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M. Lorenzo Ugo ANCARANI Professeur, Université de Lorraine (France)
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Abstract

Two and three-body scattering problems are of crucial relevance in atomic physics as

they allow to describe different atomic collision processes. Nowadays, the two-body cases

can be solved with any degree of numerical accuracy. Scattering problem involving three

charged particles are notoriously difficult but something similar –though to a lesser extent-

can be stated.

The aim of this work is to contribute to the understanding of three-body Coulomb

scattering problems from an analytical point of view. This is not only of fundamental

interest, it is also useful to better master numerical approaches that are being developed

within the collision community. To achieve this aim we propose to approximate

scattering solutions with expansions on sets of appropriate functions having closed form.

In so doing, we develop a number of related mathematical tools involving Coulomb

functions, homogeneous and non-homogeneous second order differential equations, and

hypergeometric functions in one and two variables.

First we deal with the two-body radial Coulomb wave functions, and review their

main properties. We extend known results to give in closed form the Laguerre expansions

coefficients of the irregular solutions, and establish a new connection between the

coefficients corresponding to the regular solution and Meixner-Pollaczek polynomials.

This relation allows us to obtain an orthogonality and closure relation for these coefficients

considering the charge as a variable.

Then we explore two-variable hypergeometric functions. For some of them, such as

Appell and confluent Horn functions, we find closed form for the derivatives with respect

to their parameters.

We also study a particular set of two-body Generalized Sturmian functions constructed

with a Hulthén generating potential. Contrary to the usual case in which Sturmian

functions are numerically constructed, the Hulthén Sturmian functions can be given in

closed form. Their mathematical properties can thus be analytically studied providing a

unique tool to investigate scattering problems.
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2 Abstract

Next, we introduce a novel set of functions that we name Quasi-Sturmian functions.

They constitute an alternative set of functions, given in closed form, to expand the sought

after solution of two- and three-body scattering processes. Quasi-Sturmian functions

are solutions of a non-homogeneous second order Schrödinger-like differential equation

and have, by construction, the appropriate asymptotic behavior. We present different

analytic expressions and explore their mathematical properties, linking and justifying the

developed mathematical tools described above.

Finally we use the studied Hulthén Sturmian and Quasi-Sturmian functions to solve

some particular two- and three-body scattering problems. The efficiency of these sets of

functions is illustrated by comparing our results with those obtained by other methods.



Resumen

Los problemas de dispersión de part́ıculas, como son los de dos y tres cuerpos, tienen

una relevancia crucial en f́ısica atómica, pues permiten describir diversos procesos de

colisiones. Hoy en d́ıa, los casos de dos cuerpos pueden ser resueltos con el grado de

precisión numérica que se desee. Los problemas de dispersión de tres part́ıculas cargadas

son notoriamente más dif́ıciles pero aún aśı algo similar, aunque en menor medida, puede

establecerse.

El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos

de dispersión de tres cuerpos desde un punto de vista anaĺıtico. Esto no solo es

de fundamental interés, sino que también es útil para dominar mejor los enfoques

numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones

atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema

con desarrollos en series de funciones adecuadas y expresables anaĺıticamente. Al hacer

esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones

Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas,

y funciones hipergeométricas en una y dos variables.

En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y

revisamos sus principales propiedades. Aśı, extendemos los resultados conocidos para

dar expresiones anaĺıticas de los coeficientes asociados al desarrollo, en serie de funciones

de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una

nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana

regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir

propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga

como variable.

Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de

ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones

anaĺıticas de sus derivadas respecto de sus parámetros.

También estudiamos un conjunto particular de funciones Sturmianas Generalizadas

3



4 Resumen

de dos cuerpos construidas considerando como potencial generador el potencial de

Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se

construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma anaĺıtica.

Sus propiedades matemáticas pueden ser anaĺıticamente estudiadas proporcionando

una herramienta única para comprender y analizar los problemas de dispersión y sus

soluciones.

Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones

Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir

la solución buscada en procesos de dispersión de dos y tres cuerpos. Se definen

como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por

construcción, incluyen un comportamiento asintótico adecuado para resolver problemas

de dispersión. Presentamos diferentes expresiones anaĺıticas y exploramos sus propiedades

matemáticas, vinculando y justificando los desarrollos realizados previamente.

Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y

Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos.

La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos

provenientes de la aplicación de otras metodoloǵıas.



Résumé

Les problèmes de diffusion de particules, à deux et à trois corps, ont une importance

cruciale en physique atomique, car ils servent à décrire différents processus de collisions.

Actuellement, le cas de deux corps peut être résolu avec une précision numérique désirée.

Les problèmes de diffusion à trois particules chargées sont connus pour être bien plus

difficiles mais une déclaration similaire peut être affirmée.

L’objectif de ce travail est de contribuer, d’un point de vue analytique, à la

compréhension des processus de diffusion Coulombiens à trois corps. Ceci a non seulement

un intérêt fondamental, mais est également utile pour mieux mâıtriser les approches

numériques en cours d’élaboration au sein de la communauté de collisions atomiques.

Pour atteindre cet objectif, nous proposons d’approcher la solution du problème avec des

développements en séries sur des ensembles de fonctions appropriées et possédant une

expression analytique. Nous avons ainsi développé un nombre d’outils mathématiques

faisant intervenir des fonctions Coulombiennes, des équations différentielles de second

ordre homogènes et non-homogènes, et des fonctions hypergéométriques à une et à deux

variables.

Tout d’abord, nous traitons les fonctions d’onde Coulombiennes radiales et rappelons

leurs principales propriétés. Nous étendons certains résultats connus en donnant, pour

les fonctions Coulombiennes irrégulières, des expressions analytiques pour les coefficients

associés au développement en série avec des fonctions de type Laguerre. Nous établissons

également une nouvelle connexion entre les coefficients associés au développement de la

fonction Coulombienne régulière et les polynômes de Meixner-Pollaczek. Cette relation

nous permet de déduire des propriétés d’orthogonalité et de fermeture de ces coefficients

en considérant la charge comme variable.

Ensuite, nous étudions les fonctions hypergéométriques à deux variables. Pour

certaines d’entre elles, comme celles d’Appell ou les fonctions confluentes de Horn, nous

présentons des expressions analytiques de leurs dérivées par rapport à leurs paramètres.

Nous étudions également un ensemble particulier de fonctions Sturmiennes

5



6 Résumé

Généralisées à deux corps, construites en considérant le potentiel Hulthén comme potentiel

générateur. Contrairement au cas habituel, dans lequel les fonctions Sturmiennes

sont construites numériquement, les fonctions Sturmiennes de Hulthén possèdent une

expression analytique. Leurs propriétés mathématiques peuvent ainsi être étudiées,

fournissant un outil unique pour comprendre et analyser des problèmes de diffusion.

En outre, nous proposons un nouvel ensemble de fonctions que nous appelons

fonctions Quasi-Sturmiennes. Ces fonctions, également présentées sous forme analytique,

sont proposées comme une alternative pour développer la solution de problèmes de

diffusion à deux et à trois corps. Elles sont définies comme des solutions d’une

équation différentielle de type Schrödinger, non-homogène, et par construction possèdent

un comportement asymptotique approprié. Nous présentons différentes expressions

analytiques en explorant leurs propriétés mathématiques, reliant et justifiant ainsi les

développements mathématiques décrits précédemment.

Enfin, nous utilisons les fonctions étudiées (Sturmiennes de Hulthén et

Quasi-Sturmiennes) pour résoudre certains problèmes à deux et à trois corps. L’efficacité

de ces fonctions est illustrée en comparant les résultats avec ceux obtenus par l’application

d’autres méthodologies.



Abstract for general public

Two and three-body scattering problems are of crucial relevance in atomic physics as

they allow one to describe different atomic collision processes. The aim of this thesis is

to contribute to the understanding of three-body Coulomb scattering problems from an

analytical (mathematical) point of view.

The kind of scattering processes we are interested in here may be sketched as follows.

An electron approaches an atom or a molecule, and interacts within a reaction zone. It is

then scattered and some of the target electrons may be ejected leaving behind a positive

ion. These outgoing electrons enter an asymptotic region where the behavior of the

particles is known. While such scattering processes can be measured experimentally, we

focus here on a theoretical analysis within Quantum Mechanics. The collision dynamics

is described by a many-particle wave function that satisfies a Schrödinger equation

with particular boundary conditions. This is a difficult mathematical problem that

can be tackled only with numerical methods. Most of them use basis functions, the

choice of which is decisive for the efficiency of computations. This thesis focusses on

the construction of appropriate basis functions, and a number of related mathematical

properties.

One important theoretical issue for time-independent three-body scattering problems

is how to impose the correct asymptotic behavior to the wave function. Many spectral

methods use two-body basis functions that generally do not possess the correct behavior

at large distances. One exception are Generalized Sturmian functions, defined as to take

into account the interactions of the problem, thus making them an efficient basis set. We

present and study here an alternative set of functions, expressible in closed form, to be

used for the description of two- and three-body scattering processes.

We begin this thesis by dealing with two-body radial Coulomb wave functions,

reviewing their main properties and extending known results. We provide in closed

form a particular expansion of the irregular solutions, and establish a new connection

between the coefficients of a series expansion of the regular solution and Meixner-Pollaczek

7



8 Abstract for general public

polynomials.

Then we explore two-variable hypergeometric functions. For some of them, such as

Appell and confluent Horn functions, we find closed form for the derivatives with respect

to their parameters.

We also study a particular set of two-body Generalized Sturmian functions: the

Hulthén Sturmian functions. Contrary to the usual case in which Sturmian functions

are numerically constructed, the Hulthén Sturmian functions can be given in closed form.

Their mathematical properties can thus be analytically studied providing a unique tool

to investigate scattering problems.

Next, we introduce a novel set of functions: the Quasi-Sturmian functions. They

constitute an alternative set of functions, also given in closed form, to expand the sought

after solution of two- and three-body scattering processes. Quasi-Sturmian functions

are solutions of a non-homogeneous second order Schrödinger-like differential equation

and have, by construction, an appropriate asymptotic behavior. We present different

analytic expressions and explore their mathematical properties, linking and justifying the

developed mathematical tools described above.

Finally we use the studied Hulthén Sturmian and Quasi-Sturmian functions to solve

some particular two- and three-body scattering problems. The efficiency of these sets of

functions is illustrated by comparing our results with those obtained by other methods.



Résumé de thèse vulgarisé pour le

grand public

Les problèmes de diffusion à deux et à trois corps sont d’une importance cruciale en

physique atomique car ils permettent de décrire différents processus de collision atomique.

L’objectif de cette thèse est de contribuer à la compréhension des problèmes de diffusion

Coulombiennes à trois corps d’un point de vue analytique (mathématique).

Le genre de processus de diffusion qui nous intéresse peut être esquissé de la manière

suivante. Un électron s’approche d’un atome ou d’une molécule et interagit à l’intérieur

d’une zone de réaction. Il est alors diffusé, et certains des électrons de la cible peuvent être

éjectés en laissant derrière eux un ion positif. Les électrons sortants entrent alors dans une

région asymptotique où le comportement des particules est connu. Bien que ces processus

de diffusion puissent être mesurés expérimentalement, nous nous concentrerons ici sur une

analyse théorique dans le cadre de la mécanique quantique. La dynamique de collision

est décrite par une fonction d’onde à plusieurs particules qui satisfait à une équation

de Schrödinger avec des conditions aux limites particulières. Il s’agit d’un problème

mathématique difficile qui ne peut être abordé que par des méthodes numériques. La

plupart d’entre elles utilise des fonctions de base dont le choix est décisif pour l’efficacité

des calculs. Cette thèse porte sur la construction de fonctions de base appropriées et sur

un certain nombre de propriétés mathématiques liées à ces fonctions.

Un point théorique important pour les problèmes de diffusion à trois corps est de

savoir comment imposer à la fonction d’onde le comportement asymptotique correct.

De nombreuses méthodes spectrales utilisent des fonctions de base à deux corps qui ne

possèdent généralement pas le bon comportement à grandes distances. Une exception

est donnée par les fonctions Sturmiennes Généralisés, définies en tenant compte des

interactions du problème ce qui rend efficace la base. Nous présentons et étudions ici

un ensemble alternatif de fonctions, exprimées sous forme analytique, qui peuvent être

utilisées pour décrire des processus de diffusion à deux et à trois corps.

9



10 Résumé pour le grand public

Tout d’abord, nous traitons les fonctions d’onde Coulombiennes radiales et rappelons

leurs principales propriétés. Nous étendons certains résultats connus en donnant, pour les

fonctions Coulombiennes irrégulières, un développement en série particulier, et établissons

également une nouvelle connexion entre les coefficients associés au développement de la

fonction Coulombienne régulière et les polynômes de Meixner-Pollaczek.

Ensuite, nous étudions les fonctions hypergéométriques à deux variables. Pour

certaines d’entre elles, comme celles d’Appell ou les fonctions confluentes de Horn, nous

présentons des expressions analytiques de leurs dérivées par rapport à leurs paramètres.

Nous étudions également un ensemble particulier de fonctions Sturmiennes

Généralisées à deux corps, construites en considérant le potentiel Hulthén comme potentiel

générateur. Contrairement au cas habituel, dans lequel les fonctions Sturmiennes

sont construites numériquement, les fonctions Sturmiennes de Hulthén possèdent une

expression analytique. Leurs propriétés mathématiques peuvent ainsi être étudiées,

fournissant un outil unique pour comprendre et analyser des problèmes de diffusion.

En outre, nous proposons un nouvel ensemble de fonctions que nous appelons

fonctions Quasi-Sturmiennes. Ces fonctions, également présentées sous forme analytique,

sont proposées comme une alternative pour développer la solution de problèmes de

diffusion à deux et à trois corps. Elles sont définies comme des solutions d’une

équation différentielle de type Schrödinger, non-homogène, et par construction possèdent

un comportement asymptotique approprié. Nous présentons différentes expressions

analytiques en explorant leurs propriétés mathématiques, reliant et justifiant ainsi les

développements mathématiques décrits précédemment.

Enfin, nous utilisons les fonctions étudiées (Sturmiennes de Hulthén et

Quasi-Sturmiennes) pour résoudre certains problèmes à deux et à trois corps. L’efficacité

de ces fonctions est illustrée en comparant les résultats avec ceux obtenus par l’application

d’autres méthodologies.



Introduction

The use of basis functions to describe certain atomic and molecular processes is a

standard strategy in Quantum Mechanics. It provides a theoretical approach to problems

for which, in most cases, the analytical solution is not available. A very well known

example is provided by the wave functions associated to the bound states of the hydrogen

atom. These wave functions are given in terms of the energy and angular momentum

eigenfunctions [1].

Scattering processes cannot be treated as easily as bound state problems, i.e. as an

eigenvalue problem [2, 3]. Also, except for a few two-body problems, the solution is not

known in closed form. In general, one can propose to expand the solution in terms of

basis functions, but in this case it is not so clear which is the most appropriate one.

The methods that use basis functions to approximate the solution of a differential

equation are known as spectral methods [4]. The J-matrix [5–8], the convergent close

coupling [9–11], the exterior complex scaling [12–14], the configuration-interaction [15, 16]

and the Sturmian methods [17–19] are examples of spectral methods used to describe

different scattering problems. Basis functions are selected through mathematical or

numerical considerations. A very important aspect to be considered when choosing a

set of functions to represent the scattering solution is the expected asymptotic behavior

of the wave function.

In bound states, the domain of the wave functions is a bounded region outside of which

they asymptotically vanish. In contrast, for continuum states the domain is not bounded,

hence their behavior cannot be neglected at large distances. For two charged particles,

scattering problems can generally be solved and the asymptotic behavior properly imposed

to the solution. For three charged particles, obtaining the correct asymptotic behavior of

the resulting wave function has become a great challenge since the contributions of Rudge

[20] and Peterkop [21]. These authors made a first description of the asymptotic form of

the scattering solution (see also [22]). Later Kadyrov and co-workers extended the study

of the asymptotic region and the behavior of the scattered wave [23–25].

11
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Generalized Sturmian Functions [26, 27] are one example of basis functions defined

taking into account the behavior of the particles at large values of the radial variable.

They are constructed as the solutions of a Sturm-Liouville problem [2, 28] including

some of the interactions of the problem under consideration (through an adequate choice

of the so-called auxiliary potential and generating potential) and imposing as asymptotic

condition the expected behavior of the scattering solution (up to a constant). Generalized

Sturmian functions form an orthogonal and complete set of basis functions. Also they

proved to be a computationally efficient basis set, as shown in the treatment of a the large

variety of processes and systems (see references in [27]).

In most practical cases, Generalized Sturmian functions are obtained numerically, so

it is not possible to study their particular properties following analytical procedures.

Moreover, all the radial integrals that appear when solving scattering problems must be

performed numerically. When one takes the Hulthén potential as the generating and/or

the auxiliary potential, however, the resulting basis functions can be given in closed form

[29]. Thus, their mathematical properties can be investigated and some integrals can be

analytically solved.

The main purpose of this thesis work is to study basis functions convenient to represent

the solution of two-body scattering problems in spherical coordinates and three-body

problems using hyperspherical coordinates. We are interested in functions that can be

given in closed form and include an appropriate asymptotic behavior. Thus, we can

analytically explore the mathematical aspects and properties of these functions in the

context of scattering processes.

We not only study the Hulthén Sturmian functions, which are very appropriate to

solve some particular two-body scattering problems, but also, and as a central subject of

this work, we introduce an alternative set of functions, that we name Quasi-Sturmian

functions. They are defined as solutions of a non-homogeneous Schrödinger-like

differential equation which, as in the case of Generalized Sturmian functions, includes

some interactions of the problem and imposes an appropriate scattering behavior.

A disadvantage, compared to Generalized Sturmian functions, is that we do not

have an orthogonality property for these functions. On the other hand, contrary to

Generalized Sturmian functions, they can be presented in closed form for the case of

Coulomb interactions. As a consequence it is possible to give analytical expressions for

the matrix elements when solving two- and three-body scattering problems. Thus, these

Quasi-Sturmian functions are helpful in studying the analytical properties of three-body

wave functions, and also allow to improve convergence in numerical calculations.
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In addition, the motivation of proposing a set of functions in closed form to

study three-body scattering problems led us to review and study other functions, like

Coulomb wave functions and two variable hypergeometric functions, which appeared while

characterizing the Quasi-Sturmian functions.

At this point it is clear that the results of our research can be presented in two

parts. A first one, more mathematical, in which we introduce and study the mathematical

properties of Hulthén Sturmian functions, the proposed Quasi-Sturmian functions and

other functions related to them. And a second one, related to a particular subject of

Quantum Mechanics, in which we state the two- and three-body scattering problems and

investigate their solution by using the functions proposed in the first part.

We start by introducing the one-variable functions that constitute the base of all

constructions in the following chapters: Slater-type orbitals, Laguerre-type functions,

Coulomb wave functions and Coulomb Green’s functions. We review the main

properties of Coulomb wave functions and analyse their series representation in terms

of Laguerre-type functions; we present, as a novelty, the analytical expressions of the

coefficients h(±)
n and cn corresponding to the series expansion of the irregular Coulomb

wave functions. Another contribution related to this subject is the connection we establish

between the coefficients sn associated to the regular Coulomb wave function and the

Meixner-Pollaczek polynomials when considering the charge as a variable. The interest

in series representations in terms of Laguerre-type functions is related to the fact that

this strategy separates some parameters (charge and energy for example, appearing only

in the coefficients) from the variable. Thus, the study of the parameters of the function

reduces to the analysis of these coefficients.

The second chapter is dedicated to the study of two-variable hypergeometric functions

in terms of their parameters. In particular we are interested in Appell functions [30].

Following the methodology exposed in [31], we present in closed form the derivatives of

these functions with respect to their parameters. These results are part of a more extensive

contribution [32] where the derivatives of eight two variable hypergeometric series with

respect to their parameters are presented.

In the third chapter we review the definition and properties of Generalized Sturmian

functions. In particular we study the Hulthén Sturmian functions for which analytical

expressions can be found. The results we present here constitute the first part of a

contribution in which we study the mathematical properties of these functions, and we

show how to implement them to solve different two-body scattering problems [33].

The final chapter of the mathematical part is dedicated to study in detail the proposed
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Quasi-Sturmian functions. In particular we analyse two different driven terms in the

differential equation defining these functions: the two cases for which we can provide in

closed form the Quasi-Sturmian functions. Hence, an analytical study of their properties

and relations can be performed. In the last section of this chapter we investigate these

functions considering one of the parameters involved as a variable. These kind of two

variable Quasi-Sturmian functions is proposed in the last chapter to describe the coupling

of the radial and angular variables appearing in three-body scattering problems.

Part of the results involving these new functions can be found in reference [34], in

which we introduced the two sets of one-dimensional Quasi-Sturmian functions, presenting

different analytical representations and their asymptotic behavior, and using them to solve

a two-body scattering problem.

Quasi-Sturmian functions are also studied in reference [35], where the authors

introduce and implement a set of Quasi-Sturmian functions to solve three-body scattering

problems in parabolic coordinates.

As mentioned, in the second part of this work (the two last chapters) we present a

general description of two- and three-body scattering problems, and the methodology

used to approximate the solution in terms of Generalized Sturmian functions and

Quasi-Sturmian functions.

First we analyse two-body scattering problems. Two different approaches are

presented. The first one, using Generalized Sturmian functions, with the particular

implementation of the Hulthén Sturmian functions to solve the scattering of a particle first

by a Hulthén and then by a Yukawa potential. These two illustrations complete our study

of Generalized Sturmian functions presented in reference [33]. The second approach uses

Quasi-Sturmian functions to represent the scattering solution. As a particular example,

we solve the problem of a particle under the influence of a combined attractive Coulomb

potential plus a Yukawa potential (this example was published in reference [34]).

The last chapter is dedicated to the three-body case. We begin by introducing

hyperspherical coordinates [36, 37]. The advantage of these coordinate system is that

the asymptotic behavior of the scattering wave function, and consequently the behavior

of Quasi-Sturmian functions, takes a simpler analytical form. As a particular case we

describe the S-wave model (usually referred to as Temkin-Poet model [38, 39]) in which

only the s-wave contribution of the two outgoing electrons’ interaction is retained. This

model serves as a test bed as it contains most of the physical and mathematical difficulties

of the full problem and, at the same time, makes manipulations easier [40].

Finally, we conclude with a review of the results and contributions, and present some
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perspectives for our future work.

All numerical calculations and figures presented throughout this work were performed

with the software MATHEMATICA [41], Also, unless otherwise indicated, we consider

the indices in summations running from 0 to ∞.
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Chapter 1

Coulomb Hamiltonian and Coulomb

wave functions

1.1 Slater-type orbitals and Laguerre-type functions

For n ∈ N ∪ {0}, ℓ, β ∈ R, ℓ, β > 0, we introduce the following functions:

⋄ Slater-type orbital

φSTO
n (ℓ, β; r) = e−βr rℓ+1+n (1.1)

⋄ Laguerre-type functions

φL
n(ℓ, β; r) = Nn,ℓ e

−βr (2βr)ℓ+1L2ℓ+1
n (2βr) (1.2a)

=
1

Nn,ℓ Γ(2ℓ+ 2)
e−βr (2βr)ℓ+1

1F1(−n, 2ℓ+ 2; 2βr). (1.2b)

This last definition includes a normalization factor

Nn,ℓ =

√
n!

Γ(2ℓ+ 2 + n)
, (1.3)

and the associated Laguerre polynomials Lα
n [42–44], or alternatively, the confluent

hypergeometric function of the first kind 1F1 [42, 45, 46]. This hypergeometric function

can be expressed as (b 6= 0,−1,−2, . . .)

1F1(a, b; z) =
∑

n

(a)n
(b)n

zn

n!
(1.4)
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18 1.1. Slater-type orbitals and Laguerre-type functions

where (α)n is the Pochhammer symbol [47, 48]

(α)n = α(α + 1) . . . (α + n− 1) (1.5a)

also expressible, for α 6= 0,−1,−2..., in terms of the Gamma functions [42]

(α)n =
Γ(α+ n)

Γ(α)
. (1.5b)

As a consequence of the Pochhammer’s property

(−n)j = 0 ∀n, j ∈ N, j > n, (1.6)

the series representations for 1F1(−n, 2ℓ + 2; 2βr) is actually a finite sum. Thus,

Laguerre-type functions can be given in terms of Slater-type orbitals

φL
n(ℓ, β; r) =

n∑

j=0

cn,j φ
STO
j (ℓ, β; r), (1.7a)

cn,j =
1

Nn,ℓ Γ(2ℓ+ 2)

(2β)ℓ+1+j (−n)j
j! (2ℓ+ 2)j

. (1.7b)

Laguerre-type functions are the solutions of a Sturm-Liouville problem [2, 49, 50],

d2

dr2
φL
n(ℓ, β; r)−

ñ
ℓ(ℓ+ 1)

r2
− 2β(ℓ+ 1 + n)

r
+ β2

ô
φL
n(ℓ, β; r) = 0, (1.8a)

φL
n(ℓ, β; 0) = 0, (1.8b)

φL
n(ℓ, β; r)

r→∞∼ 0. (1.8c)

Therefore they satisfy an orthogonality and a closure relation,

∫ ∞

0
φL
p (ℓ, β; r)

1

r
φL
n(ℓ, β; r) dr = δp,n (1.9a)

∑

n

φL
n(ℓ, β; r1)

1

r1
φL
n(ℓ, β; r2) = δ(r1 − r2). (1.9b)

In addition, they obey a three-terms recurrence relation

n+ 1

Nn+1,ℓ
φL
n+1(ℓ, β; r) =

2(ℓ+ 1 + n− βr)

Nn,ℓ
φL
n(ℓ, β; r)−

2ℓ+ 1 + n

Nn−1,ℓ
φL
n−1(ℓ, β; r) (1.10)
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setting, for n = 0, N−1,ℓ = 1, φL
−1 ≡ 0. This relation is a direct consequence of the

three-terms recurrence relation satisfied by associated Laguerre polynomials [43].

In Figure 1.1 we present three Laguerre-type functions taking ℓ = 1, β = 1.1, and

the indices n = 3 (full line), n = 7 (line with dots) and n = 12 (dashed line). We can

observe the polynomial behavior in the inner region (r < Rn for appropriate Rn) and

corroborate the boundary conditions (1.8b) and (1.8c).

0 5 10 15 20 25 30 35

-1.0

-0.5
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0.5

1.0

r

n
L
(l
,
;r
)

n = 12

n = 7
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Figure 1.1: Laguerre-type functions corresponding to n = 3 (full line), n = 7 (line
with dots) and n = 12 (dashed line). In all three cases we took ℓ = 1 and β = 1.1.

