christiane Kamdem Kengne, Léon C. Fopa, Alexandre Termier, Noha Ibrahim,

Marie-Christine Rousset, Takashi Washio, Miguel Santana, Efficiently Rewriting

Large Multimedia Application Execution Traces with few Event Sequences, In Pro-

ceedings of the 19th ACM SIGKDD international conference on Knowledge discov-

ery and data mining (pp. 1348-1356), 2013.

3 - Christiane Kamdem Kengne, Noha Ibrahim, Marie-Christine Rousset, Maurice

Tchuente, Distance-based Trace Diagnosis for Multimedia Applications: Help me

TED!, Seventh IEEE International Conference on Semantic Computing, ICSC (ac-

ceptance rate 30%), (pp. 306-309), 2013.

4 - Christiane Kamdem Kengne, Léon C. Fopa, Noha Ibrahim, Alexandre Termier,

Marie-Christine Rousset, Takashi Washio, Enhancing the Analysis of Large Multi-

media Applications Execution Traces with FrameMiner,In Data Mining Workshops

(ICDMW), IEEE 12th International Conference on (pp. 595-602), 2012.

7

Chapter 1. Introduction

Research report :

5 - Christiane Kamdem Kengne, Noha Ibrahim, Marie-Christine Rousset, Maurice

Tchuente, Distance-based Trace Diagnosis for Multimedia Applications: Help me

TED!, Research Report, (RR-LIG-045), LIG, Grenoble, France, 2013.

This thesis is conjointly done between two institutions: Grenoble University (SLIDE team), in

France and University of Yaounde I (IDASCO team) in Cameroon. This research is supported

by the FUI project Soc-Trace [ST11]

8

2 Related work

In this chapter we review the state of the art regarding the main topics concerning this thesis.

We present in Section 2.1 some recent work related to abstraction. Then in Section 2.2 we study

previous work on sequence-based anomaly detection.

Contents

2.1 Abstraction methods . 10

2.1.1 Abstraction techniques in data mining 10

2.1.2 Discussion . 14

2.2 Sequence-based anomaly detection . 16

2.2.1 Overview of semi-supervised anomaly detection techniques 16

2.2.2 Discussion . 20

9

Chapter 2. Related work

2.1 Abstraction methods

This thesis is concerned with the study of execution traces, which are usually large sequences

of low level events. Such traces have an extremely fine level of granularity, which makes them

difficult to manipulate and understand for analysts. Our goal is thus to provide meaningful

abstractions for rewriting traces with a coarser level of granularity. Data mining methods

[PNSK+06], which are designed to find information in large volumes of data, are well adapted

to discover such abstractions. One informal definition of abstraction is the process of summa-

rizing in order to have a global (or general) view of the object to abstract, instead of details

[ld14]. In the following we will survey recent work for discovering patterns in sequential data,

which will be the basis of our approach for abstracting traces.

2.1.1 Abstraction techniques in data mining

According to [HKP12], mining "interesting" patterns is one of the core data mining tasks. A

well studied measure of interest is the frequency of the pattern in the data. Frequent pat-

tern mining problem is a combinatorial problem and existing algorithms generally output

a huge number of discovered patterns. Having too many results makes the work of analysts

difficult. Using only a minimum support threshold to control the number of patterns found

has a limited effect. Recent mining methodologies tend to reduce the huge set of frequent

patterns generated in mining by focusing on reduced sets of patterns that best describe the

data. Such patterns are often qualified of summarizing, representative or utility patterns

[LZW12, SV12, TV12, KIA+11]. The first approaches for computing such set of patterns are

"two-step" approaches: first the complete set of frequent patterns is computed, then this set

is postprocessed to compute a small set of useful patterns. More recent approaches focus on

more efficient “one step” approaches which directly mine the small set of useful patterns.

I One trend is to mine summarizing patterns which are generally small sets of patterns,

containing no redundancy and which provide the optimal lossless compression of the data.

Many work[KT09, SV12, LMFC14, TV12] are based on the minimum descriptive length prin-

ciple(MDL) in order to compress data. For explaining the MDL principle, assume that two

parties P1 and P2 want to communicate, P1 wants to send event sequence S to P2 using as few

bits as possible. In order to achieve this minimization of communication cost, P1 has to select

a model M from a class of models M to describe the sequence to send. The question is then:

How to choose M? A brief formal description of MDL principle is the following:

Given a set of models M , the best model M ∈ M is the one that minimises

L(M)+L(D|M)

where L(M) is the length (in bits) of the description of M and L(D|M) is the length of the

description of the sequence when encoded with model M .

10

2.1. Abstraction methods

Krimp algorithm [VVLS11] is the pioneer algorithm in term of using MDL for identifying good

pattern sets. It uses code tables as model. A code table is a dictionary between patterns and

associated codes.

Example: (code table)

A code table has four columns. The first columns contains patterns. The second column

contains code for identifying these patterns. The third column contains codes for identifying

gaps and the last column contains codes specifying absence of gaps (See Fig. 2.1). Gaps and

non-gaps of a pattern X indicate in the final encoding of a sequence, whether or not the

symbol after X is part of a gap in the usage of X . There is no need of gaps and non-gaps for

singletons events. a, b and c do not have codes for gap.

patterns code gap non-gap
abc p ? !
ca q ? !
a a
b b
c c

Figure 2.1 – An example of code table

Given a code table, there are many ways of encoding a sequence. For more details, please refer

to [VVLS11, TV12, SV12].

Knowing a decoding scheme of the database, Vreeken et al. [VVLS11] calculate the length of

the code table and the length of the sequence S. Then, they propose an iterative strategy for

discovering good code tables directly from the data. Smets and Vreeken with their algorithm

SLIM[SV12] and Nikolaj et al. in [TV12] use also code tables. Both have similar strategies for

discovering code tables, they estimate the gain of adding a pattern in the code tables and

proceed iteratively.

In [KT09], the MDL principle is used to search the best balance between the short length of

the summary and the accuracy of the data description. In this case, the selected model M is

the segmental model that splits the sequence S into segments S1, . . . ,Sk . They propose many

greedy algorithms to compute a summary of a sequence S.

The key issue in designing an MDL-based algorithm for sequences is the encoding scheme that

determines how a sequence is compressed, given some patterns. Authors in [LMFC14] use a

dictionary-based encoding scheme, similar to code tables. They do not follow the traditional

manner of MDL principle for calculating the description length as the number of bits. They

assume that any number or character in data has a fixed length bit representation, which

requires a unit memory cell. They propose a two-step candidate-based algorithm for mining

compressing patterns, and GoKrimp, a one-step algorithm that avoids the expensive candidate

generation step.

11

Chapter 2. Related work

I Another trend is to mine representative patterns to best approximate or explain other

patterns. Kim et al. studied in [KIA+11] the problem of finding a minimum set of signature

patterns. Given a collection of objects where each element of the collection has an itemset

and a label, a pattern is a signature pattern if it appears with a single label or in a single class.

Their objective is to find a minimum set of signature patterns that make some properties

easier to find. This set is called signature pattern cover. The signature patterns, categorized

as discriminative patterns, can be mainly used in hardware design as a verification tool. The

signature pattern cover problem can be viewed as a special case of the set covering problem.

In the set covering problem, the goal is to cover all elements in a universe of elements U , using

the smallest number of sets in a collection of subsets of elements S. In the signature pattern

cover problem, let U = o1,o2, . . . ,on be the collection of all objects and let S = {sup(P) | P is a

signature pattern }. Finding a minimum signature patterns cover is equivalent to finding a

minimum set cover. However, the main difference between the two problems is that signature

patterns are not given a priori, in contrast to set covering problem. Kim et al. propose a

two-step approach and a one-step approach (or direct mining) for signature pattern mining.

Guimei et al. propose in [LZW12] three requirements that should be satisfied by ideal ap-

proaches in order to output a set of representative patterns: (i) produce a minimum number

of representative patterns, (ii) have a good efficiency, (iii) restore the support of all patterns

with error guarantee. They define a distance D(X1, X2) between two patterns X1, X2 based on

their supporting transaction sets and given a real number ε, X1 is ε-cover ed by X2 if X1 ⊆ X2

and D(X1, X2) ≤ ε. With these two main definitions, the goal is then to select a minimum set

of patterns (called representative patterns) that can ε-cover all the frequent patterns. They

assimilate the problem of finding a minimum representative pattern set to a set cover problem.

The authors first present a greedy algorithm (Mi nRPset) and claimed that it gives the best

possible polynomial time approximation algorithm for the set cover problem. They improved

the efficiency of Mi nRPset by applying three techniques: (a)Use closed frequent patterns

(frequent patterns that are not included in another patterns having exactly the same support)

only instead of frequent patterns. The motivation is that Mi nRPset can be very slow when the

number of frequent patterns is large; (b) Given a pattern X , use a particular structure called

C F P-tr ee to find the set (C (X)) of frequent closed patterns that can be ε-cover ed by X , the

hope being that the greedy algorithm can still find a near optimal solution; (c) Finally, apply a

compression technique to compress C (X). Intuitively, the fewer the number of patterns in

C (X) is, the more efficient the algorithm is. These strategies conduct to their third algorithm

called F lexRPset .

I The last trend consists in high utility pattern mining. Previous work are interested in

properties of patterns sets. High utility patterns mining rather focuses on individual pattern

properties. However in both cases, the goal is to reduce the amount of output patterns, in

order to facilitate the work of the analyst for instance. While previous approaches focused on

the "representativity" of the patterns compared to data, work on high utility pattern mining

provide an objective evaluation method (utility) of patterns. This evaluation method is used

12

2.1. Abstraction methods

to output high quality patterns. High utility patterns mining refers to the discovery of itemsets

with "utilities" higher than a user-specific minimum utility threshold, where utility is a nu-

merical value associated to items in input data. Liu et al. in [LWF12] illustrated utility pattern

mining as follows: consider a supermarket manager who wants to identify every combination

of products (itemset) with high sales revenue. An itemset has high utility if the revenue is no

less than an expected level. In a supermarket database, each item has a price and each item in

a transaction is associated with a distinct count which means the quantity of this item bought

by someone. There are seven items in the utility table (Tab. 2.1), and seven transactions in the

transaction table (Tab. 2.2).

item a b c d e f g
utility 1 2 1 5 4 3 1

Table 2.1 – Utility table (Items Price)

a b c d e f g
T1 1 2 1 1
T2 4 1 3 1 1
T3 4 2 1
T4 2 1 1
T5 5 2 1 2
T6 3 4 1 2
T7 1 5

Table 2.2 – Transaction table (Shopping transaction)

Tab. 2.3 gives utilities of some itemsets. For instance, {a,b,c} appears in transactions T2 and

T6; the utility of this itemset is then 4×1+1×2+3×1+3×1+4×2+1×1 = 21.

Itemset Utility
{a} 16

{a,b} 26
{a,b,c} 21

{a,b,c,d} 14

Table 2.3 – Itemsets utilities

The revenue (utility) of {a,b} is 26 as customers who buy {a,b} spend a total of 26 on {a,b}.

Assume that the expected revenue is 25; {a,b} is a high utility itemset but the others are not.

The anti-monotone property does not hold with the utilities of itemsets. Indeed we can see in

Tab. 2.3 that {a,b} extends {a} and has an utility higher than utility of {a}; on the other hand

{a,b,c} extends {a,b} but has lower utility.

Many studies have been done for mining high utility pattern sets (HUI) in two step as [LYC08,

TWSY10, WSTY12]. Recently some work were proposed to discover HUI without candidate

generation. For instance, J. Liu et. al in [LWF12] proposed an efficient pruning of the search

13

Chapter 2. Related work

space based on estimated utility values for itemsets. Some studies have been done to integrate

utility into sequential pattern mining, and the most known is U Span [YZC12] which defines

the problem of mining high utility sequential patterns, but the approach used is a two-step

approach, which may have difficulties to scale on very large datasets. [WLYT13] extend U Span

to episodes by proposing U P-Span for mining high utility episodes. An episode is a collection

of events, that occur relatively close to each other, in a given partial order [MTV97].

2.1.2 Discussion

We have presented approaches in the literature. In this section we discuss on some points of

these approaches, for explaining why they are not suitable for execution traces analysis.

Some previous approaches such as [KIA+11] need external information (labels) to proceed to

trace size reduction or pattern extraction. For a first processing of unknown traces where no

information is available, an approach which does not need such information is better adapted.

Tab. 2.4 compares different work in terms of input, output and goal of the main algorithms.

A relevant point of this comparison is that, the user interest claimed for each method varies

depending on the objective. Sometimes the aim is to: (i) explain data, i.e., find patterns which

categorize data; (ii)represent data, i.e. find a reduced set of patterns that restore the support

of all patterns; (iii) describe or compress data, i.e., use another coded representation of data

which allow a gain of size. (iv) obtain value from data, i.e., find patterns which maximize the

profit in a database.

Many approaches presented beforehand (section 2.1.1) focus on frequent itemsets as patterns.

In multimedia applications where a strict sequencing of processing steps has to be enforced,

an approach based on frequent sequences is better adapted.

By considering characteristics of execution traces (e.g., sequentiality) and the size of these

traces (very large); taking into account the behaviour of embedded multimedia applications

(regular steps in the process) and the need for the developer to master the size of the results

that he wants to analyse, we think that a good method must: optimize sequence mining

techniques, output a fixed number (specified by the user) of results, in order to simplify trace

exploration.

Among the existing methods and to the best of our knowledge, only half of the methods involve

sequences of events. Moreover, they do not allow to decide on the number of patterns found.

Finally no one has an objective of improving sequence analysis by compressing data.

14

2.1. Abstraction methods

In
p

u
t

O
u

tp
u

t
G

o
al

o
u

tp
u

ts
iz

e
p

ar
am

et
er

[K
T

09
]

Se
q

u
en

ce
s

se
to

fs
eq

u
en

ti
al

p
at

te
rn

s
co

m
p

re
ss

d
at

a
p

ar
am

et
er

-f
re

e
[L

Z
W

12
]

It
em

se
ts

M
in

.s
et

o
fp

at
te

rn
s

ap
p

ro
xi

m
at

e
al

lp
at

te
rn

s
p

ar
am

et
er

k
[K

IA
+ 11

]
It

em
se

ts
w

it
h

la
b

el
s

M
in

.s
et

o
fp

at
te

rn
s

ex
p

la
in

d
at

a
p

ar
am

et
er

-f
re

e
[S

V
12

]
It

em
se

ts
se

to
fp

at
te

rn
s

d
es

cr
ib

e
d

at
a

p
ar

am
et

er
-f

re
e

[T
V

12
]

Se
q

u
en

ce
s

M
in

.s
et

o
fs

eq
u

en
ti

al
p

at
te

rn
s

d
es

cr
ib

e
d

at
a

p
ar

am
et

er
-f

re
e

[Y
Z

C
12

]
Se

q
u

en
ce

s
se

to
fs

eq
u

en
ti

al
p

at
te

rn
s

o
b

ta
in

va
lu

e
o

n
d

at
a

p
ar

am
et

er
-f

re
e

[L
Q

12
]

It
em

se
ts

se
to

fp
at

te
rn

s
o

b
ta

in
va

lu
e

o
n

d
at

a
p

ar
am

et
er

-f
re

e
[L

W
F

12
]

It
em

se
ts

se
to

fp
at

te
rn

s
o

b
ta

in
va

lu
e

o
n

d
at

a
p

ar
am

et
er

-f
re

e
[W

ST
Y

12
]

It
em

se
ts

se
to

fp
at

te
rn

s
o

b
ta

in
va

lu
e

o
n

d
at

a
p

ar
am

et
er

k
[L

M
F

C
14

]
Se

q
u

en
ce

s
se

to
fs

eq
u

en
ti

al
p

at
te

rn
s

d
es

cr
ib

e
d

at
a

p
ar

am
et

er
-f

re
e

[W
LY

T
13

]
Se

q
u

en
ce

s
se

to
fe

p
is

o
d

es
o

b
ta

in
va

lu
e

o
n

d
at

a
p

ar
am

et
er

-f
re

e
[Y

Z
C
+ 13

]
Se

q
u

en
ce

s
se

to
fs

eq
u

en
ti

al
p

at
te

rn
s

o
b

ta
in

va
lu

e
o

n
d

at
a

p
ar

am
et

er
k

Ta
b

le
2.

4
–

C
o

m
p

ar
is

o
n

o
fe

xi
st

in
g

ap
p

ro
ac

h
es

.
T

h
e

p
ar

am
et

er
k

is
th

e
n

u
m

b
er

o
ff

o
u

n
d

p
at

te
rn

s.

15

Chapter 2. Related work

2.2 Sequence-based anomaly detection

Anomaly detection is an important topic which has considerable interest in many domains

such as system failure, fraud detection, software debugging, or education. Another term

referring to is outlier detection [GGAH14]. There is an extensive work on anomaly detection

techniques in sequences. These techniques are grouped in two categories: semi-supervised

anomaly detection and unsupervised anomaly detection. For the first category, one (or more)

normal (or reference) sequence is assumed and used to compare with test sequence. In the

second category, the task is to detect anomalous sequences from a database without knowing

which are normal sequences.

For multimedia applications traces, it is possible to obtain a reference trace. That is why in this

second section, we present an overview of semi-supervised anomaly detection techniques.

We go further by presenting popular techniques of distances applied on sequences. Finally,

we discuss distance-based techniques, tackled by this work.

2.2.1 Overview of semi-supervised anomaly detection techniques

[CBK12] classify these techniques into four categories: window-based techniques, Markovian

techniques, Hidden Markov-based Model techniques and similarity-based techniques.

a- Window-based techniques

For these techniques, at a specific time, a short window of symbols within the test sequence is

analyzed. Then another step is required to detect the anomaly type in the entire test sequence,

based on the analysis of the short subsequence. By analyzing a short window at a time, these

techniques try to detect the cause of possible anomaly type within one or a few windows. Fig.

2.2 presents different steps followed by these techniques.

Step 1-Extract fixed-length overlapping windows: The standard technique to obtain short

windows from a sequence is to slide a fixed-length window, one symbol at a time, along the

sequence. To explain the intuition for using techniques based on windows, let us assume

that an anomalous test sequence t contains a subsequence t ′, which is the actual cause of

anomaly. In a sliding window-based technique, if the length of the window is l , the anomalous

subsequence t ′ will occur (partly or entirely) in |t ′| + l −1 windows. Thus, the anomalous

sequence can be potentially detected by detecting at least one of such windows.

Step 2-Assign anomaly scores to windows: many techniques have been proposed to assign a

score A(wi) to a window wi . One could (i) consider the inverse of the occurrence frequency of

window; (ii) use a sequence of symbols 〈α,β〉 j called lookahead pair, such that the symbol β

occurs in the j th location after the symbol α in at least one of the windows in the reference

sequence; (iii) use a classifier to assign an anomaly label to each window.

16

2.2. Sequence-based anomaly detection

Figure 2.2 – Steps for window-based techniques

Step 3-Obtain anomaly score for the entire sequence: this global score is proportional to the

number of anomalous windows in the test sequences; [WFP99], and [HFS98] propose many

other methods to compute the overall anomaly score.

As disadvantage of these techniques, we notice the large amount of memory which could be

necessary to store all windows. Another point is that, window-based techniques are highly

dependent of the length l of the window. Setting an optimal value for l is challenging. If

l is chosen to be very small, most windows will have a high probability of occurrence in

the training sequences, while if l is chosen to be very large, most windows will have a low

probability of occurrence in the reference sequence.

We refer to a non exhaustive list of work ([GGAH14],[WFP99],[HFS98]) for more information

about window-based techniques.

b- Markovian techniques

These techniques learn a model from the reference sequences. The model is used as an

approximation of the “true” distribution that generated the normal data.

As seen in Fig. 2.3, Markovian techniques operate in two phases: training and testing.

Training involves learning the parameters of a probabilistic model of the training sequences

and testing involves computing the likelihood of the test sequence given the parameters.

Markovian techniques are usually divided into three categories ([Agg13], [GGAH14],[CBK12]):

(i) Fixed Markovian techniques: use a fixed history of length k to estimate the conditional

17

Chapter 2. Related work

Figure 2.3 – Steps for Markovian techniques

probability of a symbol in the test sequence.

(ii)Variable Markovian techniques: an issue with fixed Markovian techniques is that they force

each symbol of a test sequence to be conditioned on the previous k symbols of the sequence.

Often, the frequency of a k-length substring, i.e., (ti−k . . . ti−1) may not be sufficiently large to

provide a reliable estimate of the conditional probability of a symbol that follows this substring.

Variable Markovian techniques try to address this issue by allowing symbols to be conditioned

on a variable length history.

(iii)Sparse markovian techniques: variable Markovian techniques allow a symbol ti to be ana-

lyzed with respect to a history that could be of different lengths for different symbols; but they

still choose contiguous and immediately preceding symbols to ti ∈ t . Sparse Markovian tech-

niques are more flexible in the sense that they estimate the conditional probability of ti based

on symbols within the previous k symbols. These symbols are not necessarily contiguous or

immediately preceding to ti . In other words, the symbols are conditioned on a sparse history.

An issue with the basic fixed Markovian technique could be the huge amount of space needed

to store frequencies used to compute symbols probabilities. For variable and sparse Markovian

techniques techniques, the probability of a “truly” anomalous symbol will be boosted since

it will be conditioned on a shorter history, whereas the fixed Markovian technique will still

assign a low probability to such a symbol. Thus, the variable and sparse techniques might

suffer with higher false negative rate.

