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INTRODUCTION 

1 EPIGENETICS AND GENOME ORGANIZATION 

 

1.1 Organization of the eukaryotic genome 

Eukaryotic cells have to pack their immense genome made by a long linear DNA molecule 

into the confined volume of their nucleus. This problem is solved by wrapping the DNA 

around proteins called histones in order to form the nucleosome which is the structural unit of 

the chromatin (DNA-protein complex). One nucleosome is composed by two turns of double-

helix DNA (146bp) around the core histone octamer made by two copies of heterodimers of 

histones H2A - H2B, and a tetramer of H3 and H4 (Figure 1) (Luger et al., 1997; Rhodes, 

1997). Histones have a globular portion and a tail that is extruding from the nuclesomal core.   

 

 

Figure 1: Nucleosome core and tails (From Mattiroli et al., 2015) 
Canonical nucleosome structure made by histone H3 (blue), H4 (green), H2A (yellow), H2B (red), and DNA 

(white). Tails of each histone are extruding from the nucleosome core. 
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Two successive nucleosomes are separated by 20-80bp of DNA linker (Routh et al., 2008) 

giving rise to the 10nm-fiber (bead on a string structure). The histone H1 is the only one that 

does not take part in the nuclesome core and its role is bringing together linkers DNA 

between nucleosomes creating the 30nm-fiber, which is the one found in interphase. The 

chromatin could be then further compacted till the maximum condensation of mitotic 

chromosomes (Figure 2) (Happel and Doenecke, 2009; Izzo et al., 2008). 

 

 

Figure 2: Organization of the eukariotic genome (From Felsenfeld and Groudine, 2003) 
In eukaryotes the double helix of DNA is wrapped on nucleosomes which are separated one another by a stretch 

of DNA linker. Successively the string of nucleosomes is folded into a fiber about 30 nm in diameter. These 

fibers are then further folded into higher-order structures till the hyper-condensation of a mitotic chromosome. 
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1.2 Epigenetics 

The term Epigenetics has been coined by Conrad Waddington in 194β to describe “processes 

by which genotype gives rise to phenotype”. In more recent times epigenetics has been 

defined as mitotically and/or meiotically heritable changes in gene functions that do not entail 

changes in DNA sequence and in the absence of the factor responsible for these changes (Wu 

Ct and Morris, 2001).  However the “gene” concept in epigenetics must be extended also to 

non-coding sequences. 

There are many mechanisms by which epigenetics can act, the first described is DNA 

methylation where a methyl-group is added and covalently bound to nucleotides principally 

on cytosines. Others are the covalent modification of histones, in particular on C- or N-tails, 

or the substitution of histone in toto (histone variants), both influencing the DNA indirectly as 

its helix is wrapped on the protein of the histone core. Finally a non-negligible portion of 

epigenetic inheritance and maintenance is mediated by RNAs and particularly non-coding 

RNAs (ncRNA) (Allis and Jenuwein, 2016). 

 

1.2.1 DNA methylation 

DNA methylation is an epigenetic mark that consists in the covalent binding of a methyl 

group on the carbon 5 of the pyrimidine ring of cytosine producing a 5-methylcytosine (5-

meC) using as a donor S-adenosyl methionine (SAM) (Figure 3). This mark seems to be 

inherited through cell divisions via a mechanism that recognizes an hemimethylated 

palindrome CpG and induces the DNA methylation in the newly synthesized strand to obtain 

a fully methylated CpG (Bird, 2002). These CpGs are not randomly distributed into the 

genome but enriched in specific short regions (around 1kb) called CpG Islands found near the 

majority of vertebrate genes (Deaton and Bird, 2011). CpG sites are not the only one 

susceptible to DNA methylation, particularly in embryonic stem cells (ESCs) compared to 

somatic tissue there is a significant presence of CpA methylated sites and to a lesser extent 

CpT (Ramsahoye et al., 2000). 
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Figure 3: The mechanism of DNA methylation (From Strathdee and Brown, 2002) 
5-Methylcytosine is produced by the action of the DNA methyltransferases (DNMT1, 3A or 3B), which catalyze 

the transfer of a methyl group (CH3) from S-adenosylmethionine (SAM) to the carbon-5 position of cytosine. 

 

DNA methylation has been historically associated with transcriptional repression but the 

position of the DNA methylation in the sequence of the transcriptional unit strongly 

influences the final effect (Jones, 2012). DNA methylation in close proximity of the 

transcription start site (TSS) or promoter region is known to repress the initiation of 

transcription (Kass et al., 1997), but when present in the gene body the effect is opposite and 

it could even stimulate the elongation of transcription (Jones, 1999). Moreover CpG 

methylation in the gene body could also influence the splicing (Jones, 2012). DNA 

methylation plays also key role in the stability of the genome allowing correct chromosomal 

segregation during mitosis when present on centromeric repeat sequences or suppressing the 

expression of transposable elements (Jones, 2012). 

The majority of CpGs islands are unmethylated, however CpGs islands within promoters are 

methylated for stable repression of the corresponding gene. This is the case of genes subjected 

to imprinting, inactivated X chromosome- and germ-cell lineage-genes that undergo DNA 

methylation to suppress their inappropriate expression. DNA methylation seems to be the 

final lock of already silenced genes (Jones, 2012).  
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Methylated DNA is recognized by specific proteins with Methyl Binding Domains, such as 

MBD1 and MBD3 (Wade and Wolffe, 2001) and methyl-CpG binding protein 2 (MeCP2) 

(Fuks et al., 2003) that promote a compacted heterochromatic state and prevent from 

transcription factor bindings (Trojer and Reinberg, 2007). 

 

1.2.1.1 DNA methylation machinery 

Mammals have three different DNA methyltransferases (DNMTs) which catalyze the 

methylation (Okano et al., 1999) and one enzymatic inactive cofactor Dnmt3-like (Bourc’his 

et al., 2001) (Figure 4). DNMT3A and DNMT3B are the de novo DNMTs which are able to 

methylate the naked DNA in concert with the cofactor DNMT3L, thus establishing the DNA 

methylation pattern during development (Denis et al., 2011). Dnmt3a  encodes for two 

isoforms DNMT3A1 and DNMT3A2 with the second being shorter at the N-terminal part 

than the first one and specifically interacting with DNMT3L at heterochromatin foci in ESCs 

(Nimura et al., 2006). The DNA methylation pattern is maintained through cell divisions by 

DNMT1 and it copies the methylation from hemimethylated DNA during replication (Cheng 

and Blumenthal, 2008).  

 

      

Figure 4: DNMTs, their functions and structures (From Cheng and Blumenthal, 2008 and Nimura et al., 
2006) 
A: de novo methylation is firstly established on unmodified CpG by DNMT3A and DNMT3B in concert with 

their cofactor DNMT3L. The maintenance role of DNMT1 is then to fully methlylate the hemi-methylated sites 

and to maintain this state thought DNA replication and DNA repair. B: schematic representation of the DNMT 

family in mouse. NLS (nuclear localization signal), PWWP (PWWP DNA- and protein-binding domain) PHD 

(the cystein-rich PHD zinc-finger domain), I, IV, VI, IX and X correspond to conserved methyltransferase 

catalytic motifs. Of note DNMT3L lacks motif X.  

 

To accomplish this process DNMT1 localizes in the replication fork and interact with 

Proliferative Cell Nuclear Antigen (PCNA) and UHRF1 which binds hemimethylated DNA 

(Sharif et al., 2007). However the maintenance role of DNMT1 alone is not sufficient as 

A B 



14 

 

Dnmt3a-/- and Dnmt3b-/- embryonic stem cells (ESCs) gradually lose their DNA methylation 

pattern after several passages (Chen et al., 2003; Jackson et al., 2004). In the absence of 

Dnmt1, ESCs show reduced global level of 5-meC, but some sequences remained fully 

methylated such as major satellites (Arand et al., 2012). These observations showed that the 

separation in de novo and maintenance function of DNMTs is not as strict as it seems, as they 

can partially compensate each other. All the enzymatic DNMTs are strictly necessary for 

mammalian development (Li et al., 1992; Okano et al., 1999), as only Dnmt3l knock-out mice 

are viable even though males are sterile (Bourc’his et al., β001). Indeed Dnmt1-/- embryos die 

at E8.5-9.0 and showed only one third of 5-meC compared to wild-type condition (Li et al., 

1992). Dnmt3b mutant embryo develop even further but after E9.5 they show multiple defects 

and do not go to term, while Dnmt3a-/- develop to term but die one month after (Okano et al., 

1999) (Figure 5).  

DNA methylation is not an irreversible epigenetic mark and can be reverted through two 

principal ways: passive by replication and active via the action of specific enzymes. 

Demethylation could simply occur by the lack of maintenance after DNA replication inducing 

a dilution effect and a progressive loss of methylation after numerous rounds of cell division 

(Hill et al., 2014). However an active enzymatic mechanism of demethylation has been 

discovered in recent years thanks to the action of the Ten Eleven Translocation enzymes 

(TETs) which catalyze the oxidation of 5-methylcytosine (5-meC) into 5-

hydroxymethylcytosine (5h-meC) (Tahiliani et al., 2009).  5h-meC could be then transformed 

in 5-formylcytosine (5-fC) also by TETs enzymes and subsequently in 5-carboxylcytosine (5-

caC). 5-caC finally can enter in the Base-Excision Repair process (BER), removed by 

Thymine DNA Glycosidase and replaced by new unmodified cytosine (He et al., 2011; Ito et 

al., 2011). Function of 5h-meC is still controverted as it could be considered simply as a 

short-lived entity or as an epigenetic modification on its own. Its genome profiling shows a 

distinct distribution compared to 5-meC and it is associated to gene transcription (active 

promoters) as well as gene silencing (Polycomb-mediated) (Branco et al., 2012). 
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Figure 5: DNMTs and histone modifiers knock-out effects in mouse development and ESCs (From 
Meissner, 2010) 
A: Stage of embryonic lethality of knock-out in vivo embryos for different epigenetics modifiers. B: in vitro 

knock-out ESCs for different epigenetics modifiers. 

# (lethal), ## (normal ESCs maintenance, but differentiation defects), 
*
(Dnmt3a  knockout mice die around 3 

weeks postnatal and are smaller/runted), 
**

 (No observed phenotype), 
*** 

(Mice are viable, but have 

hematopoietic and neural abnormalities), 
**** 

(Homozygous mice are sterile, offspring of homozygous female 

mice and heterozygous crosses show imprinting defects and die), 
*****

 (Wild-type ES cells cannot differentiate 

into trophectodermal cells), d.p.c. (days post coitum),  PN (pronuclei), EN (endoderm), ME (mesoderm), EC 

(ectoderm), TE (trophectoderm), ICM = inner cell mass. 

 

 

 

 

A B 
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1.2.2 Histone modifications 

Another mechanism by which the epigenetics can act is through post-translational covalent 

modification of histone tails that are extruding from the core octamer. Many different post-

translational modifications of histones exist, mainly methylation, acetylation, phosphorylation 

and ubiquitylation (Kouzarides, 2007) (Figure 6A). The chemical group attached, the number 

of these modifications, the position in the histone tail and the type of residues accepting the 

modification could lead to different effects (Jenuwein and Allis, 2001; Strahl and Allis, 2000). 

Histone modifications are reversible and dynamic marks under the control of chromatin 

"writers", that establish the modification catalyzing the deposition of the chemical group, and 

"erasers", which conversely remove the mark. The function and the "message" of an histone 

modification are then transmitted by chromatin "readers" that have specific protein binding 

motifs in their aminoacid sequence that recognize and bind to specific histone modifications 

(Figure 6B) (Allis and Jenuwein, 2016; Yun et al., 2011). Altogether the sequential 

combinations of one or more histone modifications, that are read by proteins influencing 

down-stream events, form the so called histone code or histone language (Strahl and Allis, 

2000). “Readers” can have different function such as architectural proteins, chromatin 

remodelers and modifiers (Figure 7) (Yun et al., 2011).  

Histone methylation could occur on arginine (R) and on lysine (K), but while arginines can 

only accept up to two methyl groups, lysines can be even tri-methylated (Greer and Shi, 

2012). The function of histone methylation is strictly dependent on the position in the tails 

and could even have opposite effect, for example tri-methylation on lysine 4 of the histone H3 

(H3K4me3) and H3K36me3 are active chromatin marks that promote the transcription, while 

H3K27me3, H3K9me3 or H4K20me3 are repressive marks leading to transcriptional 

silencing. Histone methylation is deposed by writers called histone methyl transferases 

(HMTs) and more specifically lysine methyl transferases (KMTs), while the erasers are 

histone lysine demethylases (KDM). The readers for histone methylation are proteins 

containing the chromodomain (CD) binding site (Sims et al., 2003). CD-proteins can 

recognize different type of methylated histone and generally recruits, in collaboration with 

RNAs and DNA-binding proteins, other proteins forming a larger complex (Tajul-Arifin et 

al., 2003). 
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Figure 6: Histone code and chromatin modifiers: Writers, Erasers and Readers (From Advanced 
BioDesign  and Falkenberg and Johnstone, 2014)  
A: possible modification on the different residues of the tails of each histone. S (Serine), K (Lysine), R 

(Arginine), T (Threonine). Ph (Phosphorylation), ac (acetylation), ub1 (ubiquitylation), me (methylation). B: 

dynamics of epigenetic regulations: chromatin writers depose the histone mark which is then recognized by 

chromatin readers or eventually reversed by chromatin erasers. 

 

A 

B 
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Figure 7: Chromatin readers functions (From Yun et al., 2011) 
Chromatin readers can have different roles, acting as: architectural protein (inducing compaction for example), 

remodeling (increasing accessibility of nucleosomal DNA, energy dependant (use of ATP), chromatin modifiers 

(adding a new mark) or adaptors (recruiting other protein machineries such as transcription factors). 

 

Histone acetylation occurs on lysine residues and it induces the neutralization of the positive 

charge of histone tail. This leads to decompaction of the nucleosomal structure by a less 

intimate interaction with the negatively charged DNAs. For that reason hyperacetylation of 

histones is generally associated with a more decondensed and open conformation of the 

chromatin which is more prone to active transcription of genes due to increased accessibility 

of the transcriptional machinery to the DNA. Conversely hypoacetylated regions correlate 

with compact and silent domains (Sterner and Berger, 2000). The writers in this case are the 

histone acetyltransferases (HATs) while the erasers are the histone deacetylases (HDACs) 

(Berndsen and Denu, 2008). Readers must contain a bromodomain to recognize histone 

acetylation (Kouzarides, 2007). Bromodomain proteins play a key role anchoring complexes 

to the acetylated chromatin in order for example to remodel chromatin and recruit 

transcription factors (Josling et al., 2012). 

Histone ubiquitylation is a less common epigenetic mark that consists in the binding of the 

ubiquitin (a polypeptide of 76-amino acids) to lysines via the successive action of E1, E2 and 

E3-ligases. The most studied is the monoubiquitylation of the lysine 119 of the histone H2A 

(H2AK119ub) which is linked to gene silencing (Wang et al., 2004; Zhang, 2003). 
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1.2.2.1 Active histone modifications 

1.2.2.1.1 H3K4me3 and H3K9ac and their enzymes 

Trimethylation of lysine 4 on histone H3 (H3K4me3) is the hallmark of actively transcribed 

genes as it is specifically enriched at the 5’ region of these genes (promoter), while H3K4me2 

is more distributed along the gene body (Martin and Zhang, 2005). However H3K4me3 when 

present in association to H3K27me3 at the promoter level (bivalent domain) leads to the 

loading of the RNA Polymerase II on the gene promoter that stalled in a paused condition 

without elongating the transcription (Azuara et al., 2006; Bernstein et al., 2006). H3K4 is 

principally methylated by the KMT called mixed-lineage leukemia 1 (MLL1) which is a SET-

domain protein belonging to the Tritorax complex (TrxG). Mll expression is necessary for the 

correct regulation of the Hox genes during embryo development, in fact Mll-/- embryo died 

early during development (Schuettengruber et al., 2011; Terranova et al., 2006). 

Another active histone modification is the acetylation of the lysine 9 on the histone H3 

(H3K9ac) present at open regions of the genome that are sensitive to DNase I and enriched in 

active transcription factors (Hezroni et al., 2011). H3K9ac is enriched at the TSS region of 

active genes, highly correlating with H3K14ac, H3K27ac, H3K4me2 and H3K4me3 (Hezroni 

et al., 2011; Karmodiya et al., 2012). In mouse the main HATs responsible for H3K9ac is 

GCN5/PCAF as its deletion dramatically reduces the global level of H3K9ac with little or no 

effect on the level of H3K14ac or other histone H3 and H4 acetylations (Jin et al., 2011). On 

the other hand HDAC1 is the main enzyme responsible for deacetylation of histones and 

Hdac1-/- leads to embryonic lethality before E10.5 with embryos presenting proliferation 

defects and retard in development (Lagger et al., 2002). Moreover mutant ESCs showed 

reduced proliferation rates that cannot be compensated by the expression of HDAC2 and 

HDAC3 (Lagger et al., 2002).  

 

1.2.2.2 Repressive histone modifications 

1.2.2.2.1 H3K9me3, H4K40me3 and their enzymes 

Trimethylation of the lysine 9 of the histone H3 (H3K9me3) is found from fission yeast to 

human on repeat-rich centromeric, pericentromeric and telomeric regions (Peters et al., 2001), 

but also in block of tissue-specific genes (Becker et al., 2016). It is thought that H3K9me3 

protects clusters of repetitive genes and non-coding repeats from illicit recombination, 
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suppressing as well their transcription. This histone modification generally prevents the 

binding of transcription factors and this is probably why H3K9me3-chromatin blocks are the 

last to be reprogrammed during induced pluripotent stem cell (iPSC) generation being the less 

accessible (Becker et al., 2016). All H3K9-KMTs have a SET-domain and can be divided into 

two groups: the first comprises G9a (Ehmt2) and GLP (Ehmt1) that are the KMTs necessary 

to catalyze H3K9me1 and H3K9me2, while the trimetylation is achieved by the second group 

composed by SET domain bifurcated 1 (SETDB1), SUV39H1 and SUV39H2 (Mozzetta et 

al., 2015). This repressive mark is known to induce heterochromatin compaction and 

spreading via the recruitment of heterochromatin proteins 1 (HP1), thanks to the 

chromoshadow domain (Bannister et al., 2001; Lachner et al., 2001). In mammals there are 

three HP1 proteins: α, ȕ and Ȗ (Jones et al., 2000). HP1α and ȕ seem to share the same 

function accumulating together over H3K9me3 (Figure 8), while HP1Ȗ has a diffuse genome 

localization (Dialynas et al., 2007). HP1 α and ȕ can self-oligomerize and recruit other 

repressive machineries like DNMTs to depose DNA methylation and SUV4-20H2 that 

specifically catalyze H4K20me3, another repressive histone modification, inducing further 

more compaction and repression (Figure 8; Schotta et al., 2004; Wongtawan et al., 2011).  

In mouse SUV39H KMTs are encoded by two gene loci Suv39h1 and Suv39h2 which are both 

expressed in embryogenesis. Suv39h double null (Suv39hdn) condition impairs severely the 

viability of mice (which are growth retarded and infertile), inducing chromosomal instability 

and increased risk of tumorigenesis. However mice deficient for either Suv39h1 or Suv39h2 

are fertile and showed normal viability showing redundant functions of the two enzymes 

(Peters et al., 2001). Interestingly Suv4-20h2 -/- mice have no apparent defects and develop 

normally however Suv4-20hdn display peri-natal lethality and are smaller (Schotta et al., 

2008).  

SETDB1 is described as the principal KMT responsible for H3K9me3 in the genome outside 

centromeric, pericentromeric and telomeric repeats (Schultz et al., 2002). However its loss in 

mice is associated with a substantial reduction of H3K9me3 also at pericentromeric 

heterochromatin (Mozzetta et al., 2015). It is not clear if this reduction is a result of SETDB1 

mono-methyltransferase activity necessary for successive trimethylation by SUV39H1 and 

SUV39H2 or potentially direct trimethyltransferase activity of SETDB1 at pericentromeric 

repeats. 
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Figure 8: Conserved pathway SUV39H1/2-HP1-SUV4-20H2 (From Schotta et al., 2004) 
Proposed model of sequential induction of H3K9me3 deposition by SUV39H1/2. H3K9me3 is then recognized 

by HP1α and ȕ inducing compaction and recruiting SUV4-20H2 that finally deposits H4K20me3 condensing 

furthermore the chromatin. 

 

1.2.2.2.2 H3K27me3, H2AK119ub and their enzymes 

Trimethylation of the lysine 27 on the histone H3 (H3K27me3) is another repressive histone 

mark present principally in tissue-specific gene regions and on the inactive X chromosome 

(Boyer et al., 2006; Margueron and Reinberg, 2011). H3K27me3 is not enriched in focal peak 

but on larger and broader regions in the genome, and these H3K27me3 blocks are negatively 

correlated with transcription such as the Hox cluster in differentiated cells (Pauler et al., 

2008). Interestingly during iPSCs derivation H3K27me3-block are reprogrammed earlier than 

H3K9me3 ones and in general H3K27me3 and H3K9me3 blocks are largely exclusive 

(Becker et al., 2016). 

Polycomb group proteins (PcGs) were originally identified as important regulators of 

developmentally related genes like the Hox cluster in Drosophila . In mammals there are two 

PcG called Polycomb repressive complex 1 and 2 (PRC1 and PRC2, Figure 9). Enhancer of 
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zeste homolog 2 (EZH2) is the catalytic subunit of PRC2, which contains a SET domain and 

it is thought to be the only KMT for di- and tri-methylation of H3K27 (Trojer and Reinberg, 

2007). However in Ezh2-/- ESCs a residual H3K27me3 is found in the genome and it is likely 

due to EZH1 that seems to partially complement the absence of EZH2 (Margueron et al., 

2008; Shen et al., 2008). Ezh2 transcription is up-regulated after fertilization and it is highly 

expressed all along the pre-implantation development. Ezh2-null condition is lethal at early 

stages of mouse development as these embryos die between pre- and post-implantation 

development (Figure 5) (Becker et al., 2016). Ezh2-null blastocysts have an impaired potential 

to outgrowth preventing the establishment of mutant ESCs (O’Carroll et al., β001). 

The other PcG complex is PRC1 that mediates via, its catalytic subunit RING1B (E3-

ubiquitin ligase), the ubiquitylation of lysine 119 of histone H2A (H2AK119ub) which is also 

a repressive mark. Mouse RING1B is coded by the Rnf2 gene which when ablated causes an 

arrest during gastrulation with developmental defects occurring in both embryonic and extra-

embryonic tissues (Voncken et al., 2003) (Figure 5). 

PcG complexes are composed by different combination of subunits. The most common  and 

studied PRC1 is called the canonical PRC1 (cPRC1) and it is recruited on PRC2 targets 

thanks to Cbx subunit that recognize H3K27me3 (Cao et al., 2002). However more recently it 

has been discovered that a variant or non-canonical PRC1 (vPRC1 or ncPRC1) complex could 

be firstly recruited at unmethylated CpG island by KDM2B and only in a second time PRC2 

is enrolled via H2AK119ub recognition (Blackledge et al., 2014; He et al., 2013). 
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Figure 9: Mechanism of PcG recruitment to chromatin (From Aranda et al., 2015) 
Upper panel: PRC2 complex deposes H3K27me3 that mediates the recruitment of PRC1 complex by interacting 

with Cbx (its chromatin “reader” subunit). 

Lower panel: KDM2B binding to CpG could induce recruitment of non-canonical PRC1 complexes deposing 

H2AK119ub. This mark is then recognized by PRC2 complexes that will successively appose H3K27me3. 

Canonical PRC1 (cPRC1), non-canonical PRC1 (ncPRC1), CpG island (CGI). 

 

1.2.3 Histones variants 

The histone H3 variants, CENP-A (Centromeric protein A) or CenH3 is highly enriched at 

centromere, defining it and directing kinetochore assembly (Müller et al., 2014). Its 

functionality is very well conserved among Eukaryotes and it is the epigenetic determinant of 

centromeres. The regulation of CENP-A deposition by the histone chaperon HJURP (Holliday 

junction recognition protein) is crucial for fidelity of chromosome segregation and cell 

division (Rop et al., 2012). 

H3.3 is another histone variant of H3 differing only in five residues and it is principally found 

at pericentromeric and telomeric region where it is specifically deposited by DAXX (Death 

domain-associated protein 6) (Mattiroli et al., 2015; Santenard et al., 2010). However H3.3 is 

present also at transitionally active regions of the genome where it is deposited by another 

histone chaperone (HIRA) (Mattiroli et al., 2015). 
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1.2.4 Euchromatin and Heterochromatin 

Historically, inside an eukaryotic nucleus the chromatin can be divided into two 

compartments based on the degree of compaction: euchromatin and heterochromatin (Tamaru, 

2010). Euchromatin is mainly made by active transcriptional gene-rich regions of the genome, 

marked by H3K4me3, H3K36me3 and hyperacetylated histones, replicating in early S phase, 

highly dispersed and diffused in interphase (not stained in electron microscopy) and 

compacted only during mitosis. On the other hand heterochromatin is composed by gene-poor 

regions (especially for constitutive heterochromatin) which is supposed to be not transcribed, 

hypoacetylated in histones, highly condensed and compacted (even in interphase), replicated 

in late S phase and heavily stained in electron microscopy (Heinz, 1928) (Allis and Jenuwein, 

2016) (Figure 10). 

 

 

Figure 10: Eukaryotic cell under transmission electron microscopy (TEM). 
From a TEM image of an eukaryotic nucleus it is possible to distinguish two different types of heterochromatin: 

heterochromatin blocks (black) around nucleoli (a), at the nuclear periphery (b) and dispersed into the 

nucleoplasm (c) and more diffuse heterochromatin (light gray). 

 

The heterochromatin could be further divided in facultative and constitutive parts. Facultative 

heterochromatin can go from local gene to genomic regions (Hox gene cluster) up to entire 

chromosomes (X-chromosome in female mammalian cells). It is composed by regions of the 

genome that have the opportunity to adopt an open and dynamic or closed and compact 

conformation depending on space and time (Trojer and Reinberg, 2007). Facultative 

heterochromatin is silenced and generally marked by H3K27me3, but also by H2AK119ub, 

(Trojer and Reinberg, 2007). Conversely constitutive heterochromatin consists in large blocks 

a 

b 
c 



25 

 

made by repetitive sequences (especially present near centromeres and telomeres) which 

maintain their characteristics on both homologous chromosomes (Dimitri et al., 2005). 

Compared to facultative, constitutive heterochromatin is generally marked by H3K9me3 and 

H4K20me3 and it is recognized by HP1 proteins (Trojer and Reinberg, 2007). 

 

1.2.4.1 Constitutive heterochromatin: the repetitive sequences of 

mammalian genome 

Only 4% of the mouse genome encodes for proteins while the majority of the DNA is made 

by repetitive sequences (44%) and non-coding sequences (52%) (Martens et al., 2005). The 

human genome content is similar to the mouse one with only 2% of protein coding sequences 

and the remaining (98%) is made up of transposable elements and tandem repeats (López-

Flores and Garrido-Ramos, 2012). Now it is known that this “junk DNA” plays a role in the 

formation of specialized structure but, due to its repetitive characteristic, this DNA is also an 

issue for genome stability as more easily subjected to recombination, deletion or translocation 

than single-copy sequences (Jaco et al., 2008). 

Mouse chromosomes are all acrocentric while human chromosomes can be divided in three 

groups: metacentric, sub-metacentric and acrocentric. However chromosomes of both species 

present around their centromeres the constitutive heterochromatin which is cytologically 

visible (Figure 11A) (Padilla-Nash et al., 2007). Constitutive heterochromatin consists 

principally in centric, pericentric and telomeric region. At the end of each linear chromosome 

there is the telomeric region composed from hundreds to thousand repeats of TTAGGG 

sequence, which is conserved between all the mammals, and coated with protecting proteins 

in order to prevent DNA damage and inappropriate recombinant events (Calado and Dumitriu, 

2013). In addition to these large tandem arrays of repeats, the mouse genome contains single 

repetitive elements that are all along the chromosomes, such as DNA transposons that 

represent 1% of this interspersed repetitive element, while RNA transposons or 

retrotransposons represent about 25%. Retrotransposons include: LTR (Long terminal 

repeats) transposons, principally intracesternal A particle (IAP), non-LTR transposons or 

LINEs (Long Interspersed Nuclear Element) which represent the largest fraction with 19% of 

the genome and the Short Interspersed Nuclear Element (SINE) (Martens et al., 2005) (Figure 

11B).  



26 

 

 

Figure 11: The different repetitive sequences in the mouse genome (From Martens et al., 2005) 
(A) Schematic representation of a mitotic mouse chromosome illustrating the distribution of major and minor 

satellite repeats, respectively pericentromeric and centromeric heterochromatin and of the various interspersed 

repetitive elements. (B) Summary of repetitive elements in mouse with repeat organization, length, copy number 

and overall abundance in the mouse genome. Specific primers (black arrows) can be designed to generate PCR 

fragments from within one or more successive repeat of the repetitive elements. 

 

In mouse the core of the centromere is made by tandem arrays of minor satellite repeats 

(123bp) in approximately 2000 copies (Martens et al., 2005). Minor satellites are heavily 

methylated at the DNA level, transcriptionally silenced and characterized by the H3 histone 

variant CENP-A (Scott, 2013). Juxtaposed to the centromere, the pericentromeric region is 

composed by major satellite repeats (234bp) which are A/T-rich sequences that are divided in 

four sub-repeats and present in more than 10000 copies. Major satellites are characterized by 

H3K9me3, HP1 and H4K20me3. Like minor satellites, they are characterized by an 

hypermethylation at the DNA level and a repressed transcriptional state (Lehnertz et al., 

2003). Together centromeric and pericentromeric regions represent more than 3.5% of the 

mouse genome, with major satellites alone representing 3% (Martens et al., 2005). A 
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characteristic of mouse nuclei is the clusterization of pericentromeric and centromeric 

heterochromatin in chromocenters. These structures are formed by the coalescence of major 

satellites coming from different chromosomes with the corresponding minor satellites that are 

located in surrounding separate domains at the periphery (Guenatri et al., 2004) (Figure 12). 

These prominent heterochromatin domains being rich in A/T sequences (major satellites) are 

well discernible in the nucleus as 4',6-diamidino-2-phenylindole (DAPI)-dense foci 

(Dambacher et al., 2013).  

 

 

Figure 12: Mouse chromosomes organize together their pericentromeric region to form Chromocenters 
(From Guenatri et al., 2004) 
(A) Schematic organization and DNA-FISH images of major and minor satellites along the mouse chromosome. 

DAPI DNA counterstaining (blue), majors satellites (green), minor satellites (red). 

(B) DNA-FISH images for major and minor satellites revealing the chromocenter organization inside a mouse 

interphase nucleus. DAPI DNA counterstaining (blue), majors satellites (green), minor satellites (red). 

(C) Schematic organization of mouse chromosome during cell-cycle. (1) In interphase major satellites from 

different chromosomes associate in clusters (chromocenters). (2) In prophase major satellites from different 

chromosomes dissociate. (3) In metaphase minor satellites from sister chromatids dissociate, whereas the major 

satellite sister chromatids still cohere. (4) In anaphase finally major satellites from sister chromatids separate. 

 
C 
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In human these regions are also composed by satellite repeats, however the DNA sequence of 

these repeats is different. Human centromeric region is made by alpha satellite repeats of 

171bp that are present in all chromosomes, while the closer pericentromeric region is 

composed by Satellite 2 and 3 principally with different size and composition between the 

chromosomes (Saksouk et al., 2015). 

 

1.2.5 Non-coding RNAs (ncRNAs) 

The discovery that mammalian genome is transcribed quite entirely even if only a small 

fraction codes for protein, introduces the concept of the existence of non-coding RNAs 

(“Dark matter” RNA) (Mattick, 2007). ncRNAs are divided in two groups based on their size: 

small and long non-coding RNAs. 

The small non-coding RNAs are RNA species of less than 200nt that are in many cases 

associated with 5’ or γ’ regions but also in introns of protein-coding genes (Mattick and 

Makunin, 2006). The most studied are Dicer-dependent microRNA (miRNA) and small 

interfering RNA (siRNA), and the Dicer-independent PIWI-interacting RNA (Carthew and 

Sontheimer, 2009). These ncRNA are largely involved in post-transcriptional gene silencing 

(PTGS) (Agrawal et al., 2003). 

The long non-coding RNAs (lncRNA) are defined as transcripts of more than 200nt that lack 

an open reading frame (Cao, 2014). LncRNAs are mainly transcribed by RNA polymerase II, 

they can undergo splicing and can also contain a poly-A tail. They can be developmentally-

regulated and/or tissue-specific, being implicated in alternative splicing, modulation of 

protein activity, alternative protein localization, epigenetic regulation, transcriptional 

silencing. LncRNAs can act as signals, guides, decoy and scaffold (Sana et al., 2012).  

While for many years the repetitive constitutive heterochromatin has been considered as a 

transcriptionally inactive domain due to its compacted organization, high DNA methylation 

content and presence of repressive histone mark like H3K9me3, it is now clear that in many 

cases these sequences are transcribed giving rise to satellite non-coding RNAs (Biscotti et al., 

2015). 
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1.2.5.1 Satellite non-coding RNAs 

Transcripts homologous to centromeric and pericentromeric repetitive sequences have been 

identified in several organism from yeast to human (Saksouk et al., 2015).  

In yeast the RNA polymerase II transcribes satellites repeats and these ncRNA are involved in 

the heterochromatin formation, maintenance and silencing via the RNA interference 

machinery (RNAi). Paradoxically the heterochromatin needs to be transcriptionally active to 

maintain its inactive state by the recruitment of H3K9-KMTs (Biscotti et al., 2015). 

In mouse the implication of the RNAi pathway in the heterochromatin is controverted  

(Kanellopoulou et al., 2005; Murchison et al., 2005) and still under debate with no real proof 

(Plohl et al., 2014). However transcription of ncRNA from both major and minor satellites is 

observed in physiological conditions as well as in pathological conditions (Figure 13) 

(Saksouk et al., 2015). Interestingly it has been shown that an RNA component is involved in 

the high structured three-dimensional chromatin at pericentromeric regions, as RNase 

treatment disrupts the H3K9me3-HP1 foci (Maison et al., 2002). Whether this RNA 

component is also made by pericentromeric satellite transcripts is still unknown. 

Non-coding pericentromeric RNA are produced by RNA polymerase II in both orientation in 

mouse as well as in human: sense or forward (T-rich in mice) and antisense or reverse (A-

rich) (Figure 13) (Saksouk et al., 2015) and can be also polyadenylated (Lehnertz et al., 

2003). 
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Figure 13: Pericentromeric satellite transcription in different context (From Saksouk et al., 2015) 
Physiological expression of pericentromeric satellite repeats has been reported during cell cycle, senescence, 

development and differentiation. Pathological expression has been observed upon cellular stress and in cancer. 

The size, orientation and putative functions of the transcripts are indicated when known.  

 

In the major satellite repeat sequence many binding sites for transcription factors were found 

(Figure 14). For example these repeats contain sites for PAX3 and PAX9 Paired box-

transcription factors, which were found to be necessary to repress non-coding RNA 

transcription from these regions and also to help the recruitment of SUV39H enzymes needed 

for the deposition of H3K9me3 (Bulut-Karslioglu et al., 2012).  

 

Figure 14: Transcriptional factor binding sites on major satellite repeat sequence (From Bulut-Karslioglu 
et al., 2012) 
Consensus sequence of a full-length major satellite repeat. Transcription factor binding sites are highlighted 

above or below the DNA sequence according if their binding motif is respectively sense or antisense. 
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Different populations of satellite transcripts seem to be generated according to the cell cycle 

stage. First major satellite transcription is Cdk-dependent because cells do not transcribe if 

they are not proliferating or maybe in this condition there are extremely short-lived (Lu and 

Gilbert, 2007). During mitosis small RNA species (less than 200nt) are produced and their 

half-life is very short (less than one hour). Conversely a more abundant, large and 

heterogeneous population of transcripts (from 1kb to more than 8kb) is produced between late 

G1 and early S, and strongly down-regulated after mid-S phase when pericentric 

heterochromatin is replicated (Lu and Gilbert, 2007). Major satellites are found to be 

transcribed in adult mice only in highly proliferative tissues as liver and testes. In particular in 

the liver transcription occurs only in sense orientation while in testes it is antisense in 

immature germ cells and sense in the mature ones (Saksouk et al., 2015). During replicative 

senescence and aging, pericentromeric transcripts were detected especially from the sense 

orientation and concomitant to reduction of methylation levels and decondensation of 

constitutive heterochromatin (Figure 13) (Saksouk et al., 2015). Similar observations were 

made in several cancer cells with an associated genetic instability and chromosomal disorder 

(Frescas et al., 2008). 

Minor satellites have also been shown to produce heterogeneous populations of transcripts 

and to be cell-cycle regulated. In in vitro cultured mouse cells, centromeric transcripts are 

present in two long forms of 2kb and 4 kb but also in a smaller form around 120nt. These 

small minor satellite transcripts accumulate with culture-time (Bouzinba-Segard et al., 2006). 

No centromeric transcripts were found at the range of size for siRNAs (22-30nt) suggesting 

no RNAi involvement in mouse. The 120nt population of minor satellites increased during 

stress condition, using a DNA demethylation agent or inducing apoptosis, leading to an 

impaired centromeric function during mitosis and promoting defects in chromosomal 

segregation (Bouzinba-Segard et al., 2006). In addition minor satellites are lowly expressed in 

G1 phase and increased with cell-cycle progression picking at G2/M phases just prior the 

kinetochore assembly (Ferri et al., 2009). Furthermore centromeric transcripts were found to 

be an RNA component of the CENP-A associated complex in concert with Chromosomal 

Passenger Complex (CPC), Aurora B kinase and Survivin providing implications of minor 

satellite transcripts in chromosome segregation (Ferri et al., 2009). 
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2 PLURIPOTENCY 

 

2.1 Totipotency and Pluripotency 

Pluripotency is defined as the capacity of cells to self-renew (auto-maintain themselves) in 

vitro and to differentiate into the three embryonic lineages (mesoderm, endoderm and 

ectoderm) that will give rise to all the different tissues of an adult organism, but not to extra-

embryonic tissues. Totipotency is the capability of a cell to give rise to a fertile adult 

individual, so generating also the extra-embryonic tissues (like placenta or yolk-sack). In 

mouse, totipotency is restricted to the zygote (1-cell stage) and to blastomeres of a 2-cell stage 

embryo (Condic, 2014). In the following pre-implantation embryo stages, cells are pluripotent 

up to the blastocyst stage where we assist to the first real differentiation process: the inner cell 

mass (ICM) and the trophectoderm (TE). At this stage only ICM cells are still pluripotent. 

Pluripotent cells are also present after the implantation in the epiblast up to E7.5 (Nichols and 

Smith, 2009; Osorno et al., 2012).  

 

2.2 Early mouse embryo development 

The early mouse embryo development goes from totipotency to pluripotency. It begins with 

fertilization, followed by dividing pre-implantation embryo stages that lead to the blastocyst 

formation (Figure 15A) which then will implant into the uterus starting the post-implantation 

development and gastrulation. The pre-implantation development starts in the oviduct where 

the oocyte is fertilized by the sperm giving rise to the zygote (fertilized egg) (Wang and Dey, 

2006). 

At the blastocyst stage E3.5 two types of cells can be observed: the pluripotent inner cell mass 

(ICM) and the trophectoderm (TE), distinguished by Oct4-Sox2-Nanog or Cdx2-Eomes-Gata3 

expression, respectively (Chazaud et al., 2006). At this stage Oct4 repressed TE lineage and 

Cdx2 conversely ensures the repression of Oct4 and Nanog (Figure 15B). In E3.5 early 

blastocyst individual ICM cells show exclusive expression of epiblast genes (such as Nanog) 

or primitive endoderm genes (Gata6 and Gata4) in a “salt and pepper” manner (Chazaud et 

al., 2006).  
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Figure 15: Pre-implantation development and first gene specifications (From Wang and Dey, 2006) 
A: Schematic representation of mouse pre-implantation embryo development: once the egg is fertilized by the 

sperm successive cell divisions will give rise at E3.5 to the blastocyst.  

B: Gene expression pattern governing blastocyst specification. Oct4 (dark pink) is expressed throughout the 

embryo before the late morula stage. Nanog (light pink) is specifically induced in the inside cells of late morula. 

Cdx2 (blue) is expressed in the outer layer of cells in late morula and is required for the repression of Oct4 and 

Nanog in the trophectoderm of the blastocyst. Gata6 (green) is expressed in the primitive endoderm of the late 

blastocyst, where Oct4 and Nanog are repressed. Oct4 represses Cdx2 expression, which in turn represses Oct4 

expression allowing segregation of the ICM and trophoectoerm of the blastocyst. Nanog and Gata6 antagonized 

each other segregating epiblast and primitive endoderm within the ICM. 

 

 

 

Figure 16: Epiblast vs. Primitive endoderm specification in early- to late-blastocyst stage (From  Takaoka 
and Hamada, 2012) 
(A) Primitive endoderm (blue) and epiblast (yellow) progenitors are randomly positioned in the inner cell mass 

(ICM) at E3.5. At this stage, some of the cells in the ICM are still naïve (asterisk) for Nanog or Gata6 

expression. By E4.5, the primitive endoderm cells migrate at the surface of the blastocoel cavity, whereas the 

Epiblast cells are confined to the inner part of ICM. Dab2 and Lrp2 are localized to the apical surface of PrE 

cells. (B) FGF signaling guides primitive endoderm formation. Fgf4 secreted by epiblast progenitors interacts 

with Fgfr2 and thereby activates Grb2 and Mapk in primitive endoderm progenitors. Activated Mapk induces the 

expression of PrE-specific genes, such as Gata6. Fgf4 simultaneously represses Nanog expression, further 

promoting PrE fate while inhibiting Epi fate. Epiblast (Epi), primitive ectoderm (PrE), adaptor protein disabled 

(Dab2), lipoprotein receptor-related protein 2 (Lrp2), fibroblast growth factor 4 (Fgf4), Fgf receptor 2 (Fgfr2), 

growth factor receptor bound protein 2 (Grb2), microtubule-associated protein kinase (Mapk). 

 

A 

B 
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FGF signaling is involved into primitive endoderm specification (Figure 16) (Artus and 

Chazaud, 2014). By E4.5, just prior to implantation, this mosaic pattern is resolved in a late 

blastocyst where ICM cells are sorted and relocated in epiblast cells (Epi) (Figure 16) which 

are pluripotent and will give rise to the fetus, and primitive endoderm (PrE) from which will 

predominantly originates the yolk sac. The PrE cells form a layer at the surface of the ICM 

facing the blastocoel cavity and are positive for Gata6. Conversely Epi cells are positive for 

Nanog and are surrounded by PrE cells and TE cells (Rossant and Tam, 2009). 

At this stage (E4.5) the blastocyst invades the uterine tissues and implants. Mural TE 

surrounding the blastocyst cavity will first makes contacts with maternal tissues and 

differentiates into primary TE giant cells which mediate the mother-embryo exchanges. 

Conversely polar TE surrounding the outer face of the ICM proliferates and differentiates in 

extra-embryonic ectoderm (ExE) and ectoplacental cone (EPC) that will build the proximal 

half of the egg cylinder and later on the placenta (Figure 17). After implantation at E5.0 there 

is a burst of cell proliferation and growth resulting in the expansion of embryonic as well as 

extra-embryonic lineages into the blastocyst cavity. From PrE derives the visceral endoderm 

cells that cover both Epi and ExE. The elongating egg cylinder grows, reorganizes and forms 

the primitive streak in order to initiate the gastrulation under the control of 

TGFȕ/Activin/Nodal pathway. Nodal play a key role in the maintenance of pluripotency of 

the epiblast and the posterior cell fate. Indeed in Nodal -/- condition the epiblast is 

precociously  differentiated into the neuronal fate (Camus et al., 2006). During peri-

implantation stages the Epi reorganized itself from a compact ball non-polarized to a rosette-

like organization, at the time of implantation, and finally to a cup-shaped polarized epithelium 

surrounding the pro-amniotic cavity in 24 hours (Figure 17) (Bedzhov et al., 2014). The 

anterior-posterior axis of the mouse embryo is established when distal visceral endoderm 

(DVE) will form the anterior visceral endoderm (AVE) on the future anterior side of the E6.5 

embryo. Once established the AVE will secrete signal like Nodal antagonists (Lefty1) to the 

Epi for anterior specification (Perea-Gomez et al., 2002). 
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Figure 17: Early mouse development from 1-cell stage to gastrulation (From Takaoka and Hamada, 2012) 
Kinetics of morphological changes and cell-specification from zygote to late egg cylinder. The cell types in the 

embryos are coded with different colors: epiblast (Epi), primitive ectoderm (PrE), visceral endoderm (VE), 

extra-embryonic ectoderm (Exe), distal visceral endoderm (DVE), anterior visceral endoderm (AVE), primitive 

streak (PS). 

 

2.3 In vitro pluripotency in mouse 

The attractive potential of embryo-pluripotent stem cells has fascinated scientists who 

attempted derivation of these cells as a stable line in vitro. In 1981 two groups established for 

the first time an in vitro culture of pluripotent stem cells starting from 129 strain mouse 

blastocyst-embryos E3.5 (Evans and Kaufman, 1981; Martin, 1981). These cells have the 

capacity to differentiate into all the three primary germ layers and were called embryonic 

stem cells (ESCs) in order to distinguish them from embryonal carcinoma cells (ECCs), that 

were isolated from teratocarcinoma induced by transplantation of mouse embryos in an extra-

uterine site of a host. Many years later in 2007 two other groups established another type of 

pluripotent stem cells this time using epiblast of the egg-cylinder of a post-implantation 

embryo E5.5 (Figure 18) (Brons et al., 2007; Tesar et al., 2007). These cells were called 

epiblast stem cells (EpiSCs) in order to distinguish from the ESCs and while they form 
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teratomas, as ESCs, they cannot form chimeras when injected in the ICM of a blastocyst. 

These two type of cells are clearly distinct at the molecular point of view (intracellular and 

extracellular signaling) and they have been defined as naive pluripotency for mouse ESCs and 

primed pluripotency for mouse EpiSCs (Figure 18) (Nichols and Smith, 2009). However these 

states share some characteristics like the expression of the transcription factors Oct4, Sox2 

and Nanog which represent the molecular foundation of pluripotency. 

 

 

Figure 18: From in vivo to in vitro mouse pluripotency (From Chenoweth et al., 2010) 
Pluripotent cells from a developmental window in the pre-implantation embryo grow as mouse embryonic stem 

cells (ESCs) and those from the post-implantation epiblast grow as epiblast stem cells (EpiSCs). 

 

2.3.1 The core pluripotency factors: OCT4, SOX2 and NANOG 

OCT4 is a POU domain-containing transcription factor which is encoded by Pou5f1 gene. It 

binds to the octamer DNA sequence motif ATGCAAAT and it controls the expression of 

many genes related to pluripotency in tandem with SOX2 (Loh et al., 2006). The role of 

OCT4 in pluripotency is crucial and it is one of the transcription factors (“Yamanaka factors”) 

that are needed to induce the pluripotent state from differentiated cells such as fibroblasts 

(Takahashi and Yamanaka, 2006). Oct4 is expressed all along the pre-implantation 

development (Figure 19) but at the blastocyst stage it becomes restricted to ICM cells while 
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TE cells are Oct4-negative. Oct4-/- embryos can only survive up to the morula stage and 

failed to form ICM in vivo, or ESCs in vitro, because blastomeres fate is redirected towards 

the trophoblast lineage (Loh et al., 2006; Nichols et al., 1998). However the expression of 

Oct4 in ESCs must be tightly regulated because when expressed above the endogenous levels 

it induces differentiation in the extra-embryonic endoderm lineage (Niwa et al., 2000). 

SOX2 is a member of the SOX (SRY-related HMG box) transcription factor family which has 

a highly conserved single DNA-binding domain HMG (High Mobility Group). It is expressed 

all along the pre-implantation embryo development (Figure 19) but also in the ICM, epiblast, 

extra-embryonic ectoderm and neural tissues (Avilion et al., 2003; Huang et al., 2015). Sox-

null embryos die just after implantation and Sox2-null ESCs differentiate in the trophoblast-

like cells as Oct4-/- ESCs. It is likely that SOX2 maintains the pluripotency via the 

transcriptional activation of Oct4 (Masui et al., 2007).   

NANOG is a Q50 homeodomain-containing protein with the amino acid glutamine at position 

50 of the homeodomain that makes direct contact at the 5' of its preferred consensus sequence 

ATTA tetramer. NANOG regulates the expression of Pou5f1 and Sox2 sustaining 

pluripotency (Huang et al., 2015) and when over-expressed in ESCs it confers self-renewal 

independency to LIF/STAT3 signaling. Nanog-null embryos are able to give rise to 

pluripotent stem cells even if they rapidly differentiate into extra-embryonic endoderm 

lineage (Chambers et al., 2007). This bias can be partially explained by the well-known 

negative regulation of Nanog on Gata6 which induce primitive endoderm differentiation. 

