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Introduction

Cette these consiste en trois parties que j’ai faites pendant ces trois ans.

La premiére partie (chapitre 2 et 3) va étre constistuée de I’étude de la
distribution de la longueur de corde sur le plan hyperbolique. Elle est motivée
par les travaux de Bridgeman et Dumas [18] et Bridgeman [17] ou la distribution
de la longueur de corde associée a une lamination sur une surface hyperbolique
a été étudiée.

Soit D un domaine convex compact dans le plan hyperbolique H. On con-
sidere l'intersection entre D et une geodesique v sur H. On I'appelle la corde
de v par rapport a D. En considerant la longueur hyperbolique de corde, on
définit une application pp de Gy, 'ensemble des géodesiques de H, dans R*. Il
y a une mesure 4 sur Gy unique a un facteur multiplicatif pres qui est invari-
ante par I’action du groupe d’isométrie de H sur Gy. On I'appelle la mesure de
Liouville. La mesure image de p par pp est une mesure sur Rt qui s’appelle la
distribution de la longueur de corde.

L’outil principal est I’identité de Pleijel pour le plan hyperbolique. Sa ver-
sion usuelle est pour le plan Euclidien. Dans [49], Pleijel a découvert une famille
d’identités pour les domaines convexes planaires & bord C!. Elles sont associées
aux inéqualités isopérimétriques. En généralisant ces identités, Ambartzumian
a donné l'identité de Pleijel dans [4]. Dans [5], il a donné une preuve combina-
toire de cette identité. De plus, il a démontré une version généralisée de cette
identité pour un polygone planaire convexe compact. On l'appelle 'identité
d’Ambartzumian-Pleijel. Il a également souligné que cette identité peut servir
a calculer la distribution de la longueur de corde en utilisant le j-formalisme.

Soit Gp 'ensemble de géodésiques passant par D. Avec ces notations, nous
démontrons 'identité d’Ambartzumian-Pleijel pour H énoncée dans le théoreme
suivant :

Théoréme. Soient D un polygone convexe compact sur H et f € CH(R;R).
Alors on a Uidentité d’Ambartzumian-Pleijel suivante :

il

/ (fop)du= / (f" o p) sinh p cot a; cot andp + %Z/ f(z)dz,
Gp Up i=1 70

ou a et aip, pour une géodésique dans Gp, sont ses angles d’intersection avec
le bord de D, da désigne la mesure de Lebesgque sur R, et |a;| est la longueur
hyperbolique de la i-ieme aréte a; du bord de D.

7



L’idée de la peuve vient de [19] ot Cabo a utilisé la formule de Stokes pour
montrer l'identité d’Ambartzumian-Pleijel pour le cas Euclidien.

Ensuite, considérons un domaine & bord C'. On peut utiliser les polygones
inscrits dedans pour 'approcher. En appliquant le théoreme précédent a ces
polygones, nous démontrons 'identité de Pleijel pour H comme suit :

Théoréme. Supposons que OD est Ct. En utilisant les mémes notations que
dans le théoréeme précédent, alors on a l'identité suivante :

/g(fopD)d,u:/ (f'opD)sinhpDcotalcotagdu—i—%f(O)L(aD).

Gp

De plus, si f(0) =0, alors on obtient l’identité de Pleijel pour H.

En utilisant des fonctions f particuliéres, nous prouvons les deux corollaires
suivants :

Corollaire. Soit D un polygone convexe compact ou un domaine convex
compact ¢ bord C'. La mesure de Liowville de Gp est égale & la moitié de la
longeur de 0D.

Corollaire. Supposons que 0D est C'. Alors on a l'inégalité isopérimétrique
hyperbolique:
L(0D)? > 4t A(D) + A(D)?,
ou l’égalité est réalisée si et seulement si D est un disque dans H.
Bien que nous ne consideréons que les domaines compacts dans les résultats
ci-dessus, la stratégie peux s’étendre au cas non-compact. Grace a cette ob-
servation, nous réussissons a calculer la distribution de la longueur de corde

associée a un triangle idéal ou un quadrilatere idéal de H. Les résultats sont
énoncé comme suit :

Corollaire. Soient T un triangle idéal de H et p la mesure de Liouville sur Gy.
Alors, la distribution de la longueur de corde dMp = (pr).«du est donnée par:

3pdp
sinh? P

AMyp =

Corollaire. Soient Q un quadrilatére idéal de H et pu la mesure de Liouville
sur Gg. Soient vy1,...,7%4 les 4 arétes de Q ordonnée dans le sens direct. Alors,
la distribution de la longueure de corde dMg = (pg)+du est donnée par :

12pdp

dMg =
@ sinh? p

+ dMi3 + dMay,
ot dMy3 est la distribution de la longueur de corde par rapport a 1 et vs telle
que :

/p aM 1 / cot a1 (p, m) cot as(p, n) sinh p coshw(p, n)
13=75 - .
0 () Sinh p1(p, n) cot a1 (p, ) + sinh p3(p, ) cot az(p,n)

)

2



et dMasy est la distribution de la longueur de corde par rapport a vo et 4 telle

que :
P 1 cot aa(p,m) cot ay(p, n) sinh p cosh w(p,
/dM24:2/[ 2(p, ) cot aa(p, n) sinh p ) dn.
0 n

 sinh p2(p, 1) cot az(p,n) + sinh pa(p, n) cot au(p,n)

Remarque. Les notations p1, p2, p3, p4 et n dans le théoreme ci-dessus sont
expliquées dans le Chapitre 3.

D’autre part, nous avons une autre observation concernant les preuves des
théorémes ci-dessus. Les calculs que nous faisons sont basés sur les formules
trigonométriques hyperboliques. En utilisant les formules trigonométriques générales,
nous obtenons l'identité d’Ambartzumian-Pleijel générale pour une variété rie-
mannienne Xy en dimension 2 qui est simplement connexe et maximalement
symmetrique et dont la courbure est constante et égale a K

Théoréme. Soit D un polygone convere compact sur Xg . Les notations f, a1,
g et © sont les mémes que dans les théorémes ci-dessus. Alors on a lidentité
d’Ambartzumian-Pleijel :

lail

/gg(fopK)d'uK = /gg(f'OpK)sinK(pK)cotal cot a duK—l—;/O f(z)dz,

ou sing est la fonction sinus générale pour Xk .

Puisque la théorie de Teichmiiller est un contexte commun aux deux derniéres
parties, le chapitre 4 va étre consacré a donner une revue de cette théorie. Son
point de départ a été le probleme de module de Riemann. Soit ¥ une surface
topologique fermée orientée de genre g. D’apres le théoreme d’uniformisation
de Riemann, il y a une unique structure complexe sur ¥ dans chaque classe
conforme. Riemann a demandé combien de structures complexes ”différentes”
existent sur X. Dans son article ”Theorie der Abel’schen Functionen” (1857),
Riemann a calculé le nombre de parameétres d’'une classe d’isomorphisme des
équations algébriques en deux variables. Chaque classe de ce type d’équations
est equivalente a une classe de biholomorphisme de surface de Riemann com-
pacte. L’espace qu’il considérait s’appelle maintenant 1’espace de modules de
Riemann. Plus tard, Teichmiiller a considéré les applications quasiconformes
et introduit ’espace de Teichmiiller. C’est un espace de classes d’équivalences
des structures complexes marquées. Deux structures complexes marquées sont
dites équivalentes si et seulement s’il existe une fonction conforme entre eux
qui est homotope a identity. En utilisant la dilatation d’applications quasicon-
formes entre les surfaces de Riemann, il a défini une métrique sur ’espace de
Teichmiiller qu’on appelle la métrique de Teichmiiller. En gros, la théorie de
Teichmiiller est une théorie étudiant ’espace de Teichmiiller et les sujets relatifs
a cet espace. Les études de cette théorie profitent des idées fondamentales de
domaines divers des mathématiques et de la physique en méme temps, par ex-
emple : la géométrie hyperbolique, ’analyse complexe, la géométrie algebrique,
la théorie des représentations, le systeme dynamique, la théorie des cordes, etc.
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La seconde partie (Chapitre 5) va contribuer aux études de la métrique de
pression sur Pespace de Teichmiiller 7(T) de T un tore privé d’un disque et la
dégénération de T quand la longueur du bord va a l'infini.

Soit I" un groupe hyperbolique au sens de Gromov. La métrique de pression a
été introduite dans [15] et définie sur I'espace C(I',m) des classes de conjugaison
de representation réguliere irréductible convexe de I' vers SL(m, R). L’ingrédient
principal est le formalisme thermodynamique pour un systéme dynamique sym-
bolique associé a un systéeme dynamique hyperbolique. Il a été développé par
Bowen, Parry-Pollicott, Ruelle et d’autres. L’idée de la dynamique symbolique
est de remplacer un systéme dynamique lisse (ou topologique) par un systéme
discret semi-conjugué au dernier. En gros, on associe une partition de Markov au
systeme dynamique lisse et on I’appelle ’ensemble des symboles. Alors une tra-
jectoire dans le systéme lisse peux s’écrire comme une suite bi-infinie de symboles
qui s’appelle le codage symbolique de cette trajectoire. L’espace de ces codages
symboliques s’appelle ’espace de décalage. On peux lui associer une application
de décalage qui simule la dynamique sur le systéeme lisse. Par I’hyperbolicité
d’un systeme dynamique, on entend que le flot associé a ce systéme dynamique
se décompose en deux parties dont une partie est comprimée et I'autre partie
est dilatée le long le flot. Dans ce cas, les informations d’une métrique sur
ce systeme lisse sont traduites en fonctions de Holder définies sur l'espace de
décalage. Un concept important dans le formalisme thermodynamique est la
pression d’une fonction de Holder. Il a plusieurs définitions équivalentes. Une
définition utilise I'opérateur de Ruelle associé a une fonction de Holder qui est
un opérateur linéaire borné définit sur l'espace des fonctions de Holder. La
pression est, par définition, le logarithme de la valeur propre la plus grande
de V'opérateur de Ruelle. Par le théoreme de perturbation, la pression est une
fonction analytique. De plus, sa matrice hessienne, qu’on appelle la forme de
pression, est semi-définie positive. Elle va devenir une métrique dans certains
cas particuliers si I’on peut prouver en plus sa non-dégénération.

Notons par OI' le bord de Gromov de T' et Uyl le flot géodésique associé
a I'. Dans sa these, Sambarino a défini et puis étudié les représentations con-
vexes de I' dans PSL(m,R). Ce type de représentation est une généralisation
naturelle des représentations hyperconvexes étudiées par Labourie dans [42]. En
combinant avec la propriété d’Anosov, on obtient 'objet principal dans [15], la
représentation convexe Anosov de I' dans SL(m,R). Dans [15], les auteurs ont
montré que a chaque telle représentation, on peut lui associée un flot transitif
métrique Anosov U,I" qui est une reparamétrisation Holder de UpI'. D’apres les
travaux de Bowen dans [13, 14], le flot U,I" admet un codage de Markov qui est
plus fort qu'un codage symbolique.

Remark 0.0.1. Le codage de Markov existe pour U,I'. Dans [22], Coornaert et
Papadopoulos ont montré qu’il existe un codage symbolique pour Ugl'. Mais ce
codage n’est pas injectif dans un ensemble assez large pour qu’on puisse utiliser
le formalisme thermodynamique.

Ce codage induit un espace de décalage X tel que le flot U,I' est iden-
tifié avec un flot suspension X, défini par une fonction Hélder f € C¥(X).
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Notons h l'entropie topologique de U,(I'). D’apres le formalisme thermody-
namique, la fonction —hf a pression nulle. La correspondance entre p et —hf
induit 'application thermodynamique Z qui plonge I'espace des représentations
C(T", m) dans I’espace des fonctions de Holder avec pression nulle défini sur X ou
la forme de pression vit. En prouvant le fait que le tiré en arriere de la forme de
pression par Z est non-dégénérée, on obtient une métrique sur la partie réguliere
de C(I', m). En particulier, on considére le cas ou I' est le groupe fondamental
71(2) d’une surface ¥ fermée orientée de genre g > 1. En relevant PSL(m, R) &
SL(m,R), la composante de Hitchin H,,(X) peut se plonger dans C(I',m). Par
conséquent, la restriction de la métrique de pression nous donne une métrique
riemannienne sur H,,(X) qui est invariante par Paction du groupe modulaire
de X. De plus, la restriction de la métrique de pression sur le lieu fuchsien
coincide avec la métrique de Weil-Petersson. Le dernier fait est induit par les
travaux de Bonahon [9] et Wolpert [61], d’aprés ces quels on peut prouver que
la métrique riemannienne de Thurston définie sur ’espace de Teichmiiller d’une
surface fermée est equivalente a la métrique de Weil-Petersson et la métrique
riemannienne de Thurston est exactement la métrique de pression dans le cas
oum = 2.

La métrique de pression est aussi bien définie sur I'espace de Teichmiiller
d’une surface a bord. Mais dans ce cas, on ne sait pas encore si elle est
équivalente a la métrique de Weil-Petersson. Dans le Chapitre 5, nous allons
donner une approche pour répondre cette question. Bien que notre méthode
ne donne pas de réponse définitive, nous obtenons quand méme certaines in-
formations intéressantes sur la métrique de pression et la fonction d’entropie.
Dans ce chapitre, nous n’allons considérer que le cas du tore privé d’un disque
T, mais il est facile d’étendre les résultats aux cas ou les surfaces a bord sont
plus générales.

L’étape principale est de décrire la dégénération de T a son graphe de ruban
G. 11 y a déja plusieurs fagons de paramétriser cette dégénération. Mais pour
voir plus clair dans le point de vue du systéeme dynamique, nous allons intro-
duire un ”nouveau” systéme de coordonnées de l’espace de Teichmiiller 7(T)
en utilisant les orthogéodésiques. En fait, I’idée de cette construction a déja ex-
isté dans [57]. Dans ces coordonnées, I'espace T (T) s’identifie avec (R*)3. Un
chemin de dégénération correspond a une demi-droite commencant d’origine de
(RT)3. En renormalisant les métriques associées aux points de cette demi-droite,
nous montrons qu'une métrique sur G peux se voir comme la limite projective
ces métiques hyperboliques sur T.

Ensuite, nous observons que le flot géodésique sur T et celui sur G ont le
méme codage de Markov. Par conséquent, les métriques sur T et celles sur G
sont identifiées avec les fonctions de Holder sur le méme espace de décalage par
une fonction thermodynamique Z. Soit M(G, 1) lespace des métriques sur G
avec la longeur totale égale a 1 et nous les appellons les métriques renormalisées.
La dégénération au-dessus nous montre que Z(M (G, 1)) est une partie du bord
de Z(T(T)). De l'autre coté, nous montrons que la construction de la forme
de pression ne dépend pas de la renormalisation de la métrique. Ce fait im-
plique que la form de pression sur M(G,1) est la méme que celle sur M;(G)
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qui est étudiée par Sharp et Pollicott dans [51]. D’aprés leur travaux, nous
montrons que la forme de pression sur M(G, 1) est une métrique. En résumsé,
nous obtenons un espace connexe par arc Z(7(T) U M(G, 1)) ou la forme de
pression est bien définie et semi-définie positive et en plus ses restrictions sur
Z(T(T)) et Z(M(G, 1)) sont non-dégénérés.

Une autre fagon d’interpréter la métrique de pression dans [15] est d’utiliser
la fonction d’intersection renormalisée J : C(I',m)? — R. Cette fonction est une
généralisation de la fonction d’intersection de Thurston définie pour I'espace de
Teichmiiller. Notons que la fonction d’entropie est utilisée dans la définition
de J. Nous étudions aussi cette fonction et en particulier ses restrictions sur
les feuilles symplectiques 7 (34, L1, ..., L,) d’une surface & bord £, ,. Nous
prouvons le résultat suivant:

Proposition. Soit X =3, ;. une surface de genre g > 0 avec r > 0 composantes
de bord. Si g > 1 our > 1, alors la fonction d’entropie n’est pas constante sur
les feuilles symplectiques T (X, L1,..., L) ; si (g,r) = (1,1), alors la fonction
d’entropie n'est pas constante sur les feuilles symplectiques T (X, L1) avec la
longeure du bord L1 assez grande.

La preuve de cette proposition pour 3 # T vient d’un exemple construit par
McMullen dans [44]. Cet exemple a été utilisé pour montrer qu’il existe une
suite de groupes kleiniens qui converge géométriquement telle que la suite des
dimensions de Hausdorff de leurs ensembles limites ne converge pas. Cet exemple
implique qu’il existe une suite dans chaque feuille symplectique 7 (%, Ly, ..., L)
telle que les dimensions de Hausdorff des ensembles limites convergent vers 1.
Par les travaux de Sullivan, la dimension de Hausdorff de ’ensemble limite d’un
groupe fuchsien est égale a ’entropie topologique du flot géodésique associé a ce
groupe. En méme temps, I’entropie d’un groupe Fuchsien associé a une surface
hyperbolique & bord est strictement plus petite que 1. Donc, la proposition
pour ¥ # T en découle. Pour le cas ou ¥ = T, nous utilisons 'analyticité de
la fonction de pression. Par le Théoreme des Fonctions Implicites, la fonction
d’entropie est aussi analytique. Par la dégénération décrite ci-dessus, les Z-
images des feuilles symplectiques convergent vers la Z-image de M(G, 1) quand
la longueur du bord tend vers U'infini. La fonction d’entropie sur M(G, 1) n’est
pas constante par les calculs dans [51]. Ceci implique que la fonction d’entropie
n’est pas constante sur les feuilles symplectiques telles que la longueur du bord
associée est assez grande.

Finalement, la troisiéme partie (Chapitre 6) concerne le problem de quan-
tification de I'espace de Teichmiiller. La motivation initiale a été de comprendre
la gravité quantique en dimension 2 + 1. La théorie de Teichmiiller quantique
a été développée par Chekhov et Fock [20] et Kashaev [38] indépendamment
et ensuite généralisée aux groupes de Lie de rang supérieur et aux algebres
amassées par Fock et Goncharov dans [25] et [26]. L’ingrédient principal est
le dilogarithme quantique de Faddeev introduit par Faddeev dans [23]. Dans
ce chapitre, nous nous intéressons a l’extension centrale du groupe modulaire
via la quantification de Chekhov-Fock et notamment sa classe de cohomologie.
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Cette partie est motivée par un résultat de Funar et Kashaev dans [27] o le
méme probléme pour la quantification de Kashaev a été étudié.

Soient V' un espace vectoriel et G un groupe. Une représentation projective
de G sur V est un homomorphisme de G dans PGL(V). Il est connu que ce type
d’homomorphisme est équivalent & une représentation sur V d’une extension
centrale de G par C*. Plus précisement, soit h une représentation projective de
G sur V. Soit G une extension centrale de G' par un sous-groupe A de C*. Nous
pouvons associer a GG une représentation h de G sur V tel que le diagramme
ci-dessous commute:

1—=C*——GL(V) ——=PGL(V) ——=1

S N Y S

En particulier, soit Go une extension centrale de G par C* qui est le tiré en
arriere de GL(V)) — PGL(V) par h. Notons ho la représentation de Gy sur V.
Une réduction G1 de Go est une extension centrale de G par un sous-groupe A;
de C* telle que G’1 est un sous- groupe de Go et sa représentation associée hy est
la restriction de ho On dit qu’une réduction G1 de G est minimale si G1 est
minimale comme sous-groupe par rapport aux autres réductions a isomorphisme
pres.

Supposons que G est un quotient du groupe libre F' de rang m par un
sous groupe normal R engendré par un ensemble de relations. Soit h une
représentation de F sur V telle que R est envoyé dans le centre de GL(V).
Alors h induit une représentation projective de G' sur V. L’homomorphisme h
s’appelle une représentation presque linéaire de G sur V, afin de la distinguer
d’une représentation projective. Dans cette partie, nous montrons que la quan-
tification de Chekhov-Fock nous aide & construire une représentation presque
linéaire du groupe modulaire qui induit une extension centrale de ce dernier.

Considérons la surface X7 de genre g < 2 avec s > 0 piqures. Notons
par T(E;) I’ensemble des triangulations idéales étiqutées. Le groupe modulaire
Mod(EZ) agit librement sur cet ensemble. On peut définir le groupoide de
Ptolemy comme une catégorie dont les objets sont les Mod(Zg)—orbites dans
T(X7) et les morphismes sont les orbites de I'action diagonale de Mod () sur
T(¥;) x T(X;). En particulier, les éléments de Mod(X}) correspondent aux
automorphismes d’un objet du groupoide de Ptolemy.

D’apres les travaux de Harer [35] et Penner [46, 47], le groupoide de Ptolemy
est aussi engendré par les actions des flips F' et des permutations o des étiquettes
sur T(X7). Ce résultat utilise des considérations sur les relations commutatives
et les relations de pentagone entre les flips et les relations naturelles entre les
deux types des actions. Les coordonnées de décalage associées a une trian-
gulation idéale étiquetée induisent une *-algébre A(T) munie d’un crochet de
Poisson. Les flips et les permutations agissent comme les *-isomorphismes en-
tre les A(T). La formule d’un x-isomorphisme associé & un flip est donnée
par la formule de changement des coordonnées de décalage associée au méme
flip. Ensuite, en déformant le crochet de Poisson, on obtient une famille d’-
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algebres A"(T) qui dépend d’un parametre h positif réel pour chaque T. De
plus, les x-isomorphismes changent utilisant le dilogarithme de Faddeev. Par
conséquent, on obtient une famille de foncteurs 8" du groupoide de Ptolemy
dans la catégorie des *-algebres. Les foncteurs 8" s’appellent la quantification
de I'espace de Teichmiiller. L’algebre A"(T) est isomorphe & une sous-algebre
de l'algebre de Heisenberg H,, avec n égal au nombre des arcs dans 7. La
représentation intégrable irréductible p de H,, sur H = L?(R?",R) induit une
représentation p de A"(T) sur H. D’aprés le théoreme de Stone von Neu-
mann, cette représentation est unique. Cette unicité induit 'existence d’un
intertwinner entre deux représentations p(A"(T)) et p"(T"), ce qui nous donne
une repésentation presque linéaire du groupe modulaire. En particulier, les re-
lations de pentagone deviennent les relations de pentagone quantique ou un
scalaire unitaire sort. En considérant les deux présentations du groupoide de
Ptolemy, I’action associée a un twist de Dehn peut s’écrire comme une compo-
sition des actions d’une suite de flips et de permutations. Relevant les flips et
les permutations par le intertwinner, on obtient le relevé d’un twist de Dehn
qui est un des générateurs du groupe modulaire. Le relevé d’un twist de Dehn
obtenu de cette maniere n’est pas unique. Nous montrons qu’en choisissant les
relevés des twists de Dehn soigneusement, nous obtenons une extension centrale
du groupe modulaire avec la présentation suivante :

Proposition. En utilisant la quantification de Chekhov-Fock, nous obtenons
une extension centrale du groupe modulaire T' avec la présentation suivante:

(1) Générateurs:

(a) Un élément central w = 2712, ou z est la constante qui vient de la

quantification de Chekhov-Fock;
(b) Un élément D, associé a chaque twiste de Dehn le long d’une courbe
non-séparante.

(2) Relations:

(a) La relation de tresse de type-0 : 5a5b = ﬁbﬁa;
(b) La relation de tresse de type-1 : ﬁaﬁbﬁa = 5b5a5b ;
(¢) La relation de Lantern : l~)a05all~)azl~)a3 = Dy, Da,, D

arsMazzParz 5
(d) La relation de chaine : (lN)alN)blN)c)‘l = wlzﬁeﬁf :
(e) La relation de pigire : 5(115(125(13 = wDg,, Do,y D

a2~ az3*~aiz

(f) Si w est une racine unitaire d’ordre N, alors w™ = 1.

La classe de cohomologie d'une extension centrale du groupe modulaire est
caractérisé par un 2-cocycle. Le changement des relevements des twists de Dehn
ne change pas ce 2-cocycle, donc il ne change pas la classe de cohomologie. En
utilisant I’extension centrale ci-dessus, nous montrons le théoreme suivant :
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P

Théoréme. Soient g > 2 et s > 4. La réduction minimale de F(E;) est obtenue
par extension de F(Z;) par A qui est un sous-groupe cyclique de C* engendré
par z~'2. De plus, sa classe de cohomologie est

cr(sy) = 12x + Zei € H*(D(%), A)

i=1

ot x est un quart de la classe de Meyer et e; est la classe d’Euler associée a
i-iéme piqure.

