
HAL Id: tel-01551799
https://theses.hal.science/tel-01551799

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HyQoZ - Optimisation de requêtes hybrides basée sur
des contrats SLA

Carlos-Manuel Lopez-Enriquez

To cite this version:
Carlos-Manuel Lopez-Enriquez. HyQoZ - Optimisation de requêtes hybrides basée sur des contrats
SLA. Base de données [cs.DB]. Université de Grenoble, 2014. Français. �NNT : 2014GRENM060�.
�tel-01551799�

https://theses.hal.science/tel-01551799
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Carlos-Manuel LÓPEZ-ENRÍQUEZ

Thèse dirigée par Christine COLLET
et codirigée par José-Luis ZECHINELLI-MARTINI

préparée au sein Laboratoire d’Informatique de Grenoble
et de École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

HyQoZ – Optimisation de requêtes
hybrides basée sur des contrats
SLA

Thèse soutenue publiquement le 23/Octobre/2014,
devant le jury composé de :

Pr., Parisa GHODOUS
Université de Lyon 1, Président

Dr., Cedric DU MOUZA
Conservatoire National des Arts et Métiers, Rapporteur

Pr., Thierry DELOT
Université de Valenciennes, Rapporteur

Pr., Christine COLLET
Grenoble INP, Directeur de thèse

Dr., Genoveva VARGAS-SOLAR
CNRS, Co-Encadrant de thèse

Pr., José-Luis ZECHINELLI-MARTINI
UDLAP-LAFMIA, Co-Directeur de thèse

Carlos-Manuel LÓPEZ-ENRÍQUEZ
HYQOZ – SLA-AWARE HYBRID QUERY OPTIMIZATION

164 pages.

Impression : thesis.tex – 22 janvier 2015 – 09:15

Résumé

Dans ce travail, nous attaquons le problème de l’optimisation des requêtes hybrides sur les données
produites par les services de données soit à la demande, soit en continu. Ces requêtes sont évaluées
par des query workflows qui coordonnent les services de données et de calcul. L’exécution d’un query
workflow doit respecter un contrat de niveau de service (Service Level Agreement) qui définit l’objectif
d’optimisation en termes de la qualité de service attendue. L’objectif d’optimisation est donc representé
par un vecteur d’attributs de coût pondérés tels que le prix, le temps, l’énergie, etc. Les poids définissent
les préférences parmi les attributs de coût pour permettre la comparaison entre query workflows.

L’optimisation des requêtes hybrides dans ce contexte consiste à déterminer le meilleur query work-
flow satisfaisant le contrat SLA. Notre approche pour générer l’espace de recherche de query workflows,
l’estimation de coût, et l’espace de solutions est donc orientée pour satisfaire des contrats SLA. Nos prin-
cipaux résultats sont : (1) la génération de l’espace de recherche compte-tenu à la fois du flot de contrôle
et du flux de données des query workflows, (2) une fonction de coût qui tient compte de l’absence de
paramètres asociés aux données, et (3) l’adaptation d’un algorithme top-k pour sélectionner les query
workflows appropriés pour un SLA donné.

Abstract

In this work we tackle the problem of optimizing hybrid queries over data produced by data services
either on-demand or continuously. Such queries are implemented by query workflows that coordinate
data and computing services. The execution of query workflows has to respect Service Level Agreement
contracts that define the optimization objective in terms of the expected quality of service. The optimi-
zation objective is therefore described by a vector of weighted cost attributes such as the price, the time,
the energy, etc. The weights define the preferences among the cost attributes for enabling the comparison
among query workflows.

In this context, the hybrid query optimization is about to find the query workflow that best conforms
the SLA contract. Our approach for generating the search space of query workflows, the cost estimation,
and the solution space is therefore oriented to satisfy the SLA contracts. Our main results are: (1) the
generation of the search space considering both control-flow and data-flow of query workflows, (2) a
cost function that considers the absence of data-related parameters, and (3) the adaptation of a top-k
algorithm for selecting the suitable query workflows for a given SLA.

3

Acknowledgments

Je tiens à remercier sincèrement ma directrice Christine Collet, mon encadrante Genoveva Vargas-

Solar, mon co-directeur José-Luis Zechinelli-Martini pour leur critiques, support et patience dans la

réalisation de ma thèse. Également, je remercie les rapporteurs et les examinateurs de leur disposition

d’accepter de faire partie du jury de mon travail.

Grenoble, 23/Octobre/2014

Carlos Manuel López-Enríquez

5

Table of contents

1 Introduction 15

1.1 Data management in service-based environments . 15
1.1.1 Hybrid queries and SLA contracts . 16
1.1.2 Query evaluation by data-centric service coordinations 17

1.2 Hybrid query optimization challenges and objectives 18
1.2.1 Challenges . 18
1.2.2 Objectives . 20

1.3 Main contributions . 20
1.4 Document organization . 21

2 Query optimization and QoS 23

2.1 Distributed query processing . 23
2.1.1 Build-time and run-time . 23
2.1.2 Data fragmentation . 25
2.1.3 Distributed query evaluation . 25

2.2 Query optimization . 28
2.2.1 Computing the search space . 28
2.2.2 Cost estimation . 32
2.2.3 Search strategy . 34

2.3 Optimizing queries in service-based environments . 38
2.3.1 Optimization approaches . 38
2.3.2 Response time and resource usage in mediation systems 40
2.3.3 Web-based query optimization . 40
2.3.4 QoS-driven service coordination . 42
2.3.5 Discussion . 43

2.4 Conclusions . 45

3 The HyQoZ approach 47

3.1 Hybrid query . 47
3.1.1 Data and service types . 47
3.1.2 Hybrid query expressions . 49

3.2 Intermediate representation / data transformation functions 53
3.2.1 dt-function definitions . 54
3.2.2 Derivation of dt-functions . 55

3.3 The SLA contract and query workflow cost . 59
3.4 Hybrid query optimization process . 60

7

3.4.1 Query workflow generation . 61
3.4.2 Cost estimation . 62
3.4.3 Solution space selection . 62

3.5 Conclusions . 63

4 Generation of the search space of query workflows 65

4.1 Query workflow definition and properties . 65
4.1.1 Well constructed query workflow . 67
4.1.2 Consistent query workflow . 68

4.2 Generation rules . 69
4.2.1 Independent cf-relation . 69
4.2.2 Dependent cf-relation . 71
4.2.3 Concurrent cf-relation . 72

4.3 Generation algorithm . 73
4.3.1 Search space graph . 74
4.3.2 Reduction-based generation algorithm . 75
4.3.3 Generating equivalent query workflows . 77

4.4 Conclusions . 81

5 SLA-based solution space computation 83

5.1 Query workflow cost estimation . 84
5.1.1 Activity cost . 84
5.1.2 Query workflow cost . 86
5.1.3 Cost estimation at build-time . 90

5.2 Computing the solution space . 91
5.2.1 Weighted distance from the optimization objective 91
5.2.2 The top-kqw algorithm . 93
5.2.3 Optimality of top-kqw . 96

5.3 Conclusions . 96

6 Implementation and validation 99

6.1 Hybrid query processing . 99
6.2 HyQoZ components . 101

6.2.1 Data transformation function derivator (DTDerivator) 102
6.2.2 Query workflow generator (QWGenerator) . 104
6.2.3 Query workflow cost weighter (QWWeighter) 106
6.2.4 Solution space selector (KSelector) . 108

6.3 Coordinating the HyQoZ components . 109
6.3.1 Orchestration . 109
6.3.2 Choreography . 110
6.3.3 Pipelined choreography . 111

6.4 HyQoZTestbed . 113
6.4.1 Architecture and implementation . 113
6.4.2 Synthetic hybrid queries generation . 115
6.4.3 Measuring the search space sizes . 115
6.4.4 Comparing cost estimation formulations . 117

6.5 Conclusions . 118

8

7 Conclusions and perspectives 121

7.1 Main results and contributions . 121
7.2 Perspectives . 122

Bibliography 125

A Query workflow generation definitions 3

A.1 Data dependencies . 3
A.2 Uncomposable activities and healthy cf-relations . 5

B HyQoZ specifications 9

B.1 Data structures syntax . 9
B.2 Context messages . 15
B.3 APIDirectory and QoSDirectory REST interfaces . 18
B.4 Command Line Interface for HyQoZTestbed . 21

9

List of tables

2.1 Dimensions of hybrid query optimization problem . 38
2.2 Related works . 43

3.1 Data service operations . 51

4.1 Query workflows for independent cf-relation fa�|||||||||| fb 70
4.2 Query workflow for dependent cf-relation fa ◮◮ fb 72
4.3 Query workflows for concurrent cf-relation fa ◮◭ fb 73
4.5 Iterations for generating a query workflow with a parallel composition 79
4.7 Iterations for generating a sequential query workflow 80

5.1 Aggregation rules for cost attributes × control-flow . 87
5.2 Original and weighted cost attributes . 93
5.3 Naive top-k example . 93
5.4 Input lists used by top-kqw . 94
5.5 Top-kqw example . 95

6.1 HyQoZ core libraries. 101
6.2 Modules of HyQoZTestbed . 114
6.3 Libraries used by HyQoZTestbed . 114
6.4 Hybrid queries for experiments . 116

A.1 Unhealthy cf-relations . 7

B.1 Request context message format . 16
B.2 Response context message format . 17

11

List of figures

1.1 Services in service-based environments . 15
1.2 Query workflow execution example . 17

2.1 Query processing [HFLP89] . 24
2.2 Inter-query distribution . 26
2.3 Intra-query distribution . 27
2.4 Intra-operator distribution . 27
2.5 Query optimization problems . 28
2.6 Search space depiction . 29
2.7 Join shapes . 29
2.8 Query evaluation with access patterns . 31
2.9 Bottom-up enumeration . 34
2.10 Application of transformation rules . 36

3.1 Derivation of dt-functions . 53
3.2 Where are the friends of Alice ? . 57
3.3 Service Level Agreement / optimization objective . 59
3.4 Hybrid query optimization process . 61
3.5 Description of activities and query workflows by dt-functions 62
3.6 Cost estimation for query workflows . 62
3.7 Semantics of the optimization objective . 63

4.1 Graphical representation of a query workflow . 66
4.2 Execution paths . 67
4.3 Query workflows generated for the independent cf-relation 71
4.4 Query workflows generated for the dependent cf-relation 72
4.5 Query workflows generated for the concurrent cf-relation 74
4.6 One-activity query workflow . 74
4.7 ss-graph example . 75
4.8 Generation algorithm depiction . 76
4.9 Initial search space graph. 77

5.1 Cost estimation and solution space computation overview 83
5.2 Query workflow cost estimation overview . 84
5.3 Activity cost addends . 84
5.4 Data received from invoked service . 85
5.5 Sequential aggregation . 87
5.6 Parallel aggregation . 88
5.7 Application of the qw_cost rules . 89

13

5.8 Cost estimation for query workflows . 90
5.9 Search space before and after applying weight function 92
5.10 Euclidean and Weighted distances . 93

6.1 Hybrid query processing components . 99
6.2 HyQoZ information flow . 100
6.3 Communication patterns implemented by HyQoZ components 101
6.4 Derivation request . 102
6.5 Optimization request via DTDerivator . 103
6.6 Generation request . 104
6.7 Optimization request via QWGenerator . 105
6.8 Weighting request . 106
6.9 Optimization request via QWWeighter . 107
6.10 Optimization request via KSelector . 108
6.11 Orchestration of HyQoZ components . 110
6.12 Independent parallel choreography . 111
6.13 Pipelined choreography . 112
6.14 HyQoZTestbed architecture . 113
6.15 Control-flow and data-flow search spaces . 117
6.16 Precision and recall of build-time cost estimation . 118

A.1 Unhealthy cf-relation example . 6
A.2 Healthy cf-relations example . 7

B.2 Which are the common friends of Alice and Bob ? . 12
B.3 Query workflow example . 14

14

CHAPTER 1
Introduction

1.1 Data management in service-based environments

The new challenges of data management reported by the community [AAB+09, Gou09, ACK+11] in-

vite to revisit the way data are captured [BN08, Wei09], stored [KCC+11], protected [KP13, BEE+13,

ZPL08], processed [Jin12], and queried [VSIAP10]. In particular, the democratization of service-based

environments (e.g. Internet) by means of the service notion allows actors to be producers and consumers

of data through applications running in different devices. As depicted in Figure 1.1a, applications co-

ordinate either on-demand or stream data services, and computing services 1 accessible via Application

Program Interfaces (API). Applications access the service operations described by API’s for retrieving

and transforming data according to the needs of users.

...
API

on-demand

service

instance

...

API

stream

service

instance

...

API

computing

service

instance

. . .
application

requestresponse

subscription

notification(s)

qu
er

y

re
sp

on
se

(a) Services coordinated by applications

...

API

service

instance

throughput

price

energy consumption

...

bandwidth

lattency

price

...

Operation QoS measures

Network QoS measures

(b) QoS measures of services

Figure 1.1 – Services in service-based environments

Service instances and network have a series of Quality of Service (QoS) measures denoting the levels

of service they offer (see Figure 1.1b). The combination of the QoS measures determines the resulting

QoS of the application using such resources. For instance, the bandwidth and latency of the network

1. An on-demand data service provides data related to unchanging information (or subject to a single point in time) de-
livered under a request-response pattern. A stream data service provides data related to information that changes during the
time and delivered under a publish-subscriber pattern. A computing service provides computing operations in a query-response
pattern.

15

16 CHAPTER 1 — Introduction

along with the data size impact the communication time. The economic aspect is also important given

the business model adopted by service providers of: data [BHS11, KUB+13, AKHLS13], computing and

storage [KHAK09, DSL+08]. Further parameters are those related to the quality of data like provenance

[KIT10] and accuracy [NLF99]; and with others like security, energy consumption, service availability,

and throughput [Men02, BND+04].

Applications coordinating services may have different interests about the resulting quality of the

coordination. One can be interested in the reduction of the execution time, another in the reduction of the

resulting price, another in the maximization of the privacy of data, or may an application be interested in

a combination of preferences among the potential QoS aspects.

In order to have service coordinations satisfying such QoS requirements, developers code programs

for retrieving and transforming data produced by services implementing what an off-the-shelf database

system does in traditional databases. Developers chose manually services and define the invocation order

according to the QoS aspects they are interested in, or establish separate Service Level Agreements

(SLAs) with service providers.

As with service providers, the QoS requirements of a service coordination can be defined by an SLA

contract. Instead of coding a program implementing a service coordination satisfying an SLA contract,

it is interesting to have a declarative query approach to specify a data-centric service coordination and

generate the program that satisfies the SLA. In this context, the automatic generation of data-centric

service coordinations implementing declarative queries imposes interesting optimization challenges due

to the multiple QoS measures associated to the environment’s resources, the autonomy of services, and

the different combinations of interests.

1.1.1 Hybrid queries and SLA contracts

We adopt the notion of hybrid queries [CvVSCB09] for characterizing queries over on-demand and

stream data services whose evaluation is done by a data-centric service coordination. We combine hybrid

queries and SLA contracts towards the generation of data-centric service coordinations satisfying SLA

contracts.

Consider the scenario where Alice wishes to know Where is Bob? to hang out with him in a bar.

Bob shares his profile through a social network and his current location via the GPS of his smart-phone

that continuously shares his coordinates via another social network. Alice, instead to access these social

networks to see if Bob is at least 21 years old and he is nearby, uses the application FriendFinder that

performs this hybrid query automatically. FriendFinder uses the service operations described by the

following interfaces.

friends:profile(nickname)→ profile 〈nickname, email, age, gender〉

friends:friendsof(nickname)→ friendship 〈nickname, friend〉

wruservice:location(email)→ location 〈timestamp, email, lat, lon〉

geocomp:distance(lat1, lon1, lat2, lon2)→ distance 〈distance〉

The on-demand data services friends:profile and friends:friendsof provide the profile and the

friendships of a given nickname respectively. The stream data service wruservice:location provides

CHAPTER 1 — Introduction 17

a stream with the location of a given user email. The computing service geocomp:distance determines

the geographical distance between two coordinates.

FriendFinder performs the evaluation of the Where is Bob? query by retrieving the Bob’s profile

from the friends:profile service and his location from wruservice:location. FriendFinder dele-

gates query tasks to computing services like geocomp:distance for estimating the distance between

Alice and Bob. In case of limited hardware capabilities [CM09], FriendFinder can use other computing

services for transforming data.

Regarding on the QoS requirements defined by an SLA contract, suppose Alice has a budget of 1e

to access data and computing services and to use the 4G network. She also requires a response in less

than 1 minute, and she does not want to spend too much energy so she limits the energy consumption

to 50kJ. These cost attributes are examples of the possible cost attributes in service-based environments.

Users might have different preferences. For instance, Bob privileges data privacy and he does not care

about the resulting price as long as he gets the response as soon as possible. The combination of services

have to fit the SLA contract coming either from Alice or Bob.

1.1.2 Query evaluation by data-centric service coordinations

For representing data-centric service coordinations implementing the evaluation of hybrid queries, we

adopt the notion of query workflow proposed in [VVsC10]. A query workflow defines a control-flow

among a series of activities invoking service operations for implementing data transformations, e.g. re-

trieval, filtering, correlation, projection.

Suppose Alice and Bob want to know Which of their common friends are at least 21 years ? to go

with them into the bar. The execution of a query workflow implementing this hybrid query is depicted in

Figure 1.2.

retrb corrab bindp filtpretra

filterfriendsOf hash-join

hash-index
request responsecontrol-flow

profile

{A
lice’s friends}

{B

ob
’s

 f
ri

en
d
s}

{
B

o
b
’s

 f
ri

en
ds

}

{
A

li
ce

’s
 f

ri
en

ds
}

{A
li
ce

B
ob

’s
 f

ri
en

d
s}

{f
ri

en
ds

’ p
ro

fi
le

s}

{f
ri

en
d

s’
 p

ro
fi

le
s}

{A
lic

eB
o
b
’s

 f
ri

en
d
s} {frien

d
s’ p

ro
files}

Figure 1.2 – Query workflow execution example

The activities retra and retrb retrieve the friendships of Alice and Bob respectively form the on-

demand data service friends.friendOf. The resulting tuples are correlated by the activity corrab that

looks for the common friends of Alice and Bob by means of a hash-join service. The profiles of the

18 CHAPTER 1 — Introduction

common friends are retrieved from friends.profile by bindp. Finally, only the friends that are of age

are selected by filtp that invokes a filtering service.

This evaluation approach involves a trade-off between flexibility and cost. While using the resources

of the service-based environment provides flexibility, this usage derives into multi-attribute costs. The

resulting multi-attribute cost of a query workflow implementing a hybrid query must conform an SLA

contract.

1.2 Hybrid query optimization challenges and objectives

Given a pair 〈q, oo〉 where q represents a hybrid query and oo represents an optimization objective of m

cost attributes defined by an SLA contract, there is a search space S of equivalent query workflows that

implement q through different control-flows, and a cost function cost(qw) that maps each qw ∈ S to its

corresponding cost 〈x1, x2, ..., xm〉 where each i∈ [1 ..m] denotes a cost attribute. The problem is to find

the solution space of query workflows Ss ⊂ S that best fit the optimization objective oo of the SLA.

Searching the query workflows whose composition of activities satisfies the SLA contract is a multi-

attribute combinatorial problem that meets challenges already tackled in classic query optimization with

new hypothesis to consider.

1.2.1 Challenges

There are three questions to consider in the design of a query optimizer: (1) How to define a small

Search Space that includes the potential optimal query plans ? (2) How to estimate the cost in a way that

the order among query plans is correct and the resulting costs are close to the real costs ? (3) How to

avoid an exhaustive traversing of the search space for obtaining the global optimal plan ?

Hybrid query optimization meets these challenges with particular considerations:

— Search space contains query workflows sharing the equivalence property. This is that, given a

hybrid query expression, each query workflow of the search space reaches a result that holds the

semantics of the query through a different control-flow among activities. The enumeration of the

complete search space requires computational effort that may be unfeasible as more data transfor-

mations participate.

The classic database techniques for optimizing queries such as join enumeration [SAC+79, SD89,

OL90, PGLK97, RLL+01, MN08, BGLJ10], addition of sort-based operators [HFLP89, GM93],

interesting orders [SAC+79, GD87], and the optimization in presence of access patterns [RSU95,

FLMS99] are useful to enumerate the search space in a reasonable time. All these techniques are

based on algebras (e.g. relational algebra), and are oriented to optimize the data-flow. This is not

the case in service-based environments as we assume a lack of an algebra due to the possibility to

add new data operators implemented by service operations belonging to different administrative

domains. Besides, the multi-attribute costs and the preferences among them force to open the

CHAPTER 1 — Introduction 19

search space in order to have more alternatives. Therefore, it is required a strategy in the absence

of an algebra and oriented to optimize the control-flow of query workflows.

— Cost model proposes a cost function that maps a query plan to its corresponding cost by combining

parameters such as CPU usage and I/O operations in centralized systems; and communication

parameters and distributed resources usage in distributed systems [ML88].

The distributed systems introduce additional costs such as network usage [ML88] and resources

price [SA80]. Besides, most of the cost models in the literature rely on data statistics as the core

of the cost accuracy. For instance, the selectivity of attributes att1,att2, and the cardinality of the

datasets ds1, ds2 determine the cardinality of the join between ds1 and ds2, i.e. |ds1 ⊲⊳att1=att2

ds2| = |ds1|·|ds2|
max(sel(att1),sel(att2))

[SS94]. The accuracy of such data statistics becomes difficult to

achieve due to the autonomy of the services. For instance, in Garlic project [HKWY97, RS97,

ROH99] it is assumed that cost parameters (e.g. access costs, cardinality, selectivity) are provided

by distributed resources through wrappers. This assumption is difficult to hold in service-based

environments as services belong to different administrative domains. Instead, cost attributes of

query workflows result of the combination of QoS measures that describe the state of the resources

(i.e. services, network). Therefore, it is required a cost model in the absence of data statistics that

remains descriptive enough for determining the dominance among the query workflows in the

search space.

— Search strategy is devoted to find the solution space of best plans into the search space. Traditional

search strategies integrate both the search space characteristics (i.e. join shapes, operator heuris-

tics, access patterns) and the cost estimation for applying mathematical programming algorithms

and provide efficiency as the first class citizen of the optimization process.

The search strategies algorithms are (1)bottom-up such as dynamic programming [SAC+79, ML88,

MN08], greedy heuristic [Feg98], iterative dynamic programming [KS00, SY97], (2)top-down

such as directed dynamic programming [GM93], iterative improvement [NSS86, Swa88], simula-

ted annealing [IW87], (3)or a combination of both[MBHT96, DT07].

In any case the traditional algorithms are oriented to optimize the data-flow of well-known logical

or physical operators regarding on the system performance, i.e. response time, throughput. In

hybrid query optimization we are interested in the optimization of the control-flow that represents a

wider space than the data-flow one. Besides, the search strategy has to consider the adoption of the

SLA contract and the variety of potential cost attributes associated to the optimization objective,

e.g. time, price, data quality, privacy, energy consumption.

20 CHAPTER 1 — Introduction

1.2.2 Objectives

This work contributes to the optimization of data-centric service coordinations integrating both data

requirements expressed as hybrid queries and SLA contracts. We aim to propose a hybrid query optimizer

that adapts its optimization strategy according to an SLA contract.

The objectives of this work are:

1. Provide a query workflow generation with a control-flow perspective in order to open the search

space with more alternatives in presence of multi-attribute costs.

2. Determine which query workflows dominate the search space through a cost function that assumes

the absence of data-related parameters.

3. Propose an optimization strategy oriented to satisfy the optimization objective of an SLA contract

that combines preferences among the cost attributes that are interesting for the user.

1.3 Main contributions

The main contribution of this thesis is the generation of query workflows implementing hybrid queries

by coordinating services and whose cost is the closest to satisfy a Service Level Agreement expressed by

the user. In detail, there are three contributions described below.

Control-flow based generation of query workflows. We propose an algorithm for generating the

search space of query workflows implementing a given hybrid query. We provide the definitions and

properties for ensuring the well construction and equivalence of query workflows. We define a series of

data dependencies and rules for generating query workflows through sequential or parallel control-flows.

Build-time cost function. We propose a cost estimation based on the optimization objective of an SLA

contract. We model a cost function considering the different ways the activities and services produce

data through the control-flow. For optimization purposes, we propose a build-time cost function that is

a relaxation of the first one. The build-time cost function explicitly evicts information only available at

run-time and considers the activities’ interactions across the control-flow.

Top-kqw algorithm for selecting the best query workflows. We adapt a top-k algorithm for compu-

ting the solution space of query workflows representing the most suitable solutions for an SLA contract.

In order to deal with no matter which combination of cost attributes, we use an abstraction of the cost

attributes defined by the SLA contract. We adopt a weighted distance metric that considers the cost

expectations and preferences among cost attributes.

CHAPTER 1 — Introduction 21

1.4 Document organization

Chapter 2 Introduces the query optimization in distributed query processing, i.e. search space enume-

ration, cost model, search strategy. Afterwards, it reviews the state-of-the-art of works that consider QoS

aspects for optimizing both queries and service coordinations.

Chapter 3 Presents the HyQoZ approach for optimizing hybrid queries with SLA contracts. It first

introduces hybrid queries and the intermediate representation we adopt in form of data transformation

functions. Then, it presents the optimization objective associated to an SLA contract and the definition

of the query workflow cost w.r.t. the attributes of the optimization objective. Finally, the hybrid query

optimization process we propose is presented.

Chapter 4 Describes the generation of alternative query workflows implementing a hybrid query. First,

the query workflow model is presented along with the properties to ensure the well construction and

equivalence of query workflows. Then, the composition of activities for generating equivalent query

workflows by means of generation rules, and the generation algorithm are presented.

Chapter 5 Presents our cost estimation and search strategy guided by an SLA contract. It introduces

the query workflow cost estimation and a relaxation for approximating the cost at build-time in absence

of data-related parameters. Next, it presents top-kqw , an adaptation of a top-k algorithm by means of a

weighted distance metric that considers the optimization objective and the preferences among cost attri-

butes.

Chapter 6 Presents HyQoZ, the service-based hybrid query optimizer; and its testbed HyQoZTestbed

for enabling the access to HyQoZ under different configurations. First, it presents the hybrid query proce-

ssing with the optimization performed by HyQoZ. Then, it presents the REST interfaces of the HyQoZ

components, and the coordinations of the components by means of self-descriptive messages. Finally, it

presents the implementation of HyQoZTestbed.

Chapter 7 Concludes this thesis and gives the perspectives for future research.

CHAPTER 2
Query optimization and

QoS

This chapter reviews the query optimization in distributed query processing and works dealing with the

optimization of queries and service coordinations considering QoS aspects.

The remainder of the chapter is organized as follows. Section 2.1 analyses the distributed query

processing with particular attention on the problems that remain in nowadays systems such as data frag-

mentation, distributed query plans, and the trade-off between performance and resource usage. Section

2.2 stress the search space enumeration, cost estimation, and search strategy for optimizing queries in

distributed environments. Section 2.3 analyses systems tackling the optimization considering QoS as-

pects such as mediation systems, web-based query systems, and service coordination systems. Finally,

Section 2.4 concludes this chapter.

2.1 Distributed query processing

A query represents a data requirement over a collection of data sources. The query can be expressed

in a structured language (e.g. SQL) and processed by a query processor. The components of the query

processor transform the query expression into an optimal plan that is executed for obtaining the result.

Figure 2.1 presents the functional architecture of a distributed query processor[Kos00] and the phases

where its components participate. There are components that can be distributed such as the metadata

catalog [DGS+90, BAC+90], the database [GNnM+96, GDQ92], the query compilation/optimization

[ML88], or the query evaluator [AH00, HFC+00]. Query processing is done in two phases: build-time

where the query expression is transformed into an executable plan, and run-time where a query evaluator

executes such a plan.

2.1.1 Build-time and run-time

At build-time, the query processor assumes a metadata catalog containing an up-to-date database of the

schema information, access methods, and data statistics for optimization purposes. The query expression

is parsed and mapped to a logical plan composing data operators. The logical plan is represented by a

tree structure whose leafs represent data sources that can be either (fragmented) tables, streams, or data

services. The intermediate nodes and the root, represent data operators.

23

24 CHAPTER 2 — Query optimization and QoS

Parsing /

Semantic

checking

Query

Rewriting

Plan

Optimization

Plan

Refinement

Query

expression

build-timeuser

Query optimization

logical

plan

logical

plans

physical

plan

executable

program

run-time

DB DB DB…

Localization service

Query evaluation

Metadata

(DB/resources)

Metadata

(DB/resources)

Metadata

(DB/resources)

…

Localization service

Figure 2.1 – Query processing [HFLP89]

The logical plan is used by the query optimizer that performs the query rewriting and plan optimiza-

tion. Query rewriting generates alternative logical plans adopting a bottom-up approach [HFLP89, OL90]

or a top-down approach [GD87]. The alternative logical plans are processed in the plan optimization

phase for choosing the best (enough good) physical plan.

A physical plan is also represented by a tree. The nodes represent physical data operators, a.k.a.

operator methods [Gra93]. Leafs represent access methods such as sequential scan or index scan. In the

case of service-based queries, the only access method is the invocation of data services via standardized

interfaces, e.g. EVScan in [GW00], wrappers [PGMW95, RS97, KTV97], binding patterns [BCD08].

Intermediate and root nodes represent physical operators like join methods[SD89, ME92] (e.g. nested-

loop join, sort-merge join, hash-join) filtering methods, and others like sorting or grouping methods. The

nodes have adornments as part of the cost estimation strategy. Such adornments denote, for instance, the

intermediate size of data, the execution time required[ML86], and the computing resources to be used in

distributed environments [GHK92, KTG06], e.g. memory, disk, CPU’s, service instances, communica-

tion. The adornments are computed by cost functions that consider the physical data operators, the order

among them, and the state of data and computing resources.

The resulting query plan is passed through a plan refinement that translates it into a procedural plan

by assembling pieces of code and then producing a final program. This plan refinement can be seen as a

translation of the query plan in a program readable by the query evaluator.

At run-time, the query evaluator executes the plan leveraging of distributed resources for accessing

data sources, performing query tasks, and delivering the result. Data access, either metadata or data, is

done through a localization service which knows data’s location and fragmentation. In shared-nothing 1

architectures[AH00, TD03], like service-based environments, the evaluation relies on autonomous dis-

tributed resources (e.g. services) such as data sources, catalog, and the computing resources to perform

query tasks. In contrast with query plans in centralized environments, distributed query plans contain

communication primitives among computing resources such as send and receive that induce communi-

cation costs.

1. Multiple computing units with private memory and storage

CHAPTER 2 — Query optimization and QoS 25

2.1.2 Data fragmentation

The role of data fragmentation is to spread data among distributed storing resources in order to allow the

parallelization of data access and query evaluation. The design of the fragmentation of a relation R in n

resources, is about to chose a horizontal fragmentation, i.e. R =
n
⋃

i=1

Ri, or vertical fragmentation, i.e. R =

n
⊲⊳
i=1

Ri. Vertical fragmentation is usually more complex for query splitting than horizontal fragmentation

but it has a better performance with a careful design following a fragmentation strategy[DG92] like

round-robin, range, and hash.

The quality of the fragmentation strategy relies on the symmetry of the data distribution or skewness 2

that balance the access to the resources. For instance, suppose that the fragmentation of tweets is done

following a range strategy w.r.t. their hash-tags; if a hash-tag becomes a trend-topic (e.g. #Snowden,

#Brazil2014) the throughput of the storing resources will be harmed because all the queries over such

trend-topics require to access them. The round-robin strategy assigns the i tuple to the resource i mod n

among n resources. For instance, one may found many of the #Snowden tweets in every resource, and

thus the query "give me all the #Snowden tweets" requires to access every resource allowing independent

parallel access with the corresponding communication cost and resource usage. Finally, the hashing

strategy applies a hash function to a tuple to assign it to a bucket (i.e. storing resource). The hash

function may be location aware, for instance, the tweets related to the trend-topic #CumbreTajin2014

should be stored near to Mexico.

In nowadays services providing data, the fragmentation is not explicit. For instance, the friendships

of someone are horizontally fragmented in serveral social network services (e.g. facebook, google+,

twitter). Such a fragmentation can be seen also as a vertical fragmentation as the schemas are hetero-

geneous and maybe related by a single attribute (e.g. email). For instance, a data service may offer the

friends’ profile with interests information (e.g. reddit), while other data service may offer the friends’

profile with professional information (e.g. linkedin). In such a case, the combination of data fragments

is pulled-up to the query expressions.

2.1.3 Distributed query evaluation

Distributed query evaluation exploits the computing resources available in distributed environments ei-

ther to access data or to perform query tasks. There are three approaches to evaluate queries in distributed

environments. Query-shipping considers the capabilities of the computing resources and deploys query

tasks to them. Data-shipping assumes that data consumers have enough storage and computing capabi-

lities to retrieve, store and process data locally. Both have a response time and resource usage trade-off

depending on the distribution of query tasks, data fragmentation, the hardware capabilities of computing

resources, and the rate of incoming queries. There is a third approach hybrid-shipping [FJK96], which

leverages of the advantages of the others under memory conditions of resources and data fragments sizes.

2. Skewness is a measure that denotes the asymmetry of data distribution. As closest to zero is the skewness, the best is the
data distribution.

26 CHAPTER 2 — Query optimization and QoS

The service coordination approach for evaluating queries[BKK+01, CvVSCB09] adopts the use of

both query-shipping and data-shipping. A dataset is retrieved from its data service (i.e. data shipping)

and it is passed to a computing service (i.e. data shipping) along with the query task to process it (i.e.

query-shipping).

2.1.3.1 Distributed query plans

A distributed query plan defines how query tasks are organized and distributed among the computing

resources. The distribution of query tasks is limited by three conditions [GHK92, Mah10]: (1) resource

contention given by the competition among query tasks accessing resources, for instance, in shared-

nothing architectures the network and the computing resources are in contention; (2) data dependency

given by logical relations among data operators, for instance a data operator filtering a dataset depends on

the retrieval of such a dataset; and (3) data fragmentation (skewness), for instance, a dataset fragmented

horizontally can be filtered by two query tasks in independent parallel.

Query tasks are organized by distributed query plans that can privilege either the performance or

the resource usage depending on the granularity of the plan: inter-query, intra-query, and intra-operator.

Next, these granularities are explained along with figures where a query Qi is evaluated by a query plan

from the input data represented by parallelograms and through data operators represented by rectangles.

The dashed rectangles represent the computing resources performing the query tasks.

— Inter-query distributes multiple queries implemented each by a single query task (see Figure 2.2).

For n concurrent queries, there are n computing resources executing each in parallel.

π σds1

Query task

π σds2

Query task

Q1

Q2

Figure 2.2 – Inter-query distribution

— Intra-query assigns a portion of the required data operators to a single query task. The query tasks

execution is organized depending on the logical dependencies among data operators (see Figure

2.3). Dependent operators are executed by sequential query tasks (possibly) through a pipeline,

i.e. as partial results are issued, the following query task processes them (e.g. tuples in the outer

operand of a nested-loop join can be pipelined). Independent operators belonging to different data-

flow branches are performed by query tasks in independent parallelism, e.g. the retrieval from two

data sources (or fragments) ds1 and ds2 is performed in parallel. For a single query with n data

operators, it can be performed by at most n computing resources.

CHAPTER 2 — Query optimization and QoS 27

π σds1

Query task Query taskQuery task

π σds2

Q3

dependent operators

in
d
ep

en
d
en

t
o
p
er

at
o
rs

. . .
Query task Query taskQuery task

⎧
⎨
⎩

⎩ ⎨ ⎧
Figure 2.3 – Intra-query distribution

— Intra-operator splits a single data operator into several query tasks performed in independent

parallelism (see Figure 2.4). Each query task transforms a dataset fragment. For instance, a dataset

distributed horizontally in k disjunctive fragments can be projected and filtered by 2k computing

resources. In the case of overlapping horizontal fragments, it is required an additional query task

to perform the union. For n <= m, a single query with n data operators can be performed by m

computing resources.

π1

π2

πn

σ2

σ1

σm

ds

…

…

d
is

jo
in

t
fr

ag
m

en
ts

⎧
⎨
⎩

dependent operators⎩ ⎨ ⎧

Q4

Figure 2.4 – Intra-operator distribution

The distributed query plans can provide best performance (i.e. response time, throughput) if more

resources are used, or inversely, less resource usage reducing the performance.

2.1.3.2 Response time, throughput, and resource usage

The distribution of query tasks induces the trade-off between resource usage and performance. Such a

trade-off is described by the notions of speed-up and scale-up. The speed-up notion describes the res-

ponse time improvement as more resources participate. The scale-up notion describes the throughput

improvement as more resources participate. The improvement is stabilized given the parallelizable por-

tion of query tasks. In practice, the speed-up and scale-up are harmed by the network contention due to

message passing among computing resources. This trade-off induce the need to define query optimization

strategies to find the Pareto optimal by discarding plans either time optimal or resource optimal.

For instance, in [GHK92] the problem to reduce the response time is formulated with constraints

on the throughput of the system, in particular the CPU usage. Through these constraints, the trade-off

between response time and resource usage is parametric. This is done by defining a factor of throughput

degradation and a limit on the cost benefit ratio. If Rp and Tp respectively represent the resource usage

and the response time of the optimal plan p, the solution of the optimization is a plan p′ if (1) Wp′ ≤ k ∗

Wp, i.e. the plan p′ requires almost k times the work required by the optimal Wp; and if (2)
Tp−Tp′

Rp−Rp′
≤ r,

28 CHAPTER 2 — Query optimization and QoS

i.e. the ratio of the response time and resource usage is almost r. Therefore, the best plan is not the one

that has the best response time (i.e. p) but the one that respects the parameters k and r (i.e. p′).

Looking at the parallelization of tasks, in [GI96, GI97], they look for the optimal independent and

pipelined parallelization of the query evaluation in a shared-nothing architecture. Each query (sub-)plan

is modeled as a requirement of multiple hardware capabilities. The computing resources in turn, offer a

collection of hardware capabilities typified as time-shared (i.e. CPU, disk, network) and space-shared

(i.e. memory). This model allows to conduct the optimization w.r.t. the available hardware capabilities.

2.2 Query optimization

The goal of query optimization is to obtain the solution space of query plans from a search space of pos-

sibilities. The solution space contains the plans whose costs represent the best (enough good) alternatives

for implementing the query.

From this goal, three problems arise. (1) How to define a small Search Space that includes the po-

tential optimal query plans ? (2) How to estimate the cost in a way that the order among query plans is

correct and the resulting costs are close to the real cost ? (3) How to avoid an exhaustive traversing of the

search space for obtaining the global optimal plan ?

Search strategy

Cost estimationSearch space

Figure 2.5 – Query optimization problems

In general such problems are tackled in an integrated search strategy (see Figure 2.5) in order to

provide efficiency while they are tightly coupled to the data model, data operators, physical layer ma-

nagement, and cost model. Therefore, the extensibility of such solutions become difficult as new data

models, applications, and costs arise.