1.1.1 Series expansions and integrals

Series expansion in terms of Laguerre-type functions

Throughout this thesis we study functions which are directly or somehow related to

the Schrödinger equation. It means that they include, besides position variables, also

the physical parameters involved in the dynamics of a quantum system: the mass µ, the

charge Z, the angular momentum ℓ and the energy E =
k2

2µ
.

Any of these one variable functions can be expressed in a generalized Fourier expansion

[2, 49–51]

f(Z, µ, ℓ, k; r) =
∑

n

an φ
L
n(ℓ, β; r) (1.11a)

since Laguerre-type functions, solutions of a Sturm-Liouville problem, form an orthogonal

and complete basis set. The coefficients an are given by

an =
∫ ∞

0
φL
n(ℓ, β; r)

1

r
f(Z, µ, ℓ, k; r) dr. (1.11b)
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We consider generally the β parameter as independent of the ones involved in the

system under study. Thus, except for the angular momentum ℓ, the other parameters

appear only in the coefficients an of the series expansion. We have therefore a

representation that separates Z, µ, k from the variable r, and the study of a function

f in terms of these parameters is reduced to the analysis of the coefficients an. For this

reason we present, for most of the functions studied, their coefficients in closed form.

For example, in Section 1.2.2 we will show that the coefficients corresponding to the

sine-like Coulomb wave function are orthogonal polynomials when considering the charge

as a variable.

The importance of separating out the parameters, and the particular interest in the

charge Z, will be clarified in Chapter 6. The point is that in three-body problems

the position variables are coupled, and to solve this difficulty we use functions (the

Quasi-Sturmian functions introduced in Section 4.3.7) including one of the angular

variables into a parametric Coulomb charge. Other strategies may be proposed to deal

with this coupling, requiring the treatment of one function’s variables as parameters of

other function.

Another advantage of separating the parameters from the variables is that it facilitates

the calculation of integrals with respect to the variable r (something necessary to solve the

Schrödinger equation); indeed, a number of integrals involving Laguerre-type functions

are available in reference textbooks.

Integrals involving Laguerre-type functions

In what follows, we perform two radial integrals appearing repeatedly in scattering

problems.

The first one is called overlap integral,

ϑp,n =
∫ ∞

0
φL
p (ℓ, β; r)φ

L
n(ℓ, β; r) dr. (1.12a)

To calculate it we first rewrite (1.10) as

φL
n(ℓ, β; r) =

ℓ + 1 + n

β

1

r
φL
n(ℓ, β; r)

− Nn,ℓ

Nn−1,ℓ

2ℓ+ 1 + n

2β

1

r
φL
n−1(ℓ, β; r)−

Nn,ℓ

Nn+1,ℓ

n+ 1

2β

1

r
φL
n+1(ℓ, β; r).
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Multiplying by
1

r
φL
p (ℓ, β; r), integrating from r = 0 to infinity, and using the orthogonal

relation (1.9a), we obtain

ϑp,n =
ℓ+ 1 + n

β
δp,n −

Nn,ℓ

Nn−1,ℓ

2ℓ+ 1 + n

2β
δp,n−1 −

Nn,ℓ

Nn+1,ℓ

n+ 1

2β
δp,n+1, (1.12b)

or equivalently, in terms of p,

ϑp,n =
ℓ+ 1 + p

β
δp,n −

Np+1,ℓ

Np,ℓ

2ℓ+ 2 + p

2β
δp+1,n −

Np−1,ℓ

Np,ℓ

p

2β
δp−1,n. (1.12c)

Another interesting integral is the analogous to (1.9a) but with different ℓ parameters

for each function,

∫ ∞

0
φL
q (ℓp, β; r)

1

r
φL
n(ℓm, β; r) dr

(1.2)
=

1

Nq,ℓp Nn,ℓm Γ(2ℓp + 2) Γ(2ℓm + 2)
(2β)ℓm+ℓp+2

×
∫ ∞

0
e−2βr rℓm+ℓp+1

1F1(−n, 2ℓ + 2; 2βr) 1F1(−q, 2ℓ+ 2; 2βr) dr

(B.7)
=

Γ(ℓp + ℓm + 2)

Nq,ℓp Nn,ℓm Γ(2ℓp + 2) Γ(2ℓm + 2)
F2(ℓp + ℓm + 2,−q,−n, 2ℓp + 2, 2ℓm + 2; 1, 1)

(2.4)
=

Γ(ℓp + ℓm + 2)

Nq,ℓp Nn,ℓm Γ(2ℓp + 2) Γ(2ℓm + 2)

×
q∑

j=0

(ℓp + ℓm + 2)j(−q)j
(2ℓp + 2)j j!

2F1(ℓp + ℓm + 2 + j,−n, 2ℓm + 2; 1) (1.13)

The function F2 appearing in an intermediate step of the previous calculation is one of

the Appell hypergeometric functions [30, 46, 52]. Some properties and its derivatives with

respect to the parameters are presented in Chapter 2. The function 2F1 is the Gauss

hypergeometric function [42, 43, 46] for which we have, if |z| < 1 and c 6= 0,−1,−2, ...,

the series representation

2F1 (a, b, c; z) =
∑

n

(a)n (b)n
(c)n

zn

n!
. (1.14)

For the particular value z = 1, and Re (c− a− b) > 0, we have

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (1.15)
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so that the integral (1.13) becomes

∫ ∞

0
φL
q (ℓp, β; r)

1

r
φL
n(ℓm, β; r) dr

=
Nn,ℓm Γ(ℓp + ℓm + 2)

Nq,ℓp n! Γ(2ℓp + 2)

q∑

j=0

(ℓp + ℓm + 2)j(−q)j
(2ℓp + 2)j j!

(ℓm − ℓp − j)n. (1.16)

1.1.2 Matrix representation for the Coulomb Hamiltonian

operator

In Chapter 5 we will study the scattering of a particle by a radial potential V . The

Schrödinger equation describing this process (using atomic units) includes a reduced radial

Hamiltonian operator

Hr = Tr + V (r), (1.17)

where Tr is the reduced radial kinetic energy operator,

Tr = − 1

2µ

d2

dr2
+
ℓ(ℓ+ 1)

2µr2
(1.18)

(reduced here means that the scattering wave function is divided by r).

For the particular case of a Coulomb interaction between two particles of charges z1, z2,

the potential is V (r) =
z1z2
r

and we label

HC

r
= − 1

2µ

d2

dr2
+
ℓ(ℓ+ 1)

2µ r2
+
z1z2
r

(1.19)

the radial Coulomb Hamiltonian operator.

Yamani and Fishman [7] showed that the matrix representation of [HC

r
−E] in terms

of not-normalized Laguerre-type functions

ϕn(λ r) = (λ r)ℓ+1 e−λ r/2L2ℓ+1
n (λ r)

is a tridiagonal matrix J (called J-matrix). The elements of this matrix are given by the

integral

Jm,n =
∫ ∞

0
ϕm(λ r) [H

C

r
− E]ϕn(λ r) dr.

Remark 1.1.1. In a general way, an operator [O] has a matrix representation in terms

of two set of functions {ϕn(ω)}, {ϕ̃n(ω)}, n ∈ N ∪ {0} and a weight function w(ω), with
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elements given by

Om,n =
∫

Ω
w(ω) ϕ̃n(ω) [O]ϕn(ω) dΩ.

Here ω represents the set of involved variables, Ω is the domain associated to these

variables, and dΩ the corresponding differential.

For further implementations, we give the expressions of the matrix elements Jm,n for

an arbitrary µ (the mentioned authors have taken µ = 1) and using our normalized

Laguerre-type functions. Let Z = z1z2 and k2 = 2µE. Setting, for n = 0, 1, 2, . . .,

An =





1, if n = 0,

Nn,ℓ

Nn−1,ℓ

(β2 + k2)(2ℓ+ 1 + n)

4µβ
, if n > 0,

(1.20a)

Bn(Z) =
2µZβ + (β2 − k2)(ℓ+ 1 + n)

2µβ
, (1.20b)

and using the properties of Laguerre-type functions (1.8), (1.9a), (1.10) and (1.12b), we

obtain

∫ ∞

0
φL
p (ℓ, β; r) [H

C

r
− E]φL

n(ℓ, β; r) dr

= An+1δp,n+1 +Bn(Z) δp,n + An δp,n−1. (1.21)

1.2 Coulomb wave functions

Solutions of the Coulomb equation

[HC

r
− E]ΨC(ℓ, k; r) = 0 (1.22)

where k2 = 2µE and E > 0, are known as Coulomb wave functions [3, 42, 53]. As

these continuum functions describe the scattering of a particle by a Coulomb potential,

it is usual to consider a pair of independent solutions F (s), G(c) with sine-like (s) and

cosine-like (c) asymptotic behavior, or equivalently two solutions H(±) having incoming

(−) / outgoing (+) behavior at large distances. The function F (s) is the only one regular

at the origin.

Analytical expressions for Coulomb wave functions can be given in terms of confluent

hypergeometric functions of the first and second kind 1F1, U or, equivalently, in terms
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of Whittaker functions Mχ,µ/2, Wχ,µ/2 [42, 45]. In Appendix A we present Whittaker

functions and give detailed calculations of some integrals involving them.

We set

η(Z) =
µZ

k
, (1.23a)

σC(ℓ, Z) = Arg[Γ(ℓ+ 1 + iη(Z))], (1.23b)

NC(ℓ) =
(2k)ℓ+1

2

|Γ(ℓ+ 1 + iη(Z))|
Γ(2ℓ+ 2)

e−
π
2
η(Z), (1.23c)

Ñ
(±)
C (ℓ) = e

π
2
η(Z) e±i[σC(ℓ,Z)−ℓπ

2 ]. (1.23d)

The element η is usually called Sommerfeld parameter (it measures the strength of the

Coulomb interaction for a given energy) and σC is the Coulomb phase shift. The solution

F (s)(ℓ, k; r) =
NC(ℓ)

(2ik)ℓ+1
Mi η(Z),ℓ+ 1

2
(2ikr)

= NC(ℓ) r
ℓ+1e−ikr

1F1(ℓ+ 1− i η(Z), 2ℓ+ 2; 2ikr), (1.24a)

is a real function, is regular at the origin and has a sine-like asymptotic behavior,

F (s)(ℓ, k; 0) = 0, (1.24b)

F (s)(ℓ, k; r)
r→∞∼ sin

ï
kr − η(Z) ln(2kr)− π

2
ℓ+ σC(ℓ, Z)

ò
. (1.24c)

The solution

G(c)(ℓ, k; r) = iNC(ℓ)Mi η(Z),ℓ+ 1
2
(2ikr) + Ñ

(−)
C (ℓ)Wi η(Z),ℓ+ 1

2
(2ikr) (1.25a)

is also a real function, is irregular at the origin and has a cosine-like asymptotic behavior,

G(c)(ℓ, k; r)
r→∞∼ cos

ï
kr − η(Z) ln(2kr)− π

2
ℓ+ σC(ℓ, Z)

ò
. (1.25b)

Combining these two functions it is possible to give another pair of independent

solutions H(+), H(−) having outgoing (+) or incoming (−) wave asymptotic behavior,

H(±)(ℓ, k; r) = G(c)(ℓ, k; r)± i F (s)(ℓ, k; r). (1.26)
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This pair of solutions simplify to

H(+)(ℓ, k; r) = Ñ
(+)
C (ℓ)W−i η(Z),ℓ+ 1

2
(−2ikr), (1.27a)

H(−)(ℓ, k; r) = Ñ
(−)
C (ℓ)Wi η(Z),ℓ+ 1

2
(2ikr) =

î
H(+)(ℓ, k; r)

ó∗
, (1.27b)

they are complex functions, both irregular at r = 0, and for r → ∞ behave as

H(±)(ℓ, k; r)
r→∞∼ e±i[kr−η(Z) ln(2kr)−π

2
ℓ+σC(ℓ,Z)]. (1.28)

The following relations between the Coulomb wave functions exist

F (s)(ℓ, k; r) =
H(+)(ℓ, k; r)−H(−)(ℓ, k; r)

2i
, (1.29a)

G(c)(ℓ, k; r) =
H(+)(ℓ, k; r) +H(−)(ℓ, k; r)

2
. (1.29b)

1.2.1 Series representation in terms of Laguerre-type functions

We mentioned previously our particular interest in expressing functions as series

expansions (1.11) in terms of Laguerre-type functions. In this subsection we review the

results known for the sine-like Coulomb wave function and then extend the study to the

other solutions providing closed form expressions for the coefficients (1.11b) corresponding

to the series representation of H(±) and G(c).

For the sine-like Coulomb wave function F (s) the coefficients, indicated by sn, have

been presented and studied by Yamani and Fishman [7]. Their explicit form according to

our notation is

sn = (−1)n
NC(ℓ)

Nn,ℓ

Ç
2β

β2 + k2

åℓ+1

ω−n−iη(Z)
2F1

Ä
−n, ℓ+ 1− iη(Z), 2ℓ+ 2; 1− ω2

ä
(1.30)

where we have introduced the parameter

ω =
β + ik

β − ik
, ζ = Arg(ω). (1.31)

The tridiagonal matrix associated to [HC

r
− E] introduced by Yamani and Fishman

[7] and rewritten in (1.21), is equivalent to a three-terms recurrence relation for the
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coefficients sn. To show this, we replace the series representation

F (s)(ℓ, k; r) =
∞∑

n=0

sn φ
L
n(ℓ, β; r) (1.32)

into the Coulomb differential equation (1.22), multiply both sides from the left by

φL
m(ℓ, β; r), and integrate over r, to find

∫ ∞

0

∑

n

sn φ
L
m(ℓ, β; r)

î
HC

r
− E

ó
φL
n(ℓ, β; r) dr

=
∑

n

sn

∫ ∞

0
φL
m(ℓ, β; r)

î
HC

r
−E

ó
φL
n(ℓ, β; r) dr = 0. (1.33)

Now, using result (1.21), we obtain

∞∑

n=0

sn [An+1 δp,n+1 +Bn(Z) δp,n + An δp,n−1] = 0,

with An and Bn defined by (1.20). This expression gives us the three-terms recurrence

relation

An+1 sn+1 +Bn(Z) sn + An sn−1 = 0, n > 0, (1.34)

setting, for n = 0, s−1 = 0. Thus, once we know the first element of the sequence (i.e., s0)

one can find all the coefficients sn of expansion (1.32). For this reason we give its explicit

form

s0 =
NC(ℓ)

N0,ℓ

Ç
2β

β2 + k2

åℓ+1

ω−iη(Z)

=
N0,ℓ

2
|Γ(ℓ+ 1 + i η(Z))| e−π

2
η(Z) ω−iη(Z)

Ç
4βk

β2 + k2

åℓ+1

. (1.35)

Remark 1.2.1. The recurrence relation can be also derived from the contiguous relations

that Gauss hypergeometric functions satisfy [42, 43, 46]. In the deduction presented above,

we made explicit the interchange of the series and the integral. For the irregular Coulomb

functions this interchange is no longer valid.

We now turn to the series representation (1.11a) of functions H(±) and G(c) which

are irregular at the origin. Since Laguerre-type functions are regular at the origin such

expansions are convergent to zero at that point. Moreover, the fact that ℓ is an integer
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in physical problems makes calculations more complicated. We start by performing the

integral

h(±)
n (ℓ) =

∫ ∞

0
φL
n(ℓ, β; r)

1

r
H(±)(ℓ, k; r) dr (1.36)

to obtain a Laguerre expansion of the incoming/outgoing Coulomb wave H(±). The

resulting series

H̃(±)(ℓ, k; r) =
∑

n

h(±)
n (ℓ)φL

n(ℓ, β; r)

converges pointwise to H(±) for r > 0, and as a consequence of the regularity of

the Laguerre-type functions at r = 0 we have H̃(±) = 0. We made explicit the ℓ

parameter dependence in the coefficients h(±)
n because particular attention must be paid

for non-negative integer values of 2ℓ+ 1.

When dealing with Coulomb problems the angular momentum ℓ is a non-negative

integer. In this case the corresponding Whittaker function appearing in the definition

of H(±), given by formula (1.27), involves a limit process as described in Appendix A.

For the calculation of the coefficients h(±)
n , that is to say the integral (1.36), one needs to

consider, separately, the following two cases. For 2ℓ+ 1 /∈ N ∪ {0},

h(+)
n (ℓ) = Ñ

(+)
C (ℓ)

∫ ∞

0
φn(ℓ, β; r)

1

r
W−i η(Z),ℓ+ 1

2
(−2ikr) dr

(A.5)
=

Ñ
(+)
C (ℓ) π

sin[π(2ℓ+ 1)]





2i Ñ
(+)
C (ℓ)

Γ(−ℓ + iη(Z))
sn +

2β

Nn,ℓ Γ(2ℓ+ 2)Γ(−2ℓ)

Ç
− β

ik

åℓ

× 1

β − ik
F2

Ç
1,−n,−ℓ+ iη(Z), 2ℓ+ 2,−2ℓ;

2β

β − ik
,− 2ik

β − ik

å´
,

(1.37)

where F2 is one of the Appell hypergeometric functions studied in Chapter 2. For

2ℓ+ 1 ∈ N ∪ {0}, we calculate a limit process,

h(+)
n (ℓ) = lim

ǫ→0
h(+)
n (ℓ+ ǫ).

and use (A.10), to end up with much more cumbersome coefficients,
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h(+)
n (ℓ) =

Ñ
(+)
C (ℓ)

Nn,ℓ Γ(2ℓ+ 2)

Ç
β

k
i

åℓ

x

×

 Γ(2ℓ+ 1)

Γ(ℓ+ 1 + iη(Z))

2ℓ∑

q=0

(−ℓ + iη(Z))q
(−2ℓ)q

yq 2F1(−n, q + 1, 2ℓ+ 2; x)

+
(−1)2ℓ+1y2ℓ+1

Γ(−ℓ + iη(Z))

∞∑

q=0

(ℓ+ 1 + iη(Z))q
yq

q!

®
2F1(−n, 2ℓ+ 2 + q, 2ℓ+ 2; x)

× [ψ(q + 1)− Log (y)− ψ(ℓ+ 1 + q + iη(Z))]

+
nx

4(ℓ+ 1)2


−q(1− x)n−1

2Θ
(1)
1

Ö
1, 1 | 2ℓ+ 2,−n + 1,−q + 1

2ℓ+ 3 | 2, 2ℓ+ 3

∣∣∣∣∣∣∣∣
; x∗, x∗

è

+ (2ℓ+ 2 + q) 2Θ
(1)
1

Ö
1, 1 | 2ℓ+ 2,−n+ 1, 2ℓ+ 3 + q

2ℓ+ 3 | 2, 2ℓ+ 3

∣∣∣∣∣∣∣∣
; x, x

è







 .

(1.38)

Here ψ is the digamma function [42, 46], 2Θ
(1)
1 is a generalized Kampé de Fériet

hypergeometric function [defined in (2.2), when studying two variable hypergeometric

functions] and we have introduced

x =
2β

β − ik
, y = − 2ik

β − ik
.

Making use of the expression (1.37) found for the first case we present in Figure 1.2

the real (left panel) and imaginary (right panel) parts of an approximation

H
(+)
N (ℓ, k; r) =

N∑

n=0

h(+)
n φL

n(ℓ, β; r) (1.39)

of the outgoing Coulomb wave function H(+). We compare the results obtained taking

N = 25 (full line) and N = 35 (line with dots) with the function H(+) (dashed line) given

by formula (1.27). As expected, the more Laguerre functions we use, the more accurate

is the approximation of H(+), and the range of accuracy increases.
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Figure 1.2: Real (left panel) and imaginary (right panel) parts of an approximation

H
(+)
N of the Coulomb wave function H(+), taking N = 25 (full line) and N = 35

(line with dots). We have fixed Z = −1, µ = 1, k = 1.23, ℓ = 0.3 and β = 4.

Using the series representation (2.4) of Appell function F2 and the contiguous relations

of Gauss hypergeometric functions [42, 43, 46], one can establish a sort of relation between

three consecutive coefficients h(+)
n . Contrary to the one satisfied by sn, the relation for

h(+)
n is not homogeneous; moreover, the resulting extra term is not simple. The fact that

the recurrence relation for sn in no longer valid for h(+)
n is connected with Remark 1.2.1:

the series and the integral interchange performed with coefficients sn in (1.33) can not be

done with the expansion of H(+).

Although the coefficients h(+)
n , n > 0, cannot be deduced from the first one h

(+)
0 in

a simple manner, we present the expressions of h
(+)
0 just to show how they simplify. For

2ℓ+ 1 /∈ N ∪ {0} one finds

h
(+)
0 (ℓ) =

Ñ
(+)
C (ℓ) π

sin[π(2ℓ+ 1)]





2i Ñ
(+)
C (ℓ)

Γ(−ℓ+ iη(Z))
s0 +

2β N0,ℓ

β − ik

Ç
− β

ik

åℓ

× 1

Γ(−2ℓ)
2F1

Ç
1,−ℓ+ iη(Z),−2ℓ;− 2ik

β − ik

å´
,

and for 2ℓ+ 1 ∈ N ∪ {0} it becomes

h
(+)
0 (ℓ) = Ñ

(+)
C (ℓ)N0,ℓ

Ç
β

k
i

åℓ 2β

β − ik





Γ(2ℓ+ 1)

Γ(ℓ+ 1 + iη(Z))

2ℓ∑

q=0

(−ℓ+ iη(Z))q
(−2ℓ)q

yq

+
(−1)2ℓ+1y2ℓ+1

Γ(−ℓ+ iη(Z))

∞∑

q=0

(ℓ+ 1 + iη(Z))q
yq

q!
[ψ(q + 1)− Log (y)− ψ(ℓ+ 1 + q + iη(Z))]



 .

The coefficients h(−)
n (ℓ) corresponding to the expansion of H(−) are easily deduced by

conjugation

h(−)
n (ℓ) =

î
h(+)
n (ℓ)

ó∗
.
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From the relation (1.29) between the Coulomb wave functions, we obtain

sn =
h(+)
n (ℓ)− h(−)

n (ℓ)

2i
, (1.40a)

cn(ℓ) =
h(+)
n (ℓ) + h(−)

n (ℓ)

2
, (1.40b)

where we set cn(ℓ) for the expansion coefficients of G(c). Relation (1.40b) allows us

to deduce an expression for the cn(ℓ) elements without performing the corresponding

integrals. As in the case of the coefficients h(±)
n (ℓ) a distinction must be made depending

on the value of 2ℓ+1 (the irregular Whittaker function appearing in the definition (1.25a) is

responsible for this situation). Clearly, to derive an expression for the case 2ℓ+1 ∈ N∪{0}
is really difficult, therefore we are not presenting it here. For 2ℓ + 1 /∈ N ∪ {0} the

coefficients take the form

cn(ℓ) =
2

sin[π(2ℓ+ 1)]

®
−
î
eπη(Z) sinh[πη(Z)] + sin2(πℓ)

ó
sn

+
π β e

π
2
η(Z)

Nn,ℓ|Γ(ℓ+ 1 + iη(Z))|
1

Γ(2ℓ+ 2)Γ(−2ℓ)

Ç
β

k

åℓ 1

β − ik

× F2

Ç
1,−n,−ℓ + iη(Z), 2ℓ+ 2,−2ℓ;

2β

β − ik
,− 2ik

β − ik

å´
.

1.2.2 Connection with orthogonal polynomials

The three-terms recurrence relation (1.34) satisfied by coefficients sn can be related to

generalized Pollaczek [44, 46, 54] or Meixner-Pollaczek [55, 56] polynomials, depending

on the element we consider as the variable. The connection with Pollaczek polynomials

was established and deeply investigated by different authors [7, 57, 59, 60]. In this section

we first review previous findings and then we present a novel interpretation of the sn

coefficients relating them to Meixner-Pollaczek polynomials.

It is convenient to multiply (1.34) by

4µβ

Nn,ℓ (β2 + k2)

to obtain the equivalent relation

(n+ 1)
sn+1

Nn+1,ℓ
= 2

ñ
− 2µβZ

β2 + k2
+

Ç
−β

2 − k2

β2 + k2

å
(ℓ+ 1 + n)

ô
sn
Nn,ℓ

−(2ℓ+ 1 + n)
sn−1

Nn−1,ℓ
. (1.41)
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Now we define a new coefficient

bn =
sn/Nn,ℓ

s0/N0,ℓ
=
N0,ℓ

Nn,ℓ

sn
s0
, (1.42)

for which we have

b−1 = 0, (1.43a)

b0 = 1, (1.43b)

(n+ 1) bn+1 = 2

ñ
− 2µβZ

β2 + k2
+

Ç
−β

2 − k2

β2 + k2

å
(ℓ+ 1 + n)

ô
bn − (2ℓ+ 1 + n) bn−1. (1.43c)

Generalized Pollaczek polynomials

Generalized Pollaczek polynomials P λ
n form a set of orthogonal polynomials [44, 46, 54]

characterized by the recurrence relation

P λ
−1(x; a, b) = 0, (1.44a)

P λ
0 (x; a, b) = 1, (1.44b)

(n+ 1)P λ
n+1(x; a, b) = 2[b+ (n + λ+ a)x]P λ

n (x; a, b)− (n− 1 + 2λ)P λ
n−1(x; a, b) (1.44c)

where

x = cos θ, θ ∈ (0, π), a > |b|, λ > −1. (1.45)

In closed form they are given by a product of a complex exponential and a Gauss

hypergeometric function 2F1,

P λ
n (x; a, b) =

(2λ)n
n!

einθ 2F1(−n, λ + it, 2λ; 1− e−2iθ), (1.46)

with

t =
a cos θ + b

sin θ
=

ax+ b√
1− x2

.

Notice that the variable x = cos θ appears not only in the argument of the hypergeometric

function but also in its second parameter.

The orthogonality property

∫ 1

−1
P λ
m(x; a, b)P

λ
n (x; a, b)wP (x) dx =

Γ(2λ+ n)

n!(λ+ n+ a)
δm,n (1.47a)
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is satisfied, with weight function

wP (x) =
1

π
e(2θ−π)t(2 sin θ)2λ−1 |Γ (λ+ it)|2 . (1.47b)

When studying the J-Matrix method different authors [7, 57–59] have investigated the

relation between generalized Pollaczek polynomials and the coefficients sn associated to

the expansion of the sine-like Coulomb wave function. Comparing (1.43) with (1.44) and

identifying

a =
µZ

β
, b = −µZ

β
, λ = ℓ+ 1, x = −β

2 − k2

β2 + k2
(1.48)

the two recurrence relations coincide. The quantity t is related to the Sommerfeld

parameter η defined by formula (1.23a),

t = −η(Z)

For bn to be a generalized Pollaczek polynomial, the restrictions (1.45) must be

satisfied. Since the parameters a, b must be independent of the variable, we must consider

µ, Z, β as fixed values, and then we have k as the (implicit) variable and to have the

complete x domain it suffices to take k > 0. The condition on λ is verified for ℓ > −2.