Conversely to Oct4-/- or Sox2-/-, Nanog-null ESCs can be derived meaning that Nanog is not 

strictly required for the maintenance of self-renewal in vitro. Furthermore Nanog is not within 

the canonical “Yamanaka factors” necessary to reprogram somatic cells to iPSCs (Takahashi 

and Yamanaka, 2006). NANOG controls important factors of ESCs such as Esrrb, which can 

induce LIF independency when over-expressed in Nanog -/- ESCs, rescuing the absence of 

Nanog (Festuccia et al., 2012). 



38 

 

 

Figure 19: Transcript expression of the core pluripotency factor during mouse development (From 
Festuccia et al., 2013) 
Oct4 and Sox2 mRNAs are maternally inherited in oocyte while Nanog mRNA is first detected in blastomeres of 

the 8-cell stage embryo. At E3.5 Nanog is expressed heterogeneously in the ICM and Nanog-negative cells will 

form the hypoblast or primitive endoderm at E4.5. Around implantation Nanog is down-regulated before being 

re-expressed in the posterior epiblast. Oct4 and Sox2 also become regionally expressed post-implantation, with 

Sox2 higher in the anterior epiblast and Oct4 becoming progressively posterior. Sox2 (blue), Oct4 (pink) and 

Nanog (green). 

 

 

2.3.2 Signaling pathways in pluripotency 

Different pathways are involved in the control of pluripotency (Figure 20). The LIF/STAT3 

signaling is probably the principal pathway governing self-renewal of mESCs (Niwa et al., 

1998). LIF is a cytokine of the IL-6 family that binds the LIF receptor (LIFR) and the co-

receptor subunit glycoprotein 130 (gp130) which together form an heterodimer and activate 

the tyrosine kinase activity of Janus kinases (JAKs). The JAKs phosphorylate themselves 

becoming docking sites for the SH2 domain of cytoplasmic STAT3 (Signal Transducer and 

Activator of Transcription 3). Once STAT3s are recruited, they become phosphorylated and 

dimerize. The dimerization promotes in turn the translocation to the nucleus where they 

activate gene transcription (Huang et al., 2015). Constitutive STAT3 activation makes the 

self-renewal of mESCs independent to LIF. STAT3 activation prevents ESCs differentiation 

to mesoderm and endoderm lineages, but a stronger activation induces also ESCs 

differentiation towards the trophoblast lineage (Tai et al., 2014). In vivo studies reported a role 

of LIF/STAT3 during diapause when TE cells secrete LIF to sustain the ICM in the arrested 

embryo development and delayed implantation (Renfree and Shaw, 2000). However in 

normal development without diapause LIF signaling is not required, but STAT3 activation by 

IL-6 is essential  in vivo for ICM maintenance as it binds to Oct4 and Nanog enhancers (Do et 

al., 2013).  
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TGFȕ/SMAD pathway also sustains mESCs self-renewal via Bone Morphogenic Protein 

(BMP) and in collaboration with LIF/STAT3 prevents neural differentiation (Huang et al., 

2015). BMP binds to transmembrane receptor type I and II that, once dimerized, activates the 

serine/threonine kinase activity of type I receptors (ALKs), which phosphorylates the SMAD1 

proteins. Phosphorylated SMAD forms complexes with co-SMAD (SMAD4) which 

translocated into the nucleus activating in turns transcription of target genes (Shi and 

Massagué, 2003). The same basic pathway is also activated by Activin/Nodal signaling which 

is fundamental to sustain pluripotency of mEpiSCs, but they depend specifically on 

SMAD2/3 (Greber et al., 2010; Sakaki-Yumoto et al., 2013). 

FGF/ERK pathway is important in mESCs as well as mEpiSCs while inducing opposite 

effects. FGF ligand induces auto-phosphorylation on tyrosin residues of intracellular domains 

of FGF receptor (FGFR) (Huang et al., 2015). Fibroblast growth factor receptor substrate 2 

(FRS2) and Grb2 are recruited, phosphorylated and activate RAS/MEK/ERK pathway which 

promotes self-renewal of mEpiSCs while it is a differentiation cue for mESCs (Kunath et al., 

2007). To suppress differentiation and reach the ground-naive state of pluripotency, mESCs 

are cultured with an inhibitor of FGF/ERK signaling: PD0325901 (PD) (Ying et al., 2008). 

Wnt/ȕ-catenin pathway is also implicated in pluripotency as well as differentiation. In 

absence of Wnt (ligand), glycogen syntase kinase-3 (GSK3) forms the destruction complex 

which phosphorilates ȕ-catenin. Once phosphorylated, ȕ-catenin is ubiquitinilated and 

degraded via the proteasome. However when Wnt is present it inhibits the assembly of the 

destruction complex, leading to accumulation of ȕ-catenin that can inhibit T Cell Factor 

(TCF) (Sokol, 2011). TCF is a repressor of pluripotency genes, hence by using a GSK3 

inhibitor (CHIR99021) it is possible to stabilize the naïve pluripotency network (Wray et al., 

2011; Ying et al., 2008) and to inhibit the epiblast transition (Berge et al., 2011). In primed 

EpiSCs, however, activation of the Wnt pathway induces mesendoderm differentiation and 

the use of inhibitors of this pathway leads to the block of this spontaneous differentiation and 

homogeneous propagation of EpiSCs colonies (Sumi et al., 2013). 
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Figure 20: Signaling pathways in naive Vs. primed mouse pluripotency (From Weinberger et al., 2016). 
Principal signaling pathways that can positively or negatively regulate naive and primed murine pluripotent stem 

cells. The majority of the signaling pathways shown have opposing effects on the naive and primed pluripotent 

states. 

 

2.3.3 The naïve state of mouse pluripotency 

 

2.3.3.1 Naïve-metastable mESCs in serum/LIF 

mESCs were initially maintained on gelatin-coated dishes in fetal bovine serum (FBS)-

containing medium and in co-culture with mitotically inactivated feeder fibroblast (called 

simply “feeders”) or mouse embryonic fibroblast (MEFs) which produce trophic factors 

sustaining ESCs growth. Then it has been shown that "feeders" produce LIF and so the 

addition of this chemokine to the medium can replace feeders which release also many other 

unknown factors (Smith et al., 1988). Naïve-metastable mESCs can be cultivated also in 

BMP4/LIF instead of serum to inhibit differentiation (Ying et al., 2003). Standard serum/LIF 
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conditions and feeders permitted the establishment of ESCs principally from the 129 mouse 

strain, hence called "permissive" in contrast to other strains like NOD (Non-obese diabetic) 

which were "non-permissive" (refractory) to ESC derivation. 

mESC in serum/LIF conditions grow in dome-like colonies (Figure 21) and can be passaged 

as single-cells with trypsin.  

 

 

Figure 21: Morphology of serum-ESCs under the phase-contrast microscope (From Tosolini and Jouneau, 
2016) 
Dome-like colonies ESCs in serum/LIF condition (on gelatin coated plates).  

 

Serum-ESCs appear to be subjected to uncontrolled multi-factorial perturbations, and thus are 

considered to be in a metastable condition, characterized in particular by transcription of 

lineage specification genes and heterogeneous expression of some pluripotency factors 

(Kalkan and Smith, 2014; Toyooka et al., 2008). Serum-ESCs are indeed transcriptionally 

hyperactive with also high transcription of repetitive elements (major and minor satellites, 

IAPs, LINEs, SINEs) but also transcripts of tissue-specific genes (Efroni et al., 2008). The 

metastability of serum-ESCs comes from cell population studies that showed the fluctuation 

of these cells between Nanog-high and Nanog-low states but also Rex1-high and Rex1-low 

states (Marks et al., 2012; Wray et al., 2010). The bases of this heterogeneity in serum-ESCs 

can be explained at least partially by the dynamics of gene expression. It is likely that the 

heterogeneity does not arise from stochastic fluctuations or noise in gene expression but from 

coexistence of multiple cellular states. Using single molecule RNA-FISH Singer and 

colleagues (2014) detected in serum-ESCs three types of gene expression distribution: 

Unimodal, Long-tailed and bimodal. Among bimodal genes were Nanog and Rex1. Cells 

remain into one of the two expression states for multiple cell cycles before transiting to the 
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other state in a dynamic way. Interestingly only Rex1-high population of ESCs can efficiently 

colonize the blastocyst and contribute to development while Rex1-low cells are more prone to 

differentiation, showing that naive-ESCs conventionally cultured in serum are a mosaic of 

subpopulations (Toyooka et al., 2008). Another recent study also highlighted the 

heterogeneity of serum-ESCs by single-cell analysis showing that it is possible to distinguish 

three cellular states: the naive population with high levels of Nanog, Sox2 and Klf2, the 

primed population expressing pluripotency markers (Nanog and Sox2) but also differentiation 

markers (Gata4, Gata6 and Lamb1) and PrE lineage cell showing high levels of Gata4 and 

Gata6 and low levers of pluripotency markers (Guo et al., 2016). 

Naive metastable-ESCs are characterized by a peculiar cell cycle with a short G1 phase of less 

than 2h, lack of the pRB and p53 DNA damage checkpoints, high levels of CyclinE and A in 

complex with Cdk2. This short G1 phase seems to be regulated by LIF signaling, as LIF 

starvation reduce the progression of Rex1-high cells to the next phase (Coronado et al., 2013). 

 

2.3.3.2 Ground-naive mESCs in 2i/LIF 

After more than 30 years of ESCs cultivation in LIF with serum or BMP, Ying and colleagues 

(2008) suggested the use of serum-free medium that abrogated the differentiation-inducing 

signal with the addition of small molecule inhibitors. In particular they showed that inhibition 

of MAPK and GSK3 enabled self-renewal of mouse ESCs, suppressing residual 

differentiation (Ying et al., 2008). This spontaneous differentiation is due to the auto-

inductive stimulation of the ERK 1/2 in MAPK pathway mediated by autocrine FGF4 which 

is not blocked by BMP4. It is likely that BMP4 blocks the ESCs differentiation commitment 

downstream the phosphorylation and activation of ERK. Initially a combination of three 

inhibitors (3i) was used: SU5402 inhibiting FGF receptor tyrosine kinase, PD184352 

inhibiting ERK cascade and CHIR99021 inhibiting GSK3. Triple inhibition (3i) was applied 

in serum-free medium added with B27 and N2 supplements that contain insulin, transferrin 

and albumin to give cells the optimal condition. In these conditions, when the self-renewal 

was sustained by such inhibition of FGF, MAPK and GSK3 pathways, ESCs were defined as 

being in the “ground state” of pluripotency, as they were completely freed from external 

stimuli (being without LIF) (Weinberger et al., 2016). Then a MEK inhibitor PD0325901 

(instead of FGF+ERK inhibitors) together with a GSK3 inhibitor CHIRON99021 (2i) were 

used and supplemented with LIF. Expansion of ESCs in this 2i/LIF medium was enhanced 
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compared to 3i-ESCs that have reduced proliferation (Weinberger et al., 2016). 2i/LIF 

condition permits ESCs derivation not only more efficiently from 129 strain but also from 

previously called “non-permissive” strains or refractory like the NOD one (Batlle-Morera et 

al., 2008; Nichols et al., 2009). 2i-ESCs can grow on gelatin coated plates forming ball-like 

structures. However to let them spread it is needed to pre-treat petri dish with laminin (Figure 

22) (Tosolini and Jouneau, 2016a).  

 

 

Figure 22: Morphology of 2i-ESCs under the phase-contrast microscope (From Tosolini and Jouneau, 
2016a) 
(a) ESCs in 2i/LIF condition on plates coated with laminin (spread and attached colonies). (b) ESCs in 2i/LIF 

condition on plates coated with gelatin (ball-like colonies). 

 

ESCs in 2i/LIF condition formed colonies composed purely of undifferentiated cells 

compared to serum/LIF condition that induces a mixture of undifferentiated and some 

differentiated cells. Moreover 2i/LIF leads to an homogenization of expression levels of some 

pluripotency genes in particular Nanog and Rex-1 that are high in all cells. The ground-naive 

state of pluripotency stabilized by the double inhibition (2i) blocks the fluctuation of Nanog 

level to a high homogenous state (Wray et al., 2010). Interestingly once ESCs are cultivated 

in 2i/LIF medium bimodal genes become unimodal (reducing variability in the cell 

population) due to the increment of switching rate from Nanog-low to -high at the expenses of 

the transition Nanog-high to -low (Singer et al., 2014). However a more recent study 

addressed the question of heterogeneity and showed by single-cell RNA-seq that serum- and 

2i-ESCs both show transcriptional heterogeneity. What differs between the two cell types are 

only the groups of genes that varies most: while serum-ESCs are more heterogeneous in term 

of expression of pluripotency genes, 2i-ESCs showed more prominent variability for genes 

related to cell cycle (Kolodziejczyk et al., 2015). Indeed, although Coronado and colleagues 

A B 
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(2013) showed that 2i-ESCs had a cell-cycle regulation and timing closely related to 

conventional serum-ESCs with a rapid doubling rate and short G1 phase, a more recent paper 

showed slower doubling time of ESCs in 2i compared to serum condition (Kolodziejczyk et 

al., 2015). 

 The first complete transcriptome comparison of ESCs cultured in serum/LIF and 2i/LIF has 

been made by Marks and colleagues (2012) where they showed that the core pluripotency 

factors and other stem cell maintenance genes were expressed at similar levels: Pou5f1, 

Nanog, Sox2, Esrrb, Klf2, Klf4 and Tbx3. The up-regulated genes in 2i-ESCs concerned 

metabolic processes and cell-cycle regulation. Tcl1 is also up-regulated and is implicated in 

self-renewal. On the contrary up-regulated genes in serum-ESCs are linked to developmental 

processes (especially ectoderm and mesoderm markers) such as Pax6, T (Brachyury), Runx1, 

Runx3, Sox18, Cdx4 and Tail1 which are undetectable or very lowly expressed in 2i-ESCs. 

Genes related to germline or endoderm lineages are expressed similarly in 2i- or serum-ESCs. 

These transcriptome profiles are inter-convertible after switching culture conditions (Marks et 

al., 2012).  

Marks and colleagues have also observed differences at the epigenetic level. Although the 

global level of H3K27me3 is unchanged, 2i-ESCs present an important reduction of this mark 

compared to serum-ESCs on promoters of lowly-expressed genes (Marks et al., 2012). The 

loss of H3K27me3 in 2i- versus serum-ESCs is neither linked to reduced expression of PRC2 

component nor increased demethylase expression. Interestingly, while ESCs in serum present 

around 3000 bivalent (presence of both H3K27me3 and H3K4me3) genes, after 2i adaptation 

this number drops to less than 1000 due to the reduced presence of H3K27me3 at the 

promoter level (Marks et al., 2012; Weiner et al., 2016). This epigenomic reorganization is 

only secondary to the early rewiring of Oct4, Sox2 and Nanog bindings in the genome which 

are already reconfigured after 24h of 2i induction (Galonska et al., 2015).  

At the DNA methylation level, the 2i condition induces a hypomethylated state in ESCs (even 

more exacerbated in female than in male) which parallels the ICM cell state, while serum 

(male) ESCs were hypermethylated resembling more post-implantation epiblast E6.5 (Habibi 

et al, 2013). Compared to male serum-ESCs, 2i-ESCs loose DNA methylation over CpG 

islands of promoters, enhancers and bivalent loci. However there are some regions that 

maintain methylation, principally in retroviral sequences (ERVs and IAPs) and to a lesser 

extent satellite sequences. The hypomethylated state in 2i-ESCs seems to be related to the up-
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regulation of Prdm14 which leads to the down-regulation of DNMTs levels (Yamaji et al., 

2013) paralleling the in vivo situation where between pre- and post-implantation epiblast these 

enzymes are 10-times more expressed (Habibi et al., 2013). More recently it has been shown 

that the main cause of ESCs DNA demethylation in 2i condition is the reduction of UHRF1 

which is necessary for targeting the maintenance DNMT1 at the replication foci (von Meyenn 

et al., 2016). As for the transcriptome, the DNA methylome is also dynamic and can be 

reverted/adapted, switching ESCs medium from serum to 2i and vice versa (Habibi et al., 

2013).  

 

2.3.4 The primed state of mouse pluripotency: EpiSCs in ActivinA/FGF2 

Following the observation that mouse ESCs (mESCs) do not resemble human ESCs (hESCs), 

two different groups tried to derive mouse pluripotent stem cells similar to human cells. They 

showed that starting from the late epiblast of a post-implantation mouse embryo at E5.5-6.5, 

just before gastrulation, it was possible to derive pluripotent stem cells that could be 

maintained under culture conditions for hESCs, using Activin/Nodal and FGF signaling. To 

distinguish this new cell type from mESCs they were called epiblast stem cells (EpiSCs) 

(Brons et al., 2007; Tesar et al., 2007). EpiSCs grow as large, flat, colonies (Figure 23), in 

contrast to rounded dome-like colonies of mESCs. 

 

 

Figure 23: Morphology of EpiSCs under the phase-contrast microscope (Image from the laboratory)  
EpiSCs colony in ActivinA/FGF2 condition on plates coated with fibronectin. 
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Passage in single-cell with trypsin induces death of EpiSCs so a less aggressive treatment 

with Collagenase is necessary to pass them as small clumps (Brons et al., 2007; Tosolini and 

Jouneau, 2016b). EpiSCs strictly depend on Activin/Nodal signaling to self-renew, while 

being independent of LIF. FGF signaling is not strictly required but it improves the overall 

quality of the culture reinforcing the Activin signaling (Brons et al., 2007; Greber et al., 

2010). On the contrary BMP4 condition leads to differentiation of EpiSCs in mesoderm and 

endoderm.  

EpiSCs express Oct4 (Pou5f1), Nanog, Sox2, Ssea-1 as ESCs, however at the molecular level 

some differences are detected. Even though Oct4 is a shared marker, it is regulated differently 

because in EpiSCs its expression is mediated by the proximal enhancer (as in post-

implantation epiblast), while in ESCs Oct4 is transcribed using the distal enhancer (as ICM 

cells) (Tesar et al., 2007). The marked difference in Oct4 regulation between EpiSCs and 

ESCs has been further investigated by Ding and colleagues (2015) using a genome-wide 

RNAi screen. They have shown that even though the knockdown of many genes has similar 

effects on Oct4 expression in EpiSCs compared to ESCs, others however have divergent 

effects. In particular they conclude that Oct4 in EpiSCs is mostly under a complex repressive 

control, as the knockdown of many genes induces up-regulation of Oct4, rather than down-

regulation. Such phenomenon is rarely seen in ESCs (Ding et al., 2015). Moreover EpiSCs are 

negative for alkaline phosphatase (AP) which is a marker of ESCs and present reduced (or 

even undetectable) levels for ICM-markers (Rex1, Stella , Esrrb, Grbx2, Tbx3) compared to 

ESCs (Brons et al., 2007). On the contrary EpiSCs express some late epiblast and early germ 

layers markers like Fgf5, Nodal, Otx2, Eomes, Foxa2, Gata6, T (Brachyury), Lefty2. 

The fact that EpiSCs express the core pluripotency factors but also some early differentiation 

markers prompted the scientific community to define them as primed pluripotency (Nichols 

and Smith, 2009). Among the EpiSC-specific genes, Otx2 seems to play a key role in exiting 

ESCs from pluripotency while protecting EpiSCs from neural fate differentiation (Acampora 

et al., 2013).   

More recent studies have shown that it is possible to derive different types of EpiSCs 

depending on culture conditions. For example a new type of EpiSCs can be established using 

FGF2 in combination with IWR1, an inhibitor of Wnt signaling, leading to more homogenous 

colonies with less spontaneous differentiation and corresponding more specifically to the 

posterior-proximal epiblast (Wu et al., 2015). Another type of primed EpiSC was obtained 
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without extracellular signaling only by supplementation with GSK3i and IWR1 which prevent 

differentiation therefore inducing a less primed state (Kim et al., 2013; Weinberger et al., 

2016). However these two novel EpiSCs types have not extensively studied and will not be 

analyzed further in this thesis. 

EpiSCs can make embryoid bodies (EB) and teratomas. However they were not able to 

integrate when injected into mouse embryos and do not incorporate into the ICM suggesting 

that pre-implantation embryo is not a compatible environment for EpiSCs (Rossant, 2008). 

This issue was resolved with the demonstration that EpiSCs were able to integrate a mouse 

embryo but only at the right developmental window corresponding to their in vivo timing: 

E5.5-6.5 (Huang et al., 2012).  

EpiSCs have a longer G1 phase with 17.5% cell population in this phase, in contrast to 7.8% 

of naive ESCs (Coronado et al., 2013).   

Epigenetically while female ESCs have two active X chromosomes, female mEpiSCs showed 

only one active X, in line with the random X-inactivation occurring during mouse embryo 

implantation (Nichols and Smith, 2009).  

ESCs can be easily converted in vitro into EpiSCs by adapting them to Activin A and FGF2 

culture condition (Buecker et al., 2014; Orkin and Hochedlinger, 2011; Schulz et al., 2014). 

However in vitro reversion of EpiSCs to ESCs is possible but very inefficient when just 

medium conditions are changed (Bao et al., 2009; Guo et al., 2009) eliciting the concept of an 

epigenetic barrier to overcome, such as the re-activation of the X chromosome in female cells 

or the DNA demethylation. To gain efficiency and bypass the epigenetic barrier it is necessary 

to over-express one or more naïve factors such as Klf4 (Guo et al., 2009) or to use small 

molecules inhibitors targeting LSD1, ALK5, MEK, FGFR and GSK3 (Zhou et al., 2010). The 

reversion from primed to naive pluripotency can be considered as a real de-differentiation 

process as it induces a reactivation of an X chromosome in female cells, a transcriptional 

profile completely comparable to ESCs, high capacity to generate blastocyst chimeras and 

germline transmission (Bao et al., 2009; Guo et al., 2009). More recently it has been shown 

that inhibition of the KMT MLL1, which induces a global down-regulation of H3K4me1, 

leads to a very efficient and rapid reversion of primed to naïve mouse pluripotency stressing 

once more the requirement of a strong epigenetic reorganization in order to “reprogram” 

EpiSCs into ESCs (Zhang et al., 2016). 
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EpiSCs showed strong differences from ESCs also at the miRNA level. Indeed one third of 

the miRNAs (miR) were differentially expressed between ESCs and EpiSCs: the cluster 

miR320/367 is the most abundant in EpiSCs (and hESCs) indicating a specificity of primed 

pluripotency. The majority of highly expressed miRs in mESCs are classified as ESC- or 

gonads-associated miRs, while those preponderant in EpiSC are somatic-type miRs (Jouneau 

et al., 2012).  

Concerning DNA methylation our laboratory and other groups has previously demonstrated 

that at the global level and genomic distribution EpiSCs are similar to mESCs (Hackett et al., 

2013; Veillard et al., 2014), however they showed a more pronounced DNA methylation at 

germline-related gene-promoters and on CpG islands of gene-promoters that were bivalent 

(copresence of H3K27me3 and H3K4me3) in ESCs. Globally EpiSCs are even more 

methylated than the in vivo epiblast at E6.5-7.5 (Veillard et al., 2014). A recent study has 

compared the EpiSCs derived from different stages of post-implantation development (from 

E5.5 to E8.0) and shows that once derived in vitro, the transcriptome of EpiSCs resembles 

each other regardless their developmental origin (Kojima et al., 2014). They also demonstrate 

by gene expression profiling and functional in vivo integration that EpiSCs display properties 

of anterior primitive streak.  

 

2.3.5 Comparison between mouse states of in vitro pluripotency 

Only in recent years some studies finally begin to analyze simultaneously the three different 

types of mouse in vitro pluripotent stem cells and also to compare them to the in vivo 

situation. A first comparison of in vitro to in vivo pluripotency showed that 2i-ESC share 

strong transcriptome similarities with early pre-implantation epiblast E4.5 while clustering far 

from ICM cells of E3.5 (Figure 24) (Boroviak et al., 2014). In contrast serum-ESCs and 

EpiSCs cluster separately and far away even from late epiblast E5.5 (Figure 24) (Boroviak et 

al., 2014). This study was based only on the expression of 96 genes enriched for pluripotency 

genes, lineage markers and signaling pathway genes. The 2i-ESCs transcriptional 

resemblance of pre-implantation epiblast E4.5 was further confirmed by RNA-seq data 

(Boroviak et al., 2015) 
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Figure 24: Correlation of gene expression of the different types of mouse pluripotent stem cells to the early 
embryo stages. (From Boroviak et al., 2014) 
Principal Component Analysis (PCA) (Left part) and Hierarchical clustering (Right part) of 2i-ESCs (2i-LIF), 

serum-ESCs (Serum+LIF), EpiSCs and early embryonic stages for expression of lineage markers and pathway-

associated genes assayed by qRT–PCR array. 

 

A very recent review finally made a global comparison of the states of mouse in vitro 

pluripotency defining which features (molecular, epigenetic and signaling) are considered as 

naive or primed and attributing them to each cell type (Weinberger et al., 2016) (Figure 25). 

Serum-ESCs share the majority of naive-configuration properties with 2i-ESCs, however they 

present also some primed-features with EpiSCs such as the global DNA hypermethylation. 

Thus Weinberger et al., 2016 considers serum-ESCs as naive even though less naive than 2i-

ESCs (Figure 25-26). 
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Figure 25: Schematic recapitulation of naive and primed features of the different states of mouse 
pluripotent stem cells (From Weinberger et al., 2016) 
Pluripotency properties defined as naïve-specific (orange) or primed-specific (blue). 2i-ESCs (2i,LIF), serum-

ESC (FBS,LIF) and EpiSCs (FGF2, Activin A). 

 

In the same review Weinberger et al., 2016 try to find the best molecular and functional 

criteria that define the naive state in contrast to the primed state (Figure 25). They suggest that 

the source from where pluripotent stem cells are derived, meaning pre- or post-implantation 

embryo, cannot be used as a criteria, as the state is dictated by the derivation growth 

conditions. They also do not consider as a good criteria the fact that naive ESCs can make 

chimeras when injected into a blastocyst while primed EpiSCs do not however they can 

integrate a post-implantation epiblast ex-vivo conversely to ESCs (Huang et al., 2012; Nichols 

and Smith, 2009). They suggest that the molecular "major divider" naive Vs. primed 

pluripotency is the response to MEK inhibition: primed EpiSCs or hESCs differentiate in 

absence of MEK pathway while naive ESCs highly tolerate such inhibition and even 
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consolidate their pluripotency network, as happen in 2i-ESCs (Weinberger et al., 2016) 

(Figure 26). 

 

Figure 26: Schematic representation of the different states of mouse pluripotent stem cells (From 
Weinberger et al., 2016) 
Model explaining the spectrum of naive and primed pluripotency. According to Weinberger et al., 2016 the 

major criterion discriminating is their ability to maintain and stabilize their pluripotent state upon blockade of 

MEK activity. Naive and primed pluripotent cells cultured in different conditions have different features and 

varying degrees of naivety or priming. 

 

2.4 In vitro human pluripotency 

 

2.4.1 The primed state of human pluripotency: conventional hESCs  

Many years after the establishment of mouse ESCs line from a mouse blastocyst, Thomson 

and colleagues in 1998 derived for the first time human ESCs from a blastocyst. The hESCs 

that they obtained had a flat colony morphology, express stage-specific embryonic antigen 

(SSEA)-3 and -4, TRA-1-60 and -81 (Thomson et al., 1998). However, hESCs did not 

expressed SSEA-1, which on the contrary is expressed in mouse ICM cells and mESCs, 

giving first insights about the interspecies differences between human and mouse. Another 

striking difference with the mouse was that hESCs cannot be clonally expanded starting from 

a single-cell, but must be passaged in clumps as EpiSCs. Pluripotency of hESCs could not be 

assessed by chimera assay for obvious bioethical issues, but was proven by teratoma 

formation after injection in immunodeficient mice. Human ESCs were strictly dependent on 
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feeders but independent of LIF, conversely they are stimulated by TGFȕ/Activin A and FGF 

signaling (Thomson et al., 1998). 

In addition primed hESCs like EpiSCs do not incorporate in mouse blastocyst. Another 

similarity between mEpiSCs and hESCs is that female cells already present one inactive 

chromosome X while female mESCs have both active X. In spite of all these differences 

hESCs (and mEpiSCs) retained the expression of OCT4, SOX2 and NANOG. In contrast to 

mESCs which relies on Oct4 distal enhancer (DE), mEpiSCs and hESCs depend on the 

proximal one (PE). Although sharing many properties, hESCs appear to differ from mEpiSCs 

as FGF2/ERK inhibition does not influence Nanog in mEpiSCs while rapidly down-regulates 

NANOG in hESCs. Moreover hESCs do not express FGF5 that is a key mEpiSC-marked but 

on the contrary expresses the ICM-marker REX1 (De Los Angeles et al., 2012). Interestingly 

hESCs stained positive for Alkaline Phosphates (AP) as mESCs (Thomson et al., 1998), while 

mEpiSCs do not. Altogether, hESCs are closer to the primed pluripotent state of mouse 

EpiSCs rather than to the naïve mESCs. Interestingly, the same characteristics as hESCs have 

been obtained by reprogramming human fibroblasts to induced pluripotent stem cells hiPSCs 

using the “Yamanaka factors”: OCT4, SOX2, KLF4 and c-MYC (Takahashi et al., 2007)  

 

2.4.2 The naïve state of human pluripotency: naïve hESCs 

Based on the parallel of the two states of pluripotency in mouse and on the discovery that 

small molecules inhibitors were able to stabilize naive pluripotency of historically “non-

permissive” mouse strains as well as rat species, many groups world-wide tried to find a way 

to obtain naive human pluripotent stem cells (Hanna et al., 2010; Gafni et al., 2013; Chan et 

al., 2013; Ware et al., 2014; Valamehr et al., 2014; Theunissen et al., 2014; Takashima et al., 

2014; Duggal et al., 2015;  Chen et al., 2015).  

The variety of conditions to obtain the naïve-hESCs is summarized in the (Table 1).  
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Table 1: Recap chart of the differences between primed-hESCs and the different attempts to obtain naive-
hESCs. From Hanna et al., 2010; Gafni et al., 2013; Chan et al., 2013; Ware et al., 2014; Valamehr et al., 2014; 

Theunissen et al., 2014; Takashima et al., 2014; Duggal et al., 2015; Chen et al., 2015 and Weinberger et al., 

2016. 

 

Huang and colleagues (2014) compared all the different types of naive-hESCs described up to 

2014 at the transcriptomic level and also made a comparison with mouse pluripotency and 

with early human embryo developmental stages. They performed a system biology approach 

called Weighted Gene Co-expression Network Analysis (WGCNA) and discovered that there 

are large transcriptome changes between each independently established naive hESCs. 

Comparison with mouse pluripotency showed that the majority of naive-hESCs do not 

significantly overlap with 2i/LIF mESCs with the exception of those obtained  by Takashima 

et al., 2014 and Theunissen et al., 2014 (Figure 27) (Huang et al., 2014). Early human embryo 

comparison leads to similar results because naïve-hESCs generated by Takashima et al., 2014 

and Theunissen et al., 2014 have the highest resemblance to the expression profile of human 

blastocyst (Vassena et al., 2011; Xie et al., 2010; Yan et al., 2013) (Figure 27) (Huang et al., 

2014). Primed hESCs on the other hand significantly overlap with mEpiSCs and early 

passages ICM-outgrowths, suggesting a rapid adaptation to in vitro culture conditions. 

Interestingly they also share some gene modules (cell-cycle and mitosis) with pre-EGA 
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embryos from 1- to 4-cell stages (Figure 27) (Huang et al., 2014). The only consensus module 

shared by all naive-hESCs significantly overlaps with 8-cell and morula stages suggesting that 

naive-hESCs may have some cellular and metabolic features of post-EGA human blastomers 

(Figure 27) (Huang et al., 2014). 

 

Figure 27: Transcriptional network comparison of primed-hESCs and the different attempts to obtain 
naive-hESCs with the different mouse pluripotent stem cells and with human pre-implantation embryos 
(From Huang et al., 2014) 
(A) Heatmap showing the significance of gene network overlaps using weighted gene co-expression network 

analysis (WGCNA) between mouse 2i-ESCs (2i/LIF), serum-ESCs (serum/LIF) and EpiSCs (primed) modules 

(y axis) with naive and primed hESCs from six different methods (x axis). Number of intersecting genes and the 

p-value of the intersection are indicated. (B) Heatmap showing the significance of gene network overlaps using 

weighted gene co-expression network analysis (WGCNA) between human pre-implantation embryos (x axis) 

and six different methods for producing naive hESCs (y axis). The average p-value (geometric mean) from gene 

intersects of naive and primed modules with three separate human pre-implantation data sets (Vassena et al., 

2011; Xie et al., 2010; Yan et al., 2013) is indicated. Color legend represents –log10 p-value based on the 

hypergeometric test. 

 

To conclude it seems that there are multiple routes to induce naive human pluripotency: 

strong inhibitions of MEK in NHSM (naive human stem cell medium) (Gafni et al., 2013), 

inhibition of BMP signaling with 3iL (Chan et al., 2013), reversed toggle with HDACi (Ware 

et al., 2014), suppression of MAPK/b-RAF and SRC in 5i/L/A (Theunissen et al., 2014), 

inhibition of PKC (Takashima et al., 2014) and their combination which activates 

PI3K/AKT/mTOR (Duggal et al., 2015) and forced activation of STAT3 with 2iL (Chen et 

al., 2015). 
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3 HETEROCHROMATIN ORGANIZATION IN MOUSE 

PLURIPOTENCY 

 

3.1 Chromatin organization during early mouse embryonic development 

In mammals, epigenetic modifications are globally rearranged after the fertilization of the egg 

by sperm. These two gametes carry unique epigenetic signatures in terms of DNA 

methylation, H3K9me3 and H3K27me3, and a peculiar nuclear organization of 

pericentromeric sequences. The nuclear and epigenetic state of sperm and egg is 

reprogrammed by the oocyte's cytoplasm during the first cell-cycles of a developing embryo 

(Beaujean, 2014). These modifications are concomitant to the gradual loss of totipotency of 

the embryo and the acquisition of pluripotency of epiblast cells. 

 

3.1.1 Dynamic organization of constitutive heterochromatin during early 

mouse embryo development 

Just after fertilization, at the late 1-cell stage, pericentromeric regions are organized in rings 

or “shell”-like structures around nucleolar-precursor bodies (NPBs) with centromeric spots 

associated with the periphery of NPBs (Figure 28) (Aguirre-Lavin et al., 2012; Probst et al., 

2010).  

 

Figure 28: Organization of major and minor satellite sequences at the late 1-cell stage of mouse embryo 
(From Aguirre-Lavin et al., 2012).  
(A, B) DNA-FISH for major (red) and minor (green) satellites repeats. In both pronuclei pericentromeric 

sequences organized mainly around nucleolar-precursor bodies (NPBs). (C) Three-dimensional reconstruction of 

the signals of both pronuclei (A, B). DAPI signal is shown in grey. 

 

At the 2-cell stage when the activation of the embryonic genome occurs, the genome is 

reorganized and the major satellite repeats switched from a ring to a spherical patched 

structure (Figure 29) (Aguirre-Lavin et al., 2012; Probst et al., 2010). At the 4-cell stage 

classic chromocenter structures appeared as compact mass of pericentromeric sequences 
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surrounded by individual centromere. By the blastocyst stage the general heterochromatin 

nuclear organization is very similar to that of somatic cells (Aguirre-Lavin et al., 2012; 

Guenatri et al., 2004; Probst et al., 2010).  

 

 

Figure 29: Organization of major and minor satellite sequences during early embryo development (From 
Aguirre-Lavin et al., 2012).  
(A-H) DNA-FISH for major (red) and minor (green) satellites repeats of each pre-implantation developmental 

stage. Starting from the late 2-cell stage embryo, major and minor satellite migrates from the nucleolar-precursor 

bodies (NPBs) clustering together in chromocenters. (A'-H') Three-dimensional reconstruction corresponding to 

the upper image. DAPI signal is shown in grey. 

 

Such three-dimensional heterochromatin reorganization during early mouse embryo 

development can be impaired by the loss of the histone chaperone CAF-1/p150. Chromatin 

Assembly Factor 1 (CAF-1) is a three subunit complex made by p150, p60 and p48, that 

promotes histone H3 and H4 deposition at newly synthesized DNA during replication 

(Kaufman et al., 1995). The p150 subunit guarantees the pool of replication-specific HP1α at 
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replication sites in pericentromeric heterochromatin during mid- and late-S phase (Quivy et 

al., 2004). Mutation of this CAF-1 subunit arrests development between 8- and 16-cell stages. 

The nuclei of mutant embryos show diffused HP1α staining and barely detectable DAPI-

dense foci compared to wild-type, with some enrichment only at the nuclear periphery and 

around nucleoli (Houlard et al., 2006) (Figure 30). CAF-1 seems to be a key player of the 

reorganization of pericentromeric heterochromatin which is necessary for embryo survival. In 

the same way, a burst of non-coding major satellite transcripts occurring at the 2-cell stage 

(described later on in this thesis) is also crucial for heterochromatin reorganization, 

chromocenter formation and further development (Probst et al., 2010) 

 

 

Figure 30: Comparison between DAPI and HP1α distribution in wild-type and p150 -/- mouse E4 embryos 
(From Houlard et al., 2006) 
Immunostaining for CAF-1/p150 (green) and HP1α (red) in E4 wild-type embryos (upper panel) and E4 p150 -/- 

embryos, with DAPI counterstaining for DNA (grey/blue). HP1α and DAPI foci-enrichment are lost in the 

knock-out (KO) condition. 
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3.1.2 DNA methylation dynamics of heterochromatin in early mouse 

embryo development 

DNA methylation is highly reprogrammed during early embryo development with a massive 

global demethylation starting from hypermethylated gametes (Figure 31A). The methylation 

levels are at the lowest by the early blastocyst stage (Kohli and Zhang, 2013). Globally 5-meC 

staining on single blastomeres for each developmental stage reveals a reorganization of this 

epigenetic mark with a clear foci-enrichment that starts at the 8-cell stage (Li et al., 2016) 

(Figure 31B). 

 

 

 

 

 

Figure 31: DNA methylation dynamics during early mouse embryo development (From Wu and Zhang, 
2014 and Li et al., 2016) 
(A) Schematic representation of the dynamics of 5-meC paternal and maternal during early embryo 

development. (B) Immunostaining of 5-meC (green) in individual maternal pronucleus (zygote (m)), paternal 

pronucleus (zygote (p)), and nuclei from 2-cell, 4-cell, 8-cell embryos, the outer (ML (o)) and inner (ML (i)) 

cells of morula, trophoectoderm (TE) and inner cell mass (ICM) of blastocysts. White arrows show 

representative examples of 5meC-intense staining foci. 

 

 

B 
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Concerning major and minor satellites, they are hypermethylated in all adult tissues except for 

sperm and metaphase II-arrested egg that possess a unique hypometylated state (Figure 32B) 

(Yamagata et al., 2007). This hypomethylated status persisted through all the pre-implantation 

development (Figure 32C) (Yamagata et al., 2007). Interestingly the paternal genome 

undergoes a rapid demethylation after fertilization (Salvaing et al., 2012) and methylated 

CpGs in major and minor satellites drop from 40/50% of epididymal sperm to 20% of zygote 

(Figure 32) (Yamagata et al., 2007). The de novo DNA methylation at pericentromeric and 

centromeric region occurs after the implantation of the blastocyst thus concomitant with the 

global genome-wide remethylation (Figure 32C) (Yamagata et al., 2007).  

 

 

Figure 32: Dynamics of DNA methylation on major and minor satellite repeats from gametes to late 
mouse embryonic development (From Yamagata et al., 2007). 
(A) CpG loci of the major and minor satellites. Closed and open arrowheads represent the oligonucleotide 

primers used for bisulfite sequencing. (B) Methylated patterns analyzed by bisulfite sequencing of major and 

minor satellites and IAP LTR in mouse cumulus cells, caudal epididymal sperm, and metaphase II-arrested eggs. 

Black and white dots indicate the methylated and unmethylated status of CpG sites, respectively. (C) CpG 

methylation kinetics analyzed by bisulfite sequencing of major satellites, minor satellites and intracisternal A 

particles (IAPs) during pre- and post-implantation mouse embryo development. Data are presented as % of 

methylated CpG sites per total CpG sites. Metaphase II-arrested egg (MII), pronuclear-stage embryo (PN), 

morula (Mo) and blastocyst (Bc). 
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3.1.3 H3K9me3 dynamics in early mouse embryo development 

H3K9me3 strongly stain the female pronucleus at 1-cell stage with a particular intensity for 

NPBs periphery (pericentromeric heterochromatin), while being absent from the male one. 

This asymmetry between the two parental genomes is still visible at the 2-cell stage with only 

half of each blastomere nuclei marked by H3K9me3 and maintained till the 4-cell stage 

(Beaujean, 2014; Puschendorf et al., 2008). Globally all along the early mouse embryo 

development H3K9me3 is enriched in foci (Figure 33) and also in E5.5 epiblast cells (Rugg-

Gunn et al., 2010). 

 

 

Figure 33: Subnuclear distribution of H3K9me3 during pre-implantation mouse embryo development 
(From Beaujean, 2014) 
Immunostaining for H3K9me3 (green) and DNA (red) in pre-implantation embryos from one-cell to blastocyst 

stage. Only the maternal pronucleus is labeled at the 1-cell stage and at the 2-cell stage the staining is 

asymmetric. 

 

3.1.4 H3K27me3 dynamics in early mouse embryo development 

H3K27me3 is detected in both pronucleus at the 1-cell stage but interestingly it is enriched in 

pericentromeric heterochromatin (ring-structures) only in paternal pronucleus (Puschendorf et 

al., 2008; Santenard et al., 2010) (Figure 34A). This asymmetric distribution is resolved 

already at the 2-cell stage once the chromocenters start to be formed and H3K27me3 showed 

a foci-enrichment distribution pattern at least up to 8-cell stage (Puschendorf et al., 2008) 

(Figure 34B). The H3K27me3 subnuclear distribution particularly in ICM and post-

implantation epiblast has not been extensively investigated except for the inactive X in female 

embryos. 
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Figure 34: H3K27me3 nuclear distribution during early stages of mouse embryo development (From 
Puschendorf et al., 2008) 
(A) Immunostaining for H3K27me3 (green) in late zygotes showing that only paternal constitutive 

heterochromatin is labeled (arrows). (B) Immunostaining for H3K27me3 (green) from 2-cell to 16-cell stage 

showing substantial colocalization with DAPI-dense foci till the 8-cell stage. At 16-cell stage H3K27me3 seems 

to be less enriched at constitutive heterochromatin. 

 

3.1.5 Satellite non-coding transcription in early mouse embryo 

development  

Knowing the great rearrangement of pericentromeric satellite repeats occurring during early 

embryo development, Probst and colleagues (2010) analyzed the transcription status of these 

repeats. They observed an initial transcription at the 1-cell stage followed by a burst of major 

satellite transcription at the 2-cell stage (concomitant to the reorganization of pericentromeric 

regions from rings around NPBs to compacted chromocenters) and finally down-regulated at 

the 8-cell stage (Figure 35) (Probst et al., 2010). At the 1-cell stage the transcription has only 

a paternal genome origin and interestingly RNA-FISH spots are found from DAPI-bright ring 

structure not colocalizing with H3K27me3-enriched ones (Probst et al., 2010). The 

transcription occurs from both senses with different dynamics: the forward ncRNAs 

A 
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accumulate during S phase and peaks at early 2-cell stage and originate predominantly from 

paternal genome, while the reverse ones peak at the late 2-cell stage and are expressed widely 

from paternal as well as maternal embryonic genome (Probst et al., 2010). Knock-down of 

reverse major satellite transcripts is sufficient to impede nuclear reorganization of 

pericentromeric heterochromatin into chromocenters and development beyond the 2-cell stage 

(Casanova et al., 2013).  

No similar study has been made for minor satellite non-coding transcripts till now. 

 

 

 

Figure 35: Major satellite repeat transcripts during pre-implantation mouse embryo development (From 
Probst et al., 2010). 
(A) Immuno-RNA-FISH for H3K9me3 (red) and major forward satellites RNAs (green) at early two-cell 

embryos (39h phCG). Nascent transcripts have only paternal origin (not marked by H3K9me3). (B) Immuno-

RNA-FISH for H3K9me3 (green) and major reverse satellites RNAs (red) at late two-cell embryos (48h phCG). 

Transcripts originate from both maternal and paternal genome. (A,B) DNA is counterstained with DAPI (gray). 

PB, polar body. (C) Reverse transcription with strand-specific primers followed by quantification of major 

transcripts using qPCR. Transcript levels relative to MII oocytes (set to 1). Major satellites transcription begins 

at late 1-cell stage, forward transcripts (Maj Fwd) peaks at early 2-cell stage while reverse one (Maj Rev) at late 

2-cell stage. At 4-cell stage major satellites transcription is shut-down as blastocyst or 3T3 mouse fibroblasts. 
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Taken together at the blastocyst stage, when ESCs are derived, in vivo pluripotent ICM cells 

are characterized by a compacted organization in chromocenters of pericentromeric major 

satellites which are silenced, hypomethylated and strongly enriched by H3K9me3 but likely 

not by H3K27me3. 

3.2 Chromatin plasticity in mouse in vitro pluripotency 

Pluripotent stem cells and especially naïve ESCs have a special and unique epigenetic 

signature that reflects their broad developmental potential. Most of the epigenetics marks 

including DNA methylation are not required for survival and maintenance of their self-

renewal (Meissner, 2010). However most of naïve ESCs lacking epigenetics marks (such as 

DNA methylation, H3K27me3 or H3K9me3) show impaired developmental and 

differentiation potential (Déjardin, 2015). Serum-ESCs are also characterized by 

hyperdynamic, loosely bound or soluble fraction of chromatin proteins. Such plasticity is 

necessary particularly during differentiation for the reshaping of the genome architectural 

organization especially the heterochromatin (Meshorer et al., 2006). In serum-ESCs, 

heterochromatin is organized in larger but fewer H3K9me3 domains, which become smaller, 

more abundant and hyper-condensed as cells differentiate (Figure 36) (Meshorer et al., 2006).  

 

Figure 36: Constitutive heterochromatin organization in serum-ESCs Vs. NPCs (From Meshorer et al., 
2006) 
(A) Immunostaining for H3K9me3 (H3-triMeK9, red) and HP1α (green) in serum-ESCs (top) or neural 

progenitor cells (NPCs, bottom), DNA counterstaining with DAPI staining (blue). (B) Distribution of 

heterochromatin foci number per nucleus in ESCs (red bars) or NPCs (blue bars). 
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In addition to the global decondensation, lose binding of chromatin proteins and enrichment 

in active histone modifications, serum-ESCs are characterized by a pervasive and elevated 

global transcription (Efroni et al., 2008) as total RNA and mRNA (which represent 5–10% of 

total RNA) levels, normalized to DNA content, are almost 2-fold higher in serum-ESCs 

compared to neural progenitors cells (NPCs). Interestingly 2i-ESCs have about half less RNA 

compared to serum-ESCs (Kolodziejczyk et al., 2015). Transcription of all repetitive non-

coding elements including major and minor satellite repeats, is significantly higher in serum-

ESCs than differentiated cells where they are normally silenced, as shown by qRT-PCR and 

RNA-FISH (Figure 37) (Efroni et al., 2008) . 

 

 

Figure 37: Pervasive transcription of serum-ESCs compared to NPCs (From Efroni et al., 2008). 
(A) qRT-PCR of repeat sequences, transposable and retroviral elements in serum-ESCs (red) and neural 

progenitor cells (NPCs, blue). (B) RNA-FISH for the major satellite transcripts (red) in serum-ESCs and NPCs. 

When serum-ESCs were pretreated with RNase A signal was abolished (+ RNase), while DNase I treatment 

retained the signal (DNase).  

 

3.2.1 Chromatin bivalency in naïve mESCs 

ESCs present a peculiar chromatin signature with the co-presence of an active histone mark 

H3K4me3 and a repressive histone mark H3K27me3 called bivalency (Azuara et al., 2006; 

Bernstein et al., 2006). These bivalent domains are largely enriched in serum-ESCs compared 

to differentiated cells and the genes harboring this combination of epigenetic marks encode 

for transcriptional factors that play roles in embryonic development and lineage specification 

(Bernstein et al., 2006). Bivalency is associated with silencing of these developmentally-

related genes in serum-ESCs, preserving at the same time the potential to become rapidly 

activated upon differentiation. Interestingly these genes are also replicated in early S phase 

like active regions even though they are not expressed in serum-ESCs (Azuara et al., 2006). 

During initiation of differentiation bivalent genes are resolved keeping only one of the two 
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histone modifications (Bernstein et al., 2006). In PRC2-deficient ESCs, it has been observed a 

premature expression of these genes as they lose the repressive histone mark H3K27me3 

(Azuara et al., 2006), further showing that lineage-specification genes are already primed to 

be transcribed in serum-ESCs. 