These problems are wide and thus we scope on the challenges related to the hybrid query optimi-

zation problem. In particular we next discus (1) the search space computation and the considerations

for generating the potential optimal plans, (2) the cost estimation regarding on the trade-off between

response time and resource usage, and (3) the search strategies for traversing the search space.

2.2.1 Computing the search space

The search space is a collection of equivalent plans derived from a query expression, e.g. SQL. A query

expression is rewritten in a set of equivalent logical plans and each of these also in a set of equivalent

physical plans (see Figure 2.6). The logical plans vary on the logical operator order along the data-

flow and the physical plans on the physical operators implementing each logical operator. The size of

the search space grows exponentially given this double combinatory. The enumeration of the complete

search space requires computational effort that can be reduced following join shape policies and adopting

operator motion heuristics.

CHAPTER 2 — Query optimization and QoS 29

A B C

..
.

σ

A B C

..
.

σ

..
.

NLJOIN

FILTER

NLJOIN

SCAN(A) SCAN(B) SCAN(C)

NLJOIN

FILTER

..
.

NLJOIN

SCAN(A) SCAN(B)SCAN(C)

SMJOIN

FILTER

SORT SORT

..
.

SORT

SMJOIN

SCAN(A) SCAN(B) SCAN(C)

SMJOIN

SORT SORTSORT

SMJOIN

..
.

FILTER

SCAN(A) SCAN(B) SCAN(C)

equivalent

logical plans

query

expression

equivalent

physical plans

…

… …

SELECT ...

 FROM A JOIN B ON ...

 JOIN C ON ...

 WHERE ...

 ...;

Figure 2.6 – Search space depiction

2.2.1.1 Join orderings

The order in which joins are organized determines the cost of a query plan. Finding the best join orderings

is a problem that has been studied from the last four decades [SAC+79, SD89, OL90, PGLK97, RLL+01,

MN08, BGLJ10] due to its complexity that is known to be NP-Hard [CM77, IK84, Swa88, SMK97] and

because of the diverse join semantics (e.g. outer-join [RGL90, MN08]). There are polynomial time

algorithms to find sub-optimal plans [IK84] or to find optimal plans under specific characteristics (e.g.

acyclic queries [KBZ86]).

inner

inner

inner

outer

(a) Left deep

inner

outer

outer

outer

(b) Right deep

innerouter innerouter

(c) Bushy

Figure 2.7 – Join shapes

One of the principles to make an efficient join orderings enumeration is the adoption of a join shape.

A join shape (see Figure 2.7) indicates how the join operators are connected among them and with data

sources. Left-deep shape composes query trees where the inner side is always a data source and the outer

side is either a join operator or a data source (see Figure 2.7a). Right-deep shape composes query trees

where the outer side is always a data source and the inner side is either a join operator or a data source

(see Figure 2.7b). Bushy shape (a.k.a. composite inners [HCL+90]) allows the two operands to be either

join or data sources (see Figure 2.7c).

Both linear and bushy shapes represent good opportunities to find optimal plans [IK91, SMK97] as

they enable –under different circumstances– the pipeline parallelism (i.e. left and right-deep) and inde-

30 CHAPTER 2 — Query optimization and QoS

pendent parallelism (i.e. bushy). In particular for distributed environments, bushy shapes provide better

opportunities [CYW96, FJK96] because there are more parallel joins running in independent computing

resources.

Although the enumeration of bushy shapes is as expensive as a search space without constraints

[OL90], it is feasible for small instances of the problem by applying either deterministic methods [VM96]

or randomized methods [IK91]. Besides, bushy shapes avoid Cartesian products as shown in [FLMS99]

in the context of queries over data sources with access patterns.

2.2.1.2 Operator heuristics

The basic heuristic to move operators along data-flows is to push-down inexpensive operator methods

in order to reduce intermediate data size. This reduction can be done either horizontally (e.g. filterings

over indexed attributes, joins/products between small datasets), or vertically (e.g. projections). As conse-

quence expensive operators (e.g. filterings over un-indexed attributes with low selectivity, nested-loop

joins with low selectivity, products) are pulled-up getting smaller datasets. These heuristics are typically

combined with the cost of predicates and user-defined functions [Hel94].

The order of data is also important for adopting sort-based operator methods, e.g. sort-merge join,

binary search filtering, duplicate elimination. Otherwise, the datasets must be scanned in sequence (e.g.

nested-loop join, linear filtering). The inclusion of sort-based methods might include additional methods

(i.e. glue STARs [HFLP89], enforcers [GM93]) when there is no an explicit order in the query or when

the access method does not provide such an order (i.e. sequential or hash-based access).

Operators like order-by, group-by and join (sort-merge join) introduce interesting orders [SAC+79],

a.k.a. operator properties [GD87]. The principle is to look for query plans with interesting orders that

represent better alternatives than the ones without sort-based operator methods.

The rules to move or add group-by operators without affecting the query semantics have been studied

in [CS95] and more recently in [BGLJ10]. In particular, [BGLJ10] introduces polynomial heuristics for

the motion of group-by, joins and semi-joins; and envisages the inclusion of anti-joins and outer-joins by

considering their particular associative restrictions [GLR97, RLL+01].

The addition of either order-by or group-by operators induces more alternatives that might harm the

optimization process as it is a NP-hard problem even in a simplified form [GSDB11]. In [GSDB11] the

enumeration of the search space with interesting orders is pruned through a heuristic based on favorable

orders. An order is favorable if its cost maximizes the benefit for the plan by considering the information

about indexing structures of the involved attributes.

2.2.1.3 Access patterns

The access patterns [RSU95, DL97] arise in the context of (1) data wrappers [RS97, KTV97] (a.k.a.

translators [PGMW95]) in the mediation systems [Wie92, ZRV02], (2) User-Defined Functions (UDF)

[CS96], and (3) foreign functions [CS93]. Access patterns introduce special considerations for enumera-

ting the search space of query plans as the access to the output of such functions (and wrappers) is only

CHAPTER 2 — Query optimization and QoS 31

possible if all the bound attributes are provided. The notion of binding pattern is used for describing how

to access functions and data provided by wrappers.

Binding patterns

A binding pattern (a.k.a. adornment [Ull88], predicate pattern [ACP96], view [Ull97, KP09]) describes

which bound attributes are required as input to obtain a series of free attributes as output. Binding pat-

terns, queries and query plans are represented by the notation of Datalog programs:

head(B1?, ..., Bm?, Fm+1!, ..., Fm+n!) :−p1 ∧ ... ∧ pk.

The head denotes the binding pattern or a query with its m bound attributes adorned with ’?’ and

the n free attributes adorned with ’!’. The body contains a series of k conjunctive predicates whose true

value produces the result. Each predicate pi denotes either a fact into the Extensional Database (EDB) or

a binding pattern into the Intentional Database (IDB).

Suppose the parenthood example used in [RSU95, DL97]. The EDB contains facts of the form

parent(C,P) that denotes the parenthood between a parent P and his child C . Such data are accessible

via two binding patterns in the IDB. (1) bp1(C!) has no bound attributes and provides all the individuals

how have parents in the EDB. (2) bp2(C?, P !) requires C to provide values of P , i.e. it gives the parents

P of a given child C . Now consider the query Which are the grandchildren for the individual g ? denoted

by q1(C!, g). Figure 2.8 presents a query plan of q1(C!, g) in the left and the bottom-up evaluation in the

right.

bp2 (C!,P?)

bp1 (C!)

bp 2 (P!,g)

EDB

bp 1 bp 2

^bp2(C!,P?)

 ^bp2 (P!,g)

q1 (C!,g) :-bp (C!).
1

IDB

Figure 2.8 – Query evaluation with access patterns

First, the bp1 is used to retrieve all the potential grandchild C , then bp2 is used to find the parents P

of the potential grandchild C , and once again bp2 to retrieve the parents P that are child of g.

Safe and unsafe queries

A query Q is safe if it has an equivalent query plan P where all the bound attributes related to the

binding patterns mentioned in Q are bounded either (1) to a free attribute of a positive predicate of the

plan P , or (2) to a constant.

32 CHAPTER 2 — Query optimization and QoS

In the context of mediation systems [CD96, DL97], there is a class of queries that allows to express

unsafe queries (i.e. queries with bound attributes not bounded to neither a free attribute nor a constant).

This is, there is not enough information into the query expression for constructing a plan.

Unsafe queries can be transformed into safe queries[Li03, NL04, Nas04]. The query evaluator

assumes that the (non-mentioned) binding patterns in the IDB and the facts in the EDB may participate

during the evaluation in a natural-join way[LRO96, LC00]. This is, if a binding pattern included in the

query has a free attribute whose abstract domain is the same than an attribute of a non-mentioned binding

pattern, then the natural-join of both may provide useful bindings for answering the query.

While unsafe queries provide expressiveness with incomplete information, the assertions to rea-

lize natural-joins of bound/free attributes become difficult to manage in a context such as web [LRO96,

YKvBO03, SMWM06, BCD08]. We consider safe queries more appropriate for service-based envi-

ronments even if they demand to developers the knowledge about the binding patterns describing data

sources they are interested in.

Query plan enumeration

The alternative plans for queries with binding patterns is smaller than plans for queries with commutative

joins presented before (cf. Section 2.2.1.1) because data dependencies tend to produce linear plans. For

instance, answers for conjunctive queries with binding patterns are found in polynomial time [RSU95].

This problem becomes more complex when several binding patterns are allowed for a single data

source. For instance, suppose the binding patterns bp2(C!, P?) and bp3(C?, P !) are associated to a single

data source identified by parenthood, and the query dialect allows to pose queries over the identifier

parenthood. In such a case the evaluation engine has to look for the feasibility of queries by considering

the combinations of binding patterns of the data sources involved in the query [FLMS99].

The avoidance of unnecessary accesses (i.e. minimal closure) is a property of optimal plans of

queries with access patterns. In [CM08] the authors tackle the problem by traversing a dependency graph

d− graph that represents all the possible ways to evaluate the query. The process is to (1)construct

the d−graph of data dependencies (arcs) among all the data sources attributes (nodes), (2)clean the

d−graph by deleting arcs that represent unnecessary dependencies and attributes; and (3)generate the

optimal query plan by finding the path with minimal number of accesses. This approach is inspired from

previous works [LC00, LC01b, LC01a] where the database is represented by a hypergraph that is reduced

until an alternative plan is obtained. This is also the approach of the GYO reduction algorithm [GST83]

and the adaptation for binding patterns done by [CVVSC12] in the context of hybrid queries.

2.2.2 Cost estimation

The cost is given by a function that maps a query plan to its corresponding cost. This cost function is

a combination of parameters such as CPU usage and I/O operations in centralized systems [ML86] and

communication parameters and distributed resources usage in distributed systems [ML88].

CHAPTER 2 — Query optimization and QoS 33

The distributed systems provide efficiency and scalability while the use of distributed resources in-

troduces additional cost such as network [ML88] and resources price [SA80]. Besides, the accuracy of

data statistics becomes more difficult to achieve as the autonomy of the computing resources increases.

For instance, in Garlic project [HKWY97, RS97, ROH99] it is assumed that cost parameters (e.g. access

costs, cardinality, selectivity) are provided by the distributed resources by means of wrappers.

2.2.2.1 Data statistics

Data statistics are used as parameters of the cost function. For instance, the selectivity of attributes

att1,att2, and the cardinality of the datasets ds1, ds2 determine the cardinality of the join between ds1

and ds2, i.e. |ds1 ⊲⊳att1=att2 ds2| =
|ds1|·|ds2|

max(sel(att1),sel(att2))
[SS94]. Data statistics are stored as part of

the system database and their computation implies overhead as queries themselves.

In nowadays data-centric distributed environments, the assumption that distributed resources provide

information to compute the cost is not realistic. It implies either (1) the harvesting and materialization

of data statistics[ACP96], (2) the implementation of an interface (i.e. wrapper) in the data source side

for accessing such an information[ROH99], (3) or the active participation of the data sources during

the optimization process[TRV95]. In HERMES project [ACP96], and further in [ZL98], this assumption

was deprecated accepting the autonomy of data sources is a deterrent for traditional cost-based query

optimization.

Another way to gather data statistics is query sampling over data sources. For instance, to gather the

cardinality of a data source ds, it is executed the query select count(*) from ds; to gather the response

time for a given input value val1, it is executed the query select * from ds where att1 = val1. There

are more costly statistics like the estimation of the number of distinct values of an attribute (i.e. select

distinct att1 from ds1) that requires the elimination of duplicates, and the gathering of the two highest

or lowest values (i.e. select distinct att1 from ds order by att1 asc stop after 2, select distinct att1 from

ds order by att1 desc stop after 2). Such routines have been implemented in centralized and distributed

databases (e.g. [ML88, ML86, Col12]) for internal usage of the query processor or for allowing the user

to force the optimizer to select query plans with the desired properties.

2.2.2.2 Extensible cost model

The System-R framework integrates the search space and the cost estimation into the search strategy as

a monolithic module. Such a framework is not adaptable when new data models and operators arise (e.g.

big data processing [Ewe12]), and as new costs have to be considered (e.g. resource pricing [LSW+12],

data pricing [KUB+12], energy [KB12]). This evolution demands extension of the query optimizer that

is difficult to achieve in the System-R framework as it is data-model dependent[Bat86].

In Genesis [Bat86, Bat87], the extensibility is possible thanks to a functional data model that enables

the addition of new data types and operators. For instance, in Genesis [Bat86, Bat87] data-object trans-

formations are represented as function compositions in a high level expressions named GDL-expressions

(Genesis Data Language). These expressions are mapped to low level expressions named r-expressions

34 CHAPTER 2 — Query optimization and QoS

whose domain are file-records.

The algorithms (i.e. operator methods) of abstract operators are written as a composition of basic

operators (i.e. physical operators). Analogously, the cost function of an abstract operator is the compo-

sition of the cost functions of its basic operators. This is applied recursively for more sophisticated cost

functions of algorithms composed by abstract operators.

2.2.3 Search strategy

In System-R [SAC+79] the enumeration of possible query plans is tackled with a dynamic programming

algorithm for finding the possible left-deep joins, and interesting orders (a.k.a. operator properties[GD87])

for determining which physical operators are convenient for the data-flow according to the benefit they

provide to the plan.

This algorithm has been widely used as it is good enough for queries with few data sources. Never-

theless, as queries become more complex such as in OLAP applications[IK84] and deductive databases

[RU93], the problem must be tackled with algorithms that are efficient while sometimes only sub-optimal

plans are achieved.

There are two approaches to enumerate alternative plans[GMUW02]: bottom-up and top-down. Next,

we present these approaches along with algorithms implementing them.

2.2.3.1 Bottom-up approach

A bottom-up algorithm (e.g. [SAC+79, MN08]) first treats with smaller sub-plans (i.e. data sources

first) and compute the possible compositions and costs with the reminding sub-plans (see Figure 2.9).

A B C

A BCA B C

B A C

B ACB A C

A B C

A BC

C B A

C BA CB A

A B C

AB CA B C

A C B

A C B AC BB A C

SELECT ... FROM A, B, C

Figure 2.9 – Bottom-up enumeration

For the three relations A,B,C , the first iteration composes each pair of relations and apply the

commutative property producing six sub-plans. Then, the second iteration composes the six resulting sub-

plans with the reminding relation and also applies the commutative property producing twelve alternative

plans. Next we enumerate some of the algorithms adopting the bottom-up enumeration approach.

— Dynamic programming has the principle of divide and conquer under the principle of optimality.

For a (sub-)query Q involving n relations {R1, . . . , Rn} to be joinded, the optimal plan of n

relations is composed by an optimal plan of n − 1 relations. At each iteration i∈ [2 .. n] there are

CHAPTER 2 — Query optimization and QoS 35

i − 1 relations composed {R1, ..., Ri−1} and n − i − 1 to be composed {Ri, ..., Rn}. At the end

of the iteration, the generated plans are memoized 3 to use them in further iterations as a cache.

Dynamic programming has been proposed in the System-R [SAC+79] and its version for distri-

buted databases R* [ML88]. The search space is constrained to consider left-deep shapes where

the most of the optimal plans can be found [GMUW02]. Besides, the size of a search space with

linear shapes is (n− 1)2 while the one with bushy shapes is (n3 − n)/6 [OL90]. In the worst case

of star queries –where n − 1 sources are all joined with a single one– the size of the search space

is (n − 1)2n−2.

The algorithm has been improved during thirty years until the inclusion of bushy shapes with Car-

tesian products that result convenient for a small number of tuples[MN06, MN08]. The efficiency

of the algorithm is proven to be better w.r.t. the naive generation. Nevertheless, for queries with

n > 10 relations the algorithm is unfeasible [SMK97].

— Greedy algorithm has the same structure as the dynamic programming algorithm. The difference

is that at each iteration i∈ [2 .. n] for n relations, it only takes the cheapest plan P j
i such that

cost(P j
i) = min{cost(P j

i) | j∈ [1 ..m]} for the m alternative sub-plans at i.

This algorithm may produce sub-optimal plans [SMK97] due to the assumption that an optimal

sub-plan P j
i will contribute to find the global optimal plan Pn. In [Feg98] the GOO (Greedy Ope-

rator Ordering) algorithm performs the enumeration in polynomial time, i.e. O(n3). It is compared

with with randomized algorithms (i.e. iterative improvement) in order to show that the delivered

plans are better because the algorithm considers bushy-trees that is proven to provide better optimal

opportunities in a wide search space[FJK96, FLMS99]. Nevertheless, GOO always outperforms

such randomized algorithms while the delivered plans still being potentially sub-optimal.

— Iterative dynamic programming [KS00] integrates the benefits of both dynamic programming

and greedy algorithms into a series of eight algorithms some of them based on the patent [SY97].

Such variants consider the limitations of memory and a time threshold. If there is no enough

memory/time the algorithms adopt a greedy heuristic IDP1 in order to reduce the search space

and assuming the intrinsic sub-optimality. Otherwise, the IDP2 is chosen and thus better quality

plans. The IDP2 variant also uses a greedy heuristic but instead to compose only two sub-plans, it

takes the reminding ones and makes a pair-wise composition of them. In this way, IDP2 chooses

the best sub-plan to explore allowing to produce bushy shapes. The eight variants of IDP arise

by two more considerations besides the memory/time constraints: (1) the size of the intermediate

results, and (2) the number of relations contained in sub-plans.

2.2.3.2 Top-down approach

A top-down strategy is based on transformation rules [RH86, PGLK97] and it considers first bigger

expressions. The input is a logical (sub-)plan and it is transformed by applying logical-to-logical trans-

3. Memoization is about materialize input-output pairs of a function in order to avoid the computation in succeeding itera-
tions. This technique is not exclusive neither of dynamic programming nor bottom-up approaches (e.g. [DT07])

36 CHAPTER 2 — Query optimization and QoS

formation rules for producing an equivalent logical plan. A logical (sub-)plan can also be transformed

into a physical plan by applying logical-to-physical transformation rules. For instance, consider Figure

2.10 that shows these two transformations.

A B C

..
.

A B C

..
.

logical-to-logical logical-to-physical

A scan(B) scan(C)

SMJOIN

SORT SORT

..
.

Figure 2.10 – Application of transformation rules

The logical-to-logical transformation in Figure 2.10 is based on the associative property of joins, i.e.

(A ⊲⊳ B) ⊲⊳ C = A ⊲⊳ (B ⊲⊳ C). The logical-to-physical transformation maps the sub-expression

B ⊲⊳ C into a plan that implies the sort-merge join method [BE77] SMJOIN and the required enforcers

methods [GM93] (a.k.a. glue STARs [HFLP89]) such as SORT that enables the execution of a sort-

merge join. These transformations determine the search space and thus they constraint both the required

computation effort to achieve an optimal plan and its quality.

— Directed dynamic programming is the top-down version of the System-R dynamic program-

ming. In particular, [GM93] proposes a top-down variation of dynamic programming algorithm

that is conjugated with goals. This turn the algorithm needs-driven [GM93] instead of possibilities-

driven such as System-R [SAC+79] does. This algorithm, produces equivalent logical and physical

plans only for largest (sub-)plans that satisfy logical an physical properties instead of enumerating

all the equivalent plans that may not satisfy such properties.

— Branch-and-bound explores the spanning tree where the root represents the original logical plan

P with a cost C . During the exploration, there is an upper bound named incumbent that represents

the best cost already known. The first incumbent I is defined by the cost C . Next, a series of n

transformation rules are applied to the plan P for obtaining alternative plans P ′
1 . . . P

′
n and the

costs C ′
1 . . . C

′
n. The costly plans {Ci > I|1∈ [i .. n]} are eliminated and thus the spanning tree is

cut. The reminding plans are maintained as potential alternatives. The incumbent is updated with

the minimum cost of the plans I = min(C ′
1 . . . C

′
n). This bound is kept in subsequent explorations

until there are no more sub-plans to explore, or discarded by backtracking if such explorations do

not represent feasible alternatives.

— Two phase optimization [Swa89, IK90, IK91] uses two randomized algorithms that adopt the best

profit heuristic of greedy algorithms. (1) The iterative improvement [NSS86, Swa88] produces a

local optimal plan and (2) the simulated annealing [IW87] explores the neighborhood in order to

look for a better solution.

The iterative improvement covers rapidly a large subset of the search space by step-wise traver-

sing of the neighbors. For a given plan, the algorithm moves to the better neighbor (if there is)

CHAPTER 2 — Query optimization and QoS 37

and repeats this iteratively until a valley (i.e. local optimal) is reached, or until a time threshold is

exceeded. Once iterative improvement finishes, the simulated annealing uses probabilities to deter-

mine which of the neighbors may provide a better solution in another valley. These two algorithms

are complementary. While iterative improvement gives quickly a local optimal, the simulated an-

nealing provides (when possible) global optimality because it moves to a neighbor even if it is not

better than the current solution but it represents a good opportunity to reach a better one.

2.2.3.3 Hybrid approach

Neither bottom-up nor top-down approaches represent an absolute solution for efficiently enumerate the

spectrum of interesting query plans. Thus there are works adopting these two approaches in both the

query rewriting and the plan optimization phase.

The EROC system [MBHT96] combines both bottom-up for the enumeration of join orders based on

the Starburst [PHH92] and the top-down optimization algorithm of Volcano [GM93]. In [DT07] the au-

thors propose a branch-and-bound enumeration of left-deep and bushy shapes with or without Cartesian

products. It is based on logical-to-logical and logical-to-physical transformations and the memoization

principle taken from bottom-up dynamic programming. The memoization serves as a cache strategy to

store and compare plans already optimized, and avoids duplicates. The top-down enumeration gets the

benefits of memoization and also one of the drawbacks of dynamic programming because of the memory

usage. Nevertheless, the branch-and-bound prunes the spanning tree reducing then the memory usage.

38 CHAPTER 2 — Query optimization and QoS

2.3 Optimizing queries in service-based environments

This section presents systems tackling the optimization of queries in service-based environments. The

systems we consider include mediation systems, web-based query systems, and service coordination

systems. Through the description of systems we highlight the dimensions characterizing the hybrid query

optimization problem listed in Table 2.1.

Dimension Description

First class objects

Service coordinations can solve either data requirements or functional requirements,
e.g. e-business applications. Then, the first class objects can be either data for works
considering services as data providers, or service operations for works considering
services as computing providers.

Cost attributes
The purpose of the optimization and the cost model are defined by the cost attributes.
For instance, time, price, reliability, data quality, etc.

Optimization
approach

In presence of multiple cost attributes, the approach to deal with can be either
needs-driven when the user needs are considered, or possibilities-driven when the
optimizer looks for the best solutions according to the system state.

Adaptation
As long as a plan is being executed, the dynamic nature of the environment makes
fluctuate the cost at run-time. The adaptation may be considered or not as part of the
optimization depending if there are long-running queries.

Service selection
A service interface (i.e. API) can be implemented by a single service instance or by
multiple service instances. This assumption leads to the service selection problem.

Table 2.1 – Dimensions of hybrid query optimization problem

We consider mediation systems and web-based queries where the first class objects are data. We also

consider the service coordination systems where in general the first class objects are service operations.

These works principally consider the time and price as optimization dimensions. There are other works

considering QoS (possibly conflicting) aspects that we model as cost attributes.

For tackling the multiple cost attributes there are two main approaches (i.e. possibilities-driven and

needs-driven) adopted by these systems. There is also the profile-driven approach that considers user

nominations and is a specialization of the possibilities-driven approach.

Because of the dynamic nature and democratization of service-based environments, the adaptation

and service selection are important dimensions of the hybrid query optimization problem. Nevertheless,

we left aside these dimensions for future investigations.

2.3.1 Optimization approaches

Besides the performance related costs (i.e. response time, throughput) of classic query optimization,

the use of services in service-based environments brings QoS aspects to consider as part of the cost.

This cost is composed by multiple cost attributes. For instance, the communication cost due to message

passing among resources leads to the usage of the network and bandwidth consumption, and has an

impact into the response time. Depending on the speed-up and scale-up bounds, as much resources are

used the most are enhanced the response time and throughput. This enhancement has a compromise with

QoS aspects besides the ones related to the network [ACH98]. Such QoS aspects (a.k.a. non-functional

aspects [OEtH02]) have to be considered into the hybrid query optimization.

CHAPTER 2 — Query optimization and QoS 39

Immediately related to the usage of resources, there is the financial cost either from the usage of com-

puting resources [SA80, DSL+08, QRLCV11, LSW+12], data resources [BHS11, KUB+12, KUB+13,

AKHLS13], storage [LBN07, DSL+08, KHAK09]. There is also the index storage [GG03] and energy

consumption [LP09, HSMR09, Kon11, LBZ+11, CS12, KB12, FP13]. The notion of services as data

and computing providers have other QoS aspects to consider[Men02, BND+04] such as security, availa-

bility, throughput, reliability, and reputation. The quality of data is also important so the data provenance

[KIT10], completness [MSV+02], timeliness and accuracy [NLF99], and data coverage [NK01].

In our context, these QoS aspects are modeled as cost attributes. To deal with such a cost there are two

approaches.

— Possibilities-driven approach is aimed to answer queries according to what is possible to do

given the current state of the system. In [PY01], the system has an interface where the user can

chose among the alternatives of the Pareto curve, i.e. optimal and near optimal alternatives.The

construction of such a Pareto curve is done by a dynamic programming algorithm in polynomial

time [PY00] under the assumption that the cost functions of the attributes are linear.

In the context of queries performed over distributed data sources, [VRM04] studies the way to

maximize the data coverage and minimize the execution price of the plan. They look for a per-

centage of the top results (i.e. Top XX%) to construct a quasi Pareto optimal whose accuracy is a

function of XX% and it is proportional to the resulting cost.

— Needs-driven approach defines the optimization purpose according to the expectations of users

about the query evaluation cost (i.e. response time threshold, price budget). Several works have

adopted this approach [SAL96, Mad96, YNGM00, YKvBO03, YB08, FK09]. In particular, the

Mariposa project [SAL96] introduced the query and storage optimization by considering the user

requirements and the available resources on different administrative domains with heterogeneous

service levels such as hardware capabilities, stored data, and pricing. Instead to look for a global

optimal deployment of query tasks or data fragments, Mariposa adopts an economical model that

guides an equitable assignation of resources. This induces a price/quality ratio for the selection of

the resources for evaluating a given query. The resources decide which data fragments to buy or

sell, and which query fragments to bid. Like in trading market, resources might not accept the task

because of profit reasons or might not have enough capacity.

In [YNGM00], it is addressed the problem to find the trade-off among time, price and data coverage

of query plans over overlapping data sources. The search is conducted by a budget and thus they

look for the maximization of the coverage with the budget constraint. More recently in [YB08], the

query optimization problem adopts several cost attributes called QoWS parameters (i.e. latency,

reliability, availability, price, reputation) given the nature of service-based environments.

By adopting this approach some queries might not be feasible leading the user to modify his

expectations or to wait for an adjustment of the market of resources.

40 CHAPTER 2 — Query optimization and QoS

Both approaches are profitable depending if the user wants the best possible query plan or the one

that best fits his constraints. In [KSTI11] both approaches are integrated in search algorithms for finding

the best deployment of processing operators in cloud-style computing resources that provide elasticity

and have an associated price. They consider the constraints over time and price when one is preferred

over the other, and when there is not an explicit constraint. Both scenarios are pertinent to deal with the

multi-attribute costs and user preferences when leveraging of the service-based environment resources.

2.3.2 Response time and resource usage in mediation systems

The mediation systems in 90’s [CGMH+94, CHS+95, LRO96, TAB+97, AK98] are the precedent of

queries over data services such as web services[YB08]. Such systems assume a closed application do-

main feed by a collection of data sources (e.g. text files, HTML, XML, relational, search engines)

providing data through a wrapper [PGMW95, RS97, KTV97]. Wrappers enable to deal with different

data models and feed a mediation schema either in a global-as-view 4 or local-as-view 5 fashion. In such

a way, the mediator provides an homogeneous view to facilitate querying to data consumers. It is in

charge to locate data locations and split the query in sub-queries that are processed by the distributed

resources, or the mediator. This leads to the optimization problem of deciding if it is convenient to privi-

lege the resource usage, or the response time by adopting either the data-shipping, the query shipping or

the hybrid shipping (cf. Section 2.1.3).

In mediation systems, there is certain homogeneity and control that makes traditional cost-based

query optimization feasible. For instance, typically during the optimization process wrappers contribute

to the cost estimation. It can be either by providing data statistics of the contained data (e.g. Disco

[TRV95]), or participating during the optimization process (e.g. Garlic [ROH99]).

These assumptions are not possible in service-based environments because of the autonomy of ser-

vice instances that may appear and disappear, and because of the absence of a single application domain

shape. In HERMES [SAB+95], the assumption about the availability of data statistics is more realis-

tic. They assume that the response time for a given wrapper invocation and the data cardinality is not

provided by the wrapper[ACP96]. Therefore they use a histogram of wrapper invocations and perform

aggregations over it as required by the cost function.

More dimensions are considered in mediation systems such as in MadiaGrid [CBB+04] where

price, and data source quality is estimated through an Annotator[BCV08]; and there are considered user

constraints such as threshold, budget, and data source preferences.

2.3.3 Web-based query optimization

In [YKB99, YKB03, YKvBO03], it is proposed a distributed query processing by means of web-service

invocations. The optimization is based on QoS measures and user profiles. In particular, they consider the

4. global-as-view: The local schema is first and the description of the mediation schema is done in terms of local
data[CGMH+94, TRV95, HKWY97].

5. local-as-view: The mediation schema is first and the description of local data is done in terms of the mediation
schema[LRO96, Ull97, AK98].

CHAPTER 2 — Query optimization and QoS 41

cost attributes response time and price. Both attributes are computed considering the information about

the network state, database servers load, and data fragmentation.

The users are classified in two levels of service according to their profiles. Each class of users guides

the optimization towards either (1) the minimization of the resources usage or (2) the minimization of

the response time. As pointed by [YKvBO03], it is important to handle the adaptation during the query

execution given the dynamic nature of the environment but their experiments do not show such a claim

as it seems to be considered only one-shot queries.

[SMWM06] presents a way to find an optimized query execution plan modeled as a pipelined web-

service coordination. The data mappings are assumed following the First Schema Approach. The optimi-

zation is partially achieved considering the order of relational operators and the chunk size of transferred

data between services. The computation of optimal plan time is performed by a greedy algorithm in a

polynomial time.

In [BCD08] data services are modeled as search services and exact services (i.e. on-demand). It is

about to combine both search and exact results given a datalog-style query while the rank provided by

search services is kept. The query expression includes data retrievals, joins [BCCR08], and a constant k

for bounding the tuples as they represent the k most interesting results. Services deliver data bounded by

chunks (i.e. ordered pages of a fixed size) whose size is a parameter of the invocation. A query plan is

represented by a service coordination that enables the pipeline processing of the results through the data-

flow defined by the bindings between free and bound attributes. It is assumed that both search services

and exact services provide the cardinality of data results and the selectivity of their attributes to compute,

for example, the resulting size of a join. The optimization is conducted by one of the cost attributes (e.g.

minimize the response time, minimize the total price).

We highlight the integration of search results and exact data. An interesting approach to deal with

the cost estimation is the definition of chunks, also adopted by [SMWM06], and the k constant for

estimating the intermediate data size and the evaluation cost. In particular for search services, it can be

assumed that the most interesting results are on the top (i.e. earlier chunks). They also apply the chunk

notion for exact services. Nonetheless, the occurrence of the attribute values to perform filtering, joining,

or binding operators is not deterministic and it may lead to incomplete responses.

In the context of the Athena Distributed Processing Project (ADP) [TKK+09], input queries in the

ADPLanguage are expressions of sequential compositions of arbitrary data processing operators (possi-

bly) defined by users. The operators process data coming from data services. An operator is implemented

by several service instances. The optimization is about to look for the best composition of service ins-

tances implementing the operators.

The query expression includes the specification of operator profiles describing the operators in the

data-flow. An operator profile is provided by the user and it enables the generation of alternative logical

plans through commutative and associative properties. The operator profile is decorated as long as the

optimization process goes on. For example, the service instance implementing the required operator, and

the resource where it is deployed. These decorations enable the estimation of the response time and the

price [KSTI11].

42 CHAPTER 2 — Query optimization and QoS

ADP adopts either the possibilities-driven approach when there are no user constraints from the

user, or the needs-driven approach to look for the dominant plan in presence of a user preference (e.g.

time≺price, price ≺time). Operators are possibly performed in an intra-operator parallelism [KSTI11] if

they can process adjacent data fragments and if it is suitable for satisfying the user constraints.

In [SR11] web services providing data are accessible through a WSMEdiator service [SR07] that

exports an integrated view of the available services. The WSMEdiator service allows to query web ser-

vices in a SQL-like fashion. As web services have access patterns, they have to be arranged through a

data-flow to reach the final result. The multiple sequential invocations of web services is time costly and

thus an adaptive parallelization of web service invocation calls is proposed to reduce the response time.

The adaptive parallelization is done either manually by a FF_APPLYP operator or automatically

by AFF_APPLYP [SR09] operator. Such operators split the web service invocations and gather the data

from web services. Then the result is passed to another operator in charge to parallelize the invocations of

the following web service(s) in the data-flow. In this way, parallelization is performed in multiple levels

while pipeline execution is enabled. In particular, AFF_APPLYP adjusts automatically the parallelization

by instantiating threads until an optimal performance is reached.

When the optimization of the response time is priority, it is interesting to adapt the parallelization

of data service invocation. Clearly, it will increase the resource usage including, for instance, the energy

consumption and price. In such a case, the same adaptation may adjust the parallelization as long as the

query runs. It is also important to note that multiple parallel invocations to a single web service may

reduce its throughput or even produce a denial of service in a multi-query environment. In such a case

the adaptation should consider failures.

2.3.4 QoS-driven service coordination

A service coordination organizes autonomous software entities (i.e. services) providing data and compu-

ting capabilities to solve either data requirements or functional requirements. Services provide different

levels of service characterized as QoS measures. Such QoS measures can be treated either as parameters

of a cost function or as a cost itself resulting in any case in a multi-attribute cost.

[YKB07] addresses the problem of scheduling the tasks of a workflow into a set of services capable to

execute them. Each service has different time and price costs and the users express a deadline and budget

to be respected by the resulting scheduling(s). A series of Multi-Objective Evolutionary Algorithms (i.e.

NSGAII, SPEA2 and PAES) are used to deal with the conflicting time and price attributes. They found

the Pareto optimal in order to propose the (near)-optimal scheduling(s) subject to the time and price

constraints. It is shown that these algorithms provide different accuracy and performance depending on

the structure of the workflow.

[YB08] addresses the problem of finding web service coordinations considering functional require-

ments and quality constraints. It is assumed that a service exposes a service schema containing (1) which

operations are implemented and (2) the graph of dependencies they have with other internal operations

and with operations of other service schemes. Besides, a web service instance has a set of QoS maesures

such as availability, price, and reliability. A requirement is expressed with an algebra that allows to de-

CHAPTER 2 — Query optimization and QoS 43

fine functional requirements and quality constraints over the service operations. The evaluator generates

sequential Service Access Plans by merging the graphs of dependencies of the required operations and

by aggregating their QoS measures to look for those compositions that hold the quality constraints. The

enumeration of the SAPs is done by a dynamic programming based algorithm with a score function that

estimates the resulting quality of the alternative plans. The algorithm computes in a bottom-up fashion

the sub-plans with the best performance. Then, following a greedy heuristic, these sub-plans are filtered

to get those whose score dominates the others and the resulting ones are passed to the next iteration to

compose them. Finally a (sub-)optimal plan is computed.

2.3.5 Discussion

The works presented in previous sections tackle optimization of queries and service coordinations in

service-based environments considering some of the nowadays QoS requirements. Table 2.2 shows the

partial list of works tackling some of the dimensions of hybrid query optimization (cf. Table 2.1).

First class objects Cost attributes
Optimization

approach
Adaptation Service selection

[YKB99, YKB03,
YKvBO03]

data time, price profile driven no join site

[YKB07] service operations time, price needs driven no yes
[SMWM06] data time possibilities driven no no

[YB08] service operations

time, price,
availability,
reliability,
reputation

needs driven no yes

[BCD08] data (exact,search) time, price possibilities driven no access pattern

[SR11] data time possibilities driven
number of local
parallel threads

no

[TKK+09,
KSTI11],

data time, price
possibilities driven,

needs driven
no yes

[TGT13], data time, price needs driven no yes

Table 2.2 – Related works

These dimensions are tackled with strong assumptions about the available information for performing

the optimization, i.e. data dependencies, data statistics. Some of them are oriented to optimize service

coordinations solving functional requirements, and others to solve data requirements. In service-based

environments both data and service operations are opaque and we can abstract them as data providers.

Hybrid query optimization allows to obtain service coordinations whose services may provide data or

computing capabilities. Such service coordinations are optimal w.r.t. the optimization objective of an

SLA contract that specifies a combination of QoS aspects represented by cost attributes. Hence, the

resulting coordinations are oriented to satisfy the user needs, i.e. needs-driven approach. Nevertheless, as

the SLA contract defines the ideal point to meet, the best coordination for a possibilities-driven approach

can be defined as the closest to the origin.

Both, the adaptation and service selection are problems themselves that we left aside in this work

and we recognize them as problems to tackle in future investigations.

Next, we precise our discussion w.r.t. the optimization of multi-attribute costs representing QoS

aspects, and the extensibility of the optimizers.

44 CHAPTER 2 — Query optimization and QoS

Optimization in presence of multi-attribute costs. The works optimizing the performance and price

do not consider the wide combinations of user expectations such as non-functional aspects and data

quality. In service-based environments, the expectations of users and applications (i.e. SLA) should

dictate the cost attributes to be considered during the optimization instead to fix them into the search

strategy.

With this perspective, it is required an abstraction layer between the cost estimation and the solution

space selection. In any case, the cost estimation remains a problem as it is required to model each of the

multiple cost functions with the heterogeneous (or absent) information.

