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Une thèse, comme tout projet scientifique, ne se mène pas seul. J’aimerais ici remercier celles
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plusieurs reprises le jeu de données de F. Lopes, auquel j’ai finalement préféré celui de l’Institut
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de l’aspect financier, je tiens à remercier les membres du groupe Seiscope qui contribuent à
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pour mon travail lors des conférences auxquelles je me suis rendu. En particulier, merci à
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6

http://seiscope2.osug.fr
http://seiscope2.osug.fr


REMERCIEMENTS

expériences pédagogiques, celles et ceux qui m’ont accompagné lors de ces expériences et avec
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232, pour m’avoir initié à Awk et m’avoir rappelé, dans les moments de doute, que 8 est bien
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Merci à ma mère pour son amour et son soutien discret mais constant. Merci à mon père,
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Résumé

Les premiers mètres à centaines de mètres de la proche surface terrestre sont le siège
d’interactions environnementales et d’enjeux sociétaux qui requièrent une compréhension fine
de ses processus par le biais d’estimations quantitatives de ses paramètres. Le géoradar est un
outil de prospection indirecte de la subsurface à même d’ausculter les milieux naturels ainsi
que les matériaux anthropiques, et d’en estimer les propriétés électriques (permittivité et con-
ductivité). Basé sur la propagation d’ondes électromagnétiques, à des fréquences allant du
MHz à quelques GHz, le géoradar est utilisé à des échelles et pour des applications variées :
estimation de l’épaisseur de glaciers, évaluation de l’endommagement d’ouvrages en béton, ou
encore quantification de la teneur en eau de sols agricoles.

Dans ce travail de thèse, je propose une méthode d’imagerie visant à quantifier les paramètres
de permittivité et de conductivité sur des sections 2D de la subsurface, à partir de données radar
acquises à la surface du sol. La technique mise en oeuvre est l’inversion des formes d’ondes,
qui vise à utiliser l’intégralité du champ d’ondes enregistré. Après leur propagation à travers
le milieu ausculté, les ondes radar contiennent en effet une information sur ses paramètres
qu’il s’agit d’extraire via un processus d’inversion, en comparant les données observées à des
simulations.

Dans une première partie, je présente les principes physiques et l’outil de simulation nu-
mérique utilisé pour simuler la propagation des ondes électromagnétiques dans les milieux
hétérogènes à deux dimensions qui seront la cible de l’imagerie. J’utilise pour cela un algorithme
de différences finies en domaine fréquentiel développé dans le cadre des ondes visco-acoustiques,
que j’adapte au problème électromagnétique 2D grâce à une analogie mathématique entre les
deux systèmes d’équations.

Dans une deuxième partie, le problème d’imagerie est formulé sous la forme d’une opti-
misation multi-paramètre puis résolu avec l’algorithme de quasi-Newton L-BFGS. Le choix
de cet algorithme est motivé par sa capacité à estimer sans surcoût numérique l’effet de la
matrice Hessienne, dont le rôle est crucial pour la reconstruction de paramètres de différents
types comme c’est le cas du couple permittivité-conductivité. Des tests numériques montrent
toutefois que l’algorithme reste sensible aux échelles utilisées pour définir les paramètres à
optimiser, soulignant de ce fait les limites de l’approximation L-BFGS. Dans un exemple syn-
thétique représentatif de la proche surface, il est cependant possible de reconstruire des cartes
2D de permittivité et de conductivité à partir de données de surface, en faisant intervenir à
la fois un facteur d’échelle et un facteur de régularisation visant à contraindre les paramètres
auxquelles l’inversion est la moins sensible. Ces facteurs peuvent être déterminés en analysant
uniquement la qualité du fit aux données, sans hypothèse a priori autre que la contrainte de
lissage introduite par la régularisation.



RÉSUMÉ

Dans une dernière partie, la méthode d’imagerie est confrontée à deux jeux de données
réelles. Dans un premier temps, l’examen de données expérimentales permet de tester la pré-
cision des simulations numériques vis-à-vis de mesures de grande qualité effectuées en envi-
ronnement contrôlé. La connaissance des cibles à imager permet de valider la méthodologie
proposée pour l’imagerie multiparamètre dans des conditions très favorables puisqu’il est pos-
sible de calibrer le signal source et de considérer l’espace libre environnant les cibles comme
modèle initial pour l’inversion. Dans un deuxième temps, j’envisage le traitement d’un jeu
de données radar multi-offsets acquises au sein d’un massif calcaire. L’interprétation de ces
données est rendue beaucoup plus difficile par la complexité du milieu géologique environnant,
et donc des données elles-mêmes, ainsi que par la méconnaissance d’un certain nombre de fac-
teurs : outre les propriétés de permittivité et de conductivité du milieu, le signal source et les
caractéristiques précises des antennes utilisées ne sont pas connus avec précision. L’application
de la méthode d’inversion des formes d’ondes à ces données requiert donc une étape préliminaire
impliquant une analyse de vitesse plus classique, basée sur les arrivées directes et réfléchies, et
des simulations numériques dans des modèles de subsurface hypothétiques à même d’expliquer
une partie des données. L’estimation du signal source est effectuée à partir d’arrivées sélec-
tionnées, bien expliquées par ces modèles. Simultanément, des valeurs pour la conductivité
et la hauteur des antennes sont évaluées, de façon à reproduire au mieux les amplitudes ob-
servées. Malgré cela, les données synthétiques ainsi obtenues ne reproduisent pas l’évolution
des amplitudes observées avec l’offset, ce qui suggère un effet du blindage sur le diagramme de
rayonnement des antennes. Néanmoins, un premier essai d’inversion montre que l’algorithme
est capable d’expliquer les données dans la gamme de fréquences considérée. Une ébauche des
principaux réflecteurs est reconstruite, même à basse fréquence et en partant d’un modèle lisse.
L’inversion des formes d’ondes a donc bien extrait de l’information des données pour nous livrer
une image, très préliminaire, de ce milieu complexe.
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Abstract

The quantitative characterisation of the shallow subsurface of the Earth is a critical issue for
many environmental and societal challenges. Ground penetrating radar (GPR) is a geophysical
method based on the propagation of electromagnetic waves for the prospection of the near
subsurface. With central frequencies between 10 MHz and a few GHz, GPR covers a wide
range of applications in geology, hydrology and civil engineering. GPR data are sensitive to
variations in the electrical properties of the medium which can be related, for instance, to its
water content and bring valuable information on hydrological processes. In this work, I develop
a quantitative imaging method for the reconstruction of 2D distributions of permittivity and
conductivity from GPR data acquired from the ground surface. The method makes use of the
full waveform inversion technique (FWI), originating from seismic exploration, which exploits
the entire recorded radargrams and has been proved successful in crosshole GPR applications.

In a first part, I present the numerical forward modelling used to simulate the propagation
of electromagnetic waves in 2D heterogeneous media and generate the synthetic GPR data
that are compared to the recorded radargrams in the inversion process. A frequency-domain
finite-difference algorithm originally developed in the visco-acoustic approximation is adapted
to the electromagnetic problem in 2D via an acoustic-electromagnetic mathematical analogy.

In a second part, the inversion scheme is formulated as a fully multiparameter optimisation
problem which is solved with the quasi-Newton L-BFGS algorithm. In this formulation, the
effect of an approximate inverse Hessian is expected to mitigate the trade-off between the
impact of permittivity and conductivity on the data. However, numerical tests on a synthetic
benchmark of the literature display a large sensitivity of the method with respect to parameter
scaling, showing the limits of the L-BFGS approximation. On a realistic subsurface benchmark
with surface-to-surface configuration, it has been shown possible to ally parameter scaling
and regularisation to reconstruct 2D images of permittivity and conductivity without a priori
assumptions.

Finally, the imaging method is confronted to two real data sets. The consideration of
laboratory-controlled data validates the proposed workflow for multiparameter imaging, as well
as the accuracy of the numerical forward solutions. The application to on-ground GPR data
acquired in a limestone massif is more challenging and necessitates a thorough investigation
involving classical processing techniques and forward simulations. Starting permittivity models
are derived from the velocity analysis of the direct arrivals and of the reflected events. The
estimation of the source signature is performed together with an evaluation of an average
conductivity value and of the unknown antenna height. In spite of this procedure, synthetic
data do not reproduce the observed amplitudes, suggesting an effect of the radiation pattern
of the shielded antennas. In preliminary tests, the inversion succeeds in fitting the data in the
considered frequency range and can reconstruct reflectors from a smooth starting model.
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General introduction

Near surface geophysical imaging and characterisation

The first tens to hundreds metres of the Earth’s subsurface is the location of natural phenom-
ena of prior importance for the understanding of environmental interactions, the management
of natural resources and the design of anthropic infrastructures. To understand processes such
as landslides, aquifer recharge or pavement damaging, a fine characterisation of the near sub-
surface is crucial. Although near surface environments are close to us, they are not always
directly accessible. Drilling a well or digging a trench to access directly the target of interest is
time-consuming and expensive, destructive and thus non-repeatable, and it provides generally
few local measurements. In near surface applications, it is often desirable to have a global view
over large areas, and to preserve the object of study (e.g. archaeological remains or hydrolog-
ical flows). Near surface geophysics aims at characterising the physical properties of shallow
environments with indirect methods which enable a non-invasive prospection.

Geophysical methods are very helpful in many fields of environmental geosciences and geo-
engineering such as geomorphology (Schrott and Sass, 2008; Kneisel et al., 2008; Jongmans and
Garambois, 2007), hydrogeophysics (Rubin and Hubbard, 2005; Vereecken et al., 2006), glaciol-
ogy (e.g. Vincent et al., 2012), archaeology (Scollar et al., 1990; Hesse, 1999; Gaffney, 2008),
and civil engineering (see Metje et al., 2007; or McCann and Forde, 2001, about non-destructive
testing). Depending on the properties of interest and on the aim of the survey in terms of targets
and penetration depth, various techniques are now available for environmental and engineering
geophysicists: gravimetry can detect density anomalies, seismic methods (reflection, refraction,
tomography, surface wave analysis) are sensitive to the mechanical properties of the ground,
and a wide range of techniques involves its electrical properties (induced or spontaneous po-
larisation; electrical resistivity tomography, ERT) or its electromagnetic ones (magnetometry;
time-domain reflectometry, TDR; electromagnetic induction, EMI; ground-penetrating radar,
GPR; radiometry).

First of all, we generally wish to see the structures of interest, whether lithological, hydro-
logical, or glaciological ones, which are inaccessible to our eyes: it is the purpose of geophysical
imaging. In a second time, further interpretations require to quantify the physical properties
involved in the mechanisms of interest – e.g. soil porosity, mechanical resistance or water
content – as well as their variation in space (horizontal mapping or imaging at depth) and in
time (monitoring). When speaking about imaging, we may thus distinguish between struc-
tural images, providing a qualitative view of the underground geometry, and property images,
quantifying some physical attributes. This thesis will deal with the quantitative imaging of the
subsurface using ground-penetrating radar data.
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In most cases, geophysical prospection only provides an indirect view of the targets. In a
qualitative approach, the spatial mapping of the measurements can already give a fairly good
idea of the geometrical structures in the underground (see Fig. 1). To go further, a quantitative
estimation of the property of interest, e.g. water content, can be derived from the measured
quantity, e.g. dielectric permittivity from TDR measurements, through theoretical or empirical
relations (Topp et al., 1980; Archie, 1942). In many cases, however, the searched parameters
cannot be directly derived from the raw measurements. A non-trivial process is often required
to infer the subsurface parameters from the acquired data, through the formulation of an
inverse problem. Inverse problems concern all geophysical methods, and more generally all
fields of science and technology where images or parameters must be inferred from observed
data (e.g. medical imaging or meteorological prediction). Schematically, solving the inverse
problem consists in finding the parameters of the considered system which best explain the data
acquired during the observation. The inversion process requires the simulation of the system
via a physical modelling. This simulation step is commonly referred to as the forward problem
and generally involves numerical implementations to treat realistic complex cases. Contrary
to the forward problem, which can be solved in a deterministic manner, the inverse problem is
generally ill-posed and does not possess unique solutions. The resolution of the inverse problem
thus invokes optimisation techniques to adjust the model parameters in order to fit the observed
data with the simulated data. My thesis covers these two aspects: simulation and inversion of
geophysical data, and more particularly of ground-penetrating radar data.

Ground-Penetrating Radar (GPR)

Principles of GPR measurements

For generalities on GPR, I refer to the book by Jol (2009) and to the recent review of Slob
et al. (2010).

Ground-penetrating radar is a non-invasive subsurface prospecting technique based on the
propagation of electromagnetic waves. Similarly to seismic reflection experiments, GPR mea-
surements consist in emitting an electromagnetic signal into the ground with a transmitting
antenna (or source), and in recording the resulting electromagnetic field after its propagation in
the subsurface with a receiving antenna (receiver). This recorded signal contains the signature
of the subsurface and analysing this signal provides information on the underlying structures.
In geophysical applications, the central frequency of the emitted signal generally ranges between
10 MHz and a few GHz, enabling the investigation of objects at various scales, from hundreds of
metres thick polar ice sheets to centimetres thick agricultural soils or concrete structures. The
penetration depth of the method is mainly controlled by the central frequency of the antennas
(the lower the frequency, the deeper the penetration) and by the electrical conductivity of the
sounded medium (electromagnetic waves being rapidly attenuated in conductive media).

GPR measurements can take different configurations. In this work, I do not deal with
satellite and airborne radar. Nor do I deal with off-ground GPR, which consists in frequency-
domain measurements using vector network analysers, with the antenna placed at a given
height above the ground (∼ 1 m, see e.g. Lambot et al., 2006; Yedlin et al., 2009). In my work,
I mainly focus on time-domain impulsional on-ground GPR. Most of my implementations can
also be applied to crosshole GPR configurations, but I do not consider this kind of data in my
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applications. The challenge of my work is precisely to bring full waveform inversion, which has
been already applied to crosshole GPR data, to on-ground GPR data.

Despite the recent developments of multi-channel radar systems, most of classical on-ground
GPR surveys consist in acquiring data over a profile using a single instrument, containing both
the transmitting and the receiving antennas (monostatic, or common-offset, measurements in
a nearby zero-offset configuration, see Fig. 1a). Modern acquisition systems now display in
real-time the corresponding GPR common-offset section, also called radargram or B-scan, and
even enable to improve the display by applying basic processing steps (filters, gain functions).
The amplitude of the recorded signal along time then forms a qualitative image of the buried
structures over the profile (see Fig. 1b). More precisely, it represents the reflectivity of the
interfaces or obstacles encountered by the electromagnetic waves which propagated through
the medium and were reflected or scattered back to the receiving antenna. For instance, in
Fig. 1b, the contact between the glacier and the bedrock can be distinguished in the lower and
upper parts of the profile. However, some artefacts on this image should not be understood
as physical structures: It is the case of the hyperbolae visible around 140 m which result
from the diffraction of the signal on punctual obstacles caused by an irregular water pocket.
Moreover, such a raw common-offset section should not be interpreted directly as a geometrical
representation of the medium, since some of the observed signal might come from out-of-plane
reflections. Finally, its vertical axis is expressed in terms of recording time. To convert the axis
in units of depth, and make the section representative from the geometry of the medium, the
propagation velocity of the GPR signal in the medium must be known.

1.7. L’ACQUISITION MULTIOFFSET

1.7 L’acquisition multioffset
Les mesures à offset constant peuvent être réalisées à partir d’une seule antenne :

l’offset est alors dit nul par abus de langage. En effet, l’antenne est composée en
réalité de deux éléments rayonnants séparés, l’un pour l’émission, l’autre pour la
réception. Pour obtenir des mesures à offset variés, il est possible d’utiliser deux
antennes. On peut alors réaliser des mesures selon les configurations typiques des
méthodes d’imageries sismiques, basées également sur les propagations d’ondes, fi-
gure (1.12).
A l’inverse de la sismique, où les récepteurs et les émetteurs peuvent être vus comme

Fig. 1.12: Quelques modes d’acquisitions multisources, multirécepteurs, classiques
en géophysique.

ponctuels vis à vis de l’onde propagée, les antennes radar, dont les tailles sont in-
versement proportionnelles à la longueur d’onde souhaitée, deviennent conséquentes
en termes de dimensions. Par exemple une antenne de type MALA, blindée et de
fréquence centrale de 500 MHz, a des dimensions de 0.50m × 0.30m × 0.16m, et
une antenne blindée du même constructeur de fréquence centrale de 250MHz, a des
dimensions plus importantes, 0.74m × 0.44m × 0.16m, figure (1.13).
En revanche, et à l’inverse de la sismique, les sources peuvent être considérées

comme parfaitement reproductibles dans un milieu donné. En effet, le GPR émet
une série d’impulsions temporelles de quelques nanosecondes avec une forme d’onde
apparentée à un Ricker, permettant une émission suffisamment large bande et ainsi
une bonne résolution temporelle. L’acquisition multi-offset peut être réalisée de deux
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Figure 1: During a GPR common-offset measurement, the transmitter T and the receiver R
are moved together along the acquisition profile, while keeping fixed the offset between them (on
the left, from Lopes, 2009). On the right: Example of a GPR common-offset section acquired
on the Glacier de Tête Rousse (Mont Blanc massif, France) in May 2010 (Vincent et al., 2010).

The case of Fig. 1 is rather simple since the glacier can be considered almost homogeneous
and the velocity of electromagnetic waves in the ice is well known. Eventually, this velocity
could also be determined from the diffraction hyperbolae whose shape depends on velocity. In
the general case, however, common-offset GPR measurements are not a robust way to derive
quantitative information on the medium because the presence of hyperbolae due to scattering
is never guaranteed. A much more systematic method to estimate this velocity is the use
of bistatic, or multi-offset, GPR measurements by varying the distance, or offset, between
independent transmitting and receiving antennas (see Fig. 2). Such an acquisition can be
achieved either by moving the receiver while letting the source fixed (we may then speak about
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a shot gather, adopting the terminology of seismic reflection), or by moving the source while
letting the receiver fixed (we then obtain a receiver gather), or by moving both the source and
the receiver away from a Common Mid Point (CMP gather). Multi-offset measurements can be
carried out if two independent GPR antennas are available but they are not routinely operated
since they dramatically increase the duration of the survey, and thus decrease the potential of
GPR to cover large areas in a reduced time. Though, multi-offset surveys possess the strong
advantage of providing a much more quantitative information since they enable the estimation
of the dielectric permittivity by velocity analysis (hyperbola fitting or semblance analysis) and
of the electrical conductivity through Amplitude-Versus-Offset analysis (AVO, see e.g. Deeds
and Bradford, 2002; Bradford and Deeds, 2006; Deparis and Garambois, 2009).

1.7. L’ACQUISITION MULTIOFFSET

1.7 L’acquisition multioffset
Les mesures à offset constant peuvent être réalisées à partir d’une seule antenne :

l’offset est alors dit nul par abus de langage. En effet, l’antenne est composée en
réalité de deux éléments rayonnants séparés, l’un pour l’émission, l’autre pour la
réception. Pour obtenir des mesures à offset variés, il est possible d’utiliser deux
antennes. On peut alors réaliser des mesures selon les configurations typiques des
méthodes d’imageries sismiques, basées également sur les propagations d’ondes, fi-
gure (1.12).
A l’inverse de la sismique, où les récepteurs et les émetteurs peuvent être vus comme

Fig. 1.12: Quelques modes d’acquisitions multisources, multirécepteurs, classiques
en géophysique.
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dimensions plus importantes, 0.74m × 0.44m × 0.16m, figure (1.13).
En revanche, et à l’inverse de la sismique, les sources peuvent être considérées

comme parfaitement reproductibles dans un milieu donné. En effet, le GPR émet
une série d’impulsions temporelles de quelques nanosecondes avec une forme d’onde
apparentée à un Ricker, permettant une émission suffisamment large bande et ainsi
une bonne résolution temporelle. L’acquisition multi-offset peut être réalisée de deux
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Figure 2: During a GPR multi-offset measurement, transmitting and receiving antennas are
moved away from a common mid point, CMP (on the left, modified from Lopes, 2009). On the
right: Example of a CMP gather where the principal events are indicated: the direct air-wave
AW , the direct ground-wave GW and a reflected wave R1 (from Annan, 2001).

GPR applications

Thanks to its multi-scale capability, GPR is widely applied in geosciences and geo-engineering.
Historically, GPR was first employed in glaciological applications for estimating the thickness
of polar ice sheets (Walford, 1964; Bailey et al., 1964; Bentley, 1964). Since electromagnetic
waves propagate very well in the ice, GPR is still intensively used for this purpose (Saintenoy
et al., 2013), but also to estimate the snow water equivalent (Bradford et al., 2009b), to monitor
the evolution of the snowpack (Heilig et al., 2010), to image under-ice structures (Vincent et al.,
2010) or even to detect buried avalanche victims (Instanes et al., 2004; Olhoeft and Modroo,
2006). In the same vein, I can also mention the exotic use of satellite-borne GPR to image the
Martian polar ice sheets (Plaut et al., 2007).

In geological surveys, GPR enables to visualise the stratification in sediments (Davis and
Annan, 1989; Bristow and Jol, 2003; Neal, 2004, for an exhaustive review), to characterise rock
fractures (e.g. Grégoire, 2001; Grégoire and Hollender, 2004; Grasmueck et al., 2005; Jeannin,
2005; Jeannin et al., 2006; Deparis, 2007; Deparis and Garambois, 2009; Dorn et al., 2012), or
to image active faults (e.g. McClymont et al., 2008; Beauprêtre, 2013; Beauprêtre et al., 2013).
It is also used for mineral resources evaluation (see Francke, 2012, for a review).
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Thanks to its great sensitivity to the presence of water, GPR is widely applied for hydro-
logical purposes. In the emerging field of hydrogeophysics, it is particularly appreciated for its
capability to prospect quickly at the field scale, bridging the gap between local measurements
(core samples; time-domain reflectometry, TDR) and remote sensing at the regional scale (Ru-
bin and Hubbard, 2005; Weihermüller et al., 2007). GPR is thus operated to evaluate the
soil water content in the superficial part of agricultural soils (either using the ground-wave
method, e.g. Sperl, 1999; Huisman et al., 2003; or more sophisticated inversions, e.g. Lambot
et al., 2006), and to estimate the groundwater salinity (al Hagrey and Müller, 2000) or the
contamination of the aquifer by organic pollutants (Deeds and Bradford, 2002; Poisson et al.,
2009). It is also used to detect the water table level and to monitor water infiltration and flow
paths (Doolittle et al., 2006; Saintenoy et al., 2008; Grasmueck et al., 2010; Moysey, 2010), as
well as for tracers monitoring (Day-Lewis et al., 2003; Tsoflias and Becker, 2008).

In archaeology, GPR is employed as a quick and simple method to detect suitable locations
for excavations (Vaughan, 1986). Today, refined imaging methods provide self-consistent results
which make the expensive and destructive excavations less and less required (Conyers, 2007;
Forte and Pipan, 2008; Böniger and Tronicke, 2010b).

GPR is also intensively exploited in civil engineering to detect buried anthropic structures
in urban contexts (Goodman, 1994; Grandjean et al., 2000; He et al., 2009), to inspect road
pavements (Evans et al., 2008), or to estimate the dielectric properties in concrete, which give
an idea of their damaging (Bungey, 2004; Ihamouten et al., 2012). Many recent methodologi-
cal developments have been done in this problematic, involving, among others, full waveform
inversion (e.g. Kalogeropoulos et al., 2013).

Finally, GPR is applied as a detection method in forensic applications (see Pringle et al.,
2012, for a review). It is for instance very useful for land mine detection (Daniels, 2006, 2008),
since GPR can detect mines made of plastic, unlike classical metal detectors. It can also be
used in avalanche victims detection (Modroo and Olhoeft, 2004; Olhoeft and Modroo, 2006;
Fruehauf et al., 2009). Doppler methods even enable to detect the breathing and heartbeat of
human beings under collapsed buildings (Grazzini et al., 2010).

GPR processing and imaging

Thanks to its similarity with seismic reflection, GPR benefits from most of the seismic process-
ing methods developed for exploration geophysics (Yilmaz, 1987). A classical GPR processing
flow hence consists in data filtering and/or deconvolution, velocity analysis on the CMP gathers
by semblance analysis or hyperbola fitting, and migration (Cassidy, 2009b). GPR interpreta-
tion also involves the analysis of signal attributes (Cassidy, 2009b; Sassen and Everett, 2009;
Böniger and Tronicke, 2010a) and textures (see Leparoux, 1997, or Moysey et al., 2006 for a
tentative to quantify textural analysis).

Nevertheless, GPR also presents specific features due to its electromagnetic background.
Cassidy (2009b) points out the following elements:

– electromagnetic waves generally undergo a greater degree of scattering and interference
than seismic waves because the size of the heterogeneities in natural materials is closer
to the incident wavelength,

– attenuation and dispersion effects are more extreme in GPR than in seismics, and should
not be neglected. It is the reason why conductivity is considered in most GPR inversion
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schemes, while seismic inversion often rely on lossless approximations. According to
Turner and Siggings (1994), the distortion of the GPR signal also explains why the
different deconvolution methods used in seismic surveys, based for the most part on the
stationary phase principle, are not effective on radar data.

– the source wavelet of time-domain impulsional GPR systems, as well as the spatial distri-
bution of the radiated energy, are more complex than for the seismic active sources used
in the oil industry. The source signature and radiation pattern strongly depends on the
type of the antenna (Arcone, 1995) but also on antenna-ground coupling which may vary
over the profile (Lampe and Holliger, 2003; Maurer et al., 2012; Diamanti et al., 2013),

– depolarisation effects may occur during interface conversions (Lutz et al., 2003), in which
case the common approximation of 2D acquisition and propagation is not valid anymore.

These points have important consequences on the design of accurate simulation tools. On the
applicative point of view, GPR data processing may also be more site-dependent than seismic
interpretation (Cassidy, 2009b).

Among the above mentioned interpretation methods, the migration step should appeal our
attention since it is an imaging process in essence. The migration process consists in refocusing
the scattered energy on local diffracting points in the medium. To do so, migration techniques
rely on imaging conditions which always follow the fundamental principle of time coincidence
of up and down going waves, enunciated by Claerbout (1971). This principle can be retrieved
in many imaging methods, including seismic reverse-time migration but also its acoustic and
electromagnetic equivalent of time-reversal mirrors (see e.g. Fink et al., 2000). As presented in
Chapter 2, it is also the backbone of full waveform inversion.

However, a good knowledge of the velocity distribution in the medium is required to perform
an accurate migration. Otherwise, correlations induce non-constructive interferences between
incident and back-propagated fields and energy does not focus accurately at diffracting points.
It results in artefacts and in a blurred image. As an example, Fig. 3 shows the section of
Fig. 1 after migration using the ice velocity to define a homogeneous velocity model. On this
image, hyperbolae on the bottom of the glacier and on the top of the water pocket (between
110 and 170 m) have been refocused such that the glacier-bedrock and glacier-water interfaces
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Figure 3: Migrated GPR section of the Glacier de Tête Rousse.
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can be followed more clearly. Conversely, non-hyperbolic artefacts have been enhanced (see for
instance at the beginning of the profile).

While migration constitutes the final step of an accurate qualitative imaging process, quan-
titative imaging requires the inversion of the recorded GPR data to infer the values of per-
mittivity and conductivity in the subsurface. This major distinction leads Berkhout (2012) to
differentiate structural and property images. Up to now, quantitative seismic methods based
on multi-offset measurements have been adapted to GPR imaging using velocity analysis (e.g.
Fischer et al., 1992a), amplitude-versus-offset studies (e.g. Deeds and Bradford, 2002; Deparis
and Garambois, 2009) and travel-time and amplitude tomography (Cai et al., 1996; Holliger
et al., 2001; Gloaguen et al., 2005; Musil et al., 2006; Hinz and Bradford, 2010). These me-
thods, however, make use of a limited part of the data, as shown in Fig. 4 in the case of the
AVO analysis of a reflected event. This limitation results in a limited number of targets, e.g.
a given fracture for the AVO analysis of Fig. 4, or in a limited spatial resolution in the case of
travel-time tomography. Moreover, first-arrival time tomography is more adapted to crosshole
GPR data, using the arrival-time of the signal which is transmitted between the boreholes, than
to on-ground, surface data (unlike seismic refraction data, on-ground GPR data do not contain
any exploitable refracted event). Very few studies tackle the problem of reflection tomogra-
phy (Bradford, 2006, 2008; Bradford et al., 2009a; Hinz and Bradford, 2010). Finally, both
AVO analysis and travel-time tomography presume that remarkable phases (direct or reflected
events) can be clearly identified, which can be difficult in highly heterogeneous media.

Unlike these methods, full waveform inversion is a quantitative imaging technique that aims
at exploiting the integrality of the recorded GPR signal.
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Figure 4: AVO analysis of a reflected event for
the quantitative characterisation of a fracture in
terms of depth, aperture and filling properties
(from Deparis and Garambois, 2009).

Full Waveform Inversion (FWI)

Principles, history, and challenges

The full waveform inversion method originates from the time-domain seismic imaging (Lailly,
1983; Tarantola, 1984). It benefits from the adaptation of adjoint methods, which were develo-
ped in the meteorological data assimilation community (Lions, 1972) to geophysical problems
(Chavent, 1974).

23



GENERAL INTRODUCTION

Full waveform inversion is an example of inverse problem where we seek the subsurface
parameters which best explain the recorded waveforms. It is generally stated as an optimisation
problem through the definition of a misfit function that measures the distance between the
observed data and synthetic waveforms computed in a hypothetical subsurface model. In the
aim of 2D or 3D imaging, the size of the parameter space generally prevents the use of global
optimisation methods and the misfit function is minimised using local optimisation techniques.
In complex, heterogeneous media, the local search involved in FWI may be trapped into local
minima if a good starting model is not available. To tackle this issue, a frequency-domain
formulation of the FWI has been developed (Pratt and Worthington, 1990; Pratt et al., 1998).
The frequency-domain approach enables to mitigate the non-linearity of the inverse problem by
following a low to high frequency hierarchy (Pratt and Worthington, 1990; Sirgue and Pratt,
2004). It also makes an efficient use of the data by inverting only few frequency components,
taking benefit of the data redundancy provided by the acquisition (Sirgue and Pratt, 2004).
Frequency-domain FWI is thus able to deal with the huge datasets of the oil industry. Synthetic
and real seismic applications of this approach have been very successful (see Virieux and Operto,
2009, for an overview), both for hydrocarbon prospecting and for academic purposes (e.g.
Ravaut et al., 2004; Operto et al., 2006; Prieux et al., 2013).

Nowadays, seismic FWI is still a dynamic field of investigations. All these developments
are an enormous source of inspiration for adapting the FWI to GPR data.

FWI of GPR data: state of the art

The interest of FWI for GPR data has been first demonstrated for water content estimation in
the first centimetres of agricultural soils from off-ground GPR data (e.g. Lambot et al., 2004,
2006; Jadoon et al., 2010; Minet et al., 2011) and for the estimation of permittivity and con-
ductivity in stratified structures such as concrete (Kalogeropoulos et al., 2011, 2013; Patriarca
et al., 2011) or layered soils (Busch et al., 2012, 2014). These studies are mostly formulated
in the frequency-domain and restrict themselves to 1D geometries (multilayered media). As
a consequence, they provide a robust parameter estimation and can account for dispersion,
but they do not enable to consider arbitrary heterogeneous distributions of permittivity and
conductivity in the subsurface.

A first step towards 2D imaging of permittivity and conductivity by FWI has been per-
formed on GPR crosshole sections by Ernst et al. (2007), in the time-domain. These authors
used a time-domain finite-difference modelling (Ernst et al., 2006) which enabled only a scalar
representation of the fields. Permittivity and conductivity were reconstructed alternatively, by
fixing conductivity when updating permittivity, and vice-versa. Their algorithm has then been
improved by Meles et al. (2010) who introduce a full vector representation of the fields and a
simultaneous reconstruction of permittivity and conductivity. Since then, the algorithm has
been applied to various crosshole datasets for the imaging of the vadose zone (Klotzsche et al.,
2010, 2012, 2013; Yang et al., 2013).

In parallel, some authors developed frequency-domain FWI schemes of GPR data. For in-
stance, Yang et al. (2012) adapted the algorithm of Meles et al. (2010) in the frequency-domain.
El Bouajaji et al. (2011) designed a frequency-domain FWI scheme based on a discontinuous
Galerkin formulation of the forward problem and on a conjugate gradient optimisation tech-
nique. Ellefsen et al. (2011) propose to invert for the real and imaginary parts of the frequency-
domain slowness in an alternating manner. Finally, I should mention the work of Cordua et al.
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(2012) in the time-domain, who consider a coarse representation of the subsurface enabling the
use of global optimisation methods to explore the parameter space and evaluate uncertainties
on the estimated parameters.

Among the existing literature, only Saintenoy (1998), Lopes (2009) and El Bouajaji et al.
(2011) tackle the interpretation of surface-based GPR measurements for the quantitative ima-
ging of 2D sections of the medium. However, these authors restrict their investigations to
monoparameter inversions, reconstructing only the permittivity distribution. In this work, I
propose a FWI method for the simultaneous inversion of permittivity and conductivity in 2D,
following the work of Ernst et al. (2007) and Meles et al. (2010), but with a particular interest in
data acquired in surface-to-surface multi-offset configuration (on-ground GPR). Surface-based
GPR measurements induce a limited illumination of the subsurface which makes the application
of FWI particularly challenging.

Objectives of the thesis

The general aim of this work is the development of a full waveform inversion scheme for the
quantitative imaging of permittivity and conductivity in 2D vertical sections of the subsurface
from on-ground GPR data. To achieve this goal, several intermediate steps must be performed:

1. the accurate and efficient modelling of electromagnetic wave propagation in heterogeneous
media,

2. the formulation of the full waveform inversion problem in a multiparameter framework,

3. the adequate data pre-processing and the design of an initial model for starting the FWI
process from on-ground GPR data.

Questions related to these points are:

Q1. What numerical method should be used for the resolution of Maxwell’s equations?

Q2. What parameters can be reconstructed from on-ground GPR data?

Q3. How to design an accurate starting model from surface-based measurements?

Q4. Which processing should be applied to real field data prior and during inversion?

Outline of the manuscript

The manuscript is organised with regards to the three main parts of my work, which also
correspond to the three above-mentioned steps, namely the resolution of the forward problem
(Chapter 1), the formulation of the multiparameter inverse problem (Chapter 2), and the
application of the imaging method to real datasets (Chapter 3).

The topics related to this work concern a very wide panel, going from electromagnetic
theory to GPR data processing, through computational modelling methods and numerical
optimisation. Of course, I do not pretend to cover all these fields in an exhaustive way. Instead,
I made efforts both to provide short reviews on the related issues but also to concentrate the
message on the specific choices I have made in my effective work.

Chapter 2 and Chapter 3 include two articles that I have submitted during my PhD. For
consistency, I have included them in the form they were submitted. As a consequence, there
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are some redundancies between their introductory sections and other parts of the manuscript.
On the other hand, the reader will find more technical details and discussions in the thesis than
in these articles. In particular, a special care has been taken throughout the manuscript for
validating the methodological tools I have adapted to the GPR FWI problem.

In Chapter 1, I begin with a short presentation of electromagnetism theory, with a focus on
the electrical properties of natural media. I then introduce the numerical method used for the
resolution of the forward problem, which consists in a particular – optimised – finite-difference
scheme. I present the specificities of this scheme and validate my numerical implementation,
whose accuracy is critical for further applications.

In Chapter 2, I consider the inverse problem formulation and its resolution with a focus
on quasi-Newton schemes of optimisation which enable to properly address the multiparameter
problem of reconstructing both permittivity and conductivity distributions in the subsurface.
The main part of this chapter consists in a paper published in the Geophysical Journal Interna-
tional (Lavoué et al., 2014). This work presents the proposed methodology for multiparameter
imaging. Following the paper, I provide additional details on technical points which could not
be developed in the article. In particular, I derive the expression of the gradient of the misfit
function and give illustrative examples of its signification.

Chapter 3 presents two applications of the proposed imaging method to real datasets.
I first proceed to a validation of the methodology against well-controlled experimental data
which were acquired at the Institut Fresnel (Marseille, France). This work, which has been
submitted to the journal Near Surface Geophysics (Lavoué et al., 2015), is also the opportunity
to confront the accuracy of the numerical solutions to real physical data. In a second section,
I consider more complex field data for the imaging of a limestone reservoir at the Low Noise
Underground Laboratory (LSBB, Rustrel, France). Field data requires first a thorough inves-
tigation involving a classical processing workflow (velocity analysis and migration) to design
a suitable initial model and estimate the source signature before starting the FWI process.
Preliminary results on this data set will illustrate the promise of applying FWI to on-ground
GPR data, as well as the specific difficulties encountered to treat such data.

Finally, I conclude on the capacity of FWI to extract reliable information about permittivity
and conductivity distributions from on-ground GPR data. This work offers many perspectives
to improve the imaging procedure, concerning both the modelling and the inversion points of
view.
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The forward problem
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Introduction

In this chapter, I introduce the physical principles and the numerical implementations used to
solve the forward problem in the inversion process, i.e. to simulate the propagation of electro-
magnetic waves in 2D heterogeneous media. As I am interested in quantifying electromagnetic
parameters in the subsurface, I first detail how they are involved in electromagnetic equations,
and how it is possible to parameterise them. I also highlight the basic assumptions considered in
this work, in particular the restriction to a two-dimensional geometry. This assumption enables
the use of an acoustic-electromagnetic analogy for adapting a numerical modelling algorithm
that was originally developed for seismic purposes. I present the main features of this numerical
tool and show validation results for my implementation of electromagnetic parameters.



THE FORWARD PROBLEM

1.1 Notions of electrodynamics in material media

This section introduces the basic concepts of electromagnetic theory and some specific points
involved later in the numerical implementations. In particular, I will explain the implications of
some assumptions which are commonly used but rarely fully commented in the literature. This
presentation is mainly based on the books by Chew (1995) and Taflove and Hagness (2005), as
well as on readings in Landau and Lifchitz (1969) and Feynman et al. (1979).

The equations of electrodynamics and their interpretation are first presented in the time
domain, as it is our physical space. I then move to the frequency domain for the rest of
the manuscript because, following Yuffa and Scales (2012), it is in the ”non-physical, but highly
useful, Fourier domain” that I will perform my simulations and inversions. The electromagnetic
properties of natural media will be discussed, since they are those I want to quantify by inverting
GPR data. I thus detail the dielectric response models that provide parameterisations for these
properties. In particular, I comment the so-called universal response of Jonscher (1977), which
is widely used in geophysical applications but in a truncated form which is rarely discussed.
I also comment the consequences of assuming a simpler parameterisation, which will be used
further for the inversion.

1.1.1 Maxwell’s equations and constitutive relations

The behaviour of electromagnetic waves has been completely and coherently described by
Maxwell (1873), based on the previous work of Faraday, Ampère and Gauss. Maxwell’s equa-
tions can be expressed in a differential form as

∇×E(r, t) = −∂B(r, t)

∂t
, Maxwell-Faraday’s equation, (1.1)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t), Maxwell-Ampère’s equation, (1.2)

∇ ·D(r, t) = q(r, t),
Maxwell-Gauss’ equations,

(1.3)

∇ ·B(r, t) = 0, (1.4)

where E is the electric field with an amplitude in V/m, H is the magnetic field in A/m, D
is the electric induction (or electric displacement) in C/m2, B is the magnetic induction in
T, J is the conduction current density in A/m2, and q denotes the electric charge density in
C/m3. The variable r is the position vector (with coordinates in m) and t denotes time (in s).
Following Yuffa and Scales (2012), I stress that all fields and variables are real quantities here.

According to the so-called right-hand rule, Faraday’s law indicates that a time-varying
magnetic flux B generates an electric field E which rotates around B. Similarly, Ampère’s
equation indicates that a current J or a time-varying electric flux D generates a rotating
magnetic field H. The physical mean of Maxwell-Gauss’ equations is that an electric charge
density q is the source of an electric flux D, whereas an equivalent source of magnetic flux does
not exist. The reader can refer to Chew (1995, §1.1.2, p. 3) for an integral form of Maxwell’s
equations and their interpretation.
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Time-domain constitutive relations

Maxwell’s equations system is very general but under-determined, because its equations are not
linearly independent. For instance, assuming fields without constant components, we can derive
the second Gauss’ law ∇ · B = 0 (1.4) by taking the divergence of Faraday’s equation (1.1),
because ∇ · ∇× = 0. Similarly, taking the divergence of Ampère’s equation (1.2), and using
the conservation law for the electrical charge

∇ · J(r, t) +
∂q(r, t)

∂t
= 0, (1.5)

returns the first Gauss’ law ∇ ·D = q (1.3). In the following, I thus consider only Faraday’s
and Ampère’s equations (1.1) and (1.2), and I omit the later Gauss’ equations (1.3) and (1.4)
which can be deduced from the former.

Mathematically, we need additional relations to determine the electromagnetic fields in-
volved in Maxwell’s equations. On a physical point of view, we can also notice that Maxwell’s
equations do not implicate explicitly the properties of the material media we want to investigate
with GPR measurements. To represent the response of natural media and solve these equa-
tions, the induction vectors are related to the fields vectors through the constitutive equations.
In vacuum, these relations are simply

D(r, t) = εoE(r, t), (1.6)

B(r, t) = µoH(r, t), (1.7)

where εo ' 8.85× 10−12 F/m is the dielectric permittivity of vacuum and µo = 4π× 10−7 H/m
is its magnetic permeability.

In dielectric material media such as rocks and soils, the electromagnetic response is more
complex since imposing an electric field E to the material induces a polarisation, i.e. the
orientation of the electrical moments of bounded charges (e.g. electrons linked to their atoms
or dipolar molecules such as water) in a given direction. Similarly, applying a magnetic field
induces a magnetisation, i.e. the orientation of the magnetic moments of magnetic particles. In
linear, isotropic media, polarisation P and magnetisation M can be described as the moment
vectors

P(r, t) = εoχe(r, t) ∗E(r, t), (1.8)

M(r, t) = µoχm(r, t) ∗H(r, t), (1.9)

where ∗ denotes time convolution, χe is the dielectric susceptibility of the medium, which
describes the capability of molecules to get an electrical polarisation when they are embedded
in an electric field E, and χm is the magnetic susceptibility, which is the capacity of the
particles to get a magnetisation under a magnetic field H. Induction vectors thus results from
the response of vacuum (eqs 1.6 and 1.7), plus the induced polarisation and magnetisation of
the medium, which can be summarised in the following constitutive equations:

D(r, t) = ε(r, t) ∗E(r, t), (1.10)

B(r, t) = µ(r, t) ∗H(r, t), (1.11)

where ε = εo(1 +χe) is the dielectric permittivity of the medium (in F/m) and µ = µo(1 +χm)
is its magnetic permeability (in H/m). In a conductive medium, an additional relation comes
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from Ohm’s law which relates the conductive currents Jc to the electric field E via

Jc(r, t) = σ(r, t) ∗E(r, t), (1.12)

where σ is the electrical conductivity (in S/m). The total current J appearing in Ampère’s
equation (1.2) is then the sum of the conductive currents Jc generated by the electric field and
of the source current Js injected in the GPR antenna:

J(r, t) = Jc(r, t) + Js(r, t). (1.13)

In practice, Js(r, t) is non-zero only at the transmitting antenna position and during the emis-
sion of the GPR pulse.

The constitutive equations and Ohm’s law constitute the material’s relations which describe
the response of the medium to the applied electric and magnetic fields. The electromagnetic
parameters ε(r, t), µ(r, t) and σ(r, t) are thus the response functions of the medium along time,
corresponding to dielectric, magnetic, and conductive mechanisms, respectively. I already
mention that I consider linear, isotropic media. More fundamentally, I also implicitly assume
that the polarisation P does not depend on the applied magnetic field H but only reflects
the response of the material to the electric field E. Such a dependence of polarisation on the
magnetic field can be encountered in the optical frequency range where it implies magneto-optic
effects but we will not consider them here. Moreover, I also assume that the polarisation P
is locally related to the electric field E and does not suffer from spatial dispersion. In optics,
spatial dispersion can be encountered in materials that are said to be optically active, such as
some chiral molecules or crystals. Again, I disregard this possibility. Linearity and isotropy,
however, are important assumptions about the properties of the medium and I shall now detail
their implications.

Linearity In the constitutive relations (1.10) to (1.12), it is assumed that the medium res-
ponds linearly to the applied electric and magnetic fields. Mathematically, it is formalised by
the fact that the parameters ε, µ and σ do not depend on the imposed fields E and H. Phys-
ically, it means that the polarisation (/magnetisation) of the particles are proportional to the
applied electric (/magnetic) field: polarisation and current vectors are co-linear to the electric
field, while magnetic moments are co-linear to the magnetic field. The linearity of the response
with respect to the excitation is a property of prior importance and I will often use it in my
developments of simulation and inversion algorithms.

Isotropy The constitutive relations also consider an isotropic medium: electromagnetic pa-
rameters are scalar values and not tensors, so that the polarisation and magnetisation capability
of the particles, as well as their conductivity, does not depend on the direction from which the
applied fields are coming. Except in the work of Carcione (1996) and Carcione and Schoenberg
(2000), who seek for generality, anisotropy is generally not considered in GPR applications.
Indeed, the notion of isotropy depends on the scale at which the medium is described: in this
sense, we may distinguish between an intrinsic anisotropy, which is described by a tensor, and
a structural anisotropy, that results from the anisotropic arrangement of isotropic materials
described by the relations (1.10) to (1.12).

Heterogeneity Electromagnetic parameters ε, µ and σ depend on the position in space r,
which simply means that the medium is heterogeneous. It is an obvious but nonetheless impor-
tant feature to describe natural media, which can be very heterogeneous at the scale of GPR
investigations.
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Time-dependence These parameters also vary with time: natural media are non-perfect
dielectrics, conductors and magnets. As a consequence, they present a transient response
to the applied electric and magnetic fields. If we consider the polarisation phenomenon, it
means that the individual electrical moments of charged particles do not align instantaneously
with the vector E but present some inertia (relaxation process). The resulting macroscopic
polarisation P is well aligned with the electric field, but its intensity varies with time until the
orientations of all microscopic moments stabilise. To respect physical causality, i.e. the fact
that the response (e.g. polarisation) can not precede the cause (the imposed electric field),
the dielectric response function ε(t) must be zero before the time to when the electric field is
applied. The magnetic permeability and the electrical conductivity follow the same rule for
the establishment of magnetisation and of conductive currents, respectively. The flow of free
charges represented by the current Jc(r, t) is thus proportional to the applied electric field, but
its intensity can vary with time. In the case of electrolytic conduction such as occurring in
natural media, a delay in the establishment of the currents can be due to the viscosity of the
interstitial fluid carrying the ions.

Arrived to this point, I may specify that my work will focus on the electrical properties
of the subsurface, i.e. on the dielectric permittivity ε and on the electrical conductivity σ,
since natural media are generally non-magnetic. Formally, the magnetic permeability µ(r, t)
will depend on space and time in the equations and will be allowed to vary in my numerical
implementations. But the reader can keep in mind that in my applications, permeability takes
the constant value of vacuum µo = 4π . 10−7 H/m. By convention, one commonly refers to
the relative permeability µr = µ/µo = 1. Similarly, it is usual to speak about the relative
permittivity εr = ε/εo.

Time-domain wave equation

In order to show the wave nature of electromagnetic fields, Faraday’s equation (1.1) and Am-
père’s equation (1.2) can be combined with the constitutive relations (1.10) to (1.12). In the
simple case of a homogeneous, time-invariant and source-free medium, it yields the following
damped wave equation

∇2u(r, t)− εµ
∂2u(r, t)

∂t2︸ ︷︷ ︸
propagation

−σµ∂u(r, t)

∂t︸ ︷︷ ︸
diffusion

= 0, (1.14)

with the field u being either E or H. This equation first shows that the electric and magnetic
fields are waves propagating at the same velocity v = 1/

√
εµ and undergoing the same diffusion

effects, with a diffusivity κ = 1/(σµ). Considering plane waves of the form u ∼ eık·r and
recalling Faraday’s equation, it is also possible to retrieve the well-known rule that the fields
E, H and the wavenumber vector k are mutually orthogonal and form a right-handed system
(Chew, 1995, §1.2.3, p. 13). More importantly, equation (1.14) gives us a first insight on the
effects of permittivity and conductivity on the electromagnetic waves: permittivity controls the
wave propagation, whereas conductivity appears in the diffusion term.

To obtain the wave equation (1.14), I assumed a homogeneous, time-invariant medium. It
is also possible to derive a wave equation for inhomogeneous media (see Chew, 1995, §1.2.1,
p. 11) but the assumption of time-invariance can not be dropped off. In time-varying media,
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it is not possible to define a constant velocity v, which is generally difficult to account for in
the time-domain. Mathematically, this difficulty comes from the time-convolution products
involved in the constitutive relations, which make the material response non-local in time. To
consider the effect of the transient electrical response on the electromagnetic waves more easily,
it is convenient to switch to the frequency domain.

Frequency domain

Assuming time-harmonic wavefields, or performing a Fourier transformation of Maxwell’s sys-
tem with respect to time1, enables to express equations (1.1) to (1.4) in the frequency domain:

∇×E(r, ω) = ıωB(r, ω), (1.15)

∇×H(r, ω) = −ıωD(r, ω) + J(r, ω), (1.16)

∇ ·D(r, ω) = q(r, ω), (1.17)

∇ ·B(r, ω) = 0, (1.18)

where the fields are now complex quantities depending on the angular frequency, or pulsa-
tion, ω (in rad/s). By convention, I assume here a time-harmonic dependency in e−ıωt. The
corresponding Fourier transformations to pass from the time to the frequency domains are

f(ω) =

∫ +∞

−∞
f(t)eıωtdt, (1.19)

and f(t) =
1

2π

∫ +∞

−∞
f(ω)e−ıωtdω, (1.20)

where f denotes the function of interest. Please note that I use the same notation for time-
domain and frequency-domain quantities. I shall also underline that this Fourier convention
leads to opposite signs for the imaginary parts of complex quantities compared to the notations
used, for example, by Hollender and Tillard (1998) and Taflove and Hagness (2005). It is the
same convention as in Press et al. (1992), Chew (1995) and Virieux (1996).

In the frequency domain, the constitutive equations and Ohm’s law read

D(r, ω) = ε(r, ω) E(r, ω), (1.21)

B(r, ω) = µ(r, ω) H(r, ω), (1.22)

Jc(r, ω) = σ(r, ω) E(r, ω), (1.23)

where time-convolution products have been replaced by multiplication, which greatly simplify
the consideration of the transient response. Since they are the Fourier coefficients of the cor-
responding real-valued response functions in the time-domain, the electromagnetic properties
ε(r, ω), µ(r, ω) and σ(r, ω) are now frequency-dependent complex quantities. Their imaginary
parts account for the energy dissipation occurring during the transient response. Due to their
frequency dependency, the medium is said to be dispersive. Dispersion and dissipation are

1As pointed out by Yuffa and Scales (2012), both are not exactly equivalent. Considering a monochromatic
field implicitly assumes that the system reached the steady-state and thus does not enable to study the transient
response of the medium. Conversely, passing from time to frequency domains by direct and inverse Fourier
transformations does not induce any loss of generality. This subtlety does not have direct consequences on my
work but we should be aware of it when working in the frequency domain.
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thus indivisible frequency-domain mechanisms describing the time-dependent response of the
medium (Toll, 1956; Yuffa and Scales, 2012).

To complete the overview, I have to mention that the real and imaginary parts of the
frequency-domain parameters should be linked through the Kramers-Kronig relations in order
to verify physical causality, just like time-domain response functions must be zero before the
application of any imposed fields (see e.g. Sohl, 2008; Yuffa and Scales, 2012). Strictly speaking,
these relations have two consequences. First, it means that the knowledge of one of the two parts
(real or imaginary) over the whole frequency spectrum is sufficient to derive the other one from
the Kramers-Kronig relations. In practice, however, measurements are limited by the frequency
bandwidth of the instrument and this derivation is rarely possible. Secondly, it implies that
electromagnetic parameters can not be constant over the whole frequency spectrum, since they
are the Fourier transforms of the non-constant time-domain response functions, which have to
be zero before to to respect causality, and non-zero during the response (except in vacuum).
Again, GPR applications generally forget about this physical consideration, due to the limited
frequency-bandwidth of the measurements. We shall see in Section 1.1.2.2 in what extent the
approximation of constant parameters might be valid in the GPR frequency range.