We refer to a non exhaustive list of work ([YL00],[SCA06],[LSC97], [IRBT14]) for more informa-

tion about Markovian techniques.

18

2.2. Sequence-based anomaly detection

c- Hidden Markov-based Model (HMM) techniques

Hidden Markov-based models are finite state machines widely used for sequence modeling

[CBK12]. These models use a sequence of transitions between states in a Markov chain to

generate sequences. An HMM is parameterized by a hidden state transition matrix and an

observation matrix. The three steps to obtain a HMM are: 1) for a given set of observation

sequences, learn the most likely HMM parameters which result in maximum probability for

the observation sequences, 2) for a given HMM, compute the hidden state sequence that is

most likely to have generated a given test sequence, and 3) for a given HMM, with given state

transition and observation matrices, compute the probability of a given test sequence.

One approach to use HMM techniques for anomaly detection is to (1) learn an HMM that

best describes the normal training sequences, and then (2) compute the probability of the

test sequence using the learned HMM. The negative log of the probability can be used as the

anomaly score for the test sequence. This approach is summarized in Fig. 2.4.

Hidden markov models are different from the Markovian techniques by the fact that: each

Figure 2.4 – Steps for HMM techniques

state in the Markovian techniques is well defined and is based on the last k positions of

the sequence. This state is also directly visible to the user in terms of the precise order of

transitions for a particular reference or test sequence [Agg13]. The generative behavior of the

Markovian model is always known completely. In a Hidden Markov model, the states of the

system are hidden, and not directly visible to the user.

The main assumption for HMM-based techniques is that the normal sequences are generated

from a probabilistic model (the HMM). If this assumption does not hold or the parameters are

19

Chapter 2. Related work

not estimated accurately, the HMM-based technique will not be able to effectively distinguish

between normal and anomalous sequences.

We refer to a non exhaustive list of work ([Mör06],[CBK12]) for more information about HMM

techniques.

d- Similarity-based techniques

According to [MRS08], sequence comparison has become a very essential tool in modern

molecular biology and similarity measures need to be able to capture the rearrangements

involving segments contained in the sequences. Several techniques have been proposed,

which use different similarity (or dissimilarity) measures to compare a pair of sequences.

Common (dis)similarity measures on sequences

Over the years, many measures on sequences were developed and some of them are frequently

used for purpose of anomaly detection. Hamming distance ([CCT10]), that simply counts

the number of positions where the sequences differ. The family of edit distances([DZPM09])

is motivated by string matching. The similarity between two sequences is measured by

determining the cost of transforming one into the other. The edit operations are insertion,

deletion, and substitution of a symbol and can have different costs. With unit costs for

all three operations, the Levenshtein distance ([Lev66]) is obtained. The Jaccard similarity

([CRF03]) is calculated by dividing the size of the intersection by the size of the union of the

two multisets. Euclidian distance is used for clustering in information retrieval, but also in

sequence comparison, in particular biological sequences [VA03]. DTW similarity ([ZHT06])

is especially used for time series to find an optimal alignment between two given sequences,

under certain restrictions.

The advantage of similarity-based techniques is that one can use any existing or design new

similarity measure and hence can devise a unique anomaly detection which is best suited for

a given problem. A disadvantage of similarity-based techniques is that their performance is

highly dependent on the choice of the similarity measure.

2.2.2 Discussion

In the context trace analysis of multimedia applications, it is indispensable to quickly figure

out the specific anomaly. Similarity-based techniques are more suitable for this purpose.

Given a non exhaustive overview of the literature on the subject of (dis)similarity measures on

sequences, very few distances take into account the temporal aspect. In the field of multimedia

execution traces, and more generally execution trace, each event is associated to a timestamp.

This feature is essential to analyse these sequences.

Another important point is that the type of anomaly can differs across domains, and it is

necessary to obtain the most accurate method for a data domain.

Finally, it seems that for a debugging setting, a dissimilarity measure would be more interest-

ing if it is able to reveal not only that there is an anomaly by the value of distance, but also a

20

2.2. Sequence-based anomaly detection

diagnosis for a family of anomalies in the domain. To the best of our knowledge, existing work

on dissimilarity measures do not offer this option.

Our ambition is to propose a temporal distance that is adapted for trace comparison. We want

an approach which returns a diagnosis to the user, added to the effective value of distance.

Fig. 2.5 shows the existing sequence-based anomaly detection techniques and highlights

dissimilarity measures, which is the category corresponding to our contribution.

Figure 2.5 – Classification of sequence-based techniques

21

3 A method to abstract event sequences

In this chapter, we study the problem of finding a set of event subsequences that allows a

rewriting of the original trace. Covering the trace with such subsequences of events, called blocks

hereafter, can help the developers to better understand the trace. The problem of computing

such set of blocks, for rewriting a given sequence into a minimum length is NP-hard. Naive

approaches lead to prohibitive running times that prevent the analysis of real world traces.

We propose a practically efficient approach for mining blocks. Experiments show that our

algorithm can analyse traces of up to two hours of video in practical applications. We also show

experimentally the quality of the mined blocks, and the effectiveness to understand the structure

of practical and massive trace data.

Contents

3.1 Preliminaries and problem statement . 27

3.1.1 Notations . 27

3.1.2 Definitions . 27

3.1.3 Problem statement . 30

3.2 Finding maximum covering of frames . 31

3.2.1 Sequential pattern mining . 31

3.2.2 Approaches . 32

3.3 Experiments . 41

3.3.1 Experimental settings . 41

3.3.2 Comparison of scalability . 42

3.3.3 Comparison of coverage . 43

3.3.4 Practical trace analysis . 45

3.4 Conclusion . 47

23

Chapter 3. A method to abstract event sequences

Context

We recall that the challenge in using multimedia execution traces is that their size can easily

reach gigabytes for only few minutes of Audio/Video decoding.

Various studies have proposed techniques to reduce the volume of traces ([Ste03],[WH]) with

sampling methods. Indeed, sampling is a commonly used approach for selecting a subset of

data to be analyzed.

These techniques can obtain a reduced execution trace that is not always representative of

the entire trace [PSHLM11]. [PHL11] and [HEJ09] state that the general consensus in the trace

analysis community is to provide more effective trace abstraction techniques. Our approach to

provide an abstraction of event sequences is to exploit the following limited domain knowledge.

We are dealing with traces of Audio/Video applications. In such applications, the decoding

process follows a regular stream based on frames.

A frame is a semantic indicator on a regular unit of treatment, which could be easily given by

the domain expert [VN12].

A frame is sometimes the main loop of the process. In this case, it is delimited by a start event

and an end event (see Fig. 3.1(b)).

A frame could also follow a temporal delimitation (see Fig. 3.1(c)) or a more complex delimita-

tion (see Fig. 3.1(d)).

24

3
5
3
4
3
.9

9
9
9
1
6
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
3
.9

9
9
9
1
9
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
1
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
8
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

0
9
9
1
6
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

0
9
9
1
9
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

0
9
9
2
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

0
9
9
2
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

0
9
9
3
9
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

1
9
9
1
4
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
7
 _

_
s
w

it
c
h
_
to

:T
e
D

m
x
B

W
Q

8
e
6
0
f2

c

3
5
3
4
4
.0

2
9
9
2
2
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

u
:0

3
5
3
4
4
.0

2
9
9
2
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

2
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
1

3
5
3
4
4
.0

3
9
9
1
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

4
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

4
9
9
1
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.0

4
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.0

4
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

5
9
9
1
3
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
4
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
7
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
2
2
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

6
9
9
2
4
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

6
9
9
3
4
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

7
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

7
9
9
1
8
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

7
9
9
4
1
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
2
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.2

9
9
9
3
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

0
9
9
1
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.3

0
9
9
2
4
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
2
7
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.3

0
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.3

1
9
9
1
3
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

2
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.3

2
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.3

2
9
9
2
3
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

1
9
9
2
5
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

1
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.5

3
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.5

4
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

4
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

4
9
9
2
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.5

4
9
9
2
5
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.5

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

5
9
9
1
3
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
4
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

6
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

6
9
9
3
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

7
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

7
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

7
9
9
3
0
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.5

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
3
7
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

(a
)

A
ra

w
tr

ac
e,

ti
m

es
ta

m
p

s
ar

e
gi

ve
n

in
se

co
n

d
s

3
5
3
4
3
.9

9
9
9
1
6
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
3
.9

9
9
9
1
9
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
1
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
8
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

0
9
9
1
6
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

0
9
9
1
9
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

0
9
9
2
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

0
9
9
2
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

0
9
9
3
9
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

1
9
9
1
4
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
7
 _

_
s
w

it
c
h
_
to

:T
e
D

m
x
B

W
Q

8
e
6
0
f2

c

3
5
3
4
4
.0

2
9
9
2
2
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

u
:0

3
5
3
4
4
.0

2
9
9
2
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

2
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
1

3
5
3
4
4
.0

3
9
9
1
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

4
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

4
9
9
1
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.0

4
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.0

4
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

5
9
9
1
3
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
4
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
7
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
2
2
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

6
9
9
2
4
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

6
9
9
3
4
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

7
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

7
9
9
1
8
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

7
9
9
4
1
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
2
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.2

9
9
9
3
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

0
9
9
1
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.3

0
9
9
2
4
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
2
7
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.3

0
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.3

1
9
9
1
3
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

2
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.3

2
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.3

2
9
9
2
3
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

1
9
9
2
5
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

1
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.5

3
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.5

4
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

4
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

4
9
9
2
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.5

4
9
9
2
5
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.5

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

5
9
9
1
3
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
4
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

6
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

6
9
9
3
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

7
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

7
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

7
9
9
3
0
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.5

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
3
7
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

F
1

F
2 F
3

F
4

F
5

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

s
y
s
_

re
a

d
:t

s
_

re
c
o

rd

s
y
s
_

re
a

d
:t

s
_

re
c
o

rd

s
y
s
_

re
a

d
:t

s
_

re
c
o

rd

s
y
s
_

re
a

d
:t

s
_

re
c
o

rd

s
y
s
_

re
a

d
:t

s
_

re
c
o

rd

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

(b
)

Si
x

fr
am

es
d

el
im

it
ed

b
y

a
st

ar
te

ve
n

t=
sy

s_
w

ri
te

:t
s_

re
co

rd
an

d
an

en
d

ev
en

t=
sy

s_
re

ad
:t

s_
re

co
rd

3
5
3
4
3
.9

9
9
9
1
6
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
3
.9

9
9
9
1
9
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
1
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
8
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

0
9
9
1
6
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

0
9
9
1
9
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

0
9
9
2
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

0
9
9
2
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

0
9
9
3
9
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

1
9
9
1
4
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
7
 _

_
s
w

it
c
h
_
to

:T
e
D

m
x
B

W
Q

8
e
6
0
f2

c

3
5
3
4
4
.0

2
9
9
2
2
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

u
:0

3
5
3
4
4
.0

2
9
9
2
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

2
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
1

3
5
3
4
4
.0

3
9
9
1
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

4
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

4
9
9
1
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.0

4
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.0

4
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

5
9
9
1
3
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
4
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
7
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
2
2
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

6
9
9
2
4
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

6
9
9
3
4
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

7
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

7
9
9
1
8
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

7
9
9
4
1
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
2
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.2

9
9
9
3
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

0
9
9
1
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.3

0
9
9
2
4
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
2
7
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.3

0
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.3

1
9
9
1
3
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

2
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.3

2
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.3

2
9
9
2
3
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

1
9
9
2
5
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

1
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.5

3
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.5

4
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

4
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

4
9
9
2
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.5

4
9
9
2
5
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.5

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

5
9
9
1
3
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
4
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

6
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

6
9
9
3
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

7
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

7
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

7
9
9
3
0
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.5

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
3
7
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

F
1

F
2

D
u

ra
ti
o

n
 =

3
0

0
m

s

D
u

ra
ti
o

n
 =

3
0

0
m

s

(c
)

Tw
o

fr
am

es
w

h
ic

h
ar

e
se

q
u

en
ce

o
fe

ve
n

ts
o

cc
u

rr
in

g
ev

er
y

30
0m

s

3
5
3
4
3
.9

9
9
9
1
6
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
3
.9

9
9
9
1
9
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
1
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
3
.9

9
9
9
3
8
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

0
9
9
1
6
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

0
9
9
1
9
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

0
9
9
2
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

0
9
9
2
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

0
9
9
3
9
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

1
9
9
1
4
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

2
9
9
1
7
 _

_
s
w

it
c
h
_
to

:T
e
D

m
x
B

W
Q

8
e
6
0
f2

c

3
5
3
4
4
.0

2
9
9
2
2
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

u
:0

3
5
3
4
4
.0

2
9
9
2
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

2
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
1

3
5
3
4
4
.0

3
9
9
1
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

4
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

4
9
9
1
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.0

4
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.0

4
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

5
9
9
1
3
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
4
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
1
7
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.0

6
9
9
2
2
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.0

6
9
9
2
4
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

6
9
9
3
4
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.0

7
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.0

7
9
9
1
8
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.0

7
9
9
4
1
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.0

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.0

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
1

3
5
3
4
4
.0

8
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
2

3
5
3
4
4
.0

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.0

9
9
9
2
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.2

9
9
9
3
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

0
9
9
1
9
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.3

0
9
9
2
4
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.3

0
9
9
2
7
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.3

0
9
9
3
8
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.3

1
9
9
1
3
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.3

2
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.3

2
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.3

2
9
9
2
3
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

1
9
9
2
5
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

1
9
9
3
5
 I
n
te

rr
u
p
t:
G

IC

d
is

p
la

y
lin

k

3
5
3
4
4
.5

3
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

v
s
y
n
c
0

3
5
3
4
4
.5

4
9
9
1
5
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

4
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

4
9
9
2
3
 _

_
s
w

it
c
h
_
to

:k
w

o
rk

e
r/

0
:1

3
5
3
4
4
.5

4
9
9
2
5
 _

_
s
w

it
c
h
_
to

:H
D

M
IR

X
_
S

ig
n
a
l_

M

3
5
3
4
4
.5

4
9
9
3
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

5
9
9
1
3
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
4
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
1
7
 s

y
s
_
w

ri
te

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

6
9
9
2
2
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

6
9
9
2
5
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

6
9
9
3
5
 s

y
s
_
p
o
ll:

ts
_
re

c
o
rd

3
5
3
4
4
.5

7
9
9
1
5
 _

_
s
w

it
c
h
_
to

:i
d
le

3
5
3
4
4
.5

7
9
9
1
8
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

7
9
9
3
0
 I
n
te

rr
u
p
t:
G

IC

M

D
T

P
_
0

3
5
3
4
4
.5

8
9
9
1
6
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
1
9
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
2
4
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

8
9
9
2
7
 I
n
te

rr
u
p
t:
G

IC

e
th

0

3
5
3
4
4
.5

8
9
9
3
7
 S

o
ft
IR

Q
:n

e
t_

rx
_
a
c
ti
o
n

3
5
3
4
4
.5

9
9
9
1
5
 _

_
s
w

it
c
h
_
to

:t
s
_
re

c
o
rd

3
5
3
4
4
.5

9
9
9
1
8
 s

y
s
_
re

a
d
:t
s
_
re

c
o
rd

F
1

F
2

D
u

ra
ti
o

n
 >

=
2

0
0

m
s

D
u

ra
ti
o

n
 >

=
2

0
0

m
s

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

s
y
s
_

w
ri
te

:t
s
_

re
c
o

rd

(d
)

Tw
o

fr
am

es
w

h
ic

h
ar

e
se

q
u

en
ce

o
fe

ve
n

ts
o

cc
u

rr
in

g
b

et
w

ee
n

tw
o

co
n

se
cu

ti
ve

sy
s_

w
ri

te
:t

s_
re

co
rd

ev
en

ts
,

w
h

en
th

ei
r

ti
m

e
ga

p
≥

20
0m

s

25

Chapter 3. A method to abstract event sequences

Contributions

In this chapter, an execution trace is split into frames. We investigate an approach for trace

rewriting. This rewriting aims to simplify its exploration. The approach is based on covering

frames by blocks that are subsequences of low-level events. More precisely, given a set of

frames, the problem is to discover a given (small) number of blocks that cover (without

overlaps) as much as possible each frame of the input set, thus making possible to rewrite

them using blocks. Fig. 3.1 illustrates a trace with frames and blocks.

Figure 3.1 – A trace with blocks

The main contribution of this chapter consists in several efficient algorithms to discover

blocks. To the best of our knowledge, these algorithms are the first that combine optimization

techniques and pattern mining techniques in order to find blocks that provide the best cover-

age of the set of frames. These algorithms are mutually different in the sense they discover

candidate blocks, either as a preliminary step independent of the coverage test, or combined

with the coverage test. We propose some greedy approaches for scalability and validate them

on gigabyte-sized traces.

RoadMap

This chapter is organized as follows: Section 3.1 states the problem and briefly gives some

notations and important definitions. In Sections 3.2, we present our approaches based on

greedy algorithms. Section 3.3 reports on experiments done on real traces of multimedia

applications. We conclude in Section 3.4.

26

3.1. Preliminaries and problem statement

3.1 Preliminaries and problem statement

In this section we give the notations and definitions necessary to model our problem. As our

domain is strongly related to frames, we will consider our granularity level to be a frame. Each

block has to be related to a frame and meaningful in the frame decoding process.

Remark: As we have seen before, frames in a trace can be separated by out-of-frames events.

9.5845 Switch in Fig 3.1 is an example of out-of-frame event. This splitting into frames is the

first preprocessing task, and our interest is focused on the set of the obtained frames and not

on the out-of-frame events. In practice, the events between two consecutive frames generally

represent system events, which are out of the scope of this study.

3.1.1 Notations

Let Σ be a set of events. A block is a non empty sequence of events. A timestamped event is a

pair (t ,e) where t ∈N is a timestamp and e is an event. Frames are sequences of timestamped

events and a trace is a sequence of frames ordered by timestamps. The size of a sequence Q,

denoted by ‖Q‖, is the total number of events that it contains.

Example 1: In Fig. 3.2(a), the trace has three frames F1,F2,F3. Σ= {A,B ,C ,D}. F1 consists of

four events: ‖F1‖ = 4. In the same manner, ‖F2‖ = 3, and ‖F3‖ = 3.

For the three blocks B1 = 〈A〉, B2 = 〈B ,D〉 and B3 = 〈C〉, in Fig. 3.2(b):

‖B1‖ = 1, ‖B2‖ = 2 and ‖B3‖ = 1. F1 can be rewritten as the sequence 〈B1,B2,B3〉.

(a) - A trace with 3
frames F1,F2,F3

(b) - The frame F1 with
3 blocks: B1 = 〈A〉,B2 =
〈B ,D〉,B3 = 〈C〉

Figure 3.2 – Example of trace, frames and blocks

3.1.2 Definitions

A block can occur at several places in a frame. To distinguish them, we first introduce the

occurrence time of a block in a frame.

Definition 1. Let B = 〈e1
B , . . . ,ev

B 〉 be a block and let F = 〈(t1,e1
F), . . . , (tn ,en

F)〉 be a frame. B

27

Chapter 3. A method to abstract event sequences

occurs in F (denoted B v F) between timestamps i and i + v iff:

∀ j ∈ [i , i + v], e j
F = e j−i+1

B .

i is then called an occurrence time of B in F .

Example 2: In Fig. 3.2(a), B1 = 〈B ,D〉 occurs in F1 between timestamps 2 and 3 (occurrence

time 2); it occurs in F2 between timestamps 6 and 7 (occurrence time 6).

We focus on frames to cover event sequences within each frame by blocks; so we forbid: 1) to

have several consecutive frames covered by a big block ; 2) to have a block that covers the end

of a frame and the beginning of the next frame. In this setting, blocks of the covering can only

occur inside individual frames. The global coverage of the set of frames can thus be expressed

by a series of local coverages of each of the frames. A local coverage is a sequence of blocks

taken from a given set of blocks, which satisfies the constraints stated below.

Definition 2. Given a frame F and a set of blocks S, a sequence of blocks C = 〈B1, . . . ,Bm〉 is a

local coverage of F , with ∀i ∈ [1,m] Bi ∈ S, if and only if all blocks in C occur in F in a non

overlapping manner, and in order given by C .

More formally, for each Bi ∈C , let φi be the occurrence time of Bi in F , the following relation

holds:

∀i ∈ [1,m −1], φi +‖Bi‖ ≤φi+1

Note that the Bi are not necessarily distinct blocks: the same block can appear several times in

a local coverage. Moreover, for a given F and S, there may be many local coverages satisfying

the definition.

Example 3: In Fig. 3.2(b), C = 〈B1,B2〉 occurs in F1, and so is a local coverage of F1 when

considering S = {B1,B2,B3}.

With the above definition, a coverage of a set of frames is dependant of locale coverage of each

frame of the set. We define a coverage over F = {F1, . . . ,Fl } using a set of candidate blocks S as

a set of the local coverages of the frames.

Definition 3. Let S be a set of candidate blocks {B1, . . . ,Bn} and F = {F1, . . . ,Fl } be a set of frames.

A coverage of F using S is a set {C1, . . . ,Cl } such that ∀i ∈ [1, l], Ci is a local coverage of Fi using

blocks in S.

Based on the above definition, there may exist frames Fi such as their local coverage Ci is the

empty sequence. Such frames contain no blocks of S.

28

3.1. Preliminaries and problem statement

The covering rate of a coverage is the proportion of events in the frames of a trace file that are

covered by the blocks in the coverage.