In such cost functions, data-related parameters cannot be assumed like in cost-based query optimiza-

tion. Data statistics are hard to harvest in service-based environments because of the intensive monitoring

and storage required to maintain up-to-date information. For instance, the nested structure of data (e.g.

XML, JSON) makes prohibitive to materialize accurate selectivities of leaf data attributes.

The must of the works rely on the assumption that data statistics are either provided by the service

instance or by a monitoring service that keeps an up-to-date histogram feed by query sampling or by

storing previous invocation results. These statistics improve the accuracy of cost estimation if they are

effectively available.

In the absence of data statistics, the adoption of operator motion heuristics can help to reduce data

size and improve performance. The algorithms adopting such techniques are all driven to optimize the

data-flow. Nevertheless, the wide possibilities of optimization interests require a wider search space that

should consider not only the data-flow but the control-flow for organizing service invocations.

As the user might require either needs-driven or possibilities-driven optimization, the optimizer

should be capable to adopt both in a single search strategy. We define the ideal point (i.e. SLA) and

the optimizer looks for the closest solution(s). In the particular case of possibilities-driven approach, the

optimizer can define the origin as the ideal point.

Extensible framework for optimizing service coordinations. In general, works optimizing queries

or service coordinations in presence of multiple cost attributes, put the search space characteristics and

cost functions inside the search strategy. Such a framework is not extensible when new data models and

operators arise (e.g. big data processing [Ewe12]), and as new costs have to be considered (e.g. resource

pricing [LSW+12], data pricing [KUB+12], energy [KB12]). The QoS requirements demand extension

of the optimizer that is difficult to achieve in this framework as it is data-model dependent (e.g. System-R

[Bat86]).

For dealing with QoS requirements, there is the extensible framework [RH86] that enables the se-

paration of aspects and thus the easy extension of its parts, i.e. alternative plan enumeration, cost esti-

mation, search strategy. This framework has been adopted in academic database systems such as EXO-

DUS/ VOLCANO/ CASCADES[GD87, GM93, Gra95], STARBURST[HFLP89, PHH92], GENESIS

[Bat86, Bat87]; and commercial database systems [WH09] such as SQL Server, and DB2. Recently it

has been also adopted by new data processing paradigms such as in SCOPE[Jin12].

CHAPTER 2 — Query optimization and QoS 45

In the extensible framework, each optimization aspect is tackled individually. For instance, in [RR82]

(and further in the STARBURST project [PHH92]), the optimizer is divided in two modules. The first is

the join enumerator that looks for the join orders, and the second is the plan generator that completes the

query plans and computes their associated costs. This separation also enables a configurable optimizer

according to the characteristics of queries, data statistics, and the application, e.g. OLAP, OLTP. For

instance, the join enumerator can be configured to generate only left-linear shapes and the plan generator

to select sort-based operator methods.

The adoption of extensible framework is not exempt to provide efficiency to achieve what a good

optimizer is expected to be. Therefore, extensible optimizers first provide generality to the optimization

process and then efficient techniques are adopted in a dynamic function fashion. In this work, we adopt

the extensible query optimizer hypothesis ’if the query optimizer is organized as a rule-based system, as

new types, operators, and methods are added, the system can be extended by defining their properties via

new rules’[GD87]. We tackle separately, the query rewriting, search space generation, cost estimation,

and solution space selection. In this context we privilege the separation of concerns and therefore the

extensibility required in service-based environments.

2.4 Conclusions

This chapter reviewed the issues concerning the query optimization such as the search space enumera-

tion, cost estimation, search strategy and the trade-off between response time and resource usage. These

issues remain important for the new paradigm of evaluating queries with the service coordination ap-

proach.

We also made a partial revision of the state-of-the-art of systems tackling the optimization in pre-

sence of QoS aspects. This analysis leads us to identify that the most of recent systems still tackling the

optimization problem with tight search strategies that make difficult the extension of the optimizer. Be-

cause everything in a service-based environment is subject to change, we can make few assumptions for

a suitable optimization. It can be either the availability of service instances, the levels of service, the data

quality, offer and demand, or the user requirements. We believe the extensibility is a key requirement

for supporting the nowadays context where new data requirements, data models, cost attributes, and QoS

requirements still appearing. A query optimizer should be ready to adjust its optimization strategy in

presence of these various conditions.

CHAPTER 3
The HyQoZ approach

This chapter introduces the HyQoZ approach for optimizing hybrid queries with SLA contracts.

The remainder of the chapter is organized as follows. Section 3.1 presents hybrid queries over on-

demand and stream data services. Section 3.2 describes the intermediate representation of hybrid queries

by means of data transformation functions (dt-functions) and the derivation process for obtaining them

from a hybrid query expression. Section 3.3 introduces the SLA contract notion and the query workflow

cost to be considered in hybrid query optimization. Section 3.4 describes the optimization process we

propose. Finally, Section 3.5 concludes this chapter.

3.1 Hybrid query

We adopt the notion of hybrid queries [CvVSCB09] for characterizing queries on service-based envi-

ronments. A hybrid query expresses a data requirement over on-demand and stream services accessible

through standardized interfaces, e.g. APIs. Data and services are represented as complex value types that

enable the expression of hybrid queries by composing complex value operators. The formal definitions

of complex value types, and complex value operators can be found in [CvVSCB09].

3.1.1 Data and service types

This section introduces the types representation of data and services for expressing hybrid queries over

data services. Originally, this representation was defined in [CV11] and we adopt it for this work.

3.1.1.1 Complex value types and services

We assume a finite set of domains D of strings S, booleans B, integers Z, reals R, and timestamps T =

Z0. These domains denoted by their names string, boolean, integer, real, and timestamp members

of the set of names A ⊂ S.

Types are represented by lower-case letters with hats (e.g. t̂) and are defined by a pair A :def , where

A ∈ S is the name of the type and def its definition. The functions name and def enable the access to the

name and definition of a type t̂. For instance, for the type t̂ = nickname :string, name(t̂) = nickname

and def(t̂) = string.

Complex value types enable to represent (1) tuples of the form t̂ = A : 〈t̂1, ..., t̂n〉 where t̂i represents

a type, (2) set types of the form t̂ = A : {t̂1} where t̂1 represents the unique type, (3) and function types

47

48 CHAPTER 3 — The HyQoZ approach

of the form f̂ = A : t̂1 × ... × t̂n → t̂o where t̂i represents an input parameter type and t̂o represents a

single output type.

For instance, the friendships of a person can be modeled by the tuple type t̂ = friendships: 〈nickname :

string, with : {friend : string}〉 where the type nickname : string identifies the person and the set type

with :{friend :string} represents the set of friends of such a person. The function type allows to represent

service operations further defined.
A type t̂ denotes a set of complex value instances [[t̂]]. For instance, the denotation of the type t̂ =

friendship :〈nickname :string, with :{friend :string}〉 is given by

[[t̂]]={friendships :〈nickname : ‘Alice’, with :{friend : ‘Bob’, friend : ‘Claire’, ..., friend : ‘Zara’}〉,

friendships :〈nickname : ‘Bob’, with :{friend : ‘Alice’, friend : ‘David’, ..., friend : ‘Zoe’}〉,

...

friendships :〈nickname : ‘Zuzana’, with :{friend : ‘Bob’, friend : ‘David’, ..., friend : ‘Will’}〉}.

Analogously to complex value types, the functions name and val obtain the components of complex

value instances. For example, if t ∈ [[t̂]] is a complex value instance of the form primes : {num :

2, num : 3, num : 5...}, then name(t) = primes and val(t) = {num : 2, num : 3, num : 5...}.

In particular, for tuple values t of the form A : 〈A1 : v1, ..., An : vn〉, the dot notation t.Ai allows

to access the values vi of the attributes Ai : vi of t. For example, if t denotes friendships : 〈nickname :

‘Alice’, with :{friend : ‘Bob’, friend : ‘Claire’, ..., friend : ‘Zara’}〉, then t.nickname = ‘Alice’ and t.with =

{friend : ‘Bob’, friend : ‘Claire’, ..., friend : ‘Zara’}.

By extension, the function def(A : v) allows the access to the definition of the complex value type.

This is, for the type t̂ = friendships : 〈nickname : string, with : {friend : string}〉 and the type instance

t ∈ [[t̂]], def(t)=〈nickname :string, with :{friend :string}〉.

3.1.1.2 Service

A service is an autonomous software entity accessible through a standardized interface whose consti-

tuent operations return data as result of an invocation. Service interfaces are represented by a tuple type

serv_name : 〈f̂1, ..., f̂n〉, where each f̂i is a function type of the form op_namei : f
def
i representing an

operation.

The functions registry and choice enable the access to a service directory. For a given set of types

S specifying service interfaces, and a service interface s ∈ S the function registry provides the set of

service instances implementing s, i.e. registry(s) ⊆ [[s]]. The function choice selects a specific service

instance from the set of instances obtained from the registry, i.e. choice(registry(s)) ∈ registry(s).

The service notion is specialized for representing on-demand and stream data services.

3.1.1.3 On-demand data service

An on-demand data service provides data in a request-response fashion through synchronous data ope-

rations. An on-demand data operation is represented by a function type f̂i of the form op_namei :

CHAPTER 3 — The HyQoZ approach 49

î1 × ...× îm → {t̂o}, where îj is an input type and the output type t̂o = A : 〈̂i1, ..., îm, ôm+1, ..., ôm+p〉

contains attributes of the same type as the input parameters îj , and additional attributes ôk representing

the result of the on-demand data operation. The complex value provided by the invocation of op_namei

contains the values that correspond with every input attribute name Ai such that T = op_namei(A1 :

v1, ..., Am : vm) = {A : 〈A1 : v1, ..., Am : vm, Am+1 : vm+1, ..., Am+p : vm+p〉}.

For instance, the interface of the on-demand service friends is defined by friends :〈f̂1, f̂2〉 where

f̂1=profile : nickname :string→{profile:〈nickname:string, gender:string, email:string, age:integer〉}

and f̂2=friendsof : nickname :string→{friendships:〈nickname:string, with:{friend:string}〉}.

For obtaining the friends of Alice, we perform the invocation friends.friendsof(nickname :

‘Alice’) that produces the output set {friendships :〈nickname : ‘Alice’, with :{friend : ‘Bob’, friend :

‘Claire’, ..., friend : ‘Zara’}〉}.

3.1.1.4 Stream data service

A stream data service provides data continuously to a subscribed consumer. In our model, we abstract

the subscription mechanism and define the interface of a stream data service as a tuple of stream data

operations. A stream data operation is represented by a function type f̂i of the form opi : t̂ → {A :

〈ô1, . . . , ôn, t̂ 〉} where each ôi represents an attribute and t̂ represents a timestamp attribute of the form

τ :timestamp. The function thus produces a set of timestamped tuples at a given time value.

For instance, the interface of the stream service whereRU is defined by whereRU :〈f̂1〉 where

f̂1 = location : nickname : string→{location:〈nickname : string, lat:real, lon:real, timestamp:iteger〉}.

The whereRU operation allows to subscribe to the location of a person at a given time.

The subscription may contain windowing directives such as give me the last five tuples, or give me

the tuples from the last hour. For instance, the last five locations of Bob are given by

whereRU.location(nickname : ‘Bob’, ‘TOP 5’) that produces

{ location : 〈nickname : ‘Bob’, lat :48.85214927, lon :2.36789545, timestamp :1406564492〉,

location : 〈nickname : ‘Bob’, lat :48.8520214, lon :2.36771888, timestamp :1406564403〉,

location : 〈nickname : ‘Bob’, lat :48.85197632, lon :2.36759633, timestamp :1406564311〉,

location : 〈nickname : ‘Bob’, lat :48.85189498, lon :2.36750442, timestamp :1406564294〉,

location : 〈nickname : ‘Bob’, lat :48.85174922, lon :2.3673861, timestamp :1406564240〉}.

3.1.2 Hybrid query expressions

A hybrid query is represented by a stream-complex-value expression SC-O that specifies the composition
of complex value operators. Complex value operators are inspired from relational operators that also
apply to the complex values produced by data services. The following grammar specifies how SC-O
expressions E are specified over on-demand and stream data service operations represented as o and s

respectively.

50 CHAPTER 3 — The HyQoZ approach

D ::= o(v1, ..., vn) | s on-demand and stream operations

E ::= D single operation query expression

| σexp(E) selection under expression σexp

| πexp(E) projection under expression πexp

| ρexp(E) renaming under expression ρexp

| E

⊲⊳ E bind-join on on-demand operation o

| E ⊲⊳σ E theta-join under expression σ

The complex value operators can be applied to one or two arbitrary sub-expressions depending on

whether the operator is unary or binary. Next we describe the complex value operators we consider.

3.1.2.1 Complex value operators

We consider the complex value operators selection, projection, and renaming, and the combination ope-

rators theta-join and bind-join.

— Selection σexp(S) filters the complex value instances in a set S based on a selection expression

exp, producing as output the subset of instances that satisfy the expression.

— Projection πexp(S) enables to retrieve certain attributes in a complex value instance. Such attri-

butes may be nested and multivalued. The data elements to retrieve are specified in a projection

expression exp, which is applied to each element s of the set complex value instance S.

— Renaming ρexp(S) enables to rename either data services or attributes for manipulating multiple

instances of them in a single expression. The element to rename and its new name is specified in a

renaming expression exp, which is applied to each element s of the set complex value instance S.

— Theta-join R ⊲⊳σ S enables to combine the tuple values of two input sets R and S based on a

selection expression denoted by σ 1. The result is a subset of a Cartesian product between R and

S such that each tuple holds the expression σ.

— Bind-join R

⊲⊳ s enables to bound the tuple values of an output set in R with the input attributes

of a data service operation that produces s.

In this work, we consider conjunctive Select-Project-Join queries and hence some complex value

operators are not considered with respect to the original hybrid query specification in [CV11], i.e. win-

dowing, Cartesian product, group, ungroup, set operators. In particular, we are not considering explicitly

windowing operators as we assume they are performed by the data service instance in accordance with

a subscription, e.g. give me the last tuple value, give me the tuples within the last five minutes. The

Cartesian product is not considered because we privilege the reduction of intermediate results over the

expressiveness of hybrid queries which in practice may dispense with it in the context of service-based

environments.

1. The ‘theta’ historically stands for a selection condition θ [GMUW02] that we represent by σ in order to avoid the
ambiguity with the comparison operators θ

CHAPTER 3 — The HyQoZ approach 51

3.1.2.2 Examples of hybrid queries

Consider the data service operations in Table 3.1. Suppose Alice and Bob share data though their

smartphones via applications that access data services through their interfaces. For example, they share

once their profile data such as email, gender, age and nickname via the friends.profile data service

operation and continuously their current location via the whereRU.location operation. There is also a

friends.friendsOf service operation that stores the friendships of people, for instance the friends of

Alice and Bob, and eventually their common friends. As they share things and manifest their interests,

the data service whatUlike.interests stores such an information and make it available.

Name Operation signature Description

Profile

friends.profile(nickname :string) →
{profile : 〈nickname :string,

gender :string,
email :string,

age : integer〉}

The Profile service provides the profile of a person
identified by a nickname. The profile type
contains personal information like gender, email,
and age.

Friendship
friends.friendsof(nickname :string) →

{friendship : 〈nickname :string,
with :{friend:string}〉}

The Friendship service provides the relationships of
a user with other users both identified by the
attributes nickname and friend respectively.

Interests

whatUlike.interests(nickname :string)→
{interest : 〈nickname :string,

tag! :string,
score! :real〉}

The Interests service provides what and how much a
user likes via the tag and score attributes.

Location

whereRU.location(nickname :string) →
{location : 〈lat :real,

lon :real,
timestamp : integer〉}

The Location service provides for a given user
nickname the location coordinates (i.e. lat,
lon) in a given time (i.e. timestamp).

Table 3.1 – Data service operations

The following examples present hybrid queries over these service operations. We use a tree represen-

tation to show the complex value operator composition. Leafs represent data services. The intermediate

and root nodes represent data operators. In particular, the root node denotes the result of the hybrid

query. The operator parameters involve nested attribute types we access via the dot operator. The edges

represent the operator composition. Additionally, in the case of bind-join operator, we expose the se-

lection expression that bounds the input attributes of a service with the values of output attributes of

another.

Example 3.1.1 Consider the hybrid query Which are the interests of Alice with a score above 0.8 ? that

requires data from the on-demand service whatULike.interest. The SC-O operator expression is as

follows.

52 CHAPTER 3 — The HyQoZ approach

πa.nickname, a.interest.tag, a.interest.score

σa.interest.score>0.8

σa.nickname=‘Alice’

ρwhatULike.interest:a

whatULike.interest

This SC-O expresses the requirement to retrieve the interests of Alice from whatULike.interests

by bounding the nickname attribute with the value ‘Alice’, and whose retrieved tuple set is renamed as

a. The tuples are filtered by the σ operator that constraints the tuple values only to those whose interest

score is above 0.8. The π operator projects the nickname of Alice, her interests and the score for each.

Example 3.1.2 Consider the hybrid query Where are the friends of Alice ? that combines data from the

on-demand service friends.friendsOf and a stream service whereRU.location. This combination is

done using the output tuple values of the on-demand service friends.friendsOf as input of the stream

service whereRU.location via the bind-join operator.

πa.nickname, l.nickname, l.location.lat, l.location.lon

⊲⊳σ(l.nickname=

a.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

ρwhereRU.location:l

whereRU.location

This SC-O expresses the requirement to retrieve the friends of Alice from the friends.friendOf

on-demand service by providing the constant value ‘Alice’ to the input attribute nickname. The retrieved

set of tuples is renamed to a and the tuples from whereRU.location are renamed to l. The bind-join

operator

⊲⊳ expresses that the value of a.nickname is passed to the input attribute l.nickname for

invoking whereRU.location. The π operator projects the nickname of Alice and of their friends along

with their current location coordinates.

Example 3.1.3 Consider the hybrid query Which of the common friends of Alice and Bob are interested in Art

history ? that combines data from the on-demand service friends.friendsOf and from the on-demand

service whatULike.interests. The SC-O operator expression is as follows.

CHAPTER 3 — The HyQoZ approach 53

π a.nickname, b.nickname,
a.friendship.with.friend, i.interest.tag

σi.interest.tag=‘Art history’

⊲⊳σ(i.nickname=

a.friendship.with.friend)

⊲⊳σ(a.friendship.with.friend=

b.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

ρwhatUlike.interests:i

whatUlike.interests

This SC-O expresses the requirement to retrieve and combine the friends of Alice and Bob from

the friends.friendsOf service by providing their corresponding nickname values. Both sets of tuples

are renamed to a and b respectively. There is a third on-demand service whatULike.interests whose

tuple values are retrieved via the

⊲⊳ operator by passing the nickname of the Alice’s friends to the input

attribute i.nickname. The tuples are filtered to get those friends interested in Art history. The π operator

projects the nicknames of Alice, Bob and their common friends along with their interests.

3.2 Intermediate representation / data transformation functions

The notion of data transformation function, or dt-function, is introduced to have an intermediate repre-

sentation of the complex value operators of a SC-O expression representing a hybrid query. Like com-

plex value operators, dt-functions can be composed for producing the final result of the hybrid query.

Besides, the dt-functions’ signatures enable the analysis of the data dependencies among them towards

the generation of alternative service coordinations implementing the hybrid query, i.e. query workflows.

f 1

f 2

f n

.

.

.

dt-functionsderivationSC-O expression

condition

expression

projection

condition

expression

condition

expression

condition

expression

condition

expression

Figure 3.1 – Derivation of dt-functions

54 CHAPTER 3 — The HyQoZ approach

The complex value types, condition expressions, and projections of the SC-O expression are ana-

lyzed by a derivation process. The derivation produces a set of dt-functions as depicted in Figure 3.1.

Next we give the definitions and properties of dt-functions. Then, we present the rules for deriving the

dt-functions from a given SC-O expression.

3.2.1 dt-function definitions

A data transformation function (dt-function) is denoted by a lower-case symbol with a bar, e.g. f̄ . It

represents a complex value operator and its signature describes the data transformation the operator

performs over a series of complex value types. In order to represent the attributes of a type t̂, we adopt

the function atts that gives the set of access paths (in dot notation) of the constituent attributes t̂. Besides,

the functions iatts and oatts provide separately the set of access paths of input and output attributes such

that, atts(t̂) = iatts(t̂) ∪ oatts(t̂).

Definition 3.2.1 [dt-function] A dt-function f̄ : {t̂1} . . . {t̂m} → {t̂′1} . . . {t̂
′
m} (1) reads the sets of tuple

values of m complex types, (2) restricts the tuples whose values hold a set of condition expressions, and

(3) projects the attributes stated by a projection expression producing (possibly new) m complex types.

Signature: f̄(A, E ,P) where

— A: is a set of type names where each name ai ∈ A has a definition def(ai) = def(t̂i) before

the data transformation and def(ai) = def(t̂′i) after the data transformation;

— E : is a set of conjunctive condition expressions over the attributes in atts(ai) for ai ∈ A

— P: is a set of attributes to be projected where ∀p ∈ P, ∃! i∈ [1 .. n] such that p ∈ atts(t̂′i) ⊆

atts(t̂i).

Property 3.2.1 [dt-function equivalence] The dt-functions f̄1(A1, E1,P1) and f̄2(A2, E2,P2) are said

to be equivalent if each of their signature parameters are equal, i.e. A1 = A2, E1 = E2, and P1 = P2.

Property 3.2.2 [dt-functions composition] the dt-function f̄r : {t̂1}...{t̂p} → {t̂′1}...{t̂
′
p} represents the

composition of two dt-functions f̄1 : {t̂1}...{t̂m} → {t̂′1}...{t̂
′
m} and f̄2 : {t̂1}...{t̂n} → {t̂′1}...{t̂

′
n} if

the next two conditions hold:

1. Minimal types. The types read and produced by both f̄1 and f̄2, are read and produced by f̄r such

that the produced types have no more and no less constituent attributes as defined by the most

restrictive projection expression of both f̄1 and f̄2. This is,

— m ≤ p, n ≤ p;

— ∀ i∈ [1 ..m],∃! j∈ [1 .. p] | atts(t̂i) ⊆ atts(t̂j), atts(t̂
′
i) ⊇ atts(t̂′j);

— ∀ i∈ [1 .. n],∃! j∈ [1 .. p] | atts(t̂i) ⊆ atts(t̂j), atts(t̂
′
i) ⊇ atts(t̂′j).

CHAPTER 3 — The HyQoZ approach 55

2. Tuple values subsumption. The output tuple values of f̄r hold the condition expressions of both

f̄1 and f̄2 such that, ∀j∈ [1 .. p],

— if term1θterm2 ∈ E1 where term1 ∈ atts(t̂′j) or term2 ∈ atts(t̂′j),

then ∄ t ∈ [[t̂′j]] | t 6|= term1θterm2;

— if term1θterm2 ∈ E2 where term1 ∈ atts(t̂′j) or term2 ∈ atts(t̂′j),

then ∄ t ∈ [[t̂′j]] | t 6|= term1θterm2.

According with this property, the composition of two dt-functions is given by the merge function defined

as follows.

Definition 3.2.2 [Merge function] For two given dt-functions f̄1(A1, E1,P1) and f̄2(A2, E2,P2), the

function merge gives the composition of f̄1 and f̄2 such that merge(f̄1, f̄2) = f̄r(Ar, Er,Pr) where

Ar = A1 ∪ A2

Er = E1 ∪ E2

Pr = {name.p ∈ P1 ∩ P2 | name ∈ A1 ∩ A2} ∪ {name.p ∈ P1 ∪ P2 | name ∈ A1 △A2}

Proof 3.2.1 Considering the two conditions of Property 3.2.2, the merge function holds:

— The minimal types condition since the set of type names is given by Ar=A1 ∪ A2 and then the

types read by both f̄1 and f̄2 are all read by f̄r. Besides, the projection Pr is the union of both

(1) the attributes of shared types projected by both f̄1 and f̄2, and (2) the attributes of non-shared

types projected by f̄1 or f̄2. Then, the resulting types contain the minimal types.

— The tuple values subsumption since the condition expressions of both E1 and E2 are conjunctive

(cf. Def. 3.2.1), therefore Er = E1 ∪ E2 ensures that all the produced tuples satisfy the conditions

of both f̄1 and f̄2.

�

The dt-function definition is generic and allows to represent complex value operators and compo-

sitions of complex value operators. Next we present the derivation of dt-functions from a hybrid query

expression.

3.2.2 Derivation of dt-functions

Given a hybrid query expression E, the dt-functions are derived by analyzing E via the function

der : E → F̄ where F̄ denotes the set of derived dt-functions. It is assumed that the E expression is

safe, i.e. every input attribute of the involved data services is bounded either to a constant or to an output

attribute of another data service.

For defining der we first identify four conditions expressions. Consider two service operations des-

cribed by the types t̂1 and t̂2.

56 CHAPTER 3 — The HyQoZ approach

— R-exp is an expression of the form T θ constant where T ∈ iatts(t̂1). This expression denotes the

binding operation of the constant to the input attribute represented by T for retrieving the data

produced by t̂1.

— F-exp is an expression of the form T θ constant where T ∈ oatts(t̂1). This expression denotes

the filtering of tuple values in [[t̂1]] hold the expression T θ constant.

— C-exp is an expression of the form T1 θ T2 where T1 ∈ oatts(t̂1) and T2 ∈ oatts(t̂2). This expre-

ssion denotes the correlation of the tuple values [[t̂1]] and [[t̂2]] w.r.t. their corresponding output

attributes T1 and T2.

— B-exp is an expression of the form T1 θ T2 where T1 ∈ iatts(t̂1) and T2 ∈ oatts(t̂2). This expre-

ssion denotes the binding of the output attribute T2 to the input attribute T1 for retrieving the tuples

values [[t̂1]].

Definition 3.2.3 [derivation of dt-functions] For a given SC-O expression E the derivation of the set of

dt-functions der(E) = F̄ is given by the following rules:

1. If E = ρ(serv.op : name)(serv.op), then der(E) = {} and def(serv.op) = def(name) is true.

2. If E = π(exp)(E′) where exp is a set of attributes to be projected 2, then

der(E) =

{f̄(A, E ,P)} ∪ F̄ where

A = {name} such that ∃name.T ∈ exp

E = {}

P = {name.T | name.T ∈ exp}

F̄ =

der(π(exp \ P)(E′)); if exp \ P 6= {}

der(E′); otherwise

3. If E = σ(exp)(E′) and exp is a R-exp or a F-exp condition expression

der(E) =

{f̄(A, E ,P)} ∪ F̄ where

A = {name} such that exp=name.T θ constant

E = {exp}

P = atts(name)

F̄ = der(E′)

4. If E = E′
1CexpE

′
2 where C is a combination operator and exp is a B-exp or a C-exp condition

expression

2. For the projection expression exp, we assume there are neither duplicate attributes nor a mandatory order among them.
Then, we treat exp as a set.

CHAPTER 3 — The HyQoZ approach 57

der(E) =

{f̄(A, E ,P)} ∪ F̄1 ∪ F̄2 where

A = {name1, name2} such that exp=name1.T1 θ name2.T2

E = {exp}

P = atts(name1) ∪ atts(name2)

F̄1 = der(E′
1)

F̄2 = der(E′
2)

Example 3.2.1 The following example traces the derivation of dt-functions der(E) = F̄ . Consider the

expression E (see Figure 3.2) of the hybrid query Where are the friends of Alice ? in Example 3.1.2. The

trace is done in a depth-first traversal of E and we obviate the backtracking for obtaining the final set F̄ .

In order to facilitate the reading of dt-functions, we identify each one with a unique symbol name that

suggests what the dt-function does.

πa.nickname, l.nickname, l.location.lat, l.location.lon

⊲⊳σ(l.nickname=
a.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

ρwhereRU.location:l

whereRU.location

Figure 3.2 – Where are the friends of Alice ?

E1 = π(a.nickname, l.nickname,
l.location.lat, l.location.lon)

E2 =

⊲⊳σ(l.nickname=

a.friendship.with.friend)

.

Given the expression E1 we apply the Rule 2 for
each unique type name into the projection expre-
ssion. Then,

der(E1) =
{

¯proja({a}, {}, {a.nickname}),

¯projl({l}, {}, { l.nickname,

l.location.lat,

l.location.lon})
}

∪ der(E2)

58 CHAPTER 3 — The HyQoZ approach

. . .

E2 =

⊲⊳σ(l.nickname=

a.friendship.with.friend)

E3 = σ(a.nickname =‘Alice’)

. . .

E5 = ρ(whereRU.location : l)

. . .

The expression E2 holds the Rule 4 and it implies
the combination of tuples of two subexpressions E3

and E5. Then,

der(E2) =
{

¯binda,l({a, l},

{l.nickname =

a.friendship.with.friend},

atts(a) ∪ atts(l))
}

∪ der(E3) ∪ der(E5)
. . .

E3 = σ(a.nickname =‘Alice’)

E4 = ρ(friends.friendsOf : a)

. . .

The left branch goes first and the expression E3

holds the Rule 3. Then,

der(E3) =
{

¯retra({a},

{a.nickname =‘Alice’},

atts(a))
}

∪ der(E4)
. . .

E4 = ρ(friends.friendsOf : a)

friends.friendsOf

The expression E4 holds the Rule 1 that consi-

ders the service operation friends.friendsOf at

the leaf node. Then, der(E4) = {} and def(a) =

def(friends.friendsof) is true.

. . .

E5 = ρ(whereRU.location : l)

whereRU.location

Now the right branch is traversed and the expression

E5 holds the Rule 1 that considers the service ope-

ration whereRU.location at the leaf node. Then,

der(E5) = {} and def(l) = def(whereRU.location)

is true.

Finally, the backtracking leads to the following result:

πa.nickname, l.nickname, l.location.lat, l.location.lon

⊲⊳σ(l.nickname=
a.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

ρwhereRU.location:l

whereRU.location

der

¯proja ({a}, {}, {a.nickname}),
¯projl ({l}, {}, {l.nickname, l.location.lat,

l.location.lon}),
¯binda,l ({a, l}, {l.nickname =

a.friendship.with.friend},
atts(a)∪ atts(l)),

¯retra ({a}, {a.nickname =‘Alice’}, atts(a))
}

.

Each complex value operator in the SC-O expression is represented by a dt-function. In particular

for the renaming operator, it is assumed that the renaming of types is accessible via a dictionary. The

dt-functions now can be analyzed for computing their data dependencies and the alternative orders to

perform hybrid queries.

CHAPTER 3 — The HyQoZ approach 59

3.3 The SLA contract and query workflow cost

Associated to a hybrid query, there is a Service Level Agreement contract (SLA) that defines the cost

expectations of the hybrid query evaluation. For representing SLA contracts, several languages have been

proposed [SLE04] for expressing low-level aspects either from the network point of view[Ver04, BS05]

as from the service provision point of view. Other languages reflect on high-level contracts in the context

of concurrent privileges [DLP03, WCSO08] expressed as user nominations, e.g. platinum, gold, silver.

In this thesis we use an internal representation of an SLA contract in form of an optimization ob-

jective (see Figure 3.3). The optimization objective defines a combination of cost attributes, preferences

among them, and the expected values to be reached by a query workflow (i.e. service coordination)

implementing the hybrid query.

optimization objective
SLA contract

preferences

cost attributes

expected values

hybrid query

Figure 3.3 – Service Level Agreement / optimization objective

Applications or users requiring the evaluation of the same hybrid query may have different optimi-

zation objectives depending on their SLA contracts. For instance, suppose Alice wants to spend 1e to

access data and computing services and to use the 4G network. She also requires a response in less than

1 minute, and she does not want to spend too much energy so she limits the energy consumption to 50

energy units. These cost attributes are examples of the possible cost attributes in service-based environ-

ment. Users might have different preferences. For instance, Bob privileges data privacy and he does not

care about the resulting price as long as he gets the response as soon as possible. The combination of

QoS offered by services and networks have to fit the optimization objective depending if it comes from

the SLA contract of Alice or Bob.

We define the optimization objective representation as follows.

Definition 3.3.1 [optimization objective] An optimization objective is represented by a vector of m ∈

Z+ weighted attributes oo〈(o1, w1), . . . , (om, wm)〉 where for each j∈ [1 ..m]:

oj represents an attribute-value pair of the form att_namej = valuej ;

att_namej ∈ S represents the attribute name;

valuej ∈ R+ represents the ideal value for att_namej attribute;

wj ∈ [1, . . . ,m] represents the weight of the attribute j.

60 CHAPTER 3 — The HyQoZ approach

The attribute name and attribute value are accessible via the functions name and val respectively,

i.e. name(vj) = att_namej , val(vj) = valuej .

The weights w1, .., wm define a total order and denote the preferences among the m cost attributes.

The semantics of the weights is defined as follows.

Definition 3.3.2 [Weight semantics] For every pair of attributes p, q∈ [1 ..m], p 6= q:

— the attribute p is preferred over the attribute q if wp > wq;

— the attribute p is preferred over the attribute r∈ [1 ..m] if wp > wq > wr (i.e. transitivity 3);

— there are no repeated weights wp 6= wq .

Example 3.3.1 Suppose the interests of Alice and Bob in previous example. The optimization objective

of Alice is represented by oo〈(price = 1e, 3), (time = 1 min, 2), (energy = 50 kJ, 1)〉; which means

that the price has to be close to 1 e, and it is preferred over the time that has to be close to 1 min, and

this in turn is preferred over the energy that has to be close to 50 kJ. On the other hand, the optimization

objective of Bob is represented by oo〈(privacy = 1, 2), (time = 0 min, 1)〉; which means that the

privacy is expected to be the maximum possible, and it is preferred over the time that is expected to be

minimized.

As the optimization objective defines which combination of cost attributes must be considered by the

hybrid query optimization, thus, it determines the cost attributes of query workflows.

Definition 3.3.3 [query workflow cost] Given an optimization objective oo〈(o1, w1), . . . , (om, wm)〉 as-

sociated to a hybrid query, the cost of query workflows implementing such a hybrid query is represented

by a vector of m attributes qw〈x1, . . . , xm〉 where for each j∈ [1 ..m]:

name(xj) = name(oj) represents the jth attribute name;

val(xj) ∈ R+ is the cost attribute value of the jth attribute.

The definitions above imply that for the same hybrid query and two optimization objectives with

different cost attributes, the cost of query workflows implementing such a hybrid query will be different

for each optimization objective. For instance, the costs of the query workflows implementing the hybrid

query of Alice will be given by the cost attributes price, time, and energy; while the query workflows

of the hybrid query of Bob will be given by the cost attributes privacy and time.

3.4 Hybrid query optimization process

For optimizing hybrid queries we propose an optimization process where each stage is oriented to opti-

mize the control-flow of query workflows implementing hybrid queries. The control-flow optimization

responds to the need to open the search space in presence of multiple cost attributes whose optimal query

workflow may not be met if considering only the data-flow.

3. There is a method in [Mor64] to define the preferences by pairwise judgments in order to avoid the transitivity and the
implied cognitive effort in presence of many cost attributes (e.g. m ≫ 3).

CHAPTER 3 — The HyQoZ approach 61

Consider the optimization process depicted in Figure 3.4. The input of the optimization is a hybrid

query represented by a set of dt-functions. The dt-functions are used for generating alternative query

workflows. Then, the query workflows are passed through the cost estimation that maps each query

workflow to its corresponding multi-attribute cost according to the optimization objective. The result is

the search space of query workflows with their costs. Finally, the solution space is computed by selecting

the top-k query workflows.

QW Generation

Cost estimation

Search space

⎧
⎨
⎩ ⎧

⎨
⎩

qw6

qw7
Solution space

Solution space

computation

qw1

qw6

qw2

qw3

qw4

qw5

qw7

5 3 40

6 3 60

7 6 30

4 11 20

5 6 100

3 7 40

2 10 50

price time energy

Where are my friends? price = 5€ time=7s energy = 50kJ

……

now

top-kπσ

ρ

ρ

…

qw2

qwn

qwqw11

dt-function1
dt-function

2

dt-function
n

. . .

query
workflows⎧

⎨
⎩

4

7

5

6
3

2

1

price

time

energy

(top-2)

Figure 3.4 – Hybrid query optimization process

3.4.1 Query workflow generation

The generation of query workflows is oriented to open the search space of alternatives implementing a

given hybrid query. This is because the multi-attribute optimization objective may not be reached with

a search space oriented to optimize the data-flow. For instance, the optimization of the data-flow is

interesting if the main interest is the reduction of the execution time. Nevertheless, if other cost attributes

have to be considered (e.g. energy, price, privacy) more alternative query workflows are required.The dt-functions representing a hybrid query are used to perform the generation of alternative query

workflows with different control-flows. Figure 3.5 shows our model for generating query workflows. A

query workflow organizes a set of activities through a control-flow that defines their execution order. An

activity f implements a data transformation described by a dt-function f̄ through the invocation of either

a single service operation or several service operations. The control-flow among activities has to ensure

the production of intermediate data such that the final result holds the hybrid query semantics. This

implies that each activity receives the adequate data for performing its data transformation and produces

the adequate data for the reminding activities. For this purpose we define a series of generation rules

that produce query workflows with different grade of parallelism while the data dependencies among

62 CHAPTER 3 — The HyQoZ approach

1..*

1..*

ServiceOp

Activitydt-function
Query

workflow
1..*1

0..*

0..*

control-flow

« i
n
vo

ke
s

organizes»

1..*

1
describes»

describes»

composes»

Figure 3.5 – Description of activities and query workflows by dt-functions

activities hold.

3.4.2 Cost estimation

Due to the autonomy of services, we assume the absence of data-related information (e.g. selectivity,

cardinality, attribute size) during the optimization. Our approach to estimate the cost is the adoption of

a build-time cost function (See Figure 3.6) that explicitly assumes the absence of such an information.

In turn, we consider the cost attributes defined by the optimization objective (cf. Section 3.3) and how

activities interact among them and with services through the control-flow.

build-time run-time

cost

attributes

...
selectivity

cardinality

attribute size

stream rate...

control-flow

cost

attributes

control-flow

Figure 3.6 – Cost estimation for query workflows

The set of query workflows with their estimated costs form the search space. For instance, the search

space is represented by the matrix {qw1, ..., qw7} × {price, time, energy} in Figure 3.4.

3.4.3 Solution space selection

The solution space selection obtains the closest query workflows from the optimization objective. This

is done in two steps:

1. Computation of a distance between the optimization objective and the query workflows in the

search space. The distance is weighted w.r.t. the attribute preferences defined by the optimization

objective. This allows to make comparable query workflows with different costs but with the same

distance from the optimization objective.

CHAPTER 3 — The HyQoZ approach 63

2. Selection of the query workflows that represent the best alternatives for implementing the hybrid

query. We adopt a top-k algorithm [Fag99] that is devoted to treat with fuzzy data, i.e. query

workflow cost.