Finally, as we are considering µ, β fixed and positive, the conditions on a and b impose

Z > 0. It means that the coefficients sn are related to generalized Pollaczek polynomials

only for repulsive Coulomb potentials.

Thus, for µ, Z, β > 0, ℓ > −2 and k ∈ (0,+∞) we have

bn = P λ
n (x; a, b),

or equivalently, using (1.42),

sn =
Nn,ℓ

N0,ℓ
s0 P

ℓ+1
n

Ç
−β

2 − k2

β2 + k2
;
µZ

β
,−µZ

β

å
(1.49a)

(1.46)
=

N0,ℓ

Nn,ℓ

s0 e
inθ

2F1

Ä
−n, ℓ + 1− iη(Z), 2ℓ+ 2; 1− e−2iθ

ä
. (1.49b)

Let us notice that, for β, k > 0 and θ ∈ (0, π),

cos θ = −β
2 − k2

β2 + k2
=⇒ sin θ =

2βk

β2 + k2
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and then

eiθ = −β
2 − k2

β2 + k2
+ i

2βk

β2 + k2
= −β − ik

β + ik
.

In (1.31) we have introduced a parameter ω related to the previous identity,

eiθ = −ω−1 = e(π−ζ)i.

Then (1.49b) can be rewritten as

sn =
N0,ℓ

Nn,ℓ
s0 (−1)n e−inζ

2F1

Ä
−n, ℓ+ 1− iη(Z), 2ℓ+ 2; 1− e2iζ

ä
, (1.50)

which is equivalent to expression (1.30).

With this particular choice of the variable and the parameters, the weight function

(1.47b) becomes

wP (k) =
1

π
e−πη(Z) ω−i 2η(Z)

Ç
4βk

β2 + k2

å2ℓ+1

|Γ (ℓ+ 1− i η(Z))|2

(1.35)
=

Γ(2ℓ+ 2)

π

β2 + k2

βk
s20 (1.51)

and, from (1.49a), the orthogonality property (1.47a) in terms of the coefficients sn =

sn(k) reads

∫ +∞

0
sn(k) sm(k)

1

β2 + k2
dk =

π

4β(ℓ+ 1 + n) + 4µZ
δm,n,

for ℓ > −2, β, µ, Z > 0.

Remark 1.2.2. We have seen that for the case of an attractive Coulomb potential (Z <

0), the restriction a > |b| fails and the coefficients sn are no longer related to Pollaczek

polynomials. Yamani and Reinhardt [57] proposed a new set of polynomials that they

called “attractive Coulomb-Pollaczek” polynomials. Ten years later, Bank and Ismail [60]

presented a complete study of these polynomials and their properties. In both attractive

and repulsive cases, the charge Z is considered as a parameter and the momentum k (or

the energy E through the relation 2µE = k2) is the implicit polynomial variable.
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Remark 1.2.3. The choice of the parameters (1.48) is not unique, but it can be shown

that other choices lead to equivalent expressions of the same polynomials.

Meixner-Pollaczek polynomials

Meixner-Pollaczek polynomials [55, 56] are orthogonal polynomials defined by

P λ
n (x; θ) =

(2λ)n
n!

einθ 2F1

Ä
−n, λ+ ix, 2λ; 1− e−2iθ

ä
. (1.52a)

for

x ∈ R, θ ∈ (0, π), λ > 0. (1.52b)

Let us remark that the variable x is only present in the second parameter of the

hypergeometric function. The recurrence relation characterizing these polynomials is

P λ
−1(x; θ) = 0, (1.53a)

P λ
0 (x; θ) = 1, (1.53b)

(n+ 1)P λ
n+1(x; θ) = 2 [x sin θ + (n+ λ) cos θ]P λ

n (x; θ)− (n+ 2λ− 1)P λ
n−1(x; θ). (1.53c)

The orthogonality property requires a weight function

wM(x) = e(2θ−π)x|Γ(λ+ ix)|2 (1.54)

thus ∫ +∞

−∞
P λ
m(x; θ)P

λ
n (x; θ)wM(x) dx = 2π

Γ(2λ+ n)

(2 sin θ)2λ n!
δm,n. (1.55)

Now we compare (1.43) and (1.53). Setting

x = −η(Z) (1.23a)
= −µZ

k
, λ = ℓ + 1

and ω as in (1.31), we find

cos(π − ζ) = −β
2 − k2

β2 + k2
, sin(π − ζ) =

2βk

β2 + k2

and we conclude that, taking θ = π− ζ , relation (1.43) for the coefficients bn becomes the

one characterizing Meixner-Pollaczek polynomials.
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From (1.52b) we have the restrictions

ℓ > −1,

θ ∈ (0, π) =⇒ sin θ = sin(π − ζ) =
2βk

β2 + k2
> 0,

η(Z) ∈ R.

Thus for ℓ > −1, µ, β, k > 0 and Z ∈ R we find

bn = P λ
n (−η(Z); π − ζ)

or equivalently, using (1.42),

sn =
Nn,ℓ

N0,ℓ
s0 P

ℓ+1
n (−η(Z); π − ζ) (1.56a)

(1.52a)
=

N0,ℓ

Nn,ℓ
s0 (−1)n e−inζ

2F1

Ä
−n, ℓ+ 1− iη(Z), 2ℓ+ 2; 1− e2iζ

ä
. (1.56b)

Even if we finally arrive at the same expression found in (1.50), this constitutes an

alternative interpretation for the sn coefficients as functions of the charge Z ∈ R, including

both attractive and repulsive Coulomb potentials in the same family.

Moreover, these “charge” functions satisfy two interesting properties. First of all, an

orthogonality property consequence of the orthogonality known for the Meixner-Pollaczek

polynomials. Rewritten in terms of the parameters of the Coulomb problem, the weight

function (1.54) becomes

wM(Z) = ω−2iη(Z)e−πη(Z)|Γ(ℓ+ 1− iη(Z))|2

(1.35)
= 4Γ(2ℓ+ 2)

Ç
β2 + k2

4βk

å2ℓ+2

s20

and, from (1.56a) and the orthogonality property (1.55), we obtain an orthogonality

relation for the coefficients sn = sn(Z),

∫ +∞

−∞
sn(Z) sm(Z) dZ =

πk

2µ
δm,n, (1.57)

taking ℓ > −1, β, µ, k > 0. Second, as a consequence of their relation with
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Meixner-Pollaczek polynomials, these coefficients form a complete basis set. Thus,

∑

n

sn(Z1)sn(Z2) =
πk

2µ
δ(Z1 − Z2). (1.58)

In Figure 1.3, we plot as a function of the charge Z, three coefficients sn: n = 2 (full

line), n = 3 (dashed line) and n = 4 (line with dots). Notice the polynomial behavior of

these coefficients in an “ inner” region |Z| < Zn, for an appropriate Zn, and the fact that

they vanish in the “asymptotic” region |Z| > Zn.

-5 0 5 10 15

-0.4

-0.2

0.0

0.2
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Z

s
n
(Z
)

n = 4

n = 3

n = 2

Figure 1.3: Plot of three consecutive coefficients sn as a function of the charge Z.
We take n = 2 (full line), n = 3 (dashed line) and n = 4 (line with dots). The
values of the parameters are µ = 1.7, k = 1.25, ℓ = 1.3 and β = 2.4.

This novel interpretation of the coefficients as orthogonal functions with the charge

as the variable invites us to explore the sine-like Coulomb wave function in terms of the

charge. The closure relations (1.9b) and (1.58) allow us to perform the following integrals

over Z for the regular Coulomb wave function. The first one gives a completeness relation

with respect to the radial variable,

∫ ∞

−∞
F (s)(Z, ℓ, k; r1)

1

r1
F (s)(Z, ℓ, k; r2) dZ

(1.32)
=

1

r1

∫ ∞

−∞

∑

n

sn(Z)φ
L
n(ℓ, β; r1)

∑

m

sm(Z)φ
L
m(ℓ, β; r2) dZ

(1.57)
=

πk

2µ

∑

m

φL
m(ℓ, β; r1)

1

r1
φL
m(ℓ, β; r2)

(1.9b)
=

πk

2µ
δ(r1 − r2), (1.59a)
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while the second one establishes the same relation when considering the charge as the

variable,

∫ ∞

0
F (s)(Z1, ℓ, k; r)

1

r
F (s)(Z2, ℓ, k; r) dr

(1.32)
=

∫ ∞

0

∑

n

sn(Z1)φ
L
n(ℓ, β; r)

1

r

∑

m

sm(Z2)φ
L
m(ℓ, β; r) dr

(1.9a)
=

∑

m

sm(Z1)sm(Z2)

(1.58)
=

πk

2µ
δ(Z1 − Z2). (1.59b)

These integrals were deduced in [61] in a different context, where the authors proposed

to consider a set {Sγ,ℓ(x)}γ∈R of charge Coulomb Sturmian functions that happen to be

regular Coulomb wave functions with the charge as the index.

Remark 1.2.4. The integral (1.59b) can not be performed using (B.7) because one of

the conditions required is not satisfied.

1.3 The Coulomb Green’s functions

The Coulomb Green’s functions are solutions of

î
HC

r
− E

ó
GC(ℓ; r, r

′) = δ(r − r′), (1.60)

with particular boundary conditions.

Different analytical expressions have been presented for these functions in both

coordinate and momentum space [62–65]. Series expansions in terms of Coulomb Sturmian

and Generalized Sturmian functions have also been proposed [66–69].

We are interested here in solutions which are regular at r = 0 and have incoming or

outgoing wave asymptotic behavior (r → ∞). The Coulomb Green’s function, in this

case, can be expressed as the product of the two independent solutions (1.24) and (1.27)

of the corresponding homogeneous equation,

G(±)
C (ℓ; r, r′) = ∓ µ

ik

Γ(ℓ+ 1± iη(Z))

(2l + 1)!
M∓iη(Z); ℓ+1/2(∓2ikr<)W∓iη(Z); ℓ+1/2(∓2ikr>).

(1.61)
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Hostler [63] studied this expression and deduced an alternative representation,

G(±)
C (ℓ; r, r′) = 2µ

√
r r′

∫ ∞

0
dy e±ik(r+r′) cosh(y)

ï
coth

Åy
2

ãò∓2iη(Z)

I2ℓ+1(∓2ik
√
r r′ sinh(y)),

(1.62)

where I2ℓ+1 is a Bessel function [42].

It is possible to give a series representation of GC also in terms of Laguerre-type

functions,

G(±)
C (ℓ; r, r′) =

∑

n,q

g(±)
n,q φ

L
n(ℓ, β; r)φ

L
q (ℓ, β; r

′). (1.63)

The coefficients g(±)
n,q are formally given by

g(±)
n,q =

∫ ∞

0

∫ ∞

0

1

r
φL
n(ℓ, β; r)

1

r′
φL
q (ℓ, β; r

′)G(±)
C (ℓ; r, r′) dr dr′, (1.64)

and, independently of the boundary conditions, they satisfy a recurrence relation

consequence of the tridiagonal matrix representation (1.21) of the operator [HC

r
− E]

in terms of Laguerre-type functions. Replacing the series (1.63) in (1.60), multiplying by

the left both sides of the equation by

1

r
φL
m(ℓ, β; r)

1

r′
φL
p (ℓ, β; r

′)

and integrating over r and r′, we obtain

An+1 gn+1,q +Bn(Z) gn,q + An gn−1,q = δn,q, (1.65)

where An and Bn are given by formulas (1.20), and for n = 0 we take g−1,q = 0.

Taking µ = 1 and using not-normalized Laguerre-type functions, the previous relation

reduces to the one given by Heller in reference [62], a paper in which the author also

deduced a closed form for the coefficients g(+)
n,q corresponding to the Coulomb Green’s

function having outgoing asymptotic behavior. The analogous expression for a general µ

and our normalized φL
q is

g(±)
n,q =

2µ

k
sn<

ĥ(±)
n>
, (1.66)

where n< = min(n, q), n> = max(n, q). Clearly, we have the symmetry property

g(±)
n,q = g(±)

q,n .

The elements sn are the coefficients (1.30) of the series expansion of the Coulomb wave
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function having sine-like asymptotic behavior, and

ĥ(±)
n = − n!

Nn,ℓ

Ç
β2 + k2

4βk

åℓ
Γ(ℓ+ 1± iη(Z))

|Γ(ℓ+ 1± iη(Z))|
e

π
2
η(Z) ωiη(Z) (−ω)±(n+1)

Γ(ℓ+ 2 + n± iη(Z))

× 2F1(−ℓ± iη(Z), n+ 1, ℓ+ 2 + n± iη(Z);ω±2). (1.67)

These are the coefficients of the series representation of a function

Ĥ(±)(ℓ, β; r) =
∑

n

ĥ(±)
n φL

n(ℓ, β; r) (1.68)

solution of the boundary value problem

î
HC

r
− E

ó
Ĥ(±)(ℓ, β; r) = b

1

r
φL
0 (ℓ, β; r), (1.69a)

Ĥ(±)(ℓ, β; 0) = 0, (1.69b)

Ĥ(±)(ℓ, β; 0)
r→∞∼ e±i[kr−η(Z)ln(2kr)−π

2
ℓ+σC(ℓ,Z)]. (1.69c)

The constant b is chosen to obtain the proposed asymptotic behavior. The coefficients

ĥ(±)
n were presented by Yamani and Fishman [7], and then studied by Broad [58, 59],

considering µ = 1 and using not-normalized Laguerre-type functions. They also obtained

a recurrence relation for ĥ(±)
n by replacing (1.68) in (1.69a), multiplying both sides by φL

n

and integrating over r. Making use of (1.21), for the case of a general µ and taking our

normalized Laguerre-type functions, the recurrence relation reads

A1 ĥ
(±)
1 +B0(Z) ĥ

(±)
0 = b, (1.70a)

An+1 ĥ
(±)
n+1 +Bn(Z) ĥ

(±)
n + An ĥ

(±)
n−1 = 0, n > 1, (1.70b)

Notice that, except for the first two elements, this is exactly the relation found for the

coefficients sn of the Laguerre representation of the sine-like Coulomb wave function (1.34).

In Chapter 4 we will see that Ĥ(±) happens to be one of the Quasi-Sturmian functions

we study in this thesis, and we shall present different analytical expressions for it.

1.4 Chapter summary

In this chapter we have presented and reviewed some properties of the functions

constituting the base of our further investigations.
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First we have introduced Slater-type orbitals and Laguerre-type functions, commonly

used as basis sets to represent wave functions in the context of scattering problems. Here

we will use them to generate the Quasi-Sturmian functions we will study in Chapter 4.

The matrix representation of the Coulomb Hamiltonian operator in terms of Laguerre-type

functions is tridiagonal, and this property originates the J-Matrix method [5–8]. In our

work, this feature will be responsible for the recurrence relations we will deduce for the

Quasi-Sturmian functions.

Then, we have presented the Coulomb wave functions and Coulomb Green’s functions,

reviewing their definition and some of their properties. For the sine-like Coulomb wave

function, we have referred to the analytical expression of the coefficients sn, introduced by

Yamani and Fishman [7], corresponding to the series expansion in terms of Laguerre-type

functions. We pointed out the three-term recurrence relation they satisfy, consequence of

the tridiagonal matrix form of the Coulomb Hamiltonian operator. We have also examined

the existing relation between sn and Pollaczek polynomials, and have extended known

results. On one side, we have contributed with analytical expressions for the coefficients

of the Laguerre expansion of the irregular solutions of the Coulomb Hamiltonian, G(c) and

H(±), and we have observed that the known recurrence relation for sn is no longer valid

for the new coefficients. On the other, we have established a novel relation between the

coefficients sn and Meixner-Pollaczek polynomials. This connection came from considering

the charge as the variable, and it allowed us to explore new properties of these coefficients,

finding an orthogonality and a closure relation with respect to the charge.



Chapter 2

Two variables hypergeometric

functions

Since they appear throughout the thesis work, we have developed a special interest in

hypergeometric functions in one and two variables. For example, in the previous chapter

we have expressed Coulomb wave functions in terms of one variable hypergeometric

functions M and W (Whittaker’s functions). We have also found that the expressions

of the series expansions coefficients of irregular Coulomb wave functions involve a two

variable hypergeometric function F2 (Appell’s function). In the next chapter, we will

see that Hulthén Sturmian functions are expressed in terms of Gauss hypergeometric

functions, and that some related matrix elements involve two variable hypergeometric

functions. In Chapter 4, the starting point of our investigation on Quasi-Sturmian

functions is the solution of a non-homogeneous differential equation that happens to be a

two variable hypergeometric function, noted Θ(1). The latter is a Kampé de Fériet function

that appears also when performing the derivative of the confluent hypergeometric function

1F1 with respect to its parameters [70].

Furthermore, we have mentioned in Section 1.1.1 that in some cases it may be

important to know the behavior of a function with respect to its parameters rather

than the variables. In the case of one variable hypergeometric functions pFq , a detailed

mathematical study of their derivatives with respect to their parameters was presented

in references [31, 70, 71]. Such derivatives were expressed in terms of two variable

hypergeometric functions which happened to be closely related to the solution of Coulomb

scattering problems [14, 72–75]. Although we do not go deeper in this subject here,

several generating functions for angular Quasi-Sturmian functions can be derived from

Appell functions. This fact adds interest to explore their derivatives with respect to the

41
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parameters. In this chapter, we extend and generalize the methodology presented in

references [31, 70, 71]; we provide formulas to calculate the derivatives of two variables

hypergeometric functions with respect to their parameters.

Starting with the four Appell hypergeometric functions F1, F2, F3 and F4 [30, 46, 76],

we describe the procedure and give the expressions for their first derivative with respect

to each of the parameters involved. This procedure makes use of series expansions in

terms of Gauss hypergeometric functions, and then exploits the expressions presented in

reference [31]. This will provide us, in most cases, with a systematic way of writing the

nth derivatives with respect to the parameters in terms of generalized Kampé de Fériet

functions, noted 2Θ
(n)
1 , whose definition and properties were presented in reference [31].

An extension to some other two variables hypergeometric series is also briefly outlined.

The results presented in this chapter are part of a manuscript submitted for publication

[32].

We assume hereafter that all variables and parameters are complex numbers. Also,

unless otherwise indicated, in all summations the index runs from 0 to ∞.

Let us first recall some results of reference [31] which we shall need below. Consider

the series representation (1.14) of the Gauss hypergeometric function 2F1(a, b, c; z); it is

assumed that |z| < 1, and that c is neither zero nor a negative integer. The derivatives

with respect to the parameters a or c of the function 2F1 (a, b, c; z) can be written as

d

da
2F1(a, b, c; z) =

z

a

a b

c
2Θ

(1)
1

Ö
1, 1|a, a+ 1, b+ 1

a+ 1|2, c+ 1

∣∣∣∣∣∣∣∣
; z, z

è

, (2.1a)

d

dc
2F1(a, b, c; z) = −z

c

a b

c
2Θ

(1)
1

Ö
1, 1|c, a+ 1, b+ 1

c+ 1|2, c+ 1

∣∣∣∣∣∣∣∣
; z, z

è

, (2.1b)

where 2Θ
(1)
1 stands for a two-variables Kampé de Fériet function [30] defined as

2Θ
(1)
1

Ö
a1, a2|b1, b2, b3
c1|d1, d2

∣∣∣∣∣∣∣∣
; z1, z2

è

=
∑

m,n

(a1)m(a2)n(b1)m
(c1)m

(b2)m+n(b3)m+n

(d1)m+n(d2)m+n

zm1
m!

zn2
n!
. (2.2)

Since 2F1(a, b, c; z) = 2F1(b, a, c; z), the derivative with respect to b may be obtained

by interchanging a and b in (2.1a).
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2.1 Derivative of Appell hypergeometric functions

with respect to their parameters

The Appell hypergeometric functions are two-variable (say, z1 and z2) functions

extensively studied from their mathematical point of view. Amongst their known

properties one finds compact expressions for the derivatives with respect to z1 and/or

z2.

In some cases one may be interested, instead of the variables, in one parameter of the

function, say α. Then one should consider the study of Appell functions as one variable

functions of this parameter α. The derivatives with respect to such parameter become an

important tool since they allow, for example, to write a Taylor expansion around a given

value α0.

2.1.1 Function F2

For presentation convenience we shall start with the Appell F2 function which is defined

by the two-variable series

F2(a, b1, b2, c1, c2; z1, z2) =
∑

m,n

(a)m+n(b1)m(b2)n
(c1)m(c2)n

zm1
m!

zn2
n!
, |z1|+ |z2| < 1, (2.3)

where we assume that c1 and c2 are neither zero nor negative integers. One may also

express the F2 function as a series about z1 = 0, for fixed z2

F2(a, b1, b2, c1, c2; z1, z2) =
∑

k

(a)k(b1)k
(c1)k

2F1(a+ k, b2, c2; z2)
zk1
k!
. (2.4)

Using the derivatives of the Gauss hypergeometric function with respect to its second

(respectively third) parameter (i.e., relations (2.1a), respectively (2.1b)), we find

d

db2
F2(a, b1, b2, c1, c2; z1, z2)

=z2
a

c2

∑

k

(a+ 1)k(b1)k
(c1)k

2Θ
(1)
1

Ö
1, 1|b2, b2 + 1, a+ k + 1

b2 + 1|2, c2 + 1

∣∣∣∣∣∣∣∣
; z2, z2

è
zk1
k!

=z2
a

c2

∑

k,m,n

(a+ 1)k+m+n
(b2 + 1)m+n

(2)m+n(c2 + 1)m+n

(b1)k
(c1)k

(1)m(b2)m
(b2 + 1)m

(1)n
zk1
k!

zm2
m!

zn2
n!
, (2.5a)
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d

dc2
F2(a, b1, b2, c1, c2; z1, z2)

=− z2
a b2
c22

∑

k

(a+ 1)k(b1)k
(c1)k

2Θ
(1)
1

Ö
1, 1|c2, a+ k + 1, b2 + 1

c2 + 1|2, c2 + 1

∣∣∣∣∣∣∣∣
; z2, z2

è
zk1
k!

=− z2
a b2
c22

∑

k,m,n

(a+ 1)k+m+n
(b2 + 1)m+n

(2)m+n(c2 + 1)m+n

(b1)k
(c1)k

(1)m(c2)m
(c2 + 1)m

(1)n
zk1
k!

zm2
m!

zn2
n!
.

(2.5b)

In each case, the second equality is obtained by using the identity

1

(a+ k)
=

1

a

(a)k
(a+ 1)k

. (2.6)

Thus the derivative of the Appell function is expressed either as an infinite series of

functions 2Θ
(1)
1 or, equivalently, as a triple infinite summation.

Making use of the symmetry relation

F2(a, b1, b2, c1, c2; z1, z2) = F2(a, b2, b1, c2, c1; z2, z1)

we have similar expressions for the derivatives with respect to b1 and c1 where in the

above one interchanges (z1, b1, c1) with (z2, b2, c2).

Next, we consider the derivative with respect to the parameter a which appears in

the numerator of the series (2.3) with combined index m+ n or, alternatively, in a more

cumbersome manner in expansion (2.4). For this case we use a different approach, based

on the derivative of the Pochhammer symbol [47, 48]

d

da
(a)n+m = (a)n+m[ψ(a + n+m)− ψ(a)] = (a)n+m

m+n−1∑

k=0

1

a + k
,

the second equality coming from the recurrence relation of the digamma function

ψ (z + n) =
1

z + n− 1
+

1

z + n− 2
+ . . .+

1

z + 1
+ ψ(z + 1)

[equation (6.3.6) of [42]]. Note that for n = m = 0 this derivative is obviously zero. It is

convenient to split the sum in two parts,

d

da
(a)n+m = (a)n+m

[
m−1∑

k=0

1

a+ k
+

n−1∑

k=0

1

a+m+ k

]
.
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The derivative of F2 with respect to a can therefore be written as

d

da
F2(a, b1, b2, c1, c2; z1, z2)

=
∑

m,n

(a)n+m
(b1)m(b2)n
(c1)m(c2)n

zm1
m!

zn2
n!

[
m−1∑

k=0

1

a+ k
+

n−1∑

k=0

1

a +m+ k

]

=
∑

n

(b2)n
(c2)n

zn2
n!

∑

m

(b1)m+1

(c1)m+1

zm+1
1

(m+ 1)!
(a)n+m+1

m∑

k=0

1

a

(a)k
(a+ 1)k

+
∑

m

(b1)m
(c1)m

zm1
m!

∑

n

(b2)n+1

(c2)n+1

zn+1
2

(n + 1)!
(a)n+m+1

n∑

k=0

1

a

(a)m+k

(a+ 1)m+k

,

where for the second equality we shifted the index m (respectively n), and we made use

of relation (2.6). Using then the rearrangement series technique [77]

∞∑

p=0

p∑

k=0

B(k, p) =
∞∑

p=0

∞∑

k=0

B(k, p + k), (2.7)

we obtain two separate triple infinite summations

d

da
F2(a, b1, b2, c1, c2; z1, z2)

=z1
b1
c1

∑

k,m,n

(a+ 1)n+m+k
(b1 + 1)m+k

(c1 + 1)m+k(2)m+k

(1)k (a)k
(a+ 1)k

(1)m
(b2)n
(c2)n

zk1
k!

zm1
m!

zn2
n!

+ z2
b2
c2

∑

k,m,n

(a+ 1)n+m+k
(b2 + 1)n+k

(c2 + 1)n+k(2)n+k

(a)m+k

(a+ 1)m+k

(1)k
(b1)m
(c1)m

(1)n
zk2
k!

zn2
n!

zm1
m!
,

and each of this triple summations can also be expressed as single series of 2Θ
(1)
1 functions.

2.1.2 Function F1

We now turn to the F1 function which is defined as

F1(a, b1, b2, c; z1, z2) =
∑

m,n

(a)m+n(b1)m(b2)n
(c)m+n

zm1
m!

zn2
n!
, |z1| < 1, |z2| < 1, (2.8)

and we assume that c is neither zero nor a negative integer. As a series around the z1 = 0

point, for fixed z2, one has

F1(a, b1, b2, c; z1, z2) =
∑

k

(a)k(b1)k
(c)k

2F1(a + k, b2, c+ k; z2)
zk1
k!
. (2.9)
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Using expression (2.1a) we get

d

db2
F1(a, b1, b2,c; z1, z2)

=z2
a

c

∑

k

(a+ 1)k(b1)k
(c+ 1)k

2Θ
(1)
1

Ö
1, 1|b2, b2 + 1, a+ k + 1

b2 + 1|2, c+ k + 1

∣∣∣∣∣∣∣∣
; z2, z2

è
zk1
k!