Definition 4. Let C = {C1, . . . ,Cl } be a coverage of a set of frames F = {F1, . . . ,Fl }. The covering

rate of C over F is defined as follows:

cover Rate(C ,F) =
∑l

i=1

∑vi

j=1 ‖B i
j‖∑l

i=1 ‖Fi‖

where B i
j is the j-th block of Ci and vi is the number of blocks of Ci .

Example 4: In Fig. 3.3, the set of frames is F = {F1,F2,F3}.

For the set of candidate blocks S = {〈A,B〉,〈B ,D〉, 〈D,C〉}, a coverage of F is C = {C1,C2,C3},

with C1 = 〈〈B ,D〉〉, C2 = 〈〈B ,D〉〉, C3 = 〈〈D,C〉〉
cover Rate(C ,F) is 2+2+2

10 = 0.6

Figure 3.3 – A set of frames with a coverage:{〈〈B ,D〉〉, 〈〈B ,D〉〉, 〈〈D,C〉〉}

Because a set of candidate blocks S may lead to many local coverages of the same frame (Def.

2), it may also lead to many coverages for a set of frames. We define the coverage rank of S on

F as the maximum rate of all the coverages that can be built from the set S.

Definition 5. Let S be a set of blocks, F be a set of frames and let C = {C1, . . .Cp } be the set of

all coverages of F using blocks in S. The coverage rank of S on F is defined as follows:

cover Rank(S,F) = M ax
C

cover Rate(C ,F)

Example 5: The coverage rank of S on the set of frames of Fig. 3.3 is 0.8 with the coverage

{〈〈A,B〉,〈D,C〉〉,〈〈B ,D〉〉,〈〈D,C〉〉}

29

Chapter 3. A method to abstract event sequences

Remark: ∀ S,F , 0 ≤ cover Rank(S,F) ≤ 1

Given a set of frames F , we can compare the coverage ranks of different candidate blocks

S having a fixed size k, and choose the candidate block S that maximizes the coverage rank.

Such a set of blocks, with size k, is called k-most representative block set (denoted k-MRBS),

and its elements, the most representative blocks (noted MR-blocks). The most representative

blocks in a k-most representative block set provide the maximum power of coverage on the set

of frames for any combination of k blocks.

Definition 6. In a family {S1, . . . ,Sq } of sets of blocks where all sets have an identical size k, a

k-most representative block set is a set Si , satisfying:

i = ar g max
j∈[1,q]

cover Rank(S j ,F)

Example 6: Let us consider Fig. 3.3. Assuming that 〈C〉, 〈A,B〉, 〈B ,D〉, and 〈D,C〉 are frequent

subsequences for the set of frames; let us consider the following sets consisting of 3 blocks:

S1 = {〈C〉,〈B ,D〉,〈D,C〉}, S2 = {〈C〉,〈A,B〉,〈D,C〉}, S3 = {〈C〉,〈A,B〉〈B ,D〉},

S4 = {〈D,C〉,〈A,B〉〈B ,D〉};

The coverage rank of these sets are: cover Rank(S1,F) = 0.8, cover Rank(S2,F) = 0.9,

cover Rank(S3,F) = 0.7, cover Rank(S4,F) = 0.8;

S2 is then the 3-most representative block set (3-MRBS).

3.1.3 Problem statement

The problem that we consider is the following:

Given as input a set of frames F and a number k, our goal is to output a k-most representa-

tive blocks set S that maximizes the coverage rate of F .

The problem is then to rewrite each frame into a short description with a set of k blocks. These

blocks should represent some main regular sub-parts (like the initialization step or the audio

decoding step) of frames. Such sub-parts are likely to be frequent. They can thus be discovered

with frequent sequence mining algorithms [ZXHW10].

This problem is a variant of the packing problem [Ege08] where one wishes to find a placement

of items within one or several larger objects. One common packing problem is the one-

dimensional knapsack problem. For this basic version, we are given a knapsack with a weight

capacity W , a set of items I , each item from I having a weight and a profit-value assigned to it.

The objective is to determine the subset of items which can be packed in the knapsack without

violating the weight capacity limit, such that the sum of the profits of the items from the subset

is maximal. The capacity constraint ensures that all items can fit inside the knapsack without

“overlap”. The problem is illustrated on Fig. 3.4. The multiple knapsack problem, is a variation

of the knapsack problem where there are several knapsacks to fill.

30

3.2. Finding maximum covering of frames

Figure 3.4 – A knapsack with weight limit must be filled with the most profitable set of items
up to limit.- credits picture [wik14]

In our case the objects are frames, and the items are blocks. An additional constraint in our

setting is that the location of each type of item is constrained: a block can only cover specific

places of the frames. An additional difficulty of our case is that the items, i.e. the blocks, are

not given as input, but must be computed from the data.

The packing problem is a NP-hard problem. There is no known generic algorithm for global

optimization of this problem [Ege08].

In the next section, we propose several greedy approximation algorithms for the frames

coverage problem.

3.2 Finding maximum covering of frames

The problem of finding a limited set of blocks allowing to maximally cover a set of frames can

be decomposed into two subproblems:

• Find a large set S0 of “candidate” blocks that are subsequences of frames

• Find S ⊂ S0 such that |S| = k and the coverage of the frames is maximized by the blocks

of S

These two subproblems could be solved separately, or solved simultaneously in order to

decrease execution time.

3.2.1 Sequential pattern mining

In the context of multimedia application debugging, particularly video decoding, a frame

decoding generally follows the same procedure. A good heuristic for the discovery of the

31

Chapter 3. A method to abstract event sequences

blocks is then to assume that the blocks are frequent subsequences in the set of frames.

We apply frequent pattern mining algorithms in order to tackle the first subproblem of finding

event subsequences in frames. A frequent pattern is a pattern (a set of items, subsequences,

substructures, etc.) that occurs frequently in a data set. Frequent pattern analysis was moti-

vated by the objective of finding inherent regularities in data. Given a set of sequences and

given a minimum support threshold, the sequential pattern mining consists in finding the

complete set of frequent subsequences.

We are interested in strict sequences where it means that no gap is allowed. The patterns are

made up of consecutive events, without possibility for relaxing the order constraint. We do not

consider episodes, which are collection of events, that occur relatively close to each other, in a

given partial order [MTV97]. In practice, we will use Pr o f Span algorithm [ZXHW10]. Other

algorithms could be used as the adapted versions for strict sequences of GSP ([SA96]) and

Pr e f i xSpan([PPC+01]) algorithms.

3.2.2 Approaches

a- Two step approaches

A naive approach consists in solving these two subproblems separately. The candidate blocks

are first obtained as the result of a sequence mining algorithm returning the set of consecutive

events that occur frequently in the set of frames in a trace file. In this section we explain how

to obtain the blocks that maximally cover the frames.

(i)- CompleteBaseline Algorithm

A naive idea to obtain the k-most representative blocks set is to first generate all sets consisting

Algorithm 1 CompleteBaseline
Input: A set of frames F , an integer k, a frequency threshold ε, minimum block size m
Output: The complete set S of k-most representative blocks sets

1: S0 ← computeF r equentSequences(F ,ε,m)
2: SS ← {Si |Si ⊆ S0, |Si | = k} {where |Si | means the number of blocks in Si }
3: max ← 0; S ← {;}
4: for each Si ∈ SS do
5: d ← cover Rank(Si ,F)
6: if d > max then
7: S ← {Si }; max ← d
8: else if d = max then
9: S ← S ∪ {Si }

10: end if
11: end for
12: return S

of k blocks respectively, and then find among them the set that maximizes the cover Rank. The

algorithm for this simple method, termed CompleteBaseline, is presented above (Algorithm 1).

32

3.2. Finding maximum covering of frames

Although CompleteB asel i ne Algorithm is simple and ensures that we obtain all exact so-

lutions, it has an exponential time complexity : the number of subsets in SS in line 2 is C k
n

where |S0| = n. Even for a reasonable dataset size, this method is not practically applicable.

Assume k = 5 and n = 100 for instance, there is 776,160 subsets in SS. Therefore, we introduce

a greedy algorithm to avoid this costly enumeration of all subset candidates.

(ii)- NaiveBaseline Algorithm

A simple greedy algorithm can be used to choose the k frequent sequences of S0 that maximize

coverage. We call this approach NaiveBaseline and it is depicted in Algorithm 2.

Algorithm 2 NaiveBaseline

Input: A set of frames F , an integer k, a frequency threshold ε, minimum block size m
Output: A set S of frequent sequences giving a local optimum of coverage over F , with |S| = k

1: S0 ← computeF r equentSequences(F ,ε,m)
2: S ← g r eed yC hooseBl ocks(S0,F ,k)
3: return S

S0 contains all frequent sequences from the set of frames. This set is fed into the greedy

algorithm, which produces the solution in line 2.

Algorithm 3 greedyChooseBlocks

Input: A set of frequent sequences PatPool , a set of frames F , a maximal number of blocks k
Output: A set Snew ⊆ PatPool of frequent sequences that gives a local optimum of coverage of
F ′ (parts of F not already covered by the blocks of S), with |Snew | ≤ k

1: F ′ ←F

2: Snew ←;
3: while PatPool 6= ; and |Snew | < k do
4: B ′ ← ar g maxB∈PatPool (cover Rank({B},F ′))
5: // by definition of cover Rank, B ′ is non-overlapping with all blocks of Snew

6: Snew ← Snew ∪ {B ′}
7: OB ← {P | P ∈ PatPool ,over l ap(P,B ′)}
8: PatPool ← PatPool \OB
9: Remove from F ′ all instances of B ′

10: end while
11: return Snew

We briefly review the function g r eed yC hooseBl ocks, presented in Algorithm 3. It is a stan-

dard greedy algorithm: the algorithm is given a target number of blocks k, and iterates as long

as its solutions has less than k blocks and has not exhausted patterns of PatPool . At each

iteration it chooses the block B ′ that gives best coverage in line 4 and adds it to the solution

Snew . The algorithm then marks all blocks of PatPool overlapping B ′ (they cannot be part of

the solution any longer), and all instances of B ′ from a projection of the frames, in order to

avoid doing computations for already covered parts.

33

Chapter 3. A method to abstract event sequences

The disadvantage of this approach is that it has a prohibitive computation time. Computing

the frequent sequences (S0) has an exponential time complexity in the number of events

in the frames, and can output thousands, even millions of frequent sequences. The greedy

algorithm is then confronted with a very large combinatorial search space, thus requiring high

computation time. In our experiments, finding blocks for rewriting a small set of 200 frames

(less than 10 seconds of video) took more than 10 hours on a standard computer. This simple

approach do not scale to real world multimedia traces having tens of thousands of frames,

and cannot be exploited to help multimedia application developers.

To address this limitation, we propose several approaches, which are based on the following

ideas: 1) the greedy algorithm should have a considerably smaller search space, i.e. receive

several orders of magnitude less frequent sequences to choose from ; 2) the number of frequent

sequences should be reduced by considering coverage constraints.

(iii)- RandomBaseline Algorithm

An aggressive reduction in the number of input frequent sequences given to the greedy algo-

rithm may prevent to find a solution with k elements. All the approaches that we propose are

based on an iterative process, where in each iteration a set of frequent sequences is generated,

then passed to the greedy algorithm. If the solution found has k blocks the algorithm stops,

else it continues to further add extra blocks having large coverages until the number of blocks

reaches k.

In order to illustrate this iterative process, consider the pseudo code of Algorithm 4 below.

Algorithm 4 RandomBaseline

Input: A set of frames F , an integer k, a frequency threshold ε, minimum block size m, size of
greedy algorithm input `
Output: A set S of frequent sequences giving a local optimum of coverage over F , with |S| = k

1: S ←;
2: All F r qSeq ← computeF r equentSequences(F ,ε,m)
3: while |S| < k and All F r qSeq 6= ; do
4: PatPool ← randomly get ` frequent sequences from All F r qSeq
5: Snew ← g r eed yC hooseBl ocks(PatPool ,F ,k −|S|)
6: S ← S ∪Snew

7: F ← Remove all blocks of Snew from F

8: All F r qSeq ← All F r qSeq \ PatPool
9: end while

10: return S

This algorithm is still a baseline because it only exploits intuition 1) above when the size

of the greedy algorithm input ` is much less than the size of all frequent sequences from

frames: `<< |All F r eqSeq |. As in the NaiveBaseline approach, the complete set of frequent

sequences All F r qSeq is computed beforehand in line 2. Then in the iteration of lines 3-9, a

34

3.2. Finding maximum covering of frames

set PatPool of fixed size ` (user given) is taken from All F r qSeq (line 4). This set is fed into

the greedy algorithm, which produces (a part of) the solution in line 5. Blocks in the solution

are removed from the frames (line 7), and if the solution does not have k blocks the algorithm

continues. Note that in some rare cases (for example when |All F r qSeq | is small, or when k

is set too large), the algorithm may not find a solution. Although such cases are unlikely to

happen on real data, should they happen, the user would have to decrease k and/or decrease

the support threshold ε.

This g r eed yC hooseBl ocks algorithm guarantees the non-overlapping of the blocks in Snew :

they will make a proper coverage of F according to Def. 3. However, it is not guaranteed that

this coverage will have the highest cover Rank value, as the coverage is only estimated on the

new block being added at each iteration, and not globally on the set of blocks. In line 4 of

g r eed yC hooseBl ocks algorithm (Algorithm 3), we use the heuristic of adding first blocks of

highest coverage. This heuristic has very good practical results, as experimentally shown in

Section 3.3. Moreover, it avoids the huge computational price of an exhaustive computation

of the best cover Rank.

b- One step approaches

We now have the necessary material to present an improvement of baseline approaches.

First, recall that the main difference between N ai veB asel i ne and RandomB asel i ne is

that RandomBaseline does not consider all possible frequent patterns at once in the greedy

algorithm: it proceeds iteratively, considering at each iteration a small random set PatPool ⊂
All F r eqSet . This should improve the computation time of the greedy algorithm, but because

patterns of PatPool are choosen at random, the coverage of the solution output may be far

from optimal.

Our contribution thus consists in two approaches, coined OneStepMultSon and OneStepOneSon,

which follow an iterative structure similar to RandomB asel i ne, but where, by exploiting intu-

ition 2) on previous page (reduce the number of frequent sequences), the choice of PatPool

is improved. In these approaches, PatPool is guaranteed to contain blocks that all have high

coverage, and that are already known to participate together in at least one local coverage.

(i)- OneStepMultSon Algorithm

The intuition is to avoid to output all the frequent patterns. The search for frequent patterns

is restricted to a frame and only patterns which "promise" good coverage are kept. Fig. 3.5

illustrates the pattern growth of this algorithm. A frame F 2 is randomly chosen from the set of

3 frames. The patterns of size two at least, occurring in two frames at least are found. However,

the output is only frequent patterns that provide better coverage than the patterns they extend.

35

Chapter 3. A method to abstract event sequences

B C A F A C A I E F A E B I C A I C A F I E B I C A F E C A F U F A E

F1 F2 F3

(a) values ({v1, v2}) for each pattern is a couple of v1= frequency
and v2=number of events covered by the pattern. C A occurs in all
frames and covers 12 events

(b) Output patterns in bold

Figure 3.5 – Pattern growth in OneStepMultSon algorithm

The pseudo-code for OneStepMultSon is given in Algorithm 5.

We first present the approach used in OneStepMultSon, by explaining function g etF r amePat ter nsMS,

whose pseudo-code is given in Algorithm 6. This function is very similar to a classical pattern

growth algorithm. However, there are two key differences with traditional pattern growth:

• all the patterns found are necessarily rooted in a random frame f , which severely

restricts the search space

• for a given “seed” pattern of pattern growth (see below), the output is not all the frequent

patterns extending this seed pattern, but only those extensions that provide better

coverage than the patterns they extend.

The first step, shown in line 2 of Algorithm 6, is to find pattern growth “seeds”. It is done by

computing all subsequences of length m in the frame f . For each of these seeds, its extension

is computed by the procedure pat tGr ow th called in line 4. This procedure is shown in lines

7-21. It takes as input a pattern P , and modifies the final output PatPool . First the frequency

of the P is tested (line 9). If P is frequent, its extensions in f are computed (line 11), i.e. all

36

3.2. Finding maximum covering of frames

Algorithm 5 OneStepMultSon

Input: A set of frames F , an integer k, a frequency threshold ε, minimum block size m
Output: A set S of frequent sequences optimizing coverage over F , with |S| = k

1: S ←;
2: ∀ f ∈F f .mar k = f al se
3: while |S| < k and ∃ f ∈F s.t. f .mar k = f al se do
4: f ← r andom({ f ∈F | f .mar k = f al se})
5: PatPool ← g etF r amePat ter nsMS(f ,F ,ε,m)
6: Snew ← g r eed yC hooseBl ocks(PatPool ,F ,k −|S|)
7: S ← S ∪Snew

8: F ← Remove all blocks of Snew from F

9: f .mar k ← tr ue
10: end while
11: return S

Algorithm 6 getFramePatternsMS

Input: A frame f ∈F , a set of frames F , a frequency threshold ε, minimum block size m
Output: A set PatPool of coverage-maximal frequent sequences (each of length ≥ m)
occurring in f and frequent in F

1: PatPool ←;
2: Poolm ← set of all sequences of consecutive events of f of length m
3: for all P ∈ Poolm do
4: pattGrowthMS(P,ε,F ,PatPool)
5: end for
6: return PatPool

7: procedure pattGrowthMS(in P,ε,F , in/out PatPool)
8: begin
9: if i sF r equent (P,ε,F) = tr ue then

10: cp ← cover Rank({P },F)
11: E xtP ← {e ∈ f | P +e is a sequence in f }
12: C hi ldP ← {P +e | e ∈ E xtp s.t. cover Rank({P +e},F) ≥ cp }
13: if C hi ldP 6= ; then
14: for all P ′ ∈C hi ldP do
15: pattGrowthMS(P ′,ε,F ,PatPool)
16: end for
17: else
18: PatPool ← PatPool ∪ {P }
19: end if
20: end if
21: end // procedure pattGrowthMS

37

Chapter 3. A method to abstract event sequences

occurrences of P plus one event e are computed in f . The extensions that have a higher or

equal coverage than P (line 12) are explored recursively in line 15. If none exist, P is added to

the final result PatPool . In this way, pat tGr ow th guarantees its maximality condition.

(ii)- OneStepOneSon Algorithm

The method used in g etF r amePat ter nsMS is close to a full fledged pattern mining algo-

rithm. Especially, it may explore and even return a number of frequent sequences exponential

with the size of input frame f , due to the way it explores most subsequences of f .

In OneStepOneSon method, for a given seed pattern of pattern growth, the output is neither

all the frequent patterns extending this seed pattern, nor extensions E xt that provide better

coverage than the patterns they extend. It is only the extension that provides the maximum cov-

erage, among patterns in E xt . The difference between OneStepOneSon and OneStepMultSon

is illustrated in Fig. 3.6

(a) In oneStepMultSon, each extension of pattern C A, which covers
12 events is extended because each of them is frequent and covers at
least 12 events

(b) In oneStepOneSon, only the extension C AF will be extended be-
cause it covers the maximum number of events.

Figure 3.6 – Pattern growth in OneStepOneSon algorithm

The pseudo-code for OneStepOneSon is identical to OneStepMultSon, except for line 5 where

38

3.2. Finding maximum covering of frames

the call to g etF r amePat ter nsMS is replaced by a call to g etF r amePat ter nsOS. Algorithm

7 is the equivalent pseudo-code.

Algorithm 7 OneStepOneSon

Input: A set of frames F , an integer k, a frequency threshold ε, minimum block size m
Output: A set S of frequent sequences optimizing coverage over F , with |S| = k

1: S ←;
2: ∀ f ∈F f .mar k = f al se
3: while |S| < k and ∃ f ∈ F s.t. f .mar k = f al se do
4: f ← r andom({ f ∈F | f .mar k = f al se})
5: PatPool ← g etF r amePat ter nsOS(f ,F ,ε,m)
6: Snew ← g r eed yC hooseBl ocks(PatPool ,F ,k −|S|)
7: S ← S ∪Snew

8: F ← Remove all blocks of Snew from F

9: f .mar k ← tr ue
10: end while
11: return S

The approach used in function g etF r amePat ter nsOS, presented in Algorithm 8, is a slight

variation, which relaxes the exhaustiveness in search of traditional pattern mining algorithms.

Here, instead of choosing a set of possible extensions in line 12, only the extension BestE xt

leading to the best coverage is retained. If it leads to a better coverage than original pattern P ,

then a single recursive call is performed on {P +BestE xt }.

We now focus on the common parts of OneStepMultSon and OneStepOneSon, and posi-

tion them w.r.t. RandomBaseline. The non-baseline algorithm are “one step”, in the sense

that they don’t need to compute the whole set of frequent sequences beforehand. A re-

duced set of frequent sequences is computed at each iteration by g etF r amePat ter nsMS

/ g etF r amePat ter nsOS and feeds the greedy algorithm. The reduction comes from two

points: first, the coverage constraint is taken into account during frequent sequence gen-

eration. Second, at each iteration of the algorithm, only sequences belonging to a selected

random frame can be generated. This last point means that our approach is a based on a

sampling of frames: the blocks output by OneStepMultSon/OneStepOneSon will be blocks

appearing in a small set of randomly chosen frames (one random frame per iteration of the

algorithm). This comes from the observation that usually multimedia application have a very

regular execution, thus the sequences of events of the frames will be quite similar. When

mining frequent sequences that should occur in most of the trace (support threshold > 50 %),

taking a few sample frames is likely to quickly give enough blocks to get a good coverage of the

whole trace.