In order to illustrate the solution space selection, consider the chart in Figure 3.7.

qw
9

qw
8

qw
4

qw
3

qw
2

qw
1

qw
5

qw
7

qw
6

OO

qws

OO

34

35

36

37

38

39

40

41

p
ri

ce

32 34 36 38 40 42 44 46 48 50

time

Figure 3.7 – Semantics of the optimization objective

The chart presents the search space formed by nine query workflows implementing the same hybrid

query, and the optimization objective oo〈(time = 38.4, 1), (price = 40, 2)〉. The query workflows qw1,

qw2, and qw6 form the Pareto optimal as they represent the smaller cost for both time and price attributes.

Nevertheless, we are interested in those query workflows that are the closest to the optimization objective

represented by the point (38.4, 40.0). In such a case, qw4, qw8 and qw9 represent the best alternatives for

implementing the hybrid query. Using the weights of cost attributes, qw4 represents the best alternative

because the weights privilege the price over the time.

3.5 Conclusions

This chapter presented the approach for optimizing hybrid queries over on-demand and stream data ser-

vices. We adopted the dt-function notion as an intermediate representation of complex value operators out

of the hybrid query specification. Behind the notion of dt-functions, there is the interest to describe acti-

vities implementing complex value operators whose implementation details are assumed to be unknown

in service-based environments.

We also introduced the Service Level Agreement contracts associated to hybrid queries and the

internal representation in form of optimization objective. The optimization objective defines the cost

attributes, preferences, and expected values of the query workflow execution. The idea to have an op-

timization objective associated to an SLA corresponds with the fact that the optimization interests in

service-based environments may vary from applications or application instances, e.g. user interests. We

therefore propose a hybrid query optimization process that generates the alternative query workflows

based on the dt-functions representing the hybrid query. We consider both the data-flow and control-flow

of query workflows in order to obtain a search space with more alternative query workflows in presence

of the potential combinations of cost attributes. For selecting the most suitable query workflows we adapt

a top-k that obtains the best query workflows for no matter which combination of attributes. The top-k

algorithm enables the extension in case of new cost attributes to consider.

64 CHAPTER 3 — The HyQoZ approach

CHAPTER 4
Generation of the search

space of query workflows

This chapter presents the generation of the search space of query workflows implementing a hybrid query

represented by a set of dt-functions. The generation aims to obtain more alternative query workflows by

considering both the data-flow and control-flow of query workflows.

The remainder of the chapter is organized as follows. Section 4.1 introduces the query workflow de-

finition along with the properties to ensure the well construction, consistency, and equivalence of query

workflows. Section 4.2 defines the composition of activities for generating consistent query workflows

by means of generation rules. Section 4.3 presents the algorithm for generating equivalent query work-

flows by applying the generation rules. Finally, Section 4.4 concludes this chapter.

4.1 Query workflow definition and properties

A query workflow organizes a set of activities through a control-flow that defines their execution order.

Formally, a query workflow is represented by a pair of (1) a Directed Acyclic Graph (DAG) whose

vertices and arcs represent the sequential and parallel control-flows among activities, and (2) a dt-function

that describes the data transformation done by the query workflow.

Definition 4.1.1 [query workflow] A query workflow is represented by a tuple 〈qw, f̄〉 where

— qw represents a DAG qw(A,P, V,E, in, out) 1 where

◦ A: is a set of activities;

◦ P : is a set of parallel constructors such that {parl, end_parl} ⊆ P ;

◦ in and out: are the first and last vertices respectively;

◦ V : is a set of all the graph vertices such that V = A ∪ P ∪ {in, out};

◦ E: is a set of arcs between vertices such that E ⊂ V × V .

— f̄ represents a dt-function describing the composition of every activity in A such that

f̄ = merge(f̄1,merge(f̄2,merge(..., f̄n))) where f̄i describes the activity fi ∈ A.

1. Sometimes we use qw(A,P,E, in, out) for short.

65

66 CHAPTER 4 — Generation of the search space of query workflows

The vertices of the query workflow graph are identified by unique names. In particular for parallel

constructors, we use (when ambiguity) the label l to identify a single parallel composition, i.e. parl and

end_parl split and join the parallel composition l. When convenient, we use qwf̄ for denoting the query

workflow graph described by f̄ , and f̄qw for denoting the dt-function describing qw.

Example 4.1.1 Consider the graphical representation of a query workflow in Figure 4.1, and its corres-

ponding graph qw(A,P, V,E, in, out) where

— A = {fa, fb, fc, fd};

— P = {parl, end_parl};

— V = A ∪ P ∪ {in, out};

— E = {(in, parl), (parl, fa), (fa, end_parl), (parl, fb), (fb, fc), (fc, end_parl), (end_parl, fd), (fd, out)}.

fa

fb

fd

in outparl end_parl

fc

Figure 4.1 – Graphical representation of a query workflow

This query workflow defines the control-flow among four activities fa, fb, fc and fd described by

f̄a, f̄b, f̄c, f̄d respectively. The two first activities to be executed in parallel are fa, and fb. Once fb

finishes, fc is executed. After the parallel composition and once fa and fc have finished, the last ac-

tivity fd is executed. The in and out vertices denote respectively the beginning and termination of

the query workflow execution. The result of the query workflow is described by the dt-function f̄ =

merge(f̄a,merge(f̄b,merge(f̄c, f̄d))).

Multiple query workflows can implement the same hybrid query through different control-flows

which means that they are equivalent.

Property 4.1.1 [query workflow equivalence] Given a set of dt-functions F̄ derived from a hybrid query

expression, and two different query workflows qw1 and qw2, it is said that qw1 and qw2 are equivalent if

both qw1 and qw2 are described by the same dt-function f̄ = merge(f̄1,merge(f̄2,merge(..., f̄n))) where

each f̄i ∈ F̄ .

In order to ensure the termination and the correct execution of query workflows, it is required to define

the well construction and consistency of query workflows. The well construction of a query workflow

is about the structural constraints to be held by its control-flow for ensuring that the last vertex out is

reached and every activity is executed. The consistency of a query workflow is about its data-flow that

ensures that every activity receives the correct data to perform its data transformation.

CHAPTER 4 — Generation of the search space of query workflows 67

4.1.1 Well constructed query workflow

A well constructed query workflow has a control-flow that ensures the eventual execution and termination

of every activity. For defining the well constructed query workflow property we assume the execution

paths function and precedence relations.

Definition 4.1.2 [execution paths] The function epaths(fa, fz, E) computes a set P of execution paths

from the vertex fa to the vertex fz within E. For a given query workflow graph qw(A,P, V,E, in, out)

and two different vertices fa, fz ∈ V , the set of execution paths between fa and fz are given by:

epaths(fa, fz, E) =

{(fa, fz)} if (fa, fz) ∈ E

{(fa, fb)} ∪ epaths(fb, fz, E) if ∃(fa, fb) ∈ E

For instance, the execution paths epaths(in, out, E) of the query workflow in Figure 4.1 are two,

one for each branch of the parallel composition (see Figure 4.2).

fc

fd

fd

fa

fb

Figure 4.2 – Execution paths

Property 4.1.2 [precedence] The precedence of a vertex with respect to another denotes that both belong

to the same execution path and are connected through a chain of sequential control-flows. For a given

query workflow graph qw(A,P, V,E, in, out), the precedence of two different vertices v1, v2 ∈ V ,

denoted by v1 ≺qw v2, is true if |epaths(v1, v2, E)| ≥ 1.

For instance, in Figure 4.2, both fa ≺qw fd and fb ≺qw fd are true as fa is in the same execution

path with fd and fb does with fd.

Property 4.1.3 [absolute precedence] The absolute precedence of a vertex respect to another denotes

that the termination of the first one triggers the execution of the second one in a sequential control-

flow. For a given query workflow graph qw(A,P, V,E, in, out), the absolute precedence of two dif-

ferent vertices v1, v2 ∈ V , denoted by v1 ≺
!
qw v2, is true if v1 and v2 are adjacent vertex such that

v1 ≺qw v2,∄v3 ∈ V | v1 ≺qw v3 ≺qw v2, v1 6= v2 6= v3.

For instance, in Figure 4.2, fb ≺!
qw fc is true as fb and fc are in the same execution path and there is

not other vertex between them.

68 CHAPTER 4 — Generation of the search space of query workflows

Given the precedence properties, we define a well constructed query workflow as follows.

Property 4.1.4 [well constructed query workflow] Given a query workflow graph qw(A,P, V,E, in, out),

it is said that qw is a well constructed if every activity in A starts and terminates its execution in the

middle of in and out vertices and once the out vertex is reached the query workflow execution termi-

nates.

A well constructed query workflow holds the following conditions:

1. No-ambiguity. qw has no-ambiguity if there is only one initial vertex in and only one final vertex

out. This is ∀v∈V \{in,out}∃vprev, vsucc ∈ V | vprev ≺
!
qw v ≺!

qw vsucc.

2. No-isolated activities. qw has no isolated activities if there is not a vertex out of a path from in

to out. The inclusion of all the vertices into the paths from in to out means that all the vertices

precede the out vertex and thus there are no isolated activities. This is ∀v∈V \{out}v ≺qw out.

3. No-deadlock. qw has no deadlock if its parallel compositions are all balanced. This is, for a vertex

parl there is one and only one end_parl such that ∀parl∈P∃!end_parl ∈ P | parl ≺qw end_parl,

and symmetrically ∀end_parl∈P∃!par
l ∈ P | parl ≺qw end_parl.

4. No-incomplete activities qw has no incomplete activities if once the out activity is reached,

there are neither unexecuted nor unterminated activities. From the structural point of view, the

no-isolated activities property ensures that all the activities are in a path from in to out and thus,

all the activities executions are launched. From the termination point of view, the activity termina-

tion is ensured under the assumption that an activity within an execution path is reliable if it gets

the required input.

Besides the structural constraints defined by the well constructed query workflow property, the query

workflow must have a consistent data-flow among activities in order to ensure that each one gets the

correct input from preceding activities and produces the correct output for succeeding activities.

4.1.2 Consistent query workflow

The consistency of a query workflow is a property that ensures that activities within its control-flow get

the correct input, and eventually terminate –under the assumption that activities are reliable– producing

then the correct output for the reminding activities. For defining such a property we reflect on the data

dependencies among activities and the consistent data-flow among them. We refer the reader to the

Appendix A.1 for definitions and examples of data dependencies.

1. Retrieval dependency, denoted by fa
r
→ fb, states that fa retrieves the tuples produced by a data

service and fb uses such tuples to perform data transformations.

2. Anti-dependency, denoted by fa
a
→ fb, happens when an attribute required by the data transfor-

mation of fb is removed by fa, e.g. fa does not project an attribute whose values are used by fb

to invoke a service operation.

CHAPTER 4 — Generation of the search space of query workflows 69

3. Circular dependency, denoted by fa ↔ fb, is a mutual dependency between fa and fb by either

retrieval dependency or anti-dependency, e.g. fa requires the output attribute values produced by

fb, and this in turn requires the output attribute values produced by fa.

Property 4.1.5 [Consistent data-flow] Let be fa and fb two activities described by the dt-functions

f̄a(Aa, Ea,Pa) and f̄b(Ab, Eb,Pb) respectively. It is said that fa and fb have a consistent data-flow if

there is not a circular dependency (i.e. ¬(fa ↔ fb)) and one of the next rules holds:

1. if Aa∩Ab = {} is true and fa,fb are activities of a query workflow qw(A,P,E, in, out) such that

fa, fb ∈ A. Intuitively, as two activities are independent, the consistent data-flow between them is

ensured if they belong to a well constructed query workflow.

2. if fa
r
→ fb or fa

a
→ fb is true and fa is performed before fb in a single execution path of a query

workflow qw such that fa ≺qw fb. Intuitively, as two activities have a data dependency they must

belong to the same execution path in an order which ensures their correct execution.

3. Aa ∩ Ab 6= {} is true and there is neither a retrieval dependency nor an anti-dependency. The

activities fa and fa are in a single execution path of a query workflow qw such that fa ≺qw fb or

fb ≺qw fa. Intuitively, two activities modify the same tuple values and, as they do not have data

dependencies, they just have to belong to the same execution path regarding-less on the order.

Given the consistent data-flow property, we define a consistent query workflow as follows.

Property 4.1.6 [Consistent query workflow] A query workflow qw(A,P, V,E, in, out) is consistent

if every pair of activities fa, fb ∈ A have a consistent data-flow.

Now we turn our attention into the construction of consistent query workflows through a series of

generation rules that define sequential or parallel compositions for certain control-flow relations among

activities.

4.2 Generation rules

The generation of query workflows is performed by composing pairs of activities whose dt-functions

hold a control-flow relation (cf-relation). For each cf-relation, we propose a series of generation rules

that define either sequential or parallel control-flows and produces consistent query workflows.

4.2.1 Independent cf-relation

Two activities with an independent cf-relation transform different sets of tuples and then can be composed

in a sequential or parallel control-flow.

Property 4.2.1 [Independent cf-relation] Given two activities fa and fb described by the dt-functions

f̄a(Aa, Ea,Pa) and f̄b(Ab, Eb,Pb) respectively. It is said that they have an independent cf-relation, deno-

ted by fa�|||||||||| fb, if they do not share any type name such that Aa ∩Ab={}. Observe that the independent

cf-relation is commutative and thus fa�|||||||||| fb=fb�|||||||||| fa.

70 CHAPTER 4 — Generation of the search space of query workflows

Both activities transform the disjunctive tuple values and the execution of one does not depend on the

termination of the other. Therefore, the activities must be composed in any sequential or parallel order.

Proposition 4.2.1 [Compositions for independent cf-relation] Two activities with independent cf-

relation fa�|||||||||| fb , hold the consistent data-flow property by the Rule 1 if they are composed by the

query workflows in Table 4.1.

Proof 4.2.1 [Coherent data-flow for independent cf-relation] Each resulting query workflow in Table

4.1 is a well constructed query workflow and both activities fa and fb belong the set of activities A.

Therefore, if fa�|||||||||| fb holds, the query workflows in Table 4.1 are consistent query workflows. �

Query workflow graph Graphical representation

qw(A,P,E, in, out) where A = {fa, fb};
P = {};
E = {(in, fa), (fa, fb), (fb, out)}.

fa fb

qw(A,P,E, in, out) where A = {fa, fb};
P = {};
E = {(in, fb), (fb, fa), (fa, out)}.

fb fa

qw(A,P,E, in, out) where A = {fa, fb};
P = {parl, end_parl};
E = {(in, parl), (parl, fa),

(fa, end_parl), (parl, fb),
(fb, end_parl), (end_parl, out)}.

fb

fa

Table 4.1 – Query workflows for independent cf-relation fa�|||||||||| fb

Example 4.2.1 Suppose the activities retra, retrb and their corresponding dt-functions ¯retra({a},

{a.nickname=‘Alice’}, atts(a)) and ¯retrb({b}, {b.nickname=‘Bob’}, atts(b)).Both activities retrieve tuples

of different type names, i.e. , a,b. As retra and retrb do not share type names, therefore the cf-relation

retra�|||||||||| retrb is true and the activities are organized by the compositions defined by the query work-

flows in Figure 4.3.

The first and second query workflows define the sequential control-flow between retra and retrb.

The independence is more evident in the parallel composition where both activities start their executions

simultaneously (from the structural point of view) and, once both have finished, the parallel composition

converges.

CHAPTER 4 — Generation of the search space of query workflows 71

retra�|||||||||| retrb

retrbretra

(a) retra precedes retrb

retraretrb

(b) retrb precedes retra
retrb

retra

(c) retra and retrb are execu-
ted in parallel

Figure 4.3 – Query workflows generated for the independent cf-relation

4.2.2 Dependent cf-relation

Two activities with a dependent cf-relation transform the same set of tuples and one of the activities

requires the termination of the other one.

Property 4.2.2 [Dependent cf-relation] Given two activities fa and fb described by the dt-functions

f̄a(Aa, Ea,Pa) and f̄b(Ab, Eb,Pb) respectively. It is said that they have a dependent cf-relation, denoted

by fa ◮◮ fb, if one of the following conditions holds:

1. fa
r
→ fb There is a retrieval dependency

2. fa
a
→ fb There is an anti-dependency

Observe that the dependent cf-relation is not commutative and thus fa ◮◮ fb 6= fb ◮◮ fa.

Both activities transform the same tuple values and the execution of one depends on the termination

of the other. Therefore, the activities must be composed in a sequential order.

Proposition 4.2.2 [Compositions for dependent cf-relation] Two activities with dependent cf-relation

fa ◮◮ fb, hold the consistent data-flow property by the Rule 2 if they are composed by the query work-

flows in Table 4.2.

Proof 4.2.2 [Coherent data-flow for dependent cf-relation] The query workflow in Table 4.2 is a well

constructed query workflow and the activities fa and fb are composed though the same execution path

in strict order such that fa ≺qw fb is true. Therefore, if fa ◮◮ fb holds, the query workflow in Table 4.2

is a consistent query workflow. �

Example 4.2.2 [retrieval dependency] Suppose the activities retra, proja and their corresponding

dt-functions ¯retra({a}, {a.nickname =‘Alice’}, atts(a)) and ¯proja({a}, {}, {a.nickname}). The activity

retra retrieves the tuples denoted by the type name a by providing the required input attribute values.

Once the tuples of a have been retrieved, the activity proja projects the attribute a.nickname. As retra

72 CHAPTER 4 — Generation of the search space of query workflows

Query workflow graph Graphical representation

qw(A,P,E, in, out) where A = {fa, fb};
P = {};
E = {(in, fa), (fa, fb), (fb, out)}.

fa fb

Table 4.2 – Query workflow for dependent cf-relation fa ◮◮ fb

retra ◮◮ proja binda,i ◮◮ proja

projaretra

(a) retra precedes proja

binda,i proja

(b) binda,i precedes proja

Figure 4.4 – Query workflows generated for the dependent cf-relation

and proja have a retrieval dependency retra
r
→ proja, therefore the cf-relation retra ◮◮ proja is

true and the activities are composed as shown in Figure 4.4a.

Example 4.2.3 [anti-dependency] Suppose the activities binda,i, proja and their corresponding

dt-functions ¯binda,i({a, i}, {i.nickname=a.friendship.with.friend}, atts(a)∪atts(i)) and ¯proja({a}, {},

{a.nickname}). The activity binda,i retrieves the tuples denoted by the type name i by binding the input

attribute i.nickname with the value of the attribute a.friendship.with.friend. On the other hand,

proja eliminates the attribute a.friendship.with.friend and thus it is no longer available. As retra
and proja have an anti-dependency binda,i

a
→ proja, therefore the cf-relation binda,i ◮◮ proja is

true and the activities are composed as shown in Figure 4.4b.

4.2.3 Concurrent cf-relation

Two activities with a concurrent cf-relation transform the same set of tuples but no one requires the

termination of the other.

Property 4.2.3 [Concurrent cf-relation] Given two activities fa and fb described by the dt-functions

f̄a(Aa, Ea,Pa) and f̄b(Ab, Eb,Pb) respectively. It is said that they have a concurrent cf-relation, denoted

by fa ◮◭ fb, if they share type names such that Aa ∩ Ab 6= {} and the following conditions hold:

1. ¬(fa
r
→ fb) ∧ ¬(fa

a
→ fb) There is neither a retrieval dependency

nor an anti-dependency

2. ¬ (fa ↔ fb) There is not a circular dependency

CHAPTER 4 — Generation of the search space of query workflows 73

Observe that the concurrent cf-relation is commutative and thus fa ◮◭ fb = fb ◮◭ fa.

Both activities transform the same tuple values and the order in which they are composed does

not modify the result (i.e. commutativity) because they do not have data dependencies. Therefore, the

activities may be composed in any sequential order.

Proposition 4.2.3 [Compositions for concurrent cf-relation] Two activities with concurrent cf-relation

fa ◮◭ fb, hold the consistent data-flow property by the Rule 3 if they are composed by the query work-

flows in Table 4.3.

Proof 4.2.3 [Coherent data-flow for concurrent cf-relation] The query workflows in Table 4.3 are well

constructed query workflows and the activities fa and fb are composed though the same execution path

such that fa ≺qw fb is true or fb ≺qw fa is true. Therefore, if fa ◮◭ fb holds, the query workflows in

Table 4.3 are consistent query workflows. �

Query workflow graph Graphical representation

qw(A,P,E, in, out) where A = {fa, fb};
P = {};
E = {(in, fa), (fa, fb), (fb, out)}.

fa fb

qw(A,P,E, in, out) where A = {fa, fb};
P = {};
E = {(in, fb), (fb, fa), (fa, out)}.

fb fa

Table 4.3 – Query workflows for concurrent cf-relation fa ◮◭ fb

Example 4.2.4 Suppose the activities binda,i, corra,b and their corresponding dt-functions ¯binda,i({a, i},

{i.nickname=a.friendship.with.friend}, atts(a)∪atts(i)) and ¯corra,b({a, b}, {a.friendship.with.friend

= b.friendship.with.friend}, atts(a) ∪ atts(b)). The activities binda,i and corra,b share the type name

a. Whereas binda,i reads the tuples of a for retrieving the tuples of i, corra,b also reads the tuples of a to

combine them with b. Therefore, there is not a data dependency and thus the cf-relation binda,i ◮◭ corra,b

is true. The activities are organized by the compositions shown in Figure 4.5.

These query workflows define the sequential control-flow between binda,i and binda,i. In both

cases, the first activity terminates and produces the tuple values with the constituent attributes required

by the second one and (implicitly) in any case the tuple values required by the second one are available.

4.3 Generation algorithm

The query workflow generation algorithm performs a pairwise reduction of a graph that represents the

cf-relations among activities like the GOO algorithm in [Feg98]. The reduction can be done in different

74 CHAPTER 4 — Generation of the search space of query workflows

binda,i ◮◭ corra,b

binda,i corra,b

(a) binda,i precedes corra,b

corra,b binda,i

(b) corra,b precedes binda,i

Figure 4.5 – Query workflows generated for the concurrent cf-relation

orders producing equivalent query workflows through the application of the generation rules presented

in Section 4.2.

4.3.1 Search space graph

The search space graph ss-graph represents the ways to generate the search space of equivalent query

workflows implementing a hybrid query. The vertices represent query workflows, with possibly only one

activity, and the edges represent the cf-relations among them. The ss-graph is defined as follows.

Definition 4.3.1 [ss-graph] For a given set of dt-functions F̄ where each f̄ ∈ F̄ describes an activity f,

the search space of query workflows is described by a graph ss-graph(QW, ~Rh) where

— QW : is a set of query workflows 〈qw, f̄〉 where qw is a one-activity query workflow (see Figure

4.6) such that QW = {〈qw({f}, {}, {f}, {(in, f), (f, out)}, in, out), f̄〉 | f̄ ∈ F̄}.

— ~Rh: is the set of healthy cf-relations 2 among activities. Thus, ~Rh = heal({~r = rel(f1, f2) | f̄1, f̄2 ∈

F̄} where rel is a function that computes the cf-relations and heal is a function that keeps only

healthy cf-relations.

f

f

Figure 4.6 – One-activity query workflow

Example 4.3.1 Consider the dt-functions F̄ = { ¯proja, ¯projl,
¯binda,l, ¯retra} derived from the hybrid

query Where are the friends of Alice ? in the Example 3.2.1. The ss-graph that represents ways to generate

the search space of query workflows implementing the hybrid query is given by the set of one-activity

query workflows

2. The set of healthy cf-relations contains only the cf-relations that can be composed in a consistent data-flow. This notion,
the function heal, and examples are presented in Appendix A.2.

CHAPTER 4 — Generation of the search space of query workflows 75

QW =
{ (

qw({proja}, {}, {proja}, {(in, proja), (proja, out)}, in, out),
¯proja

)

,

(qw
(

{projl}, {}, {projl}, {(in, projl), (projl, out)}, in, out), ¯projl
)

,

(qw
(

{binda,l}, {}, {binda,l}, {(in, binda,l), (binda,l, out)}, in, out), ¯binda,l
)

,

(qw
(

{retra}, {}, {retra}, {(in, retra), (retra, out)}, in, out), ¯retra
)}

and the set of cf-relations among them
~Rh={ retra ◮◮ binda,l,

projl �|||||||||| proja,

binda,l ◮◮ proja,

binda,l ◮◮ projl}.

retra

proja

binda,l

projl

◮◮

�||||||||||

◮◮
◮◮

Figure 4.7 – ss-graph example

Figure 4.7 shows the graphical representation of this ss-graph. For reading purposes, we use arrows

for non-commutative cf-relations in order to show the direction of the cf-relation and lines for com-

mutative cf-relations. Nevertheless, the graph structure does not distinguish between commutative/non-

commutative cf-relations (i.e. edges, arcs) in order to simplify the generation algorithm. This difference

is given by the semantics of each cf-relation.

4.3.2 Reduction-based generation algorithm

The generation algorithm is based on a pairwise reduction of the ss-graph(QW, ~Rh) into a ss-graph

with a single vertex representing a query workflow that implements the hybrid query. At each step of the

pairwise reduction, a cf-relation is chosen along with a generation rule that corresponds to the cf-relation

(see Figure 4.8).

The query workflows of the cf-relation are composed for generating a new query workflow. Such a

composition is done via the comp_qw function defined below.

Definition 4.3.2 [comp_qw] Given two query workflows

qw1(A1, P1, V1, E1, in1, out1), qw2(A2, P2, V2, E2, in1, out2), and the query workflow generation rule

qwgr({u1, u2}, Pgr, Vgr, Egr, ingr, outgr); the composition of qw1 and qw2 is given by

comp_qw(qw1, qw2, qwgr) = qwr(Ar, Pr, Vr, Er, inr, outr) defined as follows:

Let be the first and last vertices First1, F irst2 and Last1, Last2 of each query workflow qw1 and

qw2 such that
First1 = v|in1 ≺

!
qw

v and Last1 = v|v ≺!
qw

out1;

First2 = v|in2 ≺
!
qw

v and Last2 = v|v ≺!
qw

out2;

76 CHAPTER 4 — Generation of the search space of query workflows

retra

proja

binda,l

proj l

| |

projaprojl

projlproja

projl

proja

projabinda,l

binda,lretra
projlbinda,l

Figure 4.8 – Generation algorithm depiction

where
Ar = A1 ∪ A2;

Pr = P1 ∪ P2 ∪ Pgr;

Vr = Ar ∪ Pr ∪ {inr, outr};

Er = E1 \ {(in1, F irst1), (Last1, out1)} ∪ E2 \ {(in2, F irst2), (Last2, out2)}

∪{(u−

1 , F irst1) | u
−

1 ≺!
qwgr

u1} ∪ {(Last1, u
+
1) | u1 ≺

!
qwgr

u+1 }

∪{(u−

2 , F irst2) | u
−

2 ≺!
qwgr

u2} ∪ {(Last2, u
+
2) | u2 ≺

!
qwgr

u
+
2 }.

The algorithm in Listings 3.1 gets as input a ss-graph that describes the cf-relations among the set

of one-activity query workflows with its dt-function.

Listing 3.1. [Query workflow generation]

Input: ss-graph(QW, ~Rh)

Output: ss-graph({〈qw, f̄〉}, {})

1 For each f1R f2 ∈ ~Rh, qw1, qw2 | 〈qw1, f̄1〉, 〈qw2, f̄2〉 ∈ QW

2 qwgr = genrule(f1R f2)

3 qw = comp_qw(qw1, qw2, qwgr)

4 f̄ = merge(f̄1, f̄2)

5 QW = QW \ {〈qw1, f̄1〉, 〈qw2, f̄2〉} ∪ {〈qw, f̄〉}

6 ~Rh = rels(f1, f2, f, ~Rh)

7 End for each

8 Return ss-graph({〈qw, f̄〉}, {})

In Line 1, a cf-relation is chosen along with its query workflows. At each iteration the algorithm performs

three actions:

1. In Line 2, a generation rule is chosen for a given cf-relation R.

CHAPTER 4 — Generation of the search space of query workflows 77

2. In Line 3, a new query workflow is generated by composing the chosen query workflows qw1 and

qw2 into a single query workflow qw w.r.t. the generation rule qwgr. This is done by the function

comp_qw that receives qw1, qw2 and qwgr.

3. In Line 4, both dt-functions f̄1 and f̄2 are merged into f̄ that describes the data transformations

done by the generated query workflow qw.

4. Finally, in Lines 5 and 6 the ss-graph is reduced by updating the set of query workflows and by

computing the cf-relations –via the function rels– with the new f that substitutes f1 and f2.

In this algorithm the complexity to generate a single query workflow is O(n) in the number of edges

|~Rh|. Nevertheless, in order to generate exhaustively the alternative query workflows, the complexity

tends to O(n!) for the combinations in which cf-relations are chosen at Line 1. There is also a nested

combinatory into the possible query workflow generation rules genrule(R) for each cf-relation R ∈ ~Rh

(cf. Line 3). For instance, each independent cf-relation has three possible generation rules.

4.3.3 Generating equivalent query workflows

This section presents examples to show how the algorithm generates equivalent query workflows. We

use as input the hybrid query Which are the common interests of Alice and Bob ? of Example 3.1.3. First we

present a query workflow with parallel compositions and then another query workflow with a completely

sequential control-flow. In these examples, the difference relies on which query workflow generation

rules are used. More query workflows can be generated by choosing the cf-relations in different order.
Consider the next dt-functions F̄ derivated from the hybrid query expression of Example 3.1.3:

F̄ =
{

¯retra({a}, {a.nickname = ‘Alice’}, {atts(a)}),
¯retrb({b}, {b.nickname = ‘Bob’}, {atts(b)}),
¯proja({a}, {}, {a.nickname}),
¯projb({b}, {}, {b.nickname, b.interests.∗}),

¯corrab({a, b}, {a.interests.tag = b.interests.tag}, {atts(a), atts(b)})
}

.

and the search space graph ss-graph(QW, ~Rh) in Figure 4.9

proja

projb

corrab

retra

retrb

◮◮

◮◮

�||||||||||

◮◮

◮◮

�||||||||||

Figure 4.9 – Initial search space graph.

The following examples are illustrated with Tables 4.5 and 4.7 that show at each algorithm iteration

the ss-graph with the chosen cf-relation, the query workflow generation rule to perform the composition,

the reduction of the ss-graph, and the resulting query workflow.

78 CHAPTER 4 — Generation of the search space of query workflows

Example 4.3.2 Applying the query workflow generation algorithm to the ss-graph (QW, ~Rh), at each

iteration (see Table 4.5), the algorithm choses a cf-relation R ∈ ~Rh and a query workflow generation

rule genrule(R). Such generation rule is used to put together the associated query workflows to each

vertex.

1. In the first iteration, the chosen cf-relation is retra�|||||||||| retrb and the reduction produces a new

dependent cf-relation fab ◮◮ corrab. The related activities retra and retrb are then composed

with a parallel query workflow generation rule that corresponds with the independent cf-relation.

2. In the second iteration, the cf-relation fab ◮◮ corrab is chosen and the reduction produces the

two new cf-relations fab2 ◮◮ proja and fab2 ◮◮ projb. The sequential query workflow is used

to compose in sequence the previous parallel composition of retra and retrb with the activity

corrab.

3. In the third iteration, the cf-relation fab2 ◮◮ proja is chosen and the reduction produces the final

dependent cf-relation fab3 ◮◮ projb. The dependent query workflow generation rule is used to

compose in sequence the new query workflow with proja.

4. Finally, the reminding cf-relation fab3 ◮◮ projb is reduced to fab4 and the sequential query work-

flow compose the final query workflow with the activity projb

The resulting query workflow composition depends on the order in which the of cf-relations from ~Rh

and query workflow generation rule genrule(R) are chosen (cf. Lines 1,3). Therefore, each permutation

of {
(

R, genrule(R)
)

| R ∈ ~Rh} produces a query workflow.

Iteration 1

reduction

proja

projb

corrab

retra

retrb

◮◮

◮◮

�||||||||||

◮◮

◮◮

�||||||||||

proja

projb

corrabfab

◮◮

◮◮

�||||||||||◮◮

generation rule resulting query workflow

fb

fa

retrb

retra

Iteration 2

reduction

proja

projb

corrabfab

◮◮

◮◮

�||||||||||◮◮

proja

projb

fab2

◮◮

◮◮

�||||||||||

CHAPTER 4 — Generation of the search space of query workflows 79

generation rule resulting query workflow

fa fb retrb

retra

corra,b

Iteration 3

reduction

proja

projb

fab2

◮◮

◮◮

�||||||||||

fab3

projb

◮◮

generation rule resulting query workflow

fa fb
retrb

retra

projacorra,b

Iteration 4

reduction

fab3

projb

◮◮ fab4

generation rule resulting query workflow

fa fb
retrb

retra

proja projbcorra,b

Table 4.5 – Iterations for generating a query workflow with a parallel composition

Example 4.3.3 For this instance the iterations are listed in Table 4.7. The order in which the cf-relations

in ~Rh are chosen is the same than the previous example. The difference relies on the query workflow ge-

neration rule chosen for the independent cf-relation retra�|||||||||| retrb. Such choice produces a completely

sequential query workflow.

80 CHAPTER 4 — Generation of the search space of query workflows

Iteration 1

reduction

proja

projb

corrab

retra

retrb

◮◮

◮◮

�||||||||||

◮◮

◮◮

�||||||||||

proja

projb

corrabfab

◮◮

◮◮

�||||||||||◮◮

generation rule resulting query workflow

fa fb
retrbretra

Iteration 2

reduction

proja

projb

corrabfab

◮◮

◮◮

�||||||||||◮◮

proja

projb

fab2

◮◮

◮◮

�||||||||||

generation rule resulting query workflow

fa fb
retrbretra corra,b

Iteration 3

reduction

proja

projb

fab2

◮◮

◮◮

�||||||||||

fab3

projb

◮◮

generation rule resulting query workflow

fa fb
retrbretra projacorra,b

Iteration 4

reduction

fab3

projb

◮◮ fab4

generation rule resulting query workflow

fa fb
retrbretra proja projbcorra,b

Table 4.7 – Iterations for generating a sequential query workflow

CHAPTER 4 — Generation of the search space of query workflows 81

4.4 Conclusions

This chapter presented the generation of the search space of query workflows for a given hybrid

query. The generation aims to open the search space in presence of an SLA contract that may not be

satisfied if only the data-flow is considered. We therefore reflected on both, the data-flow and control-flow

of query workflows by defining a series of generation rules that produces well constructed, consistent, and

equivalent query workflows. Given that the application of any generation rule results in a well constructed

and consistent query workflow, any chain of generation rules produces a well constructed and consistent

query workflow.

The complexity to generate a single query workflow is O(n) in the number of cf-relations. Never-

theless, if the algorithm is exhaustively executed to generate the complete search space, the complexity

becomes O(n!). Moreover, there is a nested combinatory in the possible query workflow generation

rules for a single cf-relation. Therefore, the processing of the complete search space is unfeasible in the

context of just-in-time request/response applications. Although the efficiency of the generation is out of

the scope of this work, this algorithm allows to set up configurations in the form of rules. For instance, the

spanning tree can be pruned by defining the selection of cf-relations at each algorithm iteration avoiding

unnecessary branches, or pulling-up correlation activities.

CHAPTER 5
SLA-based solution space

computation

This chapter presents the solution space computation based on an optimization objective derived from

an SLA contract. Given an optimization objective specifying the expected values of a combination of

cost attributes (e.g. time, price, energy) and the preferences among them, the solution space of a given

hybrid query consists of the query workflows that are the closest to the optimization objective and that

best fulfill the preferences.

As shown in Figure 5.1, given an optimization objective of an SLA contract and the search space of

query workflows, first, we estimate the query workflow cost given a series of cost attributes pertinent to

the SLA contract. The resulting costs are weighted according to the preferences among cost attributes

expressed in the SLA contract. Then, we compute the distance of the query workflows from the optimi-

zation objective. Finally, we apply a top-k algorithm for selecting the k closest query workflows from

the optimization objective which compose the solution space.

Distance

estimation

Weight of query

workflow cost

Query workflow

cost estimation

Solution space computation

expected

valuespreferencescost attributes

Top-k
search

space

solution

space

optimization objective
expected

valuespreferencescost attributes

optimization objective

SLA contract

Figure 5.1 – Cost estimation and solution space computation overview

The remainder of the chapter is organized as follows. Section 5.1 defines the estimation of the query

workflow cost including its constituent activities costs. Section 5.2 presents top-kqw , an adaptation of a

top-k algorithm by means of a weighted distance from the optimization objective. Finally, Section 5.3

concludes this chapter.

83

84 CHAPTER 5 — SLA-based solution space computation

5.1 Query workflow cost estimation

The estimation of the query workflow cost involves the cost of its constituent activities (see Figure 5.2).

The cost of both activities and the query workflow is represented by an m dimensional vector of the form

〈x1, ..., xm〉 where each xj represents an attribute-cost pair, cf. Def. 3.3.1.

Σ
max

...
...

activity_cost

activity_cost

activity_cost

qw_cost

⎧
⎪
⎨
⎪
⎩

query workflow
activities

Figure 5.2 – Query workflow cost estimation overview

The query workflow cost is computed by aggregating the activities’ costs according to the control-

flow among them. Next, we define the activity cost and the query workflow cost.

5.1.1 Activity cost

The activity cost depends on the way the activity interacts with (1) the invoked service, (2) the preceding

activities from which the activity receives data, and (3) the succeeding activities to which the activity

delivers data (see Figure 5.3).

down-link invocation up-link

+ +

cdl cinv cul

x1
inv

,..,xm
inv

x1
dl

,..,xm
dl

x1
ul

,..,xm
ul

a
p

1

p
2

p
n

s
1

s
2

s
m

k1

-

k2

-

kn

-

d 1

-

d 2
-

d n

- d

d

d

d ...

...

k

Figure 5.3 – Activity cost addends

Each interaction brings a cost represented by a vector 〈x1, ..., xm〉.

— The down-link vector cdl represents the costs associated to the communication with preceding

activities.

— The invocation vector cinv represents the costs associated to the invocation of the service.

— The up-link vector cul represents the costs associated to the communication with succeeding acti-

vities.

CHAPTER 5 — SLA-based solution space computation 85

Each cost attribute xj of a cost vector is given by a specific cost function that combines QoS measures

of service instances and network. In this work we consider the cost attributes for time, price, and energy,

i.e. 〈xt, xp, xe〉.

Definition 5.1.1 [activity cost] For a given activity a belonging to a query workflow qw(A,P,E, in, out),

and its preceding activities prec = {p ∈ A | p ≺!
qw a}, and its succeeding activities succ = {s ∈ A |

a ≺!
qw s}. The activity cost function is defined as follows.

activity_cost(a) =
|prec|
∑

i=1

k−i
∑

j=1

d−i,j · c
dl + k · cinv + |succ| ·

k
∑

l=1

dl · c
ul (5.1)

The activity a (1) receives d−i,j amount of data from each preceding activity i∈ [1 .. |prec|] at each

data delivery j∈
[

1 .. k−i
]

, (2) receives dl amount of data from the invoked service at each data delivery

l∈ [1 .. k], and (3) delivers dl amount of data to each succeeding activity in succ.

a

d

k=1

(a) batch delivery

a

d1..dk

k >1

(b) stream delivery

Figure 5.4 – Data received from invoked service

Example 5.1.1 In order to exemplify the activity cost function, we consider the way an activity receives

data from the invoked service, from the preceding activities; and the way it delivers data to the succeeding

activities. The data delivery can be either in batch or stream (see Figure 5.4) bringing the following four

cases.