=z2
a

c

∑

k,m,n

(a+ 1)k+m+n

(c+ 1)k+m+n

(b2 + 1)m+n

(2)m+n

(b1)k
(1)m(b2)m
(b2 + 1)m

(1)n
zk1
k!

zm2
m!

zn2
n!
, (2.10)

and similarly for the derivative with respect to b1 by interchanging (z1, b1) with (z2, b2),

since

F1(a, b1, b2, c; z1, z2) = F1(a, b2, b1, c; z2, z1).

For the derivative with respect to the first parameter a and c, we first use the identity

F2(a, b1, b2, c, a; z1, z2) = (1− z2)
−b2 F1

Ç
b1, a− b2, b2, c; z1,

z1
1− z2

å

from which

F1(a, b1, b2, c; z1, z2) =

Ç
z1
z2

åb2

F2

Ç
b1 + b2, a, b2, c, b1 + b2; z1, 1−

z1
z2

å
. (2.11)

Then, applying the expressions (2.5) found previously for F2, one easily finds

d

da
F1(a, b1, b2,c; z1, z2)

=

Ç
z1
z2

åb2 d

da
F2

Ç
b1 + b2, a, b2, c, b1 + b2; z1, 1−

z1
z2

å

=

Ç
z1
z2

åb2

z1
b1 + b2
c

∑

k

(b1 + b2 + 1)k(b2)k
(b1 + b2)k

1

k!

Ç
1− z1

z2

åk

× 2Θ
(1)
1

Ö
1, 1|a, a+ 1, b1 + b2 + 1 + k

a+ 1|2, c+ 1

∣∣∣∣∣∣∣∣
; z1, z1

è

(2.12a)

=

Ç
z1
z2

åb2

z1
b1 + b2
c

∑

k,m,n

(b1 + b2 + 1)k+m+n
(a + 1)m+n

(2)m+n(c+ 1)m+n

(b2)k
(b1 + b2)k

× (1)m(a)m
(a+ 1)m

(1)n
1

k!

Ç
1− z1

z2

åk zm1
m!

zn1
n!
, (2.12b)



Chapter 2. Two variables hypergeometric functions 47

d

dc
F1(a, b1, b2, c; z1, z2)

=

Ç
z1
z2

åb2 d

dc
F2

Ç
b1 + b2, a, b2, c, b1 + b2, z1, 1−

z1
z2

å

=−
Ç
z1
z2

åb2

z1
(b1 + b2) a

c2
∑

k

(b1 + b2 + 1)k(b2)k
(b1 + b2)k

1

k!

Ç
1− z1

z2

åk

× 2Θ
(1)
1

Ö
1, 1|c, b1 + b2 + 1 + k, a+ 1

c+ 1|2, c+ 1

∣∣∣∣∣∣∣∣
; z1, z1

è

=−
Ç
z1
z2

åb2

z1
(b1 + b2) a

c2
∑

k,m,n

(b1 + b2 + 1)k+m+n
(a+ 1)m+n

(2)m+n(c+ 1)m+n

(b2)k
(b1 + b2)k

× (1)m(c)m
(c+ 1)m

(1)n
1

k!

Ç
1− z1

z2

åk zm1
m!

zn1
n!
.

2.1.3 Function F3

Next, we consider the F3 function which is defined as

F3(a1, a2, b1, b2, c; z1, z2) =
∑

m,n

(a1)m(a2)n(b1)m(b2)n
(c)m+n

zm1
m!

zn2
n!
, |z1| < 1, |z2| < 1, (2.13)

and assume that c is neither zero nor a negative integer. Using the series around the

z1 = 0 point, for fixed z2,

F3(a1, a2, b1, b2, c; z1, z2) =
∑

k

(a1)k(b1)k
(c)k

2F1(a2, b2, c+ k; z2)
zk1
k!
,

and following the same procedure (i.e., using result (2.1a)) we obtain

d

da2
F3(a1, a2, b1, b2, c; z1, z2)

=z2
b2
c

∑

k

(a1)k(b1)k
(c+ 1)k

zk1
k!

2Θ
(1)
1

Ö
1, 1|a2, a2 + 1, b2 + 1

a2 + 1|2, c+ k + 1

∣∣∣∣∣∣∣∣
; z2, z2

è

=z2
b2
c

∑

k,m,n

1

(c + 1)k+m+n

(a2 + 1)m+n(b2 + 1)m+n

(2)m+n

(a1)k(b1)k
(1)m(a2)m
(a2 + 1)m

(1)n
zk1
k!

zm2
m!

zn2
n!
.

Since a2 and b2 play a similar role in the definition of F3, the derivative with respect to

b2 is the same as the above by simply interchanging a2 with b2. Moreover, since

F3(a1, a2, b1, b2, c; z1, z2) = F3(a2, a1, b2, b1, c; z2, z1)
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the derivative with respect to a1 (and similarly to b1) are the above by interchanging

(z1, a1, b1) with (z2, a2, b2).

For the derivative with respect to c, the calculation is longer, as c appears with an

index m+ n in (2.13). In this case we must use

d

dc

1

(c)n+m

= − 1

(c)n+m

[
m−1∑

k=0

1

c+ k
+

n−1∑

k=0

1

c+m+ k

]
,

and proceed as with the derivative with respect to a of function F2.

2.1.4 Function F4

Finally, the Appell function F4 is defined as

F4(a, b, c1, c2; z1, z2) =
∑

m,n

(a)m+n(b)m+n

(c1)m(c2)n

zm1
m!

zn2
n!
, |√z1|+ |√z2| < 1, (2.14)

where we assume that c1 and c2 are neither zero nor a negative integer. Alternatively, as

a series around the z1 = 0 point, for fixed z2, one has

F4(a, b, c1, c2; z1, z2) =
∑

k

(a)k(b)k
(c1)k

2F1(a+ k, b+ k, c2; z2)
zk1
k!
.

Applying result (2.1b) one easily finds

d

dc2
F4(a, b, c1, c2; z1, z2)

=− z2
a b

c22

∑

k

(a+ 1)k(b+ 1)k
(c1)k

zk1
k!

2Θ
(1)
1

Ö
1, 1|c2, a+ k + 1, b+ k + 1

c2 + 1|2, c2 + 1

∣∣∣∣∣∣∣∣
; z2, z2

è

=− z2
a b

c22

∑

k,m,n

(a+ 1)k+m+n(b+ 1)k+m+n
1

(2)m+n(c2 + 1)m+n

1

(c1)k

× (1)m(c2)m
(c2 + 1)m

(1)n
zk1
k!

zm2
m!

zn2
n!
,

and a similar expression for the derivative with respect to c1, by interchanging (z1, c1)

with (z2, c2), since

F4(a, b, c1, c2; z1, z2) = F4(a, b, c2, c1; z2, z1).

For the derivative with respect to a (and similarly with respect to b, by permutation),
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the calculation is longer, as a appears with an index m + n in (2.14). We can proceed

as with the derivative with respect to a of function F2, and we end up with two triple

infinite summations.

2.2 nth derivative and properties

Similarly to the case of the first derivatives of the Gaussian hypergeometric function

2F1 for which one introduces a two-variable 2Θ
(1)
1 function, for the nth derivative it is

convenient to introduce a hypergeometric function in n+ 1 variables [31]

2Θ
(n)
1

Ö
a1, a2, . . . , an+1| b1, b2, . . . , bn+2

c1, . . . , cn| d1, d2

∣∣∣∣∣∣∣∣
; z1, . . . , zn+1

è

=
∑

m1

. . .
∑

mn+1

(a1)m1(a2)m2 . . . (an+1)mn+1

(b1)m1(b2)m1+m2 . . . (bn+1)m1+m2+...+mn+1

(c1)m1(c2)m1+m2 . . . (cn)m1+m2+...+mn

×
(bn+2)m1+m2+...+mn+1

(d1)m1+m2+...+mn+1
(d2)m1+m2+...+mn+1

zm1
1 zm2

2 . . . z
mn+1

n+1

m1!m2! . . .mn+1!
. (2.15)

In terms of these new functions (which are also Kampé de Fériet functions [31]), the nth

derivatives of the Gaussian hypergeometric function with respect to the parameters read

dn

dan
2F1(a, b, c; z)

=
(b)n
(c)n

zn 2Θ
(n)
1

Ö
1, 1, . . . , 1| a, a+ 1, . . . , a+ n, b+ n

a+ 1, . . . , a+ n|n+ 1, c+ n

∣∣∣∣∣∣∣∣
; z, . . . , z

è

, (2.16a)

dn

dcn
2F1(a, b, c; z)

= (−1)n
n!

cn
ab

c
z 2Θ

(n)
1

Ö
1, 1, . . . , 1| c, c, . . . , c, a+ 1, b+ 1

c+ 1, . . . , c+ 1| 2, c+ 1

∣∣∣∣∣∣∣∣
; z, . . . , z

è

. (2.16b)

Thus, applying the same procedure as described in the previous section, the nth derivative

of the Appell functions with respect to their parameters are given by n + 2 infinite

summations. In most cases, they can be obtained straightforwardly, and expressed as

a single sum of these 2Θ
(n)
1 functions. However, for the derivatives of F2 (respectively F3

or F4) with respect to a (respectively, c or a), the generalization of the results to nth
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order is not as compact.

For example, from (2.9) one immediately finds

dn

dbn2
F1(a, b1, b2, c; z1, z2)

= zn2
∑

k

(a)n+k(b1)k
(c)n+k

zk1
k!

× 2Θ
(n)
1

Ö
1, 1, . . . , 1| b2, b2 + 1, . . . , b2 + n, a+ n + k

b2 + 1, . . . , b2 + n|n+ 1, c+ n+ k

∣∣∣∣∣∣∣∣
; z2, . . . , z2

è

.

To obtain the nth derivative of F1 with respect to a or c it is convenient to use relation

(2.11). Thus, for example for the parameter a we have

dn

dan
F1(a, b1, b2, c; z1, z2)

=

Ç
z1
z2

åb2 dn

dan
F2

Ç
b1 + b2, a, b2, c, b1 + b2; z1, 1−

z1
z2

å

=

Ç
z1
z2

åb2 1

(c)n
zn1
∑

k

(b1 + b2)n+k (b2)k
(b1 + b2)k k!

Ç
1− z1

z2

åk

× 2Θ
(n)
1

Ö
1, 1, . . . , 1| a, a+ 1, . . . , a+ n, b1 + b2 + n+ k

a + 1, . . . , a+ n|n+ 1, c+ n

∣∣∣∣∣∣∣∣
; z1, . . . , z1

è

.

The 2Θ
(n)
1 functions follow some recurrence relations and possess alternative series

representations [31], which may be useful in certain cases. For n = 1, for example,

2Θ
(1)
1

Ö
a1, a2| b1, b2, b3
c1| d1, d2

∣∣∣∣∣∣∣∣
; z1, z2

è

=
∑

m1

(a1)m1
(b1)m1

(b2)m1
(b3)m1

(c1)m1
(d1)m1

(d2)m1

zm1
1

m1!
3F2 (a2, b2 +m1, b3 +m1; d1 +m1, d2 +m1; z2)

=
∑

m2

(a2)m2
(b2)m2

(b3)m2

(d1)m2
(d2)m2

zm2
2

m2!
4F3 (a1, b1, b2 +m2, b3 +m2; c1, d1 +m2, d2 +m2; z1) .

Thus the derivatives of the Appell functions with respect to the parameters can be written

in alternative forms which may result to be more practical. For example, for the F1
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function we have

d

db1
F1(a, b1, b2, c; z1, z2)

= z1
a

c

∑

k,m

(a+ 1)k+m

(c+ 1)k+m
(b2)k

(1)m(b1)m
(2)m

zk2
k!

zm1
m!

× 3F2(1, b1 + 1 +m, a+ 1 + k +m, 2 +m, c+ 1 + k +m; z1)

= z1
a

c

∑

k,m

(a+ 1)k+m

(c+ 1)k+m
(b2)k

(1)m(b1 + 1)m
(2)m

zk2
k!

zm1
m!

× 4F3(1, b1, b1 + 1 +m, a + 1 + k +m, b1 + 1, 2 +m, c+ 1 + k +m; z1).

It is also possible to express such derivative in terms of Gauss hypergeometric functions

d

db1
F1(a, b1, b2, c; z1, z2)

= z1
a

c

∑

m,n

(a+ 1)m+n(b1 + 1)m+n

(c+ 1)m+n(2)m+n

(b1)m
(b1 + 1)m

zm+n
1

× 2F1(a+ 1 +m+ n, b2, c+ 1 +m+ n; z2). (2.17)

As a consequence, if one should be interested in mixed derivatives such as
d2F1

db1 db2
, relation

(2.17) could be used together with relation (2.1a). One obtains straightforwardly a double

infinite summation of 2Θ
(1)
1 functions or, alternatively, a quadruple infinite summation.

Remark 2.2.1. In some subcases one may easily recover previously published results. As

an example, consider the derivative with respect to a of the F1 function in the case z1 = z2;

by inspection of result (2.12a), only the k = 0 term survives in the summation and the

derivative is given as a single 2Θ
(1)
1 function. At the same time, the Appell function F1 is

known to reduce to a Gauss hypergeometric function,

F1(a, b1, b2, c; z1, z1) = 2F1(a, b1 + b2, c; z1),

so that the derivative

d

da
F1(a, b1, b2, c; z1, z1) =

d

da
2F1(a, b1 + b2, c; z1)

is also directly provided by (2.1a) as presented in reference [31]. The results obviously

coincide.
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2.3 Extension to other two-variables hypergeometric

series

Following the procedure presented in the previous sections the derivatives with respect to

the parameters of other two variables Horn hypergeometric series [46, 52] can be studied.

The idea is to first express them as a single sum of 2F1 (possibly 1F1, or even pFq) functions,

and then apply the expressions for the derivative of these one variable hypergeometric

functions in terms of Kampé de Fériet functions.

Amongst Horn functions, we are particularly interested in the two variable confluent

hypergeometric series Φ1 [52] since it appears in one of the representations of the Slater

Quasi-Sturmian functions studied in Chapter 4 [see equation (4.15)]. The function Φ1

has the following alternative representations

Φ1(a, b, c; z1, z2) =
∑

m,n

(a)m+n(b)m
(c)m+n

zm1
m!

zn2
n!
, |z1| < 1 (2.18a)

=
∑

n

(a)n
(c)n

zn2
n!

2F1(a+ n, b, c + n; z1) (2.18b)

=
∑

m

(a)m(b)m
(c)m

zm1
m!

1F1(a +m, c+m; z2). (2.18c)

From the series (2.18b) one can obtain the nth derivative with respect to the b parameter

applying directly formula (2.16a). The derivative with respect to a presents the same

difficulty found when calculating the derivative with respect to the first parameter of the

Appell F2 function, while the situation with the parameter c is equivalent to the one

found with the fifth parameter of the Appell F3 function. Thus they can be calculated

proceeding as described in those two cases.

For the confluent hypergeometric series Ψ1 one has the equivalent expressions

Ψ1(a, b, c1, c2; z1, z2) =
∑

m,n

(a)m+n(b)m
(c1)m(c2)n

zm1
m!

zn2
n!
, |z1| < 1 (2.19a)

=
∑

m

(a)m(b)m
(c1)m

zm1
m!

1F1(a+m, c2; z2) (2.19b)

=
∑

n

(a)n
(c2)n

zn2
n!

2F1(a+ n, b, c1; z1). (2.19c)

If one is interested in its derivative with respect to the parameter c2 one can use the series

representation (2.19b) in terms of the confluent hypergeometric function 1F1 whose nth
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derivative was presented in reference [31]. But if one needs the derivative with respect to

b or c1 it is more convenient to calculate them from the series (2.19c) applying (2.16a)

or (2.16b). Once again, the derivative with respect to a can be calculated as done in the

case of the derivative with respect to the first parameter of the F2 function.

More details on the nth derivative of these, and other, two variable hypergeometric

series can be found in [32].

2.4 Chapter summary

We have studied the derivatives to any order n, with respect to their parameters, of the

four Appell hypergeometric functions. They can be written as n+2 infinite summations.

To perform these derivatives we have expressed the Appell functions in terms of single

series of one variable Gauss hypergeometric functions. Then, we took advantage of the

compact expressions, obtained previously with a differential equation approach [31], for

their nth derivatives with respect to parameters. Hence, for most parameters, the nth

derivatives can be easily written as single sums of a generalized multivariable Kampé de

Fériet function, noted 2Θ
(n)
1 .

For the parameters that could not be treated following this strategy, we have performed

the first derivative of the function by derivating the corresponding Pochhammer symbol

and making some algebraic manipulations. These cases can not be easily generalized to

the nth order.

The methodology presented, which makes part of a more extensive study [32], can

be extended – in the same systematic way – to the study of the derivative with respect

to their parameters of other two variable, or three variable, hypergeometric functions.

The starting point is to express such series as a sum of 2F1 (possibly 1F1, or even pFq)

functions, and then apply the expressions presented in [31, 70, 71] for the derivatives of

these one-variable hypergeometric functions with respect to their parameters. We have

illustrated this idea in the last section of this chapter, for the case of Horn hypergeometric

series Φ1 and Ψ1.



54 2.4. Chapter summary



Chapter 3

Generalized Sturmian functions

In this chapter we briefly introduce Generalized Sturmian functions and their main

properties. We analyse the particular case of Hulthén Sturmian functions because they can

be given in closed form, so that integrals related to scattering problems can be analytically

solved. The results presented in this chapter, together with the implementation displayed

in Section 5.2, are part of a published work [33].

3.1 General considerations

Generalized Sturmian functions [26, 27] form a set of basis functions (index n) used to

expand the solution of different bound and scattering problems. For the two-body case,

they are defined as the solution of the Schrödinger-like differential equation

[Tr + Va(r)− E]Sn,ℓ(r) = −λn,ℓ Vg(r)Sn,ℓ(r), (3.1)

where Tr = − 1
2µ

d2

dr2
+ ℓ(ℓ+1)

2µr2
, and the parameters µ, ℓ appearing in this kinetic operator can

be conveniently chosen to coincide with the reduced mass and the angular momentum,

and E is the energy of the problem under consideration. The functions Va and Vg are

called auxiliary and generating potential respectively. Usually Vg is a short-range potential

which means that there exist R ∈ R such that

Vg(r) ∼ 0, ∀ r > R.

Together with two appropriate boundary conditions, equation (3.1) becomes a

Sturm-Liouville problem [2, 28, 49, 50], with eigenvalues λn,ℓ. The eigenfunctions Sn,ℓ

55
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form then a complete basis set with the closure relation

∑

n

Sn,ℓ(r1)Vg(r1)Sn,ℓ(r2) = Vn δ(r1 − r2), (3.2)

and they satisfy an orthogonality relation

∫ ∞

0
Sm,ℓ(r)Vg(r)Sn,ℓ(r) dr = Vn δm,n, (3.3a)

where

Vn =
∫ ∞

0
Sn,ℓ(r)Vg(r)Sn,ℓ(r) dr. (3.3b)

As usual for the Schrödinger equation, the boundary conditions for Sturmian functions

are imposed at the origin and in the asymptotic region (r > R) where the generating

potential vanishes. The first one is

Sn,ℓ(0) = 0. (3.4)

In the region r > R the equation for Generalized Sturmian functions becomes

[Tr + Va(r)− E]Sn,ℓ(r) = 0, (3.5)

and is independent of the index n; thus all functions Sn,ℓ describe, in the asymptotic

region, the behavior of a particle of energy E moving under the influence of a potential

Va [see Figure 3.2] . For an auxiliary potential also vanishing in the asymptotic region,

i.e. Va(r) = 0 in equation (3.5), the solutions Sn,ℓ represent then a free particle in this

region and have the following asymptotic form,

Sn,ℓ(r)
r→∞∝ e−κr, κ =

»
−2µE, if E < 0,

S
(±)
n,ℓ (r)

r→∞∝ e±ikr, k =
»
2µE, if E > 0.

Here we introduce the notation S
(±)
n,ℓ to make explicit the incoming (−) or outgoing (+)

wave behavior at large values of r.

For an auxiliary potential including a Coulomb term plus a short-range potential,

Va(r) =
Z

r
+ ‹Va(r),

equation (3.5) becomes the Coulomb equation (1.22). Thus the behavior of the Sn,ℓ
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functions coincides with the one of the Coulomb wave functions introduced in Section

1.2.

Remark 3.1.1. As explained in reference [26], the asymptotic behavior is reached once

the generating potential vanishes (say at r = R). Thus, independently of the index n, all

functions Sn,ℓ have the same asymptotic behavior (up to a complex constant that may

depend on n). In other words, these functions are not linearly independent in the region

r > R. We will see in the following chapter that this is not the case with our proposed

Laguerre and Slater Quasi-Sturmian function Qn, each of which is constructed with a

different generating potential that vanishes farther of the origin as the index n increases.

Remark 3.1.2. Notice that for positive energies Generalized Sturmian functions are

complex functions. Nevertheless, properties (3.2) and (3.3) remain valid without taking

the complex conjugated of one of the basis functions because they are general properties

of Sturm-Liouville theory.

3.2 The Hulthén Sturmian functions

The Hulthén potential [29], a particular case of Eckart’s potential, is defined as

V(r) = v0
e−

r
α

1− e−
r
α

, (3.6)

where a > 0, v0 < 0 are fixed real parameters. It is a short-range potential that behaves

as a Coulomb potential near the origin (taking v0 =
z1z2
α

) and decreases exponentially for

large values of r.

For ℓ = 0, Hulthén Sturmian functions can be given in closed form. Taking

Va(r) ≡ 0, Vg(r) = vg
e−

r
α

1− e−
r
α

, (3.7)

the differential equation (3.1) defining them becomes

[
− 1

2µ

d2

dr2
+ λn,0 vg

e−
r
α

1− e−
r
α

− E

]
S
(+)
n,0 (r) = 0 (3.8a)
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and we consider the outgoing scattering boundary conditions

S
(+)
n,0 (0) = 0, (3.8b)

S
(+)
n,0 (r)

r→∞∝ eikr. (3.8c)

We now make brief a review of the procedure presented in [29] to find the solution of

the eigenvalue problem. First we perform a change of variable

x = e−
r
α

and propose

S
(+)
n,0 (x) = NS

n x
−ikα y(x). (3.9)

We introduce a normalization coefficient NS
n in such a way that the closure relation (3.2)

holds; its analytical expression is given below. With this proposal, one obtains an equation

for the function y(x)

ñ
x(1− x)

d2

dx2
+ [1− 2ikα− (1− 2ikα)x]

d

dx
− 2µa2vg λn,0

ô
y(x) = 0,

which is a Gauss hypergeometric differential equation, whose general form is

ñ
x(1 − x)

d2

dx2
+ [C − (A+B + 1)x]

d

dx
− AB

ô
y(x) = 0.

Its solution, regular at the origin, is the Gauss hypergeometric function y(x) =

2F1(A,B,C; x),and therefore,

S
(+)
n,0 (r) = NS

n e
ikr

2F1

Ä
A,B,C; e−

r
α

ä
.

The parameter C = 1 − 2ikα can be immediately identified, while for A and B we

have the system




A+B = −2ikα,

AB = 2µα2vg λn,0,
(3.10)

whose solution is

A = −ikα ± iα
»
k2 + 2µvg λn,0, B = −ikα ∓ iα

»
k2 + 2µvg λn,0. (3.11)
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The asymptotic condition is clearly verified since

S
(+)
n,0 (r)

r→∞∼ NS
n e

ikr. (3.12)

The condition of regularity at r = 0 is responsible for the discretization of the eigenvalues.

At r = 0 we have

0 = 2F1(A,B,C; 1) =
Γ(C) Γ(C −A−B)

Γ(C − A) Γ(C −B)

which implies that either C − A = −m or C − B = −m, m = 0, 1, 2, . . .. With the first

option,

C − A = −m =⇒




A = m+ 1− 2ikα

B = −(m+ 1)
(3.13)

while the other option (C−B = −m) interchanges the roles of A and B. Settingm+1 = n,

and taking into account that 2F1(A,B,C; x) = 2F1(B,A,C; x), in both cases we finally

obtain the same result for the Hulthén Sturmian functions, namely

S
(+)
n,0 (r) = NS

n e
ikr

2F1

Ä
−n, n− 2ikα, 1− 2ikα; e−

r
α

ä
, n = 1, 2, 3, . . . (3.14a)

= NS
n e

ikr
n∑

q=0

(−n)q (n− 2ikα)q
(1− 2ikα)q

Ä
e−

r
α

äq

q!
. (3.14b)

The eigenvalues result from equating (3.11) with (3.13),

λn,0 = −n(n− 2ikα)

2µα2 vg
. (3.15)

The Hulthén Sturmian functions S
(+)
n,0 were displayed in reference [26] as an example

of Sturmian functions having outgoing boundary condition. The authors took advantage

of the analytical expressions of these functions and their eigenvalues to illustrate the

efficiency of the numerical method proposed to generate Generalized Sturmian functions.

In Figure 3.1 we plot the real part (full line) and imaginary part (line with dots) of

a Hulthén Sturmian function taking n = 5, k = 0.9, vg = −3, α = 1. The corresponding

generating Hulthén potential is shown with a dashed line.

In Figure 3.2 we plot the real part of normalized Hulthén Sturmian functions

S
(+)
n,0 (r) =

1

NS
n

S
(+)
n,0 (r)
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for three different indices: n = 3 (full line), n = 8 (line with dots) and n = 15 (line with

diamonds). The dashed line corresponds to the real part of the outgoing wave eikr that

characterizes the asymptotic behavior.
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Figure 3.1: Real and imaginary parts (full line and line with dots respectively)
of a Hulthén Sturmian function with outgoing scattering condition. We fix n =
5, k = 0.9, vg = −3, α = 1. The dashed line corresponds to the generating Hulthén
potential.
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Figure 3.2: Real part of S
(+)
n,0 for different values of n and parameters k = 1.2, vg =

−1.8, α = 3. The dashed line represents the real part of the asymptotic behavior
eikr.

As mentioned in Remark 3.1.1, these plots illustrate the fact that in the region where

the generating potential vanishes all Sturmian functions reach an asymptotic behavior,

unique up to a complex constant depending on the index n.
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Remark 3.2.1. The hypergeometric function appearing in the expression of Hulthén

Sturmian functions is related to a Jacobi polynomial P (a,b)
n [42] taking the parameters

a = −2ikα, b = −1 and the variable z = 1− 2x, x = e−
r
α . Hence, we have the equivalent

form

S
(+)
n,0 (r) = NS

n

n!