In the algorithm, this is realized by first setting all frames as “unmarked” in line 2. In each

iteration, a random sample frame f in selected in line 4, which is then passed as input to the

frequent sequence mining algorithm. At the end of an iteration, frame f is marked in order to

39

Chapter 3. A method to abstract event sequences

Algorithm 8 getFramePatternsOS

Input: A frame f ∈F , a set of frames F , a frequency threshold ε, minimum block size m
Output: A set PatPool of cover- maximal frequent sequences (each of length ≥ m) occurring
in f and frequent in F

1: PatPool ←;
2: Poolm ← set of all sequences of consecutive events of f of length m
3: for all P ∈ Poolm do
4: pattGrowthOS(P,ε,F ,PatPool)
5: end for
6: return PatPool
7: procedure pattGrowthOS(in P,ε,F , in/out PatPool)
8: begin
9: if i sF r equent (P,ε,F) = tr ue then

10: cp ← cover Rank({P },F)
11: E xtP ← {e ∈ f | P +e is a sequence in f }
12: BestE xt ← ar g maxe∈E xtp (cover Rank({P + e},F)) s.t. cover Rank({P +

BestE xt },F) ≥ cp

13: if BestE xt exists then
14: pattGrowthOS({P +BestE xt },ε,F ,PatPool)
15: else
16: PatPool ← PatPool ∪ {P }
17: end if
18: end if
19: end // procedure pattGrowthOS

avoid selecting it again.

Note that this is different from the RandomB asel i ne approach, where at each iteration a

random sample of blocks is selected, but there are no constraints on where do this blocks

come from: they may all come from different frames, possibly never appearing together in

local coverages.

(iii)- Computational complexity of one step approaches

In g etF r amePat ter nsOS, in the worst case the number of frequent sequences examined

is O(| f |3): Poolm has less than | f | elements, for each of these elements there can’t be more

than | f | extensions to check in line 12, and the number of recursive calls to pat tGr ow thOS

it generates is bounded by | f |. g etF r amePat ter nsOS is thus polynomial in the size of the

input frame. This was not the case in g etF r amePat ter nsMS, where it was possible to have

one recursive call to pat tGr ow thMS per extension, leading to a worst case complexity of

O(2| f |). Thus, OneStepOneSon should exhibit better execution times than OneStepMultSon,

possibly with a minor degradation of coverage value of the solution.

Comparing the performances of NaiveBaseline, RandomBaseline, OneStepMultSon and

40

3.3. Experiments

OneStepOneSon in terms of computation time and of coverage value is one of the objective

of the next section. We will also show the interest of the k-most representative block sets

obtained on real execution traces.

3.3 Experiments

In this experimental section, our goal is first to evaluate the scalability on large real world

traces of the four greedy approaches presented above. For each approach, we will also evaluate

the average coverage given by a solution, in order to evaluate the quality of the solution found.

We will also show how real traces can be rewritten as sequences of most representative blocks,

and show how helpful it can be for application developers.

3.3.1 Experimental settings

We implemented the greedy algorithms of Section 3.2 in Python 3. The frequent sequence

mining algorithm used is an implementation of ProfScan [ZXHW10], realized in our research

group by PhD student Leon Fopa. The experiments were run on an Intel Xeon E5-2650 at

2.0GHz with 32 Gigabytes of RAM with Linux. The parameters of the algorithms are fixed to

k = 10, ε= 75%, m = 2 and `= 300.

B k = 10: a number of patterns easy to annotate by a developer

B ε = 75%: we are interested by very regular subsequences and this value is a good

compromise.

B m = 2: a block of size one is less likely to represent a sub-part of video decoding

process than a block of size ≥ 2

B ` = 300: with the previous parameters ε and m, we computed all the frequent se-

quences per dataset. We then computed the average number of frequent sequences and ` is

the one-tenth of this value.

The datasets used are traces from two real applications, described below.

* Gstreamer application: Gstreamer [Gst14] is a powerful open source multimedia framework

for creating streaming applications, used by several corporations as Intel, Nokia, STMicroelec-

tronics and many others. It is modular, pipeline-based and open source. For our experiments

we decoded a movie of 2 hours using Gstreamer on a Linux platform, with the f f mpeg plugin

for video decoding. The execution trace obtained has a size of 1 Gigabyte. This trace comprises

131,340 frames, for a total of 5,120,973 events.

* DVBTest application: It is a test video decoding application for STMicroelectronics devel-

opment boards. This application is widely used by STMicroelectronics developers. In our

trace, the application is run on a STi7208 SoC, which is used in high definition set-top boxes

produced by STMicroelectronics. The execution trace contains both application events and

system-level events. It is generated from a ST 40 core of the SoC, which is dedicated to appli-

41

Chapter 3. A method to abstract event sequences

cation execution and device control. This trace has a size of 1.2 Gigabytes, contains 13,224

frames for a total of 18,208,938 events.

3.3.2 Comparison of scalability

Fig. 3.7 reports the wall clock time of the four algorithms presented in Section 3.2, when varying

the number of frames given as input. Each point represents the average of 10 executions.

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of frames

Gstreamer Dataset

NaiveBaseline
RandomBaseline
OneStepMultSon
OneStepOneSon

(a) Gstreamer trace

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of frames

DVBTest Dataset

NaiveBaseline
RandomBaseline
OneStepMultSon
OneStepOneSon

(b) DVBTest trace

Figure 3.7 – Running Time

One can notice that both OneStepMultSon and OneStepOneSon are always faster than NaiveBaseline

and RandomBaseline. For the GStreamer dataset, both OneStep approaches are one or-

der of magnitude faster than RandomBaseline and two orders of magnitude faster than

42

3.3. Experiments

NaiveBaseline. For the DVBTest dataset, the difference is less important for small number of

frames, but quickly jumps to more than one order of magnitude for 5,000 frames. Note that in

both datasets, the baseline approaches could not output results for more than 5,000 frames

even after more than 10 hours of computation. This comes from the much bigger search space

that they have to explore. On the other hand both OneStepMultSon and OneStepOneSon can

output results even for the 131,340 frames of the GStreamer dataset within 3 hours. This

makes them more suitable for analysis of real traces.

3.3.3 Comparison of coverage

Fig. 3.8 shows the coverage of the set of blocks obtained, w.r.t. the number of frames given as

input.

The first observation from the DVBTest dataset is that the coverage value of the solutions given

by all approaches decreases with the number of frames given as input. The reason is that we

fixed k = 10, which is small and thus prefers blocks that appear in a many frames, i.e. with

large support. The frames in this dataset tend to have many events with some variety between

the frames, especially because of system-level events. For small number of frames, interesting

frequent blocks with good coverage can be found. However with more frames, blocks with

very high support tend to have small size and thus small coverage.

Oppositely, in the GStreamer dataset, there are only application level events, leading to frames

with less events and less inter-frame variability. Thus the coverage values for this dataset stay

high whatever the number of frames considered.

When comparing the approaches, one can notice that the random selection of PatPool in

RandomBaseline does not give good results, as this approach has the lowest coverage of all. On

the other hand, both OneStep approaches achieve coverage results similar to NaiveBaseline

even if they don’t have access to as many candidate blocks. This validates the advantage of our

iterative greedy algorithm approach.

Lastly, the OneStepOneSon approach, which generates smaller PatPool than OneStepMultSon,

achieves similar coverage results. This indicates that few well selected patterns in PatPool

are enough to allow the greedy algorithm to find a good solution, and that the selection of this

pattern can be done with aggressive pruning compared to traditional pattern mining methods.

In summary, OneStepOneSon has the best tradeoff between the coverage and the computation

time, as it presents the best computation time and near best coverage values.

43

Chapter 3. A method to abstract event sequences

(a) Gstreamer trace

(b) DVBTest trace

Figure 3.8 – Coverage

44

3.3. Experiments

3.3.4 Practical trace analysis

The previous experiments showed that the methods we proposed can scale to real application

traces, and allow to find most representative blocks. We now present how such blocks can be

of interest for application developers.

A first simple point is information reduction. In the case of the GStreamer dataset, here

reduced to its first 100 frames, usually a developer would have to analyze manually or with

graphical tools a trace having 3,915 events. When rewriting a trace using blocks, each event

subsequence of a block embedded in the trace is replaced by an event symbol representing

the block in the trace. The non replaced subsequence between two blocks could also be

regarded as an extra block. Rewriting the Gstreamer trace, using 10-most representative blocks

(10-MRB) extracted by one of our algorithms leads to a trace of 320 embeddings of blocks,

which gives a 92% reduction factor.

Such rewriting is easier to represent graphically than the original trace. Consider Fig. 3.9

which shows a rewriting of the 50 first frames of the GStreamer dataset.

Figure 3.9 – Global View

The frames are the horizontal lines in the picture. Each frame is composed of blocks repre-

sented as rectangles, where each of the 10-MRB has a different shade of grey and the parts

of the frame not covered by the blocks are in black. The length of a block corresponds to

the number of events in this block. One can notice that most frames have similar numbers

of events, except for some of them having more events. A developer can quickly notice two

things with this representation: first, the regular structure of computation of the frames is

exhibited by the regular sequencing of the blocks across the frames. Especially, the middle

45

Chapter 3. A method to abstract event sequences

Figure 3.10 – Blocks of fourth frame

and end parts of the frames is very regular and should not require too much attention to be

paid. Second, some irregularities can quickly be spotted, either by not covered parts of the

trace or by MR-blocks that do not appear as often as the others. The developer can quickly

check that these irregularities appear mostly at the beginning of frames. MR-blocks arising in

these irregularities can give good hints of what is going on, and suggest that the irregularities

they participate in are not anomalies but more likely operations that do not need to appear in

all frames. Not covered sections (in black in Fig. 3.9) on an other hand, may be beneficial for

the developer to investigate.

Fig. 3.10 shows a detailed view of the fourth frame, which has an uncovered region at its

beginning. The figure shows the frame is rewritten with MR-blocks.

For convenience, the events are indicated inside the blocks on this figure. The developer can

quickly identify in the uncovered region a rare call to the function gst_ffmpegdec_chain:'

resized. Such call appearing after receiving new data, means that it is necessary to resize the

buffer. However, this operation is usually unneeded, as buffers are supposed to be of sufficient

size for handling frame data. By knowing memory operations being critical, the developer,

without looking at the whole frame, immediately understands that he has to investigate if this

buffer resizing caused problems or not.

To summarize, the MR-blocks allow to rewrite the frame as a sequence of blocks of limited

size, which is much more manageable than a large sequence of events. Such sequence of

46

3.4. Conclusion

blocks can for instance easily be displayed by graphical tools, and shows irregular parts of the

traces. The developer can then delve into the analysis of a single frame, and in last resort check

the events arising at some point of this frame. This approach allows him to quickly pinpoint

possible problems.

3.4 Conclusion

In this chapter, we have presented the problem of finding a small set of representative blocks

of events that can maximally cover an execution trace of a multimedia application. This

problem is a variant of the packing problem, a NP-hard problem for which no polynomial time

algorithm is known. We thus presented a baseline approach and several greedy approaches,

and showed experimentally that our best approaches scale well to real application traces up to

gigabyte size.

We presented a detailed case study on how to analyze a trace with such representative blocks.

Our approach allow to drastically reduce the quantity of information a developer has to handle,

and is appropriate for graphical visualization. We show that by visualizing a rewritten trace a

developer can spot unusual behaviors in the trace with few operations, and understand the

reason of such behavior. We think that this approach is promising to help application develop-

ers in their everyday debugging or optimization tasks. It is generalizable on other problems

such as automatic log analysis or system events analysis, which do not have equivalent notion

of frames.

47

4 A dissimilarity-based comparison method to analyse

event sequences

In this chapter, we propose techniques to detect anomalies in multimedia applications, using
execution traces. We argue that, in the context of execution traces,using visualization tools to
state an hypothesis on application debugging is not satisfactory, because of the amount of data
to represent. We propose to automatically provide a diagnosis by comparing two execution
traces, the first one is a reference trace corresponding to a good behaviour and the second one
the execution trace to analyse. We use dissimilarity based models and conduct a user case to
show how TED, our automatic trace diagnosis tool, provides added-value information to the
developer. Performance evaluation over real world data shows that our approach is scalable.

Contents

4.1 Dissimilarity-based diagnosis: problem statement and general approach . 51

4.2 Our categorization of anomalies in audio/video decoding 52

4.3 Our proposal for specific dissimilarity measures 53

4.3.1 Preliminaries . 53

4.3.2 Occurrence dissimilarity . 54

4.3.3 Dropping dissimilarity . 55

4.3.4 Temporal distance . 57

4.3.5 Measure normalization and complexity 61

4.4 TED: the execution TracEs Diagnosis tool . 61

4.4.1 Measure computation by portion of traces 61

4.4.2 Architecture of TED . 62

4.4.3 Use cases . 64

4.5 Experiments . 66

4.5.1 Experimental goals . 66

4.5.2 Experimental settings . 66

4.5.3 Experimental results . 67

4.6 Applying distances on reduced execution traces 70

4.6.1 Adapt dissimilarity measures on reduced execution traces 71

4.6.2 Experiments . 78

4.6.3 Discussion . 83

4.7 Conclusion . 83

49

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

Context

The analysis of execution traces is at the core of the optimization and debugging of applica-

tions. Multimedia applications traces size make their exploitation very complex, in particular

for outliers detection. Very often in the domain of embedded systems, a reference trace

produced by a simulator is available. It is then possible to use a semi-supervised anomaly de-

tection method [CBK12], for which a training (or reference) database containing only normal

sequences is assumed, and a test sequence is tested against the reference database. Many

techniques could be used such as similarity-based techniques, window-based techniques, Hid-

den Markov Model-based techniques and Markovian techniques (see Chap. 2 for more details).

We will design methods to quickly find anomalies by comparing an execution trace with a

reference trace (without anomalies), using a suitable dissimilarity measure. This technique

refers to similarity-based techniques whose strength is the possibility to use new similarity

(or dissimilarity) measure for sequences, and hence to devise a particular anomaly detec-

tion which is best suited for a given problem. These techniques also give opportunity to

use existing dissimilarity measure if appropriate. However, although there is an abundant

literature about dissimilarity measures on sequences ([Mör06],[TAG07],[BHR00]), very few

dissimilarity measures take into account the temporal aspect that is crucial in execution traces.

More generally, designing an appropriate dissimilarity measure for a meaningful comparison

between multimedia sequences is a difficult task. Indeed, it requires to capture and combine

within a single numerical function, several aspects that are specific to such execution traces.

Whatever the quality of a dissimilarity measure for suggesting the existence of a bug in an

execution trace, by a comparison with a reference trace, the results of the dissimilarity measure

calculation are inherently difficult to interpret by human developers, in particular for finding

the actual cause of the bug.

Contributions

In this chapter, we propose to replace a black-box approach encapsulated in a single complex

dissimilarity measure, by a glass-box approach based on a fine-grained analysis of problems

that are likely to occur in multimedia applications. The idea is that anomalies in multimedia

applications usually have visible effects such as the desynchronization of sound with the

picture or subtitles, the interruption of a video streaming or the loss of some frames (a frame

being an image rendered during a known time interval). Hence, it is important to identify and

categorize anomalies.

First, we have identified a family of anomalies likely to occur in multimedia applications and

that are visually perceptible when a user is watching a video.

Secondly, we have chosen the three most common types of anomalies, and for each type,

we have designed a specific dissimilarity score which measures appropriately the amplitude

of the corresponding anomaly. Based on these dissimilarity measures, we have designed a

diagnosis tool able to detect degraded execution traces and to point out areas where to find

50

4.1. Dissimilarity-based diagnosis: problem statement and general approach

possible causes of such a degraded behaviour. We could later treat other types of anomalies.

4.1 Dissimilarity-based diagnosis: problem statement and general

approach

The trace diagnosis problem that we address can be stated as follows:

Given a set {P1,P2, . . . ,Pl } of types of anomalies, given an execution trace Ts and a reference

trace Tr , detect whether Ts contains anomalies, and if it is the case, determine their types

among {P1,P2, . . . ,Pl }.

This problem requires to identify and categorize the most common anomalies in audio/video

streaming.

Section 4.2 reports the methodology that we have followed and resulting in the identification

of 9 types of anomalies.

Our approach to solve the diagnosis problem has been to propose dissimilarity measures

specifically designed to identify presence of each type of anomaly in a trace by comparison

with a reference trace. More precisely, for each type of anomaly A, we have designed a

dissimilarity measure d such that:

• For each video decoding presenting a visible anomaly of type A and generating a trace Ts ,

for a reference trace Tr corresponding to a correct decoding of the video, d(Tr ,Ts) 6= 0.

• For each video decoding without any visible anomaly of type A and generating a trace Ts , for

a reference trace Tr corresponding to a correct decoding of the video, d(Tr ,Ts) = 0.

A positive value of dissimilarity measure gives an insight on the amplitude of the anomaly.

The biggest the value is, the further the trace is from the reference trace (and the heaviest the

anomaly is). A reference trace is an error-free trace that can be obtained by a simulator. We

have focused on three anomalies.

Section 4.3 presents the dissimilarity measures that we have designed for each of them.

Section 4.4 presents the TracE Diagnosis (TED) tool that implements our dissimilarity-based

diagnosis approach, and presents a user friendly interface to help developers.

Section 4.5 reports on the qualitative and quantitative experimental evaluation that we have

conducted on our method.

Section 4.6 presents an approach to apply our dissimilarity measures on reduced size traces.

51

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

4.2 Our categorization of anomalies in audio/video decoding

We have shown in Chapter 1 how to generate execution traces while streaming a video. Note

that some common anomalies can occur in such traces, due to the video decoding application.

These anomalies are generally revealed by multimedia application users, and to the best of

our knowledge, there is no existing study that provides a categorization of them.

Our methodology has been the following. In order to collect well-known types of anoma-

lies, we have visited and analysed 10 websites of Audio/Video (A/V) developers community:

[cp13],[Wf13a], [ha14], and discussion forums of multimedia application users: [Gf13], [Ff13],

[Wf13b], [Nf13], [ms13], [wA13], [Hf13].

As much there exist websites for A/V developers, as much there could be many formulations of

the same anomaly. Users use their own terms to describe a problem. For example, statements

found in [Ff13] such that "There is a lag with audio (...)", and "I wait a couple of seconds to see

corresponding subtitles (...)" reflect the same anomaly, Audio/Video/Subtitle desyncronization

(A/V/S desync). Another user formulation "My movie stopped after few minutes and I started

player again" ([Wf13b]) and "the video stops during playback"([Gf13]) corresponds to "Player

crash" in ([cp13]).

We have grouped different formulations into 9 types of anomalies. Such a categorization has

helped us to identify common problems occurring in video streaming.

Table 4.1 summarizes the 9 types of anomalies and their occurrence in the 10 websites of

multimedia applications developers and multimedia applications users that we have analyzed.

They have visual and sound effects on the video streaming.

Table 4.1 – Common Audio/Video decoding problems.

Anomalies [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
A/V/S desync. × × × × ×
Black screen × ×
Overlay Mixer ×
Video bug ×
Wrong colors ×
Double image × ×
Player crash × × × × × ×
Stuttered playback × × ×
Slow Streaming × × × ×

[1]= ([cp13]) [6]= ([Nf13])
[2]= ([Wf13a]) [7]= ([ha14])
[3]= ([Gf13]) [8]= ([ms13])
[4]= ([Ff13]) [9]= ([wA13])
[5]= ([Wf13b]) [10]= ([Hf13])

52

4.3. Our proposal for specific dissimilarity measures

We have focused on the three most common errors that a developer encounters in his video

players. We consider as most common errors those which appear at least 4 times for all fo-

rums. They can be simulated using existing tools that are able to inject those perturbations.

According to Tab 4.1, these anomalies are:

P1: Audio/video/subtitle desynchronization anomaly: This anomaly reflects a desynchro-

nization in time between audio, video or subtitles. The audio may be slower than the video or

the subtitle may not appear at the right moment.

P2: Player crash anomaly: The player stops abruptly at a random execution time, without

any reason.

P3: Slow streaming anomaly: Visually, video is very slow. In this case the audio/video/subti-

tles are synchronized but take much more time than in a normal execution.

4.3 Our proposal for specific dissimilarity measures

This section explains our general approach for solving the trace diagnosis problem stated in

the previous section, using an appropriate dissimilarity measure for each type of anomaly.

4.3.1 Preliminaries

A dissimilarity d between two objects is a numerical measure of how far apart these objects

are [PNSK+06]. It should be efficiently computable [MR97]. The term distance is frequently

used as a synonym of dissimilarity but the term distance is used to refer to a special class of

dissimilarities, which satisfies following requirements:

For all T1, T2 and T3,


d(T1,T2) ≥ 0 and d(T1,T2) = 0 onl y i f T1 = T2

d(T1,T2) = d(T2,T1)

d(T1,T2)+d(T2,T3) ≥ d(T1,T3)

(4.1)

There is no "magic" dissimilarity formula to capture difference between two objects. As we

saw in Chapter 2, Section 2.1, dissimilarity measures depend among others on the nature of

the data (symbolic sequences, numeric sequences,..), the application domain (telecommuni-

cations, biology, education,..), and the anomalies. If a technique is effective for an anomaly, it

does not mean that it will be effective for another type of anomaly.