— An activity a receives data in batch from both the preceding activities and the invoked service.

Therefore, it delivers the resulting data in batch.

activity_cost(a) =
|prec|
∑

i=1

d−i · cdl + cinv + |succ| · d · cul

The down-link addend cdl is multiplied by the summation of the data size d−i of each preceding

activity i∈ [1 .. |prec|]. The invocation addend cinv is not affected because k = 1. The activity

delivers its result as many succeeding activities it has, thus the up-link addend cul is multiplied by

the data size d and the number of succeeding activities |succ|.

— An activity a receives data in batch from all its preceding activities and in stream from the invoked

service. Therefore, it delivers the resulting data in stream.

86 CHAPTER 5 — SLA-based solution space computation

activity_cost(a) =
|prec|
∑

i=1

d−i · cdl + k · cinv + |succ| ·
k

∑

l=1

dl · c
ul

The down-link addend cdl is multiplied by the summation of the data size d−i of each preceding

activity i∈ [1 .. |prec|]. The invocation addend cinv is multiplied by k times the service operation

delivers data. The activity delivers its result as many succeeding activities cul it has, thus the up-

link addend is multiplied by the data size produced at each execution l∈ [1 .. k].

— An activity a receives data in stream from at least one of its preceding activities and in batch from

the invoked service. Therefore, it delivers the resulting data in stream.

activity_cost(a) =
|prec|
∑

i=1

k−
i

∑

l=1

d−i,l · c
dl + k · cinv + |succ| ·

k
∑

j=1

dj · c
ul

The down-link addend cdl is multiplied by the nested summation of the data sizes d−i,j for all

i∈ [1 .. |prec|] and for all j∈
[

1 .. k−i
]

. The up-link addend cul is multiplied by the data size produ-

ced at each execution l∈ [1 .. k]. In this case k > 1 affects the invocation addend cinv. Given that

the service produces data in batch, it is assumed that the invocation is performed as many times as

the maximum k−i . Thus k = max(k−1 , ..., k
−
|prec|).

— An activity a receives data in stream from at least one of its preceding activities and in stream

from the invoced service. Therefore, the activity delivers the resulting data in stream.

activity_cost(a) =
|prec|
∑

i=1

k−i
∑

l=1

d−i,l · c
dl + k · cinv + |succ| ·

k
∑

j=1

dj · c
ul

The down-link addend cdl is multiplied by the nested summation of the data sizes d−i,j for all

i∈ [1 .. |prec|] and for all j∈
[

1 .. k−i
]

. The invocation addend cinv is multiplied by as many k

times the service delivers data. The up-link addend cul is multiplied by the data size produced at

each execution in l∈ [1 .. k].

Now we turn our attention to the computation of the query workflow cost that results from the aggre-

gation of the activities costs.

5.1.2 Query workflow cost

The query workflow cost is computed following the aggregation schema proposed in [JRGM04, Car04].

The principle is to reduce the query workflow graph qw(A,P,E, in, out) by aggregating the activities

costs according to the control-flow among them, i.e. sequential, parallel.

In this work we consider the cost attributes (1) execution time, (2) execution price, and (3) energy

consumption; i.e. activity_cost(a) = 〈xta, x
p
a, xea〉. For aggregating these cost attributes, either the

CHAPTER 5 — SLA-based solution space computation 87

summation or the maximum is applied depending on the cost attribute and the control-flow 1. Table 5.1

shows the aggregation rule for each pair of cost attribute and control-flow in {t, p, e} × {seq, par}.

seq par

(t) Execution time xt
qw =

∑

a∈A

xt
a xt

qw = max
a∈A

(xt
a)

(p) Execution price xp
qw =

∑

a∈A

xp
a xp

qw =
∑

a∈A

xp
a

(e) Energy consumption xe
qw =

∑

a∈A

xe
a xe

qw =
∑

a∈A

xe
a

Table 5.1 – Aggregation rules for cost attributes × control-flow

These aggregation rules are applied via the aggseq and aggpar functions defined below.

Definition 5.1.2 [aggseq] Given a set of activities’ cost vectors Cseq = {〈xt
a, x

p
a , x

e
a〉 = activity_cost(a) |

a ∈ A} whose activities A belong to a query workflow qw(A,P,E, in, out) with a single sequential

control-flow, i.e. |epaths(in, out, E)|= 1. The function aggseq(Cseq) = 〈xtqw, x
p
qw, xeqw〉 aggregates

the cost vectors in Cseq such that each cost attribute is aggregated according to its corresponding rule in

{t, p, e} × {seq} of Table 5.1.

a b

〈x ,x ,x 〉a a a
t p e 〈x ,x ,x 〉b b b

t p e
aggseq(Cseq)qw qw’

Figure 5.5 – Sequential aggregation

Example 5.1.2 Consider the query workflow in Figure 5.5 where the activities a, b are composed in se-
quence. The set of costs associated to the activities of qw is given by Cseq = {〈xta, x

p
a, xea〉, 〈x

t
b, x

p
b, x

e
b〉}.

Therefore, the sequential aggregation of the activities costs is given by

aggsec(Cseq) = 〈
∑

(xt
a, x

t
b),

∑

(xp
a , x

p
b),

∑

(xe
a, x

e
b)〉.

Definition 5.1.3 [aggpar] Given a set of activities cost vectors Cpar = {〈xt
a, x

p
a , x

e
a〉 = activity_cost(a) |

a ∈ A} whose activities in A belong to a query workflow qw(A,P,E, in, out) with a single paral-

lel control-flow, i.e. {(in, parl), (end_parl, out)} ⊂ E ∧ |A| = 2. The function aggpar(Cpar) =

〈xtqw, x
p
qw, xeqw〉 aggregates the cost vectors in Cpar such that each cost attribute is aggregated according

to its corresponding rule in {t, p, e} × {par} of Table 5.1.

1. Other aggregations should be considered for other cost attributes and control-flows, e.g. [Car04].

88 CHAPTER 5 — SLA-based solution space computation

b

a

〈x ,x ,x 〉a a a
t p e

〈x ,x ,x 〉b b b
t p e

aggpar(Cpar)
qw qw’

Figure 5.6 – Parallel aggregation

Example 5.1.3 Consider the query workflow in Figure 5.6 where the activities a, b are composed in
parallel. The set of costs associated to the activities of qw is given by Cpar = {〈xta, x

p
a, xea〉, 〈x

t
b, x

p
b, x

e
b〉}.

Therefore, the parallel aggregation of the activities costs is given by

aggpar(Cpar) = 〈max(xt
a, x

t
b),

∑

(xp
a , x

p
b),

∑

(xe
a, x

e
b)〉.

Given both functions aggsec and aggpar, the function qw_cost is defined as follows.

Definition 5.1.4 [qw_cost] Given a query workflow graph qw(A,P, V,E, in, out), the function

qw_cost(qw) = 〈xtqw, x
p
qw, xeqw〉 aggregates the costs of the activities in A by traversing the control-

flow defined by E from in to out following the rules below. For simply, qw_cost(qw) is rewritten as

qw_cost(v, E) where v ∈ V .

1. If v = out, then qw_cost(out, E) = 〈0, 0, 0〉

2. If v = in and s is the successor vertex in such that (in, s) ∈ E,

then qw_cost(in, E)=qw_cost(s, E \ {(in, s)})

3. If v = parl and Cpar is the set of costs of each path from parl to end_parl such that

Cpar =
{

qw_cost(f, {(in, f), (l, out)} ∪ epaths(f, l, E)) | (parl, f) ∈ E, (l, end_parl) ∈ E
}

and s is the successor vertex of end_parl such that (end_parl, s) ∈ E,

then qw_cost(in, E) = aggseq
({

aggpar(Cpar), qw_cost(s, E \ {(end_parl, s)})
})

.

4. Otherwise, if s is the successor vertex of v such that (v, s) ∈ E,

then qw_cost(v, E) = aggseq ({activity_cost(v), qw_cost(s, E \ {(v, s)})}).

Rule 1 is the base case when the vertex out is reached. Rule 2 is the initial case where the traver-

sing of a query workflow starts from in. Rule 3 computes the cost of a query workflow with a parallel

composition from parl to end_parl and aggregates it with the cost of the reminding control-flow after

end_parl. Finally, Rule 4 aggregates the cost of an activity with the reminding control-flow from the

next activity.

Example 5.1.4 For tracing the aggregation of the query workflow cost, consider the query workflow in

Figure 5.7. Suppose each activity a ∈ A has the synthetic cost activity_cost(a) = 〈1, 1, 1〉.

CHAPTER 5 — SLA-based solution space computation 89

The aggregation starts by applying the Rule 2 to the in vertex of qw in a). The next vertex to in is

an activity and thus, the Rule 4 is applied. Then it follows a parallel composition whose branches are

branched into the query workflows qw′
1 and qw′

2 by the Rule 3 in b). The Rule 2 is applied to both qw′
1

and qw′
2 and the Rule 4 aggregates their sequential compositions. This leads to the cost of 〈2, 2, 2〉 for

qw′
1 and 〈1, 1, 1〉 for qw′

2 in c). By back-tracing, we get to the parallel composition –previously reached

in b) by Rule 3– which is now aggregated to get the cost 〈2, 3, 3〉. In d), the costs of activities in sequence

are aggregated by the Rule 4. Finally, the out is reached to finally get the cost of qw 〈4, 5, 5〉 in e).

b)

a)

d)

e)

c)

<1, 1, 1>

<1, 1, 1><1, 1, 1>

<1, 1, 1>

<1, 1, 1>

<1, 1, 1>

<2, 2, 2>

<1, 1, 1>

<2, 3, 3> <1, 1, 1>

<4, 5, 5>

<1, 1, 1>

<1, 1, 1>

<1, 1, 1>

qw’1

qw’2

qw’3

qw’4

qw

Figure 5.7 – Application of the qw_cost rules

The set of equivalent query workflows implementing a hybrid query and their corresponding costs

form the search space of tagged query workflows defined as follows.

Definition 5.1.5 [search space of tagged query workflows] Given a set of equivalent query workflows

QW , the search space of tagged query workflows S is given by the set QW where each query workflow

is tagged with its corresponding cost via qw_cost. This is,

S = {qwi〈x
1
i , . . . , x

m
i 〉 | qwi ∈ QW, 〈x1i , . . . , x

m
i 〉 = qw_cost(qwi)}.

The absence of data-related parameters in service-based environments at build-time brings constraints

to have an accurate query workflow cost. However, it is possible to have an approximation to the cost by

means of a relaxed formulation of the activity_cost function.

90 CHAPTER 5 — SLA-based solution space computation

5.1.3 Cost estimation at build-time

During the optimization process, both the size of data d transformed by an activity and the number of

times k the invoked service delivers data are not available due to the absence of data-related parame-

ters in service-based environments. We propose a build-time formulation of the activity cost function

activity_cost that is a relaxation of the formulation in Equation 5.1 (See Figure 5.8).

build-time cost formulation run-time cost formulation

r e l a x a t i o n

cost

attributes

...
selectivity

cardinality

attribute size

stream rate...

control-flow

cost

attributes

control-flow

Figure 5.8 – Cost estimation for query workflows

The build-time formulation captures the interactions of the activity with its adjacent activities and

the invoked service; and dispenses with data-related parameters. Hereafter, we refer to the activity cost

formulation in Equation 5.1 as Frt and to the build-time formulation as Fbt.

Property 5.1.1 [relaxed formulation] If a and b are two different activities belonging to two equivalent

query workflows qw1 and qw2; and they hold a total order 2 by Frt such that Frt(a) > Frt(b); Fbt is a

relaxed formulation of Frt iff a and b hold a partial order by Fbt such that Fbt(a) > Fbt(b).

Observation 5.1.1 Observe from the Frt formulation in Equation 5.1 that every variable has its domain

either in non-negative integers Z+, or non-negative reals R+.

d−i ∈ R+ ∀i∈ [1 .. |prec|] d ∈ R+

k−i ∈ Z+ ∀i∈ [1 .. |prec|] k ∈ Z+

Proposition 5.1.1 [build-time cost] The formulation Fbt is an relaxed formulation of Frt such that

Fbt = |prec| · cdl + cinv + |succ| · cul. (5.2)

Proof 5.1.1 Consider again two activities a and b belonging to two equivalent query workflows qw1 and

qw2. By the Observation 1, every variable and summation in Frt (cf. Eq. 5.1) are always non-negative

scalars, and therefore Fbt holds the partial order between both activities, i.e. Fbt(a) > Fbt(b), cf. Def.

5.1.1. �

As we are interested in the optimization of the control-flow of activities, both the run-time and build-

time cost formulations entail the data transformations through the control-flow instead to the classical

data-flow. In the particular case of the build-time formulation, the data related-parameters are evicted and

2. As costs are represented by vectors, some of them are not comparable. Therefore for this reflection we suppose the cost
are scalars.

CHAPTER 5 — SLA-based solution space computation 91

thus the formulation only considers the control-flow where the activity participates. Therefore, the cost

estimation does not consider the semantics of data operators like in data-flow oriented optimizers, and

the build-time formulation may not report interesting query workflows (false negatives), or may report

non-interesting query workflows (false positives).

5.2 Computing the solution space

The solution space is computed by means of a top-k algorithm adapted to the hybrid query optimization

context in order to have a single search strategy for any combination of cost attributes defined by an

optimization objective. Top-k algorithms process items characterized by multiple features (i.e. fuzzy

data), and select the k ‘best’ items.

Our algorithm top-kqw is an adaptation of the Fagin’s algorithm (FA) [FLN03]. It looks for the

solution space Sk ⊂ S whose k resulting query workflows represent the best ones into the search space

S . The notion of ‘best’ is given by the weighted distance of query workflows from the optimization

objective.

5.2.1 Weighted distance from the optimization objective

We adopt a weighted distance for enabling the comparison of the costs of query workflows with a given

optimization objective. This metric allows to (1) privilege those query workflows that best conform the

cost attribute preferences and the expected values given by the optimization objective, and (2) evict query

workflows that, despite having the same Euclidean distance, they do not represent interesting results.

The weighted distance has two functions:

— weight function moves the query workflow cost by applying penalties to its cost attributes. The

direction in which a penalty is applied over an attribute x depends on its type atype(x) =

{loss, profit}. A loss attribute represents a best benefit when its value is smaller, e.g. execu-

tion price, execution time [SMWM06, LNZ04]. Therefore, the penalty is applied by increasing the

cost attribute value. A profit attribute represents a best benefit when its value is higher, e.g. relia-

bility, throughput, reputation [SJ98, Car04, LNZ04, WCSO08]. Therefore, the penalty is applied

by reducing the cost attribute value.

Definition 5.2.1 [weight] Given a query workflow cost qwi〈x
1
i , . . . , x

m
i 〉 and an optimization

objective oo〈(o1, w1), .., (om, wm)〉, the weight function moves the jth cost attribute as follows:

weight(xj
i , oo) =

if atype(xj
i) = profit; val(xj

i)− |val(vj)− val(xj
i)| ·

wj

m
∑

k=1

wk

if atype(xj
i) = loss; val(xj

i) + |val(vj)− val(xj
i)| ·

wj

m
∑

k=1

wk

92 CHAPTER 5 — SLA-based solution space computation

— dist function gets the Euclidean distance of a weighted query workflow cost from the optimization

objective. The formulation of the dist function is defined as follows.

Definition 5.2.2 [dist] Given query workflow qwi〈x
1
i , . . . , x

m
i 〉 and an optimization objective

oo〈(o1, w1), .., (o1, wm)〉, the distance is given by the Euclidean distance between the weighted

cost of qwi and oo

dist(qwi, oo) =
(

m
∑

j=1

[

weight(xj
i , oo) − val(oj)

]2)1/2

.

Example 5.2.1 Consider the oo〈(time = 40, 2), (price = 38, 1)〉 in Figure 5.9 as the center of a search

space described by a circular convex hull of query workflow costs QW = {qw1, . . . , qw12}.

qw
1

qw
2

qw
3

qw
4

qw
5

qw
6

qw
7qw

8

qw
9

qw
10

qw
11

qw
12

37 38 39 40 41 42 43 44

35

36

37

38

39

40

41

time

p
ri

ce

QW’

QW

OO
oo(40,38)

qw’
1 qw’

2

qw’
3

qw’
4

qw’
5

qw’
6

qw’
7

qw’
8

qw’
9

qw’
10

qw’
11

qw’
12

Figure 5.9 – Search space before and after applying weight function

Each query workflow in QW has the same Euclidean distance from oo, i.e. 2. By applying the

weight function, each query workflow is moved either close to or away from oo obtaining QW ′ =

{qw′
i = 〈weight(x1i), weight(x

2
i))〉 | qwi = 〈x1i , x

2
i 〉 ∈ QW (cf. Table 5.2).

Making a pairwise comparison, the query workflows qw1, qw12, qw11, qw10 form the Pareto optimal

curve. Nevertheless, looking at the distances from the optimization objective in the chart of Figure 5.10,

all the query workflows in qw1, ..., qw12 are equally good. In contrast, the weighted distance enables

the comparison among scattered and equidistant query workflows. Those query workflows that do not

represent interesting solutions are evicted (e.g. qw4, qw5, qw6), and the ones representing good solutions

are privileged (e.g. qw1, qw12, qw11, qw10). For instance, without a pairwise comparison, qw10 represents

the best alternative.

Once the weighted distance of query workflows is obtained, the search space can be ordered for

obtaining the query workflows that best conform the SLA contract are found on the top (see Table 5.3).

CHAPTER 5 — SLA-based solution space computation 93

qw1 qw2 qw3 qw4 qw5 qw6 qw7 qw8 qw9 qw10 qw11 qw12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
is

ta
n
ce

 f
ro

m
 O

O

qws

distance

weighted distance

Figure 5.10 – Euclidean and Weighted distances

query

workflows
price time distance price’ time’ distance’

qw1 40.0 36.0 2.0 40.0 36.667 1.3333
qw2 41.2 36.4 2.0 42.0 36.933 2.2667
qw3 41.833 37.2 2.0 43.055 37.467 3.1013
qw4 42.0 38.0 2.0 43.333 38.0 3.3333
qw5 41.833 38.8 2.0 43.055 39.067 3.2359
qw6 41.2 39.6 2.0 42.0 40.133 2.9242
qw7 40.0 40.0 2.0 40.0 40.667 2.6667
qw8 38.8 39.6 2.0 39.6 40.133 2.1705
qw9 38.167 38.8 2.0 39.389 39.067 1.2293
qw10 38.0 38.0 2.0 39.333 38.0 0.6667
qw11 38.167 37.2 2.0 39.389 37.467 0.811
qw12 38.8 36.4 2.0 39.6 36.933 1.1392

Table 5.2 – Original and weighted cost attributes

query

workflows
price’ time’ distance’↓

qw10 39.333 38.0 0.6667
qw11 39.389 37.467 0.811
qw12 39.6 36.933 1.1392

...

Table 5.3 – Naive top-k example

By traversing the complete search space, it is ensured that the k results are global optimal, i.e. there

are no nearest query workflows from the optimization objective in S \Sk. Nevertheless, when the search

space is large it is desirable to avoid the processing of the complete search space. Thus, we adapt the

Fagin’s Algorithm (FA) [FLN03] that is reported to be optimal [Fag99] when the scoring function (e.g.

dist) is monotone and strict.

5.2.2 The top-kqw algorithm

The top-kqw algorithm in Listings 2.1 assumes m inverted lists L1, . . . , Lm each associated to the

[1..m] cost attributes of the optimization objective oo〈(o1, w1), .., (o1, wm))〉. Each list Lj is of the form

[. . . , weight(xji , oo), . . .] with size |S| for i∈ [1 .. |S|], and j∈ [1 ..m].

94 CHAPTER 5 — SLA-based solution space computation

Each of the m lists is ordered depending if it is associated to a loss or profit attribute. If an arbitrary

attribute xj is a loss attribute atype(xj) = loss, then Lj = sortAsc(Lj). If xj is a profit attribute

atype(xj) = profit, then Lj = sortDesc(Lj). The principle is that the top-k items are close to the top

of the m lists.

Listing 2.1. [top-kqw algorithm]

Input: L1, ..., Lm, oo〈(o1, w1), .., (o1, wm))〉, k

Output: Sk

1 SEEN1, ..., SEENm = []

2 j = 1

3 While |
m⋂

l=1

Dl| < k

4 Parallel

5 SEEN1 = append(SEEN1, L1[j])

6 ...

7 SEENm = append(SEENm, Lm[j])

8 End parallel

9 j = j + 1

10 End while

11 DISTS = []

12 For each qwj ∈
m⋃

l=1

SEENl

13 qwj = 〈SEEN1[j], ..., SEENm[j]〉

14 DISTS = append(DISTS, dist(qwj , oo))

15 End for each

16 DISTS = sortAsc(DISTS)

17 Sk = DISTS[1..k]

18 Return Sk

Top-kqw traverses simultaneously the m lists by performing sequential access, cf. Lines 3-10. When

the same k items have been seen in the m lists, it performs random access over the already seen items

and computes their distances (cf. Lines 12-15). The distances are sorted in ascending order (cf. Line 16)

and thus the closest k items from the optimization objective are on the 1..k positions of the distances list

(cf. Line 17).

qw Ltime′ ↓ qw Lprice′ ↓
qw10 39.333 qw1 36.667
qw9 39.389 qw2 36.933
qw11 39.389 qw12 36.933
qw8 39.600 qw3 37.467
qw12 39.600 qw11 37.467
qw1 40.000 qw4 38.000
qw7 40.000 qw10 38.000
qw2 42.000 qw5 39.067
qw6 42.000 qw9 39.067
qw3 43.055 qw6 40.133
qw5 43.055 qw8 40.133
qw4 43.333 qw7 40.667

a) b)

Table 5.4 – Input lists used by top-kqw

CHAPTER 5 — SLA-based solution space computation 95

Example 5.2.2 Consider the search space in Table 5.2, the optimization objective oo〈(time = 40, 2), (price =

48, 1)〉, and k = 1. The cost of each query workflow is split into m = 2 lists Ltime′ and Lprice′ (see Tables

5.4a and 5.4b respectively). Each list is composed by pairs of qw and cost attribute, and it is ordered w.r.t.

the cost attribute.

Iteration qw Ltime′ ↓ qw Lprice′ ↓

→ 1 qw10 39.333 qw1 36.667
2 qw9 39.389 qw2 36.933

PA-1) Parallel access at iteration 1

Iteration qw

SEENtime′ qw10

SEENprice′ qw1

D-1) Items seen at iteration 1

Iteration qw Ltime′ ↓ qw Lprice′ ↓
1 qw10 39.333 qw1 36.667

→ 2 qw9 39.389 qw2 36.933
3 qw11 39.389 qw12 36.933

PA-2) Parallel access at iteration 2

Iteration qw

SEENtime′ qw10, qw9

SEENprice′ qw1, qw2

D-2) Items seen at iteration 2

Iteration qw Ltime′ ↓ qw Lprice′ ↓

2 qw9 39.389 qw2 36.933
→ 3 qw11 39.389 qw12 36.933

4 qw8 39.600 qw3 37.467

PA-3) Parallel access at iteration 3

Iteration qw

SEENtime′ qw10, qw9, qw11

SEENprice′ qw1, qw2, qw12

D-3) Items seen at iteration 3

Iteration qw Ltime′ ↓ qw Lprice′ ↓

3 qw11 39.389 qw12 36.933
→ 4 qw8 39.600 qw3 37.467

5 qw12 39.600 qw11 37.467

PA-4) Parallel access at iteration 4

Iteration qw

SEENtime′ qw10, qw9, qw11, qw8

SEENprice′ qw1, qw2, qw12, qw3

D-4) Items seen at iteration 4

Iteration qw Ltime′ ↓ qw Lprice′ ↓

4 qw8 39.600 qw3 37.467
→ 5 qw12 39.600 qw11 37.467

6 qw1 40.000 qw4 38.000

PA-5) Parallel access at iteration 5

Iteration qw

SEENtime′ qw10, qw9, qw11, qw8, qw12

SEENprice′ qw1, qw2, qw12, qw3, qw11

D-5) Items seen at iteration 5

DISTS

qw distance ↓
qw10 0.6667
qw11 0.8110
qw12 1.1392
qw9 1.2293
qw1 1.3333
qw8 2.1705
qw2 2.2667
qw3 3.1013

K) distances of seen items

Table 5.5 – Top-kqw example

At each iteration j shown in Table 5.5, the lists Ltime′ , Lprice′ are accessed in simultaneously to

read the jth query workflows (see Tables 5.5PA-#). The jth query workflows are appended to the lists

96 CHAPTER 5 — SLA-based solution space computation

SEENtime′ , SEENprice′ (see Tables 5.5D-#). At each iteration it is verified if there are k query work-

flows already seen in every list SEENtime′ and SEENprice′ (see Tables 5.5D-#). As we have defi-

ned k = 1, the iterations stop at the 5th iteration where there are at least k query workflows already

seen in SEENtime′ and SEENprice′ , i.e. qw11, qw12. Then the query workflows in SEENtime′ and

SEENprice′ are read by random access, and the distances by dist are appended to DISTS. Finally, the

DISTS list is ordered increasingly and the best query workflow qw10 is found at the k = 1 position (see

Tables 5.5D-5).

5.2.3 Optimality of top-kqw

The optimality of top-kqw is given by the monotone and strict properties of the scoring function (i.e.

dist function in our context). Fagin defined these properties in [Fag99, FLN03] and are sufficient for the

optimiality of the algorithm in the worst case.

For a given scoring function score, the monotone property ensures that two items X and Y , each

characterized by m attributes, keep an order such that score(x1, .., xm) ≤ score(y1, .., ym) iff every

attribute j∈ [1 ..m] holds that xj ≤ yj . For a given best score B, the score function is strict if an item

X gets the score B when every attribute of X is equal to B. This is, score(x1, .., xm) = B iff xj = B

for every attribute j∈ [1 ..m].

Such properties rely on the ‘best item’ semantics that is given by the proximity of the items from the

lower bound B; i.e. the closer xj is from B, the item is better. This intuition is analogous to our optimi-

zation objective given by oo〈(o1, w1), .., (om, wm)〉 that denotes the ideal point to reach. Therefore, the

monotone and strict properties can be written in terms of the optimization objective oo and the scoring

function dist as follows.

Property 5.2.1 [monotone] Given an optimization objective oo〈(o1, w1), .., (om, wm)〉, and two equi-

valent query workflows qw1〈x
1
1, .., x

m
1 〉, qw2〈x

1
2, .., x

m
2 〉; the dist function defines an order that allows

to find the optimal query workflow(s). This is, dist(qw1, oo) ≤ dist(qw2, oo) iff |val(xj
1) − val(oj)| ≤

|val(xj
2))− val(oj)|, ∀j∈ [1 ..m].

Property 5.2.2 [strict] Given an optimization objective oo〈(o1, w1), .., (om, wm)〉, and a query workflow

qw〈x1, .., xm〉 the dist function is strict if it takes the distance 0 when each cost attribute of qw is equal

to each attribute of oo. This is, dist(qw, oo)=0 iff val(xj) = val(oj), ∀j∈ [1 ..m].

As the weighted distance dist has its domain on the positive reals, both the monotone and strict

properties hold.

5.3 Conclusions

This chapter presented the solution space computation guided by an optimization objective of an SLA

contract. The query workflow cost is computed by aggregating the activities’ costs. In particular, for

CHAPTER 5 — SLA-based solution space computation 97

obtaining the activity cost, it is considered the activity’s interactions with other activities and with the in-

voked service. The data-related parameters (e.g. data statistics, data stream rate) are not available during

the optimization. Therefore, we proposed a build-time cost formulation that evicts such parameters. The

resulting cost is therefore an approximation.

The query workflows’ costs are compared with the optimization objective by means of a weighted

distance that considers the preferences among cost attributes. The weighted distance is used by the top-

kqw algorithm, an adaptation of the Fagin’s Algorithm[FLN03] that we use to find the solution space

of query workflows. The weighted distance holds the sufficient properties defined by Fagin for ensuring

the top-kqw optimality in the worst case. The optimization objective represents a lower bound and any

query workflow represents an upper bound. Such bounds can help to avoid the exhaustive traversing of

the search space.

Additional costs related to service-based environments may arise from quantitative measures of ser-

vices [NLF99], network [ACH98], energy consumption [CS12, FP13], and storage [LBN07, LBZ+11];

and the quality of data [OEtH02, MSV+02]. Our search strategy is extensible to new costs as we treat

the query workflows cost as fuzzy data.

Most of the forerunner query optimizers merge the search space generation and the search strategy

in order to apply mathematical optimization techniques, e.g. dynamic programming, branch-and-bound,

implicit enumeration. We consider that the separation of aspects should remain like in extensible optimi-

zers [HFLP89, PHH92] in order to provide flexibility and portability of the optimization process in the

context of hybrid queries and service-based environments.

CHAPTER 6
Implementation and

validation
This chapter is organized as follows. Section 6.1, introduces the hybrid query processing with HyQoZ,

the HYbrid Query OptimiZer. Section 6.2, describes the HyQoZ components through REST interfaces

and the messages for coordinating them. Section 6.3, presents a series of coordinations of the HyQoZ

componentes. Section 6.4, presents the implementation of the testbed system HyQoZTestbed that orches-

trates the HyQoZ components and enables the access to each component under different configurations.

Finally, Section 6.5 concludes this chapter.

6.1 Hybrid query processing

Figure 6.1 shows the component diagram for processing hybrid queries with the HYbrid Query Opti-

miZer (HyQoZ). An application representing a data consumer expresses hybrid queries based on the

information about service instances provided by the API directory, and define the SLA to accomplish.

Applications may require either the evaluation of the hybrid query or the optimum query workflow imple-

menting the hybrid query for its further execution. In such cases applications request either the evaluator

Hypatia or the optimizer HyQoZ.

API directory

<<component>>
API directory

Data consumer

<<component>>
Application

HyQoZ

QoS directory

<<component>>
QoS directory

<<component>>
DTDerivator

<<component>>
QWGenerator

<<component>>
QWWeighter

<<component>>
KSelector

<<component>>
Coordinator

Hypatia

<<component>>
QEPBuilder

<<component>>
HybridQP

Services

<<component>>
DataService

<<component>>
ComputingService

<<component>>
QWExecutor

Figure 6.1 – Hybrid query processing components

99

100 CHAPTER 6 — Implementation and validation

— Hypatia [CVVSC12] accepts the hybrid query evaluation requests. HybridQP validates the expre-

ssion according to the information provided by the API directory. QEPBuilder derives the optimi-

zation objective from the SLA contract and requests the hybrid query optimization to HyQoZ. The

resulting query workflow is executed by the QWExecutor.

— HyQoZ accepts hybrid query optimization requests and looks for the satisfaction of the optimiza-

tion objectives derived from the SLA contracts. HyQoZ is composed by a series of components

that implement the optimization stages described in previous chapters.

Internally, HyQoZ is composed by a series of orthogonal components that together perform the opti-

mization. Components exchange self-descriptive messages carrying the required information for articu-

lating the optimization. We adopt Prolog style functors for representing optimization information, e.g.

hybrid query expressions sco/1,data transformation function dtf/4, optimization objective oo/3, query

workflows qw/6. We refer the reader to the Appendix B.1 for the syntax conventions.

DTDerivator

QWGenerator

QWWeighter

KSelector

SC-O expressionsco/1

dt-functions

equivalent qws{qw/6,…,qw/6}

solution space{wqw/7,…,wqw/7}

search space{wqw/7,…,wqw/7}

{dtf/4,…,dtf/4}

api/3

qos/4

oo/3

Figure 6.2 – HyQoZ information flow

Figure 6.2 shows how optimization information flows through the HyQoZ components.

— DTDerivator analyzes the hybrid query expression sco/1 and asks to the API directory for the

required data and computing services’ APIs api/3 for type validations. The result is a set of data

transformations functions dtf/4 representing the hybrid query.

— QWGenerator takes a set of data transformation functions dtf/4 and generates the equivalent

query workflows qw/6 that implement the hybrid query.

— QWWeighter takes a series of query workflows qw/6 and produces query workflows tqw/7 tagged

with their costs cost/3. The cost attributes are computed in accordance with the attributes defined

by the optimization objective oo/3 and using QoS measures qos/4 provided by the QoS directory.

— KSelector looks for the solution space of tagged query workflows tqw/7 that best conform the

optimization objective oo/3 of the SLA contract.

Next we present the REST interfaces of HyQoZ components that specify the rules for access them

and the messages they exchange for enabling the optimization.

CHAPTER 6 — Implementation and validation 101

6.2 HyQoZ components

Each component is accessible through an interface described using the architectural style Representatio-

nal State Transfer (REST) [Fie00]. Messages exchanged by HyQoZ components contain (1) information

for enabling the optimization, and (2) a series of fields for articulating orchestrations or choreographies

of the HyQoZ components. Components use a series of core libraries we implemented in GNU Prolog

1.4.4 (see Table 6.1).

Component core GitHub repository

DTDerivator https://goo.gl/Bq3Cet

QWGenerator https://goo.gl/GBQIgu

QWWeighter https://goo.gl/P4zbGC

KSelector https://goo.gl/ATnXfQ

commons https://goo.gl/rqGvZx

Table 6.1 – HyQoZ core libraries.

Every HyQoZ component implements the synchronous and asynchronous communication patterns

via the request and response context messages described in Appendix B.2. The synchronous pattern (see

Figure 6.3a) provides access to a single stage of the optimization process (e.g. derivation, generation)

and its computation is done as an elementary service instance [FDBP01]. The asynchronous pattern (see

Figure 6.3b) provides access to the complete optimization process (or the reminding stages).

Requester HyQoZ component

1.1: local performings
1.2: response

1: request

(a) Synchronous access pattern

Requester HyQoZ component

1.1: local performings

2.1: response
2: further responses

1.3: further requests

1.2: requestTiecket

1: request

(b) Asynchronous access pattern

Figure 6.3 – Communication patterns implemented by HyQoZ components

Next we describe the REST interfaces of the HyQoZ components and give examples of the input and

output messages for enabling the optimization. Every REST method is exemplified with input and output

messages containing the optimization information for the hybrid query Which are the common friends of

Alice and Bob ? with the optimization objective oo〈(time = 38.4, 3), (price = 40.0, 1), (energy = 43.0, 2)〉.

π a.nickname, b.nickname,
a.friendship.with.friend

⊲⊳σ a.friendship.with.friend=
b.friendship.with.friend

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

https://goo.gl/Bq3Cet
https://goo.gl/GBQIgu
https://goo.gl/P4zbGC
https://goo.gl/ATnXfQ
https://goo.gl/rqGvZx

102 CHAPTER 6 — Implementation and validation

6.2.1 Data transformation function derivator (DTDerivator)

DTDerivator/derive Receives as input the hybrid query expression sco/1 (see Figure 6.4). The output

is the set of data transformation functions {dtf/4,...,dtf/4} along with an identifier of the hybrid

query.

Requester APIDirectoryDTDerivator

2.2: {dtf/4,...,dtf/4}, hq_id

2.2: {api/3,...,api/3}

2.1: GET:

http://.../api/acatalog

2: POST: http://.../DTDerivator/derive
1: derive

Figure 6.4 – Derivation request

URL : http://<baseuri>/DTDerivator/derive

Method : POST

Input message : Output message :

requestContext Context of the request requestContext Context of the request

sco sco/1 responseContext Context of the response

hq_id Identifier of hybrid query

dtfs {dtf/4,..,dtf/4}

Input message example :

“derivationRequest” :{

“requestContext” :{...},

“sco” :“sco(pi([a::friendship::with::friend],

sigma(a::nickname=‘Alice’,

sigma(b::nickname=‘Bob’,

corr([a::friendship::with::friend

=c::friendship::with::friend],

rho(friends::friendsof as a,friends::friendsof),

rho(friends::friendsof as b,friends::friendsof))))))” }

Output message example :

“derivationResponse” :{

“requestContext” :{...},

“responseContext” :{...},

“hq_id” :“ccl4li5n1q9b”

“dtfs” :[“dtf” :“dtf([a],[],[a::friendship::with::friend],p_a1)”,

“dtf” :“dtf([a],[a::nickname=‘Alice’],[a::nickname,a::friendship],r_a1)”,

“dtf” :“dtf([b],[b::nickname=‘Bob’],[b::nickname,b::friendship],r_b1)”,

“dtf” :“dtf([a,b],[a::friendship::with::friend=b::friendship::with::friend],

[a::nickname,a::friendship,b::nickname,b::friendship],c_ab1)”] }

CHAPTER 6 — Implementation and validation 103

DTDerivator/optimize Receives as input the hybrid query expression sco/1 and an optimization ob-

jective oo/3 (see Figure 6.4) The output is the identifier of the hybrid query and a reception timestamp.

The DTDerivator sends forward the request for the generation of query workflows to a QWGenerator ins-

tance. When the optimization is done, the requester gets the resulting query workflows with their costs

{tqw/7,...,tqw/7} via a callback port specified into the requestContext field of the input message.

APIDirectoryRequester DTDerivator

2: POST: http://<callbackPort>/result

1.1: GET: http://.../api/acatalog

1.3: derive

1.2: {api/3,...,api/3}

1: POST:

http://.../DTDerivator/optimize

1.5: POST: http://.../QWGenerator/optimize
1.4: hq_id, reception_ts

Figure 6.5 – Optimization request via DTDerivator

URL : http://<baseuri>/DTDerivator/optimize

Method : POST

Input message Output message

requestContext Context of the request requestContext Context of the request

sco Hybrid query expression sco/1 responseContext Context of the response

oo Optimization objective oo/3 hq_id Resource identifier of hybrid query

reception_ts Reception timestamp

Input message example :

“derivationRequest” :{

“requestContext” :{...},

“sco” :“sco(pi([a::friendship::with::friend],

sigma(a::nickname=‘Alice’,

sigma(b::nickname=‘Bob’,

corr([a::friendship::with::friend

=c::friendship::with::friend],

rho(friends::friendsof as a, friends::friendsof),

rho(friends::friendsof as b, friends::friendsof))))))”,

“oo” :oo(time(38.4, 3), price(40.0, 1), energy(43.0, 2)) }

Output message example :

“optimizationTicket” :{

“requestContext” :{...},

“responseContext” :{...},

“hq_id” :“ccl4li5n1q9b”

“reception_ts :” :“1379602397” }

104 CHAPTER 6 — Implementation and validation

6.2.2 Query workflow generator (QWGenerator)

QWGenerator/generate Receives as input a set {dtf/4,...,dtf/4} of data transformation functions

(see Figure 6.6). The query parameter flow defines if the generation is data-flow oriented (i.e. df), or

control-flow oriented (i.e. cf). The output is a set of equivalent query workflows {qw/6,...,qw/6}

implementing the hybrid query along with an identifier of the data transformation functions.

loop

[QWGeneration]

Requester QWGenerator

...