Remarquons que cette extension centrale est dans la méme classe de coho-
mologie que celle obtenue en utilisant la quantification de Kashaev dans [27]

par Funar et Kashaev, bien qu’il n’existe pas de morphisme équivariant évident
entre les deux quantifications.
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Chapter 1

Introduction

This thesis consists of three parts corresponding to the three subjects that I
have studied during the last three years.

The first part (Chapters 2 and 3) contains the study of the chord length
distribution associated to a compact (or non-compact) domain in the hyper-
bolic plane. This is motivated by the work of Bridgeman and Dumas [18] and
Bridgeman [17] where the chord length distribution associated to a lamination
on a hyperbolic surface is studied.

More precisely, let D be a compact convex domain in the hyperbolic plane
H. We consider the intersection between D and a hyperbolic geodesic v which
we call the chord of v with respect to D. Let Gy denote the space of geodesics
in H. The hyperbolic length of the chord defines a function pp from the set Gp
of geodesics in H intersecting D to R*. There is a unique measure up to scalar
multiplication g on Gy which is invariant under the action of the isometry group
of H, called Liouville measure. We consider the restriction of y to Gp and push
it forward by pp. Then we obtain a distribution on R*, called the chord length
distribution.

The main tool in this part is the hyperbolic version of Pleijel’s identity.
The original Pleijel’s identity is defined for the Euclidean plane. In [49], Plei-
jel discovered a family of identities associated with isoperimetric inequalities
for planar convex domains with C! boundary. By generalizing these identities,
Ambartzumian [4] gave the Pleijel’s identity for the Euclidean plane. In [5],
Ambartzumian gave a combinatorial proof of the Pleijel’s identity. Moreover,
he proved a general version of the Pleijel’s identity for convex compact polyg-
onal planar domains which we call the Ambartzumian-Pleijel identity. He also
pointed out that Pleijel’s identity can be used to find chord length distribution
functions for convex domains by using the é-formalism.

Back to the hyperbolic case, with the notation above, the Ambartzumian-
Pleijel identity for the hyperbolic plane can be stated as follows:

Theorem. Let D be a compact convex domain in H whose boundary is a polygon
and f be in C*(R;R). Then we have the following hyperbolic version of the

17
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Ambartzumian-Pleijel identity:

@il

/ (fop)du= / (f" o p) sinh p cot ay cot andp + % Z/ f(z)dz,
Gp Gp i=1"0

where a; and ag are the intersection angles between the geodesic and the bound-
ary of D, dx is the length element on R, and |a;| is the hyperbolic length of the
i-th boundary segment a; of D.

The idea of the proof comes from [19] where Cabo used the Stokes’ formula
to prove the original Ambartzumian-Pleijel identity.

By using inscribed polygonal domains to approximate a convex compact
domain with C' boundary, we prove the hyperbolic version of Pleijel’s identity:

Theorem. Suppose that OD is C*. With the same notation as above, we have
the following identity:

[J (fopD)du:/ (f' o pp)sinh pp cot ay cot g dpt + %f(O)L((‘)D).

Gp

In particular if f(0) = 0, then we have the hyperbolic version of the Pleijel’s
identity.

By choosing D and f carefully, we prove the two following corollaries:

Corollary. The Liouville measure of Gp is one half of the length of the boundary
of D.

Corollary. Suppose that 0D is C'. Then we have the hyperbolic isoperimetric
inequality:
L(0D)? > 41 A(D) + A(D)?,
where the equality holds if and only if D is a disk in H.
A priori, the Pleijel’s identity and the Ambartzumian-Pleijel identity only
hold for a compact domain D. But the strategy of the proof can be extended

to the non compact case so that we are able to compute the chord length dis-
tributions for an ideal triangle and an ideal quadrilateral as follows:

Corollary. Let T be an ideal triangle in H and p be the Liouville measure on
Gu. The chord length distribution dMr = (pr)«dp is given by:

3pdp
sinh? p’

dMr =

Corollary. Let Q be an ideal quadrilateral in H and p be the Liouville measure
on Gg. Let vy1,...,74 be the 4 edges of Q ordered counter-clockwise. The chord
length distribution dMg = (pg)«du is given by:

12pdp

dMg = ——— + dMy3 + d Moy,
sinh” p
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where dM3 is the chord length distribution with respect to v1 and 3 and satis-
fies:

P 1 cot ag (p, 1) cot az(p, n) sinh p cosh w(p,n)
dMys = . -
0 2 Jiy sinh p1(p, n) cot a (p,m) + sinh p3(p, n) cot as(p,m)

dn,

and dMsy is the chord length distribution with respect to vo and 4 and satisfies:

/p AMos — 1/ cot aa(p, n) cot ay(p, n) sinh p cosh w(p, n) d
o 17 2 Jp, sinh pa(p, n) cot az(p,n) + sinh pa(p, 1) cot au(p, n) "’

where 1 is the angle parameter in the polar parametrization of the set of geodesics
in H introduced later.

Another observation about the proof of the Ambartzumian-Pleijel identity
is that as passing from the Euclidean case to the hyperbolic case, the only
thing changed is the trigonometric functions. As a result of this observation, by
using the general trigonometric functions, we obtain the general Ambartzumian-
Pleijel identity for a maximally symmetric, simply connected, 2-dimensional
Riemannian manifold with constant sectional curvature K € R, denoted by
XK:

Theorem. Let D be a convexr compact domain in Xg with geodesic polygon
boundary and f be in C*(R;R). Then we have the general Ambartzumian-Pleijel
identity:

lail

/gK(fopK)duK = /K(f’opK)sinK(pK)cotal CotagduK—i-i/o f(z)dz,

D gD

where sing is the general sinus function for Xk, a1 and as are the intersection
angles between the geodesic and the boundary of D, dx is the length element on
R, and |a;| is the length of the i-th boundary segment a; of D.

Then in the same way as above, the Pleijel’s identity for Xx follows by which
we prove the isoperimetric inequality for Xy .

To appreciate the remaining two parts of the thesis, one must have a back-
ground of Teichmiiller theory, thus we use Chapter 4 to give a review of this
theory. The story of Teichmiiller theory begins with Riemann’s moduli prob-
lem. Let 3 be a closed oriented topological surface with genus g > 1. By the
Uniformization Theorem, there is a unique complex structure on X in each con-
formal class. Riemann asked how many ”different” complex structures that we
can put on a fixed ¥. In his paper of ” Theorie der Abel’schen Functionen” (1857),
Riemann counted the number of parameters of isomorphism classes of algebraic
equations in two variables which is equivalent to the biholomorphism classes of
compact Riemann surfaces and found that the degree of freedom is 3g — 3. The
space that he considered is called Riemann’s moduli space. Later Teichmiiller
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considered quasiconformal maps between Riemann surfaces and introduced Te-
ichmiiller space as the space of equivalent classes of complex structures up to
homotopy class of conformal maps. He also defined a natural metric on this
space for which the distance between two points is one half of the logarithm of
the dilatation of the quasiconformal map associated to these two points. We
call it the Teichmiiller metric. The Teichmiiller theory is a mathematics sub-
ject where Teichmiiller space is studied. This wonderful subject brings together
fundamentals ideas from different fields, both in mathematics and physics, such
as hyperbolic geometry, complex analysis, algebraic geometry, representation
theory, dynamical system, string theory, etc. Over the last half century, many
beautiful results have been proved in these fields.

The second part of this thesis (Chapter 5) consists of the study of the pres-
sure metric on the Teichmiiller space 7 (T) of one-holed torus T and the degen-
eration of T as the boundary length goes to infinity.

The pressure metric is constructed in [15] for the space C(T', m) of conjugacy
classes of regular irreducible convex representations of a word hyperbolic group
I' to SL(m,R) using Thermodynamic formalism.

The Thermodynamic Formalism that we use was developed by Bowen, Parry-
Pollicott, Ruelle and others for a symbolic dynamical system associated to a
hyperbolic dynamical system. The idea of symbolic dynamics is to replace a
smooth (or topological) dynamical system by a discrete system semi-conjugate
to the former. Roughly speaking, one associates a finite Markov partition to
a smooth dynamical system, called the set of symbols. Then the trajectory
of the smooth dynamical system can be described as a bi-infinite sequence of
symbols. The space of all such sequence is called the shift space with a shift map
corresponding to the dynamics on trajectories. By hyperbolic, we mean that
there exist the expanding and contracting directions along the flow associated to
the smooth dynamical system. Under this setting, the metric information of the
smooth dynamical system can be given by a Holder function defined on the shift
space and the flow associated to the smooth dynamical system is identified with a
suspension flow of the shift space defined by this Holder function. An important
concept in this theory is the pressure of a Holder function on a shift space. It
has several equivalent definitions. One of them is given by the logarithm of
the top eigenvalue of the Ruelle operator which is a bounded linear operator
defined on the space of Holder functions on the shift space. By sending each
Holder function to its pressure, we define the pressure function. The space of
Holder function on the shift space is a filtration of a sequence of Banach spaces.
By using the perturbation theorem on each of these Banach space, one proves
the analyticity of the pressure function on the Holder function space. Moreover,
restricting the pressure function to the pressure zero function space, one obtains
that the Hessian of the pressure form is positive semi-definite. This is a good
candidate for being a metric.

Back to our case, let OI' be the Gromov boundary and Uyl be the Gromov
geodesic flow associated to I'. In his thesis, Sambarino defined and studied
the convex representations of I' into PSL(m, R) which are a natural generaliza-
tion of hyperconvex representations studied by Labourie [42]. In [42], Labourie
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also studied the Anosov representation. Combining them together, one obtains
the main object considered in [15], the convex Anosov representation of I' in
SL(m,R). In [15], the authors proved that to each such representation p, one can
associate a transitive metric Anosov flow U,I" which is a Hélder reparametriza-
tion of the Gromov geodesic flow UpI'. By a theorem of Bowen in [13, 14], one
can find an Markov coding for U,I".

Remark 1.0.2. This coding is for Upl' equipped with a convexr Anosov represen-
tation. In [22], Coornaert and Papadopoulos showed that for a hyperbolic group,
there exists a symbolic coding for its Gromov geodesic flow. But this coding is
not one to one on a set large enough to apply the thermodynamic formalism.

This coding induces a shift space X such that the flow on U,I' is identi-
fied with a suspension flow X; defined by some Hélder function f € C*(X).
Denote by h the topological entropy of U,I'. By thermodynamic formalism,
the Holder function —hf has pressure zero. The correspondence between p
and —hf induces the thermodynamic map Z which embeds the representation
space C(I',m) to the space of pressure zero functions defined on X. This latter
space comes equipped with a non-negative definite 2-form, called the pressure
form. By pulling back the pressure form by Z and proving its non-degeneracy,
one obtains a metric on the regular part of C(T',m). In particular, we take T’
to be the fundamental group 71 (X) of a closed surface ¥. The Hitchin com-
ponent H,,,(X) can be lifted to the regular part of C(m;(X), m) by considering
the lifts of PSL(m,R) in SL(m,R). Thus the restriction of the pressure metric
on the lift induces a mapping class group invariant Riemannian metric on the
Hitchin component H,,(X). Moreover, when the pressure metric is restricted
to the Fuchsian locus, it coincides with Thurston’s Riemannian metric which is
equivalent to the Weil-Petersson metric up to a constant factor by the work of
Wolpert [61] and Bonahon [9]. In particular, when m = 2 the pressure metric
on Teichmiiller space is different from the Weil-Petersson metric by a constant
factor.

It is true that their construction of pressure metric also works for the Te-
ichmiiller space of the bordered surface. However, in this setting we do not
know whether it is still true that the pressure metric is equivalent to the Weil-
Petersson metric. In Chapter 5, we give an approach to answer this question.
Although our method does not give a definitive answer, we still obtain some
interesting information of the pressure metric and the entropy function. We
remark that we only consider the one-holed torus as an example and it is not
hard to be extended to other bordered surfaces.

The main tool that we use here is the degeneration of T to its fat graph G.
There are several obvious ways to parametrize this degeneration. But in order
to describe the asymptotic of the geodesic flow during the degeneration in the
point of view of symbolic dynamical system, we use a new way by introducing
a "new” coordinate system of Teichmiiller space T (T) using orthogeodesics. In
fact, this idea of using orthogeodesics to define coordinates has already existed
in [57]. Using this coordinate system, Teichmiiller space T (T) can be identified
with (RT)3. Moreover, sequences of degenerations that we consider correspond



22

to rays starting from the origin in these coordinates. We renormalize a marked
hyperbolic structure by rescaling it so that the associated length of boundary
become 1. By renormalizing all points in 7(T), we obtain the renormalized
Teichmiiller space. We show that the renormalization of the sequence of the
degeneration converges to a metric on the associated fat graph.

Then we observe that the geodesic flow on T and that on G have the same
Markov coding. This means that the metric on T and that on G can be seen as
Holder functions on the same shift space. Let M(G, 1) denote the space of met-
rics on G with total length 1. The above degeneration shows that Z(M (G, 1))
is a partial boundary of Z-image of the renormalized Teichmiiller space. On
the other hand, by a simple argument, we show that the construction of pres-
sure metric does not depend on the renormalization of the metric. This implies
that the renormalized Teichmiiller space is isometric to 7 (T) with respect to
the pressure metric and the moduli space M (G, 1) is isometric to M;(G) stud-
ied by Sharp and Pollicott in [51]. Thus we obtain a path connected space
Z(T(T) U M;(G)) where the pressure form is well defined and positive semi-
definite and its restrictions to Z(7(T)) and to Z(M(G, 1)) are both positive
definite.

Another result from [15] states that the pressure form can be interpreted
as the Hessian of the renormalized intersection function J : C(I',m)? — R*.
The function J is a generalization of Thurston’s intersection function defined for
Teichmiiller space of a closed surface. In the definition of J, the entropy function
is also involved. Thus, in this chapter, we also study the entropy function and in
particular its property on each symplectic leaf T (X, ., L1, . .., L,) of Teichmiiller
space T (X, ) of a bordered surfaceX. We prove that:

Proposition. Let ¥ = ¥, be a bordered oriented surface of genus g > 0 with
r > 0 boundary components and x(X) < 0. If ¥ # T, then the restrictions of
the entropy function on symplectic leave T (X, L1,...,L,) are not constant; if
Y =T, then the entropy function is not constant on symplectic leaves of T (T)
whose associated boundary length is large enough.

The proof of this proposition for 3. T is given by repeating the construction
of an example of McMullen in [44] where he used this example to prove that the
geometrical convergence of a sequence of Kleinian groups does not guarantee the
convergence of the Hausdorff dimensions of their limit sets. This example im-
plies that there exists a sequence in each symplectic leaf T(X, Ly, ..., L;,.) such
that the Hausdorff dimensions of their limit sets converges to 1. By the work of
Sullivan, the Hausdorff dimension of the limit set of a Fuchsian group equals to
the topological entropy of the associated geodesic flow. On the other hand, we
know that the topological entropy of a geodesic flow associated to a bordered
hyperbolic surface is strictly smaller than one. By combining all these results,
we conclude our proposition for ¥ # T. For ¥ = T, we use the analyticity of
the entropy function obtained from the analyticity of the pressure function by
using implicit function theorem. Then by the degeneration described above, we
see that the Z-image of the symplectic leaf converge to the Z-image of the mod-
uli space of metric graph as the boundary length goes to infinity. The entropy
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function on the latter space has an explicit formula by Sharp and Pollicott [51]
by which we see that the entropy function is not constant on the moduli space
of metric graph M(G,1). Thus the entropy function cannot be constant when
the boundary length associated to the symplectic leaf is large enough.

Finally, the third part concerns another interesting problem related to the Te-
ichmiiller space, namely its quantization. It is motivated by understanding the
quantum gravity in dimension 2+1. The quantum Teichmiiller theory was de-
veloped by Chekhov and Fock [20] and Kashaev [38] independently, and then
generalized to the higher rank Lie groups and cluster algebras by Fock and
Goncharov in [25] and [26]. The main ingredient of both the constructions is
Faddeev’s quantum dilogarithm introduced by Faddeev in [23]. In this chapter,
we are interested in the central extension of mapping class group coming from
the Chekhov-Fock quantization and in particular we compute the cohomology
class of central extensions of mapping class group coming from the Chekhov-
Fock quantization. This work is motivated by the result in [27] where Funar
and Kashaev studied the central extension of mapping class group coming from
Kashaev’s quantization. We remark that the Chekhov-Fock quantization, as well
as the Kashaev quantization, is the infinite dimensional quantum Teichmdiiller
theory. Meanwhile there is also the finite dimensional quantum Teichmiiller
theory. It has been developed by Bonahon and his collaborators (see [11] and
[12]) where a problem analogue to that we consider in this part was studied.

More precisely, we consider the surface X7 of genus g > 2 with s > 0
punctures and x(Xj) < 0. Let T(3) be the set of all labeled ideal triangulation
T'. The mapping class group Mod(3;) acts on it freely. The Ptolemy groupoid
associated to X7 is a category whose objects are the Mod(X})-orbits in T(X7)
and morphisms are the orbits of diagonal Mod(3;)-action in T(¥7) x T(X7).
In particular, elements of Mod(EZ) corresponds to automorphisms of an object
in the Ptolemy groupoid.

By the work of Harer [35] and Penner [46, 47], the Ptolemy groupoid can
also be generated by flips F' and permutations o of labels with commutative re-
lations and pentagon relations between flips and natural relations between flips
and permutations of labels. The shearing coordinates associated to one labeled
ideal triangulation T is equipped with a Poisson bracket. It induces an associa-
tive algebra A(T') which is a C-vector space equipped with a multiplication rule
coming from the Poisson bracket. A flip from T to T acts as an isomorphisms
between from A(T) to A(T’). The formula of such isomorphism associated to
a flip is given by the formula of change of shearing coordinates associated to
this flip. Then by deforming the Poisson bracket, one obtains a family of al-
gebra A"(T) depending on a real positive parameter A from A(T). Moreover,
the isomorphism associated to a flip also changes by using Faddeev’s diloga-
rithm. Thus one obtains a family of functors Qp from Ptolemy groupoid to the
category of algebras. These functors are called the quantization of Teichmiiller
space. The algebra A"(T) is isomorphic to a subalgebra of the Heisenberg al-
gebra H,, with n equal to the number of edges in 7. The irreducible integrable
representation of H,, in the Hilbert space H = L?(R?",R) induces a represen-
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tation p(A"(T)) of AM(T) in H. By the Stone von Neumann Theorem, the
isomorphism above between two algebras A"(T) and A"(T") acts as an inter-
twinner between e??(4" (1)) and (A" (T) | The intertwinner functor induces an
almost linear representation of Ptolemy groupoid. The intertwinners associated
to the flips satisfying a pentagon relation satisfy the quantum pentagon relation
where a unitary scalar appears. The action associated to each Dehn twist on an
ideal triangulation can be rewritten as a composition of a sequence of actions
corresponding to flips and permutations. By taking the composition of actions
of the intertwinners associated to this sequence, we obtain the lift of each Dehn
twist in the central extension of mapping class group. This lift obtained in this
way for each Dehn twist is not unique. It depends on the sequence of flips and
permutations that we use. Our first result is that by choosing carefully this
sequence for each Dehn twist, one can construct the following central extension
of mapping class group Mod(%j):

Proposition. By using the Chekhov-Fock quantization, we obtain a central ex-
tension of T with the following presentation:

(1) Generators:
(a) One central element: w = z~'2, where z is the constant coming from
the Chekhov-Fock quantization;
(b) One element Ea associated to each the Dehn twists D, along all non

separating simple closed geodesics a in S.

(2) Relations:

(a) The type-0 braid relation: D,D, = l~)bl~)a;

(b) The type-1 braid relation: D,DyD, = Ebﬁaﬁb;

(¢) The Lantern relation: DgyDga, DayDa, = DayyDayyDa,y:

(d) The chain relation: (DyDyD.)* = w'2D,Dy;

(¢) The puncture relation: Dy, Da,Day = wDq,, Dayy Dayy:

(f) If w is a root of unity with order N, then wY = 1.
A central extension of Mapping class group induces a 2-cocycle describing its

cohomology class. Changing lifts of Dehn twists does not change this 2-cocycle.

Thus by using the central extension that we obtain above, our main theorem
can be stated as follows:

Theorem. Let g > 2 and s > 4. The minimal reduction of T'(X5) can be
obtained by centrally extending F(E‘;) by A which is a cyclic subgroup of C*
generated by z~'2. Moreover, its cohomology class is

ey = 12+ Y e € H(T(S}), A)

=1

where x is one quarter of the Meyer signature class and e; is the Euler class
associated to the i-th puncture.
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We remark that this central extension is in the same cohomology class as the
central extension of mapping class group via Kashaev quantization proved by
Funar and Kashaev in [27], although there is no obvious equivariant morphism
between these two models.
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Chapter 2

Hyperbolic geometry

Hyperbolic geometry is a non-Euclidean geometry where the Euclidean parallel
postulate is replaced by ”"more than one parallel lines pass through a point
outside a line”. The hyperbolic plane is a two-dimensional simply connected
Riemannian manifold with constant curvature —1. There are several models
of it. In this chapter, we will introduce three models of hyperbolic plane: the
upper half plane model H, the Poincaré disk model D and the Minkowski model
M (or the hyperboloid model). The set Gy of geodesics in the hyperbolic plane
will be introduced and we will focus on the unique isometry invariant measure
1 on Gy, namely Liouville measure and its different expressions under different
parametrizations.

2.1 Upper half plane model

The upper half plane model is the set of points in the complex plane C with
strictly positive imaginary part:
H={z=z+iyeC:y >0},

equipped with the following metric:

s = V@ T @)
Y

where the (x,y) are the Cartesian coordinates of C.

27
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(xy)

Figure 2.1: Cartisian coordinates

Given two points z and w, the distance dg(z,w) between them is the follow-
ing:
|z —w[ + |z — w|

dy(z,w) = log (2.1)

|z —@| — |z —w]|
The curvature of this metric is —1. The orientation preserving isometry

group of H is isomorphic to the Lie group PSL(2,R) whose isometry action on
H is the Mobius transformation: let A be the following matrix:

A= ( ‘ Z ) € PSL(2,R),

the action of A on H is given by:

A:H — H,
az+b
zZ .
cz+d

By considering the absolute value of the trace, the elements A in PSL(2,R)
is classified into three types:

o If |tr(A)| > 2, the matrix A is called hyperbolic;
o If |tr(A)| = 2, the matrix A is called parabolic;
o If [tr(A)| < 2, the matrix A is called elliptic.

The boundary at infinity OH of H can be identified with R U co. The
PSL(2,R)-action on H is extended to OH in a natural way.

A geodesic in this model is either the intersection of H with a circle perpen-
dicular to the horizontal axis, or a vertical half-line. Let Gy denote the set of
non-oriented geodesics in H. A geodesic v € Gy is uniquely determined by its end
points on OH. This implies that the set Gy is identified with ((0H x 0H)\ A)/Zs
where A is the diagonal of OH x OH and the Zs-action is to exchange two end
points of a geodesic. This identification induces a parametrization of Gy.



29

(u,v)

u v

Figure 2.2: Parametrization of Gy using boundary points

By considering the PSL(2, R)-action on the boundary, the group PSL(2,R)
can also act on Gg. Moreover, there is a unique measure y, up to scalar mul-
tiplication, on Gy which is invariant under the PSL(2,R)-action, namely the
Liouville measure. With the above parametrization of Gy, the Liouville mea-
sure p is given by:

dudv

T v

dpi(u, v)

Let [a,b] and [c,d] be two disjoint intervals in OH. Then [a,b] X [c,d] is
identified with a subset of Gy consisting of geodesics having one end in [a, ]
and the other in [c, d]. Its Liouville measure is given in term of a cross-ratio:

p(la, 0] x [e, d]) =

og|[(@=)b—d)
lgha@@@

Another important kind of curves in H is the horocycle. To give its definition,
we need to introduce the Busemann function:

Definition 2.1.1. The Busemann function B is an application from H x
H x 0H to R given by the following formula:

Bu(z,w) = lim [dy(z, z,) — du(w, z,)],

Zn—U

where z and w are two points in H and u is a point in OH.
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. 21
.22

.
Z3

u

Figure 2.3: Busemann function

By considering the level set of 3, the horocycle is defined as follows:

Definition 2.1.2. The horocycle h,(z) centered at u and passing through z is
the following subset of H:

hy(z) ={w e H: B,(z,w) = 0}.