In the frequency-domain, the propagation and diffusion terms of the wave equation can be
gathered into a unique dielectric response, re-writing equation (1.14) under the form of the
Helmholtz equation

∇2u(r, ω) + εe(ω)µ(ω)ω2u(r, ω) = 0, (1.24)

where εe is an effective permittivity which gathers both permittivity and conductivity:

εe(ω) = ε(ω) +
ıσ(ω)

ω
. (1.25)

Note that, in the frequency domain, the derivation of Helmholtz equation does not require
the assumption of a non-dispersive medium as it was the case for the time-domain wave equa-
tion (1.14). Frequency-domain wave propagation modelling thus enables to consider dispersion
in a straightforward manner, solving Helmholtz equation frequency per frequency. For simpli-
city, I considered a homogeneous medium to derive equation (1.24), which is in fact a scalar
wave equation: In homogeneous media, the field components ux, uy and uz can be conside-
red as independent scalar values and the corresponding Helmholtz equations can be decoupled
and solved independently. In heterogeneous media, we can still derive wave equations for the
electric and magnetic fields E and H, but we end up with vector wave equations where field
components are not independent anymore (see Chew, 1995, §1.3, p. 17).

Since I am mainly interested in the permittivity and conductivity parameters, and less in
the permeability, the question is now how to describe the effective permittivity. In the next
section, I develop some models which have been proposed for this purpose. Working in the
frequency domain a priori enables to finely describe the dielectric response of natural media in
the simulations. I should already mention, however, that I will consider frequency-independent,
real-valued permittivity and conductivity parameters in the inversion, as done by Meles et al.
(2010) in the time domain. Indeed, we shall see in Chapter 2 that the 2D multiparameter
imaging of frequency-independent, real-valued permittivity and conductivity distributions is
already an ill-posed problem whose resolution is challenging. Accounting for dispersion still
increases the number of degrees of freedom and the ill-posedness of the problem. Moreover,
GPR data are often mainly sensitive to permittivity, in less extent to conductivity, and in
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minor degrees to dispersion. Nevertheless, it is important to understand the general behaviour
of dielectric materials to realise the implications of further simplifications.

1.1.2 The electrical response of dielectric solid materials

1.1.2.1 Dielectric response models

As already mentioned, the frequency-domain permittivity and conductivity can be regarded
in the case of a linear, isotropic, heterogeneous, dispersive medium as space- and frequency-
dependent complex quantities. Thus, we can write them as functions of real quantities as

ε(r, ω) = ε′(r, ω) + ıε′′(r, ω), (1.26)

and σ(r, ω) = σ′(r, ω)− ıσ′′(r, ω), (1.27)

where the imaginary parts ε′′ and σ′′ reflect the energy dissipation occurring during the transient
response of the medium to the applied electric field. The opposite signs before imaginary parts
come from our convention for Fourier transformation (eqs 1.19 and 1.20) and have been chosen
such that imaginary parts are positive (ε′, ε′′, σ′, σ′′ ∈ R+). In the complex plane, dissipation
manifests itself by the fact that the response of the medium, e.g. the induction vector D, is
not in phase with the applied electric field E.

The effective permittivity can be re-written in terms of the real and imaginary parts of
permittivity and conductivity as

εe =

(
ε′(ω) +

σ′′(ω)

ω

)

︸ ︷︷ ︸
ε′e

+ı

(
ε′′(ω) +

σ′(ω)

ω

)

︸ ︷︷ ︸
ε′′e

. (1.28)

The total energy losses are then quantified by the loss tangent tan δ = ε′′e/ε
′
e. If we neglect the

conductive losses for simplicity (σ′′ = 0, I shall justify this hypothesis later on), we have

tan δ(ω) =
ε′′(ω)

ε′(ω)
+

σ′(ω)

ωε′(ω)
, (1.29)

where the first term corresponds to dielectric losses due to the relaxation of bounded charges
and the second term to conductive losses due to the displacement of free charges.

Expression (1.28) has two consequences. First, we can note that the imaginary part of the
permittivity plays a similar dissipative role as the real part of the conductivity. Conversely,
the influence of the imaginary part of conductivity might be interpreted as a propagative effect.
Secondly, we can anticipate that this type of parameterisation is largely not optimal in view of
the inversion as it would require to estimate four values per frequency (for ε′(ω), ε′′(ω), σ′(ω)
and σ′′(ω)). Moreover, inside the in-phase (ε′e) and out-of-phase (ε′′e) parts of the dielectric
response, we can not discriminate between the contributions of the real and imaginary parts
of permittivity and conductivity (ε′(ω) vs. σ′′(ω)/ω, and σ′(ω)/ω vs. ε′′(ω)). Indeed, even in
a modelling point of view, expression (1.28) is not very adequate. It is certainly exhaustive
since all theoretical terms appear explicitly, and therefore it can fit all possible measurements
of dielectric relaxation. However, it is not very useful to explain the behaviour of the materials
in terms of general processes (Jonscher, 1999).
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For these reasons, other models have been proposed for the effective permittivity, involving
a limited number of parameters. These models are based on empirical laws derived from
dielectric measurements (Jonscher, 1999). Some of them also rely on theoretical assumptions
about the underlying relaxation processes (Jonscher, 1981). These dielectric response models
take the generic form of

εe(ω) = ε∞ + εoχ(ω) + ı
σDC
ω

, (1.30)

where ε∞ is an asymptotic limit for permittivity at high frequencies (considered to be real),
σDC is the (real) static conductivity, and χ(ω) is a complex electrical susceptibility which char-
acterises dispersion and dissipation due to both dielectric and conductive frequency-dependent
phenomena. Note that this frequency-domain susceptibility χ does not strictly correspond to
the Fourier transform of the time-domain response χe. On one hand, χ does not include the
constant asymptotic permittivity ε∞ (6= εo). On the other hand, it includes all frequency-
dependent parts of the conductivity, because these effects can not be distinguished from the
dielectric ones1.

The different models I will now describe only vary by their definition of the electrical
susceptibility χ, according to the assumptions done on the underlying polarisation mechanisms.
Polarisation in solid materials is generally described as a relaxation process but there are
many possible models to formalise it. The following explanations are mostly inspired by the
enlightening reviews of Jonscher (1981, 1999).

Debye-type models

A first class of dielectric models assume that the electrical polarisation can be explained by a
Debye-type relaxation, with an electrical susceptibility of the form

χ(ω) =
1

εo

εs − ε∞
1 + ıωτ

, (1.31)

where εs is a (real) static permittivity valid at low frequency and τ is the characteristic rela-
xation time for the considered mechanism. The Debye model is one of the first and simplest
attempts to characterise relaxation (Debye, 1929) and also find applications in the mecha-
nics of viscous media. Debye’s model considers the individual electrical moments as identical,
non-interacting dipoles, having a loss of energy proportional to frequency2. Debye’s model is
particularly suitable for describing the polarisation of dipolar molecules such as water, or the
polarisation of ions at interfaces (e.g. between soil particles and water), inducing an interfacial
capacitance (Maxwell-Wagner phenomena).

Fig. 1.1 shows the evolution of the real and imaginary parts of the effective permittivity
with respect to frequency, for the Debye model of pure water at 25◦C (Cassidy, 2009a). The
imaginary part of the permittivity ε′′ exhibits a clear peak of dissipation at the relaxation
frequency ωp = 1/τ corresponding to the characteristic time τ (ωp ' 19 GHz in this case),
whereas the real part ε′ drops down to its high frequency limit ε∞r = 5.6.

1The interpretation of the electrical behaviour of the medium in terms of a dielectric response is therefore
mainly a matter of convention. People interested in the conductive phenomena which dominate at low frequencies
may rather choose to express this behaviour in terms of an electrical response, involving an effective conductivity
σe = −ıωεe.

2This can be roughly understood by analogy with a viscous medium where the particles do not have time to
vibrate if the excitation varies too quickly. This results in internal frictional losses: the energy of the excitation
is not released through a movement but through the dissipation of heat.
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Figure 1.1: Evolution of the real and imaginary parts of the dielectric permittivity of water
according to the Debye model, with εsr = 81, ε∞r = 5.6 and τ = 8.28 × 10−12 s (parameters
from Cassidy, 2009a, p. 50).

According to the considered frequency range, different relaxation mechanisms can be in-
volved (see Fig. 1.2). In the GPR frequency range, dielectric losses at high frequencies are
mainly due to dipolar relaxation: it is one of the reasons why GPR data are sensitive to the
presence of water in the investigated material (the primary reason being the value εsr = 81
itself, much larger than in any other natural media, see Table 1.1). In a smaller extent, we
may observe dielectric losses at low frequencies due to Maxwell-Wagner interfacial phenomena
(indicated as ionic processes in Fig. 1.2) but these effects are generally dominated by the con-
ductive losses due to the static electrical conductivity of the medium. Actually, most of the



    














 



Figure 1.2: Polarisation processes and dielectric permittivity at different frequencies (adapted
from http://en.wikipedia.org/wiki/File:Dielectric_responses.svg).

GPR frequency band lies outside any Debye-type relaxation peaks (see Fig. 1.2). And it turns
out that, apart from this particular loss peaks, pure Debye’s models fail to accurately describe
the dielectric behaviour in most of real materials (Jonscher, 1999).
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1.1 Notions of electrodynamics in material media

Some authors proposed finer descriptions of the dielectric properties at GPR frequencies
involving variants of Debye’s model, for instance the Cole-Cole model (Cole and Cole, 1941)
or the Cole-Davidson model (Davidson and Cole, 1951). These parameterisations introduce
additional exponent factors in the denominator of expression (1.31) that make the dispersion
frequency range wider and roughly correspond to giving a memory to the relaxation process
(Hill and Dissado, 1985). Other authors promote the superposition of several Debye-type peaks
(Xu and McMechan, 1997) or the combination of Debye-type models with other relaxation
mechanisms (e.g., the Kelvin-Voigt mechanical model, see Carcione, 1996). I will not detail
the variety of possible models because the variations between them are not significant for our
purposes. As for every empirical law, the preference for a model or another is case-dependent.
On a theoretical point of view, Jonscher (1999) further argues that designing sophisticated
variants of the Debye model and invoking superposition or combination of different relaxation
mechanisms is not satisfactory: of course, it enables to better explain the observed dielectric
behaviours (by adjusting more and more tuning parameters) but it fails to provide a unified
explanation of the underlying physical processes.

Alternatively, Jonscher (1977) proposed a universal response model which is claimed to
explain all the observed electrical behaviours with a unified physical mechanism, involving a
limited number of independent parameters. Jonscher’s model has been promoted by Hollender
and Tillard (1998) for geophysical investigations in the GPR frequency band. Since then,
it has been used to describe the dielectric properties of rocks (Hollender and Tillard, 1998),
sands (Grégoire and Hollender, 2004) or concrete (Bourdi et al., 2008; Ihamouten et al., 2011).
Deparis and Garambois (2009) successfully applied it for the characterisation of thin layers in
fractured limestones. In the next section, I detail this model, starting from the general form of
Jonscher (1981) to understand its meaning and limitations.

Jonscher’s model

A general formulation of Jonscher’s model is (Jonscher, 1981, eqs 21 to 23):

χ′(ω) ∝ χ(0)− ωm
χ′′(ω) ∝ ωm

}
at low frequencies ω � ωp, (1.32)

χ(ω) ∝ 1

1 + ıωτ
at intermediate frequencies ω ' ωp, (1.33)

and χ(ω) ∝ (ıω)n−1 at high frequencies ω � ωp, (1.34)

where τ = 2π/ωp is the characteristic time of some Debye-type relaxation mechanism, ωp denot-
ing the corresponding peak frequency. The exponent factors m and n characterise two regimes
of the dielectric response outside the relaxation frequency range, where the susceptibility takes
the form of a power-law.

We can notice that Jonscher’s model does not evacuate Debye’s model but integrates it
(eq. 1.33). Jonscher’s model implies a Debye’s mechanism to describe the dielectric response
over the whole spectrum since the power laws (1.32) and (1.34) alone can not reproduce the
relaxation peak of dipolar molecules or interfacial polarisation, which are best explained by
Debye’s model. The improvement of Jonscher’s model concern the description of the electrical
response outside the frequency range of this Debye-type relaxation, where the power laws of
eqs (1.32) and (1.34) have been shown to better fit the observed dielectric measurements than
the flat response of Debye’s model (Jonscher, 1981, 1999).
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It is worth noting that, in their adaptation of Jonscher’s model to GPR measurements,
Hollender and Tillard (1998) only keep the high frequency regime of the general Jonscher’s
model. They end up with an expression which verifies equation (1.34), of the form

χ(ω) = χr

(
ω

ωr

)n−1 (
1 + ıcotan

nπ

2

)
, (1.35)

where χr is this time a real and constant susceptibility parameter and ωr is a reference frequency
which can be defined arbitrarily (it only aims at making the ratio ω/ωr dimensionless). For
GPR applications, it is usual to consider ωr = 2π × 100 MHz.

Since Hollender and Tillard (1998) discarded the low-frequency part of the law, as well
as the Debye-type relaxation peak, it should be stressed that expression (1.35) is only valid
in the frequency regions above any Debye-type loss peaks. In particular, it can not describe
the polarisation of water molecules. However, as most of the GPR frequency band lies out-
side any Debye-type peaks (see Fig. 1.2), expression (1.35) provides a good agreement with
dielectric measurements at intermediate GPR frequencies, typically between 50 and 300 MHz,
in particular in dry rocks (Hollender and Tillard, 1998). But it should be manipulated with
cautious when considering conductive materials such as clay at low frequencies (close to the
Wagner-Maxwell relaxation peak) or wet rocks and soils at high frequencies (nearby the Debye
peak of water relaxation).

Finally, some authors suggest that, using expression (1.35), the static conductivity σDC
may also be included in the electrical susceptibility χ (e.g. Deparis, 2007; Lopes, 2009). This
is a pragmatic assumption that aims at decreasing the number of parameters required for
the description of the effective permittivity. However, neither Jonscher (1977, 1981, 1999)
nor Hollender and Tillard (1998) make this assumption. Hollender and Tillard (1998) simply
neglect the contribution of the static conductivity for their applications at GPR frequencies.
As for Jonscher (1999, §4.6), he clearly distinguishes between DC conduction and low frequency
dispersion. The latter implies a reversible storage of charge in the material and can indeed be
described by the universal power-law. Static conductivity, however, consists in flowing charges,
without any storage. In the generic expression of the effective permittivity (1.30), I will thus
keep the static conductivity decoupled from the frequency-dependent permittivity term:

εe(ω) = ε∞ + εoχ(ω)︸ ︷︷ ︸
ε(ω)

+ı
σDC
ω

, (1.30 again)

where I remind that the quantities ε∞ and σDC are real-valued constants, while the suscep-
tibility χ(ω) is a complex variable. Following Jonscher (1981), I then conceive the general,
frequency-dependent conductivity as

σ(ω) = σDC + ωε′′(ω), (1.36)

= σDC + ωεoχ
′′(ω)︸ ︷︷ ︸

σAC(ω)

, (1.37)

which is now a real quantity (justifying the hypothesis σ′′ = 0 made p. 34), with χ′′(ω) following
the universal response and σDC being an independent parameter. Again, I shall stress that
this decoupling is mainly a matter of interpretation. It only means that I distinguish the flow
of (totally) free charges described by the direct current conductivity σDC , from the complex,
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frequency-dependent electrical response ε(ω) of (more or less) bounded charges that can give
rise to an alternating current (AC). The loss tangent is then simply

tan δ(ω) =
ε′′e(ω)

ε′e(ω)
=

σ(ω)

ωε′(ω)
. (1.38)

Now that I have explained what is exactly an electrical response, i.e. what permittivity ε(ω)
and conductivity σ(ω) represent, we can have a look at the values of these parameters in natural
media. In particular, the values of the dispersive parameters χr and n in expression (1.35) will
tell us if the assumption of non-dispersive materials is reasonable for considering natural media.

1.1.2.2 Electrical properties of natural media

Table 1.1 presents the electrical properties of some materials, compiled from the PhD thesis
of Saintenoy (1998), Girard (2002), Jeannin (2005) and Loeffler (2005). More exhaustive lists
of these parameters can be found in these studies, as well as on the internet (e.g. Wikipedia,
2014; Clipper Controls®, 2014). These references give either rough orders of magnitude for
the real part of the relative permittivity ε′r and for conductivity σ in the GPR frequency range,
or the corresponding Jonscher parameters. When the Jonscher parameters are given, I derive
the corresponding values for ε′r(ω) and σ(ω) for two characteristic frequencies of GPR investi-
gations, namely 100 and 200 MHz. I also derive the ratio σDC/(ε

′ω) that gives an indication
of the proportion of diffusive vs. propagative effects in the behaviour of electromagnetic waves
(see eqs 1.14 and 1.29). Small values for this ratio justify to neglect the static conductivity in
the description of the medium at GPR frequencies, as argued by some authors (Hollender and
Tillard, 1998; Jeannin, 2005). We shall see wether or not this assumption is reasonable.

A first look at Table 1.1 enables to distinguish three classes of materials:

1. low-loss media, such as snow, ice, fresh water, quartzite or dry sand. In these media,
electromagnetic waves can propagate over very long distances quasi without attenua-
tion other than geometrical spreading (GPR surveys can thus achieve deep penetration
depths). It is then possible to ignore the effect of conductivity. The extreme case being
air, that behaves like vacuum.

2. lossy media, such as ion-carrying water, clay, and all rocks and soils containing a signi-
ficant proportion of interstitial water or clay. In these media, electromagnetic waves are
strongly attenuated and it is not possible to neglect the influence of the electrical con-
ductivity. Some of these media also exhibit a strong dispersion, which affects strongly
conductivity values, and in a smaller extent permittivity (except for clay).

3. intermediate media, which are weakly dispersive and where the attenuating effect of
conductivity is not dramatic but not totally negligible (∼ 0.1). In this category, we find
in particular samples of limestone, which is the material that I investigate in Section 3.2.

Note that volcanic rocks can present a non-zero magnetic susceptibility, as well as sands
and sandstones depending on their detrital origin. I do not indicate these magnetic properties
in Table 1.1 because I do not consider magnetic materials in the following.
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Medium ε∞r χr n
σDC ε′r(ω) σ(ω) (mS/m) σDC/(ε

′ω)
(mS/m)

100 MHz 200 MHz 100 MHz 200 MHz (100 MHz)

Air/vacuum 1 0 1 0. 1 0. 0.

Snow (dry) (1) ∼ 1.2 to 1.5 0. 0.

Ice (1̃),(3̃b),(4) 3.2 ∼ 10−3 to 10−2 ∼ 10−5 to 5.10−4

Distilled water (1̃),(4) 81 ∼ 10−3 to 10−2 ∼ 10−6 to 10−5

Fresh water (4) 81 ∼ 10−2 to 10−1 ∼ 10−5 to 10−4

Saline water (1̃),(4) 81 ∼ 102 to 103 ∼ 10−1 to 2

Peat (1) ∼ 60 to 80 ∼ 1 to 10 ∼ 10−3 to 3.10−2

Sedimentary rocks (1) ∼ 4 to 10 ∼ 10−2 to 102 ∼ 10−4 to 2

Limestone (3a),(4) ∼ 4 to 9 ∼ 10−1 to 3.3 ∼ 10−4 to 10−1

Limestone (dry) (3b) 8.14 0.94 0.82 9.08 8.97 1.5 2.7 ∼ 0.03

Limestone (3b)

17.3 1.1 0.33 18.4 18.0 10.7 13.5 ∼ 0.10(fresh water saturated)

Gneiss - Schist (1) ∼ 5 to 15 ∼ 10−3 to 10 ∼ 10−5 to 0.4

Schist (3a) ∼ 5 to 15 ∼ 30 to 3.102 ∼ 10−1 to 10

Schist (2) 10.2 13.6 0.66 6.4 23.8 21.0 51 77 ∼ 0.2

Clay-rich rocks (1) ∼ 5 to 40 ∼ 1 to 103 ∼ 10−2 to 10

Clay (3a) ∼ 8 to 12 ∼ 10 to 102 ∼ 10−1 to 1

Clay (4) ∼ 3 to 60 ∼ 10−1 to 103 ∼ 10−4 to 10

Wet clay (3b) 55 30 0.25 85.0 72.8 403. 479. ∼ 0.7

Shale (3b) 4.3 2.6 0.6 6.9 6.3 10.5 15.9 ∼ 0.25

Siltstone (3b) 3.1 4.2 0.68 7.3 6.5 12.8 20.6 ∼ 0.3

Sand (1) ∼ 2 to 10 ∼ 10−2 to 10 ∼ 10−4 to 0.5

Sand (3a) ∼ 5 to 40 ∼ 10−1 to 3.3 ∼ 10−4 to 10−1

Dry sand (4) ∼ 3 to 6 ∼ 10−3 to 1 ∼ 10−5 to 10−2

Dry sand (3b) 2.5 0 1 2.5 0. 0.

Sand (4)

∼ 20 to 30 ∼ 10−1 to 102 10−3 to 0.5(water saturated)

Wet sand (3b) 29 4 0.5 33 31.8 22.2 31.5 ∼ 0.1

Quartzite (1) ∼ 3 to 6 ∼ 10−3 to 10 ∼ 10−5 to 0.5

Sandstone (3a) ∼ 4 to 5 ∼ 1 to 30 ∼ 10−2 to 1

Sandstone (4) ∼ 4 to 5 ∼ 3.10−1 to 1 ∼ 10−2

Granite (3a) ∼ 4 to 6 ∼ 10−2 to 1 ∼ 10−4 to 10−2

Granite (2) 5.0 1.10 0.94 0.19 6.10 6.05 0.8 1.3 ∼ 10−2

Granite (dry) (3b) 4.7 0.7 0.93 5.40 5.37 0.4 0.8 ∼ 0.01

Granite (3b)

5.6 0.5 0.51 6.10 6.96 2.7 3.8 ∼ 0.7(fresh water saturated)

Volcanic rocks (1) ∼ 4 to 17 ∼ 10−3 to 1 ∼ 10−5 to 10−2

Andesite (3b) 3.6 2.1 0.62 5.7 5.2 7.9 12. ∼ 0.2

Gabbro (3b) 5.8 3.4 0.67 9.2 8.5 11. 17. ∼ 0.2

Table 1.1: Electrical properties of some materials. Selected compilation after (1)Saintenoy
(1998, tab. 3.1, p. 49), (2)Girard (2002), (3a)Jeannin (2005, tab. 1.1, p. 41), (3b)Jeannin (2005,
tab. 2.1, p. 76), (4)Loeffler (2005, tab. 1, p. 29). The symbol (∗̃) means that the values I indicate
are consistent but not exactly identical to the ones given by the corresponding reference.
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Redundancy in the table is deliberate and aims at showing the variability (or consistency)
of these estimations for a given material, which depend not only on the general type of the
material, but really on the specific sampling under consideration, and in particular on its
water content. For instance, it is not very meaningful to speak about the permittivity of a
sand without specifying if it is dry, slightly humid, or water-saturated. Conversely, parameter
estimations for dry samples present less variability. Actually, permittivity and conductivity of
rocks and soils depend in a large extent on their water content, and this for two reasons. First,
water has a remarkably large value of permittivity compared to other natural materials, so
that interstitial water in rocks, or melt water in snow and ice, dramatically increase the bulk
permittivity of the sample. Secondly, the electrical conductivity of water greatly depend on its
chemical composition, more precisely on its content in ions. In rocks and soils, groundwater is
not pure and carries ions that cause electrolytic currents, thus increasing the conductivity of
the materials. The great sensitivity of electrical properties to the presence of water is also the
reason why GPR is so intensively used for hydrological purposes, as mentioned in the general
introduction.

Indeed, even if we know that the investigated rock is dry, it is actually quite difficult to infer
its nature or composition based on permittivity and conductivity measurements. For instance,
a permittivity value of 5 can be attributed to almost all listed rocks, from limestone to volcanic
rocks through granite. Similarly, a conductivity value of 10−1 mS/m does not bring much
information if the nature of the sample is not known at all. Conversely, if we know the nature
of the rock (as it is often the case when going on the field), it is possible to infer its water
content from permittivity or conductivity measurements. The derivation of water content from
electrical measurements (either GPR, TDR, or ERT) is generally based on empirical petro-
physical relations such as those proposed by Archie (1942) and Topp et al. (1980). Obviously,
permittivity and conductivity also depend on other properties of the investigated material, in
particular on its porosity and clay content, such that the application of such empirical laws
should be site- and scale-dependent (Chan and Knight, 1999; Moysey and Knight, 2004). Some
authors proposed more sophisticated petrophysical models relating electrical properties to wa-
ter content (e.g. Revil, 2013) or porosity (e.g. Rust et al., 1999). Some others avoid the use of
such empirical relations by integrating soil models directly in the inversion process (e.g. Tran
et al., 2012).

Another way to look at these properties is to represent the quantities ε′r(ω), σ(ω) and
tan δ(ω) = σ(ω)/(ε′(ω)ω) with respect to frequency, for a given material. The variations of
ε′r(ω) and σ(ω) vs. frequency will tell us if dispersion is strong and should be considered to
describe the material. The variations of tan δ(ω) will indicate if we can neglect the electrical
conductivity, and if the losses can be adequately described using simple parameters such as a
constant permittivity ε′r and a constant static conductivity σDC . To the latter point, I will
represent on the same plot the ratio σ(ω)/(ε′(ω)ω) derived from Jonscher parameters and the
ratio σDC/(ε

′ω) given by the rough estimates of constant permittivity and conductivity.

Figs 1.3 and 1.4 show these quantities for limestones, clay-rich rocks, sands and granite.
Again, we observe that permittivity varies weakly with frequency in most of the considered
samples (even in wet limestone and granite). Significant variations in permittivity can only
be observed in water-saturated and clay-rich rocks. Conductivity, however, seems to be much
more sensitive to dispersion, since even dry limestone, sand and granite exhibit a conductivity
which varies with frequency over one to two decades. This observation seriously compromise
the assumption of describing the medium with a constant static conductivity. This point is all
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the more important that we can not neglect the effect of the electrical conductivity as soon as
the samples are wet, as shown by the values of the loss tangent (tan δ ≥ 0.1). Moreover, we can
observe that the slopes of the loss tangents computed with a constant conductivity (samples (3a)

and (4)) are systematically steeper than the ones computed with frequency-dependent param-
eters derived from the Jonscher model. It means that assuming a constant conductivity tends
to under-estimate the loss of energy with frequency. In some materials, e.g. dry limestone(3b)

or dry granite(3b), the electrical losses do not necessarily decrease with frequency but can be
constant.
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Figure 1.3: Real permittivity (top row), conductivity (middle row), and loss tangent (bottom)
of limestone and shale samples. For the limestone (3a), I consider the averaged values εr = 9
and σ = 1 mS/m. For the clay (3a), I consider εr = 10 and σ = 50 mS/m.
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Figure 1.4: Real permittivity (bottom row), conductivity (middle row), and loss tangent
(bottom) of sand and granite samples. For the sand (4), I consider the averaged values εr = 4.5
and σ = 0.05 mS/m. For the granite (3a), I consider εr = 5 and σ = 0.1 mS/m.

As a conclusion concerning the electrical properties of natural media, we can state that

1. The effect of electrical conductivity can generally not be neglected at GPR frequencies,
since natural conditions generally implies the presence of water that cause electrolytic
currents. Electrical conductivity may be neglected only in dry samples that do not
contain clay particles.

2. Dispersion can be observed in most of natural materials. We can notice, however, that
it has little effect on permittivity values in dry samples. On the other hand, it induces
large variations of conductivity with respect to frequency, which make the assumption of
a constant conductivity not satisfactory.

This is the reality of natural media, but I shall now nuance the picture. As we shall see in
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Chapter 2, it is actually very difficult to obtain robust reconstructions of dispersive parameters
because GPR data are mostly sensitive to permittivity, and much less to conductivity and to
Jonscher parameters. To my knowledge, the only studies to tackle the estimation of Jonscher
parameters have been performed by Bourdi et al. (2008) and Ihamouten et al. (2011, 2012)
for the bulk characterisation of concrete mixtures, and by Deparis and Garambois (2009) for
the characterisation of a fracture filled by dispersive material (clay) inside a limestone massif
considered as non-dispersive. In multilayered media, and a fortiori in arbitrary heterogeneous
media, people generally make the assumption of a constant electrical conductivity.

Concerning 1D applications, it should be noted that van der Kruk et al. (2006, 2009, 2010)
are able to reproduce strongly dispersed data without any dispersive parameters. Until now,
I only spoke about intrinsic dispersion and attenuation, which are caused by the physical
properties of the medium (Annan, 1996). But geometrical dispersion and attenuation can also
occur, due for instance to the scattering of the electromagnetic waves by small heterogeneities.
As the GPR pulse is broadband (typically from 50 to 300 MHz for a 100 MHz antenna),
heterogeneities of the size of the smallest propagated wavelength will have very few effects on
low frequency components and will cause a frequency-dependent scattering and attenuation of
the GPR pulse. In the dataset considered by van der Kruk et al. (2006, 2009, 2010), dispersion
is due to the presence of thin layers in the subsurface that act as wave guides. Depending
on their frequency content, waves do not interact on the same way with the thin layers. In
particular, the reflection coefficients that control the energy propagating in the wave guide are
frequency-dependent, giving rise to dispersive reflected events recorded at the ground surface.

As a conclusion, I will consider intrinsic dispersion in the implementation of the forward
problem, introducing the Jonscher model to define the effective permittivity. This feature
enables to study in more details the effect of intrinsically dispersive parameters on the prop-
agation of electromagnetic waves. But in Chapter 2, dedicated to the inverse problem, I will
reconstruct non-dispersive parameters, assuming that permittivity and conductivity are real
and frequency-independent quantities. Even with this simple parameterisation, it is impor-
tant to understand the effect of real permittivities and conductivities on the behaviour of the
electromagnetic waves, and I will now detail this point.

Considering permittivity and conductivity as real quantities

Here I intend to see the effect of constant, real-valued permittivity and conductivity on the
electromagnetic waves propagating in a homogeneous medium. In this case, the solution of
Helmholtz equation (1.24) with an impulsive source at r = 0 is a spherical wave of the form

u(r, ω) ∝ eıkr

4πr
, (1.39)

where r = |r| is the distance to the source and k is the complex wavenumber defined from
Helmholtz equation as

k = ω
√
µεe = β + iα, (1.40)

where

α = ω

√√√√µε

2

(√
1 +

( σ
εω

)2
− 1

)
is the attenuation coefficient, (1.41)
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and β = ω

√√√√µε

2

(√
1 +

( σ
εω

)2
+ 1

)
is the propagation wavenumber. (1.42)

Hence, expression (1.39) is equivalent to

u(r, ω) ∝ eıβr e−αr

4πr
, (1.43)

which is composed of an oscillating propagative part eıβr, of an attenuating decay e−αr, and of
a geometrical spreading 1/r.

First we can notice that, in the general case, the permittivity and conductivity parameters
both play a role in the propagative coefficient β and in the attenuation coefficient α. In
particular, it means that the conductivity, even if real and frequency-independent, induces a
dispersion of the phase velocity v(ω) which is expressed as

v(ω) =
ω

β
=

1
√
µε

[
1

2

(√
1 +

( σ
εω

)2
+ 1

)]−1/2

. (1.44)

This velocity coincides with the classical electromagnetic velocity vEM = 1/
√
µε only in non-

conductive media, or at very high frequencies.

The importance of dispersion depends on the diffusion-over-propagation ratio, or loss-
tangent tan δ = σ/(εω). In very lossy media where tan δ � 1, the wavenumber β and the
attenuation coefficient tends to a common value

α ' β ∼
tan δ�1

√
µσω

2
, (1.45)

meaning that the skin depth δ = 1/α and the wavelength λ = 2π/β increase at the same rate
as frequency decreases (behaving like 1/

√
ω, which is typical of diffusive phenomena).

In the frequency range of GPR investigations, we rather encounter low-loss media (tan δ �
1). We then recover the classical electromagnetic velocity, which depends on permittivity:

v ∼
tan δ�1

vEM =
1
√
µε
, (1.46)

whereas the attenuation coefficient tends towards a frequency-independent value, which de-
pends both on permittivity and conductivity:

α ∼
tan δ�1

σ

2

√
µ

ε
=

ω

2vQ
, (1.47)

where Q = 1/ tan δ is the corresponding — frequency-dependent — quality factor.

From these expressions, we can conclude that, at first order, permittivity will mainly con-
trol the kinematics of the propagation of electromagnetic waves, while attenuation depends
both on permittivity and conductivity through the diffusion-over-propagation ratio. At lower
frequencies, conductivity introduces a frequency dependency, both for attenuation and velocity
(i.e., dispersion).

Once we have understood these general guiding rules, we can go further and consider the
simulation of electromagnetic wave propagation.
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1.1.3 Wave propagation in two dimensions

In all the following, I will consider that everything happens in the observation plane (x0z),
i.e. I assume that neither the medium properties nor the fields do vary in the y-direction
(∂y = 0). This assumption has numerical motivations since it is much more expensive to
perform a numerical simulation of wave propagation in a heterogeneous 3D media than in 2D.
The computational over-cost of 3D compared to 2D inversions is all the more important that
inversion requires many simulations.

On the other hand, this assumption has important implications: assuming a laterally inva-
riant medium, we will be unable to properly simulate the GPR signals resulting from out-of-
plane reflections. Moreover, considering fields invariance in y-direction amounts to assume that
the calculated field is generated by an infinite line-source elongated in the y-direction, instead
of a finite-size 3D antenna. Restricting the wave propagation to the observation plane has a
strong consequence in terms of energy decay, preventing to predict the true amplitudes of the
recorded 3D field. Therefore, we will need to apply approximative 3D-to-2D conversions to the
simulated data before comparing them with experimental ones (see Chapter 3).

1.1.3.1 TE-TM modes and analogy with the acoustic system

An interesting property of Maxwell’s system in 2D is that it reduces to two independent sys-
tems, corresponding to two propagation modes called Transverse Electric (TE) and Transverse
Magnetic (TM). Developing the field vectors on their three spatial components, we have, in the
(xOz)-plane,

TE





−ıωµHx =
∂Ey
∂z

,

ıωµHz =
∂Ey
∂x

,

−ıωεeEy =
∂Hx

∂z
− ∂Hz

∂x
− Jsy ,

(1.48)

and

TM





ıωεeEx =
∂Hy

∂z
+ Jsx ,

−ıωεeEz =
∂Hy

∂x
− Jsz ,

−ıωµHy =
∂Ez
∂x
− ∂Ex

∂z
,

(1.49)

where all field components and parameter variables are functions of space coordinates x and z,
and of frequency ω.

As shown in Fig. 1.5, these two modes also correspond to two GPR measurement configu-
rations, since the TE mode is excited and recorded by antennas oriented along the y-direction
(Fig. 1.5a), whereas the TM mode is excited (/recorded) if the antennas are comprised in the
(xOz)-plane (Fig. 1.5b).
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Observation plane (xOz)

z

x (direction of profile)!

(direction of invariance)

                 y!

Antenna (electric dipole)

(a) TE configuration.

Observation plane (xOz)

z

x (direction of profile)!

(direction of invariance)

                 y!

!

Antenna (electric dipole)

(b) TM configuration.

Figure 1.5: Geometry of GPR acquisitions. In theory, the TM mode can be excited and
recorded by antennas having an arbitrary orientation θ in the (x0z)-plane. In practice, two
configurations are usually employed: either vertical antennas (θ = 90◦) in borehole acquisitions,
or horizontal antennas (θ = 0◦) in surface measurements (on-ground GPR).

Interestingly, the equation systems (1.48) and (1.49) turn out to be mathematically analo-
gous to the acoustic velocity-stress system:

Acoustics





−ıωρvz =
∂P

∂z
+ ρfz,

−ıωρvx =
∂P

∂x
+ ρfx,

−ıω
P

K
=

∂vx
∂x

+
∂vz
∂z

− ıω
Ps

K
,

(1.50)

where P is the pressure (in Pa), vx and vz are the components of the particle velocity (in m/s),
ρ is the mass density (in kg/m3), K is the bulk modulus (in Pa), fx and fz are horizontal
and vertical force sources (expressed as accelerations, in m/s2), and Ps is an explosive source
of pressure (in Pa). Again, all these variables depend on space coordinates x and z, and on
frequency ω, such that the acoustic-electromagnetic analogy is fully valid for heterogeneous,
dispersive media. The correspondence between acoustic and electromagnetic variables is given
in Table 1.2.

This mathematical analogy is discussed in the literature by (e.g.) Carcione and Cavallini
(1995) and Carcione and Robinson (2002). It is an important property since it allowed me
to solve the electromagnetic propagation problem with a numerical modelling tool that was
originally developed for the simulation of acoustic waves. I will present this numerical scheme
in the following (see Section 1.2.2) but first I would like to derive the analytical solutions to the
2D propagation problem in homogeneous media, which will be used later for the validation of the
numerical solutions. Before going further, I insist on the fact that the acoustic-electromagnetic
analogy between equation systems (1.48) and (1.49) is only a mathematical trick. It should
not be interpreted in terms of physics. In particular, visco-acoustic and electromagnetic fields
behave quite differently with regards to attenuation.
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TE TM

Ey ↔ P Hy ↔ P
Hz ↔ −vx Ez ↔ vx
Hx ↔ vz Ex ↔ −vz
εe ↔ 1/K εe ↔ ρ
µ ↔ ρ µ ↔ 1/K

Jsy ↔ ıωPs/K Jsx ↔ ρfz
Jsz ↔ −ρfx

Table 1.2: Correspondence between acoustic and electromagnetic variables.

1.1.3.2 Wave equations and analytical solutions in homogeneous media

Assuming a homogeneous medium, it is useful to derive now the wave equations corresponding
to TE and TM modes for further validation of numerical implementations. Derivating the first
and second equations of systems (1.48) and (1.49), and injecting the derivatives in their third
equation yields the scalar wave equations followed by the electric component Ey in TE mode
and by the magnetic component Hy in TM mode:

∇2Ey(x, z, ω) + ω2εe(ω)µ(ω)Ey(x, z, ω) = −ıωµ(ω)Jsy(x, z, ω), (1.51)

∇2Hy(x, z, ω) + ω2εe(ω)µ(ω)Hy(x, z, ω) =
∂Jsz(x, z, ω)

∂x
− ∂Jsx(x, z, ω)

∂z
, (1.52)

whereas the wave equation corresponding to the acoustic system (1.50) is

∇2P (x, z, ω) + ω2 ρ(ω)

K(ω)
P (x, z, ω) = ρ(ω)

(
∂fx(x, z, ω)

∂x
+
∂fz(x, z, ω)

∂z

)
− ω2 ρ(ω)

K(ω)
Ps(x, z, ω).

(1.53)

In the above equations, a particular care has been taken to formulate the source terms
as physically homogeneous quantities (electrical currents, mechanical forces and acoustic pres-
sure). Besides, we shall consider the fundamental 2D scalar wave equation, or Helmholtz
equation

∇2u(x, z, ω) + k2(ω)u(x, z, ω) = δ(r), (1.54)

where k is again the complex wavenumber and r =
√
x2 + z2 is the distance to an impulsive

point source located at the origin of the coordinates system and represented by the Dirac delta
function, defined as

δ(r) =

{
1 if r = 0,
0 otherwise.

(1.55)

The solution of equation (1.54) is the 2D Green function, or impulsive response, of the
medium:

G2D(x, z, ω) =
ı

4
H(1)
o (kr), (1.56)

where H
(1)
o is the Hankel function of the first kind at order zero (see e.g. Taflove and Hagness,

2005, §8.2.2, eq. (8.7), p. 332). In the far field, when |kr| → ∞, we shall consider the following
far-field approximation

G2D(x, z, ω) ' ı

4

√
2

πkr
eikre−ıπ/4, (1.57)
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(see Taflove and Hagness, 2005, eq. 8.8). As shown in Fig. 1.6, this far-field approximation
is actually valid even at short offsets, as soon as the propagation distance r reaches half a
wavelength (|kr| ≥ π). In the following of the manuscript, I sometimes use this far-field
expression, in particular to derive formulas for 3D-to-2D conversions (see Chapter 3).
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Far field, Im

Figure 1.6: Comparison of the Hankel function H
(1)
o with its asymptotic far-field expression.

TE mode The solutions of equations (1.51) and (1.52) can be derived from the Green function
by linearity with respect to the source term. Assuming an impulsive current source Jsyδ(r),
we have for TE mode

Ey(x, z, ω) = −ıωµJsyG2D(x, z, ω),

=
ωµJsy

4
H(1)
o (kr). (1.58)

TM mode In this case, the solution of equation (1.52) is the superposition of the magnetic

fields H
Jsz
y emitted by a vertical current source Jsz , and H

Jsx
y emitted by a horizontal current

source Jsx :

Hy(x, z, ω) = HJsz
y (x, z, ω) +HJsx

y (x, z, ω),

= Jsz
∂G2D(x, z, ω)

∂x
− Jsx

∂G2D(x, z, ω)

∂z
. (1.59)

Using the properties of the Hankel function, in particular the fact that H ′o(x) = −H1(x)
(see e.g. Abramowitz and Stegun, 1972, §9.1.27, p. 361), we thus have

Hy(x, z, ω) =
ık

4

(
zJsx
r
− xJsz

r

)
H

(1)
1 (kr). (1.60)

GPR antennas measure a voltage, i.e. a quantity which is proportional to the electric field.
As shown on figure 1.7, a receiver antenna in TM mode with arbitrary orientation θr with
respect to the x-axis actually records the projection of the total electric field on the antenna,
i.e. the value

Er(x, z, ω, θr) = Ex(x, z, ω) cos θr + Ez(x, z, ω) sin θr, (1.61)
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where the components of the total field Ex and Ez are deduced from the solution (1.60) using
Faraday’s law, i.e. the first and second equations in the system (1.49):

Ex(x, z, ω) =
1

ıωεe(ω)

∂Hy(x, z, ω)

∂z
,

=
ωµ

4

[
Jsx
kr

H
(1)
1 (kr)− Jsx

z2

r2
H

(1)
2 (kr) + Jsz

xz

r2
H

(1)
2 (kr)

]
, (1.62)

and

Ez(x, z, ω) = − 1

iωεe(ω)

∂Hy(x, z, ω)

∂x
,

=
ωµ

4

[
Jsz
kr

H
(1)
1 (kr) + Jsx

xz

r2
H

(1)
2 (kr)− Jsz

x2

r2
H

(1)
2 (kr)

]
. (1.63)
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(a) Transmitter case.
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(b) Receiver case.

Figure 1.7: Antenna orientation and emitted/recorded electric fields in TM mode.

Expressions (1.58) and (1.61) to (1.63) are the reference solutions I will use for the vali-
dation of my numerical implementations. In the next section, I present the numerical scheme
employed in my simulations, after a short overview of the numerical methods generally involved
in computational electromagnetics.
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1.2 Numerical modelling of electromagnetic waves propagation
in 2D heterogeneous media

Natural media, and especially near surface environments, are particularly heterogeneous. They
can present strong contrasts in electromagnetic parameters at interfaces between air and soil,
in case of cavities, fractures or anthropic structures, or in presence of water. In this context,
general solutions can not be found analytically and numerical modelling is an essential tool
for quantitative imaging, such as full waveform inversion, but also in order to understand how
electromagnetic waves behave in these heterogeneous, complex media.

Simulations for modelling and simulations for imaging have different objectives, and thus
different requirements. As we will see in Chapter 2, FWI is an iterative procedure which
requires the resolution of many forward problems. Hence, the resolution must be performed
very efficiently in terms of computation time and memory requirements. On the other hand,
understanding the behaviour of electromagnetic waves in natural environments or complex
anthropic structures requires a consistent description of the medium properties. I already
mentioned some physical parameterisations enabling to describe dispersion and attenuation.
In addition, numerical methods proceed by discretising the medium. How this discretisation
is performed is a crucial issue to ensure an accurate description of the medium geometry and
macroscopic property.

1.2.1 Introduction: Choice of the numerical method

Integral methods (Chew et al., 2009) are classical in electromagnetics, especially in the domain
of telecommunications where waves propagate on large distances in free-space. Numerical
techniques derived from integral methods, such as the boundary element methods (Sauter and
Schwab, 2011), also known as the method of moments (Harrington, 1993), are particularly
efficient for problems with a low surface/volume ratio because they require to compute field
values only on the boundary of the domain. However, they require the knowledge of the
Green functions of the bounded medium to derive the solution within the domain volume,
which is a strong limitation to their application in heterogeneous media. In the following of
the manuscript, my numerical implementations involve essentially domain methods. With an
exception in Section 3.1, where I will make use of an integral representation of the electric field
to restrict the computation domain to the zone of interest.

Among domain methods, the finite-difference time-domain method (FDTD) is probably
the most popular. It is a simple, efficient, and robust numerical method for solving electro-
magnetic problems in heterogeneous media, based on finite-order difference approximations of
time and space derivatives. Since the first FDTD scheme for electromagnetic purposes, pro-
posed by Yee (1966), many developments have been achieved (see e.g. Taflove and Hagness,
2005). For instance, Giannopoulos (2005) developed a FDTD-based freely-available program
specifically for GPR applications. However, as mentioned in the previous section, the conside-
ration of dispersive properties is not straightforward in the time-domain formulation, since it
involves convolution products, requiring the history of the wavefields to be stored. In contrast,
frequency-domain finite difference formulations (FDFD) take naturally the dispersion into ac-
count. While more memory demanding, FDFD techniques are more efficient for the resolution
of problems involving a large number of sources. They are thus suitable for FWI when dense
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acquisition arrays are considered. Finally, frequency-domain modelling is justified in the frame
of frequency-domain FWI where only few frequency components are considered (Pratt and
Worthington, 1990; Pratt, 1999). In my inversions, I make use of the FDFD scheme of Hustedt
et al. (2004) which I adapted to the electromagnetic wave propagation problem. In the next
section, I present the principles of this scheme, whose main features should be well understood
for a correct utilisation in the inversion process.

An other class of wide-spread techniques are finite-volume methods (see e.g. Cioni, 1995;
Remaki, 1999) and finite-element methods (see e.g. Cohen and Monk, 1998). Their main
advantage consists in the consideration of more complex and flexible meshes. Among these
methods, the discontinuous Galerkin method is a method of particular interest in computational
electromagnetics since it allows for discontinuities in field values across interfaces between high
contrasted media (see e.g. Canouet, 2003; Dolean et al., 2006; or El Bouajaji et al., 2011,
for an application to GPR FWI). During my PhD, I also adapted the discontinuous Galerkin
algorithm of Brossier et al. (2008) to the electromagnetic problem but I do not detail this part
of my work in the manuscript because this implementation will not serve for the inversion due
to its higher computational cost.

1.2.2 The frequency-domain finite-difference mixed-grid stencil

The FDFD algorithm of Hustedt et al. (2004) is based on the mixed-grid stencil of Jo et al.
(1996). The main feature of this formulation consists in a weighted average of two staggered-
grid stencils to decrease the errors due to numerical dispersion and anisotropy. Optimising
the weights involved in the averaging, it is possible to decrease the number of required grid
points per propagated wavelength (down to four or less) compared to other FDFD schemes,
while reaching a quasi-arbitrary accuracy in a homogeneous medium at a given frequency.
This property will be fully exploited in the application of the imaging algorithm to the Institut
Fresnel data set, which requires a high level of accuracy. In this section, I illustrate qualitatively
the principles of the method. For more technical details on the formulation, I refer to the
original articles of Jo et al. (1996) and Hustedt et al. (2004).

An optimised FDFD scheme

Fig. 1.8 shows the two finite-difference grids involved in the scheme of Jo et al. (1996): the
first one is a classical cartesian grid and the another one a 45◦-rotated grid. On the classical
staggered grid, pressure and velocity components are not estimated at the same place (hence
the qualification of staggered): pressure is evaluated at nodes and velocities between nodes. In
the classical staggered grid formulation, this enables to mitigate the sub-grid decoupling effect
arising when the excitation is implemented as a single point source (see fig. 2 in Hustedt et al.,
2004, for an illustration of this effect).

Jo et al. (1996) propose two averaging operations. On one hand, averaging the laplacian
term in equation (1.53) leads to less errors due to numerical anisotropy. This is illustrated
in Fig. 1.9 which shows the dispersion curves associated to the numerical scheme, i.e. the
evolution of the numerical phase velocity as a function of the grid sampling, expressed as the
number of grid points per propagated wavelength G = λ/h. In Fig. 1.9(b), where the laplacian
term has been averaged, the dispersion curves vary less with the direction of wave propagation
than for a classical staggered grid stencil (Fig. 1.9a). On the other hand, averaging the mass
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FIG. 3. Normalized phase Vph and group Vgr velocity curves for different propagation angles with respect to the grid, for the explicit
second-order central finite-difference scheme in time-space domain when the stability limit,      where c is the
velocity.

FIG. 4. Finite-difference stars for the Laplacian operator. (a) Conventional second-order central difference
(five-point) star, (b) 45” rotated star, (c) nine-point star combining (a) and (b).

f-x Domain Wave Extrapolator 531

FIG. 3. Normalized phase Vph and group Vgr velocity curves for different propagation angles with respect to the grid, for the explicit
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    (2)

where Pm,n represents the pressure of the wavefield at the
location             Figure 1
shows this grid.

Since exploration seismology requires relating events in time
to horizons in depth, one concern is to minimize numerical
velocity or dispersion errors (Alford et al., 1974; Marfurt,
1984). Dispersion analysis (Appendix A) allows an estimation
of the accuracy of the solution in the frequency domain.
Figures 2 and 3 compare dispersion curves corresponding to
frequency-domain and time-domain algorithms. Since disper-
sion in the frequency domain is greater than that in the time
domain, more grid points per wavelength should be used in the
frequency domain to obtain an accuracy that is comparable to
that of explicit time-domain extrapolation.

A NEW FINITE-DIFFERENCE SCHEME

To get more accurate results with the same, or a smaller
number of, grid points per wavelength, a different implemen-
tation is suggested.

The first step is to generalize the Laplacian term

      (3)
where

 
 

 
      

and the (x', z') coordinate system is rotated 45” relative to the
(x, z) system. Finite-difference approximations to these oper-
ators can be expressed as

   

        

and

 

P +    +  + 

where A = AX = AZ.
This generalization makes a nine-point Laplacian operator

(Figure 4). With this formulation, the dispersion curves are
calculated with a = 0.5. The result (Figure 5) shows relatively
small numerical anisotropy with respect to propagation angle
even though the method is, in general, less accurate than the
conventional technique shown in Figure 2. The dispersion is
maximum at a propagation angle of 45” and minimum at 0”.
This difference can be explained by the fact that the grid
interval of the 45” rotated coordinate system is larger than that
of the 0” system.

The second step is to modify the technique used by Marfurt
(1984) in which he considered the mass acceleration term to be
a linear combination of the lumped mass matrix and the
consistent mass matrix. Using this technique, the finite-differ-
ence approximation of the collocation point P of the mass

FIG. 1. The pressure fields P at the collocation point (m, n) and
its eight nearest neighbors in a 2-D medium.

FIG. 2. Dispersion curves for finite-difference solution of the
scalar 2-D wave equation in the frequency-space domain.
Numerical phase velocity Vph and numerical group velocity Vgr
are normalized with respect to the true velocity V0 and plotted
versus wavenumber        where G is the
number of grid points per wavelength.

Dispersion

Anisotropy

(a) Classical five-point staggered grid stencil.
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acceleration term   in equation (1) can be represented
as a linear combination of the points corresponding to the
Laplacian operators, so that

  
    

      

In practice the averaging coefficient b can be found by optimi-
zation (See Appendix B) in a manner similar to that used in
Holberg (1987) to obtain optimal differencing operators in
time domain modeling. Dispersion curves based on the opti-
mized constant, b = 0.737, are shown in Figure 6. In this figure,
dispersion curves are clustered on either side of the lines
V p h / v = 1 and Vgr/v = 1, which means that the numerical
velocity does not diverge significantly from the true medium
velocity.

Finally, by combining these two techniques we can expect
more accurate results. The quantity P in the mass acceleration
term  P, in conjunction with the nine-point Laplacian
operator, is

          

       (5)

where c + 4d + 4e = 1.
Substitution of equations (5) and (3) into equation (1) gives

the following difference equation

                 
   

        

         

   

        

(6)
The coefficients are optimized by minimizing the numerical

dispersion error of the phase velocity (See Appendix B).

FIG. 5. Normalized phase Vph and group Vgr velocity curves for
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FIG. 6. Normalized phase Vph and group Vgr velocity curves for
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term with b = 0.7370 in equation (4).
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(b) Mixed-grid nine-point stencil with average of the
Laplacian term. Numerical anisotropy is reduced.

532 Jo et al.

acceleration term   in equation (1) can be represented
as a linear combination of the points corresponding to the
Laplacian operators, so that

  
    

      

In practice the averaging coefficient b can be found by optimi-
zation (See Appendix B) in a manner similar to that used in
Holberg (1987) to obtain optimal differencing operators in
time domain modeling. Dispersion curves based on the opti-
mized constant, b = 0.737, are shown in Figure 6. In this figure,
dispersion curves are clustered on either side of the lines
V p h / v = 1 and Vgr/v = 1, which means that the numerical
velocity does not diverge significantly from the true medium
velocity.
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FIG. 5. Normalized phase Vph and group Vgr velocity curves for
finite-difference solutions in the frequency domain using the
nine-point finite-difference formulation to approximate the
Laplacian operator when a = 0.5 in equation (3).