(1− 2ikα)n
eikr P (−2ikα,−1)

n (1− 2e−
r
α ). (3.16)

As indicated at the beginning of this section, we choose the magnitude NS
n such that

the functions generate the closure relation (3.2). To find its value we start from the

following relation for the Jacobi polynomials [78]

∑

n

n!(a + b+ 2n+ 1)Γ(a+ b+ n + 1)

Γ(a+ n + 1) Γ(b+ n+ 1)
P (a,b)
n (x)P (a,b)

n (y)

= 2a+b+1(1− x)−
a
2 (1 + x)−

b
2 (1− y)−

a
2 (1 + y)−

b
2 δ(x− y) (3.17)

valid for x, y ∈ (−1, 1) and Re(a),Re(b) > −1. Setting

x = 1− 2e−
r1
α , y = 1− 2e−

r2
α ,

and using (3.16) we find

∑

n

n!(2n− 2ikα)Γ(n− 2ikα)

Γ(n + 1− 2ikα) Γ(n)

ñ
(1− 2ikα)n
NS

n n!

ô2
S
(+)
n,0 (r1)S

(+)
n,0 (r2)

= 2(1− e−
r1
α )

1
2 (1− e−

r2
α )

1
2 δ(−2e−

r1
α + 2e−

r2
α ). (3.18)

Now we make use of some properties of Dirac delta δ that can be found in §15 of [79]

or in [80]. The Dirac delta satisfies

δ(f(x)) =
∑

n

δ(x− xn)

|f ′(xn)|

for xn such that f(xn) = 0, f ′(xn) 6= 0. Taking f(r2) = −2e−
r1
α + 2e−

r2
α , we have

f(r2) = 0 ⇐⇒ r2 = r1,

|f ′(r1)| =
2

α
e−

r1
α .
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Then, using δ(x) = δ(−x),

δ(−2e−
r1
α + 2 e−

r2
α ) =

α

2e−
r1
α

δ(r1 − r2).

From the property

h(x)δ(x− x0) = h(x0)δ(x− x0),

and taking h(r2) = (1− e−
r2
α )

1
2 we find

(1− e−
r2
α )

1
2 δ(r1 − r2) = (1− e−

r1
α )

1
2 δ(r1 − r2).

Combining these two results, and using the recurrence property of the Gamma function,

identity (3.18) becomes

∑

n

n (2n− 2ikα)

n− 2ikα

ñ
(1− 2ikα)n
NS

n n!

ô2
S
(+)
n,0 (r1)S

(+)
n,0 (r2) = α

1− e−
r1
α

e−
r1
α

δ(r1 − r2),

or, equivalently, in terms of the Hulthén potential (3.7)

∑

n

n (2n− 2ikα)

(n− 2ikα)α vg

ñ
(1− 2ikα)n
NS

n n!

ô2
S
(+)
n,0 (r1)Vg(r1)S

(+)
n,0 (r2) = δ(r1 − r2).

By comparing with the closure relation (3.2) we immediately deduce

NS
n =

(1− 2ikα)n
n!

Ã
2n (n− ikα)

α vg (n− 2ikα)
. (3.19)

As a consequence of this choice for the normalization coefficient NS
n we can assert that

the integral (3.3) related to the orthogonality property happens to be Vn = 1. To show

it we start from the closure relation (3.2) for the ℓ = 0 Hulthén Sturmian functions S
(+)
n,0 .

We multiply both sides of this identity by S
(+)
m,0(r1) and integrate over the r1 variable,

∑

n

S
(+)
n,0 (r2)

∫ ∞

0
S
(+)
n,0 (r1)Vg(r1)S

(+)
m,0(r1) dr1 =

∫ ∞

0
S
(+)
m,0(r1) δ(r1 − r2) dr1.

The integral on the left vanishes for all n 6= m and equals Vm for n = m. On the other

hand, the integral on the right equals S
(+)
m,0(r2). Then

S
(+)
m,0(r2) Vm = S

(+)
m,0(r2), ∀ r2,
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from which we conclude that Vm = 1.

Remark 3.2.2. Notice that the initial formula (3.17) requires Re(b) > −1, which is not

satisfied in the present situation (we took b = −1). Generally in textbooks one finds

for Jacobi polynomials the condition Re(a),Re(b) > −1, even when it is not necessary

(but it suffices). One example is the orthogonality relation. Clearly in the situation we

are studying, as a consequence of the orthogonality property satisfied by the Hulthén

Sturmian functions (3.3) and their relation with Jacobi polynomials (3.16), the Jacobi

polynomials P (−2ikα,−1)
n (1− 2e−

r
α ) are indeed orthogonal.

To illustrate the validity of the result Vn = 1, we performed numerically the integral

(3.3b) for various n values. The Vn values obtained for two sets of parameters are presented

in Table 3.1.

Parameters: α = 1, vg = −1, k = 1.2

n Vn =
∫∞
0 dr [S

(+)
n,0 (r)]

2 Vg(r)

1 1.

3 1.

8 1.

16 0.999993 + 1.16476× 10−5 i

Parameters: α = 2, vg = −1.8, k = 1.7

n Vn =
∫∞
0 dr [S

(+)
n,0 (r)]

2 Vg(r)

1 1.

3 1.

8 1.+ 8.21272× 10−6 i

16 1.+ 1.34232× 10−4 i

Table 3.1: Verification of the assertion Vn = 1 for two different set of parameters.

Remark 3.2.3. If we take the auxiliary potential also as a Hulthén potential

Va(r) = va
e−

r
α

1− e−
r
α

,

equation (3.1) defining the Sturmian functions becomes

[
− 1

2µ

d2

dr2
+

Ç
va
vg

+ λ̃n,0

å
vg

e−
r
α

1− e−
r
α

− E

]
S
(+)
n,0 (r) = 0. (3.20)

Clearly the eigenfunctions are exactly the Hulthén Sturmian functions (3.14), but now
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the eigenvalues are shifted

λ̃n,0 = λn,0 −
va
vg
. (3.21)

3.3 Integrals involving Hulthén Sturmian functions

When dealing with two- and three-body scattering problems different integrals are

generally needed.

The overlap integral ∫ ∞

0
S
(+)
n,0 (r)S

(+)
m,0(r) dr

is not convergent but we can perform, using (3.14b), the following integral,

lim
ǫ→0+

∫ ∞

0
e−ǫ rS

(+)
n,0 (r)S

(+)
m,0(r) dr

= NS
n N

S
m

n∑

q=0

m∑

p=0

(−n)q (n− 2ikα)q
(1− 2ikα)q q!

(−m)p (m− 2ikα)p
(1− 2ikα)p p!

lim
ǫ→0+

∫ ∞

0
e−

(ǫα+q+p−2ika)r
α dr

= NS
n N

S
m

n∑

q=0

m∑

p=0

(−n)q (n− 2ikα)q
(1− 2ikα)q q!

(−m)p (m− 2ikα)p
(1− 2ikα)p p!

α

q + p− 2ikα
. (3.22)

Writing
1

q + p− 2ikα
=

(−2ikα)q+p

(−2ikα) (1− 2ikα)q+p
,

we obtain

lim
ǫ→0+

∫ ∞

0
e−ǫ rS

(+)
n,0 (r)Sm,0(r) dr

= −N
S
n N

S
m

2ik
F 1:2;2
1:1;1




−2ikα : −n, n− 2ikα; −m,m− 2ikα;

1− 2ikα : 1− 2ikα; 1− 2ikα;
1, 1


 , (3.23)

where the two variable hypergeometric function F 1:2;2
1:1;1 has the series representation [52]

F 1:2;2
1:1;1



D : A1, B1; A2, B2;

E : C1; C2;
x1, x2




=
∑

q,p

(A1)q(B1)q
(C1)q

(A2)p(B2)p
(C2)p

(D)q+p

(E)q+p

xq1
q!

xp2
p!
. (3.24)
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The next two integrals include Laguerre-type functions φL
n and they will be useful in

a three-body scattering model problem we present in Chapter 6. Using the polynomial

expression (3.14b) for the Hulthén Sturmian functions and definition (1.2a) in the integral

formula (B.4), one finds

∫ ∞

0
φL
q (ℓ, β; r)

1

rp
S
(+)
n,0 (r) dr

=
NS

n

NL
q,ℓ

Γ(ℓ+ 2− p)

Γ(2ℓ+ 2)
(2β)p−1

n∑

j=0

(−n)j (n− 2ikα)j
(1− 2ikα)j j!

Ç
2βα

α(β − ik) + j

åℓ+2−p

× 2F1

Ç
−q, ℓ+ 2− p, 2ℓ+ 2;

2βα

α(β − ik) + j

å
, (3.25)

where the Gauss hypergeometric function reduces to a polynomial of order q.

In addition, using the Taylor series for the Hulthén potential

Vg(r) = vg
∑

s

Ä
e−

r
α

äs+1
(3.26)

and again formulas (3.14b) and (B.4), one obtains

∫ ∞

0
φL
q (ℓ, β; r)Vg(r)S

(+)
n,0 (r) dr

=
NS

n

NL
q,ℓ

Γ(ℓ+ 2)

Γ(2ℓ+ 2)

vg
2β

n∑

j=0

(−n)j (n− 2ikα)j
(1− 2ikα)j j!

×
∑

s

Ç
2βa

a(β − ik) + j + s + 1

åℓ+2

2F1

Ç
−q, ℓ+ 2, 2ℓ+ 2;

2βα

α(β − ik) + j + s + 1

å
.

(3.27)

Finally we perform an integral involving a spherical Bessel function j0(x) =
sin(x)

x
[42]. Expressing the sine function in terms of complex exponential functions, making a

change of variable x = e−
r
α and using (3.14a), the mathematical integral (B.5) yields

∫ ∞

0
S
(+)
n,0 (r)Vg(r) krj0(kr) dr = − kNS

n

2µλn,0
(3.28)

Remark 3.3.1. Even if we have shown that for the particular choice of the coefficient

NS
n we obtain

Vm,n =
∫ ∞

0
dr S

(+)
m,0(r)

vg e
− r

α

1− e−
r
α

S
(+)
n,0 (r) = δm,n,

this integral can be analytically performed. The procedure is described in [33] and the
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resulting expression is

Vm,n = NS
n N

S
m

αvg
1− 2ikα

∑

s

(1− 2ikα)s
(2− 2ikα)s

×F 1:2;2
1:1;1



1− 2ikα + s : −n, n− 2ikα; −m,m− 2ikα;

2− 2ikα + s : 1− 2ikα; 1− 2ikα;
1, 1


 (3.29)

where F 1:2;2
1:1;1 is given by formula (3.24).

3.4 Chapter summary

This chapter was dedicated to introducing Generalized Sturmian functions. They are

generated from a Sturm-Liouville problem with appropriate boundary conditions, making

them an efficient basis set to describe two-body problems. These orthogonal basis set is

usually obtained numerically.

We present in this chapter a particular case in which Generalized Sturmian functions

can be presented in closed form: using a Hulthén potential as generating potential. Besides

reviewing the deduction of these functions, we contribute with analytical expressions for

their normalization constant and some related integrals involving them, usually appearing

in scattering problems. The results presented here constitute the first part of reference

[33], a paper in which we studied these functions from an analytical and numerical point of

view, and used them to solve two-body scattering problems. The implementation of these

functions, not only in two- but also in three-body scattering problems, will be presented

in the last two chapters of this thesis.



Chapter 4

Quasi-Sturmian functions

Quasi-Sturmian functions constitute our proposal as an alternative set of functions

useful to describe two- and three-body scattering problems. Like Generalized Sturmian

functions, they are constructed to possess an appropriate asymptotic behavior and, in

some very interesting cases, they present the great advantage of having closed form

expressions. In this chapter we introduce Quasi-Sturmian functions and study their

properties. Part of the results presented here can be found in reference [34].

4.1 Definition and general characteristics

We name Quasi-Sturmian functions the solutions of the non-homogeneous differential

equation

[Tr + Va(r)− E]Qn(r) = Vg(r)φn(r). (4.1)

where n ∈ N ∪ {0}, and the operator Tr is given in (1.18).

This Schrödinger-like radial equation is similar to the one defining Generalized

Sturmian functions (3.1): it has the same left hand side, but a completely different right

hand side (hereafter referred to as driven term). Rather than the eigenvalues multiplied

by the eigenfunctions, we have some chosen functions φn. This is the reason for calling

the solutions Qn Quasi-Sturmian functions. We maintain the notation Va and Vg used to

define Generalized Sturmian functions: Va may be considered as an auxiliary potential,

but Vg is no longer responsible for generating the set of functions Qn. That role will be

played by the driven functions φn.

If in the driven term we have a set of linearly independent functions {φn}, n = 0, 1, 2...,

then the resulting Quasi-Sturmian functions are also linearly independent. To prove

67
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it, suppose there exists one Quasi-Sturmian function that can be expressed as a linear

combination of other Quasi-Sturmian functions,

Qm(r) =
M∑

i=0

aiQni
(r).

Now, from the definition (4.1) we have

[Tr + Va(r)−E]Qm(r) = Vg(r)φm(r),

and, on the other hand,

[Tr + Va(r)− E]
M∑

i=0

aiQni
(r) =

M∑

i=0

ai Vg(r)φni
(r).

Thus we find

φm(r) =
M∑

i=0

ai φni
(r),

which is an absurd if functions φn are linearly independent. As a consequence,

Quasi-Sturmian functions are linearly independent if functions φn are so.

In order to provide Quasi-Sturmian functions in closed form and study their properties,

we must choose in (4.1) appropriate driven functions φn, as well as potentials Va and Vg.

For the driven term we propose two different functions φn: the Slater-type orbitals

φSTO
n and the Laguerre-type functions φL

n both introduced in Section 1.1. Since we wish

to use Quasi-Sturmian functions to describe scattering problems, we consider hereafter

the case E > 0.

For Va we take a Coulomb potential corresponding to a charge ZQS, and Vg is the

weight function associated to Laguerre-type functions,

Va(r) =
ZQS

r
, Vg(r) =

1

r
.

Notice that with this auxiliary potential, and considering E > 0, the homogeneous

equation associated to (4.1) is the Coulomb equation (1.22) described in Section 1.2.

Contrary to the usual situation for Generalized Sturmian functions, Vg is no longer

a short range potential, but the whole driven term is still of short range. Indeed, as a

consequence of the decaying exponential factor appearing in both Slater-type orbitals and
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Laguerre-type functions, the two driven terms we are considering

1

r
φSTO
n (ℓ, β; r) and

1

r
φL
n(ℓ, β; r) (4.2)

vanish in the region r > Rn, for some n-dependent value Rn > 0. In other words, in the

asymptotic region (Rn,∞), the differential equation (4.1) becomes the Coulomb equation,

and the Quasi-Sturmian solution Qn behaves proportionally to a Coulomb wave function.

In particular, we are interested in solutions regular at the origin and with the incoming

(−) or outgoing (+) wave behavior (1.28). Summarizing, the Quasi-Sturmian functions

we present in this chapter are solutions of the boundary value problem

ñ
Tr +

ZQS

r
− E

ô
Q(±)

n (r) =
1

r
φn(r), (4.3a)

Q(±)
n (0) = 0, (4.3b)

Q(±)
n (r)

r→∞∼ Qas
n e±i[kr−η(ZQS) ln(2kr)+σC(ℓ,ZQS)−

π
2
ℓ]. (4.3c)

The parameters η and σC were defined in (1.23a) and (1.23b) respectively.

The asymptotic coefficients Qas
n depend on the index n and on the parameters

appearing in the equation, i.e., ℓ, E and ZQS. For both driven terms (4.2) we are able to

express Qas
n in closed form and show their independence of the (±) sign. Moreover these

coefficients happen to be real numbers.

An interesting thing to notice is that since the driven terms we are considering are

real functions, the imaginary part of the Quasi-Sturmian solution is actually one of the

Coulomb wave functions with charge Z = ZQS. Taking into account the imposed boundary

conditions (4.3b) and (4.3c) together with the fact that the asymptotic coefficients Qas
n are

real, the imaginary part of any of the Quasi-Sturmian functions differs from the sine-like

Coulomb wave function by a real factor. Specifically

Im
î
Q(±)

n (ℓ, β; r)
ó
= ±Qas

n F
(s)(ℓ, k; r), (4.4)

where the function F (s) is defined in (1.24). This will be illustrated in Figure 4.2 for

the case of a Slater-type orbital in the driven term and in Figure 4.4 for the case of a

Laguerre-type function.
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In addition, we have Q(−)
n =

î
Q(+)

n

ó∗
. Then, from (4.4) we immediately deduce

F (s)(ℓ, k; r) =
1

2 iQas
n

î
Q(+)

n (ℓ, β; r)−Q(−)
n (ℓ, β; r)

ó
. (4.5)

This is valid for any n ∈ N ∪ {0}, which means that the way to express F (s) in terms of

the set of functions {Q(+)
n , Q(−)

n }n=0,1,2... is not unique.

Remark 4.1.1. The range Rn of the driven terms (4.2) depends on n through the power

rn, as illustrated in Figure 1.1 for the case of Laguerre-type functions. As indicated in

Remark 3.1.1, the situation is therefore very different from that of Generalized Sturmian

functions since the latter are related to a unique generating potential and thus to a unique

range. Quasi-Sturmian functions (specifically their real part) are not all proportional to

the same asymptotic function in a fixed region (R,∞) as it was the case with Generalized

Sturmian functions. As mentioned, they reach their asymptotic behavior at gradually

larger Rn values, thus forming a linearly independent set in (0,∞). We will come back

to this characteristic when describing Figure 4.2 and Figure 4.4.

Remark 4.1.2. Taking φn(r) = φL
n(ℓ, β; r) and n = 0 in (4.3) one obtains the boundary

value problem (1.69), introduced in the context of Coulomb Green’s functions. Its solution

is Ĥ(±), except for a factor in the asymptotic behavior amplitude.

In virtue of relation (1.7),

φL
0 (ℓ, β; r) = c0,0 φ

STO
0 (ℓ, β; r),

the solutions Q
STO(±)
0 and Q

L(±)
0 , resulting from taking Slater-type orbitals and

Laguerre-type functions, respectively, as driven term in (4.3a), satisfy

c0,0Q
STO(±)
0 (ℓ, β; r) = Q

L(±)
0 (ℓ, β; r) = QLas

0 Ĥ(±)(ℓ, β; r). (4.6)

Hence, our Quasi-Sturmian functionsQ(±)
n can be viewed as a generalization to any index n

of the function Ĥ(±) proposed by Yamani and Fishman [7] (and further by Broad [58, 59])

to be used in the J-Matrix method. Moreover, the constant b appearing in equation (1.69)

happens to be

b =
1

QLas
0

.
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Remark 4.1.3. Having a real functions as driven term in the Quasi-Sturmian problem

(4.3) has another consequence: combining Quasi-Sturmian functions with incoming (+)

and outgoing (-) wave behavior we can provide Quasi-Sturmian functions with cosine-like

asymptotic behavior.

Q(c)
n (ℓ, β; r) =

1

2

î
Q(+)

n (ℓ, β; r) +Q(−)
n (ℓ, β; r)

ó
.

Remark 4.1.4. The functions φSTO
n and φL

n can be used to expand more general functions

f . Suppose we are interested in solving the non-homogeneous equation

ñ
Tr +

Z

r
− E

ô
F (r) = f(r).

As explained in reference [75], it suffices to express, for example

f(r) =
1

r

∑

n

anφ
L
n(ℓ, β; r),

to deduce directly the solution

F (r) =
∑

n

anQ
L(±)
n (ℓ, β; r), (4.7)

taking Z as the charge of each Quasi-Sturmian function. Alternatively, one can express

f in terms of φSTO
n and obtain a solution F given by (4.7) with QSTO(±)

n replacing QL(±)
n .

4.2 Slater Quasi-Sturmian functions

Slater Quasi-Sturmian functions are solutions of the differential equation (4.3a) with a

Slater-type orbital φSTO
n in the driven term together with boundary conditions (4.3b) and

(4.3c). We denote them as QSTO(±)
n .

In the following subsections we describe two different ways to obtain QSTO(±)
n in

closed form. The first one consists in expressing this function as a combination of one

particular solution of the non-homogeneous equation and a solution of the corresponding

homogeneous equation. The second one makes use of the Coulomb Green’s function

introduced in Section 1.3.
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4.2.1 A particular solution for the differential equation

We can express the solution QSTO(±)
n as the sum of two functions: a solution of the

homogeneous equation plus a particular solution of the non-homogeneous equation. This

is,

QSTO(±)
n (ℓ, β; r) = A(±)

n Φ(H)(r) + Φ(P )
n (r), (4.8)

where A(±)
n is a convenient coefficient, and the labels H and P stand for “homogeneous”

and “particular”.

Since we are interested in solutions regular at the origin, for the solution of the

homogeneous equation the only option is to take the sine-like Coulomb wave function,

Φ(H)(r) = F (s)(ℓ, k; r),

whose explicit form and asymptotic behavior are given by (1.24) with Z = ZQS.

A particular solution of the non-homogeneous equation (4.3a), presented in reference

[75], reads

Φ(P )
n (r) =− 2µ

(n + 1)(2ℓ+ 2 + n)
eikr rℓ+n+2

× Θ(1)

Ö
n+ 1, 1 | 2ℓ+ 2 + n, ℓ+ 2 + n + iη(ZQS)

ℓ+ 2 + n + iη(ZQS) | 2 + n, 2ℓ+ 3 + n

∣∣∣∣∣∣∣∣
;−(β + ik) r,−2ikr

è

(4.9)

where Θ(1) is a two variables Kampé de Fériet hypergeometric function [30],

Θ(1)

Ö
a1, a2 | b1, b2
c1 | d1, d2

∣∣∣∣∣∣∣∣
; x1, x2

è

=
∑

m,n

(a1)m (a2)n
(c1)m

(b1)m (b2)m+n

(d1)m+n (d2)m+n

xm1
m!

xm2
n!
. (4.10)

It has been introduced and discussed in connection with the derivatives of regular confluent

hypergeometric functions with respect to their parameters [70]. Later, in references [72,

75], this function appeared in the context of two-body Coulomb problems with sources.

In these two works, as well as in reference [73], the authors presented different expressions

for Θ(1), the study of its convergence, and the form of its asymptotic behavior in the case

of two-body problems.

Let us notice that at r = 0 we have Φ(P )
n (0) = 0. Since the chosen homogeneous

solution Φ(H) is also regular at the origin, condition (4.3b) is satisfied for the Slater
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Quasi-Sturmian functions QSTO(±)
n .

The procedure to choose the adequate A(±)
n value in order to obtain the desired

asymptotic behavior (4.3c) is presented in reference [72]. Setting

2F1 = 2F1

Ç
n+ 1, 2ℓ+ 2 + n, ℓ+ 2 + n+ iη(ZQS);

β + ik

2ik

å
, (4.11a)

fn = | 2F1 |, (4.11b)

θn = Arg( 2F1 ), (4.11c)

Nsource(n, ℓ) = −2µ
(1)n (2ℓ+ 2)n
(2ℓ+ 2)2n+2

fn
NC(ℓ+ 1 + n)

, (4.11d)

a1 = kr − η(ZQS) ln (2kr)−
π

2
ℓ+ σC(ℓ, ZQS), (4.11e)

a2 = −π
2
(2 + n) + σC(ℓ+ 1 + n, ZQS)− θn − σC(ℓ, ZQS), (4.11f)

one obtains, for the case we are studying, the coefficient

A(±)
n = ±i Nsource(n, ℓ)e

∓ia2 ,

and the asymptotic behavior of Slater Quasi-Sturmian functions reads

QSTO(±)
n (ℓ, β; r)

r→∞∼ Nsource(n, ℓ) cos(a2) e
±ia1 .

Thus, we have an expression for the asymptotic coefficient

QSTO as
n = Nsource(n, ℓ) cos(a2), (4.12)

which, as mentioned in the general characteristics, happens to be a real number

independent of the (±) sign.

4.2.2 The solution using the Coulomb Green’s function

The solution of the boundary value problem (4.3a) with a Slater-type orbital in the driven

term can be obtained also through the Coulomb Green’s function introduced in Section

1.2. In this case the resulting expression satisfies automatically the boundary conditions

because they are imposed to the Green’s function. Formally we have

QSTO(±)
n (ℓ, β; r) =

∫ ∞

0
G(±)
C (ℓ; r, r′)

1

r′
φSTO
n (ℓ, β; r′) dr′. (4.13)
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Using expression (1.62), performing a change of variables and after some intermediate

steps, one finds the integral representation

QSTO(±)
n (ℓ, β; r) =

2µ(2ℓ+ 2)n
(β ∓ ik)n+1

rℓ+1 e−βr

×
∫ 1

0
zn(1− z)ℓ±iη(ZQS )(1− ω±1z)ℓ∓iη(ZQS )ez[β±ik]r

1F1 (−n, 2ℓ+ 2;X) dz,

(4.14a)

where ω =
β + ik

β − ik
was introduced in (1.31), and

X = −r(1− z)(1 − ω±1z)(β ∓ ik)

z
. (4.14b)

The confluent hypergeometric function appearing in (4.14a) is actually a polynomial

1F1 (−n, 2ℓ+ 2;X) =
n∑

q=0

(−n)q
(2ℓ+ 2)q q!

Ç
−r(1− z)(1− ω±1z)(β ∓ ik)

z

åq

.

With this expression the integration over the variable z can be directly performed using

(B.3). Taking into account the properties of the Pochhammer symbol one finally obtains

QSTO(±)
n (ℓ, β; r)

=
2µ(2ℓ+ 2)n n!

(β ∓ ik)n+1(ℓ+ 1± iη(ZQS))n+1
rℓ+1 e−βr (4.15)

×
n∑

p=0

(ℓ + 1± iη(ZQS))p
(2ℓ+ 2)p

[r (β ∓ ik)]p

p!

× Φ1

Ä
n− p+ 1,−p− ℓ± iη(ZQS), n+ 2 + ℓ± iη(ZQS);ω

±1, r(β ± ik)
ä
, (4.16)

in terms of one of the Horn’s two-variable series Φ1 [52]. We introduced this function

when studying the derivatives of two variable hypergeometric functions with respect to

their parameters [see formula (2.18a)]. Making use of its series representation (2.18c), the

Slater Quasi-Sturmian function becomes
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QSTO(±)
n (ℓ, β; r) =

2µ(2ℓ+ 2)n n!

(β ∓ ik)n+1(ℓ+ 1± iη(ZQS))n+1
rℓ+1 e−βr

×
n∑

p=0

(ℓ+ 1± iη(ZQS))p
(2ℓ+ 2)p

[r(β ∓ ik)]p

p!

×
∑

q

(n− p+ 1)q(−p− ℓ± iη(ZQS))q
(n+ 2 + ℓ± iη(ZQS))q

ω±q

q!