CpG-rich promoters are marked by H3K4me3 in ESCs and 22% of them also present 

H3K27me3 and are lowly expressed (Mikkelsen et al., 2007). Interestingly bivalent domains 

were also found in human ESCs and largely overlap with the mouse ones (Voigt et al., 2013). 

All these studies described in this paragraph have been made in serum-ESCs, however 

different studies have shown that after ESCs adaptation to 2i condition, the number of 

bivalent genes drastically drops (Marks et al., 2012; Weiner et al., 2016). No available data 

exist at the moment to evaluate if bivalency is maintained in EpiSCs or if it is lost as in 

differentiated cells. 

 

3.2.2 Heterochromatin organization in mouse in vitro pluripotency 

A biophysical study has shown that in serum-ESC, nuclei of Low-NANOG (LN) cells are 

more deformable and their chromatin is less condensed than the High-NANOG (HN) nuclei 

counterparts. Conversely to what one would expect in the more pluripotent ESCs chromatin is 

more compact while the ones that are primed for differentiation it is more dynamic and 

decondensed. In support of these data LN serum-ESCs present a distribution of 

HγK9meγ/HP1α more diffuse than in HN-ESCs  (Chalut et al., 2012). 

A molecular link between states of pluripotency and heterochromatin organization has been 

recently made by Novo and colleagues (2016) demonstrating the role of the transcription 

factor NANOG in the pericentromeric architecture. They have found that the absence of 

NANOG induces heterochromatin compaction in mutant ESCs but also in wild type-EpiSCs 

which lowly express Nanog (Novo et al., 2016). EpiSCs, as well as E5.5 epiblast, have been 

previously shown to have a more compacted heterochromatin compared to serum-ESCs and 

ICM E3.5 by electron microscopic imaging (Ahmed et al., 2010) (Figure 38A).  
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Figure 38: Heterochromatin organization of naive Vs. primed pluripotency (From Ahmed et al., 2010 and 
Novo et al., 2016). 
(A) Electron spectroscopic imaging (ESI) images of in vitro pluripotent serum-ESCs and EpiSCs (left column) 

and in vivo E3.5 and E5.5 epiblast (right column). Chromatin (yellow) and protein and RNPs (shades of blue) are 

determined from nitrogen and phosphorus maps. Chromatin clusterizes more in EpiSC and E5.5 epiblast than 

serum-ESCs and E3.5 epiblast. (B) Schematic representation of heterochromatin organization in serum-ESCs 

(Open chromatin, low H3K9me3 and high transcription of major satellites) versus non-ESCs or EpiSCs 

(Compacted chromatin, high H3K9me3 and low transcription of major satellites).  

 

Forced expression of NANOG in EpiSCs is sufficient to decompact heterochromatin, 

reducing H3K9me3 levels at major satellite repeats and increasing the ncRNA transcripts 

coming from these regions. In addition, within the heterogeneous populations of serum-ESCs, 

higher transcription of major satellites is found in Nanog-high cells compared to the low- 

fraction (Novo et al., 2016). The authors have proposed that NANOG is recruited to major 

satellites thanks to heterochromatin associated protein SALL1, as Sall1-/- ESCs recapitulates 

the same Nanog-/- phenotype (Novo et al., 2016). 

As in embryos, the histone chaperone CAF-1 plays a critical role in three-dimensional 

organization of pericentric heterochromatin in serum-ESCs: when depleted for p150, the 

DAPI-dense foci are lost and only some bright staining at the periphery or around nucleoli are 

still observed (Figure 39A) (Houlard et al., 2006). In addition these ESCs lose H3K9me3, 

HP1 and H4K20me3 foci-enrichment, showing a diffused staining (Houlard et al., 2006). 

Absence of CAF-1 in serum-ESCs induces a complete decondensation of major satellites 

sequences and the consequent destructuration of chromocenters (Figure 39C), without 

however affecting the hypermethylated state of major satellites (Houlard et al., 2006). 

Interestingly when the same experiment was performed on differentiated cells (MEFs) no 

alteration of the heterochromatin organization was found (Figure 39B), suggesting that only 
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pluripotent stem cells need CAF-1 during replication of pericentromeric regions in order to 

maintain their compacted structure (Houlard et al., 2006).  

 

 

 

Figure 39: Effect of CAF-1/p150 down-regulation in serum-ESCs and MEFs (From Houlard et al., 2006) 
(A, B) Immunostaining for CAF-1/p150 (green) and HP1α (red) in serum-ESCs (A) or MEFs (B) transfected 

with control (cont) or CAF-1 (p150) siRNA. While down-regulation of CAF-1 in serum-ESCs disrupt the 

heterochromatin organization (loss of DAPI-dense and HP1α foci-enrichment), such phenomenon is not 

observed in MEFs. (C) DNA-FISH for major (red) and minor (green) satellites in serum-ESCs transfected with 

control (cont) and CAF-1 (p150) siRNA. Down-regulation of CAF-1 disorganizes chromocenters structures, 

pericentromeric sequences decompact, going particularly at the nuclear periphery. 

 

B 

A 
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3.2.3 Plasticity of heterochromatin in mouse naive pluripotency 

Pericentromeric heterochromatin is normally characterized by high levels of H3K9me3 and 

DNA methylation, inducing a strong repressive environment. However many studies reveal 

that the composition of the constitutive heterochromatin can be highly plastic and dynamic in 

particular in the context of naive pluripotency (Déjardin, 2015). 

Serum-ESCs depleted from SUV39H enzymes show impressive loss of H3K9me3 in 

particular at major and minor satellites (Figure 40A) (Cooper et al., 2014; Lehnertz et al., 

2003; Martens et al., 2005; Peters et al., 2003; Saksouk et al., 2014). At the same time these 

ESCs acquired H3K27me3 enrichment in foci and specific deposition of this mark at major 

satellite but not minor satellites (Figure 40B) (Cooper et al., 2014; Lehnertz et al., 2003; 

Martens et al., 2005; Peters et al., 2003; Saksouk et al., 2014). Peters and colleagues (2003) 

have thus suggested a cross-talk between constitutive and facultative heterochromatin to 

rescue the repressed state when the structure of the chromatin was compromised (Figure 40C) 

(Peters et al., 2003). Moreover the absence of SUV39H enzymes induces a dramatic loss of 

DNA methylation specifically at majors satellites (not on minor satellites) and a slight up-

regulation of non-coding RNAs from these repeats (Lehnertz et al., 2003). DNMT1 and 

DNMTγA interact directly with SUVγ9H1 and HP1ȕ (Fuks et al., 2003) while the absence of 

SUV39H1/2 abrogates the foci staining for DNMT3B in serum-ESCs (Lehnertz et al., 2003). 

Moreover while DNMT3B is solely responsible for minor satellite DNA methylation, both 

DNMT3A and DNMTB cooperate to depose methyl-groups on major satellites in serum-

ESCs (Okano et al., 1999).  
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Figure 40: Suv39hdn condition on serum-ESCs heterochromatin (From Peters et al., 2003) 
(A, B) Immunostaining for H3K9me1, me2, me3 (A) and H3K27me1, me2 and me3 (B) in serum-ESCs wild-

type and Suv39hdn. The Suv39hdn condition leads to loss of H3K9me3 foci and enrichment in H3K9me1 foci 

while increasing H3K27me3 foci at the expense of H3K27me1. (C) Schematic representation of the 

heterochromatin that rescues the absence of H3K9me3 by H3K27me3. 

 

While Suv39hdn serum-ESCs show a great restructuration of the epigenetic state of 

heterochromatin, the complete absence of 5-meC in DnmtTKO serum-ESCs induces a 

reduction of H3K9me3 and an enrichment of H3K27me3 at major satellites with a presence of 

both marks in heterochromatin foci at the subnuclear level (Cooper et al., 2014; Saksouk et 

al., 2014; Tsumura et al., 2006). Interestingly in DnmtTKO serum-ESCs, H3K27me3 and 

H3K9me3 are enriched in distinct subdomains of the chromocenters as showed by super 

resolution microscopy (Figure 41A) (Cooper et al., 2014). Moreover DnmtTKO serum-ESCs 

gain also the mark H2AK119ub at DAPI-dense foci likely via the recruitment of variant 

PRC1 by KDM6B which recognizes unmethylated CpG islands, thus driving in turns the 

recruitment of PRC2 for H3K27me3 deposition (Figure 41B) (Blackledge et al., 2014; Cooper 

et al., 2014). 

 

C 
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Figure 41: DnmtTKO condition on serum-ESCs heterochromatin (From Cooper et al., 2014). 
(A) Three dimensional super-resolution structured illuminated microscopy (3D-SIM) images of immunostaining 

for H3K27me3 (green), H3K9me3 (red), and DAPI (blue) on serum-ESCs wild-type and DnmtTKO. Small 

panels show a single PCH region (delineated with a white line), and merges show overlap of each color. 

Arrowheads mark H3K27me3 staining within PCH in DnmtTKO serum-ESCs. (B) Immunostaining for 

H2AK119ub in serum-ESCs DnmtTKO and wild-type with DNA counterstaining with DAPI. Only in the mutant 

condition DAPI-dense foci are enriched in H2AK119ub. 

 

Saksouk and colleagues (2014) have proposed another common molecular mechanism of 

PRC2 recruitment for H3K27me3 deposition at pericentromeric satellites in Suv39hdn and 

DnmtTKO serum-ESCs via the relocalization of the methylation-sensitive DNA binding 

protein BEND3 to hypomethylated majors satellites (Saksouk et al., 2014). BEND3 strongly 

binds unmethylated major satellite repeats, as shown also by treatment of wild-type serum-

ESCs with 5-azacytdine (a DNMTs inhibitor), and recruits the Nucleosomal Remodeling 

Deacetylase (NuRD) complex which in turns can recruit PRC2 (Saksouk et al., 2014). 

To establish the general relationship between DNA methylation and H3K27me3, Hagarman 

and colleagues (2013) have studied the loss of either PRC2 complex (Eed subunit) or DNMTs 

in serum-ESCs. They have found that the absence of 5-meC induces a genome wide 

increment in H3K27me3 meaning that DNA methylation is directly and globally antagonizing 

the placement of H3K27me3 (Hagarman et al., 2013). Interestingly the genes that lost 5-meC 
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and gain H3K27me3 do not change their expression. Conversely in the reciprocal experiment 

the loss of H3K27me3 has only a modest effect on DNA methylation, with only 4% of genes 

changing their methylation status and with some becoming hyper- but other also 

hypomethylated (Hagarman et al., 2013).  

Altogether pluripotent state of serum-ESCs is characterized by a dynamic and plastic 

constitutive heterochromatin compartment which is highly transcribed, organized into a more 

open state and governed by interconnected pathways that can rescue each other between 

H3K9me3, DNA methylation and H3K27me3 principally. However no such studies have 

been made till now on 2i-ESCs and EpiSCs, in order to have a complete and comparative 

view of mouse in vitro pluripotency. 
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OBJECTIVES OF THIS THESIS 

For more than 35 years mouse ESCs in serum-condition, so in a naive but metastable 

pluripotent state, have been extensively studied in terms of transcriptional profile, epigenetics, 

nuclear organization and proteomics. However less than 10 years ago a primed pluripotent 

stem cell type called EpiSC has been derived in mouse in order to have a mouse parallel of 

the conventional human ESCs. The characterization of these EpiSCs is still ongoing and far to 

be sufficient for a real comparison with either mESCs or hESCs. More recently the discovery 

of a chemically defined medium (2i) that inhibits differentiation of mESCs more efficiently 

than standard serum condition, introduced a new type of naive pluripotent stem cell here 

called ground-naive. Our knowledge on 2i-ESCs especially in comparison to either serum-

ESCs or EpiSC is getting more and more in depth during these last years, particularly 

concerning the transcriptomics and epigenomics. 

However exhaustive studies comparing directly and simultaneously 2i-ESCs, serum-ESCs 

and EpiSCs are still lacking. Such studies could be fundamental to really establish markers 

and peculiar features in the definition of each state. In addition extrapolation from 

comprehensive mouse studies could be extremely important also for the classification of 

human pluripotent states as many groups attempt to obtain a more naive human pluripotency 

close to mouse ESCs in 2i condition playing with inhibition of different signaling pathways. 

This thesis presents a comprehensive and comparative study of the two kinds of naïve states 

and the primed state of mouse pluripotency concerning epigenetics features and 

transcriptional dynamics. The objectives of the studies conducted here are to fill some of the 

many gaps of knowledge between the different states of mouse pluripotency and to give some 

insight on what scientists should also focus in the case of human pluripotent cells. 

The majority of the epigenomic studies conducted until now on the different states of 

pluripotency were concentrated on single-copy sequences of the genome as normally in ChIP-

seq analysis only these sequences are taken in account. However in mouse the repetitive 

regions are the most represented and in particular pericentromeric and centromeric regions 

composed respectively by major and minor satellites correspond to 3.5% of the genome and 

can be analyzed separately starting from ChIP-seq datasets. Noteworthy these regions seem to 

be important for the stability of the genome and are normally reorganized during early 

development to acquire a compacted and silent structure in somatic tissues. Serum-ESCs are 

known to be dynamic even for major and minor satellites with a more decompacted condition 
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compared to differentiated cells and characterized by a pervasive transcription of these non-

coding sequences as well. Whether this open chromatin and hyper-transcriptional state of the 

constitutive heterochromatin is maintained also in 2i-ESCs as well as in EpiSCs is going to be 

elucidated in this thesis. In addition the concept of an already established epigenetic barrier in 

EpiSCs compared to the open and dynamic state of ESCs prompted the idea to deeply study 

the conversion kinetics from naïve to primed state. Such studies aim to gain more insight on 

the molecular interconnection between transcriptional regulation and epigenetic state and vice 

versa allowing maybe the identification of key actors of this process. This thesis mainly 

focuses on the heterochromatin compartment but will also give some light on the euchromatin 

especially analyzing the acetylation of histones which is probably the major “physical force” 

of the chromatin decompaction. In between euchromatin and heterochromatin, chromatin 

bivalency is probably one of the most peculiar and interesting features of ESCs, especially 

when cultivated in serum condition. Whether this chromatin condition is maintained also in 

primed pluripotency will be also investigated in this thesis. 
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MATERIALS AND METHODS 

 

1 Cell culture  

ESC lines (R1, WT01, Suv39hdn and DnmtTKO) were cultured in 2i or serum medium as 

described in Tosolini and Jouneau, 2016a. Briefly, 2i-ESCs were cultured on Laminin-coated 

dishes (Sigma) in Chemically Defined Medium (CDM) (Brons et al., 2007) supplemented 

with LIF (700 U/ml) (CellGS), PD0332552 (1 µM) (AxonMedchem) and CHIR99201 (final 

3µM) (AxonMedchem), while serum-ESCs were cultured on gelatine-coated dishes in 

DMEM supplemented with 15% serum (Thermo Fisher Scientific) and LIF (1000 U/ml) 

(CellGS).  

In vitro conversion of ESC into cEpiSC was performed by switching ESCs from 

serum/LIF or 2i/Lif mediums to CDM with FGF2 (12 ng/ml) (CellGS) and ActivinA (20 

ng/ml) (CellGS) as described in Tosolini and Jouneau, 2016b. These converted cells were 

used 3-5 passages after the conversion. EpiSC lines (FT129.1 and 9.73) were cultured as 

described in Brons et al., 2007.  

EZH2 inhibition was performed by culturing ESC either in 2i or serum-containing medium 

supplemented with 1µM EPZ-6438 (AxonMedchem) for 72h (changing medium daily) or 

with Dimethyl Sulphoxide (DMSO) (Sigma) as control. 

 

2 Western-blot 

Cells were lysed for 30min on ice with RIPA buffer (150mM NaCl, 1% NP-40, 0.5% 

NaDeoxycholate, 0.1% SDS, 50mM Tris-HCl pH8.0) in presence of protease and phosphatase 

inhibitors (Pierce). Proteins were quantified using BCA assay (Pierce). 3µg of proteins were 

charged on pre-cast polyacryalamide gel 4-15% (Biorad) and the running has been performed 

for 1h at 100V. Transfer was then performed on Trans-Blot Turbo (Biorad) for 7min on a 

PVDF membrane (Hybond-P, GE Healthcare). After blocking in TBS-Tween 20 0.01% 

(TBS-T) with either 4% non-fatty milk or 5% BSA (Sigma), membranes were incubated over-

night (O/N) at 4°C with primary antibodies. After washes in TBS-T, membranes were 

incubated with secondary antibodies for 1h and washed again before the revelation with ECL2 

Western blotting substrate (Pierce). Chemiluminescent signals were captured on a Fuji camera 

LAS-1000plus and then analysed with ImageJ (imagej.nih.gov/ij). H3 total was used for 

normalization.  
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For sequential protein detection, membranes were stripped with 25mM Glycine and 1% 

SDS at pH 2 for 30min, followed by washes in TBS-T and blocking (milk or BSA) according 

to the new primary antibody. Antibodies used are listed in (Table 2). 

 

3 Immunostaining 

Cells were grown on coated glass-coverslips for 24h, then fixed with PFA 2% (EMS) for 

20min, permeabilized with Triton X100 0.5% for 30min and blocked with BSA 2% (Sigma) 

for 1h. Primary antibody was incubated at 4°C O/N. After washes, the secondary antibody 

was incubated for 1h. Cells were then washed, post-fixed with PFA 2% (EMS) for 20min, 

incubated with 1/500 DAPI (Invitrogen) at 37°C for 15min and finally mounted on slide with 

VectaShield (Vector Laboratories). For 5-meC staining cells were fixed for 5min in methanol 

100% and before the BSA blocking, a denaturation step was added with HCl 4N for 1h at 

37°C to open the double-helix structure of DNA. For 5h-meC staining standard protocol 

fixation was used but as for 5-meC the denaturation step was added. Unless specified all the 

steps were done at room temperature. Antibodies used are listed in (Table 2). 
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Antigen 
Host 

species 
Dilution for 

immunostaining 
Dilution for western-

blot 
Reference 

P
ri

m
ar

y
 

H3K9me3 rabbit 1/300 1/1000 Active Motif 39161 

HP1ȕ mouse 1/200   Euromedex 1mod_1A9.A5 

H3K27me2/3 mouse 1/300 1/1000 Active Motif 39538 

H3K27me3 rabbit 1/300   Cell Signaling C36B11#9733 

H3K27me3 rabbit   1/1000 Millipore DAM07-774 

H2AK119ub rabbit 1/200 1/1000 Cell Signaling 8240S 

H3K4me3 rabbit 1/300 1/1000 Abcam 8580 

H3K9ac rabbit 1/100 1/1000 Abcam 4441 

EZH2 mouse 1/200 1/1000 NovocastraNCL-L-EZH 

SUV39H1 rabbit 1/100 1/1000 Cell Signaling D11B6 #8729 

RING1B mouse 1/200 1/1000 Active Motif 39663 

CAF-1 p150 goat 1/50   Santa Cruz D-16 sc-10206 

5-meC mouse 1/500   Eurogentech BY-MECY 

5h-meC rabbit 1/500   Active Motif 39769 

NANOG mouse 1/200   Cell Signaling D2A3#8822 

NANOG rabbit   1/1000  Abcam ab80892 

DNMT3B rabbit 1/200 1/500 Active Motif 39207 

DNMT3A mouse   1/500 Active Motif 39206 

H3total rabbit   1/20,000 Abcam 1791 

S
ec

o
n

d
ar

y
 

Anti-Rabbit-Cy3  1/200   Jackson ImmunoResearch 

Anti-Mouse-FITC  1/200   Jackson ImmunoResearch 

Anti-Goat-Cy3  1/200   Jackson ImmunoResearch 

Anti-mouse-HPO    1/5000 Jackson ImmunoResearch 

Anti-rabbit-HPO    1/5000 Jackson ImmunoResearch 

 

Table 2: List of Antibodies used in immunostaining and western-blot with respective dilutions. 

 

4 DNA-FISH  

For FISH, cells grown on coated glass-coverslips for 24h were fixed with PFA 4% (EMS) 

for 15min. They were permeabilized with Triton X100 0.5% for 30min and treated with 

RNase A 200µg/mL (Sigma) for 30min at 37°C. After an equilibration step in the 

hybridization buffer (50% formamide, SSC 2X, Denhardt 1X, 40 mM NaH2PO4, 10% dextran 

sulfate) for 45min at 37°C, cells were denaturated in presence of probes at 75°C for 3 min and 

then incubated O/N at 37°C. The day after they were washed three times with SSC 2X pH5.8-

50% formamide at 39°C and then three times with SSC 2X pH6.3 at 39°C. Cells were finally 

incubated with 1/500 DAPI (Invitrogen) at 37°C for 15min and then mounted with 
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VectaShield (Vector Laboratories). Unless specified all the steps were done at room 

temperature. 

For the detection of major and minor satellites sequences, we used probes described in 

Aguirre-Lavin et al., (2012) prepared by PCR on mouse genomic DNA using the following 

primer pairs: 5’-CACTTTAGGACGTGAAATATGGCG-γ’ and 5’-

CATATTCCAGGTCCTTCAGTGTGC-γ’ for major satellites and 5’-

AAAACACATTCGTTGGAAACGCG-γ’ and 5’-ACTCATCTAATGTTCTACAGTG-γ’ for 

minor satellites. PCR products were labelled with Cy3 and Cy5, respectively, using a random 

labelling kit (Invitrogen). 

 

5 In situ Proximity Ligation Assay (PLA) 

To assess the co-presence of two different histone marks on the same nucleosome we used 

the Duolink in situ PLA (Olink, Bioscience) largely following the manufacturer protocol. 

Briefly, cells grown on coated glass-coverslips for 24h were fixed with PFA 4% (EMS) for 

10min. They were permeabilized with Triton X100 0.5% for 30min and blocked with the 

Olink blocking solution for 30min at 37°C. Primary antibodies, H3K27me2me3 (Active Motif 

39538, mouse antibody, 1/300) and H3K4me3 (Abcam 8580, rabbit antibody, 1/300) were 

incubated at 4°C O/N. After washes with Olink buffer A, the secondary antibodies Olink Plus 

(anti-rabbit) and Minus (anti-mouse) PLA probes was incubated for 1h at 37°C. Cells were 

then washed again with Olink buffer A and incubated for ligation with Olink Ligase and 

buffer for 30min at 37°C. Successively the amplification of the in situ PLA signal is 

performed incubating cells with Olink polymerase and buffer for 100min at 37°C. After 

washed with Olink buffer B, cells were finally incubated with 1/500 DAPI (Invitrogen) at 

37°C for 15min and then mounted with VectaShield (Vector Laboratories). Unless specified 

all the steps were done at room temperature. 

 

6 Three-dimensional structured image acquisition and analysis 

Imaging was performed at the MIMA2 platform (http://www6.jouy.inra.fr/mima2) with an 

inverted ZEISS AxioObserver Z1 microscope equipped with an ApoTome slider, a Colibri 

light source, Axiocam MRm camera and driven by the Axiovision software 4.8.2. 

Observations were carried out using a 63X oil-immersion objective. Cells were scanned 

entirely using a z-distance of 0.β4 μm between optical sections. Fluorescent wavelengths of 
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405, 488, 555, and 639 nm were used to excite DAPI, FITC, Cy3, and Cy5, respectively. 

Images were then analysed on ImageJ (imagej.nih.gov/ij) to perform linescan, merge of 

channels and z-projections.  

Three-dimensional (3D) reconstructions of DNA-FISH signals were done with AMIRA 

software 3.1 after 3D nuclei segmentation using an unpublished Python script of the 

laboratory.  

For analysis of in situ PLA images nuclei were automatically segmented in 3D using an 

unpublished Python script of the laboratory and subsequently the number of spots inside each 

nuclei were counted, adapting a previously published Python script (Pauloin et al., 2016). 

 

7 Southern-blot 

Southern blot on genomic DNA was performed as described in Thijssen et al. 2015. For 

major satellite analysis 200ng of genomic DNA were digested with HpyCH4IV (New England 

Biolabs) for 1h at 37°C. For minor satellites 500ng of gDNA were digested with HpaII (New 

England Biolabs) and 300ng with MspI (New England Biolabs), both O/N at 37°C. Digested 

samples were separated for 5h run on 1% agarose gel. Gels were then denaturated in a 1.5M 

NaCl and 0.5M NaOH solution for 20min and neutralized with 0.5M Tris-HCl pH 7.5 and 

1.5M NaCl for 40min. Transfer was performed O/N on Hybond-N+ membranes (GE 

Healthcare) in SSC 20X. After ultraviolet cross-linking, membranes were pre-hybridized in 

SSC 6X, Denhardt 5X and 0.1% SDS for 1h at 42°C and hybridized with 32P-labelled probes 

for 2h at 42°C. Unless specified all the steps were done at room temperature. After membrane 

washing, signals were detected using FLA 7000 phosphorimager (Fuji). Images were then 

analyzed with ImageJ (imagej.nih.gov/ij) to perform linescan for major satellites and intensity 

ratio HpaII/MspI for the lower six bands of each lane for minor satellites.  

Probe used: Major satellites 5’ –CAC GTC CTA CAG TGG ACA TTT CTA AAT TTT 

CCA CCT TTT TCA GTT- γ’ and minor satellites 5’ –ACA TTC GTT GGA AAC GGG 

ATT TGT AGA ACA GTG TAT ATC AAT GAG TTA CAA TGA GAA ACA T- γ’. 

 

8 qRT-PCR 

Total RNA was extracted from cells using TRIzol (Ambion). 3µg of RNA were subjected 

to DNAse treatment using Turbo DNA-free kit (Ambion). Retro-transcription of 500ng of 

DNAse treated-RNA was performed using Random primers (Invitrogen) and Superscript III 
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(Invitrogen). In satellite transcripts quantification, for each sample, a negative control was 

included (no Superscript enzyme). Quantitative PCR was carried out in triplicates using 

SybrGreen mix (Applied Biosystem) on a StepOne Plus thermal cycler (Applied Biosystem). 

Data were normalized using the geometric mean of housekeeping genes Sdha  and Pbgd using 

Qbase software (Biogazelle). Results were expressed as Calibrated Normalized Relative 

Quantities (CNRQ) and presented in accordance to Weissgerber et al., 2015 with the 

exception of the kinetics of conversion. The Primers are described in (Table 3). 

 
 

Primers for qRT-PCR 

Gene Primer Forward Sequence  (5'-3' ) Primer Revers Sequence  (5'-3' ) 
Reference or Primer 

Bank ID Annealing 

Major 

satellite  
GACGACTTGAAAAATGACGAAATC  CATATTCCAGGTCCTTCAGTGTGC  Lehnertz et al., 2003 

60°C 

Minor 

satellite  
GAACATATTAGATGAGTGAGTTAC GTTCTACAAATCCCGTTTCCAAC  Ferri et al., 2009 

60°C 

Sdha GGAACACTCCAAAAACAGACCT  CCACCACTGGGTATTGAGTAGAA   60°C 

Pbgd  CCTGGCATACAGTTTGAAATCAT TTTTTCCAGGGCGTTTTCT Bernardo et al., 2011 60°C 

Ezh2 AGTGACTTGGATTTTCCAGCAC AATTCTGTTGTAAGGGCGACC   60°C 

Eed AAGAACCTGGAGGGAGGCG TCCTGGTGCATTTGGCGTAT   60°C 

Kdm6b GCATCTATTTGGAGAGCAAACGAG GGTACGGACCTCCACCGTA   60°C 

Suv39h1 GCAGTGTGTGCTGTAAATCTTCT ATACCCACGCCACTTAACCAG    60°C 

Suv39h2 CTGCCCAGGATAGCATTGTTC CAAGTCTCGGCTCCACATTTAC   60°C 

Dnmt3a1 GAGGGAACTGAGACCCCAC CTGGAAGGTGAGTCTTGGCA 6681209a1 60°C 

Dnmt3a TGGAGCTGCAAGAGTGTCTG GACGTCTGTGTAGTGGACGG   60°C 

Dnmt3b TCAGATGAGCAAGGTCAAGG TGTACCAAAGCAAGGGGAAG   60°C 

Tet1 GAGCCTGTTCCTCGATGTGG CAAACCCACCTGAGGCTGTT Koh et al., 2011 60°C 

Tet2 AACCTGGCTACTGTCATTGCTCCA ATGTTCTGCTGGTCTCTGTGGGAA Koh et al., 2011 60°C 

Rnf2 

(Ring1b) 
GAGTTACAACGAACACCTCAGG CAATCCGCGCAAAACCGATG   

60°C 

Cbx7 TGCGGAAGGGCAAAGTTGAAT ACAAGGCGAGGGTCCAAGA   60°C 

Pou5f1 

(Oct4) 
CAGCCAGACCACCATCTGTC GTCTCCGATTTGCATATC 7305399a3 

58°C 

Nanog 
CTTTCACCTATTAAGGTGCTTGC TGGCATCGGTTCATCATGGTAC 

Hayashi and Surani, 

2009 58°C 

Sox2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT   60°C 

Prdm14 GCATCCTGGTTCCCACAGAG CTGCAGAACACGCCAAAGTG Gillich et al., 2012 60°C 

Fgf5 TGTGTCTCAGGGGATTGTAGG AGCTGTTTTCTTGGAATCTCTCC 6753854a1 60 °C 

Brachyury 

(T) 
CCCGAGACCCAGTTCATAG ATTACATCTTTGTGGTCGTTTC   

60 °C 

Otx2 TATCTAAAGCAACCGCCTTACG GCCCTAGTAAATGTCGTCCTCTC 158518427c1 60°C 

Esrrb ATGCGAGTACATGCTTAACGC CATCCCCACTTTGAGGCATTT   60°C 

Klf4 GCAGTCACAAGTCCCCTCTC GACCTTCTTCCCCTCTTTGG Jouneau et al., 2012 58°C 

 

Table 3: List of qRT-PCR primers used with sequences, references and annealing. 
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9 Bioinformatics analysis of ChIP-Seq datasets for satellite repeats 

To compare the enrichment in H3K27me3 mark over major and minor satellite repeats we 

used the following ChIP-seq datasets: GSM590115 (E14-serum) and GSM590116 (E14-2i) 

from Marks et al., 2012; GSM1725687 (EpiSC1), GSM1725686 (Input EpiSC1), 

GSM1725726 (Input 2i-ESC1), GSM1725727 (2i-ESC1), GSM1725730 (Input 2i-ESC2), 

GSM1725731 (2i-ESC2), GSM1725689 (Input EpiSC2), GSM1725690 (EpiSC2), from 

Zylicz et al., 2015. 

To compare the enrichment in H3K9me3 mark over major and minor satellite repeats we used 

the following ChIP-seq datasets: GSM850406 (E14-serum) and GSM850407 (E14-2i) from 

Marks et al., 2012. 

An “in silico” library was made up exclusively of major and minor fasta consensus sequences 

taken from Lehnertz et al., 2003. Each sequence was duplicated and juxtaposed in order to 

detect reads which may map at the junction between two consecutive repeats. For the repeat 

analysis of ChIP-seq profiles, mappings were performed with the bowtie2 aligner version 

2.1.0 with default options (Langmead and Salzberg, 2012). Each read that mapped on major 

or minor satellite repeats was counted from the resulting output BAM file. Results were 

expressed as percentage of total number of reads that mapped on the whole mouse genome 

GRCm38.84.  
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RESULTS 

1 Global epigenetic organization in the different types of mouse 

pluripotent stem cells 

In this first part we characterized and compared the nuclear distribution as well as the global 

amount of different epigenetic marks of euchromatin and heterochromatin in mouse ESCs 

(both serum and 2i conditions) and EpiSCs. We mainly performed immunostainings and 

western-blots in order to identify the epigenetic landscape of our cells of interest. 

Successively we focused on the heterochromatin compartment as the histone modifications 

that changed their subnuclear distribution were hallmarks of heterochromatin. 

 

1.1 EUCHROMATIN IN MOUSE PLURIPOTENCY 

The most studied serum-ESCs are considered to have a plastic and open chromatin state, so 

we wondered whether there are any differences between the three types of pluripotent stem 

cells in terms of euchromatin histone marks. In particular we performed immunostaining to 

study the nuclear organization of two majors active histone marks H3K4me3 and H3K9ac, as 

well as western-blot on total cell extracts to evaluate their bulk levels.  

H3K4me3 immunostaining reveals an identical diffused pattern in all pluripotent stem cells 

with some brighter spots (Figure 42A). Furthermore western-blot quantification showed no 

difference in terms of global H3K4me3 levels in 2i-ESCs, serum-ESCs and EpiSCs (Figure 

42B). 
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Figure 42: H3K4me3 landscape in the different types of mouse pluripotent stem cells 

(A) Immunostaining images (single-plan) for H3K4me3 with DAPI DNA counterstaining. Scale bars represent 

5µm. (B) Western-blot analysis for quantification of bulk levels of the repressive histone modification H3K4me3 

related to the total level of H3. 2i- and serum-ESC: R1. EpiSC: FT129.1. 

 

Immunostaining for H3K9ac showed a similar pattern in the three types of pluripotent stem 

cells with a diffused signal with bright spots (Figure 43A). Interestingly western-blot analysis 

revealed an important decrease of H3K9ac in EpiSCs compared to ESCs (either 2i- or serum-) 

suggesting a less open chromatin state (Figure 43B). 

 

Figure 43: H3K9ac landscape in the different types of mouse pluripotent stem cells 

(A) Immunostaining images (single-plan) for H3K9ac with DAPI DNA counterstaining. Scale bars represent 

5µm. (B) Western-blot analysis for quantification of bulk levels of the repressive histone modification H3K9ac 

related to the total level of H3. 2i- and serum-ESC: R1. EpiSC: FT129.1. 
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Altogether euchromatin does not seem to change its global nuclear distribution in the three 

pluripotent states, at least concerning the two major active histone modifications H3K4me3 

and H3K9ac analyzed here. However, while H3K4me3 seems to be equally enriched in the 

three different types of mouse pluripotent stem cells, H3K9ac is strongly reduced in primed 

EpiSCs compared to naive ESCs (either 2i- or serum-). This finding goes along with the idea 

of an open, hyperacetylated chromatin typical of ESCs and lost in later stages, thus EpiSCs 

show an epigenetic landscape closer to that of somatic cells than to ESCs. 

 

1.2 BIVALENCY IN MOUSE PLURIPOTENCY 

In serum-ESCs the chromatin is enriched in bivalent domains, so characterized by the co-

presence of active H3K4me3 and repressive H3K27me3 histone marks at the same locus and 

even on the same nucleosome (Azuara et al., 2006; Bernstein et al., 2006; Hattori et al., 2013; 

Marks et al., 2012; Weiner et al., 2016). In order to study the combination of histone 

modification at the single cell level, Hattori and colleagues applied the in situ Proximity 

Ligation Assay (PLA) technique which produces a fluorescent spot inside the cell when two 

proteins are in close proximity, defined as less than 30-40nm (Hattori et al., 2013). The 

number of spots inside a cell does not represent the absolute number of the co-occurrence of 

the two proteins due to the limited or variable efficiency of the method. Despite this 

limitation, comparison between different cell types can be done when processed at the same 

time. 

We decided to apply this technique to study bivalency in our three cell types. We performed 

three independent experiments of in situ PLA using antibodies against H3K4me3 and 

H3K27me2/3 (Figure 44A). Nuclei were then segmented in three-dimensions and the number 

of spots in each nucleus was automatically counted (See Material and Methods).  

In all the three experiments we found that EpiSCs showed approximately a 2-fold reduction of 

the PLA spots number compared to serum-ESCs (Figure 44B). This suggests that bivalent 

domains are lost going from naïve to primed pluripotency similarly to what happens in 

differentiating cells (Hattori et al., 2013). Unexpectedly we observed that 2i-ESCs presented 

twice more PLA spots that serum-ESCs (Figure 44B). This increment in H3K4me3-

H3K27me2/3 co-presence within less than 30-40nm was consistent in all three experiments. 

Such result contrasts with the largely reduced number of bivalent domains evidenced by 
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ChIP-seq in 2i-ESCs compared to serum-ESCs (Marks et al., 2012) as well by co-ChIP 

(Weiner et al., 2016). 

We preferred to analyse the three independent experiments separately rather than merging 

them, as the efficiency of the ligation and amplification steps could vary from one experiment 

to the other. Indeed while experiment 1 and 3 give very similar spot numbers, experiment 2 

shows a 50% increment in spot number per cell in each cell type, suggesting a ligation and/or 

an amplification step more efficient compared to the other experiments (Figure 44B). 

Note that for serum-ESCs our medians (10, 15 and 9) are close to the mean for wild-type 

ESCs (12) in the Hattori et al study, even though the antibodies we used were different from 

those in their study. This observation strength our results confirming that the global amount of 

bivalent domains are on average roughly the same in different types of serum-ESCs and that 

there is not a strong bias due to the use of different antibodies.   

 

 

Figure 44: Bivalent domain revealed by in situ PLA in the different types of mouse pluripotent stem cells 

(A) in situ PLA images (single-plan) for H3K4me3-H3K27me2/3 (green spots) with DAPI DNA counterstaining 

(blue). Scale bars represent 5µm. (B) Counting of PLA spots per cells in 2i-ESCs, serum-ESCs and EpiSCs in 

the three independent experiments. Median of each cell population is indicated in the each box, while the n at the 

bottom represents the cell number per population. 2i- and serum-ESC: R1. EpiSC: FT129.1. 

 

Chromatin bivalency was mainly assessed by H3K4me3 and H3K27me3 ChIP-seq analysis in 

ESCs. Here we present another protocol to compare the global number of bivalent domain 

A 
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between the different states of mouse pluripotency using in situ proximity ligation assay. For 

the first time we showed that H3K4me3-H3K27me2/3 bivalent domains are strongly reduced 

in EpiSCs compared to ESCs. An important reduction in bivalency was already shown by 

Hattori et al., 2013 when comparing serum-ESCs to MEFs strengthening once more the 

hypothesis that EpiSCs have a somatic epigenome. In addition we found that in contrast to 

what previously shown (Marks et al., 2012; Weiner et al., 2016), 2i-ESCs seems to have an 

increased co-presence of H3K4me3-H3K27me2/3 compared to serum-ESCs. 

 

1.3 HETEROCHROMATIN IN MOUSE PLURIPOTENCY 

The majority of the results of this chapter are included into a publication that has been 

accepted under major revisions at the journal Scientific Reports.  

 

1.3.1 Heterochromatin domains are characterized by different epigenetic 

histone marks depending on the pluripotent stem cell type 

We studied more in-depth the constitutive heterochromatin regions (PCH/CH), so the 

chromocenters that are specifically marked by 4',6-diamidino-2-phenylindole (DAPI), 

showing a foci-enrichment staining. We assessed the percentage of cells presenting specific 

histone modification foci-enrichment and determined their colocalization with DAPI staining 

using linescan across nuclei. Our data show that the distribution of the hallmarks of 

heterochromatin H3K9me3 and H3K27me3 was different according to the cell type. In 2i-

ESCs, only one third of the population display H3K9me3-enrichement at PCH/CH foci 

(Figure 45A). In such cells, H3K9me3-enriched foci were rare and small, and located close to 

the nuclear periphery (Figure 45B). Conversely all serum-ESCs and EpiSCs showed large and 

numerous H3K9me3 foci, perfectly co-localizing with DAPI-dense foci (Figure 45A-B). 

Quantification by western-blot revealed a slight decrease of the H3K9me3 global level in 2i-

ESCs compared to serum-ESCs and EpiSCs, which showed no major changes between them 

(Figure 45C). HP1ȕ which is one of the typical proteins bound to constitutive heterochromatin 

also followed the same distribution patter of H3K9m3, as expected by the fact that thanks to 

its chromodomain it binds specifically to this histone mark (Figure 45D).  
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Figure 45: H3K9me3-HP1β landscape in the different types of mouse pluripotent stem cells 

(A) Immunostaining images (single-plan) for H3K9me3 with DAPI DNA counterstaining. Scale bars represent 

5µm. (B) Magnification on a single cell (arrow) with merge of signals: H3K9me3 (red) with DAPI (blue). 

Linescan analysis showing peaks of foci-enrichment (highlighted with the star). % indicates the percentage of 

cells in the population displaying the same pattern. Scale bars represent 5µm. (C) Western-blot analysis for 

quantification of bulk levels of the repressive histone modification H3K9me3 related to the total level of H3. (D) 

Immunostaining images (single-plan) for HP1ȕ with DAPI DNA counterstaining. Scale bars represent 5µm.  
2i- and serum-ESC: WT01 (A, B) and R1 (C, D). EpiSC: cWT01 (A, B) and 129.1 (C, D). 

 

We then examined the expression of the enzymes responsible for H3K9me3 deposition and 

we found that both mRNA and protein levels of Suv39h1 increased considerably between 2i-

ESC and EpiSC (Figure 46A). Accordingly, immunostaining revealed that SUV39H1 

accumulated in foci in serum-ESCs in 31% of cells and in the vast majority (93%) of EpiSCs, 

while no enrichment was observed in 2i-ESCs (Figure 46B).  

We conclude that HγK9meγ, HP1ȕ and SUVγ9H1 share the same pattern in terms of bulk-

levels and subnuclear localization: lower levels and mostly dispersed organization in 2i-ESC, 

high-levels and strong foci-enrichment in serum-ESCs and EpiSCs. 
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Figure 46: H3K9 trimethylase SUV39H1 in the different types of mouse pluripotent stem cells 

(A) Upper part: Relative expression (CNRQ) of Suv39h1 transcripts by qRT-PCR analysis normalized to Sdha 

and Pbgd housekeeping genes. Each point is an independent biological replicate. Lower part: Western-blot 

analysis for quantification of bulk levels of SUV39H1 related to total H3. (B) Immunostaining images (single-

plan) for SUV39H1 with DAPI DNA counterstaining. % indicates the percentage of cells in the population 

displaying a foci-enrichment pattern. Scale bars represent 5µm. 2i- and serum-ESC: R1. EpiSC: FT129.1. 

 

Regarding the “so called” facultative heterochromatin histone mark HγKβ7meγ, we 

observed two other remarkable phenomena. First, immunostaining revealed an unexpected 

H3K27me3 nuclear distribution: the majority of 2i-ESCs (69%) presented a foci-enrichment 

pattern of H3K27me3, which co-localized with DAPI-bright regions (Figure 47A-B). In 

contrast serum-ESCs had, in 95% of the cases, a completely diffuse pattern. Second, all 

EpiSCs presented a very low H3K27me3 signal that correlated with a reduced bulk level of 

this histone mark, as revealed by western-blotting (Figure 47C).  
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Figure 47: H3K27me3 landscape in the different types of mouse pluripotent stem cells 

(A) Immunostaining images (single-plan) for H3K27me3 with DAPI DNA counterstaining. Scale bars represent 

5µm. (B) Magnification on a single cell (arrow) with merge of signals: H3K27me3 (green) with DAPI (blue). 

Linescan analysis showing peaks of foci-enrichment (highlighted with the star). % indicates the percentage of 

cells in the population displaying the same pattern. Scale bars represent 5µm. (C) Western-blot analysis for 

quantification of bulk levels of the repressive histone modification H3K27me3 related to the total level of H3. 

2i- and serum-ESC: WT01 (A, B) and R1 (C). EpiSC: cWT01 (A, B) and 129.1 (C). 

 

Conversely H2AK119ub, which is another mark of facultative heterochromatin, does not 

share the same pattern of H3K27me3 as it is diffused in the nucleoplasm presenting only 

some bright spots with no foci enrichment even in 2i-ESCs (Figure 48A), suggesting no 

PRC1 recruitment by H3K27me3. In addition bulk levels of H2AK119ub were substantially 

unchanged even between ESCs and EpiSCs (Figure 48B).  

 

 

Figure 48: H2AK119ub landscape in the different types of mouse pluripotent stem cells 

(A) Immunostaining images (single-plan) for H2AK119ub with DAPI DNA counterstaining. Scale bars 

represent 5µm. (B) Western-blot analysis for quantification of bulk levels of the repressive histone modification 

H2AK119ub related to the total level of H3. 2i- and serum-ESC: R1. EpiSC: FT129.1. 
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To complete the study, we investigated the expression of EZH2, the enzyme that within the 

PRC2 complex deposits H3K27me3. While qRT-PCR did not evidence any major difference 

in Ezh2 transcript levels, western-blot revealed a strong reduction of the EZH2 protein 

amount in EpiSCs compared to both ESCs (Figure 49A). However in the three types of cells, 

EZH2 displayed the same diffuse signal with some bright spots but no foci-enrichment 

(Figure 49B). Moreover the expression of Kdm6b gene, which encodes for a specific 

H3K27me3 demethylase (KDM6B also called JMJD3), was increased in EpiSCs compared to 

ESCs (Figure 49C). Unfortunately, we did not find any antibody that was working on 

western-blot for the corresponding protein. Altogether, the decreased H3K27me3 level in 

EpiSCs could be explained by both a reduction of its histone methyltransferase and an 

increase of its histone demethylase.  

 

 

Figure 49: H3K27 methylases and demethylases in 2i-ESCs, serum-ESCs and EpiSCs 

(A) Upper part: Relative expression (CNRQ) of Ezh2 transcripts by qRT-PCR analysis normalized to Sdha  and 

Pbgd housekeeping genes. Each point is an independent sample. Lower part: Western-blot analysis for 

quantification of bulk levels of EZH2 related to H3 total. (B) Right part: immunostaining images (single-plan) 

for EZH2 with DAPI DNA counterstaining. Scale bars represent 5µm. (C) Relative expression (CNRQ) of 

Kdm6b transcripts by qRT-PCR analysis normalized to Sdha  and Pbgd housekeeping genes. Each point is an 

independent sample. 2i- and serum-ESC: R1. EpiSC: FT129.1. 
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In addition, as Ezh2, Rnf2 does not show change at the transcriptional level (Figure 50A), 

but at the protein level RING1B, the enzyme responsible for H2AK119ub deposition seems to 

be slightly more expressed in serum-ESCs compared to 2i-ESCs, as shown by western-blot, 

and clearly drops down in EpiSC as EZH2 does (Figure 50B) showing a parallel between PcG 

proteins.  

 

 

Figure 50: H2A ubiquitin ligase in the different types of mouse pluripotent stem cells. 

(A) Upper part: Relative expression (CNRQ) of Rnf2 (Ring1b) transcripts by qRT-PCR analysis normalized to 

Sdha and Pbgd housekeeping genes. Each point is an independent sample. Lower part: Western-blot analysis for 

quantification of bulk levels of RING1B related to H3 total. (B) Right part: immunostaining images (single-plan) 

for RING1B with DAPI DNA counterstaining. Scale bars represent 5µm. 2i- and serum-ESC: R1. EpiSC: 

FT129.1. 
 

1.3.2 Pericentromeric heterochromatin is subjected to an epigenetic 

switch in 2i-ESCs compared to serum ones and EpiSCs. 

Knowing that in mouse somatic cells H3K9me3 is particularly enriched in pericentromeric 

and centromeric regions (PCH/CH) (Bouzinba-Segard et al., 2006; Martens et al., 2005; 

Peters et al., 2001), we wondered whether the 2i condition led to a switch in the epigenetic 

marks at these sequences. To test this hypothesis we analyzed cells in late anaphase and we 

found that H3K27me3 was clearly enriched specifically at the pericentromeric ends of mitotic 

chromosomes in 2i-ESCs, while H3K9me3 was present all along these chromosomes (Figure 

51). Conversely, in serum-ESCs and EpiSCs the ends of mitotic chromosomes were strongly 

enriched in H3K9me3, while H3K27me3 presented a continuous staining in serum-ESCs or 

was quite undetectable in EpiSCs (Figure 51).  
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Figure 51: Enrichment of H3K9me3 or H3K27me3 at PCH/CH depending on the type of mouse 

pluripotent stem cell 

Immunostaining images of anaphase chromosome plates for H3K9me3 (red) or H3K27me3 (green) with DAPI 

DNA counterstaining (blue). Stars indicate enrichment of the histone mark at the PCH/CH region. Scale bars 

represent 5µm. 2i- and serum-ESC: WT01. EpiSC: cWT01. 

 

To further confirm our observation we used previously published H3K27me3 ChIP-seq 

datasets to quantify the reads mapping specifically on the major and minor satellite repeats. 

With the first dataset (Marks et al., 2012) we observed a 2-fold enrichment in 2i-ESC 

compared to serum-ESC for H3K27me3 at major satellites, while no difference was found for 

minor satellites sequences (Figure 52A). Another dataset allowed comparing 2i-ESCs and 

EpiSCs (Zylicz et al., 2015) and it shows that 2i-ESCs presents a more than 2-fold enrichment 

of H3K27me3 on major satellites compared to input (confirming Marks et al., 2012), but no 

enrichment at all in EpiSC (Figure 52B). Conversely minor satellites showed no H3K27me3 

enrichment in any cell type confirming once more Marks et al., 2012 (Figure 52B). 