FIG. 6. Normalized phase Vph and group Vgr velocity curves for
frequency-domain, finite-difference solutions using an average
term with b = 0.7370 in equation (4).
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(c) Mixed-grid nine-point stencil with average of the
mass acceleration term. Numerical dispersion is re-
duced.
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FIG. 7. Normalized phase Vph and group Vgr velocity curves for frequency-domain, finite-difference solutions
using the nine-point finite-difference formulation with a = 0.5461, c = 0.6248, and d = 0.9381 X 10-l in
equation (6).

FIG. 8. A homogeneous half-space model to test the frequency-domain modeling. The velocity of the medium is
3000 m/s. The symbol * denotes the shot point; every tenth receiver is shown with the symbol 

(d) Mixed-grid nine-point stencil with a weighted aver-
age of the laplacian and of the mass acceleration terms.
Weights are optimised for 4 grid points per wavelength.

Figure 1.9: Dispersion curves for the numerical phase velocity corresponding to different
finite-difference schemes (modified from Jo et al., 1996). Each curve corresponds to a given
direction of wave propagation with respect to the cartesian grid (0◦, 15◦, 30◦ and 45◦).
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acceleration term (ω2ρK−1P in equation 1.53) leads to less errors due to numerical dispersion
(see Fig. 1.9c, where the errors are centred around 0). Performing a weighted average of both
the laplacian and of the mass acceleration terms dramatically improves the accuracy of the
numerical solutions for a given number of grid points per propagated wavelength, i.e. for a
given velocity and a given frequency: see Figs 1.9(d), where the stencil coefficients have been
optimised for G = 4 grid points per propagated wavelength. In their study, Jo et al. (1996)
make use of a steepest descent algorithm for the optimisation of the phase velocity, whose
dispersion relation can be derived from a classical plane-wave analysis (see their appendix A).

The mixed-grid stencil formulation ends up with a system which can be recast in matrix
form as

A(x, z, ω) u(x, z, ω) = s(x, z, ω), (1.64)

where A is called the impedance matrix, u is the wavefield to solve for, and s is the source
term. In the following, I will often refer to this equation as it constitutes the forward problem
in the inversion process. On the implementation point of view, the adaptation of the algorithm
of Hustedt et al. (2004) to the electromagnetic problem only required to substitute the acoustic
parameters by the electromagnetic ones, following the acoustic-electromagnetic analogy (see
Table 1.2), before the construction of the impedance matrix A.

I now validate this implementation, whose technical realisation and utilisation bring out
other problems concerning the accuracy of the solutions. The validation is achieved by con-
sidering a homogeneous medium, for which an analytical solution has been derived in Sec-
tion 1.1.3.2. As we are interested in characterising heterogeneous media, a validation in a
heterogeneous medium might have been more relevant, but it is less straightforward since no
closed-form solution exists for these problems. Even in the case of a simple interface, resolution
involves semi-analytical solutions through a wavenumber decomposition whose discretisation
possesses its own source of errors. In Section 3.1, the confrontation of the numerical solutions
to physical data generated by a scattering experiment may serve as a demonstration of the
validity of the method in heterogeneous media.

1.2.3 Validation in a homogeneous medium

If we consider a homogeneous medium, the FDFD scheme actually solves the following wave
equation:

∇2u(r, ω) + ω2 ρ(ω)

K(ω)
u(r, ω) = −ρ(ω) s(r, ω), (1.65)

where I keep the acoustic notations that should be substituted by their electromagnetic equiv-
alents in TE or TM mode (see Table 1.2). The expected analytical solutions in TE and TM
modes can be derived from the reference solutions presented in the previous section (eqs 1.58
and 1.61 to 1.63) by linearity with respect to the source term.

Fig. 1.10(a) compares the analytical and the numerical solutions computed at a frequency
of 100 MHz in a homogeneous medium presenting both attenuation and dispersion, described
by the Jonscher’s parameters corresponding to limestone(3b) in Table 1.1, with an additional
DC conductivity. For this calculation, I use the stencil coefficients of Jo et al. (1996) and a
grid step h = 0.25 m ' λ/4 (at 100 MHz, λ ' 1.0 m in this medium).
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Figure 1.10: Comparison of the analytical and numerical electric fields for the propagation of
TE mode at 100 MHz in a limestone described by the set of Jonscher’s parameters ε∞r = 8.14,
χr = 0.94, n = 0.82 and σDC = 1 mS/m.

Effective radiation of hard sources

Significant discrepancies can be observed between the analytical and the numerical solutions
in Fig. 1.10(a). In fact, there is a constant ratio between the amplitudes of both solutions.
This amplitude ratio is due to the effective radiation of the implemented hard source. Indeed,
the numerical source is not as punctual as the theoretical Dirac function. Since the source of
eq. (1.65) is implemented as a non-zero value located at one grid point, its effective radiation
depends on the size of the grid step used in the FDFD calculations, compared to the propagated
wavelength. The observed amplitude discrepancy thus depends on the grid step and on the
simulated frequency. It is all the more important in the example of Fig. 1.10(a) that the
optimisation of the stencil coefficients enables the use of a grid step which is relatively large
compared to the propagated wavelength (h ' λ/4). Using a finer grid step decreases the
discrepancy since the source can be considered as more punctual relatively to the wavelength
(but doing so, we loose the benefits of the mixed-grid stencil). This effect has been studied
in details by Waldschmidt and Taflove (2000) for the FDTD method (see also Taflove and
Hagness, 2005, §5.3.2, p. 172). For a better agreement between the analytical and the numerical
solutions, these authors recommend to scale the numerical solution by an ad hoc factor that fits
the analytical amplitudes. It is the approach I adopt here and in the further application to the
Institut Fresnel data set (Section 3.1). When performing modelling in the frame of inversion,
however, I will simply consider that this scaling factor is absorbed in the estimation of the
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source signature.

Fig. 1.10(b) shows the resulting (scaled) numerical values and the difference between nu-
merical and analytical solutions. The agreement is now satisfying, with a relative error of less
than 10% along the section. Similarly, Fig. 1.11 shows the scaled numerical wavefield in the
entire domain and the relative difference between numerical and analytical solutions. It can
be noticed that the relative error can reach up to 30% in the corner of the domain, which
suggests a residual numerical anisotropy. This can be understood by looking more precisely on

(a) Numerical solution (scaled, real part). (b) Relative difference with the analytical
solution (%).

Figure 1.11: Numerical wavefield (TE mode) in a limestone described by the set of Jonscher’s
parameters ε∞r = 8.14, χr = 0.94, n = 0.82 and σDC = 1 mS/m. The dotted blue line indicates
the location where values were extracted for Fig. 1.10. The dashed red line delimits the physical
domain, surrounded by PML (Bérenger, 1994).

the dispersion curves of Fig. 1.9(d), obtained with the coefficients published by Jo et al. (1996):
Fig. 1.12(a) presents a zoom on these dispersion curves. On this figure, we can observe that
the set of stencil coefficients optimised by Jo et al. (1996) restrict the error on the numerical
phase velocity to less than 0.3% using four grid points per wavelength or more (1/G ≥ 0.25).
Nevertheless, this error is not zero for G ' 0.25 and it is sufficient to generate errors when
propagating over many wavelengths in a direction of 45◦ with respect to the grid.

Optimisation of the stencil coefficients

One possibility to improve the accuracy of the numerical solution is to better optimise the stencil
coefficients. In Fig. 1.12(b), I present dispersion curves corresponding to stencil coefficients I
have optimised for G = 4 using the same VFSA algorithm as Operto et al. (2009)1. Using a
very low convergence threshold, the VFSA algorithm yields a very low error on phase velocity
for the specific value 1/G = 0.25. It can be noticed, however, that the error increases if smaller
grid steps are used (for 0.17 > 1/G > 0.25, i.e. 4 < G < 5.9) up to larger errors than for
the coefficients of Jo et al. (1996). If it enables to lower the error in a particular homogeneous
medium, optimising the coefficients for a specific value of G therefore does not ensure accurate

1This algorithm has been kindly provided by Stéphane Operto (Géoazur, CNRS, Univ. Nice-Sophia Antipo-
lis, France).
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Figure 1.12: Dispersion curves obtained using (a) the stencil coefficients of Jo et al. (1996),
(b) coefficients optimised for G = 4 with a VFSA algorithm (Operto et al., 2009; Sen and
Stoffa, 1995) and (c) coefficients optimised for G ≥ 10 using the VFSA algorithm. Again, each
curve corresponds to a given direction of wave propagation with respect to the cartesian grid
(0◦, 15◦, 30◦ and 45◦ from dark to light grey).
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solutions in heterogeneous media, where the value G varies according to the local propagated
wavelength.

A more satisfying strategy consists in optimising the stencil coefficients such that the error
on the numerical phase velocity decreases for a range of G values, according to the simulated
frequencies and to the range of velocities in the considered heterogeneous medium. Doing so,
it appears that the coefficients of Jo et al. (1996) actually yield a good compromise between
the error level and their applicability to heterogeneous media. It is not possible to obtain sig-
nificantly smaller errors without decreasing the minimal number of grid points per wavelength.
Unless otherwise stated, I will therefore use these coefficients in my simulations.

On the other hand, if we accept to increase the minimal number of grid points per wave-
length at the expense of the computation cost, it is possible to reach a significantly lower error
level. For instance, in the application to the Institut Fresnel dataset (Section 3.1), I chose a
grid step h = 1 mm in order to well describe the geometry of the medium. According to the
considered frequencies and to the expected velocities in the medium, the corresponding values
for G then range between 10 and 150. The dispersion curves obtained with stencil coefficients
optimised in this range of G values are shown in Fig. 1.12(c). The error on the phase velocity
is now very low for values of 1/G ≤ 0.1 — in particular, it is significantly lower than using 10
grid points per wavelength with the stencil coefficients of Jo et al. (1996) — which enables to
reach the high level of accuracy obtained in Section 3.1.

Hicks interpolation at source and receiver positions

Figs 1.10 and 1.11 show the field values computed by the FDFD scheme, and I explained how it
is possible to get a good accuracy on these values by optimising the stencil coefficients. During
the inversion process, we will need to extract data values from these wavefields at particular
positions, where the observed data have been recorded. The fact that source and receiver
positions do not necessarily coincide with the cartesian grid points can result in significant
errors in the computation of synthetic data.

For instance, Fig. 1.13(a) shows the data recorded at receivers located along the blue line of
Fig. 1.11(a) every 2.5 cm, i.e. with 10 receivers per grid step. Since the finite-difference solution
is considered to be constant within a grid cell, the difference with the analytical solution can
be very different for receivers located between two grid points (up to 50%). These errors due to
numerical sampling will have a significant impact on the misfit between observed and synthetic
data in the inversion. Taking the data as equal to the field value at the closest grid point, we
lose all the benefit of having designed an accurate and efficient modelling scheme allowing for a
coarse grid. An interpolation method is thus strongly needed to get accurate data values that
can be compared with observed data in the inversion process.

This is achieved using Hicks interpolation (Hicks, 2002), which mimics a Dirac spatial
sampling by spreading the source and receiver support over several grid nodes. A band-limited
Dirac delta function is approximated using Kaiser-windowed sinc functions. Fig. 1.13(b) shows
the data obtained using Hicks interpolation at source and receiver locations, spread on a 9× 9-
points region. The agreement with the analytical solution is now of the same order as for
the wavefield (Fig. 1.10), except in the vicinity of the source where virtual receivers interact
with the source position, as well as nearby the PML region because the support of the receiver
located at the border of the domain overlaps in the PML. We see here the limitation of Hicks
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interpolation, which is only valid if the medium is homogeneous around source and receiver
locations.
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(a) Without Hicks interpolation (data at receiver position is taken as the field value at
the closest grid point), relative errors reach 50%.
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(b) Using Hicks interpolation at source and receiver positions, the relative errors are
decreased down to less than 10%, except in the vicinity of the source and nearby PML.

Figure 1.13: Comparison of the analytical and numerical data for TE mode in a limestone
described by the set of Jonscher’s parameters ε∞r = 8.14, χr = 0.94, n = 0.82 and σDC =
1 mS/m, (a) taking the field value at closest grid point, (b) using Hicks interpolation at source
and receiver locations. Receivers are located every 2.5 cm (10 receivers per grid step).
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Partial conclusion on the forward problem

In this first chapter, I have described the behaviour of electromagnetic waves in natural media,
how they are affected by the electromagnetic properties, and how it was possible to parame-
terise these properties. To finely describe the propagation of electromagnetic waves in natural
media without loss of generality, we need to consider their dispersive nature and working in
the frequency domain enables to do it in a straightforward manner. However, we anticipate
that considering dispersive parameters in the inversion process will be a difficult task since it
increases the degrees of freedom of the problem. We have seen that the restriction to frequency-
independent, real-valued permittivity and conductivity might be a reasonable approximation
in some materials such as low-saturated limestones.

In a second time, I have presented the numerical direct method I will use for the ima-
ging process, which consists in a frequency-domain finite-difference scheme using an optimised
mixed-grid stencil. Optimising the stencil coefficients used in the discretisation of the partial
differential equation results in a very flexible method that enables either to use of coarse grid
with a reasonable level of errors, or to reach a very high level of accuracy using a finer grid.
Identifying the origin of the errors due to hard source implementation, numerical dispersion
and anisotropy, and Hicks interpolation is of prior importance for further applications. The
properties of this numerical method will be fully exploited in the application to the laboratory
controlled data of the Institut Fresnel (Section 3.1).

Finally, I shall recall the main assumption on the basis of my work, namely the restriction
to 2D geometries and — more importantly — 2D propagation. This hypothesis results in a low
computational cost and allowed me to take benefit from pre-existing modelling tools that could
be adapted from acoustics to electromagnetics, but it also induces strong limitations that will
have consequences in Chapter 3 for the interpretation of the simulated amplitudes.
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THE INVERSE PROBLEM

Introduction

This chapter is dedicated to the inverse problem, i.e. to the estimation of permittivity and
conductivity parameters from GPR measurements.

In Section 2.1, I first introduce the general concepts of inverse problem theory. In this
section, I deliberately keep a very general mathematical frame to situate the FWI problem
among the wide variety of inverse problems. Understanding the properties of this ill-posed,
non-linear, large-scale problem justifies the choice of specific optimisation techniques to solve
it. More technical details and physical insights on the imaging process by FWI are provided in
subsequent sections.

In Section 2.2, I formulate the multiparameter FWI problem for the reconstruction of 2D
distributions of permittivity and conductivity in the subsurface from GPR data. In particular,
I investigate the sensitivity of GPR data towards permittivity and conductivity and I propose a
methodological workflow for the simultaneous imaging of these parameters based on synthetic
examples. This study has been published in the Geophysical Journal International.

In Section 2.3, I provide additional details on the formulation, mostly inherited from seismic
FWI. In particular, understanding the structure of the gradient gives more insights on the
resolution capability of FWI with regards to the illumination of the medium provided by the
acquisition, which will be a crucial issue for the application of FWI to surface-based field
measurements in Chapter 3.

2.1 Introduction to inverse problems, optimisation and FWI

In this section, I present the general frame of inverse problem theory and some key notions
to understand the difficulties raised by the multiparameter FWI problem considered in the
following. The reader is referred to Menke (1984, 2012) for a complete overview of linear
inverse problems and to Tarantola (2005) for complements on linearised problems and for a
more general probabilistic point of view. Nocedal and Wright (2006) provide a solid basis
to attack local optimisation problems and I have used Hansen (2010) as an introduction to
regularisation methods.

2.1.1 Definition, properties, and resolution of inverse problems in general,
and of FWI in particular

Definition of an inverse problem

An inverse problem aims at inferring parameters of a considered system from data recorded
on this system. Inverse problems are thus widely spread in many sciences, where collect-
ing measurements aim at understanding the objects of study through the estimation of their
properties. Inverse theory provides a mathematical framework to study inverse problems and
develop systematic methods for their resolution.

When trying to guess the causes (parameters) from their consequences (data), we implicitly
assume a link between both. In geophysical inverse problems, this link is furnished by physical
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theories that relate the observed data dobs to the model parameters m∗ through the so-called
forward problem

dobs = J (m∗), (2.1)

where J is an operator that formalises the physical laws governing the considered process1. In
Chapter 1, we already encountered an example of forward problem, namely the wave equation,
whose resolution provides electric data depending on the electromagnetic parameters of the
medium. In equation (2.1), the operator J can be viewed as the implicit operator that
corresponds to solving the wave equation in a specific subsurface model and extracting data
from the resulting wavefield. Inversely, solving the inverse problem is solving equation (2.1) for
the vector of model parameters m∗, knowing the observed data dobs. In our case, it consists in
estimating the electromagnetic properties of the subsurface from GPR measurements.

The forward problem is generally deterministic, i.e. the assumption of some model parame-
ters leads to a unique solution for the predicted data (at least in the case of wave propagation).
The operator J is thus an application that associates to any element m of the model space
M a unique element d in the data space D:

J : M −→ D
m 7−→ d.

On the contrary, inverse problems are generally ill-posed, i.e. the existence of a solution for
the inverse problem is not guaranteed, or the solution can be non-unique, and the resolution
process is not stable because the solution m∗ may depend non-continuously on the input data
(Hadamard, 1902).

In addition, while the data space is generally linear (remember the linearity of the electro-
magnetic fields in Chapter 1), the relation J between model and data is often non-linear. In
this respect, formulating the forward problem as d = J (m) is fundamentally different from
the wave equation Au = s. The former directly expresses the data as a non-linear function of
the model parameters, while the latter is a linear equation in u where the model parameters
are contained implicitly in the impedance matrix A(m).

The methods involved for solving inverse problems greatly depend on these properties (ill-
posedness and non-linearity). I shall now explicit these properties and provide a classification
of the inverse problems and of the methods used to solve them, with a particular focus on the
specific FWI problem.

Properties of (ill-posed) inverse problems

Non-existence of a strict solution to eq. (2.1) arises in real-world problems because the
physical theory often provides a limited description of natural phenomena. The assumptions
made in Chapter 1 for modelling the propagation of electromagnetic waves (restriction to a 2D
geometry, parameterisation of the electromagnetic properties, reduction of the GPR antenna
to an infinitesimal dipole) let us expect that we cannot reproduce exactly the observed data
with our simulations. Even in the case of a perfect physical theory, available data are generally
noisy and thus cannot be totally explained by the theory.

1I do not account here for possible uncertainties in the physical theory, which can be considered with the
probabilistic formalism of Tarantola and Valette (1982b) or in the frame of data assimilation (Lahoz et al., 2010).
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Therefore, the inverse problem (2.1) is solved in a weak form, as the following optimisation
problem

m∗ = min
m

∣∣dobs −J (m)
∣∣, (2.2)

i.e. we seek for the model parameters m∗ that best explain the data, in the sense of some
norm | · | which measures the distance between the observed data dobs and calculated data
dcal = J (m) predicted by the theory in an hypothetical model. Solving the inverse problem
then amounts to minimise a misfit (or objective) function

C (m) =
∣∣dobs − dcal(m)

∣∣. (2.3)

In the following of my work, the misfit between observed and calculated data is generally
measured in the least-square sense, using the `2 norm which corresponds to a classical Euclidian
measure of distance. As the `1 norm is expected to be more robust in presence of noise (Brossier
et al., 2009), it will be useful for the treatment of real field data (see Section 3.2).

Non-unicity of the solution arises when the problem is under-determined, i.e. that the data
we have available are not sufficient to uniquely constrain all model parameters. Then, several
set of model parameters can explain the data equivalently well.

The issue of non-unicity of the solution is intimately related to the sensitivity of the data
to the model parameters. On-ground GPR probes the subsurface with waves that propagate
between antennas located on the ground surface: Therefore we can expect the data to be poorly
sensitive to permittivity and conductivity variations in certain portions of the investigated ma-
terial, especially at large depths, and we cannot hope an accurate estimation of these variations
here. To compensate the lack of information in the data, and mitigate the ill-posedness of the
problem, there is no other choice than invoking other sources of information (a priori infor-
mation, see e.g. Jackson, 1979) or, for lack of anything better, imposing some regularisation
constraints to the model solutions (e.g. Tikhonov and Arsenin, 1977; Hansen, 2010).

In addition, non-unicity can arise because of trade-offs between parameters. By trade-
off, I mean that a given variation in the data can sometimes be equivalently explained by a
variation in one parameter or in another parameter. In reflection seismics, for instance, we are
interested in reconstructing both the velocity in the subsurface and in locating the interfaces
that create the reflections. If the available data consist only in the travel times of the reflected
events recorded at zero offset, then there is a strong trade-off between the determination of the
reflector depth and the velocity above this reflector, since a late arrival time can equivalently be
explained by a deep reflector in a rapid material or by a shallow reflector in a slow material. It is
why velocity analysis of reflection data (and FWI as well) considers multi-offset measurements.
Trade-off effects are crucial in FWI, in particular when dealing with multiple parameter classes
such as permittivity and conductivity, and I discuss this issue in more details in Section 2.2.

Linear, non-linear and linearised inverse problems The inverse problem is said to be
linear when the function J is linear, i.e. when the data depend linearly on the model param-
eters. In the discrete case, it can then be represented by the Jacobian matrix J (or Fréchet
derivatives). The study of linear inverse problems therefore benefits from the mathematical
tools of linear algebra. In particular, the issue of non-unicity can be investigated by looking at
the Kernel (or null space) of the matrix J , e.g. by computing its singular value decomposition
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(SVD, see e.g. Jackson, 1972; Hansen, 2010). More generally, linear problems are well under-
stood. In particular, if the misfit function is defined using the `2 norm, then it is a quadratic
form which has the nice property of convexity and a unique minimum. Many efficient methods
then exist for finding this minimum, known as the Best Linear Unbiased Operator (BLUE) in
the data assimilation community.

Unfortunately, most of inverse problems are non-linear. It is the case of FWI of GPR data
since the recorded electric fields depend non-linearly on the electromagnetic properties of the
subsurface. On the optimisation point of view, non-linearity manifests itself by the presence of
local minima in the shape of the misfit function (see Fig. 2.1). This effect adds to the problem
of non-unicity and is of major concern for local optimisation methods that may fall in the
closest local minimum when solving eq. (2.16), while global optimisation methods may regard
the solution as the ensemble of acceptable models (e.g. Sambridge, 1999b, 2001).

34 CHAPTER 2. INVERSE THEORY

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Global Minimum

Local Minima

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
b)a)

Figure 2.10: A 2-D non-linear inverse problem. a) the solution is the intersection point between
a cosine function and a straight line at m = (5, 4) . b) the misfit function shows the global
minimum surrounded by two local minimum.

(5, 4) but the direct inverse operator g−1 can not easily be obtained. The misfit function in
Figure 2.10b shows, as expected, the global minimum in m = (5, 4) but surrounded by two
local minima.
Since the analytical solution of the forward problem is known, the Fréchet derivative matrix

can easily be found and is given by
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In order to show the importance of the starting model as well as the performance of the different
local methods, I applied a Newton, Gauss-Newton, non-linear gradient and conjugated gradi-
ent to the resolution of our non-linear inverse problem. Figure 2.11 shows the results of the
inversion for a starting model located in mo = (4.5, 7). For this starting model, the quadratic
approximation is accurate and Newton and Gauss-Newton methods converge into the global
minimum. The non-linear gradients converge as well towards the global minimum. Figure 2.12

Quadratic 
approximation 

mk

- G(mk)

Figure 2.1: Map of the misfit function in the case of a two-parameter, non-linear problem
(modified from Sirgue, 2003). The vector −G(mk) indicates the steepest descent direction at
point mk.

In practice, however, we often consider the problem as linear, to take benefit of the nice
properties of linear problems and of the efficient tools developed for solving them. We then
speak about linearised problems. Linearised problems assume that the misfit function is locally
quadratic (see Fig. 2.1). Under this hypothesis, it is possible to decrease the misfit function by
applying one of the various methods applicable to linear problems. Non-linearity is accounted
by iterating the process until convergence. A consequence of linearisation is the great sensitivity
to the choice of the initial model. In Fig. 2.1, it is obvious that we can reach the global minimum
only if we start from the good valley of attraction. If we start from another valley, we will fall
into a local minimum.

NB: Linearising the inverse problem is not equivalent to linearising the forward problem, as
does, for example, the Born approximation. In this work, the FWI problem of GPR data will
be solved in a linearised approximation, but using the wave propagation modelling presented
in Chapter 1 that fully simulates the non-linear effects of the model parameters in the data.
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In FWI, non-linearities commonly arise when the misfit function is based on the simple
difference between observed and calculated waveforms, because the comparison of oscillating
wavelets is ambiguous. This gives rise to the so-called cycle-skipping effect, which is illustrated
in Fig. 2.2. In frequency-domain FWI, cycle-skipping is due to the fact that monochromatic
data can be equivalently matched by data having a phase difference of 2π (i.e. a time shift
equal to the period T ). Using local optimisation algorithms, cycle-skipping will occur if the
initial model generates data that have a time shift larger than half the period of the signal.
Cycle-skipping is thus more critical at high frequencies since a given time shift in the initial
data is more likely to be greater than T/2 for high frequencies than for lower ones (see Fig. 2.2).

Equation (11) can be rearranged as 

where V is the background velocity and fnext is the optimal
frequency for the next single-frequency loop, derived by this
method.

The process for determining the frequency components as
inputs for inversion is illustrated in Figure 4, and involves:

(1) Initiating inversion with a sufficiently low frequency (f1).
(2) Determining the maximum spatial wavenumber (kmax

f1 ) for 
the chosen f1 by choosing the limit of resolution in ray 
tomography with equation (10).

(3) Considering the maximum phase error in the inversion 
process, and the continuity of the spatial wavenumber, the 
optimal frequency (f2) for the next iteration is calculated with 
equation (12), to satisfy the condition that kmax

f1 is equal to the 
minimum spatial wavenumber for the next iteration (kmin

f2 ).
(4) Steps (2) and (3) are repeated iteratively.

NUMERICAL EXPERIMENT

We conducted a numerical experiment to examine the validity
of the proposed method.  The two-dimensional model shown in
Figure 5 was used for the numerical experiment.  It contains three
circular high-velocity anomalies within the background velocity of
3000 m/s.

The diameters of the three circular anomalies were 3, 11, and
33 m, with velocities of 3200, 3100, and 3050 m/s.  The diameter

(12)

of the maximum anomaly was approximately the same as the
seismic wavelength at 100 Hz (30 m).  The size of the model was
100 m in the horizontal direction and 200 m vertically.  Shot points
were located vertically 10 m apart from the left edge of the model,
with 2-m depth intervals.  Receivers were located vertically 10 m
from the right edge, with 2-m depth intervals.  The horizontal
distance from the shot array to the receiver array was 80 m.

We simulated the observed dataset by two-dimensional acoustic
modelling in the time-space domain.  The wave field was
calculated by a pseudo-spectral method (Murayama et al., 1991;
Furumura et al., 1998) using an isotropic source, with a Ricker
wavelet of central frequency 100 Hz.  The sampling interval was 1
ms, and the waveform data consisted of 1024 samples.  We then
used the Fourier-transformed spectrum of the waveform as the
input for inversion in the frequency-space domain.  The inversion
model was composed of square cells with 1-m side lengths.

Figure 6 illustrates the process within a single-frequency loop
of the consecutively ordered single-frequency inversion, at a
temporal frequency of 150 Hz.  The initial velocity model for this
frequency loop comes from the inversion result of the previous

Yokota and Matsushima Frequency selection in waveform tomography

22

Fig. 3. Schematic illustration of cycle skipping with a monochromatic
wavelet in the time domain:  (a) Low-frequency monochromatic
wavelet without cycle skipping.  (b) High-frequency and cycle-skipped
monochromatic wavelet.  Though the traveltime error is the same for
both cases, cycle skipping occurs only for the higher frequency.

Fig. 4. Procedure for optimal frequency selection.

Fig. 5. Model used for the numerical experiment.

T/2

T/2

Figure 2.2: Schematic principle of the cycle-skipping effect on monochromatic data (modified
from Yokota and Matsushima, 2004).

As a consequence, frequency-domain FWI is based on a multi-scale approach, initially
promoted by Pratt and Worthington (1990). Inverting first the low frequency components of
the data enables to avoid the cycle-skipping problem at the early stage of the inversion, where
the initial model is not accurate enough to well predict the arrival times. High-resolution details
are then added to the reconstructed image by considering higher frequencies in the inversion.
This low to high frequency hierarchy has been adapted to time-domain FWI by Bunks et al.
(1995) and recently used by Meles et al. (2011) for the FWI of crosshole GPR data. These
authors illustrate that considering low-pass filtered data for the early steps of the inversion
makes the misfit function more convex and enables to reach the global minimum when the
process is iterated with higher frequencies (see Fig. 2.3).

In the following, I present the methods used for solving inverse problems in general, with
a focus on the local descent algorithms used in this work to solve the non-linear FWI problem
in the linearised approximation.
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reason, we expect the inversion to avoid getting trapped in local
minima if we invert, at least during the early steps of the inversion,
only the low frequency content of the data.

3.1. An illustrative example of a one-parameter inversion

We now consider in more detail a simplified one-parameter
inversion problem in the context of the model presented in Fig. 1a. Let
A and D(A) be the true model and the synthetically generated
“observed” traces for this model. We invert only for the εr value in the
anomalous block by assuming that we know its location and shape.
Because only one parameter can be updated, the problem is a one-
parameter inversion. Fig. 3 shows the cost functions of this problem
for different data sets. The black curve corresponds to the cost
function for the entire full bandwidth dataset. Local minima occur at εr
values of about 2, 55, 80 and beyond 95. The global minimum (true
solution) occurs at the correct value of 80. As a consequence, in order
to avoid getting trapped in a local minimum, the inversion should
start with a model block εr value somewhere between 65 and 95. The
red and light blue curves correspond to cost functions for which 10–
20 MHz and 10–44 MHz bandpass filters are applied to the datasets,
respectively. Whereas the red and the blue curves also exhibit local
minima, the width of each global minimum is much broader in terms
of the model (permittivity) values. Local minimum trapping can be
avoided by successively using these two data sets. For example, if we
start with εr=4 for the anomalous body (corresponding to a
homogenous starting model equal to the background medium), by
using the 10–20 MHz data set, we would reach the local minimum at
εr~35. Then, by starting the next phase of the inversion at this εr value
and using the 10–44 MHz dataset, we would finally and rapidly reach
the global minimum at εr=80. This simple example, far from
demonstrating and establishing a general methodology, suggests a
different approach to inversion in which different frequency contents
of the data are used at different stages of the inversion. The key is to
start at low frequency, where stability is more likely, and gradually
add the higher frequency components of the data as iterations
proceed. Because low-frequency content data are inverted first, the
relative importance of the starting model is much diminished.

4. A new frequency-time-domain full-waveform inversion scheme

Following the ideas presented in the previous section, the original
FBID algorithm of Meles et al. (2010; Fig. 4a) is modified as follows
(Fig. 4b):

1) Determine a good initial input model using an inexpensive
inversion scheme (e.g., traveltime tomography or even a homog-
enous model).

2) Based on this initial model, compute the frequency-filtered data at
each receiver location and calculate the misfit with the observed
data (1st calculation of the forward problem).

3) Back-propagate the misfit or residual wavefield and cross-correlate
the results with the filtered forward-propagated electric field to yield
the εr and σ gradients of the cost function (2nd calculation of the
forward problem). Due to the orthogonality properties of the Fourier
base, the residual fields do not need to be filtered (any frequency
component not common to both data sets—forward and back-
propagated residual—will be eliminated in the cross-correlation
process).

4) Estimate the step lengths required to move along the gradient
directions until a local minimum is found (3rd and 4th calculations
of the forward problem).

5) Update the model parameters according to the computed
gradients and step-lengths.

6) Repeat the inversion scheme, updating the frequency content of
the data at specified intervals. This part of the scheme is illustrated
schematically in Fig. 2, which shows the source signal and the
bandpass filter applied to it at various stages. The bandwidth is
expanded progressively by increasing the high cut frequency in
fixed increments and keeping the low cut frequency constant.
When the high cut frequency reaches the central frequency of the
source pulse, stability is likely because any time shifts between the
observed and computed data for the current model will be less
than half a period. So, for all remaining iterations the full
bandwidth of the data can be used.

7) Once the full frequency content of the data is inverted, repeat the
inversion until convergence is reached.

Following Pica et al. (1990), we have introduced dynamic scaling
of the perturbation factors as inverse functions of the maximum
magnitudes of the gradients. This was needed to provide proper
linearization for the determination of the step-lengths (see Meles et
al. (2010) for more details) The amplitudes of the gradients can vary
by several orders of magnitude during the inversion process due to
the different frequency contents of the data and the convergence in
the data space at different stages of the PBED. The perturbation factors
need to be adjusted to compensate for this effect.

The new scheme retains all of the equations described by Meles et
al. (2010). The essential and distinguishing feature of the new PBED
scheme is that it exploits a range of imaging wavelengths in a
controlled manner. Because the medium comprises inhomogeneities
of various sizes (and contrasts), from quite small to moderately large
(relative to each wavelength), it can be more effectively sampled and
interrogated by multiple wavelengths in each expanded frequency
band sequentially.

5. Synthetic data inversion tests

In this section, we compare the results of applying the FBID and PBED
inversion schemes to a number of synthetic examples. The 2D TMmode
input data (with the electric field in the plane of the section) are
simulatedusing a FDTDalgorithmand invertedona cluster of computers.
To ensure stability and avoid numerical grid dispersion in our simula-
tions, we had to consider the medium properties and the frequency
content of the source(s) in setting the grid spacing and time steps. In all
synthetic tests, we employ an optimal recording configuration, with
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Fig. 3. Cost functions for data sets simulated for the configuration presented in Fig. 1a.
The true data set D(A) is compared with data sets computed for different values
assigned to the inclusion permittivity εr. The data sets are then filtered and the misfits
displayed as a function of εr. The black curve corresponds to the full bandwidth data,
whereas the red and blue curves correspond to band-pass filtered data in the ranges
10–20 MHz and 10–44 MHz, respectively. Trapping in local minima can be avoided and
the true solution reached by combining the different data sets, starting at the point SP
(homogeneous model) with the 10–20 MHz data until the first local minimum is
reached (see dotted curve), then jumping to the new start point (NSP) and using the
10–44 MHz data to arrive at the global minimum.
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Figure 2.3: Effect of the hierarchical approach on the convexity of the misfit function (from
Meles et al., 2011).

Methods for solving inverse problems

Direct vs. indirect methods Direct methods1 are applicable when the inverse operator
J −1 can be computed, e.g. using the specific properties of inverse scattering series (e.g. Zhang
and Weglein, 2009; Kwon, 2013). Applying this inverse operator to the data then directly yields
the solution m∗ = J −1(dobs). Of course, the inverse operator J −1 exists in a strict sense
only if the problem is well posed (the function J must be bijective). But in the case of
over-determined, and even under-determined, linear problems, generalised inverse operators
can be used (e.g. Jackson, 1972). There is then (in the linear case) an equivalence between the
generalised inverse solution, the minimisation of the misfit function (2.3) in the least-square
sense, and the Bayesian approach with Gaussian statistics (Tarantola and Valette, 1982a).

In practice, however, the inverse operator J −1 can rarely be explicitly computed, either
because the theory does not enable it (the applicability of inverse scattering series, for instance,
is mainly restricted to problems with simple geometries, typically 1D) or because the size of
the problem prevents the use of SVD. Contrary to direct methods, indirect methods solve the
minimisation problem (2.16) by testing successive models m until an optimal solution is found.
Indirect methods thus fall into the wide class of optimisation techniques.

Global vs. local optimisation When strongly non-linear problems involve a limited num-
ber of parameters, it is highly suitable to perform a wide exploration of the parameter space
in order to find the global minimum of the objective function without having to guess its
approximate location through the choice of an initial model (see Fig. 2.1).

If reliable a priori uncertainties on the data are available, the probabilistic approach of
Tarantola and Valette (1982b) can be fully developed and provides complete a posteriori prob-
abilities on the model parameters. Even without consistent a priori uncertainties, dealing with

1Note that direct methods should not be confused with so-called direct search methods (e.g. the Nelder-Mead
simplex method, Lagarias et al., 1998), which can be indirect but are based only on evaluations of the misfit
functions, without requiring to compute its derivatives like gradient-based methods.

67



THE INVERSE PROBLEM

a limited number of parameters enables to perform an exhaustive search in the parameter space
(grid search) in order to find the global minimum of the misfit function. Analysing the shape
of the misfit function in the parameter space enables to quantify the parameter a posteriori
uncertainties.

Generally, global optimisation methods enable a wide, although not exhaustive, exploration
of the parameter space (Sen and Stoffa, 1995). To do so, the wide class of Monte-Carlo me-
thods perform a random sampling of the space (see e.g. Sambridge and Mosegaard, 2002, for
a review). To gain computational efficiency, these methods generally try to concentrate on
the most plausible zones of the parameter space, where models well explain the data. It is for
instance the case for the Markov-chain Monte-Carlo methods (Metropolis and Ulam, 1949),
for the simulated annealing algorithm (Kirkpatrick et al., 1983) and for the neighbourhood
algorithm (Sambridge, 1999a).

Global optimisation methods are based on a systematic sampling of the parameter space
and therefore require many evaluations of the misfit function, i.e. many resolutions of the
forward problem. This is unaffordable if the number of searched parameters is too large or if
the resolution of the forward problem is computationally expensive. In the following, I consider
the imaging of 2D sections of the subsurface, discretised in pixels forming a cartesian grid1.
For instance, in the case of the cross-shaped benchmark investigated in Section 2.2, the image
consists of a cartesian grid with 201× 201 pixels. For global optimisation methods, each pixel
in the image constitutes a dimension of the model space to be explored, which would require
too many simulations to ensure a dense sampling of the parameter space (of the order of 105

to 106). Even in this small case, where simulations request about 2s of CPU time2, testing
ten different values for each permittivity and conductivity parameter (which is a very coarse
sampling) would demand about 450h of CPU time.

Therefore, when the number of model parameters involved is too large, or when the forward
problem is computationally expensive, we must opt for local optimisation methods. Starting
from an initial model mo, these methods iteratively decrease the misfit function until conver-
gence to a local minimum and require much less computations (typically of the order of 10 to
1000 simulations: in the above-mentioned example, inversions then necessitate less than 12h of
CPU time). Among local optimisation methods, the most popular are local descent techniques
based on the gradient of the misfit function, which corresponds to the local slope in Fig. 2.1. I
now detail their principles since it is the type of method used for my inversions.

2.1.2 Local descent optimisation algorithms

Starting from an initial model mo, local descent methods create a sequence of models mk with,
at each iteration k,

mk+1 = mk + ∆mk,

= mk + αkpk, (2.4)

1Pixel-based representation of the model space are currently used in FWI, and more largely for tomography
and imaging. Of course, we may discuss the relevance of such a representation. Some authors prefer using a
coarser representation, enabling the use of global optimisation (e.g. Cordua et al., 2012), but it generally implies
some assumptions on the geometry of the medium (layers or blocks). In Section 2.3.3, I show how to invert for
a blocky representation of the medium using the linearised FWI developed in this work.

2When run in parallel on 8 cores of the R2D2 cluster of the CIMENT platform (Univ. Grenoble).
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where ∆mk is a model perturbation that results from a descent step of length αk in the direction
pk. All the art of local descent methods is to build suitable descent directions and step lengths
that enable to decrease the misfit function until convergence.

Line search methods

Let first assume that a descent direction vector pk is known (it is generally not difficult to
find one, e.g. the steepest descent direction given by the gradient of the misfit function, see
Fig. 2.1). Then, the scalar descent step length αk is generally determined using a line search
method1 that seeks for a step length which decreases the misfit function in the descent direction.
Fig. 2.4 illustrates the principle of a line search. It represents the values of the misfit function
in the descent direction pk, as a one-dimensional function of the possible step lengths α. It can
be seen as a section of the 2D map of Fig. 2.1, e.g. in the direction of the steepest direction
indicated by the gradient G(mk)

2.
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Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk |α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PROOF. Note that φ(α) " f (xk + αpk) is bounded below for all α > 0. Since 0 < c1 < 1,
the line l(α) " f (xk) + αc1∇ f T

k pk is unbounded below and must therefore intersect the
graph of φ at least once. Let α′ > 0 be the smallest intersecting value of α, that is,

f (xk + α′ pk) " f (xk) + α′c1∇ f T
k pk . (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem (see (A.55)), there exists α′′ ∈ (0,α′) such that

f (xk + α′ pk) − f (xk) " α′∇ f (xk + α′′ pk)T pk . (3.9)

By combining (3.8) and (3.9), we obtain

∇ f (xk + α′′ pk)T pk " c1∇ f T
k pk > c2∇ f T

k pk, (3.10)

since c1 < c2 and ∇ f T
k pk < 0. Therefore, α′′ satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f , there is an interval around α′′ for which the Wolfe conditions hold. Moreover, since

Quadratic approximation

C (mk+1)

!parabola

! exact

C (mk)

C (mk + !k pk)

Figure 2.4: Schematic principle of a local descent algorithm, illustrating the quadratic approx-
imation and the inexact line search for step lengths that satisfy the Wolfe conditions (modified
from Nocedal and Wright, 2006).

A first approach to determine the step length αk is to perform an exact line search by
seeking the minimum of the misfit function in the descent direction. The resulting step length
is indicated in blue in Fig. 2.4. This strategy, however, is difficult to apply to strongly non-
linear problems since it would require the evaluation of the misfit function at many points on
the descent direction before finding the minimum.

Therefore, inexact line search methods are generally used. A practical example of line
search is parabola fitting. This method makes the assumption that the misfit function is locally

1Alternatives to line search methods are trust-region methods (Nocedal and Wright, 2006, chap. 4). Instead
of defining first the descent direction and then the descent step in this direction using a line search, trust-region
methods promote to define first a maximal amplitude for the model perturbation and then the adequate descent
direction within this region.

2Please note that the comparison is only illustrative, the two examples are different.
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quadratic and seek for the minimum of the corresponding parabola (see Fig. 2.4). Building a
quadratic approximation requires the evaluation of one more value of the misfit function (three
points are needed to define a parabola). If the problem is linear, then this method is an exact
line search. However, if the misfit function is strongly non-linear, nothing guarantees that the
step length found using parabola fitting effectively decreases the misfit.

Therefore, two conditions are imposed to inexact line search methods to make them efficient:

1. The sufficient decrease condition stipulates that a suitable descent step length should
decrease the misfit function in a sufficient amount (green dashed line in Fig. 2.4).

2. The sufficient curvature condition imposes that the slope at the arriving point mk+1

should be greater than the (negative) slope at point mk (black dashed lines in Fig. 2.4).
This second condition avoids stopping at points where the slope would enable to further
decrease the misfit function. It thus avoids accepting too small step lengths that would
make the convergence very slow.

These conditions, known together as the Wolfe conditions (Nocedal and Wright, 2006, §3.1,
p. 33), guarantee the convergence of the local descent to a local minimum, provided pk is a
descent direction. Now I explain how it is possible to find a suitable descent direction pk.

Steepest-descent method

If we think the representation of the misfit function in Fig. 2.1 as a topographical map, the
most intuitive way to decrease the misfit at iteration k is to follow the slope, i.e. to take
the steepest descent direction which is by definition the opposite of the gradient of the misfit
function. The steepest descent direction provides the most efficient decrease misfit if small step
lengths are used. As a drawback, the method converges generally slowly, even in the case of
linear problems, as illustrated in Fig. 2.5(a). Moreover, the performance of the steepest descent
method is very sensitive to the scaling of the problem (Fig. 2.5b), which is a major issue we
will encounter in multiparameter FWI, due to the different units, range of values, and impact
of permittivity and conductivity parameters on the data (see Section 2.2).
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Figure 2.7 Poorly scaled and well scaled problems, and performance of the steepest
descent direction.

optimal values of z will be within about an order of magnitude of 1, making the solution
more balanced. This kind of scaling of the variables is known as diagonal scaling.

Scaling is performed (sometimes unintentionally) when the units used to represent
variables are changed. During the modeling process, we may decide to change the units of
some variables, say from meters to millimeters. If we do, the range of those variables and
their size relative to the other variables will both change.

Some optimization algorithms, such as steepest descent, are sensitive to poor scaling,
while others, such as Newton’s method, are unaffected by it. Figure 2.7 shows the contours
of two convex nearly quadratic functions, the first of which is poorly scaled, while the second
is well scaled. For the poorly scaled problem, the one with highly elongated contours, the
steepest descent direction does not yield much reduction in the function, while for the
well-scaled problem it performs much better. In both cases, Newton’s method will produce
a much better step, since the second-order quadratic model (mk in (2.14)) happens to be a
good approximation of f .

Algorithms that are not sensitive to scaling are preferable, because they can handle
poor problem formulations in a more robust fashion. In designing complete algorithms, we
try to incorporate scale invariance into all aspects of the algorithm, including the line search
or trust-region strategies and convergence tests. Generally speaking, it is easier to preserve
scale invariance for line search algorithms than for trust-region algorithms.
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is well scaled. For the poorly scaled problem, the one with highly elongated contours, the
steepest descent direction does not yield much reduction in the function, while for the
well-scaled problem it performs much better. In both cases, Newton’s method will produce
a much better step, since the second-order quadratic model (mk in (2.14)) happens to be a
good approximation of f .

Algorithms that are not sensitive to scaling are preferable, because they can handle
poor problem formulations in a more robust fashion. In designing complete algorithms, we
try to incorporate scale invariance into all aspects of the algorithm, including the line search
or trust-region strategies and convergence tests. Generally speaking, it is easier to preserve
scale invariance for line search algorithms than for trust-region algorithms.
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Figure 2.5: (a) Examples of descent steps using the steepest descent, the conjugate gradient
or the Newton methods with an exact line search in a linear case. (b) Performance of the
steepest descent and of the Newton methods in the case of poorly scaled (top) and well scaled
(bottom) linear problems (modified from Nocedal and Wright, 2006).
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Conjugate gradient methods

Conjugate gradient methods improve the steepest descent method by combining the current
steepest descent direction with the previous descent direction:

pk = −G(mk) + βkpk−1, (2.5)

where βk is a scalar factor designed such that pk is conjugate to all previous descent directions
(hence the name of the method). This feature confers to conjugate gradient methods the
remarkable property to converge in n iterations in the case of a n-parameter linear problem
(see Fig. 2.4 for the two-parameter case and Nocedal and Wright, 2006, §5.1, p. 103 for a proof).

As only the gradient and the previous descent direction are used, conjugate gradient me-
thods require a small amount of memory and computation. Consequently, they are widely
applied to large scale problems, in particular to design efficient iterative solvers of large li-
near equations systems (Hestenes and Stiefel, 1952). Many variants of the conjugate gradient
method exist and can be applied to non-linear problems in an iterative manner: they mainly
vary by their definition of the factor βk used to combine the descent directions (e.g. Fletcher
and Reeves, 1964; Polak and Ribière, 1969).

Newton method

One step further to improve the descent direction can be gained by looking at the Taylor
expansion of the misfit function:

C (mk + ∆mk) = C (mk) +
∂C (mk)

∂m

T

∆mk +
1

2
∆mT

k

∂2C (mk)

∂m2
∆mk + o(||∆mk||2),

= C (mk) + G(mk)
T∆mk +

1

2
∆mT

kH(mk)∆mk + o(||∆mk||2), (2.6)

where G is the gradient vector (first order derivatives) and H is the Hessian matrix (second
order derivatives) of the misfit function.

Assuming C is quadratic (i.e. the problem is linear), we can minimise it in one single step,
i.e. we can reach the point mk+∆mk where the gradient is null. The condition on the required
perturbation to do so is given by setting the derivatives of eq. (2.6) to 0:

0 = G(mk + ∆mk) = G(mk) +H(mk)∆mk. (2.7)

We obtain the Newton equation system, also called normal equations:

H(mk)∆mk = −G(mk). (2.8)

If the Hessian matrix is invertible, then the system can be solved straightforwardly, giving the
suitable perturbation ∆mk required to minimise the quadratic approximation of C (mk):

∆mk = −H(mk)
−1G(mk), (2.9)

we then arrive directly at the minimum of the quadratic function (see Fig. 2.5b), without
having to search for a suitable step length. In particular, the descent direction is not sensitive
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anymore to the scaling of the problem: we see here the enormous benefit of using the inverse
Hessian in the optimisation, in particular in the frame of multiparameter inversion.

Unfortunately, the exact inverse Hessian is rarely available. First because the Hessian
matrix might be non-invertible due to the indetermination of the problem. In the linear two-
parameter case of Fig. 2.5(b), indetermination would manifests itself as a very poorly scaled
problem, represented by an ellipse further elongated in the direction of one parameter: the
misfit function would be flat (i.e. insensitive) with respect to this parameter. Indetermination
is measured quantitatively by the conditioning of the Hessian matrix, which is by definition
the ratio between its higher and smaller eigenvalues. Geometrically, it corresponds to the
ratio between the axis lengths of the ellipses of Fig. 2.5. If this ratio is high (if the ellipse is
elongated), the Hessian matrix is ill-conditioned. It is then very difficult to invert the matrix
and to solve the problem.

Secondly, the computation of the Hessian is very expensive: if estimated by finite-differences,
it requires at least three computations of the data per parameter. More sophisticated methods
exist to achieve the computation more efficiently (e.g., second order adjoint methods) but for
large-scale problems, the storage, manipulation and, a fortiori, the inversion of this large ma-
trix is prohibitive1. Instead, the linear Newton system (2.8) can be solved iteratively using
matrix-free approaches, e.g., conjugate gradient methods that are well suited for this purpose
(see e.g. the truncated Newton method, Métivier et al., 2013). These methods remain, how-
ever, relatively expensive in terms of simulations since an inner iterative loop dedicated to the
resolution of the Newton system (2.8) is added to the outer iterative scheme of the local descent
optimisation.

Quasi-Newton methods

Quasi-Newton methods attempt to approximate the inverse Hessian in eq. (2.8) without extra
computations. The model update then reads

∆mk = −αkB−1
k G(mk), (2.10)

where Bk is an approximation to the Hessian H(mk). As an approximation, it does not enable
to reach exactly the minimum of a quadratic function and the descent step length αk must be
determined using a line search procedure.

Among quasi-Newton methods, I concentrate on the BFGS formula (invented by Broyden,
Fletcher, Goldfarb and Shanno), which constructs the approximate inverse Hessian at each
iteration as

B−1
k+1 =

(
I − ρkskyTk

)
B−1
k

(
I − ρkskyTk

)
+ ρksks

T
k , (2.11)

using only the previous approximate inverse Hessian and the previous model and gradient
vector to define the vectors sk = mk+1 −mk and yk = G(mk+1) − G(mk), and the scalar
ρk = 1/yTk sk.

More precisely, I will use the limited BFGS method (L-BFGS). In fact, developing the
recursive relation (2.11), we can express the updated inverse matrix B−1

k+1 as a function of

1To give an order of magnitude, in the small case of the cross-shaped benchmark investigated in Section 2.2,
discretised on a 201× 201 cartesian grid, the size of the Hessian is of the order of 1.6 106 elements when a single
parameter class is considered, requiring ' 6.5 Go of memory to store it. These quantities are multiplied by a
factor 4 in the multiparameter permittivity-conductivity case.
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all previous vectors so, s1, ..., sk and yo, y1, ..., yk. Doing so requires the storage of only
2 × (k + 1) vectors of size NM (the number of model parameters), instead of a dense matrix
of size NM ×NM whose storage and manipulation can be prohibitive for large scale problems.
An additional gain is achieved by discarding the oldest model and gradient vectors, keeping
only the nL previous ones: this gives rise to the limited BFGS method (L-BFGS) used in the
following of my work.

As a conclusion to this introductory section to the FWI problem, the reader should keep in
mind that I will perform the resolution of this non-linear problem in a linearised way, using the
quasi-Newton L-BFGS algorithm. In the next section, I formulate more explicitly the inverse
problem consisting in the reconstruction of 2D distributions of permittivity and conductivity
from GPR measurements. The consideration of the effect of an approximate inverse Hessian
through the quasi-Newton update is expected to provide a robust multiparameter inversion
scheme. In practice, we shall see that the imaging procedure suffers from the non-linearity
illustrated in Fig. 2.1 and is very sensitive to the scaling of the problem (Fig. 2.5b).

In Section 2.3, I provide additional details on the FWI formulation, especially on the gra-
dient of the misfit function which is the key ingredient used by the quasi-Newton optimisation.
The role of the gradient in the imaging process will be commented to understand the resolution
capability of FWI when considering surface-based GPR measurements, compared to crosshole
experiments for which the method has already been successful.
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2.2 A strategy for multiparameter FWI

This section has been published in the Geophysical Journal International (Lavoué et al., 2014).
It is presented as it appeared in the journal. Slight modifications only concern the layout
and notations, for consistency with the rest of the manuscript. In section 2.3, I detail some
methodological points which could not be included in the article for conciseness but which
bring additional insights into the multiparameter FWI problem.

Two-dimensional permittivity and conductivity imaging by full waveform
inversion of multioffset GPR data: a frequency-domain quasi-Newton

approach
F. Lavoué, R. Brossier, L. Métivier, S. Garambois and J. Virieux

Geophysical Journal International, 197 (1), 248-268, doi:10.1093/gji/ggt528, 2014.