1.2: {qw/6, ..., qw/6}, dtfs_id

1: POST:
http://.../QWGenerator/generate?fflow=FLOW

Figure 6.6 – Generation request

URL : http://<baseuri>/QWGenerator/generate

Method : POST

Input message : Output message :

requestContext Context of the request requestContext Context of the request

dtfs {dtf/4,..,dtf/4} responseContext Context of the response

dtfs_id Receipt of the hybrid query optimization

qws Generated query workflows {qw/6,..,qw/6}

Query parameters :

flow Define if query workflows are generated with the data-flow (df) or control-flow (cf) perspective

Input message example :

“generationRequest” :{ “requestContext” :{...},

“dtfs” :[“dtf” :“dtf([a],[],[a::friendship::with::friend],p_a1)”,

“dtf” :“dtf([a],[a::nickname=‘Alice’],[a::nickname,a::friendship],r_a1)”,

“dtf” :“dtf([b],[b::nickname=‘Bob’],[b::nickname,b::friendship],r_b1)”,

“dtf” :“dtf([a,b],[a::friendship::with::friend=b::friendship::with::friend],

[a::nickname,a::friendship,b::nickname,b::friendship],c_ab1)”]}

Output message example :

“generationResponse” :{ “requestContext” :{...}, “responseContext” :{...}, “dtfs_id” :“dcm3oj7r2p3p”,

“qws” :[“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out),

(r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

... ,

“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[par, end_par],

[r_a1,r_b1,p_a1,c_ab1,par, end_par],

[(c_ab1,p_a1),(end_par,c_ab1),(in,par),

(p_a1,out),(par,r_a1),(par,r_b1),

(r_a1,end_par),(r_b1,end_par)],in,out)”]}

CHAPTER 6 — Implementation and validation 105

QWGenerator/optimize Receives as input a set of data transformation functions {dtf/4,...,dtf/4}

and the optimization objective oo/3 (see Figure 6.7). The query parameter flow defines if the generation

is data-flow oriented (i.e. df), or control-flow oriented (i.e. cf). The output is the identifier of the

set of data transformation functions for identifying the optimization result. The QWGenerator sends

forward the optimization request for the weighting of query workflows to a QWWeighter instance. Once

the optimization is done, the requester gets the optimization result of query workflows with their costs

{tqw/7,...,tqw/7} via a callback port specified into the input message.

loop

[QWGeneration]

Requester QWGenerator

2: POST: http://<callbackPort>/result

1.3: POST: http://<baseuri>/qws/optimize

...

1: POST: http://../QWGenerator/optimize?flow=FLOW

1.1: dtfs_id, reception_ts

Figure 6.7 – Optimization request via QWGenerator

URL : http://<baseuri>/QWGenerator/optimize

Method : POST

Input message Output message

requestContext Context of the request requestContext Context of the request

sco Hybrid query sco/1 responseContext Context of the response

oo Optimization objective oo/3 dtfs_id Resource identifier of dt-functions

reception_ts Reception timestamp

Query parameters :

flow Define if query workflows are generated with the data-flow (df) or control-flow (cf) perspective

Input message example :

“generationRequest” :{ “requestContext” :{...},

“dtfs” :[“dtf” :“dtf([a],[],[a::friendship::with::friend],p_a1)”,

“dtf” :“dtf([a],[a::nickname=‘Alice’],[a::nickname,a::friendship],r_a1)”,

“dtf” :“dtf([b],[b::nickname=‘Bob’],[b::nickname,b::friendship],r_b1)”,

“dtf” :“dtf([a,b],[a::friendship::with::friend=

b::friendship::with::friend],

[a::nickname,a::friendship,b::nickname,b::friendship],c_ab1)”

], “oo” :oo(time(38.4, 3), price(40.0, 1), energy(43.0, 2))}

Output message example :

“optimizationTicket” :{

“requestContext” :{...},

“responseContext” :{...},

“dtfs_id” :“dcm3oj7r2p3p”,

“reception_ts :” :“1379602397”}

106 CHAPTER 6 — Implementation and validation

6.2.3 Query workflow cost weighter (QWWeighter)

QWWeighter/compute Receives as input a set {qw/6,...,qw/6} of query workflows and an optimiza-

tion objective oo/3 (see Figure 6.8). The output is a set of weighted query workflows {tqw/7,...,tqw/7}

along with an identifier of the query workflows.

loop

[QWWeighting]

Requester QoSDirectoryQWWeighter

1.2: {qw/7, ..., qw/7}, qws_id, timestamp

1.1.1: GET: http://<baseuri>/qos

...

1.1.2: {qos/4, qos/4}

1: POST:

http://.../QWWeighter/compute

Figure 6.8 – Weighting request

URL : http://<baseuri>/QWWeighter/compute

Method : POST

Input message : Output message :

requestContext Context of the request requestContext Context of the request

qws {qw/6,..qw/6} responseContext Context of the response

qws_id Identifier of dt-functions and query workflows

timestamp Instant at which the costs are valid

tqws Search space {tqw/7,..,tqw/7 }

Input message example :

“weightingRequest” :{ “requestContext” :{...},

“qws” :[“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out), (r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

... “qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[par, end_par],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(end_par,c_ab1),(in,par),(p_a1,out),(par,r_a1),

,(par,r_b1),(r_a1,end_par),(r_b1,end_par)],in,out)”]}

Output message example :

“weightingResponse” :{ “requestContext” :{...}, “responseContext” :{...},

“qws_id” : “y4r9I3Cv2p0t”, “timestamp :” :“1379618154”

“tqws” :[“tqw” :{“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out),

(r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

“cost” :“cost(21, 23 20)’’},

... , “tqw” :{“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[par, end_par],

[r_a1,r_b1,p_a1,c_ab1, par, end_par],

[(c_ab1,p_a1),(end_par,c_ab1),(in,par),

(p_a1,out),(par,r_a1),(par,r_b1),

(r_a1,end_par),(r_b1,end_par)],in,out)”,

“cost” :“cost(22, 23 21)”}] }

CHAPTER 6 — Implementation and validation 107

QWWeighter/optimize Receives as input a set {qw/6,...,qw/6} of query workflows and an op-

timization objective oo/3 (see Figure 6.9). The output is the identifier of the query workflows. The

QWWeighter instance sends forward the request for the selection of the solution space of query work-

flows to a KSelector instance. Once the optimization is done, the requester gets the resulting query

workflows with their costs {tqw/7,...,tqw/7} via a reception port.

loop

[QWWeighting]

Requester QoSDirectoryQWWeighter

1.1.1: GET: http://.../qos

...

1.1.2: {qos/4, qos/4}

1: POST:

http://.../QWWeighter/optimize

1.2: tqws_id, reception_ts

2: POST:
http://<callbackPort>/result

1.3: POST: http://.../KSelector/optimize

Figure 6.9 – Optimization request via QWWeighter

URL : http://<baseuri>/QWWeighter/optimize

Method : POST

Input message : Output message :

requestContext Context of the request requestContext Context of the request

qws {qw/6,..qw/6} responseContextContext of the response

tqws_id Identifier of dt-functions and query workflows

reception_ts Instant at the query workflows reception

Input message example :

“weightingRequest” :{ “requestContext” :{...},

“oo” :oo(time(38.4, 3), price(40.0, 1), energy(43.0, 2))

“qws” :[“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out),

(r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

... “qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[par, end_par],

[r_a1,r_b1,p_a1,c_ab1, par, end_par],

[(c_ab1,p_a1),(end_par,c_ab1),(in,par),

(p_a1,out),(par,r_a1),(par,r_b1),

(r_a1,end_par),(r_b1,end_par)],in,out)”]}

Output message example :

“optimizationTicket” :{ “requestContext” :{...}, “responseContext” :{...},

“tqws_id” :“r3u8OlTs6q2q”

“reception_ts :” :“1379623365”}

108 CHAPTER 6 — Implementation and validation

6.2.4 Solution space selector (KSelector)

KSelector/optimize Receives as input a set of {tqw/7,...,tqw/7} of weighted query workflows, an

optimization objective oo/3 (see Figure 6.10). The query parameter topk parametrize the number of ex-

pected k query workflows with default topk = 1. The output is the solution space of {tqw/7,...,tqw/7}

and the id of the search space.

alt

Requester KSelector

1.2: POST: http://<callbackPort>/result

1.1: POST: http://<callbackPort>/result

1: POST: http://.../KSelector/optimize?topk=K

Figure 6.10 – Optimization request via KSelector

URL : http://<baseuri>/KSelector/optimize

Method : POST

Input message : Output message :

requestContext Context of the request requestContext Context of the request

tqws {tqw/7,..tqw/7} responseContext Context of the response

ss_id Resource identifier of the solution space

ss Solution space {tqw/7,..tqw/7}

Query parameters :

topk Positive integer that specifies the number of expected results

Input message example :

“selectionRequest” :{“requestContext” :{...},

“oo” :oo(time(38.4, 3), price(40.0, 1), energy(43.0, 2))}

“tqws” :[“tqw” :{“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out),

(r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

“cost” :“cost(21, 23 20)’’} },

... “tqw” :{“qw” :“qw([r_a1,r_b1,p_a1,c_ab1],[par, end_par],

[r_a1,r_b1,p_a1,c_ab,par, end_par1],

[(c_ab1,p_a1),(end_par,c_ab1),(in,par),(p_a1,out),

(par,r_a1),(par,r_b1),(r_a1,end_par),(r_b1,end_par)],

in,out)”, “cost” :“cost(22, 23 21)”}] }

Output message example :

“weightingResponse” :{ “requestContext” :{...}, “responseContext” :{...}, “ss_id” :“y8c4mNE5k5a”,

“ss” :[“tqws” :{‘tqw” :“tqw([r_a1,r_b1,p_a1,c_ab1],[],[r_a1,r_b1,p_a1,c_ab1],

[(c_ab1,p_a1),(in,r_a1),(p_a1,out),

(r_a1,r_b1),(r_b1,c_ab1)],in,out)”,

“cost” :“cost(21, 23, 20)’’}}] }

CHAPTER 6 — Implementation and validation 109

6.3 Coordinating the HyQoZ components

Behind the use of REST style interfaces, there is the interest to separate the concerns of HyQoZ for

enabling the portability along platforms, the scalability for enhancing the HyQoZ throughput, and the

extensibility for adapting HyQoZ to the variety of potential cost attributes in service-based environments.

The HyQoZ components can have an orthogonal evolution (e.g. generation strategies, cost models,

solution space selection) as long as the proposed data structures and properties remain.

The stateless client-server interaction via the REST interfaces enables the (1) dynamic binding of

HyQoZ components, (2) the parallelization of tasks (e.g. several QWWeighters performing the cost

estimation of a fragmented search space), and (3) the performance enhancement of HyQoZ itself. In

this way, the HyQoZ components can be coordinated depending on the interests of developers about the

resource usage, communication cost, and desired query workflows optimality.

6.3.1 Orchestration

An orchestration is performed by an Orchestration Engine (OE) that interprets a program specified in

a language; e.g. ASM-based [CV11, BT08], YAWL[vdAtH05], WSFL[Ley01], WS-BPEL[JE07]. The

component instance binding may be dynamic or static. In the dynamic binding case, there are assumed

multi-criteria decision capabilities [JMG05, CCDS04] of the orchestration engine for selecting the most

suitable component instances for an orchestration execution. In the static binding case, the component

instances are chosen a priori. In both cases, an instance of a HyQoZ component implements a synchro-

nous communication pattern, i.e. it receives the orchestration requests from the OE, and the results are

delivered to it.

The sequence diagram in Figure 6.11 shows the orchestration of HyQoZ components. The requester

sends to the OE the hybrid query sco/1 and the optimization objective oo/3. The sco/1 is passed to

a DTDerivator instance through the resource DTDerivator/derive and it computes the derivation getting

the APIs api/3 from the API directory.

The resulting {dtf/4,..,dtf/4} are returned back to the OE and passed to a QWGenerator instance

through the QWGenerator/generate resource. Each QWGenerator instance implements its own genera-

tion rules regarding the compromise between efficiency and quality of the alternative query workflows.

The resulting query workflows {qw/6,...,qw/6} are returned back to the OE.

The OE requests the QWWeighter through the resource QWWeighter/compute for computing the

search space of query workflows according to the cost attributes specified by oo/3. The QWWeighter

traverse the query workflows and retrieves the required QoS measures qos/4 from the QoS directory.

The QWWeighter delivers the search space {tqw/7,...,tqw/7}

Finally, the OE requests the selection of the solution space to a KSelector instances through the

KSelector/optimize. The KSelector delivers the resulting {tqw/7,...,tqw/7} to the OE and this does

to the requester.

110 CHAPTER 6 — Implementation and validation

loop

[QW generation]

loop

[QW cost]

QWGenerator KSelectorOrchestation Engine QWWeighterDTDerivator

2.1.2.2.2: {tqw/7,...,tqw/7}

2.1.2.2: {tqw/7,...,tqw/7}

2.1.1.2: {qw/6, ..., qw/6}

2.1: {dtf/4, ..., dtf/4}

1.1: POST: http://.../derive

2.1.2.2.1: POST: http://.../optimize

2.1.2: POST: http://../compute

2.1.1: POST: http://.../generate

2.1.2.2.3: {tqw/7, ..., tqw/7}

1: POST:

http://.../hq/optimize

...

1.1.1: derive

...

3: {qos/4, qos/4}

2.1.2.1.1: GET:

http://.../qos

2: {api/3,...,api/3}

1.1.1.1: GET:

http://.../api/catalog

Figure 6.11 – Orchestration of HyQoZ components

6.3.2 Choreography

The choreography is a sequence of asynchronous requests via the resource /optimize implemented by

every HyQoZ component. At each step the choreography is blocked until the component finishes its task.

The messages among components carry both (1) the result of the preceding component and (2) the context

information (cf. Appendix B.2). At each step, it is assumed the binding to the succeeding component

instance. The sequence diagram in Figure 6.12 shows the choreography of HyQoZ components.

The choreography begins when the requester invokes a DTDerivator instance. The requester sends

to the resource DTDerivator/optimize the hybrid query sco/1, the optimization objective oo/3, and a

callback port specified in the context message. The DTDerivator derives the {dtf/4,...,dtf/4} and

requests the generation of the query workflows to a QWGenerator instance through the resource QWGe-

nerator/optimize. The QWGenerator generates the equivalent {qw/6,...,qw/6} and requests their cost

estimation to a QWWeighter instance through the resource QWWeighter/optimize. The QWWeighter

computes the search space of query workflows with their costs according to the cost attributes defined by

the optimization objective oo/3. Finally, the QWWeighter requests the selection of the solution space to

a KSelector instance through the resource KSelector/optimize. The KSelector delivers the solution space

{tqw/7,...,tqw/7} to the requester via the callback port.

CHAPTER 6 — Implementation and validation 111

loop

[QWGeneration]

loop

[QWWeighting]

KSelectorQWWeighterQWGeneratorDTDerivator

4: {qos/4, qos/4}

3.1: GET: http://.../qos

2: {api/3,...,api/3}

1.1.1: GET: http://…/api/catalog

1: POST:

http://.../DTDerivator/optimize

4.1.1: POST: http://<callbackPort>/result

4.1: POST: http://.../optimize

2.1.1.1: POST:

http://.../optimize

...

2.1: POST: http://.../optimize

...

...

Figure 6.12 – Independent parallel choreography

6.3.3 Pipelined choreography

The pipelined choreography is a sequence of asynchronous requests via the resource /optimize imple-

mented by every HyQoZ component. The pipeline starts when the QWGenerator produces the first query

workflow qw/6. The pipeline finishes once a stop criteria is reached. Then, the HyQoZ components are

stopped by calling back them with the result in stack fashion. The sequence diagram in Figure 6.12 shows

the pipelined choreography.

The choreography begins when the requester invokes a DTDerivator instance. The requester sends

to the resource DTDerivator/optimize the hybrid query sco/1, the oo/3; and (within the context mes-

sage) the callback port and a stop condition, e.g. time threshold, first k good results, top-k results.

Every HyQoZ component defines its own callback port. The DTDerivator requests the query workflow

generation to a QWGenerator instance through the resource QWGenerator/optimize. As soon as the

QWGenerator starts to produce query workflows qw/6, it request their cost estimation to the QWWeighter

according to the optimization objective oo/3. The QWWeighter en-queues the tagged query workflows

tqw/7 to the KSelector through resource KSelector/optimize. When the KSelector reaches the stop condi-

tion, the results are sent back in sequence through the callback ports until the requester gets the solution

space tqw/7.

112 CHAPTER 6 — Implementation and validation

alt

loop

loop

loop

[Finish condition reached]

[QWWeighting]

[QWGeneration]

KSelectorQWWeighterQWGenerator

DTDerivator

3: POST:

http://.../optimize

3.2.3: POST:

http://<callbackPort>/result

4: {qos/4, qos/4}

3.2: POST: http://.../optimize

3.2.2: finish condition

reached

...

...

3.2.3.1: POST:

http://<callbackPort>/result

2.1: POST: http://.../optimize

...

3.2.3.1.1: POST:

http://<callbackPort>/result

1: POST: http://.../optimize

1.1: derive

3.2.3.1.1.1: POST:

http://<callbackPort>/result

2: {api/3,...,api/3}

1.1.1: GET: http://.../api/catalog

3.1.1: GET: http://.../qos

Parallel

Figure 6.13 – Pipelined choreography

CHAPTER 6 — Implementation and validation 113

6.4 HyQoZTestbed

HyQoZTestbed is a testbed system that allows to characterize the hybrid query optimization implemented

by HyQoZ components. Via HyQoZTestbed it is possible to (1) generate synthetic hybrid queries (2)

perform requests to the HyQoZ components described in Section 6.2, and (3) compare the behavior of

the hybrid query optimization under different conditions.

6.4.1 Architecture and implementation

Figure 6.14 shows the architecture of HyQoZTestbed.

DTDerivator QWGenerator QWWeighter KSelector

Controller

Jersey

JacksonSynHQGen

QEPBuilderProlog

QWMapper

Command Line Interface

Figure 6.14 – HyQoZTestbed architecture

1. Command Line Interface. HyQoZTestbed is accessible through a Command Line Interface des-

cribed in Appendix B.4. The parameters passed to CLI enable different configurations.

2. Synthetic hybrid query generator (SynHQGen). It generates synthetic hybrid queries. It takes

as input a hybrid query signature that describes the number of involved data services, the way

to correlate them, the filters, and projections. The signature denotes the complexity of the hybrid

query.

3. Hybrid query compiler (QEPBuilder) and query workflow mapper (QWMapper). QEPBuilder

is the Hypatia hybrid query compiler that generates a single (data-flow oriented) query workflow.

The query workflows produced by QEPBuilder can be used for benchmarking the quality of the

query workflows proposed by the HyQoZ w.r.t. different optimization objectives. For enabling

the structural comparison, there is QWMapper that translates the Hypatia’s query workflows into

HyQoZ query workflows and assigns hashcodes for identifying them.

4. HyQoZ testbed controller (HyQoZTestbed). It orchestrates the hybrid query optimization with

different configurations and enables the access either to each HyQoZ component independently or

to a composition of them. It is possible to generate synthetic hybrid queries, generate data-flow or

control-flow oriented query workflows, estimate either the build-time or run-time cost, and define

the selection of the solution space w.r.t. different optimization objectives.

114 CHAPTER 6 — Implementation and validation

HyQoZTestbed provides the access to a synthetic hybrid query generator SynHQGen implemented

for GNU Prolog 1.4.4. Synthetic queries are characterized by a signature that denotes the complexity of

the hybrid query in terms of the effort for optimizing it (see Section 6.4.2).

In order to enable the benchmark of the hybrid queries produced by HyQoZ, we integrate the

QEPBuilder class of hybrid query evaluator Hypatia. QEPBuilder is a hybrid query compiler written

in Java that produces a single query workflow that can be compared with the solution space provided by

HyQoZ via the QWMapper. QWMapper maps the Hypatia query workflow representation to our query

workflow representation qw/6.

Table 6.2 lists the modules required by provided by HyQoZTestbed which however might be used

independently. Table 6.3 lists additional libraries used by HyQoZTestbed.

HyQoZTestbed modules

Module Repository Platform

SynHQGen GitHub: http://goo.gl/dvPqRM GNU Prolog 1.4.4
QEPBuilder (Hypatia) CodePlex: http://goo.gl/gGAU02 Java JSE 1.6.0_65
HyQoZTestbed Controller GitHub: http://goo.gl/8LYkWO Java JSE 1.6.0_65

Table 6.2 – Modules of HyQoZTestbed

Library Version Platform

Apache CLI 1.2 Java JSE 1.6.0_65
Apache Configuration 1.9 Java JSE 1.6.0_65
Apache Collections 3.2.1 Java JSE 1.6.0_65
Apache Logging 1.1.1 Java JSE 1.6.0_65
Apache Lang 2.6 Java JSE 1.6.0_65
Guava library 14-rc1 Java JSE 1.6.0_65

Table 6.3 – Libraries used by HyQoZTestbed

HyQoZTestbed orchestrates the HyQoZ components performing REST invocations via Jersey 1.18

and data bindings via Jackson 2.1.0. The information related to the optimization is wrapped into Java

objects that are mapped to its JSON representation by Jackson (see input and output message examples

in Section 6.2).

Via the Command Line Interface, HyQoZTestbed enables the access to the HyQoZ components

through their REST interfaces presented in Section 6.2. For instance, for a given hybrid query expre-

ssion sco/1 it is possible to request the derivation of the data transformation functions dtf/4, by means

of the command

java -jar hyqoztestbed.jar -derivate -sco [sco/1] -output [OUTPUTFILE.txt]

or the generation of the equivalent query workflows for a given hybrid query expression by the command

java -jar hyqoztestbed.jar -generate -sco [sco/1] -output[OUTPUTFILE.txt] -controlflow

http://goo.gl/dvPqRM
http://goo.gl/gGAU02
http://goo.gl/8LYkWO

CHAPTER 6 — Implementation and validation 115

6.4.2 Synthetic hybrid queries generation

SynHQGen generates a sco/1 expression for a given hybrid query signature of the form

hq_signature(#DSs,#BindJoins,#Joins,#Filters,#BlockingProjections,#Projections)

where #DSs denotes the number of data sources in the hybrid query, #BindJoins denotes the number

of bind joins among the data sources, #Joins denotes the number of joins between the data sources 1,

#Filters denotes the number of filtering operators, #BlockingProjections denotes the number

of projections that generate anti-dependency, #Projections denotes the number of (non-blocking)

projections.

The following command generates the possible hybrid query signatures for each i∈ [n ..N] number

of data services.

java -jar hyqoztb.jar -genshqs -n = [n] -N = [N] -outputdir [OUTPUTDIR]

For every number of data sources i∈ [n ..N], HyQoZTestbed constructs the possible hybrid query

signatures hq_signature/6 and request the generation of the hybrid query expression sco/1. The re-

sulting expressions are stored into the file OUTPUTDIR/#DSs_DSs.txt where #DS is the number of data

services involved in the hybrid queries.

6.4.3 Measuring the search space sizes

HyQoZTestbed allows to generate the control-flow or data-flow search spaces for a given hybrid query

expression or signature. We selected seven hybrid queries listed in Table 6.4 for measuring the hybrid

query complexity. Each hybrid query complies with the examples used in previous chapters, i.e. friend

finder, friends’ interests, and fiendships.

— HQ1 The purpose of the HQ1 is to show the simplest case of a hybrid query with only one alternative

query workflow.

— HQ2 The purpose of the HQ2 is to show a hybrid query with a single data source which however has

some alternative query workflows.

— HQ3 The purpose of the HQ3 is to have a search space with bind-joins.

— HQ4, HQ5 The purpose of HQ4 and HQ5 is to have a search space with joins, which is bigger than the

one with bind-joins.

— HQ6, HQ7 The purpose of HQ6 and HQ7 is to have a search space with both bind-joins and joins.

1. The signature has to hold #DSs = (#BindJoins + #Joins) + 1. If a data source is not accessible via a bind-join
operator, there is a retrieval expression bounding constants to the bound attributes.

116 CHAPTER 6 — Implementation and validation

Hybrid query #
DS
s

#
Bi
nd
Jo
in
s

#
Jo
in
s

#
Fi
lt
er
s

#
Bl
oc
ki
ng
Pr
oj
ec
ti
on
s

#
Pr
oj
ec
ti
on
s

complexity

HQ1:
Where is Bob ?

πl.nickname, l.location.lat, l.location.lon

σl.nickname=‘Bob’

ρwhereRU.location:l

whereRU.location

1 0 0 0 0 1
-

+

HQ2:
Which are the

interests of

Alice with a

score above

0.8 ?

πa.nickname, a.interest.tag, a.interest.score

σa.interest.score>0.8

σa.nickname=‘Alice’

ρwhatULike.interest:a

whatULike.interest

1 0 0 1 0 1

HQ3:
Where are the

friends of

Alice ?

πa.nickname, l.nickname, l.location.lat, l.location.lon

⊲⊳σ(l.nickname=

a.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

ρwhereRU.location:l

whereRU.location

2 1 0 0 1 1

HQ4:
Which are the

common

friends of Alice

and Bob ?

π a.nickname, b.nickname,

a.friendship.with.friend

⊲⊳σ a.friendship.with.friend=

b.friendship.with.friend

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

2 0 1 0 1 1

HQ5:
Which are the

common

interests of

Alice and Bob

with a score

above 0.8 ?

πa.nickname,b.nicknae,a.interest.tag

σa.interest.score>0.8

⊲⊳σ(a.interest.tag=b.interest.tag)

σa.nickname=‘Alice’

ρwhatULike.interests:a

whatULike.interests

σb.nickname=‘Bob’

ρwhatULike.interests:b

whatULike.interests

2 0 1 1 1 1

HQ6:
Which of the

common

friends of Alice

and Bob are

more than 25

years ?

π a.nickname, b.nickname,

p.nickname, p.profile.age

σp.profile.age>25

⊲⊳σ(p.nickname=

a.friendship.with.friend)

⊲⊳σ(a.friendship.with.friend=

b.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

ρfriends.profile:p

friends.profile

3 1 1 1 2 1

HQ7:
Which of the

common

friends of Alice

and Bob are

interested in

art history ?

π a.nickname, b.nickname,

a.friendship.with.friend, i.interest.tag

σi.interest.tag=‘Art history’

⊲⊳σ(i.nickname=

a.friendship.with.friend)

⊲⊳σ(a.friendship.with.friend=

b.friendship.with.friend)

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

ρwhatUlike.interests:i

whatUlike.interests

3 1 1 1 1 2

Table 6.4 – Hybrid queries for experiments

CHAPTER 6 — Implementation and validation 117

The following commands generate the control-flow and data-flow search spaces.

1. java -jar hyqoztb.jar -derive -hqsignature HQ_S -outputfile DER_OFILE

2. java -jar hyqoztb.jar -generate -inputfile DER_OFILE -outputfile CF_GEN_OFILE -controlflow

3. java -jar hyqoztb.jar -generate -inputfile DER_OFILE -outputfile DF_GEN_OFILE -dataflow

The first command derives the data transformation functions and stores them in DER_OFILE. The se-

cond and third commands take the data transformation functions in DER_OFILE and invokes QWGenerator

that produce the control-flow and data-flow search spaces respectively. The resulting search spaces are

stored in CF_GEN_OFILE and DF_GEN_OFILE respectively. The chart in Figure 6.15 shows the search space

sizes for every hybrid query.

1 2 3

5 20 723 824

10 40 1374 1446

0%

20%

40%

60%

80%

100%

HQ1 HQ2 HQ3 HQ4 HQ5 HQ6 HQ7

control-flow

dataflow

Figure 6.15 – Control-flow and data-flow search spaces

The first three hybrid queries HQ1, HQ2, HQ3; have the same data-flow and control-flow search spaces

because the data dependencies among data transformation functions limit the generation rules to apply.

The hybrid queries HQ4, HQ5, HQ6, and HQ7; have more flexible data dependencies and the control-flow

search space is ∼ 3X than the data-flow search space.

6.4.4 Comparing cost estimation formulations

HyQoZTestbed enables to estimate the query workflows’ costs using the build-time or run-time cost esti-

mations implemented by QWWeighter. The following HyQoZTestbed commands are used for requesting

the cost estimation of the query workflows in CF_GEN_OFILE generated previously in Section 6.4.3.

1. java -jar hyqoztb.jar -weight -inputfile CF_GEN_OFILE -outputfile WBT_OFILE − buildtime

2. java -jar hyqoztb.jar -weight -inputfile CF_GEN_OFILE -outputfile WRT_OFILE − runtime

HyQoZTestbed retrieves the query workflows from the input file CF_GEN_OFILE. For every query

workflow, HyQoZTestbed requests the build-time and run-time cost estimations to the QWWeighter. In

the case of the run-time cost estimation, QWWeighter uses a series of synthetic data statistics (i.e. dataset

cardinalities, attribute cardinalities, attribute sizes) for simulating a query workflow execution.

118 CHAPTER 6 — Implementation and validation

In order to compare both cost estimations, we use the precision and recall measures 2. The run-

time cost is taken as benchmark. The query workflows reported by both functions are considered true

positives (TP). The query workflows reported by the build-time function and do not reported by the run-

time function are considered false positives (FP). The query workflows reported by the run-time function

and do not reported by the build-time function are considered false negatives (FN). The precision is

therefore given by TP/(TP + FP) and the recall is given by TP/(TP + FN).

66% 66% 66% 66% 64% 64%

71% 71% 71% 71% 70% 70%

0%

100%

oo1 oo2 oo3 oo4 oo5 oo6

Precision Recall

Figure 6.16 – Precision and recall of build-time cost estimation

Table 6.16 shows the charts for each hybrid query. Each chart represents the precision and recall

found for every hybrid query with the different optimization objectives OO1,..,OO6. The charts show a

tendence of the build-time cost estimation that suggests a liberal cost approximation. This is due to

the absence of data statistics leading to find a high proportion of interesting results along with a high

proportion of non-interesting results. On the other hand, the recall measure shows that an important

fraction of the interesting results is not reported by the build-time function.

6.5 Conclusions

In this chapter we presented HyQoZ, the HYbrid Query OptimiZer. We introduced the hybrid query

processing with the optimization performed by the components of HyQoZ. The HyQoZ components

are described by REST interfaces and they exchange self-descriptive messages. The messages allow

to instantiate different coordinations for implementing the hybrid query optimization. The interfaces

and messages turn our optimization approach self-contained and enable the future work for defining

optimization objectives for the HyQoZ execution itself.

2. Precision measures the retrieved results that are relevant. It is given by the relation between true positives and the total
of retrieved results, i.e. TP/(TP + FP). Recall measures the relevant results that are retrieved. It is given by the relation
between true positives and the total of relevant results, i.e. TP/(TP + FN).

CHAPTER 6 — Implementation and validation 119

For validating our proposal, we developed the testbed HyQoZTestbed that allows to characterize the

hybrid query optimization implemented by HyQoZ components. We showed how HyQoZTestbed (1)

generates synthetic hybrid queries, (2) accesses the QWGenerator for generating the search space of

query workflows following a data-flow or control-flow, and (3) accesses the QWWeighter for estimating

either the cost at build-time or the cost at run-time by means of a simulation using synthetic data statistics.

We compared the build-time and run-time cost estimations (cf. Section 5.1) using the precision and

recall measures. Such measures give the proportion of interesting query workflows that are provided by

the build-time formulation. The precision and recall are around 70% and 60% respectively which ex-

plains the absence of data-related parameters. In order to improve the accuracy of the cost estimation

at build-time, it is necessary to incorporate data histograms adapted to the service-based environments.

Nevertheless, our build-time cost estimation evokes the classical database heuristics in the absence of an

algebra for rewriting expressions.

CHAPTER 7
Conclusions and

perspectives
7.1 Main results and contributions

The hybrid query optimization problem addressed in this work combines data requirements and SLA

contracts into the evaluation performed by query workflows. Our algorithm for generating query work-

flows aims to open the search space reflecting on the control-flow among activities. The idea behind

this generation was to get a wider search space than the one provided by data-flow oriented approaches

adopted by forerunner query optimizers. The cost estimation we proposed, allows to approximate the

query workflow cost in the absence of data-related information, e.g. cardinality, selectivity, attribute

size, stream data rate. For determining the dominance of query workflows w.r.t. the optimization objec-

tive of the SLA contract, we adopt a weighted distance metric that allows to treat with any combination

of the potential cost attributes in service-based environments. The weighted distance metric is used as

the scoring function in our top-kqw algorithm that selects the solution space with the k most pertinent

query workflows for the SLA contract.

The main results of this work are:

Control-flow based generation of query workflows. We proposed and implemented an algorithm

for generating query workflows with sequential and parallel control-flows based on generation rules.

The application of the generation rules produce well-constructed and equivalent query workflows with

different grades of parallelism. The search space of query workflows is represented by a graph whose

Hamiltonian paths lead to equivalent query workflows. This results in an NP-hard search as it traverse

all the possible paths while some of them result in query workflows that are not interesting to satisfy the

SLA contract.

Build-time cost function. We proposed a cost estimation that maps a query workflow to its cost for-

med by the attributes defined by the optimization objective of an SLA contract. Due to the absence of

data-related parameters, we relaxed the cost estimation formulation in order to have a build-time cost

estimation that evicts such an information. The build-time formulation leads to a partial order among

query workflows and produces families of query workflows that get different costs at run-time. This ap-

proximation allows to estimate which query workflows are potentially optimal at run-time. Nevertheless,

investigations are required to compute complex value data statistics that improve the cost accuracy at

build-time.

121

122 CHAPTER 7 — Conclusions and perspectives

Top-kqw algorithm for selecting the best query workflows. We proposed top-kqw , an adaptation

of a top-k algorithm to obtain the best query workflows w.r.t. the optimization objective of an SLA

contract. In order to get the score of query workflows we adopted a weighted distance metric that deals

with conflicting cost attributes by applying penalties to get them closer or farther from the optimization

objective. The optimization objective serves as a lower bound and avoids to make an exhaustive pair-wise

comparison of the search space. Further searching strategies of mathematical optimization can be applied

by leveraging on this bound. Besides, the weighted distance metric provides extensibility as it abstracts

the cost attributes as profit and loss attributes. Thus, if new profit or loss attributes are incorporated, the

top-kqw algorithm stills working. The properties hold by the weighted distance metric (i.e. monotone,

strict) allow to adapt other top-k algorithms such as No Random Access algorithms [UKl00, IBS08] that

may result interesting for improving the pipelined choreography of HyQoZ (cf. Section 6.3.3).

7.2 Perspectives

The perspectives of this thesis arise from the key points of the hybrid query optimization.

1. HyQoZ efficiency. The complexity of the exhaustive generation of the query workflows behaves

exponentially as shown in [LEVsZMC12]. Although the efficiency of the hybrid query optimiza-

tion was out of the scope of this work, our framework gives the foundations for improuving the

HyQoZ efficiency.

— Search space generation. The query workflow generation is the hardest to perform among

the optimization tasks. Our algorithm based on generation rules allows to incorporate several

enhancements: (1) the cut of redundant paths into the search space graph, (2) the adoption of

a join shape policy (e.g. left-deep, right-deep, bushy) depending on the query characteristics,

and (3) the adoption of mathematical optimization strategies for traversing the Hamiltonian

paths of the search space graph. Such enhancements have to be done regarding on the sepa-

ration of the optimization aspects in order to keep the flexibility and portability of HyQoZ.

— Parametric optimization. The optimization objective of the SLA contract defines a lower

bound. Such a lower bound along with the separation of HyQoZ concerns, enable the execu-

tion of the optimization process in a pipelined fashion (cf. Section 6.3). Thus, the definition

of parameters for adjusting the trade-off between efficiency and precision is an interesting

problem. For instance, get a good enough query workflow with a time threshold, or the glo-

bal optimal that implies more computation effort.

2. Cost model. In this thesis we have proposed a first rapprochement to the cost estimation for op-

timization purposes. In this sense, our optimization results are partially conclusive because our

cost formulation is relaxed in the absence of data-related parameters. Next we enumerate research

opportunities related to the cost model.

CHAPTER 7 — Conclusions and perspectives 123

— Concrete cost models for cost attribtues. There are many cost attributes in service-based

environments. For instance, quantitative measures of services [NLF99], network [ACH98],

energy consumption [CS12, FP13], storage [LBN07, LBZ+11], privacy, and availability;

and qualitative measures such as reliability and confidence of services, and data quality

[MSV+02]. The adoption of concrete cost models for these attributes is necessary towards

the generality of the HyQoZ cost model.

— Meaningful statistics of data and QoS measures. An interesting challenge is on the in-

dexation of complex value statistics and QoS measures. The non-intrusive monitoring, the

harvesting and selection of statistics, and the modeling of indexing structures for such an

information are requirements towards an accurate cost model.

3. Composite activities. In this thesis, the activities were abstracted as black boxes regarding-less

on the internal details such as (1) the implementation algorithm of the data transformation, and

(2) the service operations used. This leads to an inter-operator optimization. Looking at state-full

activities (e.g. activities combining data), they are service coordination themselves also modeled as

query workflows with additional workflow operators such as iterations and control state. For such

composite activities, it is necessary to investigate how to factorize or commute service invocations

(e.g. hashing service, storage service) towards a intra-operator optimization.

Besides, activities may be performed in parallel, either in independent or pipelined fashion. It de-

pends on the logical relations with activities and on the logical dependencies within composite ac-

tivities. In particular for independent parallelization, it is a challenge in the absence of knowledge

about data organization. Moreover, it is also required to study how much is benefit the paralleliza-

tion (i.e. scale-up, speed-up) regarding on the SLA contract.

4. Service selection. In this thesis we assumed static binding of an activity to a service instance.

Nevertheless, the characteristics of the service-based environments invite to consider the dynamic

binding of services. This enables the possibility to choose service instances whose QoS measures

may improve the resulting query workflow cost. This leads to an assignation problem to be in-

corporated to the hybrid query optimization problem either in the search space generation or in a

separate stage.

5. Scheduling of query workflows and adaptability. Hardware resources can participate in the

query workflow execution by hosting activities in a Platform-as-a-Service fashion. This leads to

the scheduling problem with the consideration of the costs related to the use of such resources.

In particular, queries over stream data services require long-running query workflows. As long as

a query workflow is being executed everything is subject to change (e.g. service instances, hard-

ware resources,network) and thus the query workflow cost may fluctuate. This dynamics turns the

query workflow cost a function of time and it introduces the problem of adaptability to continue

meeting the SLA contract. Such an adaptation implies either the modification of the query work-

flow, the selection of different hardware resources, or the selection of different service instances.

These problems are analogous to the site selection in peer-to-peer based query evaluation, and the

124 CHAPTER 7 — BIBLIOGRAPHY

physical-operator selection in classical query optimization. In any case, this implies to be aware of

the candidate query workflows plans for continuing satisfying SLA contracts.