Interestingly by ChIP-seq analysis from the first dataset (Marks et al., 2012) no reduction of 

H3K9me3 was observed from either major or minor satellite when serum-ESCs were adapted 

into the 2i medium (Figure 52C), contrasting to what we visually see in mitotic chromosome 

ends. However in the second study (Zylicz et al., 2015) they did not perform ChIP-seq for 

H3K9me3 so we could not confirm the result of Marks et al., 2012 concerning 2i- and serum-

ESCs neither compare those to EpiSCs for this histone mark.  

Altogether our data indicate a considerable reorganization especially for PCH (major 

satellites) in the different types of pluripotent cells, with a likely progressive enrichment of 

H3K9me3 and a clear depletion of H3K27me3 from 2i to serum-conditions of ESCs and up to 

EpiSCs.  
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Figure 52 : H3K27me3 is specifically enriched at PCH (Major satellites repeats) only in 2i-ESCs 

(A) Percentage of mapped reads on major and minor satellite repeats sequence using H3K27me3 ChIP-seq 

(Marks et al., 2012). (B) Percentage of mapped reads on major and minor satellite repeat sequences using 

H3K27me3 ChIP-seq compared to input (Zylicz et al., 2015). (C) Percentage of mapped reads on major and 

minor satellite repeats sequence using H3K9me3 ChIP-seq (Marks et al., 2012). 2i and serum-ESC: E14 (Marks 

et al., 2012) and GGOF (Zylicz et al., 2015). EpiSC: X6
-
 (Zylicz et al., 2015). 

 

1.3.3 DNA methylation state of repetitive sequences reflects the 

pluripotent stem cell type 

Another important actor of the heterochromatin compartment is DNA methylation. We 

have first investigated the organization of the 5-meC, but also 5h-meC, in our cells by 

immunostaining and then evaluated the DNA methylation levels on major and minor satellites 

by Southern blot on genomic DNA digested with methyl-sensitive enzymes. It should be 

noted that only a methanol treatment permitted a correctly 5-meC staining in EpiSCs, while a 

classic PFA-Triton treatment was insufficient to deproteinize the chromatin (Data not shown), 

suggesting that EpiSC’s chromatin is more compacted than ESC’s one. With this aggressive 

treatment we observed a similar staining pattern in 2i-ESCs, serum-ESCs and EpiSCs with 5-

meC aggregating in clusters in all nuclei (Figure 53). 5h-meC however showed a 

nucleoplasmic diffused signal in every pluripotent stem cells but interestingly it is also 
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accumulated in foci in some 2i-ESCs only (Figure 53). However previous data have shown 

that 5h-meC is 10-times less abundant than 5-meC (Ficz et al., 2011; Habibi et al., 2013; 

Leitch et al., 2013) we considered that the contribution of 5h-meC should be minimal 

compared to 5-meC, so in the following parts we will discuss only about DNA methylation. 

 

 

Figure 53: Global distribution of methylation and hydroxymethylation of DNA in the different types of 

pluripotent stem cells. 

Upper part: Immunostaining images (single-plan) for 5-meC (green) with DAPI DNA counterstaining (blue). 

Scale bars represent 5µm. Lower part: Immunostaining images (single-plan) for 5h-meC (green) with DAPI 

DNA counterstaining (blue). Scale bars represent 5µm. 2i- and serum-ESC: R1. EpiSC: FT129.1. 

 

Conversely to the 5-meC staining patterns that do not highlighted any differences, 

Southern-blot analysis revealed impressive changes of DNA methylation on major and minor 

satellites between the different types of pluripotent stem cells (Figure 54). Major satellites 

were partially demethylated in 2i-ESCs, as shown by the linescan profile (red line) which is 

intermediate between the fully demethylated DnmtTKO cells (purple line) and the 

hypermethylated fibroblasts (MEFs-black line) (Figure 54A). On the contrary these sequences 

in both serum-ESCs (blue line) and EpiSCs (green line) were as methylated as the MEFs 

(Figure 54A). A similar situation was observed for minor satellites that were partially 

demethylated in 2i-ESCs and as methylated as MEFs in EpiSCs (Figure 54B). Serum-ESCs 

showed for minor satellites an intermediate pattern between 2i-ESCs and EpiSCs (Figure 

54B).  
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Figure 54: Methylation profile at major and minor satellites in 2i-ESCs, serum-ESCs and EpiSCs. 

(A) Southern-blot analysis of gDNA digested with HpyCH4IV revealed with probe for major satellites. Linescan 

quantification for each lane: MEF (black), DnmtTKO (pink), 2i-ESC (red), serum-ESC (blue) and EpiSC 

(green). (B) Southern-blot analysis of gDNA digested with HpaII revealed with probe for minor satellites. 

Quantification related to southern-blot of gDNA digested with MspI. DnmtTKO-ESC is set to 1. 2i- and serum-

ESC: R1. EpiSC: FT129.1. 

 

We then assessed the expression level of the two main enzymes responsible for de novo 

methylation: DNMT3A and DNMT3B (Figure 55A-B). Dnmt3a  expression level increased 

strongly between 2i-ESCs and serum-ESCs and even more in EpiSCs. In parallel the 

embryonic isoform of the DNMT3A protein was about ten times more abundant in serum-

ESCs than in 2i-ESCs, while EpiSCs gained the additional somatic form as shown by 

western-blot analysis (Chen et al., 2002; Veillard et al., 2012) (Figure 55A). Unfortunately we 

did not found any antibody working in immunostaining for DNMT3A to assess its nuclear 

distribution. In parallel Dnmt3b was transcribed at low level in ESCs (2i- or serum-) and 

strongly increased in EpiSCs (Figure 55B). DNMT3B protein level showed a sequential 

increment going from 2i- to serum-ESCs and finally EpiSCs. Of particular interest is the 

subnuclear localization of DNMT3B which presents foci-enrichment in ESCs (2i- or serum-) 

and a diffuse nucleoplasmic signal in EpiSCs (Figure 55B).  

In conclusion we observed a progressive methylation of major and minor satellites, 

accompanied by an increased expression of the de novo methyltransferases, from 2i-ESCs to 

EpiSCs.  

A B 



103 

 

 

 

Figure 55: De novo DNA methylation machinery in 2i-ESCs, serum-ESCs and EpiSCs 

(A) Left part: Relative expression (CNRQ) of Dnmt3a transcripts by qRT-PCR analysis normalized to Sdha  and 

Pbgd housekeeping genes. Each point is an independent sample. Right part: Western-blot analysis for 

quantification of bulk levels of DNMT3A related to H3 total. (B) Upper left part: Relative expression (CNRQ) 

of Dnmt3b transcripts by qRT-PCR analysis normalized to Sdha  and Pbgd housekeeping genes. Each point is an 

independent sample. Lower left part: Western-blot analysis for quantification of bulk levels of DNMT3B related 

to H3 total. Right part: Immunostaining images (single-plan) for DNMT3B with DAPI DNA counterstaining. 

Scale bars represent 5µm. 2i- and serum-ESC: R1. EpiSC: FT129.1 and cR1. 

 

1.3.4 2i condition leads to decondensation of the well-organized structure 

of the chromocenter 

After having shown that PCH differed in their epigenetic marks, we investigated whether 

there were any differences also in the three-dimensional organization of these regions 

depending on the state of pluripotency. We performed DNA-FISH for major and minor 

satellites (Figure 56), followed by nuclei-segmentation and three-dimensional single-cell 

reconstruction with AMIRA 3.1 software (Figure 56). In EpiSCs and serum-ESCs major 

satellites were organized into round compact domains, surrounded by smaller dots of minor 

satellite domains, as classic chromocenters (Figure 56) (Guenatri et al., 2004).  
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By contrast, they formed decondensed domains of irregular size and shape in 2i-ESCs 

(blebs, half-rings around nucleolus or at the nuclear periphery), reflecting globally 

unstructured chromocenters (Figure 56). 

 

 

Figure 56: Three-dimensional organization of major and minor satellites in the different types of 

mouse pluripotent stem cells. 

Three-dimensional DNA-FISH images (z-projection) for major (red) and minor (green) satellites with DAPI 

DNA counterstaining (blue). Magnification on a single cell (arrowed) and three-dimensional reconstruction of 

major and minor satellite signals using AMIRA 3.1 software. Scale bars represent 5µm. 2i- and serum-ESC: R1. 

EpiSC: FT129.1. 

 

A similar phenomenon has been previously observed as a consequence of down-regulation 

of the histone chaperone CAF-1/p150 in ESCs (Houlard et al., 2006). By immunostaining we 

showed that only 25% of 2i-ESCs displayed almost one CAF1/p150 positive foci in their 

nucleus. This proportion increased in serum-ESCs (33%) and reached 42% in EpiSCs (Figure 

57). This suggests that such decondensation of major satellites in 2i-ESCs could be the 

consequence of a reduction of CAF-1/p150 association to these sequences.  

Taken together we observed that 2i-ESCs display highly decompacted major satellite 

organization in contrast to serum-ESCs and EpiSCs which present a well-structured 

chromocenter, close to the somatic one (particularly for EpiSCs). 
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Figure 57: CAF-1, the histone chaperon of constitutive heterochromatin in mouse pluripotent stem 

cells.  

Immunostaining images (single-plan) for CAF-1 p150 with DAPI DNA counterstaining. % indicates the 

percentage of cell in the population displaying a foci-enrichment pattern. Scale bars represent 5µm. 2i- and 

serum-ESC: R1. EpiSC: FT129.1. 

 

1.3.5 The transcriptional state of major and minor satellites depends on 

pluripotent cell type 

Next we wondered whether the different epigenetic states of centromeric and 

pericentromeric regions reflected different levels of transcription of these sequences. In 

EpiSCs, in which these sequences showed high DNA methylation levels, strong H3K9me3-

enrichment and classic chromocenter structure, both major and minor satellites are very lowly 

expressed as in somatic cells (Figure 58) (Efroni et al., 2008; Lu and Gilbert, 2007; Probst et 

al., 2010). On the contrary, serum-ESCs in which we observed strong enrichment of 

H3K9me3 but slightly less DNA methylation, presented high (but variable) levels of both 

satellite transcripts (Figure 58). Interestingly, 2i-ESCs, which showed partial DNA 

hypomethylation and strong enrichment of H3K27me3 compared to H3K9me3 on these 

sequences, expressed major and minor satellites at very low level (Figure 58). 
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Figure 58: Transcription of major and minor satellites ncRNAs in the different types of pluripotent 

stem cells. 

Relative expression (CNRQ) of major and minor satellite transcripts by qRT-PCR analysis normalized to Sdha 

and Pbgd housekeeping genes. Each point is an independent biological replicate. 2i- and serum-ESC: R1 and 

WT01. EpiSC: FT129.1 and cWT01. 

 

Based on the recent discovery that NANOG regulates the special PCH organization and 

transcription of these regions in serum-ESCs (Novo et al., 2016) we evaluated by western blot 

the NANOG global levels and by immunostaining its subnuclear localization. EpiSCs 

presented a very low level of NANOG compared to serum-ESCs and interestingly we found a 

reduced one in 2i-ESCs as well (Figure 59). By immunostaining we saw that 2i condition led 

to the expected homogeneous NANOG expression while serum condition induces the well-

known NANOG heterogeneity with high- and low- NANOG expressing ESCs (Wray et al., 

2010) (Figure 59). 

In conclusion we observed a striking difference in major and minor satellites transcripts 

levels which are both highly expressed in serum-ESCs, strongly reduced in 2i-ESCs and even 

more in EpiSCs, in accordance to NANOG expression levels. 
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Figure 59: NANOG expression and distribution in mouse pluripotent stem cells. 

Left part: Western-blot analysis for quantification of bulk levels of NANOG related to H3 total. Right part: 

immunostaining images (single-plan) for NANOG with DAPI DNA counterstaining. Scale bars represent 5µm. 

2i- and serum-ESC: R1. EpiSC: FT129.1. 

 

 

1.3.6 Absence of Suv39h1/2 induces different phenotypes depending on 

the pluripotent stem cell type 

To further decipher the different epigenetic pathways that control transcription of 

constitutive heterochromatin, we examined the PCH organization in Suv39hdn ESCs, which 

lack the HMTs responsible for H3K9 trimethylation specifically at pericentromeric regions 

(Peters et al., 2003). We adapted these cells in 2i culture conditions and converted them in 

vitro in EpiSCs (cEpiSCs). We next verified by qRT-PCR that the primed state of 

pluripotency is correctly established even in absence of H3K9me3 at the constitutive 

heterochromatin. We found no differences between wild-type and Suv39hdn concerning the 

transcription of naive- or primed-specific genes (Figure 60).  
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Wild-type 

 

Suv39hdn 

Figure 60: Validation of conversions from Wild-Type and Suv39hdn ESCs 

Relative expression (CNRQ) of different pluripotent (Nanog, Esrrb, Klf4, Sox2, Oct4) and primed (Dnmt3b, 

Fgf5, Otx2) specific transcripts by qRT-PCR analysis normalized to Sdha  and Pbgd housekeeping genes. Three 

independent conversions were made. Wild-type: WT01. 
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We first investigated the subnuclear organization of H3K9me3 and H3K27me3 by 

immunostaining and their global levels by western-blot. As previously published (Cooper et 

al., 2014; Martens et al., 2005; Peters et al., 2003; Saksouk et al., 2014), we confirmed that in 

serum-ESCs, the absence of H3K9me3 at PCH induced deposition of H3K27me3 at these 

regions (Figure 61). Indeed we found that 60% of Suv39hdn serum-ESCs presented clusters of 

H3K27me3 staining colocalizing with DAPI-dense foci (Figure 61). Strikingly in both mutant 

and wild-type cEpiSCs, we observed the same low and diffuse pattern of H3K27me3, with no 

foci-enrichment (Figure 61). In addition Suv39hdn and wild-type cEpiSCs present the same 

decreased bulk level of H3K27me3 compared to ESCs (Figure 61). 

 

 

Figure 61: Contrasting organization of repressive histone marks due to Suv39hdn condition in 2i-

ESCs, serum-ESCs and EpiSCs. 

Immunostaining images (single-plan) for H3K9me3 and H3K27me3 with DAPI DNA counterstaining in 

Suv39hdn condition, to compare with wild-type condition (Fig. 1A). Magnification on a single cell (arrow) with 

merge of signals: H3K9me3 (red) or H3K27me3 (green) with DAPI (blue). Linescan analysis showing peaks of 

foci-enrichment (highlighted with the star). % indicates the percentage of cells in the population displaying the 

same pattern. Scale bars represent 5µm. 

 

H3K9me3 staining revealed mostly a diffuse pattern in serum-ESCs (with only 5% of cells 

presenting some foci-enrichment) and cEpiSCs (no foci at all) (Figure 61). The bulk level of 

H3K9me3, as expected, was reduced in the mutant condition (Figure 62). The 2i adapted 
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mutant ESCs showed no major differences in terms of epigenetic organization compared to 

the wild-type conditions (Figure 62). Notably, a small proportion (22%) of these mutant ESCs 

in 2i exhibited small H3K9me3-enriched foci similar to those seen in wild-type cells (Figure 

62), indicating an H3K9me3-deposition at PCH independent of SUV39H1/2 enzymes. Such a 

phenomenon seems to be highly marginal in serum-ESCs, as only 5% of cells presented such 

foci in absence of SUV39H1/2.  

 

 

Figure 62: Global levels of repressive histones in wild-type and Suv39hdn condition in 2i-ESCs, serum-

ESCs and EpiSCs.  

Western-blot analysis for quantification of bulk levels of repressive histone modification H3K9me3 and 

H3K27me3 related to H3 total in wild-type and Suv39hdn condition. WT: WT01. 

 

Next, we evaluated DNA methylation levels on satellite sequences by Southern-blot in 

these mutant cells and confirmed that the absence of Suv39h1/2 in serum-ESCs induced a 

reduction of DNA methylation compared to wild-type on major satellites (Figure 63A) (Note 

the shift of the blue dotted line compared to the continuous one) but not on minor satellites 

(Figure 63B) (Lehnertz et al., 2003). Hence, the 2i condition induces a phenotype that 

recapitulates the absence of Suv39h1/2 in naive ESCs: increased H3K27me3 and reduced 

DNA methylation at PCH. Interestingly no such decrease of DNA methylation on major 

satellites was observed in the mutant cEpiSCs (Figure 63A) (the green lines are quite 

superimposed). Therefore the absence of H3K9me3 does not interfere with the establishment 

of a hypermethylated state at major satellites in primed EpiSCs.  
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Figure 63: Methylation profile at major and minor satellites in wild-type and Suv39hdn conditions in 2i-

ESCs, serum-ESCs and EpiSCs.  

(A) Southern-blot analysis of gDNA digested with HpyCH4IV revealed with probe for major satellites in wild-

type and Suv39hdn conditions. Linescan quantification for each lane: 2i-ESC (red), serum-ESC (blue) and EpiSC 

(green). Wild-type condition is represented with a continuous line, while Suv39hdn with a dotted line. (B) 

Southern-blot analysis of gDNA digested with HpaII revealed with probe for minor satellites in Wild-type and 

Suv39hdn conditions. Quantification related to southern-blot of gDNA digested with MspI. DnmtTKO-ESC set 

to 1. WT: WT01 

 

In contrast to what would be expected from the loss of a repressive mark, transcription of 

major satellites was slightly decreased in Suv39hdn serum ESCs (Figure 64A), in contrast to 

what was previously shown by Lehnertz et al., 2003 using standard PCR (semi-quantitative 

PCR). In this same context minor satellite transcripts were 2-fold reduced in mutant compared 

to wild-type conditions (Figure 64A). This suggests that both the absence of repressive 

H3K9me3 and a low level of DNA methylation do not always implicate up-regulation of 
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transcription. Very interestingly in Suv39hdn cEpiSCs, transcription of major satellites was 

de-repressed, as we detected a similar level of transcripts as in the mutant serum-ESCs 

(Figure 64A). We verified that this up-regulation of major satellites in Suv39hdn-cEpiSCs was 

not due to a deregulation of NANOG (Novo et al., 2016). Indeed, NANOG bulk level does 

not vary whatever the conditions (Figure 64B). Unfortunately transcription of minor satellites 

was less conclusive, with variable levels of transcription within biological replicates (Figure 

64A). In 2i condition we observed a tendency for up-regulation of major and minor satellite 

transcripts in Suv39hdn cells compared to wild-type (Figure 64A). Altogether, while in 

serum-ESCs the absence of H3K9me3 at PCH leads to reduced methylation level and 

accumulation of H3K27me3, in EpiSCs no such changes occur and the transcription of major 

satellites is not repressed anymore.  

 

 

Figure 64: Transcription of major and minor satellites ncRNAs in wild-type and Suv39hdn conditions in 

the different types of mouse pluripotent stem cells with associated NANOG levels. 

(A) Relative expression (CNRQ) of major and minor satellites transcripts by qRT-PCR analysis normalized to 

Sdha  and Pbgd housekeeping genes in Wild-type and Suv39hdn condition. Each point is an independent 

biological replicate. (B) Western-blot analysis for quantification of bulk levels of NANOG related to total H3 in 

wild-type and Suv39hdn condition. WT: WT01. 

 

1.3.7 Absence of DNA methylation has limited effects on satellite 

transcription 

To study the effects of DNA methylation in the epigenetic pathway involved in regulation 

of major and minor satellite organization and transcription, we used Dnmt1, 3a , and 3b triple 

knock-out ESCs (DnmtTKO). These cells do not have any methylated cytosine in their 

genome (Tsumura et al., 2006). We analyzed the H3K9me3 and H3K27me3 subnuclear 

organization by immunostaining (Figure 65). We were able to adapt these cells in 2i but not to 

convert them into cEpiSC because of cell death (apoptosis), in agreement with their low 

contribution to the development of the epiblast in DnmtTKO nuclear-transfer embryos 
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(Sakaue et al., 2010). DnmtTKO serum-ESCs gained strong enrichment of H3K27me3 at 

PCH/CH foci, as expected from previous studies (Figure 65) (Cooper et al., 2014; Saksouk et 

al., 2014). Indeed we found that most (84%) of mutant serum-ESCs present H3K27me3 

enrichment at DAPI-dense foci (Figure 65). This enrichment was at the expense of H3K9me3 

(Figure 65), as only 52% of DnmtTKO serum-ESCs contain H3K9me3 foci compared to the 

totality in wild-type condition (Figure 65). In 2i condition, the complete absence of DNA 

methylation led to an increased proportion of ESCs with H3K27me3 marked foci: 94% 2i-

DnmtTKO compared to 69% in wild-type (Figure 65). The pattern of H3K9me3 remained 

very similar in 2i-DnmtTKO compared to wild-type, so small and rare foci (Figure 65), but 

the proportion of 2i-ESCs with H3K9me3-foci rise up to 41% (Figure 65).  

 

 

Figure 65: Repressive histone modifications rearrangement in consequence of DNA methylation 

absence in 2i- and serum-ESCs. 

Immunostaining images (single-plan) for H3K9me3 and H3K27me3 with DAPI DNA counterstaining in 

DnmtTKO condition, to compare with wild-type condition (Fig. 1A). Magnification on a single cell (arrow) with 

merge of signals: H3K9me3 (red) or H3K27me3 (green) with DAPI (blue). Linescan analysis showing peaks of 

foci-enrichment (highlighted with the star). % indicates the percentage of cells in the population displaying the 

same pattern. Scale bars represent 5µm. 
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Transcription of satellites was globally unchanged, except in serum-DnmtTKO where 

minor transcripts were strongly down-regulated (Figure 66). In summary the absence of DNA 

methylation dramatically modify the epigenetic state of PCH/CH in serum-ESCs, inducing a 

strong enrichment of H3K27me3 and a reduction of H3K9me3-enriched foci, and also causes 

a repression of minor satellite transcription in the same cells. 

 

 

Figure 66: Transcriptional consequences of DNA methylation absence on major and minor satellites in 2i- 

and serum-ESCs. 

Relative expression (CNRQ) of major and minor satellites noncoding transcripts by qRT-PCR analysis 

normalized to Sdha  and Pbgd housekeeping genes in Wild-type and DnmtTKO condition. Each point is an 

independent biological replicate. WT: R1 and WT01. 

 

1.3.8 Reduced levels of H3K27me3 do not up-regulate satellite 

transcription 

In order to study the role of H3K27me3 in the regulation of PCH/CH transcription status, 

we used an inhibitor of the HMT activity of EZH2. We chose EPZ-6438 (further call for 

simplicity EPZ), a selective EZH2 inhibitor with a strong potential use in cancer therapy 

(Knutson et al., 2014). The treatment of ESCs with EPZ for 72 hours led to an impressive 

reduction of the bulk levels of H3K27me3 (at least 70% in each cell types tested), with no 

major changes in H3K9me3 levels (Figure 67A). Immunostaining of 2i-ESCs treated with 

EPZ also confirmed the loss of H3K27me3 foci in the vast majority of cells with no changes 

in H3K9me3 organization compared to DMSO-treated control cells (Figure 67B). In addition 

the hypomethylated status of satellite sequences in 2i-ESCs treated cells was not affected 

(Figure 67C). We then analyzed the transcription of major and minor transcripts. 

Unexpectedly, the loss of H3K27me3 in 2i-ESCs did not lead to an up-regulation of satellite 

transcription. On the contrary we observed a slight reduction of major satellite transcripts and 

no appreciable changes for minor satellite transcripts (Figure 67D).  
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Figure 67: Reduced levels of H3K27me3 do not induce up-regulation of satellite repeats in 2i-ESCs. 

(A) Western-blot analysis for quantification of bulk levels of the HMT enzyme EZH2 and the repressive histone 

modification H3K9me3 and H3K27me3 related to total H3 in 2i-ESC treated with DMSO (Control) or EPZ 

(EZH2 inhibition). (B) Immunostaining images (single-plan) for H3K9me3 (red) and H3K27me3 (green) with 

DAPI DNA counterstaining (blue) in 2i-ESC treated with DMSO or EPZ. Scale bars represent 5µm. (C) 

Southern-blot analysis of gDNA digested with HpyCH4IV  or HpaII revealed with probe for major or minor 

satellites respectively in 2i-ESCs DMSO or EPZ-treated. (D) Relative expression (CNRQ) of major satellites 

transcripts by qRT-PCR analysis normalized to Sdha and Pbgd housekeeping genes in 2i-ESC treated with 

DMSO or EPZ. Each point is an independent biological replicate. 2i-ESC:  R1. 

 

When serum-ESCs were treated with the EZH2 inhibitor, although H3K27me3 is not as 

highly enriched at PCH as in 2i condition, we also observed a reduction of major as well as 

minor satellite transcripts (Figure 68A). We performed the same inhibition in mutant cells that 

present a similar enrichment of H3K27me3 at PCH (namely Suv39hdn serum-ESCs and both 

DnmtTKO ESCs). In all cases, we never observed up-regulation of satellite transcription, but 

in contrast a slight reduction of major satellites transcripts, at least in serum-ESCs (Figure 

68B, C, D). To exclude a possible effect of EPZ treatment on pluripotency of ESC we verified 

by western-blot that the global levels of NANOG were not altered (Figure 68E). Altogether, 

treatment with EZH2 inhibitor strikingly does not induce an up-regulation of satellite 

transcripts even in absence of the other repressive marks (such as H3K9me3 or DNA 

methylation) at the same sequences.  

A B 

C 

D 



116 

 

 

 

Figure 68: Reduced levels of H3K27me3 do not induce up-regulation of satellite repeats in wild-type as 

well as mutant conditions.  

(A, B, C, D) For each condition: Wild-type serum-ESC (A), Suv39hdn serum-ESC (B), DnmtTKO 2i-ESC (C) 

and DnmtTKO serum-ESC (D). Left part: Western-blot analysis for quantification of bulk levels of the HMT 

enzyme EZH2 and the repressive histone modification H3K9me3 and H3K27me3 related to H3 total. Right part: 

Relative expression (CNRQ) of major and minor satellites transcripts by qRT-PCR analysis normalized to Sdha  

and Pbgd housekeeping genes after treated with DMSO (Control) or EPZ (EZH2 inhibition). Each point is an 

independent biological replicate. (E) Quantification by Western-blot analysis of NANOG bulk levels related to 

H3 total after DMSO (Control) and EPZ treament in serum-ESC (Wild-type and Suv39hdn) and in DnmtTKO 

(2i- and serum-ESC). Serum-ESC (WT): WT01. 

 

In conclusion, we showed that the interplay between different repressive marks at PCH in 

particular is modulated according to the pluripotency states and culture conditions (Figure 

69). We showed that serum-ESCs present a repressive state at the centromeric and 

pericentromeric regions with high level of H3K9me3, 5-meC and compacted chromocenters. 

Paradoxically in these cells transcription of major and minor satellites is variable but globally 
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elevated (Figure 69). However in EpiSCs such chromatin state correlate with low levels of 

both satellites transcripts (Figure 69). On the other hand, 2i-ESCs present a strong enrichment 

in H3K27me3 compared to H3K9me3, reduced levels of 5-meC and deconstructed 

chromocenters but unexpectedly transcription of major and minor satellites is low (Figure 69). 

Reduced major satellite transcripts in 2i-ESCs and EpiSCs correlate with reduced levels of 

NANOG compared to serum-ESCs (Figure 69). Interestingly we noticed that ESCs in 2i 

condition recapitulated the phenotype of Suv39hdn-ESCs at least concerning major satellite: 

reduced H3K9me3, reduced 5-meC and enrichment in H3K27me (Figure 69). However 

Suv39hdn mutant condition revealed the strict dependence of EpiSCs to H3K9me3 in order to 

fully repress major satellites transcription (Figure 69). The complete absence of 5-meC is not 

compatible with viability of primed pluripotent stem cells. Conversely this condition in naive 

ESCs induces an epigenetic switch with an enrichment in H3K27me3 at the expenses of 

H3K9me3 at major satellites repeats but strickingly does not affect the transcription activity at 

these sequences (Figure 69). Finally using an EZH2 inhibitor we showed that, in wild-type as 

well as mutant conditions, H3K27me3 seems not to play a key role in repression of major and 

minor satellites transcription. 

 

 

Figure 69 : Model of the epigenetic organization at PCH in the different pluripotent cells and in 

mutants’ conditions 

Schematic drawings recapitulating the organization and transcription status at PCH based on our findings and 

published data (Cooper et al., 2014; Fuks et al., 2003; Lehnertz et al., 2003; Saksouk et al., 2014) 
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2 Conversion from naive to primed pluripotency in mouse 

 

ESCs can be converted in vitro into EpiSCs (Figure 70) in about two weeks mimicking the in 

vivo development of ICM cells into post-implantation epiblast that occurs in two days. Based 

on this fact we wondered about the in vitro kinetics of the transcriptional changes in the 

conversion process. Another unsolved question was also whether the kinetic of conversion 

into primed EpiSCs state was different starting from 2i-ESCs or serum-ESCs. In particular we 

focused our interest on genes connected to naïve and primed pluripotency, genes coding for 

the epigenetic modifiers and satellites non-coding RNAs. 

 

 

Figure 70: Morphological changes of ESCs during conversion to EpiSCs under the phase contrast 

microscope (Images from Tosolini and Jouneau, 2016).  

(a) ESCs in CDM/2i/LIF. (b) ESCs at day 1 of conversion. (c) Cells at day 2 of conversion. (d) Cells at day 3 of 

conversion (high mortality rate). (e) Cells at day 5 of conversion: first appearance of EpiSC-like colonies before 

the first collagenase treatment (arrow). (f) Cells at day 7 of conversion (after the first passage): real cEpiSCs 

colonies. ESC: R1. 

 

On a morphological point of view, 5 to 7 days are needed to obtain flat EpiSC colonies, but 

two weeks are usually necessary to stabilize the phenotype and reduce differentiation. The 

laboratory has previously shown that by day 3 considerable changes have already occurred at 

the transcriptional level (Veillard et al., 2014). To get more insight on this process we decided 

to focus on the first three days of conversion in order to deeply investigate rapid 

transcriptional changes. 
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We performed three independent conversions starting either from 2i-ESCs or serum-ESCs and 

took samples at day 1, 2 and 3 and then after one (day 7) and two weeks (established 

cEpiSCs), as well as from the starting ESCs population (day 0). We first performed qRT-PCR 

on these samples for naïve and primed pluripotency genes.  

Interestingly we observed that during conversion from 2i-ESCs the majority of naïve 

pluripotency genes Nanog, Klf4, Prdm14 and Esrrb were already strongly down-regulated at 

day 1, close to their level found at day 3 (Figure 71). During conversion from serum-ESCs the 

transcriptional down-regulation was more gradual for the same genes compared to 2i-ESC 

(Figure 71). Sox2 expression seems to be gradually down-regulated during both types of 

conversion, while Pou5f1 (Oct4) expression was only slightly reduced in cEpiSC, confirming 

that Oct4 is present even in primed pluripotency (Figure 71). 

 

 

Figure 71: Kinetics of transcription of pluripotency genes during conversion of ESCs into cEpiSCs. 

Relative expression (CNRQ) of Nanog, Klf4, Prdm14, Esrrb, Sox2 and Pou5f1 (Oct4) transcripts by qRT-PCR 

analysis normalized to Sdha  and Pbgd housekeeping genes. Blue line corresponds to the kinetics of 2i-ESC 

conversion, and the red one to serum-ESCs. Each point corresponds to the mean of the three independent 

conversions and the error bar indicates the Standard Error Mean (SEM). D0: R1. 

 

The primed pluripotent specific genes showed different kinetics in between them. Otx2 

showed a burst of transcription between day 2 and day 3 of conversion, higher in 2i-ESCs 

compared to serum-ESCs, and it is then slightly down-regulated in cEpiSCs (Figure 72). Fgf5 
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showed a slow and gradual up-regulation along the conversion but its transcription is induced 

more rapidly when starting from 2i-ESCs than serum-ESCs (Figure 72). Finally Brachyury 

(also known as T), being an early differentiation marker, increases drastically only later on 

during conversion, after day 3 or day 7 starting from 2i-ESCs or serum-ESCs, respectively 

(Figure 72).  

 

 

Figure 72: Kinetics of transcription of primed-associate genes during conversion of ESCs into cEpiSCs. 

Relative expression (CNRQ) of Otx2, Fgf5 and Brachyury (T) transcripts by qRT-PCR analysis normalized to 

Sdha and Pbgd housekeeping genes. Blue line corresponds to the kinetics of 2i-ESC conversion, and the red one 

to serum-ESCs. Each point corresponds to the mean of the three independent conversions and the error bar 

indicates the Standard Error Mean (SEM). D0: R1. 

 

As we have shown that DNA methylation machinery is more expressed in EpiSCs than ESCs, 

we examined the dynamics of the de novo Dnmts expression during conversion. Using 

isoform-specific primers we showed by qRT-PCR that the somatic long form of Dnmt3a 

(called here Dnmt3a1) is gradually up-regulated during conversion from ESCs to EpiSCs 

(Figure 73A). Dnmt3a  (both isoforms) and Dnmt3b showed interestingly the same pattern of 

expression during conversion. Starting from 2i-ESCs Dnmt3a  and Dnmt3b both showed a 

transient burst of transcription with a peak at day 2, while from serum the up-regulation was 

more gradual (Figure 73A). Moreover using western-blot, we confirmed that the protein level 

of DNMT3B parallels the dynamics of its transcripts with a peak at day 2 (Figure 73B). After 

this burst DNMT3B is gradually down-regulated but remains higher in cEpiSCs than in 2i-

ESCs (day 0). 

We then examined the kinetic of transcription of genes coding for the DNA demethylation 

enzymes. Interestingly, Tet1 expression remains stable up to day 3, especially in serum-ESC 

conversion, while Tet2 was rapidly down-regulated already at day 1 (Figure 73C). Finally, 

Tet3 was not analyzed as it is expressed only in oocyte and zygote (Iqbal et al., 2011). 
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Figure 73: Kinetics of transcription of DNA methylation and demethylation machinery genes during 

conversion of ESCs into cEpiSCs. 

(A) Relative expression (CNRQ) of de novo Dnmts transcripts by qRT-PCR analysis normalized to Sdha and 

Pbgd housekeeping genes. Blue line corresponds to the kinetics of 2i-ESC conversion, while the red one to 

serum-ESCs. Each point corresponds to the mean of the three independent conversions and the error bar 

indicates the Standard Error Mean (SEM). (B) Western-blot analysis for quantification of bulk levels of 

DNMT3B related to H3 total during conversion from 2i-ESCs. (C) Relative expression (CNRQ) of Tets 

transcripts by qRT-PCR analysis normalized to Sdha  and Pbgd housekeeping genes. Blue line corresponds to the 

kinetics of 2i-ESC conversion, while the red one to serum-ESCs. Each point corresponds to the mean of the three 

independent conversions and the error bar indicates the Standard Error Mean (SEM). D0: R1. 

 

We have shown that the heterochromatin compartment is highly remodeled between ESCs 

and EpiSCs. We therefore decided to analyze also the kinetics of expression of genes related 

to constitutive and facultative heterochromatin during conversion. 

The genes coding for H3K9me3 KMTs specific for constitutive heterochromatin (Suv39h1/2) 

show progressive up-regulation during conversion of both 2i-ESCs and serum-ESCs and in 

particular the increase in Suv39h1 transcription is stronger than the one of Suv39h2 (Figure 

74A). 

A 

B 
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However transcription of genes coding for Polycomb repressive complex subunits (PRCs) 

responsible for the facultative heterochromatin compartment does not show such up-

regulation. Regarding the PRC2, transcription of the catalytic subunit Ezh2 is stable through 

the conversion while one of the cofactor subunit Eed is only slightly down-regulated (Figure 

74B). Furthermore we assessed also EZH2 protein levels during conversion by western-blot 

and interestingly transcript and protein do not follow the same kinetic. EZH2 protein level 

remains stable up to day 2 and then it is down-regulated. EZH2 remains low in cEpiSCs, as 

we already showed for EpiSCs (Figure 74C). Concerning PRC1, the Rnf2 gene coding for 

RING1B is stably expressed during conversion from serum-ESCs, while it seems to be down-

regulated starting from 2i-ESCs however the variability is so huge that we cannot really 

conclude (Figure 74D). Cbx7, a gene coding for a cofactor subunit of PRC1 is slightly 

upregulated during the first three days of conversion while coming back to ESCs level (day 0) 

in cEpiSC (Figure 7D). 
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Figure 74: Kinetics of transcription of epigenetic modifiers genes during conversion of ESCs into cEpiSCs. 

(A, B) Relative expression (CNRQ) of (A) PCH specific H3K9 KMTs Suv39h, (B) PRC2 subunits Ezh2 and 

Eed, transcripts by qRT-PCR analysis normalized to Sdha and Pbgd housekeeping genes. Blue line corresponds 

2i-ESC conversion, and the red one to serum-ESCs. Each point corresponds to the mean of the three independent 

conversions and the error bar indicates the Standard Error Mean (SEM). (C) Western-blot analysis for 

quantification of bulk levels of EZH2 related to H3 total during conversion from 2i-ESCs. (D) Relative 

expression (CNRQ) of PRC1 subunits Rnf2 (Ring1b) and Cbx7 transcripts by qRT-PCR analysis normalized to 

Sdha  and Pbgd housekeeping genes. Blue line corresponds 2i-ESCs conversion, and the red one to serum-ESCs. 

Each point corresponds to the mean of the three independent conversions and the error bar indicates the Standard 

Error Mean (SEM). D0: R1. 

 

As we showed that 2i-ESCs present a decompacted organization of major satellites and that 

during embryo development a transcriptional burst of major satellites is necessary to induce 

the chromocenter formation and compaction (Probst et al., 2010), we hypothesized that the 

same phenomenon should happen during conversion especially when starting from 2i-ESCs. 

Indeed, we have shown that major satellites sequences were highly relaxed in 2i-ESCs and 

A 
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became clustered into somatic-like chromocenter in EpiSCs. To test this hypothesis we 

performed qRT-PCR for major and minor satellites transcriptional kinetics during conversion 

to cEpiSCs starting from 2i-ESCs as well as serum-ESCs. 

Our data show that during conversion of 2i-ESCs to EpiSCs non-coding major satellite 

transcripts which are already lowly expressed, are even further down-regulated up to the 

cEpiSC stage. Minor satellite transcripts are slightly up-regulated during the first three days of 

conversion but came back in cEpiSCs to day 0 low levels (Figure 75). Conversion from 

serum-ESCs show a strong decrease of the high transcriptional levels of both major and minor 

non-coding satellites transcript as early as day 1 (Figure 75). 

 

 

Figure 75: Kinetics of transcription of satellite repeats non-coding RNAs during conversion of ESCs into 

cEpiSCs. 

Relative expression (CNRQ) of major and minor satellite transcripts by qRT-PCR analysis normalized to Sdha 

and Pbgd housekeeping genes. Blue line corresponds to the kinetics of 2i-ESCs conversion, and the red one of 

serum-ESCs. Each point corresponds to the mean of the three independent conversions and the error bar 

indicates the Standard Error Mean (SEM). D0: R1. 

 

Altogether these results show that even though a week is necessary to obtain morphologically 

EpiSC-like colonies, at the transcriptional level, naïve pluripotency genes are mainly down-

regulated at day 1 of conversion. Meanwhile primed-associate genes were up-regulated with 

different kinetics: within the first days (Otx2) or gradually all along the conversion (Fgf5). A 

lineage associated gene such as Brachyury is up-regulated only later. Interestingly starting 

from 2i-ESCs the down-regulation of naïve pluripotent genes was more rapid and important 

that from serum-ESCs. In addition the up-regulation of primed pluripotency-associated genes 

was also earlier and stronger starting from 2i-ESCs compared to serum-ESCs.  

Concerning DNA methylation machinery gene, they are up-regulated during conversion, and 

especially in 2i-ESC conversion, show a transient burst of expression at day 2. Such increase 

in expression during conversion is reminiscent of the DNA methylation wave that occurs 



125 

 

concomitant to implantation in embryo development. Conversely genes coding for enzymes 

of the DNA demethylation machinery are down-regulated either late (Tet1) or early (Tet2). 

Globally the genes governing the machinery for H3K9 trimethylation at constitutive 

heterochromatin are clearly up-regulated through the conversion, confirming the idea that 

EpiSCs present a more compact and close chromatin than ESCs. Interestingly genes coding 

for PRCs subunits do not seems to be strongly affected during the process of priming from 

naïve pluripotency. 

Finally major satellite non-coding transcripts are not up-regulated during conversion from 2i-

ESC to cEpiSCs and minor satellites showed only a slightly up-regulation, suggesting that in 

mouse ESCs there is no need to increase the transcription of major satellite sequences to 

induce the compaction of heterochromatin as in early stage of embryonic development (Probst 

et al., 2010). Interestingly the characteristic high levels of major and minor satellites non-

coding transcripts of serum-ESCs are rapidly and strongly down-regulated, so at day 1 of 

conversion they have reached the same low levels as found in 2i-ESCs. 
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DISCUSSION  

 

1 Uncoupling epigenetic state of naïve ESCs with transcription 

regulation of major and minor satellites 

We showed that serum-ESCs present a repressive state at the constitutive heterochromatin 

with local accumulations of H3K9me3, HP1ȕ, 5-meC and compacted chromocenters. 

Paradoxically transcription of major and minor satellites is elevated. On the other hand 2i-

ESCs present at the same regions a strong enrichment in H3K27me3 compared to H3K9me3, 

reduced levels of 5-meC and deconstructed chromocenters. Unexpectedly transcription at 

major and minor satellites is low.  

In a somatic environment the presence of repressive epigenetics marks such as H3K9me3, 

H3K27me3 and DNA methylation leads to the formation of a compacted domain. Such 

condition is normally inaccessible to transcription factors and thereby transcriptionally 

inactive (Reviewed in: Tessarz and Kouzarides, 2014).  

Therefore, such uncoupling of the epigenetic state of centromeric and pericentromeric 

heterochromatin (CH/PCH) and its transcriptional status leaves open the nature of the driver 

of satellite transcription in serum-ESCs and its repression in 2i-ESCs. First, we can speculate 

that satellites transcription is a consequence of the in vitro culture condition. In particular it 

could be due to unknown factors present in the serum and not found in the chemically defined 

medium used in 2i condition. Alternatively, inhibition of MAPK and GSK3 pathways may 

induce the repression of satellite transcription. Very preliminary data of the laboratory show 

that the two inhibitors (PD and CH of 2i medium) have a synergic negative effect on satellite 

transcription when added to ESCs cultured in serum condition. It would be very interesting to 

perform the reverse experiment, adding different percentages of serum to ESCs cultured in 2i 

medium and evaluating if there is up-regulation of satellite repeats ncRNAs. Moreover both 

major and minor satellites are strongly down-regulated already at day 1 of conversion from 

serum-ESCs and, also in this case, such decrease can be due either to the drastic withdrawal 

of serum and switch to chemically define medium (CDM) or to the presence of Activin A and 

FGF2 that may activate pathways repressing rapidly satellites transcription. 

Saksouk and colleagues (2014) used the PiCh (Proteomics of isolated Chromatin fragment) 

method to assess which are the proteins associated to major satellites (apart from histones) in 

mouse ESCs (in serum conditions). In addition to SUV39Hs and DNMTs enzymes, they 
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found several factors dedicated to five main pathways: Chromatin organization, DNA 

replication and cell cycle, RNA processing, DNA damage and Lamina. So pericentromeric 

heterochromatin seems to be a complex system of proteins and between them transcription 

factors play a role in organization and regulation of these regions. We thus wonder whether 

transcription factors can explain the transcriptional state of these sequences. 

Very recently, Novo and co-workers (2016) have shown that NANOG is recruited to 

heterochromatin via SALL1, favors transcription of major satellites and relaxes structure of 

the heterochromatin in serum-ESCs. Indeed, they observed that down-regulation of Nanog (in 

serum-ESCs Nanog+ /- and ESCs Nanog -/-) induces compaction of heterochromatin, increase 

of H3K9me3 level at pericentromeres and decrease of major satellite transcription. Strikingly 

we have observed that although NANOG is expressed homogeneously within the population 

of ESCs cultured in 2i, the global protein level is reduced compared to ESCs in serum 

medium (Figure 59). This, together with a more diffuse pattern of H3K9me3-HP1ȕ, correlates 

with a reduced expression of major and minor transcripts in 2i-ESCs. But conversely, we have 

also observed that 2i-ESCs have a disrupted organization of constitutive heterochromatin with 

major satellites being decompacted and relaxed compared to serum-ESCs, which we would 

have expected to be a chromatin state more prone to active transcription. We speculate that 2i 

condition induces a complex phenotype on heterochromatin of naïve ESCs that could not 

solely be explained by reduced NANOG levels.  

NANOG is not the only factor that is found to bind to major and minor satellites, indeed 

PAX3 and PAX9 also bind to major satellites having a synergic functions to safeguard 

silencing of these sequences at least in MEFs (Bulut-Karslioglu et al., 2012). The way of 

action of these factors is not known but probably they can compete for the binding of the 

same region with other proteins or they can mask some binding motif, impeding the 

recruitment of the PolII complex. However Pax3 and Pax9, according to RNA-seq data of the 

laboratory, are lowly expressed in both naïve ESCs (2i or serum condition) and primed 

EpiSCs where satellite repeats seem to be completely silenced, so the differences of 

expression that we have observed cannot be explained with these factors. In addition another 

transcription factor SNAIL1 has been found to associate with pericentromeric region and 

regulate transcription of major satellite in MEFs and during Epithelial-to-Mesenchymal 

transition (EMT) (Millanes-Romero et al., 2013). Absence of Snail1 in MEFs leads to up-

regulation of major satellite transcripts while a peak of SNAIL1 during EMT transiently 

inhibits transcription from pericentromeric regions (Millanes-Romero et al., 2013). As 

SNAIL1 is more expressed in 2i-ESCs (thanks to GSK-3 inhibition) compared to serum-ESCs 
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(Lin et al., 2014), we hypothesize that major satellites are more expressed in serum condition 

due to a reduced presence of SNAIL1 at these sequences.  

Moreover, an RNA component seems to be involved in the highly structured three-

dimensional chromatin at pericentromeric regions as RNase treatment on living cells lead to 

the disappearance of HP1-enrichemnt foci (Maison et al., 2002; Probst et al, 2010). Whether 

these RNAs come directly from satellite transcription is not known so far. On the contrary in 

yeast the link between satellites transcription and constitutive heterochromatin organization is 

well established, and it involves the RNA interference pathway that in turns is necessary for 

H3K9me3 deposition (Saksouk et al., 2015). In mammals there are only little (Kanellopoulou 

et al., 2005) or no evidence (Murchison et al., 2005) for RNAi machinery involvement in 

heterochromatin formation and maintenance (reviewed in: Biscotti et al., 2015; Saksouk et al., 

2015). 

Our study aimed to answer whether the epigenetic state of satellite repeats in naïve ESCs 

influences transcriptional activity of these sequences but it would be interesting as well to ask 

the opposite question: would satellite non-coding transcripts influence the epigenetic state of 

centromere and pericentromere in pluripotency? The cellular model we describe in this thesis 

seems to be perfect to answer such question as we have different epigenetic and transcription 

states for these regions. It would be very interesting to study whether up-regulation of major 

and minor satellite ncRNAs in 2i-ESCs and EpiSCs will have different consequences on these 

two cell types. In particular with such experiments we could assess the role of satellite 

transcripts on histone marks and DNA methylation deposition, chromocenter status, genome 

and chromosome stability as well as self-renewal property. Moreover the down-regulation of 

satellite ncRNAs in serum-ESCs would also help to infer about the function of these 

transcripts on the epigenetic state as well as on the pluripotent state. 

 

2 The problem of major satellite repeats quantification 

Major satellite transcription was found to be either slightly up-regulated (Lehnertz et al., 

2003) or clearly up-regulated (Martens et al., 2005) in Suv39hdn-ESCs compared to wild-

type. However our data do not confirm these previous results as we found major satellite 

transcripts to be slightly down-regulated in mutant serum-ESCs compared to wild-type. The 

first hypothesis to explain this difference is a technical one as we used the same primers of 

Lehnertz et al., and Martens et al., but while they assessed the transcription by semi-

quantitative PCR, we used qPCR (Syber green technology). However this discrepancy cannot 
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influence only some types of samples but all the samples and with the same bias. The major 

consideration that we propose to explain such divergence is the effect of time of culture and 

confluence of cells. Indeed the culture effect has already been shown for minor satellites 

(Bouzinba-Segard et al., 2006), while major satellites were so far only linked to cell-cycle (Lu 

et al., 2008). The cell-cycle of cells in culture is likely to be influenced by the rhythm of 

trypsinization, re-plating and confluence. Moreover preliminary results of the laboratory 

suggest that density/confluence of ESCs is inversely correlated with the transcription of major 

satellites in serum-condition. It would be very interesting to study also the effect of time of 

culture on major satellite transcription to see whether there is an accumulation effect. Since 

we detected such differences we tried to standardize as much as we could our culture 

conditions of serum-ESCs, passaging the different cell lines (Wild-type and mutant) the same 

day with the same ratio or cell number to avoid any bias or at least to introduce the same bias 

in both conditions. 