Abstract

Full waveform inversion of ground-penetrating radar data is an emerging technique for the
quantitative, high-resolution imaging of the near subsurface. Here, we present a 2D frequency-
domain full waveform inversion for the simultaneous reconstruction of the dielectric permit-
tivity and of the electrical conductivity. The inverse problem is solved with a quasi-Newton
optimisation scheme, where the influence of the Hessian is approximated by the L-BFGS-B
algorithm. This formulation can be considered to be fully multiparameter since it enables to
update permittivity and conductivity values within the same descent step, provided we define
scales of measurement through a reference permittivity, a reference conductivity, and an addi-
tional scaling factor. Numerical experiments on a benchmark from the literature demonstrate
that the inversion is very sensitive to the parameter scaling, despite the consideration of the
approximated Hessian that should correct for parameter dimensionalities. A proper scaling
should respect the natural sensitivity of the misfit function and give priority to the parameter
that has the most impact on the data (the permittivity, in our case). We also investigate
the behaviour of the inversion with respect to frequency sampling, considering the selected
frequencies either simultaneously or sequentially. As the relative imprint of permittivity and
conductivity in the data varies with frequency, the simultaneous reconstruction of both param-
eters takes a significant benefit from broad frequency bandwidth data, so that simultaneous
or cumulative strategies should be favoured. We illustrate our scaling approach with a real-
istic synthetic example for the imaging of a complex subsurface from on-ground multi-offset
data. Considering data acquired only from the ground surface increases the ill-posedness of
the inverse problem and leads to a strong indetermination of the less-constrained conductivity
parameters. A Tikhonov regularisation can prevent the creation of high-wavenumber arte-
facts in the conductivity model that compensate for erroneous low-wavenumber structures,
thus enabling to select model solutions. We propose a workflow for multiparameter imaging
involving both parameter scaling and regularisation. Optimal combinations of scaling factors
and regularisation weights can be identified by seeking regularisation levels that exhibit a clear
minimum of final data misfit with respect to parameter scaling. We confirm this workflow by
inverting noise-contaminated synthetic data. In a surface-to-surface acquisition configuration,
we have been able to reconstruct an accurate permittivity structure and a smooth version of
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the conductivity distribution, based entirely on the analysis of the data misfit with respect to
parameter scaling, for different regularisation levels.

Introduction

Ground-penetrating radar (GPR) is a non-invasive subsurface prospecting technique based
on the propagation of electromagnetic waves. Similar in its principle to seismic reflection
experiments, GPR imaging took large benefits from seismic processing developments such as
migration, so that the method provides today accurate qualitative images of the subsurface
from constant offset measurements (e.g. Fischer et al., 1992b; Grasmueck et al., 2005) and more
rarely from multi-offset measurements (Fischer et al., 1992a; Greaves et al., 1996; Bradford,
2008; Gerhards et al., 2008). The development of a quantitative imaging that would estimate
the electromagnetic properties of the sounded medium — mainly the dielectric permittivity
ε [F/m] and the electrical conductivity σ [S/m] — appears as a critical issue for a physical
interpretation of the target structures. In particular, geological, hydrological, or geotechnical
applications need important informations such as the composition of the material (Deeds and
Bradford, 2002; Ihamouten et al., 2012) or its water content (Garambois et al., 2002; Huisman
et al., 2003; Day-Lewis et al., 2005; Weihermüller et al., 2007).

Up to now, efforts have been oriented towards quantitative GPR imaging using multi-offset
measurements with velocity analysis (e.g. Fischer et al., 1992a), amplitude-versus-offset studies
(e.g. Deeds and Bradford, 2002; Deparis and Garambois, 2009), travel-time and amplitude
tomography (Cai et al., 1996; Holliger et al., 2001; Gloaguen et al., 2005; Musil et al., 2006),
and full waveform inversion (FWI). The latter is one of the most promising techniques for
building quantitative, high-resolution images of the subsurface. Contrary to velocity analysis
or tomography which exploit a few events in the radargram, FWI takes benefit from the whole
recorded signal. Originating from the time-domain seismic imaging (Lailly, 1983; Tarantola,
1984), FWI has then been developed for frequency-domain data (Pratt and Worthington, 1990;
Pratt et al., 1998). The frequency-domain approach makes an efficient use of the data by
inverting only few frequency components, taking benefit of the data redundancy provided by
the acquisition. It also enables to mitigate the non-linearity of the inverse problem by following
a low to high frequency hierarchy (Pratt and Worthington, 1990; Sirgue and Pratt, 2004).
Synthetic and real seismic applications of this approach have been successful (see Virieux and
Operto, 2009, for an overview). The interest of FWI for GPR data has been demonstrated
in recent applications for water content estimation in the first centimetres of agricultural soils
(Lambot et al., 2006; Minet et al., 2010) and for the estimation of permittivity and conductivity
in stratified structures such as concrete (Kalogeropoulos et al., 2011, 2013; Patriarca et al., 2011)
or layered soils (Busch et al., 2012). In addition, FWI has been applied to 2D crosshole sections
by Ernst et al. (2007), Meles et al. (2010), Klotzsche et al. (2010, 2012) and Cordua et al. (2012)
in the time-domain, and by El Bouajaji et al. (2011), Ellefsen et al. (2011), and Yang et al.
(2012) in the frequency-domain. Among the existing literature, only Lopes (2009) and El
Bouajaji et al. (2011) tackle the interpretation of surface-based GPR measurements for the
quantitative imaging of 2D sections of the medium. However, these authors restrict themselves
to monoparameter inversions, reconstructing only the permittivity distribution. In this paper,
we propose a FWI method for the simultaneous inversion of permittivity and conductivity in
2D, with a particular interest in data acquired in surface-to-surface multi-offset configuration
(on-ground GPR).
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Compared to crosshole GPR configurations, on-ground GPR measurements provide a re-
duced coverage of the subsurface at depth, which tends to increase the ill-posedness of the
inverse problem (Meles et al., 2012). Moreover, on-ground GPR measurements illuminate the
subsurface targets with small reflection angles which may provide a better resolution but a
lack of low wavenumbers compared to crosshole experiments (Sirgue and Pratt, 2004), making
the design of an adequate initial model to start the FWI process more critical. The reduced
illumination may also increase the trade-off between the two parameter types that are per-
mittivity and conductivity (Hak and Mulder, 2010), making the multiparameter imaging more
challenging. In addition, crosshole and on-ground GPR data may have different sensitivities to
permittivity and conductivity due to the fact that on-ground GPR is mainly based on reflec-
tions and diffractions whereas crosshole data mostly contain transmitted signal. In the paper,
we spend some time to describe the sensitivity of on-ground GPR data to permittivity and
conductivity. Other differences between on-ground and crosshole GPR concern the mode used
for the measurement (TE vs. TM, respectively), and the influence of the air-ground interface,
which both have an effect on the antenna radiation pattern, but we do not investigate these
aspects.

The frequency-domain FWI is formulated as an optimisation problem which consists in
minimising a misfit function that measures the distance between observed and calculated data.
The minimisation is achieved through a local descent method. We shall focus our attention
on the limited Broyden-Fletcher-Goldfarb-Shanno bounded algorithm (L-BFGS-B, Byrd et al.,
1995), which belongs to the family of quasi-Newton optimisation schemes. In this algorithm,
the effect of the inverse Hessian operator is approximated through previous gradients and
updated models, limiting the demand on computer resources. The consideration of the approx-
imated Hessian is expected to improve the convergence of the optimisation process, to partially
correct for wave propagation effects such as geometrical spreading and double scattering, and
to deconvolve the finite-frequency artefacts due to the limited bandwidth of the source and
to the discrete acquisition sampling (Pratt et al., 1998). In a multiparameter framework, the
approximated Hessian should also account for differences in sensitivity of the misfit function
with respect to different types of parameters, such as permittivity and conductivity. Therefore,
an important advantage of our quasi-Newton formulation is that it enables to update permit-
tivity and conductivity simultaneously within the same descent step, and thus to consider the
parameter trade-offs (Operto et al., 2013), unlike alternated or decoupled approaches (Ernst
et al., 2007; Meles et al., 2010). Besides, the proper consideration of bounds for the possible
range of parameters values through active sets in the implementation of L-BFGS-B is of great
interest for GPR imaging, where physical limits are often encountered (in the air, for instance).

In the first part of the paper, we begin with a short presentation of the forward problem. We
then consider the inverse problem formulation and its resolution with a focus on quasi-Newton
schemes of optimisation. In a second part, we highlight the difficulty raised by the simultaneous
reconstruction of permittivity and conductivity, due to their different impacts on the data.
We illustrate these different sensitivities on a simple synthetic case with perfect illumination
inspired from Meles et al. (2011). We will see that the inversion is sensitive to the scale used for
the definition of the reconstructed parameters, despite the consideration of the approximated
Hessian that should correct for parameter dimensionalities. For a better insight into this
problem, we analyse the behaviour of the multiparameter scheme with respect to the parameter
scaling and to the frequency sampling strategy. In a third part, we illustrate the proposed
imaging method on a more realistic synthetic case with a surface-to-surface acquisition. In this
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case, we will show that the parameter scaling must be combined with a regularisation term to
prevent the optimisation for over-interpreting the data with undesired structures appearing in
the image. Finally, noise will be introduced in the data in order to investigate the feasibility
of such approach for future real data inversion.

2.2.1 Forward and inverse problems formulation in the frequency domain

In this section, we first introduce the electromagnetic forward problem in the frequency domain
and associated notations. We then formulate the inverse problem and detail the optimisation
algorithm used for its resolution.

2.2.1.1 Forward problem

Restricting the Maxwell’s equations to a 2D geometry leads to two decoupled systems: the
transverse electric mode (TE) and the transverse magnetic mode (TM). In the following, we
focus on the TE mode, vibrating in the (xOz) plane, for an electric dipole source oriented
along the y-axis. The mathematical analogy between the acoustic system and the TE mode
(Carcione and Cavallini, 1995) leads to the following scalar wave equations:

∇2P (ω, x, z) +
ω2

v2
P (x, z)

P (ω, x, z) = δ(x− xS)δ(z − zS), (2.12)

⇔ ∇2Ey(ω, x, z) + εe(ω, x, z)µω
2Ey(ω, x, z) = δ(x− xS)δ(z − zS), (2.13)

where P denotes the acoustic pressure field (in Pa), vP its velocity (in m/s), Ey the component
of the electric field in TE mode (in V/m), µ the magnetic permeability (in H/m), and εe a
complex-valued effective permittivity, accounting for both propagation and attenuation. The
source is located at (xS , zS) and the angular frequency is denoted by ω [rad/s]. We use a
conventional time-harmonic dependency in e−ıωt, denoting ı =

√
−1 the imaginary unit.

We focus on non-magnetic media, where the permeability µ is homogeneous and equal to
µo = 4π.10−7 H/m (vacuum value). Moreover, we consider the simplest expression for the
effective permittivity

εe(ω, x, z) = ε(x, z) + ıσ(x, z)/ω, (2.14)

where we assume that the dielectric permittivity ε [F/m] and the electrical conductivity σ [S/m]
are real quantities. More elaborate parameterisations of the effective permittivity εe can be
considered to account for dispersive effects (Debye, Cole-Cole, or Jonscher parameterisations,
see e.g. Hollender and Tillard, 1998).

The analogy between Maxwell’s TE mode and acoustic propagation (equations 2.12 and 2.13)
enables us to simulate electromagnetic waves with an optimised finite-difference scheme develo-
ped for seismic modelling in the visco-acoustic approximation and introduced by Hustedt et al.
(2004). This formulation leads to a linear system of the form

A(ω, ε, σ)u(ω) = s(ω), (2.15)

where the complex impedance matrix is denoted by A, the vector of the simulated wavefield
by u (Ey in TE mode), and the discrete source term by s. The linear system (2.15) is solved
using the direct solver MUMPS (MUMPS-team, 2009). Only one LU factorisation of the
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matrix A is needed for a given medium and frequency. Once the matrix is factorised, the
resolution of equation (2.15) for multiple right-hand-side terms can be achieved very efficiently.
Computations are performed on a finite-difference grid of size (Nx, Nz) and the order of the
matrix A is NM = Nx ×Nz. Perfectly matched layers (PML) are used to absorb the waves at
the boundary of the medium (Bérenger, 1994).

2.2.1.2 Inverse problem

We formulate the FWI problem as the minimisation of a misfit function C (m):

min
m

C (m), (2.16)

where the model vector m of size 2 × NM gathers both permittivity and conductivity values
at each point of the finite-difference grid. The misfit function is defined as the fit to the data
through the `2 norm of the residuals ∆d:

C (m) =
1

2

Nω∑

i=1

Ns∑

j=1

∆d(ωi, sj)
†∆d(ωi, sj), (2.17)

where the symbol † denotes the transpose (T ) - conjugate (∗) operator. For each of the Nω

frequencies ωi and each of the Ns sources sj , the residuals are defined as the difference ∆d =
dobs − dcal between observed data dobs and calculated data dcal. The calculated data are
extracted from the simulated wavefield u through a projection operator R to the receiver
locations: dcal = Ru, with u verifying equation (2.15).

The inverse problem (2.16) is solved through a local descent algorithm: From an initial
guess mo, we build the sequence mk such that, for each iteration k,

mk+1 = mk − αkB−1
k Gk, (2.18)

where the scalar αk denotes the descent step length, the matrix Bk is an approximation of the
Hessian (the second-order derivative of the misfit function with respect to the model parame-
ters) and the vector Gk = G(mk) is the gradient of the misfit function.

At each grid point i ∈ J1, NM K in the medium, the gradient value Gi is computed using the
adjoint state method (Plessix, 2006) as

Gi(m) =

Nω∑ Ns∑
Re
{

uT
∂A
∂mi

T

v∗
}
. (2.19)

In this formulation, the adjoint wavefield, denoted by v and verifying the linear system A†v =
R†∆d, corresponds to the back-propagation of the residuals in the medium. In practice,
MUMPS software enables to solve for the conjugate equation ATv∗ = RT∆d∗ without com-
puting AT and its LU factorisation again. The diffraction matrix ∂miA (or sensitivity kernel)
characterises the sensitivity to the parameter mi, that refers either to the permittivity εi or to
the conductivity σi at grid point i. In the finite-difference scheme of Hustedt et al. (2004), it
can be expressed as

∂Aij
∂εi

= −ω2δij , and
∂Aij
∂σi

= −ıωδij , (2.20)
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where δij is the Kronecker symbol (δij = 1 if i = j, and 0 otherwise).

In expression (2.18), the model update ∆mk = −αkB−1
k Gk is estimated by the L-BFGS-

B algorithm (Byrd et al., 1995). The descent step length αk is determined using an inexact
line search based on the Wolfe conditions (Nocedal and Wright, 2006, p. 33). In practice, Bk
is never built explicitly: The L-BFGS-B algorithm directly builds the matrix-vector product
B−1
k Gk using a limited number nL of vectors of the form sl = ml+1 −ml and yl = Gl+1 −Gl,

with k − nL ≤ l ≤ k − 1, which limits the storage requirements by making use of the nL most
recent models and gradients only (Nocedal and Wright, 2006, p.177). In our numerical tests, we
set nL = 5 as we have found that higher values do not improve the results in the configurations
we consider. Since the gradient computation requires one direct and one adjoint simulations,
the algorithm needs the resolution of approximately two forward problems per iteration, per
source, and per frequency. An over-cost can occur in the line search procedure if the initial
step length αk = 1 is not accepted (which is rare). In our experiments, the iterative process
stops when the norm of the model update is smaller than 104 times the machine precision1.

The design of a suitable initial model mo for starting the full waveform inversion scheme is
a crucial point but it is out of the scope of this study. In our numerical tests, we will start either
from an obvious background value or from a smooth version of the true model. In the case
of real data, an initial permittivity model could be recovered by velocity analysis (hyperbolae
fitting or semblance analysis), whereas other geophysical methods can provide a smooth initial
model for conductivity (e.g. electromagnetic induction measurements or electrical resistivity
tomography). An other important point when dealing with true data is the estimation of the
source signature, which is not investigated here (in our tests, we will assume that we know
the exact Dirac source in equation 2.13). Usually, the frequency components of the source
signal are estimated either by solving an over-determined quadratic problem at each iteration
(Pratt and Worthington, 1990) or by including the phase and the amplitude of the source in
the parameters to be inverted (Pratt and Worthington, 1990; Busch et al., 2012). Finally, we
do not consider the complex radiation pattern of a real antenna, assuming that the source is
an infinitesimal electric dipole.

2.2.2 Multiparameter imaging of permittivity and conductivity

To understand how the multiparameter inversion behaves, we first perform numerical experi-
ments on a synthetic example introduced by Meles et al. (2011) (see Fig. 2.6). In these tests, we
are interested in reconstructing the two cross-shaped anomalies, starting from the homogeneous
background. The step h of the finite-difference grid is taken as h = 7 cm to ensure at least
four discretisation points per propagated wavelength. This results in NM = 201× 201 = 40401
grid points and as many discrete unknowns for permittivity and conductivity. Targets are sur-
rounded by 40 sources and 120 receivers in a perfect illumination configuration, which means
that the signal of each source is recorded by all the receivers. Fig. 2.7 shows an example of
time-domain shot gathers computed in the true and in the initial models for the source located
at x = 2 m and z = 7 m. Traces number 30 to 60 correspond to the signal recorded by
receivers located on the same edge as the source (x = 2 m), whereas traces n◦ 1 to 30 and
n◦ 60 to 90 are recorded by receivers on adjacent edges (z = 2 and z = 12 m). Traces n◦ 90

1Erratum to the published version: The stopping criterion used in L-BFGS-B actually considers the data
misfit decrease, and not the norm of the model update (Zhu et al., 1997). The optimisation thus stops when the
relative misfit decrease between two iterations becomes smaller than 104 times the machine precision.
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to 120 correspond to the transmitted signal recorded on the opposite edge (x = 12 m). As the
initial model is homogeneous (equal to the background model), the initial residuals shown in
Fig. 2.7(c) essentially consist in events that are diffracted by the anomalies.

Figure 2.6: Acquisition setup and true models for permittivity (a) and conductivity (b),
after Meles et al. (2011). Black crosses indicate source locations and receiver locations are
marked with triangles. Note that we assume the antennas to be perpendicular to the plane of
observation (TE mode), whereas Meles et al. (2011) use in-plane antennas (TM mode).

Figure 2.7: Time-domain shot gathers computed for the cross-shaped benchmark, a) true
model, b) initial homogeneous model, c) residuals. Data have been computed in the frequency-
domain and convolved with the time-derivative of a Ricker wavelet of central frequency 100
MHz before inverse Fourier transform.

To perform the inversion, we first compute synthetic observed data in the true model of
Fig. 2.6 for the seven following frequencies: 50, 60, 70, 80, 100, 150, and 200 MHz, which
are consistent with the frequency bandwidth of a 100-MHz antenna. Note that we compute
these observed data dobs with the same modelling tool as the one used for computing the
calculated data dcal in the inversion process (inverse crime approach). The irregular frequency
sampling is inspired by the strategy of Sirgue and Pratt (2004) who show that the wavenumber
coverage increases with frequency (see their fig. 3), so that a fine sampling of high frequencies
is not required. We can perform inversion by considering the seven selected frequencies either
simultaneously or through a sequential procedure where the initial model for each frequency is
the final result of the previous inverted frequency. The sequential strategy based on the low
to high frequencies hierarchy has been promoted by Pratt and Worthington (1990) to mitigate
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non-linearities such as cycling skipping effects. On the other hand, the strategy of inverting
simultaneously all frequencies is more subject to the cycle-skipping problem, depending on the
initial model. But if a good initial model is available, it will take benefit from a broadband
information. Finally, more elaborated strategies can be used. For instance, we may proceed
through a cumulative sequential approach where we keep low-frequency data as we move to
high frequencies as suggested by Bunks et al. (1995) for seismics in the time domain, and used
by Meles et al. (2011) for GPR data inversion. In the frequency domain, it amounts to invert
the following seven groups of cumulative frequencies:

50 MHz,
50 60 MHz,
50 60 70 MHz,

· · ·
50 60 70 80 100 150 200 MHz.

Note that this approach, that we will call the Bunks’ strategy by analogy with the time
domain, implies a consequent computational effort when applied in the frequency-domain. In
the following, we will test the three above-mentioned strategies (simultaneous vs. sequential
vs. Bunks’ strategy) and retain the most robust one for our realistic application.

2.2.2.1 Parameter sensitivity and trade-off

As we are interested in quantifying permittivity and conductivity values, we have to estimate
the sensitivity of the data to these parameters. As done by Malinowski et al. (2011) for velocity
and attenuation, we can evaluate the impact of both parameters in the data by computing
the electric field that is diffracted by anomalies of permittivity and conductivity. Fig. 2.8
shows the real part of such monochromatic scattered fields usc(m, δmi) at a frequency of 100
MHz, computed as the difference between the incident field u(m) emitted by a source in the
homogeneous background m of Fig. 2.6 and the field emitted by the same source in a perturbed
medium m + δmi where an anomaly δmi of small amplitude has been added in the centre of
the medium. We apply a perturbation amplitude of δp = 5% of the background value, such
that δmi = δp×mi, with i the index of the central cell in the finite-difference grid1.

The scattered wavefield usc(m, δmi) is linked to the partial derivative wavefield ∂miu, which
in turn can be related to the diffraction matrix by differentiating the forward problem (equa-
tion 2.15) with respect to the model parameters, providing at first order

usc(m, δmi) '
∂u(m)

∂mi
δmi = −A−1 ∂A

∂mi
δmi u(m). (2.21)

In equation (2.21), the scattered wavefield can be interpreted as the field emitted by a virtual
source ∂miA δmi u co-located with the anomaly δmi and whose signature characterises the
data sensitivity to the considered parameter, contained in the diffraction matrix ∂miA (Pratt
et al., 1998; Malinowski et al., 2011; Operto et al., 2013). This scattered field is the response
of the anomaly to the incident field u(m) which controls its illumination, depending on the
acquisition configuration and on the antenna radiation pattern. Therefore, the shape of the

1Additional note to the published version: We perturb only the central cell, so the anomaly can be considered
as punctual. More precisely, it has the size of the grid step h = 7 cm, i.e. a relative size compared to the
propagated wavelengths of approximately 0.02λ at 50 MHz, 0.05λ at 100 MHz and 0.09λ at 200 MHz.
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Figure 2.8: Real part of the monochromatic electric fields diffracted by a permittivity anomaly
(a) and a conductivity anomaly (b) at 100 MHz. Anomalies are located at the centre of the
medium (x = 7 m, z = 7 m) and the black cross indicates the source location (x = 2 m,
z = 7 m). Perturbation amplitudes are of 5% of the homogeneous background values (δεr = 0.2
and δσ = 0.15 mS/m).

scattered wavefield entirely reflects the response of the anomaly and only depends on the
sensitivity kernel ∂miA, whereas its amplitude and phase partly come from the incident field,
and thus from the GPR antenna.

As shown in Fig. 2.8, the fields diffracted by permittivity and conductivity anomalies in a
homogeneous medium are both isotropic but have different amplitudes and phases. In Fig. 2.9,
we present the amplitudes and phases of the diffracted fields as a function of the distance to
the anomaly for different frequencies. Fig. 2.9(a) shows that the impact of the anomaly of per-
mittivity is larger in amplitude than the one of conductivity in the frequency range we consider
for GPR investigation (at least, for equal relative perturbations δp). In the general case, this
amplitude ratio depends on the loss-tangent at grid point i, tan δi = σi/(εiω), that quantifies
the energy dissipation in the dielectric lossy background, and on the relative perturbation am-
plitudes in permittivity δpε and conductivity δpσ. Based on the expressions of the scattered
wavefield (equation 2.21) and of the diffraction matrices (equation 2.20), we have1

usc(m, δσi)

usc(m, δεi)
=
ıω δσi
ω2 δεi

= ı
σi
εiω

δpσ

δpε
. (2.22)

In the frequency range of GPR investigations, EM waves encounter rather low-loss media, such
that tan δ � 1 (for instance, in the homogeneous background of Fig. 2.6, we have tan δ ' 0.14),
so that data are intrinsically more sensitive to permittivity than to conductivity. However,
it can be compensated by the fact that in natural media, conductivity may present more
contrasts than permittivity (conductivity can vary over several order of magnitudes, typically
from 10−4 to 0.1 S/m, whereas permittivity varies from 1 in air to 81 in water). Consequently,
conductivity anomalies can have a significant imprint on the data. Moreover, equation (2.22)
and Fig. 2.9(a) show that, in a given medium, the sensitivity of the data to conductivity
decreases with frequency relatively to the sensitivity to permittivity. Therefore, high-frequency

1Additional note to the published version: Eq. (2.22) can be read as

scattered amplitude ratio

(
usc(m, δσi)

usc(m, δεi)

)
= ı× loss tangent

(
σi
εiω

)
× relative contrasts

(
δpσ

δpε

)
.
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Figure 2.9: a) Amplitudes of the diffracted fields for three frequencies. b) Phases of the
diffracted fields at 50 MHz.

information about low conductivity contrasts may be hidden below the noise level. Finally,
another important feature in Fig. 2.9(b) is that diffractions of permittivity and conductivity
present a 90◦ phase shift, as expected from the presence of the imaginary unit in equation (2.22).

From the differences in frequency-dependency and phase between the diffraction patterns
of permittivity and conductivity, we can expect that both parameters could be reconstructed
from recorded GPR data, provided that various angles of illumination and a wide frequency
bandwidth are available to distinguish their respective signatures (Pratt et al., 1998; Operto
et al., 2013). Conversely, a partial illumination and a reduced frequency bandwidth will induce
a trade-off between both parameters, meaning that a wave scattered in one direction at one
frequency by a permittivity anomaly can be equivalently explained by a conductivity anomaly
shifted in space and of stronger amplitude.

To draw a parallel with the reconstruction of seismic velocity and attenuation, let us remark
firstly that the imprint of conductivity in GPR data is generally stronger than the effect of the
quality factor QP in seismic data (see the perturbations applied by Malinowski et al., 2011,
and the resulting imprint relatively to velocity). In addition, the attenuation of electromag-
netic waves do not suffer from the ambiguity discussed by Mulder and Hak (2009) and Hak
and Mulder (2011): Even in low-loss media, the electromagnetic quality factor QEM ' 1/ tan δ
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is frequency-dependent. Seismic velocity and attenuation can only be distinguished by their
phases, whereas the frequency-dependency of the relative impact of permittivity and conduc-
tivity in the data is an additional information that may help to mitigate the trade-off between
parameters.

We shall mention that the above discussion on the diffraction patterns of parameter anoma-
lies is particularly adapted to on-ground GPR data, which mostly contain reflections and
diffractions. Crosshole GPR data present other sensitivities to permittivity and conductivity.
First because crosshole measurements are generally performed in TM mode, for which per-
mittivity and conductivity act differently on the impedance matrix, so that their diffraction
patterns are dipolar (independently from the dipolar radiation pattern of finite-line antennas
in TM mode). To go further, it is not obvious that this kind of sensitivity analysis based on
the diffraction patterns would be consistent when dealing with crosshole data, which mostly
contain transmitted signal. In transmission regime, data might be more sensitive to extended
anomalies which the waves pass through than to local diffracting points.

The previous remarks about the scattered wavefields have important consequences on the
strategy required for multiparameter imaging. In a first approach, reasoning only on the loss
tangent in equation (2.22) tends to confirm the common mind that GPR data are mainly
sensitive to permittivity, which justifies the use of alternated strategies: fixing the conductivity
to an expected value and inverting for the permittivity in a first step, and then proceeding to the
conductivity reconstruction with a fixed updated permittivity (Ernst et al., 2007). However,
this strategy can fail to retrieve satisfactory models because, as shown in equation (2.22),
strong conductivity contrasts may have a significant imprint on the data (both on amplitudes
and phases), which may hinder the reconstruction of an accurate permittivity model during the
first step. In the second step, the conductivity reconstruction may then suffer from artefacts
because it is very sensitive to the kinematic accuracy of the background medium (as is the
reconstruction of attenuation in visco-acoustics, see e.g. Kamei and Pratt, 2008, 2013). Because
of the trade-offs, errors contained in the previously inverted permittivity, even if small, will
systematically map into conductivity artefacts (for an interesting discussion on the effect of
the trade-off, see Kamei and Pratt, 2013, §3.3). As a consequence, simultaneous inversion
of permittivity and conductivity generally yields better results than alternated or cascaded
algorithms (Meles et al., 2010).

More elaborated schemes can consist in a first FWI step for the reconstruction of the permit-
tivity while keeping fixed the conductivity, and in a second FWI step to invert simultaneously
for permittivity and conductivity. It is a strategy used for the inversion of velocity vP and at-
tenuation QP in seismics (Kamei and Pratt, 2008; Malinowski et al., 2011; Prieux et al., 2013;
Kamei and Pratt, 2013; Operto et al., 2013), where the parameter vP is first reconstructed
with an approximate estimation of a constant QP before the simultaneous inversion of the two
parameters. This approach yields more satisfactory results because the first step improves the
kinematic model for the second step, but a well-designed multiparameter scheme is still needed
for the second step (if the initial model is accurate enough, we do not need the first step).

The design of multiparameter FWI is thus crucial but it faces a major problem when
dealing with different parameter units and sensitivities (Meles et al., 2012). Meles et al. (2010)
tackle this issue by introducing two descent step lengths in their algorithm: one for minimising
the misfit function in the gradient direction with respect to permittivity, and another in the
direction of conductivity. This approach performs better than the one proposed by Ernst
et al. (2007) because permittivity and conductivity models are updated simultaneously at each
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iteration (instead of every n iterations). But it amounts to consider the optimisation with
respect to permittivity and conductivity as two independent problems, and to neglect the
possible trade-off between the two types of parameters. In this study, we propose to investigate
a fully multiparameter strategy. The L-BFGS approximation of the inverse Hessian operator
in the quasi-Newton scheme (2.18) should take the trade-offs between parameters into account.

2.2.2.2 Parameter scaling

To gather permittivity and conductivity in the model vector m, we have to consider adimen-
sional quantities. It requires to define scales of measurement for the permittivity and the
conductivity. The relative permittivity εr = ε/εo is commonly defined according to the vac-
uum permittivity εo ' 8.85 × 10−12 F/m. In addition, we introduce a relative conductivity
σr = σ/σo. By convention, we define the reference conductivity σo as the conductivity of
a reference medium in which the loss tangent tan δo = σo/(εoωo) equals one at a reference
frequency fo = 100 MHz. The reference frequency fo = ωo/(2π) corresponds to the central
frequency of the band we will use in our numerical tests. We shall underline that this arbitrary
definition is only a convention used for the optimisation. In particular, the reference medium
of permittivity εo and conductivity σo has nothing to do with the physical medium we want to
investigate. This convention leads to the reference value σo = εoωo ' 5.6 mS/m. The relative
permittivity εr and the relative conductivity σr constitute the two classes of parameters we
will use for the reconstruction.

Note that we could question the choice of εr and σr as the model parameters mi to be
optimised. Although we are interested in knowing the permittivity and the conductivity in the
subsurface because they are meaningful physical quantities, other variables might be considered
in the optimisation procedure. We shall mention that we have investigated various couples of
parameters (among others,

√
εr, 1/

√
εr, ln(1 + σr), tan δ, ...) and we did not found signifi-

cant advantages for using these non-linear parameters compared to the choice of the relative
permittivity εr and relative conductivity σr. On the contrary, inverting for the loss tangent
tan δ = ε/(σω) should be avoided because it induces a strong coupling between permittivity
and conductivity models. In addition, optimising the parameters εr and σr enables to easily
control the relative weight given to permittivity and conductivity in the inversion process, as we
will discuss in the following. Thus, we consider linear combinations of the relative permittivity
and of the relative conductivity of the form (εr, σr/β), where β is a dimensionless scaling factor
which controls the weight of σr vs. εr in the optimisation process and may compensate for the
arbitrary definition of the reference permittivity and reference conductivity. In the following,
we refer to the reconstructed parameter σr/β as the scaled conductivity. We can now give
explicit expressions for the model and gradient vectors:

m =

(
εr
σr/β

)
, and G(m) =

(
Gεr(m)
βGσr(m)

)
. (2.23)

Here we shall remind that, although the gradient contains two distinct parts related to per-
mittivity and conductivity, the descent direction is computed using the global gradient vector
G(mk) and the model update is performed using a unique step length αk in equation (2.18).
The gradient components are deduced from equations (3.18) and (2.20) using the chain rule
such that

∂Aij
∂εri

= −εoω2δij , and
∂Aij
∂σri

= −ıσoωδij . (2.24)
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Numerical experiments show that the inversion is very sensitive to the respective weights
between the relative permittivity and the scaled conductivity in the optimisation process, i.e.
to the scales of measurement through the selected scaling factor β. On average, the relative
weight of the scaled conductivity vs. permittivity in the gradient is given by

||βGσr ||
||Gεr ||

' β
||∂σrjA||
||∂εrjA||

∝ β
σo
εoω

, (2.25)

which is nothing other than the loss tangent tan δo(ω) of the reference medium with permittivity
εo and conductivity σo at frequency ω, scaled by the factor β. According to our definition of
the reference conductivity σo, the ratio of equation (2.25) will then be about β for a group of
frequencies centred around 100 MHz. Note that we recognise an expression for the gradient
in equation (2.23) that is similar to the preconditioned gradient proposed by Kamei and Pratt
(2013). The difference in our case is that we consider the parameter σr/β, whose natural
gradient is βGσr . It is therefore a re-parameterisation, another way to scale the parameter
space, and not a preconditioning. However, as in Kamei and Pratt (2013), the factor β will
act as an implicit regularisation: We will see that small values of β penalise the conductivity
update (at the frequency 100 MHz, it corresponds to values of β < 1).

In equation (2.18), the descent direction depends not only on the gradient, but also on the
L-BFGS approximation of the Hessian B. Although this Hessian approximation is not readily
available, understanding the structure of the Hessian through an approximate evaluation should
shade light into the optimisation procedure. The true Hessian H of the misfit function reads

H = Re

(
J ε
†
rJ εr βJ ε

†
rJ σr

βJ σ
†
rJ εr β2J σ

†
rJ σr

)

+Re





ND∑
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(2.26)

In this expression, for each data value i and each grid point j, the elements of the Jacobian
matrices J are defined by

J εrij =
∂dcali
∂εrj

and J σrij =
∂dcali
∂σrj

. (2.27)

In equation (2.26), the first term corresponds to the linear part of the Hessian (Gauss-Newton).
It accounts for geometrical spreading and dimensionalities of the parameters (diagonal terms),
for the limited bandwidth effects due to the finite-frequency content of the source and to
the partial illumination of the medium through the discrete acquisition setup (band-diagonal
terms), and for the trade-offs between parameters (off-diagonal blocks). The second term
accounts for double-scattered events with second-order derivatives of the wavefield which are
neglected in Gauss-Newton approaches. The inverse Hessian approximated in equation (2.18)
should correct for all these effects and act as a deconvolution operator on the gradient (Pratt
et al., 1998; Operto et al., 2013).

Figs 2.10(a), (b), and (c) show three Hessian matrices Hβ for values of β ∈ {0.25, 1, 4}.
These matrices have been computed using a finite-difference approximation around the final
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Figure 2.10: Hessians of the misfit function (a, b, c) and final models of conductivity (d, e,
f) for three linear combinations of εr and σr/β, using a scaling factor β = 0.25 (a, d), β = 1
(b, e), and β = 4 (c, f). The final misfits C are expressed in fraction of the initial misfit Cinit.

reconstructed models mβ = (εr, σr/β), which have been obtained inverting the seven frequen-
cies between 50 MHz and 200 MHz simultaneously, starting from the homogeneous background
of Fig. 2.6. In these figures, we recognise the expected symmetric structure of the four blocks
of the Hessian in equation (2.26). Slight discrepancies in this symmetry are only due to nu-
merical errors in the finite-difference approximation. The correlation between the parameters
εr and σr/β represented in the off-diagonal blocks is not negligible, which justifies their consi-
deration through efficient quasi-Newton methods for solving the multiparameter problem. The
amplitude of the trade-off terms is particularly high in the corner of the sub-blocks (i.e. for
cells located in the low-illuminated zone outside the acquisition system in Fig. 2.6). This is
consistent with the result by Hak and Mulder (2010) that a partial illumination contributes to
enhance the ambiguity between the different parameter types.

As expected from equation (2.26), a scaling factor β = 1 provides four blocks of similar
amplitudes (Fig. 2.10b). Alternatively, the value β = 0.25 penalises the conductivity terms and
gives more weight to the sub-blocks associated to permittivity (Fig. 2.10a), whereas the value
β = 4 enhances the blocks related to conductivity (Fig. 2.10c). We present on Figs 2.10(d), (e),
and (f) the final conductivity models corresponding to the three values for the scaling factor β.
The final images of conductivity are very sensitive to the parameter scaling through the selected
factor β. Small values of β provide smooth reconstructions of conductivity (Fig. 2.10d), whereas
large values of β enhance the contrasts, but also introduce instabilities (Figs 2.10e and f).
Following Kamei and Pratt (2013), we can interpret the artefacts in the conductivity image
as unphysical oscillations coming from the trade-off between permittivity and conductivity
(monoparameter inversions of conductivity provide images without artefacts when the true
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permittivity model is known). In these tests, the reconstruction of the permittivity is less
sensitive to the parameter scaling (all three values of β yield nearly identical, satisfactory
results that we do not show). Further tests show that very large values of β (> 10) provide
smoother images of permittivity (and very high amplitude oscillations in conductivity), whereas
very small values of β (< 0.05) may also introduce instabilities in the image of permittivity,
whereas the conductivity is not updated at all.

There are two possibilities to mitigate the undesired oscillations in the conductivity image.
We can either penalise the relative conductivity with small values of the scaling factor β, as done
by Kamei and Pratt (2013), or we can introduce a regularisation term in the misfit function.
Actually, both approaches are needed in the multiparameter permittivity-conductivity problem.
The use of regularisation may be the first choice in a common optimisation procedure because
the high amplitude oscillations in the conductivity model partly comes from the fact that the
data are weakly sensitive to conductivity. To constrain the conductivity update, we introduce a
Tikhonov regularisation (Tikhonov and Arsenin, 1977) through a model term CM in the misfit
function:

C (m) = CD(m) + λCM (m), (2.28)

with CM (m) =
1

2
σr
TDσr. (2.29)

In this new misfit function, the first term CD represents the fit to the data according to
equation (2.17). In the second term CM , the matrix D corresponds to the Laplacian operator,
such that the minimisation of the regularisation term forces the conductivity model to be
smooth. The hyper-parameter λ is a weighting factor which balances the contribution of the
regularisation term with respect to the data term in the misfit function.

The gradient of the new misfit function (2.28) can also be expressed in terms of a data part
and of a model part as

G(m) = GD(m) + λGM (m), (2.30)

where the data part GD is computed after equations (3.18) and (2.24) and the model part is

GM =

(
0

βDσr

)
. (2.31)

Note that we choose to regularise the relative conductivity σr and not the reconstructed pa-
rameter σr/β. Strictly speaking, both are equivalent because the scaling β would be absorbed
in the regularisation weight λ, but regularising σr instead of σr/β is more convenient for further
comparison of solutions obtained with a given regularisation weight λ and different scaling fac-
tors β. In this synthetic case, we do not regularise the permittivity which is more constrained
by the data. In real data cases, it may be necessary to constrain the permittivity update as
well, using a smaller regularisation weight than for conductivity.

Numerical tests involving regularisation show that, in the case of β = 1, small values for
the regularisation weight λ slightly attenuate the very high frequency artefacts in the image
of Fig. 2.10(e). However, larger values of λ does not enable to remove entirely the remaining
oscillations without degrading the shape of the reconstructed anomalies. In the case of β = 4,
the Tikhonov regularisation cannot both avoid the artefacts and provide a satisfactory recon-
struction of the anomalies. The attenuation of the very high amplitude oscillations requires a
strong regularisation which prevents the optimisation from finding a satisfying minimisation of
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the data misfit. Thus, regularisation alone is not sufficient to design a stable inversion scheme.
The parameter scaling through the scaling factor β is crucial both to avoid instabilities and
obtain a satisfying resolution in the image of conductivity.

2.2.2.3 Behaviour of the inversion with respect to parameter scaling and fre-
quency sampling

In this section, we try to understand in more details the effect of the scaling parameter β. Once
we have selected the optimisation technique, we expect that setting the scaling factor β will
depend on the investigated medium, on the initial model, on the acquisition configuration, and
on the frequency sampling strategy (because the relative impact of permittivity and conducti-
vity in the data is frequency-dependent). In the following, we investigate the behaviour of the
inversion process with respect to the scaling factor and to the frequency sampling strategy in
the case of the cross-shaped benchmark with perfect illumination and without regularisation.
Although we proceed in the reconstruction of the parameters [εr, σr/β], we shall present results
for the quantities [εr, σ] as they are those we understand physically.

First we focus on the simultaneous frequency strategy, developing the case of Fig. 2.10.
The figure 2.11 shows the evolution of the updated models of permittivity and conductivity, in
the cases β = 1 (Fig. 2.11a) and β = 0.25 (Fig. 2.11b). We extract updated models at some
iterations, corresponding to a given decrease of the misfit function C . In Fig. 2.11(a), we first
note that instabilities in the conductivity image appear at early iterations (for C = 0.25×Cinit
and C = 0.1 × Cinit) and not at the end of the optimisation. As a consequence, they are not
due to the fact that the optimisation fits numerical noise and cannot be avoided by stopping
the iterative process earlier. It is also the reason why regularisation fails to avoid instabilities
when a non-adequate scaling factor is used. It is only when the permittivity is correctly recon-
structed, providing a reliable kinematic background, that the image of conductivity converges
towards the true one (C = 0.01×Cinit). Conversely, on Fig. 2.11(b) where more weight is given
to permittivity, the permittivity model is reconstructed earlier in the iterations, whereas the
reconstruction of conductivity is delayed and, thus, better retrieved when a more reliable kine-
matic model is available (C = 0.01×Cinit and C = 0.001×Cinit). This numerical test suggests
that, even in the frame of a simultaneous reconstruction of permittivity and conductivity, the
inversion should be led first by the permittivity update. However, there is a counterpart for this
behaviour: As a strong penalisation delays the reconstruction of conductivity, it induces a loss
of resolution in the conductivity image for the same misfit decrease. An optimal value for the
scaling factor β should both allow to avoid instabilities and to recover an image of conductivity
that should be as complete and resolved as possible. The main limitation for achieving this
goal is given by the maximal possible decrease of the misfit function (which depends mainly on
the signal-over-noise ratio in the real data case).

Up to now, we have seen that the inversion path (Fig. 2.11), and even the final conductivity
models (Fig. 2.10), strongly depend on the parameter scaling. This result is quite unexpected
and suggests that the L-BFGS approximation of the Hessian correct only partially for parameter
dimensionalities. We would like to better appreciate the exact performance of the L-BFGS
algorithm. To illustrate the behaviour of the effective descent direction, we downgrade the
example of Fig. 2.6 into an optimisation in a two-parameter space. In this very simple problem,
permittivity and conductivity in the background and in the blue cross are fixed at their true
values and only the values in the red cross are allowed to vary. The anomaly is assumed
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to be homogeneous, such that the problem has only two degrees of freedom: εr and σr/β
in the red cross. Fig. 2.12(a) presents a grid analysis of the misfit function for this two-
parameter case. The misfit function has been evaluated for εr ranging in [1, 14] and σ ranging
in [0, 27] mS/m, with the same acquisition setup as presented in Fig. 2.6 and for the seven
frequencies simultaneously. We can notice on Fig. 2.12 that the misfit function is convex with
a unique minimum. In addition, Fig. 2.12(a) shows the paths followed by the inversion for
various values of the scaling factor β. All processes finally reach the global minimum but
inversion paths are very sensitive to the parameter scaling as already observed in Fig. 2.11.
Intuitively, large scaling factors β tends to orientate the inversion path along the conductivity
axis.

Fig. 2.12(b) shows the inversion path in the case of β = 1, mapped on a scaled view of
the misfit function in the parameter space [εr, σr/β]. The arrows represent the opposite of

Figure 2.11: Evolution of permittivity and conductivity models along iterations using a
scaling factor β = 1 (a) and β = 0.25 (b) when inverting for seven frequencies simultaneously.
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Figure 2.12: Grid analysis of the misfit function on a simplified two-parameter problem.
Dotted contours are spaced every 0.05 while dashed contours indicate particular levels of the
misfit function (in fraction of the initial misfit). a) Inversion paths in the physical domain
(εr, σ) using various parameter scalings β. b) Inversion path and gradients in the parameter
domain (εr, σr/β) using a scaling factor β = 1.

the gradient vectors at each iteration: We can check that they are well orthogonal to the
contours of the misfit function, indicating the steepest descent directions. Note that this
case corresponds to a nearly circular misfit function in the vicinity of the solution, whereas
larger scaling values would elongate the valley in the direction of permittivity, and thus would
orientate the gradients in the direction of conductivity. This view of the misfit function in the
parameter space, as seen by the optimisation process, helps us to understand the behaviour of
the L-BFGS algorithm. For iterations 1, 2, and 3, the descent directions computed by the L-
BFGS-B technique (dashed lines between updated models) do not follow the steepest descent
directions but are shifted towards the minimum. We can see here the benefit of the quasi-
Newton approach which approximates the local curvature. But for later iterations (> 4), the
L-BFGS descent directions seem non-optimal compared to the steepest descent directions. This
inertial effect is partly due to the old curvature information used by the L-BFGS algorithm to
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compute the local approximation of the Hessian.

Fig. 2.12 well illustrates that the parameter scaling deforms the parameter space and there-
fore modifies the descent directions computed by the L-BFGS-B algorithm. Although we could
think about better approximations of the Hessian (e.g. preconditioned L-BFGS or truncated
Newton methods, see ?Métivier et al., 2013), the optimisation of permittivity and conductivity
is likely to remain sensitive to the parameter scaling. As the problem is nonlinear, the local
descent directions on Fig. 2.12 cannot point directly to the global minimum of the misfit func-
tion, even with a good local estimation of the curvature (at least before being in the vicinity of
the solution, where the quadratic approximation is more valid). In the two-parameter example,
the inversion converges towards the unique minimum anyway because the problem is largely
over-determined, but we speculate that the parameter scaling is of crucial importance for the
high-dimensional case with the additional difficulty of secondary minima.

For this reason, the effect of non-linearity observed at early iterations in Fig. 2.11(a) is
strongly dependent on the initial model we have selected, i.e. on how far the initial model
is from the validity domain of the quadratic approximation. In particular, if we start from a
good kinematic background, the updates of the conductivity model will be improved at early
iterations. The initial model can be improved with the low frequency content of the data if
we adopt the low to high frequency hierarchy promoted by Pratt and Worthington (1990),
inverting the seven frequencies sequentially.

Fig. 2.13 shows the permittivity and conductivity models obtained at the end of each
mono-frequency step when inverting the seven frequencies sequentially, each model being the
initial model for the next step. Again, we compare the use of a scaling factor equal to β = 1
(Fig. 2.13a) and β = 0.25 (Fig. 2.13b). As already observed when inverting the frequencies
simultaneously, a low scaling factor β = 0.25 provides smoother results than the value β = 1,
and the permittivity image is less sensitive to the parameter scaling. Despite the frequency
hierarchy, the reconstruction of the conductivity model is not very satisfactory if a scaling
factor β = 1 is used. In particular, the shape of the blue cross is degraded in Fig. 2.13(a),
compared to the use of simultaneous frequencies (Fig. 2.10e). We may invoke two reasons
to explain this. Firstly, the consideration of simultaneous frequencies might help to better
constrain the reconstruction of conductivity, as inferred from the frequency-dependence of its
diffraction pattern (Fig. 2.9). Secondly, in the sequential approach, the final reconstructed
model results from the inversion of the highest frequency. Even if lower frequencies have been
previously inverted, the final model thus contains a stronger finite-frequency imprint than using
simultaneous frequencies.

The advantages of the frequency hierarchy and of a large frequency bandwidth can be com-
bined using Bunks’ strategy. Further numerical tests involving Bunks’ strategy yields similar
results as using the simultaneous strategy. Reconstructions are not significantly improved be-
cause this simple benchmark do not need a hierarchical approach. Since we choose a lower
frequency bandwidth, we do not suffer from the cycle-skipping effect observed by Meles et al.
(2011).

As a partial conclusion, we have shown on this perfect illumination case that an ad hoc
scaling is needed between the relative permittivity and the relative conductivity in our quasi-
Newton optimisation scheme. This scaling should play a significant role for surface-to-surface
acquisition because partial illumination tends to increase the ill-posedness of the inverse prob-
lem (Meles et al., 2012) as well as the trade-off between parameters (Hak and Mulder, 2010).
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Figure 2.13: Evolution of the final reconstructed models for each step of the sequential
inversion of the seven frequencies using scaling values β = 1 (a) and β = 0.25 (b).

Up to now, we have performed a quality control of the solution by comparison with the true
model in an inverse crime way. In the following, we will propose a practical strategy for selecting
a reasonable value for the scaling factor using an objective criterion.

2.2.3 A realistic synthetic test

We now introduce a more realistic benchmark for the imaging of complex subsurface structures
from multi-offset on-ground GPR data. We first investigate the inversion of noise-free data
with respect to the parameter scaling in order to establish a robust criterion for selecting the
scaling factor β. In a second time, we add noise to the data to give an insight into the feasibility
of the proposed workflow on real data.

2.2.3.1 Benchmark design

A realistic configuration has been designed for a 2D distribution of permittivity (Fig. 2.14a) and
conductivity (Fig. 2.14b) according to common-offset GPR profiles, a few common mid-point
surveys, and electrical tomography measurements acquired at a test site located on recent
fluvial deposits near Grenoble (France). We restrict the zone of interest to a 5-meter-deep
and 10-meter-long section of the subsurface. The permittivity and conductivity values are in
principle consistent with a silty soil (first layers) including lenses of clay (top right) above a 2-
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to 3-meter-thick layer of relatively dry sands. The interface at around 3.8 m depth represents
the water table. The 50-cm-thick zone above the zero z-level has values (εr = 1, σ = 0 S/m)
of the air. This benchmark displays realistic but challenging sharp and large variations. In the
subsurface, permittivity values range from 4 (main part in the middle) to 32 (layers of clay in
the top right and at the bottom of the medium), and conductivity values range from 0.1 mS/m
(1st layer) to 20 mS/m (bottom). Maximal permittivity contrasts are of 1:10 at the air-ground
interface, and of 4:22 in the subsurface (bottom of the main layer at z ' 3 m). Note the
strongly attenuating layer at a depth of z = 3.5 m with a conductivity about σ = 10 mS/m,
which may mask the underlying structures.

Figure 2.14: Realistic subsurface benchmark for permittivity (a, b) and conductivity (c, d).
(a, c) True models. (b, d) Initial models. Sources and receivers are located 10 cm above the
air-ground interface.

The medium is discretised on a 101 × 207 grid, with a grid step h = 5 cm. This meshing
results in 20907 grid points in the finite-difference modelling, and in 18837 unknown values
of permittivity and conductivity in the subsurface (values are kept fixed in the air, both to
constrain the inversion and to avoid singularities at source and receiver locations). The acqui-
sition setup consists in 41 source locations spaced every 0.25 m and in 101 receiver positions
located every 0.1 m at a negative z-level of −0.1 m, i.e. two grid points above the air-ground
interface. This setup is consistent with a multi-offset experiment performed on the test site
within a day. Initial models for permittivity (Fig. 2.14c) and conductivity (Fig. 2.14d) have
been obtained by applying a gaussian smoothing to the true models with a correlation length
τ = 50 cm. Only the main trends are depicted in the initial model and all details are erased, in
particular the thin lenses in the top right of the medium but also the alternation of high and
low values at depth (z ' 3.5 m). Fig. 2.15 shows the time-domain data computed in the true
and initial models, for the first source of the acquisition array (at x = 0 m). In Fig. 2.15(a),
three major reflections at t ' 20, 50, and 75 ns can be associated with the interfaces at z = 0.3,
2.5, and 3.8 m, while the diffractions at large offsets correspond to the thin lenses of clay. In
Fig. 2.15(b), the initial model provides direct arrivals that are kinematically compatible with
the observed data but the lack of contrasts does not reproduce the main reflected events and
the diffractions are missing. Most of the data are not explained by the initial model and remain
in the residuals (Fig. 2.15c).
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Figure 2.15: Time-domain shot gathers computed for the subsurface benchmark (Fig. 2.14)
for the source located at x = 0 m, considering a) the true model, b) the initial model. c) Initial
residuals. Data has been computed in the frequency-domain and convolved with the time-
derivative of a Ricker wavelet of central frequency 100 MHz before inverse Fourier transform.