In our case, instead of defining a single dissimilarity measure as a black-box that encapsulates

the specificities of various anomalies constraints, we propose a glass-box approach through

multiple dissimilarity measures that are appropriate to the types of anomalies we want to

detect.

The procedure that we have followed to define a specific dissimilarity measure for each type of

53

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

anomaly can be summarized as follows. First, we obtain a reference trace by decoding a movie

video with g str eamer 1. Then, we inject in the streaming, perturbations corresponding to

a given type of anomaly and we obtain the corresponding abnormal execution traces. This

process is repeated a certain number of times. Finally, for each type of anomaly, we use statistic

methods to analyze the reference trace and the execution trace, and extract the meaningful

differences that have to be incorporated in each dissimilarity measure.

As a result, we have designed three dissimilarity measures. The first one is the occurrence

dissimilarity, suitable for detecting an anomaly of type P1 (Audio/video/subtitle desynchro-

nization anomaly). The second measure is the dropping dissimilarity, appropriate to identify

anomalies of type P2 (Player crash anomaly). Finally, we introduce the temporal distance

designed to detect anomalies of type P3 (Slow streaming anomaly). For each distance, we give

a formal definition and an algorithm for its computation.

4.3.2 Occurrence dissimilarity

For P1 anomaly, when examining the traces, one can detect different numbers of occurrences

of some events in the simulated trace and the abnormal one. It is the only difference in this

case.

We first define the occurrence ratio of an event in two traces.

Definition 7. Let T1 and T2 be two execution traces. Let nb_occur (e,T) be the number of

occurrences of event e in trace T . The occurrence ratio of an event e in the two traces T1 and T2

is defined as follows:

occ_r ati o(e,T1,T2) = Mi n{nb_occ(e,T1),nb_occ(e,T2)}

M ax{nb_occ(e,T1),nb_occ(e,T2)}
(4.2)

Note that e should appear in both traces. A value of occ_r ati o(e,T 1,T 2) close to zero, means

that event e occurs in one of the two traces much more frequently than in the other one. Such

a situation is related to an anomaly P1 because a desynchronization in time between audio,

video and/or subtitles induces many abnormal occurrences of events.

That is why we define the occurrence dissimilarity between two traces as the number of events

that have an occurrence ratio less than or equal to a given threshold (the threshold value

has been experimentally determined, see further Section 4.5.2 for details). This dissimilarity

measure is appropriate to retrieve P1, A/V/S desync. anomaly, (see section 4.1) because it

measures the number of events that differentiate T1 from T2. The formal definition of this

dissimilarity measure, thereafter denoted do is the following:

Definition 8. Let T1 and T2 be two execution traces. The occurrence dissimilarity between T1

and T2 is:

do(T1,T2) = |{e | occ_r ati o(e,T1,T2) ≤ θ}| (4.3)

1Procedure is detailed in Section 4.4.3

54

4.3. Our proposal for specific dissimilarity measures

where θ is a given threshold.

Example 1. Consider the traces T1, T2 and T3 below, and let θ = 0.5.

occ_r ati o(I t ,T1,T2) = 3/4 = 0.75, which is greater than the threshold θ(= 0.5).

occ_r ati o(C S,T1,T2) = 1/3 = 0.33, which is less than the threshold θ.

Only one event has an occurrence ratio less than θ, then do(T1,T2) = 1.

occ_r ati o(I t ,T2,T3) = 3/3 = 1, occ_r ati o(C S,T1,T2) = 3/4 = 0.75 and do(T2,T3) = 0.

N

4.3.3 Dropping dissimilarity

For P2 anomaly, when comparing the simulated and abnormal traces, we found that some

events seem to appear only in one trace and not in the other one.

The corresponding dropping dissimilarity refers to the number of distinct events that belong

only to one trace. This dissimilarity measure is also used by [WS09] as mismatch score on

temporal categorical records.

Definition 9. Let events(T) be the set of distinct events in T . The dropping dissimilarity

between T1 and T2 is the size of the symmetric difference between events(T1) and events(T2).

dd (T1,T2) = |event s(T1)4event s(T2)| (4.4)

This dissimilarity measure is appropriate to retrieve P2, i.e. Player crash anomaly (see 4.1).

Example 2. For traces T1 and T2 below:

event s(T1) = {X ,C S, I t ,E }, event s(T2) = {C S, I t ,U }.

event s(T1)4event s(T2) = {X ,E ,U }.

The set {X ,E ,U } contains 3 events, then dd (T1,T2) = 3.

55

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

N

Proposition 1. Dropping dissimilarity is a distance.

Proof. Let T1, T2 and T3 three traces. event s(T1), event s(T2) and event s(T3) are illustrated

below.

1. Positivity

dd (T1,T2) = |event s(T1)4event s(T2)|
= |event s(T1)revent s(T2)|+ |event s(T2)revent s(T1)|

∀ T1,T2, |event s(T)| ≥ 0 ⇒ |event s(T1)revent s(T2)| ≥ 0

hence |event s(T1)revent s(T2)|+ |event s(T2)revent s(T1)| ≥ 0

then dd (T1,T2) ≥ 0

2. if T1 = T2,

dd (T1,T1) = |event s(T1)revent s(T1)|+ |event s(T1)revent s(T1)|
= |;|+ |;|
= 0

3. Symmetry

dd (T1,T2) = |event s(T1)revent s(T2)|+ |event s(T2)revent s(T1)|
= |event s(T2)revent s(T1)|+ |event s(T1)revent s(T2)|
= dd (T2,T1)

56

4.3. Our proposal for specific dissimilarity measures

4. Triangle Inequality: Considering the previous illustration,

dd (T1,T2) = |event s(T1)revent s(T2)|+ |event s(T2)revent s(T1)|
= |event s(T1)|− |event s(T1)∩event s(T2)|+ |event s(T2)|− |event s(T1)∩event s(T2)|

dd (T2,T3) = |event s(T2)|− |event s(T2)∩event s(T3)|+ |event s(T3)|− |event s(T2)∩event s(T3)|

dd (T1,T2)+ dd (T2,T3) = |event s(T1)| + |event s(T3)| + 2|event s(T2)| − 2|event s(T1)∩
event s(T2)|−2|event s(T2)∩event s(T3)|

dd (T1,T2)+dd (T2,T3)−dd (T1,T3) = |event s(T1)|+ |event s(T3)|+2|event s(T2)|
−2|event s(T1)∩event s(T2)|−2|event s(T2)∩event s(T3)|
−|event s(T1)|− |event s(T3)|+2|event s(T1)∩event s(T3)|

= 2|event s(T2)|−2|event s(T1)∩event s(T2)|
−2|event s(T2)∩event s(T3)|+2|event s(T1)∩event s(T3)| (∗)

but |event s(T1)∩event s(T3)|− |event s(T2)∩event s(T3)| = j −k, and

|event s(T2)|− |event s(T1)∩event s(T2)| = ε+k

(∗) = 2(ε+k + j −k)

= 2(ε+ j)

≥ 0

Then dd (T1,T2)+dd (T2,T3)−dd (T1,T3) ≥ 0

⇒ dd (T1,T2)+dd (T2,T3) ≥ dd (T1,T3)

4.3.4 Temporal distance

For P3 anomaly, the duration and the order of some events differ in the two traces. In the

abnormal trace, some events durations are much longer than durations of same events in the

simulated trace.

The temporal distance that we propose is an adaptation of the distance model of [MR97]. It is

an edit-distance taking into account temporal aspects. It uses three basic operations:

57

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

• Ins(e,t) that inserts an event e at time t

• Del(e,t) that deletes an event e at time t

• Move(e,t,t’) that moves an event e from time t to time t ′.

A cost c(o) is associated with each operation o. There are several ways of defining edit opera-

tion costs. Traditionally, a unit cost is used for each basic operation. Ronkainen in [Ron98]

thought that it might be more natural to adapt the cost depending on the event type. The

Move operation should have a time depending cost which reflects changing in time.

c(Move(e, t , t ′)) =V |t ′− t | where V is a constant such that V ≤ 2.w(e).

Without this condition, it would always be better to do a deletion and an insertion of an event

e, instead of moving e from t to t ′. |t ′− t | represents the length of the move. Short moves have

lower cost than long moves.

The cost of a sequence of operations can then be deduced. Let O = o1 . . .ok be a sequence

consisting of k transformations. The cost of O is:

c(O) =
k∑

i=1
c(oi) (4.5)

The temporal distance d(T1,T2) proposed by [MR97] is defined as the cost of the cheapest

sequence of operations that transform T1 into T2.

Definition 10. ifΘ is the set of operation sequences that transform T1 into T2, then the temporal

distance between T1 and T2 is:

d(T1,T2) = Mi n
O∈Θ

c(O) (4.6)

Example 3. For traces T1 and T2 below, between all the possible sequence of operations, the

cheapest order-preserving sequence of operations that transform T1 into T2 is:

O = 〈Move(I t ,2,1), Move(I t ,4,2), Ins(U ,5)〉; c(O) = 3V +w(U).

N

Let T1 = (e1, . . . ,en) and T2 = (f1, . . . , fm) be two execution traces, and let r (i , j) denote the

minimum cost of the operations needed to transform the first i events of T1 into the first j

events of T2. the temporal distance between T1 and T2 is:

d(T1,T2) = r (n,m) (4.7)

58

4.3. Our proposal for specific dissimilarity measures

where r (i , j) is computed according to the following dynamic programming algorithm:
r (0,0) = 0

r (i ,0) = r (i −1,0)+w(ei)

r (0, j) = r (0, j −1)+w(f j)

r (i , j) = mi n { r (i −1, j)+w(ei),r (i , j −1)+w(f j),r (i −1, j −1)+ cost (i , j)}

(4.8)

w(ei) is the cost of deleting event ei at position i . w(f j) the cost of inserting event f j at

position j and

.

cost (i , j) =
{

w(ei)+w(f j) i f ei 6= f j

V.|ti − t ′j | i f ei = f j
(4.9)

ti is the timestamp of ei and t ′j , the timestamp of event in f j .

We have adapted this temporal distance and the algorithm in order to firstly, adapt the weight

to the context of multimedia execution traces and secondly, consider the magnitude of the

two traces. The magnitude refers to the beginning timestamps of the two traces which are not

always the same.

In a reference trace, some types of events occur more often than others. They are considered

as less important. For a given event e, the cost (w(e)) of inserting or deleting e is taken

as a constant value proportional to the occurrence number of e in the reference trace Tr :

w(e) = 1
nb_occur (e,Tr) .

Because of the magnitude of the two traces, results obtained with the method used in [MR97]

are not satisfactory. We illustrate this problem in example 4.

Example 4. For the two traces below, d(T1,T2) 6= 0.

N

In the previous example, considering d(T1,T2) 6= 0 is not satisfactory because T1 and T2 have

exactly the same events, and the same time intervals between events. Clearly, such traces

should be considered as similar. Therefore, we propose to adapt the Mannila and Ronkainen

[MR97] distance model in order to have d3(T1,T2) = 0 when T2 is obtained from T1 by a time

shift.

More precisely, we adapt the cost (i , j) computation by integrating beginning timestamps of

each execution trace into the formula. We therefore consider:

59

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

cost (i , j) =
{

w(ei)+w(f j) i f ei 6= f j

V.||ti − t ′j |− |t0 − t ′0|| i f ei = f j
(4.10)

t0 is the timestamp of the first event in T1 and t ′0, the timestamp of the first event in T2.

The temporal distance between T1 and T2 that we use in the following is:

dt (T1,T2) = r (n,m) (4.11)

where r (i , j) is computed according to equation 4.8 and cost (i , j) is given by equation 4.10.

Example 5. Consider Example 4 where the two execution traces do not have the same magni-

tude. Table 4.2 is the dynamic programming table used to compute temporal distance between

both traces, assuming that w(e) = 1 i.e insertion operation and deletion operation have a unit

cost.

Table 4.2 – Dynamic programming applied to an example

r(i,j) j 0 1 2 3
i It U CS
0 0 1 1 1
1 It 1 0 1 2
2 U 1 1 0 1
3 CS 1 2 1 0

r (3,3) is the temporal distance between T1 and T2; thus d3(T1,T2) = 0.

N

This distance is appropriate to retrieve P3, i.e. slow streaming anomaly (see subsection 4.2),

because it takes into account events duration and sequentiality between events.

Remark 1: The temporal distance is constructed as editing distances, thus respect all proper-

ties of a distance [Cor03].

Remark 2: In the rest of this chapter, we generalize and use the terms distance and dissimilar-

ity as synonyms for all our measures: occurrence distance, dropping distance and temporal

distance.

Remark 3: All the distances have been experimentally validated (see Section 4.5). Each

distance allows to detect the specific visible anomaly for which it has been designed.

60

4.4. TED: the execution TracEs Diagnosis tool

4.3.5 Measure normalization and complexity

For each dissimilarity measure defined above the output is a value in R+. This value allows

the developer to appreciate the amplitude of a perturbation between several abnormal traces.

The dissimilarity value can be a large number which depends on trace size. Developers can

have difficulties to compare different distance values. In order to better interpret the results,

it is important to normalize the output. We use a non-linear transformation g , in order to

normalize the dissimilarities:

g : R+ → [0,1]

d 7→ d/(1+d) = g (d)

Computation of occurrence distance and dropping distance are done in linear time complexity

since a simple scan of traces is necessary. With the dynamic programming algorithm presented

above, the computation of temporal distance has a quadratic complexity O(m ×n), where m

and n are the lengths of the two traces. Assuming n ≥ m, Wu et al. in [WMMM90] proposed

some improvements with a O(np) time complexity, where p = D/2− (n −m)/2 and D being

the length of a shortest edit script (consisting of insertions and deletions) between the two

sequences to compare.

4.4 TED: the execution TracEs Diagnosis tool

After identifying an anomaly type, a remaining question is: how to locate it into the execution

trace? Our answer is: by decomposing execution trace and by applying dissimilarities on parts

of trace. We show this process in Section 4.4.1. We then describe TED, our TracE Diagnosis

tool (Section 4.4.2), which integrates the computation of the three dissimilarities previously

defined: occurrence dissimilarity, dropping distance and temporal distance. We illustrate its

functioning on two use cases and evaluate performances.

4.4.1 Measure computation by portion of traces

It is important to emphasize that each of these dissimilarities can be computed on the entire

trace, but also on portions of trace. Recall that a pipeline, constituted by different compo-

nents, is used to obtain an execution trace (as described in Section 1.1.1); a portion is then a

sequence of events related to a specific component. Moreover, when a dissimilarity measure

computation is applied by component, the developer is easily oriented towards a specific

component, according to dissimilarity values at this component. Assuming the pipeline has p

components, we compute d(T1 j ,T2 j) with 1 ≤ j ≤ p.

Fig. 4.1 2 shows audio/video pipeline used to obtain two execution traces T1 and T2. Ti j is

the portion of trace Ti corresponding to component j . For instance, T11 is sequence of events

corresponding to component f i le-sour ce for trace T1. An illustration of the process in a use

2credits figure of pipeline to ([Gst14])

61

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

Figure 4.1 – In order to detect which specific component is concerned by the anomaly, we
compute d(T11,T21),d(T12,T22),d(T13,T23),d(T14,T24),d(T15,T25),d(T16,T26).

case is further given in Fig. 4.4 of section 4.4.3.

4.4.2 Architecture of TED

Figure 4.2 – TED Architecture

TED handles two main phases:

- The Preprocessing and trace generation phase takes as input a source file to generate an

execution trace T (via the multimedia Toolkit) and a reference trace. Both are preprocessed.

62

4.4. TED: the execution TracEs Diagnosis tool

This step is very important for a successful outcome of the analysis as a non cleansed and

non normalized data can lead to spurious and meaningless results [Mör06]. T has the format

of Fig. 4.3(a). Each entry of trace file has 11 distinct fields: timestamp,processID, threadID,

debugCategory, unknowInfo,componentName, functionsFile, line, function, object, message

[Gst14]. A parsed trace (Fig. 4.3(b)) is obtained from T by removing redundant or useless

information (processID, threadID, debugCategory, unknowInfo, functionsFile, line, object). For

instance, the object field is removed because it is a part of the componentName. The value of

processID is the same in each line of the trace, then the field is removed.

(a) original trace

(b) parsed trace

Figure 4.3 – Example of preprocessing of data: from original trace, information in bold are
kept.

- The Diagnosis process, is the second and core phase of TED. The distance selector engine

chooses an appropriate distance from the set of Distances and applies it on traces. For instance,

if we want to detect a desynchronization anomaly, the distance selector engine applies the

occurrence distance on suspicious trace Ts and the reference trace, Tr . An option allows

63

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

to apply the distance directly on the whole trace or to select portions of trace for applying

distance.

4.4.3 Use cases

We consider the following scenario. A user is watching a video and (Scenario a) the video

streaming becomes very slow or, (Scenario b) the sound is desynchronized with images.

In the Preprocessing and trace generation phase, we decode the movie with gstreamer to obtain

the reference trace Tr . We use a gstreamer element identity ([Gst14]), with property sleep-time,

to obtain a A/V/S desync. anomaly (Scenario b). The resulting abnormal trace is T . We

generate another abnormal trace, with a slow streaming anomaly (Scenario a) by a stress of

CPU and memory in the system. As a result of the preprocessing step, the dataset was reduced

to 26,5% of its original size.

In the Diagnosis process phase, the developer uses TED as follows:

• The developer has an idea of the anomaly and just want to verify if his hypothesis is true

or not. He selects the distance to apply, the option for using portions of traces, and TED

gives the diagnosis. In Fig. 4.4, temporal distance is used (Scenario a). The developer

suspects a slow streaming anomaly (P3). TED detects the anomaly and returns the value

of temporal distance between the two traces per components. For instance, the distance

between audioresample components is approximatively equal to 0.94736. We recall that

the resulted value of distance is normalized as explained in Section 4.3.5. TED points out

the qtdemux components of the two traces as the components with the most dissimilar

events. The distance value between qtdemux components is 0.99995. This value gives

an insight to the developer of how far is the trace from the reference trace, regarding to

qtdemux components. The developer can compare between several abnormal traces

and detects those with heaviest anomaly.

• The developer has no idea of what is happening and would like to find if there exists

an anomaly in Ts . He selects the choice find anomaly, and TED applies successively

all the dissimilarities, and stops when one of them gives a non-zero value. In Scenario

b, the computation of distances is directly applied on the entire trace. Dropping and

occurrences dissimilarities have been tested and a A/V/S desync. anomaly was detected.

In Fig. 4.5 the value of distance is 0.5 and the function which does not respect the

threshold for occurrence ratio is gst_ffmpegdec_update_qos from component f f mpeg .

• The developer wants to find all potential anomalies in Ts (All tests option in the tool).

Indeed, it is possible to have simultaneously a A/V/S desync. and a player crash anomaly.

for the same trace.

64

4.4. TED: the execution TracEs Diagnosis tool

Figure 4.4 – execution trace with a slow streaming anomaly. The developer selects the distance
to apply (Scenario a)

Figure 4.5 – TED finds and detects one anomaly: A/V/S desync. anomaly (Scenario b)

By using TED, a developer analyzing an execution trace is notified of anomalies, their types

and where they appear in the trace (the plugin concerned). TED is a time saver for developers

65

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

as they can quickly detect anomalies in their execution traces and fix them.

4.5 Experiments

4.5.1 Experimental goals

We have conducted a set of experiments with 4 main goals:

[G1]-Validate our proposed dissimilarity measures: for this validation, for each type of anomaly

we use a sample of suspicious traces generated by videos decoding in which an anomaly of

the corresponding type may be injected. For such a trace Ts and a reference trace Tr , we then

check whether d(Tr ,Ts) 6= 0 if and only if Ts corresponds to a trace generated by an execution

of video decoding in which the specified type of anomaly is visible.

[G2]-Compare our proposed dissimilarity measures to standards sequence distances and check

whether they are better discriminant.

[G3]-Show the interest of having specific distances for anomaly types, instead of using a given

existing distance, for diagnosing the types of anomalies present in a trace.

[G4]-Evaluate the efficiency of our approach: for doing this evaluation, we collect the running

time of algorithms which compute proposed measures.

4.5.2 Experimental settings

I System configuration: Our prototype system is implemented in Python 3.2. The experi-

ments were run on an Intel Xeon E5-2650 at 2.0GHz with 32 Gigabytes of RAM with Linux.

IData Set: We use traces from two real applications, described below:

Gstreamer application: Gstreamer ([Gst14]) is a powerful open source multimedia framework

for creating streaming applications, used by several corporations as Intel, Nokia, STMicroelec-

tronics and many others. For these experiments we decoded several movies using Gstreamer

on a Linux platform, with the f f mpeg plugin for video decoding.

GSTapps application: It is a test video decoding application for STMicroelectronics develop-

ment boards. This application is widely used by STMicroelectronics developers. The execution

trace contains both application events and system-level events. It is generated from a ST 40

core of the SoC, which is dedicated to application execution and device control.

Table 4.3 gives a description of reference traces.

I Choice of the threshold θ for computing occurrence distance.