A horocycle in H is either an Euclidean circle tangent to the horizontal axis,
or an Euclidean line parallel to the horizontal axis. The base point of horocycle
is the tangent point in the first case and oo in the second case.

y y

Figure 2.4: Horocycles

2.2 Poincaré disk
The Poincaré disk D is the unit disk in C equipped with the following metric:

2, /([AR)? + (RA)?
as = 2/ 1)_;2( iy (2.2)
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where (R, 6) are the polar coordinates of C with radius R and angle 6.

Figure 2.5: Polar coordinates of Poincaré disk

Let z and w be two points in . The hyperbolic distance dp(z,w) between
them is given by the following:

2|z — w|?
(1= |2P) (A = w]?)”

coshdp(z,w) =1+

where |z| is the modulus of z as a point in C.

The boundary at infinity 0D of D is the unit circle in C. The geodesics
in D are intersections of D with Euclidean circles perpendicular to 9D and the
diameters.

Figure 2.6: Geodesics in D

The horocycles in D are Euclidean circles tangent to oD.
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Figure 2.7: A horocycle in D

The relation between D and H is given by the following Cayley transforma-
tion :

w:H — D, (2.3)
z+1
z —.
z24+1

The map w is conformal and also an isometry. All the formulas for H are
transformed to those for D by using w and vice-versa.

2.3 Minkowski model

By Klein, this model is also called the projective model of hyperbolic space. To
give its definition, we need first to introduce the Minkowski space.

Definition 2.3.1. The 3-dimensional Minkowski space V is a real vector
space in dimension 3 equipped with a non-degenerated quadratic form {,) with
signature (2,1).

A Minkowski space V' has an orthonormal basis {eg, e1, ea} such that:

—(eo, €0) = (e1,€1) = (e, €2) = 1,

and
<€i, 6j> = O,
if i # 4.
Denoted by (po, p1,p2) the coordinates of a point P € V under this ba-
sis.Then the quadratic form is given by the following:

(P, P) = —p} + p? + p3.

By considering the signs of (P, P) and pg, we can separate V into 6 connected
components:
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1) the origin O;

2) the space-like interval: £ ={P € V: (P, P) > 0};

3) the time-like interval (future): T+ ={P €V : (P,P) <0 and py > 0};

5

(1)
(2)
(3) (
(4) the time-like interval (past): T~ ={zx € V:(P,P) <0 and pg<O0};
(5) the light cone (future) LT ={zx € V: (P,P)=0 and pg > 0};

(6)

6) the light cone (past) L~ ={z €V :(P,P)=0 and pg <O0}.

The Minkowski model M is the following hyperboloid
M={PeL":(PP)= -1},

equipped with the metric induced by the restriction of quadratic form (,) on M.
Let P and @ be two points in M. The hyperbolic distance dy (P, Q) between
them is given by:

coshdy (P, Q) = —(P,Q).

The geodesics in Ml are the intersections between M and the planes passing
through the origin. The horocycles in M are the intersections between M and
the planes parallel to a ray in L¥.

The relation between DD and M is the stereographic projection from (—1, 0, 0)
to the unit disk in the plane containing e; and e;. The precise formula of this
projection is the following:

M — D,
( P1 P2 )
"po+1"po+1

(p07p17p2) —

This map can be extended to LT so that each ray in LT is mapped to a point
in OD. There is a bijection between horocycles and the points on L™. Let u be
a point in dD. Denote by £(u) the corresponding ray in L. Then each point
Py in &(u) determines a unique horocycle h,, p, centered at u:

hup, = {P €M: (P, Py) = 1}.

Remark 2.3.1. This bijection plays an important role in the study of the
lambda length in the decorated Teichmdller theory constructed by Penner [46,
48]. Roughly speaking, the lambda length is defined to be the exponential of
one half of the signed hyperbolic distance between the intersection points of a
geodesic v with two horocycles h™ and h™ based at v* and v~ respectively.
Given such one geodesic and two horocycles, we can get two point on the light
cone by the above bijection, denoted by PT and P~. The lambda length given

by such 3-uplet equals to ,/—%(P‘*, P~). This observation is an important tool

to study the lambda length in the decorated Teichmiller theory, and in particu-
lar, one gets the Ptolemy relation between lambda lengths associated to an ideal
quadrilateral.
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The group preserving the quadratic form (,) is O(1,2). The identity compo-
nent of O(1,2) is its subgroup SO™ (1, 2) consisting all the orientation preserving
isometry of M. It is isomorphic to PSL(2,R). The isomorphism can be given by
describing the PSL(2, R)-action on M. To be more precise, we identify a point
P = (po,p1,p2) € M to a symmetric matrix B:

B[ Potm D2
P2 Po —P1

Let A € PSL(2,R). The A-action sends B to A!BA. Then the image of A in
SO™(1,2) under the isomorphism is the element acting in the same way as A
on M.

Remark 2.3.2. Another advantage of Minkowski model is that the hyperbolic
structure on H can be looked as a convex real projective structure on it. This
induces a way to embed the Teichmiiller space of a hyperbolic surface into the
moduli space of the convex real projective structures equipped to the same surface
which is identified with the rank 3 Hitchin component by the work of Goldman
[31] and Choi and Goldman [21].

2.4 More formulas for hyperbolic metric and Li-
ouville measure

We restrict ourselves to the upper half plane model H in this section. The
formulas appear in this section will be used in next chapter in the proof of our
first result.

2.4.1 New coordinate systems for H
Hyperbolic polar coordinates

Consider the polar coordinate system (R,6) for D introduced in the former
section. Instead of the Euclidean radius R, we consider the hyperbolic radius r
and obtain a new coordinate system (r, #) for D. The pullback of this coordinates
of D by the Cayley transformation (2.3) induce a coordinate system on H which
we call the hyperbolic polar coordinate system of H.
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—1 1
Figure 2.8: Polar coordinates of H
The metric and its volume form under this coordinate system of H can be

computed by using (2.2) for D. The relation between r and R can be computed
by integrating Formula (2.2) along the path where 6 is fixed. Then we get:

| 1+ R
r=In
1-R’
or equivalently:
tanhg =R

By changing variables, the hyperbolic metric under the polar coordinates is:

ds = V/sinh? rdé + dr,

and its volume form is the following:
dVol = sinh rdrdé.

Remark 2.4.1. By composing the Cayley transformation (2.8) with an element
A € PSL(2,R), we can define such a coordinate system for each fized pair (zo, o)
where zg = A(i) and o is the image of the half-geodesic [i,1] under A.

Rectangular coordinate system

This coordinate system is similar to the Cartesian coordinate system for C.
Generally speaking we fix two geodesics as one horizontal axis and one vertical
axis in H which are orthogonal to each other. Each point in H is described by
a vertical coordinate and a horizontal coordinate.

More precisely, fix an oriented geodesic v as vertical axis and one geodesic
~" of those orthogonal to v as horizontal axis. Set the intersection point to be
the origin. Then we have the parametrizations on both v and ~' by using the
directed hyperbolic distance to the origin. Denote by p the parameter on v and
by ¢ the parameter on 4'. Then the points on v have the coordinates (p,0) and
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the points on 4/ have the coordinates (0, ). The horizontal line p = pg in this
coordinate system is the geodesic orthogonal to v at the point (pp,0) and the
vertical line ¢ = go consists of the points in H have hyperbolic distance |go| to
~ and on the same side as (0, o) with respect to ~.

q

I

(p.9)

Figure 2.9: Rectangular coordinates of H

We can see that this coordinate system depends on the pair of geodesic
(v,7") that we chose. Denote by O the origin and let z = (p,q) € H. Let
A € PSL(2,R). As A is the isometry of H, the point A(z) has the coordinates
(p,q) in the rectangular coordinate system defined by using (A(vy), A(7')). In
particular we can find a Ag € PSL(2,R) such that Ag(7) is the geodesic ending
at 1 and —1 with orientation from —1 to 1, and A(y’) is the geodesic ending
at 0 and oo with orientation from 0 to co. We need only consider this case to
find the formula of the hyperbolic metric at a point (p,¢) in one rectangular
coordinate system. Consider the polar coordinates (R,#) of C where R is the
radius and @ is the angle. Then the point (z,y) in H can be written as follows:

x = Rcosf,
y = Rsind.

The parameters (p, ¢) in rectangular coordinate system are described by the
following formula:

p=InR,
_llnl—i—cosﬁ
1= 5T T eost

Combining these four formulas, we get the following relation:

x = eP tanh g,
eP

coshq’
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By changing variables, we get the expression of the hyperbolic metric and
its volume form using the parameters p and ¢ as follows:

ds = \/cosh2 q(dp)? + (dq)?,
dVol = cosh gdpdg.

Now consider a point z € H. Under two distinct rectangular coordinate
system, it has two pairs of coordinates (p,¢) and (p’,q’). Then we have:

dVol(z) = cosh ¢'dp’dq’ = cosh qdpdg.

2.4.2 New parametrizations for Gy
Local parametrization by using oriented geodesics

Let v, be an oriented geodesic in H. Let G,, denote the set of geodesics inter-
secting ;. We fix a point of 1 to be the origin and fix an orientation on ~;.
We parametrize v, using the directed hyperbolic distance from the origin to a
point with respect to the chosen orientation. A geodesic v € G, is determined
uniquely by the position of its intersection point /1 and its intersection angle
a1 with 7. As a convention, the intersection angle a; is measured from v, to
counter-clockwise.

Figure 2.10: Local parametrization of G,

Under this parametrization, the Liouville measure has the following local
expression on the set Q%:

d,u(ll, Oél) = F(ll, al)dlldal.
Proposition 2.4.1. The density F (I, a1) is independent of the parameter ;.

Proof. Fixing an angle a1, we need to prove that for any two distinct real
numbers /; and [}, we have

F(ll,al) = F(l’l,al).
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For any pair of distinct real numbers I; and [}, there exists a hyperbolic
element A of PSL(2,R) fixing the end points of 71 such that A sends the geodesic
v = (l1,a1) to v = (I1,01). Let L(A) be the directed translation length of A
with respect to the orientation of 7;. Then we have the relation I = 1; + L(A).
The invariance of Liouville measure implies the following equality:

F(l/l, al)dlidal = F(ll,al)dlldal.

By changing variables, we obtain:

F(l1 + L(A), oz)dlldoq = F(l1, al)dlldoq,

which implies that
F(ly+ L(A),a) = F(l1,a).

O

As a consequence of the above, we write F(aq) short for F(l;,a1). To
compute F(aq), we choose another oriented geodesic 7, different from ~;. By
an analogy construction, we can define the parameters (I, a2) for the set Gy, of
geodesics intersecting ~ys.

Remark 2.4.2. To simplify the computation, the definition of as is slightly
different from «y. It is the angle measured from ~s to h clockwise.

Notice that to have both the parameters (I1, 1) and the parameters (1, as),
the geodesic v need to intersect both 1 and ~o. The set of such geodesics is
denoted by Gy Uy, -

Figure 2.11: Local parametrization of G,

By the same argument as above, we have:

du(lg, 042) = F(TF - Oég)dlgd()ég.
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The parameters (I, 1) are evidently functions of (l2, as) and vice-versa. By
hyperbolic trigonometry, we have the following expressions for partial deriva-

tives: )
S1in o

= mnaey

and )
Oag sin a

o, ~ k)

where p(7y) is the chord length of v with respect to y; and 73, and the values of
o1(7) and o3(y) depend on the relative position of the chord of h with respect
to v1 and s:

(i) if the chord is on the left of v; and left of ~,, then o1(y) = —1 and
oa(y) =1;
(ii) if the chord is on the left of 77 and right of o, then o1 (y) = 1 and o2(y) =1

)

(iii) if the chord is on the right of v and left of 79, then o1(y) = —1 and
oa(y) =-1;

(iv) if the chord is on the right of +; and right of ~o, then o1(y) = 1 and
oa(y) = —1.

Now changing variables yields:

F(ay)sinag

dM = F(al)dlldal = sinhp

dl;dls,

and
F(rm— ag)sinag

d/.t = F(?T — OéQ)dedOéQ = N dl1dl2
sinh p
By inspection, the function F' has the form:
F(a) = csina. (2.6)

where ¢ is a constant positive real number.
Taking ¢ = 1/2 we obtain exactly the Liouville measure as before:

1
dp = 3 sin adlda. (2.7)

The above computation also yields another local expression for ;1 on G, u,:

sin a sin as

d/,L = dlldlg (28)

2sinh p

Remark 2.4.3. The Formula (2.7) was previously obtained by Bonahon in the
appendiz of [9] using the Poincaré disc model D.
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Polar parametrization

The polar parameters for a geodesic v € G are a pair (w,n). The parameter w
is the hyperbolic distance from the point i € C to . The parameter 7 is the
angle between two geodesics: one is the geodesic passing ¢ and orthogonal to 7;
the other one is the geodesic whose end points are 1 and —1. The angle n is
measured from the latter to the former counter-clockwise.

-1 1

Figure 2.12: Polar parametrization of G

The expression of p in these parameters can be computed from the above
local expression by using hyperbolic trigonometry.

Let (I, ) be the parameters with respect to the imaginary axis where the
origin is the point i. The relation between (I,) and (w,n) is given by the
following formula:

tanhi — tanh w

cosn
cos &« = cosh wsin 7.

Now by changing variables we obtain the formula of x in terms of the pa-
rameters (u,n):

1
dp = 3 cosh wdwdn. (2.9)



Chapter 3

Hyperbolic Pleijel’s Identity
and Its Applications

In this chapter, we first recall the original Pleijel’s identity and its generalization
in the Euclidean case. Then we describe the hyperbolic counterpart of them and
give their proofs. We give four of its applications. At the end of this chapter, we
consider a maximally symmetric, simply connected, 2-dimensional Riemannian
manifold X g with constant sectional curvature K and give the analogous results
for it.

3.1 Original Pleijel’s identity and Ambartzumian-
Pleijel identity

Let E denote the Euclidean plane. Let Gg denote the set of geodesics in E and
let ug denote the measure on Gy invariant under Euclidean motions. Let D be
a compact convex domain in E with C* boundary and consider the subset Gp of
Gr consisting of all geodesics intersecting D. For each v € Gp, the intersection
v N D is called a chord of v with respect to D. Denote the length of chord by
pp(7y). Let ay(y) and az(y) be the two angles between the boundary D and
the chord of « lying on the same side of ~.

41
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Figure 3.1: Euclidean Pleijel identity
With this notation, Pleijel’s identity is the following:
/ (fopp)dus = / (f" o pp)pp cot ay cot apdpi.
gp gp

where f € C*(R,R) with f(0) = 0.

In [5], Ambartzumian gave combinatorial proof of the Pleijel’s identity.
Moreover, he proved a general version of Pleijel’s identity for convex compact
polygonal planar domains and any C'-function f:

lai

/gD(f o pp)dug = /gD(f’ ° pp)pp cot vy cot aod g + ;/0 flx)dz, (3.1)

where a; is the i-th boundary segment of 0D with its length denoted by |a;|,
and dz is the euclidean length element on R. We call the equation (3.1) the
Ambartzumian-Pleijel identity. In [19], Cabo gave another approach to this
identity via Stokes’ theorem which turns out to be the idea of our proof of the
hyperbolic version of this identity.

3.2 The hyperbolic version identities

3.2.1 Hyperbolic Ambartzumian-Pleijel identity

The statement of the hyperbolic version of the Ambartzumian-Pleijel identity
is the following:

Theorem 3.2.1. Let f be in C1(R;R). Then we have the following hyperbolic
version of the Ambartzumian-Pleijel identity:

lai]

1 n
/ (fop)du= / (f" o p)sinh pcot o cot apdp + = g / f(z)de,
Gp Gp 2 i=1 70

where dx is the length element on R, and |a;| is the hyperbolic length of the i-th
boundary segment a; of D.
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Proof. Recall that D is a convex compact domain in H whose boundary is a

geodesic polygon and aq,...,a, are the edges of dD. Recall that Gp is the

subset of Gy consisting of the geodesics intersecting D. We parametrize the

geodesic in Gp by an pair of distinct boundary points. Then there is a bijection

between Gp and (|J a; X ax) \ Z where Z comes from the multiplicities of the
>k

diagonals of 9D in |J a; x aj. As the Liouville measure has no atom, we have

>k
u(Z) =0.
Let f be a C! function from R to R. We have the following equality:

/g Son=3 ( / f(p)du> . (3.2)

i>k
Consider the orientation on these geodesic segments such that D is on the left
side of a; for all j. Then the chord of v € Gp with respect to D is on the left

side for each a;. Consider a pair of edges (a;,ar) with j > k and the local
expression of p with respect to them.

Figure 3.2: A pair of boundary segments of D

By hyperbolic trigonometry, we have:

6—2 = cos oy, (3.3)
and 5
Wi = —cos ag. (3.4)
Now, consider the following 1-form on R?:
COS COS i,
Wik = — 1 ]dlj — 4 dlk
By changing variables, we have that:
dwy, = Slnfj daj Adl; + 22 doy, A dly



44

sin o sin oy, sin o sin ay

= ———dl; Adl; dl; Adl
4sinh p kAL 4sinh p i Nl
sin a; sin oy,
= ————dl; Adl
2sinh p i Il
= du.

We will compute the right hand side of (3.2) term by term. For a pair of
sides (aj, ax) with j > k, by Stokes’ formula one has:

/S(ijak)f(ﬂ)wk = /ajx% F(p)dp A wjp, +/ f(p)dw;i. (3.5)

ajXag

In the first term on the right hand side:

COS &vj

4

S Uk

4

dpAwjp = (cosaydly — cosagdly) A (= dy; — 2% 47,

_ COS () COS Ay

o dl A dly.

Comparing it with the formula for du, we find the following relation:

dpAwjp = —Wdzj A diy,

cosajcosay  2sinhp d
- H

2 sin o sin ayy,
= —cot a; cot oy sinh pdp.

So this first term of the right hand side of (3.5) becomes:

/ I'(p)dp Awjr, = —/ I'(p) cot a; cot ay, sinh pd . (3.6)
ajXag

ajXag

Now we turn to the left hand side of (3.5). We need to discuss two cases
depending on the relative positions between a; and ay:

(I) The edges a; and aj, are not adjacent (i.e |j — k| # 1 mod n).

We denote by A; and B; (resp. Ay and Bjy) the starting and end points of
a; (resp. ar). Then the left hand side of (3.5) can be computed as follows:

(Aijk) (ijBk)
/ flo)win = — / f(p)wir + / f(p)wjk
B(ajxak) (AjPAk) (Bj,Ak)
(Bj,Ak) (Bj,Bxk)
+/ f(p)wjk —/ f(p)wjk
(Aijk) (Aijk)
(45,Bx) COS O/, (B;,Bk) COS (v,
= [ [ )
(Aj,Ak) (Bj,Ak)
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(Bj,Ak) COS (s (A;,By) COS (.
—[ Flp) St + / F(p) %

Ay, Ag) Aj,Ak) 4

L e

where p; is the length of the diagonal (A;, By), p2 is the length of the diagonal
(Bj, Bi), ps is the length of the diagonal (A;, Ay) and p4 is the length of the
diagonal (Bj, Ax). The last equality comes from the change of variable using
(3.3) and (3.4).

(IT) The edges a; and aj, are adjacent (i.e |j — k| = 1 mod n).

Without loss of generality, we can assume that B; = Aj. In the same way
as in (I), we get the following equality:

o som= 5 [ [T [ [P

Moreover, we have the following relations:

P2 = ‘ak|7
p3 = ‘aj|v
p4:O.

So in this case we obtain the following formula:

/a<a_,»xak)f w]k_f /a” /Oak+/0|aj+/p|lak|>f(p)dp- (3.8)

The last step is to sum up the formulas (3.5) for each (j, k). Let us first
compute the left hand side:

) AL Y AT R RS

k

For any (j, k) in Case (I), the first term

P1
- flp)dp

P3

on the right side of the associated Formula (3.7) will also appear on the right
side of Formula (3.7) associated to (j — 1,k), but with a different sign. The
same happens for the other three terms for (j,k). For any (j, k) in Case (IT),
this happens for the first and the last term in Formula (3.8).
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After summing up Formula (3.7) and Formula (3.8) for all pairs (j, k), the
terms different by a sign will cancel each other and the rest is the following;:

n la;]
Jj> 32 Ak i=

For the first term on the right hand side of Formula (3.5), by Formula (3.6),
we have:

Z/ p)dp ANwjr = Z / p) cot aj cot oy sinh p dps
Xap a

>k >k jXak
= - I'(p) cot aj cot a sinh p dpu.
495}
By moving it to the left hand side, we finally get the formula in Theorem
3.2.1. ~

3.2.2 Hyperbolic Pleijel’s identity

Theorem 3.2.2. Let f be in C'(R;R). Suppose that D is C'. With the same
notation as in Theorem 3.2.1, we have the following identity:

/ (fop)du = / (f o p)sinh p cot ay cot aadps + %f(O)L(()D).
[5} o

In particular if f(0) = 0, then we have the hyperbolic version of the Pleijel’s
identity.

Proof. Given a convex compact domain D with C' boundary in H, we can
choose 3 points by,bs and bz in 0D and get a triangle D3 inscribed into D.
Then by Theorem 3.2.1, we have the Ambartzumian-Pleijel identity for Ds:

\al\

/ (fOpg)d,u:/ (f' o p3) sinh p3 cot ag cot g dpp + = Z/ x)dx.
Gpg

Opg

Each pair of the adjacent vertices (bj,b;11) of D3 separates 0D into two parts
and exactly one of which containing no vertices of D3. Denote this arc by ~;.
Then we consider a new set of points in 0D consisting all b; and the mid-point
of «y; for all j. The corresponding inscribed polygon denoted by Dg will gives
us another Ambartzumian-Pleijel identity:

‘az‘

/ (fOPG)dN: / (f o pg) sinh pg cot ay cot ag dp + = Z/ dsc.
Gpg Gpg

Repeating the above construction for Dg and so on, we can get a sequence
of polygons D3,. As D is compact convex with C! boundary and f is C*, the
function f o ps, uniformly converges to fop where p is the chord length function
for D. Also the maximum of lengths of boundary segments for each D3, will
go to 0 when n goes to co. By passing to the limit, we obtain the required
formula. O
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3.3 Applications

Corollary 3.3.1. The Liouville measure of Gp is one half of the length of the
boundary of D.

Proof. The proof of Corollary 3.3.1 is direct. We choose f to be the constant
map: f(xz) = 1. Since the derivative of f is identically zero, the first term of
the right hand side is 0. The corollary follows. O

Corollary 3.3.2. We have the hyperbolic isoperimetric inequality:
L(D)? > 4w A(D) + A(D)?,
where the equality holds if and only if D is a disk in H.

The idea of the proof comes from that for the Euclidean case using the
Pleijel’s identity given by Ambartzumian in [5].

Proof. In the proof of Theorem 3.2.1, we obtained the following two formulas
for a polygon domain D:

lai

/ (fop)du= 1/ (f' o p) cos ay cos asdlydls + 1 Z/ f(z)de,
Gp 2 Jgp 2=Jo

1 sin o sin
dp == ——=dldls.
Lo emn=; [ ron e ana

By the same argument as in the proof of Theorem 3.2.2, we have the following
two equalities for those D with C' boundary:

/ (o )y = %/ (F' o p) cos an cos asdlydls + %f(O)L@D), (3.10)
Gp D
sin o sin

1
/g (fondn= /g (oG, (3.11)

In (3.10) we take f to be f(x) = z and in (3.11) we take f to be f(x) = sinh z,
which yield the following two equalities:

1
/ pdp = 5/ cos a1 cos aodlidls, (3.12)
[¢35) Gp
1
/ (sinhop)du = 5/ sin oy sin aodl; dls. (3.13)
Gp (35)

Adding these on the right hand side we get the following;:

1
A / (cos @ cos ag + sin g sin ag)dldly
Gp

1

- 7/ cos(ay — ag)dlydly
2 Gp
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= / / 1 — 2sin?( ))dl dls
aD aD 2

_ 1 / / @2 41y dls,
aD
whilst on the left hand side, we have the following:
/ (p + sinh(p))dp = / 2pdp +/ (sinh(p) — p)dp. (3.14)
gp gp (45}

The first term on the right side is the volume of the unit tangent bundle over
D. So the integral equals mA(D). To compute the second term on the right
hand side of (3.14), we need to use the hyperbolic volume form that we found
in the former sections: denote by P; and P, the points in D, then we have:

(A(D))*

/ / dVol(P,)dVol(P;) (3.15)
D JD

/ (/ sinh T‘l(PQ)dT‘l(Pg)dgl(PQ))dVOI(Pl), (316)
D JD

where (r1,6;) are the polar coordinates of P with respect to P;.