 

3 Cross-talk between H3K27me3 and 5-meC in mouse pluripotency 

The chromatin of ESCs has long been considered as very plastic and dynamic compared to 

that in somatic cells (Ahmed et al., 2010; Koh et al., 2010; Meissner, 2010; Meshorer et al., 

2006). One of the features of this plastic chromatin is the cross-talk between DNA 

methylation and repressive histone modifications H3K27me3 in particular. Indeed we 

observed that a reduction of 5-meC is replaced to some extent by H3K27me3 in ESCs in three 

different contexts. First after 2i adaptation of ESCs, which leads to a global 5-meC depletion 

(Habibi et al., 2013), we observe H3K27me3-foci enrichment at the expense of H3K9me3 

foci. Second the Suv39hdn condition induces, even in hypermethylated serum-ESCs, a partial 

demethylation of major satellites and also an H3K27me3-foci enrichment, as previously 

observed in several studies (Cooper et al., 2014; Martens et al., 2005; Peters et al., 2003; 

Saksouk et al., 2014). Finally in the total absence of 5-meC (DnmtTKO), serum-ESCs present 

strong enrichment in H3K27me3 foci compared to wild-type cells (also shown in: Saksouk et 

al., 2014, Cooper et al., 2014). Along with these findings it was shown that DNA methylation 

globally antagonizes H3K27me3 deposition, indeed in DnmtTKO or 5-azacytidine treated 

ESCs, there is a redistribution of this mark, being now enriched in demethylated CpG sites, at 

the expense of the canonical PRC2 target sites (Cooper et al., 2014; Hagarman et al., 2013). 

However it is interesting to notice that while H3K27me3 replaces DNA methylation when this 

mark is abrogated, in the inverse situation when there is no H3K27me3, DNA methylation 
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does not compensate its absence, meaning that these two repressive marks are not 

interchangeable (Hagarman et al., 2013). In naïve ESCs in 2i condition, it has also been 

shown that many bivalent promoters (characterized by the co-occurrence of H3K4me3 and 

H3K27me3) loose the trimethylation on lysine 27 of histone H3 (Marks et al., 2012). 

Therefore, while this mark is reduced at unique sequences, we now show that it is redeployed 

at PCH in 2i-ESCs, making these cells an interesting, non-pathological model of the cross-talk 

between PRC2 regulation of gene expression and PHC epigenetic state (Déjardin, 2015).  

An additional evidence of this H3K27me3-DNA methylation cross-talk has been made by 

Walter and colleagues (2016) in ESCs adapted from serum to 2i medium also containing 

VitamineC. This switch induces on various transposons families a loss of 5-meC, a reduction 

in H3K9me2 levels and an increment in H3K27me3 levels, while H3K9me3 stays globally 

constant (Walter et al., 2016). On an epigenetic point of view 2i condition of ESCs seems to 

convey the same status at transposons and pericentromeric satellites. However, at the 

transcriptional level transposons are mainly repressed in both serum- and 2i-ESCs conditions, 

while satellite repeats are in a repressed state only in 2i-ESCs. This means that the same 

epigenetic context even in the same cell type has different consequences depending on the 

nature of the sequences. 

 

4 Hypothetical SUV39H-independent H3K9me3 deposition at PCH in 2i-

ESCs 

In 2i-ESCs, H3K9me3 was enriched in small foci present in part of the ESC population. 

These foci do not always correspond to DAPI-dense regions and remain remarkably similar in 

the absence of both Suv39h enzymes. In addition, SUV39H1 was not detectable after 

immunostaining of 2i-ESCs while accumulating at DAPI-dense foci in serum-ESCs and even 

more in EpiSCs. We speculate that these H3K9me3 small foci may depend on other HMT 

enzymes, such as SETDB1. Indeed it is known that in absence of SETDB1 there is a 

reduction of H3K9me3 at the euchromatin but also at PCH, meaning that SETDB1 is likely 

responsible for a portion of H3K9me3 even at PCH where SUV39H1/2 play the major HMT 

role (Mozzetta et al., 2015; Schultz et al., 2002).  

To test such hypothesis we could simply adapt Setdb1-/- ESCs in 2i condition and evaluate 

the H3K9me3 foci-enrichment compared to wild-type. A completely loss of these foci in 

mutated 2i-ESCs compared to wild type will prove the action of SETDB1 as KMT at PCH. 
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5 EpiSC: a pluripotent cell with a somatic epigenetic state  

We showed that EpiSCs are closer to somatic cells than ESCs as they present high levels of 

H3K9me3 and 5-meC, enrichment of CAF-1, SUV39H1 and HP1ȕ at DAPI-dense foci, and 

compacted chromocenters. Conversely to serum-ESC, the repressive epigenetic state of 

EpiSCs at major and minor satellites correlates with a transcriptionally inactive compartment. 

It is possible that the degree of H3K9me3 enrichment and DNA methylation in serum-ESCs is 

still below the threshold that would prevent accessibility of chromatin for transcription, as it 

does in EpiSCs. But we cannot exclude the importance of other factors that are also reduced 

in EpiSCs compared to serum-ESCs (such as NANOG). Novo et al (2016) indeed have 

demonstrated that the over-expression of NANOG in EpiSCs induces the up-regulation of 

major satellite transcripts and decompaction of H3K9me3 foci. From our findings it appears 

clearly that albeit pluripotent, EpiSCs present an epigenetic state closer to somatic cells than 

naïve ESCs. Indeed the absence of Suv39h1/2 in primed EpiSC induces neither DNA-

demethylation nor H3K27me3-enrichment at major satellite loci, while this happens in naïve 

ESCs. Our results show that in primed EpiSCs, conversely to naïve ESCs, DNA methylation 

at major satellite is independent of the pathway SUV39Hs-H3K9me3-HP1 (Schotta et al., 

2004) thus impeding to H3K27me3 to spread in Suv39hdn-EpiSCs. However the absence of 

H3K9me3 at PCH induces de-repression and up-regulation of major satellites transcripts 

levels in EpiSCs, thus suggesting that DNA methylation by itself is not sufficient to get a 

complete repression of these sequences. Hence, in a hypermethylated condition, H3K9me3 

plays a key role in silencing major satellites at least in primed EpiSCs. Note that DNA 

methylation is strictly necessary in EpiSCs as our attempts to convert DnmtTKO naïve ESCs 

into primed EpiSCs have been all unsuccessful, likely due to abundant apoptosis. When we 

tried to treat EpiSCs with an inhibitor of DNMTs (5-aza-cytidine), even at low concentration 

that has no effect on ESCs, we induced strong apoptosis and EpiSCs colony morphology was 

drastically impaired (unpublished data of the laboratory).  

In addition a further evidence of the loss of a plastic and open chromatin in EpiSCs compared 

to ESCs is brought by the fact that EpiSCs have globally reduced their levels of histone 

acetylation, at least in terms of H3K9ac. It would be interestingly to investigate whether the 

reduced H3K9ac level in EpiSCs compared to ESCs is due to increased expression and/or 

activity of HDACs and/or reduced for HATs. Moreover western-blot analysis of another 

histone acetylation such as H3K14ac would enlighten the deacetylation process in primed 

EpiSCs and whether it is specific to H3K9ac or more general. 
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Another suggestion concerning the less plastic chromatin of EpiSCs is revealed by the 

reduction of bivalency that we demonstrated by PLA technology when compared to serum-

ESCs. To strengthen our result we will use already published datasets of H3K4me3 and 

H3K27me3 ChIP-seq performed on EpiSCs by other groups. We will analyze if the promoters 

of genes that were bivalent in serum-ESCs (Marks et al., 2012) are still enriched in both 

histone marks or resolved in either active or repressive state, as no one have never look at 

them in primed mouse pluripotency (EpiSCs). 

 

6 Major and minor satellites sequences respond to different epigenetic 

pathways 

Even if pericentromeric and centromeric regions are located close to one another in each 

chromosome, they seem to be regulated differently and/or independently. Indeed we showed 

that in serum-ESCs major satellite sequences are as methylated as in EpiSCs and MEFs. 

Minor satellite sequences display an intermediate level of methylation between the 

hypomethylated 2i-ESCs and the fully methylated EpiSCs and MEFs. It has been previously 

shown that major and minor satellites sequences are methylated by different pathways: minor 

satellites sequences are mainly methylated by DNMT3B, while on major satellites sequences 

both DNMT3A and DNMTB are active and compensate each other. Only the double knock-

out of these enzymes results in a hypomethylation of major satellite sequences (Okano et al., 

1999).  

In addition in Suv39hdn serum-ESCs major but not minor satellite sequences become 

demethylated at the DNA level and enriched for H3K27me3 (Lehnertz et al., 2003; Martens et 

al., 2005; Saksouk et al., 2014). These data suggest that DNMTs are recruited on minor 

satellite sequences via an independent pathway of SUV39H1 (Fuks et al., 2003). Indeed the 

association of SUV39H1 and HP1 with a DNMT has been observed only for DNMT3A and 

DNMT1 (Fuks et al., 2003) and not for DNMT3B which is the unique enzyme responsible for 

DNA methylation on minor satellite sequences (Okano et al., 1999). Thus it seems that DNA 

methylation on minor satellite sequences is completely independent of H3K9me3-associated 

pathway in ESCs as well as in EpiSCs. On the other hand major satellites DNA methylation 

strictly depends on H3K9me3 in ESCs while becoming independent on this pathway in 

EpiSCs. This result correlates with the fact that DNMT3B is enriched in foci in naïve ESCs 
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while in EpiSCs it is completely diffuse into the nucleoplasm suggesting no specific binding 

to PCH (Figure 55B). 

Moreover in Suv39hdn cEpiSCs a strong up-regulation of major satellites transcripts levels 

was revealed while minor satellites sequences did not show such clear effect, suggesting once 

more the independent regulation of major and minor satellites. Third in complete absence of 

DNA methylation only minor satellites and not major satellites sequences showed a strong 

reduction in their transcriptional levels in serum-ESCs.  

All these differences could be related to many properties: first, the DNA sequences of the 

two satellites are different, in terms of nucleotides (different content of CpG for example) and 

size (234bp for major while 123bp for minor). Then the numbers of repetition within the 

regions are not comparable: 200,000 major satellites and “only” 50,000 minor satellites 

(Martens et al., 2005). Finally while the structural function of major satellite repeats is still 

unknown, minor satellite repeats play a key role in the segregation of chromosomes during 

mitosis.  

The implications of minor satellite region and also the transcripts arising from these 

sequences on genome stability are clearly established molecularly (Bouzinba-Segard et al., 

2006; Ferri et al., 2009). Some data also suggest that major satellite sequences seem to be also 

important for genome organization and genome stability but the mechanisms involved in this 

process are mainly still unknown. Firstly, the chromocenter organization of PCH during 

embryo development need a burst of major satellite transcript to occur and when this up-

regulation is impaired the embryos do not develop further (Probst et al., 2010). However this 

burst of major satellite transcription seems not to be a general mechanism necessary to 

compact chromocenter as in our system when we convert 2i-ESCs (decondensed 

pericentromeres) into EpiSCs (compact chromocenters) no such transient up-regulation of 

major satellite ncRNAs is detected. Even though we could not exclude that the major satellites 

up-regulation is maybe too rapid compared to our window of time-points. Secondly, major 

satellites has been suggested to be a specific loading site for cohesion on heterochromatin via 

a pathway governed by SUV4-20H2 and when this protein is absent cohesion recruitment is 

reduced in MEFs leading to mitotic defects and genome instability (Hahn et al., 2013). 

Moreover the Suv39hdn condition in MEFs induces chromosomal abnormalities but whether 

this problem is due to the absence of H3K9me3 on minor or major satellites or both is still to 

be investigated. 
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7 Genome stability in ESCs 

Knowing that perturbing the epigenetic/transcriptional state or three dimensional structure 

of CH/PCH in differentiated cells lead to a genomic instability (Ferri et al., 2009; Peters et al., 

2001), we wondered why this is not the case for ESCs. We have shown that 2i-ESCs present 

decompacted major satellite domains, likely with a loss of H3K9me3. This is unexpectedly 

not correlated with a de-repression of transcription from these regions and we did not 

observed chromosomal instability at least in terms of polyploidy, presence of chromosomal 

bridges or aberrant mitosis. It is already known that Suv39hdn condition in mice induces 

chromosomal instability and perturbed chromosome segregation, indeed MEFs are more 

prone to aneuploidy (Peters et al., 2001). However Suv39hdn serum-ESCs present a normal 

karyotype (García-Cao et al., 2004). Based on these results we were less surprised that 2i-

ESCs did not show abnormalities as they recapitulated the epigenetic environment of 

Suv39hdn serum-ESCs. This fact strongly suggest that in naive pluripotency there are 

mechanisms, unknown for the moment, to protect cells from chromosomal instability that 

occurs in absence of H3K9me3 at CH/PCH (as in Suv39hdn or 2i conditions) or when these 

regions are highly transcribed (serum-ESCs). High transcription of minor satellites is 

associated with mitotic instability in differentiated cells (Bouzinba-Segard et al., 2006) but 

not in pluripotency as serum-ESCs transcribe at high levels minor satellite without inducing 

such instability. 

As EpiSCs resemble less to ESCs than to differentiated cells concerning their epigenetic 

state, it would be interesting to test whether up-regulation of major and/or minor satellites 

sequences will induce some genome instability in these cells. For example we could propose 

to deeply study Suv39hdn EpiSCs, which lack H3K9me3 at PCH and over-express major 

satellite ncRNA, investigating their karyotype or the eventual presence of abnormal mitotic 

plates or chromosome bridges.  

 

8 Does the epigenetic status of in vitro pluripotency reflect in vivo 

pluripotency of mouse embryo? 

ESCs cultured in 2i condition are known to be closer to cells of the early epiblast in E4.5 

blastocyst than serum-ESCs at least at the transcriptional level (Boroviak et al., 2014, 2015). 

Conversely on the epigenetic point of view not much is known for now. We showed that 2i-

ESCs are characterized by DNA hypomethylation and strong H3K27me3-foci enrichment at 

the expenses of H3K9me3 at PCH. For the moment it is still under debate and further 
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investigations are needed to better characterize the H3K27me3 subnuclear pattern in mouse 

pre-implantation development. It seems that such H3K27me3-foci enrichment pattern is not 

found in the ICM but is more typical of earlier developmental stages from the paternal 

pronucleus of 1-cell till 16-cell and morula stage embryos (Unpublished data of the 

laboratory; Puschendorf et al., 2008; Santenard and Torres-Padilla, 2009). Moreover 

pericentromeric sequences are marked by H3K9me3 as early as the 1-cell stage (maternal 

pronucleus) and remains so until the blastocyst stage even in the ICM and in further 

developmental stages (Beaujean, 2014; Santos et al., 2005). We showed that serum-ESCs and 

EpiSCs are enriched in H3K9me3 at PCH as pre- and post-implantation embryos from which 

they are derived. 

Concerning DNA methylation levels, in vivo and in vitro pluripotency seems to behave 

similarly because ICM of early blastocyst has low levels of 5-meC, like 2i-ESCs (Ficz et al., 

2013; Habibi et al., 2013). Hypermethylated serum-ESCs are transcriptionally closer to 

blastocyst outgrowth (Huang et al., 2014). However they share some similarities also with the 

epiblast at E5.5 (Boroviak et al., 2014) that is also hypermethylated as after implantation there 

is a wave of DNA methylation. Finally EpiSCs are even more methylated than the epiblast at 

E6-7.5 (Borgel et al., 2010; Smith et al., 2012; Veillard et al., 2012).  

We showed that a striking difference of 2i-ESCs compared to serum-ESCs and EpiSCs is 

the decompaction of major satellites with the disruption of the chromocenter structure. At the 

blastocyst stage, ICM cells showed already a compacted chromocenter as in serum-ESCs and 

EpiSCs. A similar decondensation of major satellites is found only at 1-cell stage of mouse 

embryo development up to the 2-cell stage when the chromocenter formation occurs (Aguirre-

Lavin et al., 2012; Probst et al., 2010). Thus concerning PCH organization 2i-ESCs are 

similar to early 2-cell stage embryos and not ICM cells from where they are derived. 

Transcription of major satellites was reported in embryos only from the late 1-cell stage to 

the late 2-cell stage, prior to chromocenter formation. It seems to be completely down-

regulated already at the 8-cell stage and its level remains low up to blastocyst stage as in 

somatic cells (Probst et al., 2010).  

In conclusion even if 2i-ESCs highly resemble pre-implantation epiblast at the 

transcriptomic and DNA methylation levels, concerning the epigenetic of the PCH they 

clearly diverged from the in vivo situation in terms of histone modification, chromocenter 

organization and satellite transcription resembling earliest embryo stages. Serum-ESCs on the 

other hand seems to diverge transcriptionally and at the DNA methylation level from ICM 

cells however sharing with their in vivo source histone modification pattern and chromocenter 
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compaction. Finally EpiSCs seems to parallel late post-implantation mouse embryo 

epigenetically as well as transcriptionally.  

To really push the comparison further we need to investigate specifically the transcription 

of satellites repeats at the blastocyst stage, distinguishing ICM cells and trophoblast cells, but 

also in the next stages. Moreover immunostaining should be made at the stages E3.5, 4.5, 5.5 

and 6.5 for H3K9me3 and H3K27me3 in order to compare specifically the subnuclear 

organization in foci-enrichment as we made for the different type of pluripotent stem cells.  

 

9 In vitro conversion: why such an inefficient process compared to in 

vivo?  

The conversion is the in vitro process that push naive ESCs to become primed EpiSCs, 

mimicking the ICM cells that develop into epiblast cells in vivo after implantation of the 

blastocyst. However the timings of in vitro and in vivo processes are not comparable. Indeed 

while in vivo ICM cells became epiblast in 48 hours, in vitro ESCs need quite two weeks to 

stabilize their primed state of EpiSCs. We tried to investigate it molecularly in particular from 

the first day of the conversion in order to find the possible causes of this delayed process. 

Previous studies from the laboratory have shown that at day 3 of conversion many genes have 

already adapted their transcriptional state to the EpiSCs one although the primed state was not 

yet fully established (Veillard et al., 2014). Our results showed that particularly naive 

pluripotency genes are already shut-down after 24 hours of culture in EpiSCs medium 

condition suggesting that the delay in reaching the primed state is likely not due to a retention 

or a delayed down-regulation of the naive transcriptional state. However the transcription 

factors typical of primed pluripotency are gradually up-regulated, starting from 24 hours. 

Early differentiation genes are present only from day 7 or even later. Taken together it could 

be that the delay in the obtention of stable EpiSCs is partially explained by a slow 

establishment of the primed pluripotent transcriptional circuitry rather than a retained 

expression of naive factors.  

Based on the fact that EpiSCs seems to have an epigenetic state closer to differentiated 

cells than ESCs, we can argue that the building of the epigenetic barrier that distinguishes 

ESCs from EpiSCs is time-dependent. Indeed we found that genes coding for H3K9 KMTs 

such as Suv39h1 and Suv39h2 are gradually up-regulated during conversion which suggests a 

slow mechanism. However concerning DNA methylation we would have expected a delay in 

the establishment of the hypermethylated EpiSCs status when we are starting from 2i-ESCs 



140 

 

that are hypomethylated compared to serum-ESCs. But this seems not to be the case as 2i-

ESCs showed a transcriptional burst, at the beginning of conversion (from day 1 to 3), of de 

novo Dnmt. Transcriptional burst was also translated into temporary increased protein level at 

least for DNMT3B (Figure 73A, B) that probably leads to a rapid DNA methylation, 

flattening the differences between 2i- and serum-ESCs. Indeed we did not found any delay in 

conversion of 2i-ESCs compared to serum-ESCs even though we showed that these two states 

have a completely different heterochromatin epigenetic state.  

In conclusion a slow up-regulation of primed associated genes and specific 

heterochromatic KMTs, could probably explain, at least partially, the delay of the in vitro 

process of conversion of ESCs into EpiSCs compared to in vivo establishment of primed state. 

Many other genes and proteins should be analyzed to get a complete view in order to find 

other molecular candidates that can explain this delay. 

One hypothesis is that the in vitro environment for EpiSCs is sufficient and enough 

efficient to sustain the primed state of mouse pluripotency but is much less efficient to induce 

the conversion from naive pluripotency. For sure the in vivo environment is much more 

specialized than the in vitro one with increased number of soluble factors and more 

importantly with the physical constrains that the implanting embryo needs and that are 

completely absent on a petri dish (Bedzhov and Zernicka-Goetz, 2014). 

Performing kinetics studies during conversion, we have discovered the discordance 

between mRNA Ezh2 and protein levels (Figure 74B, C). In the conversion from either 2i- or 

serum-ESCs, while transcripts levels stays globally constant, the EZH2 protein level drops 

down at day 3 and remains low in cEpiSCs. Such phenomenon may be explained by a post-

transcriptional regulation like the one mediated by micro RNAs (miRNAs) called post-

transcriptional gene silencing (PTGS). To test this hypothesis we searched for putative 

miRNAs targeting the 3'UTR of Ezh2 transcript and we crossed these results with the 

miRNAs strongly up-regulated in EpiSCs versus serum-ESCs (Jouneau et al., 2012). We 

found several matches in particular for miR-367 and Let-7e that may target Ezh2 and that are 

specifically up-regulated in the primed state of pluripotency. A direct approach to study the 

relevance of these miRNAs on EZH2 expression will be to use antagomiR technology 

(oligomers with a reverse and complementary sequence of the miRNA) to test their presumed 

function. However using an indirect approach we used Dgcr8 null-ESCs (kind gift of 

Constance Ciaudo, ETH Zurich) in which the miRNA pathway is aborted at the pre-miRNA 

stage in the nucleus. We converted them into cEpiSCs and we observed the same decrease in 

EZH2 protein levels as in wild-type condition (Unpublished data of the laboratory). This 
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suggests that the incoherence between mRNA levels and protein levels of EZH2 is not likely 

due to a miRNA mediated action. We cannot however exclude other pathways of post-

translational modifications such as the proteasome targeted degradation mediated by ubiquitin 

(Schrader et al., 2009) to explain the incoherence between mRNA and protein levels of EZH2 

in primed EpiSC. 

 

10 Bivalent Domains  

Bivalent domains are regions of chromatin characterized by the co-presence of H3K4me3 

and H3K27me3. The simple way to study bivalent domain is to make independent H3K4me3 

and H3K27me3-ChIP and then correlate the two to find where there is co-presence of these 

two histone marks. The problem of this approach is due to the possible effect of heterogeneity 

of the population that could introduce a bias. To have a more accurate answer it is necessary 

to perform sequential-ChIP starting with H3K27me3 and successively H3K4me3 and/or vice 

versa. In this way there is no bias due to the population heterogeneity. Recently a co-ChIP 

method has been published where Weiner and colleagues (2016) coupled 

immunoprecipitation and barcoding with DNA adaptors specific to each histone modification. 

Thus they performed independent ChIP on the same chromatin. 

ChIP-seq data have the advantage of giving an absolute quantification, whereas in vitro 

proximity ligation assay (PLA) permits single-cell analysis in a simplistic way but with only a 

relative quantification. PLA technique allows the production of a fluorescent signal when two 

proteins (or in our case two histone modifications) are closer than 30-40nm. It is likely that 

PLA signals can originate from two or even three successive nucleosomes but also from non-

successive nucleosomes brought in proximity by the three-dimensional conformation of the 

chromatin. In both cases we do not quantify a real bivalent domain defined as the co-presence 

of H3K4me3 and H3K27me3 on the same nucleosome. ChIP-seq studies do not usually assess 

bivalency on satellite repeats as they only include uniquely mapped sequences. PLA 

technique on the other hand can detect proximity of two histone marks even at highly 

repetitive sequences.  

Our comparison between 2i- and serum-ESCs using PLA technique is not in agreement 

with published ChIP-seq analysis. Indeed previous studies using different kinds of ChIP-seq 

analysis showed a strong reduction in bivalent promoter genes when ESCs are switched from 

serum to 2i condition (Marks et al., 2012, Weiner et al., 2016). However with in vivo PLA we 
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observed an inverse phenomenon with increased bivalency in 2i- compared to serum-ESCs. 

We made different hypothesis to explain such discrepency. 

First, this can be due to the fact that we used an antibody recognizing both di- and three-

methylated H3K27. Indeed to apply PLA technique we had to use antibodies made in mouse 

and rabbit (mouse for anti-H3k27me2/3 and rabbit for H3k4me3, respectively) and we did not 

have the opportunity to test whether using an antibody highly specific for H3K27me3 would 

give similar results as we did not find H3K27me3 antibody made in mouse that works in our 

hands for immunostaining detection.  

Second, as mentioned above, PLA technique can reveal a positive signal even when 

H3K4me3 and H3K27me2/3 are on non-successive nucleosomes increasing the number of 

signals. Moreover we observed that major satellite sequences are H3K27me3-enriched in 2i-

ESCs but also decompacted through the nucleus when compared to serum-ESCs. Together 

with the fact that these sequences represent 3% of the genome, the chance to get a PLA signal 

when in proximity with H3K4me3 enriched nucleosome is increased. 

Third we do not know whether there is an enrichment of H3K4me3 on satellites sequences 

but we cannot completely exclude its presence. Indeed, the possible bivalency on repetitive 

sequences has never been taken in account previously as it needs a specific analysis on ChIP-

seq results different from the standard one on single copy sequences.   

To address this problem, we will first make ChIP-qPCR for H3K4me3 on major satellites 

to assess its eventual enrichment particularly in 2i-ESCs. Secondly we will perform PLA 

assay to evaluate H3K4me3-H3K27me3 vicinity in wild-type and Suv39hdn serum-ESCs to 

test whether even in serum condition the increment of H3K27me3 at PCH induces an increase 

in bivalent loci. 

 

11 Nomenclature ambiguity: ground, naive, primed in mouse and human 

pluripotency 

Historically the first pluripotent stem cells in human were derived from a blastocyst, which 

induced Thomson and colleagues in 1998 to defined them as human embryonic stem cells 

(hESCs) to be consistent with Evans, Kaufman and Martin in 1981 for mouse ones. However 

the deep characterization of hESCs revealed strong differences with mESCs. The more recent 

discovery of a second state of pluripotency in mouse by Brons and Tesar and colleagues in 

2007 clearly showed that hESCs are not as naïve as mESCs but strikingly resemble to primed 

epiblast stem cells (EpiSCs) which derive from a post-implantation mouse epiblast. So the 
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first ambiguity in pluripotent stem cells emerged because cells in primed pluripotency state 

are called EpiSCs in mouse and ESCs in human.  

The discovery of serum-free culture condition called 3i by Ying and colleagues in 2008 

that makes mouse ESCs completely independent of extracellular signaling led to the 

definition of the ground state of pluripotency. However, very rapidly the 3i condition was 

modified to 2i/LIF to improve the cell proliferation. In such medium cells reacquired the 

dependency to LIF signaling thus losing the connotation of a true “ground” state (Weinberger 

et al., 2016). Mouse ESCs in 2i/LIF became widely used as they are closer to pre-implantation 

epiblast cells at the transcriptome and DNA methylation level (Wray et al., 2010; Marks et al., 

2012; Habibi et al., 2013). However they have been referred with different names inducing 

confusion and ambiguity such as naïve, ground-naïve or even ground state (Joshi et al., 2015; 

Marks et al., 2012). This last designation is inappropriate because only 3i-ESCs (Ying et al., 

2008) are really in a ground pluripotency as they are freed from external signals.  

The nomenclature controversy goes on as initially “ground” state of pluripotency has been 

coined to distinguish 3i- (and improperly 2i-) ESCs from serum-ESCs that are considered in a 

naïve pluripotent state. However serum-ESCs are in a metastable state, constituted of different 

sub-populations of cells: some are really naïve and others more primed or engaged towards 

differentiation, likely due to the mixture of factors present in the serum that do not inhibit all 

the differentiation pathways (Guo et al., 2016; Singer et al., 2014; Toyooka et al., 2008). 

Knowing this heterogeneity and metastability, serum-ESCs have been also (improperly) 

referred as being in a primed state of pluripotency (Joshi et al., 2015; von Meyenn et al., 

2016) but the true mouse primed pluripotent cells are the EpiSCs (Nichols and Smith, 2009). 

Moreover the switch of ESCs from 2i- to serum-containing medium has sometimes been 

called “priming” inducing even more confusion. To our point of view, the priming transition 

is done when ESCs are cultured in defined medium containing Activin and FGF2 that drive 

them towards primed EpiSCs. 

As in this thesis we studied all the three type of mouse pluripotent stem cells, we tried to 

make as clear as possible the differences between them in accordance with a recent review on 

the subject (Weinberger et al., 2016). In particular we state that in mouse there are only two 

states of pluripotency and that it is the different in vitro culture conditions that can stabilized 

the circuitry of pluripotency within different “flavors” or types of pluripotent stem cells 

among the naïve or primed state.  

Mouse ESCs are in a naïve state of pluripotency. 2i-ESCs are the more stable and naïve, 

closer to the ground state. While serum-ESCs are metastable and their instability pushes them 
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probably closer to the border of primed pluripotency. Conversely mouse EpiSC in ActivinA 

and FGF2 are in a primed state of pluripotency but alternative culture conditions can drive 

them closer to the barrier of the naïve state (Figure 26). 

Concerning the human species the conventional hESCs, as already told, are in a primed 

pluripotent state (sharing indeed many features with mEpiSC) but recently many groups tried 

to define culture conditions to bypass the barrier and stabilize them in a naïve state (Hanna et 

al., 2010; Gafni et al., 2013; Chan et al., 2013; Ware et al., 2014; Valamehr et al., 2014; 

Theunissen et al., 2014; Takashima et al., 2014; Duggal et al., 2015; Chen et al., 2015).  

The ambiguity in nomenclature that has been created is now inducing confusion when 

comparisons of the different states of pluripotency are made in the mouse or between mouse 

and human species. For example, reduction of the number of bivalent domains is considered 

as an indication of the transition from primed to naïve state for hESCs. However no one has 

yet compared the number of bivalent domains in primed EpiSCs compared to naïve ESCs. 

Bivalency in mouse has only been studied between ESCs cultured in 2i or serum conditions 

(Marks et al., 2012; Weiner et al., 2016). In this thesis, we now provide new data that strongly 

suggest that mouse primed EpiSCs display less bivalent domains compared to naive serum-

ESCs, as a considerable reduction of HγK4meγ/HγKβ7meγ proximity “spots” is observed 

using PLA technology. 

 

12 Concluding remarks of this thesis 

With this thesis we showed the differences between the three types of mouse pluripotent 

stem cells, principally in terms of the epigenetic state, organization and transcription of 

satellites repeats at pericentromeric and centromeric regions. In particular we showed that, 

depending on the culture condition, naïve ESCs could present compacted, H3K9me3-rich 

major satellites that are highly transcribed (in serum/LIF) or decompacted, mostly 

H3K27me3-rich major satellites which are lowly transcribed (in 2i/LIF). We thus propose the 

H3K27me3-foci enrichment staining as a new marker to define hypomethylated naïve-ground 

2i-ESCs. Moreover EpiSCs which correspond to mouse primed pluripotency showed a less 

plastic heterochromatin and an epigenome landscape closer to somatic cells than naïve ESCs. 

In the last years many groups have defined a panel of different culture conditions to revert 

conventional primed-hESCs into naïve-hESC. Different assays between the studies have been 

used by the authors to really prove the “naivity” of their hESCs cultured in their own 

combination of inhibitors and factors, as it is not know which are the key features of human 
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naïve pluripotency. Making the parallel with the mouse we therefore propose to study the 

state of pericentromeric and centromeric heterochromatin (PCH/CH) in human pluripotent 

cells. Indeed also in human it is known that a stable naïve pluripotency is accompanied by a 

general hypomethylated state that should concern also PCH and CH. These regions have not 

been extensively studied in hESCs even in primed one or during pre-implantation embryo 

development (van de Werken et al., 2014). It will be very interesting to study epigenetic state, 

organization and transcription of pericentromeric and centromeric satellite sequences in 

human pluripotency, as it has been done extensively in mouse. It should be noticed that in 

human no all the chromosomes have the same structure (acrocentric, metacentric and sub-

metacentric). Moreover the sequences of the repetitive satellites in the pericentromeric region 

are chromosome-specific (principally made by satellite II and III). Finally human 

chromosomes do not clusterize their PCH into chromocenters, which are a peculiar feature of 

mouse cells. Such human-specific features of constitutive heterochromatin may have induced 

different types of regulation compared to mouse however the specific pericentromeric 

pathway of H3K9me3 deposition by SUV39H1/2 is conserved also in human. Thus we 

speculate that PRC2-recruitment pathway at hypomethylated pericentromeric satellites could 

be also conserved in human. 
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RESUME SUBSTANTIEL DE LA THESE EN 

FRANÇAIS 

 

1 INTRODUCTION 

La pluripotence est définie comme la capacité des cellules à pouvoir se différencier en tissus 

appartenant aux trois feuillets embryonnaires. Chez la souris, les cellules souches 

embryonnaire dérivées in vitro ont permis de distinguer l’état naïf et amorcé de la 

pluripotence (Nichols and Smith, 2009). Les cellules souches embryonnaires (ESCs) 

colonisent la masse cellulaire interne (ICM) lorsqu'elles sont injectés dans un blastocyste et 

permettent la génération de chimères à terme. En revanche, les cellules souches épiblastiques 

(EpiSCs) ne colonisent que l'épiblaste post-implantation et leur contribution au 

développement ultérieur reste à démontrer (Huang et al., 2012). Les deux états sont maintenus 

in vitro en utilisant des voies de signalisation spécifiques, principalement Lif/Stat3 (Facteur 

d’inhibition de la leucemie/Transducteur de signal et activateur de transcription) pour les 

cellules naïves (ESCs), et FGF et Activine pour les cellules amorcées (EpiSCs) (Brons et al., 

2007). Les ESCs sont classiquement maintenues dans un milieu contenant du sérum mais 

peuvent aussi être cultivées dans un milieu sans sérum avec des inhibiteurs de deux voies de 

différenciation, la voie MAPK/ERK (protéine kinases activées par les mitogènes/kinases 

régulées par des signaux extracellulaires) et la voie GSK3 (Glycogène synthase kinase 3) 

(Ying et al., 2008). Dans ce milieu 2i/Lif (plus tard dénommé "2i" uniquement), les cellules 

acquièrent un état encore plus naïf, avec une répression plus efficace des marqueurs de la 

différentiation et une expression plus homogène des gènes de la pluripotence (Marks et al., 

2012). En revanche, le transcriptome des EpiSCs reflète leur nature amorcée, car ils 

expriment déjà de nombreux marqueurs de différentiation précoce tandis que certains gènes 

de pluripotence sont réprimés (Brons et al., 2007). Les ESCs cultivées dans du sérum/Lif 

présentent un transcriptome intermédiaire, avec des niveaux hétérogènes de marqueurs de 

pluripotence et une faible, mais détectable, expression des gènes de différenciation (Marks et 

al., 2012). Les ESCs sont considérées comme ayant une plus grande ouverture de la 

chromatine et une organisation plastique du noyau par rapport aux cellules différenciées 

(Ahmed et al., 2010; Koh et al., 2010; Meissner, 2010; Meshorer et al., 2006). En effet, leur 

epigénome est rapidement et de manière réversible modifié en fonction du milieu de culture, 

2i ou sérum (Habibi et al., 2013; Marks et al., 2012). Plus précisément, les ESCs en 2i 
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présentent une réduction significative du dépôt d’H3K27me3 au niveau des promoteurs ainsi 

qu'un ADN globalement hypométhylé (Habibi et al., 2013; Marks et al., 2012). Les ESCs 

peuvent être converties en EpiSCs (cEpiSCs) in vitro lorsqu'elles sont exposées à la 

signalisation FGF et Activine au lieu de Lif avec du sérum ou des inhibiteurs (2i) (Guo et al., 

2009). En revanche, la réversion des EpiSCs en cellules naïves est un processus long et 

inefficace, mettant en évidence l'existence d'une barrière épigénétique (Bao et al., 2009). Bien 

que peu d’analyses approfondies aient été menées, les données disponibles indiquent que lors 

de la conversion vers l'état amorcé, de nombreux promoteurs deviennent hyperméthylés au 

niveau de l’ADN conjointement avec une réorganisation substantielle de l’activité des 

enhancers, par rapport aux ESCs (Factor et al., 2014; Veillard et al., 2012). Les études 

mentionnées ci-dessus suggèrent que l'organisation de l’épigénome serait caractéristique de 

chaque type de cellule pluripotente. Cette comparaison n'a toutefois pas encore été réalisée au 

niveau de l'hétérochromatine constitutive. Ce compartiment est composé de séquences d'ADN 

répétées situées aux télomères, centromères et au niveau des régions péricentromériques 

(Biscotti et al., 2015). Le contrôle adéquat de ces régions est crucial pour la stabilité 

chromosomique (Ferreira et al., 2015). En dehors des séquences télomériques, il existe deux 

types de séquences répétées chez la souris: les séquences satellites majeurs et les séquences 

satellites mineurs qui forment respectivement l'hétérochromatine péricentromérique (PCH) et 

centromérique (CH) (Guenatri et al., 2004). Les satellites majeurs consistent en une 

répartition de plus de 200.000 fois d'une séquence de 234bp et représente environ 3% du 

génome de la souris, tandis que l'unité de répétition des satellites mineurs est une séquence 

123pb répétée au moins 50.000 fois (Martens et al., 2005).  

Dans les cellules somatiques, PCH et CH provenant de chromosomes différents vont 

s’agréger pour former des "chromocentres", qui sont colorés densément avec du DAPI, en 

raison de leur teneur élevée en AT, et sont généralement enrichis pour la marque épigénétique 

répressive H3K9me3 déposée par SUV39H1/2 (Peters et al., 2003). La méthylation de l'ADN 

est une autre caractéristique de l'hétérochromatine constitutive qui coexiste avec H3K9me3 

(Déjardin, 2015). La 5-méthylcytosine (5-meC) est une marque répressive de novo déposée 

spécifiquement par DNMT3A/B, et maintenue au cours de la réplication par DNMT1 (Okano 

et al., 1999). Un tel état épigénétique (méthylation de l'ADN et triméthylation de l'histone H3) 

n’est pas favorable à la transcription; par conséquent, en cellules somatiques, les répétitions 

satellites sont réprimés (Lu and Gilbert, 2007). Toutefois, lors la sénescence cellulaire, dans 

certains cancers et au début du développement, l'activation de la transcription de ces 

séquences a été observée, le plus souvent en corrélation avec une réduction de la méthylation 
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de l'ADN (Revue dans Saksouk et al., 2015). Dans les ESCs en sérum, bien que les séquences 

satellites soient enrichies en H3K9me3 et 5-meC (Okano et al., 1999; Peters et al., 2003), la 

transcription est plus élevée par rapport à celle de cellules différenciées telles que les 

progéniteurs neuronaux (Efroni et al., 2008). Si l'une ou l'autre marque de l’hétérochromatine 

constitutive (H3K9me3 ou 5mC) est manquante, comme dans le cas des ESCs invalidées pour 

les gènes Suv39h ou Dnmt, il est observé aux PCH un enrichissement dans la marque 

épigénétique caractéristique de l’hétérochromatine facultative: H3K27me3 (Cooper et al., 

2014; Lehnertz et al., 2003; Peters et al., 2003).  

 

 

2 OBJECTIFS 

Cette thèse présente une étude comparative principalement des caractéristiques épigénétiques 

et de la dynamique de transcription de l’hétérochromatine constitutive de trois types de 

cellules pluripotentes chez la souris. Les objectifs des études menées ici sont d'apporter des 

connaissances nouvelles sur les différents états de pluripotence en lien avec les différentes 

conditions de culture in vitro chez la souris. En effet, la majorité des études épi-génomiques 

(analyses de données de séquençage après immunoprécipitation de la chromatine - ChIP-Seq) 

réalisées jusqu'à présent sur les différents états de pluripotence étaient concentrées sur les 

séquences codantes du génome (généralement en copie unique). Cependant, chez la souris, les 

régions répétées sont très représentées, en particulier les régions péricentromériques et 

centromériques composées respectivement de séquences satellites majeurs et mineurs 

correspondent à 3,5% du génome. La chromatine des ESCs en serum a été décrite comme très 

dynamique, notamment les séquences satellites présentent une organisation plus décompactée 

par rapport celles observées en cellules différenciées, favorisant ainsi la transcription de ces 

séquences non-codantes. Il a été montré dans des travaux précédent, que le taux d'ADN 

méthylé (5-meC) était grandement réduit et que la marque H3K27me3 était redistribuée lors 

de l’adaptation des ESCs en milieu βi. Toutefois la distribution de ces marques au niveau de 

PCH n'a pas encore été étudiée dans ce contexte. De plus, comme nous supposons l'existence 

d'une barrière épigénétique entre les ESCs et les EpiSCs, nous étudierons aussi l'organisation, 

la présence des marques épigénétiques et l'état transcriptionnel de PCH dans les EpiSCs. La 

question de savoir si cette chromatine ouverte et l'état hypertranscriptionnel de 

l'hétérochromatine constitutive est maintenue également dans les ESCs en 2i ainsi que dans 

les EpiSCs va être étudiée dans cette thèse. 
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3 RESULTATS 

 

3.1 L’hétérochromatine est caractérisée par différentes modifications 

d’histones selon le type de cellules pluripotentes. 
Pour caractériser et comparer la distribution nucléaire des marques d'histones H3K9me3 et 

H3K27me3 au niveau des PCH/CH dans les ESCs (en sérum ou 2i) et EpiSCs, nous avons 

effectué des immunomarquages pour ces deux marques épigénétiques ainsi que la coloration 

DAPI pour détecter les chromocentres. Nous avons évalué le pourcentage de cellules 

présentant une accumulation en « foyers » de H3K9me3 ou H3K27me3. Nous avons aussi 

déterminé leur colocalisation avec les foyers DAPI en utilisant la fonction linsescan de 

ImageJ qui permet de tracer le profil des intensités de fluorescence au travers du noyau. Nos 

données montrent que la distribution des deux marques est différente selon le type de cellule. 

Dans les ESCs en 2i, seulement un tiers de la population présente ces foyers de H3K9me3 

(Figure 1A). Dans ces cellules, ces foyers sont rares et petits, et situés à proximité de la 

périphérie du noyau (voir le grossissement du noyau unique sur la Figure 1A). A l'inverse 

toutes les ESCs en sérum et les EpiSCs présentent de nombreux foyers d’HγK9meγ, qui co-

localisent parfaitement avec les zones riches en DAPI (Figure 1A). 

En ce qui concerne H3K27me3, nous avons observé une distribution nucléaire distincte dans 

chacun des trois types cellulaires. En effet, dans les ESCs en 2i, la majorité des cellules (69%) 

présentent un enrichissement en H3K27me3 aux zones riches en DAPI (voir le grossissement 

du noyau unique sur la Figure 3A). La répartition au sein du noyau suggère que H3K27me3 se 

substitue à H3K9me3 dans ces régions. En revanche, H3K27me3 est diffus dans la plupart des 

noyaux des ESCs en sérum (95%), comme on s’y attend pour une marque d’hétérochromatine 

facultative (Figure 1A). Dans les EpiSCs, le signal H3K27me3 est aussi diffus mais surtout 

très faible (Figure 1A). 

Pour explorer davantage ces différences, nous avons évalué le niveau global des deux 

marques d'histone dans les extraits cellulaires. La quantification par western-blot indique une 

légère baisse du niveau global de H3K9me3 dans les ESCs en 2i par rapport aux ESCs en 

sérum et aux EpiSCs, et surtout une perte très prononcée de H3K27me3 dans les EpiSCs par 

rapport aux ESCs (en sérum ou 2i) (Figure 1B). Par conséquent, dans les EpiSCs, H3K27me3 

a été réduit non seulement au PCH, mais aussi ailleurs dans le génome. 

Nos données suggèrent donc que HγKβ7meγ est redistribuée à partir de l’hétérochromatine 

facultative vers l’hétérochromatine constitutive lorsque les ESCs sont transférés dans le 
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milieu 2i, tout en étant perdu dans les EpiSCs. A l'inverse, H3K9me3 est légèrement diminuée 

dans les ESCs en 2i et peu enrichi dans les PCH/CH, et au contraire très enrichie dans ces 

régions dans les ESCs en sérum et les EpiSCs. 

 

 

Figure 76 : Marques épigenetique de l’hétérochromatine dans les trois types de cellules pluripotentes chez 
la souris. (A) Immunomarquage pour HγK9meγ et HγKβ7meγ avec controcoloration de l’ADN avec du DAPI. 
Grossissement sur une seule cellule (flèche) avec fusion de signaux: H3K9me3 (rouge) ou H3K27me3 (vert) 

avec DAPI (bleu). Analyse « linescan » des enrichissements (mis en évidence avec l'étoile). % Indique le 

pourcentage de cellules dans la population affichant la même organisation. Les barres d'échelle représentent 5 

um. (B) Analyse par western-blot pour la quantification des niveaux globales des modifications d’histones 

H3K9me3 et H3K27me3 par rapport au niveau total de H3. (C) Immunomarquages sur des figures de mitoses 

pour H3K9me3 (rouge) ou H3K27me3 (vert) avec contre-coloration de l’ADN avec du DAPI (bleu). Les étoiles 
indiquent l'enrichissement de la marque histone aux PCH / CH. Les barres d'échelle représentent 5 µm. 

 

Pour renforcer ces observations, nous avons examiné les chromosomes des cellules en mitose. 

Chez la souris, les chromosomes sont acrocentriques, et donc les PCH/CH sont localisés à une 
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extrémité. H3K27me3 est effectivement clairement enrichi au PCH/CH dans les ESCs en 2i, 

tandis que H3K9me3 est présent tout au long des chromosomes (Figure 1C). A l'inverse, dans 

les ESCs en sérum et dans les EpiSCs les extrémités des chromosomes mitotiques sont 

fortement enrichies en H3K9me3, tandis que H3K27me3 est présent le long des chromosomes 

des ESCs en sérum et indétectable dans les EpiSCs (Figure 1C). 

 

3.2 Faible niveau de méthylation de l'ADN au PCH dans les ESCs en 2i 

Nous avons également analysé les niveaux de méthylation de l’ADN par digestion avec des 

enzymes sensibles à la méthylation, suivies par un Southern-blot révélant spécifiquement les 

séquences satellites majeurs. Nous avons observé des changements importants de méthylation 

de l'ADN dans ces séquences entre les différents types des cellules pluripotentes (Figure 2A).  

 

 

Figure 77 : Profil de méthylation des séquences satellites majeurs et mineurs dans les trois types de 

cellules pluripotentes. 

 (A) Analyse par southern-blot de l’ADN génomique digéré avec HpyCH4IV et révélé avec la sonde pour les 

satellites majeurs. Quantification « linescan » pour chaque piste: MEF (noir), DnmtTKO (rose), 2i-ESC (rouge), 

sérum ESCs (bleu) et EpiSCs (vert). (B) Analyse par southern-blot de l’ADN génomique digéré avec Hpall et 

révélé avec une sonde pour les satellites mineurs. Quantification concernant le southern-blot de l’ADN 
génomique digéré avec MspI. DnmtTKO-ESC est fixé sur 1. 

 

Les satellites majeurs sont partiellement déméthylées dans les ESCs en 2i (comme le montre 

le profil rouge), le niveau de méthylation étant intermédiaire entre des cellules entièrement 
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déméthylées (mutants invalidés pour les trois enzymes de méthylation de l’ADN = DnmtTKO 

(ligne violette)) et des fibroblastes hyperméthylés (MEFs - ligne noire) (Figure 2A). Au 

contraire, ces séquences sont tout aussi méthylées dans les ESCs en sérum (ligne bleue) et 

dans les EpiSCs (ligne verte) que dans les MEFs. Une situation similaire a été observée pour 

les satellites mineurs qui sont partiellement déméthylées dans les ESCs en 2i et 

hyperméthylées dans les ESCs en sérum et dans les EpiSCs (Figure 2B). 

 

3.3 Le PCH est décondensé dans les ESCs en 2i mais 

transcriptionnellement réprimé 

Pour évaluer l'organisation spatiale des chromocentres en fonction de l'état de pluripotence, 

nous avons réalisé une DNA-FISH (Hybridation in situ en fluorescence) en utilisant des 

sondes spécifiques pour les séquences satellites majeures et mineures (Figure 3A), suivie 

d'une segmentation des noyaux et une reconstruction tridimensionnelle des cellules avec le 

logiciel AMIRA 3.1 (Figure 3A).  

 

 

Figure 78 : Organisation tridimensionnelle et transcription des séquences satellites majeurs et mineurs 

dans les trois types des cellules pluripotentes. 