In order to state a value of θ, we have used the following protocol. We did 30 decoding

of a video with visible A/V/S desync. anomaly at different stage of degradation. We then

obtained 30 abnormal traces (Ts). We did 5 correct decoding of the video in order to obtain 5

66

4.5. Experiments

Table 4.3 – Experimental dataset

Trace Video source duration Nb. of events Size

Gstreamer
gen 17s 39,646 7.6Mo

pub 49s 74,436 14.3Mo

movie 3628s 12,423,095 2457,6Mo

GSTapps SDK2 335s 2,382,720 73.2Mo

reference traces (Tr). For each pair of reference traces (T1,T2) s.t . T1,T2 ∈Tr , we computed

the occurrence ratio of each event (context 1). For each couple (T1,T3) s.t . T1 ∈Tr and T3 ∈Ts ,

we computed the occurrence ratio of each event (context 2). For each event, we compared

occurrence ratio obtained in (context 1) and (context 2). We then observed that in some cases

of (context 2), the gap with occurrence ratio value obtained in (context 1) is really significant:

a difference of more than 50%. The threshold of occurrence ratio used for our experiments

is obtained by averaging occurrence ratio values of events in (context 1). This value is set to

θ = 0.25 in our experiments.

4.5.3 Experimental results

Experimental validation of distances and precision of the diagnosis tool - [G1]

In order to validate the proposed distances, we considered a sample of 50 traces per anomaly

types for a total of 150 abnormal traces. Each of the abnormal traces results of the decoding of

a video with only one visible type of anomaly. For each comparison of an abnormal trace, we

successively applied the three distances. In each case, only the distance corresponding to the

observed anomaly outputs a non-zero value.

For evaluating the quality of the diagnosis done by TED, we use the standard criteria of

precision and recall [HKP12].

• The precision is the ratio of returned results that are relevant w.r.t. all returned results.

• The recall is the ratio of returned results that are relevant w.r.t. all relevant results.

We run the tool on a sample of 300 execution traces (130 are normal and 170 are abnormal) as

presented in Table 4.4. The first observation is that all execution traces initially considered

as normal were diagnosed as such by TED. However, the tool gave 11 false-positive which are

execution traces considered by TED as normal but which contain anomalies. Thus, TED has

a precision of 0.96 and a recall of 1. A reason of this lack of precision can be the fixed value

of threshold for occurrence distance. We will surely gain to adapt the threshold value to the

length of the video decoded by finding correlation between video length and threshold value.

Table 4.4 – TED precision

Nb. traces Original sample TED results
Sample of 300
traces

normal: 130 normal: 141
abnormal: 170 abnormal: 159

67

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

Comparison with standards sequence dissimilarities - [G2]

We show in this section the added-value of our distances which point out specific anomalies

and give good insights about the amplitude of an anomaly. We used existing implementa-

tions of two well known sequence dissimilarities DTW ([SFY07]) and LCS([BHR00]). These

implementations are given by mlpy ([AVM+12]), a Python module for machine learning built.

For our experimentations, the events of execution traces were coded as integers, as required

by mlpy. LC S(x, y) returns the length of the longest common sequence of x and y. We then

obtain distance between x and y by d(x, y) = |x|+ |y |−2∗LC S(x, y). In this experimentation

we use one reference trace and two suspicious traces. Tr is the reference trace of gen video

presented in Table 4.3. T1 is obtained by using the gstreamer element identity before the video

decoding plugin, with property sl eep-t i me = 30000. T2 is obtained by using the gstreamer

element identity before the video decoding plugin, with property sl eep-t i me = 5000. During

the decoding, A/V/S desync. anomaly is visible, but the visual degradation obtained while

generating T2 is slighter than those obtained while generating T1. Table 4.5 gives the name of

each trace and the corresponding anomaly.

Table 4.5 – Description of traces to compare

Tr reference trace
T1 A/V/S desync. suspicious trace
T2 slight A/V/S desync. suspicious trace

A/V/S desync. anomaly is detected with occurrence dissimilarity, we then compare DT W

and LC S distances to occurrence dissimilarity. Table 4.6 shows the values of dissimilarities

obtained w.r.t. to two execution traces T1 and T2 given as input and compared to Tr . T1 is

more disturbed than T2 by the desynchronization anomaly, then we expect that for a distance

d that d(Tr ,T1) > d(Tr ,T2). For a better observability, we do not normalize the distance values

obtained.

Table 4.6 – Comparison with DTW and LCS distances

DTW LCS Occurrence dissimilarity

d(Tr ,T1) 509069 28035 132090.5

d(Tr ,T2) 504472 28086 131525

T1 is more disturbed than T2, occurrence dissimilarity and DTW dissimilarity reveal this expec-

tation. In contrary, LCS gives the opposite statement as result. The added value of occurrence

dissimilarity comparing to DTW is the ability to point out a specific anomaly type, in addition

to determine the most disturbed trace between two abnormal traces.

68

4.5. Experiments

Interest of specific distances to capture anomalies - [G3]

T3 is obtained with property error-after. An error occurs during the video streaming after a

given number N (N = 500) of buffers. It corresponds to the player crash anomaly. Table 4.7

shows the values of dissimilarities obtained by comparing T3 to Tr . As before, the distance

values are not normalized. d t w(Tr ,T3) and l cs(Tr ,T3) show that T3 is far from Tr but an

Table 4.7 – Comparison with DTW and LCS distances

DTW LCS Dropping dissimilarity

d(Tr ,T3) 920600 18377 48

analyst can not determine the involved anomaly. More than give a distance value between the

suspicious trace and the reference trace, TED diagnoses a player crash anomaly.

Remark 4: to the best of our knowledge, there is no standard dissimilarity on sequences which

take into account temporality, that is why we do not compare the temporal distance with

standard distances.

Running time and Scalability - [G4]

Fig. 4.6 reports the wall clocks of TED for occurrence and dropping distance, when varying

events number of execution traces. Horizontal axis represents the maximum number of events

of the two compared traces. In practice, we consider θ = 0.25, as threshold of occ_r ati o. One

10
-2

10
-1

10
0

10
1

10
5

10
6

10
7

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of events

Scalability with TED

occurrence distance
dropping distance

Figure 4.6 – Running time

can notice that, for traces of more than 1Go , corresponding to approximatively 4,000,000

events, TED can give a diagnosis in less than 10s. For the pub video of table 4.6, an output

69

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

is obtained in 0.12s. The experiments showed that the proposed methods can scale to real

application traces. This makes TED suitable for analysis of real traces.

However, we have to notice that temporal distance takes much more time to be computed,

due to algorithm complexity. For instance a suspicious trace from pub video dataset with

slow streaming anomaly (the trace contains 74,436 events) takes up to 3000s to be diagnosed

as abnormal. It is the same order of magnitude as the standard distance LC S, which is an

edit distance. The running time of the temporal distance can be improved by considering

computation by portions of trace.

4.6 Applying distances on reduced execution traces

In the previous section, we observed that the computing distances, especially the temporal

distance could be expensive in term of computation time. This time is strongly dependant of

the trace size. Reducing trace size could lead to reduce time computation. A way to apply such

reduction is to eliminate common events to both traces (under some constraints to define)

in order to keep only events which indicate the presence of an anomaly. This intuition is

consistent with the approach developed by Comode et al. in their work [Cor03] on sequence

distances. This approach aims to perform a transformation on sequences, in order to produce

new sequences, such that the distance between the transformed sequences approximates the

distance between the original sequences.

We propose to use blocks obtained in Chapter 3 in order to perform the trace reduction. The

approach is explained in paragraph 1 of Section 4.6.1.

The trace reduction should be done by taking into account our proposed distances. The

difficulty is to have distances on reduced traces which give a good approximation of distances

on original traces. The adaptation is detailed in paragraph 3 of Section 4.6.1.

The approach is evaluated in Section 4.6.2.

Problem statement

The diagnosis problem on reduced traces that we address can be state as follows:

Given d the dissimilarity measure allowing to detect anomaly A, assuming a reference trace

Tr and a suspicious trace Ts , given tr (resp. ts) the reduced trace obtained from Tr (resp. Ts),

determine d ′ such that:

d(Tr ,Ts) 6= 0 ⇔ d ′(tr , ts) 6= 0

This means that the diagnosis should be the same both on original and reduced traces. In the

rest of the chapter, reduced comparison refers to the comparison applied on reduced traces;

baseline comparison refers to the comparison applied on original traces.

70

4.6. Applying distances on reduced execution traces

4.6.1 Adapt dissimilarity measures on reduced execution traces

This section explains our approach to first reduce traces and then apply dissimilarity measures

in order to detect the three anomalies: A/V/S desynchronization, player crash and slow

streaming.

1-The approach

Our proposal is to use k-bl ocks (see Chapter 3) to reduce traces size. We recall that the method

described in Section 3.2 of Chap. 3 produces a set Sk of k blocks {B1,B2, . . . ,Bk } allowing to

maximally cover a trace. A nonBl ock is a sequence of events out of blocks. Fig. 4.7 shows an

example of 3 blocks and 2 nonBlocks in a trace.

Figure 4.7 – Blocks and nonBlocks in a trace

Since a reference trace is an error-free trace (at least concerning our three anomalies), the

reduction function discovers k blocks from reference trace, and use these k blocks to reduce

reference and suspicious traces. Using the same blocks allows to ensure some identical

information in both traces. Moreover it ensures that we do not remove sequence of events

"containing" anomalies, as the blocks are discovered from the reference trace which is error-

free. The reduction step should also ensure to keep properties of the traces which guarantee

to detect a specific anomaly.

2- The data reduction step

By definition, occurrence and dropping distances are essentially based on events frequency

(see Sections 4.3.2 and 4.3.3), while temporal distance (see Section 4.3.4) integrates a constraint

of temporality. These two fundamental differences lead to define two distinct processes for

the reduction step.

71

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

a- Case of occurrence and dropping distances

In this case, we need to take care of events frequency. That is why for each block we remove

the same number of occurrences in both traces. The blocks order for removing is given by the

sequence of blocks which lead to the best coverage of the reference trace. It is a good heuristic

for hoping to remove the maximum number of blocks.

Fig. 4.8 shows an example of data reduction applied on a trace.

(a) (b) reduced traces

Figure 4.8 – Reducing step - A 3-block set removed from the both traces. occurrences of BAC
are first removed, followed by occurrences of BA and occurrences of CD

Algorithm 9 describes the reduction step. This process is done before applying occurrence

distance and dropping distance. In lines 4 and 5, the occurrence number of a block B is com-

puted in each trace. The function r emoveOccBlock(ts ,B ,k) aims to remove k occurrences of

the block B in the trace ts .

b- Case of temporal distance

In this case, the data reduction considers the sequentiality (order of events) and the duration

of the events. Moreover, an occurrence of a block is effectively removed from the two traces

only if the block duration in the two traces is the same. During the reduction step: 1) the order

of events is preserved; 2) the timestamps are not affected. These points ensure to maintain

the properties of the original traces.

In order to illustrate this reduction step, consider the pseudo-code of Algorithm 10. The

function posBlocksCov in lines 2-3 uses the ordered set of blocks Sk and a trace. Sk was

discovered from Tr and leads to the best coverage of Tr . For the first block B0 of Sk , the

function returns in a list Li st all the occurrences of B0 in the trace. Li st is a list of pair (c0,B0)

72

4.6. Applying distances on reduced execution traces

Algorithm 9 traceReductionOD

Input: traces to compare Tr and Ts , an ordered set of k blocks Sk .
Output: tr and ts s.t., |tr | ≤ |Tr | and |ts | ≤ |Ts |

1: tr ← Tr

2: ts ← Ts

3: for all B in Sk do
4: occ1 ← |occur r ences(B ,Tr)| {where |occur r ences(B ,Tr)| means the occurrence

number of block B in Tr }
5: occ2 ←|occur r ences(B ,Ts)|
6: tr ← r emoveOccBlock(tr ,B ,mi n(occ1,occ2)){mi n(occ1,occ2) is the minimum

value between occ1 and occ2}
7: ts ← r emoveOccBlock(ts ,B ,mi n(occ1,occ2))
8: end for
9: return tr , ts

Algorithm 10 traceReductionT

Input: traces to compare Tr and Ts , an ordered set of k blocks Sk .
Output: tr and ts s.t., |tr | ≤ |Tr | and |ts | ≤ |Ts |

1: tr ← Tr ; ts ← Ts

2: Li st r ← posBlocksCov(Tr ,Sk)
3: Li st s ← posBlocksCov(Ts ,Sk)
4: cr ← t i mest amp o f f i r st bl ock i n Li str {cr indicates the timestamp from which it is

possible to remove a block in Tr }
5: for all bl ock Bs in Li sts do
6: p ← cr

7: while (p ≤ |Tr |) and (cr ≤ |Tr |) do
8: Br ← bl ock at t i mest amp p i n Tr

9: if (Br == Bs) and (dur ati on(Br) == dur ati on(Bs)) then
10: tr ← r emoveBl ock(tr ,Br ,)
11: ts ← r emoveBl ock(ts ,Br ,)
12: cr ← p
13: end if
14: p ← next timestamp in Li str

15: end while
16: end for
17: return tr , ts

73

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

where c0 is the timestamp of the first event of B0. The list of occurrences of the second block

of Sk , which do not overlap the occurrences of B0 are added in Li st . The process ends after

scanning the whole set Sk and the Li st is sorted by positions.

Considering example of Fig 4.9, Sk = {B AC ,B A,C D} and posBlocksCov(Ts ,Sk) returns the occurrences

list of blocks in Sk . Li sts = 〈(7,B A), (10,B AC), (18,B A), (21,B A), (24,C D)〉 meaning that, for Ts , block

B A appears at timestamp 7, following by block B AC at timestamp 10, ..etc.

traceReductionT scans all positions of blocks in the suspicious trace (line 5) and for each block

in the list, it searches if this block exists in reference trace with the same duration. It preserves

constraint 1) above, meaning that timestamps are not affected during the reduction step. If

there is a such block, the block is removed from both traces and a cursor marks the position

on Tr from which searching could continue (line 12). The constraint 2) is ensured, meaning

that sequentiality between events is preserved during the reduction step.

Considering example of Fig 4.9(b), the first occurrence of the block B A was not removed from both traces

because its duration is 2 in Tr and 3 in Ts .

Fig. 4.9 shows an example of trace reduction for temporal distance.

(a)

(b) reduced traces

Figure 4.9 – Reducing step - The first occurrence of block BA is not removed. In Tr the
duration is 2, instead of 3 in Ts

74

4.6. Applying distances on reduced execution traces

3-Adapted dissimilarity measures

In the following, we assume that both traces to compare are reduced as explained in section

4.6.1. Some important question remain: could we directly apply our distances on reduced traces

without any adaptation? By construction of dropping and temporal dissimilarities, there is no

need to change. In the other hand, the threshold in occurrence distance need to be adapted to

reduced traces.

IDropping dissimilarity

The dropping distance value is proportional to the number of events which appears in one

trace and not in the other (See Section 4.3.3). The dropping distance can be directly applied

on reduced traces because the blocks removed from both traces contain events occurring in

the two traces. The events concerned by the computation of the dissimilarity in original traces

are still present in reduced traces tr and ts .

The dropping dissimilarity between reduced traces tr and ts is then:

d ′
d (tr , ts) = |event s(tr)4event s(ts)| (4.12)

I Temporal distance

The reduction function applied in case of temporal distance keep the sequentiality of events

and the duration of events. Temporal distance described in Section 4.3.4 deals with order

between events and timestamps. Following the reduction process described in Algorithm 10,

we deduce without loss of generality that the original temporal distance can be used without

transformation on reduced traces and lead to the same diagnosis as on original traces.

The temporal dissimilarity between reduced traces tr and ts is then:

d ′
t (tr , ts) = r (n,m) n = |tr |,m = |ts | (4.13)

where r (i , j) is computed according to a dynamic programming algorithm.

IOccurrence dissimilarity

Before presenting the occurrence dissimilarity for reduced traces, let start by giving in Tab. 4.8

useful notations for the rest of the section.

75

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

Table 4.8 – Useful notations

tr reduced trace of reference trace Tr

ts reduced trace of suspicious trace Ts

Event s(tr) set of distinct events in tr

Event s(ts) set of distinct events in ts

RB set of blocks effectively removed from both original traces
Event s(RB) set of distinct events in RB

for a given event e:
m maximum number of occurrences of e in two reduced traces tr and ts

n minimum number of occurrences of e in two reduced traces tr and ts

α number of occurrences of e removed from both traces

Example 6. In Fig. 4.10, RB = {B AC ,B A,C D}, event s(tr) = {A,B ,C ,D}, event s(ts) = {A,B ,C ,D}.

By considering the event A, m = 13 and α= 4.

(a) (b) reduced traces

Figure 4.10

N

we recall that the occurrence dissimilarity value between two original traces Tr and Ts (see

Section 4.3.2) is defined as the number of events that have an occurrence ratio less than or

equal to a given threshold θ: do(Tr ,Ts) = |{e | occ_r ati o(e,Tr ,Ts) ≤ θ}|. This measure depends

on a ratio computed from occurrence number of individual events. The reduction step has an

impact on the value of occ_r ati o(e, tr , ts). It is then necessary to consider a suitable threshold

value θ′ to apply for removed events.

76

4.6. Applying distances on reduced execution traces

The occurrence dissimilarity between tr and ts is:

d ′
o(tr , ts) = |{e | occ_r ati o(e, tr , ts) ≤ θ′}| (4.14)

Proposition 2. The new threshold θ′ to consider is

θ′ =
{

θ∗m+α(θ−1)
m i f e ∈ Event s(RB)

θ el se

Proof. The occurrence ratio of events in RB (see Tab. 4.8 for notations) should be compared

using a new value of threshold θ′, which takes into account the removed events. The new

value of threshold θ′ is computed as follows:

Let N = Mi n{nb_occ(e,Tr),nb_occ(e,Ts)} and

M = M ax{nb_occ(e,Tr),nb_occ(e,Ts)}, for all event e of both traces.

Then do(Tr ,Ts) = |{e | N
M ≤ θ}|

In baseline comparison, an event e "participates" to the computation of distance if and only if
N
M ≤ θ (1).

We want to determine n and m such that n
m ≤ θ′ in reduced comparison.

n = N −α and m = M −α; n ≥ 0, m ≥ 0

(1) ⇒ N ≤M ∗θ
⇒ N −α ≤M ∗θ−α
⇒ N −α

M −α ≤M ∗θ−α
M −α

⇒ n

m
≤M ∗θ−α

M −α
However, M = m +α. So,

M ∗θ−α
M −α = (m+α)∗θ−α

(m+α)−α

= m∗θ+α∗θ−α)
m+α−α

= m∗θ+α(θ−1)
m

Then n
m ≤ θ∗m+α(θ−1)

m .

θ′ = θ∗m+α(θ−1)
m is a suitable boundary for the new threshold on reduced traces.

Example 7. Let a given θ = 0.25. If the occurrence dissimilarity is applied on original traces in

Fig. 4.10(a), Do(Tr ,Ts) = 0 and Ts is diagnosed as normal trace.

If we try to apply occurrence distance on reduced traces (Fig. 4.10(b)) with the initial value of

threshold θ: nb_occ(A, tr) = 13 and nb_occ(A, ts) = 2.

Then Mi n{nb_occ(A,tr),nb_occ(A,ts)}
M ax{nb_occ(A,tr),nb_occ(A,ts)} = 2

13 = 0.15 ≤ θ.

77

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

The result of distance is thus do(tr , ts) = |{A}| = 1, which means that there exists an anomaly in

this trace. This diagnosis is not correct.

In our example, m = 13, α= 4. The correct value of threshold to apply is θ′ = 0.25∗13+4(0.25−1)
13 =

0.02. Considering this value of θ′, Mi n{nb_occ(A,tr),nb_occ(A,ts)}
M ax{nb_occ(A,tr),nb_occ(A,ts)} ≥ θ′ (0.15 ≥ 0.02).

We find that the diagnosis on original traces is the same as the diagnosis on reduced traces: both

consider Ts as a normal trace.

N

3- TED: new architecture

By taking into account abstraction, the modified architecture of TED (TracE Diagnosis tool

presented in previous chapter) is illustrated in Fig. 4.11.

Figure 4.11 – TED Architecture

In the new architecture of TED the Preprocessing and trace generation phase integrates a

transformation step which allows to use reduced traces or original traces. In the Diagnosis

process, an appropriate distance is chosen depending on the format of the traces to compare.

4.6.2 Experiments

We have conducted a set of experiments to evaluate how much our proposed reduced compar-

ison improve time computation.

System configuration: Our prototype system is implemented in Python 3.2. The experiments

were run on an Intel Xeon E5-2650 at 2.0GHz with 32 Gigabytes of RAM and Linux operating

system.

78

4.6. Applying distances on reduced execution traces

Data Set: We use traces from the application Gstreamer application. Reference traces are

described in Table 4.9.

Table 4.9 – Experimental dataset: reference traces

Trace Video source duration Nb. of events Size

Gstreamer
gen 17s 39,646 7.6Mo

pub 49s 74,436 14.3Mo

mov 3000s 5,964,485 1228,8Mo

*For gen trace and pub trace, we generated:

B : five abnormal traces with A/V/S desync. anomaly (P1) by using a gstreamer element

identity ([Gst14]), and different parameters

. B : five abnormal traces with player crash anomaly (P2) by using a gstreamer element

identity with property sleep-time, and different parameters.

B : five abnormal traces with slow streaming anomaly (P3) by using a stress of CPU and

memory in the system, with different parameters.

*For movie2 trace, we generated:

B : five abnormal traces with player crash anomaly.

B : one abnormal trace with slow streaming anomaly.

Tab. 4.10 presents all generated traces. For instance, P1-gen1 corresponds to suspicious trace

number one of trace gen, with anomaly P1.