Figure 3.3: Different parameters of P; and P,

Consider the geodesic 1 passing through the origin O € H and orthogonal
to the geodesic 9 passing through P; and P,. It has an angle ¢ to a fixed
geodesic ray based on O. We can change the parameter from (r1,61) to (r1,¢)
and the resulting formula is:

/ / Slnhr1 pdrlqudVol(Pl) (3.17)

where p is the distance from he origin to ; and ¢ is the distance from the foot
of orthogonal projection of the origin on 5 to P;. Consider the rectangular
coordinates of P; with respect to ;. Then we have the

h
sinh EOS Pardgdvol(P) = sinhr s

drl d¢ cosh gdpdq
osh ¢

oh
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= sinhry cosh pdrid¢dpdg
= 2sinhridridgdp.

where the last equality comes from the formula (2.9).
Consider a parametrization on geodesic 2. Let p and p’ denote the positions
of P; and P; respectively. Then we have ry = |p — p’|. The above formula can

be rewritten as follows:
PP
/ / / 2sinhr1dq’dgdpu (3.18)
Gp JO JO

/g 4(sinh p — p)dpu. (3.19)

(A(D))?

By all the computations above, the sum of (3.12) and (3.13) can be rewritten
as follows:

1 5 1 . 9,0 — _ 1 9
1 (LOD))* ~ 5/313 /w sin (sz)dlldlz = mA(D) + 7(A(D))*.  (3.20)

which implies the isoperimetric inequality. Also the formula (3.20) shows that
the equality holds if and only if ; = ap for all v € Gp which implies 0D is a
circle. O

Remark 3.3.1. The computation for (A(D))? is due to Santalo in [55].

Corollary 3.3.3. Let T be an ideal triangle in H and p be the Liouville measure
on Gy. The density of the measure Mp = p.p is given by:

Proof. We first remark that this result has been previously obtained by Bridge-
man and Dumas in [18]. Here we give a different approach.

It is well known that all ideal triangles in H? are isometric. We can assume
that the vertices of the ideal triangle are 0,1 and co. These points separate the
boundary of hyperbolic plane into three intervals: I; =]oo, 0], Iz =]0,1[ and
I3 =]1,00[. The set of the geodesics crossing the ideal triangle is |J I; x I.

i<k
Because of the symmetry of the ideal triangle, we only need to consider I7 x I3
and we denote it by Go.

We parametrize iR such that the point z; with the coordinate {; is the point
ielr. In the same way, we parametrize 1 4+ iR such that the point z3 with the
coordinate I3 is 1 +4e'3. Then a geodesic v € Gy can be parametrized by (I, [3).
by the formula that we obtained in section 2, the Liouville measure can be
expressed locally as follows:

sin o sin ag

dp = ————=dldi
K 2sinh p I

where ay (resp. as) is the angle between v € Gy and iR (reps. 1+ iR).
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The chord length p of v can be computed as follows:

|Z1 —53| + ‘21 — 23|

p = log — .
|21 — 23] — |21 — 23]
Equivalently we have:
. |21 — 23]|21 — 23]
sinhp = Sl ol ,
1 +62l1 + e2l3
oshe = T

The center and the radius of v are the following:

1 + e2l3 _ 6211
-2
r = sinh pe'tels.

Then we can write the sina; and sin a3 as functions of p, 11, l3:

. eh 1
sinap = — = ——
Ty sinh pels’
. els 1
sinag = — = ——.
STy sinh pelt
Then dy is rewritten as follows:
1
dp = ——— dldls.

sinh?® peliels
By considering the equation:
e?s —2¢eltels coshp + 1+ 2t =0,

the parameter k£ can be expressed by a function of p and I;:

els — el coshp + \/m.

These two solutions correspond to two different cases. Fix the point z; and
move the point z3 from 1 to oo along the geodesic 1 + ¢R. The chord length
p decreases from oo to a minimal value then increases back to oo where the
minimal value is the distance between z; and the geodesic 14 iR. We denote it
by d(z1). This means that in generic case for a fixed z; and a fixed p, there are
two points z3 and 24 in 1 4 ¢R satisfying that their distances to z; are both p.
These two points correspond to the two solutions above respectively.

For a fixed Iy, to compute 3 realizing d(z1 ), we consider the geodesic passing
through z; and perpendicular to 14iR. The center of this geodesic is 1, and the
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foot of the perpendicular geodesic is 1 + iv/1 + e2l1 which implies that e?s =
1+ €211, Then we can separate R? into two parts:

U = {(11,13) c R? | o2ls > 1+62l1}’

and
Uy = {(11713) c R? | o2ls < 1+62l1}’

such that in each part, there is at most one I3 for each pair (i1, p).

First we want to find which solution corresponds to which subset.

When p = d(21), we have the equality e’ = e'* coshd(z1) = V1 + €21, Then
as I3 increasing, we have the inequality:

e'* > el coshd(z),
and p increases at the same time. This tells us that the solution for the set Uy

is:
els = ¢!t cosh p 4 /€21 sinh? p — 1,

Then the solution for U, is:

e!* = el cosh p — y/ €24 sinh? p — 1.

The integral splits into two parts:
+oo “+oo +00 \/ 1+e2l1
F(p) dp = / SO / / IO g,
Go —oo Jy/11ezn 2elrels sinh p oo J—oo 2¢el1els sinh p

where f : R — R is C! and with compact support. We use I and II to denote
the first term and the second term of the right hand side.
Recall that in I we have

el* = €'t cosh p 4 1/ €21 sinh? p — 1.

from which we compute the determinant of Jacobi as follows:

ol 1 2l ginh h
sy _ T[ell inh p + €21 sinh p cos p]
dp e Ve2lisinh? p— 1

l1 3 h
= - 621 S '20 (\/ €2l sinh? p — 1 + €l cosh p)
elsy/e?lrsinh”p — 1

el sinh p s
= e
els\/e2l sinh? p — 1
el sinh p

Vel sinh? p — 1

Then we have:

I = /+OO e L)gdlgdll
oo Jy/1te2s 2elrels sinh” p
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Il =

“+oo “+o0
/—oo /smh

+oo +oo
[oo -/smh

l

f(p)

el sinh p

3o 2ehels sinh® p \/e2h sinh? p — 1

dpdly

f(p)

2(v/ €21 sinh? p — 1 4 el cosh p) sinh? py/e2l sinh? p —

f(p)

—+oo —+o0
/0 / In sinh p 2

2l sinh? p —

So the integral I can be written as follows:

/+oo/
Los};f?:b;)nhp tel Sinh2 — 1+ ell

v, p) and the Jacobi is:

3; [(sinh p+cosh p)e?"t (sinh pe'* +4/ sinh? pe2h — 1)?

f(p)

1 + el1 cosh p) sinh? py/e2l1 sinh? p — 1
v = (sinh p 4 cosh p)elt (sinh pe!* + /sinh? pe2h — 1).

We change the variables from (I3, p) to (
sinh p

————]
V/sinh? pe2lt — 1

- dpds

dlydp.

-1

Vi 62l1 sinh?p — 1

X
cosh p) sinh? py/e2h sinh? p — 1

cosh p + sinh p)eli (sinh pelr + y/sinh? pe2h —

+oo

T sinhp

f(p)

1

dvdp

X
2sinh” p (Coshp + sinh p)elt (sinh pelt 4+ /sinh? pe2i — 1)

X > > duvdp
(v/ 62l1 sinh® p — 1 + el cosh p) (sinh pelt + 4/sinh® pe2ht — 1)

+oo

T sinhp

f(p)

dvdp.

2sinh? pv(v — 1)

We do the same for I1. In this computation, we use:

v = (sinh p + cosh p)elt (sinh pelt — 4/ sinh? pe2h — 1),

to change variables.

Fix p and compute the partial differential of v with respect to I1, we may
find that it is always negative. We compute the limit of v when [ goes to infinity

as follows:

This implies that:

1
sinh pe!t — sinh pe'* (1 — +o0
(sinh p pe 2sinh? pe2h
lim v(p, 1) = sinh p 4 cosh p
Iotoo 0 2sinh p

(sinh p 4 cosh p)eht

(sinh p 4 cosh p)eh

(sinh pe't

— /sinh? pe2lt — 1)

1

sinh? pe2h

), L1 — +oo.
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for all p > 0.
Then the second part of the integral is:

cosh p+sinh p

too  f T nhe
17 :/ } # duvdp.
0

cosh p+sinh p 2 Sinh2 prl)('v — ]_)
hp

2sin

Putting I and I together:

+oo oo
f(p)
o S0 g
o Flp)dp /0 /W 2sinh? pv(v — 1) o
+oo o0

sin

/ LP)Q(/ #dv) dp
o  2sinh®p Jeoshpisinn, v(v — 1)

2 sinh p

+oo
= / 7f(p)2 2pdp
0 2sinh” p

_ /+°° 10p g,
0 i '

This implies that:

which is same as described in [18]. O

Corollary 3.3.4. Let Q be an ideal quadrilateral in H and p be the Liouville
measure on Gy. Let y1,...,71 be the 4 edges of Q ordered counter-clockwise.
The chord length distribution dMg = (pg).du is given by:

12pdp

sinh? p

dMg = + dMiz + dMoy,

where dM3 is the chord length distribution with respect to v1 and 3 and satis-
fies:

/p A — 1/ cot a1 (p, n) cot az(p, n) sinh p cosh w(p, n)
o 0 2 )y sinhpi(p,m) cot a1 (p, ) + sinh ps(p, ) cot aa(p, n)

dn,

and dMsy is the chord length distribution with respect to vo and 4 and satisfies:

/p Ay = 1 / cot aa(p, 1) cot ag(p, n) sinh p cosh w(p,n) dn.
0 [n

2 Jiy sinh p2(p, n) cot az(p, m) + sinh pa(p, n) cot cva(p, )

where 1 is the angle parameter in the polar parametrization of the set of geodesics
in H introduced later.

In this proof, the §-formalism is the main tool and this idea comes from [28]
for the Fuclidean version of the Pleijel’s identity.
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Proof. Let @ be an ideal quadrilateral. Let 1,2, 73 and 74 denote its 4 edges
ordered counter-clockwise. The set of geodesics having at least one end at the
vertices of () has the Liouville measure 0. So we need only consider the following
two types of geodesics intersecting (): those intersecting two edges adjacent and
those intersecting two opposite edges. The chord length distribution for the
first type has been computed in the previous section and the main task in this
section is to compute the chord length distribution for the second type.

Consider the geodesics v, and 3. Let Gi3 denote the geodesic intersecting
them. By using the d-formalism to the Pleijel’s identity, we can compute the
Liouville measure of the following set:

{7 €G3 :p(7) < po}-

By considering the distance to v3, the geodesic v; can be separated into three
segments. The middle one consists of those points having distance to 3 smaller
than pg. The other two consists of all points having the distance to 3 strictly
bigger than py. We choose one point in each of the latter two segments. Let
A; and Bj denote these two points then the geodesic segment [A1, B;| contains
the points in v; having the distance to -3 smaller that py and the distance of
Ay and Bj to 3 are both bigger than pg. By considering the distance to v and
the same argument as for v, we have two points Az and Bs in 3 such that the
geodesic segment [As, B3] contains the points in 73 having the distance to v,
smaller that py and the distance of A3 and Bs to 71 are both bigger than py.

We assume that the A, By, A3 and Bjs are in the cyclic order in 9Q. Let G
be the set of geodesics intersecting 7; between A; and B; and intersecting 3
between A3z and Bs. Then we have that:

p({y € Giz i p(v) < po}) = u({v € Go : p(7) < po})-

Then by using the Stokes’ theorem and repeating the proof of Theorem 3.2.1,
we have:

, . 1 P1 P2 P4 P2
fe)dn= [ Fpeotarcotagsimpdut 3= [+ = T4 [Tr)an
Go Go P3 pa P3 P1
(3.21)

where p; is the length of the diagonal (As, By), p2 is the length of the diagonal
(Bs, B1), ps is the length of the diagonal (As, A1) and p4 is the length of the
diagonal (Bs, A1). By the assumptions for A;, By, A3 and Bs, we have that
p1,--.,pq all bigger that pg.

Instead of choosing f to be C', we can formally choose f to be the step

function:
1 ifz<pg
f@_{ 0 ifz> po

Then its derivative f’ becomes a d-function:

f'(x) = 6(po — ),
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and the identity (3.21) becomes:

p{y € Giz : p(v) < po}) = / d(po — p) cot g cot oz sinh pdp. (3.22)
gp

As ~; and 3 are disjoint, there is a unique geodesic 7’ orthogonal to both of
them. By considering the mid point of the chord of 7’ as the origin and choose
one oriented geodesic passing it, we can define the polar coordinates (w,n) of
Gu. Recall that under the polar coordinates, we have:

h
du = COSQ v dwdn.

Let v = (w,n) € Go. Let vy be the geodesic passing the origin orthogonal to
~ at the point zg. Let z; be the intersection point of v with 7, and z3 be the
intersection point of v with ~3. Let p; denote the hyperbolic distance between
zo and z; and p3 denote the hyperbolic distance between zy and z3.

¥=(w.m)

Fix n. Then by hyperbolic trigonometry, we have:

dp

dw = —— - .
sinh p; cot ai; 4 sinh p3 cot a3

By changing variables, we have:

1 cot o cot ag sinh p cosh w
g (po—p)
D

S : < = ——
n{y € 13+ p(7) < pol) 2 sinh p; cot ar; 4 sinh p3 cot ag

which implies:

. 1 cot a1 (po,n) cot az(po, n) sinh pg cosh w(pg, n)

wlty € Gis - () < po}) 2 /[n] sinh p1(po, n) cot a1 (po, n) + sinh p3(po, n) cot az(po, 1)
(3.23)

where [n] is the set of 7 such that there exists v € Gy with angle parameter n

and chord length pg.
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Let M;; be the chord length distribution with respect to v; and «;. The
above formula yields that:

/p" AMon = 1/ cot a1 (po,n) cot az(po, ) sinh pg cosh w(po, n)
0 1379 () Sinh p1(po, ) cot a1 (po,n) + sinh p3(po, 1) cot s (po, 1)

By the same argument, we have that:

/po 1 / cot aa(po, M) cot g (po, n) sinh pg cosh w(pg,n)
0 (7]

)

dMsy = = : .
“ sinh p2(po, ) cot az(po, 1) + sinh pa(po,n) cot au(po,n)

2
The chord length distributions d M5, dMss, dM34 and dM7y4 have been com-
puted in the former section. Then the chord length distribution Mg = (pg)«p
for @ is the following:

dMg(po) = dMiz(po) + dMaz(po) + dMsz4(po) + dMia(po) + dMiz(po) + dMas(po)
12pd
= P00 1 AMys(po) + dMaa(po).
sinh” pg
where dM73 and dMsy4 are described as above. O

3.4 General case

From the proofs of the theorems and corollaries in this paper, we can see that
the most important tool is the hyperbolic trigonometry. This inspires us that
this method can be used to prove the similar results for Xg.

We define the following function called general sine function for Xy by the
following series:

. Kaz3 K225
sing(z) == — =TT T (3.24)
or equivalently by the following formula:
\/% sin VKz , if K >0,
sing(z) =< = , f K =0,

\/ifKSinh\/fK:r , if K <0.

We first give the general sines rules and the general cosine rules. Let T be a
geodesic triangle in K. Let 81, 82 and 3 be its three angles, and let 71, 2 and
3 be the three edges opposite to 81, f2 and B3 respectively. Then we have:

sin;  sinfla  sinfis
sing(y1)  sing(y2)  sing(y3)’
cos 31 = — cos B3 cos B3 + sin B sin B3 (sing ) (71)-

Let pug to be the isometry invariant measure on the geodesics set GX of
Xk. We use 1 to normalize g instead of 1/2 for the Liouville measure in (2.6).
Repeat the proof of Theorem 3.2.1 by replacing the hyperbolic sine rules by
the general ones. Then we obtain the general Ambartzumian-Pleijel identity for
XKZ
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Theorem 3.4.1. Let D be a convex compact domain in Xg with geodesic poly-
gon boundary. Let f, ay, as and x be the same as in Theorem 3.2.1. Then we
have the general Ambartzumian-Pleijel identity:

lail

/gg(f opk)dux = /gg(f/ o pi ) sing (pk) cot ay cot aodpg + ;/0 f(z)dz.
(3.25)

By the same argument as in Theorem 3.2.2, we have the Xx version of the
Pleijel’s identity:

Theorem 3.4.2. Let D be a convex compact domain in Xg with C' boundary.
Let f, a1, as and x be the same as above. Then we have the following identity:

/gK(fopK)duK = /K(f’ o pk ) sing (px) cot g cot andux + f(0) Lk (OD).

9p
(3.26)
Moreover, if f(0) =0, we have the X version of the Pleijel’s identity.

By taking f to be the constant map, we can find that Corollary 3.3.1 still
holds for Xg (without the factor 1/2). The X version of Corollary 3.3.2 is
slightly different from above. By replacing the function sinhz by sing () and
coshx by (sing)’(z) in the expressions of the volume form of the hyperbolic
metric and the Liouville measure, we obtain for Xg the general isoperimetric
inequality:

L(D)* > 4w A(D) — KA(D)?.



58



Chapter 4

Teichmiiller theory

This chapter is a review of Teichmiiller theory. We begin with the definitions
of Fuchsian group, and Teichmiiller space T (X) for a closed surface ¥. By con-
sidering the decomposition of ¥ into pairs of pants, we introduce the Fenchel-
Nielsen coordinates of 7(X). Then we give the definition the mapping class
group Mod(X) and its presentation by using Dehn twists D, associated to non-
separating simple closed curves a on . The Dehn-Nielsen-Baer Theorem and
the Nielsen Realization Problem are also introduced. Later we briefly introduce
the Weil-Petersson metric on the Teichmiiller space and recall its properties.
We also consider the Teichmiiller theory for the case where ¥7 . has boundaries
and punctures and we introduce the Poisson structure on the associated Te-
ichmiiller space 7(% ). Finally, we introduce the Hitchin component which is
a generalization of Teichmiiller space.

A good reference for Fuchsian groups and hyperbolic geometry is [7]; refer-
ences for Teichmiiller space are [1], [37] and [24]; a reference for mapping class
group is [24].

4.1 Teichmaiiller space

4.1.1 Fuchsian group

Recall that the full orientation preserving isometry group of H is isomorphic to
PSL(2,R). Throughout I" will denote a non trivial subgroup of PSL(2,R).

Definition 4.1.1. The group T is said to be discrete if its relative topology
with respect to PSL(2,R) is discrete. Discrete subgroups of PSL(2,R) are called
Fuchsian groups.

Definition 4.1.2. The action of I on H is said to be properly discontinuous
if for any compact subset K of H, we have:

{A€T: AK)NK # 0} < oo.

59
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The action of T' on H is said to be free if every non-identity element in T' has
no fixed point in H.

The next proposition is well known:
Proposition 4.1.1. The following are equivalent:
(1) The group T acts properly discontinuously and freely on H;
(2) The group T is a torsion free Fuchsian group;

(3) The quotient space H/T' is Hausdorff and the quotient map is a covering
map.

Definition 4.1.3. We say that a torsion free Fuchsian group T is cocompact
if the quotient space H/T is compact.

Henceforth we assume that I' acts properly discontinuously on H.

Definition 4.1.4. A fundamental domain D of I is an open set in H sat-
1sfying:

(1) If A #id, then A(D)N D = 0);

(2) U AD)=H.
AeTl

Example 4.1.1. The first example of Fuchsian group is the subgroup (B) of
PSL(2,R) generated by a single hyperbolic element B. The action of B has two
distinct fized point on the boundary of H. The geodesic v ending at these two
fized points of B is fixred by B and B acts on vy by translation. Choose another
geodesic v in H intersecting y. The domain in H bounded by v and B(v') is a
fundamental domain of B. The quotient of H by (B) is an annulus with infinite
area, thus the Fuchsian group (B) is not cocompact.

There is a special kind of fundamental domain for I', called a Dirichlet do-
main defined as follows:

Definition 4.1.5. Let zg be a point in H. The Dirichlet domain of I' centered
at zg 18:
Dr(zp) = {z € H: du(z0,2) < du(z0, A(2)), VA € T}.

Moreover, if I' acts freely and D is compact, then it is not hard to see that
D is a finite sided compact polygonal domain in H such that:

(1) The action of I" on H induces an identification in pairs among the sides of
D;

(2) The identification among sides induces an identification among vertices. For
each vertex, the sum of internal angles associated to those vertices identified
with it is 2.
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Reciprocally one has the celebrated Poincaré’s theorem of fundamental polygon:

Theorem 4.1.1. Let D be a compact polygon in H. If the sides of D are
identified in pairs by isometries of H and the sum of internal angles associated to
each cycle is 27, then the subgroup T of PSL(2,R) generated by the identification
18 a torsion free Fuchsian group and D is the fundamental domain of T'.

4.1.2 Hyperbolic structure on closed surfaces

Definition 4.1.6. A hyperbolic structure on ¥ is a maximal collection of
charts {(U;, ¢;)}jes such that:

(1) The collection of open sets {U;} cs is an open cover of ¥;

2) Each ¢; is continuous from U, to H such that ¢; is homeomorphism onto
J J j y2
its image;

(3) If U; N Uy, is not empty, then the map:
$jk = b5 005"+ (U NUk) = ¢;(U; N Uk),
is the restriction of an isometry of H.
The collection {(Uj, ¢;)};es is called an atlas.

Definition 4.1.7. The surface ¥ equipped with a hyperbolic structure is called
a hyperbolic surface, denoted by S.

By Klein’s Erlanger program, a geometry is a pair (G, X) where G is a Lie
group and X is its symmetric space such that G acts on X by isometry with
respect to a certain metric on X. From this point of view, a hyperbolic structure
is a (PSL(2,R), H)-structure.

Let 3 denote the universal cover of ¥. Then there is a natural action of the
fundamental group m1(X) of ¥ on X. By the Cartan-Hadamard theorem, given
a (PSL(2,R), H)-structure we obtain a homeomorphism: Dev : ¥ — H and a
homomorphism hol : w1 (X) — PSL(2,R) satisfying:

(1) The associated hyperbolic surface S is isometric to H/hol(m(X)).

(2) For each v € m1(X), the following diagram commutes:
i Dev H
Vi J{hol('y)

S De
ev H

b

(3) If (Dev’, hol’) is another pair arising from the same (PSL(2, R), H)-structure
on ¥, then there exists an element A € PSL(2,R) such that Dev’ = Ao Dev

and hol’ = 14 0hol where ¢ 4 is the inner automorphism of PSL(2, R) defined
by A.
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(4) The image of hol is a cocompact Fuchsian group.

The homeomorphism Dev is called the developing map and the homomor-
phism hol is called the holonomy.

From this point of view, equipping a hyperbolic structure to X is equivalent
to giving a representation hol of the fundamental group m(X) in PSL(2,R)
whose image is a cocompact Fuchsian group I'.

The fundamental group 71 (%) has the following presentation:

71—1(2) = <717517"'a’797ﬁg | H[’Yjaﬂj] = 1>7 (41)

Jj=1

where the generators «; and §; are the distinct homotopic classes of simple
closed curves in ¥ such that they have represents satisfying: for each j the
represents of v; and 3; have 1 intersection point and for j # k the represents of
v; and B; are disjoint from those of v, and Si. Then the holonomy hol map is
determined by the images of these generators.

Figure 4.1: Generators of the fundamental goup

4.1.3 Teichmiiller space

The definition of the Teichmiiller space 7 (X) from the point of view of hyper-
bolic geometry is the following:

Definition 4.1.8. The Teichmdiiller space T(X) is defined by:

T(X) =A{(S, )}/ ~,

such that S is X equipped with a hyperbolic structure, the map f: % — S is a
homeomorphism, called marking and two such pair (S1, f1) and (S, f2) are said
to be equivalent to each other if and only if there is an isometry ¢ : S1 — So
such that v o f1 is homotopic to fs.

Although the torus has no hyperbolic structure, it is useful to consider it as
a first example in order to understand Teichmiiller space.