2.2.3.2 Inversion of noise-free data

The frequency sampling is crucial for the imaging of such complex media. Therefore we select
a dense frequency sampling with ten frequencies to be inverted: 50, 60, 70, 80, 90, 100, 125,
150, 175, and 200 MHz. Fig. 2.16 shows the final relative misfits obtained by inverting the ten
frequencies simultaneously or adopting the so-called Bunks’ strategy which results here in ten
groups of cumulative frequencies. These two strategies were quite equivalent in the cross-shaped
benchmark with perfect illumination. For the imaging of more complex media with surface-
to-surface illumination, Bunks’ strategy appears as the most efficient approach in terms of
misfit decrease and provides more accurate models, because it presents the advantage both to
proceed hierarchically and to end up with the inversion of the full frequency band. Again, the
sequential strategy yields final reconstructed models that are less satisfactory, confirming the
need for keeping the low frequency content in the hierarchical process. Therefore, we will use
Bunks’ strategy in the following tests.
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Figure 2.16: Final data misfit with respect to parameter scaling and frequency sampling
strategy.
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In Fig. 2.16, it must be noted that the misfit values reached using the Bunks’ strategy
are quasi-independent from the parameter scaling in the range β ∈ [0.15, 1] (we do not apply
any regularisation here). However, the reconstructed models are very different and remain
strongly sensitive to the scaling factor. Fig. 2.17 shows the permittivity and conductivity
models obtained with scaling factor values of β = 0.15 and β = 1, which both have a misfit very
close to 10−5 (in fraction of the initial misfit). As in the previous section, the value β = 0.15
provides a smooth conductivity model (Fig. 2.17c), whereas the value β = 1 (Fig. 2.17d)
introduces instabilities and largely over-estimates the conductivity variations.

The problem we face here is that we cannot discriminate between the two solutions of

Figure 2.17: On the left: permittivity (a, b) and conductivity models (c, d) obtained by the
inversion of noise-free data using scaling factors β = 0.15 (a, c) and β = 1 (b, d). On the
right: vertical logs extracted along the black lines indicated on the 2D sections. Red curves
denote the true model, blue curves the inverted model, and green curves the initial model. The
optimisation required about 350 iterations per frequency group (3448 and 3767 total iterations
using β = 0.15 and β = 1, respectively).
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Fig. 2.17 with a criterion based only on the data misfit. This could suggest that the variations
between the final models obtained with different β values of equivalent misfits all belong to the
kernel (or null space) of the misfit function. Then we should conclude that we cannot recover
a more precise information about the conductivity from the inverted data.

To have a more detailed insight into this problem, we can try to identify which spectral
components differ between the solutions obtained using different scaling factors. To do so,
we apply a kz-transform to the conductivity logs of Figs 2.17(c) and (d). The corresponding
amplitude spectra are shown in Fig. 2.18. On these spectra, we observe that the variations
in the reconstruction are not restricted to the highest wavenumbers: Low wavenumbers are
affected by the scaling as well. This result is quite unexpected because the small eigenvalues
of the Hessian, related to the less constrained parameters, are generally related to small scale
structures (Hansen, 2010, p.62). Our understanding is that discrepancies in the low wavenum-
bers should induce a degradation of the misfit but these discrepancies are compensated by high
wavenumber structures. If so, removing the high-wavenumber structures should cancel this
compensation and lead to a degradation of the data misfit that would enable to distinguish the
best models between the different solutions.

Fig. 2.19 shows low-pass filtered versions of the conductivity models of Fig. 2.17, where

Figure 2.18: kz-domain spectra of the vertical conductivity logs of Fig. 2.17 using a scaling
factor β = 0.15 (a) and β = 1 (b). The black curves represent the low-pass filter applied
both in x- and z-direction to the conductivity models in Fig. 2.19. Red curves denote the true
model, blue curves the inverted model, and green curves the initial model.

Figure 2.19: Filtered conductivity models corresponding to β = 0.15 (a) and β = 1 (b).
Synthetic data computed in these filtered models yield data misfits C = 0.0017 × Cinit and
C = 0.0045× Cinit, respectively.
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high wavenumbers kx, kz ≥ 2 are filtered out (both in the x- and z-directions). The threshold
kxmax , kzmax = 2 roughly corresponds to the wavelengths propagating in the central part of the
medium (where εr = 4) at 50 MHz, so it is rather a lower bound of the covered wavenumbers
and it induces a quite drastic filtering. As expected from the differences in low-wavenumber
contents in Fig. 2.18, the filtered models of Fig. 2.19 are still quite different but, since high
wavenumbers have been filtered out, we can now discriminate between them: Computing the
corresponding data misfit for these models, we find that the filtered conductivity model obtained
with a scaling factor β = 0.15 (Fig. 2.19a) better explains the data than the one obtained with
a value β = 1 (Fig. 2.19b) by a factor of ' 2.5.

Consequently, we can expect that introducing a Tikhonov regularisation in the misfit func-
tion will enable to identify conductivity solutions, by preventing the creation of the high-
wavenumber structures that compensate for erroneous low-wavenumber reconstruction. As
in the cross-shaped experiment, we regularise only the conductivity update following equa-
tions (2.29) and (2.31). Fig. 2.20 shows the data misfit decrease obtained with the Bunks’
strategy when a Tikhonov regularisation is introduced, as a function of the scaling factor β

and for different regularisation weights λ. As expected, the use of regularisation makes the final
data misfit more sensitive to the parameter scaling. Since it prevents the optimisation to fit the
data with high wavenumber structures, we can now discriminate between smooth reconstructed
structures that well explain the data and those that do not. Varying the regularisation weight
λ, we can see on Fig. 2.20 that the more resolution we allow (with small λ values), the wider is
the range of scaling factors β that well explain the data, and the more variability we get in the
final conductivity models. Conversely, the more smoothness we impose (with large λ values),
the less information we recover. For very large regularisation weights λ > 1, we recover barely
more than the initial model.
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Figure 2.20: Final data misfit with respect to parameter scaling when a Tikhonov regulari-
sation is applied.

From Fig. 2.20, a reasonable criterion for selecting an adequate range of values for the scaling
factor β and for the regularisation weight λ is to seek for λ values that provide a satisfactory
data fit on a small range of β values, i.e. regularisation weights for which it exists a clear
minimum of the data misfit with respect to the scaling factors. For instance, the regularisation
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weight λ = 0.05 seems too large as it significantly degrades the data fit. Conversely, the weight
λ = 4 . 10−4 is probably too small as it yields good data fits on a wide range of scaling values
β ∈ [0.2, 0.5], which may provide dubious models. A reasonable range of values would therefore
be λ ∈ [0.002, 0.01] for the regularisation weight and β ∈ [0.1, 0.35] for the scaling factor.

Fig. 2.21 shows the model obtained with a scaling factor β = 0.2 and a regularisation weight
λ = 0.002. This solution is quite satisfactory when compared with the true model, suggesting
that the proposed workflow for selecting the hyper-parameters β and λ is pertinent. In par-
ticular, it shows that we can rely on the data misfit (without an arbitrary model criterion) for
selecting a reasonable range for the parameter scaling β, in relation with an adequate regulari-
sation level λ for which it exists a clear minimum for the data misfit with respect to parameter
scaling. We must underline the lower resolution of the conductivity reconstruction, resulting
from the applied regularisation (λ > 0) and penalisation (β < 1). However, this solution pro-
vides a good compromise in the reconstruction of the high-permittivity, high-conductivity layer
at z = 3 m, in spite of a slight shift in the conductivity image. The conductivity values in the
thin lenses are comparable with those of the true model.

Figure 2.21: On the left: permittivity (a) and conductivity models (b) obtained by the
inversion of noise-free data using a scaling factor β = 0.2 and a regularisation weight λ = 0.002.
On the right: vertical logs extracted along the black lines indicated on the 2D sections. Red
curves denote the true model, blue curves the inverted model, and green curves the initial model.
The optimisation required about 330 iterations per frequency group (3379 total iterations).

As a partial conclusion, we have shown that the parameter scaling is even more crucial in
this realistic case with surface-to-surface illumination than in the previous case with perfect
illumination. Due to partial illumination, the inversion is less constrained and various scaling
factors β can provide equivalent misfit decreases but very different solutions. Regularisation is
necessary to mitigate the ambiguity. By preventing the optimisation to create high-wavenumber
structures that artificially explain the data, regularisation makes the final data misfit more
sensitive to the scaling factor β. It is thus possible to determine a reasonable range of values
both for the regularisation weight λ and for the scaling factor β.

Fig. 2.22 summarises the successive tests we performed in this section. Note that this

99



THE INVERSE PROBLEM

diagram does not state for the final workflow that should be applied for multiparameter imaging,
but rather as the reasoning flow that leads us to our multiparameter strategy. As indicated
in the diagram, if performing regularised FWI still leads to different models of equivalent data
misfits, then we can not discriminate between the different solutions based only on the data
misfit, and we have to invoke a priori information to drive the inversion process towards a
unique solution (see e.g. Asnaashari et al., 2013). Alternatively, we could have observed that
only high wavenumbers differ between the models reconstructed with different scaling factors.
Regularisation would then have avoided the creation of the high-wavenumber artefacts and
would probably have yielded similar solutions for the different scaling factors.

Solution

Perform FWI for several scaling factors !

and plot the data misfit as a function of !.

Is there a clear minimum of data misfit wrt ! ?

Are the solutions corresponding 

to the smallest misfits similar?

YesNo

No
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Figure 2.22: Flow diagram of the successive tests performed in Section 4 and of the related
conclusions.

Finally, the retained workflow for multiparameter imaging would be:

1. Perform FWI with different parameter scalings β and regularisation weights λ.

2. Plot the data misfit as a function of the scaling factor β, for each regularisation weight
λ.
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3. Identify the regularisation levels that exhibits a clear minimum of the data misfit with
respect to parameter scaling. We shall choose the optimal (λ,β) combinations as the
smallest λ values for which we can find such a minimum, and β values corresponding to
this minimum.

We shall now see whether this workflow can be applied to noisy data, when noise may mask
information about conductivity.

2.2.3.3 Inversion of noisy data

In order to tackle a more realistic example, white noise is added to the synthetic frequency
data with a signal over noise ratio (SNR) of 25 dB. This noise level is consistent with the noise
observed in real GPR data. Fig. 2.23 shows the impact of the noise on a time-domain shot
gather. In the noisy data, the main reflected events are still visible but diffractions at large
offsets are below the noise level.

Figure 2.23: Noisy time-domain shot gathers for the subsurface benchmark (source at x =
0 m). a) Observed data, b) data computed in the initial model. c) Initial residuals. Data has
been computed in the frequency-domain, then we applied a white noise of SNR = 25 dB in
the frequency-domain before the convolution with the time-derivative of a Ricker wavelet of
central frequency 100 MHz and inverse Fourier transform.

In Fig. 2.24, the thick dashed line shows the final data misfit decrease obtained with different
values for the scaling factor, without regularisation. The presence of noise in the data prevents
to decrease the misfit function below a threshold of about 0.0365 (in fraction of the initial
misfit). Again, we reach equivalent data misfits for very different scaling values β ∈ [0.2, 1].
Regularisation is needed to constrain the conductivity model and discriminate between the
different solutions. The other curves of Fig. 2.24 show the final data misfit reached using
the same range of scaling factors β and various regularisation weights λ. It presents the same
features as in the case of noise-free data (Fig. 2.20), enabling to determine a range of reasonable
values both for the scaling factor β and for the regularisation weight λ on the single criterion
of data misfit. Here, the smallest regularisation weights that provide a satisfactory data fit on
a small range of scaling factors β ∈ [0.1, 0.2] are λ = 5 to 10.
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Figure 2.24: Final data misfit with respect to parameter scaling when a Tikhonov regulari-
sation is introduced in the inversion of noisy data (SNR = 25 dB).

Fig. 2.25 shows the inversion results obtained with a scaling factor β = 0.2 and a regular-
isation weight λ = 5. In the permittivity image, thin superficial layers are still reconstructed
quite accurately although the second lens is slightly shifted downwards. Resolution dramati-
cally decreases with depth and the high-permittivity layer does not clearly appear. The strong
regularisation of conductivity only provides the main trend of the conductivity structures. The

Figure 2.25: On the left: permittivity (a) and conductivity models (b) obtained by the
inversion of noisy data (SNR = 25 dB) using a scaling factor β = 0.2 and a regularisation
weight λ = 5. On the right: vertical logs extracted along the black lines indicated on the 2D
sections. Red curves denote the true model, blue curves the inverted model, and green curves
the initial model. The optimisation required about 25 iterations per frequency group (241 total
iterations).
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lenses of clay can be distinguished while a blurred image of the alternation of conductivity at
depth is obtained. This result may seem disappointing but it should be underlined that the low
resolution we obtain is the consequence of the applied regularisation and penalisation, which
are necessary to not over-interpret the data.

Finally, Fig. 2.26 compares the time-domain data computed in the inverted model of
Fig. 2.25 with the observed noisy data (Fig. 2.26a) and with the observed noise-free data
(Fig. 2.26b). For a better visualisation of the signal at late arrival times and large offsets,
we apply a time-varying gain and a trace-by-trace normalisation (for each offset, the reference
amplitude is the maximum of the observed trace). Every tenth trace is shown. It can be seen
that noise is not fitted in the time-domain, although we did not regularise the permittivity
update. It suggests that the L-BFGS optimisation is robust with respect to noise, but it also
may come from the fact that there does not exist any structure in the model space that could
explain the applied noise, which is totally incoherent. We expect to encounter more difficulties
when dealing with coherent noise in real data (e.g. ringing effects). In Fig. 2.26(b), it appears
that the added noise slightly damaged the fit in some parts of the radargram, especially in the
zone related to the thin lenses (8 ≤ x ≤ 10 m). For comparison, it must be mentioned that
synthetic data computed in the model of Fig. 2.21, which has been reconstructed by inverting
noise-free data, perfectly match the observed data.

Figure 2.26: Time data fit. a) Noisy observed data vs. data calculated in the model of
figure 2.25 obtained by inverting the noisy data. b) Noise-free observed data vs. the same
data calculated in the inverted model of Fig. 2.25. A time-varying gain (×t) and trace-by-trace
normalisation have been applied.
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2.2.4 Discussion

We have shown that a robust reconstruction of permittivity and conductivity requires both
parameter scaling and regularisation. Here we may comment the similarities and differences
between these two ingredients, which may appear redundant but have actually distinct roles.

As shown in Fig. 2.10, small values for the scaling factor β penalise the conductivity up-
dates and provide smooth conductivity models, as does regularisation. Looking at the Hessian
matrices, we can also note that penalising the conductivity with a small scaling factor amounts
to damp the small singular values of the Hessian, because the misfit function is more sensitive
to permittivity than to conductivity. It is also the effect of Tikhonov regularisation (Hansen,
2010, p.62). Finally, parameter scaling and regularisation both modify the shape of the global
misfit function, and thus the inversion path, but in different ways we shall describe now.

Penalisation of the conductivity update through the scaling factor β orientates the inver-
sion path in the direction of permittivity, until a satisfying kinematic model is obtained (see
Fig. 2.12). The conductivity model is then updated only on the basis of the data misfit de-
crease, without an explicit smoothness requirement. Potentially, an adequate parameter scaling
can guide the inversion on a reasonable path towards the minimum of the data misfit CD and
this solution can present smooth parts as well as contrasts. Conversely, regularisation attracts
the inversion path towards a smooth conductivity model: The minimum of the global misfit
function is then shifted towards the minimum of its model term CM (in the two-parameter case
of Fig. 2.12, it would be a valley located at σ = 3 mS/m). Consequently, the parameter scaling
does not prevent the misfit function to converge, contrary to regularisation which generally
results in a lower convergence rate: The optimisation stops when the updated models cannot
both minimise the data misfit and satisfy the model smoothness requirement. As a conclusion,
the role of the parameter scaling is to guide the inversion on a reasonable path, according to
the sensitivity of the data, whereas regularisation constrains the conductivity update, prevents
the creation of high-wavenumber structures, and thus enables us to discriminate between low-
wavenumber reconstructions that well explain the data or not (Fig. 2.20). Indeed, the inversion
results using small values for the scaling factors (e.g. β = 0.2) are very similar with and with-
out regularisation (e.g. λ = 5 vs. λ = 0 in the noisy data case) because the penalisation of
conductivity through the scaling factor already acts as a regularisation. The principal role of
regularisation in our workflow is to tell us which smooth solution is convenient regarding the
fit to the data.

Conclusion

In this study, we have presented a full waveform inversion algorithm of on-ground GPR data for
the simultaneous reconstruction of permittivity and conductivity in 2D. The inverse problem
has been formulated in the frequency-domain as the minimisation of the misfit to the data
in a least-square sense. A model term is added to constrain the inversion with a Tikhonov
regularisation. The gradient of the misfit function is defined in the whole parameter space and
is computed with the adjoint state method. The optimisation is performed with a quasi-Newton
scheme using the L-BFGS-B algorithm to economically estimate the effect of the Hessian on
the parameter update.

Tests performed on a synthetic benchmark from the literature shows that the respective
weights of permittivity and conductivity in the optimisation process is of prior importance. A
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parameter scaling is introduced through a penalisation of the conductivity parameter. Without
an adequate value for this scaling factor, regularisation alone cannot provide satisfactory results.
The adequate value for the parameter scaling mainly depends on the respective sensitivity of
the data to permittivity and conductivity, and to the quality of the initial model. With a
weak sensitivity to conductivity and a poor initial model, more weight must be given to the
permittivity parameter to give priority to the kinematic reconstruction before reconstructing
the conductivity. The sensitivity of the reconstructions to the parameter scaling suggests that
the L-BFGS algorithm does not correctly scale the descent direction with respect to different
parameter types. We underline the need for investigating more complete approximations of
the Hessian (e.g. truncated Newton methods, Métivier et al., 2013) to understand if more
information can be extracted from the curvature of the misfit function.

The behaviour of the inversion with respect to frequency sampling has been investigating.
As the relative impact of permittivity and conductivity varies with frequency, the reconstruc-
tion of both parameters takes a significant benefit from the simultaneous inversion of data
with a broad frequency bandwidth. Therefore, simultaneous or cumulative frequency sampling
strategies should be favoured, depending on the quality of the initial model.

The algorithm has also been tested on a more realistic benchmark, with a multi-offset,
surface-to-surface acquisition configuration. In this case, various parameter scalings can lead
to the same misfit decrease but to very different solutions. Regularisation is needed to constrain
the conductivity update and reduce the ambiguity. In the synthetic case we investigate, it is
possible to find a range of reasonable values for both the scaling factor and the regularisation
weight, based only on the data misfit analysis. This workflow can be applied to extract a
reliable information about conductivity from noisy data. We shall mention that, in some cases,
it could be impossible to constrain the solution based only on the data misfit, and we underline
the interest of introducing a priori information in the FWI process (Asnaashari et al., 2013).

The proposed workflow implying parameter scaling and regularisation enables us to consider
the inversion of real data in the near future. Common obstacles to real data inversion are 3D
to 2D conversion, the design of a compatible initial model, and the estimation of the source
signal, which must be integrated in the iterative process. Since first travel time and amplitude
tomography can not be performed from on-ground GPR data (contrary to crosshole data), the
design of initial models for permittivity and conductivity from on-ground GPR data will be
particularly challenging.
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2.3 Further methodological details

In this section, I develop some points which were not included in the previous article for
conciseness. First, I present the complete derivation of the gradient expression (2.19), which
is at the core of the FWI. I comment the properties of the gradient in terms of resolution
with respect to illumination, which give some insights inherited from seismic FWI. In a second
time, I present some protocols used to validate the implementation of the gradient. I also show
how to derive the two-parameter case of Fig. 2.12 using a linear change of variables. Finally, I
shortly comment the sensitivity of the data to dispersive parameters and justify why I did not
consider them in the inversion.

2.3.1 Computation and interpretation of the gradient

In this section, I derive the gradient expression (2.19) using the approach of (e.g.) Pratt et al.
(1998) and Shin et al. (2007) which simply consists in differentiating the misfit function and
the wave equation with respect to the model parameters. In Appendix A, I present the more
general formulation of the adjoint state method (Plessix, 2006) which enables the consideration
of other parameterisations and misfit criteria in a more flexible and systematic way.

For simplicity, I will avoid the summation of expression (2.17) by considering data at a
given frequency and for one source only1. I also consider a more general form for the data
misfit function

C (m) =
1

2
||Wd∆d(m)||2, (2.32)

=
1

2
∆d(m)†W†dWd∆d(m), (2.33)

where ∆d = dobs − dcal(m) are the data residuals and Wd is a data weighting matrix. If the
measurement uncertainties are available, it is consistent to relate this weighting matrix to the
data covariance matrix Cd as

W†dWd = C−1
d . (2.34)

This approach enables in theory to estimate a posteriori uncertainties on the recovered param-
eters, which are a valuable information (see e.g. Tarantola, 2005, §3.3, p. 70).

In our case, however, it is not obvious to reliably estimate the uncertainty of the GPR
measurements. Instead, I will use the operator Wd as an arbitrary weighting matrix to give
more weight to some data compared to others, e.g. to balance the small amplitudes of far offset
data. Therefore, the weighting matrix will be a diagonal matrix such that

diag(Wd) = (wdi)
ND
i=1, (2.35)

wdi being the weight given to data component dobsi .

Even if the same weight is given to each data component, it is consistent to use the weighting
matrix Wd to normalise the misfit function, as done by Yang et al. (2013), using wdi = 1/ND.

1Equivalently, we can consider that the data recorded at different frequencies for different source and receiver
positions can be gathered in a unique residual vector ∆d(m) = dobs−dcal(m), but the reference to the impedance
matrix A(m) is then less consistent since it should depend on frequency.
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Equivalently, a diagonal model weighting matrix Wm can be used to normalise the model term
of the regularised misfit function (??), using wmi = 1/NM .

More generally, it is worth noting that the data and model weighting matrix define norms in
the data space and in the model space, respectively (Menke, 2012, §3.9, p. 56), such that their
application to the residuals and model vectors can be seen as a change of variables between
initial data and model spaces D and M to weighted, or normed, spaces.

The gradient of the misfit function is by definition its first derivative with respect to the
model parameters, i.e. the vector G of size NM whose components are given by

Gi(m) =
∂C (m)

∂mi
, (2.36)

=
1

2

∂∆d†

∂mi
W†dWd∆d +

1

2
∆d†W†dWd

∂∆d

∂mi
,

= <e

{
∂∆d(m)†

∂mi
W†dWd∆d(m)

}
. (2.37)

TE mode

In TE mode, the calculated data dcal consist in the field u = Ey recorded at receiver positions,
which can be formalised by

∆d(m) = dobs − dcal(m) = dobs −Ru(m), (2.38)

where R is again the projection operator of the simulated field u on the receiver positions. So
we have

∂∆d(m)

∂mi
= −∂dcal(m)

∂mi
= −R∂u(m)

∂mi
. (2.39)

Expression (2.39) can be injected in (2.37) to yield

Gi = −<e
{
∂u†

∂mi
R†W†dWd∆d

}
. (2.40)

On the other hand, derivating the equation of the forward problem A(m)u(m) = s with
respect to the model parameters mi, we obtain

A(m)
∂u(m)

∂mi
+
∂A(m)

∂mi
u(m) = 0,

i.e., formally,
∂u(m)

∂mi
= −A(m)−1∂A(m)

∂mi
u(m). (2.41)

Replacing (2.41) in (2.40) leads to the gradient expression of the adjoint state method:

Gi(m) = <e

{
u(m)†

∂A(m)†

∂mi
A(m)†

−1

R†W†dWd∆d(m)

}
, (2.42)
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or, if we denote v the adjoint wavefield,

Gi(m) = <e

{
u(m)†

∂A(m)†

∂mi
v(m)

}
, (2.43)

which is similar to equation (2.19), given that <e(x) = <e(x∗) for any complex number x. Note
however that defining the adjoint wavefield as

v(m) = A(m)†
−1

R†W†dWd∆d(m) (2.44)

is only a formal notation since in practice, the inverse matrix A−1 is not explicitly computed.
Therefore, it is more rigorous to define the adjoint wavefield v as the solution of the adjoint
equation

A(m)†v(m) = R†W†dWd∆d(m), (2.45)

which is a wave propagation problem where the sources are located at receiver positions through
the operator R† and their strength (amplitude and phase) is given by the weighted residuals

W†dWd∆d(m). Therefore, it is usual to say that the adjoint wavefield results from the back-
propagation of the residuals in the medium, since the matrix A† is a backward-propagation
operator. This property can be more easily seen in the time-domain, where solving the adjoint
wave equation amounts to solve the forward wave equation backwards in time (see e.g. Lailly,
1983; Plessix, 2006).

TM mode

The previous derivation stands for the TE mode where the data are values of the electric field
recorded at receiver positions, d = Ru with u = Ey. In TM mode, the extraction of the
recorded electric field from the simulated magnetic field involves an additional operator D:

dcal(m) = RDu(m), with u = Hy, (2.46)

and D =
1

ıωεe

(
cos θr

∂

∂z
− sin θr

∂

∂x

)
, (2.47)

where θr is the orientation of the receiving antenna with respect to the x-axis (see equations 1.61
to 1.63 and Fig. 1.7).

Considering the operator D in the previous development yields the gradient expression for
the TM mode:

Gi(m) = <e

{
u(m)†

∂A(m)†

∂mi
A(m)†

−1

D†R†W†dWd∆d(m)

}
. (2.48)

The corresponding adjoint equation is

A(m)†v(m) = D†R†W†dWd∆d(m), (2.49)

where the adjoint operator D† must be determined to implement the correct source for the
adjoint problem. If we achieve the differentiations of eq. (2.47) with centred finite-differences,

∂ui,j
∂x
' ui+1,j − ui−1,j

2h
, (2.50)

∂ui,j
∂z
' ui,j+1 − ui,j−1

2h
, (2.51)

then it turns out that D is real and anti-symmetric: D† = −D.
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Interpretation of the gradient in the imaging process

The principles underlying the construction of the gradient in FWI can be encountered in many
imaging methods. In fact, it corresponds to the imaging principle of time-coincidence I evoked
in the general introduction (Claerbout, 1971). In particular, it corresponds to the imaging
condition of reverse-time migration, with the notable difference that for migration, not the
residuals but the entire recorded data are back-propagated1, and correlated with the incident
field to form the image, which results from the interferences between both wavefields. If an
accurate velocity model is available, constructive interferences occur where the wavefields are
time-coincident, i.e. where there is a reflector that causes a reflected event in the recorded
data2. In FWI, the gradient thus act as mapping operator of the residuals in the medium: it
will locate model perturbations where physical structures that have caused the un-explained
events are missing.

Detailing the construction of the gradient provides useful insight on the resolution capability
of the inversion. Fig. 2.27 illustrates this construction for one frequency (100 MHz) and one
source-receiver pair in the cross-shaped benchmark case. The computation is performed in the
initial homogeneous background for the permittivity component of the gradient. To form the
gradient (c), the incident field (a) and the adjoint field (b) are correlated, i.e. multiplied in
the frequency domain. The resulting gradient (c) displays a particular interference pattern,
commonly referred to as the sensitivity kernel. It consists in elliptical iso-phase contours, i.e.
that diffracting points located on these contours would generate diffracted events in the data
with the same phase. These iso-phase contours are thus the frequency-domain equivalent of
the elliptical iso-travel-time contour in the time-domain, duplicated by the phase ambiguity.

The central ellipse (yellow dashed line) corresponds to the first Fresnel zone, associated to
the first arrivals, while the outer fringes are associated to later arrivals (reflected and diffracted

(a) Incident wave field (real
part).

(b) Adjoint wave field (real
part).
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(c) Gradient.

Figure 2.27: Construction of the gradient in the case of a single source-receiver pair and of a
single frequency (100 MHz). In (c), the yellow dashed line delineates the first Fresnel zone.

1As a consequence, a FWI algorithm is also a reverse-time migration algorithm, provided we put the data
in the adjoint source instead of the residuals. I will use this property in Chapter 3 for migrating field data.

2It is also the principle of time-reversal experiments that consist in refocusing a recorded signal, either
acoustic or electromagnetic, at the location of the source (e.g. Fink et al., 2000; Davy, 2010).
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events). Imaging the missing diffracting points consists in back-projecting the residuals on
the iso-phase contours: residuals associated with first arrivals (i.e., having a time shift of less
than T/2 with these arrivals, in virtue of the cycle-skipping effect) will be projected into the
first Fresnel zone and residuals associated with later arrivals on the outer fringes. Of course,
back-projecting the residuals from a single source-receiver pair does not provide a satisfying
image since there is an azimuthal ambiguity on the source of the diffractions. Constructive
interferences leading to a focused image only arise when multiple receivers are considered
(Fig. 2.28), just like the epicentre of earthquakes can be roughly located by triangulation.
Finally, the missing crosses can be accurately relocated by superimposing the interference
patterns associated to several sources, that provides a more complete illumination of the targets
(Fig. 2.29).

(a) Incident wave field. (b) Adjoint wave field. (c) Gradient.

Figure 2.28: Construction of the gradient in the case of a single source with multiple receivers
at 100 MHz.

Figure 2.29: Gradient at 100 MHz resulting from the
sum of the interference patterns similar to Fig. 2.28(c)
for all sources.

The question of the illumination of the medium by the acquisition setup, and the related
issue of the resolution of the reconstructed image, can be studied in more details thanks to the
sensitivity kernel of Fig. 2.27. On this figure, the distance between the iso-phase contours gives
an indication on the resolution in the resulting image. This resolution is controlled by the local
wavenumber k, which results from the combination of the wavenumber vector s, representing
the illumination of the medium by transmitter T, and of the wavenumber vector r, standing
for the field recorded by receiver R. Based on a plane wave analysis, Sirgue and Pratt (2004)
give an expression for the local wavenumber vector k, as a function of frequency and of the
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diffraction angle θ, or aperture of the source-receiver array:

k =
2ω

v
cos

(
θ

2

)
(s + r), (2.52)

where v is the electromagnetic velocity in the medium. Equation (2.52) is important for un-
derstanding the FWI of surface-based measurements and gives several informations:

1. The resolution of the reconstructed image both depends on frequency and on the illumi-
nation angle, which in turn is related to the offset between source and receiver. More
precisely, the resolution increases with increasing frequencies and decreasing diffraction
angles (compare the green and the red arrows in Fig. 2.27).

2. The above statement confirms the intuitive interpretation that the low to high frequency
hierarchy of Pratt and Worthington (1990) amounts to reconstruct first the low wavenum-
bers of the image, i.e. the large-scale structures, and then to incorporate small-scale
details by inverting higher frequencies.

3. The maximal achievable resolution is obtained from zero-offset data and equals kmax =
2ω/v, i.e. λmin = λpropagated/2, in accordance with the diffraction theory.

The first point leads Sirgue and Pratt (2004) to propose a strategy for selecting the adequate
frequencies to be considered in the inversion. This strategy is illustrated in Fig. 2.30(a) in the
case of the cross-shaped benchmark, for the diffracting point indicated in red in Fig. 2.27, which
is located at x = 7 m and z = 3 m 1. The left panel of Fig. 2.30(a) follows the 1D analysis of
Sirgue and Pratt (2004) and represents only the vertical component of the wavenumber that
can be imaged by an acquisition in reflection configuration, with sources and receivers spanned
on the top of the model (z = 2 m in Fig. 2.6). The right panel of Fig. 2.30(a) displays the
corresponding vertical resolution in terms of wavelengths, which have more intuitive units for
the interpretation. For each frequency, the minimal and maximal illumination angles provided
by the acquisition result in a range of vertical wavenumbers. Two adjacent frequencies therefore
provide a large redundancy in wavenumber coverage.

This observation is the motivation for decimating the frequency sampling in frequency-
domain FWI: thanks to the redundancy in wavenumber coverage offered by the multi-offset
acquisition, we can invert coarsely sampled frequencies without damaging the resolution of the
reconstructed image. The dashed blue lines in Fig. 2.30(a) indicate the frequency sampling sug-
gested by Sirgue and Pratt (2004), which is a priori sufficient to avoid gaps in the wavenumber
coverage. It consists in only three frequencies: 50, 100 and 200 MHz. As this analysis concerns
only one point in the medium, and is valid only for the vertical wavenumber, it is often worth
over-estimating the required frequency sampling. In the real data case, wavenumber redun-
dancy is even desirable to increase the signal-over-noise ratio. It is why I generally choose a
denser frequency sampling than the one proposed by Sirgue and Pratt (2004). As an example,
the vertical red lines indicate the frequencies used in the inversions of Section 2.2 (the dashed
red lines correspond to the extra frequencies considered in the case of the realistic subsurface
benchmark).

The analysis of Sirgue and Pratt (2004) is an interesting tool to understand the difference
of illumination provided by surface-based measurements, in comparison with crosshole experi-
ments. I already mentioned this issue in the introduction of Section 2.2 and Meles et al. (2012)

1It corresponds to the depth of the red cross of the benchmark. It is also the depth of the high-conductivity
layer in the subsurface benchmark of Fig. 2.14.
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(a) Reflection configuration (sources and receivers at z = 2 m in Fig. 2.6).

(b) Transmission configuration (sources at x = 2 m and receivers at x = 12 m in Fig. 2.6).

Figure 2.30: Vertical wavenumbers (left panels) and wavelengths (right panels) imaged in the
cross-shaped benchmark, for reduced acquisition geometries and a diffracting point located at
3 m depth.

provide a detailed discussion of the sensitivity and resolution provided by both configurations,
based on the explicit computation of the Jacobian matrix and on the eigenvalue decomposition
of the corresponding pseudo-Hessians. In Fig. 2.30(b), I present the vertical wavenumber and
resolution provided at the same diffracting point but illuminated by a crosshole acquisition
setup, with sources on one side of the model (at x = 2 m) and receivers on the opposite side
(x = 12 m). In this configuration, the minimal illumination angle of the diffracting point is 70◦

(indicated with white dashed lines in Fig. 2.27) and the maximal diffraction angle is 180◦ for
source and receiver located at the same depth (pure transmission regime).

Eq. (2.52) then predicts a minimal vertical wavenumber of zero, meaning that very large
vertical structures can always be imaged, and a maximal wavenumber that is slightly smaller
than in the reflection case, due to the larger minimal angle of illumination. Therefore, we can
expect a slightly better vertical resolution from reflection measurements than from crosshole
experiments (' 75 cm vs. ' 1 m at 100 MHz, comparing the right panels of Figs 2.30a and
b). Conversely, Fig. 2.30(a) suffers from a dramatic lack of low wavenumbers compared to
Fig. 2.30(b). As a consequence, in reflection configuration, it will be difficult for the gradient
to reconstruct the large-scale structures of the medium. If the low wavenumbers cannot be
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imaged from reflection data, then they must be contained in the initial model. Otherwise, the
small-scale structures will not be imaged at their correct locations. We can thus anticipate
that the design of an accurate initial model of permittivity will be crucial when dealing with
on-ground GPR field data, whereas this issue seems less critical in crosshole configuration,
according to this analysis.

As a qualitative illustration of the wavenumber coverage provided by reflection and cross-
hole configurations, Fig. 2.31 presents the gradients corresponding to both configurations. In
addition to the incomplete illumination of the medium, already investigated by Meles et al.
(2012), it confirms the lack of low wavenumbers in the gradient associated to surface acqui-
sition (b). In panel (c), weights have been applied to increase the contribution of long-offset
data, originally of lower amplitudes. It slightly enhances the low wavenumber content but is
not sufficient to converge to a satisfactory solution in this specific case because of the incom-
plete illumination and of the absence of deep reflectors (data weighting will be applied to this
purpose on real field data in Chapter 3).

(a) Crosshole configuration. (b) Surface configuration. (c) Surface configuration with
weighted residuals.

Figure 2.31: Gradients computed in the homogeneous initial background of the cross-shaped
benchmark, using various acquisition configurations. In (c), data are weighted such that long
offset data have the same amplitudes than short offset ones.

2.3.2 Validation of the computed gradients

As the gradient is the key ingredient of FWI, it is important to validate the computation
performed with the adjoint state method when various parameterisations or misfit functions
are tested. To do so, we can make two kinds of tests. Both aim at checking that the computed
gradient well corresponds to the first derivatives of the misfit function.

1. We may check that, at each grid point i in a model m,

Gi(m) =
∂C

∂mi
' C (m + δmi)− C (m)

δmi
, ∀mi ∈M, (2.53)

where the vector δmi = (0 · · · δmi · · · 0)T has all its components null except the ith.
On a practical point of view, it corresponds to construct the gradient in a naive way,
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without using the adjoint state method, but using a finite difference approximation,
i.e. performing one forward problem per parameter to estimate the cost function in a
perturbed medium.

However, relation (2.53) is only valid for adequate perturbation amplitudes δmi, which
have to be small enough for verifying the linear approximation, but large enough for not
being dominated by rounding errors. An adequate value for δmi can be estimated by
trial and error, but it is sometimes useful to investigate the convergence of the approxi-
mation (2.53) in more details.

2. Therefore, a more rigorous test is to look at the strict definition of the derivatives, checking
that

Gi(m) =
∂C

∂mi
= lim

δmi→0

C (m + δmi)− C (m)

δmi
. (2.54)

with decreasing perturbation amplitudes δ = δmi/mi, such as to obtain a convergence
curve as a function of δ. In practice, it amounts to perform the first test (2.53) for
decreasing perturbation amplitudes δmi. Since it requires more computations than the
first test, I generally perform this second test at only one point i, such as to obtain a
convergence curve for Gi(m).

Below, I present validation tests using the first method for the validation of the permittivity
and conductivity gradients derived with the adjoint method. The second method will be used
in the next section to validate the gradient in the two-parameter case, where it is not obvious
to evaluate the agreement between the adjoint values and the finite-difference approximation.

Figs 2.32(a,b) and 2.33(a,b) show the gradients computed using the adjoint state method
and the finite-difference approximation in the initial homogeneous background of the cross-
shaped benchmark, both for permittivity and conductivity. The qualitative agreement between
both computations is very good, except in the immediate vicinity of sources and receivers that
cause numerical singularities. Panels (c) present the quantitative relative difference, which is
very small at the centre of the medium, in particular in the zone of interest where the crosses
are to be reconstructed. In Fig. 2.32(c), however, the discrepancy in the permittivity gradient
rapidly increases close to the sources and receivers due to an enhanced sensitivity of the data
to this region. Actually, the error resides here in the finite difference computation because

(a) Adjoint. (b) Finite-difference. (c) Relative difference.

Figure 2.32: Validation of the permittivity gradient of Gεr in the initial model of the cross-
shaped benchmark for TE mode and three simultaneous frequencies (50, 120, and 200 MHz).
Finite-differences are computed with perturbations δ = 10%.
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the applied perturbation amplitude δ = 10% does not respect the linear approximation. It has
been checked that decreasing the perturbation amplitude δ used to compute the finite-difference
gradient enables to decrease the relative error in this region, displaying a convergence curve
similar to the one shown in Fig. 2.35(a) in the next section. This effect is less visible in the
conductivity gradient (Fig. 2.33c) because of the smaller sensitivity of the data to conducti-
vity. The perturbation amplitude δ = 10% thus remains in the validity domain of the linear
approximation.

(a) Adjoint. (b) Finite-difference. (c) Relative difference.

Figure 2.33: Validation of the conductivity gradient of Gσr in the initial model of the cross-
shaped benchmark for TE mode and three simultaneous frequencies (50, 120, and 200 MHz).
Finite-differences are computed with perturbations δ = 10%.

2.3.3 Derivation and validation of the two-parameter problem

In this section, I detail how to derive the two-parameter problem of Fig. 2.12 from the high-
dimensional cross-shaped benchmark of Fig. 2.6. By high-dimensional, I mean that in Fig. 2.6,
the permittivity and conductivity models are represented on a cartesian grid of size Nx×Nz =
201 × 201. This forward grid is designed to guarantee an accurate solution of the forward
problem, whereas an inverse grid aims at representing the resolvable structures of the expected
model. Therefore, it may be pertinent in a full waveform inversion to not reconstruct the
parameters values at all points of the forward grid. In this section, I derive the computation
of the gradient with respect to the parameters defined on a decimated inverse grid. The new
parameter set is linked to the forward parameters by a linear change of variable.

General formulation

Let we consider a forward grid of size Nfwd
M , and an inverse grid of size N inv

M . As we are

interested in reducing the number of parameters to be inverted, I assume N inv
M < Nfwd

M . The

associated vectors for model parameters are mfwd and minv, of size Np×Nfwd
M and Np×N inv

M ,
respectively, where Np is the number of inverted parameter types. In the following, I focus on
the monoparameter case (Np = 1) since the multiparameter case is only a matter of size of
the operators, and the different parameter types can be considered independently. I define the
change of variables mfwd →minv through the operator C such that

mfwd = Cminv. (2.55)
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The matrix C is then of size (Nfwd
M , N inv

M ). In the general case, C will not be square, and
therefore not invertible. However, we can obtain the following reciprocal change of variable

minv =
(
CTC

)−1 CTmfwd, (2.56)

if the matrix CTC is invertible (this condition should be verified to apply the workflow for
particular cases).

Using the chain rule for the derivation of the misfit function C (minv), which is of course
the same in both forward and inverse domains (C (minv) = C (mfwd)), we then have

Ginv =
∂C (minv)

∂minv
, (2.57)

=

(
∂mfwd

∂minv

)T
∂C (minv)

∂mfwd
=

(
∂mfwd

∂minv

)T
∂C (mfwd)

∂mfwd
, (2.58)

= CTGfwd, (2.59)

where Gfwd is the gradient computed with the adjoint state method on the forward grid.

Before moving to the case of the cross-shaped benchmark studied in Section 2.2, I want to
underline that this derivation, based on the chain-rule, is very general. As soon as it is possible
to compute the change of variables and its derivative, it can be applied to a wide range of
re-parameterisations. In the following, I consider a blocky description of the medium which
makes a strong assumption on its geometry (in particular, I assume that the location and shape
of the crosses are known). But it could also be applied to more clever re-parameterisations,
e.g. based on the analysis of migrated images (Ma et al., 2012; Zhou et al., 2014).

Example in the case of the cross-shaped benchmark

In this case, we want to retrieve the permittivity and conductivity values in the cross-shaped
anomalies, considered as homogeneous blocks in a homogeneous background (the benchmark

is shown again in Fig. 2.34). The change of variables then consists to pass from the Nfwd
M =

Nx×Nz cells in the FD grid to the blocky representation shown in Fig. 2.34(c), which presents
N inv
M = 3 sub-blocks. Hereafter, I will denote model and gradient components in the inverse

grid as minv
j and Ginvj , respectively, with j = 1 for the first (blue) cross, j = 2 for the second

(red) cross, and j = 3 for the background (following the legend of Fig. 2.34c).

Figure 2.34: (a,b) Reminder of the true models of the cross-shaped benchmark for permittivity
and conductivity. (c) Sub-blocks defining the inverse grid.
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The change of variables minv →mfwd then reads

∀i ∈ J1, Nx ×NzK, mfwd
i =





minv
1 if i is a cell of the first cross,

minv
2 if i is a cell of the second cross,

minv
3 if i is a cell of the background,

(2.60)

or, in terms of the operator C,

∀i ∈ J1, Nx ×NzK, mfwd
i =

3∑

j=1

Cijm
inv
j , with Cij =

{
1 if i ∈ Vj ,
0 otherwise,

(2.61)

where Vj is the ensemble of the forward cells belonging to the inverse sub-block j.

In this case, the 3× 3 matrix CTC is

CTC =



n1 0 0
0 n2 0
0 0 n3


 , (2.62)

where nj = #Vj is the number of forward cells in sub-block j. The matrix CTC is diagonal (and

invertible since ∀j ∈ {1, 2, 3}, nj 6= 0), so we can define the reciprocal operator Q =
(
CTC

)−1 CT
and the change of variables mfwd →minv as

∀j ∈ {1, 2, 3}, minv
j =

Nx×Nz∑

i=1

Qjim
inv
i , with Qji =

{
1/nj if i ∈ Vj ,
0 otherwise.

(2.63)

Formally, minv
j is thus the mean value of mfwd

i in the sub-block j: minv
j =< mfwd

i >i∈Vj . It

becomes here obvious that the change of variables mfwd → minv is not injective, as several
heterogeneous forward models can result in the same mean values for the inverse model (it

was already the case in section 2.3.3, as we assumed that N inv
M < Nfwd

M ). In the case of the
blocky representation of the crosses, the ambiguity is removed by the fact that we start with
homogeneous sub-blocks, and that the model is updated homogeneously within the sub-blocks.

The gradient in the blocky parameter space is then

∀j ∈ {1, 2, 3}, Ginvj =

Nx×Nz∑

i=1

PjiG
fwd
i , (2.64)

i.e., the sum of the gradient components computed with the adjoint method on the forward
grid, related to the cells belonging to the sub-block j.

Validation of the gradient on the inverse grid

To validate the gradient in the inverse grid Ginv, I compare it with a gradient computed by
finite-differences GFD, defined as

GFDj (minv) =
C(minv + δmj)− C(minv)

δmj
. (2.65)
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I apply perturbations of the form δmj = δ×mj . The convergence of the ratio GFDj /Ginvj with
respect to the perturbation δ is shown for each sub-block j in Fig. 2.35, both for permittivity
(a) and conductivity (b).

In Fig. 2.35(a), the ratio GFDj /Ginvj converges towards 1 for δ ∈ [0.005, 0.1] in the two

crosses (j = 1, 2). In the background, the ratio gets closer to 1 for δ ∈ [10−5, 10−4] but never
reaches 1, which is probably due to the fact that the acquisition system is comprised in the
background, generating singularities both in the adjoint and finite-difference gradients.

In Fig. 2.35(b), the ratio GFDj /Ginvj gets closer to 1 for higher perturbation amplitudes than
in the permittivity case, because the misfit function is less sensitive to conductivity than to
permittivity. The ratio never reaches exactly 1. The more reliable gradient is obtained for the
second cross. It is why I focused on this second cross (the red one in Fig. 2.34) in Section 2.2.
It also allows to avoid the bound εr = 1 that makes the first cross less suitable for the grid
analysis of Fig. 2.12.
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(b) Conductivity gradient Gσr .

Figure 2.35: Evolution of the ratio between the gradient computed by finite-differences and
the adjoint gradient vs. finite-difference perturbation δ. The same parameterisation and fre-
quencies as in Section 2.2 are used (7 frequencies between 50 and 200 MHz and σo = εoωo).

2.3.4 Sensitivity to dispersive parameters

In Chapter 1, I evacuated the consideration of the dispersive parameters for the inversion, argu-
ing that the data were poorly sensitive to these parameters. Based on the previous discussion
on data sensitivity to permittivity and conductivity, I can now justify this statement in more
details by computing the diffracted fields corresponding to these parameters.
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Fig. 2.36 present the amplitude of the fields diffracted by 10% anomalies of the real and
imaginary parts of permittivity and conductivity, as well as of the magnetic permeability. These
fields were computed in the same way as in Fig. 2.8, by computing the difference between the
field in a homogeneous medium and the field in the same medium where an anomaly of a given
parameter has been added (the other parameters remaining homogeneous).
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Figure 2.36: Diffraction patterns of 10% anomalies of ε′, σ′, ε′′, σ′′ and µ (from the left to
the right) at 50 MHz in TE mode. Background values are ε′r = 4, σ′ = 3 mS/m, ε′′r = 0.4,
σ′′ = 0.3 mS/m and µr = 1 (' realistic values).

According to Fig. 2.36, the diffracted wavefields display a lower sensitivity to the dispersive
parameters ε′′r and σ′′ than to the real parts ε′r and σ. Note the particular diffraction pattern of
the magnetic permeability (right panel) which presents an amplitude comparable to the one of
the real permittivity and a remarkable dependency to the diffraction angle which may help to
mitigate the trade-off effects in multiparameter permittivity-permeability inversions (I might
draw the parallel with the inversion of velocity and density in acoustic FWI).

Of course, one may argue that the strength of the diffraction patterns depends on the
amplitude of the parameter anomaly. Depending on the goal of the survey, we may not be
interested in detecting the same level of parameter perturbations: imaging 20% anomalies
in permittivity might be relevant but concerning conductivity, we may be more interested
in knowing the order of magnitude, whether it below 1 or more than 100 mS/m (to detect
saline water in an aquifer, for instance). In this respect, a logarithmic parameterisation of the
conductivity might be more relevant, as suggested by Meles (2011) and Yang et al. (2013). I
should mention, however, that a logarithmic parameterisation does not solve the problem of the
trade-off. On the contrary, over-estimating the logarithmic conductivity update has a greater
impact on the conductivity itself since it acts directly on its order of magnitude.

Finally, the analysis based on the wave scattering by a diffracting point might be non-
adapted to study the effect of dispersive parameters, that act on the waveforms when they
propagate through extended anomalies. However, the relative sensitivities displayed in Fig. 2.36
are approximately representative of other sensitivity tests involving larger inclusions.

To complete the overview, Fig. 2.37 presents the fields diffracted by anomalies in Jonscher
parameters. Again, the data are much less sensitive to the dispersive parameters χr and n than
to the high-frequency permittivity ε∞r , by a factor of more than 20. Moreover, to the problem
of sensitivity is added the trade-off issue since the difference of phase between the diffracted
fields is less pronounced than in the permittivity-conductivity case of Fig. 2.8.

As a conclusion, considering Jonscher parameters — or generally dispersive parameters —
amounts to add several poorly constrained parameters to the inversion. I suggest it should be
viewed only in a second step, when satisfying models for permittivity and conductivity have
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(a) ε∞r (b) χr (c) n

Figure 2.37: Fields diffracted by 20% anomalies of the Jonscher parameters at 200 MHz.
Background values are ε∞r = 8.14, χr = 0.94 and n = 0.82. Note the different amplitude
scales.

already been reconstructed. Of course, data sensitivity to these parameters is case-dependent
and things might be different in strongly dispersive media where a non-dispersive parameterisa-
tion cannot account for the first-order characteristics of the data. Moreover, the reconstruction
of dispersive parameters may be envisaged in 1D imaging, which involves fewer parameters and
thus better constrains them.

Partial conclusions on the inverse problem

In this chapter, I have presented the FWI problem of GPR data, which is an ill-posed, non-
linear problem due to the non-perfect illumination of the subsurface, to the well-known cycle-
skipping effect, and to trade-offs between permittivity and conductivity. In addition, the desired
2D image being based on a pixel representation, it makes the problem too large to envisage a
systematic search via global optimisation methods. Instead, the problem is linearised and solved
iteratively using a local descent optimisation based on the quasi-Newton L-BFGS algorithm.

In spite of the consideration of an approximate inverse Hessian in the quasi-Newton update,
the algorithm displays a strong sensitivity to parameter scaling, which suggests that the Hessian
approximation is not accurate enough, or that the linearised approximation is not valid. Seeking
for the resolution of the complete Newton system through, e.g., truncated Newton methods
(Métivier et al., 2013), could enable to mitigate the sensitivity to parameter scaling, and to
converge towards satisfying solutions without having to find an ad hoc tuning factor β. If not,
an optimal parameterisation might be designed to minimise the trade-off between permittivity
and conductivity, making the Hessian more diagonal. But this last possibility is still an open
issue, since permittivity and conductivity are already physically decoupled parameters, whose
influences on the data can be discriminated with regards to their frequency-dependency but
not with respect to the illumination angle.

In this section, I have presented a rather classical FWI scheme, based on a `2-norm misfit
function with a Tikhonov regularisation term, and on a linear combination of the physical
parameters of interest for the definition of the optimised parameters. Each of these ingredients
have many variants. As observables, we may look at only at the phase differences, or only at
the amplitudes, via logarithmic residuals (Shin et al., 2007), or even at some attributes (Sassen
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and Everett, 2009). As a measure of data misfit, we may use other norms. The `1-norm is
generally more robust with respect to noise (Brossier et al., 2009) because it is less sensitive to
high-amplitude outliers in the residuals (it will be used in this purpose in Section 3.2). General
`p norms yield other sensitivities (Kim et al., 2012).

Finally, there are many ways to define the parameters to be optimised. Meles et al. (2010)
and Yang et al. (2013) insist on the fact that using logarithmic parameters such as ln(ε/εo)
and ln(σ/σo) enables to explore a wider range of magnitudes. More generally, the pixel-based
representation of the model can be discussed. Since instabilities arise for parameters that are
poorly constrained by the data, an ideal parameterisation should include only well constrained
parameters. An optimal parameter set could consist not only in particular pixels in the image
but in groups, or patterns of pixels, described through the decomposition of the image in a
more suitable space (e.g. using the wavelet transform, Bouchedda et al., 2012; Abubakar et al.,
2012, based on some image processing, Ma et al., 2012; Zhou et al., 2014).

In any case, the framework I have presented here is general enough to change any of these
ingredients — observables, misfit criterion, parameters or constraints — and it provides guiding
rules for computing the corresponding gradient. In Section 2.3.3, I offered a small insight of
the flexibility of the formulation by defining another set of parameters corresponding to blocky
zones of arbitrary shapes in the medium.