× 1F1 (n− p+ 1 + q, n+ 2 + ℓ± iη(ZQS) + q; r(β ± ik)) . (4.17)

Even if we have already found an expression for the asymptotic coefficient [see formula

(4.12)], it is possible to give an equivalent one deduced from the asymptotic behavior of

the confluent hypergeometric function [42] appearing in (4.17). After some algebraic

simplifications, one finds the expected behavior (4.3c) with the coefficient

QSTO as
n = ω−iη(ZQS)e−

π
2
η(ZQS )

µ(2ℓ+ 2)n
k(β − ik)n

|Γ(ℓ+ 1± iη(ZQS))|
Ç

2k

β2 + k2

åℓ+1

× 2F1

Ä
−n, ℓ+ 1 + iη(ZQS), 2ℓ+ 2; 1− ω−1

ä
, (4.18)

which is independent of the ± choice. To verify that it is in fact a real number it suffices

to note that ω−iη(ZQS) is real and to use one of the linear transformation formulas for the

Gauss hypergeometric function [formula (15.3.4) in reference [42]] to find that

î
(β − ik)−n

2F1

Ä
−n, ℓ + 1 + iη(ZQS), 2ℓ+ 2; 1− ω−1

äó∗

= (β − ik)−n
2F1

Ä
−n, ℓ+ 1 + iη(ZQS), 2ℓ+ 2; 1− ω−1

ä
.

The equivalence between expressions (4.12) and (4.18) can be deduced by expressing the

cosine function as a combination of complex exponentials.

4.2.3 Series representation in terms of Laguerre-Type functions

It is possible to give the analytic form of the coefficients

a(±)
n,q =

∫ ∞

0
dr φL

q (ℓ, β; r)
1

r
QSTO(±)

n (r)

corresponding to the series representation of QSTO (±)
n (r) in terms of Laguerre-type

functions,
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QSTO(±)
n (r) =

∑

q

a(±)
n,q φ

L
q (ℓ, β; r).

From (4.17) and using (B.7) we obtain

a(±)
n,q =

2µΓ(2ℓ+ 2)

(2β)ℓ+1

Nq,ℓ (2ℓ+ 2)q
q!

(2ℓ+ 2)n n!

(β ± ik)n+1(ℓ+ 1± iη(ZQS))n

×
n∑

p=0

(ℓ+ 1 + iη(ZQS))p
p!

Ç
β ∓ ik

2β

åp

×
∑

j

(−n+ p + 1)j (−ℓ− p± iη(ZQS))j
(ℓ+ 2 + n± iη(ZQS))j

ω±j

j!

× F2

Ç
2ℓ+ 2 + p,−q, n− p+ j + 1, 2ℓ+ 2, ℓ+ 2 + n + j ± iη(ZQS); 1,

β ± ik

2β

å
.

An algebraic manipulation of this expression leads to the equivalent form

a(±)
n,q =

2µΓ(2ℓ+ 2)

(2β)ℓ+1

Nq,ℓ

q!

(2ℓ+ 2)n n!

(β ∓ ik)n+1(ℓ+ 1± iη(ZQS))n

×
n∑

p=0

(ℓ+ 1 + iη(ZQS))p
p!

Ç
β ∓ ik

2β

åp q∑

s=0

(−q)s(2ℓ+ 2 + p)s
(2ℓ+ 2)s s!

× F1

Ç
n− p + 1,−ℓ− p± iη(ZQS), 2ℓ+ 2 + p+ s, ℓ+ 2 + n± iη(ZQS);ω,

β ± ik

2β

å
,

where we have finite sums instead of full series. Once again we end up with expressions

involving two of the Appell functions studied in Chapter 2. Other representations

in terms of the more familiar Gaussian hypergeometric function can be obtained using

alternative formulations for the two variable hypergeometric functions F1 or F2.

Remark 4.2.1. The coefficients

a(±)
n,q =

∫ ∞

0
dr φL

q (ℓ, β; r)
1

r
Φ(P )

n (r)

corresponding to the Laguerre expansion of the particular solution (4.9) can also be given

in closed form. Starting with some of the representations presented in reference [75] for the

function Θ(1) one obtains different expressions in terms of Appell functions. The resulting

formulas are not easy to manipulate, neither numerically nor analytically. However they

may be of interest if one wants to study Φ(P )
n in terms of its parameters, as explained in

Section 1.1.1.
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4.2.4 Illustration

Let us illustrate numerically some of the obtained results. We have calculated, using the

integral representation (4.14a), Slater Quasi-Sturmian functions for several n values, and

for the following values of the parameters

ZQS = −1, µ = 1, k = 1.1, ℓ = 0, β = 0.8.

Figure 4.1 shows the result for n = 3, together with the corresponding driven term of

the differential equation defining this function, i.e.,
1

r
φSTO
n (ℓ, β; r) [see equation (4.3a)].

The plot illustrates that, as mentioned at the beginning of the chapter, Quasi-Sturmian

functions reach their asymptotic behavior once the driven term vanishes.
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Im[Qn
STO (+)(l,β;r)]

Re[Qn
STO (+)(l,β;r)]

Figure 4.1: Real and imaginary parts of a Slater Quasi-Sturmian function Q
STO(+)
n

taking n = 3 and ZQS = −1, µ = 1, k = 1.1, ℓ = 0, β = 0.8. The dashed line
represents the corresponding driven term r−1 φSTO

n (ℓ, β; r).

In Figure 4.2 (left panel) we plot the real part of the “normalized” Slater

Quasi-Sturmian functions

Q
STO(+)
n (ℓ, β; r) =

1

QSTO as
n

QSTO(+)
n (ℓ, β; r) (4.19)

for two different values of the index n. The expected asymptotic behavior, given by

fas(r) = e±i[kr−η(ZQS) ln(2kr)+σC(ℓ,ZQS)−
π
2
ℓ], (4.20)

is also shown. Clearly, as n increases, the asymptotic behavior is gradually reached, an
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attribute mentioned in Remark 4.1.1. The plot presented in the right panel corresponds

to the imaginary part of the same Q
STO(+)
n . It illustrates identity (4.4): the imaginary

part coincides with the sine-like Coulomb wave function F (s) with charge Z = ZQS.
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Figure 4.2: Left panel: real part of Q
STO(+)
n , defined by (4.19), for n = 2 (solid

line) and n = 4 (line with dots). The dashed line represents the real part of fas,

defined by (4.20). Right panel: imaginary part of Q
STO(+)
n for n = 2 (diamonds)

and n = 4 (dots). The full line corresponds to F (s) with Z = ZQS. In both cases we
take ZQS = −1, µ = 1, k = 1.1, ℓ = 0, β = 0.8.

4.3 Laguerre Quasi-Sturmian functions

Laguerre Quasi-Sturmian functions are solutions of the differential equation (4.3a) for

the particular case of a Laguerre-type function as driven term, together with boundary

conditions (4.3b) and (4.3c). We denote these Laguerre Quasi-Sturmian solutions as

QL(±)
n .

As a consequence of the relation between Slater-type orbitals and Laguerre-type

functions established in (1.7), the functions QL(±)
n are a linear finite combination of Slater

Quasi-Sturmian functions. This is a particular case of the situation described in Remark

4.1.4. Thus, we have a first closed form for the functions QL(±)
n and the corresponding

asymptotic coefficients, in terms of Slater Quasi-Sturmian functions

QL(±)
n (ℓ, β; r) =

n∑

j=0

cLn,j Q
STO (±)
j (ℓ, β; r), (4.21a)

QL as
n =

n∑

j=0

cLn,j QSTO as
j , (4.21b)

with cLn,j defined in (1.7b). Using expression (4.18) we can perform the second sum to
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obtain

QLas
n =

2µ

k
sn, (4.22)

where sn, defined in (1.30), are the coefficients associated to the Laguerre expansion of

the regular Coulomb wave function.

In terms of the Green’s function, we have the following alternative representation

QL(±)
n (ℓ, β; r) =

∫ ∞

0
G(±)
C (ℓ; r, r′)

1

r′
φL
n(ℓ, β; r

′) dr′. (4.23)

From (1.62), after some algebraic manipulations, one finds

QL(±)
n (ℓ, β; r) =

2µNn,ℓ

β ∓ ik
(2βr)ℓ+1e−βr

×
∫ 1

0
(1− z)ℓ±iη(ZQS )(1− ω±1 z)ℓ∓iη(ZQS )(1− z − ω±1 z)n

× ez(β±ik)r L2ℓ+1
n

Ç
(1− z)(1 − ω±1 z)

1− z − ω±1 z
2βr

å
dz. (4.24)

4.3.1 Series representation in terms of Laguerre-type functions

The coefficients of the series expansion

QL(±)
n (ℓ, β; r) =

∑

q

a(±)
n,q φ

L
q (ℓ, β; r) (4.25)

are given by

a(±)
n,q =

∫ ∞

0
φL
q (ℓ, β; r)

1

r
QL(±)

n (r) dr

(4.23)
=

∫ ∞

0

∫ ∞

0

1

r
φL
q (ℓ, β; r)G(±)

C (ℓ; r, r′)
1

r′
φL
n(ℓ, β; r

′) dr dr′.

This is exactly the expression for the coefficients g(±)
n,q of the series representation of the

Green’s function given by formulas (1.64), (1.66). Then, we have found

QL(±)
n (ℓ, β; r) =

∑

j

g
(±)
n,j φ

L
j (ℓ, β; r) (4.26a)

=
2µ

k
ĥ(±)
n

n∑

j=0

sj φ
L
j (ℓ, β; r) +

2µ

k
sn

∞∑

j=n+1

ĥ
(±)
j φL

j (ℓ, β; r). (4.26b)
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Notice that for n = 0 (4.26b) yields

Q
L(±)
0 (ℓ, β; r) =

2µ

k
s0

∞∑

j=0

ĥ
(±)
j φL

j (ℓ, β; r) =
2µ

k
s0 Ĥ

(±)(ℓ, β; r)

which is the proportionality relation (4.6) established in Remark 4.1.2.

In addition, from (4.26a) and (1.63) we find the following relation between Coulomb

Green’s functions and Laguerre Quasi-Sturmian functions,

G(±)
C (ℓ; r, r′) =

∑

n

QL(±)
n (ℓ, β; r)φL

n(ℓ, β; r
′). (4.27)

4.3.2 Illustration

We have calculated, using the integral formula (4.24), several Laguerre Quasi-Sturmian

functions with different n values and parameters. In Figure 4.3 we show their real and

imaginary parts. Clearly, the Quasi-Sturmian functions achieve their asymptotic behavior

when the driven term
1

r
φL
n(ℓ, β; r) (dashed line) vanishes.
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Figure 4.3: Real (solid line) and imaginary (line with dots) part of two different
Laguerre Quasi-Sturmian function. Left panel: n = 0, ℓ = 1, β = 0.8, µ = 1, ZQS =
−2, k = 1.25. Right panel: n = 9, ℓ = 2, β = 1.4, µ = 1, ZQS = −1, k = 0.8. The
dashed line represents the corresponding generating Laguerre-type driven term.

Figure 4.4 corresponds to the real and imaginary parts of “normalized” outgoing

Laguerre Quasi-Sturmian functions

Q
L(+)
n (ℓ, β; r) =

1

QLas
n

QL(+)
n (ℓ, β; r)

for ZQS = −1, µ = 1, k = 1.3, ℓ = 2, β = 1.1. The left panel shows the real part of Q
L(+)
n
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taking n = 2, n = 11 and n = 16. We can observe how the asymptotic behavior of the real

part is gradually reached as n increases, as explained in Remark 4.1.1. In the right panel

we compare the imaginary part of Q
L(+)
n with the regular Coulomb wave function F (s).

This plot illustrates the fact that imaginary part of Quasi-Sturmian functions coincides

(up to a real factor) with the sine-like Coulomb wave function [identity (4.4)].
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Figure 4.4: Left panel: real part of Q
L(+)
n (ℓ, β; r) for n = 2 (line with dots), n = 11

(full line) and n = 16 (dashed line). Right panel: imaginary part of Q
L(+)
n (ℓ, β; r)

for n = 2 (diamonds) and n = 11 (dots). The full line corresponds to the Coulomb
wave function F (s)(ℓ, k; r). In both cases we take ZQS = −1, µ = 1, k = 1.3, ℓ =
2, β = 1.1.

4.3.3 Integrals involving Laguerre Quasi-Sturmian functions

In this section we calculate analytically four integrals involving Laguerre Quasi-Sturmian

functions. These kind of integrals usually appear in scattering problems as we will see in

the last two chapters of this thesis. The key to perform the calculation is the use of the

Laguerre expansion (4.26a).

We start with

∫ ∞

0
φL
q (ℓ, β; r)

1

r
QL (±)

n (ℓ, β; r) dr =
∑

j

g
(±)
n,j

∫ ∞

0
φL
q (ℓ, β; r)

1

r
φL
j (ℓ, β; r) dr

= g(±)
n,q . (4.28)

Next, we introduce the notation Q(±)
m,n for the the Quasi-Sturmian functions with an ℓ

parameter depending on an index m, ℓ = ℓm. And we perform
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∫ ∞

0
φL
q (ℓp, β; r)

1

r
QL (±)

m,n (ℓm, β; r) dr

=
∑

s

g(±)
n,s

∫ ∞

0
φL
q (ℓp, β; r)

1

r
φL
s (ℓm, β; r) dr

(1.16)
=

Γ(ℓp + ℓm + 2)

Nq,ℓp Γ(2ℓp + 2)

∑

s

Ns,ℓm

s!
g(±)
n,s

q∑

j=0

(ℓp + ℓm + 2)j(−q)j
(2ℓp + 2)j j!

(ℓm − ℓp − j)s.

(4.29)

Now, for the case where the weight function is not present we cannot use the orthogonality

relation of the Laguerre-type functions, and we have

∫ ∞

0
φL
q (ℓ, β; r)Q

L (±)
n (ℓ, β; r) dr

=
∑

j

g
(±)
n,j

∫ ∞

0
φL
q (ℓ, β; r)φ

L
j (ℓ, β; r) dr

(1.12c)
=

∑

j

g
(±)
n,j

Ç
ℓ+ 1 + q

β
δq,j −

Nq+1,ℓ

Nq,ℓ

2ℓ+ 2 + q

2β
δq+1,j −

Nq−1,ℓ

Nq,ℓ

q

2β
δq−1,j

å

=
ℓ+ 1 + q

β
g(±)
n,q − Nq+1,ℓ

Nq,ℓ

2ℓ+ 2 + q

2β
g
(±)
n,q+1 −

Nq−1,ℓ

Nq,ℓ

q

2β
g
(±)
n,q−1. (4.30)

Finally, the integral of two Quasi-Sturmian functions yields

∫ ∞

0
Q(±)

n (ℓ, β; r)
1

r
Q(±)

p (ℓ, β; r) dr

=
∫ ∞

0

Ñ
∑

j

g
(±)
n,j φ

L
j (ℓ, β; r)

é
1

r

(
∑

i

g
(±)
p,i φL

i (ℓ, β; r)

)
dr

=
∑

j

g
(±)
n,j g

(±)
j,p . (4.31)

Clearly, we are interchanging series and integrals without proving that the property

can actually be applied. For this reason, we have performed some numerical verifications

by comparing the results obtained by direct integration with the analytical expressions we

found. For the first and third integrals [formula (4.28) and (4.30)], the comparison showed

an excellent agreement. The fourth one [formula (4.31)] will be tested in Section 4.3.7,

because this integral happens to be related to the derivative with respect to one of the

parameters of the Laguerre Quasi-Sturmian functions. The numerical comparison for the

second integral [formula (4.29)] is presented in Table 4.1 for outgoing Quasi-Sturmian

functions and the following values of the parameters: Z = −2, µ = 1, k = 1.8, β = 2.6.
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The table compares, for different (ℓp, q, ℓm, n) values, the results obtained by numerically

performing the integral with those of the corresponding analytical double series, noted

Υℓp,q;ℓm,n.

ℓp q ℓm n
∫∞
0 φL

q (ℓp, β; r)
1
r
QL (+)

n (ℓm, β; r) dr Υℓp,q;ℓm,n

5.5 5 7.5 2 −0.00264972 + 0.0054675 i −0.00264956 + 0.0054675 i

11.5 8 19.5 11 0.000203239− 0.00397045 i 0.00020364− 0.0039705 i

13.5 12 7.5 18 −0.0305365− 0.0306694 i −0.0305365− 0.0306694 i

21.5 19 29.5 15 0.0105045 + 0.00941789 i 0.0105272 + 0.00965439 i

Table 4.1: Numerical verification of identity (4.29) for different indices ℓp, q, ℓm, n,
and parameters Z = −2, µ = 1, k = 1.8, β = 2.6.

For all cases considered, the identity (4.29) is well satisfied. The small difference

appearing in the last line of the table is related to the fact that the integrand becomes

very oscillating, causing an increase of the numerical error.

4.3.4 Recurrence relations

From the recurrence relation (1.65) established for the coefficients gn,q, and taking Z =

ZQS, one can deduce a relation for the Laguerre Quasi-Sturmian functions. Multiplying

both sides of (1.65) by φL
q and making a formal summation over q we obtain

An+1

∑

q

g
(±)
n+1,q φ

L
q (ℓ, β; r) +Bn(ZQS)

∑

q

g(±)
n,q φ

L
q (ℓ, β; r)

+ An

∑

q

g
(±)
n−1,q φ

L
q (ℓ, β; r) =

∑

q

δn,q φ
L
q (ℓ, β; r),

where An and Bn are given by formula (1.20). According to (4.26a), the series on the left

hand side corresponds to Laguerre Quasi-Sturmian functions while the series on the right

hand side reduces to φL
n . Hence, we have

An+1Q
L(±)
n+1 (ℓ, β; r) +Bn(ZQS)Q

L(±)
n (ℓ, β; r) + AnQ

L(±)
n−1 (ℓ, β; r) = φL

n(ℓ, β; r) (4.32)
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taking, for the case n = 0, Q
L(±)
−1 ≡ 0. As an alternative to the integral (4.24) or series

(4.26) representations, the recurrence formula (4.32) may be useful to generate numerically

a large number of Laguerre Quasi-Sturmian functions.

4.3.5 The Christoffel-Darboux formula

For orthogonal polynomials pn with weight function w defined on the interval [a, b], one

has the Christoffel-Darboux formula (Theorem 5.2.4 in [43])

n∑

k=0

pk(x)pk(y)

hk
=

an
an+1

pn+1(x)pn(y)− pn+1(y)pn(x)

(x− y)hn
,

where ak is the leading coefficient of pk and hk =
∫ b

a
p2k(x)w(x) dx.

Such general result is a consequence of the recurrence relation these polynomials

satisfy. For Laguerre Quasi-Sturmian functions we found a non-homogeneous recurrence

relation so we can expect an analogous formulation. Indeed, it is possible to express

Q
L(±)
n+1 (ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)−Q

L(±)
n+1 (ℓ, β; r2)Q

L(±)
n (ℓ, β; r1) (4.33)

as a combination of the first n Laguerre Quasi-Sturmian. To do so, we first rewrite relation

(4.32) as

Q
L(±)
n+1 (ℓ, β; r) =

1

An+1
φL
n(ℓ, β; r)−

Bn(ZQS)

An+1
QL(±)

n (ℓ, β; r)− An

An+1
Q

L(±)
n−1 (ℓ, β; r), (4.34)

and then replace Q
L(±)
n+1 in (4.33)

Q
L(±)
n+1 (ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)−Q

L(±)
n+1 (ℓ, β; r2)Q

L(±)
n (ℓ, β; r1)

=
1

An+1

î
φn(ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)− φL

n(ℓ, β; r2)Q
L(±)
n (ℓ, β; r1)

ó

+
An

An+1

[
QL(±)

n (ℓ, β; r1)Q
L(±)
n−1 (ℓ, β; r2)−QL(±)

n (ℓ, β; r2)Q
L(±)
n−1 (ℓ, β; r1)

]
.

The second term on the right hand side has the same form of the initial one, so we can

use again (4.34) now to replace QL(±)
n and find
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Q
L(±)
n+1 (ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)−Q

L(±)
n+1 (ℓ, β; r2)Q

L(±)
n (ℓ, β; r1)

=
1

An+1

î
φn(ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)− φL

n(ℓ, β; r2)Q
L(±)
n (ℓ, β; r1)

ó

+
An

An+1

®
1

An

[
φn−1(ℓ, β; r1)Q

L(±)
n−1 (ℓ, β; r2)− φL

n−1(ℓ, β; r2)Q
L(±)
n−1 (ℓ, β; r1)

]

+
An−1

An

[
Q

L(±)
n−1 (ℓ, β; r1)Q

L(±)
n−2 (ℓ, β; r2)−Q

L(±)
n−1 (ℓ, β; r2)Q

L(±)
n−2 (ℓ, β; r1)

]´
.

Again we obtain a term on which we can apply (4.34). Repeating the procedure n − 2

more times we finally find

Q
L(±)
n+1 (ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)−Q

L(±)
n+1 (ℓ, β; r2)Q

L(±)
n (ℓ, β; r1)

=
1

An+1

n∑

j=0

[
φj(ℓ, β; r1)Q

L(±)
j (ℓ, β; r2)− φL

j (ℓ, β; r2)Q
L(±)
j (ℓ, β; r1)

]
. (4.35)

Consequences of this formula

From the asymptotic behavior of Quasi-Sturmian functions [formulas (4.3c) and (4.22)]

and of Laguerre-type functions [formula (1.8c)], for large values of r2 the left hand side of

equation (4.35) becomes

Q
L(±)
n+1 (ℓ, β; r1)Q

L(±)
n (ℓ, β; r2)−Q

L(±)
n+1 (ℓ, β; r2)Q

L(±)
n (ℓ, β; r1)

r2→∞∼ 2µ

k

[
Q

L(±)
n+1 (ℓ, β; r1) sn − sn+1Q

L(±)
n (ℓ, β; r1)

]
e±i[k r2−η(ZQS )ln(2k r2)+σC(ℓ,ZQS)−

π
2
ℓ],

while for the right hand side we find

φj(ℓ, β; r1)Q
L(±)
j (ℓ, β; r2)− φL

j (ℓ, β; r2)Q
L(±)
j (ℓ, β; r1)

r2→∞∼ 2µ

k
φj(ℓ, β; r1) sj e

±i[k r2−η(ZQS )ln(2k r2)+σC(ℓ,ZQS)−
π
2
ℓ].

The r2 → ∞ limit of both sides of identity (4.35) yields therefore

Q
L(±)
n+1 (ℓ, β; r) =

sn+1

sn
QL(±)

n (ℓ, β; r) +
1

An+1 sn

n∑

j=0

sj φ
L
j (ℓ, β; r). (4.36)
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If we repeatedly apply this identity on itself we obtain, in a first step,

Q
L(±)
n+1 (ℓ, β; r) =

sn+1

sn−1

Q
L(±)
n−1 (ℓ, β; r)

+
1

An

sn+1

sn sn−1

n−1∑

j=0

sj φ
L
j (ℓ, β; r) +

1

An+1 sn

n∑

j=0

sj φ
L
j (ℓ, β; r).

and finally

Q
L(±)
n+1 (ℓ, β; r) =

sn+1

s0
Q

L(±)
0 (ℓ, β; r) +

n∑

j=0

Dn
j φ

L
j (ℓ, β; r), (4.37a)

Dn
j = sn+1 sj

n∑

p=j

1

Ap+1 sp+1sp
. (4.37b)

The coefficients sn and An, as well as the Laguerre-type functions φL
n , are quite easy

to evaluate. In Chapter 1 we have shown that sn and φL
n are related to orthogonal

polynomials. Hence formula (4.37) provides probably the simplest form to evaluate any

Laguerre Quasi-Sturmian function QL(±)
n once we have Q

L(±)
0 .

Result (4.37) has itself another consequence. Using the series representation (4.26b),

the left hand side of (4.37a) can be expressed as

Q
L(±)
n+1 (ℓ, β; r) =

2µ

k
ĥ
(±)
n+1

n∑

j=0

sj φ
L
j (ℓ, β; r) +

2µ

k
sn+1

∞∑

j=n+1

ĥ
(±)
j φL

j (ℓ, β; r)

while the right hand side reads

sn+1

s0
Q

L(±)
0 (ℓ, β; r) +

n∑

j=0

Dn
j φ

L
j (ℓ, β; r)

=
2µ

k
sn+1

∑

j

ĥ
(±)
j φL

j (ℓ, β; r) +
n∑

j=0

Dn
j φ

L
j (ℓ, β; r)

=
2µ

k
sn+1

n∑

j=0


ĥ(±)

j +
k

2µ
sj

n∑

p=j

1

Ap+1 sp+1 sp


φL

j (ℓ, β; r) +
2µ

k
sn+1

∞∑

j=n+1

ĥ
(±)
j φL

j (ℓ, β; r).

Equating these two expressions we obtain

ĥ
(±)
n+1

n∑

j=0

sj φ
L
j (ℓ, β; r) = sn+1

n∑

j=0


ĥ(±)

j +
k

2µ
sj

n∑

p=j

1

Ap+1 sp+1 sp


φL

j (ℓ, β; r),

and, due to the linear independence of the Laguerre-type functions, we find a relation for
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the coefficients sn, ĥ
(±)
n ,

ĥ
(±)
n+1 sj − ĥ

(±)
j sn+1 =

k

2µ
sn+1 sj

n∑

p=j

1

Ap+1 sp+1 sp
, j 6 n. (4.38)

If j = n, this identity simplifies to

ĥ
(±)
n+1 sn − ĥ(±)

n sn+1 =
k

2µAn+1

,

which is a formula introduced by Heller in reference [62]. Hence, relation (4.38) constitutes

a generalization of such identity to any combination of indices n, j.

4.3.6 Laguerre Quasi-Sturmian functions and Coulomb wave

functions

It is possible to provide a relation between the sine-like Coulomb wave function F (s)

introduced in Section 1.2 and QL(±)
n . Using the series representation (1.32) for F (s),

the recurrence relations (4.32) and (1.34) for Quasi-Sturmian function and coefficients sn,

respectively, and taking Z = ZQS, we deduce

F (s)(ℓ, k; r)
(1.32)
=

∑

n

sn φ
L
n(ℓ, β; r)

(4.32)
= lim

N→∞

ß
s0B0(Z)Q

L(±)
0 (ℓ, β; r) + s0A1Q

L(±)
1 (ℓ, β; r)

+
N∑

n=1

sn
[
An+1Q

L(±)
n+1 (ℓ, β; r) +Bn(Z)Q

L(±)
n (ℓ, β; r)

+ AnQ
L(±)
n−1 (ℓ, β; r)

ò™

= lim
N→∞

ß
s0B0(Z)Q

L(±)
0 (ℓ, β; r) + s1A1Q

L(±)
0 (ℓ, β; r)

+
N−1∑

n=1

sn+1An+1Q
L(±)
n (ℓ, β; r)

+
N∑

n=1

snBn(Z)Q
L(±)
n (ℓ, β; r) +

N+1∑

n=1

sn−1AnQ
L(±)
n (ℓ, β; r)

}

Thus, using (1.34), we finally obtain

F (s)(ℓ, k; r) = lim
n→∞

An+1

[
snQ

L(±)
n+1 (ℓ, β; r)− sn+1Q

L(±)
n (ℓ, β; r)

]
. (4.39)



88 4.3. Laguerre Quasi-Sturmian functions

To illustrate this result we plot in Figure 4.5 the exact sine-like Coulomb wave

function F (s) and its approximation

F
(s)
N (ℓ, k; r) = AN+1

[
sN Q

L(+)
N+1(ℓ, β; r)− sN+1Q

L(+)
N (ℓ, β; r)

]
, (4.40)

in terms of outgoing Laguerre Quasi-Sturmian functions. As expected, an increment on

N improves the quality and extends the radial range of the approximation F
(s)
N .