Example 4.1.2. Denote by Sy the torus. Instead of hyperbolic structures, we
consider the flat structures normalized so that the area is 1. The Teichmiiller
space T(S1) of Sy is the space of homotopy classes of marked normalized flat
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structures on S1 where the marking is defined in the same way as above. Fach
flat structure on S1 induces a lattice on R? which is the universal cover of Si.
By rotation, translation and rescaling, we can always assume that the origin of
R? is in the lattice and the point (1,0) is a generator. Then the flat structure
depends on where the second generator of the lattice is. Thus T (S1) is identified
with the upper half plane. Consider two lattices different from each other by
an element in PSL(2,7Z). Then such element induces an isometry between the
two flat torus corresponding to the two lattices. This is an example where two
toruses have isometric flat structures but different markings. Here is an example
1 1

where two lattices different from each other by A = 0 1)

Figure 4.2: Action of A on the universal cover of a torus

By the discussion at the end of last section, another definition of 7(X) is
the following:

Definition 4.1.9. The Teichmiiller space T(X) is the space of conjugacy
classes of discrete faithful representations of m1(%) in PSL(2,R), denoted by:

T() = Homg (71 (5), PSL(2, R))/PSL(2, R).

We see from this definition that Teichmiiller space T (X) is embedded into
PSL(2,R)29. This embedding induces a topology on 7 (X). Notice that PSL(2, R)29
is an real algebraic variety while Teichmiiller space is an analytic manifold.

Moreover, the dimension of 7(X) can be counted by this definition. The
dimension of PSL(2,R) is 3. As the number of generators is 2g, the dimension
of T(X) is at most 6g. There is one relation in the definition of 7 (%) which
removes 3 dimension. The quotient by conjugacy removes another 3 dimension
which yields that the dimension of T(X) is 6g — 6.

4.1.4 Fenchel-Nielsen coordinates

Let v be an essential simple closed curve on ¥, that is, one is not homotopic to
a point on Y. For each hyperbolic structure on X, there is a unique geodesic
homotopic to 7. Thus we can define a function I, : 7(X) — RT by sending a
marked hyperbolic surface to the length of associated geodesic homotopic to ~.
We call [, the length function associated to +.
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Definition 4.1.10. Let 1 and 2 be two simple closed curves in . We say
that they are compatible if they have no intersection point.

Definition 4.1.11. A set P of simple closed curves on % is called a decom-
position of pair of pants if the curves in P are pairwise compatible and P is
mazximal.

The following picture is an example of one decomposition of pair of pants of
221

Figure 4.3: Decomposition of pair of pants

Remark 4.1.1. The number of curves in P is topologically invariant. If the
surface 33 has genus g, then |P| is 3g — 3.

By cutting X along all curves in P, one obtains 2g — 2 connected components
which are all homeomorphic to a three-holed sphere. Each such connected
component is called a pair of pants, denoted by S 3. The marked hyperbolic
structure on a pair of pants is given by a pair (P, f) where P is the pair of pants
equipped with a hyperbolic structure such that the boundaries are all totally
geodesic and f : Sp3 — P is a homeomorphism. Then the Teichmiiller space
T (So,3) is defined to be the space of the homotopy classes of marked hyperbolic
structures on Sp 3.

Lemma 4.1.1. Denote by 1, v2 and 73 the three boundary components of So 3.
Then we have the following homeomorphism:

T(Sos) — RY,

)

(Pvf) = (l717l’Y2’l’Ys)'

Let P = {v1,...,73g-3}. Wecall (l1,...,l34—3) the length parameters. The
lengths ({1,...,l34—3) determines the marked hyperbolic structures on the pairs
of pants in ¥\ P which are possible to be glued back together.

In order to describe the gluing between pairs of pants, we introduce twist
parameters. We first consider one pair of pants. Let P be a hyperbolic pair of
pants with three geodesic boundary components v;,~; and 7. The orientation
on P induces the orientations on three boundary components. Let a;; be the
unique simple geodesic orthogonal to 7; and ;. Let o ; be an simple arc relating

v; and ;.
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Figure 4.4: Twist parameter

Let 6 be a positive number small enough such that v; and «y; have disjoint
cylinder neighborhoods N; and N; with height §. We can modify o ; by isotopy
relative to its end points such that between NV; and Nj, it goes along a;;. By
taking 0 very small, the arc «j; is isotopic to an arc which first goes around
7v;, then along «a;; and finally around ;. The signed twist distance at each
end with respect to the orientation chosen for each boundary yields the twist
number ¢;(co;;) and tj(a;;) for ;. Now consider a set of simple geodesics
{B1,...,B3g—3} such that the intersections of {f1,...,B39—3} with each a pair
of pants P are three arcs connecting each pair of boundary components of P.
Assume f; going through vy, then 8; will have two twist number on both sides
of vk, denoted by t; (B;) on the left side of ) and ¢, (3;) on the right side.
Then the twist parameter for v is given by:

= QﬂM_

t
k I

For fixed P and {f1,...,B34—3}, the Fenchel-Nielsen coordinates are given
by the (ll, ey lgg_g,tl, e ,tgg_g).

4.2 Mapping class group

Let Homeo™ () denote the set of all homeomorphisms of ¥ onto itself pre-

serving the orientation. Let Homeog (X) denote the connected component of

Homeo ™ (X) containing the identity map.
Definition 4.2.1. The mapping class group Mod(X) of ¥ is defined by:
Mod(¥) = Homeo™ (£)/Homeog (X).
One special kind of elements in Mod(X) is the Dehn twist defined as follows:

Definition 4.2.2. Let v be a simple closed curve on X. The Dehn twist D,
associated to 7y is a homeomorphism induced by the following action on X:
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(1) Cut ¥ along v which yields two boundary components;

(2) Fiz one boundary component and twist the other one by 27 , then glue the
two boundaries back together.

e

Figure 4.5: A left Dehn twist

Remark 4.2.1. There are two choices of the 2m-twists. Choose and fix an
orientations on X\7y. This orientation induces orientations on the two boundary
components. The twist along the positive direction is called the left Dehn twist
and the twist along the negative direction is called the right Dehn twist. In this
thesis, we only consider the right Dehn twist which is the inverse of the Dehn
twist in the above picture.

By the Dehn-Lickorish Theorem, the mapping class group Mod(X) is gener-
ated by the Dehn twists associated to 3g + 1 well chosen simple closed curves
in 3. This result has been improved by Humphries who stated that we only
need the Dehn twists associated to 2g + 1 well chosen simple closed curves to
generate Mod(X). Thus we have a ”geometric” set of generators for Mod(X),
but it is easy to see that Mod(X) is not free (having torsion elements), so it is
natural to ask what the relations are.

Let a and b be two simple closed curves in X. If their geometric intersection
number i(a,b) is 0, then the associated Dehn twists commute:

D,Dy = D,D,. (4.2)
If i(a, b) equals 1, then the following relation is satisfied:

DouDyD, = DyDyDy. (4.3)

Figure 4.6: Type-1 braid relation
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Relation (4.2) is called the braid-0 relation and Relation (4.3) is called the
braid-1 relation.

Now consider a two holed torus embedded in ¥ which is 7;-injective. Let
a,b,c,e and f be the five curves on it as follows:

Figure 4.7: Chain relation

Then the associated Dehn twists D, Dy, D., D, and Dy satisfy the following
relation:
(DaDyD.)* = D.Dy,

and we call it a chain relation.

The last relation is called the lantern relation. It is described as follows:
consider a four-holed sphere embedded in ¥ which is 7r1-injective and denote by
ag, a1, a2, a3, a2, azs and a1z the following curves:

Figure 4.8: Lantern Relation

Then the associated Dehn twists Dy, Da,, Day, Dags Dayss Days and D,
satisfy:
DyDy,Dyy,Dyy, = Dy, Doy, D

ai13 az3 a2z -

Grevais proved in [29] the following theorem:
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Theorem 4.2.1. For any closed oriented surface ¥ of genus g > 2, the mapping
class group has the following presentation:

(1) The generators are the Dehn twists D, along all non separating simple close
geodesics a in S ;

(2) The relation between them are the following:

(a) The type-0 braid relation;
(b) The type-1 braid relation;
(¢) The lantern relation;

(d) The chain relation.

Another result about mapping class group is the Dehn-Nielsen-Baer Theo-
rem. The mapping class group Mod(X) is an index-two subgroup of the extended
mapping class group Mod® (X) where a homeomorphism may reverse the ori-
entation of 3. The Dehn-Nielsen-Baer Theorem relates Modi(E) to a purely
algebraic object. Let Aut(m (X)) be the automorphisms group of the fundamen-
tal group 71 (X). Consider those automorphisms given by the conjugation and
the normal subgroup of Aut(m (X)) generated by them is called the inner au-
tomorphism group of m1(X), denoted by Inn(71(X)). The outer-automorphisms
group of m1(X) is then defined by the quotient:

Out(m1 (X)) = Aut(m1(2))/Inn(m (X)).

The Dehn-Nielsen-Baer Theorem states that the extended mapping class group
is isomorphic to the outer-automorphism group of the fundamental group:

Mod® () = Out(m (2)).

The Nielsen Realization Problem is also an interesting problem about the
mapping class group. It asks whether a finite subgroup of Mod(X) can be
realized as a group of isometries of a hyperbolic metric on ¥. This problem
is answered by Kerckhoff positively in [40] using the convexity of the length
function along the left earthquake defined by Thurston.

4.3 Weil-Petersson geometry on Teichmiiller space

Let My and M be two Riemann surfaces defined by equipping complex struc-
tures with ¥ where M, is fixed . By a marking on M we mean a quasiconformal
map f : My — M. Then Teichmiiller space T(3) can also be defined as the
space of equivalent classes of marked complex structures on ¥ where two marked
complex structure (M, f1) and (Ma, f2) are equivalent if there exists a biholo-
morphism f : M; — My such that f o f; is homotopic to fo. Then by the
deformation theory introduced by Kodaira and Spencer, the tangent space of
T(X) at a point (M, f) is the infinitesimal deformation of complex structure
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on M defined as the first cohomology group of holomorphic vector field which
turns out to be H'(M, K~!) where K is the canonical bundle over M. By Serre
duality, its dual is H°(M, K?) which is the space of holomorphic quadratic
differential forms.

In [58], Weil introduced a cometric on 7 (X) using Petersson inner product
on H°(M, K?) which is identified with the cotangent space of T(X) by the
discussion above. More precisely, let ¢; and ¢5 be two holomorphic quadratic
differential. Let d Vol be the hyperbolic volume form of M. Then the Weil-
Petersson cometric is given by:

D162
v d Vol

(pr102) =

By duality, the Weil-Petersson metric is defined.

In [3], [2] and [8], the authors constructed the complex structure on the
Teichmiiller space and proved that the Weil-Petersson metric is Kahler and
its Ricci curvature and holomorphic sectional curvature are both negative. In
[60], Wolpert proved that the sectional curvature of Weil-Petersson metric is
also negative. In [59], by estimating the Weil-Petersson length of the path
associated to the pinching of a simple closed geodesic, Wolpert proved that
the Weil-Petersson metric is not complete. By the work of Masur in [43], the
completion of Weil-Petersson metric is the augmented Teichmiiller space 7 (%)
constructed by adding the stratas to the non complete part of the boundary
of Teichmiiller space. The quotient of T (X) by the mapping class group is the
Deligne -Mumford compactification of the moduli space. In [62], Wolpert proved
that the length function is strictly convex along a Weil-Petersson geodesic.

4.4 Surfaces with boundaries and punctures

4.4.1 Definitions of Teichmiiller space and mapping class
group

In this section, we consider the compact oriented surface with marked points
and boundary components. We denote by X7 | the surface of genus g with s
marked points and r boundary components.

Example 4.4.1. The following picture represents the surface 2;”,1:

i,

Figure 4.9: Surface X3
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The hyperbolic structure on 27 . that we consider is such that the boundary
components are totally geodesic and the punctures are at infinite distance from
any other points inside. The marking homeomorphism for X7 . is required to be
identity on each boundary component and send punctures to punctures. Notice
that punctures can be permuted by a such homeomorphism. With these conven-
tions, the Teichmiiller space T(X; ) and the mapping class group Mod (X} ;)
are defined in the same way as for the closed surface case.

Remark 4.4.1. When s > 1, the mapping class group Mod(ZfM) can no longer
be generated only by Dehn twists, since no Dehn twist can permute punctures.
We denote by PMod(X; ) the subgroup of Mod(Xj ;) generated by the Dehn

twists on X7 . and call it the pure mapping class group.

4.4.2 Shearing coordinates

Shearing coordinates were introduced by Thurston in [56]. They were systemat-
ically studied by Bonahon in [10] and developed for the decorated Teichmiiller
theory by Penner in [46] and [48], and to the higher Teichmiiller theory by
Fock-Goncharov in [25]. In this section, we recall the shearing coordinate sys-
tem of the Teichmiiller space 7 (X} ;) of X7 . and the associated expression of
the Poisson structure on 7/(37 ,). To simplify the notation, we use % instead of
=8

Definition 4.4.1. An arc is an isotopy class of a simple curve on X ending ei-
ther at a puncture or spiraling to a boundary component which is non homotopic
to a point or a puncture of X.

Definition 4.4.2. An ideal triangulation of ¥ is a maximal collection of
distinct arcs which have pairwise disjoint represents.

Let T be an ideal triangulation. Let o be an arc of T" which is the common
boundary of two distinct ideal triangles whose union is an embedded quadrilat-
eral in 3.

Definition 4.4.3. A flip (or diagonal exchange) on « in T is to substitute « by
the other diagonal o of this ideal quadrilateral to get a new ideal triangulation
T of X.

Given a hyperbolic structure on X, each arc has a unique geodesic represen-
tative. In the following, by “arc“ we mean its geodesic representative. Fix an
orientation on «. Let & be one of its lifts. Then « will be an oriented diagonal
in an ideal quadrilateral @ with one triangle A; on its left side and another
triangle A, on its right side. In each triangle, the vertex not lying on & can be
orthogonally projected to a. We denote by v; and v, respectively the images of
the vertices of A; and A,.

Definition 4.4.4. We call the directed hyperbolic distance from v; to v, the
shearing coordinate on «.
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An explicit formula is given by using the cross-ratios of the vertices of the
associated ideal quadrilateral. Denote by {p1, p2, p3,ps} the four vertices of the
associated ideal quadrilateral @) with a counter-clockwise order. Assuming that
p1 and p3 are the vertices of & with the orientation such that ps is on the left
and p4 is on the right. Then the shearing coordinate on « is defined by:

(pl — p2)(p3 - p4)
(p1 — pa)(p3 — p2)

t(a) = log —[p1, ps; pa2, pa] = log —

The shearing coordinate system depends on the choice of the ideal trian-
gulation. By doing a flip we get another shearing coordinate system. Let T’
be the ideal triangulation coming from T by flipping a to o’. By comparing
the formulas of cross-ratios before and after the flip, we obtain the following
relation:

—t(a) if 8=d
t'(B) =1 t(B)+er(a,B)o(sign(er(a, B))t(a)) if B and o/ are adjacent but 8 # o
t(B) otherwise

where ¢(z) = log(1 + exp(z)) and the function er is defined in the following.
Fix an orientation on 3. Let A be an ideal triangle on ¥ which is a connected
component of ¥\ T. Let E(A) be the set of its edges. We can define an
anti-symmetric map

era: E(A) x E(A) — {0,£1}
in the following way:

—1 if B comes after o’ counter-clockwise
erala,f) = 1 if B8 comes after o’ clockwise ,
0 otherwise

where (o, §) isin E(A)x E(A). By taking the sum of e A over all ideal triangles
A, we obtain the following anti-symmetric map er:

er : E(T) x BE(T) — {0, +1, +2},

where E(T) is the set of arcs in T.
This anti-symmetric map ep also gives us the Poisson structure on the Te-
ichmiiller space by the following bi-vector field:

) )
PT) =S er(e, ) A ——.
; r ot(a) " Ot(p)

4.4.3 Weil-Petersson geometry

The Weil-Petersson metric is also well-defined in this case. It has also the non-
completeness and the negative curvature. But there exists a difference in the
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Weil-Petersson geometry when r > 0. Instead of the whole Teichmiiller space,
the Kahler property of the Weil-Petersson metric only exists on the symplectic
leaves in 7 (X7 ;) with respect to its Poisson structure. Assume that 7 > 0 and
denote by 71, ..., the r boundary components. Let Li,..., L, be r positive
real numbers. A symplectic leaf T(X; ., L1,..., L;) in T(Xg ) consists of all
marked hyperbolic metric on X7 . such that v; has the length L;.

Property 4.4.1. A symplectic leaf is not totally geodesic in T(E;T) with respect
to the Weil-Petersson metric.

The proof is a simple argument by using the strict convexity of the length
function associated to a boundary component. Moreover, by applying this ar-
gument to the length function of any simple closed geodesic on the surface, we
conclude that the length of any simple closed geodesic cannot be constant along
a Weil-Petersson geodesic.

4.5 Hitchin component

Let ¥ be an oriented closed surface. In [36], Hitchin studied the connected com-
ponents of the representation space Hom(71(X), PSL(n,R)) using Higgs bundle
techniques. The representation space is a singular real algebraic variety and
there is a natural action of the Lie group PSL(n,R) by conjugation. This action
is not free. Consider the quotient space Hom(m(3), PSL(n,R))/PSL(n,R). Tt
is also a real singular algebraic variety, but its quotient topology is not Haus-
dorff. One may consider a representation whose images are contained in a
unipotent subgroup of PSL(n,R), then the identity representation is contained
in all its neighborhoods. To adjust this problem, we consider the following
identification of its points: two points in Hom(m (), PSL(n,R))/PSL(n,R) are
identified with each other if and only if one point is in every neighborhood of
the other point. We denote by Hom(m;(3), PSL(2,R))//PSL(2,R) the quotient
space of Hom(m (%), PSL(n,R)) by the conjugacy action and the identification.
This space is proved to be identified with the space of conjugacy class of all
semi-simple representations denoted by:

Rep,,(X) = Hom** (71 (X), PSL(n,R))/PSL(n, R).

The two spaces Rep,,(X) and Hom(m(X), PSL(n,R)) have the same number
of connected components. Hitchin investigated the connected components for
n > 2 and, in particular showed:

Theorem 4.5.1. Ifn > 2, the space Rep,,(2) has 3 components if n is odd, and
6 components if n is even. Moreover, each of these components is homeomorphic
to a ball of real dimension (2g —2)(n? —1).

The Lie group PSL(2, R) has a unique irreducible representation ¢ in PSL(n, R).
Let p be in T(X). The composition 2 o p gives a representation of 71(X) into
PSL(n,R). We call it a n-Fuchsian representation. Hitchin also studied the
components containing n-Fuchsian representation.
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Theorem 4.5.2. There is a single component containing all n-Fuchsian repre-
sentation in Rep,, (X) if n is odd and exactly 2 such components if n is even.

Definition 4.5.1. The Hitchin component H, (%) is a connected component
in Rep,,(X) containing n-Fuchsian representation.

Remark 4.5.1. The definition of n-Fuchsian representation induces an em-
bedding of T(X) in H,(X). The image of this embedding is called Fuchsian
locus.

The above results are the generalization of [30] where Goldman gave a full de-

scription of the connected components for the representation space Hom (7 (X), PSL(2, R)).
A point in Teichmiiller space corresponds to a marked hyperbolic structure

on Y. There is an analogous result for H3(X) due to Choi and Goldman (see

[31] and [21]):

Theorem 4.5.3. For n = 3, the Hitchin component H3(X) consists of the
holonomies of real convex projective structures on 3.

From this point of view, each point in H3(X) determines a strictly convex
Cl-curve in RP? with an action of 1 (X) on it given by the holonomy. In [42]
Labourie gave a generalization of this correspondence for H,(X):

Theorem 4.5.4. For each representation p in the Hitchin component H,(X),
there exists a p-equivariant hyperconvexr Frenet curve in RP™!:

0 : 0o (X) — P(R™).

The reciprocal of this theorem was proved by Guichard in [33].
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Chapter 5

Pressure metric

In [15], the authors defined the pressure metric on the space C(I', m) of conjugacy
classes of regular irreducible convex representations of a word hyperbolic group
I in SL(m,R). The main ingredient is the thermodynamic formalism devel-
oped by Bowen, Parry-Pollicott, Ruelle and others. A representation in C(T",m)
can be identified with a Holder reparametrization of the Gromov geodesic flow
UpI' associated to I' obtained by integrating a Holder continuous positive func-
tion f defined on UpI' along geodesics. Thus we can embed C(I',m) into the
space Py(UpI") of pressure zero Holder functions on the shift space associated
to Upl'. By the thermodynamic formalism, the pressure function is analytic
and this in turn implies the analyticity of the entropy function. Moreover, the
Hessian of pressure function on Py(Upl') is positive semi-definite. By proving
its non-degeneracy on the image of the embedding of C(I',m) and pulling back
to C(I",m), we obtain the pressure metric on C(I',m). Since this construction
only depend on the image of the representation, this metric is Out(T")-invariant.
In particular, we obtain a mapping class group invariant Riemannian metric
on Hitchin component. In the beginning of this chapter, we briefly recall the
thermodynamic formalism and the construction of pressure metric in [15] . In
the following part we consider a special case where I' is the fundamental group
of one holed torus and m = 2. Thus by the result in [15], we obtain the pressure
metric on Teichmiiller space T (T). We describe a degeneration of hyperbolic
structures on T to metrics on its fat graph G which has two vertices connected
by three edges. By this degeneration, we are able to glue the moduli space
M(G, 1) of metrics on G to the boundary of 7(T). By the work of Sharp and
Pollicott in [51], the pressure metric is also well defined on M(G,1) which is
called the Weil-Petersson type metric in [51]. The above gluing shows that
the two pressure metrics on the 7(T) and M(G,1) are both the pullback of
the pressure form defined on Py(UpI'). The entropy function is involved in the
other interpretation of the pressure metric by using the renormalized intersec-
tion function. In the end of this chapter, we prove that the entropy function
is non-constant on each symplectic leaf 7 (3, ,, L1, ..., L) for ¥4, with g > 1
and r > 1 and non-constant on the symplectic leaf 7 (T, L) with L large enough.

(0]
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This work is motivated by the comparison between the Weil-Petersson metric
and the pressure metric on T(T).

References for thermodynamic formalism on symbolic dynamical system are
[45] and [53].

5.1 Thermodynamic formalism

Let {1,...,k} C N with k£ > 2. Let A be a k x k matrix with all entries taken
values in {0,1}. We define the two-sided shift space X 4 as follows:

Xa={z=(xn)nez:Yn€Z,z, €{1,...,k} and A(zn,znt+1) = 1},

equipped with a shift map o : X4 — X4 such that if o(z) = y, then y,, = xp41.

The matrix A is said to be irreducible if for each pair ¢ and j in {1,...,k},
there exists a n € N such that A™(7, ) > 0. Its period d is the highest common
factor of

inf{n : A"(i,i) > 0},

forall i € {1,...,k}. The irreducible matrix A is said to be aperiodic if d = 1.
We shall always assume the matrix A to be aperiodic.
To the shift space X 4, we can associate a one-sided shift space XX defined

by,
XT={r=@n)nen : VR €N, z,, € {1,...,k} and A(zp, Tp11) = 1},

equipped with a shift map ot : Xj — X:{ defined in the same way as o. We
equip X j‘ with the Tychonov topology which makes it compact. Let 0 < £ < 1.
We define a distance function d¢ by:

de(z,y) =&, (5.1)

where m = inf{n : z, # y,}. The topology induced by d¢ is equivalent to the
Tychonov topology.
Let Fg denote the space of complex valued Lipschitz continuous functions

with respect to d¢ on XX. For f € F, 2‘ , we define the following quantity:

var, (f) = {|f(z) = ()| : 2.y € X, Vi <n, 2 = yi}.

Definition 5.1.1. The least Holder constant |f|c of f is defined as follows:

var, (f)
IS

It is not hard to see that |f|¢ < oo if and only if there exists a positive
constant C such that:

| fle = sup{

n € N}.

[f(z) = f(y)| < Cde(z,y),

for all z and y in X}.
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Notice that |-|¢ is only a semi-norm, since |f|¢ = 0 if f is a constant function
on X 4. By adding the uniform norm |f|o = sup{f(z) : € X1}, one obtains
a norm ||-||¢ on Fg‘ given by:

[flle = [floo + [ fle-

An important result in [45] is the following proposition:
Proposition 5.1.1. The space (Fg", I-lle) is @ Banach space.

Remark 5.1.1. In the whole theory, we are allowed to change the value of &
in 10,1[ to define different metrics on X by using Formula (5.1). The above
proposition is true for every £ €]0,1[. Moreover, let 0 < £ < £ < 1, then we
have Fg‘ D Fgf

Remark 5.1.2. If a function f is a Hélder continuous of exponent o on XX
with respect to d¢, then it is Lipschitz continuous on Xj with respect to dea.
As we consider all Holder functions for all Hélder exponents, there is no need
to distinguish these two concept and we follow the reference [45] and use the
Lipschitz continuity.