(A) DNA-FISH pour les satellites majeurs (rouge) et mineures (vert) avec contre-coloration de l’ADN en DAPI 
(bleu). Grossissement sur une seule cellule (fléchée) et reconstruction tridimensionnelle des signaux des 

satellites majeurs et mineurs en utilisant le logiciel AMIRA 3.1. Les barres d'échelle représentent 5 µm. (B) 

Expression relative des transcrits des séquences majeures et mineures par analyse qRT-PCR normalisés par les 

gènes de référence Sdha  et Pbgd. Chaque point est un réplicat biologique indépendant. 
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Dans les EpiSCs et les ESCs en sérum les séquences satellites majeures sont organisées en 

domaines compacts ronds, entourés par de petits points formés des satellites mineurs, comme 

des chromocentres classiques que l’on trouve dans les cellules somatiques (Guenatri et al., 

2004). En revanche, dans les ESCs en 2i les satellites majeurs forment des domaines plus 

lâches, de forme irrégulière et allongée, souvent en demi-anneaux autour des nucléoles ou à la 

périphérie nucléaire, indiquant des chromocentres peu structurés. Une telle décompaction 

devrait créer un environnement transcriptionnellement permissif. Nous avons donc évalué le 

taux de transcrits associés aux séquences satellites par qRT-PCR dans les ESCs et les EpiSCs 

(Figure 3B). Paradoxalement, les ESCs en 2i ont un niveau de transcrits des séquences 

satellites majeurs inférieur à celui des ESCs en sérum. Dans les EpiSCs, l'expression est 

encore plus faible que dans les ESCs en 2i. La même tendance est observée pour les satellites 

mineurs. En conclusion, malgré des modes différents de répression et de compaction, les 

ESCs en 2i et EpiSCs répriment toutes deux la transcription à partir des PCH/CH. De leur 

côté, les ESCs en sérum sont largement permissive pour la transcription de ces séquences, 

malgré la présence des marques épigénétiques répressives H3K9me3 et 5-meC. 

 

3.4 L’absence des SUV39H1/2 induit des phénotypes différents en 

fonction du type de cellule pluripotente. 

Pour étudier les interactions entre les marques répressives au PCH dans les différents types 

des cellules pluripotentes, nous avons examiné leur distribution lors de l’absence 

d’HγK9meγ. Pour cela, nous avons utilisé les ESCs mutantes Suv39hdn, dans lesquelles les 

deux enzymes Suv39h ont été invalidées (Peters et al., 2003). Nous avons adapté ces ESCs 

dans les conditions de culture en 2i et nous les avons converties in vitro en EpiSCs (cEpiSCs). 

Dans les ESCs mutantes en βi, aucune modification évidente d’HγK9meγ n’a pu être 

observée par rapport aux cellules de type sauvage. Cependant, une proportion importante des 

cellules (ββ%) présentait encore les mêmes petits foyers d’HγK9meγ que dans les cellules 

contrôles, ce qui indique que ce dépôt d’HγK9meγ est indépendant des enzymes SUVγ9H1/2 

(Figure 4A à comparer avec Figure 1A). Par ailleurs, le même enrichissement de H3K27me3 

au PCH et la même hypométhylation de l'ADN aux séquences satellites majeures ont été 

observés (Figure 4A et 4B). Le niveau de transcription des séquences satellite majeurs est 

globalement inchangé dans les cellules mutantes par rapport au type sauvage. Donc, dans les 

ESCs en 2i, l'organisation de PCH est largement indépendante du dépôt de H3K9me3 par 

SUV39H1/2. Dans les ESCs en sérum, H3K9me3 est principalement diffus, avec 95% des 
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cellules ne présentant pas d'enrichissement en foyers (Figure 4A). Il avait déjà été démontré 

que H3K27me3 pouvait se substituer à H3K9me3 au PCH dans les ESCs mutantes en sérum 

(Peters et al., 2003; Martens et al., 2005). Nous avons confirmé ce phénotype, en effet 60% 

des ESCs Suv39hdn en sérum présentent des enrichissements de H3K27me3 aux régions 

riches en DAPI (Figure 4A). Ensuite, nous avons montré que l'absence de SUV39H1/2 dans 

les ESCs en sérum induit une réduction de la méthylation de l’ADN par rapport au type 

sauvage sur les satellites majeurs (Figure 4B), confirmant les travaux antérieurs (Lehnertz et 

al., 2003). La transcription des satellites majeurs est légèrement diminuée dans les ESCs 

Suv39hdn en sérum malgré la perte des marques répressives (Figure 4C). Par conséquent, 

l'absence de SUV39H1/2 dans les ESCs en sérum induit un phénotype qui récapitule les 

conditions des ESCs sauvages en 2i: augmentation H3K27me3 et réduction de la méthylation 

de l'ADN, ainsi que la réduction de la transcription à partir du PCH (mais pas aussi faible que 

dans ESC en 2i). 

Dans les cEpiSCs mutantes, nous avons observé une situation différente. Ces cellules ont 

complètement perdu les foyers d’HγK9meγ, mais contrairement aux ESCs, elles ne gagnent 

pas d’enrichissement en H3K27me3 (Figure 4A). Par conséquent, dans les cEpiSCs, 

H3K27me3 ne se substitue pas à H3K9me3 au PCH. En outre, les satellites majeurs sont 

hyperméthylés dans les cellules mutantes comme dans les sauvages (Figure 4B). De manière 

intéressante, dans les cEpiSCs Suv39hdn, la transcription des satellites majeurs est dé-

réprimée, jusqu'au niveau de celle observée dans les ESC mutantes en sérum (Figure 4C). 

Pour conclure, dans les ESCs en sérum l'absence d’HγK9meγ au PCH entraîne une réduction 

de la méthylation de l'ADN et l'accumulation de H3K27me3, en revanche dans les EpiSCs 

mutants il n’y a pas d’enrichissement d’HγKβ7meγ, la méthylation ADN est restauré, mais 

cela n’empêche pas la de-répression de la transcription des satellites majeurs. 
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Figure 79 : Effets contrastés de la condition de Suv39hdn dans les trois types des cellules pluripotentes. 

(A) Immunomarquage pour H3K9me3 et H3K27me3 avec contre-coloration ADN avec DAPI dans la condition 

Suv39hdn, à comparer avec la condition sauvage (Figure 3A). Grossissement sur une seule cellule (flèche) avec 

fusion de signaux: H3K9me3 (rouge) ou H3K27me3 (vert) avec DAPI (bleu). Analyse « linescan » présentant 

les enrichissements (mis en évidence avec l'étoile). % Indique le pourcentage de cellules dans la population 

affichant la même organisation. Les barres d'échelle représentent 5 µm. (B) Analyse par southern-blot de l’ADN 
genomique digéré avec HpyCH4IV révélé avec sonde pour les satellites majeurs dans les cellules type sauvage et 

Suv39hdn. Quantification « linescan » pour chaque piste: 2i-ESC (rouge), sérum ESC (bleu) et EpiSC (vert). Le 

type sauvage est représentée par une ligne continue, tandis que la condition Suv39hdn avec une ligne pointillée. 

(C) Expression relative des satellites majeurs par l'analyse qRT-PCR normalisée par les gènes de référence Sdha 

et Pbgd dans le type sauvage et l'état Suv39hdn. Chaque point est un réplicat biologique indépendant. 
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3.5 L'absence de méthylation de l'ADN augmente le dépôt d’H3K27me3 

mais a un effet limité sur la transcription des séquences satellites.  

Pour étudier le rôle de la méthylation de l'ADN dans la régulation de l'organisation des 

satellites majeurs et leur transcription, nous avons utilisé des ESCs invalidées pour Dnmt1, 3a  

et 3b (DnmtTKO). Ces cellules n'ont pas de cytosine méthylée dans leur génome (Tsumura et 

al., 2006) et notamment au PCH (Figure 2A). Nous avons pu adapter ces cellules en milieu 2i, 

mais pas les convertir en cEpiSCs : toutes les cellules mouraient par apoptose pendant la 

conversion ce qui est en accord avec leur faible contribution au développement de l'épiblaste 

in vivo (Sakaue et al., 2010). Les ESCs DnmtTKO en sérum montrent un fort enrichissement 

en H3K27me3 aux PCH (Figure 5A), comme montré dans des études antérieures (Cooper et 

al., 2014; Saksouk et al., 2014).  

 

 

Figure 80 : Conséquences épigénétiques et transcriptionnelles de l’absence de la méthylation de l'ADN sur 
les satellites majeurs dans les ESCs en 2i ou sérum. 

(A) Immunomarquages pour H3K9me3 et H3K27me3 avec contre-coloration de l’ADN en DAPI dans la 
condition DnmtTKO, à comparer avec la condition sauvage (Figure 3A). Grossissement sur une seule cellule 

(flèche) avec fusion de signaux: H3K9me3 (rouge) ou H3K27me3 (vert) avec DAPI (bleu). Analyse « linescan » 

présentant les enrichissements (mis en évidence avec l'étoile). % Indique le pourcentage de cellules dans la 

population affichant le même schéma. Les barres d'échelle représentent 5 µm. (B) Expression relative des 

satellites majeurs par l'analyse qRT-PCR normalisé avec les gènes de référence Sdha  et Pbgd dans les cellules de 

type sauvage ou DnmtTKO. Chaque point est un réplicat biologique indépendant. 



160 

 

En effet, nous avons constaté que la plupart (84%) des ESCs mutantes en sérum présentent un 

enrichissement d’HγKβ7meγ dans les régions riches en DAPI. Cet enrichissement se fait au 

détriment de celui d’HγK9meγ (Figure 5A) car 100% des ESCs sauvages en sérum contient 

des foyers d’HγK9meγ contre seulement 5β% des cellules mutantes (Figure 5A à comparer 

avec Figure 1A). Dans le milieu 2i, l'absence totale de méthylation de l'ADN conduit à une 

proportion accrue de cellules présentant des foyers de H3K27me3 (94% 2i-DnmtTKO vs 69% 

dans le type sauvage, Figure 5A and Figure 1A). En revanche la distribution d’HγK9meγ 

dans les ESCs en milieu 2i est très similaire dans les DnmtTKO par rapport au type sauvage 

(Figure 5A and Figure 1A). En outre la transcription des satellites majeurs ne change 

pratiquement pas (Figure 5B). En conclusion, l'absence de méthylation de l'ADN modifie 

considérablement l'état épigénétique du PCH dans les ESCs en sérum, induisant un fort 

enrichissement en HγKβ7meγ et une réduction des foyers d’HγK9meγ, mais sans effet clair 

sur la transcription des satellites majeurs. 

 

3.6 La réduction des niveaux d’H3K27me3 n’induit pas une sur-

expression des séquences satellites 

Afin d'étudier le rôle de HγKβ7meγ dans la régulation de l’état transcriptionnel du PCH, nous 

avons utilisé un inhibiteur de l'activité méthyl-transférase de EZH2. Nous avons choisi EPZ-

64γ8 (appelle par simplicité EPZ) qui est un inhibiteur sélectif d’EZHβ (Knutson et al., β014). 

Le traitement des ESCs avec EPZ pendant 72 heures conduit à une réduction remarquable du 

niveau globale d’HγKβ7meγ (au moins 70% dans chaque type cellulaire testé), sans 

changement dans les niveaux de H3K9me3 (Figure 6A-E). L’immunomarquage des ESCs en 

2i traités 72h avec EPZ a également confirmé la perte des foyers H3K27me3 dans la majorité 

des cellules sans changements majeurs dans l'organisation de H3K9me3 par rapport aux 

cellules témoins traités avec du DMSO (Figure 6A – panneau de droite). De plus, l'état 

hypométhylé des séquences satellites dans les ESCs en 2i traitées n'est pas modifié, ce qui 

montre qu'il n'y a pas de remplacement H3K27me3 par la méthylation de l'ADN au PCH 

(données non présentées). Nous avons ensuite analysé la transcription des satellites majeurs. 

Contre toute attente, la perte de H3K27me3 dans les ESCs en 2i n'a pas conduit à une 

augmentation de la transcription mais, au contraire, à une légère réduction (Figure 6A). 

Quand les ESCs en sérum ont été traitées avec l'inhibiteur de EZH2, bien que H3K27me3 ne 

soit pas aussi fortement enrichi au PCH comme dans la condition 2i, nous avons également 

observé une réduction des transcrits des séquences satellites (Figure 6B). Nous avons effectué 
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la même inhibition dans les cellules mutantes qui présentent un enrichissement similaire de 

H3K27me3 au PCH, à savoir les ESCs Suv39hdn en sérum et les ESCs DnmtTKO. Dans tous 

les cas, nous avons observé une légère réduction de la transcription des satellites majeurs 

(Figure 6C-E). En conclusion, la réduction d’HγKβ7meγ au PCH n'induit pas une 

surexpression des transcrits des satellites majeures, même en absence des autres marques 

répressives (comme H3K9me3 ou méthylation de l'ADN). 

 

 

Figure 81 : La réduction des niveaux de H3K27me3 n'induisent pas une sur-expression des séquences 
satellites majeurs. 

(A) Partie gauche: analyse par western-blot pour la quantification des niveaux global de l'enzyme HMT EZH2 et 

les modifications des histones H3K9me3 et H3K27me3 par rapport a H3 total dans les ESCs en 2i traités avec du 

DMSO (témoin) ou EPZ (Inhibition EZH2). Partie centrale: Expression relative des transcrits des satellites 

majeurs par analyse qRT-PCR normalisés par des gènes de référence Sdha  et Pbgd dans les ESCs en 2i traités 

avec du DMSO ou EPZ. Chaque point est un réplicat biologique indépendant. Partie droite: immunomarquage 

pour H3K9me3 (rouge) et H3K27me3 (vert) avec contre-coloration de l’ADN en DAPI (bleu) dans les ESCs en 
2i traités avec du DMSO ou EPZ. Les barres d'échelle représentent 5 µm. (B, C, D, E) Pour chaque condition: 

ESCs sérum de type sauvage (B), ESCs sérum Suv39hdn (C), ESCs en 2i DnmtTKO (D) et ESC en sérum 

DnmtTKO (E). Partie gauche: analyse par western-blot pour la quantification de niveau global de l'enzyme HMT 

EZH2 et les modifications d’histones HγK9meγ et HγKβ7meγ par rapport à Hγ totale. Partie droite: Expression 
relative des transcrits satellites par analyse qRT-PCR normalisés par les gènes de ménage Sdha  et Pbgd après 

traitement avec du DMSO (témoin) ou EPZ (Inhibition de EZH2). Chaque point est un replicat biologique 

indépendant.  
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4 DISCUSSION 

 

4.1 Dialogue entre H3K9me3, H3K27me3 et 5-meC dans la pluripotence 

chez la souris 

Nous montrons que l'interaction entre les différentes marques répressives au PCH est modulée 

en fonction de l'état de pluripotence et des conditions de culture. Nous avons observé que lors 

d'une réduction de la méthylation de l’ADN, H3K27me3 s'enrichit au PCH dans trois 

contextes différents: (i) après adaptation des ESCs au milieu 2i, qui conduit à une 

déméthylation générale au niveau de l'ADN (Habibi et al., 2013); (ii) dans la condition 

Suv39hdn, qui induit dans les ESCs en sérum une déméthylation partielle d'ADN des satellites 

majeurs, comme précédemment observé (Cooper et al., 2014; Martens et al., 2005; Peters et 

al., 2003; Saksouk et al., 2014); (iii) en l'absence totale de 5-meC (DnmtTKO) dans les ESCs 

en sérum (également montré dans Saksouk et al., 2014). Ailleurs dans le génome, la 

méthylation de l'ADN antagonise également le dépôt d’H3K27me3, comme le montre les 

ESCs DnmtTKO ou dans les ESCs traité avec 5-azacytidine, où cette marque est redistribuée 

vers des sites CpG déméthylés, au détriment des sites canoniques cibles de PRC2 (Cooper et 

al., 2014; Hagarman et al., 2013). Lors de la mise des ESCs dans le milieu 2i, il a été 

démontré qu'il y avait une perte considérable de H3K27me3 à des promoteurs de gènes 

(Marks et al., 2012). Par conséquent, alors que cette marque est réduite à des séquences 

uniques, nous montrons maintenant qu'elle est redéployée au PCH dans les ESCs en 2i, ce qui 

fait des ESCs un modèle intéressant pour étudier le dialogue entre la régulation PRC de 

l'expression génique et l'état épigénétique du PCH. Il a été montré précédemment que, en 

absence de méthylation de l'ADN, H3K9me3 et H3K27me3 coexistent au sein de 

l'hétérochromatine constitutive, mais dans des sub-domaines différents, ou dans des séquences 

qui ne se chevauchent pas (Cooper et al., 2014). Nous confirmons cette observation et 

montrons également que H3K27me3 remplace H3K9me3 dans un contexte de réduction de la 

méthylation de l'ADN. En effet, dans les ESCs DnmtTKO en sérum, la moitié de la 

population présente uniquement des enrichissements en H3K27me3, et dans des cellules qui 

gardent des foyers H3K9me3, ceux-ci ne chevauchent pas ceux de H3K27me3. Dans les 

ESCs en 2i, les clusters d’H3K9me3 ne sont pas dépendants de SUV39H1 et persistent 

également en l'absence d'enzymes Suv39h. Nous pensons qu'ils peuvent dépendre d'autres 

histone méthyltransférases (KMT), telles que SETDB1. Les données antérieures ont en effet 
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mis en évidence une réduction de H3K9me3 non seulement à l'euchromatine mais aussi au 

PCH en l'absence de SETDB1 (Mozzetta et al., 2015; Schultz et al., 2002). 

 

4.2 EpiSC: une cellule pluripotente avec un état épigénétique somatique 

Nous avons montré que, comme les cellules somatiques, les EpiSCs présentent des niveaux 

élevés de H3K9me3, de méthylation de l’ADN et de SUV39H1 aux régions riches en DAPI, 

et des chromocentres compactés, en accord avec des séquences transcriptionnellement 

inactives. En outre, l'expression de Nanog est réduite dans les EpiSCs et dans une étude très 

récente, Novo et al 2016 ont démontré que sa surexpression dans les EpiSCs induit la 

régulation positive de la transcription des satellites majeurs et la décompaction des clusters 

d’HγK9meγ. Il a été montré que les DNMTs dans les ESCs sont recrutés au PCH suite à 

l’enrichissement d’H3K9me3, probablement grâce à l'interaction avec SUV39H/HP1 

(Lehnertz et al., 2003; Fuks et al., 2003). Nos données montrent que dans les EpiSCs une telle 

interaction n’est pas nécessaire, car dans les cEpiSCs Suv39hdn la méthylation de l'ADN au 

niveau de séquences du PCH est rétabli. Le statut de de-répression des satellites majeurs en 

Suv39hdn cEpiSCs indiquent que H3K9me3 joue un rôle clé dans la répression de ces 

séquences et que la méthylation élevée de l'ADN ne suffit pas à maintenir un état répressif au 

PCH dans les EpiSCs. 

 

4.3 Découplage de l’état épigénétique des ESCs avec régulation de la 

transcription des satellites 

Nous avons montré que les ESCs en sérum présentent un état répressif à l'hétérochromatine 

constitutive avec un haut niveau de HγK9meγ, methylation de l’ADN et des chromocentres 

compactés. Paradoxalement la transcription des séquences satellites majeurs et mineurs est 

élevée (mais variable) à l'échelle globale. D'autre part, les ESCs en 2i présentent un fort 

enrichissement en H3K27me3 par rapport à H3K9me3, des niveaux réduits de 5-meC et des 

chromocentres déstructurés (voir le schéma récapitulatif de la Figure 9). De façon inattendue 

la transcription des satellites majeurs et mineurs est faible. En outre, alors que la répression de 

la transcription est dépendante de H3K9me3 dans les EpiSCs, nous montrons que ni la 

méthylation de l'ADN, ni H3K9me3 ne peuvent clairement moduler la transcription des 

satellites majeurs dans les ESCs. Par conséquent, nos données laissent ouverte la question de 

la nature des régulateurs (activateurs et répresseurs) de la transcription des séquences 
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satellites dans les ESCs. La transcription dans les ESC en sérum peut être régulée par des 

facteurs inconnus présents dans le sérum et non trouvés dans le milieu défini chimiquement 

utilisé dans la condition 2i. D'autre part, les inhibiteurs des voies GSK3 et MAPK peuvent 

peut-être eux-mêmes induire la répression de la transcription des séquences satellites.  

 

En conclusion, cette étude apporte de nouvelles connaissances sur l'organisation de 

l'hétérochromatine dans les différents types des cellules pluripotentes. La marque 

épigénétique H3K27me3 est particulièrement dynamique et permet de distinguer l'état le plus 

naïf (comme les ESCs dans le milieu 2i) des autres cellules pluripotentes. Cette modification 

d’histone semble transiter depuis les séquences uniques (codantes et non-codantes) vers le 

PCH lors du transfert des ESCs à partir du milieu sérum vers le 2i, et montre une perte globale 

des EpiSCs. 
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Stable Methylation at Promoters Distinguishes
Epiblast Stem Cells from Embryonic Stem Cells

and the In Vivo Epiblasts

Anne-Clémence Veillard,1 Hendrik Marks,2 Andreia Sofia Bernardo,3,4 Luc Jouneau,1 Denis Laloë,5

Laurent Boulanger,1 Anita Kaan,2 Vincent Brochard,1 Matteo Tosolini,1 Roger Pedersen,4

Henk Stunnenberg,2 and Alice Jouneau1

Embryonic Stem Cells (ESCs) and Epiblast Stem Cells (EpiSCs) are the in vitro representatives of naı̈ve and
primed pluripotency, respectively. It is currently unclear how their epigenomes underpin the phenotypic and
molecular characteristics of these distinct pluripotent states. Here, we performed a genome-wide comparison of
DNA methylation between ESCs and EpiSCs by MethylCap-Seq. We observe that promoters are preferential
targets for methylation in EpiSC compared to ESCs, in particular high CpG island promoters. This is in line
with upregulation of the de novo methyltransferases Dnmt3a1 and Dnmt3b in EpiSC, and downregulation of the
demethylases Tet1 and Tet2. Remarkably, the observed DNA methylation signature is specific to EpiSCs and
differs from that of their in vivo counterpart, the postimplantation epiblast. Using a subset of promoters that are
differentially methylated, we show that DNA methylation is established within a few days during in vitro
outgrowth of the epiblast, and also occurs when ESCs are converted to EpiSCs in vitro. Once established, this
methylation is stable, as ES-like cells obtained by in vitro reversion of EpiSCs display an epigenetic memory
that only extensive passaging and sub-cloning are able to almost completely erase.

Introduction

Two kinds of pluripotent stem cells can be captured
ex vivo from the mouse embryo: embryonic stem cells

(ESCs) are derived from the inner cell mass (ICM) of the
blastocyst, whereas epiblast stem cells (EpiSCs) are isolated
from the late epiblast of postimplantation embryos. Although
both express the core triad of transcription factors Oct4/Sox2/
Nanog, some other pluripotency factors identified in ESCs
are absent in EpiSCs, such as Esrrb, Klf4, Rex1/Zfp42, and
Dppa3/Stella [1,2]. Moreover, transcriptome comparisons
have indicated that EpiSCs may be closer to the post-
implantation epiblast, whereas ESCs share more character-
istics with ICM cells [3]. Indeed, EpiSCs express late epiblast
markers such as Nodal, Fgf5, Brachyury (T), or Cer1, which
are low or absent in ESCs [4]. These contrasting signatures
suggest these cell types represent two different states of
pluripotency, naı̈ve for ESCs and primed for EpiSCs [5]. In
contrast to ESCs, EpiSCs are unable to form chimeras fol-

lowing injection into blastocysts [3,6]. However, they can
contribute, at least to some extent, to embryo development if
injected in the postimplantation epiblast [7].

Different signaling pathways control self-renewal of these
pluripotent states: ESCs require LIF and BMP4, while
EpiSCs are dependent on FGF2 and Activin/Nodal [3,8]. By
switching between the appropriate culture conditions for
each cell type, ESCs can be readily converted into EpiSCs,
whereas EpiSCs can also be reverted into naı̈ve ES-like cells
in vitro albeit with low efficiencies [9–11]. Such intercon-
version abilities provide new avenues to study the rela-
tionships between the two states of pluripotency and have
elicited the notion of an ‘‘epigenetic barrier’’ separating
ESCs from EpiSCs, since reprogramming EpiSCs into naı̈ve
ESCs is an inefficient and long process. In particular, de
novo DNA methylation, which takes place during epiblast
development [12,13], may be a constituent of this barrier as
it is in somatic cell reprogramming [14]. De novo DNA
methylation is catalyzed by the de novo methyltransferase 3
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(Dnmt3) enzymes [15]. Three have been isolated in mam-
mals: Dnmt3a and Dnmt3b are catalytically active, while
Dnmt3l, is a cofactor for both. In the epiblast, Dnmt3b is the
first to be expressed at E3.5 while Dnmt3a expression starts
1 day later [16–18]. Dnmt3l is expressed transitorily in the
epiblast, between E4.5 and E6.5 [16,18]. The ICM of E3.5
blastocyst is globally hypomethylated, while a massive
wave of de novo methylation occurs between the epiblast
stages E3.5 and E6.5 [13]. Interestingly, the methylome of
ESC is shaped by their culture conditions: ESCs cultured in
the presence of the two kinase inhibitors, inhibiting Gsk3
and FGF signaling, respectively, are globally hypomethy-
lated and resemble ICM cells. ESCs cultured using serum
conditions display a methylation profile more similar to that
of the early postimplantation epiblast [12,19,20]. In contrast,
little is known about the methylome of EpiSCs. Quantita-
tively, the global level of 5-methylcytosine in EpiSCs was
found to be similar to that of ESC cultured in serum [20,21].
A recent study by Senner et al. [21] showed that four types
of stem cells derived from the mouse embryo, either extra-
embryonic or embryonic, contained a unique DNA meth-
ylation signature. However, an in-depth comparison of the
methylome of ESCs and EpiSCs is currently lacking.

Here, we compare the patterns of DNA methylation in
EpiSCs and ESCs and observed a clear bias toward pro-
moter-associated hypermethylation in EpiSCs. By following
the kinetics of methylation during ESC to EpiSC conver-
sion, we show that de novo methylation seems to occur very
rapidly and concomitant to the molecular switch. Con-
versely, reversion of EpiSC into ES-like cells shows that the
reprogramming of methylation at the promoters is very slow
and incomplete, suggesting the persistence of an epigenetic
memory. Finally, a comparison of EpiSCs and late epiblast
cells reveals that the in vitro and ‘‘in embryo’’ cells show a
remarkably different promoter methylation profile.

Materials and Methods

Preparation of samples for sequencing

MethylCap. Genomic DNA was sonicated to generate
300 bp fragments on average. MethylCap was performed
using the IP-STAR robot (Diagenode) as described before
[22]. In short, 1 mg DNA was incubated with paramagnetic
beads coated with the MBD domain of MeCP2 fused to
GST. After washing with 200, 400, and 500mM NaCl, the
bound methylated DNA was eluted in two fractions using
600 and 800mM NaCl, respectively. Twenty nonogram of
DNA eluates was prepared for sequencing.

Double-stranded cDNA synthesis. Total RNA was isolated
with TRIzol (Invitrogen) according to the manufacturer’s
recommendations. One hundred microgram total RNA was
subjected to two rounds of poly(A) selection (Oligotex
mRNA Mini Kit; QIAGEN), followed by DNaseI treatment
(QIAGEN). About 100–200 ng mRNA was fragmented by
hydrolysis (5 · fragmentation buffer: 200mM Tris acetate,
pH8.2, 500mM potassium acetate, and 150mM magnesium
acetate) at 94�C for 90 s and purified (RNAeasy Minelute
Kit; QIAGEN). cDNA was synthesized using 5mg random
hexamers by Superscript III Reverse Transcriptase (In-
vitrogen). Double-strand cDNA synthesis was performed in
second strand buffer (Invitrogen) according to the manu-

facturer’s recommendations and purified (Minelute Reac-
tion Cleanup Kit; QIAGEN).

Sequencing

DNA or cDNA samples were prepared for sequencing by
end repair of 20 ng DNA as measured by Qubit (Invitrogen).
Adaptors were ligated to DNA fragments, followed by size
selection (*300 bp) and 14 cycles of PCR amplification.
Integrity of DNA libraries was confirmed by running the
products on a Bioanalyzer (BioRad). Cluster generation and
sequencing (36 bp) was performed with the Illumina Gen-
ome Analyzer IIx (GAIIx) (MethylCap-seq) or HiSeq
(RNA-seq) platform according to standard Illumina proto-
cols. Initial data processing, base calling, and alignment to
the mouse reference genome was performed using the Illu-
mina Analysis Pipeline allowing one mismatch. Only tags
aligning to one position on the genome were considered for
further analysis. For RNA-seq, further analysis was per-
formed with the 36 bp aligned sequence. For MethylCap-
seq, the uniquely mapped sequence reads were directionally
extended to 300 bp, the estimated median length of the
original DNA library. If multiple tags were mapped on the
same genomic position, only one was included for further
analysis. Mapped reads from the initial 600 and 800mM
NaCl eluate libraries were combined. For both RNA-seq and
MethylCap-seq data were converted to Browser Extensible
Data files for downstream analysis. To compensate for dif-
ferences in sequencing depth and mapping efficiency among
samples, the total number of unique reads of each sample
was uniformly equalized relative to the sample with the
lowest number of sequence reads, allowing quantitative
comparisons. Wiggle (WIG) files for viewing the data in the
UCSC Genome Browser were generated from the normal-
ized files. All sequencing analyses were conducted based on
the Mus musculus NCBI m37 genome assembly (MM9;
assembly July 2007). Supplementary Table S1 summarizes
the sequencing output.

MethylCap-seq analyses

Peak calling. Data analysis was performed using in-house
generated scripts written in LINUX shell, Perl, and R. En-
riched regions (peaks) were called on the basis of a Poisson
distribution of overlapping sequence reads within a dynamic
window. A false discovery rate (FDR) was calculated rela-
tive to the total covered sequence, and peaks with an FDR
of £ 1· 10- 6 were selected. All peaks from the four sam-
ples (three EpiSCs and one ESC) were merged. Per sample,
the number of normalized sequence reads overlapping each
region (peak) of interest was calculated, which is referred to
as read density and used as a measure of DNA methylation.

Annotation. Methylated peaks were annotated according
to their localization in the genome, as intron, exon, promoter
( - 900 to + 400 bp around the gene start), or intergenic
based on the Ensembl release 66 (MM9 assembly). As
peaks often span different genomic regions, we used the
summit genomic coordinate of each peak as representative.
Due to the presence of overlapping transcripts in the mouse
genome, about 5% of the peaks were annotated to multiple
genes. Therefore, peaks were annotated with (at least one)
gene name and sequence type (exon, intron, and promoter).
Nonassigned peaks were considered as intergenic.
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Gene Ontology and KEGG analysis was performed using
DAVID (http://david.abcc.ncifcrf.gov) [23,24]. Further data
analysis was performed using IPA (Ingenuity� Systems,
www.ingenuity.com).

RNA-seq analysis

To obtain RNA-seq gene expression values (RPKM), we
used Genomatix (www.genomatix.de).

Statistical analysis of MethylCap seq data

Read counts for all peaks and transcripts were normalized
using the normalization procedure used in the Bioconductor
package ‘‘DESeq’’ [25]. We used these normalized counts
to perform a hierarchical clustering analysis of methylome
samples using the distance function 1-c, where c is the
correlation coefficient, and the Ward linkage method.

To study the relation between DNA methylation and ex-
pression, we built a reduced dataset where methylation peaks
corresponding to promoters were combined with read counts
for the corresponding transcripts. The following thresholds
were used for including genes: methylation read density > 0
for either the ESC sample or for at least 2 EpiSC samples.

After log2 transformation of normalized counts, we used
the R package ‘‘flexclust’’ [26] to group methylation and
expression profiles in clusters. Only clusters having at least 10
profiles and a Pearson correlation coefficient greater than 0.9
(with the center profile of the cluster; radius–that is maximum
distance to the cluster center profile= 0.1), were included.

Cell lines and culture conditions

Derivation of the 129S2 ESC line was performed as
previously described [27]. The rESCs (129S2 rESCs) and
ESCs (129S2 ESCs, 129B6 ESCs, and R1) were grown on
irradiated mouse embryonic fibroblasts in medium con-
taining DMEM with either 15% serum or (for 129S2 ESCs)
20% KSR (Invitrogen), 0.1mM b-mercaptoethanol and
1,000U/mL LIF (ESGRO; Millipore) and plated feeder-free
on gelatin-coated dishes for two passages before collection.
EpiSCs (129S2 EpiSCs, EpiSC1, 2, and 3 described in
Maruotti, 2010 and 129B6 EpiSCs) and cEpiSCs (129S2
cEpiSCs) were grown in serum-free medium (CDM) with
FGF2 (12 ng/mL; R&D) and Activin A (20 ng/mL; R&D) on
serum-coated dishes as previously described [3]. Conversion
of 129S2 ESCs was performed as previously described
[9,28]. In summary, the ESCs were trypsinized and
1.5 · 106–3· 106 cells were seeded in 35mm, serum-coated
dishes in CDM + FGF2 and Activin. At day 4, cells were
detached with collagenase-II (Sigma) and replated without
dilution. This first passage promotes the appearance of flat
colonies with typical EpiSC morphology. Converted cells
were then cultured for several passages before harvesting.
For reversion, EpiSCs were passaged onto mouse irradiated
feeders in the presence of ESC medium as described. After 7
days, cells were trypsinized and passaged as ESCs for at
least five passages.

Epiblast dissection

E6.5 and E7 epiblasts were dissected from CDI mouse
embryos in Flushing and Handling Medium (FHM). The

embryonic region was cut out from extra-embryonic tissue
and incubated for 10min in FHM containing 0.1% Trypsin
(Type II, Sigma) and 2.5% Pancreatin (Sigma). The epiblast
was then isolated using glass needles and either snap-frozen
or plated in four-well plate in CDM supplemented with
Activin and Fgf2 for EpiSC derivation as described [29].

Real-time PCR analysis

Total RNA was extracted and reverse-transcribed with
Superscript III (Invitrogen). Real-Time PCR were carried
out using SybrGreen mix (Qiagen) on a Step One Plus
thermal cycler (Applied Biosystem) and repeated thrice on
independent experiments and/or cell lines. Data were nor-
malized using the geometric mean of Hprt and Pbgd using
Qbase software (Biogazelle). Primers used are listed in
Supplementary Table S2.

Western-blot analysis

Cellular samples were lysed in 3 ·Laemli-SDS buffer.
The polypeptides were separated through 4%–12% Bis- Tris
Gel NuPage electrophoresis and transferred onto a poly-
vinylidene difluoride membrane (Hybond-P PVDF; Amer-
sham). After blocking with 1/1,000 Tween 20-PBS (PBS-T)
containing 4% (w/v) nonfat dried milk, the membranes were
incubated with primary antibodies overnight at 4�C. Anti-
bodies used were as follows: mouse monoclonal anti-
Dnmt3b (Abcam; 1/1,500 dilution) or anti-Dnmt3a (Active
Motif; 1/1,000 dilution). The membranes were washed
thrice with PBS-T, incubated with a peroxidase-conjugated
anti-mouse antibody and washed again. Peroxidase activity
was measured using the ECL-Plus Western Blot detection
system (Amersham) and a LAS 1000 camera (Fuji). The
membranes were incubated with an anti-Actin antibody for
loading control. Band intensities were quantified using Im-
ageJ software (http://imagej.nih.gov/ij/index.html) and nor-
malized using Actin.

DNA methylation analysis by bisulfite sequencing

Genomic DNA was purified using DNA extraction kit
(Promega) according to the manufacturer’s instructions. For
epiblast DNA, pools of seven (E6.5) or three (E7) epiblasts
were digested by proteinase K in lysis saline buffer and
DNA was extracted using NaCl/EtOH precipitation.

Bisulfite conversion was performed as previously de-
scribed [30] on 1mg of genomic DNA for the cells, or all
DNA obtained from epiblasts. Regions of interest were
then amplified by PCR using the KAPA HiFi HotStart
Uracil + mix (Clinisciences) using primers listed in Sup-
plementary Table S2. The PCR program was as follows:
5min at 95�C followed by 40 cycles of 20 s at 98�C, 30 s at
60�C, and 15 s at 72�C, with a final extension of 5min at
72�C. PCR products were directly sequenced or subcloned
into pGEMTeasy vector (Promega). Clones were amplified
by PCR using the Platinum taq polymerase (Invitrogen)
with 5% DMSO at 95�C 15min followed by 35 cycles of
30 s at 95�C and 3min at 64�C with a final extension
10min at 64�C. PCR products of the expected size and
quantity were sequenced and analyzed using BiQ Analyzer
software [31].
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Processing of publicly available datasets

for methylation and expression in the epiblast

For comparisons with epiblast methylation, we used
profiles of GEO series GSE22831 [12]. Oligo sequences of
NimbleGen Mouse Promoter Array (GPL9485) were map-
ped to the MM9 genome assembly using bowtie2 with a
maximum of three mismatches. Sequences mapping on
multiple loci in the genome were discarded. For the meth-
ylation profiles of the three epiblast (E6.5) replicates within
GSE22831 we computed the average log-ratios per Nim-
bleGen probe. For each promoter regions covered by our
Methylcap dataset and by the NimbleGen probes (only re-
gions containing ‡ 5 probes were included), we computed
the number of probes, the percentage of probes having an
average log-ratio larger than 0.5 and the average log-ratios
of all probes within the promoter. The classification of
promoters was according to Borgel et al. [12]: low or no
methylation (log2ratio < 0.3), or highly methylated (log2-
ratio > 0.4).

To determine expression levels for genes showing hy-
permethylated promoters in EpiSCs, we used profiles within
GEO series GSE4622 [32], that is, the microarray data for
epiblast at prestreak (two replicates) and mid-streak (three
replicates) stages (same stages as used for EpiSC derivation,
bisulfite sequencing, and RT-qPCR in this study). A gene
was considered to be expressed in one sample in case of a
detection P-value < 0.05, and considered to be expressed in
the epiblast if detected in at least four out of five samples.

Accession numbers

The GEO accession number for the MethylCaq-seq and
RNA-seq data for EpiSCs reported in this article is
GSE47793. The GEO accession numbers for the previously
generated MethylCap-seq and RNA-seq profiles of ESCs are
GSE31343 and GSE23943, respectively [33,34]. Raw se-
quencing data of MeDIP-Seq from Senner et al. [21] were
downloaded from the EBI European Nucleotide Archive
(ENA) accession number PRJEB4263.

Results

DNA methylation profiles of ESCs and EpiSCs

To investigate the DNA methylome of ESCs and EpiSCs
at a genome-wide scale, we applied MethylCap-sequencing.
This method involves capture of methylated DNA using the
MBD domain of MeCP2, followed by parallel sequencing of
the captured DNA. In comparison to other genome-wide
DNA methylation profiling methods, MethylCap-seq stands
out for its robustness, sensitivity, and costeffectiveness [22].
MethylCap-seq was performed on three EpiSC lines
(EpiSC1 and 3, male; EpiSC2, female) derived from fertil-
ized B6D2F1 embryos and characterized in [29]. We com-
pared these new profiles with an ESC line (male, E14Tg2a)
[33]. Overall a total of 90,474 methylated regions were
identified, with a median length of 2,034 bp. These regions
are distributed across all chromosomes (Supplementary Fig.
S1A). Furthermore, the read density distribution plots of all
enriched regions, representative for the level of methylation
at the individual loci, in either ESCs or EpiSCs were well
overlaid (Supplementary Fig. S1B). This suggests that,

overall, DNA methylation is similar in ESCs and EpiSCs at
a global level in accordance with Senner et al. [21].

Methylated regions were annotated according to their
genomic localization: intergenic, exonic, intronic, and pro-
moter regions. The partition of the methylated regions into
these categories was the same in both pluripotent cell types,
with an overrepresentation of intragenic methylation com-
pared with the genomic background distribution within the
nonrepetitive portion of the genome (Supplementary Fig.
S1C). Despite these similarities between ESC and EpiSC
methylation, hierarchical clustering clearly shows that the
ESC methylome is distinct from that of EpiSCs (Fig. 1A).
To get insight into this distinction, we plotted the read
density distribution of the regions according to their geno-
mic localization and observed that the read distribution of
regions annotated as promoters was shifted toward higher
read densities (ie, higher methylation) in EpiSCs compared
with ESCs (Fig. 1B). Classifying promoters according to
their CpG density [35], high-, intermediate-, and low-CpG
content promoters (HCPs, ICPs, and LCPs, respectively),
the shift revealed that the higher methylation in EpiSCs is
mainly present in HCPs (Fig. 1C), and not so much in ICPs
and LCPs.

Relation of promoter methylation

to gene expression

To understand the functional importance of methylation
differences in the promoters, we first examined the statistic
correlation between DNA methylation at promoters and
gene expression in ESCs and EpiSCs. We generated tran-
scriptome profiles of the same three EpiSC lines by RNA-
seq and used previously generated RNA-Seq data for the
E14 ESC line used in this study [34]. We determined the
correlation coefficients between promoter methylation and
expression of the corresponding genes (Fig. 2A), followed
by a principal component analysis performed on the matrix
of these correlations (Supplementary Fig. S2A). Overall,
there is a limited variability within EpiSC lines, exhibiting
high positive correlations between methylation peaks (0.61–
0.85). It is noteworthy that these correlation coefficients are
lower between the male lines (EpiSC1 and EpiSC3) and the
female one (EpiSC2), reflecting the presence of an in-
activated and highly methylated X-chromosome in the fe-
male. In addition, although gene expression of the different
EpiSC and ESC lines is closely related (between 0.9 and
0.99 correlation), lower correlations were observed between
ESC and EpiSC methylation (0.31–0.57). Lastly, an anti-
correlation between gene expression and methylation peaks
was observed (between - 0.08 and - 0.35).

To gain more insight in the anti-correlation between gene
expression and DNA methylation we performed quality
threshold clustering (QT-Clust; Supplementary Fig S2B),
summarized in Fig. 2B. Fifty-eight percent of the genes
present in the combined datasets followed pattern 1, that is,
showed both high promoter methylation and low expression.
Conversely, 29% of the genes followed the opposite pattern
(pattern 2), characterized by low promoter methylation and
high expression. An example of a gene following pattern 1
is shown on Fig. 2C. However, a few genes seem to escape
from methylation-induced repression, as illustrated with
Car4 (Supplementary Fig. S2C). Interestingly, pattern 3
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characterized by high methylation only in the female EpiSC
line (EpiSC2) contained mostly genes located on chromo-
some X (90%), in agreement with the presence of an in-
activated X in this female line. This specificity of the
EpiSC2 line probably explains the weaker anti-correlation
( - 0.08) compared with the others ( - 0.23 to - 0.35).

Functional characterization of methylated promoters

We then investigated the biological functions and path-
ways associated with genes having methylated promoters,
and therefore likely to be repressed in ESCs or EpiSCs. We

selected genes containing highly methylated promoters in
EpiSCs or ESCs, that is, those with a read density of at least
20, which corresponds to the median of the read density
distribution (Fig. 1C and Supplementary Table S3), result-
ing in 1,528 genes for ESCs and 2,151 for EpiSCs. Gene
ontology analysis using DAVID showed only two terms
associated with ESC specific methylation: transmembrane
transport and translation (Fig. 3A). Terms showing up only
in EpiSCs concerned response to endogenous or extracel-
lular stimuli. Most terms (14/21) were common to both cell
types, such as germ cell development and reproductive
function, ion transport, and cell adhesion. In addition, two

FIG. 1. Global analysis of DNA methylation in embryonic stem cell (ESC) and epiblast stem cells (EpiSC) lines. (A)
Hierarchical clustering of methylation profiles, based on a Pearson’s correlation distance matrix. (B, C) Distribution of read
density for ESCs and EpiSCs (mean of the three cell lines) in each genomic category (B) and in promoters annotated as high
(HCP), intermediate (ICP), or low (LCP) CpG content (C). Bars for EpiSC are in white, bars for ESC in black, the overlay in
gray.

2018 VEILLARD ET AL.



Kegg pathways were common to ESCs and EpiSCs: neu-
roactive ligand-receptor interaction and ribosome. Interest-
ingly, there were always more genes with methylated
promoters in EpiSCs belonging to these common terms than
for ESCs. This suggests that the repression of certain bio-
logical processes initiated in ESCs was amplified in EpiSCs.
To further document this trend, we selected genes belonging
to two well-represented categories, ‘‘sexual reproduction’’
and ‘‘gamete generation’’ and compared the levels of both
DNA methylation and gene expression. Most genes be-
longing to these categories displayed much lower expres-
sion, while higher DNA methylation, in EpiSCs as

compared with ESCs (Fig. 3B). It has been reported that
several germ cell markers are downregulated in EpiSCs
compared with ESCs including Piwil2 and Nr0b1 [6]. We
now show that both genes are hypermethylated in EpiSCs
compared with ESCs (Fig. 3C).

Among genes showing hypermethylated promoters in
EpiSCs, Dppa3 (Stella) and Zfp42 (Rex1) have been shown
to be methylated at their promoters and their expression
repressed in EpiSCs, in contrast to ESCs ([9,36], and Sup-
plementary Fig. S3B for Zfp42). Interestingly, also Tbx3,

another ‘‘naı̈ve’’ gene important for ESC maintenance [37],
is specifically methylated in EpiSC, with concordant lower

FIG. 2. Relationships be-
tween promoter methylation
and gene expression. (A)
Correlation coefficients be-
tween DNA methylation on
promoters (MP) and expres-
sion data (T). (B) Three main
clusters (Qt-clust) illustrating
the relation between pro-
moter methylation and gene
expression. (C) Example of a
gene following pattern 1.
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FIG. 3. Functional annotation of methylated promoters. (A) GO terms associated with promoters methylated (read
density > 20) in EpiSCs and in ESCs, according to DAVID analysis (P-value£ 1%). The *indicate KEGG pathways. (B)
Plots comparing methylation and expression of the 49 genes associated with the union of ‘‘gamete generation’’ and ‘‘sexual
reproduction’’ GO terms. (C) IGV browser view of two germline and ESC-specific genes, Nr0b1 and Piwil2, showing the de
novo methylation and loss of gene expression in EpiSCs compared to ESCs.
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expression in EpiSCs as compared with ESCs (Supple-
mentary Fig. S3C). The zygotic promoter of Dnmt3l,
which controls its expression during preimplantation
stages, was also methylated in EpiSCs (Supplementary Fig.
S3D), as is the case in the postimplantation epiblast [16].
Expression of these genes are quickly downregulated
during conversion of ESCs to EpiSCs [38]; (see below).
Together, our data suggest that DNA methylation at pro-
moters in EpiSCs contributes to the regulation of genes that
are differentially expressed in naı̈ve versus primed plu-
ripotent cells.

Identification and characteristics of differentially

methylated promoters

To identify differentially methylated regions (DMRs)
between ESCs and EpiSCs, we selected regions displaying
a read density ratio of at least three between the two cell
types with a minimum of 20 reads for the category with the
highest count. This analysis was performed on the whole
dataset and revealed 1,226 hypermethylated regions spe-
cific for ESCs and twice more (2,852) for EpiSCs. Among
these DMRs, 724 (25%) are annotated as promoters spe-
cifically hypermethylated in EpiSCs, and only 58 (5%) are
promoters that are hypermethylated specifically in ESCs,
again illustrating that promoters tend to become hyper-
methylated in EpiSCs (Fig. 4A). Promoters hypermethy-
lated in EpiSCs were found associated with molecular
transport, metabolism, signaling, and nervous system de-
velopment (Supplementary Fig. S3A). The same analysis
performed on the promoters that are hypermethylated in
ESCs did not yield significant results because of the low
number of genes.

When CpG density was taken into account, the proportion
of each category was identical for the small set of hy-
permethylated promoters in ESCs, compared to that of all
methylated promoters (Fig. 4B). By contrast, only ICPs and
HCPs were represented among promoters hypermethylated
in EpiSCs, the latter being the most abundant and clearly
overrepresented when compared to the population of all
methylated promoters (78% compared to 35%).

Using published ChIP-seq data on histone modifications
in ESCs [39,40], we determined that half of the hyper-
methylated promoters in EpiSCs were associated with bi-
valent domains (H3K4me3/H3K27me3) in ESCs (Fig. 4C),
while the remaining were mainly associated with H3K4me3.
Hence, these (bivalent) genes are likely stably silenced

in EpiSCs by deposition of dense methylation at their
promoters.

To validate the current MethylCap-seq, six DMRs in
promoters were selected and assessed by bisulfite sequenc-
ing. The six genes were chosen among those with hyper-
methylated promoter and no expression in EpiSCs, and
associated with bivalent promoters in ESCs (Supplementary
Fig. S4). Of these, Abcb1a is a membrane transporter
whereas the others are involved in development [41].
Chrna3, Cspg4, Daam2, and Gfra3 play roles in nervous
system development [42–46], while Aebp1 is required for
smooth muscle formation [47–50]. We verified the low level
of DNA methylation in two different ESC lines, which
contrasted with the high DNA methylation level (90%–98%
methylated CpGs) in two EpiSC lines (Fig. 4D). These re-
sults highly correlated with the MethylCap-seq data.