*For the three reference traces, we discovered 10 blocks, using OneStepOneSon algorithm

(Chapter 3, Section 3.2.2) with a support of 60%.

Table 4.10 – Experimental dataset: names of suspicious traces

Anomaly P1 Anomaly P2 Anomaly P3

Names of suspicious

traces of trace gen

P1-gen1 P2-gen1 P3-gen1

P1-gen2 P2-gen2 P3-gen2

P1-gen3 P2-gen3 P3-gen3

P1-gen4 P2-gen4 P3-gen4

P1-gen5 P2-gen5 P3-gen5

Names of suspicious

traces of trace pub

P1-pub1 P2-pub1 P3-pub1

P1-pub2 P2-pub2 P3-pub2

P1-pub3 P2-pub3 P3-pub3

P1-pub4 P2-pub4 P3-pub4

P1-pub5 P2-pub5 P3-pub5

Names of suspicious

traces of trace mov

- P2-mov1 P3-mov1

- P2-mov2 -
- P2-mov3 -
- P2-mov4 -
- P2-mov5 -

79

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

Data reduction evaluation

Fig. 4.12 shows the size of traces after data reduction step. In the case of dropping dissimilarity,

10
4

10
5

P1-gen1 P2-gen1 P3-gen1

N
u

m
b

e
r

o
f

e
v
e

n
ts

Original trace size vs reduced trace size

original
reduced

(a) A sample of gen traces

10
4

10
5

P1-pub1 P2-pub1 P3-pub1

N
u

m
b

e
r

o
f

e
v
e

n
ts

Original trace size vs reduced trace size

original
reduced

(b) A sample of pub traces

10
5

10
6

10
7

P2-mov1 P3-mov1

N
u

m
b

e
r

o
f

e
v
e

n
ts

Original trace size vs reduced trace size

original
reduced

(c) A sample of mov traces

Figure 4.12 – Reduced traces size

one can notice that we obtain a reduction of almost the half of the original trace size (see traces

P2-gen1, P2-pub1, P2-mov1).For temporal distance, few events are removed. This comes from

the duration constraint for removing block. In our experiments, blocks to remove should have

the same duration. A relaxation would consist in considering a threshold value (εT) for the

duration. Hence, two blocks would be removed if their duration difference is less than a given

threshold εT . This variant could visibly improve the reduction percentage after data reduction

for temporal distance. For instance by considering εT = 0.01ms, the reduced trace of P3-gen1

has 38,684 events, instead of 39,309 events with the current reduction method. However, this

type of relaxation requires also to evaluate the confidence in the diagnosis depending on the

value of εT .

Fig. 4.13 presents the running time needed to reduce two traces (a reference trace and a

suspicious trace) given an ordered set of blocks. We can observe that this operation is not time

consuming.

80

4.6. Applying distances on reduced execution traces

10
-2

10
-1

10
0

P2-gen2

P2-gen3

P2-gen1

P2-gen4

P2-gen5

P1-gen3

P1-gen4

P1-gen5

P3-gen5

P1-gen1

P1-gen2

P3-gen1

P3-gen2

P3-gen3

P3-gen4

Traces

Reduction time - gen trace

trace reduction time

10
-2

10
-1

10
0

P2-pub1

P2-pub2

P2-pub3

P2-pub4

P2-pub5

P1-pub5

P1-pub1

P1-pub2

P1-pub3

P3-pub4

P1-pub4

P3-pub1

P3-pub2

P3-pub3

P3-pub5

Traces

Reduction time - pub trace

trace reduction time

10
-1

10
0

P
2
-m

o
v4

P
2
-m

o
v3

P
2
-m

o
v5

P
2
-m

o
v1

P
2
-m

o
v2

P
3
-m

o
v1

Traces

Reduction time - mov trace

trace reduction time

Figure 4.13 – Time (in seconds) to reduce reference and suspicious traces for traces g en, pub,
and mov

Running time comparison

Fig. 4.14 reports the wall clock time of each distance algorithm for baseline comparison and

reduced comparison.

One can observe that reduced comparison improves execution time for less than one order of

magnitude, except for mov traces in Fig 4.14(c). The reported time include running time for

data cleaning, but does not consider time to discover blocks.

Tab. 4.11 presents running time (in seconds) for blocks discovering. This step is only done

Table 4.11 – Time for discovering 10-bl ocks from reference traces

Reference traces Time (in s)
gen 4
pub 13
mov 1001

81

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

10
0

P1-gen1

P1-gen2

P1-gen3

P1-gen4

P1-gen5

P1-pub1

P1-pub2

P1-pub3

P1-pub4

P1-pub5

R
u

n
n

in
g

 t
im

e
 (

s
e
c
)

Traces

Running time for occurrence distance

baseline comparison
Abstract comparison

(a) Occurrence distance - Running time

10
-1

10
0

10
1

P2-gen1

P2-gen2

P2-gen3

P2-gen4

P2-gen5

P2-pub1

P2-pub2

P2-pub3

P2-pub4

P2-pub5

P2-m
ov1

P2-m
ov2

P2-m
ov3

P2-m
ov4

P2-m
ov5

R
u

n
n

in
g
 t
im

e
 (

s
e
c
)

Traces

Running time for dropping distance

baseline comparison
Abstract comparison

(b) Dropping distance - Running time

10
2

10
3

10
4

P3-gen1

P3-gen2

P3-gen3

P3-gen4

P3-gen5

P3-pub1

P3-pub2

P3-pub3

P3-pub4

P3-pub5

P3-m
ov1

R
u

n
n

in
g
 t
im

e
 (

s
e
c
)

Traces

Running time for temporal distance

baseline comparison
Abstract comparison

(c) Temporal distance - Running time

Figure 4.14 – Running time comparison

82

4.7. Conclusion

once for each reference trace. So, the time for doing this becomes insignificant when there

is several suspicious traces to compare with one reference trace. It is very often the case in

the debugging context. To illustrate this idea, assume that the execution time comparison

is almost the same for the next fourth execution on mov trace. After 5 different reduced

comparison on mov trace, the running time average of all the executions is 7,706s. It is less

than 15,000s, which is the running time average for baseline comparison. We also notice that

we obtain the same diagnosis by applying baseline comparison or reduced comparison.

4.6.3 Discussion

In the previous sections we presented an approach to reduce execution traces (based on

k-bl ocks) before comparing them. We now discuss about another method for reduced traces

comparison, which consists in: first, discovering k blocks sets for each trace (one k-bl ock

set is found per trace), then independently reduce each trace with the corresponding blocks

before applying distances. In this case, the usage of a knowledge domain is recommended to

compare blocks which could be syntactically different, but semantically similar.

Example 8. The two subsequences 〈i , I : so f t , I x〉 and 〈i , I : usb, I x〉 are syntactically different

but the two correspond to an Inter r upti on.

Assuming data there exists a domain knowledge (as a taxonomy or an ontology [GOS09]) about

multimedia decoding, this domain is used to annotate each block. Obviously, an ontology

development has a substantial cost [STM07] which is not discussed in this work and needs to

be take into account for performance tests. Fig. 4.15(b) presents a toy example of an ontology

and a trace with blocks. In Fig. 4.15(c) the trace is labelled using the taxonomy; "Interruption"

is a label.

There exists many possibilities to explore when comparing two reduced traces in this context.

One idea is to consider that two labels are equal if they have the same parent in the taxonomy.

A semantic-based approach for reduced comparison opens a better possibility of abstraction

that benefits to the analyst. The analyst can more easily understand the abstracted trace

as each block is labelled. However, we have to take care of the fact that, using a taxonomy

for trace reduction brings a level of semantic. It is then less intuitive to adapt distances on

semantic-based reduced traces and obtain the same diagnosis as on original traces, because

a semantic matching level was added. The matching is not exact because it is based on a

taxonomy.

4.7 Conclusion

To analyse execution traces and fix bugs, programmers use several tools such as trace visualiz-

ers ([CdKSB00, Rob05, MWM06, Sey08]) and techniques such as tracepoints on the execution

traces. These techniques need to have an expert to interpret the graphical representation. In

83

Chapter 4. A dissimilarity-based comparison method to analyse event sequences

(a) A trace T (b) A taxonomy of multimedia decoding domain

(c) Trace T rewritten us-
ing the taxonomy

Figure 4.15 – An example of knowledge domain usage to label execution traces

contrast, our work based on dissimilarities develops a technique which limits the developer

intervention.

Our approach diagnoses anomalies in an execution trace of multimedia application, by com-

parison with a reference trace. We use dissimilarities as models of comparison and specifically

design three distinct dissimilarities in order to tackle well-known anomalies of the multime-

dia domain. We experimentally show the added-value of our solution compared to existing

sequence dissimilarities and show that our proposed approach scales well to real application

traces. Our proposed dissimilarities allow to identify a specific problem and thus give an

added-value to the analysis. Moreover, as all dissimilarities, they also provide insights of how

far an abnormal trace is from a correct one. We lastly present a use case on how TED performs

an analysis trace and conduct some experiments to evaluate TED scalability and accuracy.

We proposed a reduction, using k-bl ocks, which allows to guarantee that a same diagnosis is

found for original and reduced traces. This reduced comparison does not bring a semantic

level which could better improve the trace analysis. A more challenging goal is to allow an

external source, a knowledge domain (as ontology) to semantically approximate the distance.

The main difficulty is to design this ontology of the domain of multimedia for embedded

systems. Strategies to use this ontology are varied. The ontology designing is a part of the

ongoing thesis of Leon Fopa 3.

Our approach can be seen as a hypothetico-deductive model [Gri90]: each type of anomaly

is considered as a hypothesis that is tested on a observable trace using a "predicting" model

encapsulated into a specific measure of dissimilarity.

3PhD student at Laboratoire d’Informatique de Grenoble

84

5 Conclusion

Contents

5.1 Contributions summary . 85

5.2 Perspectives . 86

Embedded systems are everywhere in our daily life. The development of multimedia appli-

cations is a competitive field where many works showed the interest of using execution traces

for analysis. Execution traces are event sequences which generally have large size. There-

fore, our contributions focus on useful trace processing techniques for debugging embedded

multimedia applications.

5.1 Contributions summary

We review in Chapter 2 recent works on abstractions techniques and event sequences compari-

son. We highlight some aspects which are not all taking into account in the related approaches,

especially sequentiality, temporality and added-value in comparison.

Based on a mix of sequence mining and greedy algorithms, we propose in Chapter 3 an

approach to improve trace exploration by abstracting execution trace. This approach discovers

a set of representative blocks. Experiments performed show that this method is scalable. This

allows to tackle real world execution traces. We also demonstrate by a practical analysis, how

helpful representatives blocks can be for application developers. Obviously, this approach can

be applied on execution traces, or events sequences from any domain.

Chapter 4 presents our second contribution which is an efficient method implemented in TED

(TracE Diagnosis tool), in order to detect anomalies in multimedia applications. Instead of

designing a complex measure hoping that it will find all anomalies, we choose to deconstruct

this process by designing appropriate dissimilarities to compare suspicious traces with a

reference trace. We have conducted experiments which show that our method efficiently

allows to detect if a trace is abnormal, using comparison. Moreover, the method brings an

added-value by giving a diagnosis.

85

Chapter 5. Conclusion

We also propose a first step toward an application of dissimilarities on reduced traces. Trace

reduction is done using k-bl ocks discovered in Chapter 3. The execution time improvement

is less than one order of magnitude and results are promising. We discuss another idea that

can be retained for improvement in the perspectives below.

Fig. 5.1 gives an overview of our contributions and shows how they are linked. We notice that

trace abstraction can be use for exploring trace but also for detecting anomalies.

Figure 5.1 – Summary of the contributions

5.2 Perspectives

In this thesis, we present two main contributions for execution traces analysis. Below, we

explain several research possibilities identified during this work:

Trace abstraction

I Coverage optimization: in Chapter 3 we present several efficient algorithms to discover

blocks. We propose some greedy approaches for scalability, which avoid to explore

all the search space of candidate blocks. Nevertheless in some applications different

to debugging tasks, value of coverage can be more important than execution time.

One possible alternative of our method is to compute the maximum coverage of a k-

bl ocks set in the trace by simply solving binary integer linear programming [Bal65] of

the maximum coverage on individual frames. The blocks candidates can be ordered

such that the k-bl ocks that brings the optimal coverage will be find far earlier than

exhausting all candidates. This method will increase running time, but will ensure that

the obtained coverage is the best.

I Labelling of k-blocks: for now blocks are simply sequences of events, and the developer

has to find out himself what is the block about. Therefore, integrating some domain

knowledge, discovered blocks could be labelled by an automatic or semi-automatic

86

5.2. Perspectives

method.

I Analysis of parallel traces: the sequencing of events is only important for events having

some temporal dependency. We would like to detect such dependencies, in order to

restrict the covering conditions on blocks to only such time-dependent events.

I Exploration of other types of traces: our method can be applied on any sequence of

events. In this thesis, we have focused on multimedia application traces. It could be

very interesting to observe discovered blocks when applying our approach on traces of

different domains as:

– education; k-bl ocks can be representative of the sequence of actions performed

by a student who failed the examination.

– health; k-bl ocks can represent specific behaviour of people who have the same

pathology.

Traces comparison

I Semantic comparison: in Section 4.6 of Chapter 4, we show that it is possible to adapt

distances on reduced traces. Nevertheless, in some cases, the gain in term of execution

time is not really significant. We can consider to use some domain knowledge, as

discussed in Section 4.6.3 to define semantic distances. We believe that a semantic

comparison, based on ontologies for instance, is necessary to highlight another type of

problems.

I Enhanced trace diagnosis tool: the second direction is to enlarge TED to other types of

anomalies for instance the image is completely fuzzy, upside down and/or cut in half.

The strength of our contribution is that it is easily extensible to other types of anomalies.

For each new anomaly, we only need to follow the same methodology as explained in

Chapter 4 to find the best suitable distance able to clearly detect the anomaly. There is

no need to do any changes in TED existing architecture. Finally, additional constraints

can be introduced such as parallel execution traces and the challenge is to identify, for

example, streams of different execution and take them into account for the computation

of distances.

87

A French Summary

Contents

A.1 Introduction . 90

A.2 Une méthode pour abstraire les séquences d’événements 91

A.3 Une méthode de comparaison basé sur la dissimilarité pour analyser les
séquences d’événements . 92

A.4 Conclusion et perspectives . 92

89

Appendix A. French Summary

A.1 Introduction

Dans cette thèse, nous proposons des solutions pour l’analyse d’applications multimédias

pour systèmes embarqués. La prolifération de systèmes embarqués, box, tablettes, smart-

phones, fournit un accès permanent aux contenus multimedias. Le développement d’applica-

tions multimédias est un domaine hautement compétitif dans lequel chaque seconde perdu

par un développeur pour debugger une application en coûte financièrement à l’entreprise.

La survie des entreprises dépend de la capacité des développeurs à rapidement développer,

debugger, optimiser les logiciels et s’adapter à la constante évolution.

Les systèmes embarqués peuvent être définis comme des systèmes de traitement de l’in-

formation embarqués dans des équipements comme des voitures ou des équipements de

télécommunication. Selon des statistiques fournies par plusieurs sites web, les ventes de

tablettes ont été multipliées par six entre 2010 et 2012, d’où l’intérêt des entreprises à se lancer

dans la course au développement d’applications pour systèmes embarqués.

Les applications multimédias sont parmi les plus utilisées sur les systèmes embarqués. Les ap-

plications multimédias effectuent une série de transformations (appelé décodage multimedia)

sur un flux de données. Les frameworks multimedia tels que Gstreamer [Gst14] or VLC [Vid14]

offrent offrent un grand choix de composants de calcul qui peuvent être combinés dans un

pipeline. La structure et la taille de ce pipeline dépendent du type d’application multimedia.

Les tâches d’identification des comportements inattendus ou indésirables peuvent être fas-

tidieuses car même un code syntaxiquement correct conduit souvent à des problèmes de

mémoire ou de tâches en arrière plan qui peuvent condure à un comportement incorrect.

L’analyse d’applications multimedias peut révéler d’importantes informations pour améliorer

la compréhension de l’exécution du programme. Plusieurs traveux précédents The analysis of

multimedia application traces can reveal important information to enhance program execu-

tion comprehension. [PR11],[Pou14],[Cue13] ont montré que les techniques de traçage sont

celles à utiliser dans l’environnement des systèmes embarqués. Les techniques de traçage

impliquent de détecter et de stocker des événements pendant l’execution du programme afin

d’en faire une analyse off-line. Cependant, les traces obtenues peuvent être très volumineuses,

ce qui empêche leur exploitation effective par les développeur.

Les traces sont des séquences d’évenements horodatés produits par une application ou un

système. Elle peuvent être obtenues par des techniques logicielles (qui consistent à instru-

menter le code et insérer des instructions d’écriture afin d’obtenir un log de l’éxécution),

ou matérielles (qui consistent à avoir des modules matériels dédiés où les composants de

l’architecture peuvent écrire leurs traces.

Dû au grand volume d’information disponible, il est très difficile d’analyser manuellement

90

A.2. Une méthode pour abstraire les séquences d’événements

les traces d’exécution. Il est alors essentiel de mettre au point des techniques d’analyse qui

prennent en compte la masse de données. Notre approche est donc de réduire la taille de la

trace afin de permettre une meilleure interpretation par le développeur. Cette réduction doit

évidemment éviter toute perte d’information, et doit guider le développeur dans son analyse

en présentant une trace plus accessible en terme de nombre d’événements à explorer.

Contributions de la thèse

Nous proposons dans ce travail deux techniques d’analyse de traces d’exécution : la première

vise à abstraire la trace afin d’en réduire la taille et permettre une meilleure exploitation.

L’idée sous-jacente est de grouper les sequences d’événements et remplacer les groupes par

des blocs significatifs. Ainsi, une trace initialement vue comme une séquence d’événements

devient une séquence de blocs et est considérablement réduite. La seconde méthode consiste

à détecter des erreurs dans la trace (où la trace est une séquence d’évenements ou de blocs). La

détection d’erreurs est réalisée en comparant la trace suspecte à une trace de référence. Cette

comparaison a pour objectif d’extraire des anomalies, c’est-à-dire des motifs ou des correla-

tions contenues dans la trace suspecte mais pas dans la trace de référence. Nos contributions

peuvent être résumées comme suit :

I Abstraction de traces. Nous réalisons une abstration de la trace à l’aide de séquences

d’événements appelés blocs. Ces blos sont automatiquement extraits de la trace à grâce

à des techniques de fouille de données. Les techniques classiques produisent un certain

nombre de résultats, pas toujours maitrisé. Nous conservons uniquement les blocs

candidats les plus prometteurs, c’est-à-dire les blocs qui assurent la meilleure couverture

de la trace d’origine.Nous proposons également une méthode originale qui combine en

une seule étagpe les phases de découverte des blocs et de réécriture de la trace.

� Détection d’anomalies par comparaisons de traces. Nous proposons de fournir au-

tomatiquement un diagnostic sur les traces en comparant deux traces d’éxécution.

L’une d’elles est une trace de référence correspondant à un comportement correct, et

la seconde trace est la trace à analyser. Nous identifions premièrement une famille

d’anomalies ayant tendance à apparaitre dans les applications multimédias. Nous choi-

sissons les types d’anomalies les plus récurrentes et concevons un score spécifique de

dissimilarité pour chacune d’elles. Ces scores aident le développeur à mesurer à quel

point la trace à analyser s’éloigne du comportement normal. Nous proposons ensuite

une version de comparaison applicable sur traces réduites.

A.2 Une méthode pour abstraire les séquences d’événements

Bien vouloir se reférer au Chapitre 3 pour plus de détails.

91

Appendix A. French Summary

A.3 Une méthode de comparaison basé sur la dissimilarité pour ana-

lyser les séquences d’événements

Bien vouloir se reférer au Chapitre 4 pour plus de détails.

A.4 Conclusion et perspectives

Dans les paragraphes précédents, nous avons mis en lumière des aspects qui n’étaient pas

pris en compte dans les approches de l’état de l’art relatives aux techniques d’abstraction et

de comparaison de séquences.

Grâce à une combinaison de techniques de fouille de séquences et d’algorithmes gloutons,

nous proposons dans notre première contribution une approche afin d’améliorer l’explora-

tion de la trace. Cette approche découvre un ensemble de blocs représentatifs. Les expéri-

mentations réalisées montrent que la méthode passe à l’échelle et s’applique sur des traces

d’éxécution réelles. À l’aide d’un cas d’analyse pratique, nous démmontrons comment les

blocs représentatifs sont utiles pour le développeur. Cette approche est applicable autant sur

les traces d’éxécution que sur les séquences d’événements provenant de différents domaines.

Notre seconde contribution a été implémentée dans TED (TracE Diagnosis tool), un outil qui

permet de détecter des anomalies dans les applications multimédias. Au lieu de concevoir

une mesure complexe en espérant qu’elle trouvera toutes les anomalies, nous avons choisi

de déconstruire ce processus en concevant des mesures de dissimilarité appropriées pour

comparer les traces suspectes à une trace de référence.

Nous avons réalisé des expérimentations qui montrent que notre méthode permets de détecter

à l’aide de la comparaison, si une trace est anormale. Mieux encore, la méthode apporte une

plus-value en fournissant un diagnostic. Nous avons également proposé une première étape

orientée vers l’application des distances sur traces réduites. Cette réduction de l atrace est

réalisée grâce aux k-bl ocks découvert à l’aide de notre méthode d’abstraction. L’amélioration

en terme de temps d’exécution est de moins d’un ordre de grandeur avec cependant des

résultats prometteurs. Dans les perspectives, nous présentons une autre idée qui peut être

utilisisée pour une amélioration.