6. SLA design. The design of the SLA contract [FSG+11, MSM09, Sch00] is a cognitive and nego-

tiation challenge. The provision of tools for such a purpose is an interesting problem. For instance,

what-if queries over histograms of query workflow executions can improve the SLA negotiations

during the design. Besides, the derivation of the optimization objective from the SLA contract is an

open problem. It is an instance of the lower-bound computation in minimization problems. Such

derivation should consider a multi-query environment and the contention of service instances and

network.

7. Implementation of an extensible hybrid query processor with HyQoZ. The implementation of

an extensible hybrid query processor with HyQoZ should consider the possibilities to (1) include

the participation of several service instances, (2) modify the optimization strategy regarding on

the hybrid query signature and SLA characteristics, (3) adapt the query workflow execution as

the service-based environment changes, and (4) incorporate QoS expectations of the hybrid query

processing itself.

Looking further, the HyQoZ principle to combine the provision of data, and computing capabilities with

the satisfaction of SLA contracts; can be applied beyond the hybrid query processing.

8. Keyword-based data services. The access of structured data requires technical knowledge on

data-structures and query languages that makes difficult the democratization of such data. Keyword-

based data services may facilitate the access to structured data. It is an interesting to investigate

the problem of automatic construction of query plans for accessing structured data by means of

keyword search services. The access must to be organized and measured towards the efficiency of

query plans regarding on SLA contracts.

9. HyQoZ approach for other data-centric applications. The inclusion of the SLA notion as a

combination of as many cost attributes as users require, along with our extensible optimization

strategy, allows to apply our approach to other data-centric applications. It is the case of BigData

where processing units are user-defined functions following parallel programming paradigms such

as MapReduce[DG08], PACT[AEH11], or SCOPE [Jin10]. Scientific workflows is also an appli-

cation area where our ideas may be applied with a quality of data perspective. In any case, our

control-flow approach for generating execution plans can be applied to meet QoS requirements.

10. Infrastructure for a collaborative and pervasive computing community. The use of nowadays

computing resources induces costs and QoS considerations. An alternative is to adopt the available

cloud-based infrastructures assuming the economical costs and the technology adoption. Another

alternative is to exploit the huge computing power available on users’ computing devices. We

believe that the massive collection of computing devices can be put together in a collaborative

and pervasive computing community that exchange computing goods. With such a perspective, the

users can participate through their home and mobile devices for exchanging goods into open data

markets, query markets, computing markets, and storage markets.

Bibliography

[AAB+09] Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer, Michael J.

Carey, Surajit Chaudhuri, AnHai Doan, Daniela Florescu, Michael J. Franklin, Hector

Garcia-Molina, Johannes Gehrke, Le Gruenwald, Laura M. Haas, Alon Y. Halevy, Jo-

seph M. Hellerstein, Yannis E. Ioannidis, Henry F. Korth, Donald Kossmann, Samuel

Madden, Roger Magoulas, Beng Chin Ooi, Tim O’Reilly, Raghu Ramakrishnan, Su-

nita Sarawagi, Michael Stonebraker, Alexander S. Szalay, and Gerhard Weikum. The

Claremont report on database research. Communications of the ACM, 52(6):56–65, Sep-

tember 2009.

[ACH98] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A survey of QoS archi-

tectures. Multimedia Systems, 6(3):138–151, May 1998.

[ACK+11] Anastasia Ailamaki, Michael J. Carey, Donald Kossman, Steve Loughran, and Volker

Markl. Information Management in the Cloud (Dagstuhl Seminar 11321). Dagstuhl

Reports, 1(8):1–28, 2011.

[ACP96] S. Adali, KS Candan, and Y. Papakonstantinou. Query caching and optimization in

distributed mediator systems. ACM SIGMOD, pages 137–146, 1996.

[AEH11] Alexander Alexandrov, Stephan Ewen, and Max Heimel. MapReduce and PACT - Com-

paring Data Parallel Programming Models. In Holger Schwarz Theo H"arder, Wolfgang

Lehner, Bernhard Mitschang, Harald Sch"oning, editor, BTW, pages 25–44, Kaiserslau-

tern, Germany, 2011. LNI.

[AH00] R. Avnur and J.M. Hellerstein. Eddies: Continuously adaptive query processing. ACM

SIGMOD Record, 29(2):261–272, 2000.

[AK98] Jos’e Luis Ambite and Craig A. Knoblock. Flexible and Scalable Query Planning in

Distributed and Heterogeneous Environments. In Proceedings of the Fourth Internatio-

nal Conference on Artificial Intelligence Planning Systems, pages 3–10, 1998.

[AKHLS13] Samer Al-Kiswany, Hakan Hacbackslashigbackslash"umbackslash"ubackslashcs,

Ziyang Liu, and Jagan Sankaranarayanan. Cost Exploration of Data Sharings in the

Cloud. In Proceedings of the 16th International Conference on Extending Database

Technology, pages 601—-612, Genoa, Italy, 2013. ACM New York, NY, USA.

[BAC+90] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,

M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system. IEEE

Transactions on Knowledge and Data Engineering, 2(1):4–24, March 1990.

[Bat86] Don S. Batory. Extensible Cost Models and Query Optimization in GENESIS. IEEE

Database Eng. Bull., 9(4):30–36, 1986.

125

126 BIBLIOGRAPHY

[Bat87] D Batory. Principles of Database Management System Extensibility. IEEE Database

Engineering Bull., 10(2):40–46, 1987.

[BCCR08] Daniele Braga, A Campi, S Ceri, and A Raffio. Joining the results of heterogeneous

search engines. Information Systems, 33(7-8):658—-680, 2008.

[BCD08] Daniele Braga, S Ceri, and F Daniel. Optimization of multi-domain queries on the web.

VLDB, 2008.

[BCV08] Christophe Bobineau, Christine Collet, and Tuyet-Trinh Vu. A strategy to develop adap-

tive and interactive query brokers. In Proceedings of the 2008 International Symposium

on Database Engineering and Applications, pages 237—-247, New York, New York,

USA, 2008. ACM New York, NY, USA.

[BE77] M. W. Blasgen and K. P. Eswaran. Storage and Access in Relational Data Bases. IBM

Systems Journal, 16(4):363—-377, 1977.

[BEE+13] Jean Bacon, David Evans, David M. Eyers, Matteo Migliavacca, Peter Pietzuch, and

Brian Shand. Enforcing End-to-End Application Security in the Cloud (Big Ideas Paper

). In Proceedings of the ACM/IFIP/USENIX 11th International Conference on Middle-

ware, pages 293–312, Bangalore, India, 2013. Springer-Verlag, Berlin, Heidelberg.

[BGLJ10] Nicolas Bruno, C’esar A. Galindo-Legaria, and Milind Joshi. Polynomial Heuristics for

Query Optimization. In ICDE, pages 589–600, 2010.

[BHS11] Magdalena Balazinska, Bill Howe, and Dan Suciu. Data Markets in the Cloud: An

Opportunity for the Database Community. VLDB, 4(12):1482–1485, 2011.

[BKK+01] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, S. Kreutz, A. and Seltzsam, and

K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet. The VLDB

Journal, 10(1):48–71, 2001.

[BN08] Jens Bleiholder and Felix Naumann. Data fusion. ACM Computing Surveys, 41(1):1–41,

December 2008.

[BND+04] B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware

middleware for Web services composition. IEEE Transactions on Software Engineering,

30(5):311–327, May 2004.

[BS05] Christos Bouras and Afrodite Sevasti. Service level agreements for DiffServ-based ser-

vices’ provisioning. Journal of Network and Computer Applications, 28(4):285–302,

November 2005.

[BT08] E. B"orger and Bernhard Thalheim. Modeling workflows, interaction patterns, web

services and business processes: The asm-based approach. In Abstract State Machines,

B and Z, pages 24–38. Springer-Verlag, Berlin, Heidelberg, 2008.

[Car04] J Cardoso. Quality of service for workflows and web service processes. Web Semantics:

Science, Services and Agents on the World Wide Web, 1(3):281–308, April 2004.

BIBLIOGRAPHY 127

[CBB+04] Christine Collet, Khalid Belhajjame, Gilles Bernot, Christophe Bobineau, Gennaro

Bruno, Beatrice Finance, Fabrice Jouanot, Zoubida Kedad, David Laurent, Fariza Tahi,

and Others. Towards a mediation system framework for transparent access to largely

distributed sources. Semantics of a Networked World, pages 65–78, 2004.

[CCDS04] Fabio Casati, Malu Castellanos, Umesh Dayal, and Ming-Chien Shan. Probabilistic,

context-sensitive, and goal-oriented service selection. In ICSOC ’04: Proceedings of

the 2nd international conference on Service oriented computing, pages 316–321, New

York, NY, USA, 2004. ACM.

[CD96] Kwok Chung T. and Weld Daniel S. Planning to gather information. PROCEEDINGS

OF THE NATIONAL ldots, 1996.

[CGMH+94] S. Chawathe, Hector Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-

man, and Jennifer Widom. The TSIMMIS project: Integration of heterogenous infor-

mation sources. In Proceedings of IPSJ Conference, pages 7—-18, Tokyo, Japan, 1994.

[CHS+95] M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R. Fagin, M. Flickner, A.W.

Luniewski, W. Niblack, D. Petkovic, and Others. Towards heterogeneous multimedia

information systems: The Garlic approach. In Research Issues in Data Engineering,

1995: Distributed Object Management, Proceedings. RIDE-DOM’95. Fifth Internatio-

nal Workshop on, volume 95, pages 124–131. IEEE, 1995.

[CM77] AK Chandra and PM Merlin. Optimal implementation of conjunctive queries in relatio-

nal data bases. In Proceedings of the ninth annual ACM ldots, pages 77–90, Boulder,

Colorado, USA, 1977. ACM Press.

[CM08] Andrea Cal‘i and Davide Martinenghi. Querying Data under Access Limitations. In

ICDE, volume 1, pages 50–59, 2008.

[CM09] Byung-Gon Chun and Petros Maniatis. Augmented Smartphone Applications Through

Clone Cloud Execution. In Proceedings of the 12th Conference on Hot Topics in Ope-

rating Systems, pages 8–13, Monte Verita, Switzerland, 2009. USENIX Association,

Berkeley, CA, USA.

[Col12] Maria Colgan. Understanding Optimizer Statistics, 2012.

[CS93] Surajit Chaudhuri and K Shim. Query optimization in the presence of foreign functions.

In Proceedings of the 19th International Conference on Very Large Data Bases, pages

529—-542. Morgan Kaufmann Publishers Inc., 1993.

[CS95] Surajit Chaudhuri and K. Shim. An overview of cost-based optimization of queries with

aggregates. Data Engineering Bulletin, 18(3):3–9, 1995.

[CS96] Surajit Chaudhuri and Kyuseok Shim. Optimization of Queries with User-defined Pre-

dicates. In Proceedings of the 22th International Conference on Very Large Data Bases,

pages 87—-98, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

128 BIBLIOGRAPHY

[CS12] Cinzia Cappiello and Fabio A. Schreiber. Experiments and analysis of quality and

Energy-aware data aggregation approaches in WSNs. In 10th International Workshop

on Quality in Databases QDB, pages 1–8, Istanbul, Turkey, 2012.

[CV11] Victor Cuevas-Vicenttin. Evaluation of Hybrid Queries Based on Service Coordination.

Thèse de Doctorat, Grenoble Institute of Technology, 2011.

[CVVSC12] Victor Cuevas-Vicenttin, Genoveva Vargas-Solar, and Christine Collet. Evaluating

Hybrid Queries through Service Coordination in HYPATIA. In EDBT, pages 602–605,

2012.

[CvVSCB09] Victor Cuevas-vicenttin, Genoveva Vargas-Solar, Christine Collet, and Paolo Bucciol.

Efficiently Coordinating Services for Querying Data in Dynamic Environments. In Pro-

ceedings of the 10th Mexican International Conference on Computer Science (ENC’09),

Mexico City, Mexico, 2009. IEEE Computer Society.

[CYW96] Ming-syan Chen, Philip S. Yu, and Kun-lung Wu. Optimization Of Parallel Execu-

tion For Multi-Join Queries. IEEE Transactions on Knowledge and Data Engineering,

8(3):416—-428, June 1996.

[DG92] D. DeWitt and Jim Gray. Parallel database systems: The future of high performance

database processing. Communications of the ACM, 36(6):1–26, 1992.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Data Processing on Large

Clusters. Communications of the ACM, 51(1):1–13, 2008.

[DGS+90] D.J. DeWitt, S. Ghandeharizadeh, D.a. Schneider, a. Bricker, H.-I. Hsiao, and R. Ras-

mussen. The Gamma database machine project. IEEE Transactions on Knowledge and

Data Engineering, 2(1):44–62, March 1990.

[DL97] OM Duschka and AY Levy. Recursive plans for information gathering. In Proceedings

of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan,

1997.

[DLP03] Asit Dan, Heiko Ludwig, and Giovanni Pacifici. Web service differentiation with service

level agreements. Rapport technique, IBM Software group, May 2003.

[DSL+08] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The

cost of doing science on the cloud: The Montage example. 2008 SC - International

Conference for High Performance Computing, Networking, Storage and Analysis, pages

1–12, November 2008.

[DT07] David DeHaan and Frank Wm. Tompa. Optimal Top-Down Join Enumeration. In Pro-

ceedings of the 2007 ACM SIGMOD ldots, pages 785—-796, Beijing, China, 2007.

ACM.

[Ewe12] Stephan Ewen. Spinning Fast Iterative Data Flows. VLDB, 5(11):1268–1279, 2012.

[Fag99] Ronald Fagin. Combining fuzzy information from multiple systems. ldots SIGART

symposium on Principles of database systems, 58(1):83–99, February 1999.

BIBLIOGRAPHY 129

[FDBP01] Marie-Christine Fauvet, Marlon Dumas, Boualem Benatallah, and Hye-Young Paik.

Peer-to-peer Traced Execution of Composite Services. In Fabio Casati, Dimitrios Geor-

gakopoulos, and Ming-Chien Shan, editors, Second International Workshop on Techno-

logies for E-Services (TES ’01), pages 103–117, London, UK, 2001. Springer-Verlag.

[Feg98] L Fegaras. A New Heuristic for Optimizing Large Queries. In In 9th International

Conference, DEXA’98, pages 726—-735. Springer-Verlag, 1998.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. Thèse de Doctorat, University of California, Irvine, 2000.

[FJK96] MJ Franklin, BT J’onsson, and Donald Kossmann. Performance Tradeoffs for Client-

Server Query Processing onsson. ACM SIGMOD Record, pages 1–12, 1996.

[FK09] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of database

systems. ACM SIGMOD Record, 38(1):43, June 2009.

[FLMS99] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query Optimization in

the Presence of Limited Access Patterns. In SIGMOD’99: Proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data, pages 311–322, 1999.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for

middleware. Journal of Computer and System Sciences, 66(4):614–656, June 2003.

[FP13] AM Ferreira and Barbara Pernici. Using Intelligent Agents to Discover Energy Saving

Opportunities within Data Centers. In Second International Workshop on Requirements

Engineering for Sustainable Systems, pages 1–8, 2013.

[FSG+11] Ganna Frankovaa, Magali S’eguranb, Florian Gilcherb, Slim Trabelsib, J"org

D"orflingerc, and Marco Aiellod. Deriving business processes with service level agree-

ments from early requirements. Journal of Systems and Software, 84(8):1351–1363,

2011.

[GD87] Goetz Graefe and David J. DeWitt. The EXODUS optimizer generator. ACM SIGMOD

Record, 16(3):160–172, December 1987.

[GDQ92] Shahram Ghandeharizadeh, David J. DeWitt, and Waheed Qureshi. A performance ana-

lysis of alternative multi-attribute declustering strategies. In ACM SIGMOD Record,

pages 29–38. ACM Press, 1992.

[GG03] Sudipto Guha and D Gunopoulos. Efficient Approximation of Optimization Queries

Under Parametric Aggregation Constraints. In Proceedings of the 29th International

Conference on Very Large Data Bases - Volume 29, pages 778–789, Berlin, Germany,

2003. VLDB Endowment.

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for parallel

execution. In Michael Stonebraker, editor, 1992 ACM SIGMOD international confe-

rence on Management of data (SIGMOD ’92), pages 9–18, New York, NY, USA, 1992.

ACM.

130 BIBLIOGRAPHY

[GI96] Minos N. Garofalakis and Yannis E. Ioannidis. Multi-dimensional resource scheduling

for parallel queries. ACM SIGMOD Record, pages 365–376, 1996.

[GI97] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel Query Scheduling and Optimi-

zation with Time- and Space-Shared Resources. VLDB ’97, pages 296–305, 1997.

[GLR97] Cesar Galindo-Legaria and Arnon Rosenthal. Outerjoin Simplification and Reordering

for Query Optimization. ACM Transactions on Database Systems, 22(1):43–74, 1997.

[GM93] G. Graefe and W.J. McKenna. The Volcano optimizer generator: Extensibility and effi-

cient search. In Data Engineering, 1993. Proceedings. Ninth International Conference

on, pages 209–218. IEEE, 1993.

[GMUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems –

The complete book. Prentice Hall Press, second edi edition, 2002.

[GNnM+96] Manuel Barrena Garcia, Juan Hern’andez Nu nez, Juan Miguel Martinez, Antonio Polo

Marquez, Pedro de Miguel, and Manuel M. Nieto Rodriguez. Multi-dimensional De-

clustering Methods for Parallel Database Systems. In Yves Bouge, Luc and Fraigniaud,

Pierre and Mignotte, Anne and Robert, editor, Euro-Par, pages 866–871. Springer-

Verlag, 1996.

[Gou09] Anastasios Gounaris. A Vision for Next Generation Query Processors and an Associated

Research Agenda. In Proceedings of the 2Nd International Conference on Data Mana-

gement in Grid and Peer-to-Peer Systems, pages 1–11, Linz, Austria, 1009. Springer-

Verlag, Berlin, Heidelberg.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Sur-

veys (CSUR), 25(2), 1993.

[Gra95] Goetz Graefe. The Cascades framework for query optimization. Data Engineering

Bulletin, 18(3):19–29, 1995.

[GSDB11] Ravindra Guravannavar, S. Sudarshan, Ajit a. Diwan, and Ch. Sobhan Babu. Which sort

orders are interesting ? The VLDB Journal, 21(1):145–165, June 2011.

[GST83] Nathan Goodman, Oded Shmueli, and Y. C. Tay. GYO reductions, canonical connec-

tions, tree and cyclic schemas and tree projections. In Proceedings of the 2Nd ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 267—-278,

Atlanta, Georgia, March 1983. ACM Press.

[GW00] Roy Goldman and Jennifer Widom. WSQ/DSQ: A Practical Approach for Combined

Querying of Databases and the Web. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 285–296, 2000.

[Had09] Marc Hadley. Web Application Description Language, 2009.

[HCL+90] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis, B. Lindsay,

H. Pirahesh, M. J. Carey, and E. Shekita. Starburst Mid-Flight: As the Dust Clears. IEEE

Trans. on Knowl. and Data Eng., 2(1):143—-160, 1990.

BIBLIOGRAPHY 131

[Hel94] Joseph M. Hellerstein. Practical predicate placement. ACM SIGMOD Record,

23(2):325–335, 1994.

[HFC+00] JM Hellerstein, MJ Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Mad-

den, V. Raman, and M.A. Shah. Adaptive query processing: Technology in evolution.

Bulletin of the Technical Committee on, page 7, 2000.

[HFLP89] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query proce-

ssing in starburst. Proceedings of the 1989 ACM SIGMOD international conference on

Management of data - SIGMOD ’89, pages 377–388, 1989.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing

queries across diverse data sources. VLDB ’97: Proceedings of the 23rd International

Conference on Very Large Data Bases, pages 276–285, 1997.

[HSMR09] Stavros Harizopoulos, Mehul A. Shah, Justin Meza, and Parthasarathy Ranganathan.

Energy Efficiency : The New Holy Grail of Data Management Systems Research. In In

Proceedongs of the Fourth Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA, 2009. www.cidrdb.org.

[HSS+11] Martin Hirzel, Robert Soul’e, Scott Schneider, Bugra Gedik, Robert Grimm, and York-

town Heights. A Catalog of Stream Processing Optimizations. Rapport technique, IBM

Research, 2011.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed a. Soliman. A survey of top- k

query processing techniques in relational database systems. ACM Computing Surveys,

40(4):1–58, October 2008.

[IK84] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for computing N-

relational joins. ACM Transactions on Database Systems, 9(3):482–502, August 1984.

[IK90] Y. E. Ioannidis and Younkyung Kang. Randomized algorithms for optimizing large join

queries. ACM SIGMOD Record, 19(2):312–321, May 1990.

[IK91] Yannis E. Ioannidis and Younkyung Cha Kang. Left-deep vs. bushy trees: an analysis

of strategy spaces and its implications for query optimization. ACM SIGMOD Record,

20(2):168–177, 1991.

[IW87] Yannis E. Ioannidis and Eugene Wong. Query Optimization by Simulated Annealing.

SIGMOD Record, 16(3):9—-22, 1987.

[JE07] Diane Jordan and John Evdemon. Web Services Business Process Execution Language

Version 2 . 0. Rapport technique April, OASIS, 2007.

[Jin10] Ronnie Chaiken Jingren Zhou, Per-Ake Larson. Incorporating partitioning and parallel

plans into the SCOPE optimizer. In ICDE, pages 1060–1071, Long Beach, CA, USA,

2010. Ieee.

132 BIBLIOGRAPHY

[Jin12] Darren Shakib Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie

Chaiken. SCOPE: parallel databases meet MapReduce. VLDB, 21(5):611–636, June

2012.

[JMG05] Michael C. Jaeger, Gero Mbackslash"uhl, and Sebastian Golze. QoS-aware composi-

tion of web services: An evaluation of selection algorithms. In On the Move to Mea-

ningful Internet Systems, pages 646–661, Berlin, Heidelberg, 2005. Springer-Verlag.

[JRGM04] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Muhl. QoS Aggregation in Web

Service Compositions. In EDOC ’04 Proceedings of the Enterprise Distributed Object

Computing Conference, pages 149 – 159. IEEE Computer Society Washington, DC,

USA, 2004.

[KA01] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2001.

[KB12] Mayuresh Kunjir and PK Birwa. Peak Power Plays in Database Engines. In EDBT,

2012.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of Nonrecursive

Queries. In Proceedings of the 12th International Conference on Very Large Data Bases,

pages 128–137. Morgan Kaufmann Publishers Inc., 1986.

[KCC+11] Sudarshan Kadambi, Jianjun Chen, Brian F. Cooper, David Lomax, Raghu Ramakrish-

nan, Adam Silberstein, Erwin Tam, and Hector Garcia-Molina. Where in the world is

my data ? VLDB, 4(11):1040–1050, 2011.

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency

Rationing in the Cloud: Pay only when it matters. Proceedings of the VLDB Endowment,

2(1):253—-264, 2009.

[KIT10] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data provenance.

In Proceedings of the 2010 international conference on Management of data - SIGMOD

’10, pages 951—-962, Indianapolis, Indiana, USA, 2010. ACM Press.

[Kon11] Andreas Konstantinidis. Multi-objective query optimization in smartphone social net-

works. In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data

Management, pages 27–32. IEEE Computer Society Washington, DC, USA, 2011.

[Kos00] Donald Kossmann. The state of the art in distributed query processing. ACM Computing

Surveys (CSUR), 32(4):422–469, December 2000.

[KP09] Yannis Katsis and Yannis Papakonstantinou. View-based Data Integration. In Encyclo-

pedia of Database Systems, pages 3332–3339. Springer US, 2009.

[KP13] Georgios Kellaris and Stavros Papadopoulos. Practical Differential Privacy via Grou-

ping and Smoothing. Proceedings of the VLDB Endowment, 6(5):301—-312, 2013.

BIBLIOGRAPHY 133

[KS00] Donald Kossmann and Konrad Stocker. Iterative Dynamic Programming: A New Class

of Query Optimization Algorithms. ACM Transactions on Database Systems (ldots,

25(1):43—-82, 2000.

[KSTI11] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis. Schedule

optimization for data processing flows on the cloud. In Proceedings of the 2011 inter-

national conference on Management of data - SIGMOD ’11, pages 289–300, Athens,

Greece, 2011. ACM New York, NY, USA.

[KTG06] V. Santhosh Kumar, M. J. Thazhuthaveetil, and R. Govindarajan. Exploiting Program-

mable Network Interfaces for Parallel Query Execution in Workstation Clusters. In Pro-

ceedings of the 20th International Conference on Parallel and Distributed Processing,

Rhodes Island, Greece, 2006. IEEE Computer Society Washington, DC, USA.

[KTV97] Olga Kapitskaia, Anthony Tomasic, and Patrick Valduriez. Dealing with Discrepancies

in Wrapper Functionality. In Jean Ferri’e, editor, Base de Donn’ees Avanc’ees, 1997.

[KUB+12] Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and Dan

Suciu. Query-based data pricing. In Proceedings of the 31st Symposium on Principles

of Database Systems, pages 167—-178, Scottsdale, Arizona, USA, 2012. ACM New

York, NY, USA.

[KUB+13] Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and Dan

Suciu. Toward practical query pricing with QueryMarket. In Proceedings of the 2013

international conference on Management of data - SIGMOD ’13, page 613, New York,

New York, USA, 2013. ACM Press.

[LBN07] Kien Le, Ricardo Bianchini, and Thu D. Nguyen. A cost-effective distributed file ser-

vice with QoS guarantees. In ACM/IFIP/USENIX 2007 International Conference on

Middleware, pages 223–243, New York, New York, USA, 2007. Springer-Verlag New

York, Inc.

[LBZ+11] Kien Le, Ricardo Bianchini, Jingru Zhang, Yogesh Jaluria, Jiandong Meng, and Thu D.

Nguyen. Reducing electricity cost through virtual machine placement in high perfor-

mance computing clouds. In International Conference for High Performance Compu-

ting, Networking, Storage and Analysis, pages 223–243, New York, New York, USA,

2011. ACM Press.

[LC00] Chen Li and E Chang. Query Planning with Limited Source Capabilities. In Data

Engineering, 2000. Proceedings. 16th ldots, pages 401–426. IEEE Computer Society,

2000.

[LC01a] Chen Li and Edward Chang. Answering queries with useful bindings. ACM Transac-

tions on Database Systems, 26(3):313–343, September 2001.

[LC01b] Chen Li and Edward Y. Chang. On answering queries in the presence of limited access

patterns. In Jan Van den Bussche and Victor Vianu, editors, Proceedigs of the Interna-

tional Conference on Database Theory, pages 219–233. Springer, 2001.

134 BIBLIOGRAPHY

[LEVsZMC12] Carlos Manuel L’opez-Enr’iquez, Genoveva Vargas-solar, Jos’e-Luis Zechinelli-

Martini, and Christine Collet. Hybrid query plan generation. In LANMR 2012, pages

117–128, Mexico City, Mexico, 2012.

[Ley01] Frank Leymann. Web services flow language (wsfl 1.0). Rapport technique May, IBM

Software Group, 2001.

[Li03] Chen Li. Computing Complete Answers to Queries in the Presence of Limited Access

Patterns. The VLDB Journal, 12(3):211—-227, 2003.

[LNZ04] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS computation and policing in dyna-

mic web service selection. Alternate track papers & posters of the 13th international

conference on World Wide Web - WWW Alt. ’04, page 66, 2004.

[LP09] Willis Lang and Jignesh M. Patel. Towards Eco-friendly Database Management Sys-

tems. In In Proceedongs of the Fourth Biennial Conference on Innovative Data Systems

Research. www.cidrdb.org, 2009.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Heterogeneous Infor-

mation Sources Using Source Descriptions. In Proceedings of the 22th International

Conference on Very Large Data Bases, pages 251—-262. Morgan Kaufmann Publishers

Inc., 1996.

[LSW+12] Zhipiao Liu, Qibo Sun, Shangguang Wang, Hua Zou, and Fangchun Yang. Profit-driven

Cloud Service Request Scheduling Under SLA Constraints. Journal Parallel Distribu-

ted Computing, 72(4):591–602, 2012.

[Mad96] O. Madani. Efficient information gathering on the Internet. In Proceedings of the 37th

Annual Symposium on Foundations of Computer Science, pages 234—-. IEEE Computer

Society Washington, DC, USA, October 1996.

[Mah10] Sunita Mahajan. A Survey of Issues of Query Optimization in Parallel Databases. In

International Conference & Workshop on Emerging Trends in Technology, pages 32–37,

2010.

[MBHT96] William J. McKenna, Louis Burger, Chi Hoang, and Melissa Truong. EROC: A Toolkit

for Building NEATO Optimizers. In T. M. Vijayaraman And, Alejandro P. Buchmann,

C. Mohan And, and Nandlal L. Sarda, editors, Proceeding VLDB ’96 Proceedings of

the 22th International Conference on Very Large Data Bases, pages 111–121, Mumbai

(Bombay), India, 1996. Morgan Kaufmann.

[ME92] Priti Mishra and Margaret H. Eich. Join Processing in Relational Databases. ACM

Computing Surveys, 24(1):63—-113, 1992.

[Men02] Daniel A. Menascbackslash’e. QoS issues in Web services. IEEE Internet Computing,

6(6):72–75, November 2002.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance

evaluation for local queries. In Proceedings of the 1986 ACM SIGMOD international

BIBLIOGRAPHY 135

conference on Management of data - SIGMOD ’86, pages 84—-95, Washington, D.C.,

USA, 1986. ACM New York, NY, USA.

[ML88] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance

evaluation for distributed queries. In Wesley W. Chu, Georges Gardarin, Setsuo Ohsuga,

and Yahiko Kambayashi, editors, Readings in database systems, pages 149–159, San

Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[MN06] Guido Moerkotte and Thomas Neumann. Analysis of two existing and one new dynamic

programming algorithm for the generation of optimal bushy join trees without cross

products. In Proceedings of the 32Nd International Conference on Very Large Data

Bases, pages 930—-941, Seoul, Korea, 2006. VLDB Endowment.

[MN08] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back. In Pro-

ceedings of the 2008 ACM SIGMOD International Conference on Management of Data,

pages 539–552, New York, New York, USA, 2008. ACM Press.

[Mor64] William Thomas Morris. The Analysis of Management Decisions. R.D. Irwin, 1964.

[MSM09] FT Marques, JP Sauv’e, and JAB Moura. SLA design and service provisioning for

outsourced services. Journal of Network and Systems ldots, 17(1-2):73–90, 2009.

[MSV+02] Massimo Mecella, Monica Scannapieco, Antonino Virgillito, Roberto Baldoni, Tiziana

Catarci, and Carlo Batini. Managing data quality in cooperative information systems.

On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, pages

486–502, 2002.

[Nas04] Bertram Nash, Alan and Lud"ascher. Processing first-order queries under limited access

patterns. In Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems, pages 307 —- 318, Paris, France, 2004. ACM

Press.

[NK01] Zaiqing Nie and Subbarao Kambhampati. Joint optimization of cost and coverage of

query plans in data integration. In Proceedings of the Tenth International Conference

on Information and Knowledge Management, volume 2001, pages 223—-230, Atlanta,

Georgia, USA, 2001. ACM New York, NY, USA.

[NL04] Alan Nash and Bertram Lud"ascher. Processing Unions of Conjunctive Queries with

Negation under Limited Access Patterns. In Advances in Database Technology - EDBT

2004, pages 422–440. Springer Berlin Heidelberg, 2004.

[NLF99] Felix Naumann, U. Leser, and J.C. Freytag. Quality-driven integration of heterogeneous

information systems. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON VERY LARGE DATA BASES, pages 447–458. Citeseer, 1999.

[NSS86] Surendra Nahar, Sartaj Sahni, and Eugene Shragowitz. Simulated Annealing and Com-

binatorial Optimization. In Proceedings of the 23rd ACM/IEEE Design Automation

Conference, pages 293—-299, Las Vegas, Nevada, USA, 1986. IEEE Press.

136 BIBLIOGRAPHY

[OEtH02] Justin O’Sullivan, David Edmond, and Arthur ter Hofstede. What’s in a Service ? To-

wards Accurate Description of Non-Functional. DISTRIBUTED AND PARALLEL DA-

TABASES, 12:117–133, 2002.

[OL90] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enumeration in

query optimization. In VLDB ’90 Proceedings of the 16th International Conference on

Very Large, pages 314–325. Morgan Kaufmann Publishers Inc., 1990.

[PGLK97] A Pellenkoft, CA Galindo-Legaria, and Martin Kersten. The complexity of

transformation-based join enumeration. VLDB, pages 306–315, 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across hetero-

geneous information sources. In Proceedings of the Eleventh International Conference

on Data Engineering, pages 251–260. IEEE Computer Society Washington, DC, USA,

1995.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based query

rewrite optimization in Starburst. In Michael Stonebraker, editor, 1992 ACM SIGMOD

international conference on Management of data (SIGMOD ’92), pages 39–48, New

York, NY, USA, 1992. ACM, New York, NY, USA.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and op-

timal access of Web sources. In Proceedings of the 41st Annual Symposium on Foun-

dations of Computer Science, pages 86—-. IEEE Computer Society Washington, DC,

USA, November 2000.

[PY01] C.H. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In Pro-

ceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 52–59. ACM, 2001.

[QRLCV11] Jorge-Arnulfo Quian’e-Ruiz, Philippe Lamarre, Sylvie Cazalens, and Patrick Valduriez.

Scaling Up Query Allocation in the Presence of Autonomous Participants. In Procee-

dings of the 16th International Conference on Database Systems for Advanced Appli-

cations: Part II, pages 210—-224, Hong Kong, China, 2011. Springer-Verlag, Berlin,

Heidelberg.

[RGL90] Arnon Rosenthal and Cesar Galindo-Legaria. Query graphs, implementing trees, and

freely-reorderable outerjoins. ACM SIGMOD Record, 19(2):291–299, May 1990.

[RH86] A. Rosenthal and P. Helman. Understanding and Extending Transformation-Based Op-

timizers. Database eeri, 9(4):44, 1986.

[RLL+01] Jun Rao, Bruce G. Lindsay, Guy M. Lohman, Hamid Pirahesh, and David E. Simmen.

Using EELs, a Practical Approach to Outerjoin and Antijoin Reordering. In Dimitrios

Georgakopoulos and Alexander Buchmann, editors, Proceedings of the 17th Interna-

tional Conference on Data Engineering, pages 585–594, Heidelberg, Germany, 2001.

IEEE Computer Society Washington, DC, USA.

BIBLIOGRAPHY 137

[ROH99] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas. Cost Models DO Matter: Providing

Cost Information for Diverse Data Sources in a Federated System. In Proceedings of

the 25th International Conference on Very Large Data Bases, pages 599—-610. Morgan

Kaufmann Publishers Inc., 1999.

[RR82] Arnon Rosenthal and David Reiner. An architecture for query optimization. In Procee-

dings of the 1982 ACM SIGMOD ldots, pages 246–255, Orlando, Florida, 1982. ACM.

[RS97] Mary Tork Roth and Peter M. Schwarz. Don’t Scrap It, Wrap It ! A Wrapper Architec-

ture for Legacy Data Sources. In Proceedings of the 23rd International Conference on

Very Large Data Bases, pages 266—-275. Morgan Kaufmann Publishers Inc., 1997.

[RSU95] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using templates with

binding patterns. In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 105–112. ACM, 1995.

[RU93] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive Da-

tabase. Journal of Logic Programming, 23:125—-149, 1993.

[SA80] Patricia G. Selinger and Michel E. Adiba. Access Path Selection in Distributed Database

Management Systems. In Deen and Hammersly, editor, Proceedings of the International

Conference on Data Bases, pages 204–215, 1980.

[SAB+95] V.S. Subrahmanian, Sibel Adali, Anne Brink, J.ames J. Lu, Adil Rajput, Timothy J.

Rogers, and Charles Ward Robert Ross. HERMES: A Heterogeneous Reasoning and

Mediator System, 1995.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access

path selection in a relational database management system. In 1979 ACM SIGMOD

international Conference on Management of Data, pages 23–34, Boston, Massachusetts,

1979. ACM.

[SAL96] Michael Stonebraker, PM Aoki, and Witold Litwin. Mariposa: a wide-area distributed

database system. on Very Large Data, 5(1):48–63, January 1996.

[Sch00] Holger Schmidt. Service Contracts Based on Workflow Modeling. In IFIP/IEEE In-

ternational Workshop on Distributed Systems: Operations and Management: Services

Management in Intelligent Networks, pages 132 – 144. Springer-Verlag London, 2000.

[SD89] Donovan a. Schneider and David J. DeWitt. A performance evaluation of four paral-

lel join algorithms in a shared-nothing multiprocessor environment. ACM SIGMOD

Record, 18(2):110–121, June 1989.

[SJ98] Fro lund Svend and Koistinen Jari. Quality-of-service specification in distributed object

systems. In COOTS, 1998.

[SLE04] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise service level

agreements. In International Conference on Software Engineering, pages 179–188, Wa-

shington, DC, USA, 2004. IEEE Computer Society.

138 BIBLIOGRAPHY

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and randomized

optimization for the join ordering problem. The VLDB Journal, 6(3):191–208, 1997.

[SMWM06] Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Query

optimization over web services. VLDB ’06, Proceedings of the 32nd International

Conference on Very Large Data Bases, 2006.

[SR07] Manivasakan Sabesan and Tore Risch. Web Service Mediation Through Multi-level

Views. In International Workshop on Web Information Systems Modeling, pages 755–

766, 2007.

[SR09] Manivasakan Sabesan and Tore Risch. Adaptive Parallelization of Queries over De-

pendent Web Service Calls. In ICDE, pages 1725–1732. Ieee, March 2009.

[SR11] Manivasakan Sabesan and Tore Risch. Adaptive parallelization of queries calling de-

pendent data providing web services. In Divyakant Agrawal, K.Selccuk Candan, and

Wen-Syan Li, editors, New Frontiers in Information and Software as Services, chapter

Service Op, pages 132–154. Springer Berlin Heidelberg, 74 edition, 2011.

[SS94] Arun Swami and K.Bernhard Schiefer. On the estimation of join result sizes. In Matthias

Jarke, Janis Bubenko, and Keith Jeffery, editors, Advances in Database Technology -

EDBT ’94, chapter Lecture No, pages 287–300. Springer Berlin Heidelberg, 1994.

[Swa88] Anoop Swami, Arun and Gupta. Optimization of Large Join Queries. SIGMOD Record,

17(3):8—-17, 1988.

[Swa89] A. Swami. Optimization of large join queries: combining heuristics and combinatorial

techniques. ACM SIGMOD Record, 18(2):367–376, 1989.

[SY97] E.J. Shekita and H.C. Young. Iterative dynamic programming system for query optimi-

zation with bounded complexity, 1997.

[TAB+97] Anthony Tomasic, R’emy Amouroux, Philippe Bonnet, Olga Kapitskaia, Hubert

Naacke, and Louiqa Raschid. The distributed information search component (Disco)

and the World Wide Web. ACM SIGMOD Record, 26(2):546–548, June 1997.