In the next chapter, I investigate how to apply the proposed imaging workflow to real data
sets. FWI has already been proved successful for the interpretation of crosshole GPR data (e.g.
Ernst et al., 2007; Belina et al., 2009; Klotzsche et al., 2010, 2013) but we expect that its appli-
cation to on-ground GPR will be challenging due to the reduced illumination of the subsurface
and of the lack of low-wavenumber coverage provided by surface-based measurements.
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Application to real data inversion
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APPLICATION TO REAL DATA INVERSION

Introduction

For geophysicists, numerical methods find their ultimate purpose in the confrontation to real
data. In this chapter, I consider two sets of electromagnetic data to test the imaging method
proposed in the previous chapter and investigate whether FWI is applicable to on-ground GPR
measurements and can bring valuable information about the subsurface.

In section 3.1, I first consider experimental data which were acquired in a well-controlled
laboratory environment in the Institut Fresnel (Marseille, France). Knowing the targets used
in the experiment and the surrounding medium enables to validate the imaging algorithm
proposed in the previous chapter in a favourable situation with regards to starting model and
source calibration. It is also the opportunity to test the accuracy of the numerical solutions
with respect to physical data.

In section 3.2, I consider on-ground GPR data acquired in a gallery buried inside a limestone
massif at the Low Noise Underground Laboratory (LSBB, Rustrel, France). Because of the
complex geological environment, applying FWI to this data set is much more challenging. The
preliminary study I present here aims mainly at designing an adequate initial model for starting
the FWI and at estimating the source signature from the data. It requires first an understanding
of the data, and hence of the model, through classical procedures such as velocity analysis and
migration.
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3.1 Validation of the imaging algorithm against experimental
laboratory data

This section has been submitted to the journal Near Surface Geophysics (Lavoué et al., 2015)
where it has recently been accepted for publication. I present here the revised version, except
minor changes in layout, spelling and notations. This leads to some redundancies with previous
sections on forward modelling and inverse problem formulation.

This study is a preliminary to the application of the imaging algorithm to real field data. It
enables to validate the multi-parameter strategy proposed in (Lavoué et al., 2014, Section 2.2)
in a simple case since the targets are located in a known homogeneous environment (namely
air), which greatly simplifies the choice of a starting model and the estimation of the source
signal. The paper also presents a new modelling feature in my implementations: in order to
reduce the computation domain, an integral representation is used to inject the incident field
in the zone of interest, and to propagate the scattered field back to receiver positions.

Frequency-domain modelling and inversion of electromagnetic data for 2D
permittivity and conductivity imaging: An application to the Institut

Fresnel experimental dataset
F. Lavoué, R. Brossier, L. Métivier, S. Garambois and J. Virieux

accepted in Near Surface Geophysics.

Abstract

The need for a quantitative imaging of the near subsurface leads to the development of inversion
algorithms to infer ground properties from recorded data. The aim of this study is to validate
an inversion method recently developed for the simultaneous imaging of dielectric permittivity
and electrical conductivity from 2D ground-penetrating radar measurements. The validation is
performed using electromagnetic data collected in a well-controlled laboratory environment. In
this experiment, the knowledge of the targets enables a quality control of the inversion results.
In addition, the free space environment and the measurement of the incident field simplify
the choice of a starting model for the inversion, as well as the calibration of the data with
respect to the source signature and to the geometrical spreading. To perform accurate and
efficient forward simulations, we use a frequency-domain finite-difference scheme whose stencil
coefficients can be optimised for each simulated frequency. As the objects of interest are locally
concentrated at the centre of the acquisition array, it is possible to restrict the computation
domain to a small region enclosing the targets using an integral representation of the analytical
incident field coming from the sources and of the scattered field that we analytically propagate
towards the receivers. An analysis of the numerical errors done on synthetic data shows that
this strategy provides an error level that is low enough to not perturb the inversion, while
dramatically decreasing the computational cost compared to a full-domain simulation. The
monoparameter reconstruction of a purely dielectric target recovers permittivity values in very
good agreement with the expected ones, as well as a very satisfying data fit. We also validate our
strategy for multiparameter inversion on targets involving both a purely dielectric cylinder and
a purely metallic copper tube, although the optimisation cannot recover the exact conductivity
of copper.
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Introduction

The quantitative imaging of the near subsurface through non-invasive prospecting techniques
appears as a crucial challenge in many fields of application. Among the geophysical methods
available to explore the subsurface, ground-penetrating radar (GPR) is particularly interesting
for its high resolution properties, despite its depth penetration limits. In geological, hydrological
and geotechnical investigations, GPR can provide a qualitative view of the geometry of the
sounded medium as well as a quantitative information on the dielectric permittivity ε [F/m]
and on the electrical conductivity σ [S/m] in the subsurface. These properties can in turn be
interpreted in terms of the composition of the material (Deeds and Bradford, 2002; Ihamouten
et al., 2012) or of its water content (Garambois et al., 2002; Huisman et al., 2003; Day-Lewis
et al., 2005; Weihermüller et al., 2007).

Recently, Lavoué et al. (2013, 2014) proposed an imaging method based on the full wave-
form inversion (FWI) of GPR data for the reconstruction of permittivity and conductivity in
2D sections of the subsurface. FWI is a state-of-the-art quantitative imaging that aims at
exploiting the whole information of the radargrams. Recent applications of FWI to GPR data
have already been efficient for water content estimation in the first centimetres of agricultural
soils (e.g. Lambot et al., 2006; Minet et al., 2010) and for the estimation of permittivity and
conductivity in stratified structures such as concrete (Kalogeropoulos et al., 2011; Patriarca
et al., 2011) or layered soils (Busch et al., 2012). FWI has also been applied to cross-hole radar
data for the imaging of permittivity and conductivity in 2D and pseudo-3D (e.g. Ernst et al.,
2007; Meles et al., 2010; Ellefsen et al., 2011; Klotzsche et al., 2013). In their previous con-
tributions, Lavoué et al. (2013, 2014) perform numerical analysis on synthetic data to address
the problem of multiparameter imaging of permittivity and conductivity by FWI in surface-
to-surface acquisition configuration (on-ground GPR) that leads to a decreased illumination of
the targets in the subsurface. To tackle the multiparameter FWI problem, they propose a joint
optimisation in the permittivity-conductivity parameter space. In this approach, permittivity
and conductivity models are updated using a quasi-Newton scheme that considers the effect of
an approximated Hessian matrix on the descent direction. The Hessian matrix (second-order
derivatives of the misfit function) is expected to be crucial for multiparameter problems as it
accounts for parameter dimensionalities and for possible trade-offs between different parame-
ter types (Pratt et al., 1998; Operto et al., 2013). The strategy of Lavoué et al. (2013, 2014)
involves parameter scaling and regularisation factors to determine optimal solutions for the per-
mittivity and conductivity distributions, based on the analysis of the data fit. In the present
study, we would like to validate this strategy for multiparameter imaging by considering the
inversion of well-controlled data acquired in a laboratory environment that provides a complete
illumination of the targets.

The experimental scattering database collected by the Institut Fresnel (Marseille, France) is
an interesting tool for testing and validating inversion algorithms on real physical data (see the
dedicated special sections Belkebir and Saillard, 2001, 2005; Litman and Crocco, 2009). In this
work, we focus on a dataset acquired on inhomogeneous targets (Belkebir and Saillard, 2005),
with a particular interest for those involving both dielectric and metallic objects which enable
to address the problem of multiparameter reconstruction. The targets are cylinders located
in free space (i.e., surrounded by air) and elongated perpendicularly to the observation plane,
so that the problem can be considered to be 2D (see Geffrin et al., 2005, for the description
of the experimental setup). The use of such experimental data greatly simplifies some issues
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that usually constitute major obstacles in FWI applications. First, the free space environment
eliminates the crucial question of designing a suitable initial model. Second, the measurement
of the incident field (in the absence of the targets) enables to accurately characterise the source
signature and to calibrate the recorded data.

The present paper is organised in two parts, related to the two components of our imaging
algorithm, namely the forward and the inverse problems. A preliminary but important aspect
of the validation task concerns the design of the forward modelling that should accurately
and efficiently reproduce the observed data. Our frequency-domain finite-difference (FDFD)
modelling uses a mixed-grid stencil with optimised coefficients (Jo et al., 1996; Hustedt et al.,
2004) that can simulate the total field in the entire domain without significant errors due
to numerical dispersion and numerical anisotropy, but it implies a significant computational
effort. In a free space environment, it is highly desirable to restrict the computational domain
to a small region enclosing the targets. Following the work of Wilcox and Velichko (2010), we
use an integral representation of the fields to inject an analytical incident field in the reduced
computation domain where FDFD computations are performed. A similar integral can be
used to propagate analytically the recorded scattered field back to the real receiver locations.
However, the discretisation of the integral leads to numerical errors whose magnitude must be
compared with the dispersion errors of the pure numerical approach to assess the advantage of
one strategy over the other. In a second part of the paper, we challenge our imaging algorithm
by reconstructing first a purely dielectric target (monoparameter inversion) and secondly a
target containing both dielectric and metallic objects (multiparameter inversion).

3.1.1 Presentation of the data (Institut Fresnel, Marseille, France)

Fig. 3.1(a) shows the configuration of the experiment in the (xy)-plane (see Geffrin et al., 2005,
their fig. 1, for a 3D representation). The targets, located at the center of the acquisition
array, consist of cylinders elongated in the z-direction. Several experiments were performed

Figure 3.1: (a) Acquisition setup and computation domain. The cross located at θs =
45o indicates a source and the dots between θr = 105o and θr = 345o the corresponding
receiver locations. The 80-cm-by-80-cm black box corresponds to the reduced domain for FDFD
computation. (b) Zoom on the computation domain. The 30-cm-by-30-cm green box delimits
the zone reconstructed during the inversion. The red circle indicates the loading contour (393
virtual sources) and the blue one the monitoring contour (472 virtual receivers).
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for different targets (Geffrin et al., 2005). For each experiment, the transmitting and receiving
antennas are moved on a circular frame of radius de = 1.67 m around the targets. Fig. 3.1(a)
exemplifies one source location (black cross) and the corresponding receiver locations (black
dots), sweeping successively every 1o. Following Geffrin et al. (2005), we denote θs and θr the
angular positions of sources and receivers, respectively, and we call angle between source and
receiver the angle |θs − θr| formed by the source, the target and the receiver (see Fig. 3.1a).
During the experiment, the array is rotated to acquire data at different source positions, the
angle between source and receiver always being comprised between 60o and 300o. For each
source and receiver position, two measurements are performed: one for the incident field uinc
in free space (without the target) and one for the total field utot (with the target), enabling to
deduce the field scattered by the targets usc = utot − uinc. Finally, measurements for the two
modes TE and TM are available. In this study, we consider only the measurements performed
in TM mode which involves the electric field component Ez polarized perpendicularly to the
observation plane (xy). Please note that we follow the same terminology as Geffrin et al. (2005)
by adopting the convention of the electromagnetic community for the TM mode (it is the TMz

mode defined in Taflove and Hagness, 2005, p. 55). It corresponds to the TE mode for the
geophysical community (see e.g. Jol, 2009, fig. 1.8, p. 13).

Fig. 3.2 shows synthetic models corresponding to the targets we will consider in the fol-
lowing, labelled as FoamDielExt (Fig. 3.2a) and FoamMetExt (Fig. 3.2b,c) by Geffrin et al.
(2005). The target FoamDielExt consists of two purely dielectric cylinders made of foam
(εr = 1.45 ± 0.15) and of plastic (εr = 3 ± 0.3), of diameters 8 cm and 3.1 cm, respectively.
Their conductivity is considered to be zero. Geffrin et al. (2005) perform numerical modelling
on these synthetic models using a method of moments and domain integral formulations, so that
we can compare our simulation results. Regarding the inversion, we will use the experimental
dataset FoamDielExt in order to validate the monoparameter reconstruction of permittivity.
The target FoamMetExt consists of the same purely dielectric foam cylinder (εr = 1.45± 0.15)
and of a purely metallic copper tube (ε = 1, σ � 1 S/m) of diameter 2.85 cm and of thickness
2 mm. We will use this dataset to challenge our strategy for multiparameter inversion. Of
course, we cannot hope to reconstruct the exact amplitude of the conductivity anomaly (which
is around 106 S/m for pure copper). But we can analyse the trade-off effect between permitti-
vity and conductivity, i.e. the trend to recover erroneous non-zero conductivity values for the
foam cylinder, or permittivity values εr 6= 1 for the copper.

Figure 3.2: Synthetic models corresponding to the experimental targets. (a) FoamDielExt
(permittivity model). (b,c) FoamMetExt (b, permittivity; c, conductivity). In (a) and (b), the
central foam cylinder has a permittivity εr = 1.45.
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Table 3.1 sums up the measurement properties. For the target FoamDielExt, measurements
are performed for 9 frequencies between 2 and 10 GHz, and repeated over 8 source positions
with an interval of 45o. For the target FoamMetExt, measurements are performed for 17
frequencies between 2 and 18 GHz, and repeated over 18 source positions with an interval of
20o. In the latter case, the extension of the frequency bandwidth and the refinement of the
source sampling aim at better constraining the multiparameter inversion for the reconstruction
of the complex target FoamMetExt (Geffrin et al., 2005).

Dataset
Frequencies Sources Receivers

Nb Min-max Interval Nb Interval Nb Interval

FoamDielExt 9 2-10 GHz 1 GHz 8 45◦ 241 1◦

FoamMetExt 17 2-18 GHz 1 GHz 18 20◦ 241 1◦

Table 3.1: Measurements properties (after Geffrin et al., 2005, their table 1).

In the frequency range we consider, target sizes are of the order of — or even below — the
smallest wavelength in free space, while the propagation distance goes beyond 100 wavelengths
(see Table 3.2). Two aspects may require our attention. First, we cannot expect to recover the
exact thickness of the copper tube which is of the order of λ/8 for the highest available frequency,
given that the maximal resolution of our imaging algorithm, based on the diffraction principle,
is of the order of λ/2. Secondly, we can expect to face a numerical challenge to simulate the
wave propagation over 100 wavelengths between the target and the receivers (even over 200
wavelengths on the path source-target-receiver).

Objects/lengths (cm)
2 GHz 10 GHz 18 GHz
λ = 15 cm λ = 3 cm λ = 1.7 cm

Grid step h 0.1 λ/150 λ/30 λ/16
Copper thickness 0.2 λ/75 λ/15 λ/8
Copper diameter 2.85 ' λ/5 ' λ ' 1.8λ
Plastic diameter 3.1
Foam diameter 8.0 λ/2 2.7λ 5λ

Distance target-receiver 167 11λ 56λ 100λ
Dist. source-target-receiver 334 22λ 112λ 200λ

Table 3.2: Target sizes and propagation distances in terms of wavelengths λ propagated in
free space.

3.1.2 Forward problem

3.1.2.1 Numerical strategy

A first challenge consists in accurately and efficiently performing synthetic simulations to be
compared with experimental data in the inversion process. In this study, we use a FDFD
scheme based on the optimised mixed-grid stencil of Hustedt et al. (2004), which leads to the
linear system

A(ω,m) u(ω) = S(ω), (3.1)

where ω is the simulated angular frequency (in rad/s), m represents the physical model, A is
the impedance matrix resulting from the FDFD scheme, u is the simulated wavefield (i.e. the
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component Ez in TM mode) and S denotes the source term. We solve the linear system (3.1)
for each frequency by LU factorization using the direct solver MUMPS (MUMPS-team, 2011).

In the finite-difference scheme, the optimisation of the weighting coefficients of the stencil
for a given λ/h ratio (with h the grid step) enables to minimize the errors due to numerical
dispersion and numerical anisotropy (Jo et al., 1996; Hustedt et al., 2004). It is thus possible
to achieve an error of less than 1.5% on the incident field recorded by the receivers. However,
the computation in the entire domain of Fig. 3.1(a) implies a significant computational effort,
both in terms of CPU time and of memory requirement, especially because the large number
of degrees of freedom requires the use of double precision arithmetic to avoid instabilities in
MUMPS. In view of the inversion, the efficiency of the forward problem is crucial. In a free
space environment, it is highly desirable to restrict the computational domain to a small region
enclosing the target, as shown in Fig. 3.1(b).

To perform the inversion in this reduced domain, we must be able:

1. to inject in the domain an arbitrary incoming wavefield emitted from a remote source of
the real acquisition array located outside the domain,

2. to propagate analytically the field scattered by the target and computed numerically in
the reduced domain back to the real receiver locations outside the domain.

To do so, we use an integral representation of the fields, following the work of Wilcox and
Velichko (2010) and Velichko and Wilcox (2010). Integral representations are usual in non-
destructive testing applications (NDT). For instance, it has been recently used by Zhao et al.
(2013) for GPR data redatuming in a tunnel grouting test context. In our case, it is particularly
suited because we know the exact analytical solution for the wave propagation in free space
between the acquisition array and the target region. The Helmholtz-Kirchhoff integral provides
an expression for the scalar wavefield u at any point r within a closed contour C, as a function
of an arbitrary field uinc on the boundary:

u(r) =

∫

C

[
G(r, s)∇uinc(s)− uinc(s)∇G(r, s)

]
· ndS, (3.2)

where n is the outward normal-contour vector and G(r, s) denotes the Green function, i.e. the
field value at point r, resulting from a source located at s. The vector r locates a point inside
the contour C, while the vector s points on the contour. In other words, we can deduce the
field u inside the contour from the superposition of fields generated by monopole sources (G
terms) and dipole sources (∇G terms) located on the contour. In the following, we will refer
to these sources as virtual sources (in opposition with real ones, located on the acquisition
array outside the computation domain, see Fig. 3.1a). In expression (3.2), the Green function
G(r, s) is computed numerically with the FDFD scheme. The values of the incident field on
the contour uinc(s) are known analytically as the solution of 2D wave propagation in free space
between the real and the virtual source arrays (see e.g. Taflove and Hagness, 2005, §5.3.1,
p.172).

A similar integral representation can be used to describe the scattered field usc(r) outside
the contour C if the scattered field on the contour usc(s) is known (Velichko and Wilcox, 2010):

usc(r) = −
∫

C

[
G(r, s)∇usc(s)− usc(s)∇G(r, s)

]
· ndS, (3.3)

where the vector r locates now a point outside the contour. In eq. (3.3), the scattered field
usc(s) on the contour is computed numerically with the FDFD scheme (it corresponds in fact
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to the field u(r) in eq. 3.2), while the propagator G(r, s) and its gradient across the contour
∇G(r, s) are computed analytically. The minus sign before the integral is due to the orientation
convention of the outward-pointing vector n.

We use the windowed Sinc interpolation proposed by Hicks (2002) to locate accurately the
virtual sources on the integration contour, that does not coincide with the finite-difference grid.
This interpolation consists in spreading the source excitation on several grid nodes around the
true source location to mimic a bandlimited version of a monopole or dipole point source.
Because the implementation of point sources creates singularities in the numerical solution, it
is not possible to record the scattered field usc(s) of eq. (3.3) in the neighbourhood of nodes
where the incident field uinc(s) is injected (eq. 3.2). Following Velichko and Wilcox (2010), we
therefore implement two distinct contours: a loading contour Cl to inject the incident field and
a monitoring contour Cm, located outside the loading contour, to record the scattered field and
apply eq. (3.3) to propagate it towards the receiver in the far-field region (see Fig. 3.1).

The discretisation of the loading contour Cl in Nl segments of length δC then leads eq. (3.2)
to become

u(r) = δC
Nl∑

i=1

[
cos(θi)

∂uinc
∂x

(si) + sin(θi)
∂uinc
∂z

(si)

]
G(r, si) (monopole)

−uinc(si)
[
cos(θi)Dx + sin(θi)Dz

]
G(r, si), (dipole) (3.4)

where the operators Dx and Dz correspond to x- and z-oriented dipoles using the windowed
Sinc interpolation and θi is the angular position of the ith virtual source. The partial derivatives
of the incident field uinc are computed analytically.

Conversely, when implementing eq. (3.3), the windowed Sinc interpolation is used to extract
values of the scattered field at virtual receivers on the monitoring contour Cm and the derivatives
of the propagator G are computed analytically:

usc(r) = −δC
Nm∑

i=1

[
cos(θi)Dx + sin(θi)Dz

]
uinc(si)G(r, si) (monopole)

−uinc(si)
[
cos(θi)

∂G

∂x
(r, si) + sin(θi)

∂G

∂z
(r, si)

]
. (dipole) (3.5)

Figs 3.3(a) and (c) show the incident fields resulting from eq. (3.4) at frequencies 2 and
18 GHz respectively, using a contour element δC = 4 mm (= λ/4 at 18 GHz). Perfectly Matched
Layers (PMLs, Bérenger, 1994) are used to absorb the waves on the edges of the computation
domain (not shown). In Figs 3.3(b) and (d), the relative errors against analytical solution are
shown. Using the integral representation to inject the incident field in the reduced domain,
we achieve an error level which is slightly higher than when computing the field in the entire
domain (' 0.5% vs. ' 0.2% respectively), but it still remains of the same order of magnitude
and we consider it as satisfactory.

An important property of the integral representation, eq. (3.2), is that the incident field
synthesized by the virtual array exists only inside the contour C, where eq. (3.2) is valid (see
Fig. 3.3). However, if a scatterer is placed inside the contour, then the scattered field generated
by the incident field of eq. (3.2) exists both inside and outside the contour (because the scatterer
acts as an internal source). This property is illustrated in Fig. 3.4, where we inject the incident
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Figure 3.3: (a,c) Wavefields emitted by the virtual source array (loading contour, in red). The
blue circle indicates the monitoring contour. (b,d) Relative difference with the corresponding
analytical wavefields. (a,b) 2 GHz, (c,d) 18 GHz. Excepted at nodes where sources are injected,
the errors are below 0.47% at 2 GHz (b) and below 0.29% at 18 GHz (d) (to be compared with
the errors done when performing the FDFD computation in the entire domain, which are below
0.19% and 0.14%, respectively). Note that the error ε is not computed in the same way inside
and outside the loading contour: inside the contour, ε = |unumerical − uanalytical|/|uanalytical|,
and outside, ε = |unumerical|/|uanalytical| (because unumerical should be zero).

field of Fig. 3.3(a) in a domain that contains the target FoamDielExt of Fig. 3.2(a). The
scattered field is then analytically propagated using eq. (3.3) from the monitoring contour
(blue circle in Fig. 3.4) up to the receiver positions on the acquisition array (see Fig. 3.1a).
Note that if the monitoring contour were placed inside the loading contour, recording the total
field, we would still propagate only the scattered field outwards the contour using eq. (3.3) (this
is a property of the Helmholtz-Kirchhoff integral). We place the monitoring contour outside
the loading contour to avoid the cumulative errors of both integrals on the propagation of the
incident field.

In order to evaluate the numerical error done on the scattered field computed in the reduced
domain and propagated towards the receivers, we perform the following simple test: We put a
point source at the center of the acquisition frame (instead of the target), we record the resulting
field on the monitoring contour, and we propagate it analytically towards the receivers on the
acquisition array. We then compare the values obtained at receivers with the analytical solution
and we find an error below 0.3%. Note that, when an incident field is injected on the loading
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Figure 3.4: Example of wavefield scattered by the syn-
thetic target FoamDielExt of Fig. 3.2(a), illuminated by
the incident field of Fig. 3.3(a), at 2 GHz. Inside the
loading contour (red circle), the total field is computed,
whereas only the diffracted field propagates outside and
is recorded by the monitoring contour (blue circle).

contour and impinges a target, the error on the scattered field resulting from eq. (3.3) should
also include the error done on the injected incident field (' 0.5% after Fig. 3.3). So we can
estimate the global error done on the scattered field to approximately 0.8%. To compare this
error with the full-domain case, we have to consider that, when computing the scattered field
in the entire domain, the solution suffers from errors due to numerical dispersion and numerical
anisotropy on the entire travel path source-target-receiver (of length ' 2de). As a result, in
the full-domain case, we consider that the error on the incident data recorded in transmission
configuration (that we can compute against analytical solution) is also representative for the
error done on the scattered data.

These results are reported in Table 3.3, together with the associated computational require-
ments. Regarding the errors done on the incident and scattered fields, the restriction of the
computation in the reduced domain using the integral representation appears as a satisfying
alternative to the full-domain computation, decreasing the computational time by a factor of
more than 20, while dividing the memory requirement of the LU factorization by a factor of 40.

Full domain Reduced domain

Number of grid points (including PMLs) 4051× 4051 851× 851
Elapsed time for LU factorization 71 s 0.67 s

Time for FoamMetExt simulation (18 src, 17 freq.) 2100 s 98 s
MUMPS memory requirement (LU) 59 Go 1.5 Go

Error on the incident field in the reduced domain < 0.2% < 0.5%
Error on the scattered field at receiver positions < 1.5% < 0.3% (0.8%)

Table 3.3: Computation cost and accuracy of full-domain vs. reduced-domain FDFD simula-
tions. The LU factorization and the resolution of the linear system are performed by MUMPS
in parallel on 16 MPI processes. We report elapsed times using one node of 16 cores of the
Froggy cluster from the CIMENT platform (Univ. Grenoble). Note that the full-domain com-
putation is performed with double-precision arithmetic while the reduced-domain computation
uses single precision to achieve the level of accuracy indicated in the table.
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3.1.2.2 Data pre-processing

To be able to compare our synthetic data with the observed ones, we have to consider that
observed and calculated data differ by three major aspects:

1. Observed data are 3D whereas our modelling is 2D.

2. The antennas used in the experiment have a given frequency signature, whereas the
simulated source is a Dirac in time (unity source in the frequency domain).

3. The experimental setup use ridged horn antennas with a given radiation pattern whereas
the modelling assumes an elementary dipole oriented in the z-direction which radiates
isotropically in the (xy)-plane.

These characteristics have to be accounted for to convert the observed data in a value that we
can compare with the synthetic one.

Usually, the estimation of the source complex spectrum is performed as a part of the
frequency-domain inversion process by linear estimation (Pratt, 1999). In our case, however, it
is highly beneficial to apply this estimation to the incident field measured in free space, which
enables us both to characterize the antennas and to perform a simple 3D-to-2D conversion. To
do so, let us write the observed data dobsinc resulting from the measurements of the incident field,
for each angular frequency ω, each source located at angle θs, and each receiver at θr, as

dobsinc(ω, θs, θr) = Sobs(ω)Robs(ω, θs − θr)G3D(ω, dsr), (3.6)

where Sobs(ω) denotes the source complex spectrum, Robs(ω, θs − θr) accounts for the spatial
radiation pattern of the antennas, and G3D is the Green function of electromagnetic wave
propagation in 3D, that varies with the distance dsr travelled by the wave from source to
receiver.

If we adopt the convention that, for each angular frequency ω, the radiation pattern coeffi-
cients are 1 in pure transmission regime (i.e., Robs(ω, θo) = 1 for an angle between source and
receiver of θo = |θr − θr| = 180o), then we can deduce the source spectrum of the antennas
from the incident field recorded in transmission configuration:

Sobs(ω) =
dobsinc(ω, θs, θr = θs − θo)
G3D(ω, drs = 2de)

. (3.7)

Fig. 3.5 shows the obtained source spectrum, both in amplitude and phase. Computing the
spectrum for all source positions, we find that its variations with respect to source location θs
are negligible (of the order of 0.01%), showing the quality of these highly reproducible data.

Once we know the spectrum Sobs(ω) from the measurements in pure transmission configu-
ration, we could deduce the radiation pattern of the antennas from the incident field recorded
at the other incidence angles. However, we do not need it for our present study because we only
consider the scattered field for the inversion. As the scattered field results from an incident
field impinging the target at zero incidence (from the source point of view), and as it is itself
recorded at zero incidence by the receiver, we can reasonably neglect the effect of the radiation
pattern on the scattered data.
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Figure 3.5: (a) Amplitude and (b) phase of the antenna complex spectrum Sobs(ω).

A last step to make the observed and calculated fields comparable is to correct for the 3D
geometrical expansion, in order to build 2D observed data. By analogy with expression (3.6),
we assume that the observed and synthetic scattered data can be written as

dobssc (ω, θs, θr) = Sobs(ω)T (ω, θs, θr)G3D(ω, dstr), (3.8)

dcalsc (ω, θs, θr) = Scal(ω)T (ω, θs, θr)G2D(ω, dstr), (3.9)

where Scal(ω) is a known factor depending on our FDFD implementation, G2D is the 2D Green
function which is known analytically, dstr is the distance travelled by the scattered wave from
source to target and from target to receiver, which can be approximated by dstr ' 2de, and T
is the response of the targets, which can be considered identical in 2D and 3D since the targets
have a 2D geometry. Thus, the transformation to be applied to the observed data to compare
them to the synthetic ones is

dobs, 2Dsc (ω, θs, θr) =
Scal(ω)

Sobs(ω)

G2D(ω, 2de)

G3D(ω, 2de)
dobssc (ω, θs, θr), (3.10)

where the 3D-to-2D conversion factor k3D→2D = G2D/G3D can be expressed by using the
far-field approximations of the Green functions (see Taflove and Hagness, 2005, §8.2.2, p.332),

k3D→2D = 2

√
πdevo
ω

eıπ/4, (3.11)

with vo the velocity of light in free space and ı the imaginary unit.

3.1.2.3 Simulation of synthetic data

Simulation results performed in the synthetic models of Fig. 3.2 are shown in Figs 3.6 and 3.7
for the targets FoamDielExt and FoamMetExt, respectively. We choose the same frequencies
and source positions as shown by Geffrin et al. (2005, their figs. 8 and 11) such that we can
compare our results. In view of the inversion, we also perform numerical simulations in modified
versions of the synthetic models of Fig. 3.2, in order to investigate the sensitivity of the data
to model variations.
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For the target FoamDieExt, our simulation results are very similar to those of Geffrin et al.
(2005). As suggested by these authors, we also perform a simulation in a modified version of
the model shown in Fig. 3.2(a), where we translated the targets by dx = 2 mm and dy = 1 mm,
and we replaced the permittivity value of the plastic cylinder by 3.3 instead of 3 to obtain a
better match (blue dashed line in Fig. 3.6).
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Figure 3.6: (a) Amplitude and (b) phase of synthetic vs. observed data for the target
FoamDielExt, for frequency 8 GHz and the source at θs = 270o. The so-called corrected field
(blue dashed line) corresponds to the synthetic field computed in a modified version of the
model shown in Fig. 3.2(a) where we translated the targets by dx = 2 mm and dy = 1 mm
and we replaced the permittivity value of the plastic cylinder by 3.3 instead of 3. The match
between the observed diffracted field and the synthetic one is similar as in Geffrin et al. (2005,
their fig. 8).

For the target FoamMetExt (Figs 3.2b,c), simulation results at 18 GHz are shown in Fig. 3.7
(black line). In this case, our simulation results differ slightly from those presented by Geffrin
et al. (2005, their fig. 11): Contrary to these authors, who calibrate the amplitude of their
numerical solution such as to match the central diffraction peak (at 180o), we do not recover
the same amplitude for the observed and for the synthetic data at 180o. Nonetheless, we obtain
a similar match as Geffrin et al. (2005) for the other angles. These differences in amplitude with
respect to angle are probably due to our 3D-to-2D conversion which is based on the incident field
in free space (without the target): It may be thus poorly valid to convert the signal recorded
at 180o, which is transmitted through the target. Again, we perform simulations in a modified
version of the FoamMetExt models of Figs 3.2(b,c), where we replace the conductivity value of
the copper tube by 100 S/m instead of 5 S/m (blue dashed line). Doing so, we obtain a better
match at extreme angles. It shows that the data are well sensitive to conductivity variations
in the copper tube and thus suggests that a quantitative reconstruction can be attempted,
even if we cannot expect to recover the true value of conductivity in copper (' 106 S/m). As
another sensitivity test, we also compared the synthetic data of Fig 3.7 with data computed in
a model where we replaced the empty copper tube of Fig. 3.2(c) by a full copper cylinder of
same diameter and properties. An important result is that the full cylinder provides exactly
the same scattered field as the empty tube when a high conductivity value is used for copper
(σ = 100 S/m), suggesting that any information inside the real tube will be out of reach.
Assuming a lower (non-physical) conductivity value for copper (σ = 5 S/m), data are slightly
sensitive to the filling of the tube, which will have consequences in the reconstructions.
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Figure 3.7: (a) Amplitude and (b) phase of synthetic vs. observed data for the target
FoamMetExt, for frequency 18 GHz and the source at θs = 240o. The match obtained with
σ = 5 S/m for copper (black line) is similar as in Geffrin et al. (2005, their fig. 11) for extreme
angles but we do not recover the same amplitude as these authors at 180o. A better match is
obtained with σ = 100 S/m (blue dashed line).

In Fig. 3.8, we compare in the case FoamDielExt the magnitude of the data residuals, i.e.
the difference between observed and synthetic data, with the numerical errors, computed as
the difference between the analytical solution of 2D wave propagation in free space and the
synthetic incident field computed in the entire domain. According to the numerical analysis of
the previous section, this error is an upper bound for the error done on the synthetic scattered
field that will be involved in the inversion (see Table 3.3). For information, we also indicate
the magnitude of the total and scattered fields: As underlined by Geffrin et al. (2005), the high
ratio between the magnitude of the scattered and total fields makes the need for an accurate
modelling critical. In Fig. 3.8, the error level is significantly lower than the data residuals
for most of the source-receiver pairs (it is also true for other sources and frequencies, not
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Figure 3.8: Comparison of the magnitude of the total and scattered fields vs. residuals and
numerical errors (frequency 8 GHz and source at θ = 270o). The synthetic scattered field is
computed in the modified version of Fig. 3.2(a). The numerical error is obtained by difference
between the analytical solution and the total incident field computed in the entire domain.
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shown in Fig. 3.8), which means that most of the residuals are due to differences between
the synthetic model and the reality. This result suggests that our modelling tool fills the
accuracy requirement: The inversion should not be affected by the numerical errors. The very
good agreement between observed and synthetic data in Fig. 3.6, as well as the low error level
compared to the residuals (Fig. 3.8), allow us to envisage the inversion of these data with some
confidence.

3.1.3 Data inversion

3.1.3.1 Inverse problem formulation

Here we recall the basic ingredients of the method proposed by Lavoué et al. (2014). At each
iteration k of the optimisation process, we aim at minimizing a misfit function that we define
as the sum over frequencies of a data part CD and of a model part CM :

C (mk) = CD(mk) + λCM (mk), (3.12)

=
1

2

∑

ω

∆d(ω,mk)†∆d(ω,mk) +
λ

2
mkTDmk. (3.13)

The first term CD accounts for the misfit between the observed and the synthetic data through
the `2-norm of the residuals ∆d(ω,mk) = dobs(ω) − dcal(ω,mk) that measure the difference
between the observed data dobs and the synthetic data dcal computed in the current model
mk. Usually, the residuals involve the total simulated wavefield utot. In our case, however, it
is much more convenient to use the scattered field usc = utot − uinc since

1. it can be computed using the measurements of the incident field uinc,

2. it is insensitive to antenna radiation pattern,

3. it is the field that is analytically propagated toward the receivers by the integral repre-
sentation (see eq. 3.3 and Fig. 3.4).

Assuming that the incident field can be accurately simulated (which has been demonstrated
by our numerical analysis, see Figs 3.3 and 3.8), we thus have

∆d(ω,mk) = dobstot (ω)−Rucaltot(ω,m
k), (3.14)

= dobssc (ω)−Rucalsc (ω,mk), (3.15)

where R is the projection operator of the wavefield on the receiver location, which takes the
integral representation and the windowed Sinc interpolation into account.

The second term CM of the misfit function (3.13) introduces a Tikhonov regularisation
(Tikhonov and Arsenin, 1977). The operator D corresponds to the Laplacian so that its
minimization tends to provide smooth solutions. The hyperparameter λ is a regularisation
weight that balances the importance given to model smoothness relatively to the data mis-
fit. In eq. (3.13), the symbol T denotes transposition and the notation † corresponds to the
transposeT -conjugate∗ operator.

To minimize the misfit function, we use a quasi-Newton optimisation method (L-BFGS-
B algorithm, Byrd et al., 1995) which performs a local descent based on the gradient of the
misfit function G(mk) = ∇mkC (mk). The gradient of the model term is straightforwardly
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computed by finite differences on the model mk whereas the gradient of the data term GD(mk)
is computed via the adjoint state method (Plessix, 2006). Differentiating eqs (3.13) and (3.14)
with respect to the model parameters, we have

GDi(m
k) =

∂CD(mk)

∂mi
,

=
∑

ω

Re

{
∂∆d(ω,mk)

∂mi

†
∆d(ω,mk)

}
,

= −
∑

ω

Re

{
∂ucaltot(ω,m

k)

∂mi

†
R†∆d(ω,mk)

}
, (3.16)

where ucaltot verifies the equation of the forward problem (3.1), which gives by differentiation

∂ucaltot(ω,m
k)

∂mi
= −A(ω,mk)−1∂A(ω,mk)

∂mi
ucaltot(ω,m

k). (3.17)

Injecting eq. (3.17) in eq. (3.16) yields the expression of the gradient

GDi(m) =
∑

ω

Re
{

uTtot
∂A
∂mi

T

v∗
}
, (3.18)

where v is the adjoint wavefield, that verifies the linear system A†v = R†∆d and corresponds
to the back-propagation of the residuals in the medium (Plessix, 2006).

In expression (3.18), the diffraction matrix ∂miA characterizes the sensitivity of the data
to the parameter mi, that refers either to the permittivity εi or to the conductivity σi at
grid point i. Lavoué et al. (2014) promote to consider dimensionless parameters that can be
gathered in the same model vector m, thus enabling to perform the optimisation in the joint
permittivity-conductivity parameter space (in opposition to cascaded or decoupled approaches
as used for instance by Ernst et al., 2007; Meles et al., 2010; Ellefsen et al., 2011). Thus,
we consider a relative permittivity εr = ε/εo (with εo ' 8.85 × 10−12 F/m the dielectric
constant) and a relative conductivity σr = σ/σo. The reference conductivity σo can be defined
as σo = εoωo, by analogy with the contrast function used in the inverse scattering community
(see e.g. Abubakar et al., 2005), with ωo a reference angular frequency that we take as the mean
frequency of the measurements (i.e., we consider ωo = 2π×6 GHz for the dataset FoamDielExt
and ωo = 2π × 10 GHz for FoamMetExt). However, these definitions are arbitrary (they are
only conventions) and we pointed out in Lavoué et al. (2014) that the inversion is very sensitive
to the priority given to the permittivity or to the conductivity update via the parameter scaling.
Therefore, we introduce an additional scaling factor β and we consider the couple of parameters
(εr, σr/β) for the optimisation. As detailed in Lavoué et al. (2014), a small value for the factor
β will give priority to the reconstruction of permittivity, whereas a large scaling factor will
enhance the conductivity update.

On synthetic experiments, Lavoué et al. (2014) propose a workflow to choose an adequate
value for the scaling factor β, in conjunction with an appropriate regularisation weight λ,
based on the data misfit analysis. In the following, we aim at validating this workflow on the
experimental data provided by the Institut Fresnel. In all the following inversion tests, we
stop the optimisation process when the relative misfit decrease between two iterations becomes
smaller than 104 times the machine precision (default stopping criterion in the L-BFGS-B
algorithm, Zhu et al., 1997).
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3.1.3.2 Monoparameter inversion of the dataset FoamDielExt

First of all, we wish to validate the quantitative imaging of permittivity through monopa-
rameter inversion, that does not involve any parameter scaling. The target FoamDielExt is
particularly suited for this purpose as the objects are supposed to be purely dielectric and have
well constrained permittivity values. Fig. 3.9 shows the inversion result when inverting the 9
frequencies between 2 and 10 GHz simultaneously, without any regularisation (λ = 0). During
the inversion, the misfit function has been decreased by 98.8% within 32 iterations. We recover
permittivity values of 1.42 ± 0.05 for the foam cylinder and εr = 3.10 ± 0.42 for the plastic
one (mean and variance are computed within the red dashed circles shown in Fig. 3.9a). These
recovered values (in blue on the log in Fig. 3.9b) are in very good agreement with the expected
ones (in red in Fig. 3.9b). On the other hand, the data fit is also very satisfying, as shown in
Fig. 3.10 which compares the observed data with synthetic data computed in the reconstructed
model of Fig. 3.9 (data are shown for the same frequency 8 GHz and source position θs = 270o

as in Fig. 3.6).

It is interesting to note in Fig. 3.9(a) that the image presents a particular geometrical
pattern: oscillations with a radial symmetry that manifest themselves as fluctuations on the
blue curve in Fig. 3.9(b). These fluctuations are absent in the background due to the bound
constraint εr ≥ 1 considered in the L-BFGS-B algorithm. In the target, the oscillating pattern
is due to the limited wavenumber coverage of our imaging technique, that depends both on the
finite-frequency content of the data and on the discrete spatial sampling of the measurements
by the acquisition array (Sirgue and Pratt, 2004). For comparison, we indicate in Fig. 3.9(b)
low-pass-filtered versions of the expected (red) log, considering the full frequency bandwidth
from 2 to 10 GHz (in black), or only the lowest frequency of 2 GHz (in green). For filtering,
we use the maximal reconstructed wavenumber given by Sirgue and Pratt (2004) as a function
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Figure 3.9: Permittivity reconstruction of the target FoamDielExt by monoparameter inver-
sion. (a) 2D model. The red dashed circles indicate the expected contours of the objects, after
the translation by dx = 2 mm, dy = 1 mm suggested by Geffrin et al. (2005). (b) Logs extracted
from the 2D models along the horizontal line y = 0. The reconstructed values (blue line) are
compared to the synthetic model of Fig. 3.2(a) (red line) and to low-pass-filtered versions of
this model, considering the full frequency bandwidth (black line) or only the lowest frequency
(green line).
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Figure 3.10: (a) Amplitude and (b) phase of observed vs. synthetic data computed in the
final reconstructed model of Fig. 3.9, for frequency 8 GHz and the source at θs = 270o.

of frequency and of the minimal illumination angle:

kmax =
2ω

vo
cos

(
|θs − θr|min = 60o

2

)
. (3.19)

As this filter assumes a continuous coverage of the wavenumbers up to kmax (i.e. an infinites-
imal spatial sampling), the full-bandwidth low-pass-filtered log over-estimates the accuracy of
the reconstruction and the actual reconstructed values exhibit a lower wavenumber content:
Although very dense, the acquisition sampling still has an imprint in the final image. In par-
ticular, the source intervals are responsible for the radial symmetry observed in Fig. 3.9(a).

The image of Fig. 3.9(a) can thus be seen as the convolution of the real model with the
resolution operator of the imaging technique. Knowing the frequency content of the source and
the illumination of the target by the acquisition array, we could deconvolve the reconstructed
image of Fig. 3.9(a) in an impulsive image that would better reflect the reality, as proposed by
Ribodetti et al. (2000). This finite-frequency effect also explains why, when the initial model
is good enough, inverting all available frequencies simultaneously yields smoother images than
inverting them sequentially as proposed by Pratt and Worthington (1990). Using a sequential
strategy, the final reconstructed model results from the inversion of the highest frequency and is
subject to mono-frequency fluctuations, whereas the simultaneous frequency strategy benefits
from a broadband frequency content (Lavoué et al., 2014).

3.1.3.3 Multiparameter inversion of the dataset FoamMetExt

To invert the dataset FoamMetExt, we apply the methodology proposed by Lavoué et al. (2014):
As the choice of an adequate scaling factor β is not straightforward, we first perform several
multiparameter inversions independently, using various scaling values, without regularisation.
Fig. 3.11 shows the final misfits obtained with the different scaling factors. Based on the data
misfit, a scaling factor β = 10 seems to be the most adequate value but we can observe that
misfits of the same order of magnitude can be obtained for lower values, down to β = 0.5.

As already observed by Lavoué et al. (2014) on synthetic data, the reconstructed models
corresponding to roughly equivalent misfits can be quite different. For instance, Figs 3.12
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Figure 3.11: Final misfit decrease as a function of the scaling factor β used in the multipa-
rameter inversion of the dataset FoamMetExt.

and 3.13 show the reconstructed models obtained using scaling factors β = 10 and β = 0.5,
respectively. The permittivity solutions appear to be particularly sensitive to the choice of the
parameter scaling, because the imprint of the foam cylinder on the data is less important than
the one of the strongly diffracting copper tube1.

The main difference between the two solutions is that, using a scaling factor β = 0.5, the
optimisation artificially creates an erroneous permittivity structure inside the copper tube.
Based on our forward simulations, we know that this structure is not reliable because the
measured data are not sensitive to the inner filling of the highly-conductive copper tube (σ �
100 S/m). Synthetic data, however, may be sensitive to this structure since the reconstructed
conductivity value is lower than the actual one (σ ' 5 S/m), in particular in the early iterations
of the inversion. The erroneous permittivity reconstruction inside the tube is thus a nice
example of the trade-off between permittivity and conductivity: comparing Figs 3.12 and 3.13,
it can be observed that both permittivity and conductivity reconstructions vary inside the tube,
indicating that variations of one parameter compensate the variations of the other regarding
the data misfit. These trade-off effects justify the need for considering the Hessian matrix in
multiparameter optimisation schemes (Operto et al., 2013; Lavoué et al., 2014).

Apart from the artifact inside the copper tube, the two solutions also differ by the amplitude
of the fluctuations of permittivity values in the foam cylinder (again, the absence of fluctuations
in the background is imposed by the bound constraints εr ≥ 1 and σ ≥ 0 given to the L-BFGS-
B algorithm). Finally, the solutions present a thin circular artifact around the copper tube, a
region to which the data should be sensitive. These effects can be mitigated by introducing a
Tikhonov regularisation in the optimisation, in order to obtain smoother permittivity models.

1Additional note to the published version: The relative sensitivities of these laboratory data to permittivity
and conductivity are reversed compared to the previous study (Section 2.2, Lavoué et al., 2014) because the
synthetic subsurface model of Section 2.2 was inspired by natural media where conductivity has generally a
weaker signature than permittivity.
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Figure 3.12: (a,c) Permittivity and (b,d) conductivity models obtained by multiparameter
inversion of the dataset FoamMetExt, without regularisation and using a scaling factor β = 10.
The misfit function has been decreased by 98.2% in 120 iterations.

Figure 3.13: (a,c) Permittivity and (b,d) conductivity models obtained by multiparameter
inversion of the dataset FoamMetExt, without regularisation and using a scaling factor β = 0.5.
The misfit function has been decreased by 97.5% in 61 iterations. The logs of panels (c) and
(d) are extracted along the line y = 0 in panels (a) and (b), respectively.
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Figure 3.14: Final data misfits as a function of the scaling factor β and of the regularisation
weight λ used in the multiparameter inversion of the dataset FoamMetExt.

Fig. 3.14 shows the final misfits that we obtain when performing the multiparameter inver-
sion with various scaling factors β and regularisation weights λ. As artifacts arise mainly in
the permittivity image, whereas conductivity is better constrained by the data, we only apply
regularisation on the permittivity model (a finer implementation might involve regularisation
weights adapted to each parameter type, depending on their imprint on the data, but this fine
tuning is not critical for our purpose). Contrary to the results obtained by Lavoué et al. (2014),
the final data misfits are not more sensitive to the parameter scaling with regularisation than
without, so the regularisation does not enable to distinguish between the solutions obtained
with different scaling factors. However, looking at the final reconstructed models, we can ob-
serve that the permittivity solutions obtained with regularisation are now quite similar (see
Figs 3.15 and 3.16). The use of regularisation erases the permittivity artifacts around the cop-
per tube, yielding satisfactory results. Adequate values for the parameter scaling and for the
regularisation weight λ can be selected based on the data misfit (Fig. 3.14), given that applying
an adequate regularisation, we obtain similar results for all scaling factors that display a good
data misfit. Note that the Tikhonov regularisation does not induce a dramatic smoothing of
the solutions, although a multiplicative regularisation may better preserve the contrasts in the
present case of well-delimited, piecewise-constant targets (Abubakar et al., 2005).

Finally, Fig. 3.17 compares the observed data with the synthetic data computed in the final
reconstructed models of Figs 3.15 and 3.16. The fit to the data is naturally dominated by the
main peak amplitude of the signal at angles around 180o, while the data at extreme angles are
not well fitted. Applying an angle-dependent weighting to the data through a data covariance
matrix in the misfit function could enable to better fit the data presenting minor amplitudes.
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3.1 Validation of the imaging algorithm against experimental laboratory data (Lavoué et al., 2015)

Figure 3.15: (a,c) Permittivity and (b,d) conductivity models obtained by multiparameter
inversion of the dataset FoamMetExt, using a regularisation weight λ = 10−11 and a scaling
factor β = 10. The misfit function has been decreased by 97.1% in 59 iterations. The logs of
panels (c) and (d) are extracted along the line y = 0 in panels (a) and (b), respectively.

Figure 3.16: (a,c) Permittivity and (b,d) conductivity models obtained by multiparameter
inversion of the dataset FoamMetExt, using a regularisation weight λ = 10−11 and a scaling
factor β = 0.5. The misfit function has been decreased by 96.5% in 101 iterations. The logs of
panels (c) and (d) are extracted along the line y = 0 in panels (a) and (b), respectively.
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Figure 3.17: (a) Amplitude and (b) phase of observed vs. synthetic data computed in the final
reconstructed model of Figs 3.15 and 3.16, for frequency 18 GHz and the source at θs = 240o.

Conclusions

In this study, we have presented a comprehensive view of the inversion of electromagnetic
data collected during a well-controlled laboratory experiment. For an accurate and efficient
resolution of the forward problem, we use a FDFD scheme where the stencil coefficients are
optimised to each simulated frequency. An integral representation of the fields enables to reduce
the computation domain to a small zone enclosing the targets and has been shown to be an
accurate, efficient, and elegant alternative to brute force calculations in the entire domain. An
important ingredient of the modelling consists in accurately positioning virtual sources and
receivers on the integration contours using a windowed Sinc interpolation.

Scattered data produced by the purely dielectric target FoamDielExt allowed us to validate
our algorithm regarding monoparameter inversion. On the reconstructed permittivity image,
the targets are well-delimited and the recovered values are very close to the expected ones.
Observed and synthetic data are in very good agreement. We also confirm our strategy for
multiparameter inversion on the dataset FoamMetExt. As already observed on synthetic data,
the reconstructed models are sensitive to the scaling applied between different parameters types,
especially for parameters that are less constrained by the data. These model variations can be
barely visible in the data misfit, leading to an ambiguity between the different solutions. An
adequate regularisation weight enables to mitigate the artifacts, so that satisfactory models can
be obtained and, more importantly, identified on the basis of the data misfit analysis. Besides,
forward simulations on synthetic models are of great help to estimate the sensitivity of the data
to model variations, and hence to evaluate the reliability of the inversion results. Synthetic
data are almost insensitive to some parts of the model where our data-driven technique is not
able to deduce any valuable information without introducing some prior information in the
misfit function1.

1Additional note to the published version: We may point out that our imaging method is not totally exempted
from any prior information. For instance, lower limits for permittivity and conductivity in free space (εr = 1,
σ = 0 S/m) are explicitly given to the bounded L-BFGS optimisation algorithm. Of course these bounds are
very reasonable hypothesis since they are physical limits, but they still have a strong effect on the results: It is
why the reconstructed images suffer from so few artifacts in the neighbourhood of the targets. The choice of the
discretisation step h in the FD grid can also be regarded as an implicit prior information: It has been partly
defined knowing the sizes of the structures to be imaged.
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3.1 Validation of the imaging algorithm against experimental laboratory data (Lavoué et al., 2015)

The success of inverting these experimental data lets us envisage the inversion of on-ground
GPR field data in a near future. The present work made us free from the inverse crime
approach and required to accurately simulate the observed data. When dealing with GPR field
data, we expect to face other major obstacles. In particular, we may encounter difficulties for
estimating the GPR source signature, and for designing a suitable initial model for starting
the full waveform inversion process. The acquisition configuration is also very different in on-
ground GPR applications where data are acquired only from the surface, and it has a strong
effect on the ability of the imaging technique to recover the subsurface targets.

In particular, in the frame of multiparameter inversion, a partial illumination tends to
enhance the trade-off between parameters (Hak and Mulder, 2010). Our previous study on
synthetic data (Lavoué et al., 2014) suggests that multiparameter FWI can be performed from
surface data if the information contained in the Hessian of the misfit function is taken into ac-
count through quasi-Newton methods. However, an illustration on real field data still has to be
performed. In a preliminary stage, the Institut Fresnel database may constitute an interesting
tool to test the sensitivity of the inversion with respect to the acquisition configuration, as well
as to investigate optimisation methods that better take the Hessian information into account
(e.g. the truncated Newton method, Métivier et al., 2013; ?).
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3.2 Imaging a limestone reservoir from on-ground GPR data

3.2.1 Introduction: Context and aim of the study

In this section, I consider on-ground GPR data which were acquired by G. Sénéchal1 and
D. Rousset1 on the site of the inter-Disciplinary Underground Science and Technology labora-
tory (or Laboratoire Souterrain à Bas Bruit, LSBB2, see Fig. 3.18 for a regional localisation).
The site of the LSBB is a former military facility of the french nuclear missile system consisting
in a 1.5-km-long tunnel that leads to a shielded launching control room buried at 500 m depth
under the Grande Montagne (Fig. 3.19). Decommissioned in 1997, the LSBB provides now
a unique opportunity to access directly the interior of the carbonate massif and to study its
unsaturated zone (Fig. 3.20).