F
(s)(l,k;r)
N = 35
N = 25

0 10 20 30 40

-1.0

-

0.0

1.0

2.0

F
N
(s
) (
l,
k
;r
)

Figure 4.5: Plot of F
(s)
N , defined in (4.40), as a function of r, using N = 25 (full line)

and N = 35 (line with dots). The dashed line corresponds to the regular Coulomb
wave function F (s). Parameters: Z = −1, µ = 1, k = 1.25, ℓ = 2, β = 0.8.

4.3.7 Quasi-Sturmian functions with a variable charge

In order to use the functions QL(±)
n to describe three-body scattering problems we present

and study in this section a generalization of Laguerre Quasi-Sturmian functions. We no

longer consider the charge ZQS as a fixed parameter but as a function ‹C = ‹C(ω5) of a set

of variables ω5. This situation of having a variable charge in a Coulomb potential appears

when studying three-body scattering problems in hyperspherical coordinates, where ω5

represents collectively the five angular variables of the coordinate system [see Chapter

6]. A great advantage of these angular-dependent Quasi-Sturmian functions is that their

asymptotic behavior may be chosen to match that of three-body scattering wave functions

described by Peterkop [21].

Hereafter, we present Laguerre Quasi-Sturmian functions with a general variable

charge ‹C and replace the radial variable r by the hyperradial variable ρ (used in

hyperpherical coordinates). The boundary value problem defining these functions is
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[
− 1

2µ

d2

dρ2
+
ℓ(ℓ+ 1)

2µ ρ2
+
‹C(ω5)

ρ
− E

]
QL(±)

n (ℓ, β, ω5; ρ) =
1

ρ
φL
n(ℓ, β; ρ), (4.41a)

Q(±)
n (ℓ, β, ω5; 0) = 0, (4.41b)

Q(±)
n (ℓ, β, ω5; ρ)

ρ→∞∼ Qas
n (ω5) e

±i[kρ−η(C̃(ω5)) ln(2kρ)+σC(ℓ,C̃(ω5))−
π
2
ℓ]. (4.41c)

for n ∈ N ∪ {0}, Z ∈ R, µ,E ∈ R
+ and ℓ ∈ R

+ ∪ {0}. The parameters η and σC were set

in (1.23a) and (1.23b) respectively.

Clearly, analytical expressions for these Quasi-Sturmian functions and all related

properties can be obtained simply by replacing ZQS with the ω5-dependent charge ‹C
in the formulas presented for the Laguerre Quasi-Sturmian functions QL(±)

n . The integral

representation (4.24) becomes

QL(±)
n (ℓ, β, ω5; ρ) =

2µNn,ℓ

β ∓ ik
(2βρ)ℓ+1e−βρ

×
∫ 1

0
dz (1− z)ℓ±iη(C̃(ω5))(1− ω±1 z)ℓ∓iη(C̃(ω5))(1− z − ω±1 z)n

× ez(β±ik)ρ L2ℓ+1
n

Ç
(1− z)(1 − ω±1 z)

1− z − ω±1 z
2βρ

å
, (4.42)

and the closed form for the asymptotic coefficient QLas
n can be obtained from (4.22). The

series representation (4.26a) in terms of Laguerre-type functions reads now

QL(±)
n (ℓ, β, ω5; ρ) =

∞∑

j=0

g
(±)
n,j (ω5)φ

L
j (ℓ, β; ρ). (4.43)

with g
(±)
n,j defined by (1.66) but taking Z = ‹C(ω5) in the expressions for sn and ĥ(±)

n .

These ω5-dependent coefficients g
(±)
n,j satisfy the pseudo-recurrence relation (1.65),

An+1 g
(±)
n+1,j(ω5) +Bn(‹C(ω5)) g

(±)
n,j (ω5) + An g

(±)
n−1,j(ω5) = δn,q. (4.44a)

As an immediate consequence, relation (4.32) becomes

An+1Q
L(±)
n+1 (ℓ, β, ω5; ρ) +Bn(‹C(ω5))Q

L(±)
n (ℓ, β, ω5; ρ)

+ AnQ
L(±)
n−1 (ℓ, β, ω5; ρ) = φL

n(ℓ, β; ρ) (4.44b)

taking again, for the case n = 0, Q
L(±)
−1 ≡ 0.
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Illustration

In order to present some illustrations of these Quasi-Sturmian functions, we introduce

C(α) =





−Z − 1

cosα
− Z

sinα
, for 0 < α <

π

4
,

− Z

cosα
− Z − 1

sinα
, for

π

4
6 α <

π

2
.

. (4.45)

For the moment, the function C has no particular meaning, but in Chapter 6 we will

see that this is the variable charge corresponding to an approximation (the first term in

a multipolar expansion) of the three-body Coulomb potential.

Using the integral representation (4.42) and taking as variable charge the function

C, we present in Figure 4.6 a plot of the real part of two α-dependent Laguerre

Quasi-Sturmian function QL(+)
n = QL(+)

n (ℓ, β, α; ρ). The plot is presented in spherical

coordinates ( r1 = ρ cosα, r2 = ρ sinα).

Figure 4.6: Real part of two α-dependent Laguerre Quasi-Sturmian function Q
L(+)
n

as functions of spherical coordinates (r1, r2) for n = 0 (left panel) and n = 7 (right
panel). In both cases we fixed ℓ = 1, β = 0.8, µ = 1, Z = 2, k = 1.25.

In Figure 4.7 we plot, as a function of α, the real and imaginary parts of two different

coefficients g(+)
n,q calculated using formula (1.66) with the function C instead of Z. We

observe that these coefficients are regular at the end points of the interval (0, π
2
) even if

the function C is not defined at these points. Also, for increasing values of the indices

the coefficients oscillate more and the oscillations accumulate near the end points of the

domain.
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Figure 4.7: Real (solid line) and imaginary (dashed line) parts of two coefficients

g
(+)
n,q as a function of α: n = 3, q = 8 (left panel) and n = 12, q = 9 (right panel).
We take Z = 2, µ = 1, k = 1.2, ℓ = 1, β = 1.7.
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Figure 4.8: Panels (a) and (b): the full line represents the real and imaginary parts

(respectively) of an α-dependent Quasi-Sturmian function Q
L(+)
n as a function of ρ,

fixing α = π
4 . The dashed line corresponds to the real and imaginary parts of its

asymptotic behavior (4.3c). Panels (c) and (d) represent the same functions, but for
α = π

12 . In all cases we take n = 5, ℓ = 2, β = 0.9, µ = 1, Z = 2, k = 1.1.
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Finally we focus on the asymptotic behavior of the α-dependent Quasi-Sturmian

functions. We present in Figure 4.8 two radial sections of the function with fixed index

n = 5. Panels (a) and (b) show, with solid line, the real and imaginary parts, respectively,

of QL(+)
n as a function of ρ and taking α =

π

4
as a constant. The dashed line corresponds

to the real [panel (a)] and imaginary [panel (b)] parts of the asymptotic behavior (4.3c),

calculated taking ZQS = C
Å
π

4

ã
. Panels (c) and (d) present similar information but

for a fixed α =
π

12
. We clearly observe that for a α value close to the end points, the

function C increases in magnitude, and the asymptotic behavior (4.3c) is reached at larger

hyperradial distances.

Derivatives with respect to α

For the variable charge C defined by (4.45) we can explore the derivatives with respect

to α of the coefficients g
(±)
n,j and of the Quasi-Sturmian QL(±)

n .

From the series representation (4.43) we immediately obtain

∂

∂α
QL(±)

n (ℓ, β, α; ρ) =
∞∑

j=0

ñ
d

dα
g
(±)
n,j (α)

ô
φL
j (ℓ, β; ρ), (4.46)

and from the pseudo-recurrence relations (4.44a) and (4.44b) we find

An+1
d

dα
g
(±)
n+1,j(α) +Bn(C(α))

d

dα
g
(±)
n,j (α) + An

d

dα
g
(±)
n−1,j(α)

= −
ñ
d

dα
C(α)

ô
g
(±)
n,j (α), (4.47a)

An+1
∂

∂α
Q

L(±)
n+1 (ℓ, β, α; ρ) +Bn(C(α))

∂

∂α
QL(±)

n (ℓ, β, α; ρ) + An
∂

∂α
Q

L(±)
n−1 (ℓ, β, α; ρ)

= −
ñ
d

dα
C(α)

ô
QL(±)

n (ℓ, β, α; ρ) (4.47b)

for An and Bn defined in (1.20).

A very interesting relation can be deduced following simple manipulations. Let us take

the derivative with respect to α of both sides of the differential equation (4.41a) defining

the α-dependent Quasi-Sturmian functions,

ñ
− 1

2µ

d2

dρ2
+
ℓ(ℓ+ 1)

2µ ρ2
+
C(α)

ρ
− E

ô
∂

∂α
QL(±)

n (ℓ, β, α; ρ)

= −
ñ
d

dα
C(α)

ô
1

ρ
QL(±)

n (ℓ, β, α; ρ). (4.48)
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On the other hand we take the differential equation (4.41a) for an index j, multiply both

sides by

−
ñ
d

dα
C(α)

ô
g
(±)
n,j (α)

and perform a formal summation over j to obtain

ñ
− 1

2µ

d2

dρ2
+
ℓ(ℓ+ 1)

2µ ρ2
+
C(α)

ρ
−E

ô ñ
− d

dα
C(α)

ô ∞∑

j=0

g
(±)
n,j (α)Q

L(±)
j (ℓ, β, α; ρ)

= −
ñ
d

dα
C(α)

ô
1

ρ

∞∑

j=0

g
(±)
n,j (α)φ

L
j (ℓ, β; ρ). (4.49)

From (4.43) we find that the right hand side is identical to that of equation (4.48): (4.48)

and (4.49) are then the same differential equation. Supposing further that the solutions

of both satisfy the same boundary conditions, we obtain

∂

∂α
QL(±)

n (ℓ, β, α; ρ) = −
ñ
d

dα
C(α)

ô ∞∑

j=0

g
(±)
n,j (α)Q

L(±)
j (ℓ, β, α; ρ) (4.50a)

(4.43)
= −

ñ
d

dα
C(α)

ô ∞∑

p=0




∞∑

j=0

g
(±)
n,j (α)g

(±)
j,p (α)


φL

p (ℓ, β; ρ). .(4.50b)

Besides, a series representation in terms of a basis set is unique. Thus equations (4.46)

and (4.50b) imply

d

dα
g(±)
n,p (α) = −

ñ
d

dα
C(α)

ô ∞∑

j=0

g
(±)
n,j (α)g

(±)
j,p (α). (4.51)

Finally, using relation (4.31), we obtain

d

dα
g(±)
n,p (α) = −

ñ
d

dα
C(α)

ô ∫ ∞

0
Q(±)

n (ℓ, β, α; ρ)
1

ρ
Q(±)

p (ℓ, β, α; ρ) dρ. (4.52)

This is not a formal proof, but we can verify this assertion numerically. For the values

of the parameters Z = 2, µ = 1, k = 1.5, ℓ = 1, β = 2.4 and the indices p = 5 and n = 2,

we evaluate numerically the α dependent quantities

Intp,n(α) =
∫ ∞

0
Q(±)

p (ℓ, β, α; ρ)
1

ρ
Q(±)

n (ℓ, β, α; ρ) dρ,

Derp,n(α) = −
d

dα
g(±)
p,n (α)

d

dα
C(α)

,
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and measure the relative error through

Ep,n(α) =
∣∣∣∣∣
Derp,n(α)− Intp,n(α)

Derp,n(α)

∣∣∣∣∣ .

The obtained results are presented in Table 4.2. Clearly identity (4.52) is verified. We

notice that the relative error Ep,n increases for values of α approaching the end points of

the interval
Å
0,
π

2

ã
. This is due to the fact that near these end points the coefficients

g(±)
p,n concentrate most of their oscillations, as observed in Figure 4.7. We can also verify

that, as expected, the symmetry of the function C with respect to α =
π

4
is present in

these expressions.

α Intp,n(α) Derp,n(α) Ep,n(α)
π

20
-0.00554295 - 0.0146246 i -0.00543316 - 0.0146222 i 0.00704029

π

10
0.150919 + 0.0727451 i 0.150011 + 0.0729142 i 0.00553815

π

4
− 0.001 -0.172925 + 0.0528128 i -0.172526 + 0.0527495 i 0.00223454

π

4
+ 0.001 -0.172925 + 0.0528128 i -0.172526 + 0.0527495 i 0.00223454

Table 4.2: Verification of identity (4.52) for different values of α and parameters
p = 5, n = 2, Z = 2, µ = 1, k = 1.5, ℓ = 1, β = 2.4 .

Remark 4.3.1. Notice that even if
d

dα
C(α) is not defined for α =

π

4
, the limit for α→ π

4
of the ratio Der(α) exists. This is a consequence of the symmetry of the functions C and

g(±)
n,p (α) with respect to α =

π

4
.

4.4 Chapter summary

We have defined and studied Quasi-Sturmian functions. These functions, like Generalized

Sturmian functions, are useful to describe two- and three-body scattering solutions

because they can be constructed with an appropriate asymptotic behavior.

When considering the auxiliary potential as a Coulomb potential, and Slater-type

orbitals or Laguerre-type functions as driven functions, Quasi-Sturmian functions can be
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given in closed form.

To start, different analytical expressions for one variable Quasi-Sturmian functions

and their asymptotic behavior have been presented. This allowed us to study them

from an analytical point of view, something we cannot do with most of Generalized

Sturmian functions, which are numerically generated. We have explored the mathematical

properties of Laguerre Quasi-Sturmian functions, establishing different useful relations

between them and Laguerre-type functions. Most noteworthy is the pseudo-recurrence

relation they satisfy. We have also shown that Laguerre and Slater Quasi-Sturmian

functions are generalizations to any index n, of a particular function introduced by Yamani

and Fishman to be used in the J-Matrix method.

Next, we have considered Quasi-Sturmian functions with a variable charge. Their

advantage is that their asymptotic behavior can be chosen to coincide, in a hyperspherical

framework, with the one expected in three-body scattering solutions. Analytical

expressions for them, their asymptotic behavior and their derivative with respect to an

angular parameter were given.

Some of the results exposed in this chapter can be found in reference [34], where we

have made a first presentation of one variable Quasi-Sturmian functions and we have used

them to solve a two-body scattering problem. The application to three-body scattering

problems will be discussed in Chapter 6.
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Chapter 5

Two-body scattering problems

In this chapter we show how to deal with two-body scattering problems using, as basis

sets, Generalized Sturmian functions and Quasi-Sturmian functions. Atomic units are

used throughout the chapter.

5.1 Statement of the problem

The dynamics of a particle of mass µ and energy E =
k2

2µ
> 0, under the influence of

a general potential V , for a given angular momentum ℓ, is described by the Schrödinger

equation (time-independent non-relativistic case) [3, 81]

[T+ V −E] Ψ = 0. (5.1)

In spherical coordinates the kinetic energy T takes de form

T = − 1

2µ r2
∂

∂r

Ç
r2

∂

∂r

å
+

1

2µ r2
L2,

where L2 is the angular momentum operator, whose eigenfunctions are the spherical

harmonics Y m
ℓ [2, 28],

L2 Y m
ℓ (θ, ϕ) = ℓ(ℓ+ 1) Y m

ℓ (θ, ϕ). (5.2)

For a central potential V = V (r) equation (5.1) becomes separable. Then, for fixed ℓ, m,

one proposes

Ψ(r) =
1

r
Φ(r)Y m

ℓ (θ, ϕ)

97
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to obtain, using the angular equation (5.2), the reduced radial equation

[Hr − E] Φ(r) = 0, (5.3)

where the reduced Hamiltonian operator Hr = Tr + V was introduced in (1.17).

Throughout the following sections we will focus on the solutions of the radial differential

equation (5.3).

For scattering problems, we denote Ψ(±) and Φ(±) the solution of the initial equation

(5.1) and the reduced equation (5.3) respectively. The symbol (±) indicates the chosen

incoming (−) or outgoing (+) asymptotic wave behavior. The separation into initial Φ0

plus scattering solution Φ(±)
sc

Φ(±)(r) = Φ0(r) + Φ(±)
sc (r), (5.4)

is generally proposed. The potential V is also conveniently separated,

V (r) = V0(r) + V1(r), (5.5)

where V0 is the potential associated to the initial state Φ0,

[Tr + V0(r)− E] Φ0(r) = 0, (5.6)

and V1 is the scattering potential. Replacing (5.4) and (5.5) into (5.1) one gets the

following non-homogeneous differential equation for Φ(±)
sc

[Hr − E] Φ(±)
sc (r) = F (r), (5.7)

where we set F (r) = −V1(r)Φ0(r).

To solve the equation, we express its solution in terms of a set of basis functions {ϕn},

Φ(±)
sc (r) =

∑

n

anϕn(r). (5.8)

After inserting (5.8) into (5.7), we multiply by the left both sides of the equation with

appropriate functions ϕ̃q and a weight function w, and finally integrate over the interval

(0,+∞). Thus we construct a matrix equation

O · a = b. (5.9a)
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The solution of this system is a vector a whose components are the coefficients an. The

matrix O is the matrix representation of the Schrödinger operator describing the problem

[see Remark 1.1.1]. Its elements Oq,n are

Oq,n =
∫ ∞

0
ϕ̃q(r)w(r) [Hr − E]ϕn(r) dr, (5.9b)

and the components bq of the vector b are given by

bq = −
∫ ∞

0
ϕ̃q(r)w(r)V1(r)Φ0(r) dr. (5.9c)

If the basis set {ϕ̃q} is orthonormal with weight function w, these coefficients correspond

to a generalized Fourier expansion of F (r) = −V1(r)Φ0(r).

The boundary conditions depend on the particular problem to be solved. For example,

when V behaves as a Coulomb potential
Z

r
at large distances and V1 is a short range

potential, the boundary conditions, for a given angular momentum ℓ, become

Φ(±)
sc (0) = 0, (5.10a)

Φ(±)
sc (r)

r→∞∼ A e±i[kr−η(Z) ln(2kr)−π
2
ℓ+σC(ℓ,Z)], (5.10b)

coinciding, up to a constant, with the asymptotic behavior of the Coulomb wave functions

H(±) given in (1.28). The constant A is proportional to the transition amplitude for a

given ℓ. If V is of short range, the asymptotic boundary condition (5.10b) simplifies to

e±ikr; this situation is illustrated in the next two sections.

Remark 5.1.1. If the basis functions ϕn, used in (5.8) to represent the scattering solution,

behave in the asymptotic region proportionally to the expected behavior of Φ(±)
sc , it is

straightforward to extract an expression for the transition amplitude. For example, in

case of an expected Coulomb behavior at large distances as in (5.10b), if we take basis

functions satisfying

ϕn(r)
r→∞∼ An e

±i[kr−η(Z) ln(2kr)−π
2
ℓ+σC(ℓ,Z)],

we immediately deduce that

A =
∑

n

an An.
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5.2 Implementation of Generalized Sturmian

functions

One possibility is to use Generalized Sturmian functions as basis functions. Their general

description was presented in Chapter 3, and the results shown in this section form the

second part of reference [33].

Taking ϕn(r) = S
(±)
n,ℓ (r), the proposed solution (5.8) reads

Φ(±)
sc (r) =

∑

n

an S
(±)
n,ℓ (r). (5.11)

Upon replacement in (5.7), and taking into account the differential equation (3.1) satisfied

by the Generalized Sturmian functions, we find

∑

n

an[V (r)− Va(r)− λn,ℓ Vg(r)]S
(±)
n,ℓ (r) = F (r). (5.12)

If we further choose the auxiliary potential Va to be the interaction potential V ,

only the generating potential remains on the left hand side of the equation. Taking

ϕ̃q(r) = S
(±)
q,ℓ (r) and w(r) = 1 in (5.9), the matrix O becomes a diagonal matrix. Then

the coefficients an are

an = − 1

λn,ℓVn
bn, (5.13a)

where

Vn =
∫ +∞

0
S
(±)
n,ℓ (r)Vg(r)S

(±)
n,ℓ (r) dr, (5.13b)

bn =
∫ +∞

0
S
(±)
n,ℓ (r)F (r) dr = −

∫ +∞

0
S
(±)
n,ℓ (r) V1(r)Φ0(r) dr. (5.13c)

5.2.1 Scattering of a particle by a Hulthén potential

Let us consider the scattering of a particle under the influence of a Hulthén potential (3.6)

and take only the angular momentum ℓ = 0. As initial state we consider a free particle,

hence

V0 ≡ 0, V1(r) = V (r) = v0
e−

r
α

1− e−
r
α

(5.14a)

and

Φ0(r) = kr j0(kr) = sin(kr), (5.14b)
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where j0 is a spherical Bessel function. For outgoing wave behavior, the non-homogeneous

equation (5.7) becomes

[
− 1

2µ

d2

dr2
+ v0

e−
r
α

1− e−
r
α

− E

]
Φ(+)

sc (r) = −v0
e−

r
α

1− e−
r
α

Φ0(r), (5.15)

and as boundary conditions we require

Φ(+)
sc (0) = 0, (5.16a)

Φ(+)
sc (r)

r→∞∼ A eikr. (5.16b)

Since these boundary conditions are exactly those of the Hulthén Sturmian functions

presented in Section 3.2, it is natural to express the scattering solution as a combination

of them, in particular, we may use the functions S
(±)
n,0 introduced in Remark 3.2.3, so

that the scattering solution becomes

Φ(+)
sc (r) =

∞∑

n=1

an S
(+)
n,0 (r). (5.17)

Taking as auxiliary potential the Hulthén potential (5.14a), i.e. Va ≡ V , we are in the

situation described after equation (5.12). Thus we obtain from (5.13) the coefficients

an =
1

λ̃n,0Vn
v0

∫ +∞

0
S
(+)
n,0 (r)

e−
r
α

1− e−
r
α

sin(kr) dr
(3.28)
= − v0 k N

S
n

2µλn,0 λ̃n,0
,

where NS
n is given by (3.19) and Vn = 1 [see paragraph following formula (3.19)]. Since

va = v0, the eigenvalues λ̃n,0, given by (3.21), become

λ̃n,0 = λn,0 − 1
(3.15)
= −n(n− 2kα i)

2µα2 vg
− 1,

and the scattering solution reads

Φ(+)
sc (r) = −v0 k

2µ

∞∑

n=1

(NS
n )

2

λn,0(λn,0 − 1)
eikr 2F1

Ä
−n, n− 2kα i, 1− 2kα i; e−

r
α

ä
.

Finally, as explained in Remark 5.1.1, taking the limit r → ∞ we deduce the

scattering transition amplitude A for the collision process. From

Φ(+)
sc (r)

r→∞∼
[
−v0 k

2µ

∞∑

n=1

(NS
n )

2

λn,0(λn,0 − 1)

]
eikr
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we obtain

A = −v0 k
2µ

∞∑

n=1

(NS
n )

2

λn,0(λn,0 − 1)
.

In reference [33] we have presented the value found for a particular choice of the

physical parameters and compared it successfully with the result obtained by using an

independent numerical procedure.

5.2.2 Scattering of a particle by a Yukawa potential

As another application we study the outgoing solution of


− 1

2µ

d2

dr2
− e−α̃r

r
− E


Φ(+)

sc (r) =
e−α̃r

r
Φ0(r) (5.18)

which describes, again for ℓ = 0, the scattering of a particle by a Yukawa potential

V (r) = −e
−α̃r

r
. (5.19)

The boundary conditions are those of the previous case [formulas (5.16)].

As in the previous example, we take for the initial state Φ0 a free particle (5.14b), so

that

V0 ≡ 0, V1(r) = V (r) = −e
−α̃r

r
.

The proposed solution Φ(+)
sc takes the form (5.17), where, this time, we use as basis

functions, Hulthén Sturmian functions with auxiliary potential Va ≡ 0..

Since we are not choosing the auxiliary potential coinciding with the interaction

potential, the matrix associated to the Schrödinger operator of this problem is not

diagonal. Then the coefficients an cannot be calculated using (5.13); they are solution of

the matrix equation (5.9) with

Oq,n = −
∫ ∞

0
S
(+)
q,0 (r)

e−α̃r

r
S
(+)
n,0 (r) dr − λn,0 δq,n, (5.20a)

bq =
∫ ∞

0
S
(+)
q,0 (r)

e−α̃r

r
Φ0(r) dr, (5.20b)

where we have taken w ≡ 1.

In reference [33] we have solved the scattering problem by setting the values of the

parameters α = α̃ = 1, v0 = −1, µ = 1, E = 0.5, ℓ = 0. The integrals (5.20) had to be
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numerically performed. We needed 60 terms in the expansion (5.17) to reproduce with a

very good accuracy the scattering solution obtained by an independent numerical method.

However, we also showed that 20 basis functions basically provide a good approximation

of the solution.

According toRemark 5.1.1, the ℓ = 0 transition amplitude, calculated with N terms,

takes the form

A(N) =
N∑

n=1

anN
S
n .

With the first 20 terms of this series we obtained A(20) = 0.389994 + 0.788451i, while

taking 60 terms we found A(60) = 0.4085 + 0.7869i.

5.3 Scattering solution in terms of Quasi-Sturmian

functions

Similarly, but as an alternative, to Generalized Sturmian functions, we propose to express

the solution of the general scattering equation (5.7)

Φ(±)
sc (r) =

∑

n

anQ
(±)
n (ℓ, β; r), (5.21)

in terms of the Quasi-Sturmian functions presented in Chapter 4, with µ, ℓ and E given

by the problem one wants to solve.

Consider first the functions Q(±)
n satisfying the differential equation (4.1). We apply

the operator [Hr −E] to one of them to find

[Hr − E]Q(±)
n (ℓ, β; r) = Vgφn(r) + [−Va(r) + V (r)]Q(±)

n (ℓ, β; r).

Taking Va ≡ V and Vg equal to the weight function w of an orthonormal basis set {φn},
the matrix O associated to the operator [Hr − E], introduced in (5.9b), becomes the

identity for ϕ̃n(r) = φn(r). Thus, the coefficients an in (5.21) coincide with the generalized

Fourier coefficients bn given by (5.9c), associated to F (r) = −V1(r)Φ0(r). This option

looks attractive. However, in the general case, Quasi-Sturmian functions are not known

in closed form, so that no further analytical considerations can be made.