For each f € F; real valued, we define its Ruelle operator Ly FE+ — Fg‘
by the following formula:

Li(g)(z) = Y e/Wy(y).

z=0"t(y)
Then we have the Ruelle-Perron-Frobenius theorem:
Theorem 5.1.1. Let f € Fg‘ be real valued. Then,

(1) The Ruelle operator Ly has a simple mazimal positive eigenvalue 5 with a
corresponding strictly positive eigenfunction h € F.';

(2) The spectrums of Ly other than [ are contained in a disc with the radius
strictly smaller than (;

(3) There is a unique probability measure p1 such that (Lf)*p = Bu;

(4) %L?(g) — thZ gdp uniformly for all g € Fg‘ where h is as above and
A

Let p be a o -invariant probability measure on XX. Let v be a p-measurable

finite partition of Xj{. Denote by
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the sigma algebra generated by the collection of (o7)%y for 0 <4 < (n+1). We
define H(o™m,p,v) to be the following quantity:

. 1
— Jim > p(A)ogp(4)
AeViZS (o)iy
To verify that the limit exists, we consider the sequence:
Hy,=— Y p(A)logp(A).

AV (at)iy

The strict concavity of the function —zlogz implies the sub-additivity of H,
that is Hpvm < H, + H,,,. As H, is a positive for all n, we conclude that the
limit of H,, /n exists and is finite as n goes to infinity.

Then we define the entropy of ot with respect to 7 as follows:

hp(0+) = SupH(JJrap, ’7)
v

Let M(c™) denote the set of o -invariant probability measures. By taking
the supremum over M (o), we define the topological entropy of o as follows:

h(c™) = sup{h,(cT) :pe M(a™)}.
We have the variational principle:

Proposition 5.1.2. Let f € Fg real valued, then there exists a unique o™ -
invariant probability measure p such that for any o -invariant probability mea-
sure p € M (o), we have the following inequality:

hp(o™) +/X+ fdp < hu(o™) +/X+ fdpu.

Moreover, the equality holds if and only if p = p.

The measure p is called the equilibrium state of f.
We denote by P(f) the quantity:

PU)= s {h(o / fdp} = hyu(o / fdu.

Then P(f) = log B(f) where B(f) is the maximal eigenvalue of L;. The quantity
P(f) is called the pressure of f. In particular, let f = 0, then we have that
P(0) = h(o™).

Definition 5.1.2. Let f,g € Fgr real valued. We say that f and g are Livsic
cohomologous if there exists a function h € Fg‘ such that f =g+hoot —h.

Then we can verify that two cohomologous functions has the same pressure.
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Remark 5.1.3. This definition is also well-defined for complex valued functions
Now we consider the Ruelle operator Ly associated to f & Fg‘ which is no

longer required to be real valued. The following result gives us the information
about the eigenvalue with maximal modulus of L:

Theorem 5.1.2. Let f =u+iv € Fg, Then the spectral radius of Ly is less
than or equal to the top eigenvalue exp(P(u)) of u. If Ly has an eigenvalue of
modulus exp(P(u)), then it is simple and unique and the rest of the spectrum
is contained in a disc of radius strictly smaller than exp(P(u)). If Ly has no
eigenvalue of modulus exp(P(u)), then the spectral radius is strictly smaller than

exp(P(u)).
If Ly has the unique eigenvalue of modulus exp(P(u)), we call this eigenvalue
the maximal eigenvalue of L;. Recall that (Fg’, ||-|le) is a Banach space and

the Ruelle operator is a bounded linear operator.Denote by B(Fg|r ) the Banach

space of bounded linear operators on Fg‘ . By perturbation theorem (see [39]
for more details), the map sending a Ruelle operator to its maximal eigenvalue
is analytic on its domain.

The definition of pressure can also be extended to f € F:" whose associated
Ruelle operator has a maximal eigenvalue A by defining P( fs) = log A by requir-
ing that if f is cohomologous to g + ¢+ 27 M7 where c is a real number and M
is a continuous function with integer value, then P(f) = P(g) + ¢. By using
the analyticity for the Ruelle operator, we have the analyticity of the pressure
function:

Theorem 5.1.3. The pressure function is defined on an open subset of Fgr and
it is analytic from its domain to C.

Remark 5.1.4. By analytic, we mean the following. Let B be a complex Banach
space. A map f : C — B is analytic, if for any linear bounded functional
l: B — C, the composition lo f : C — C is an analytic function in the usual
sense. Let By and By be two Banach spaces. A map g : By — B is analytic
if the composition go f : C — Bs is analytic for any analytic map f : C — By.
These notions can be defined similarly for real Banach spaces.

The pressure function has the following properties:
Theorem 5.1.4. (1) Let f,g € Fg are real valued. If P(f) =0, then

dpP
_ dP(f +sg) :/ gdm,
s=0 XI
where m is the equilibrium state of f.

P'(0) =
(0) P
et f,g € are real valued. =0 an +gdm = 0 where m is
2) Let f Fgr l valued. If P(f) =0 and [+ gd 0 wh
A
the equilibrium state of f, then

d2P(f + sg)
ds?

P"(O) _

=0 n—-4o0o x+
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The Hessian of P on the pressure zero Holder function space Py(X 4) is called
the pressure form. By (2) in Theorem 5.1.4, we can deduce that the pressure
form is positive semi-definite.

Given a strictly positive function f € FXv we define the suspension space
X:L s from X7 as follows:

Xip={(s) € X xR :0< s < @)}/ (0(2)",0) ~ (&, f ().
The suspension space X:L 7 admits a suspension flow (;5? defined by:

" | (z,s+1) yif s+t < f(x)
¢f(x78)_{ (cT(x),s+t— f(x)) ,if s+t> f(x)

A ¢¢-invariant measure py is always equivalent to a product measure of ot
invariant measure p on X;{ and the Lebesgue measure on the ”vertical line” for
each = € XX. Consider the Holder continuous functions F' on Xj; 5o We define
the entropy h,, (F), the topological entropy h(¢y) of the suspension flow and
the pressure of F' in a similar way to the above.

Let z € Xj{ be in a periodic orbit for the o+ action with period n. Then
(2,0) € vaf is also in a periodic orbit for ¢; and the period is f(z) +--- +
f((e™)""'z) denoted by A(z). By using Ruelle’s zeta function, it has been
proved (see Chapter 6 of [45]) that P(—h(¢s)f) = 0 and the entropy h(¢y) has
the following expression:

log |R
o) =ty BIRE)

where Rp(¢f) = {Orb(xz,0) : AM(z) < T'}.

Remark 5.1.5. The theory above is also well defined for a two-sided shift space
in a natural way.(see Chapters 1,2 and 3 of [45])

5.2 Pressure metric

The pressure metric was studied in [15] by Bridgeman, Canary, Labourie and
Sambarino. Given a word hyperbolic group I', they consider the space C(I', m)
of regular irreducible convex representations of I' in SL(m,R). The pressure
metric is an Out(T')-invariant Riemannian metric on the smooth generic points
of C(T';m). In particular, when I is the fundamental group, the space C(T',m)
contains the Hitchin component H,,(X) in its generic part, thus one obtains a
mapping class group invariant Riemannian metric on H,,(X). In fact, the idea
of its construction is inspired by earlier work in Fuchsian case by McMullen in
[44] and in quasi-Fuchsian case by Bridgeman in [16] where the thermodynamic
formalism is also used.

More precisely, let I be the word hyperbolic group. Let 0" be its Gromov
boundary. We have the following definition due to Sambarino in [54]:
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Definition 5.2.1. A representation p of T in SL(m,R) is said to be convex if
there exist two p-equivariant continuous maps:

N : 0o’ = RP(m),
0 : 0T = (RP(m))*,

such that for distinct points x and y in O, I', we have that
n(x) & 0(y) = R™.

In [32], Gromov associated to a hyperbolic group T" a locally compact finite
dimensional hyperbolic metric space Uyl satisfying:

(1) Tt is homeomorphic to 9, I'® x R, where
0500 ® = 9T X 9o\ {(, ) : z € DT}

(2) There is a proper cocompact action of I" on it by a diagonal action on Do)
which is an isometry with respect to the metric on Uy’

(3) Using the identification in (1), the R action on ITOT‘ is given by translation
on the last factor and the orbit of this action induces a quasi-isometry
embedding of R;

(4) The geodesic flow acts by Lipschitz homeomorphism.
Thus the flow on ﬁovl“ descends to a flow on the quotient:
Ul = UoL'/T.

Let p be a convex representation of I" in SL(m,R). Let E, be a flat bundle
over Upl" with fiber R™ defined by:

E, = Uyl x R™T,

where I' acts on R™ by considering the action of its p-image. By defining the
action to be trivial on each fiber, the R-action on Upl" extends to an R-action
on Upl' x R™ and so we have a flow on the latter space. It is easy to see that
this flow descends to a flow (bf) on E,. The limit maps 1 and 6 induce a splitting
of E, into the direct sum of = and ©. The flow qﬁz respects this splitting.

Definition 5.2.2. A convez representation p : I' — SL(m,R) is Anosov if the
flow ¢l, on Hom(Z,0) is contracted, i.e. giwen a metric ||-|| on Hom(Z,©),
there exists tg > 0 such that if v € Hom(Z, ©), then we have:

1
1652 @)1l < 5llv]l

Remark 5.2.1. The number tg depends on the choice of the metric, but the
Anosov property does not, because the base space Ugl is compact and all metrics
on it are equivalent.
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We denote by C(I',m) the space of the conjugacy classes of convex Anosov
representations of I' in SL(m, R). The pressure metric is defined on the smooth
points of this space.

Remark 5.2.2. By the work of Labourie in [42], when T = m1(X), the Hitchin
component Hy,(X) can be lifted to the smooth part of C(m1(X),m). Thus the
restriction of the pressure metric on C(m1(X), m) to the lift of Hp,(X) induces a
metric on H,,(X).

Let p € C(T';m) and let n and 6 be the corresponding limit maps. Let F' be
the total space of the R-principle bundle over RP(m) x (RP(m))* whose fiber
is the set of metrics on the first factor. The R-action on each fiber is given by
sending the metric u to the metric e”*u at time ¢t. Let F, be the R-principle
bundle over 9o, T which is the pullback of F by (1, 6). Then the R-action on
F gives rise a flow on F),. In [15], the authors proved the following theorem:

Theorem 5.2.1. The I'-action on F), is proper and cocompact. Moreover, the
R-action on U,F = F,/T is topologically transitive metric Anosov flow which is
Holder orbit equivalent to Uyl.

Here the ”Hélder orbit equivalent” means that the flow on U, F' is reparametriza-
tion of that on Uyl by integrating a positive Holder function defined on Uy’
along the orbit of the flow. In [15], they also proved the following rigidity result:

Theorem 5.2.2. Let py et ps be two irreducible convexr Anosov representations
of T in SL(m,R). If for all periodic orbits in UL, the reparametrized periods
associated to U, F' and U,, I are the same, then the two representations are
conjugate to each other by an element in SL(m,R).

The results of Bowen [13, 14], Pollicott [50] and Ratner [52] tell us that a
topologically transitive metric Anosov flow on a compact space has a Markov
coding and this flow can be identified with a suspension flow associated to a
Holder function on the coding space which is a shift space. Thus there exists
a shift space X for the flow on U,F. The flow on U,F given by the R-action
is identified with a suspension flow associated to X by a Hoélder function f, on
X. Then the function —hy, f, has pressure zero where hy, is the topological
entropy of the suspension flow associated to f,. By sending a convex Anosov
representation p to the corresponding pressure zero function —hy, f,, we define
the thermodynamic map:

T: C(F,m) — Po(UoF),

where Py(UpI') denote the space of pressure zero Holder functions on X. Then
the pressure metric is the pullback of the pressure form on Py(UpI') by Z.

Remark 5.2.3. For more details about the non-degeneracy of the above pullback
of the pressure form, see Section 10 of [15].

For readers’ convenience , we recall Remark 1.0.2:
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Remark 1.0.1. This coding is for Ugl" equipped with a convex Anosov represen-
tation. In [22], Coornaert and Papadopoulos showed that for a hyperbolic group,
there exists a symbolic coding for its Gromov geodesic flow. But this coding is
not one to one on a set large enough to apply thermodynamic formalism.

A periodic orbit O corresponds to a pair of limit points (,y) € 9., I'® fixed
by some v € I'. The period of O in flow F, equal to the spectral radius of p(7)
denoted by A (p). Let T be a positive real number. We denote by Rr(p) the
set of v € I" such that log(A,(p)) < T. Then we have that:

. log|Rr(p)]
= g, L

Let p; and py be two convex Anosov representations of T' in SL(m,R). We
define their intersection to be:

I(p1,p2) = lim o Z log(Ay(p1))

P1
rvtoo [Re(p))] = og(%(p2))

Further define the renormalized intersection function J by:

_ hy,
J(p1,p2) = TI(PMW)-

P1

Another result in [15] states that the pressure metric is given by the Hessian
of J.

Remark 5.2.4. A fized flow may have several different Markov codings, but
they induce the same pressure metric. This is also true for the flow on a graph
in the next section.

5.3 Moduli space of metric graph

Inspired by the work of McMullen in [44], in [51] Sharp and Pollicott studied the
moduli space of metrics on a graph and defined a Weil-Petersson type metric
on this moduli space. The main ingredient is also thermodynamic formalism
described in the first section of this chapter.

The graph that we consider here is non-oriented and the valence of each
vertex is at least 3. A metric on it is a function from the set of edges to R™. Let
G = {V,E} be a graph. We denote by M(G) the moduli space of all metrics on
G.

Denote by G = {V,E} the oriented graph with the same vertices as G. The
edges in E = {€} come from replacing each edge e in G by its two oriented
versions +e and —e. An oriented geodesic on G is a sequence of (€,),cz such
that for each n, the edges €, follows €, and €,.1 # —¢€,. Then the geodesic
flow on G is well defined. Let [ be a metric on G. As in the first section, we
denote by Rr(l) the set of periodic orbits of the geodesic flow with period less
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than T. Then the topological entropy h(l) of the associated geodesic flow is
given by: o)
. log |Rr(1
b = lim =
In [51], the moduli space of metrics on G is proposed as an analogue of the
Riemann’s moduli space. As for the case of surfaces, to rescale a metric by a
constant factor does not change much the dynamics associated to the geodesic
flow. To avoid this, a renormalization is necessary. In the case of closed surfaces,
the renormalization of the volume is the same as the renormalization of the
topological entropy of the geodesic flow. But for graphs, this is no longer true.
In [51], all metrics are normalized such that the entropy is 1. We denote by
M (G) the space of all such renormalized metrics. Meanwhile we also consider
the moduli space of renormalized metrics on G with volume 1 and we denote it
by M(G,1). To define the pressure metric on M;(G), let A be a {0, 1}-matrix
in a size |E| defined by:
_ 1 if € follows € and € # —e
Ale,#) = { 0 otherwise.

Then the following shift space gives the codings of all geodesics on G:
Ea={(n)nez :Vn €Z, €, €E and A(€,,e,41) = 1}, (5.2)

A metric [ on G will be looked as a locally constant function f; on E 4 such
that:

fil(@n)nez) = l(€0),

which is Holder.

By [51], one can repeat all process in Section 1 to define a pressure form on
M;(G) which turns out to be a metric. The non-degeneracy comes from the
definition of the tangent space of M1 (G).

We can repeat the above process and obtain a pressure form for M(G,1).

An interesting problem is to compare this metric with the Weil-Petersson
metric on Riemann moduli space. We have seen that the latter is negatively
curved, geodesically convex but non complete. Sharp and Pollicott proved that
the metric can be non complete but can possibly have positive curvature at
some point depending on the graph that we choose.

Before going on, we state one fact which is not discussed in [51], but will be
useful later:

Fact 5.3.1. The pressure metric does not depend on the way to renormalize,
i.e. given two renormalizations, the pressure metrics on the two corresponding
moduli space are isometric. In particular, the pressure form on M(G,1) is
positive definite.

Proof. The proof comes from the following two observation. The first observa-
tion is that there is an bijection between M(G, 1) and M;(G). Given a metric
1 € M(G,1). If we rescale it by a factor A > 0, the result metric A\l will have the
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associated topological entropy hy; = %hl. Then by choosing A = h;, we obtain
a unique metric I’ = Al in M;(G). The reciprocal is similar.

The second observation is the following: the images of | and !’ under the
thermodynamic map are the same. By the definition of f;, we obtain that
fxi = Afi. On the other hand, we have hy = %hl. Combining these two
relations, we conclude that —hy; fx; = —h;f;. Thus the embeddings of M(G, 1)
and M (G) by the thermodynamic map have the same image.

By the work of Sharp and Pollicott in [51], the pullback of the pressure
form gives a Riemannian metric on M;(G). Thus by the second observation,
the pullback of pressure form on M(G,1) also gives a metric. Moreover, the
bijection in the first observation is an isometry with respect to the pressure
metric. O

5.4 Pressure metric and degeneration of T

5.4.1 “New*“ coordinate system on Teichmiiller space

We should remark here that the idea of the construction of a coordinate system
using orthogeodesics has already appeared in [57].

Henceforth T will denote a hyperbolic one-holed torus whose boundary is a
simple closed geodesic.

Definition 5.4.1. An orthogeodesic o on T is a geodesic arc perpendicular
to the boundary. Its length l(a) is an element of orthospectrum of T and we
refer to it as an otholength.

> -

Figure 5.1: Orthogeodesics

Remark 5.4.1. These notions were introduced by Basmagjian in [6] for a finite
volume hyperbolic manifold with totally geodesic boundary. There he proved an
identity relating the orthospectrum to the volume of the boundary.

As a convention, when the boundary length goes to zero, in the limit we
obtain a once-punctured torus, and an orthogeodesic will become a bi-infinite
geodesic connecting the puncture to itself.

Definition 5.4.2. An ideal triangulation T for T is a maximal collection of
simple pairwise disjoint orthogeodesic of T.
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a

a

a3

Figure 5.2: Ending points of an ideal triangulation

Remark 5.4.2. This is a definition extended from the usual ideal triangulation.
The complement of T in T is a disjoint union of two right angled heragons
instead of ideal triangle. Notice that when the boundary length goes to 0, in the
limit we obtain an ideal triangulation in the usual sens for the punctured torus
whose sides are bi-infinite simple geodesics.

Let T be an ideal triangulation of T. Denote by aj, as and ag the three
orthogeodesics in T'. Their end points separate the boundary into 6 segments,
denoted by a1, ...,aq in a cyclic order. By the hyperelliptic involution of T, we
have that the length of a; equals to that of a; 3.

By hyperbolic geometry, the hyperbolic structure on a right angled hexagon
is determined by the lengths of 3 of its edges. This implies the following two
fact:

(1) The hyperbolic structure on each hexagon in T\T determined by the lengths
of ay,...,ag;
(2) The two hexagon in T \ T" are isometric.

By gluing them together, we get a hyperbolic structure on T. By the convention
of the marking homeomorphism that we made in Chapter 4, we can see that
the lengths of a1, as and a3 also determine the marking. Thus we obtain a
parametrization of 7 (T) given by the following map:

O:T(T) — (RT)3,

where the image of a marked hyperbolic structure is its lengths of a;, as and
az. The map O is the new coordinate system that we use to describe the
degeneration.

Remark 5.4.3. In the following, an ideal triangulation will be chosen one time
for all and we will use the notation a1, as and as to denote the corresponding
coordinates.

5.4.2 Degenerations of bordered surfaces

We consider the coordinate system that we introduced in the preceding section.
We will restrict ourselves in the following cone in T(T):

C={g="(ar,a2,a3) € T(T):Vi,j,k € {1,2,3}, a; < a; + ax}.
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Let g = (a1,a2,a3) be a point in C. We assume that a1 + as + a3 = 1. We
consider the sequence g, = (A,a1, Anaa, A\nas)neny where (An)nen is a sequence
of positive number and the limit of A, is infinite as n goes to infinity. We
renormalize each marked hyperbolic structure (A,ai, Anaz, Anaz) by rescaling
it by a factor A\;! and we denote the renormalized metric by g/,. Notice that
in each hexagon, the renormalized lengths of a;, as and a3 are constant. By
elementary hyperbolic geometry, the lengths of the three orthogeodesics go to
0 when n goes to infinity. As the curvature goes to —oo when n goes to oo, we
can see that in the limit, each hexagon retracts to a graph with one vertex and
three branches. Thus the universal cover T of T degenerates to a binary tree in
the limit which is the dual graph of the ideal triangulation of T. By quotient
the action of fundamental group, the surface T retracts to G. The following
picture shows the degeneration of one fundamental domain of T:

Figure 5.3: Degeneration of one fundamental domain of T

To describe the topology , we use the idea of the construction of Thurston’s
compactification using measured laminations. Let C be the set of isotopy classes
of simple closed curves in T. Let RE be the space of functions from C to R.
The renormalized metric g/, on T and the metric [ on G can be both embedded
in Rf where the G is looked as the dual graph of the ideal triangulation that we
choose to define our coordinates. Let [ be a metric on G satisfying the following
relations:

l(el) —+ 1(62) .

= —F
2

4y = l(eg) + 1(63);
2

_ Uer) +1(es)

(lg — f

Then we can verify that the limit of the images of g/, in ]RS; is the image of [
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in Rf. Let P(Rg) be the projective space. We can embed both the cone C and
M(G, 1) in it and the above argument shows that the image of later is contained
in the set of accumulation points of the image of the former.

Let v be an element in the fundamental group of G which is the same as that
of T. The length of v is the linear combination of the length of the generators
appearing in the presentation of v which is not the case for hyperbolic metric.
This means that the image of C and the image of M(G,1) in Rg are disjoint.

This conclude that M (G, 1) is a part of the boundary of C under the topology
induced by that on P(RY).

By considering the action of fundamental group on the fundamental domain,
the geodesic flows on T and G have the same coding space X 4. This implies
that by the thermodynamic map Z, the cone C and M(G, 1) can be embedded
to the same pressure zero function space Py(X4). Moreover, the pressure zero
functions associated to the renormalized metrics g}, converge to that associated
to a metric [ uniformly.

By using the same argument in the proof of Fact 5.3.1, we obtain that the
Z-image of Teichmiiller space 7(T) and that of the renormalized Teichmiiller
space are the same and this yields an isometry between them with respect
to the pressure metric. Moreover, the above argument for the renormalized
Teichmiiller space shows that Z(M(G, 1)) is a part of the boundary of Z(C) in
Py(X 4). The pressure form is well-defined on Z(M(G, 1) LUC), thus its pullback
by Z well defined on M(G, 1) L C and it is positive definite on both the two
moduli spaces by [15] and [51].

5.5 Asymptotic properties of entropy function

The main result in this section is the following:

Proposition 5.5.1. Let ¥ = X, , be a bordered oriented surface of genus g > 0
with x(X) < 0 and r > 0. If x(X) < —1 meaning that it is different from
one-holed torus, then the restriction of the entropy function on symplectic leave
T(3,Ly...,L.) are not constant; if X = T, then the entropy function is not
constant on the symplectic leave T (T, L) with L large enough.

Proof. The proof for the one-holed torus case is based on the degeneration that
we studied above. The entropy function h is defined on 7(T, L) and M(G,1)
by sending a metric g on T or G to the topological entropy of the associated
geodesic flow. It can be described by:

P(=h(¢y)f) =0,

where f is the Holder function on a shift space whose associated suspension
flow is identified with the geodesic flow of g. By the analyticity of pressure and
implicit function theorem, we conclude the analyticity of the entropy function.
Let C’ be the renormalization of C in the way that we described before. The
degeneration of T helps us to define h as a continuous function on C'UM(G, 1).
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Assume that there exists a positive number Ly such that h is constant on
C(L) with L > Lg. The continuity of h implies that h is constant on M(G, 1).
By the computation in [51], this is not true which yields the contradiction.

The proof of Proposition 5.5.1 for the bordered surface S has genus bigger
than 1 is quite different.

This proof repeats the construction of an example of McMullen in [44].

Consider the bordered surface S equipped with a hyperbolic metric. There
is an infinite volume hyperbolic surface S’ which is a quotient space of H by the
Fuchsian group I' determined by the holonomy of S such that S is isometric to
the convex core of S’. The bottom spectrum of Laplacian of S’ is defined by:

sV fPds”
Js | f12dS

where C§°(S’) is the space of smooth function on S’ with compact support.
The result of McMullen shows that:

Ao (S7) = inf{ : feC§e(S)}, (5.3)

(5.4)

=
B
=
IV IN
NSNS

M) = { S(T)(1 - 5(T))

where §(T') is the critical exponent of I'. By Sullivan’s result, we know that 6(T")
equals to the topological entropy of the no wandering part of the geodesic flow
on S and the Hausdorff dimension of the limit set of I".