Karstic limestone massifs are geologic formations of major importance since they contain
a significant part of drinking water resources throughout the world. They also present an
interest as geological archives of sedimentary platforms and as analogues of deep hydrocarbon
reservoirs. However, the understanding of karstic structures is often made difficult by the
complexity of their evolution. In particular, the multi-scale heterogeneities of these formations
have a great influence on the reservoir properties (Leonide et al., 2012). On the long-term,
GPR imaging at LSBB therefore aims at characterising the limestone massif in the context of
karstic hydrogeology and at producing small-scale reservoir models.

In the frame of my PhD, my personal interest is to determine whether FWI can contribute
to this characterisation, by providing high-resolution, quantitative, and reliable images of the
distribution of permittivity (and eventually conductivity) in the carbonates. In particular, we
shall address the question to know if FWI can bring more information than a classical processing
workflow implying velocity analysis and migration. Classical approaches are mainly based on
the assumption of layered media and therefore present limitations in complex media, where the
recorded signal is the superimposition of several waves. We can expect FWI to overcome these
limitations since it a priori enables to reproduce complex wave propagation.

Of course, a short term pre-requisite to answer these interesting questions is that FWI
must simply work with surface GPR data acquired on the field. Indeed, the preliminary study
I present here is only focused on this aspect: how can we apply 2D FWI to on-ground GPR
data? To answer this question, we have to deal with the following points:

1. First of all, FWI needs a good starting model to avoid to fall into local minima. The
specificity of on-ground GPR compared to crosshole GPR or refraction seismics resides in
the fact that we cannot invoke first arrival time tomography to build this initial model.
Instead, I shall rely on a classical velocity analysis based on reflected events.

2. FWI also requires a correct estimation of the source signature, which is a difficult task
since there is a strong trade-off between this estimation and the one of the model param-
eters. When a good initial model is available, source estimation is usually performed in
the frequency domain within the inversion process. If we do not trust the current model,
it might be more relevant to estimate the source in the time domain, by selecting some
specific signal.

1IPRA, Université de Pau et des Pays de l’Adour, France.
2Rustrel, France, http://www.lsbb.eu.
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3. Before applying FWI, the acquired data must be properly pre-processed so that they can
be interpreted by our 2D numerical simulations. This requires to eliminate out-of-plane
signals that can not be reproduced, and to perform a 3D-to-2D transformation of the
data to well explain the amplitudes.

The outline of the section is the following: First, I show that applying a classical processing
workflow — involving a systematic semblance analysis, NMO correction, and post- or pre-
stack migration — difficultly leads to satisfactory images because of local inaccuracies of the
velocity model, which points the need for a more accurate velocity estimation through an
inversion procedure. Nevertheless, semblance analysis and hyperbola picking provides a first
NMO model that can be considered for starting the FWI process.

In a second time, I go back to a simpler approach leading to a blocky description of the
medium and show that it can explain a significant part of the complex observed data. It also
provides a simple medium where I can estimate the source wavelet.

Then I present the pre-processing steps applied to the data which are finally transformed
into the frequency domain. An analysis of the characteristics of the data in the frequency
domain, partly based on the approach of Sirgue and Pratt (2004) presented in Chapter 2,
guides the choice of the frequencies considered for inversion.

Finally, I present some preliminary inversion results. These attempts are preliminary in
two respects. First, I concentrate on the reconstruction of the permittivity model because it is
expected that most of the observed reflections and diffractions are due to permittivity contrasts
in the limestone, which may not present high conductivity values nor variations (at least at
first order). As discussed in Chapter 2, this preliminary monoparameter step is important to
improve the permittivity model before envisaging the reconstruction of conductivity in further
multiparameter stages. Secondly, I restrict the inversion to a low frequency bandwidth, i.e.
to the early stage of a low-to-high-frequency hierarchy following the Bunks’ strategy. At this
stage, my aim is not to get a final interpretable image, but only to see if FWI can converge
using the proposed workflow, and what features it can reconstruct depending on the initial
model and on the source signal we consider.

NB: The data set is quite large and in the following, I do not show all data at each step
of interpretation to avoid too many figures, but only selected common-offset sections or CMP
gathers. A more complete overview of the data is provided in Appendix B.
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Figure 3.18: Geology of SE France and location of the site of study (Rustrel, RS, modified
from Leonide et al., 2012). The considered carbonate massif belongs to the Urgonian platform
that was deposited on the border of the Vocontian basin during the Lower Cretaceous (Bedou-
lian, Aptian, ca. 125 My). Note the proximity of Rustrel with the Fontaine de Vaucluse (FV),
which is the principal hydrological outlet of the Monts de Vaucluse massif (south-western part
of the light grey area).
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(a) Topographic map (IGN 1/25000, edited from http://www.geoportail.gouv.fr) and location of the LSBB
galleries (black line). E denotes the main entrance, A the anti-blast gallery where the data were acquired, C the
shielded capsule (former launching control room, 500 m under the ground surface), and S the emergency exit.
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(b) Geological map (BRGM 1/50000, edited from http://www.geoportail.gouv.fr). The units n5U correspond
to the Bedoulian limestones (Urgonian platform) and n6 to the Gargasian marls. Note the stratigraphic dip of
the surface outcrops, S-SE to S-SW, compared to the S-SE direction of the anti-blast gallery (A).
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1 (430 m long) and segment 2 (750 m long), connected by a 
100 m long perpendicular segment. With 1560 m of total length, 
this Main Gallery was initially defined as the access to a missile 
launch room. From this point, the Main Gallery is extended by 
the 1760 m long Escape Gallery, which displays a reduced diam-
eter (1.7 m) until exiting at the other side of the hill. All the gal-
lery walls are strengthened with 0.7 m of steel reinforced con-
crete, whereas the floor is reinforced only at a few places. 
Moreover, segment 1 of the Main Gallery is extended by a 280 m 
long tunnel called the Anti-Blast Gallery (Fig. 2), which is not 
consolidated by concrete either on the walls or on the floor. 
However, the walls are coated with a light spraying of cement. It 
is the main place in LSBB that allows an easy access to the lime-
stone rocks where both stratification and faults can be observed.

INVESTIGATIONS BASED ON GEOPHYSCIAL 
MEASUREMENTS
Since 2000, several geophysical investigations have been per-
formed within the LSBB tunnel in order to image and character-
ize the geological context. Mainly seismic experiments have 

been done between the long-time weather conditions and water 
flows observed inside and outside of the tunnel (Garry et al. 
2008; Blondel et al. 2010; Périneau et al. 2011).

THE LSBB
In 1997, the LSSB, initially secured against possible nuclear 
attacks, was converted for civil experimental research in a low-
noise environment, dedicated to environmental studies (water 
and CO2 storage), particle physics (cosmic radiation, digital cir-
cuit logical hazard), magnetic experiments, metrology and per-
manent seismological instruments connected to ORFEUS and 
IRIS data bases (Gaffet et al. 2003). The LSBB consists of 
3.7 km (Fig. 2) of reinforced concrete galleries buried below the 
Grande Montagne limestone massif. With a slight slope of 1–2 
degrees, the tunnel geometry displays several straight line galler-
ies that allow us to define several sections (Fig. 2): the first part 
of the tunnel, called the Main Gallery, penetrates inside the hill, 
down to 450 m below the surface. With 3.7 m of diameter, this 
gallery is mainly constituted by two shifted straight line sections 
approximately heading north, referred to in this paper as segment 

FIGURE 2

Structural map of the studied 

area, mainly based on aerial pho-

tography interpretation. The red 

lines indicate the geometry and 

location of the LSBB tunnel 

(modified from Thiébaud 2003). 

The geological compartments are 

identified by I, II and III. The thin 

blue lines: minor faults. Thick 

blue lines: major faults. The main 

structural segmentation result is 

also reported (contribution from 

Matonti and Viseur, LSBB/GSRC 

2011).

FIGURE 3

Conceptual south-north cross-

section (modified from Maufroy 

2010). The actual vertical shifts 

of faults are unconstrained. The 

solid horizontal black line corre-

sponds to the tunnel location. The 

Roman numbers correspond to 

the compartments identified in 

Fig. 2.

(c) Structural map (from Sénéchal et al., 2013, modified from Thiébaud, 2003, with contribution from Matonti
et al., 2011). Roman numbers correspond to the geological compartments of Fig. 3.20 and blue lines indicate the
fracture network. Eventual minor fractures (dashed blue line) can cross the anti-blast gallery and might affect
the profile (see also Derode et al., 2013, concerning fractures in the anti-blast gallery).

Figure 3.19: Topography and geology of the Grande Montagne and location of LSBB galleries. 151
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Figure 3.20: Schematic S-N geological section of the Grande Montagne (from Sénéchal et al.,
2013, modified from Thiébaud, 2003). The horizontal black line indicates the level of the gal-
leries. The anti-blast gallery is located in compartment II where a transition between Barremian
and Bedoulian limestones is expected.

Previous geophysical experiments and location of the GPR profile

Since its decommissioning, the LSBB has been the location of numerous hydrogeological studies
(see e.g. Thiébaud, 2003; Garry, 2007; Blondel, 2008; Perineau, 2013), based on observations
at the surface and in the tunnel, as well as on hydraulic tracer monitoring. Unfortunately,
most of the galleries are cemented which makes the direct observations seldom. There is thus
a strong need for imaging the interior of the massif.

In order to fill this gap, geophysical measurements were performed to have an insight into
the limestone reservoir. For instance, Maufroy et al. (2014) performed a seismic travel-time
tomography to image the massif between the ground surface and the tunnel level. At a smaller
scale, Sénéchal et al. (2004) performed seismic experiments between the main tunnel and the
anti-blast gallery1 (see Figs 3.19 and 3.20 for a localisation). These authors could estimate the
P-wave velocity in the limestone but seismics does not have enough resolution to perform a
high-resolution of the karstic structures. GPR is a good candidate for achieving such a high-
resolution imaging in carbonates, which present a low conductivity and thus enable a deep
penetration of electromagnetic waves. GPR measurements were achieved by Carrière et al.
(2013) on the plateau and by Sénéchal et al. (2013) in the main tunnel and in the anti-blast
gallery. Finally, Van Vorst et al. (2010) performed a travel-time tomography from crosshole
GPR measurements acquired in the anti-blast gallery.

1This gallery owes its name to the fact that it was originally designed to prevent the blast of an eventual
bombing attack from propagating into the tunnel: the launching control room should remain operational under
any circumstance.
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The GPR data I consider here were also acquired in the anti-blast gallery, which is the only
place in the LSBB tunnel where the walls are not consolidated with concrete, allowing an easier
access to the outcrops (at least partially, because the walls are still coated in some places with
a thin layer of cement). The data were acquired along a 50-meter-long profile using 250-MHz
shielded Ramac antennas (Mal̊a Geosciences) in common-offset configuration. Measurements
were carried out for 15 offsets between 1.24 and 8.34 m, with an offset interval of ' 50 cm.
Traces were recorded every 10 cm along the profile, which results in 501 CMP locations for each
offset and 7515 traces in total. Acquisition triggering and trace positioning were performed
using a calibrated wheel whose accuracy can be estimated to a few cm. Distance stretching
was corrected a posteriori by repositioning the traces regularly between 0 and 50 m.

Unfortunately, the profile does not comprise the section imaged by Van Vorst et al. (2010):
our profile starts at x = 70 m from the entrance of the gallery, whereas the boreholes of
Van Vorst et al. (2010) are located around x = 40 m (Guy Sénéchal, personal communication).
Nevertheless, the tomography of Van Vorst et al. (2010) gives us a first a priori on the expected
relative permittivities in the medium, comprised between 8 and 12.5, while Sénéchal et al. (2013)
estimate velocities about 9 cm/ns, i.e. permittivities around 11, by semblance analysis of a
CMP gather acquired in the anti-blast gallery. The latter authors also mention a stratigraphic
dip of about 25◦. Contrary to what suggests the surface dip indicated on the geological map
(Fig. 3.19b), the tunnel (and thus the profile) is not parallel to this stratigraphic dip. After
time-to-depth conversion of their common-offset section, Sénéchal et al. (2013) measure an
apparent dip of 16◦. A more precise indication on the stratigraphic dip and on fractures in
the anti-blast gallery is given by Derode et al. (2013). These authors mention N120-20◦SW
limestone layers, cut by a family of fractures of azimuth N30◦ with dip angles of 60-80◦W. I
underline, however, that the precise location of our profile with respect to the above-mentioned
fractured zone is not exactly known and should be specified by in situ observations.

Time-domain common-offset sections

Fig. 3.21 shows common-offset sections of the profile, for the offsets 1.24 m and 8.34 m (the
complete data set is presented in Appendix B.1). Applying few processing to the data (constant
component removal and amplitude saturation), it is possible to visualise the main structures
of the medium. In particular, at offset 1.24 m, three main reflectors are clearly visible, which
correspond to dipping stratification planes (denoted as RW in Fig. 3.21). At second order,
we can also remark some discontinuities of these reflectors, as well as numerous diffraction
hyperbolae (D). We may wonder if the discontinuities are caused by fractures in the limestone
or if they are artefacts due to velocity variations. Similarly, it would be interesting to explain
the origin of the diffractions: are they cavities partially filled by air or water, or heterogeneities
such as calcite seals? Finally, the section presents lateral amplitude variations that can be due
either to the transparency of the medium, or on the contrary to its attenuation, or even to
lateral variations in the antenna-ground coupling. Variations in the amplitude of the reflections
might also be due to the varying thickness of the reflectors that can act as thin layers in the
considered frequency range. Understanding this effect is important since thin layers can have
a strong reflectivity: an open question in the interpretation of this dataset is to know if the
observed reflections are due to an impedance contrast between the layers of limestone, or to
the reflectivity of stratigraphic interfaces acting as thin layers within a homogeneous limestone
massif.
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At offset 8.34 m, the interpretation is made slightly more difficult since the structures
are deformed during a longer travel-time. However, it is still possible to recognise the main
reflectors (RW). We also remark a high amplitude aerial event arriving at about 50 ns (RAW).
CMP gathers suggest that this signal is a reflection on one of the sides of the tunnel and should
be discarded for the inversion because the modelling will not reproduce this feature. At large
offsets, we also observe enhanced multiples (MRW) and aerial dipping events corresponding
to reflected-refracted waves (RRW). Moreover, the arrival times of the direct ground-wave
(GW) present strong lateral variations (dashed red lines), which indicates lateral variations of
the velocity in the superficial part of the medium. This point partially answers the previous
question of knowing whether the observed reflections are due to a contrast between limestone
layers or to thin-layer effects. The linear move-out of the ground-wave suggests that there is a

AW RAW RRW

MRW

RW
HZHZ

D

GW

GWAW

RW

RAW

D

(a)

(b)

MRW

Figure 3.21: Common-offset sections for the minimal and maximal acquired offsets: (a)
124 cm, (b) 834 cm. AW = direct air-wave, GW = direct ground-wave, RAW = reflected
air-wave, RW = reflected waves, MRW = multiply-reflected waves, RRW = reflected-refracted
waves, D = diffractions, HZ = hidden zones. Processing consisted only in to-correction, constant
component removal using sugain mbal=1 and amplitude saturation (perc=97).
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velocity contrast between some limestone layers, consistently with the results of Van Vorst et al.
(2010). Some other reflections, however, are not associated with a significant shift of the direct
ground-wave arrival (dashed blue line) and might be interpreted as a thin-layer reflectivity.
Finally, the amplitude of the direct ground-wave presents strong lateral variations, indicated as
hidden zones (HZ) in Fig. 3.21, which are difficult to understand at this stage of interpretation.
I will explain them later, based on numerical simulations.

In the following, the quantitative analysis of the data aims at improving this first qualitative
overview.

3.2.2 Classical processing: velocity analysis, migration, forward modelling

3.2.2.1 Semblance analysis, direct wave and hyperbola picking

A first way to derive a quantitative information from the data is to perform a systematic
velocity analysis, by semblance analysis of the CMP gathers. Fig. 3.22 shows an example of
semblance panel with the corresponding CMP gather where I represent the hyperbolae that
corresponds to the picked velocities, accounting for the observed normal move-out (NMO). It
should be underlined that the value of picked NMO velocity does not always result in a relevant
hyperbola. When the hyperbolae deduced from the NMO velocities are not satisfying, I rather
pick the hyperbolae directly on the CMP and perform a t2 − x2 regression to obtain the NMO

Figure 3.22: (a) Semblance panel and picked NMO velocities (broken black line). (b) Cor-
responding CMP gather with the hyperbolae corresponding to the picked NMO velocities (in
blue). Red straight lines correspond to the theoretical direct air-wave and to the picked direct
ground-wave. The green curve is an example of hyperbola I prefer picking rather than relying
on the picked NMO velocity from the semblance panel at ' 140 ns, which does not correspond
clearly to any hyperbola. NMO velocities associated to dashed blue lines are discarded for
building the interval velocity model.
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velocities (dashed blue line in Fig. 3.22(b). When possible, I also pick the direct ground-wave
(red line in Fig. 3.22b).

Repeated for each CMP gather (every 5 CMP in practice, i.e. every 50 cm), semblance
analysis and hyperbolae picking enable to derive NMO velocities as a function of time and of
distance along the profile. Interval velocities are then derived from NMO velocities using Dix
formula (Dix, 1955). This approach, however, assumes a horizontally layered medium and is
not relevant in the case of dipping interfaces. To derive interval velocities, I applied a correction
for the dip θ (vcorrint = vint × cos θ, see Levin, 1971).

Fig. 3.23(a) shows the permittivity model derived from the interval velocities computed from
the NMO velocities assuming a dip value θ = 13.5◦ (this value is justified later). As the velocity
analysis has been performed every 50 cm, this model is very heterogeneous and not realistic. It
is also due to the fact that deriving interval velocities from NMO velocities with the iterative
Dix formula is not a stable process and results in over-estimated velocity variations at depth if
the superficial velocities are not correct. However, the evolution of permittivity with distance
and depth nearly reproduce the dip of the main reflectors (' 12◦ to 16◦). Fig. 3.23(b) presents
a smooth version of the NMO model, which has been obtained using a gaussian smoothing in
the direction of the dip θ = 13.5◦. This smooth model is our first candidate to be used as an
initial model for starting the FWI process. Although this permittivity model has been derived
from interval velocities, it will be referred as the smooth NMO model in the following.

Figure 3.23: Permittivity models derived from semblance analysis every 50 cm. (a) Raw
model from the interval velocities derived from vNMO assuming a dip of 13.5o. (b) Smooth
version obtained with a gaussian smoothing along the dip (τ‖ = 3 m, τ⊥ = 1 m).

3.2.2.2 NMO correction and stack, reverse-time migration

Using the NMO velocities (those derived from semblance analysis and hyperbola picking, not
the ones of Fig. 3.23), it is possible to correct the CMP gathers for normal move-out. In a
classical processing workflow, it is usual to stack the resulting zero-offset sections to increase
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the signal-over-noise ratio, taking advantage of the data redundancy. Fig. 3.24 shows the result
of such a stack and compares the depth-converted stacked section with the raw common-offset
section of Fig. 3.21, after delay correction (to make it comparable with zero-offset sections). In
Fig. 3.24(b), the relative amplitudes of the common-offset sections have been kept unchanged
before stacking, such that the resulting image is dominated by short-offset signal and resembles
the raw common-offset section of Fig. 3.24(a). Some reflectors are slightly more pronounced
due to the stack but some hyperbolae are still visible. It is not obvious that this image really
helps for improving our interpretation of the data, compared to the raw data. In Fig. 3.24(c),
amplitudes have been normalised before stacking, such that all common-offset panels have
similar contribution in the sum. Because of the variability of the NMO velocities from a
CMP to another, it results in a quite noisy image where more artefacts have been added
than valuable information, compared to the non-corrected common-offset section. A fortiori,
post-stack migration is not successful and results in many artefacts that make the image not
interpretable. These observations motivate the need for an inversion process that could improve
the velocity model and enable a more accurate migration and interpretation of the image.

If migrated images are not readily interpretable, they can still be exploited to test if the

(a) Common-offset section of Fig. 3.21 at 124 cm, corrected for arrival-time and converted to depth.

(b) Stacked NMO zero-offset section (true amplitudes).

(c) Stacked NMO zero-offset section (amplitudes normalised vs. offset).

Figure 3.24: Common-offset section at 124 cm and zero-offset stacked sections after NMO
correction. Time-to-depth conversion assumes an average velocity of 9 cm/ns (εr ' 11). The
mean value of interface dip is ' 13.5o.
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permittivity model of Fig. 3.23(b) derived from semblance analysis and hyperbola picking can
be used as an initial model for starting the FWI. Of course, a more direct way to test the
kinematic compatibility of this model is simply to perform forward simulations and compare
the calculated data with the observed ones. The resulting comparison is shown later in Fig. 3.32
and confirms that the model well explain the arrival time of the direct ground-wave. But, as
the model of Fig. 3.23(b) is smooth, it does not reproduce the observed reflected events and it
is not possible to know if they can predict the right arrival times for the reflections.

To do so, I compare the individual NMO-corrected sections to see if the reflectors have
been moved to the same place with respect to offset: this gives an indication of the kinematic
compatibility of the NMO velocity model with the observed reflections. Converting the time
axis to depth with a constant velocity of 9 cm/ns (which is quite valid above the main reflector),
it is also possible to estimate the apparent dip of the reflectors, which display an average of
13.5◦ (hence the value used to convert NMO velocities to interval velocities in the previous
paragraph).

In the same idea, I also performed reverse-time migrations (RTM) using the smooth NMO
model of Fig. 3.23(b). As mentioned in Chapter 2, RTM can be performed straightforwardly
using the FWI algorithm if the entire recorded data are injected in the adjoint source instead
of the residuals. Correlating the incident and the adjoint wavefields for each frequency compo-
nent of the temporal signal amounts to the time-domain imaging condition and produces the
migrated image. As I did not estimate the source signature yet, I do not expect to replace the
reflector at the right depth. But looking if they are refocused at the same depth with respect
to offset gives an indication on the capability of the velocity model to explain the observed
arrival times. Comparing the migrated images with respect to offset (see Fig. 3.25) suggests
that the smooth velocity model of Fig. 3.23(b) is well compatible with the arrival times of the
reflected events. Therefore, we can expect to reconstruct the reflector at the right place during
the inversion, provided we correctly estimate the source signature.

Figure 3.25: RTM images using the smoothed NMO model for the offsets 124 and 834 cm.
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3.2.2.3 Forward modelling in a blocky model

Up to now, we have seen that a systematic velocity estimation based on semblance analysis
and arrival-time picking provides velocity models that are kinematically compatible with the
observed data, but that do not enable an accurate imaging and an improved interpretation.
In this paragraph, I present a simpler interpretation of the data, based on the study of the
linear move-out of the direct ground-wave with respect to offset. As seen in Fig. 3.22(b), the
direct ground-wave can sometimes be picked on the CMP gathers, but it is rare. Here, I look
directly on the common-offset sections, and I consider the medium as made of blocks delimited
by the reflectors previously identified on the NMO-corrected sections of Fig. 3.24. Picking the
mean arrival-time of the direct ground-wave within these blocks enables to derive a blocky
permittivity model shown in Fig. 3.26.

Fig. 3.27 recaps the different estimations of permittivity and velocity derived up to now
from semblance analysis, hyperbola fitting, direct wave fitting, and average linear move-out

Figure 3.26: Blocky model derived from direct ground-wave picking. The relative permittivity
of the blocks are, from the left to the right, 13, 11, 9, 10.5 and 13. The dip of the interfaces is
derived from the zero-offset staked section (13.5o, see Fig. 3.24).
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Figure 3.27: Superficial velocities and permittivities (recap of the different estimations).
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within the blocks. The motivation of the blocky model of Fig. 3.26 is trying to explain the
complex observed data with a simple model of the subsurface. Indeed, such a simple model
already enables to explain a significant part of the data complexity.

To illustrate the complexity that can arise with such a blocky model and understand in
more details the observed data and further simulation results, Fig. 3.28 presents time-domain
simulations in a model comprising only one dipping interface. Because of the interaction
of the waves with the edge between the interface and the ground surface (Fig. 3.28a), the
corresponding common-offset section shown in Fig. 3.28(b) displays a complex pattern. In
addition to the expected air-wave, ground-wave and primary reflected waves, we can observe
the multiples of the reflected wave, as well as primary and secondary reflected-refracted waves.
This simulation has been used to identify the events observed in the data (Fig. 3.21).
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Figure 3.28: Time-domain simulation in a blocky model presenting one dipping interface.
(a) Snapshots of the wavefield emitted by a source at x = 25 m. (b) Common-offset section
for offset 834 cm. AW = direct air-wave, GW = direct ground-wave, TGW = transmitted
ground-wave, HW = head wave, RHW = reflected head wave, RRHW = reflected-refracted
head wave, RW = reflected wave, MRW = first multiple of RW, MMRW = second multiple of
RW, RRW = reflected-refracted wave, MRRW = multiple of RRW.

Fig. 3.29 now presents common-offset sections computed in the blocky model of Fig. 3.26,
presenting several interfaces. These synthetic data consist in a superimposition of several
patterns similar to the one of Fig. 3.28(b) and can explain a significant part of the observed
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events. In addition to the primary and secondary main reflections, we can notice that the
alternation of blocks with different velocities does reproduce the observed lateral variations
in the amplitude of the direct ground-wave. In particular, we retrieve hidden zones, where
the direct ground-wave disappears, when passing from a high-velocity block to a low-velocity
block on the right of the profile (CMP ' 380 and 450 in Fig. 3.29). A similar alternation
might be invoked to explain the hidden zone on the left of the profile (CMP < 75). It is
quite remarkable that a simple blocky model can explain these amplitude variations, although
it has been designed on the only basis of the kinematics. This observation mitigates our a
priori concern about laterally varying attenuation or antenna-ground coupling, and confirms
that most features of the observed data can be explained by permittivity variations.

Figure 3.29: Left: Simulations in the blocky model of Fig. 3.26 at offsets 124 and 834 cm.
Right: Corresponding observed data. Each coloured curve corresponds to the pattern of a
specific dipping interface, as observed in Fig. 3.28(b), underlining the direct ground-wave, and
the primary and secondary reflected events. These curves are identical on the left and right
sides, indicating the good kinematic agreement of the synthetic data with the observed ones
(except on the extreme left and right parts of the profile where the ground-wave disappears at
large offset, making the comparison difficult). Please note that the simulation reproduces the
observed hidden zones on the right of the profile.

Partial conclusion on the velocity analysis

As a partial conclusion, we now have two permittivity models as candidates for starting the
FWI: the smooth NMO model of Fig. 3.23(b) and the blocky model of Fig. 3.26. Both models
are kinematically consistent with the observed data, in the sense that they well explain some of
the observed arrivals (direct ground-wave and main reflections). The major difference between
the smooth permittivity model derived from semblance analysis and the blocky model resides

161



APPLICATION TO REAL DATA INVERSION

in the fact that the blocky model generates reflections, whereas the smooth NMO model only
explains the direct arrivals, due to the lack of sharp contrasts.

Consequently, my goals will be different when trying to invert the data by starting from one
of these two models: using the smooth NMO model, I am interested to see whether the inversion
can reproduce the main reflections which are initially lacking; whereas using the blocky model,
I want to see what features the inversion does add to the pre-existing reflectors (and if it does
not degrade them). I may also address the question to know whether the inversion does need
pre-existing reflectors in the starting model to converge towards a satisfactory solution.

In the following, I will try to perform FWI to update these permittivity models. This
requires first to pre-process the data and to estimate the source signature to make the observed
waveforms comparable to the synthetic ones.

3.2.3 Pre-processing steps towards FWI

3.2.3.1 Data pre-processing: Mute and 3D-to-2D conversion

FWI relies on the comparison between observed and synthetic data. A first processing step
towards inversion is therefore to prepare the observed data to make them comparable with the
synthetic ones. The processing steps I present here consist in three operations:

1. elimination of the signals that can not be reproduced by the simulations,

2. 3D-to-2D transformation,

3. source estimation.

In the following, I present these steps in a quite linear way but, in practice, these steps were
applied iteratively in order to converge towards cleaned, virtually 2D, observed data that could
be compared to the synthetic ones.

Muting out-of-plane events

In Fig. 3.21, we have identified a high-amplitude signal as an out-of-plane aerial reflection, that
I will call the reflected air-wave (RAW) in the following. As the simulations will not reproduce
this event, and since it does not bring any valuable information about the underground, the
reflected air-wave should be removed from the data.

To do so, I simply applied a mute in the time-CMP domain1, for the offsets where it could
be clearly distinguished from other relevant signals. At short offsets (≤ 280 cm), the reflected
air-wave arrives later than the direct ground-wave, together with reflected events. In this
case, it has been muted only where it was clearly identifiable, and where it displayed high
amplitudes that could disturb the inversion2 (see Fig. 3.30a, at CMP ≥ 450 and t ' 50 ns). At
intermediate offsets (between 336 and 438 cm), it was not possible to distinguish the reflected
air-wave from the direct ground-wave, so I do not use these offsets for the inversion. At large
offsets (≥ 488 cm), it was possible to mute this parasite signal along the whole profile. For

1Looking at the data in other domains, e.g. τ − p or ω − k, does not enable to better isolate the reflected
air-wave from the events of interest for the conflicted offsets 336 to 438

2If not muted, these disturbances could be evidenced in RTM images as horizontal artefacts (not visible in
Fig. 3.25 because I used muted data to perform the RTM).
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these offsets, I also mute the direct air-wave which tends to overlap with the reflected air-wave.
To replace the muted direct air-wave, a synthetic direct air-wave will be added after source
estimation. On the other hand, I kept the signals that I identified as reflected-refracted waves
and that can be reproduced by the simulations as shown in Fig. 3.29.

Fig. 3.30 shows the resulting muted common-offset sections. The complete muted dataset
is shown in Appendix B.2.

Figure 3.30: Muted data for offsets 124 and 834 cm. At offset 124 cm, the reflected air-wave
has been muted only for CMP > 450. The vertical drips at 300 < CMP < 400 are very
low-frequency artefacts due to the 3D-to-2D conversion (they do not have consequences on the
frequency band used for inversion). At offset 834 cm, note the synthetic direct air-wave and the
remaining aerial signals, associated to reflected-refracted waves which the simulation should be
able to reproduce (see Fig. 3.28).

3D-to-2D conversion

For lack of anything better, I apply here again a 3D-to-2D transformation inspired from the
wave solution in a homogeneous medium:

d 2D
obs (t) =

√
2πv(t)2t

ω
eıπ/4 d 3D

obs (t) (3.20)

which corresponds to eq. (21) in Bleistein (1986), with a ray parameter σ = v2t. Note however
that I take into account the velocity contrast at the air-ground interface, using a time-varying
velocity v(t). Otherwise, it is not possible to account for the respective amplitudes of the direct
air-wave and ground-wave, i.e. for the energy distribution between air and ground. Since this
energy distribution also strongly depends on non-controlled parameters as the antenna height
above ground, the suited 3D-to-2D conversion is intimately related to the estimation of the
source, that I detail in the next paragraph. To consider the velocity contrast at the air-ground
interface, the velocity v(t) in eq. (3.20) is defined as

v(t) =





vo if t < tAW + ∆tAW ,

v1 + (vo − v1) cos2
(
π t−(tAW (x)+∆tAW )

2τ

)
if tAW + ∆tAW ≤ t ≤ tAW + ∆tAW + τ ,

v1 if t > tAW + ∆tAW + τ ,
(3.21)

where vo is the velocity in the air, v1 the velocity in the ground, tAW the arrival time of the direct
air-wave (which depends on the offset x), ∆tAW = 20 ns the duration of the pulse and τ = 4 ns
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a tapper window. This definition formalises the fact that I consider a transition between air and
ground just after the direct air-wave. Note that I could also consider a transition just before the
arrival of the direct ground-wave but doing so increases the amplitudes of the reflected-refracted
waves that I left during the muting step. As these events might be polluted with remaining
aerial reflections, it is not desirable to enhance them. Moreover, the arrival time of the direct
ground-wave tGW is less straightforward to determinate than the one of the direct air-wave
tAW . For simplicity, I consider a homogeneous ground velocity v1 = 9 cm/ns (εr ' 11). Of
course, this value should be refined but in a first approach, the amplitude ratio between the
aerial and the ground signals is mainly driven by the velocity contrast between air and ground.

3.2.3.2 Estimation of a source wavelet

In frequency-domain FWI schemes (Pratt, 1999), the source signature is classically estimated
through a linear inversion as

S(ω) =
dcal(ω)†d2D

obs(ω)

dcal(ω)†dcal(ω)
, (3.22)

where S(ω) is the complex frequency spectrum of the source wavelet, dcal(ω) are frequency-
domain synthetic data computed in some subsurface model and d2D

obs(ω) are the observed data
in the frequency domain, after 3D-to-2D transformation. This estimation is either performed
in the initial model and kept fixed during the inversion (Pratt, 1999), or re-iterated during
the inversion process (Belina et al., 2012a), or even included in the reconstructed parameters
(Busch et al., 2012). Of course, there is a trade-off between the quality of the model where
synthetics are computed and the resulting source estimation: if the model does not reproduce
the observed data, the source estimation will be biased.

Since the initial models we have are not accurate enough to reproduce all the observed
events and estimate a satisfactory source wavelet, I rather chose to estimate the source wavelet
from selected traces where the blocky model accurately predicts the arrival time of the direct
ground-wave, i.e. for CMP number 248 to 292 (see Fig. 3.29). Since the late arrivals are poorly
predicted, I use an exponential time damping to damp the data and select only the direct
arrivals (air-wave and ground-wave) and I restrict the data to the offsets 124 to 283 cm to not
include other aerial events in the observed data:

dusedobs/cal(x, t) = e−
(
t−tAW (x)

)
/τdobs/cal(x, t), (3.23)

with τ = 10 ns. Using such a time damping is more convenient for selecting the direct arrivals
than a simple mute because the end of the ground-wave signal often overlaps with other events
and thus can not be easily determined. On the other hand, the drawback of this time damping
is that the estimation is mainly based on the air-wave, in less extent on the damped ground-
wave, and not at all on the reflected waves. We can wonder if this estimation is relevant in the
case of shielded antennas, where the shielding is expected to induce a distortion of the signal
emitted at 90◦ (parallel to the air-ground interface) compared to the signal emitted vertically
in the ground (Diamanti et al., 2013). But estimating a source signal from a reflection would
require a more accurate model where the reflectivity of the interface is well known. It also poses
the problem of properly isolating the reflected event amongst the surrounding diffractions.

Finally, I already mentioned that the estimation of the source also depends on several
other non-controlled parameters, such as the vertical position of the effective antenna in the
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shielding (which is a black box for the user) and as the conductivity value in the ground.
As a consequence, I perform the estimation of the source in a variety of configurations, with
conductivity values σ ranging from 1 to 6 mS/m and antenna heights zsrc varying from 0
to 5 cm above ground. Since the ultimate aim of this processing is to make the synthetic
data comparable to the observed ones, I then select the configuration of conductivity, antenna
height and source estimation that provides the best match between the observed data and the
synthetic data computed in the blocky model.

A good compromise has been found for the combination zsrc = 0 and σ = 4 mS/m: I thus
retain these values for the inversion. The corresponding estimated source is shown in Fig. 3.31,
where it can be seen than the synthetic air-wave and ground-wave well match the observed
ones for offsets number 2 to 7 (180 to 438 cm). At offset number 1 (124 cm), we observe a
discrepancy in the amplitude of the ground-wave, which is probably due to the applied 3D-to-
2D transformation that over-amplifies the observed ground-wave (because it overlaps with the
end of the air-wave, see eq. 3.20). The amplitude of the reflected events are not well reproduce,
which can be due to the fact that the blocky model does not present the right reflectivity, or
to the effect of the antenna shielding. In the first hypothesis, we might expect the inversion to
retrieve the right reflectivity when updating the model.
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(b) CMP 300. (c) Source wavelet and spectrum.

Figure 3.31: Estimation of a time-domain wavelet using selected, damped traces. (a) Fit of
damped data (86 traces in total, one out of two is shown). (b) CMP 300 in the blocky model,
using σ = 4 mS/m and zsrc = 0. (c) Source wavelet and its spectrum (black: estimated damped
source, grey: re-inflated source after mute at 20 ns). In (a) and (b), data are normalised trace-
by-trace with the observed amplitudes as reference (observed and synthetic amplitudes are
comparable within a trace).
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Observed vs. synthetic time-domain data in the initial models

Once we have estimated a source wavelet, we can rigorously compare the time-domain observed
data to synthetic data computed in the NMO and the blocky permittivity models of Figs 3.23(b)
and 3.26, which are our likely candidates as initial models for the FWI. Such a comparison is
presented in Fig. 3.32 for the CMP numbers 1, 100, 200, 300, 400 and 500 in order to roughly
span the whole profile. Both models well explain the arrival time of the direct ground-wave,
which suggests that their superficial velocities is correct. The blocky model well explains the
arrival times of the main reflections at CMP 200, 300 and 400. The reflected amplitudes well
match for CMP 200 and 300 at large offsets, but are over-estimated at short offsets and for other
CMP gathers, suggesting an effect of the antenna radiation pattern and/or lateral variations
in the ground conductivity.

Nevertheless, the good kinematic compatibility between observed and synthetic data in
both models confirms that these models can be used for starting the FWI process. Amplitudes
are expected to be matched in the inversion by adapting the reflectivity.
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Figure 3.32: Observed vs. synthetic radargrams in the smooth NMO and in the blocky models
(normalised trace-by-trace with observed amplitudes as reference, amplitudes are comparable).
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(c) CMP 200.
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(d) CMP 300.
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(e) CMP 400.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  25  50  75  100  125  150  175

O
ff
s
e
t 
n
u
m

b
e
r

Time (ns)

Observed data
Synthetic data (blocky)
Synthetic data (NMO)

(f) CMP 500.

Figure 3.32: (continuation) Observed vs. synthetic radargrams in the smooth NMO and in
the blocky models (normalised trace-by-trace with observed amplitudes as reference, amplitudes
are comparable).
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Partial conclusion on the pre-processing steps: Sources of error on the amplitudes

Concerning the reflected waves:

– Reflected amplitudes are not matched, suggesting that the permittivity contrasts are not
adequate, or that the interfaces act as thin layers displaying a strong reflectivity without
permittivity contrasts at the scale of the wavelength. Permittivity contrasts are expected
to be reconstructed by the inversion. The match of the reflected amplitudes should be
controlled after inversion to discriminate between both effects.

Concerning the direct (and reflected) waves:

– 3D-to-2D transformation: The consideration of the velocity contrast at the air-ground
interface is critical to explain the relative amplitudes of the direct air-wave and ground-
wave. The applied transformation is still highly improvable. In particular, lateral velocity
variations should be considered in the transfer function.

– Unknown conductivity and antenna height: I choose the values that provide the best
fit when comparing observed (corrected) data and synthetic data in the blocky model
convolved with the estimated source, but a homogeneous conductivity does not account
for the lateral amplitude variations observed in the data.

– Radiation pattern of the shielded antennas: The importance of this effect is difficult to
determined because there is a strong trade-off between the effect of the shielding and
i) the AVO response due to conductivity, on one hand, and ii) the reflectivity, on the
other hand. It seems however that the amplitudes of the reflected waves are better fitted
at long offsets than at short offsets, where they are under-estimated (see e.g. CMP 200
in Fig. 3.32c). This is an indication that the shielding has a significant effect on the
recorded AVO of the signal. Indeed, this observation can be explained in two ways:

1. My source estimation under-evaluates the energy radiated into the ground but the
conductivity value is actually larger than I estimated. So the synthetic amplitudes,
initially under-estimated, are under-attenuated during propagation and can fit the
observed data at large offsets.

2. My source estimation under-evaluates the energy radiated vertically into the ground
because it is based on the direct waves (air-wave and ground-wave), that propagate
at nearly 90◦ along the air-ground interface. Thus, synthetic data convolved with
the estimated source better fit the data at long offsets because they correspond to
large emission/reception angles. But the amplitudes of signal emitted/recorded at
short angles are not well reproduced because the shielding introduces a bias in the
recorded AVO of the signal.

The fact that the conductivity value I estimated roughly explain the AVO of the direct
ground wave, as well as the one of superficial reflected events (see Fig. 3.32a,c,d,f), sug-
gests that the second hypothesis is the most plausible. Inversion tests will tell us if the
observed reflectivity can be explained by updating the permittivity model, or whether a
refined estimation of the conductivity and/or a more detailed description of the source
radiation pattern are required.
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3.2.3.3 Frequency-domain analysis

I now present the data in the frequency domain, since it is in the frequency domain that I will
invert them. A first question concerns the adequate frequencies to consider for inversion. In
the frame of frequency-domain FWI, it is usual to start from low frequency components and to
introduce progressively higher frequencies in successive inversion steps (Pratt and Worthington,
1990; Pratt, 1999). In Section 2.2, we have seen that GPR data inversion takes benefit of
considering several frequencies simultaneously, and that the strategy of Bunks et al. (1995)
was the most robust treating surface data. The strategy I apply here thus considers successive
groups of cumulative frequencies, whose bounds and sampling must be defined.

First of all, we can look at the spectrum of the data, which is presented in Fig. 3.33, both
for raw 3D data and for processed, virtually 2D data. 3D data exhibit a peak frequency at
168 MHz. 2D data exhibit a peak at 162 MHz and a low-frequency artefact below 20 MHz. For
both data sets, most of the energy is comprised between 50 and 350 MHz. However, looking at
these spectra does not indicate precisely what should be considered as the minimal frequency
for the inversion.

Figure 3.33: Mean amplitude spectra of 3D (black line) vs. 2D-converted data (grey line).

As already discussed in Section 2.3.1, a general guiding rule to select the inverted frequencies
has been given by Sirgue and Pratt (2004), based on the wavenumbers that can be imaged at
a given frequency, according to the acquisition setup. In Fig. 3.34, I present the frequency-
wavenumber diagrams corresponding to the acquisition setup, considering different depths of
diffracting points (1, 2 and 5 m). I express it both in terms of wavenumbers and of wavelengths,
the latter being more intuitive. In dotted lines, I have represented the offsets that could not
be used in the inversion because of the overlapping of the reflected air-wave with the direct
ground-wave signal. As this analysis is based on a planar assumption, I should underline that
it provides only a crude approximation of the expected wavenumber coverage and vertical
resolution. Nevertheless, it gives an idea of the frequency sampling needed to ensure a correct
wavenumber coverage in the reconstructed image. It can be observed in Fig. 3.34 that the
acquisition redundancy is quite low: To avoid gaps in the covered wavenumbers, frequency
sampling must be very dense, and we have interest in beginning the inversion with the lowest
possible frequency.
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(a) Diffracting point at depth z = 1 m.
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(b) Diffracting point at depth z = 2 m.
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(c) Diffracting point at depth z = 5 m.

Figure 3.34: Imaged vertical wavenumber kz (left) and vertical resolution λ (right) as a
function of frequency and offset, for different depths of diffracting points. Dotted lines corre-
spond to unusable offsets due to the overlap of the parasite reflected air-wave with the direct
ground-wave.
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To determine this lowest possible frequency (in particular, to see if it is possible to consider
frequencies below 50 MHz), Fig. 3.35 presents the signal-over-noise ratio of the data with respect
to offset and frequency. According to this figure, the SNR is similar at 40 and 60 MHz, so we
can reasonably choose 40 MHz as the minimal frequency to be considered in the inversion.

(a) SNR = 10 log(Esignal/Enoise) = 20 log(Asignal/Anoise). (b) Selected signal. (c) Selected noise.

Figure 3.35: (a) SNR as a function of offset and frequency, obtained by computing the
energy for each frequency of the common-offset sections (stacked over CMP) in 25-ns-long time
windows (b,c). ”Signal” is chosen as the 25-ns-long window following the direct ground-wave
arrival. As noise, I choose the first-to-last 25 ns (the end of the trace, before non-physical noise
due to to-correction).

Fig. 3.36 shows common-offset sections filtered in the frequency range 40-70 MHz, which is
the lowest bandwidth I envisage for inversion. At short offsets (≤ 180 cm), the filtered data
seem to contain very few information of the subsurface: they contain mainly horizontal signal
(ringing), probably enhanced by the inaccurate 3D-to-2D conversion (overlap of the direct
ground-wave and air-wave). Consequently, I will not consider these offsets for inversion. In

Figure 3.36: Common-offset sections after
cleaning, 3D-to-2D correction, and filtering in
the band 40-70 MHz (see Appendix B.3 for the
other offsets).
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my inversion tests, I could verify that considering these short offsets introduces non-physical
horizontal structures in the reconstructed image. As the direct ground-wave is artificially over-
amplified by the 3D-to-2D conversion, keeping these offsets for inversion also disturb the source
estimation when optimising the source signature in the initial model by using all data, which
further enhances the creation of horizontal artefacts in the image.

In Fig. 3.37, I present a comparison of observed and synthetic data after filtering in the
selected frequency bandwidth 40-70 MHz. As in Fig. 3.32, synthetic data are computed either
in the smooth NMO model of Fig. 3.23(b) or in the blocky model of Fig. 3.26. From Fig. 3.37,
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(a) CMP 1.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  25  50  75  100  125  150  175

O
ff
s
e

t 
n
u
m

b
e
r

Time (ns)

Observed data
Synthetic data (blocky)
Synthetic data (NMO)

(b) CMP 100.
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(c) CMP 200.
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(d) CMP 300.

Figure 3.37: Observed vs. synthetic radargrams in the smooth NMO and in the blocky
models, filtered between 40 and 70 MHz (normalised trace-by-trace with observed amplitudes
as reference, amplitudes are comparable).
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it is clear that the initial models are not accurate enough and we may expect cycle-skipping to
occur in some parts of the data (e.g. CMP 400 offsets 8-10). On the other hand, synthetic data
display a good match with the observed ones in other portions (e.g. CMP 100, CMP 1 offsets
10-11, CMP 400 offsets 11-13). The blocky model presents generally a better match than the
smooth NMO model (CMP 1 and 100).

Finally, Figs 3.38 and 3.39 present the observed data in the frequency-domain, at 40 and
70 MHz, respectively (more precisely, 38.8 and 70.4 MHz, the frequency step related to the
temporal sampling being 2.43 MHz). Again, observed data are compared with synthetic data
computed in the blocky and in the smooth NMO models. Data at 40 MHz are quite noisy but
some trends can be observed with respect to offset and CMP, in particular where the main
reflector arises (CMP ' 350). This trend can also be seen in the synthetic phase computed
in the initial blocky model but it is far less visible in the smooth NMO model. The same
observations can be made at 70 MHz (Fig. 3.39), for which the blocky model seems to well
match the pattern of the observed phases, in spite of some phase difference. As the initial
models do not predict all the observed events, their frequency-domain amplitudes are lower
than the observed ones (see the amplitude scales).

Note that Figs 3.38 and 3.39 present the frequency-domain data as they are used for in-
version. In particular, I discarded the undesired offsets (124, 180, 336, 387 and 438 cm). The
first two offsets shown are thus 231 and 283 cm, followed by offsets number 8 to 15, as indi-
cated, i.e. 488 to 834 cm. In addition, I apply a data weighting matrix such that each filtered
common-offset section has the same RMS amplitude. Relative amplitudes within a common-
offset section are conserved to not amplify noise due to low-amplitude traces. I apply the same
weighting in the following inversions.

For information, I provide in Appendices B.3 and B.4 the complete filtered data set and
frequency-domain data in the whole frequency bandwidth (40 to 300 MHz), respectively.
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(e) CMP 400.
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Figure 3.37: (continuation) Observed vs. synthetic radargrams in the smooth NMO and in
the blocky models, filtered between 40 and 70 MHz (normalised trace-by-trace with observed
amplitudes as reference, amplitudes are comparable).
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(a) Observed amplitude. (b) Observed phase.

(c) Synthetic amplitude in the blocky model. (d) Synthetic phase in the blocky model.

(e) Synthetic amplitude in the smooth NMO model. (f) Synthetic phase in the smooth NMO model.

Figure 3.38: Observed vs. synthetic data in the initial models, at frequency 40 MHz. Am-
plitudes are balanced with offset. Note the different amplitude scales.
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(a) Observed amplitude. (b) Observed phase.

(c) Synthetic amplitude in the blocky model. (d) Synthetic phase in the blocky model.

(e) Synthetic amplitude in the smooth NMO model. (f) Synthetic phase in the smooth NMO model.

Figure 3.39: Observed vs. synthetic data in the initial models, at frequency 70 MHz. Am-
plitudes are balanced with offset. Note the different amplitude scales.
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3.2.4 Preliminary FWI results

Table 3.4 recaps the setup of the inversions I will now perform. I comment these settings in
the following.

Frequencies (MHz)

1st group (10 freq.) 38.8, 41.3, 43.7, 46.1, 48.6, 51.0, 55.8, 60.7, 65.5, 70.4

2nd group (13 freq.) 41.3, 46.1, 51.0, 55.8, 60.7, 65.5, 70.4, 75.3, 80.1, 85.0, 89.8, 94.7, 99.5

3rd group (18 freq.) 41.3, ... , 99.5, 109, 119, 129, 138, 148

Offsets (cm) 231, 283, 488, 542, 592, 646, 694, 746, 796, 834
Total number of traces 4852 out of 7515

Total nb of source locations 3503 out of 5053

Table 3.4: Inversion settings.

Frequency sampling For the inversion, I consider 3 groups of cumulative frequencies. The
first frequency bandwidth ranges between 40 and 70 MHz. It is then extended to 100 MHz
and to 150 MHz, which is the peak frequency in the data spectrum (see Fig. 3.33). The
selected frequencies are not regularly spaced. Following the FK-diagrams of Fig. 3.34, I choose
a denser sampling for low frequencies than for high frequencies to ensure a good coverage of
low wavenumbers. Moreover, the dense sampling of low frequencies partially compensate for
the fact that they have less power in the spectrum than high frequencies (more rigorously, the
data spectrum should be whitened).

Data selection I remind that I discard the shortest offsets 124 and 180 cm, which present
a strong ringing and few valuable signal, as well as the offsets 336, 387 and 438 m, where the
energetic reflected-refracted air-wave overlaps with the direct ground-wave. I thus retain 10
acquired offsets out of 15 in total. Further cleaning of individual traces leads to 4852 inverted
traces out of 7515 in total.

Misfit function As seen on Figs 3.38 and 3.39, frequency-domain data are noisy. Conse-
quently, I choose a `1-norm misfit function which is supposed to be more robust with respect
to noise, by giving less weight to high-amplitude outliers in the residuals (Brossier et al., 2009).

Data weighting Finally, I apply a data weighting to balance the amplitudes of the data with
respect to offset, as already shown in Figs 3.38 and 3.39. Giving more weight to large offsets is
expected to help for recovering low wavenumbers (but may also enhance the imprint of noise).

Source The source wavelet estimated in Section 3.2.3.2 (see Fig. 3.31) is fixed for the in-
version. Alternatively, I also perform inversions by estimating the source at the first iteration
using all inverted data. I may comment these results but I do not show them (they are quite
similar as the following ones).

In the following, I detail the inversion results for the first frequency bandwidth (40 to
70 MHz). Then I present the results for the subsequent frequency groups.

As a first quality control on the inversion process, Fig. 3.40 shows the gradients computed
in the starting models, using either the smooth NMO model or the blocky model. In Fig. 3.40,
both gradients present some discontinuities, indicating that the inversion will locally suffer
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(a) Gradient in the initial blocky model.

(b) Gradient in the smooth NMO model.

Figure 3.40: Gradients in the initial blocky model (a) and in the smooth NMO model (b),
for the first frequency group (40 to 70 MHz). Note the discontinuities due to cycle-skipping at
10 < x < 20 m, z > 4 m and at x ' 42 m in (b). The z-axis is exaggerated twice.

from cycle-skipping. They also present similar dipping structures, corresponding to the main
reflectors. Note however that the gradient computed in the blocky model presents strong
anomalies at the position of pre-existing interfaces, indicating that they are not well placed.

Fig. 3.41 shows the permittivity models reconstructed after 10 iterations of the inversion
process for the first frequency group (40 to 70 MHz). As a complement, to better visualise
the modifications added by the inversion to the initial model, Fig. 3.42 shows the difference
between the permittivity reconstructions of Fig. 3.41 and the initial blocky and smooth NMO
models. The reconstructed permittivity models obtained from the blocky and from the smooth
NMO models are quite similar. In particular, the inversion was able to add the main reflectors
to the smooth NMO model at the same locations as in the blocky model. This tends to confirm
the good kinematic compatibility of these models but also suggests that FWI does not need
pre-existing reflectors in the starting model. On the contrary, designing a blocky initial model
might introduce biases in the inversion if the reflectors are not well placed (it is the case on
the left of Fig. 3.41a), although FWI seems also able to shift mislocated interfaces, at least in
a certain extent (see Fig. 3.41a, at x = 30 m, z ' 2 m). Finally, pre-existing reflectors keep an
imprint in the final image, which makes its interpretation more difficult.