[TD03] Feng Tian and David J DeWitt. Tuple Routing Strategies for Distributed Eddies. In

VLDB 2003, Proceedings of the 29th International Conference on Very Large Data

Bases, pages 333–344, 2003.

[TGT13] Efthymia Tsamoura, Anastasios Gounaris, and Kostas Tsichlas. Multi-objective opti-

mization of data flows in a multi-cloud environment. In Proceedings of the Second

Workshop on Data Analytics in the Cloud - DanaC ’13, pages 6–10, New York, New

York, USA, 2013. ACM Press.

[TKK+09] M Tsangaris, G Kakaletris, H Kllapi, G Papanikos, F Pentaris, P Polydoras, E Sitaridi,

V Stoumpos, and Y Ioannidis. Dataflow Processing and Optimization on Grid and

Cloud. IEEE Data Engineering Bulletin, 32(1):67–74, 2009.

BIBLIOGRAPHY 139

[TRV95] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and the

design of DISCO. In Distributed Computing Systems, 1996., Proceedings of the 16th

International Conference on, pages 449–457. IEEE, 1995.

[UKl00] G Ulrich and Werner Kiess ling. Optimizing Multi-Feature Queries for Image Data-

bases. VLDB ’00 Proceedings of the 26th International Conference on Very Large Data

Bases, pages 419—-428, 2000.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems. Computer

Science Press, December 1988.

[Ull97] D. Ullman, Jeffery. Information integration using logical views. Theoretical Computer

Science, 239(2):189—-210, 1997.

[vdAtH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow language.

Information Systems, 30(4):245–275, June 2005.

[Ver04] D.C. Verma. Service level agreements on IP networks. Proceedings of the IEEE,

92(9):1382–1388, August 2004.

[VM96] Bennet Vance and David Maier. Rapid bushy join-order optimization with cartesian

products. ACM SIGMOD Record, 25(2):35—-46, 1996.

[VRM04] Mar’ia-Esther Vidal, Louiqa Raschid, and Julian Mestre. Challenges in Selecting Paths

for Navigational Queries : Trade-Off of Benefit of Path versus Cost of Plan. In Pro-

ceedings of the 7th International Workshop on the Web and Databases: Colocated with

ACM SIGMOD/PODS 2004, pages 61—-66, Paris, France, 2004. ACM New York, NY,

USA.

[VSIAP10] Genoveva Vargas-Solar, Noha Ibrahim, Michel Adiba, and Jean Marc Petit. Querying

Issues in Pervasive Environments. In Apostolos Malatras, editor, Pervasive Computing

and Communications Design and Deployment: Technologies, Trends, and Applications,

pages 1–20. IGI Global, 2010.

[VVsC10] Cuevas-Vicenttin Victor, Genoveva Vargas-solar, and Christine Collet. Coordinating

services for accessing and processing data in dynamic environments. In COOPIS 2010,

2010.

[WCSO08] Hiroshi Wada, Paskorn Champrasert, Junichi Suzuki, and Katsuya Oba. Multiobjective

Optimization of SLA-Aware Service Composition. In 2008 IEEE Congress on Services

- Part I, pages 368–375. IEEE, July 2008.

[Wei09] Gerhard Weikum. Harvesting, searching, and ranking knowledge on the web: invited

talk. In WSDM ’09: Proceedings of the Second ACM International Conference on Web

Search and Data Mining, pages 3–4, New York, NY, USA, 2009. ACM.

[WH09] Florian M. Waas and Joseph M. Hellerstein. Parallelizing Extensible Query Optimizers.

In SIGMOD, pages 871–878. ACM Press, 2009.

140 BIBLIOGRAPHY

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information Systems. Com-

puter, 25(3):38—-49, 1992.

[YB08] Qi Yu and Athman Bouguettaya. Framework for Web Service Query Algebra and Opti-

mization. ACM Transactions on Web, 2(1):1–35, 2008.

[YKB99] Haiwei Ye, Brigitte Kerhervbackslash’e, and Gregor V. Bochmann. Qos aware distri-

buted query processing. In Proceedings of the 10th International Workshop on Database

and Expert Systems Applications, pages 923—-. IEEE Computer Society Washington,

DC, USA, 1999.

[YKB03] Haiwei Ye, Brigitte Kerherv’e, and Gregor v. Bochmann. Integrating Quality of Service

Requirements in a Distributed Query Processing Environment. In Database and Expert

Systems Applications, chapter 14th Inter, pages 803–812. Springer Berlin Heidelberg,

2003.

[YKB07] Jia Yu, Michael Kirley, and Rajkumar Buyya. Multiobjective planning for workflow

execution on Grids. 2007 8th IEEE/ACM International Conference on Grid Computing,

pages 10–17, September 2007.

[YKvBO03] Haiwei Ye, Brigitte Kerherv’e, Gregor von Bochmann, and Vincent Oria. Pushing

Quality of Service Information and Requirements into Global Query Optimization. In

IDEAS, pages 170–179. IEEE Computer Society, 2003.

[YNGM00] R Yerneni, F Naumann, and H Garcia-Molina. Maximizing coverage of mediated web

queries. Rapport technique, Stanford University, 2000.

[ZL98] Q Zhu and P Larson. Solving local cost estimation problem for global query optimiza-

tion in multidatabase systems. Distributed and parallel databases, 421:373–420, 1998.

[ZPL08] Bin Zhou, Jian Pei, and WoShun Luk. A Brief Survey on Anonymization Techniques

for Privacy Preserving Publishing of Social Network Data. SIGKDD Explor. Newsl.,

10(2):12—-22, 2008.

[ZRV02] Vladimir Zadorozhny, L Raschid, and ME Vidal. Efficient evaluation of queries in a

mediator for web sources. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data, pages 85—-96, New York, NY, USA, 2002. ACM.

Appendix

APPENDIX A
Query workflow

generation definitions

This appendix presents (1) the data dependencies among the activities of a query workflow described

by dt-functions, and (2) the case of uncomposable activities and healthy relations for enabling the correct

composition of activities during the query workflow generation.

A.1 Data dependencies

A data dependency is a binary relation between a couple of activities described by their corresponding

dt-functions that share sets of tuples. We identify three data dependencies of activities taken from the

literature of compilers optimization (e.g. [KA01]) and adapted to our context. The definitions go along

with examples of the activities described by the dt-functions F̄ derived from the hybrid query Which of

the common friends of Alice and Bob are interested in Art history ? of Example 3.1.3.

F̄ =
{

¯retra({a}, {a.nickname =‘Alice’}, atts(a)),

¯retrb({b}, {b.nickname =‘Bob’}, atts(b)),
¯proja({a}, {}, {a.nickname}),
¯proji({i}, {}, {i.nickname, i.interest.tag}),
¯filti({i}, {i.interest.tag =‘Art History’}, atts(i)),

¯corra,b({a, b},{a.friendship.with.friend =

b.friendship.with.friend}, atts(a)∪ atts(b)),
¯binda,i({a, i},{i.nickname =

a.friendship.with.friend}, atts(a)∪ atts(i))
}

For readability purposes, we use symbols of dt-functions that suggest what the activities do.

A.1.1 Retrieval dependency

Two activities fa and fb have a retrieval dependency if fa retrieves the tuples used by fb to perform some

transformation. Formally this dependency is defined as follows.

Property A.1.1 [Retrieval dependency] It is said that fb has a retrieval dependency with fa if fb
performs the retrieval of tuples required by fb. This is, given the dt-functions describing the activities

f̄a(Aa, Ea,Pa) f̄b(Ab, Eb,Pb), ∃exp ∈ Ea | exp is a R-exp condition or a B-exp condition, and one of the

following conditions holds

3

4 Query workflow generation definitions

1. ∃ expb ∈ Eb such that expb is of the form name.att θ term and name ∈ Aa ∩Ab;

2. ∃name.att ∈ Pb such that name ∈ Aa ∩Ab.
Notation: fa

r
→ fb

Example A.1.1 Suppose the dt-function ¯binda,i({a, i}, {i.nickname = a.friendship.with.friend}, atts(a) ∪

atts(i)) describing the activity binda,i that retrieves the tuple values of the type denoted by i by binding

the input attribute i.nickname with the value of the output attribute a.friendship.with.friend of a.

Also suppose the dt-function ¯filti({i}, {i.interest.tag=‘Art History’}, atts(i)) describing the activity

filti that filters the tuples of i which hold the expressions in Ei. As binda,i represents the retrieval of

the tuples from i and filti requires these tuples to perform the filtering, therefore binda,i
r
→ filti is

true.

A.1.2 Anti-dependency

The anti-dependency happens when an attribute required by an activity fb is removed by another activity

fa. Formally this dependency is defined as follows.

Property A.1.2 [Anti-dependency] Given two activities fa, fb described by the dt-functions f̄b(Ab, Eb,Pb)

and f̄a(Aa, Ea,Pa) respectively, it is said that fb is in anti-dependency with fa if fb does not contain at

least one attribute used by fa such that one of the following conditions holds

1. ∃ exp = (name.att θ term) ∈ Ea | name ∈ Aa∩Ab, name.att /∈ Pb. Intuitively, fb eliminates

an attribute required for a condition expression of fa;

2. ∃name.att ∈ Pa | name ∈ Aa ∩ Ab, name.att /∈ Pb. Intuitively, fb eliminates an attribute

required for the projection expression of fa.

Notation: fa
a
→ fb

Example A.1.2 Suppose the dt-function ¯proja({a}, {}, {a.nickname}) describing the activity proja

that removes all the attributes of a except a.nickname. Also suppose the dt-function

¯binda,i({a, i}, {i.nickname=a.friendship.with.friend}, atts(a) ∪ atts(i)) describing the activity

binda,i that uses the a.friendship.with.friend attribute to perform the retrieval of the a tuples.

Therefore, the dependency binda,i
a
→ proja is true because proja eliminates the attribute

a.friendship.with.friend required by binda,i.

A.1.3 Circular dependency

A circular dependency denotes a functional anomaly where there is a mutual dependency between a

couple of activities by either retrieval dependency or anti-dependency. Stated another way, an activity fa

depends on an activity fb and, in turn, fb depends on fa. Formally this dependency is defined as follows.

Query workflow generation definitions 5

Property A.1.3 [Circular dependency] The activityes fa and fb are said to be in a circular dependency

if one of the following conditions holds.

1. fa
r
→ fb ∧ fb

r
→ fa;

2. fa
a
→ fb ∧ fb

a
→ fa.

Notation: fa ↔ fb

In the case of a circular dependency a pair of activities that perform retrieval by binding, it is a

misunderstanding from the user that is stating a bidirectional binding pattern for a couple of service

operations. This is, for two service operations serv1 : op1 and serv2 : op2, the SC-O expression states

that the values of the attributes in oatts(serv1 : op1) are required by the attributes in iatts(serv2 : op2)

and the values of the attributes in oatts(serv2 :op2) are required by the attributes in iatts(serv1 :op1).

Example A.1.3 [Circular dependency by retrieval dependency] Suppose the hybrid query Which per-

sons have a friendship with themselves ? For simplicity, we represent this hybrid query in a sql-like

expression.
SELECT *

FROM friends.friendsOf As a, friends.friendsOf As b

WHERE a.nickname = b.friendship.with.friend

AND b.nickname = a.friendship.with.friend;

This query expresses a self-join that makes sense in a, for example, relational query expression. Never-

theless, in the presence of binding patterns it is not possible. The service operation a requires the value of

b.friendship.with.friend to be invoked, and b requires the value of a.friendship.with.friend.

This anomaly remains in the activities such that binda,b ↔ bindb,a because the condition

binda,b
r
→ bindb,a ∧ bindb,a

r
→ binda,b holds.

In the case of a circular dependency by anti-dependency, it happens if for a given couple of activities

with shared type names, both eliminate attributes required by the other one. This is, for two activities

fa, fb described by the dt-functions f̄a(Aa, Ea,Pa) and f̄b(Ab, Eb,Pb) respectively, at least one attribute

required by fa is not contained in the projection expression Pb, and at least one attribute required by fb

is not contained in the projection expression Pa.

Example A.1.4 [Circular dependency by anti-dependency] A priori, these anomalies cannot be deri-

ved from a SC-O expression but they must be taken into account during the activities composition. There-

fore, we suppose two synthetic dt-functions ¯proja1({a},{},{a.nickname}) and ¯proja2({a},{},{a.friend})

both share the type name a and both have at least one attribute in their projection expressions that is not

contained in the other one, i.e. Pa1 \ Pa2 6= {} and Pa2 \ Pa1 6= {}. Thus, ¯proja1 ↔ ¯proja2 is true.

A.2 Uncomposable activities and healthy cf-relations

There are activities whose composition gives a circular dependency that leads to an execution deadlock

(e.g. cyclic stream-graph [HSS+11]). In order to guarantee the termination of the query workflow execu-

tion, we distinguish two cases, (1)the execution of an activity depends on the tuples retrieved by another

6 Query workflow generation definitions

and this in turn requires the tuples retrieved by the first one, and (2)a couple of activities block each other

by anti-dependency. Both cases are characterized by the deadlock cf-relation as follows 1.

Definition A.2.1 [Deadlock cf-relation] Given two activities fa and fb, it is said that there is a deadlock

cf-relation denoted by fa ⊳⊲ fb if there is a circular dependency fa ↔ fb. Observe that the deadlock

cf-relation is commutative and thus fa ⊳⊲ fb = fb ⊳⊲ fa.

Example A.2.1 Suppose the activities binda,b and bindb,a described by the dt-functions
¯binda,b({a, b}, {a.nickname = b.friendship.with.friend}, atts(a), atts(b)) and
¯bindb,a({b, a}, {b.nickname = a.friendship.with.friend}, atts(b), atts(a)).

The activity binda,b retrieves the tuple values of a by using the values of b.friendship.with.friend. Meanw-

hile, the activity bindb,a retrieves tuple values of b by using the values of a.friendship.with.friend. Thus, there

is a deadlock cf-relation binda,b ⊳⊲ bindb,a.

This example is given by a mistake on the hybrid query expression. The user tries to bound the output

values of a service operation with the input attributes of another and vise-versa. Aside this case, a priori

all the activities do not have deadlock cf-relations. Nevertheless, there are combination of cf-relations

whose activities composition can bring deadlock cf-relations. This combination of cf-relations is what

we call unhealthy cf-relations.

A.2.1 Unhealthy cf-relations

The unhealthy cf-relations are groups of three related activities whose composition could brings to a

deadlock if the activity composition is performed in certain order.

retra proja

corra,b

◮◮

◮◮ ◮◮

(a) Unhealthy cf-relations

projaretra corrab

f

(b) Correct composition

projaretra corrab

f

(c) Incorrect composition

Figure A.1 – Unhealthy cf-relation example

Example A.2.2 Consider the activities retra, proja, and corra,b with dependent cf-relations as shown

in Figure A.1a. If such activities are composed firstly retra and corra,b and the resulting query work-

flow is composed with proja, thus the result is a correct composition as shown in Figure A.1b. Never-

1. Note that the deadlock cf-relation is data related and it is different to the structural deadlock presented in Section 4.1.1

Query workflow generation definitions 7

theless, the composition order can be different, for instance if retra and proja are composed first, then

corra,b cannot be composed because there is a deadlock cf-relation as shown in Figure A.1c.

This anomaly arises because proja is on the right side of the dependent cf-relations with both retra

and corra,b. Therefore proja should be always composed after retra and corra,b are composed. Thus,

we define the unhealthy cf-relations as follows.

Definition A.2.2 [Unhealty cf-relation] Suppose a set of cf-relations ~R that contains the cf-relations

among a set of activities A. It is said that ~ru ∈ ~R is an unhealthy cf-relation if there are two adjacent

dependent cf-relations ~r1, ~r2 ∈ ~R such that if ~ru = aR b | R ∈ {◮◮ , ◮◭ , �|||||||||| } and ~r1, ~r2 ∈ ~R | ~r1 =

a ◮◮ c, ~r2 = c ◮◮ b.

The Table A.1 shows the three cases where unhealthy cf-relations arise.

Unhealthy cf-relation Adjacent cf-relations Deadlock cf-relation

a�|||||||||| b a ◮◮ c & c ◮◮ b → (a�|||||||||| b) ⊳⊲ c

a ◮◮ b a ◮◮ c & c ◮◮ b → (a ◮◮ b) ⊳⊲ c

a ◮◭ b a ◮◮ c & c ◮◮ b → (a ◮◭ b) ⊳⊲ c

Table A.1 – Unhealthy cf-relations

A.2.2 Healthy cf-relations

In order to avoid uncomposable activities during the query workflow generation we define the healthy

cf-relations set ~Rh that is a subset of the set ~R with no unhealthy cf-relations.

Definition A.2.3 [healthy set of activity cf-relations] Given a set of cf-relations ~R, there is a function

heal : ~R → ~R that eliminates the unhealthy cf-relations and produces a healthy set of cf-relations ~Rh

such that heal(~R)= ~Rh={~r ∈ ~R | ~r is not an unhealty cf-relation}.

Observe that in whichever case of the unhealthy cf-relations in Table A.1, the dropped cf-relation

is reached by transitivity, i.e. a ◮◮ c ◮◮ b, and thus the three transformations are performed while

deadlock cf-relations are avoided.

Example A.2.3 The set of cf-relations ~R = {retra ◮◮ proja,b, retra ◮◮ corra,b, corra,b ◮◮ proja,b}

is transformed into the healthy set ~Rh = {rentra ◮◮ corra,b, corra,b ◮◮ proja,b} as shown in Figure

A.2.

retra proja

corra,b

◮◮

◮◮ ◮◮

(a)

heal
−→ retra proja

corra,b

◮◮ ◮◮

(b)

Figure A.2 – Healthy cf-relations example

The dropped cf-relation retra ◮◮ proja is implicit by transitivity: retra ◮◮ corra,b ◮◮ proja and

thus the resulting composition implies the three data transformations.

8 Query workflow generation definitions

A.2.3 Completeness of ss-graph

The ss-graph (QWf̄ ,
~Rh) is complete if it has enough Hamiltonian paths that describe all the possible

ways to compose activities. This is easy to see if ~R is computed by the Cartesian product
~R = {rel(qwf1 , qwf2) | (qwf1 , qwf2) ∈ QWf̄ ×QWf̄ ∧ qwf1 6= qwf2}.

Therefore, all the nodes in QWf̄ are connected to the ss-graph and ~R contains all the possible paths that

visit all the nodes.

As there are unhealthy cf-relations that lead to the uncomposable of activities, the ss-graph is pruned

by eliminating unhealthy cf-relations and producing then the healthy cf-relations ~Rh. Even if this pruning

eliminates alternative paths, the nodes still being accessible by transitivity through the reminding edges,

therefore the ss-graph remains complete.

APPENDIX B
HyQoZ specifications

This appendix presents the specifications of HyQoZ data structures, context messages exchanged among

the HyQoZ components, REST interfaces of the API directory and QoS directory. Additionally, it pre-

sents the Command Line Interface (CLI) for accessing HyQoZTestbed.

B.1 Data structures syntax

Next we describe the syntax of data structures used for representing information through the HyQoZ’s

flow (See Figure B.1).

DTDerivator

QWGenerator

QWWeighter

KSelector

SC-O expressionsco/1

dt-functions

equivalent qws{qw/6,…,qw/6}

solution space{wqw/7,…,wqw/7}

search space{wqw/7,…,wqw/7}

{dtf/4,…,dtf/4}

api/3

qos/4

oo/3

Figure B.1 – HyQoZ information flow

The syntax of data structures adheres to the Prolog syntax style and it is specified in BNF notation.

B.1.1 Complex value types

BNF:
Type := Id : Def;

Def := integer | string | real | boolean | Tuple | Set ;

Tuple := ‘[’ Type [, Type]+ ‘]’ ;

Set := ‘[’ Type ‘]’ ;

9

10 HyQoZ specifications

Description:

The complex value types are described by nested functors where atoms denote type names and simple

type definitions (i.e. integer, string, real, boolean). We profit of the list structure of Prolog (i.e.

[...]) to represent tuple types and set types. Both types are distinguished from each other by the number

of types contained in a single list. This is, a list representing the definition of a tuple type has at least

two types and a list representing a set type has only one type. We adopt the double colon ::/2 for

representing the dot operator and the simple colon :/2 for representing the separator of type names and

their definitions.

Example:

The following set type is formed by a single tuple type and this in turn by four simple types
friends :{profile :< nickname: String,

gender: String,

email: String,

age: Integer >}

and it is represented as
friends:[profile:[nickname:string,

gender:string,

email:string,

age:integer]]

B.1.2 Input data structures

The input data of HyQoZ comes from the optimization requester (e.g. Hypatia, end-user) and from the

service catalogs API directory and QoS directory. A requester submits hybrid queries represented by

sco/1 along with the optimization objective represented by oo/3. HyQoZ fetches the required service

APIs represented by api/3 and the QoS measures represented by qos/4.

APIs (api/3)

BNF:
API := api ‘(’ Id :: Id , Input , Output ‘)’;

Input := ‘[’ Type [, Type]* ‘]’;

Output := Set;

Description:

The APIs describing service operations are provided by the API directory and fetched by the DTDerivator.

The service operations are represented by api/3. We adopt the double colon ::/2 for representing the

dot operator and the simple colon :/2 for representing the separator of type names and their definitions.

The first argument of api/3 corresponds to the service name and operation name (e.g. service::op),

the second argument corresponds to the set of input attributes and the third one to the set of output

attributes. Both input and output attributes are represented by complex value types described in Section

3.1.1.

HyQoZ specifications 11

Example:

For instance, the service friends has two operations profile and friendsof and each one is defined

by the types which follow:

Service: friends :〈profile, friendship〉

Data operation: profile

Input: nickname :String

Output: {profile :〈nickname :String, gender :String, email :String, age :Integer〉}

Data operation: friendship

Input: nickname :String

Output: {friendship :〈nickname :String,with :{friend :String}〉}

and they are respectively represented as:

api(friends::profile,

[nickname:string],

[profile:[nickname:string, gender:string, email:string, age:integer]])

api(friends::friendsof,

[nickname:string],

[friendship:[nickname:string, with:[friend:string]]])

SC-O expressions (sco/1)

BNF:
SCO := sco ‘(’ OP ‘)’;

OP := RHO | PI | SIGMA | CORR | BIND;

RHO := rho ‘(’ Id :: Id as Id , Id :: Id ‘)’;

PI := pi ‘(’ ‘[’ Term+ ‘]’ ‘,’ OP ‘)’;

SIGMA := sigma ‘(’ Cond ‘,’ OP ‘)’;

CORR := corr‘(’ ‘[’ CondExp ‘]’ , OP , OP ‘)’;

BIND := bind‘(’ ‘[’ CondExp ‘]’ , OP , OP ‘)’;

CondExp := Cond [, Cond]*;

Cond := Term THETA Term;

THETA := = | >= | <= | <> ;

Term := Id [::Id]* | Constant;

Description:

The SC-O expressions for denoting hybrid queries (cf. Section 3.1) are taken as input of the DTDerivator

for producing the dt-functions dtf/4. A SC-O is represented by sco/1 whose single argument is a nested

expression of data operators (i.e. renaming, projection, selection, theta-join, bind-join).

Example:

For example, consider the hybrid query Which are the common friends of Alice and Bob ? in Figure B.2 and

its sco/1 representation as follows. The unary complex value operators (i.e. pi/2, sigma/2, rho/2) have

12 HyQoZ specifications

π a.nickname, b.nickname,
a.friendship.with.friend

⊲⊳σ a.friendship.with.friend=
b.friendship.with.friend

σa.nickname=‘Alice’

ρfriends.friendsOf :a

friends.friendsOf

σb.nickname=‘Bob’

ρfriends.friendsOf :b

friends.friendsOf

Figure B.2 – Which are the common friends of Alice and Bob ?

two arguments; the first corresponds to the expression that configures the operators, and the second one

the operand. The binary complex value operator (i.e. corr/3) have three arguments; the first corresponds

to the expression that configures the operator, and the last two to each operand.

sco(pi([a::friendship::with::friend],

sigma(a::nickname=’Alice’,

sigma(b::nickname=’Bob’,

corr([a::friendship::with::friend

=b::friendship::with::friend],

rho(friends::friendsof as a, friends::friendsof),

rho(friends::friendsof as b, friends::friendsof)

)

)

)

))

QoS Measures (qos/4)

BNF:

QOS := qos (Type , Measure , Units, Value);

Type := time | price | energy;

Measure := latency | throughput | price | response_time | energy;

Units := seconds | euros | dollars | bits_per_second | kilojoules;

Value := Number

Description:

The QoS directory provides up-to-date QoS measures fetched by the QWWeighter. The measures are

associated to service operation instances and the network. Each measure is represented by the qos/4.

The first argument indicates if it is about the service operation (i.e. sop) or the network (i.e. net).

The second argument corresponds to the measure identifier. The third argument is the units in which the

measure is expressed. Finally, the fourth argument is the value of the measure. For instance, the price of

invoking a service operation is 0.2e is represented by qos(sop, price, euro, 0.2).

HyQoZ specifications 13

Optimization objective (oo/3)

BNF:

OO := oo (Time , Price , Energy);

Time := time (V , W);

Price := price (V , W);

Energy := energy (V , W);

V := Number;

W := 1 | 2 | 3;

Description:

The Service Level Agreement is taken as input by the QWWeighter and by the KSelector. It is

represented by oo/3 that specifies the expectations of the user about the execution of the query workflow

implementing the hybrid query. Each argument of oo/3 represents the weighted cost attribute value for

the time, price and energy. Nevertheless, this structure is modifiable according to the cost attributes

interesting for the user which are subject to be implemented by a QWWeighter instance. Each argument

specifies the name of the cost attribute, the expected value, and the weight between 1 and 3 (cf. Section

3.3).

Example:

For instance, the following Service Level Agreement oo〈(38.4, 3), (40.0, 1), (43.0, 2)〉 is represented

by oo(time(38.4, 3), price(40.0, 1), energy(43.0, 2)).

B.1.3 Intermediate data

The SC-O expressions are derived into a set of dt-functions that we represent by dtf/4 and are used for

generating the query workflows represented by qw/6. Such query workflows are subject to a cost function

that weights them with a vector cost/3.

dt-functions (dtf/4)

BNF:

DTF := dtf ‘(’ ‘[’ TNList ‘]’ , ‘[’ CondList ‘]’ , ‘[’ ProjList‘]’ , Id ‘)’;

TNList := Id [, Id]*;

CondList := Cond [, CondList]*;

Cond := Term THETA Term;

THETA := = | >= | <= | <> ;

Term := Att | Constant;

Att := Id [:: Id]*;

ProjList := Att [, Att]*;

14 HyQoZ specifications

Description:

The dt-functions are produced by the DTDerivator and consumed by the QWGenerator. Their re-

presentation is done by dtf/4 whose three first arguments correspond to each of the parameters of the

dt-function signature. Besides, the fourth argument is an arbitrary and unique id represented by an atom.

The uniqueness of the id’s is transparently managed by the DTDerivator.

Example:

For instance, consider the following dt-function derived from a SC-O expression that retrieves the

interests of Alice from the data service operation denoted by a

f̄({a}, {a.nickname = ‘Alice’}, {a.nickname, a.interests})

and its corresponding representation

dtf([a], [a::nickname=‘Alice’], [a::nickname, a::interests],retr_a)

Query workflows (qw/6, wqw/7)

BNF:

QW := qw‘(’ ‘[’ VerticesList ‘]’ ‘,’

‘[’ VerticesList ‘]’ ‘,’

‘[’ VerticesList ‘]’ ‘,’

‘[’ ArcList ‘]’ ‘,’ in ‘,’ out ‘)’ ;

VerticesList := Vertex [, Vertex]* ;

Vertex := Id | ParID | in | out ;

ArcList := Arc [, Arc]* ;

Arc := ‘(’ Vertex , Vertex ‘)’ ;

Description:

The query workflows qw/6 are produced by the QWGenerator and consumed by the QWWeighter. A

query workflow is represented by a DAG through qw/6 whose arguments allow the manipulation of the

query workflow during the generation and correspond to the model presented in Section 4.1.

fa

fb

fd

in outparl end_parl

fc

Figure B.3 – Query workflow example

Example: For instance, consider the query workflow in Figure B.3 whose representation is as follows.

qw([a,b,c], [par1, end_par1], [a,b,c, par1, end_par1, in, out],

[(in,par1), (par1, a), (par1,b), (a, end_par1),

(b, end_par1), (end_par1, c), (c,out)],

in, out)

HyQoZ specifications 15

The QWWeighter produces the set of weighted query workflows wqw/7 whose last argument corres-

ponds to the cost cost/3 of the query workflow.

Cost (cost/3)

BNF:

COST := cost (CTime , CPrice , CEnergy);

CTime := time (C);

CPrice := price (C);

CEnergy := energy (C);

C := Number;

Description:

A query workflow cost is computed by the QWWeighter. It is a three attribute vector represented by
cost/3where each argument denotes a cost attribute value. This is cost(time(T),price(P),energy(E))

where T denotes the execution time cost, P denotes the execution price cost, and E denotes the energy

consumption cost. This structure is compatible with the cost attributes specified by oo/3. The query

workflows with its corresponding cost wqw/7 form the search space used by the KSelector along with the

oo/3 for computing the solution space.

B.2 Context messages

The HyQoZ context messages are self-descriptive messages that enable the stateless client-server com-

munication. These are formed by a series of attributes whose values belongs to specific domains. In

particular, we consider the domain String, Long, Boolean, and the following proprietary domains:

— Functor: is an special case of a string with a specific format detailed by a functor syntax (cf. Section

B.1)

— Nested messages: the messages may contain complex values in form of nested messages

There are two kinds of context messages: (1) request messages and (2) response messages. These

messages are used into all the request/responses among HyQoZ components including the ones towards

the external applications. The principle of this messages is to keep the context of responses through the

hops of the optimization process or either for individual requests to HyQoZ components. The use of

context messages enables either a service orchestration by an orchestration engine or a service coordina-

tion.

Each message is presented with a brief explanation and the message format which contains a set of

fields where each is represented by an attribute name, its domain, a default value –if there is– , if the

value is mandatory or not (i.e. true/false), and the description of the field.

16 HyQoZ specifications

B.2.1 Request context

The Table B.1 shows the fields of the request context message.

Attribute Domain Default Manadatory Description

rId String true
Identification of the requester

rToken String true Token of the requester

role

‘application’ / ‘end-user’ /
‘derivator’ / ‘generator’ /
‘weighter’ / ‘selector’ /
‘orchestrator’

true
Role of the requester into the
optimization process

requestContext Request context false Context of the preceding request
requestTS Long false Timestamp assigned by the requester

requestID String false
Request identification managed by the
requester

iRepresentation String ‘Functor’ false Input representation
oRepresentation String ‘Functor’ false Output representation
commPattern ‘sync’,‘async’ true Communication pattern requested

callbackURL String false
URL of the sink for the response
delivering via a callback

callbackVerb ‘POST’ / ‘PUT’ ‘POST’ false HTTP method to perform the callback

threshold Long ‘0L’ false

Time tolerated for performing the
optimization. The value is added to the
instant in which the request arrives to the
service instance. If ’0L‘, it is assumed
no threshold

Table B.1 – Request context message format

The attributes rId and rToken enable the orthogonal identification and authentication of the reques-

ter in the server. These attributes are instantiated aside of the data elements for optimization purposes.

The attribute role identifies the role of the requester and this one, along with the requestContext, enables

the provenance of the optimization process. The attributes requestTS and requestID allow the requester

to manage the invocations it performs and eventually take decisions about, for example, the validity of a

response. The attributes iRepresentation and oRepresentation defines the underlining formats in which

the data optimization elements are passed among services and the marshaling and un-marshaling of the

requests/responses. The attributes callbackURL and callbackVerb allow to define which entity shall

get the response in the case of asynchronous request in commPattern. This enable either a sequential

multi-hop processing in which the response is returned directly to the requester, or a centralized coordi-

nation where all the responses are returned to the coordinator. The threshold attribute allows to define

a permitted limit to perform the optimization phase. This attribute means that if the threshold is elapsed

may the service instance has not satisfied the required quality of service.

B.2.2 Response context

The Table B.1 shows the fields of the request context message.

The attributes sId and sToken enable the identification and authentication of the service instance on

the requester side. These attributes are instantiated aside of the data elements for optimization purposes.

HyQoZ specifications 17

Attribute Domain Default Manadatory Description

sId String true
Identification of the server delivering the
response

sToken String true
Token of the server delivering the
response

role

‘application’ / ‘end-user’ /
‘derivator’ / ‘generator’ /
‘weighter’ / ‘selector’ /
‘orchestrator’

true
Role of the requester into the
optimization process

responseContext Response context false
Response context of the preceding
response

requestTS Long false Timestamp assigned by the requester

requestID String false
Request identification managed by the
requester

iRepresentation String ‘Functor’ false Representation of the original request
oRepresentation String ‘Functor’ false Representation of the response

timeEpalsed Boolean true
Indicates if the request threshold has
been elapsed

Table B.2 – Response context message format

The attribute role identifies the role of the service instance and this one, along with the responseCon-

text, enables the provenance of the optimization process. The attributes requestTS and requestID are

the same than in the request message and allow the requester to manage the invocations/responses. The

attributes iRepresentation and oRepresentation defines the underlining formats in which the data ele-

ments are passed among services and the marshaling and un-marshaling of the requests/responses. The

timeElapsed attribute indicates if the request threshold has been elapsed at the moment of the current

response is issued.

18 HyQoZ specifications

B.3 APIDirectory and QoSDirectory REST interfaces

B.3.1 APIDirectory

api/catalog

DESCRIPTION Retrieves the catalog of service operations APIs that satisfy the query parameters below

URL STRUCTURE http://<baseuri>/api/catalog

METHOD GET

QUERY

PARAMETERS

sNameFilter Filter for the service name represented as a regular expression

oNameFilter Filter for the service operation name represented as a regular expression

INPUT requestContext Context of the request

OUTPUT requestContext Context of the request

responseContext Context of the response

catalog List of service operations in, for example, functor format

OUTPUT EXAMPLE

“catalogResponse” :{

“requestContext” :{...},

“responseContext” :{...},

“catalog” :[“api” :“api(friends::profile,

[nickname:string],

[profile:[nickname:string, gender:string

email:string, age:integer]]”,

“api” :“api(friends::friendsof,

[nickname:string],

[friendship:[nickname:string,

with:[friend:string]]]”,

...]

}

HyQoZ specifications 19

api/{serviceName}/{opName}/choose

DESCRIPTION Retrieves an instance of a service operation 1

URL STRUCTURE http://<baseuri>/api/{serviceName}/{opName}/choose

METHOD GET

PATH PARAMETERS serviceName Name of the service

opName Name of the parameter

INPUT requestContext Context of the request

OUTPUT requestContext Context of the request

responseContext Context of the response

instance Service operation instance with the url of the machine-readable description of the service

operation (e.g. WADL [Had09])

OUTPUT EXAMPLE

“instanceResponse” :{

“requestContext” :{...},

“responseContext” :{...},

“instance” :{“api” :“api(friends::profile,

[nickname:string],

[profile:[nickname:string, gender:string

email:string, age:integer]]”,

“wadl_url” :“http ://dataservices/instances/profile.wadl”},

}

20 HyQoZ specifications

B.3.2 QoSDirectory

/qos

DESCRIPTION Retrieves the QoS measures of a service operation instance

URL STRUCTURE http://<baseuri>//qos

METHOD GET

QUERY

PARAMETERS

wadl_url URL of the description of the service operation instance

INPUT requestContext Context of the request

OUTPUT requestContext Context of the request

responseContext Context of the response

wadl_url URL of the wadl of the requested service operation instance

timestamp Instant at which the QoS measures are valid

measures State of service operation instance expressed as network and execution QoS measures

OUTPUT EXAMPLE

“measuresResponse” :{

“requestContext” :{...},

“responseContext” :{...},

“wadl_url” :“http ://dataservices/instances/profile.wadl”

“timestamp :” :“1379602397”

“net” :{measure :{name :latency, units :seconds, value :},

measure :{name :throughput, units :bps, value :},

measure :{name :price, units :euros, value :},

measure :{name :energy, units :watts, value :}

},

“ex” :{measure :{name :isize, units :kb, value :},

measure :{name :osize, units :kb, value :},

measure :{name :response_time, units :seconds, value :},

measure :{name :price, units :euros, value :},

measure :{name :energy, units :euros, value :}

}

}

HyQoZ specifications 21

B.4 Command Line Interface for HyQoZTestbed

hyqoztb

-buildtime Defines the cost estimation by build-time formulation

-controlflow Defines the generetion by control-flow

-dataflow Defines the generetion by data-flow

-derive Derivation of the dt-functions

-dtfs <arg> dt-functions in the list format

[dtf(A,E,P,ID),...]

-estimation_approach <arg> Defines the cost estimation approach at run-time (par-

tialcf,fullcf,df)

-forcegenshqs Force synthetic HQ generation

-generate Generation of alternative query workflows

-genshqs Generation of synthetic hqs

-hqsignature <arg> Hybrid query signature

-inputfile <arg> Input file

-k <arg> ’k’ for the top-k selection

-n <arg> Lower bound

-N <arg> Upper bound

-outputdir <arg> Output directory

-outputfile <arg> Output file

-qw <arg> Query workflow in functor sytax qw/6

-runtime Defines the cost estimation by run-time formulation

-sco <arg> SCO expression

-select Selection of the solution space of query workflows

-oo <arg> Optimization objective in functor syntax oo/3

-typenames <arg> Type names in the list format [type_name(Alias,

S::M),...]

-weight Weighting of quwey workflows

HyQoZ – Optimisation de requêtes hybrides basée sur
des contrats SLA

Carlos-Manuel LÓPEZ-ENRÍQUEZ

	Introduction
	Data management in service-based environments
	Hybrid query optimization challenges and objectives
	Main contributions
	Document organization

	Query optimization and QoS
	Distributed query processing
	Query optimization
	Optimizing queries in service-based environments
	Conclusions

	The HyQoZ approach
	Hybrid query
	Intermediate representation / data transformation functions
	The SLA contract and query workflow cost
	Hybrid query optimization process
	Conclusions

	Generation of the search space of query workflows
	Query workflow definition and properties
	Generation rules
	Generation algorithm
	Conclusions

	SLA-based solution space computation
	Query workflow cost estimation
	Computing the solution space
	Conclusions

	Implementation and validation
	Hybrid query processing
	HyQoZ components
	Coordinating the HyQoZ components
	HyQoZTestbed
	Conclusions

	Conclusions and perspectives
	Main results and contributions
	Perspectives

	Bibliography
	Query workflow generation definitions
	Data dependencies
	Uncomposable activities and healthy cf-relations

	HyQoZ specifications
	Data structures syntax
	Context messages
	APIDirectory and QoSDirectory REST interfaces
	Command Line Interface for HyQoZTestbed