By assumption, there is a separating simple closed geodesic « on S§” which
is not a boundary component of the convex core of S’ such that one connected
component in its complement is a one-holed torus. The pinching of « produces
a sequence S/, in the symplectic leaf of T(S’). For each hyperbolic surface S,
we construct a smooth function f, with compact support on it in the following
way: fn, = 0 on the infinite side of o and f,, = 1 on the one holed torus part
except a cylinder neighborhood of a with hight 1; |Vf| = 1 on the cylinder
neighborhood. It is easy to see that the ratio [, [V f[*dS},/ [q, | fn]?dS), goes to
0 as n goes to infinity. This implies that )\O(S;lsh goes to 0 as n goes to infinity.
By the formula (5.4), we conclude that §(I';,) goes to 1 when n goes to infinity,
so is the entropy. We also know that for a bordered hyperbolic surface, the
limit set is a Cantor set on S' whose Hausdorff dimension is strictly smaller
than 1. Combining these two facts, we conclude that the entropy function is
not constant on each symplectic leaf of T(.5). O

Remark 5.5.1. This example of McMullen is used to prove that there is a se-
quence of Kleinian groups which converges geometrically such that the Hausdorff
dimension does not converge.
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Chapter 6

Central extension of
mapping class group via
Chekhov-Fock quantization
of Teichmuiuller space

In this chapter, we give the construction of the Chekhov-Fock quantization of
the Teichmiiller space. Then we present a construction of a central extension of
mapping class group by using the Chekhov-Fock quantization, and show that the
cohomology class of this central extension of mapping class groups of punctured
surfaces of finite type is 12 times the Meyer class plus the Euler classes of the
punctures which is same as for Kashaev quantization.

We remark that the Chekhov-Fock quantization, as well as the Kashaev
quantization, is infinite dimensional quantum Teichmiiller theory. Meanwhile
there is also the finite dimensional quantum Teichmiiller theory. It has been
developed by Bonahon and his collaborators (see [11] and [12]) where a problem
analogue to that we consider in this chapter was studied.

6.1 Projective representation and almost linear
representation

Let V be a vector space and G be a group. A projective representation of G
on V is a homomorphism from G to PGL(V). It is well-known that projective
representations of one group are equivalent to representations of the central
extensions of the same group by subgroups of C*. More precisely, let h be
a projective representation of G on V. To a central extension G of G by a
subgroup A of C*, one can associate a representation h of G on V such that the
following commutative diagram holds :
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11— C*——GL(V) —=PGL(V) ——=1

|

1 A G G 1

In particular, let GO be a central extension of G by C*which is the pullback of
GL(V) — PGL(V) by h. Denote by hyo the associated representation of Go on V.
A reduction of GO is a central extension G, of G by a subgroup A; of C*, such
that G 1 is a subgroup of GU and the associated representation A : G1 — GL( )
is the restriction of hg. We say that G1 is the minimal reduction of Go if G1
is minimal among all reductions of GO up to isomorphism.

Suppose that G is a quotient of a free group F' by a set of relation R. A
projective representation of G on V can be induced by a representation h of F
on V such that normal subgroup generated by the relation set R are mapped
into the center of GL(V'). The homomorphism /4 will be called an almost linear
representation of G on V', in order to distinguish the projective representation.

6.2 Ptolemy groupoid

A groupoid is a category such that all morphisms are invertible and for each
pair of objects there exists at least one morphism between them. The automor-
phisms of an object form a group. Reciprocally, if a group G acts freely on a set
X, we can define an associated groupoid for which the objects are the G-orbits
in X and the morphisms are the orbits of the diagonal G-action on X x X.

Let X = X7 be the oriented surface of genus g with s punctures and I' =
['(¥;) its mapping class group. Let |T(X)| be the set of ideal triangulations of
3. By labeling the arcs of an ideal triangulation, one obtains a labeled ideal
triangulation. Let T(X) be the set of labeled ideal triangulations on X. The
action of I' on T(X) is free.

Remark 6.2.1. The I'-action on |T(X)| is not free. In particular, if an ideal
triangulation T has some symmetries, then the set of arcs in T will be fixed by
an element of T' that permutes these arcs (see [20]).

Definition 6.2.1. The Ptolemy groupoid is defined as follows:
(1) the objects are the T-orbits in T(X);
(2) the morphisms are the T'-orbits in T(X) x T(X).

Given a labeled ideal triangulation T of 3, we will denote by F,(T') the flip
on the arc « of T. Also we denote by S,,, where n = —3x(X), the permutation
group on the set of labels of the arcs of T'. Then the Ptolemy groupoid can also
be defined by using flips and permutations of labels. Moreover, the Ptolemy
groupoid has the following presentation due to Harer in [35] and Penner in [46]
and [47]:
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Theorem 6.2.1. If X is different from the three-holed sphere or the one-holed
torus, then any pair of labeled ideal triangulations can be connected by a chain
of flips and permutations.

The Ptolemy groupoid is generated by the action of flips and symmetry group.
The relations between them are the following:

(1) For any arc o in T, we have that F? = 1;

(2) If a and B are two arcs in T having no common end point, we have that
FaFﬁ = FBFa 5

(8) For any two arcs a and 8 contained in an ideal pentagon as diagonals, the
pentagon relation holds:

FaFﬁFOLFﬂFOt = U(O{,/B),
where o € S, is the permutation of the labels of o and B,

(4) Let o € S, and let o be a labeled arc, then we have that Foo = 0F, ().

6.3 Quantum Teichmiiller space

To introduce the Chekhov-Fock quantization, let us first recall the definition of
a *-algebra.

Definition 6.3.1. A *-ring R is a ring with a map * : R — R satisfying that
for all x and y in R, we have:

(1) (z+y)" =a"+y*;
(2) (xy)x =y z*;
(3) 1% = 1;

(4) (a°)" = .
The map * s called an involution of R.

Definition 6.3.2. A x-algebra is a *-ring with an involution * that is an

associative algebra over a commutative *-ring R with involution x +— T such
that (za)* = za*, for alla € A and x € R.

Remark 6.3.1. In the rest of this chapter, the *-algebras that we will consider
are C-vector spaces associated with a multiplication rule and a trivial involution
*. Thus, as a convention, we will simply call them algebras omitting the notation

*

The quantization of a Poisson manifold equivariant with respect to a discrete
group G-action is a family of algebras A" depending smoothly on a positive real
parameter f satisfying the following properties:



(1) All A" are isomorphic to each other as vector spaces ;
(2) The group G acts as the outer automorphisms on each algebra ;

(3) For h = 0, the algebra A is isomorphic as a G-module to the algebra of the
complex-valued function on the Poisson manifold ;

(4) The Poisson bracket {,} on A° is the limit of {, },/(2mih) as h is going to
zero. It coincides with the one on the original Poisson manifold.

Remark 6.3.2. By a family of algebras depending smoothly on the parameter
h, we mean that the multiplication rule varies smoothly with respect to h.

By the discussion in the Section 4.4.2, we have seen that the Teichmiiller
space of a punctured surface has a Poisson structure. Generally speaking, the
Chekhov-Fock quantization is the quantization of the Teichmiiller space with
respect to the mapping class group action.

More precisely, we associate an algebra A"(T) to each ideal triangulation T
on ¥, generated by {Zx(a) : @ € T'}. The Poisson bracket on A"(T) is obtained
by deforming the Poisson bracket for the shearing coordinates associated to T'
by the following formula:

{Zn(a), Zr(B) }n = 2min{t(a), t(B)}.
The flip F,, : T — T' acts on the algebras A"(T') by the formula

—Zr(w) if B=0a
Zh(8) = Zn(B) + ex(a B)¢" (sign(ex(a, B))Zn(a)) if B and o ave adjacent but B # o’
Z5(B) otherwise

where the Z/(3)’s with 3 in T" are the generators of A"(T"), er(a, B) is defined
in the Section 4.4.2 and a real function,

_7h exp(—iuz)
() = 77/9 sinh(7ru) sinh(7hu) du, (6.1)

where (2 is the path goes along the real axis from —oo to +0o and passing the
origin from above. The symmetric group acts as the permutation of the labels.

Remark 6.3.3. In the next section, we will describe a way to represent each
generator Zp(a) as an operator acting on some Hilbert space. And we will
use the holomorphic functional calculus to evaluate the function ¢"(z) on such
operator. Notice that the one parameter groups exp(iuZp(a)) are unitary so
that the integral makes sense by functional calculus.

For each A, the construction above gives us a functor Qp from the Ptolemy
groupoid to the category of algebra.

Definition 6.3.3. The family of functors Qp are called the Chekhov-Fock
quantization of Teichmiiller space.
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6.4 Almost linear representation of Ptolemy groupoid

A Heisenberg algebra H,, is generated by 2n+1 generators Py, ..., P,,Q1,...,Qx
and C satisfying the following relations:

(1) The generator C is a central element ;

(2) For any two index j and k, we have the relations:

{Pj, Pr} = {Q;, @} = 0;

(3) For any two index j and k, we have the relations:
{P},Qx} = Coj.

where the bracket is the standard commutator.

It has a irreducible integrable representation in the Hilbert space H =
L?(R") described as follows: let x1,...,z, denote the real coordinates of R™,
then we represent the generators by the following operators:

p(Pi)(f) (@1, .. zpn) =2 f(z1,...,20),
PN ) = <2mih Tl )
p(C)Y( ) (@1, .. zn) = 2milif(z1,...,20).

for all f € H. Let n = —x(X) which is the number of arcs of an ideal triangu-
lation of 3. Then the representation of H,, induces a representation of A"(T)
in ‘H. More precisely, by the assumption of n, there is a bijection between the
generators ();’s and the arcs in T'. Let @), denote the generator associated to
the arc a by the bijection. Then the representation p of A"(T) is given by the
following formulas:

p(Zn(0) = 30(Qa) + 3 er(a, B)p(Py),

BET

forall a € T.

The Stone von Neumann theorem holds true for A*(T). In particular, con-
sider the representations p(A"(T)) and p(A"(T")) of A"(T) and A"(T") respec-
tively. The uniqueness of representations yields the existence of an intertwinner
K between the two representations. It acts in the following way:

iP(AM(T") KNT, T/)eip(Ah(T))K(T, ). (6.2)

To give the explicit formula of K, consider two arcs a and ( in an labeled
ideal triangulation 7" having one common vertex. The quantization functor Qp
sends the associated shearing coordinates t,, and tg to two elements Z;(«) and
Zy(B) in A"(T) which generate a subalgebra isomorphic to H; the Heisenberg
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algebra with 3 generators. Let P, @ and C' be the three generators of Hy satis-
fying: {P,Q} = C and {P,C} = {Q,C} = 0 where the bracket is the standard
commutator. Any unitary irreducible representation of H;j is equivalent to its
following representation p on L?(R):

o(P)(f)(x) = 27in L),

p(C)(f)(x) = 2mihf ().

Let U = exp(ip(P)) and V = exp(ip(Q)). The flip F,, on « sends (P,Q)
to (Q',P) = (—P,Q + ¢"(P)) by the quantization functor B". Let U’ =
exp(ip(P’)) and V' = exp(ip(Q')).

Consider following function:

) e (] [ e ).

where ) is a path defined in the same way as in the function (6.1). Then the
operator K is given by:

oo —xz
K = [ fe)0he) el m)de

oo 2mih

Moreover we have that K UK = U’ and K~'V K = V'. For the representation
of A"(T), we have an operator K for each variable of f € L?(R"). They are
independent of each other. We simply take their composition to get the operator
K in Formula (6.2).

The following result is proved in [26]:

Proposition 6.4.1. The intertwinner K has the following property:

(1) For any disjoint arcs « and B in the labeled ideal triangulation T, the
operators K(F,) and K(Fg) commute with each other ;

(2) K(Fo)?=1;
(8) The pentagon relation: for o and  which are two diagonals in a pentagon,
K (Fo)K (Fp) K (Fo)K(F3) K (Fa) = €™,
where o is the permutation of the labels o and (.

By the intertwinner K, all morphisms in the Ptolemy groupoid are sent
to GL(#H) and all relations are sent to the center of GL(#). Thus we obtain
an almost linear representation of the Ptolemy groupoid which induces almost
linear representations of I.
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6.5 Presentation of central extension via Chekhov-
Fock quantization

In [27], the authors gave the following presentation of I' which is a consequence
of Gervais’ result in [29].

Lemma 6.5.1. For any oriented surface S of genus g > 2 and s > 4 punctures,
the mapping class group has the following presentation:

(1) The generators are the Dehn twists D, along all non separating simple close
geodesics a in S ;

(2) The relation between them are the following:
(a) The type-0 braid relation: for each pair of disjoint non-separating simple
closed geodesics a and b, we have that D,Dy, = DyD, ;

(b) The type-1 braid relation: for each pair of non-separating simple closed
geodesics a and b with the geometric intersection number i(a,b) = 1
(see Figure 4.6), we have that:

D,DyD, = DyDgDy;

(¢) The chain relation: for each two-holed torus embedded in the surface
(see Figure 4.7), we have that:

(DanDc)4 = DeDf;

(d) The lantern relation: for each four-holes sphere embedded in the sur-
face whose boundary ag,aq,as2,as are the non-separating simple closed
geodesics (see Figure 4.8), we have that:

Doy Da, DayDay = DayyDagy Da, s

(e) The puncture relation: for each sphere with three holes and one puncture

embedded in the surface, we have
DalDazDag = Da13Da23Da12'

By using this presentation, we are able to prove the following proposition
which is the main step of the proof of the theorem:

Proposition 6.5.1. By using the Chekhov-Fock quantization, we obtain a cen-
tral extension of I' with the following presentation:

(1) Generators:

(a) One central element: w = 2712, where z = e>™" js the constant coming

from the pentagon relation in the Proposition 6.4.1;
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(b) One element D, associated to each the Dehn twists D, along all non
separating simple closed geodesics a in S.

(2) Relations (same hypothesis on curves as in Lemme 6.5.1):

(a) The type-0 braid relation: 5aﬁb = ﬁbﬁa;
(b) The type-1 braid relation: Eaﬁbﬁa = Bbﬁaﬁb;
(¢) The Lantern relation: DgyDgy, Doy Doy = DayyDays

(d) The chain relation: (DyDyD,)* = w1256ﬁf;

(¢) The puncture relation: Dy, Da,,Da,, = wDg, Day Day:
(f) If w is a root of unity with order N, then w" = 1.

D

a13»

Remark 6.5.1. By using the Chekhov-Fock quantization, we can construct more
than one central extension of I', but they are all in the same cohomology class.
The one in the proposition above makes it easy to compute this cohomology class.

We prove Proposition 6.5.1 by proving a sequence of lemmas.
Lemma 6.5.2. For the type-0 braid relation, we have that ﬁaﬁb = ﬁbﬁa.

Proof. The lifts of two commutative elements are commutative in the central
extension. O

Remark 6.5.2. This lemme holds true for any lifts of any pairs of Dehn twists
D, and Dy satisfying the type-0 braid relation.

Lemma 6.5.3. For the type-1 braid relation, by choosing the lifts, we have that:
DoDyDy = DyDoDy.

Proof. Let a and b be two non-separating simple closed geodesics in 3 with
i(a,b) = 1. Suppose that we have their lifts D, and D, such that:

Ebﬁaﬁb = Zkﬁaﬁbf)a.
Then by changing the lift D, to 13{) = zF D, we have that:
5.5, D, = DD D,

Let x and y be another pair of non-separating simple closed geodesics with
i(z,y) = 1. Then there is a homeomorphism ¢ of ¥ sending a and b to z and

y respectively. Let 5 be its arbitrary lift. Consider the lifts of D, and D, as
follows:

Ex = 571Ea87
D, = ¢_1D1/7¢-
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Then the corresponding type-1 braid relation is
B.D,D, = D,D.D,.
We begin by choosing a lift for D,, then there is a unique lift of Dy, satisfying
the trivial type-1 braid relation. By using the homeomorphisms of ¥, the lifts

of the other D, and D, appearing in the type-1 braid relations can be fixed too.
Then we have the trivial type-1 braid relation everywhere. O

Consider the Dehn twists as the homomorphisms in Ptolemy groupoid. Then
they can be expressed as the compositions of the flip actions and the permutation
actions. By using the almost linear representation K, we obtain the lifts of
Dehn twists. Notice that a Dehn twist may have several expressions different
from each other by the relations in Proposition 6.2.1. Different expressions may
induce different lifts. In the following part, we will prove that by well choosing
the expression, the induced lifted Dehn twists satisfy the relations in Proposition
6.5.1. We will use F, to denote K(F,). Fixing an expression of a Dehn twist
D,, we will use l~)a to denote the composition of the K-images of the flips and
permutations in that expression.

Convention 6.5.1. For our convenience, we make two conventions for the
proof in the rest of this section:

(1) For the underlined part, we use either the pentagon relation or the commu-
tation relations;

(2) In the proof, we compose the lifts of flips and permutations from the left to
the right which is contrast to the usual way.

Lemma 6.5.4. By choosing the lift for each Dehn twist in the lantern relation,
we have that:

Bus Do, Dy Doy = 212D, B, D

a13-—a23-—-aiz2"
Proof. The proof is similar to the one in [27]. Consider the the four-holed sphere

with one puncture on each boundary component. The ideal triangulation and
the labels are given as follows:

Figure 6.1: Lantern relation
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Then the Dehn twist Dgy, D1, Dy and Dshave the following expression:

Dy = FsF,F3Fy(1335%),
Dy = F3FeFrFy(339%3),
Dy = FsFyiFioFy(16589%9),
Dy = FiolsFRiFs(§350%)-

For Dis, Da3 and Dq3, we use the same strategy as in [27]. First transform
the triangulation so that there are only two arcs intersecting the geodesic associ-
ated to the Dehn twist. Then do the Dehn twist and transform the triangulation
back. Follow this idea we get the following formulas:

Figure 6.2: Do
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Diy = Ad(FoF3F,FoF,)Fs (48),

Figure 6.3: D3

D13 = Ad(F F7F,F6F5)F, (45),
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D23 = Ad(FGFgF F2F3F7F1)F10 ( 10 3 )
They can be simplified as follows:

Dy = FioF3FyFoFyFy (28) Fo FoFuF3Fyo =
= FoF3FyFaFgFgFoFr FgF3Fg
= FioF3FyFoFgFy (§ ) FoFyF3 P
= FloFsFyFo FyFo Fy (39) F3Fuo (
= FioF3FyFyFy (38) FoF3Fio (39
= FioF3Fy FyFa Fy F3Flo (35) (39
= F3FioFs Fy o FioFoF5 (38) (39
= F3FsFioFyFioFioFaFioFoFs (39) (
= F3FFyFhp ( 140 140)F2F10 ( 120 120)F9F3 (?)
= F3FsFyFyg

~— ~—

%
I
3
e
—
=
o
00
o
=
—

Di3 = FI R FyFsFsFy (38) Fs Fs FuFr 'y =
= F\FrFyFs FsFyFs Fs FyFr Fy (4

= P\ FyFsFyFs (§5) FsFsFr )y

= F\FrF5Fy (33) FeFs FyFrFy (§

= MFrF5FsFy (§9) FsFrFy (55) (

18

- F1F5F6F7F FsFyFy (338%%),

D3 = FsFoFs Fo Fs 7 F1 Fio () ) FuFr Fs Fo Fs FyFg =
—F6F9F5F2F3F1F7F10F7F1F10F2F5F9F6(13 9y =
= FsFy Fs o Fs Py F1 o Fr L\ Fr Fo Fs Fy Fs (1)
—FGFQFFF2F3F1F10F1F7F2FFF9F6( )(170 170
= FsFoFs Fo Fs FioFIFr Fo Fs Fo Fg ({5 10) (37) (1f 3
= FsFoFs Fo FsFygF\ Fr Fo Fs FoFs (17

The expressions which we use to lift Dehn twists are the following:

Dy = FsFuF3F> (§1353),

Dy = FyFsFrFs (335%8),
Dy = FsFyFioFy ({,5877),
D3 = FioFsFiFs (35550 %),

Diy = F3FyFyF1oFo FyFoFs (24858929,
Di3 = FyFs FoFr FuFoFsFy (3351%),
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Doy = FeFo Fs Fo Fy Fio A Fr o Fs Fo Fs (11 3 ) -

Then the composition of the lifts 1512, 1513 and 1523 is the following;:

-512523ﬁ13

ﬁsﬁsﬁzxﬁwﬁzﬁ;%ﬁs ( 120 3 ;81 g 180)ﬁ6ﬁ9ﬁ5ﬁ2ﬁ3ﬁ10ﬁ1ﬁ7ﬁ2ﬁ5ﬁ9ﬁ6 X
x(37) (b ) FLFsFeFr FaFoFsFy (13815) =

F3FyFyFygFy Fy FoFy (5559%) FsFoFs Fy FsFioFy Fr Fy X
xFsFo (1) (3} W) PSPy FgFoFy (33818) =

2T R FyFy o Fy Fy FoFy (H583%9) FoFoFs Fy Fs FroFy Fr Fy x
xFy (A1) (W) FYFs Fy FyFgFsFs (§4361%) =

22 F3Fy FyFyoFy Fy FoFs (He33%0) ﬁ6ﬁ9ﬁ5ﬁzﬁ3ﬁ1oF1F2F7 X
xFy(25) (A1) (& ) Fs R FyFe FyFs (34587 %) =

23 Ey Py Fy FyoFy Fy Fy Fy (He83L0) ﬁ6ﬁ9ﬁ5ﬁ3ﬁ2ﬁ10F1F7 X

xFo(33)(20) (A1) (W) s FyFeFsFs (§4381%) =

AR E P FioFFyFy (248910) FsFy (38) FoFs FaFigFy Fr x
xFy (3 33T Fs PR FyFsFsFs (§3381%) =
OB R Py Pl Py FsFsFy (39) (5 8899) (38) FoFsFyoFy Fr x
xFy (3 237 Y) Fs PR FyFFsFs (§3581%) =
R s FyFio R FyFsFy (39) (5 8599) (38) FoFsFioFy Fr x
xFy (3 237YW) FsFrFyFeFaFs (§4381%) =

B (3355 )ﬁsﬁﬁsﬁiﬁwl’zﬂl’sl’g

3)(
XF9F5F10F1F7F9 (7 10 :1)’ ; 130) F5F7F4F6F8F5 (é
279D (23678) FrFs (§8) FuFyFaFyFsFy (39

8
x (38) FoFsFoF1FrFy (3 230 W) FsF FyFoFs s (54581

5D F8F2F4F10F6F3F4F9F4F5F3F1F2F4F5F1F8F9F10F5

1456 78910
x(691106784)

— N

o 1456 78910\ —
XF10F5(691106784)_

28Dy FyFyFs FyFg (49) FuoFe ( 5 10) By Fy Fy By Fs Fy Fy Fy Fy B
<Py FsFoFioF5 (343 $H588%0) =
28Dy P Fy o Fs FoFg (49) Fy (8, 19) FsFyFy Fy Fs Fy Fy Py Fy Fy
XF1F8F9F10F5 (6 3 ? 160 (73 ? g W)=
2 8D1Da (387 0 0) FoFsaFs (45) Fs (W) FsFyFy FyF5 Fy x
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Xﬁlgﬁzxﬁsﬁlﬁs%ﬁloﬂ (6970638 %)=

= z D1D2F8F7( )F2F4F10ﬁ3ﬁ5ﬁ3ﬁ1ﬁ2ﬁ4ﬁ5ﬁ1ﬁ8ﬁ7ﬁ10F5(

= _85152ﬁ8ﬁ7( )F2F4F10F5F3( )F1F2F4F5F1F8F7F10F5

_1OD1D2F8F7F4F10F5F3F4F1F7F8F10F2 (6733300 W)=
D\ Do FyFioFs B Fy Fi Fs FioFa (33345 9 ) =
2D Dy Py FioFs s FyFy Fy (L8) FioFs (52345 910) =
= z 11D1D2D0(%%ié?)ﬁ2ﬁ3ﬁ4ﬁ5ﬁ4ﬁ10ﬁ5ﬁ3ﬁ4ﬁ1ﬁ8(é?)Fwﬁz(
= —12D1D2D0f1ﬁ2ﬁ4ﬁ3 (3 )F10ﬁ4ﬁ2ﬁ3ﬁ5ﬁ8ﬁ101:1 (2 % 8510 1)
= 22D Dy Do\ By FroRa FyFs FsFyoFy (3385 0) =
= 272Dy DyDoFy FyFyoFyFs FyFioFy (438 2 10) =
= 2 MDDy DoF FioFy (YY) FsFsFioFy (3355 Y) =
= 2 "D DyDyFy FioFs FsFy (5 S0 %)=
= 2 2DiDyDoFioFsFy (33) Fs (350 %9) =
= 2 PDiDyDoFioFsFiFs (§35 8 0) =
272D, Dy Dy Ds.
O]

Lemma 6.5.5. There are the lifts of Dehn twists such that for the puncture
relation we have that:

_ .12 D D
DalQDal3Da23 =z DalDa2Da3

Proof. As this is a degenerated case of the lantern relation, the proof is the
same as above. O

Lemma 6.5.6. By choosing the lifts of the Dehn twists in the chain relation,
we have that:

(DuDyD.)* = 22D, Dy.