Perspectives

Les différentes possibilités de recherche identifiées pendant ce travail sont les suivantes :

Concernant l’abstraction : nous avons présenté plusieurs algorithmes de découverte de blocs

basés sur une approche gloutonne. Cependant dans certaines tâches de debugging, la valeur

de couverture est plus importante que le temps mis pour l’obtenir. Une alternative à notre

méthode est d’utiliser la programmation linéaire afin d’obtenir l’ensemble des k-bl ocks

[Bal65]. Ces blocs sont manuellement labelisés pour l’instant, il serait pertinent d’intégrer

une base de connaissances afin de réaliser un labeling automatique ou semi automatique

des blocs. Pour finir, notre méthode est applicable sur toute s’quence d’événements. Nous

92

A.4. Conclusion et perspectives

avons choisi dans cette thèse de l’appliquer aux traces d’exécution mais il serait intéressant de

l’appliquer sur d’autres types de traces venant du domaine de la santé ou de l’éducation par

exemple.

Concernant la comparaison : nous avons montré la possibilité d’adapter les distances sur

traces réduites, nous pouvons opter pour l’utilisation d’une base de connaissances (comme

une ontologie) afin de définir une distance sémantique, afin de mettre en lumière d’autres

types de problèmes. De plus, la force de notre contribution est qu’elle est facilement extensible

à d’autres types d’anomalies, sans changement de l’architecture proposée.

93

Bibliography

[Agg13] Charu C Aggarwal. Outlier analysis. Springer, 2013.

[AVM+12] Davide Albanese, Roberto Visintainer, Stefano Merler, Samantha Riccadonna,

Giuseppe Jurman, and Cesare Furlanello. mlpy: Machine learning python. arXiv

preprint arXiv:1202.6548, 2012.

[Bal65] Egon Balas. An additive algorithm for solving linear programs with zero-one

variables. Operations Research, 13(4):517–546, 1965.

[BHR00] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common

subsequence algorithms. In Proceedings Seventh International Symposium on

String Processing and Information Retrieval, 2000. SPIRE 2000., pages 39–48.

IEEE, 2000.

[CBK12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection

for discrete sequences: A survey. IEEE Transactions on Knowledge and Data

Engineering, 24(5):823–839, 2012.

[CCT10] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary sim-

ilarity and distance measures. Journal of Systemics, Cybernetics and Informatics,

8(1):43–48, 2010.

[CdKSB00] J Chassin de Kergommeaux, B Stein, and Pierre-Eric Bernard. Pajé, an interac-

tive visualization tool for tuning multi-threaded parallel applications. Parallel

Computing, 26(10):1253–1274, 2000.

[Cor03] Graham Cormode. Sequence distance embeddings. PhD thesis, Department of

Computer Science, University of Warwick, 2003.

[cp13] cccp project. Discussion page: Troubleshooting guide. http://www.

cccp-project.net/wiki/index.php?title=Troubleshooting_Guide, Jan 2013. Ac-

cessed: 2013/01/04.

[CRF03] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of

string metrics for matching names and records. In KDD Workshop on Data

Cleaning and Object Consolidation, volume 3, pages 73–78, 2003.

95

http://www.cccp-project.net/wiki/index.php?title=Troubleshooting_Guide
http://www.cccp-project.net/wiki/index.php?title=Troubleshooting_Guide

Bibliography

[Cue13] Patricia Lopez Cueva. Debugging Embedded Multimedia Application Execution

Traces through Periodic Pattern Mining. PhD thesis, Université de Grenoble,

2013.

[CZvD11] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. A controlled experiment

for program comprehension through trace visualization. Software Engineering,

IEEE Transactions on, 37(3):341–355, 2011.

[DZPM09] Simon Dobrisek, Janez Zibert, Nikola Pavesic, and France Mihelic. An edit-

distance model for the approximate matching of timed strings. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 31(4):736–741, 2009.

[Ege08] Jens Egeblad. Heuristics for Multidimensional Packing Problems. PhD thesis,

University of Copenhagen, Department of Computer Science, 2008.

[Ff13] Freebox-forum. Forum: freebox discussion. www.freebox-forum.net/forum/

la-television-freebox/lecture-video-hd-1080p-mkv-saccadee-t7159963.html,

2013. Accessed: 2013/03/12.

[Gf13] Gene-forum. Forum: freebox revolution discussion. http://www.generation-nt.

com/freebox-revolution-nouveaux-problemes-avec-lecture-videos-actualite-1711302.

html, 2013. Accessed: 2013/03/12.

[GGAH14] Manish Gupta, Jing Gao, Charu Aggarwal, and Jiawei Han. Outlier detection

for temporal data. Synthesis Lectures on Data Mining and Knowledge Discovery,

5(1):1–129, 2014.

[GM04] Hubert Garavel and Radu Mateescu. Seq. open: a tool for efficient trace-based

verification. In Model Checking Software, pages 151–157. Springer, 2004.

[GOS09] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology? In

Handbook on ontologies, pages 1–17. Springer, 2009.

[Gri90] Thomas R Grimes. Truth, content, and the hypothetico-deductive method.

Philosophy of Science, pages 514–522, 1990.

[Gst14] Gstreamer. Gstreamer website. http://www.gstreamer.net, 2014. Accessed:

2014-02-26.

[gue10] Xavier guerin. Approche Efficace de Developpement de Logiciel Embarque pour

des Systemes Multiprocesseurs sur Puce. PhD thesis, 2010.

[ha14] helpx adobe. Troubleshoot video files. http://helpx.adobe.com/

premiere-elements/kb/troubleshoot-video-premiere-elements.html, 2014.

Accessed 2014/06/04.

[HEJ09] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. Semantics-aware

trace analysis. In ACM SIGPLAN Notices, volume 44, page 453, May 2009.

96

www.freebox-forum.net/forum/la-television-freebox/lecture-video-hd-1080p-mkv-saccadee-t7159963.html
www.freebox-forum.net/forum/la-television-freebox/lecture-video-hd-1080p-mkv-saccadee-t7159963.html
http://www.generation-nt.com/freebox-revolution-nouveaux-problemes-avec-lecture-videos-actualite-1711302.html
http://www.generation-nt.com/freebox-revolution-nouveaux-problemes-avec-lecture-videos-actualite-1711302.html
http://www.generation-nt.com/freebox-revolution-nouveaux-problemes-avec-lecture-videos-actualite-1711302.html
http://www.gstreamer.net
http://helpx.adobe.com/premiere-elements/kb/troubleshoot-video-premiere-elements.html
http://helpx.adobe.com/premiere-elements/kb/troubleshoot-video-premiere-elements.html

Bibliography

[Hf13] Hardware-forum. Forum: Hardware. http://forum.hardware.fr/hfr/VideoSon/

Traitement-Video/probleme-codec-video-sujet_103890_1.htm, 2013. Accessed:

2013/03/12.

[HFS98] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection

using sequences of system calls. Journal of computer security, 6(3):151–180, 1998.

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-

niques. Morgan kaufmann, 2012.

[IRBT14] Sylvain Iloga, O. Romain, L. Bendaouia, and Maurice Tchuente. Musical genres

classification using markov models. In In proceedings of ICALIP, pages 973–977,

2014.

[KIA+11] Hyungsul Kim, Sungjin Im, Tarek Abdelzaher, Jiawei Han, David Sheridan, and

Shobha Vasudevan. Signature Pattern Covering via Local Greedy Algorithm and

Pattern Shrink. 2011 IEEE 11th International Conference on Data Mining, pages

330–339, 2011.

[KT09] Jerry Kiernan and Evimaria Terzi. Constructing comprehensive summaries of

large event sequences. ACM Transactions on Knowledge Discovery from Data

(TKDD), 3(4):21, 2009.

[KWK10] Johan Kraft, Anders Wall, and Holger Kienle. Trace recording for embedded

systems: Lessons learned from five industrial projects. In Proceedings of the

First International Conference on Runtime Verification (RV 2010). Springer-Verlag

(Lecture Notes in Computer Science), November 2010.

[ld14] Online language dictionaries. Dictionary reference. http://dictionary.reference.

com/browse/abstraction, 2014. Accessed: 17/06/2014.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Technical Report 8, 1966.

[LMFC14] Hoang Thanh Lam, Fabian Mörchen, Dmitriy Fradkin, and Toon Calders. Mining

compressing sequential patterns. Statistical Analysis and Data Mining, 7(1):34–

52, 2014.

[LQ12] Mengchi Liu and Junfeng Qu. Mining high utility itemsets without candidate

generation. In Proceedings of the 21st ACM international conference on Informa-

tion and knowledge management, CIKM ’12, pages 55–64, New York, NY, USA,

2012. ACM.

[LSC97] Wenke Lee, Salvatore J Stolfo, and Philip K Chan. Learning patterns from unix

process execution traces for intrusion detection. In AAAI Workshop on AI Ap-

proaches to Fraud Detection and Risk Management, pages 50–56, 1997.

97

http://forum.hardware.fr/hfr/VideoSon/Traitement-Video/probleme-codec-video-sujet_103890_1.htm
http://forum.hardware.fr/hfr/VideoSon/Traitement-Video/probleme-codec-video-sujet_103890_1.htm
http://dictionary.reference.com/browse/abstraction
http://dictionary.reference.com/browse/abstraction

Bibliography

[LWF12] Junqiang Liu, Ke Wang, and Benjamin Fung. Direct discovery of high utility

itemsets without candidate generation. In IEEE 12th International Conference

on Data Mining (ICDM), 2012, pages 984–989. IEEE, 2012.

[LYC08] Yu-Chiang Li, Jieh-Shan Yeh, and Chin-Chen Chang. Isolated items discarding

strategy for discovering high utility itemsets. Data & Knowledge Engineering,

64(1):198–217, 2008.

[LZW12] Guimei Liu, Haojun Zhang, and Limsoon Wong. Finding minimum representa-

tive pattern sets. In Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 51–59. ACM, 2012.

[Mör06] Fabian Mörchen. Time series knowledge mining. Citeseer, 2006.

[MR97] H. Mannila and P. Ronkainen. Similarity of event sequences. In Proceedings

of the 4th International Workshop on Temporal Representation and Reasoning

(TIME ’97), TIME ’97, pages 136–, Washington, DC, USA, 1997. IEEE Computer

Society.

[MRS08] Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Distance measures

for biological sequences: Some recent approaches. International Journal of

Approximate Reasoning, 47(1):109–124, 2008.

[ms13] microsoft support. Support: Microsoft. http://support.microsoft.com/kb/265523,

2013. Accessed: 2013/03/12.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent

episodes in event sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997.

[MWM06] Mike McGavin, Tim Wright, and Stuart Marshall. Visualisations of execution

traces (vet): an interactive plugin-based visualisation tool. In Proceedings of the

7th Australasian User interface conference - Volume 50, AUIC ’06, pages 153–160,

Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[Nf13] Numeric-forum. Forum numericable. http://entraide.numericable.fr/threads/

2124-Lecture-fichiers-audio-et-vid%C3%A9os-via-media-center, 2013. Ac-

cessed: 2013/03/12.

[PHL11] Heidar Pirzadeh and Abdelwahab Hamou-Lhadj. A Novel Approach Based on

Gestalt Psychology for Abstracting the Content of Large Execution Traces for

Program Comprehension. In 2011 16th IEEE International Conference on Engi-

neering of Complex Computer Systems, pages 221–230. IEEE, 2011.

[PNSK+06] Tan Pang-Ning, Michael Steinbach, Vipin Kumar, et al. Introduction to data

mining. In Library of Congress, 2006.

[Pou14] Kevin Pouget. Programming-Model Centric Debugging for Multicore Embedded

Systems. PhD thesis, Université de Grenoble, 2014.

98

http://entraide.numericable.fr/threads/2124-Lecture-fichiers-audio-et-vid%C3%A9os-via-media-center
http://entraide.numericable.fr/threads/2124-Lecture-fichiers-audio-et-vid%C3%A9os-via-media-center

Bibliography

[PPC+01] Jian Pei, Helen Pinto, Qiming Chen, Jiawei Han, Behzad Mortazavi-Asl, Umesh-

war Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential patterns efficiently

by prefix-projected pattern growth. In 2013 IEEE 29th International Conference

on Data Engineering (ICDE), pages 0215–0215. IEEE Computer Society, 2001.

[PR11] Carlos Hernan Prada Rojas. Une approche à base de composants logiciels pour

l’observation de systèmes embarqués. These, Université de Grenoble, 2011.

[PSHLM11] Heidar Pirzadeh, Sara Shanian, Abdelwahab Hamou-Lhadj, and Ali Mehrabian.

The Concept of Stratified Sampling of Execution Traces. In 2011 IEEE 19th

International Conference on Program Comprehension, pages 225–226. IEEE,

2011.

[Rob05] James Roberts. Tracevis: an execution trace visualization tool. In In Proc. MoBS

2005. Citeseer, 2005.

[Ron98] Pirjo Ronkainen. Attribute similarity and event sequence similarity in data

mining. Ph. lic. thesis, University of Helsinki, 1998. Available as Report C-1998-42,

University of Helsinki, Department of Computer Science, October 1998, 1998.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gener-

alizations and performance improvements. Springer, 1996.

[SCA06] Pei Sun, Sanjay Chawla, and Bavani Arunasalam. Mining for outliers in sequen-

tial databases. In SDM, pages 94–105. SIAM, 2006.

[Sey08] Justin Seyster. Techniques for visualizing software execution. Technical report,

Citeseer, 2008.

[SFY07] Yasushi Sakurai, Christos Faloutsos, and Masashi Yamamuro. Stream monitoring

under the time warping distance. In IEEE 23rd International Conference on Data

Engineering, 2007. ICDE 2007., pages 1046–1055. IEEE, 2007.

[ST11] SoC-Trace. Fui project soc-trace. http://www.minalogic.

com/TPL_CODE/TPL_PROJET/PAR_TPL_IDENTIFIANT/2717/

15-annuaire-innovations-technologiques-nanotechnologie-systeme-embarque.

htm#.U0wUsaRdlEg, 2011. Accessed: 20/03/2014.

[Ste03] B De Oliveira Stein. Pajé trace file format. 2003.

[STM07] Elena Paslaru Bontas Simperl, Christoph Tempich, and Malgorzata Mochol.

Cost estimation for ontology development: applying the ontocom model. In

Technologies for Business Information Systems, pages 327–339. Springer, 2007.

[SV12] Koen Smets and Jilles Vreeken. Slim: Directly mining descriptive patterns. In

SDM, pages 236–247. SIAM, 2012.

99

http://www.minalogic.com/TPL_CODE/TPL_PROJET/PAR_TPL_IDENTIFIANT/2717/15-annuaire-innovations-technologiques-nanotechnologie-systeme-embarque.htm#.U0wUsaRdlEg
http://www.minalogic.com/TPL_CODE/TPL_PROJET/PAR_TPL_IDENTIFIANT/2717/15-annuaire-innovations-technologiques-nanotechnologie-systeme-embarque.htm#.U0wUsaRdlEg
http://www.minalogic.com/TPL_CODE/TPL_PROJET/PAR_TPL_IDENTIFIANT/2717/15-annuaire-innovations-technologiques-nanotechnologie-systeme-embarque.htm#.U0wUsaRdlEg
http://www.minalogic.com/TPL_CODE/TPL_PROJET/PAR_TPL_IDENTIFIANT/2717/15-annuaire-innovations-technologiques-nanotechnologie-systeme-embarque.htm#.U0wUsaRdlEg

Bibliography

[TAG07] Romain Tavenard, Laurent Amsaleg, and Guillaume Gravier. Estimation de simi-

larité entre séquences de descripteurs à l’aide de machines à vecteurs supports.

In BDA, 2007.

[TV12] Nikolaj Tatti and Jilles Vreeken. The long and the short of it: Summarising

event sequences with serial episodes. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 462–

470. ACM, 2012.

[TWSY10] Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S. Yu. Up-growth: an

efficient algorithm for high utility itemset mining. In Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD ’10, pages 253–262, New York, NY, USA, 2010. ACM.

[VA03] Susana Vinga and Jonas Almeida. Alignment-free sequence comparison—a

review. Bioinformatics, 19(4):513–523, 2003.

[VGW02] Frank Vahid, Tony Givargis, and John Wiley. Embedded system design: a unified

hardware/software introduction, volume 4. John Wiley & Sons New York, NY,

2002.

[Vid14] VideoLAN. Vlc website. http://www.videolan.org/vlc/, 2014. Accessed:

20/03/2014.

[VN12] V Vijayakumar and R Nedunchezhian. A study on video data mining. Interna-

tional journal of multimedia information retrieval, 1(3):153–172, 2012.

[VVLS11] Jilles Vreeken, Matthijs Van Leeuwen, and Arno Siebes. Krimp: mining itemsets

that compress. Data Mining and Knowledge Discovery, 23(1):169–214, 2011.

[wA13] wiki A/V. Wikipedia: A/v sync. http://en.wikipedia.org/wiki/Audio_to_video_

synchronization, 2013. Accessed: 2013/03/12.

[Wf13a] Windows-forum. Faq: Play an audio or video

file. http://windows.microsoft.com/en-us/windows7/

play-an-audio-or-video-file-frequently-asked-questions, 2013. Accessed:

2013/01/04.

[Wf13b] Woobees-forum. Forum woobees. http://forum.bouyguestelecom.fr/questions/

467605-lecture-videos-bloque-via-media-center-bbox-sensation-freeze, 2013.

Accessed: 2013-03-12.

[WFP99] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting in-

trusions using system calls: Alternative data models. In IEEE Symposium on

Security and Privacy, 1999. Proceedings of the 1999, pages 133–145. IEEE, 1999.

[WH] Zellescher Weg and Robert Henschel. Introducing OTF / Vampir / VampirTrace.

Memory.

100

http://www.videolan.org/vlc/
http://en.wikipedia.org/wiki/Audio_to_video_synchronization
http://en.wikipedia.org/wiki/Audio_to_video_synchronization
http://windows.microsoft.com/en-us/windows7/play-an-audio-or-video-file-frequently-asked-questions
http://windows.microsoft.com/en-us/windows7/play-an-audio-or-video-file-frequently-asked-questions
http://forum.bouyguestelecom.fr/questions/467605-lecture-videos-bloque-via-media-center-bbox-sensation-freeze
http://forum.bouyguestelecom.fr/questions/467605-lecture-videos-bloque-via-media-center-bbox-sensation-freeze

Bibliography

[wik14] Wikipedia knapsack problem. http://en.wikipedia.org/wiki/Knapsack_problem,

2014. Accessed: 25/04/2014.

[WLYT13] Cheng-Wei Wu, Yu-Feng Lin, Philip S Yu, and Vincent S Tseng. Mining high utility

episodes in complex event sequences. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 536–

544. ACM, 2013.

[WMMM90] S. Wu, U. Manber, G. Myers, and W. Miller. An o(np) sequence comparison

algorithm. Inf. Process. Lett., 35(6):317–323, September 1990.

[WS09] Krist Wongsuphasawat and Ben Shneiderman. Finding comparable temporal

categorical records: A similarity measure with an interactive visualization. In

IEEE Symposium on Visual Analytics Science and Technology, 2009. VAST 2009.,

pages 27–34. IEEE, 2009.

[WSTY12] Cheng Wei Wu, Bai-En Shie, Vincent S. Tseng, and Philip S. Yu. Mining top-k high

utility itemsets. In Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’12, pages 78–86, New York, NY,

USA, 2012. ACM.

[YL00] Nong Ye and X Li. A markov chain model of temporal behavior for anomaly detec-

tion. In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information

Assurance and Security Workshop, volume 166, page 169, 2000.

[YZC12] Junfu Yin, Zhigang Zheng, and Longbing Cao. Uspan: an efficient algorithm for

mining high utility sequential patterns. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’12,

pages 660–668, New York, NY, USA, 2012. ACM.

[YZC+13] Junfu Yin, Zhigang Zheng, Longbing Cao, Yin Song, and Wei Wei. Efficiently min-

ing top-k high utility sequential patterns. In IEEE 13th International Conference

on Data Mining (ICDM), 2013, pages 1259–1264. IEEE, 2013.

[Zdn14] Zdnet. zdnet website. http://www.zdnet.fr/actualites/

chiffres-cles-le-marche-des-tablettes-39789571.htm, 2014. Accessed:

17/03/2014.

[ZHT06] Zhang Zhang, Kaiqi Huang, and Tieniu Tan. Comparison of similarity measures

for trajectory clustering in outdoor surveillance scenes. In 18th International

Conference on Pattern Recognition, 2006. ICPR 2006., volume 3, pages 1135–1138.

IEEE, 2006.

[ZXHW10] Jia Zou, Jing Xiao, Rui Hou, and Yanqi Wang. Frequent Instruction Sequential

Pattern Mining in Hardware Sample Data. 2010 IEEE International Conference

on Data Mining, pages 1205–1210, 2010.

101

http://en.wikipedia.org/wiki/Knapsack_problem
http://www.zdnet.fr/actualites/chiffres-cles-le-marche-des-tablettes-39789571.htm
http://www.zdnet.fr/actualites/chiffres-cles-le-marche-des-tablettes-39789571.htm

Bibliography

102