As a complement, it should be mentioned that performing the inversion by estimating the
source from the inverted data in the initial model yields nearly similar images, suggesting
that the considered pre-processing (including data exclusion) enables a consistent comparison
between observed and synthetic data since few structures are put in the source.

Figs 3.43 and 3.44 show the data fit reached at iteration 10 for the inverted frequencies
40 and 70 MHz. Consistently with the similar permittivity reconstructions, the smooth NMO
and the blocky starting models provide very similar final data fits, although the smooth NMO
model produces initial data much farther from the observed ones (remember Figs 3.38 and 3.39).
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Data fit is particularly satisfying at frequency 70 MHz because it has a larger weight in the
optimisation (since data are not whitened). At 70 MHz, both amplitudes and phases display a
satisfactory match.

(a) Starting from the blocky model. Misfit decrease of 29%.

(b) Starting from the smooth NMO model. Misfit decrease of 30%.

Figure 3.41: Permittivity reconstructions after 10 iterations (first frequency group).

(a) Starting from the blocky model. Misfit decrease 29%.

(b) Starting from the smooth NMO model. Misfit decrease 30%.

Figure 3.42: Cumulative perturbations added to the initial models after 10 iterations (first
frequency group, 40 to 70 MHz).
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(a) Observed amplitudes. (b) Observed phases.

(c) Final amplitudes, starting from the blocky model. (d) Final phases, starting from the blocky model.

(e) Final amplitudes, starting from NMO model. (f) Final phases, starting from NMO model.

Figure 3.43: Observed vs. synthetic data in the reconstructed models at frequency 40 MHz,
after the inversion of the 1st frequency group (40 to 70 MHz).
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(a) Observed amplitudes. (b) Observed phases.

(c) Final amplitudes, starting from the blocky model. (d) Final phases, starting from the blocky model.

(e) Final amplitudes, starting from NMO model. (f) Final phases, starting from NMO model.

Figure 3.44: Observed vs. synthetic data in the reconstructed models at frequency 70 MHz,
after the inversion of the 1st frequency group (40 to 70 MHz).
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Finally, Fig. 3.45 shows the data fit in the time-domain between observed and synthetic
data computed both in the initial and in the reconstructed models after inversion of the first
frequency group, using either the NMO model or the blocky model. CMP number 200 is shown.
Time-domain data fit for others CMP gathers are presented in Appendix B.5. Consistently
with the frequency-domain data fit, a good agreement between observed and synthetic data
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(a) CMP 200, NMO model (40-70 MHz).
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(b) CMP 200, NMO model (no filter).
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(c) CMP 200, blocky model (40-70 MHz).
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(d) CMP 200, blocky model (no filter).

Figure 3.45: Observed vs. synthetic data at CMP 200, after 10 iterations in the first frequency
group (40 to 70 MHz).
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can be observed in the inverted frequency range (Figs 3.45a and c). More precisely, the fit
in the reconstructed models is significantly better than in the initial models, indicating that
the inversion did well extract information from the data. It can be noticed, however, that a
good fit at low frequencies does not imply a good fit at higher frequencies (see Figs 3.45b and
d). During the inversion of the low frequency components, nothing prevents the creation of
heterogeneities that generate high-amplitude diffractions of the higher components that are not
considered. The inversion must thus be continued at higher frequencies to improve the fit over
the whole frequency band, and better constrain these heterogeneities.

Given that the pre-existence of reflectors in the initial model has been found to be unnec-
essary, I now continue the inversion started from the smooth NMO model, taking the recon-
structed model of Fig. 3.41(b) as a starting model for inverting the second frequency group (40
to 100 MHz). After 10 iterations, the updated model is in turn used as a starting model for
inverting the third frequency group (40 to 150 MHz). The corresponding results are shown in
Fig. 3.46. When extending the inverted bandwidth, the inversion introduces more details in

(a) 1st frequency group (40 to 70 MHz). Misfit decrease of 30%. (reminder of Fig. 3.41b)

(b) 2nd frequency group (40 to 100 MHz). Misfit decrease of 48%.

(c) 3rd frequency group (40 to 150 MHz). Misfit decrease of 43%.

Figure 3.46: Permittivity reconstructions after 10 iterations. Each reconstructed model serves
as an initial model for the subsequent frequency group.
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the image. In particular, the delineation of the interfaces becomes sharper.

Fig. 3.47 shows the time-domain data fit corresponding to the reconstructed models of
Fig. 3.46. The fit is satisfying in the inverted frequency bandwidths (Figs 3.47a and c). Of
course, the fit in the entire bandwidth improves with the extension of the inverted bandwidth
(Figs 3.47b and d). Note however that a major reflection at to ' 100 ns is not reproduced.
Extending the bandwidth beyond 150 MHz does not improve the fit, nor introduce significant
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(a) CMP 200 after inversion of the 2nd fre-
quency group (filtered 40-100 MHz).
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(b) CMP 200 after inversion of the 2nd fre-
quency group (no filter).
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(c) CMP 200 after inversion of the 3rd fre-
quency group (filtered 40-150 MHz).

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 0  25  50  75  100  125  150  175  200

O
ffs

et
 n

um
be

r

Time (ns)

Observed data
Synthetic data (final NMO)

Synthetic data (initial NMO)

(d) CMP 200 after inversion of the 3rd fre-
quency group (no filter).

Figure 3.47: Observed vs. synthetic data after 10 iterations of the inversion process for the
2nd frequency group (a,b) and the 3rd frequency group (c,d).
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changes in the models, because the bandwidth considered in the third frequency group (40
to 150 MHz) already contains most of the energy of the data. The data spectrum should be
whitened before continuing the inversion at higher frequencies.

Of course, the geological interpretation of the reconstructed images shown in Fig. 3.46
should be achieved with cautious. I remind that they are not final interpretable images since
they contain a strong finite-frequency imprint which causes non-physical oscillations at the
positions of interfaces. As a consequence, the apparent width of the interfaces should not be
interpreted as the thickness of the seals between two limestone strata (these seals are actually
smaller). Similarly, the apparent permittivity of these interfaces (red delineations) are probably
not characteristic values for their filling material. We can state, however, that the inversion
confirms and enhances the trend which we could already observed in the smooth initial model
of Fig. 3.23(b), with high-permittivity blocks at the beginning and at the end of the profile,
and one or several low-permittivity layers at the centre, which could indicate a (dry) material
with more fractures.

Knowing the frequency content of the source used for the inversion, some deconvolution
should be performed before further interpretation (but it is a tricky task because the oscillations
also contain the imprint of the acquisition). Alternatively, we may introduce some regularisation
in the inversion in order to obtain more interpretable images. Regularisation based on total
variation, for instance, might mitigate the oscillating appearance of the image and render a
blocky reconstruction more compatible with a geological interpretation (Castellanos-Lopez,
2014). Finally, forward simulations in hypothetical models could also help interpretation. In
particular, the response of water-, air- or clay-filled thin layers should be investigated to better
characterise the nature of the interfaces.
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Conclusions on the LSBB data set

Classical processing: Qualitative understanding of the data and quantitative con-
straints on the model

Full waveform inversion is not a first approach technique. Its application to real field data
requires a good knowledge of the data characteristics, as well as a priori information on the
quantitative properties of the underlying medium. A first and important interpretation step
thus consists in acquiring a qualitative understanding of the data and some quantitative con-
straints on the subsurface model, using classical processing methods.

The acquired single-offset profiles provide a first qualitative view of the main structures
(dipping interfaces), but also suggest more complex heterogeneities (reflector discontinuities,
diffractions). A systematic semblance analysis yields a 2D velocity model that has been proved
to be kinematically consistent with the observed data (with few local exceptions), and that
finally leads to satisfactory inversion results. In itself, however, this model is not of great help
for a fine interpretation of the karstic structures, because the derivation of interval velocities
from NMO velocities is not a stable process. Instead, the main trend of the velocity model can
be recast in a simpler model, which describes the subsurface as a succession of blocks separated
by dipping interfaces. Though simplistic, this blocky model well explains the complex pattern
of the recorded signal due to the interaction of the waves with the dipping reflectors and the air-
ground interface — including direct waves, reflected waves, multiples, reflected-refracted waves
and hidden zones. On the other hand, such a simple model fails to describe punctual diffractions
and, in its current form, the detailed undulations and discontinuities of the interfaces, which
causes cycle-skipping when this blocky model is used to start the inversion.

Processing steps towards FWI

Full waveform inversion being based on the comparison between observed and synthetic data,
several pre-processing steps must be performed to make this comparison possible, given that
the assumptions underlying our forward modelling tool do not allow to reproduce exactly the
observed data.

First, I have identified and eliminated out-of-plane events that could not be reproduce in
our 2D simulations (and that do not bring valuable information about the subsurface targets).
Applying a mute in the offset-time domain has been found to be the most convenient approach
for this elimination but was not possible on some offsets that must be ignored for the inversion.
Secondly, the data that we recorded in the true 3D world have been transformed to virtually 2D
data that could be fitted by the synthetic data. It has been found that the velocity contrast at
the air-ground interface should be considered in the correction to explain the relative amplitudes
of the direct air-wave and direct ground-wave, i.e. the energy distribution of the radiated field
between air and ground. I may underline, however, that the correction I applied remains a
crude approximation that could and should be improved. In particular, a collateral damage
of this approximate correction is that the amplitude of the direct ground-wave is erroneously
over-amplified at short offsets, which makes these data not usable for inversion.

The estimation of the source signature is known to be a major issue in FWI applications to
GPR data (Busch et al., 2012; Belina et al., 2012a,b). In the case of the LSBB data set, there
are two main obstacles to a simple source estimation:
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1. The available initial models are not accurate enough to predict all the observed events.
As a consequence, frequency-domain data computed in the initial models are far from
the observed ones, which results in a bias in the source estimation. To overcome this
point, I have performed the source estimation from selected traces that I have identified
as kinematically compatible with the observed data. In addition, I applied an exponential
time damping to select the early arrivals, direct air-wave and ground-wave, which were
well predicted by the synthetic model.

2. The distribution of the energy radiated into the ground greatly depends on the antenna
height above ground (Jiao et al., 2000; Diamanti and Annan, 2013). Moreover, the
unknown ground conductivity has an effect on the AVO of the signal, and therefore on
the source estimation: over-estimating the conductivity yields an over-estimated source
amplitude since the synthetic data are over-attenuated. As a result, I have estimated
suitable values for the antenna height and the mean conductivity simultaneously with
the source signature. I have retained the combination of ground conductivity, antenna
height and source wavelet that best fitted (qualitatively) the observed data, both in terms
of waveform and of amplitude vs. offset.

Preliminary FWI results and perspectives

A frequency-domain analysis of the data has been performed to select the adequate bandwidths
to be considered in the inversion. The plane wave analysis of Sirgue and Pratt (2004) presented
in Section 2.3.1 has been used to evaluate the illumination of the subsurface and the expected
wavenumber coverage. Though simplistic (1D approximation), this analysis suggests that a fine
frequency sampling is required to compensate the low redundancy provided by the acquisition.
It also motivates the need for starting at a very low frequency. Based on this analysis and of
the SNR, I choose a first frequency bandwidth between 40 MHz and 70 MHz which I extend
in a cumulative manner up to 150 MHz.

The results demonstrate that the inversion succeeds in fitting the data in the considered
frequency range. The obtained permittivity distributions are in accordance with the expected
subsurface structures. The two to three main reflectors are sketched out, in spite of the lack of
high frequencies in the inverted range. We obtain similar reconstructions and a similar data fit
when using the blocky model or the smooth NMO model, indicating that the inversion is able
to reconstruct the main reflectors from a smooth background. Sharp pre-existing reflectors are
thus not needed in the starting model. They may even mislead the inversion if they are not
well located.

Before continuing the inversion at higher frequencies, several aspects should be considered.
I list them below in priority order:

1. Data spectrum should be whitened such that all frequencies have the same weight in the
inversion process.

2. Although the obtained reconstructions seem qualitatively satisfying, they still display
some non-physical discontinuities due to cycle-skipping effects, in particular at depth
(z ≥ 4 m). Clearly, we are in a local minimum here. I suggest that the preliminary low-
frequency steps should be processed again using improved initial models, in order to avoid
this local minima. Then, further high-frequency steps could be performed, restarting from
models that do not induce cycle-skipping.
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3. From the pre-processing steps, it is obvious that efforts must be achieved in order to
better account for the observed amplitudes. This includes the following requirements:

(a) A more accurate 3D-to-2D conversion: the currently applied transformation is sus-
pected to degrade the quality of the data at short offsets (124 and 180 cm) by
over-amplifying the direct ground-wave.

(b) A refined estimation of the (effective) conductivity, eventually including lateral vari-
ations or a blocky representation. By effective, I mean that the estimated conduc-
tivity aims in a first time only at fitting the observed amplitudes, and should not
be interpreted as a physical conductivity value because of the trade-off between the
effects of the conductivity, of the source estimation, and eventually of the antenna
radiation pattern on the amplitudes.

(c) An evaluation of the impact of the antenna radiation pattern: because of the above-
mentioned trade-off, it is difficult to state the importance of this impact now. A
detailed analysis of the amplitudes vs. offset (i.e. emission/reception angles) should
be performed. Numerical simulations involving a detailed shielded antenna would
also provide additional insights (e.g. Warren and Giannopoulos, 2011; Diamanti and
Annan, 2013; Diamanti et al., 2013; Sagnard et al., 2013).

4. The estimation of the source signature is related to the problem of amplitude matching.
The source wavelet may be re-evaluated while the initial model, especially the conducti-
vity values, is improved. We might think about a more systematic way to estimate the
source signature, together with the values of conductivity and antenna height, eventually
using a global optimisation method (Sen and Stoffa, 1995).

5. In the previous results, I have avoided artefacts by stopping the inversion at an early
stage of convergence (10 iterations). To go further without introducing high-wavenumber
artefacts, a regularisation term should be introduced, which requires to find an adequate
regularisation weight λ. In particular, a regularisation term based on the total variation of
the model might attenuate the finite-frequency imprint and thus render more interpretable
images (Castellanos-Lopez, 2014). Alternatively, a model term could also be introduced
to add a priori information and guide the inversion process.
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Partial conclusion on real data inversion

In this chapter, I have presented two applications of the imaging algorithm to real datasets.

In Section 3.1, the consideration of laboratory data is the occasion to confront the accuracy
of the numerical method presented in Chapter 1 to physical data, as well as to validate the
workflow for multiparameter imaging proposed in Chapter 2. The well-controlled environment
of the experiment greatly simplifies the practical application of FWI to this dataset since the
initial model can be considered as homogeneous and equal to free space, and since the data can
be calibrated with regards to geometrical expansion and source signature using measurements
of the incident field. In contrast, when dealing with the field data acquired at the LSBB,
the design of the initial model and the estimation of the source signature is made difficult by
the complexity of the geological environment and by the influence of several non-controlled
parameters (conductivity and antenna height, essentially).

In both cases, it appears that a pre-requisite to data inversion is the fine understanding of
the data. This understanding is mainly attained through forward simulations in hypothetical
models. In the case of the Institut Fresnel data set, forward modelling enabled to validate the
accuracy of our modelling tool, to choose an adequate grid step to describe the targets, and
to test some hypothesis. In particular, it was possible to test the data sensitivity to the inner
filling of the copper tube, and thus to not over-interpret the inversion results in this zone. In
the case of the LSBB data set, forward modelling in a blocky model allowed to understand the
main features of the observed data, caused by wave interferences at the intersection between
the dipping interfaces and the ground surface. It also enables to test several combinations of
conductivity values and antenna height to estimate the source signature and understand how
to match the observed amplitudes.

The reader might have noticed the big gap between the methodological developments of
Chapter 2 based on synthetics and their applicability to real field data. Actually, the study
of the LSBB data set is preliminary in two respects. In the view of a multiparameter imaging
seeking for both permittivity and conductivity distributions to understand the hydrogeology
of the limestone massif, this study constitutes a first monoparameter step to improve the per-
mittivity model, whose accuracy is critical for a correct reconstruction of conductivity in the
subsequent multiparameter stage (see Chapter 2). Within the monoparameter step, the work
presented above considers only the starting phase of FWI, i.e. the design of the initial model,
the estimation of the source signature, and the inversion of a few groups of low to medium fre-
quencies. This preliminary processing should be improved before continuing towards inversion
of higher frequencies and multiparameter reconstruction. But it already provides promising
results in the sense that FWI is able to fit the data in the considered frequency bandwidth, and
to reconstruct reflectors from a smooth initial model. A more accurate understanding of the
separate effects of the air-ground interface and of the antenna characteristics on the observed
amplitudes is required to envisage a quantitative estimation of conductivity.
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Conclusive sum-up

The aim of my work was to develop a quantitative imaging method based on the full waveform
inversion of GPR data. I dedicated the first part of this thesis to the forward problem, which
consists in simulating the propagation of electromagnetic waves in 2D heterogeneous natural
media. In the second part, I addressed the inverse problem, i.e. the reconstruction of 2D
distributions of permittivity and conductivity from multi-offset GPR measurements. Finally,
I was able to validate the proposed methodology against laboratory-controlled data and I
addressed the issue of its application to real field data.

Forward problem

In Chapter 1, I first presented the system of Maxwell’s equations that governs the propagation
of electromagnetic waves. Based on these equations and on the constitutive relations that de-
scribe the electrical response of dielectric conductive materials, I drew the general behaviour
of EM waves in natural non-magnetic media. At first order, electromagnetic wave velocity is
controlled by the dielectric permittivity while the static conductivity governs diffusive processes
and has mainly an attenuation effect. At low frequencies, static conductivity also induces a dis-
persion of the propagation velocity. At a second order, dispersion occurs in natural media due
to their transient response to the electric excitation. This effect can be naturally taken into ac-
count when the computation is performed in the frequency domain, using frequency-dependent
electromagnetic parameters in the constitutive relations. This hierarchy of the electromagnetic
processes in natural materials has driven the choice of the parameters considered for inversion,
which were restricted to real-valued, frequency-independent permittivity and conductivity, such
as to explain the first order response of the investigated media.

In a second section of Chapter 1, I presented the numerical method used for the simulation
of electromagnetic wave propagation in 2D heterogeneous media. The method makes use of a
frequency-domain finite-difference algorithm (FDFD) initially developed for the simulation of
seismic waves in the visco-acoustic approximation (Hustedt et al., 2004; Operto et al., 2009).
With hindsights, the motivation for working in the frequency-domain is rather numerical than
physical, and I discuss this point in the following. The modelling algorithm is based on a mixed
grid stencil whose coefficients can be tuned to minimise the errors due to numerical dispersion
and anisotropy (Jo et al., 1996). I studied this property in details to ensure a good utilisation
of the method and validated my implementation against analytical solutions in a homogeneous
medium. In Chapter 3, the confrontation of the numerical solutions to laboratory-controlled
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experimental data demonstrated the accuracy of the simulations in presence of heterogeneous
targets.

The visco-acoustic FDFD modelling could be adapted to the electromagnetic propagation
problem using a mathematical analogy between the first-order systems of electromagnetic and
acoustic equations, provided that a two-dimensional geometry is assumed for the medium and
for the propagation. The 2D approximation is further motivated by the reduced computational
cost of 2D simulations compared to 3D modelling, and corresponds to the current acquisition
capability of GPR measurements (performing dense multi-offset measurements along a profile
for 2D imaging is already a tedious task). On the other hand, assuming a 2D propagation in-
duces strong limitations on the interpretation of the simulated amplitudes. In a well-controlled
environment, amplitudes can be corrected to match physical data (see Section 3.1). In the case
of real field data, however, amplitude matching requires the application of ad hoc 3D-to-2D
conversions which are far from satisfying.

Inverse problem

In Chapter 2, I provided a short overview of inverse problem theory and detailed the key
properties of the specific FWI problem, which is an ill-posed, non-linear, large-scale problem.
In virtue of these characteristics, the FWI of GPR data for the imaging of permittivity and
conductivity has been formulated as a local optimisation problem and solved using the quasi-
Newton L-BFGS algorithm. In this algorithm, the consideration of the effect of an approximate
inverse Hessian on the model update should partially correct for the different dimensionalities
of the parameters and for the different sensitivities of the data with respect to permittivity
and conductivity. In practice, however, numerical tests on a cross-shaped benchmark originally
proposed by Meles et al. (2011) display a great sensitivity to parameter scaling, suggesting that
the L-BFGS approximation of the inverse Hessian is not appropriate, and/or that the problem
does not honour the quadratic approximation. On a more realistic subsurface benchmark, it
has been shown that allying parameter scaling and regularisation allows one to select reasonable
model solutions on the basis on the data misfit only, analysed for a range of scaling factors and
regularisation weights. The imaging algorithm was then able to reconstruct 2D permittivity and
conductivity distributions from data acquired in a surface-to-surface configuration. Intuitively,
the selected tuning factors provide a well resolved image of the well constrained parameter (the
permittivity in the synthetic subsurface benchmark) and a smooth reconstruction of the poor
constrained parameter (conductivity in the synthetic example).

Following the presentation of this workflow, I supplied additional insights into some key
features of FWI. In particular, the gradient of the misfit function has been derived and inter-
preted in terms of its resolution capability in the imaging process. A short discussion based on
the analysis of Sirgue and Pratt (2004) further illustrated the fundamental difference between
surface and crosshole GPR experiments, as a complement of the sensitivity analysis provided
by Meles et al. (2012).

Application to real data inversion

In Chapter 3, I confronted the imaging algorithm to two real data sets. The experimental data
from the Institut Fresnel first enabled to validate the proposed workflow for mono-parameter
and multi-parameter imaging. The well controlled laboratory environment of this experiment
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offers a favourable situation for the application of FWI. In particular, the initial model and
the source signature were either known or accurately calibrated. Actually, this application
appeared less critical than the synthetic examples since regularisation alone was able to mitigate
the indetermination and to erase the artefacts arising in the image of the less constrained
parameter (the permittivity, in this case). On the modelling point of view, it has been the
occasion to challenge the accuracy of the numerical simulations against high-quality physical
data. It was also the opportunity of a small excursion into the field of integral methods which
offered an elegant alternative to brute force FDFD calculations by restricting the computation
domain to the zone of interest.

The application of FWI to on-ground GPR field data is much more challenging because of
several non-controlled parameters: the searched permittivity and conductivity distributions, of
course, but also the source signature, and even the precise antenna height, that controls the
distribution of the radiated energy between air and ground. As a consequence, the treatment
of the LSBB data that has been presented here is only a prologue to the interpretation of
this rich data set. First, it is restricted to a preliminary mono-parameter estimation of the
permittivity model, which is expected to explain most of the observed data and without which a
subsequent multi-parameter inversion cannot be envisaged. Secondly, I considered the inversion
of a few groups of low to medium frequencies, the early stages in a Bunks’ approach. Finally, I
principally investigated how to design a suitable initial model and estimate the source signature
for starting the FWI.

It has been found that the consideration of the velocity contrast at the air-ground interface
in the 3D-to-2D conversion was required to explain the relative amplitudes of the direct air-
wave and ground-wave. A procedure has been designed to estimate the source wavelet from
selected observed traces where the direct air-wave and ground-wave could be well matched by
synthetic ones. Performing the source estimation for various combinations of antenna heights
and conductivity values enabled to deduced rough estimates for these non-controlled parame-
ters, together with the source signature. However, an amplitude mismatch could be observed
between short and long offsets, suggesting an effect of the antenna shielding on the radiation
pattern, resulting in a biased AVO of the signal.

A frequency-domain analysis of the data based on the approach of Sirgue and Pratt (2004)
served as a guiding rule for choosing the first frequency bandwidth to be inverted. The limited
redundancy provided by the acquisition required a fine frequency sampling and a low starting
frequency. The inversion could fit the data in the inverted frequency band, starting either
from the first-order blocky model or from a smooth permittivity model derived from velocity
analysis. Nevertheless, cycle-skipping occurred locally, indicating the need for a refined starting
model before continuing the inversion at higher frequencies. The reconstructed permittivity
models and the final data fit obtained using the smooth NMO model and the blocky model are
very similar, indicating that the inversion does not need pre-existing reflectors in the starting
model but can create them by fitting the data. Continuing the inversion process up to the peak
frequency of the data spectrum enables to sharpen the contrasts in the reconstructed image
but a pre-whitening is required for exploiting the full frequency bandwidth.
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Perspectives

Forward perspectives: 3D modelling and simulation of the antenna radiation
pattern

A direct consequence of the difficulties encountered with the LSBB data set to match the
observed amplitudes is the motivation for a 3D modelling that would directly simulate real-
world data. This is a classical perspective given to most 2D studies but I specify that I do not
envisage 3D modelling for 3D imaging, but primarily to ensure a consistent simulation of the
amplitudes. Indeed, full 3D FWI of GPR data seems quite far today, not only because of the
computational burden of simulating and inverting data in a 3D model, but also due to data
acquisition. GPR does not benefit of the same acquisition capabilities as the oil industry and
acquiring dense multi-offset GPR data along a single profile for a correct 2D imaging seems
already a challenging-enough task.

Another point that may be developed to further improve the simulation and inversion of
real field data is the consideration of the antenna radiation pattern. Before going in this
direction, however, the real impact of antenna shielding on multi-offset data and on their
inversion should be carefully investigated. This probably requires a multi-method approach,
involving detailed numerical simulations of realistic antennas (e.g. Lampe and Holliger, 2005;
Warren and Giannopoulos, 2011; Diamanti and Annan, 2013; Sagnard et al., 2013), accurate
laboratory measurements of real antennas characteristics (Lutz, 2002; Sagnard et al., 2013) and
in situ measurements to study the effect of antenna ground-coupling and of laterally variable
media (Jiao et al., 2000). Finally, if the effect of the antenna radiation pattern is found to
be critical for the FWI to match the recorded amplitudes, it should be investigated how it is
possible to include the complex radiation pattern of real antennas in the forward modelling.
Ideally, an effective source should be implemented, that would mimic the radiation of a real
antennas without having to detail its structure as part of the model. Some food for thought
are given by e.g. Carcione (1998) and Lambot et al. (2004, 2010) to reach this goal.

Inverse perspectives: optimisation issues, extension to other parameters and
other data

Towards better estimations of the Hessian

On the methodological point of view, the large sensitivity of the optimisation to the parameter
scaling is not satisfying. It suggest that the L-BFGS algorithm poorly approximates the effect of
the inverse Hessian on the descent direction. To overcome this limitation, we might opt for more
complete approximation of the Newton method, e.g. the truncated Newton method (Métivier
et al., 2013) that solves the Newton system at each non-linear iteration of the optimisation,
using a conjugate gradient method. The question of knowing if it will erase the sensitivity to
the scaling factor β is still open. I expect that it will improve the situation, but not totally solve
it if the initial model is too far from the domain of validity of the quadratic approximation.

Furthermore, an important aspect in optimisation techniques that I did not investigate is
preconditioning. Preconditioning can be seen as a change of variables that aims at rendering the
Hessian matrix more diagonal. Hence, preconditioning also contributes to mitigate the trade-off
between permittivity and conductivity and might be investigated to solve this problem.
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Reconstruction of dispersive parameters

In my synthetic tests, data displayed a very low sensitivity to the parameters n and χr of the
Jonscher’s parameterisation (see Section 2.3.4). Therefore, I am quite pessimistic concerning
the reconstruction of these parameters in 2D. However, data sensitivity of course depends on
the considered dataset, and thus on the investigated medium. In some cases (e.g. a stratified
strongly dispersive medium such as clay, silt, or schist layers), it may be possible to retrieve
these parameters through a 1D inversion with the methodology of van der Kruk et al. (2006) or
through a 1D FWI following the approach of Kalogeropoulos et al. (2011); Busch et al. (2012).

Joint inversion

Following Meles et al. (2013), I should indicate the possibility of separately or jointly invert data
acquired in TE and TM configurations. I should mention, however, that preliminary tests on
the realistic subsurface benchmark of Section 2.2 do not exhibit significant differences between
TE and TM inversions. The benefit of joint TE-TM inversion probably depends on the dataset,
i.e. on the investigated medium. For instance, the presence of thin layers acting as wave guides
can result in TE and TM data having a different frequency content (van der Kruk et al., 2006,
2012) due to the different reflection coefficients for TE and TM. The difference in reflection
coefficients should also results in different sensitivities to permittivity and conductivity.

Beyond the TE-TM problematic, FWI of GPR data could be extended to other components
of the electric field, in particular to cross-polarised components. Multicomponent data are
expected to bring much more information in 3D media where depolarisation effects can happen
(Lutz et al., 2003). But this extension is not possible within the 2D approximation: it is
another motivation for a full 3D modelling.

Finally, we could think about combining GPR data with other geophysical measurements.
In a first time, electromagnetic induction (EMI) or electrical resistivity tomography could
easily furnish an estimation of smooth initial models for the conductivity. To go further, the
methodological tools developed in this thesis could allow one to envisage the FWI of multi-offset
EMI data for getting a smooth model of conductivity that could be used as a starting model for
the FWI of GPR data. Finally, we might attempt on the long-term at jointly inverting GPR
and EMI data, but it would require the simulation of electromagnetic fields in very different
frequency ranges, which might be problematic on the modelling point of view.

I have a more reserved opinion on joint inversion schemes that mix data coming from dif-
ferent physical processes, such as GPR and seismics (e.g. Tronicke et al., 2011; Rumpf and
Tronicke, 2014). In my understanding, when considering data (e.g. GPR and seismic travel-
times) that are sensitive to different physical parameter types (e.g. permittivity and P-wave
velocity), the additional constraints on the reconstruction of each parameter type come prin-
cipally from the underlying geometrical assumptions (i.e. the hypothesis that both parameter
types vary simultaneously from a layer to another).

193



CONCLUSION AND PERSPECTIVES

Applicative perspectives: starting model, source estimation and acquisition
design

Building the starting model: Reflection tomography and FWI

GPR data contain mostly reflections that bring few low wavenumbers to the FWI process. The
design of an accurate initial model is thus crucial: the initial model should contain the missing
low wavenumbers to enable the correct relocation of the reflectors. In Section 3.2, I performed
a classical velocity analysis, based on semblance analysis and event picking, and I sometimes
corrected the resulting velocity models iteratively by comparing synthetic data generated in
these models with the observed data to check their kinematic compatibility. We could think
about more systematic ways to design the initial model.

On-ground GPR data generally present a clear hierarchy of direct and reflected arrivals
which can be (almost) unambiguously separated. GPR data are therefore well suited for the
application of seismic reflection methods, as reflection tomography (Bradford, 2006, 2008), as
well as of emerging reflection FWI methods that were recently developed to circumvent the
problem of poor starting models (Brossier et al., 2014). These methods are based on the
decoupling between a smooth background velocity model, which is reconstructed first, and
a high-wavenumber reflectivity model, introduced via sharp discontinuities in density which
are reconstructed in an iterative way when the background velocity enables to relocate them
accurately. However, the adaptation of these methods to the GPR case is not straightforward
since the electromagnetic impedance mainly depends on the (effective) permittivity and on the
magnetic permeability, i.e. on the effective permittivity only in non-magnetic media.

Source estimation

Similarly, we could think about more systematic ways of estimating the source signature, using
e.g. global optimisation methods (Sen and Stoffa, 1995), given that it strongly depends on the
unknown antenna height and on the ground conductivity.

Moreover, efforts might be made for estimating the source signature from reflected events,
which are more representative of the signal injected into the ground than the direct air and
ground waves. It requires, however, to have a good a priori knowledge on the reflectivity of
some reflectors. This knowledge could result from a classical velocity analysis leading to a
blocky model, as done in Section 3.2.2.3, or preferentially from a reflection tomography.

Adequate acquisition design for FWI of on-ground GPR data

The application to the field data set acquired at LSBB gives rise to important conclusions
concerning the acquisition setup required for FWI. If new data should be acquired at the
LSBB, I would strongly recommend to perform more common-offset profiles, or alternatively,
to perform the acquisition in a shot-gather configuration, which offers several key advantages.
First, shot-gather acquisitions ensure a finer offset sampling, which is critical in FWI for a
correct wavenumber coverage (see Fig. 3.34) but also in the preliminary study for velocity
analysis based on the CMP gathers. It makes also possible to acquire data for larger offsets
without limitations coming from the link between antennas. Indeed, data acquired at LSBB
with a maximal offset of 8.34 m still contain a lot of valuable signals: larger offsets would bring
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an important low wavenumber information on the subsurface. Secondly, acquiring data in shot
gathers would enable to estimate one source signature per transmitter locations to account
for lateral variations of ground properties and of antenna-ground coupling1. Finally, on a
computational point of view, inverting shot-gathered data would be more economical since it
reduces the number of source positions to be simulated. The only drawback of acquiring data
in shot-gather configuration resides in a long and tedious acquisition since numerous source
positions must be successively acquired to achieve the same lateral sampling as with common-
offset acquisitions. Nevertheless, it is certainly worth spending time to acquire reliable data if
it facilitates their processing and interpretation.

Discussion: Time vs. frequency domain FWI of GPR data

In this thesis, I worked in the frequency domain rather than in the time domain, contrary to
the studies by Ernst et al. (2007) and Meles et al. (2010). I may now comment this basic
assumption.

Retrospectively, it appears that the arguments for working in the frequency domain fall
mainly under computational considerations. On the forward modelling point of view, it takes
benefit from the capability of direct solvers like MUMPS to treat efficiently multiple sources.
Concerning inversion, frequency-domain FWI has been promoted by Pratt and Worthington
(1990) to take benefit of the data redundancy provided by dense seismic acquisitions. Of course,
frequency-domain modelling and inversion are particularly suited when considering frequency-
domain measurements, such as the Institut Fresnel data set (section 3.1). For the consideration
of time-domain GPR data, however, frequency-domain inversion seems less attractive.

First, GPR acquisitions generally provide data which are far less redundant that seismic
data and which can not be dramatically decimated: performing frequency-domain FWI is
definitely less justified if the inversion of each frequency component of the time-domain signal
is required (which is almost the case in Section 3.2, though in a reduced frequency bandwidth).
This remark, however, also claims for denser GPR acquisitions.

A second point concerns the description of dispersive materials, which is the main physical
motivation for working in the frequency domain. The introduction of dispersive parameters
in the forward modelling is certainly more satisfying to describe the natural media, but the
reconstruction of their 2D distributions through an inversion procedure seems for now hardly
feasible, given the ill-posedness of multi-parameter inversion when considering only two pa-
rameter classes (Section 2.2) and the small sensitivity of the data to dispersive parameters
(Section 2.3.4). Thus, I have to recognise that all my developments about multi-parameter
imaging could have been done in the time-domain, since I consider constant, real-valued per-
mittivity and conductivity parameters.

1Note however that the problem of source estimation is actually symmetric for the transmitting and receiving
GPR antennas. There is no particular reason to estimate the source signature rather than the receiver response,
but we cannot estimate a transfer coefficient for each source-receiver pair since it would amount to fit the data
without inverting for a subsurface model (in fact, when optimising a source coefficient, we include the receiver
response in the source signature). Moreover, Belina et al. (2012b) suggest that a global source estimation is a
reasonable approximation in the case of crosshole GPR data acquired in weakly to moderately heterogeneous
media. It should be investigated whether this conclusion applies in the case of on-ground GPR, where the
variation of antenna-ground coupling might be more pronounced.

195



CONCLUSION AND PERSPECTIVES

Finally, frequency-domain FWI leaves very little flexibility in the data processing step
compared to time-domain FWI where identified events can be selected and fitted separately.
This lack of flexibility makes an important difference when dealing with complex data sets
that require successive processing and inversion steps to ensure a hierarchical treatment of the
information.

Before claiming the superiority of time-domain FWI for GPR data, however, it is worth not-
ing firstly that I did not investigate the question in details, and secondly that Meles et al. (2013),
who are deeply involved in time-domain FWI, now promote to move to frequency-domain FWI
in their recent review. Among their arguments to do so, we can find the consideration of disper-
sive parameters and the decimation of the inverted frequencies using the multi-scale approach,
two points that my previous remarks have partially attenuated (partially only because the
multi-scale approach remains more efficient in the frequency domain than in the time domain,
where all data must be computed before throwing the high frequency part of the spectrum).

Meles et al. (2013) also point out the need for modelling realistic GPR sources. In this
respect, frequency-domain modelling probably offers more flexibility than time-domain simu-
lations. For instance, the problem of hard vs. soft sources mentioned by these authors, which
refers to the order of the time-derivative of the input signal (electric field or current) is to-
tally transparent in the frequency-domain where the source can have an arbitrary complex
spectrum. Similarly, building an effective source that radiates like a realistic GPR antennas
might be more straightforward to implement in the frequency-domain, where hard sources
can be easily superimposed, than in the time-domain, where injecting an imposed solution in
the grid creates point sources that act as diffracting points for back-scattered waves. In the
time-domain, the integral representation presented in Section 3.1 can be used to perform a
near-to-far field transformation of scattered fields after Fourier transformation (Taflove and
Hagness, 2005, chap. 8) but it cannot be used to inject the incident wave coming from the far
field in the zone of interest. To do so, time-domain numerical schemes must be modified using
(e.g.) the total-field/scattered-field technique (see Taflove and Hagness, 2005, §5.6, p. 186).

Apart from the multi-scale approach, that should remain efficient for densely acquired data
sets, the easy management of hard sources is probably the main advantage of working in the
frequency domain, and could enable in a near future the modelling of effective sources to
simulate the complex radiation pattern of realistic GPR antennas. In 3D, frequency-domain
FWI could also avoid complex and expensive checkpointing techniques required for computing
the gradient by convolution of attenuated time-domain wavefields in the entire domain.
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Appendix A

Adjoint state method using a
Lagrangian formulation

From Chapter 2, the reader has retained that the full waveform inversion problem can be
formulated as the following least-square minimisation problem

min
m

1

2

∥∥dobs − dcal(m)
∥∥. (A.1)

In this section, I explain how this problem can be seen as a constrained optimisation problem.
This point of view constitutes the adjoint state formulation sensu stricto (Plessix, 2006) and
offers a more general framework for the derivation of further developments.

In addition to the requirement that the solution model m should explain the observed
data (eq. A.1), constraint is given by the fact that the data result from the measurement of
a wavefield u(m). This wavefield must verify the wave equation, which is represented by the
forward problem

A(m)u(m) = s. (A.2)

For completeness, an additional constraint comes from the relation between the simulated field
u(m) and the data used in the inversion dcal(m), which can be expressed as

dcal(m) = Pu(m) =

{
Ru(m) with u = Ey in TE mode,
RDu(m) with u = Hy in TM mode,

(A.3)

where D =
1

ıωεe

(
cos θr

∂

∂z
− sin θr

∂

∂x

)
.

In TE mode, the operator P is simply the projection R of the wavefield onto the receiver
locations. In TM mode, this operator also includes the derivation D of the recorded electric
field from the simulated magnetic field (see Section 1.1.3.2).

To represent these requirements, a Lagrangian function can be defined as

L (m,d,u,v,w) =
1

2

∥∥dobs − d
∥∥2

+ <e
〈
d− Pu,w

〉
+ <e

〈
A(m)u− s,v

〉
, (A.4)

where 〈x,y〉 = x∗y denotes the Hermitian scalar product for any vector x and y in the complex
space Cn, n being either NM or ND, depending on whether the scalar product is achieved in
the space of the wavefields or in the data space, respectively.
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Each term of the Lagrangian function corresponds to a given requirement and involves
Lagrangian multipliers v and w, also called adjoint variables. Hence, the Lagrangian function
recaps the different ingredients of the inverse problem. An intuitive reading of the function
would be, from the left to the right,

1. we seek to minimise the distance between observed and calculated data,

2. the calculated data d are extracted from a wavefield u,

3. the wavefield u should verified the wave equation in a given model m.

Note that the arguments m, d, u, v and w are considered as independent variables. In
particular, u and v denote arbitrary wavefields, a priori different from the particular forward
and adjoint fields u and v we have seen until now, and which were related to the model m
through the forward and the adjoint problems. In the following, we shall see that the relations
between these variables naturally arise from the Lagrangian formulation.

Solving the optimisation problem amounts to find the saddle points of the Lagrangian
function, which are given by

∂L

∂m
(m,d,u,v,w) = 0 =

∂

∂m

(
<e
〈
A(m)u− s,v

〉)
, (A.5)

= <e
〈
∂A(m)

∂m
u,v

〉
,

∂L

∂v
(m,d,u,v,w) = 0 =

∂

∂v

(
<e
〈
A(m)u− s,v

〉)
, (A.6)

= <e
{
A(m)u− s

}
,

∂L

∂w
(m,d,u,v,w) = 0 =

∂

∂w

(
<e
〈
d− Pu,w

〉)
, (A.7)

= <e
{
d− Pu

}
,

∂L

∂u
(m,d,u,v,w) = 0 =

∂

∂u

(
<e
〈
A(m)u− s,v

〉)
+

∂

∂u

(
<e
〈
d− Pu,w

〉)
, (A.8)

∂L

∂d
(m,d,u,v,w) = 0 =

∂

∂d

(
1

2

∥∥dobs − d
∥∥2
)

+
∂

∂d

(
<e
〈
d− Pu,w

〉)
. (A.9)

Considering equation (A.6), we retrieve an expression similar as the gradient of Chapter 2
(eq. 2.43):

Gi(m) =
∂L

∂mi
= <e

{
u†
∂A(m)†

∂mi
v

}
, (A.10)

but the variables u and v still have to be determined. In the following, I show that this
expression effectively corresponds to the gradient of the misfit function presented in Chapter 2,
provided that u and v verify the forward and the adjoint equation, respectively.

Indeed, looking at the second saddle point (A.7), we see immediately that it is has for
solution the field u(m) verifying the forward problem:

if u = u(m) such that A(m)u(m) = s, then <e
{
A(m)u− s

}
= 0. (A.11)

Similarly, the third saddle point (A.8) yields the relation between the inverted data and the
simulated field, d = Pu, so we have well

d = dcal(m) = Pu(m). (A.3 again)
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It remains to determine the adjoint variable v in the gradient expression (A.10). It is given
by eq. (A.8). Actually, this equation poses a problem since it is not trivial to compute deriva-
tives with respect to the complex variable u 1. Following the definition of Fréchet derivatives,

∂L

∂u
(m,d,u,v,w) = lim

‖δu‖→0

L (m,d,u + δu,v,w)−L (m,d,u,v,w)

‖δu‖
, (A.12)

we can state that a sufficient condition for satisfying the saddle point (A.8) is to verify

L (m,d,u + δu,v,w)−L (m,d,u,v,w) = 0, ∀ δu→ 0, (A.13)

where

L (m,d,u + δu,v,w) = <e
〈
A(m)(u + δu)− s,v

〉
+ <e

〈
d− P(u + δu),w

〉
,

= <e
〈
A(m)u− s,v

〉
+ <e

〈
d− Pu,w

〉

+<e
〈
A(m)δu,v

〉
+ <e

〈
Pδu,w

〉
.

So, we have

L (m,d,u + δu,v,w)−L (m,d,u,v,w) (A.14)

= <e
〈
A(m)δu,v

〉
+ <e

〈
Pδu,w

〉
,

= <e
〈
δu,A(m)†v

〉
+ <e

〈
δu,P†w

〉
, (by definition of the adjoint, 〈Mx,y〉 = 〈x,M†y〉)

= <e
〈
δu,A(m)†v + P†w

〉
. (by sesquilinearity of the Hermitian scalar product)

Since eq. (A.13) must be verified ∀ δu→ 0, we must have

A(m)†v + P†w = 0,

which is nothing but the adjoint equation

A(m)†v = −P†w, (A.15)

where the adjoint source −P†w must still be determined, using the last saddle point (A.9). The
derivative with respect to the complex variable d is treated as the previous one, by computing

L (m,d + δd,u,v,w) =
1

2

∥∥dobs − d− δd
∥∥2

+ <e
〈
d + δd− Pu,w

〉
,

=
1

2

∥∥dobs − d
∥∥2 −<e

〈
dobs − d, δd

〉
+

1

2

∥∥δd
∥∥2

+<e
〈
d− Pu,w

〉
+ <e

〈
δd,w

〉
.

So, using the same manipulations as for eq. (A.14), we have

L (m,d + δd,u,v,w)−L (m,d,u,v,w) = −<e
〈
dobs − d, δd

〉
+ <e

〈
δd,w

〉
+

1

2

∥∥δd
∥∥2
,

= −<e
〈
dobs − d + w, δd

〉
+

1

2

∥∥δd
∥∥2
,

1I did not raise this problem for eqs (A.7) and (A.8) because the relation ∂zz = 1 is quite intuitive, and
mathematically correct, even in the complex space.
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which must be zero ∀ δd→ 0. So we deduce the expression of the adjoint variable w, which is
nothing but the data residuals:

w = d− dobs. (A.16)

Replacing the variables of the Lagrangian function with their actual expressions, we well
retrieve the same adjoint equation as in Chapter 2:

A(m)†v(m) = P†(dobs − dcal(m)), (A.17)

and the resulting adjoint wavefield v(m) can now be injected in the gradient expression (A.10):

Gi(m) = <e

{
u(m)†

∂A(m)†

∂mi
v(m)

}
. (A.10 again)

The development of the adjoint state method using Lagrangian multipliers may appear
quite artificial here because the gradient (A.10) can be computed using the simple derivation of
Section 2.3.1. But it is a more general formulation since it enables to include further constraints
to the optimisation. It is also very flexible and provides a systematic method for computing
the gradient for various parameterisations, observables or misfit criteria, while the derivation
presented in Section 2.3.1 does not always authorise to differentiate the misfit function with
respect to the wavefield u(m) in a straightforward way. Finally, this formulation makes possible
the development of second-order adjoint methods that permit an efficient resolution of the
Newton system (Métivier et al., 2013).
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Appendix B

Complete LSBB data set

B.1 Raw common-offset sections

Here I present the complete LSBB data set. Correction for to and constant component removal
have been applied, as well as an amplitude saturation using perc=97.



COMPLETE LSBB DATA SET
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B.2 Processed common-offset sections

B.2 Processed common-offset sections

Here are the pre-processed data. Processing consisted in 3D-to-2D conversion and in muting
the parasite reflected air-wave (RAW in Fig. 3.21). Again, amplitudes are saturated using
perc=97.
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B.3 Filtered common-offset sections

B.3 Filtered common-offset sections

Filtering is applied using sufilter f=38,40,69,71 MHz, which makes use of a zero-phase,
sine-squared tapered filter (Cohen and Stockwell, 2008).
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B.4 Frequency-domain data

B.4 Frequency-domain data

Here I represent the observed data in the frequency-domain, after 3D-to-2D conversion and
with their true amplitudes. Contrary to Figs 3.38, 3.39, 3.43 and 3.44, no data weighting vs.
offset has been applied. All the offsets are shown, including those that are not inverted.

(a) Frequency 40 MHz.

(b) Frequency 70 MHz.

(c) Frequency 100 MHz.

(d) Frequency 150 MHz.
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(e) Frequency 200 MHz.

(f) Frequency 250 MHz.

(g) Frequency 300 MHz.
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B.5 Time-domain data fit

B.5 Time-domain data fit

For each figure, panels (a) and (b) present synthetic data computed in the initial NMO model
of Fig. 3.23(b) (green line) and in the corresponding final reconstructed model of Fig. 3.41(b)
(blue line). In panels (c,d), synthetics are computed in the initial blocky model of Fig. 3.26
(green) and in the corresponding final reconstructed model of Fig. 3.41(a) (blue). Panels (a,c)
present data filtered in the frequency range considered for inversion (40-70 MHz) whereas panels
(b,d) show the time-domain traces in the full frequency band.

I remind that offsets number 1, 2, 5, 6 and 7 are not considered in the inversion. Data are
normalised trace-by-trace with the observed amplitudes as reference, so that amplitudes are
comparable between the data sets.
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(a) CMP 100, NMO model (40-70 MHz).
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(b) CMP 100, NMO model (no filter).
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(c) CMP 100, blocky model (40-70 MHz).
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(d) CMP 100, blocky model (no filter).

Figure B.1: Observed vs. synthetic data at CMP 100.
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(a) CMP 200, NMO model (40-70 MHz).
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(b) CMP 200, NMO model (no filter).
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(c) CMP 200, blocky model (40-70 MHz).
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(d) CMP 200, blocky model (no filter).

Figure B.2: Observed vs. synthetic data at CMP 200.

210



B.5 Time-domain data fit
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(c) CMP 300, blocky model (40-70 MHz).
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Figure B.3: Observed vs. synthetic data at CMP 300.
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(c) CMP 400, blocky model (40-70 MHz).
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Figure B.4: Observed vs. synthetic data at CMP 400.
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B.5 Time-domain data fit
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Figure B.5: Observed vs. synthetic data at CMP 500.
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Day-Lewis, F. D., Lane Jr., J. W. J., Harris, J. M., and Gorelick, S. M. (2003). Time-lapse imaging
of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water
Resources Research, 39(10):1290.

Day-Lewis, F. D., Singha, K., and Binley, A. M. (2005). Applying petrophysical models to radar travel
time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of Geophysical
Research, 110(B8).

218

http://www.clippercontrols.com/pages/Dielectric-Constant-Values.html#C
http://www.clippercontrols.com/pages/Dielectric-Constant-Values.html#C


BIBLIOGRAPHY

Debye, P. (1929). Polar molecules. Chemical Catalogue Co.

Deeds, J. and Bradford, J. (2002). Characterization of an aquitard and direct detection of LNAPL at
Hill Air Force base using GPR AVO and migration velocity analyses. In 9th International Conference
on Ground Penetrating Radar (GPR 2002), Santa Barbara, California (USA), volume 4758 of SPIE
proceedings series, pages 323–329.
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Grégoire, C. (2001). Fracture characterization by Ground Penetrating Radar. PhD thesis, Katholieke
Universiteit Leuven.
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List of notations

Hereafter is a list of some notations and abbreviations which the reader can find throughout the
manuscript and which are generally defined only at their first use. This list might be not exhaustive
and does not include notations which appear locally in the text.

∗ complex conjugate operator
† adjoint operator
∼ of the order of
' approximately equal to
∝ proportional to

α attenuation coefficient (in m−1)
α descent step length
A Ampère units
A impedance matrix

AVO amplitude-vs-offset
AW (direct) air-wave

β propagation wavenumber (in m−1)
β parameter scaling factor
B magnetic induction vector (in T)
B approximate Hessian matrix

C Coulomb units
C misfit function
Cd data covariance matrix
C ensemble of complex numbers

CMP common mid-point

δ perturbation
δ(x) Dirac delta function
tan δ loss tangent
∆m model perturbation vector
D electrical induction vector (in C/m2)
D data space (= CND )
d data vector
dobs observed data
dcal synthetic data

ε dielectric permittivity (in F/m)
εo dielectric constant in vacuum

(εo = 1/(µov
2
o) ' 8.85× 10−12 F/m)

εr = ε/εo relative permittivity

E electric field vector (in V/m)
eq. equation

F Farad units
f frequency (Hz)

fx, fz mechanical forces
Fig. Figure
freq. frequency
FWI full waveform inversion

G gradient vector
GPR ground-penetrating radar
GW (direct) ground-wave

H Hankel function
H magnetic field vector (in A/m)
H Hessian matrix
Hz Hertz units

ı imaginary unit
=m imaginary part
it. iteration(s)

J current density vector (in A/m2)
J Jacobian matrix

k iteration number
k complex wavenumber
K bulk modulus (in Pa)

λ wavelength (in m)
λ Tikhonov regularisation weight
L Lagrangian functional



LIST OF NOTATIONS

L-BFGS-B Limited Broyden-Fletcher-Goldfarb-Shanno Bounded algorithm
LSBB Laboratoire Souterrain à Bas Bruit (Low Noise Underground Lab)

LU factorisation Lower Upper factorisation

µ magnetic permeability (in H/m; in vacuum, µo = 4π × 10−7 H/m)
m model vector
mo starting model
mk current model at iteration k
mi model parameter at grid point i
M model space (= RNM )

MRW multiply-reflected wave

ND number of data
NM number of model parameters
Ns number of sources
Nω number of inverted frequencies

NMO normal move-out

P acoustic pressure (in Pa)
Pa Pascal units

q electric charge density (in C/m3)

ρ mass density (in kg/m3)
r position vector
R restriction operator to receivers
R ensemble of real numbers
<e real part
RW reflected wave

RAW reflected air-wave
RRW reflected-refracted wave

S Siemens units
σ electrical conductivity (in S/m)
σo reference conductivity (in S/m)

σr = σ/σo relative conductivity
SNR signal over noise ratio
src source

SVD singular value decomposition

t time (in s)
T Tesla units
T transposition operator

TE mode Transverse Electric mode
TM mode Transverse Magnetic mode

u wavefield vector
uinc incident wavefield
usc scattered wavefield

utot = uinc + usc total wavefield

v wave propagation velocity (in m/s)
vo light velocity in free space (vo = 299,792,458 m/s)

vx, vz acoustic particle velocities (in m/s)
v adjoint wavefield
V Volt units

ω angular frequency (in rad/s)
Wd data weighting matrix

χ susceptibility232
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