Proof. Consider the two-holed torus with one puncture on each boundary com-
ponent. The simple closed geodesics a, b, ¢, e and f are as follows:
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Figure 6.5: Chain relation

We consider the following ideal triangulation of the two-holed torus:

4 7 ©o8
1 //f e 5// £/
A .
b 33 6 7
T 3
X A

Figure 6.6: An ideal triangulation of a two-holed torus

The Dehn twists corresponding to a, b, ¢, e and f can be presented as follows:

D, = F3FiF5(33),
D, = Ad(FgF,F5)Fs (g i) ,
D. = FFsF(8§),

S
I

Ad(FsF4FgFeF7)F3 (33
Dy = Ad(FiFgF FoF3)F7 (58).

The Dehn twist D, can be simplified as follows:

D, = FsFFRFsFyF5(33) FrFoFyFyFs =
FsFyFyFo Fy Fs Fr FgFs FyFs (3 3)
FsFyFyFsF3Fr (3 %) Fo Fy FyF
FsFyFy Fy Fy Fs Fy Fy s (6
- &&&E&H&&(

I
o
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o
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o
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and Dy can be simplified in a similar way as follows:

Dy =

FrF\FyFsFoFrFg (5334588),

by sending (2, 3,4,5,6,7,8) to (6,7,8,1,2,3,4).
We will use the following expression of these Dehn twists to get their lifts:

SIS
[

F3FyF5(33),
Ad(FsF1F5)Fs (3 %),
FrFsFr(83%),
FsF3FyFrFoFuFs (334
FLFy FyFyFyFgFy (234

We need to check if the induced lifts of the Dehn twists satisfy the trivial
type-1 braid relation. As there is a symmetry between D, and D, with respect
to Dy, we only need to verify the trivial type-1 braid relation for D, and Dj.

We rewrite Dy as follows:

Bb = ﬁgi’ﬂﬁg;ﬁg (g i) ﬁg,ﬁlﬁg = Z_lﬁgﬁlﬁgﬁg;
= Z_Qﬁlg(

18
81
=2 PRI Fs (38) Fu (%) (38) (4%

(R5) i (55) =
VEsFFy (38) (4%) =
)=z R Ry (33) (%)

By using once pentagon relation, we have the following equality:

Do =F3F,F5(34) =2""FuFs(334).

Then the type-1 braid relation can be verified as follows:

DyDo Dy,

2’745(1 (g 2 g)F5F4ﬁ1ﬁ2

D.DyD,.

IO RABRR (LD () =
38)
23

) EaFsFsFa (533575) =
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The following computations will be used in the later proof:

D. = Efsﬁ(gé):z‘lfsﬁ(%?),
Ije = ﬁ5ﬁ3ﬁ8ﬁ7ﬁ6ﬁ4ﬁ5(§gggg§) ==
= BBRFEFEE(35) (6558 (33)(33) =
= FBEFEFFFE (35)(38)(89)(8T)(85)(33) =
= BFRFEBEFBE(35)(35) (655 (31)(33) =
= BERFEEEFEGE)EHEHEHEDEDGEY) =
= 271ﬁ3ﬁ5ﬁ8ﬁ7ﬁ6ﬁ3ﬁ4(3232gg?),
Dy = RFEFRFF (234678) = "B R F (1334618)

Taking the product of l~)c, Eb and l~)a, we have the following:

D.DyD,

= 2OFF ($78) IR FsFy (L3) (48) FuFs (334) =

= z_5F8F7F1F5&F4&F3 (421
= 275F8F7F1F5F4F3(})?)(421

x(31) (135887

)

|

I
L
o
o
e
A
o
5
o
o
!
>
3

|
N

|

=
s
&
ke
o
o
B
e
&
~
S

(837
(847
_ 2—12MF1F8F3F5F8F2F6(515 E1;)
7) (8
5678
4213

= U FRR P FsF R Fe (]
= 2 UE R FFsFRFs (L334

This implies that :

(ﬁcﬁbﬁa)4

x(§7) (6837481

2724F7F1F3F5F8F5

x(§7) (68371

[\l
==

4 7 (12345678)

7 1 68574213
2345678\ I LI I 12345678
857421ﬂl%Fﬂ%Fﬂ%Eﬂgﬂﬁ6857421Q
2345678\ LI I I LA I 78)(1234567
8574213)EPF§FJ%F%Eﬂ%(87)(6857421
2345678\ LI LI 0 I
857421 3)F7F8F1F3F5F2F6 X
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X(12345678
68574231

~—

o=
[0e] V)
[$2{9Y)
SIS
OJC:\
==
W00
~
i
-
&
5
S‘?
—~
~—
51
5
o
&

= PR FF; (1324557 8) PR Fs P Fs FYFsF g (3234557%)
= PR FFFFs (284587 8) Ry FsFy Fy FyFsFg (L3) x
12345678
X(g58745951)=
= 2_24F7F1F3F5F8( 3325818 FRIRFy I FsFsFs (§233555%) =
237381 R FsFsFs (§234555%) =

— SBRRRRE (1) B (231381) RRARREE (1281155)
= TPRREBEER (33391 BARBEE (§231555%) =
= 2 YR\ F F3F FsFy (ég‘;égg{i)F F4F1 (1 1)F3F2F3(§ 3) F5Fg x

x(s387385%) =

4231
= z Df(ggg)(égi%)ﬂ(éﬁ%g ) EsF\Fp FyFsFs (388555 5%)
= 2 PDyFFsFsFrFsFsFy (3343878) =
= 27 DD

The chain relation becomes:
(Baﬁbﬁc)4 = 2724565]0
O

We say that the lifts of Dehn twists are normalized if all braid type relations
and all lantern relations are lifted in the trivial way. _

By the lemmas above, we normalize the lift of each Dehn twist D from D to
2712D. Then we get the presentation in Proposition (6.5.1).

6.6 Second cohomology group H?*(I',7Z)

The second cohomology group of the mapping class group was first computed
by Harer in [34] for ¢ > 5 and further completed by Korkmaz and Stipsicz in
[41] for g > 4. By these results, we have

2 S\ __ +1
H(I%) = 2+,

for g > 4. Moreover the generators are the one quarter of the Meyer class x’
and s Euler classes e; associated to s punctures respectively. We recall their



110

definitions in this section. Notice that by the Universal Coefficient Theorem,
we can define the Meyer class and the Euler class in H> (X5, A) for any abelian
group A.

6.6.1 Meyer class Y’

The Meyer class x’ is given by the Meyer signature cocycle C,s defined as follows.
Let P denote a pair of pants. Let A, B and C denote the three elements of
71(P) associated to the three boundary components of P. Thus A, B and C
generate 71 (P):

m(P)=(A,B,C | ABC = Id).

Let ¢ and 9 be two homeomorphisms of 3. We consider the surface bundle
over P whose fiber is 3 and whose holonomy sends the A to ¢, B to ¢ and C to
Y ~1¢~1. We obtain a 4 dimensional manifold M. Then we consider the second
cohomology group H?(M,Z). Notice that there is a cup product — defined as
follows:

—: H*(M,Z) x H*(M,Z) — H*(M,7),
(z,y) — z—y.

As M is compact by construction, the group H*(M, Z) identifies with Hy (M, Z)
by Poincaré duality. On the other hand Hy(M,Z) is isomorphic to Z. Thus
we obtain a symmetric bilinear form @ on H?(M,Z). Moreover @ is non-
degenerated. Let Sign(Q) denote the signature of (). Then the Meyer signature
cocycle is defined by:

6.6.2 Euler class ¢’

The second cohomology group H?2 (I‘;7 Z) describes the central extension of Iy
by Z up to isomorphism. We will introduce the Euler class by describing one
central extension of I'; in this class.

We first consider the homeomorphism of S! preserving the orientation. Let
Hom™(S1) denote this group. It has a central extension by Z given by lifting
a homeomorphism of S' to a homeomorphism of R which has period 1. We

denote this central extension by Hom™(S') which is a subgroup of Hom™ (R).

Consider the i-th puncture of 7. To define the Euler class e; associated to
this puncture, we consider the surface E;_l given by adding a point p to the i-th
puncture of Y7 and we treat p as a marked point in 23_1. There is a natural
homeomorphism f : %7 — Z;_l \ {p} which implies an injective homomorphism
from FI;; to F;fl by sending a homeomorphism ¢ of ¥ to a homeomorphism 1
of 33371 which fixes p and equals to fogo f~' on £571\ {p}.

Fix a hyperbolic structure on Eg’l. Its universal cover is isometric to H.
Let p be a lift of p. A homeomorphism ¥ of Z;‘l fixing p can be lifted to a
homeomorphism of H and we consider the one which fix p and denote it by
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1[1. It has a natural extension to the boundary of H which is identified with
S'. By this correspondence, we obtain an injective homomorphism from Iy
to Hom™*(S1). Using this homomorphism to pull back the central extension

Hom™*(S') — Hom™(S"), we obtain a central extension of '} giving an element
e; in H 2(2;, Z). This element e; is called the Euler class associated to the i-th
puncture.

6.7 Cohomology class of r

We are now ready to state our main theorem in this section as follows:

Theorem 6.7.1. Let g > 2 and s > 4. The minimal reduction of F(Z;) can
be obtained by centrally extending T'(¥5) by A which is a cyclic subgroup of C*
generated by z~'2. Moreover, its cohomology class is

cr(sy) = 12x + Zei € H*(I(Z;), A),

=1

where x is one quarter of the Meyer signature class X' and e; is the Euler class
associated to the i-th puncture.

As we obtain a central extension of mapping class group isomorphic to that
in [27], we can prove this theorem by the same argument. In the following, we
assume that z is not a root of unity, so that A is isomorphic to Z, and we first
prove the theorem in this case.

We denote by FS the group defined by Proposition (6.5.1) for any s and g.

Lemma 6.7.1. If g > 2 and s =0, then we have o, = 12x € H2*(I'(%,),Z).

Proof. As s = 0, there is no more puncture relation in the presentation. Let
I'y(1) denote the subgroup of F generated by the lifts D, of Dehn twists and
the central element u = w!?. Then I'y(1) is the universal central extension
considered by Harer in [34] and thus cp 1) is the generator x of H?*(T'y(1)) = Z
where x is one quarter of the Meyer signature class.

Let C’pg(l) : Iy x I'y = Z denote the 2-cocycle associated to cp (1). It arises
as follows. Let S : 'y — I'g(1) be a set-wise section. Let 7 : I'g(1) — I'y be
the projection. We define the isomorphism i : ker(w) — Z by setting i(u) = 1.
Then the 2-cocycle Cr (1) is given by:

Cr,o)(@,y) = i(S(xy)S@)S(y™")).

We repeat this for f; to find its associated 2-cocycle. Let 2 : T'g(1) — f; be
the inclusion. The above section S induces a section S’ =105 : T’y — I/“;. Let
o I/“; — T'y be the projection. We define the isomorphism j : ker(n’) — Z by
setting j(w) = 1. Then the 2-cocycle Cf; is given by:

Cr(z,y) = §(S(zy)S' (=S (™))
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= jouS(xy)S(x~H)S(y™)
= jouroi ' (Cr,a)(2,y)).

1

By definitions of j, 2 and 4, the application j ot0¢~ " is an injective homo-

morphism from Z to Z. Moreover, by considering the relation v = w'2, we have
that jo10i~1(1) = joa(u) = j(w'?) = 12, which implies that:
Of; - 1201—‘5](1)'
Thus F, = 12y. U

By adding one point on each puncture, we obtain X, from 7. This induces
an embedding of ¥ in ¥, thus an surjective f from I'y to I'y. The pullback

f*l:; by f is a central extension of I'; which is in the Meyer class of HQ(FZ).
Assume now s > 0. The central extension of F; in the Euler class e; €

H? (F;) associated to the i-th puncture can be identified with the mapping class

group F;‘ll where the surface Z;El is obtained from XY by replacing the i-th

puncture by a boundary component.

Definition 6.7.1. Let s > 0 and (my,...,ms) € Z. We define the central
extension 'y (my, ..., ms) of I'y by A having the following presentation:

(1) The generators are:

(a) The lifts l/)va of the Dehn twists D, associated to non-separating curves
a;

(b) The central element w = z~12;

(2) The relation are:

(a) Trivial braid relation, trivial chain relation and trivial lantern relation;

(b) The puncture relation becomes:

Dy, DoyDyy =w™ Dy, Dy, s D
for the i-th puncture.

Lemma 6.7.2. The central extension F;(O, .oy 1,...,0) with 1 on the i-th po-
sition is isomorphic to F;—ll.

Proof. By collapsing the boundary of 237—11 to a puncture, we can define a
homeomorphism f : X7 — Z;Hl \5‘2;‘11. It induces a homomorphism f :
r;(0,...,1, e ,0) — F;‘ll by sending a generator D, to Ef(a) and the gen-
erator w to Dy, where b; is the boundary component. This homomorphism is
well-defined and in fact is an isomorphism. We can verify this easily by checking
the relations between the generators. O

Now we are ready to prove Theorem 6.7.1.
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Proof of Theorem 6.7.1. Let @ denote the fibered product between central ex-
tensions of I'y. Consider the following central extension:

T3 = fT,0 (@T0,...,1,...,0)),
1=1

of Iy by Z5T1. As H*(X5,Z°%!) = N H?(X%,Z), by the above two lemma,
we can conclude that the 2-cohomology class ¢ps is (12x,e1,...,es). Define
L:Z%t = Zby L(mi,...,ms11) = mq + --- + msy1. Then we have the
following commutative diagram:

s+1 Ts s

1 VA T rs 1
iL P

1 7 FZ F; 1

The group 1"72 is naturally isomorphic to f‘g, while an isomorphism 7 is
defined by the identification, for each curve, of the corresponding lifts of Dehn
twists. The class cgs is sent to the class ¢z by L. As a result, we have ¢ =

9 g 9
S
Cpp t > Crs(0,...,1,...,0) which completes the proof. O]

g =1

When z is a root of unity, the group A is isomorphic to Z/NZ where N is
the order of z7'2. To prove the result in this case, it is sufficient to replace
Z by Z/NZ everywhere. All arguments above go through without essential
modifications.



114



Bibliography

[1]

Travaux de Thurston sur les surfaces, volume 66 of Astérisque. Société
Mathématique de France, Paris, 1979. Séminaire Orsay, With an English
summary.

Lars V. Ahlfors. The complex analytic structure of the space of closed
Riemann surfaces. In Analytic functions, pages 45—66. Princeton Univ.
Press, Princton, N.J., 1960.

Lars V. Ahlfors. Some remarks on Teichmiiller’s space of Riemann surfaces.
Ann. of Math. (2), 74:171-191, 1961.

R. V. Ambartzumian. Combinatorial integral geometry. Wiley Series in
Probability and Mathematical Statistics: Tracts on Probability and Statis-
tics. John Wiley & Sons, Inc., New York, 1982. With applications to math-
ematical stereology, Edited and with an appendix by Adrian Baddeley.

R. V. Ambartzumian. Factorization calculus and geometric probability,
volume 33 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1990.

Ara Basmajian. The orthogonal spectrum of a hyperbolic manifold. Amer.
J. Math., 115(5):1139-1159, 1993.

Alan F. Beardon. The geometry of discrete groups, volume 91 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995. Corrected reprint
of the 1983 original.

Lipman Bers. Spaces of Riemann surfaces. In Proc. Internat. Congress
Math. 1958, pages 349-361. Cambridge Univ. Press, New York, 1960.

Francis Bonahon. The geometry of Teichmiiller space via geodesic currents.
Invent. Math., 92(1):139-162, 1988.

Francis Bonahon. Shearing hyperbolic surfaces, bending pleated surfaces
and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse Math. (6),
5(2):233-297, 1996.

115



116

[11]

[12]

[13]

[14]

[15]

Francis Bonahon and Xiaobo Liu. Representations of the quantum Te-
ichmiiller space and invariants of surface diffeomorphisms. Geom. Topol.,
11:889-937, 2007.

Francis Bonahon and Helen Wong. Quantum traces for representations of
surface groups in SLy(C). Geom. Topol., 15(3):1569-1615, 2011.

Rufus Bowen. Periodic orbits for hyperbolic flows. Amer. J. Math., 94:1-30,
1972.

Rufus Bowen. Symbolic dynamics for hyperbolic flows. Amer. J. Math.,
95:429-460, 1973.

M. Bridgeman, R. Canary, F. Labourie, and A. Sambarino. The pressure
metric for convex representations. ArXiv e-prints, January 2013.

Martin Bridgeman. Hausdorff dimension and the Weil-Petersson extension
to quasifuchsian space. Geom. Topol., 14(2):799-831, 2010.

Martin Bridgeman. Orthospectra of geodesic laminations and dilogarithm
identities on moduli space. Geom. Topol., 15(2):707-733, 2011.

Martin Bridgeman and David Dumas. Distribution of intersection lengths
of a random geodesic with a geodesic lamination. Ergodic Theory Dynam.
Systems, 27(4):1055-1072, 2007.

A. J. Cabo. An elementary proof of the Ambartzumian-Pleijel identity.
Math. Proc. Cambridge Philos. Soc., 112(3):535-538, 1992.

L. Chekhov and V. V. Fock. Quantum Teichmiiller spaces. Teoret. Mat.
Fiz., 120(3):511-528, 1999.

Suhyoung Choi and William M. Goldman. Convex real projective structures
on closed surfaces are closed. Proc. Amer. Math. Soc., 118(2):657-661,
1993.

Michel Coornaert and Athanase Papadopoulos. Symbolic coding for the
geodesic flow associated to a word hyperbolic group. Manuscripta Math.,
109(4):465-492, 2002.

L. D. Faddeev. Discrete Heisenberg-Weyl group and modular group. Lett.
Math. Phys., 34(3):249-254, 1995.

Benson Farb and Dan Margalit. A primer on mapping class groups, vol-
ume 49 of Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 2012.

V. V. Fock and A. B. Goncharov. Moduli spaces of local systems and
higher Teichmiiller theory. Publ. Math. Inst. Hautes Ftudes Sci., 103(1):1—
211, 2006.



[26]

[27]

[28]

[40]

[41]

117

V. V. Fock and A. B. Goncharov. The quantum dilogarithm and represen-
tations of quantum cluster varieties. Invent. Math., 175(2):223-286, 2009.

Louis Funar and Rinat M. Kashaev. Centrally extended mapping class
groups from quantum Teichmiiller theory. Adv. Math., 252:260-291, 2014.

V. M. Gasparyan. Pleijel identity and distribution of chord length for
planar convex domains. In Stochastic geometry, geometric statistics, stere-
ology (Oberwolfach, 1983), volume 65 of Teubner-Texte Math., pages 91-94.
Teubner, Leipzig, 1984.

Sylvain Gervais. Presentation and central extensions of mapping class
groups. Trans. Amer. Math. Soc., 348(8):3097-3132, 1996.

William M. Goldman. Topological components of spaces of representations.
Invent. Math., 93(3):557-607, 1988.

William M. Goldman. Convex real projective structures on compact sur-
faces. J. Differential Geom., 31(3):791-845, 1990.

M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of
Math. Sci. Res. Inst. Publ., pages 75—263. Springer, New York, 1987.

Olivier Guichard. Composantes de Hitchin et représentations hypercon-
vexes de groupes de surface. J. Differential Geom., 80(3):391-431, 2008.

John L. Harer. The second homology group of the mapping class group of
an orientable surface. Invent. Math., 72(2):221-239, 1983.

John L. Harer. The virtual cohomological dimension of the mapping class
group of an orientable surface. Invent. Math., 84(1):157-176, 1986.

N. J. Hitchin. Lie groups and Teichmiiller space. Topology, 31(3):449-473,
1992.

Y. Imayoshi and M. Taniguchi. An introduction to Teichmiiller spaces.
Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese
by the authors.

R. M. Kashaev. Quantization of Teichmiiller spaces and the quantum
dilogarithm. Lett. Math. Phys., 43(2):105-115, 1998.

Tosio Kato. Perturbation theory for linear operators. Die Grundlehren
der mathematischen Wissenschaften, Band 132. Springer-Verlag New York,
Inc., New York, 1966.

Steven P. Kerckhoff. The Nielsen realization problem. Bull. Amer. Math.
Soc. (N.S.), 2(3):452—454, 1980.

Mustafa Korkmaz and Andrés I. Stipsicz. The second homology groups of
mapping class groups of oriented surfaces. Math. Proc. Cambridge Philos.
Soc., 134(3):479-489, 2003.



118

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Francgois Labourie. Anosov flows, surface groups and curves in projective
space. Invent. Math., 165(1):51-114, 2006.

Howard Masur. Extension of the Weil-Petersson metric to the boundary
of Teichmuller space. Duke Math. J., 43(3):623-635, 1976.

Curtis T. McMullen. Thermodynamics, dimension and the Weil-Petersson
metric. Invent. Math., 173(2):365-425, 2008.

William Parry and Mark Pollicott. Zeta functions and the periodic orbit
structure of hyperbolic dynamics. Astérisque, (187-188):268, 1990.

R. C. Penner. The decorated Teichmiiller space of punctured surfaces.
Comm. Math. Phys., 113(2):299-339, 1987.

R. C. Penner. Universal constructions in Teichmiiller theory. Adv. Math.,
98(2):143-215, 1993.

R. C. Penner. Decorated Teichmiiller theory of bordered surfaces. Comm.
Anal. Geom., 12(4):793-820, 2004.

Arne Pleijel. Zwei kurze Beweise der isoperimetrischen Ungleichung. Arch.
Math. (Basel), 7:317-319, 1956.

Mark Pollicott. Symbolic dynamics for Smale flows. Amer. J. Math.,
109(1):183-200, 1987.

Mark Pollicott and Richard Sharp. A weil-petersson type metric on spaces
of metric graphs. Geometriae Dedicata, pages 1-16, 2013.

M. Ratner. Markov partitions for Anosov flows on n-dimensional manifolds.
Israel J. Math., 15:92-114, 1973.

David Ruelle. Thermodynamic formalism, volume 5 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley Publishing Co., Read-
ing, Mass., 1978. The mathematical structures of classical equilibrium sta-
tistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo
Rota.

Andrés Sambarino. Quantitative properties of convex representations.
Comment. Math. Helv., 89(2):443-488, 2014.

L. A. Santald. Integral geometry on surfaces of constant negative curvature.
Duke Math. J., 10:687-709, 1943.

W.P. Thurston. Minimal stretch maps between hyperbolic surfaces. ArXiv
Mathematics e-prints, January 1998.

Akira Ushijima. A canonical cellular decomposition of the Teichmiiller
space of compact surfaces with boundary. Comm. Math. Phys., 201(2):305—
326, 1999.



119

[58] André Weil. Modules des surfaces de Riemann. In Séminaire Bourbaki;
10e année: 1957/1958. Textes des conférences; Frposés 1524 168; 2e
éd.corrigée, Exposé 168, page 7. Secrétariat mathématique, Paris, 1958.

[59] Scott Wolpert. Noncompleteness of the Weil-Petersson metric for Te-
ichmiiller space. Pacific J. Math., 61(2):573-577, 1975.

[60] Scott A. Wolpert. Chern forms and the Riemann tensor for the moduli
space of curves. Invent. Math., 85(1):119-145, 1986.

[61] Scott A. Wolpert. Thurston’s Riemannian metric for Teichmiiller space. J.
Differential Geom., 23(2):143-174, 1986.

[62] Scott A. Wolpert. Geodesic length functions and the Nielsen problem. J.
Differential Geom., 25(2):275-296, 1987.