To better understand the basis of the methylation differ-
ence between ESCs and EpiSCs, we assessed the RNA ex-
pression of the de novo methyltransferases Dnmt3a, 3b, and
3l, and the Tet enzymes that are involved in active de-
methylation (Fig. 4E). Dnmt3a is expressed at a similar level
in the two cell types, whereas Dnmt3b expression is about
four-fold higher in EpiSCs, while Dnmt3l is only expressed
in ESCs. Expression of both Tet1 and Tet2 is lower in
EpiSCs, while Tet3 expression is low in both cell types. The
protein level of both DNMT3A and 3B was evaluated by
western-blotting (Fig. 4F, G). In good correlation with
transcript level, DNMT3B is greater than eightfold higher
in EpiSCs compared with ESCs. As expected, the total
quantity of DNMT3A was similar in both cell types,
but distributed over two different isoforms: the lower
band of *75 kDa corresponding to DNMT3A isoform 2
(DNMT3A2, [51]) is higher in ESCs, whereas the higher
band (*100 kDa; DNMT3A1) appeared only in EpiSCs and
accounted for about half of the total quantity of DNMT3A in
these cells. In conclusion, compared with ESCs, EpiSCs
have more abundant DNMT3B and DNMT3A1, whereas
Dnmt3l, Tet1, and Tet2 are much lower.

Dynamics and role of DNA methylation changes

during conversion of ESCs into cEpiSCs

EpiSCs can be obtained directly in vitro from ESCs by
applying EpiSC culture conditions to the ESCs (cEpiSCs,
[9,10]. In cEpiSCs harvested 13–15 passages after conver-
sion, the level of expression of the Dnmt3 and Tet genes
is very similar to that of embryo-derived EpiSCs

FIG. 4. EpiSCs tend to contain hypermethylated promoters. (A) Pie charts showing the classification of hypermethylated
regions in ESCs (read density ratio ESC/EpiSC > 3) and hypermethylated in EpiSCs (read density ratio EpiSC/ESC > 3).
The number of DMRs is indicated below the pies. ESC and EpiSC distribution differ significantly (Chi-squared test, P-
value < 10 - 53). (B) Classification of all methylated (read density s0) and differentially methylated promoters as HCP, ICP,
and LCP. Hypermethylated promoters in EpiSCs are significantly enriched in HCP (Chi-squared test, P-value < 10- 76). (C)
Classification of all promoters (read density in EpiSC s0) and differentially methylated promoters in EpiSC (ratio EpiSC/
ESC > 3) according to their association in ESC with H3K4me3 (gray), H3K27me3 (white), bivalent (H3K4me3 +
H3K27me3, hatched) or neither mark (black). Hypermethylated promoters are significantly different from all promoters
(Chi-squared test, P-value < 10- 22). (D) Validation of differential methylation between EpiSCs and ESCs. The class of each
promoter according to their CpG content is indicated. Circles represent CpG nucleotides either methylated (closed) or
unmethylated (open). (E) Gene expression of DNA methylation modifying enzymes in ESCs and EpiSCs determined by
RT-qPCR. Error bars represent SEM of three different cell lines. (F, G) Western blots showing the protein level of Dnmt3a
and Dnmt3b in ESCs and EpiSCs. The average quantity relative to Actin is shown on the right. Error bars represent SEM of
two (ESCs) to three (EpiSCs) different cell lines. *in E, F: P< 0.05, Mann–Whitney U test.
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(Supplementary Fig. S5A). In line with this, the pattern of
DNA methylation of embryo-derived EpiSCs was also
correctly apposed in these cEpiSC: a very similar, dense
methylation was observed in both EpiSCs and cEpiSCs
(88%–98%) for the six promoters described above (Fig. 5A;
see Fig. 4D for comparison). During conversion, colonies
with an EpiSC-like morphology first appeared at day 6
(Supplementary Fig. S5B), while changes in gene expres-
sion levels of ESC markers such as Klf4 and Dppa3, or the
upregulation of the EpiSC marker Fgf5, occur as early as at
day 3 (Supplementary Fig. S5C). We therefore asked when
the de novo methylation occurred during the conversion. To
this end, bisulfite sequencing was performed on Aebp1 and
Chrna3 promoters at day 3, 7, and 10 of conversion (Fig.
5B). In parallel, we also examined the dynamics of ex-
pression of the Dnmt3 and the Tet genes (Fig. 5C). At day 3,
sequence polymorphism was present at most CpG loci (Fig.
5B), indicating that de novo methylation had already started,
in accordance with the early upregulation of Dnmt3b and the
downregulation of Tet1 and Tet2. Dnmt3l, on the other hand,
was quickly downregulated and, intriguingly, Tet3 was
transiently upregulated during conversion, although re-
maining at low level. Altogether, our results show that DNA
hypermethylation at promoters occurs early in the transition
from ESCs to EpiSCs.

Reprogramming of DNA methylation during

reversion of EpiSCs to ESCs

As DNA methylation is considered to be a stable epige-
netic mark, we next asked whether reprogramming of
EpiSCs toward ESCs would efficiently reverse methylation
at promoters. The DNA methylation status at the six pro-
moters as mentioned above was analyzed in rESCs har-
vested 11–13 passages after the start of reversion by
transferring the EpiSCs onto feeders in LIF-containing
medium [9]. Although DNA methylation was largely re-
duced, all six genes displayed a higher level of DNA
methylation at their promoters in the rESCs as compared
with the embryo-derived ESCs (Fig. 6A). Remarkably, we
observed heterogeneity between clones, representing dif-
ferent alleles in the population: some were highly methyl-
ated while others were unmethylated as is the case for
Daam2. This is in contrast with embryo-derived ESCs in
which the DNA methylation level at each allele was quite
similar (see Fig. 4D for comparison). We verified that the
level of expression of Dnmt3s and Tets was correctly re-
programmed in rESCs compared with embryo-derived ESCs
(Supplementary Fig. S6).

Bisulfite sequencing of individual alleles after cloning
does not allow distinguishing between allelic heterogeneity

FIG. 5. Characterization of
ESC conversion into cEpiSC.
(A) Changes of methylation
in the six promoters assessed
by bisulfite-sequencing dur-
ing conversion of ESCs into
cEpiSCs. (B) Changes in
the CpG level of methylation
in the promoter of Aebp1,
Chrna3, and Daam2 dur-
ing the conversion process.
Genomic DNA after bisulfite
conversion was directly se-
quenced. Each CpG has been
classified according to the
presence of a C (methylated),
a T (unmethylated), or a
polymorphism meaning het-
erogeneity between the two
forms in the cell population
(both). (C) Changes in ex-
pression of DNA methylation
modifying enzymes, during
the conversion of ESCs de-
termined by RT-qPCR. Bars
represent SEM of three inde-
pendent experiments. *P <

0.05, Mann–Whitney U test.
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within cells or among the cell population, as linkage infor-
mation between the different fragments is lost. Therefore,
we grew four rESC clones originating from single rESCs
and determined the methylation status of the three promoters
showing the highest methylation heterogeneity (Chrna3,
Daam2, and Gfra3; Fig. 6B). Surprisingly, clones were now
mostly demethylated, with the notable exception of Gfra3
for clone 4, which still exhibited some methylated CpGs.
These results indicate that DNA methylation is stable and
resistant to reprogramming although further passages and
severe selection by sub-cloning is able to almost, but not
totally, erase this epigenetic memory.

Comparison of methylated promoters

in EpiSC compared to the epiblast

It has been reported that the DNA methylation signature
at promoters in ESCs is closer to the early postimplantation
epiblast than to the ICM that they are derived from [12]. We
now asked how promoter methylation in EpiSCs compared
with that of their in vivo counterpart. We isolated epiblasts
from early (E6.5) or late (E7) gastrulating embryos and
performed bisulfite sequencing on the six promoters that
were strongly methylated in EpiSCs. The DNA methylation
level in epiblasts was very low at the two stages and even
lower than the level of methylation observed in ESCs for
Aebp1, Cspg4, and Gfra3 (Fig. 7A and Supplementary
Fig. S7).

To perform this analysis at a global scale, we compared
our data with the publicly available dataset of promoter
methylation on E6.5 epiblasts obtained by MedIP arrays
[12] after selection of promoters common to the two study
(2,610 promoters; Supplementary Table S4 and Fig. 7B).
The majority of promoters (77%, 1,861/2,416) that were

methylated in EpiSCs (at least 10 reads) had a low level of
methylation in epiblast (log2ratio < 0.3). Conversely, very
few promoters with low level of methylation in EpiSCs were
methylated in the epiblast (8%, 15/194). Methylation at
these promoters is therefore unique to EpiSCs, and does not
recapitulate the methylation status of the epiblast stage they
are derived from. The expression level of Dnmt3s and Tets

in epiblast and EpiSCs could not explain this difference in
methylation deposition, as these enzymes were similarly
expressed, except for Dnmt3b, which is even higher ex-
pressed in the epiblast (Fig. 7C).

To get insight into the kinetic of this methylation process
during EpiSC derivation, day 6.5 epiblasts were explanted in
culture and outgrowths collected at different time points.
Bisulfite conversion followed by direct sequencing was
performed on three representative promoters, Aebp1,
Chrna3, and Daam2 (Fig. 7D). Completely methylated
CpGs started to appear as early as day 2 for Aebp1 and
before day 9 for Chrna3. For Aebp1, it reached the level of
established EpiSCs within 9 days. Such kinetic is not in
favor of a slow deposition of methylation along passages in
culture but rather suggests that the removal of the epiblast
from its in vivo environment and/or the culture conditions
may have released constraints that prevent promoter hy-
permethylation within the embryo.

Lastly, to gain insight into the functional consequence of
the differential DNA methylation, we asked whether the
difference in promoter DNA methylation between EpiSCs
and epiblast cells translated into differences in expression of
the corresponding genes. Using available microarray data on
expression in the epiblast [32], we determined the expres-
sion status (expressed or not expressed) of genes in the
epiblast with contain hypermethylated promoters in EpiSCs
(reads ‡ 20) (Fig. 7E and Supplementary Table S4). Most

FIG. 6. Characterization of
EpiSC reversion into rESC.
(A) Changes of methylation
in the six promoters assessed
by bisulfite-sequencing dur-
ing reversion of EpiSCs into
rESCs. (B) CpG level of
methylation in the pro-
moter of Chrna3, Daam2,
and Gfra3 after clonal ex-
pansion of rESCs. As in Fig.
5B, each CpG is classified as
methylated, unmethylated, or
polymorphic (both) in the
cell population.
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genes (93%, 554/593) were not expressed in the epiblast,
although being largely unmethylated. This suggests that for
a large set of genes that are repressed in both the epiblast
and their in vitro counterparts (the EpiSCs), the epigenetic
mechanism of repression is different.

Discussion

We have compared the DNA methylome of EpiSCs to
that of ESCs and to their tissue of origin, the post-
implantation epiblast. ESCs and EpiSCs have similar
methylation levels and a similar distribution of methylation
within the different genomic regions. However, several

features distinguish the two cell types, in particular the fact
that there are significantly more regions specifically meth-
ylated in EpiSCs as compared to ESCs, a large part of those
being hypermethylated HCP promoters. These promoters
are mostly associated with either a bivalent signature
(H3K4me3 and H3K27me3) or an active H3K4me2/me3
mark in the ESCs [39,40]. Furthermore, our study suggests
that the promoter methylation pattern is quickly established
during the in vitro conversion of ESCs into EpiSCs.

To further validate our findings on an independent data-
set, we re-examined the MeDIP-seq data generated by
Senner et al. [21]. This analysis yielded the same results as
with our dataset: a larger set of hypermethylated, high-CpG

FIG. 7. Differential meth-
ylation in embryo-derived
pluripotent cells and in the
epiblast. (A) Methylation
status in the epiblast (E6.5).
(B) Comparison of methyla-
tion in promoters common to
Borgel et al. [12]) and our
study. Promoters were clas-
sified according to their mean
methylation status in EpiSCs
and each category further
separated according to their
methylation values in E6.5
epiblasts. (C) Gene expres-
sion of DNA methylation
modifying enzymes in E6.5
epiblast and EpiSCs deter-
mined by RT-qPCR. Bars
represent SEM. *P< 0.05,
Mann–Whitney U test. (D)
Changes in the CpG level
of methylation in the pro-
moter of Aebp1, Chrna3, and
Daam2 during derivation of
EpiSCs. Genomic DNA after
bisulfite conversion was di-
rectly sequenced and the sta-
tus of the CpGs was indicated
as in Figs. 5 and 6. (E) Ex-
pression status in the epiblast
of genes that contain meth-
ylated promoters in EpiSCs.
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content promoters is present in EpiSCs compared with
ESCs, and these promoters are associated with a bivalent
signature in ESCs (Supplementary Fig S8A, B). GO term
analysis of methylated promoters in both cell types also
shows overlap with our analysis (see Fig. 3A), with a pro-
minent targeting of methylation toward germline associated
promoters (Supplementary Fig. S8C). In addition, a recent
report by Hackett et al. shows an increase of methylcytosine
at promoters in EpiSC [52]. Together, these two indepen-
dent analyses performed on ESC and EpiSCs of different
origins with different profiling techniques show that the
epigenome of the primed EpiSCs clearly differ from that of
the naı̈ve ESCs.

The differences in promoter methylation in the two plu-
ripotent cell types reported here are well correlated with the
differences in expression of the enzymes involved in the
control of DNA methylation. We show that Dnmt3b is more
abundant in EpiSCs compared with ESCs, which in partic-
ular could explain the increased deposition of methylation at
promoters of germline genes [53]. The expression of the two
main Tet enzymes involved in active demethylation and
present in ESCs, Tet1 and Tet2, are largely downregulated in
EpiSCs. Interestingly, TET1 has been suggested to help in
maintaining a demethylated state at bivalent promoters
[54,55]. Dnmt3l, a cofactor of Dnmt3a/3b, also rapidly de-
creases during ESC-EpiSC conversion and remains low in
EpiSCs. A recent study have shown that DNMT3L interacts
with PRC2, the polycomb complex that tri-methylates
H3K27, which helps in maintaining the bivalent domains
free of DNA methylation by preventing their access by
DNMT3A/3B [56]. Although the total quantity of DNMT3A
remains constant in EpiSCs and ESCs, an additional splicing
isoform, DNMT3A1, is present in EpiSCs [51]. Interest-
ingly, this isoform is also upregulated upon retinoic acid
ESC differentiation and exhibits distinct gene targets [57].
Altogether these data provide a functional explanation for
the preferential deposition of DNA methylation in EpiSC at
sites that show bivalent histone marks in ESCs.

Our study indicates that ESCs obtained by reversion of
EpiSCs show persistent methylation at some promoters,
which is very difficult to erase. Even after extended culture
and stringent selection, a residual methylation apparently
persists at some alleles and some CpGs. Culture of the re-
vertant cells at clonal density excludes the presence of any
residual EpiSCs that would die in our assay when passaged
as single cells [3]. Persistence of residual methylation has
been previously observed in somatic cells reprogrammed
using defined factors (iPSCs). It was recognized as an epi-
genetic memory, which could be erased at high passages
[58–60]. Reverted ESCs generated using the same protocol
as ours have been shown to be transcriptionally similar to
ESCs, even after a few passages, and able to give rise to
germline-competent chimeras [9], suggesting that the re-
sidual methylation does not impair the establishment of
naı̈ve pluripotency. Reversion of EpiSC to ESCs has been
successfully used as a model system to seek for factors that
facilitate reprogramming [61]. We propose that a quick and
complete erasure of DNA methylation at promoters would
be a good criterion for reprogramming efficiency.

The comparison of our dataset of methylated promoters in
EpiSCs with the dataset on epiblast cells [12] revealed that
many methylated promoters in EpiSCs are poorly methyl-

ated in the epiblast. Hence, hypermethylation at promoters
appears also to be a distinguishing feature of EpiSCs com-
pared to their in vivo counterpart. During epiblast culture,
we observed a rapid de novo methylation at the tested
promoters, within 3 days, similar to deposition of methyla-
tion during conversion of ESCs into EpiSCs. Although the
difference in promoter methylation in epiblast and EpiSC
does not have an immediate consequence in terms of gene
expression differences, it nevertheless implies that the epi-
genetic regulation of EpiSCs differs from that of their tissue
of origin, the epiblast. It is possible that in vivo the depo-
sition of methylation is controlled by external factors that
are relieved when the epiblast is explanted in vitro without
any surrounding tissues. Indeed, when the epiblast is dis-
sociated into single cells and cultured on feeders with LIF
and serum-containing medium, both Rex1 and Dppa3 pro-
moters, initially demethylated in the epiblast, become tran-
siently methylated, as they are in EpiSCs [9]. Culture
conditions used for EpiSCs required two active signaling
pathways, Activin/Nodal and FGF [29,62,63], which may be
involved in the stimulation of the hypermethylation in
EpiSCs. Interestingly, when ESCs are transferred from se-
rum-containing medium to serum-free medium containing
MEK and GSK3 inhibitors, they become extensively de-
methylated [19,20]. This is also the case for reverted ESCs,
which become more demethylated when grown in the same
serum-free conditions (data not shown). Several studies
have highlighted a complex crosstalk between FGF signal-
ing, Prdm14, Dnmt3b, and Tet that could play an inductive
role in this process [19,64,65]. In vivo, FGF signaling ac-
tivity as revealed by phosphorylated Erk1/2 is low in the
pregastrulation epiblast cells but becomes activated upon
derivation in the presence of FGF2-containing medium
[62,66]. As shown in this study, the conversion of ESCs into
EpiSCs provides an excellent system to further decipher the
role of these various components in the regulation of DNA
methylation.

In conclusion, our study shows that EpiSCs have a spe-
cific DNA methylome signature, in particular at promoters.
It differs from both ESCs and from the epiblast they origi-
nate from, and cannot be easily erased by reprogramming
EpiSCs to a more naı̈ve ESC-like state through modulation
of the culture conditions. The rapid molecular and epige-
netic changes during the first days of ESC-to-EpiSC con-
version make it an interesting system to further study the
role of DNA methylation in the transition from naı̈ve to a
primed state of pluripotency.
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Acquiring Ground State Pluripotency:
Switching Mouse Embryonic Stem Cells
from Serum/LIF Medium to 2i/LIF Medium

Matteo Tosolini and Alice Jouneau

Abstract

Mouse embryonic stem cells (ESCs) derive from the inner cell mass (ICM) of a blastocyst. These cells are
pluripotent and thus able to generate both somatic and germinal lineages. It is possible to maintain ESCs in
different pluripotent states depending on the in vitro culture conditions. Classically, ESCs are cultured in
the presence of serum and LIF, which sustain the naive state of pluripotency but in this metastable state cells
exhibit a large degree of heterogeneity. In the last few years, it has been discovered that when ESCs are
cultured in a chemically defined medium (without serum), in the presence of LIF and with the addition of
two small molecules (in particular the inhibitors of MAPK and Gsk-3 pathways), they reach a ground state
of pluripotency where cells are more homogeneous and more “ICM-like.” In this protocol, we describe
how we culture mouse ESCs and the way we switch them from naive to ground state.

Keywords: Mouse embryonic stem cells (ESCs), Serum, 2i, Chemically defined medium (CDM),
Laminin

1 Introduction

Mouse embryonic stem cells (ESCs) derive from the inner cell mass
(ICM) of an E3.5 embryo at the blastocyst stage (1). These cells are
in a pluripotent state that means they are characterized by the
ability to differentiate and generate both somatic and germ
lineages, indeed when injected into a blastocyst, these cells are
able to generate chimeric embryos. In addition, when injected
subcutaneously into a mouse, they give rise to teratomas (2).
Historically, mouse ESCs were maintained in the pluripotent state
by culturing them in fetal bovine serum (FBS) containing medium,
on a layer of mitotically inactivated fibroblasts called “feeder” cells,
which provides trophic factors for the growth of ESCs (3). In
particular, “feeder” cells were shown to produce Leukemia inhibi-
tory factor (LIF) and so the addition of this interleukin into the
medium could replace feeders (4). LIF is an activator of the tran-
scriptional factor Stat3, which inhibits ESCs differentiation and
promotes self-renewal (5). ESCs cultured in serum/LIF conditions



are defined to be naive pluripotent cells in order to distinguish
them from Epiblast stem cells (EpiSCs), which are in a primed
pluripotent state, more prone to differentiation (6). EpiSCs derive
from late epiblast, a postimplantation mouse embryo at E5.5 and
in vitro they required Activin A and Fibroblast Growth Factor
2 (FGF2) instead of LIF and serum to sustain pluripotency (7, 8).
Analysis of ESCs cultured in serum conditions showed a strong
heterogeneity in the population of cells, even in the expression of
pluripotency factors, due to the uncontrolled and multifactorial
stimulation by all the extracellular signals present in the serum.
The identification of two small molecules that could substitute for
serum to sustain ESCs culture was a turning point in the field. In
particular, it is possible to culture ESCs without serum with the
addition of PD0325901, an inhibitor of mitogen-activated protein
kinase (MAPK), and CHIR99021, an inhibitor of glycogen
synthase kinase-3 (Gsk3) (9), and in presence of LIF. This new
defined medium called “2i” leads to obtain ESCs in a new state:
ground pluripotency. ESCs in 2i are more homogeneous and show
lower expression of lineage-associated genes and less DNA methyl-
ation, so they are closer to ICM-like cells (10, 11). Concerning
mouse pluripotency three distinct states can be distinguished:
ground, naive, and primed, which correspond to ESCs in 2i con-
ditions, ESCs in serum condition and EpiSCs, respectively. These
states are reversible and interconvertible. One of the advantages of
using a completely defined medium is that the same basal medium
can be used to convert ESC to EpiSC, with the only change being
the added factors, in this specific case from 2i/LIF to Activin A/
FGF2.

2 Materials

1. Conical centrifuge tubes 15 and 50 mL, sterile.

2. Graduated plastic pipettes (sterile, single package) of 2, 5, 10,
and 25 mL.

3. Glass Pasteur pipettes sterilized in an aluminium container
using a dry oven (4 h at 180 �C).

4. Plastic sterile petri dishes for cell culture of 35 and 60 mm of
diameter.

5. Cryotube vials of 1.8 mL.

6. Freezing container for tube of 1.8 mL (rate of cooling
�1 �C/min).

7. Low temperature freezer (�80 �C).

8. Liquid nitrogen container (�196 �C).

9. Pipets P1000, P200, P20, P10, and sterile plastic tips.
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10. 20 mL syringes.

11. Syringe membrane filters, 0.22 μm, in PES (Polyethersulfone).

12. Water bath.

13. Centrifuge (for 15 mL plastic tubes).

14. Incubator at 37 �C in a humid atmosphere with 5 % CO2.

15. Vertical laminar flow hood.

16. Aspiration system.

17. H2O Milli-Q produced with a resistivity of 18.2 MΩ cm at
25 �C and sterilized.

18. Dimethyl sulfoxide (DMSO) �99 %.

19. Dulbecco’s phosphate-buffered saline (DPBS) 1� sterile with-
out Ca2+ and Mg2+.

20. Trypsin-EDTA (0.25 %). Aliquots of 10 mL stored at �20 �C.

21. Protease-free BSA (Bovine serum albumin). Powder stored at
+4 �C.

22. 2-Mercaptoethanol (50 mM). Aliquots of 1 mL stored at
+4 �C.

23. Transferrin. Resuspended in H2O Milli-Q at the final concen-
tration of 30 mg/mL. Aliquots stored at �20 �C.

24. Recombinant Insulin. Resuspended in H2OMilli-Q at the final
concentration of 10 μg/mL. Aliquots stored at �20 �C.

25. Leukemia Inhibitory Factor (LIF). Resuspend in PBS/BSA
0.1 % to the final concentration of 10 μg/mL (106 U/mL).
Aliquots stored at �20 �C.

26. Laminin 1 mg/mL. Aliquots of 10 μL stored at �20 �C.

27. CHIR99021. Resuspended in DMSO to a final concentration
of 10 mM. Aliquots stored at �20 �C.

28. PD0325901. Resuspended in DMSO to final concentration of
10 mM. Aliquots stored at �20 �C.

29. Gelatine Type A from porcine skin. Resuspended at 0.2 % in
H2O Milli-Q and sterilized. Stored at +4 �C.

30. Ham’s F-12 Nutrient Mix 1�, supplemented with 2 mM of
L-glutamine. Stored at +4 �C.

31. Iscove’s Modified Dulbecco’s Medium (IMDM) 1�, supple-
mented with 2 mM of L-glutamine. Stored at +4 �C.

32. Dulbecco’s Modified Eagle Medium (DMEM) 1�, supple-
mented with 2 mM of L-glutamine. Stored at +4 �C.

33. FBS (Fetal bovine serum) tested for ESC culture. Stock stored
at �80 �C, while aliquots of 50 mL at �20 �C.

34. FBS (Fetal bovine serum). Stock stored at �80 �C, while
aliquots of 50 mL at �20 �C.
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35. Chemically Defined (CD) Lipid Concentrate. Aliquots of
10 mL stored at +4 �C.

36. 1-Thioglycerol �97 %. Aliquots of 50 μL stored at +4 �C.

3 Methods

All the cell culture work is performed under sterile condition:
manipulation of cells and preparation of solutions are done under
a vertical laminar flow hood. ESCs are cultured at 37 �C in a humid
atmosphere with 5 % of CO2.

3.1 Serum-

Containing Medium

1. For ESC culture, the serum-containing medium is prepared
with 85 % DMEM 1� (supplemented with 2 mM of L-gluta-
mine), 15 % FBS tested for ESC culture (see Note 1), 0.1 mM
of 2-mercaptoethanol, and 800 U/mL of LIF. Serum/LIF
medium can be kept for 1 month at +4 �C.

2. Inactivating medium: the serum-containing medium to inacti-
vate the Trypsin is prepared with 90 % DMEM 1� (supple-
mented with 2 mM of L-glutamine), 10 % FBS, and 0.1 mM
of 2-mercaptoethanol.

3.2 Chemically

Defined Medium (CDM)

1. CDM is prepared with 50 % IMDM 1� (Supplemented with
2 mM of L-glutamine), 50 % Ham’s F-12 Nutrient Mix 1�
(Supplemented with 2 mM of L-glutamine), 5 mg/mL BSA
(see Note 2), 1 % CD lipid concentrate, 450 μM of
1-thioglycerol, 7 μg/mL recombinant insulin, and 15 μg/mL
transferrin. The CDM is then sterilized by filtering with
0.22 μm PES membrane filter. CDM can be kept for 1 month
at +4 �C.

2. The final ESC 2i culture medium is prepared by adding 3 μMof
CHIR99021, 1 μM of PD0325901, and 700 U/mL of LIF to
CDM. CDM/2i/LIF can be kept for 1 month at +4 �C.

3.3 ESC Cultured in

Serum-Containing

Medium

1. Incubate dishes with Gelatin 0.2 % (1 mL for dishes of 35 mm)
for at least 1 h at 37 �C.

2. Pre-warm ESC culture serum-containing medium, Trypsin-
EDTA (0.25 %), and inactivating medium in the water bath at
37 �C.

3. Aspirate gelatin from the dishes with a sterile glass Pasteur
pipette.

4. Replace the gelatin by serum-containing medium for ESC
(1.5 mL for dishes of 35 mm) and put the dishes in the
incubator for equilibration.

5. Aspirate the old medium from the dish with cells at confluence.
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6. Quickly wash cells with DPBS kept at room temperature (2 mL
for dishes of 35 mm).

7. Add Trypsin-EDTA (0.25 %) to cells (1 mL for dishes of
35 mm) and incubate for 2 min at 37 �C to detach cells from
the dishes.

8. Add on top the same volume (1 mL for dishes of 35 mm) of
inactivating medium and completely dissociate the cells by
pipetting several times with a P1000 pipet.

9. Transfer the cells into a 15-mL plastic tube and centrifuge
5 min at 200 � g at room temperature.

10. Aspirate the supernatant and resuspend thoroughly the visible
cell pellet with fresh ESC culture serum-containing medium by
pipetting with P1000 pipet.

11. Finally plate the cells in the new dish (see Note 3).

3.4 ESC Cultured

in CDM/2i Medium

1. Incubate dishes with Laminin (see Note 4) diluted directly and
freshly in DPBS (1 mL for dishes of 35 mm) at the final concen-
tration of 10 μg/mL for at least 1 h at 37 �C (seeNote 5).

2. Pre-warm CDM, CDM/2i/LIF, Trypsin-EDTA (0.25 %), and
the inactivating medium in the water bath at 37 �C.

3. Remove Laminin from the dishes by aspiration.

4. Replace Laminin by CDM/2i/LIF medium (1.5 mL for dishes
of 35mm) and put the dishes in the incubator for equilibration.

5. Aspirate the old medium from the dish with cells at confluence
(ESC in CDM/2i/LIF or ESC in serum/LIF with or without
feeder cells, see Note 6).

6. Add directly, without DPBS washing step, Trypsin-EDTA
(0.25 %) to cells (1 mL for dishes of 35 mm) and incubate for
3–4 min at 37 �C to detach cells from the dishes (see Note 7).

7. Add on top the same amount (1 mL for dishes of 35 mm) of
inactivating medium and dissociate the cells by pipetting with
P1000 pipette.

8. Transfer the cells into a 15-mL plastic tube and centrifuge
5 min at 200 � g.

9. Aspirate the supernatant and resuspend the visible cell pellet
with fresh CDM by pipetting with P1000 pipette in order to
wash cells from serum.

10. Centrifuge another time for 5 min at 200 � g.

11. Aspirate the surnatant and resuspend thoroughly the visible cell
pellet of with fresh CDM/2i/LIF medium by pipetting with
P1000 pipette.

12. Finally plate the cells in the new dish (see Notes 8 and 9).
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3.5 Freezing and

Thawing ESC

1. Dissociate the cells with Trypsin and prepare a cell pellet as in
Sect. 3.3 (steps 5–9) or Sect. 3.4 (steps 5–8).

2. Remove the supernatant by aspiration and resuspend the visible
cell pellet by pipetting with P1000 pipette 1 mL of freezing
medium freshly made with 70 % of ESC culture serum-
containing medium, 20 % FBS, and 10 % of DMSO for ESC
in serum conditions or 60 % of CDM, 30 % FBS, and 10 % of
DMSO for ESC in 2i condition.

3. Transfer the cells in freezing medium into a cryotube vial of
1.8 mL and this one into a Freezing container, which is then
put for a couple of days at �80 �C.

4. Finally transfer the frozen vials into a liquid nitrogen container
(�196 �C) for long-term storage.

5. Pre-warm CDM, CDM/2i/LIF medium, serum/LIF
medium, and inactivating medium in the water bath at 37 �C.

6. Thaw the vials with cells in the water bath at 37 �C.

7. Add the 1 mL of cells in freezing medium on top of 4 mL of
serum-containing medium for ESC in serum conditions, or
CDM for ESC in 2i condition, in a 15-mL plastic tube and
centrifuge for 5 min at 200 � g.

8. Aspirate the supernatant and resuspend the visible cell pellet of
with fresh serum/LIF medium or CDM/2i/LIF medium
(according to ESC culture conditions) by pipetting with
P1000 pipette.

9. Finally plate the cells in the new gelatin- or laminin-coated dish
accordingly (see Note 10).

4 Notes

1. It is important to test different types of FBS in order to find a
batch that leads to optimum cell growth and maintenance of
pluripotency of ESCs.

2. It is also necessary to test different batches of BSA for ESC
culture to check for optimal growth and absence of
differentiation.

3. ESCs in serum-containing medium are usually passaged every
2 days with a dilution of 1/6, if there is a lot of mortality, the
medium is changed daily. To let the cells grow for 3 days, dilute
them 1/12.

4. ESCs in 2i condition could also be cultured on gelatin-coated
dishes, but they will grow as ball-like colonies, sometimes
loosely attached and this becomes an issue when performing
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immunofluorescence, for example. On the other hand, Lami-
nin coating leads to full attachment and spreading of these cells,
which is convenient for further manipulations (Fig. 1).

5. The aliquot of Laminin should be thawed gently at +4 �C and
then diluted directly in DPBS in the dish that needs to be
coated. It is not possible to use two times the same diluted
Laminin to make the coating of a second dish, as not enough
Laminin remains after the first incubation.

6. ESCs in serum condition can also be cultured on a layer of
feeder cells. In this case, it is necessary to get rid of feeder cells
in order to convert ESC into the ground state. To accomplish
this, the pre-plating step is essential: after passaging the ESC
with feeders, cells are plated twice on noncoated cell culture
plates for 20 min before the final plating on laminin-coated
dishes. Because ESCs need many hours to attach, during the
pre-plating steps, only the feeder cells will have time to attach.

7. When performing the switching, so starting from ESCs in
serum (with or without feeders), it is necessary to perform
the washing with DPBS and the tryspin treatment should be
shorter about 2 min. Otherwise, during normal passage of
ESCs that are already in 2i medium, no washing step is
required.

8. ESCs in 2i condition are usually passaged every 3 or 4 days with
a dilution 1/6 or 1/8 and the medium is changed every 2 days.

9. In first two or three passages after the switching of ESCs
from serum/LIF condition to 2i/LIF condition, cells usually
appear not completely attached to dished showing some
flat colonies and some ball-like colonies typical of standard
culture of ESCs in N2B27/2i/LIF on gelatin-coated dishes

Fig. 1 Morphology of ESCs under the phase contrast microscope. (a) ESCs in serum/LIF condition. (b) ESCs in

CDM/2i/LIF condition on plates coated with laminin (spread and attached colonies). (c) ESCs in CDM/2i/LIF

condition on plates coated with gelatin (ball-like colonies)
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(see Fig. 1). After 2 weeks of culture of ESCs under 2i/LIF
condition, cells are fully attached and we could consider that
they have reached the “ground state” (11).

10. Also after freezing and thawing, ESCs in 2i may not be
completely attached and spread during the first passage.
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Abstract

Mouse embryonic stem cells (ESCs) derive from the inner cell mass (ICM) of a blastocyst at E3.5 while
mouse epiblast stem cells (EpiSCs) derive from the late epiblast of a post-implantation embryo at
E5.5–E7.5. Both cells are able to differentiate into derivatives of the three germs layers but only ESCs
are able to produce chimeras when they are introduced into a blastocyst. To support the naive state of
pluripotency, ESC culture requires Leukemia inhibitory factor (Lif) and either serum or inhibitors of Erk
and Gsk3 pathways (2i) while the primed pluripotency of EpiSCs is maintained using Activin A and
Fibroblast Growth Factor 2 (FGF2). It is possible to obtain EpiSCs in vitro starting from ESCs but also
to induce ESCs starting from EpiSCs even if this second process is very difficult and inefficient. In this
protocol we describe how we perform the process of conversion from ESCs to EpiSCs.

Keywords: Mouse embryonic stem cells (ESCs), Epiblast stem cells (EpiSCs), Conversion, Collage-
nase, Chemically defined medium (CDM)

1 Introduction

From amouse embryo at different stages it is possible to capture two
types of pluripotent cells: mouse embryonic stem cells (ESCs) from
the inner cell mass (ICM) of a blastocyst at E3.5 and epiblast stem
cells (EpiSCs) from the late epiblast layer of a post-implantation
embryo at E5.5–E7.5 (1, 2). Both types of cells are pluripotent as
they are able to differentiate into derivatives of all three germ layers
either in vitro or in vivo through teratoma, but only ESCs are able to
produce chimeras when they are injected into a blastocyst (3). ESCs
and EpiSCs share the expression of the core pluripotency factors:
Oct4, Nanog, Sox2, but ESCs express some naive pluripotent factor
like Rex1 andKlf4 which are absent in EpiSCs, while EpiSCs express
some epiblast specific genes such as Fgf5 andOtx2which are already
markers of differentiation absent in ESCs. A strong epigenetic dif-
ference between naive and primed state of pluripotency is that
female ESCs have two active X chromosome while female EpiSCs
present already one inactive X chromosome. To be maintained
in vitro, ESCs required serum and Leukemia inhibitory factor
(Lif), an activator of the transcriptional factor Stat3 which inhibits



differentiation and promotes self-renewal of naive pluripotency (4).
On the other hand, EpiSCs do not respond to Lif while they
required Activin A and Fibroblast Growth Factor 2 (FGF2) to
sustain primed pluripotency in vitro (2, 5). EpiSCs share with
ESCs a large nuclear-to-cytoplasmic ratio and prominent nucleoli,
but their morphology is more two-dimensional and epithelial. In
addition EpiSCs do not survive efficiently as isolated single cells but
they need to be passaged in clumps, all these characteristics of
primed pluripotency in mouse are shared with human embryonic
stem cells (hESCs) (6). A recent study of our laboratory has shown
that the two states of mouse pluripotency differ also in terms of
DNAmethylation, in particular EpiSCs present a higher proportion
of methylation at a subset of gene promoters compared to ESCs and
some of these genes are specific to the naive pluripotency (7). It is
possible to convert in vitro ESCs into EpiSCs only by changing the
culture conditions (8). Interestingly the in vivo transition fromnaive
to primed pluripotency takes only 2 days while in vitro the conver-
sion process needs about a week to obtain stable colonies morpho-
logically similar to EpiSC (Fig. 1). However, a recent study has
shown that within 2 days of conversion, the cells extinguish the
expression of naive pluripotent genes, while adopting transiently
the identity of an early epiblast (9).Moreover it is possible in vitro to
induce the opposite process performing a reversion from EpiSCs to
ESCs, also by switching the culture conditions, but this process is

Fig. 1 Morphology of ESCs during conversion to EpiSCs under the phase contrast microscope. (a) ESCs in

CDM/2i/LIF. (b) Converted ESCs (cESCs) at day 1 of conversion. (c) cESCs at day 2 of conversion. (d) cESCs at

day 3 of conversion (high rate of mortality). (e) cESCs at day 5 of conversion: first appearance of EpiSC-like

colonies before the collagenase treatment. (f) cESCs at day 7 of conversion (after the first passage): big EpiSCs

colonies
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inefficient and long, suggesting the presence of an epigenetic
barrier as during the reprogramming from somatic to pluripotent
cells (10). Conversion from ESC to EpiSC is a useful model to
study the molecular and epigenetic events that trigger the transition
from the naive to the primed pluripotency (9, 11–13). In the last
few years the discovery of two small molecules that inhibit the
MAPK and Gsk-3 pathways and could substitute serum in ESCs
culture makes a great change in the field (14). With this new
completely defined (2i) culture condition, ESCs displayed a state
of pluripotency closer to that of the ICM (15, 16). One of the
advantages of using a chemically defined medium (CDM) is that
the same basal medium can be used to convert ESC to EpiSC, with
the only change being the added factors, in this specific case from
2i/LIF to Activin A/FGF2.

2 Materials

2.1 Materials 1. Conical centrifuge tubes 15 and 50 mL, sterile.

2. Graduated plastic pipettes (sterile, single package) of 2, 5, 10,
and 25 mL.

3. Glass Pasteur pipettes sterilized in an aluminum container using
a dry oven (4 h at 180 �C).

4. Plastic sterile Petri dishes for cell culture of 35 and 60 mm of
diameter (see Note 1).

5. Pipettes P1000, P200, P20, P10 and sterile plastic tips.

6. 20 mL syringes.

7. Syringe membrane filters, 0.22 μm, in PES (Polyethersulfone).

8. Water bath.

9. Centrifuge (for 15 mL plastic tubes).

10. Incubator at 37 �C in a humid atmosphere with 5 % CO2.

11. Vertical laminar flow hood.

12. Aspiration system.

13. Phase-contrast microscope and Neubauer chamber or other
cell counting method.

14. H2O Milli-Q produced with a resistivity of 18.2 MΩ cm at
25 �C and sterilized.

15. Dimethyl sulfoxide (DMSO) �99 %.

16. Dulbecco’s Phosphate-Buffered Saline (DPBS) 1� sterile
without Ca2+ and Mg2+.

17. Trypsin–EDTA (0.25 %). Aliquots of 10 mL stored at �20 �C.
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18. Collagenase from Clostridium histolyticum. Powder stored
at �20 �C.

19. Protease-free BSA (Bovine serum albumin). Powder stored at
+4 �C.

20. 2-mercaptoethanol (50 mM). Aliquots of 1 mL stored at
+4 �C.

21. Transferrin. Resuspended in H2O Milli-Q at the final concen-
tration of 30 mg/mL. Aliquots stored at �20 �C.

22. Recombinant Insulin. Resuspended in H2OMilli-Q at the final
concentration of 10 μg/mL. Aliquots stored at �20 �C.

23. Recombinant Fibroblast Growth Factor-basic (FGF2). Resus-
pended in DPBS with 0.1 % BSA and 1 mM DTT at the final
concentration of 12 μg/mL. Aliquots of 20 μL stored at
�20 �C.

24. Activin A. Resuspended in DPBS with 0.1 % BSA at the final
concentration of 20 μg/mL. Aliquots of 20 μL stored at
�20 �C.

25. Ham’s F-12 Nutrient Mix 1�, supplemented with 2 mM of
L-glutamine. Stored at +4 �C.

26. Iscove’s Modified Dulbecco’s Medium (IMDM) 1�, supple-
mented with 2 mM of L-glutamine. Stored at +4 �C.

27. Dulbecco’s Modified Eagle Medium (DMEM) 1�, supple-
mented with 2 mM of L-glutamine. Stored at +4 �C.

28. FBS (Fetal bovine serum). Stock stored at �80 �C, while
aliquots of 50 mL at �20 �C.

29. Chemically Defined (CD) Lipid Concentrate. Aliquots of
10 mL stored at +4 �C.

30. 1-Thioglycerol �97 %. Aliquots of 50 μL stored at +4 �C.

2.2 Collagenase II

Solution

Collagenase II solution is prepared with: 50 % IMDM 1� (supple-
mented with 2 nM of L-glutamine), 50 %Ham’s F-12 Nutrient Mix
1� (supplemented with 2 nM of L-glutamine), 3.5 mg/mL of
collagenase from Clostridium histolyticum (see Note 2). The solu-
tion is then sterilized by filtering with 0.22 μm PES membrane
filter. Collagenase II solution can be kept for 1 month at +4 �C.

2.3 Chemically

Defined Medium (CDM)

CDM is prepared with: 50 % IMDM 1� (supplemented with 2 mM
of L-glutamine), 50 %Ham’s F-12 NutrientMix 1� (supplemented
with 2 mM of L-glutamine), 5 mg/mL BSA (see Note 3), 1 % CD
lipid concentrate, 450 μMof 1-thioglycerol, 7 μg/mL recombinant
insulin, 15 μg/mL transferrin. The CDM is then sterilized by
filtering with 0.22 μm PES membrane filter. CDM can be kept for
1 month at +4 �C.
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2.4 Serum-

Containing Medium

This medium will be used to inactivate the trypsin and as a source of
extracellular matrix to coat the dishes for converting cells. It con-
tains a basal medium such as DMEM, IMDMor F12 supplemented
with 10 % FBS. It can be kept for 2 months at 4 �C.

3 Methods

All the cell culture work is performed under sterile condition:
manipulation of cells and preparation of solutions are done under
a vertical laminar flow hood. ESCs and EpiSCs are cultured at 37 �C
in a humid atmosphere with 5 % of CO2.

3.1 Conversion from

ESCs to EpiSCs

1. Incubate 35 mm dishes with 1 ml of serum-containing medium
for at least 1 h at 37 �C (see Note 4).

2. Pre-warm Trypsin–EDTA (0.25 %), serum-containing medium
and CDM in the water bath at 37 �C.

3. Aspirate serum-containing medium from the dishes with a
sterile glass Pasteur pipette.

4. Perform a DPBS wash (1 mL for dishes of 35 mm).

5. Replaced DPBS by CDM (1.5 mL for dishes of 35 mm) sup-
plemented freshly with 12 μg/mL of FGF2 and 20 μg/mL of
Activin A and put the dishes in the incubator for equilibration.

6. Aspirate the oldmedium from the dishes with ESCs (seeNote 5).

7. Quickly wash cells with DPBS kept at room temperature (see
Note 6).

8. Add Trypsin–EDTA (0.25 %) on ESCs and incubate at 37 �C
for 2 or 3 min according to their condition, serum or 2i
respectively, to detach cells from the dishes.

9. Add on top the same volume of serum-containing medium and
completely dissociate the cells by pipetting several times with a
P1000 pipet.

10. Take a little amount of solution with ESCs singularized to
count them.

11. Transfer the cells into a 15 mL plastic tube and centrifuge
5 min at 200 g at room temperature.

12. Aspirate the supernatant and thoroughly resuspend the visible cell
pellet with 1 mL of CDM by pipetting with P1000 pipette and
centrifuge another time for 5 min at 200 g at room temperature.

13. Aspirate the supernatant and resuspend ESCs in the appropri-
ate amount of CDM according to the number of cells counted.

14. Finally plate 1.5 millions of ESCs in the new dishes coated with
serum or fibronectin and containing CDM supplemented with
FGF2 and Activin A.

From Naive to Primed Pluripotency: In Vitro Conversion. . .



15. Every day replace the old medium with fresh CDM supplemen-
ted with the factors (see Note 7).

16. At the fifth day of conversion there is normally the appearance
of first EpiSCs-like colonies (already quite flat or more ball-like
ones) and they need to be passaged in order to help them to
spread (Fig. 1). If the colonies are still small, wait one more day
before passaging.

3.2 Passaging

of EpiSCs Colonies

1. Prepare the new plates as in 3.1 (steps 1, 3–5).

2. Pre-warm collagenase II solution and CDM in the water bath at
37 �C.

3. Aspirate the old medium from the dishes.

4. Wash cells with DPBS kept at room temperature.

5. Add collagenase II solution on the EpiSC-like cells (400 μL for
dishes of 35 mm) and incubate for 30 s at room temperature
(see Note 8).

6. Wash with DPBS.

7. Flush the EpiSC-like colonies using 1mL of CDM and a P1000
pipette in order to detach them in clumps without pipetting
and singularizing cells.

8. Transfer the cells into a 15 mL plastic tube (see Note 9) and
centrifuge 5 min at 200 g at room temperature.

9. Aspirate the supernatant and resuspend very gently the cells in
CDM just with one or two pipetting of P1000 pipette in order
to keep EpiSCs colonies in clumps and not single cells.

10. Transfer EpiSC colonies in the newly prepared dishes (see
Note 10).

4 Notes

1. Test different types of plastic petri dishes for EpiSCs culture to
check for optimal growth and absence of differentiation along
passages.

2. To help dissolution of collagenase from Clostridium histolyti-

cum leave the solution few minutes in the water bath at 37 �C
before filtering it. The warm solution is naturally cloudy.

3. It is necessary to test different batches of BSA for EpiSCs culture
to check for optimal growth and absence of differentiation.

4. The serum-containing medium can be replaced by fibronectin:
use a dilution of 20 μg/ml in DPBS and incubate the dishes at
least 20 mn at 37 �C.

5. The conversion can be performed starting from ESCs either
cultured in 2i/Lif or in serum/Lif conditions. However,

Matteo Tosolini and Alice Jouneau



conversion seems to induce less mortality when starting from
ESCs cultured in 2i/Lif.

6. This step is necessary only if the ESCs are in serum condition.

7. During conversion there is a high rate of cell mortality so in this
case it is better to wash with DPBS before changing the
medium in order to eliminate the maximum of dead cells.

8. When the collagenase II solution is fresh-made, it is very active; so
even 20 s will be sufficient to detach EpiSCs colonies fromdishes.

9. Repeat 3.2 step 7more than once using another 1 mL of CDM
in order to detach the maximum of EpiSCs colonies trying not
to break them too much.

10. For the first passaging at the fifth day of conversion the suspen-
sion is not diluted as there is still a lot of mortality. For the
next passages dilution will be 1/2 then 1/3 every 2–3 days
approximately.
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ABSTRACT 

 

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent naïve and primed 

pluripotency states, respectively and are maintained in vitro using specific signalling pathways. 

Furthermore, ESCs cultured in serum-free medium with two kinase inhibitors (2i medium) are 

described as being the most naïve pluripotent state. Although several studies suggest that different 

epigenome organizations characterize each pluripotent state, no such comparison has yet been 

made concerning pericentromeric heterochromatin (PCH). Here we present a comparative study of 

the epigenetic and transcriptional state of PCH sequences in the distinctive naïve and primed 

pluripotency states. We show that the pattern of H3K27me3 is highly dynamic and discriminate the 

most naïve 2i-ESCs from the others. Whereas transcription is high in serum-ESCs, it is lower in 2i ESCs 

and even more repressed in the primed EpiSCs. Removal of either DNA methylation or H3K9me3 in 

ESCs leads to enhanced deposition of H3K27me3 but few changes in satellite transcription. By 

contrast, in EpiSCs, removal of H3K9me3 does not prevent DNA methylation but lift transcriptional 

repression in EpiSCs. Altogether our study reveals that PCH in mouse pluripotent stem cells display 

distinct features according to the pluripotency state and culture conditions. 
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INTRODUCTION 

Pluripotency is defined by the ability to generate cells belonging to the three embryonic lineages. 

Cells derived in vitro in the Mouse have allowed distinguishing a naïve from a primed state of 

pluripotency 
1
. These two states functionally differ by their ability to produce chimeras. Naive 

embryonic stem cells (ESCs) colonize the inner cell mass (ICM) when injected into blastocyst and 

eventually allow generation of full-term chimeras. By contrast, primed epiblast stem cells (EpiSCs) 

only colonize the post-implantation epiblast and their contribution to later development remains to 

be demonstrated 
2
. These two states are maintained in vitro using specific signalling pathways, 

mainly Lif/Stat3 for the naïve cells and FGF and Activin for the primed cells 
3,4

. ESCs are classically 

maintained in serum-containing medium but can also be cultured in serum-free medium  with Lif and 

inhibitors of two differentiation pathways, the MAPK/ERK (mitogen-activated protein kinases / 

Extracellular signal-regulated kinases) and the GSK3 (Glycogen synthase kinase 3) pathways 
5
. In this 

2i/Lif medium (later referred as “2i” only), cells acquire an even more naïve state, with efficient 

repression of lineage commitment markers and homogenous expression of pluripotency genes 
6,7

. By 

contrast, the EpiSC transcriptome reflects their primed nature, as they already express many lineage 

commitment markers while some pluripotency genes are down-regulated 
3,8

. ESCs cultured in 

serum/Lif (serum-ESCs) display somehow an intermediate transcriptome, with heterogeneous levels 

of pluripotency markers and low but detectable expression of differentiation genes 
6,7

. 

ESCs are considered to have a more open and plastic chromatin than differentiated cells 
9–12

. 

Indeed, the epigenome is rapidly and reversibly modified according to culture medium, 2i or serum 

7,13,14
. Specifically, 2i-ESCs exhibit significantly reduced H3K27me3 deposition at promoters and a 

globally DNA hypomethylated state of the genome 
7,13

. ESCs can be converted into EpiSCs (cEpiScs) in 

vitro when exposed to FGF and Activin signalling instead of Lif and serum or inhibitors 
15

. By contrast, 

the reversion of EpiSCs into naïve cells is a long and inefficient process, eliciting the notion of 

epigenetic barrier 
16

. Although fewer in-depth analyses have been reported, available data indicate 

that during conversion to the primed state, many promoters become DNA hypermethylated together 

with substantial reorganization of enhancer landscapes, relative to ESCs 
17,18

.  

Studies mentioned above suggest that the epigenome organization characterizes each pluripotent 

cell type. Such comparison has not yet been made concerning the constitutive heterochromatin 

compartment. This compartment is composed of repeated DNA sequences located at telomeres, 

centromeres and pericentromeric regions 
19

. The proper control of these regions is crucial for 

chromosomal stability 
20

. Beside telomeric sequences, there are two types of repeats in mouse: 

major and minor satellites at the pericentromeric (PCH) and centromeric (CH) heterochromatin, 

respectively 
21

. The major satellite consists of a 234bp sequence repeated over 200,000 times, 

representing about 3% of the mouse genome, while the minor satellite unit is a 123pb sequence 



3 

 

repeated at least 50,000 times 
22

. In somatic cells, both PCH and CH from different chromosomes 

aggregate in clusters (chromocenters), which densely stain for DAPI, due to their high AT-rich 

content, and are typically enriched in repressive SUV39H1/2-mediated H3K9me3 marker 
23

. DNA 

methylation is another hallmark of constitutive heterochromatin that coexists with H3K9me3 
24

. 5-

methylcytosine (5-meC) is a repressive mark specifically de novo deposited by DNMT3A/B, while 

being maintained throughout cell division by DNMT1 
25,26

. Such repressive epigenetic state is not 

favourable to transcription; hence in somatic cells satellite repeats are poorly expressed 
27

. However, 

in cellular senescence, in some cancers and during early development, transcriptional activation has 

been observed, usually coincident with reduced DNA methylation at these sequences (reviewed in 

28
). In serum ESCs, in line with the concept of an open chromatin, and although major satellites are 

also enriched in H3K9me3 and 5-meC 
23,25

, transcription is higher compared to differentiated cells 

such as neural progenitors 
29

. If one or the other constitutive heterochromatin mark is missing, as for 

Suv39h or Dnmts knock-out ESCs, PCH harbours the typical facultative heterochromatin mark 

H3K27me3 
23,30,31

. Both 5-meC and H3K27me3 are largely reduced and redistributed upon switching 

to 2i medium, yet the PCH organization has not been yet studied in 2i-ESCs. In addition, whether the 

organization of PCH and the transcription state are conserved beyond the epigenetic barrier in the 

primed EpiSCs is not known.  

To address this question, we present a comprehensive and comparative study of the epigenetic 

and transcriptional state of PCH sequences in the distinctive naïve and primed pluripotency states. 

We show that PCH in naïve 2i-ESCs harbours an unusual constitution, with high enrichment of 

H3K27me3, at the expense of both H3K9me3 and DNA methylation. Despite a relaxed global 

structure, the satellite repeats are transcribed at a much lower level than in serum-ESCs. By contrast, 

PCH in primed EpiSCs harbours somatic like features, with dense deposition of H3K9me3 and 5-meC 

and repressed transcription of satellite repeats. Noteworthy, in EpiSCs, deposition of DNA 

methylation at PCH is independent of H3K9me3. At last we also show that transcription of major 

satellites is largely independent on the presence of DNA methylation and H3K9me3 in ESCs whereas 

it depends on H3K9me3 in EpiSCs. Altogether our study reveals that PCH in mouse pluripotent stem 

cells display distinct features according to the pluripotency state and culture condition and has 

important implications in the definition of the naïve state. 
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RESULTS 

 

Heterochromatin domains are characterized by different epigenetic histone marks depending 

on the pluripotent state. 

To characterize and compare the nuclear distribution of H3K9me3 and H3K27me3 histone marks 

at PCH/CH regions in ESCs (serum and 2i conditions) and EpiSCs, we performed immunostaining of 

both marks along with DAPI staining to detect chromocenters. We assessed the percentage of cell 

with H3K9me3 or H3K27me3 enrichment at these foci and determined their colocalization with DAPI 

staining using plot profile across nuclei. Our data show that the distribution of the two marks was 

different according to the cell type. In 2i-ESCs, only one third of the population display H3K9me3-

enriched PCH/CH foci (Fig. 1A). In such cells, H3K9me3-enriched foci were rare and small, and located 

close to the nuclear periphery (see the single nucleus magnification in Fig. 1A). Conversely all serum-

ESCs and EpiSCs showed numerous H3K9me3 foci, perfectly co-localizing with DAPI-dense foci (Fig. 

1A). 

Regarding H3K27me3, we also observed very distinctive nuclear distribution between ESCs and 

EpiSCs. Indeed, in 2i-ESCs, the majority of cells (69%) presented H3K27me3 enrichment at DAPI-

dense PCH/CH foci (Fig. 1A, see the single nucleus magnification). The distribution within the nucleus 

suggests that H3K27me3 substitutes for H3K9me3 at DAPI-dense foci. By contrast, the pattern of 

H3K27me3 was diffuse in most (95%) serum-ESCs, as expected for a facultative heterochromatin 

mark (Fig. 1A). In the primed EpiSCs, H3K27me3 signal was also diffuse and very low (Fig. 1A). 

To further explore these differences, we assessed the bulk level of the two histone marks in cell 

extracts from the three cell types. Quantification by western-blot indicated a slight decrease of the 

global level of H3K9me3 in 2i-ESCs compared to serum-ESCs and EpiSCs, and a much more 

pronounced loss of H3K27me3 in EpiSCs (Fig. 1B). Hence, in the primed EpiSCs, H3K27me3 was 

reduced not only at PCH but also elsewhere in the genome.  

We then examined the expression of Suv39h enzymes and found that, both mRNA and protein 

levels of Suv39h1 increased considerably between 2i-ESC and serum-ESCs or EpiSCs (Supplementary 

Fig. 1A). Accordingly, immunostaining revealed that SUV39H1 was diffuse in 2i-ESCs while 

accumulating in foci in 31% of the serum and in the vast majority (93%) of EpiSCs (Supplementary Fig. 

1A). We then investigated the distribution and expression of EZH2, the enzyme of the PRC2 complex 

that deposits H3K27me3. While transcription remains constant between cells types, the protein level 

of EZH2 was strongly reduced in EpiSCs relative to ESCs (Supplementary Fig. 1B). Yet, EZH2 

distribution was unchanged, as we observed by immunostaining the same diffuse signal with some 

bright and tiny spots (Supplementary Fig. 1B).  
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Altogether our data suggests that H3K27me3 is redistributed from facultative to constitutive 

heterochromatin when ESCs are transferred from serum to 2i medium, while being lost in EpiSCs. 

Conversely, H3K9me3 shows lower levels and mostly dispersed organization in 2i-ESCs, and higher-

levels with strong enrichment at DAPI-dense foci in serum-ESCs and EpiSCs. 

To strengthen these observations, we examined mitotic cells, as in the mouse acrocentric 

chromosomes, the PCH/CH domains are localized at one end. H3K27me3 was indeed clearly enriched 

at the PCH/CH in 2i-ESCs, while H3K9me3 was present all along the chromosomes (Fig. 1C). 

Conversely, in serum-ESCs and EpiSCs the ends of mitotic chromosomes were strongly enriched in 

H3K9me3, while H3K27me3 presented a continuous staining in serum-ESCs or was undetectable in 

EpiSCs (Fig. 1C). 

Finally, we used previously published H3K27me3 ChIP-seq datasets to quantify the reads mapping 

specifically on the major and minor satellite repeats. With the first dataset 
7
 we observed a 2-fold 

enrichment in 2i-ESC compared to serum-ESC for H3K27me3 at major satellites, while no difference 

was found for minor satellite (Supplementary Fig. 1C). Another dataset that allowed comparing 2i-

ESCs and EpiSCs 
32

, showed that 2i-ESCs presented a more than 2-fold enrichment of H3K27me3 on 

major satellites compared to input, but no enrichment at all in EpiSCs (Supplementary Fig. 1D). 

Conversely minor satellites showed no H3K27me3 enrichment in any cell type and therefore are not 

concerned by the epigenetic switch. 

 

Low level of DNA methylation at PCH in 2i-ESCs correlates with low level of Dnmt3s enzymes 

To further dissect the organization of the PCH in the different pluripotent cells, we examined by 

Southern-blot the DNA methylation level at major satellite sequences. We revealed impressive 

changes at these sequences between the different states of pluripotency (Fig. 2A). Major satellites 

were partially demethylated in 2i-ESCs, as shown by the linescan profile (red line) which is 

intermediate between fully demethylated DnmtTKO cells (purple line) and hypermethylated 

fibroblasts (MEFs - black line) (Fig. 2A). On the contrary, these sequences in both serum-ESCs (blue 

line) and EpiSCs (green line) were as methylated as the MEFs. A similar situation was observed for 

minor satellites that were partially demethylated in 2i-ESCs and hypermethylated in serum-ESCs and 

EpiSCs (Fig. 2B). 

We then assessed the expression level of the two main enzymes responsible for de novo 

methylation: DNMT3A and DNMT3B (Supplementary Fig. 2). Dnmt3a expression level increased 

strongly between 2i-ESCs and serum-ESCs and even more in EpiSCs. In parallel the embryonic isoform 

of the DNMT3A protein was about ten times more abundant in serum-ESCs than in 2i-ESCs, while 

EpiSCs gained the additional somatic form 
18,33

 (Supplementary Fig. 2A). Dnmt3b was transcribed at 

low level in ESCs (2i- or serum-) and this level strongly increased in EpiSCs (Supplementary Fig. 2B). 
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DNMT3B protein level showed a sequential increment going from 2i- to serum-ESCs and finally 

EpiSCs.  

In conclusion we observed a progressive methylation of satellites, accompanied by an increased 

expression of the de novo methyltransferases, from 2i-ESCs to EpiSCs.  

 

PCH is decondensed in 2i ESCs but transcriptionally repressed  

To assess the spatial organization of chromocenters depending on the state of pluripotency, we 

performed DNA-FISH using specific probes for major and minor satellites sequences (Fig. 3A), 

followed by nucleus segmentation and 3D single-cell reconstruction with AMIRA 3.1 software (Fig. 

3A). In EpiSCs and serum-ESCs major satellites sequences were organized into round compact 

domains, surrounded by smaller dots of minor satellite domains, as classic chromocenters in somatic 

cells 
21

. By contrast, major satellites formed decondensed domains of irregular size and shape in 2i-

ESCs (blebs, half-rings around nucleolus or at the nuclear periphery), reflecting globally unstructured 

chromocenters. A similar decondensation has been previously observed as a consequence of down-

regulation of the histone chaperone CAF-1/p150 in ESCs 
34

. The presence of this protein was assessed 

by immunostaining (Supplementary Fig. 3) and we observed a progressive increase in the proportion 

of cells displaying CAF1/p150 positive foci from 2i-ESCs (25 %) to serum-ESCs (33%) and to EpiSCs 

(42%). This suggests a role for this CAF-1 complex in the decondensation of major satellites in 2i-

ESCs. 

Such a decompacted PCH is expected to create a transcriptionally permissive environment. We 

therefore evaluated the level of expression of the associated transcripts by qRT-PCR on ESCs and 

EpiSCs (Fig. 3B). Surprisingly, 2i-ESCs expressed major satellites at lower level than serum-ESCs. In 

primed EpiSCs, expression was even lower than in 2i-ESCs. The same trend was observed for minor 

satellites. 

In conclusion, 2i-ESCs and EpiSCs similarly silence their PCH/CH regions despite different mode of 

repression and level of compaction. On the other hand, serum-ESCs are largely permissive for 

satellite transcription, despite prominent deposition of H3K9me3 and 5mC at these loci.  

 

Absence of Suv39h1/2 induces different phenotypes depending on the pluripotent cell state 

To decipher the cross-talk between the three repressive marks in the different pluripotent states 

at PCH, we examined their distribution upon removal of H3K9me3. For that we used the Suv39hdn 

mutant model, in which both Suv39h enzymes were knocked-out 
23

. We adapted these ESCs in 2i 

culture conditions and converted them in vitro in EpiSCs (cEpiSCs, supplementary Fig. 4).  

In 2i adapted mutant ESCs, no obvious modification in the pattern of H3K9me3 could be 

observed, relative to wild-type cells. However, a significant proportion of the cells (22%) still 
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exhibited small H3K9me3 enriched foci, indicating an H3K9me3-deposition at PCH independent of 

SUV39H1/2 enzymes (Fig.4A, compare with Fig.1A). Moreover, the same enrichment of H3K27me3 at 

PCH and a very similar, hypomethylated DNA methylation profile, were observed (Fig. 4A and B). 

Accordingly, the transcription level of major satellite sequences was overall unchanged in mutant 

and wild-type cells. Hence, in the 2i condition, the organization of PCH is largely independent of the 

deposition of H3K9me3 by SUV39H1/2. 

In serum-ESCs H3K9me3 staining revealed a diffuse pattern (with 95% of cells presenting no foci-

enrichment), as expected (Fig. 4A). It was previously shown that H3K27me3 could substitute for 

H3K9me3 at PCH foci in the mutant serum-ESCs 
22,23

. Here we confirmed this phenotype, as 60% of 

Suv39hdn serum-ESCs presented H3K27me3 at the DAPI-dense foci (Fig. 4A). Next, we showed that 

the absence of Suv39h1/2 in serum-ESCs induced a reduction of the methylation compared to wild-

type on major satellites (Fig. 4B – Note the shift of the blue dotted line compared to the continuous 

one), confirming previous findings 
31

. In spite of the loss of a repressive mark, transcription of major 

satellites was slightly decreased in Suv39hdn serum ESCs (Fig. 4C). Hence, the absence of Suv39h1/2 

in serum-ESCs induces a phenotype that recapitulates the 2i culture condition: increased H3K27me3 

and reduced DNA methylation, as well as lower transcription at PCH (although not as low as in 2i-

ESCs).. 

In the primed EpiSCs, we observed a contrasting situation. Mutant cells have completely lost 

H3K9me3 PCH foci, but in contrast to ESCs, they do not gain any H3K27me3 foci (Fig. 4A). Hence, in 

cEpiSCs, H3K27me3 does not substitute for H3K9me3 at PCH foci and their global level remains 

accordingly low (data not shown). In addition, major satellites were similarly methylated in wild-type 

and mutant cells (Fig. 4B – the green lines are quite superimposed). Very interestingly in Suv39hdn 

cEpiSCs, transcription of major satellites was de-repressed, up to the level of that seen in the mutant 

serum-ESCs (Fig. 4C). Altogether, while in serum-ESCs the absence of H3K9me3 at PCH leads to 

reduced DNA methylation and accumulation of H3K27me3, in mutant EpiSCs DNA methylation is 

restored but this does not prevent de-repression of major satellite transcription.  

 

Absence of DNA methylation increases deposition of H3K27me3 but has limited effects on 

satellite transcription 

To study the effects of DNA methylation in the epigenetic pathway involved in regulation of major 

satellite organization and transcription, we used Dnmt1, 3a, and 3b triple knock-out ESCs (DnmtTKO). 

These cells do not have any methylated cytosine in their genome 
35

 and notably at PCH (see Fig. 2A). 

We were able to adapt these cells in 2i but not to convert them into cEpiSC because of cell death 

(apoptosis), in agreement with their low contribution to the development of the epiblast when 

transferred in embryos 
36

. DnmtTKO serum-ESCs showed strong enrichment of H3K27me3 at PCH foci 
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(Fig. 5A), as expected from previous studies 
30,37

. Indeed we found that most (84%) mutant serum-

ESCs presented H3K27me3 enrichment at DAPI-dense foci. This enrichment was at the expense of 

H3K9me3 (Fig. 5A), as 100% of wild-type serum-ESCs contain H3K9me3 foci and only 52% of mutant 

cells (Fig. 5A and Fig. 1A). In 2i condition, the complete absence of DNA methylation led to an 

increased proportion of cells with H3K27me3 marked foci (94% 2i-DnmtTKO vs 69% in wild-type, see 

Fig. 5 and Fig. 1A). The pattern of H3K9me3 remained very similar in 2i-DnmtTKO compared to wild-

type, meaning small and rare foci (Fig. 5A and Fig. 1A). Transcription of major satellites was almost 

unchanged (Fig. 5B). In summary the absence of DNA methylation dramatically modifies the 

epigenetic state of PCH in serum-ESCs, inducing a strong enrichment of H3K27me3 and a reduction of 

H3K9me3-enriched foci, but no clear effect on major satellite transcription.  

 

Reduced levels of H3K27me3 do not up-regulate satellite transcription 

In order to study the role of H3K27me3 in the regulation of PCH transcription status, we used an 

inhibitor of the methyl-transferase activity of EZH2. We chose EPZ-6438 (further call for simplicity 

EPZ), a selective EZH2 inhibitor 
38

. The treatment of ESCs with EPZ for 72 hours led to an impressive 

reduction of the bulk levels of H3K27me3 (at least 70% in each cell types tested), with no changes in 

H3K9me3 levels (Fig. 6A-E). Immunostaining of 2i-ESCs treated with EPZ also confirmed a loss of 

H3K27me3 foci in the vast majority of cells with no major changes in H3K9me3 organization 

compared to DMSO-treated control cells (Fig. 6A-right panel). In addition the hypomethylated status 

of satellite sequences in 2i-ESCs treated cells was not affected, showing that there was no 

replacement of H3K27me3 by DNA methylation at PCH (Data not shown). We then analysed the 

transcription of major satellites. Unexpectedly, the loss of H3K27me3 in 2i-ESCs did not lead to an 

up-regulation of transcription, but on the contrary, to a slight reduction (Fig. 6A). When serum-ESCs 

were treated with the EZH2 inhibitor, although H3K27me3 is not as highly enriched at PCH as in 2i 

condition, we also observed a reduction of major satellite transcripts (Fig. 6B). We also performed 

the same inhibition in mutant cells that present a similar enrichment of H3K27me3 at PCH (namely 

Suv39hdn serum-ESCs and both DnmtTKO ESCs). In all cases, we also observed a slight reduction of 

major satellite transcription (Fig. 6C-E). To exclude a possible effect of EPZ treatment on pluripotency 

of ESC, we verified that the expression level of pluripotency genes was not altered (Data not shown). 

Altogether, the reduction of H3K27me3 at PCH does not induce an up-regulation of major satellite 

transcripts even in absence of the other repressive marks (such as H3K9me3 or DNA methylation) at 

the same sequences.  
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DISCUSSION 

 

Cross-talk between H3K9me3, H3K27me3 and 5-meC in mouse pluripotency 

Here we show that the interplay between different repressive marks at PCH is modulated 

according to the pluripotency state and culture condition (Fig. 7). We have observed that upon 

reduction of 5-meC, H3K27me3 becomes enriched at PCH in ESCs, in three different contexts: (i) after 

2i adaptation of ESCs, which leads to a general demethylation at the DNA level 
13

 ; (ii) in the 

Suv39hdn condition, which induces in serum-ESCs partial DNA demethylation of major satellites, as 

previously observed 
22,23,30,37

 ; (iii) in the total absence of 5-meC (DnmtTKO) in serum-ESCs (also 

shown in
 37

). Elsewhere in the genome, DNA methylation also antagonizes H3K27me3 deposition, as 

shown in DnmtTKO or 5-aza treated ESCs, where this mark is redistributed towards demethylated 

CpG sites, at the expense of PRC2 canonical target sites 
30,39

. Conversely, DNA methylation cannot 

replace H3K27me3, as in 2i-ESCs treated with the EZH2 inhibitor we did not evidence any increase of 

5meC at major satellites. This is in agreement with the relatively unchanged pattern of DNA 

methylation at promoters in PRC2 mutant ESCs 
39

. Upon switching ESCs into 2i medium, it was shown 

that there was a considerable loss of H3K27me3 at gene promoters 
7
. Therefore, while this mark is 

reduced at unique sequences, we now show that it is redeployed at PCH in 2i-ESCs, making these 

cells an interesting model of the cross-talk between PRC regulation of gene expression and PCH 

epigenetic state 
24

.  

It was shown previously that in absence of DNA methylation, H3K9me3 and H3K27me3 coexist 

within the constitutive heterochromatin, but either in different domains, or in non-overlapping 

sequences 
30,40

. We confirm this observation and also show that H3K27me3 takes over H3K9me3 in a 

context of reduced DNA methylation. Indeed, in DnmtTKO serum ESCS, half of the population display 

only H3K27me3-enriched foci, and in cells that keep H3K9me3 foci, these do not overlap H3K27me3. 

In 2i-ESCs, H3K9me3 enriched foci do not accumulate SUV39H1 and also persist in absence of 

Suv39h enzymes. We speculate that they may depend on other histone methyltransferase (KMT) 

enzymes, such as SETDB1. Previous data have indeed evidenced a reduction of H3K9me3 not only at 

euchromatin but also at PCH in absence of SETDB1 
41,42

.  

 

EpiSC: a pluripotent cell with a somatic epigenetic state  

We showed that, like somatic cells, EpiSCs present high levels of H3K9me3, 5-meC, and SUV39H1 

at DAPI-dense foci, and compacted chromocenters, in agreement with transcriptionally inactive 

sequences. In addition, Nanog expression is reduced in EpiSCs and in a very recent study, Novo et al 
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43
 have demonstrated that its over-expression in EpiSCs induces the up-regulation of major satellite 

transcripts and decompaction of H3K9me3 foci.  

It has been shown that DNMTs are recruited at H3K9me3-enriched PCH foci in ESCs, probably 

through interaction with SUV39H/HP1 
31,44

. Our data show that in the primed EpiSCs such interaction 

is not necessary, as Suv39hdn converted cells regain DNA methylation at PCH sequences. The de-

repressed status of major satellites in Suv39hdn cEpiSCs indicate that H3K9me3 plays a key role in 

silencing PCH sequences in these cells and that high DNA methylation and low NANOG level are not 

sufficient to maintain a repressive state at PCH in EpiSCs.  

 

Uncoupling epigenetic state of ESCs with transcription regulation of satellites 

We showed that serum-ESCs present a repressive state at the constitutive heterochromatin with 

high level of H3K9me3, 5-meC and compacted chromocenters. Paradoxically transcription of major 

and minor satellites is variable but globally elevated. Such a repressive environment is expected to be 

unfavourable to transcription (reviewed in 
45

), as it is indeed the case in EpiSCs. On the other hand, 

2i-ESCs present a strong enrichment in H3K27me3 compared to H3K9me3, reduced levels of 5-meC 

and deconstructed chromocenters (see the recap scheme of Fig. 7). Unexpectedly transcription at 

major and minor satellites is low. In addition, while repression of transcription is dependent on 

H3K9me3 in EpiSCs, we show that neither DNA methylation nor H3K9me3 can clearly modulate 

major satellite transcription in ESCs. Hence, our data leave open the question of the nature of the 

regulators (activators and repressors) of satellite transcription in ESCs. Transcription in serum-ESCs 

may be regulated by unknown factors present in the serum and not found in the chemically defined 

medium used in 2i condition. On the other hand, the inhibitors of MAPK and GSK3 pathways may 

themselves induce the repression of satellite transcription.  

As mentioned above, Nanog activates major satellite transcription and reduces deposition of 

H3K9me3 at these sequences 
43

. In 2i-ESCs, PCH are indeed more decondensed than in serum-ESCs, 

but on the other hand, transcription is strongly reduced compared to serum-ESCs. We checked the 

level of NANOG in cell extracts by western-blotting and showed that its level was unexpectedly 

reduced in 2i-ESCs compared to serum-ESCs, although not to the low level seen in EpiSCs 

(Supplementary Fig. 5). Hence in 2i-ESCs, reduced accumulation of H3K9me3 at PCH may not be 

directly linked to NANOG level.  

 

Does the epigenetic status of in vitro pluripotency reflect in vivo pluripotency of mouse embryo? 

ESCs cultured in 2i condition are transcriptionally closer to the E4.5 early epiblast than those 

cultured in serum 
8,46,47

. The primed EpiSCs have characteristics of a late-gastrula stage epiblast 
48

. 

Conversely on the epigenetic point of view not much is known for now, except for DNA methylation. 
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2i-ESCs display low level of 5-meC, as in the E3.5 ICM cells 
13,49

. After this stage, DNA methylation 

starts to increase in the epiblast cells and at E6.5, is similar to that in the serum-ESCs 
13

. Finally EpiSCs 

seem to be even more methylated than the epiblast at E6.0-7.5 
18,32,50

.  

Concerning histone modifications, a comprehensive survey during epiblast development is still 

lacking. However, available data suggest that the enrichment of PCH in H3K27me3 and the relative 

depletion in H3K9me3 as observed in 2i-ESCs do not recapitulate the situation in vivo in early epiblast 

cells. First, it seems that the H3K27me3-enriched-PCH pattern is not found in the ICM but is more 

typical of earlier developmental stages from the paternal pronucleus of 1-cell till 16-cell and morula 

stage embryos (Unpublished data of the lab and 
51,52

). Second, it is already known that 

pericentromeric sequences are marked by H3K9me3 as early as the 1-cell stage (maternal 

pronucleus) and remains so at blastocyst stage even in the ICM 
53,54

. At last, we showed that another 

striking difference of 2i-ESCs compared to serum-ESCs and EpiSCs is the decompaction of major 

satellites with the disruption of the chromocenter. At the blastocyst stage the ICM cells showed 

already a compacted chromocenter, while a more decondensed state was only found up to the late 

2-cell stage when chromocenter formation occurs 
55

. The 2-cell stage is also characterized by a 

transient burst of major satellite transcripts that seems to be required for chromocenters formation 

and subsequent development 
56

. Further investigations are needed to really establish the 

transcription at the blastocyst stage distinguishing ICM cells and trophoblast cells for instance.  

 

In conclusion, the present study brings new insights into the organization of the heterochromatin in 

naïve and primed pluripotent cells. The pattern of H3K27me3 is particularly dynamic and can easily 

distinguish the most naïve state (as ESCs in 2i medium) from the other pluripotent cells. Whereas this 

histone modification seems to shuttle from the coding genome to the PCH when cells transit from 

serum to 2i medium, it shows global loss in EpiSCs. Further investigation will be necessary to 

decipher how these different behaviors are regulated.  
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MATERIALS AND METHODS 

 

Cell culture  

ESC lines (R1, WT01, Suv39hdn and DnmtTKO) were cultured in 2i or serum medium as described 

57
. Briefly, 2i-ESCs were cultured on Laminin in Chemically Defined Medium (CDM) 

3
 supplemented 

with LIF (700 U/ml), PD0332552 (1 µM) and CHIR99201 (final 3µM), while serum-ESCs were cultured 

on gelatin in DMEM supplemented with 15% serum and LIF (1000 U/ml). In vitro conversion of ESC 

into cEpiSC was performed by switching ESCs from serum/LIF medium to CDM+FGF2 (12 ng/ml) and 

ActivinA (20 ng/ml) as described in 
58

. These converted cells were used 3-5 passages after the 

conversion. EpiSC lines (FT129.1 and 9.73) were cultured as described in 
3
. EZH2 inhibition was 

performed by culturing ESC either in 2i or serum-containing medium supplemented with 1µM EPZ-

6438 (AxonMedchem) for 72h (changing medium daily) or with DMSO as control. 

 

Immunostaining 

Cells were grown on coated glass-coverslips for 24h, then fixed with PFA 2% (EMS) for 20min, 

permeabilized with Triton X100 0.05% for 30min and blocked with BSA 2% for 1h. Primary antibody 

was incubated at 4°C O/N. After washes, the secondary antibody was incubated for 1h. Cells were 

then washed, post-fixed with PFA 2% (EMS) for 20min, incubated with 1/500 DAPI (Invitrogen) at 

37°C for 15min and finally mounted on slide with VectaShield (Vector Laboratories). Antibodies used 

are described in Supplementary Table S1. 

 

DNA-FISH  

For the detection of major and minor satellites, we used probes 
55

 prepared by PCR on mouse 

genomic DNA using the following primer pairs: 5’-CATATTCCAGGTCCTTCAGTGTGC-3’ and 5’-

CACTTTAGGACGTGAAATATGGCG-3’ (major), and 5’-ACTCATCTAATGTTCTACAGTG-3’ and 5’-

AAAACACATTCGTTGGAAACGCG-3’ (minor). PCR products were labeled with Cy3 and Cy5, 

respectively, using random priming (Invitrogen). For FISH, cells grown on coated glass-coverslips for 

24h were fixed with PFA 4% (EMS) for 15min. They were permeabilized with Triton X100 0.05% for 

30min and treated with RNase A 200µg/mL (Sigma) for 30min at 37°C. After an equilibration step in 

the hybridization buffer (50% formamide, SSC 2X, Denhardt 1X, 40 mM NaH2PO4, 10% dextran 

sulfate) for 45min at 37°C, cells were denaturated in presence of probes at 75°C for 3 min and then 

incubated O/N at 37°C. The day after they were washed three times with SSC2X pH5.8-50% 

formamide at 39°C and then three times with SSC2X pH6.3. Cells were finally incubated with 1/500 

DAPI (Invitrogen) at 37°C for 15min and then mounted with VectaShield (Vector Laboratories). 
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3D-structured image acquisition and analysis 

Imaging was performed at the MIMA2 platform (http://www6.jouy.inra.fr/mima2) with an 

inverted ZEISS AxioObserver Z1 microscope equipped with an ApoTome slider, a Colibri light source, 

Axiocam MRm camera and driven by the Axiovision software 4.8.2. Observations were carried out 

using a 63X oil-immersion objective. Cells were scanned entirely using a z-distance of 0.24 μm 

between optical sections. Fluorescent wavelengths of 405, 488, 555, and 639 nm were used to excite 

DAPI, FITC, Cy3, and Cy5, respectively. Images were then analysed on ImageJ (imagej.nih.gov/ij) to 

perform linescan, merge of channels and z-projections. 3D reconstructions of signals of DNA-FISH 

were done with AMIRA software 3.1 after 3D nuclei segmentation using an unpublished Python script 

of the laboratory.  

 

Western blot 

Cells were lysed for 30min on ice into RIPA buffer (150mM NaCl, 1% NP-40, 0.5% NaDeoxycholate, 

0.1% SDS, 50mM Tris-HCl pH8.0) in presence of protease and phosphatase inhibitors (Pierce). 

Proteins were quantified using BCA assay (Pierce). 3µg of proteins were charged on pre-cast 

polyacryalamide gel 4-15% (Biorad) for 1h run at 100V. Transfer was then performed on Trans-Blot 

Turbo (Biorad) for 7min on a PVDF membrane (Hybond-P, GE Healthcare). After blocking in TBS-

Tween 20 0.01% (TBS-T) with either 4% non-fatty milk or 5% BSA, membranes were incubated O/N at 

4°C with primary antibodies. After washes in TBS-T, membranes were incubated with secondary 

antibodies for 1h and washed again before the revelation with ECL2 Western blotting substrate 

(Pierce). Chemiluminescent signals were captured on a Fuji camera LAS-1000plus and then analysed 

with ImageJ (imagej.nih.gov/ij). H3 was used for normalization. For sequential protein detection, 

membranes were stripped with 25mM Glycine and 1% SDS at pH 2 for 30min, followed by washes in 

TBS-T and blocking (milk or BSA) according to the new primary antibody. Antibodies are described in 

Supplementary Table S1. 

 

DNA methylation analysis of satellite repeats using Southern blot 

Southern blot on genomic DNA was performed as described in Thijssen et al. 
59

. For major satellite 

analysis 200ng of genomic DNA were digested with HpyCH4IV (New England Biolabs) for 1h at 37°C, 

while for minor satellites 500ng of gDNA were digested with HpaII (New England Biolabs) and 300ng 

with MspI (New England Biolabs), both O/N at 37°C. Digested samples were separated for 5h on 1% 

agarose gel. Gels were then denaturated in a 1.5M NaCl and 0.5M NaOH solution for 20 min and 

neutralized with 0.5M Tris-HCl pH 7.5 and 1.5M NaCl for 40min. Transfer was performed O/N on 

Hybond-N+ membranes (GE Healthcare) in SSC 20X. After ultraviolet crosslinking, membranes were 
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pre-hybridized in SSC 6X, Denhardt 5X and 0.1% SDS for 1h at 42°C and hybridized with 32P-labelled 

probes for 2h at 42°C. After membrane washing, signals were detected using FLA 7000 

phosphorimager (Fuji). Images were then analyzed with ImageJ (imagej.nih.gov/ij) to perform 

linescan for major satellites and intensity ratio HpaII/MspI for the lower six bands of each lane for 

minor satellites. Probe used: Major satellites 5’ –CAC GTC CTA CAG TGG ACA TTT CTA AAT TTT CCA 

CCT TTT TCA GTT- 3’ and minor satellites 5’ –ACA TTC GTT GGA AAC GGG ATT TGT AGA ACA GTG TAT 

ATC AAT GAG TTA CAA TGA GAA ACA T- 3’. 

 

qRT-PCR 

Total RNA was extracted from cells using TRIzol (Ambion). 3µg of RNA were subjected to DNAse 

treatment using Turbo DNA-free kit (Ambion). Retrotranscription of 500ng of DNAse treated-RNA 

was performed using Random primers (Invitrogen) and Superscript III (Invitrogen). For each sample, a 

negative control was included (no Superscript enzyme). Quantitative PCR was carried out in 

triplicates using SybrGreen mix (Applied Biosystem) on a StepOne Plus thermal cycler (Applied 

Biosystem). Data were normalized using the geometric mean of Sdha and Pbgd using Qbase software 

(Biogazelle). Results were presented according to Weissgerber et al 
60

. The Primers are described in 

Supplementary Table S2. 

 

Bioinformatic analysis of ChIP-Seq datasets for satellite repeats 

To compare the enrichment in H3K27me3 marks over major and minor satellite repeats we used the 

following ChIP-seq datasets: GSM590115 (E14-serum) and GSM590116 (E14-2i) from Marks et al. 
7
; 

GSM1725687 (EpiSC1), GSM1725686 (Input EpiSC1), GSM1725726 (Input 2i-ESC1), GSM1725727 (2i-

ESC1), GSM1725730 (Input 2i-ESC2), GSM1725731 (2i-ESC2), GSM1725689 (Input EpiSC2), 

GSM1725690 (EpiSC2), from Zylicz et al 
32

. 

An “in silico” library was made up exclusively of major and minor fasta consensus sequences 
31

. Each 

sequence was duplicated and juxtaposed in order to detect reads which may map at the junction 

between 2 consecutive repeats. For the repeat analysis of ChIP-seq profiles, mappings were 

performed with the bowtie2 aligner version 2.1.0 with default options 
62
. 

Each read that mapped on major or minor satellite repeats was counted from the resulting output 

BAM file. Results were expressed as percentage of total number of reads that mapped on the whole 

mouse genome GRCm38.84.  
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FIGURE LEGEND 

 

Fig. 1: Heterochromatin landscape in the different state of mouse pluripotency 

(A) Immunostaining images (single-plan) for H3K9me3 and H3K27me3 with DAPI DNA 

counterstaining. Magnification on a single cell (arrow) with merge of signals: H3K9me3 (red) or 

H3K27me3 (green) with DAPI (blue). Linescan analysis showing peaks of foci-enrichment (highlighted 

with the star). % indicates the percentage of cells in the population displaying the same pattern. 

Scale bars represent 5µm. (B) Western-blot analysis for quantification of bulk levels of repressive 

histone modifications H3K9me3 and H3K27me3 related to the total level of H3. (C) Immunostaining 

images of anaphase chromosome plates for H3K9me3 (red) or H3K27me3 (green) with DAPI DNA 

counterstaining (blue). Stars indicate enrichment of the histone mark at the PCH/CH region. Scale 

bars represent 5µm. 

 

Fig. 2: Methylation profile at major and minor satellites in 2i-ESCs, serum-ESCs and EpiSCs. 

 (A) Southern-blot analysis of gDNA digested with HpyCH4IV revealed with probe for major 

satellites. Linescan quantification for each lane: MEF (black), DnmtTKO (pink), 2i-ESC (red), serum-ESC 

(blue) and EpiSC (green). (B) Southern-blot analysis of gDNA digested with HpaII revealed with probe 

for minor satellites. Quantification related to southern-blot of gDNA digested with MspI. DnmtTKO-

ESC is set to 1. 

 

Fig. 3: 3D-organization and transcription of major and minor satellites in the different mouse 

pluripotency states. 

(A) 3D DNA-FISH images (z-projection) for major (red) and minor (green) satellites with DAPI DNA 

counterstaining (blue). Magnification on a single cell (arrowed) and 3D-reconstruction of major and 

minor satellite signals using AMIRA 3.1 software. Scale bars represent 5µm. (B) Relative expression 

(CNRQ) of major and minor satellite transcripts by qRT-PCR analysis normalized to Sdha and Pbgd 

housekeeping genes. Each point is an independent biological replicate.  

 

Fig. 4: Contrasting effect of Suv39hdn condition in 2i-ESCs, serum-ESCs and EpiSCs. 

(A) Immunostaining images (single-plan) for H3K9me3 and H3K27me3 with DAPI DNA 

counterstaining in Suv39hdn condition, to compare with wild-type condition (Fig. 1A). Magnification 

on a single cell (arrow) with merge of signals: H3K9me3 (red) or H3K27me3 (green) with DAPI (blue). 

Linescan analysis showing peaks of foci-enrichment (highlighted with the star). % indicates the 



23 

 

percentage of cells in the population displaying the same pattern. Scale bars represent 5µm. (B) 

Southern-blot analysis of gDNA digested with HpyCH4IV revealed with probe for major satellites in 

wild-type and Suv39hdn conditions. Linescan quantification for each lane: 2i-ESC (red), serum-ESC 

(blue) and EpiSC (green). Wild-type condition is represented with a continuous line, while Suv39hdn 

with a dotted line. (C) Relative expression (CNRQ) of major satellites transcripts by qRT-PCR analysis 

normalized to Sdha and Pbgd housekeeping genes in Wild-type and Suv39hdn condition. Each point 

is an independent biological replicate.  

 

Fig. 5: Epigenetic and transcriptional consequences of DNA methylation absence on major 

satellites in 2i- and serum-ESCs. 

(A) Immunostaining images (single-plan) for H3K9me3 and H3K27me3 with DAPI DNA 

counterstaining in DnmtTKO condition, to compare with wild-type condition (Fig. 1A). Magnification 

on a single cell (arrow) with merge of signals: H3K9me3 (red) or H3K27me3 (green) with DAPI (blue). 

Linescan analysis showing peaks of foci-enrichment (highlighted with the star). % indicates the 

percentage of cells in the population displaying the same pattern. Scale bars represent 5µm. (B) 

Relative expression (CNRQ) of major satellites transcripts by qRT-PCR analysis normalized to Sdha 

and Pbgd housekeeping genes in Wild-type and DnmtTKO condition. Each point is an independent 

biological replicate. 

 

Fig. 6: Reduced levels of H3K27me3 do not induce up-regulation of major satellites. 

(A) Left part: Western-blot analysis for quantification of bulk levels of the HMT enzyme EZH2 and 

the repressive histone modification H3K9me3 and H3K27me3 related to total H3 in 2i-ESC treated 

with DMSO (Control) or EPZ (EZH2 inhibition). Middle part: Relative expression (CNRQ) of major 

satellites transcripts by qRT-PCR analysis normalized to Sdha and Pbgd housekeeping genes in 2i-ESC 

treated with DMSO or EPZ. Each point is an independent biological replicate. Right part: 

immunostaining images (single-plan) for H3K9me3 (red) and H3K27me3 (green) with DAPI DNA 

counterstaining (blue) in 2i-ESC treated with DMSO or EPZ. Scale bars represent 5µm. (B, C, D, E) For 

each condition: Wild-type serum-ESC (B), Suv39hdn serum-ESC (C), DnmtTKO 2i-ESC (D) and 

DnmtTKO serum-ESC (E). Left part: Western-blot analysis for quantification of bulk levels of the HMT 

enzyme EZH2 and the repressive histone modification H3K9me3 and H3K27me3 related to H3 total. 

Right part: Relative expression (CNRQ) of major satellites transcripts by qRT-PCR analysis normalized 

to Sdha and Pbgd housekeeping genes after treated with DMSO (Control) or EPZ (EZH2 inhibition). 

Each point is an independent biological replicate. 
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Fig. 7: Model of the epigenetic organization at PCH in the different pluripotent cells and in 

mutants 

Schematic drawings recapitulating the organization and transcription status at PCH based on our 

findings and published data 
30,31,44

  

 

















 



Supplementary Figure and Table Legends 

 

Supplementary Fig. 1: Additional information on epigenetic modifiers and histone modification in the different 

states of mouse pluripotency 

(A) Left part: Relative expression (CNRQ) of Suv39h1 and Suv39h2 transcripts by qRT-PCR analysis normalized to 

Sdha and Pbgd housekeeping genes. Each point is an independent biological replicate. Middle part: Western-blot 

analysis for quantification of bulk levels of SUV39H1 related to total H3. Right part: Immunostaining images 

(single-plan) for SUV39H1 with DAPI DNA counterstaining. % indicates the percentage of cells in the population 

displaying a foci-enrichment pattern. Scale bars represent 5µm. 

(B) Left part: Relative expression (CNRQ) of Ezh2 transcripts by qRT-PCR analysis normalized to Sdha and Pbgd 

housekeeping genes. Each point is an independent sample. Middle part: Western-blot analysis for quantification 

of bulk levels of EZH2 related to H3 total. Right part: immunostaining images (single-plan) for EZH2 with DAPI DNA 

counterstaining. Scale bars represent 5µm. (C) Relative expression (CNRQ) of Kdm6b transcripts by qRT-PCR 

analysis normalized to Sdha and Pbgd housekeeping genes. Each point is an independent sample. (D) Percentage 

of mapped reads on major and minor satellite repeats sequence using H3K27me3 ChIP-seq 7(E) Percentage of 

mapped reads on major and minor satellite repeat sequences using H3K27me3 ChIP-seq compared to input 32 

  

Supplementary Fig. 2: De novo DNA methylation machinery in 2i-ESC, serum-ESC and EpiSC 

(A) Left part: Relative expression (CNRQ) of Dnmt3a transcripts by qRT-PCR analysis normalized to Sdha and Pbgd 

housekeeping genes. Each point is an independent sample. Right part: Western-blot analysis for quantification of 

bulk levels of DNMT3A related to H3 total. (B) Left part: Relative expression (CNRQ) of Dnmt3b transcripts by qRT-

PCR analysis normalized to Sdha and Pbgd housekeeping genes. Each point is an independent sample. Right part: 

Western-blot analysis for quantification of bulk levels of DNMT3B related to H3 total.  

  

Supplementary Fig. 3: CAF-1 a factor related to organization of heterochromatin in mouse pluripotent stem 

cells. 

Immunostaining images (single-plan) for CAF-1 p150 with DAPI DNA counterstaining. % indicates the percentage 

of cell in the population displaying a foci-enrichment pattern. Scale bars represent 5µm. 

  

Supplementary Fig. 4: validation of conversions from WT and Suv39hdn ESCs into cEpiSCs 

Relative expression of different common pluripotency (Oct4, Sox2, Nanog), naïve-specific (Klf4, Esrrb) and 

epiblast specific (Dnmt3b, Fgf5, Otx2) transcripts by qRT-PCR analysis normalized to Sdha and Pbgd housekeeping 

genes. Three independent conversions were made.  

 

Supplementary Fig. 5: NANOG level is modulated according to the pluripotent state 

Western-blot analysis for quantification of bulk levels of NANOG related to H3 total, in 2i and serum-ESCs and in 

EpiSCs. 



  

Supplementary Table S1: List of antibodies used for immunostaining and western-blot 

  

Supplementary Table S2: list of primers used for qRT-PCR 
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Supp Table S1 

Antigen 
dilution for 

immunostaining 

dilution for 

western-blot 
reference 

H3K9me3 1/300 1/1000 Active Motif 39161 

H3K27me2me3 1/300 1/1000 Active Motif 39538 

H3K27me3 1/300 Cell Signaling C36B11#9733 

H3K27me3 1/1000 Millipore DAM07-774 

EZH2 1/200 1/1000 NovocastraNCL-L-EZH 

SUV39H1 1/100 1/1000 Cell Signaling D11B6 #8729 

CAF-1p150 1/50 Santa Cruz D-16 sc-10206 

NANOG 1/1000  Abcam ab80892 

DNMT3B 1/500 Active Motif 39207 

DNMT3A 1/500 Active Motif 39206 

H3total 1/20,000 Abcam 1791 

Anti-Rabbit-Cy3 1/200 Jackson ImmunoResearch 

Anti-Mouse-FITC 1/200 Jackson ImmunoResearch 

Anti-Goat-Cy3 1/200 Jackson ImmunoResearch 

Anti-mouse-HPO 1/5000 Jackson ImmunoResearch 

anti-rabbit-HPO 1/5000 Jackson ImmunoResearch 



Supp Table S2 

1. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at 

pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003). 

2. Ferri, F., Bouzinba-Segard, H., Velasco, G., Hubé, F. & Francastel, C. Non-coding murine centromeric transcripts associate with and 

potentiate Aurora B kinase. Nucleic Acids Res. 37, 5071–5080 (2009). 

3. Bernardo, A. S. et al. BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells 

into Embryonic and Extraembryonic Lineages. Cell Stem Cell 9, 144–155 (2011). 

4. Hayashi, K. & Surani, M. A. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic 

reprogramming in vitro. Development 136, 3549–3556 (2009). 

5. Jouneau, A. et al. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA 18, 253–64 (2012). 

Primers for qRT-PCR 

Gene Primer Forward Sequence  (5'-3' ) Primer Revers Sequence  (5'-3' ) 

Reference or Primer 

Bank ID Annealing 

Major satellite  GACGACTTGAAAAATGACGAAATC  CATATTCCAGGTCCTTCAGTGTGC  
1 

60°C 

Minor satellite  GAACATATTAGATGAGTGAGTTAC GTTCTACAAATCCCGTTTCCAAC  2 60°C 

Sdha GGAACACTCCAAAAACAGACCT  CCACCACTGGGTATTGAGTAGAA   60°C 

Pbgd  CCTGGCATACAGTTTGAAATCAT TTTTTCCAGGGCGTTTTCT 3 60°C 

Ezh2 AGTGACTTGGATTTTCCAGCAC AATTCTGTTGTAAGGGCGACC   60°C 

Suv39h1 GCAGTGTGTGCTGTAAATCTTCT ATACCCACGCCACTTAACCAG    60°C 

Dnmt3a GAGGGAACTGAGACCCCAC  CTGGAAGGTGAGTCTTGGCA  6681209a1 60°C 

Dnmt3b TCAGATGAGCAAGGTCAAGG TGTACCAAAGCAAGGGGAAG   60°C 

Oct4 CAGCCAGACCACCATCTGTC GTCTCCGATTTGCATATC 7305399a3 58°C 

Nanog CTTTCACCTATTAAGGTGCTTGC TGGCATCGGTTCATCATGGTAC 4 58°C 

Sox2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT   60°C 

Fgf5 TGTGTCTCAGGGGATTGTAGG AGCTGTTTTCTTGGAATCTCTCC 6753854a1 60 °C 

Otx2 TATCTAAAGCAACCGCCTTACG GCCCTAGTAAATGTCGTCCTCTC 158518427c1 60°C 

Esrrb ATGCGAGTACATGCTTAACGC CATCCCCACTTTGAGGCATTT   60°C 

Klf4 GCAGTCACAAGTCCCCTCTC GACCTTCTTCCCCTCTTTGG 5 58°C 
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