Alternatively, we may use the Laguerre Quasi-Sturmian functions studied in Section
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4.3. In this case, using (4.3a), we obtain

[Hr − E]QL(±)
n (ℓ, β; r) =

1

r
φL
n(ℓ, β; r) +

ñ
−ZQS

r
+ V (r)

ô
QL(±)

n (ℓ, β; r).

Choosing ϕ̃q ≡ φL
q and w ≡ 1 in (5.9), taking into account the orthogonality property

(1.9a) of Laguerre-type functions, and using the series expansion (4.26a), the matrix

elements Oq,n and the components bq become

Oq,n = δq,n − ZQS g
(±)
n,q +

∫ ∞

0
φL
q (ℓ, β; r) V (r)Q

L(±)
n (ℓ, β; r) dr, (5.22a)

bq = −
∫ ∞

0
φL
q (ℓ, β; r)V1(r)Φ0(r) dr. (5.22b)

5.3.1 A particular two-body problem

To illustrate the efficiency of the proposed Quasi-Sturmian functions, we consider the

scattering of a particle in a combined attractive Coulomb potential V0 plus a Yukawa

potential V1,

V0(r) =
z1z2
r

(z1z2 < 0), (5.23a)

V1(r) = −b e
−ar

r
(a, b ∈ R, a, b > 0). (5.23b)

We propose as initial solution Φ0 the regular Coulomb wave function F (s) given by (1.24)

that satisfies equation (1.22).

The scattering problem reads

ñ
− 1

2µ

d2

dr2
+
ℓ(ℓ+ 1)

2µr2
+
z1z2
r

− b e−ar

r
− E

ô
Φ(±)

sc (r) =
b e−ar

r
F (s)(ℓ, k; r), (5.24a)

Φ(±)
sc (0) = 0, (5.24b)

Φ(±)
sc (r)

r→∞∼ A e±i[kr−η(z1z2) ln(2kr)−
π
2
ℓ+σC(ℓ,z1z2)]. (5.24c)

The following results have been presented in Section V of reference [34], where we

have compared the solutions obtained with different numerical techniques. First, using a

finite difference method, we have constructed a set of numerical Quasi-Sturmian functions,

taking as generating potential the total potential Vg = V0 + V1 and considering ϕ̃q(r) =

φL
q (ℓ, β; r). This choice led us to the trivial solution an = bn described at the beginning of
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Section 5.3. Second, and for convergence rate comparisons, we have solved the problem

using Generalized Sturmian functions (also numerically generated). Finally, we have

employed the analytical Laguerre Quasi-Sturmian functions provided in Section 4.3.

Numerical Quasi-Sturmian functions

A linear system of equation as the one given by (5.9) was solved considering a set

of Quasi-Sturmian functions numerically generated with a finite difference technique.

Choosing the auxiliary potential to be the total potential

Va(r) =
z1z2
r

− b e−ar

r
,

and taking Vg(r) =
1

r
, ϕ̃q(r) = φL

q (ℓ, β; r) and w(r) = 1, the coefficients an in (5.21)

coincide with bn in (5.9c), and can be given in closed form

bn = −
∫ ∞

0
φL
n(ℓ, β; r)

b e−ar

r
F (s)(ℓ, k; r) dr

(B.8)
= −bNC(ℓ)

Nn,ℓ

Ç
2β

(a + β)2 + k2

åℓ+1 Ça− β − ik

a+ β − ik

ån Ça+ β − ik

a+ β + ik

åiη(z1z2)

× 2F1

Ç
−n, ℓ+ 1 + iη(z1z2), 2ℓ+ 2;− 4βki

a2 − (β + ik)2

å
. (5.25)

Analytical Laguerre Quasi-Sturmian functions

A set of Laguerre Quasi-Sturmian functions was also used to represent the scattering

solution. We fixed the parameter ZQS of the Quasi-Sturmian functions as the charge of

the problem, ZQS = z1z2. Once again we took Vg(r) =
1

r
, ϕ̃q ≡ φL

q and w ≡ 1, so that

the coefficients bn [formula (5.9c)] are those of the previous case, i.e., (5.25). The matrix

elements Oq,n, given by formula (5.22a), are also analytical,

Oq,n = δq,n −
∫ ∞

0
φL
q (ℓ, β; r)

b e−ar

r
QL(±)

n (ℓ, β; r) dr

= δq,n − b
∞∑

j=0

g
(±)
n,j

∫ ∞

0
φL
q (ℓ, β; r)

e−ar

r
φL
j (ℓ, β; r) dr

(B.9)
= δq,n −

b

Nq,ℓ Γ(2ℓ+ 2)

Ç
2β

a+ 2β

å2ℓ+2 ∞∑

j=0

g
(±)
n,j

1

Nj,ℓ

Ç
a

a + 2β

åq+j

× 2F1

(
−q, −j; 2ℓ+ 2;

Ç
2β

a

å2
)
. (5.26)
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For the particular choice 2β = a, the hypergeometric function simplifies [see equation

(1.15)], and we obtain

Oq,n = δq,n −
bNq,ℓ

q!

Ç
1

2

å2ℓ+2+q ∞∑

j=0

g
(±)
n,j

(2ℓ+ 2 + j)q
Nj,ℓ

Ç
1

2

åj

. (5.27)

Fixing

b = 10, a = 1.3, z1z2 = −2, µ = 1, k = 1, ℓ = 0,

taking β = 2a and truncating the summation in (5.26) at j = 300, only 15 Quasi-Sturmian

functions were needed to approximate the scattering solution while 30 Generalized

Sturmian functions were necessary to achieve the same accuracy. A comparison of

the solutions obtained with different numerical techniques, as well as details of the

computations, were presented in reference [34].

In Figure 5.1 we plot the real and imaginary parts of the approximated scattering

solution

ΦN(+)
sc (r) =

N∑

n=0

anQ
L (+)
n (ℓ, β; r),

obtained by using expressions (5.25) and (5.26) to find the coefficients an, and the

integral representation (4.24) to generate the Quasi-Sturmian functions QL(±)
n . The full

line represents ΦN(+)
sc taking β = 2a and using 21 basis functions (N = 20). The dots

correspond to taking 2β = a, N = 30, and using formula (5.27) for the matrix elements.

In this case more basis functions were needed to obtain a convergent series in (5.21),

meaning that this choice of the parameter β is by far not optimal. This can also be

observed through Figure 5.2, where we plot the modulus of coefficients an as a function

of n, for the two situations considered: β = 2a (dots) and 2β = a (diamonds). In the first

case the coefficients become negligible for n > 15 while in the second case the coefficients

can not be neglected up to n = 55. We conclude that, even if the analytical expression

simplifies considerably, the choice 2β = a leads to a much slower convergence rate.
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Figure 5.1: Real (left panel) and imaginary (right panel) parts of Φ
N(+)
sc as a function

of r, taking β = 2a with N = 20 and 2β = a with N = 30. Parameters: b = 10, a =
1.3, z1z2 = −2, µ = 1, k = 1, ℓ = 0.
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Figure 5.2: Modulus of the coefficients an as a function of n obtained for the

approximated scattering solution Φ
N(+)
sc corresponding to b = 10, a = 1.3, z1z2 =

−2, µ = 1, k = 1, ℓ = 0. The dots are obtained when considering β = 2a and the
diamonds correspond to taking 2β = a.

5.4 Chapter Summary

We described the procedure to solve a general two-body scattering problem by using, first,

Generalized Sturmian functions and then, Quasi-Sturmian functions.

We have solved three different problems expanding the scattering solutions in terms

of Hulthén Sturmian functions and Laguerre Quasi-Sturmian functions. Clearly, the fact

that the basis functions have an appropriate asymptotic behavior represents a serious

convergence advantage.
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For a Coulomb plus Yukawa potential, the scattering problem was solved implementing

a set of numerically generated Generalized Sturmian functions, as well as numerical and

analytical Laguerre Quasi-Sturmian functions. All basis functions considered had the

desired asymptotic behavior. For this particular problem, Quasi-Sturmian functions were

the most efficient. Interestingly, for the analytical Quasi-Sturmian functions we were able

to give in closed form the matrix elements and the components of the vector involved

in the linear system to be solved. In this case, we have also tested the influence of the

parameter controlling the spatial extension of the driven terms. We noted that even if

a certain choice of the value of the parameter simplifies the expression of the matrix

elements, the solution obtained was not optimal as it required many more functions in

comparison to other choices of this parameter.

The results involving Hulthén Sturmian functions complete the second part of reference

[33], while those related to Quasi-Sturmian functions were presented in reference [34].



Chapter 6

Three-body scattering problems

This chapter is dedicated to the study of three-body scattering problems by using different

variants of Quasi-Sturmian functions as basis sets. We propose to use hyperspherical

coordinates, and focus on the Temkin-Poet model problem. Atomic units are used.

6.1 Hyperspherical coordinates

In the laboratory reference frame, nine variables are needed to describe the motion of

three particles: three variables to represent the motion of the center of mass and six

variables to represent the internal motion.

Let pi be the position of each particle of the system and mi its mass, i = 1, 2, 3. The

Jacobi vectors rij y Rk,ij are defined as follows

⋄ rij is the vector with starting point pi and endpoint pj ,

⋄ Rk,ij is the vector starting at the center of mass of the subsystem {pi, pj}, and
ending at pk.

For example, fixing k = 1, j = 2, i = 3 we obtain the following picture.

m1

m2

m3

R1,32

r32

Figure 6.1: A pair of Jacobi vectors.

109
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For fixed i, j, k, the normalization of the Jacobi vectors rij,Rk,ij is given by

xk =

Ç
µij

µ

å1/2

rij, Xk =

Ç
µ

µij

å1/2

Rk,ij,

where

µij =
m1mj

mi +mj

, and µ =

 
m1m2m3

m1 +m2 +m3

are the reduced mass of the subsystem {mi, mj} and the reduced mass of the hole system

{m1, m2, m3}, respectively.
Leaving aside the motion of the center of mass, in the 6-dimensional space we define

the hyperspherical coordinates [see formula (12.3.88) in reference [2], or references [36,

37]], consisting in one radial and five angular variables. The radial variable (named

hyperradius) is defined by

ρ = x2k +X2
k (6.1)

and does not depend of the choice of i, j, k.

There are different ways to choose the angular coordinates [36], each of which gives an

alternative coupling scheme of angular momenta and, as a consequence, to an alternative

representation of the Schrödinger equation describing the three particles dynamics. We

are going to consider the asymmetric hyperangular parametrization for which one of the

angular variables is

α = arctan

∣∣∣∣∣
Xk

xk

∣∣∣∣∣ (6.2)

and the others are the polar angles θxk
, ϕxk

, θXk
, ϕXk

defining the orientations x̂k and

X̂k of the Jacobi vectors in the center of mass reference frame. It is usual to indicate

collectively the five angular variables by

ω5 = (α, θxk
, ϕxk

, θXk
, ϕXk

).

From (6.1) and (6.2) we have

xk = ρ cosα, (6.3a)

Xk = ρ sinα. (6.3b)

Let us fix k = 1, j = 2, i = 3. In the present work we consider m3 much heavier than
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m1 and m2, so that the reduced masses simplify

µ =
√
m1m2, µ32 = m2,

the center of mass for the subsystem {r2, r3} coincides with p3 and the Jacobi vectors

scheme (Figure 6.1) transforms to the following one:

m1

m2

m3

R1,32 = r31

r32

Figure 6.2: Jacobi vectors for m3 ≫ max(m1,m2).

In addition, for the case of two electrons and

a nucleus we have m1 = m2 = 1 and

x1 = r32, X1 = R1,32.

Renaming r32 = r1, r31 = r2, we obtain for

this particular case

r1 = r32 = x1 = ρ cosα, (6.4a)

r2 = R1,32 = X1 = ρ sinα. (6.4b)

r1

r2

r2

r10

α

ρ

Figure 6.3: Relation between the
spherical coordinates (r1, r2) and the
hyperspherical pair (ρ, α).

6.1.1 The Coulomb potential for three charged particles

In spherical coordinates the Coulomb interaction between three particles of charges

Z, z1, z2 is

V (r1, r2) =
z1 Z

r1
+
z2 Z

r2
+

z1 z2
|r1 − r2|

, (6.5)
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while in hyperspherical coordinates, and for m1 = m2 = 1, it becomes [2, 19, 37, 83]

V (ρ, ω5) =
z1 Z

ρ cosα
+

z2 Z

ρ sinα
+

z1 z2

ρ
»
1− sin(2α) cos θ12

=
‹C(ω5)

ρ
(6.6)

naming θ12 the angle between r1 and r2. The explicit form of the “charge” ‹C can be found

in reference [19].

For the last term in the spherical representation (6.5) we have the well known

series expansion [50] in terms of Legendre polynomials Pn [43] (known as the multipole

expansion)

1

|r1 − r2|
=

∞∑

n=0

1

r>

Ç
r<
r>

ån

Pn(cos θ12),

where r< = min(r1, r2), r> = max(r1, r2).

As a first approach to the three-body scattering problem, it is usual to consider a

model, known as Temkin-Poet model [38–40]. It results from keeping only the first term

in the previous series, instead of the full Coulomb potential (6.5). The model potential

in spherical coordinates reads

V (r1, r2) ∼
z1 Z

r1
+
z2 Z

r2
+
z1 z2
r>

,

while in hyperspherical coordinates, for m1 = m2 = 1 thus using (6.4), it becomes

V (ρ, α) ∼ C(α)

ρ
, (6.7a)

C(α) =
z1 Z

cosα
+
z2 Z

sinα
+B(α), B(α) =





z1 z2
cos(α)

, for 0 < α <
π

4

z1 z2
sin(α)

, for
π

4
6 α <

π

2

. (6.7b)
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For the two-electron case, z1 = z2 = −1 and

C(α) =





−Z − 1

cosα
− Z

sinα
, for 0 < α <

π

4
,

− Z

cosα
− Z − 1

sinα
, for

π

4
6 α <

π

2
.

(6.7c)

Hereafter we assume Z > 0. Notice that C is a continuous function in
Ä
0, π

2

ä
. At the

endpoints α = 0 and α = π
2
,

lim
α→0+

C(α) = lim
α→π

2
−

C(α) = −∞,

which reflects the so-called electron-nucleus cusps (r1 = 0 or r2 = 0). In addition we have

a symmetry with respect to α =
π

4
,

C(α) = C
Åπ
2
− α
ã
, 0 < α 6

π

4
. (6.8)

The derivative

d

dα
C(α) =





−(Z − 1) sinα

cos2 α
+
Z cosα

sin2 α
, for 0 < α <

π

4

−Z sinα

cos2 α
+

(Z − 1) cosα

sin2 α
, for

π

4
< α <

π

2

(6.9)

is not defined in α =
π

4
but the one-sided limits for α→ π

4

±

exist,

lim
α→π

4
−

−(Z − 1) sinα

cos2 α
+
Z cosα

sin2 α
=

√
2, (6.10a)

lim
α→π

4
+
−Z sinα

cos2 α
+

(Z − 1) cosα

sin2 α
= −

√
2. (6.10b)

The discontinuity at α = π
4
does not exist in the real potential (6.5); it is an artifice that

appears in the Temkin-Poet truncation of the multipole expansion.
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6.1.2 The kinetic energy

In the hyperspherical coordinates system, the kinetic energy for a general reduced mass

µ reads [2, 19, 37]

Tρ,ω5 = − 1

2µ

[
1

ρ5
∂

∂ρ
ρ5

∂

∂ρ
− Λ2

ω5

ρ2

]
. (6.11)

Λ2

ω5
is the grand orbital angular momentum operator [2, 19] given by

Λ2

ω5
= − 1

sin2 α cos2 α

∂

∂α

Ç
sin2 α cos2 α

∂

∂α

å
+

j2

cos2 α
+

l2

sin2 α

with j2 and l2 the rotational and centrifugal angular momentum operators. The

eigenfunctions of Λ2

ω5
are the hyperspherical harmonics Ymj ,mℓ

λ, j, ℓ , and satisfy

Λ2

ω5
Ymj ,mℓ

λ, j, ℓ (ω5) = λ(λ+ 4)Ymj ,mℓ

λ, j, ℓ (ω5). (6.12)

They can be expressed in closed form [36, 82]

Ymj ,mℓ

λ, j, ℓ (ω5) = Hλ, j, ℓ(α)Y
mj

j (x̂1) Y
mℓ

ℓ (X̂1).

Here Y ms
s are spherical harmonics [2, 3], and Hλ, j, ℓ are given in terms of Jacobi

polynomials P (a,b)
n ,

Hλ, j, ℓ(α) = Nλ, j, ℓ cos
j+1/2(α) sinℓ+1/2(α)P

(ℓ+1/2,j+1/2)
(λ−j−ℓ)/2 (cos(2α))

where Nλ, j, ℓ is a normalization constant.

As mentioned, we are interested here in the Temkin-Poet model. This problem is also

called S-wave model problem [83] because it coincides with the situation of performing a

spherical average of the interelectronic term 1/r12, thus keeping only the s-wave (ℓ = j =

0). In this case, the grand orbital angular momentum reduces to

Λ2

α = − 1

sin2(α) cos2(α)

∂

∂α

Ç
sin2(α) cos2(α)

∂

∂α

å
, (6.13a)

and the kinetic energy for the model problem becomes

Tρ,α = − 1

2µ

ñ
1

ρ5
∂

∂ρ

Ç
ρ5

∂

∂ρ

å
+

1

ρ2
1

sin2(α) cos2(α)

∂

∂α

Ç
sin2(α) cos2(α)

∂

∂α

åô
. (6.13b)

The eigenfunctions of Λ2

α simplify to Jacobi polynomials P (a,b)
m usually expressed in
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terms of Gauss hypergeometric functions [2, 40],

Ωm(α) =
4(m+ 1)!√
π
Ä
3
2

ä
m

P
( 1
2
, 1
2
)

m

Ä
1− 2 sin2 α

ä

=
4(m+ 1)√

π
2F1

Ç
−m,m+ 2,

3

2
, sin2 α

å
.

The identity 15.1.16 of [42],

2F1

Ç
a, 2− a,

3

2
; sin2 z

å
=

sin[2(a− 1)z]

(a− 1) sin(2z)
,

allows one to give a simpler expression

Ωm(α) =
2√
π

sin[2(m+ 1)α]

sinα cosα
. (6.14)

These orthogonal eigenfunctions satisfy

Λ2

α Ωm(α) = 2m(2m+ 4)Ωm(α), (6.15a)
∫ π

2

0
dαΩm(α) Ωn(α) cos

2 α sin2 α = δm,n. (6.15b)

6.2 The Schrödinger equation

In hyperspherical coordinates the Schrödinger equation for a three-body scattering

problem reads

[Hρ,ω5 − E] Ψ(±)(ρ, ω5) = 0. (6.16)

Here E = E1 + E2 is the total energy of the system, and Hρ,ω5 = Tρ,ω5 + V . The kinetic

energy Tρ,ω5 was introduced in (6.11), and from now on, we are going to consider V as

the Coulomb potential given by formula (6.6).

As proposed in (5.4) for two-body scattering problems, we decompose the solution

Ψ(±) as the sum

Ψ(±)(ρ, ω5) = Ψ0(ρ, ω5) + Ψ(±)
sc (ρ, ω5), (6.17)

where Ψ0 is the initial state solution corresponding to a potential V0,

[Tρ,ω5 + V0(ρ, ω5)− E]Ψ0(ρ, ω5) = 0. (6.18)
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Then, setting V1 = V − V0, from equation (6.16) we find a non-homogeneous Schrödinger

equation for the scattering function Ψ(±)
sc

[Tρ,ω5 + V (ρ, ω5)−E]Ψ(±)
sc (ρ, ω5) = −V1(ρ, ω5)Ψ0(ρ, ω5). (6.19a)

The boundary conditions associated to this equation are [20, 21, 83]

Ψ(±)
sc (0, ω5) = 0, (6.19b)

Ψ(±)
sc (ρ, ω5)

ρ→∞∼ A(ω5)
e±i[Kρ−η(C̃(ω5)) ln(2Kρ)+σC(ℓ,C̃(ω5))−ℓπ

2
]

ρ5/2
, (6.19c)

where A is proportional to the scattering amplitude, K is the hyperspherical momentum

related to the total energy of the system by K2 = 2µE, and η(‹C(ω5)) is the Sommerfeld

parameter associated with the angular dependent charge ‹C.
Considering a Temkin-Poet model, with kinetic energy Tρ,α given by (6.13b) and

potential V as in (6.7), the non-homogeneous Schrödinger equation (6.19a) becomes

[Tρ,α + V (ρ, α)−E] Ψ(±)
sc (ρ, α) = F (ρ, α), (6.20)

for a general driven term F (ρ, α). To reduce this equation we express

Ψ(±)
sc (ρ, α) =

Φ(±)
sc (ρ, α)

ρ5/2 cosα sinα
, (6.21)

as to simplify the action of the grand orbital angular momentum (6.15), and then of the

kinetic energy (6.13b),

Λ2

α

Φ(±)
sc (ρ, α)

ρ5/2 cosα sinα
= − 1

ρ5/2 cosα sinα

ñ
∂2

∂α2
+ 4

ô
Φ(±)

sc (ρ, α), (6.22a)

1

ρ5
∂

∂ρ

Ç
ρ5
∂

∂ρ

å
Φ(±)

sc (ρ, α)

ρ5/2 cosα sinα
=

1

ρ5/2 cosα sinα

ñ
∂2

∂ρ2
− 15

4

1

ρ2

ô
Φ(±)

sc (ρ, α), (6.22b)

Tρ,α
Φ(±)

sc (ρ, α)

ρ5/2 cosα sinα
= − 1

ρ5/2 cosα sinα

1

2µ

ñ
∂2

∂ρ2
+

1

ρ2
∂2

∂α2
+

1

4 ρ2

ô
Φ(±)

sc (ρ, α).

(6.22c)
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Consequently, the Schrödinger equation (6.20) becomes

1

ρ5/2 cosα sinα

ñ
− 1

2µ

Ç
∂2

∂ρ2
+

1

ρ2
∂2

∂α2

å
− 1

8µρ2
+
C(α)

ρ
− E

ô
Φ(±)

sc (ρ, α) = F (ρ, α).

(6.23)

In order to simplify the writing we name Hρ,α the reduced Coulomb Hamiltonian

Hρ,α = − 1

2µ

Ç
∂2

∂ρ2
+

1

ρ2
∂2

∂α2

å
− 1

8µρ2
+
C(α)

ρ
. (6.24)

With this, and from (6.19c) and (6.21), the reduced three-body scattering problem reads

[Hρ,α − E] Φ(±)
sc (ρ, α) = ρ5/2 cosα sinαF (ρ, α), (6.25a)

Φ(±)
sc (0, α) = 0, (6.25b)

Φ(±)
sc (ρ, α)

ρ→∞∼ Aα cosα sinα e±i[Kρ−η(C(α)) ln(2Kρ)+σC(ℓ,C(α))−ℓπ
2
]. (6.25c)

6.3 The scattering wave function

To represent the solution of three-body problems several coordinates systems and

expansions on different basis sets have been proposed in the literature. First, the

basis should be chosen appropriately according to whether one is dealing with bound

or continuum states. Second, the way the variables are coupled dictates the efficiency of

a basis and, at the same time, the difficulty of its implementation. Hereafter, we consider

only hyperspherical coordinates and focus on scattering problems.

The simplest expansion is to consider

Ψ(±)(ρ, ω5) =
∑

ν,n

fn(ρ)gν(ω5),

which treats the angular and the hyperradial variables separately. This strategy is

attractive from an implementation point of view, but it is known to be inadequate

for non-separable differential equations such as the Schrödinger equation describing

three-body scattering problems. Nevertheless, such a proposal have been considered in

many studies [40, 83–88]. In particular, different Temkin-Poet model problems have been

solved by expressing

Ψ(±)
sc (ρ, α) =

∑

m,n

S(±)
m,n(ρ)

ρ5/2
Ωm(α),
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using the Jacobi polynomials Ωn, given by (6.14), as angular basis functions, and

hyperradial functions S(±)
m,n such as Generalized Sturmian functions [40, 83, 84].

Other approaches, like those presented in references [19, 82, 89, 90], couple in a

parametric form the angular and radial variables. To do it, the Schrödinger equation

is expressed as


− 1

2µ

1

ρ5
∂

∂ρ
ρ5

∂

∂ρ
− Λ2

ω5
+ 2µρ ‹C(ω5)

ρ2
−E


Ψ(±)

sc (ρ, ω5) = 0.

To describe the angular part of the equation a set of Generalized Sturmian functions ‹Ων

is constructed by solving

î
Λ2

ω5
− λ(λ+ 4)

ó ‹Ων(ω5) = −2µρν ‹C(ω5)‹Ων(ω5),

thus relating the radial variable with the eigenvalues ρν of this problem (λ is an external

fixed parameter). In references [19, 82, 90], the authors have solved scattering problems

by generating hyperradial Generalized Sturmian functions S
(±)
β,λ , to finally represent the

solution as

Ψ(±)
sc (ρ, ω5) =

∑

β,ν

S
(±)
β,λ (ρ)

ρ5/2
‹Ων(ω5).

An important aspect to bare in mind is the asymptotic behavior of the scattering

solution. We already explained, in the previous chapter, that a good strategy is to use

basis functions including the expected behavior of the solution, as it was the case, for

two-body problems, of Generalized Sturmian functions and Quasi-Sturmian functions.

For the three-body case, the Quasi-Sturmian functions presented in Section 4.3.7

possess this characteristic, as one can see by comparing (4.41c) with (6.19c). Hence, one

may conclude that functions

ϕ(±)
m,n(ρ, α) =

1

ρ5/2
Q

L(±)
n (ℓQS, β, ω5; ρ)Ymj ,mℓ

λ, j, ℓ (ω5) (6.26)

constitute an interesting option to represent the scattering solution. Applying the
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Schrödinger operator to one of them we obtain

[Hρ,ω5
− E]

1

ρ5/2
Q

L(±)
n (ℓQS, β, ω5; ρ) Ymj ,mℓ

λ, j, ℓ (ω5)

(4.41a)
=

1

ρ5/2

®
1

ρ
φL
n(ℓQS, β; ρ)Ymj ,mℓ

λ, j, ℓ (ω5)

− 1

2µρ2

ñ
ℓQS(ℓQS + 1)− 15

4

ô
QL(±)

n (ℓQS, β, ω5; ρ)Ymj ,mℓ

λ, j, ℓ (ω5)

− 1

2µρ2
Λ2

ω5

[
Q

L(±)
n (ℓQS, β, ω5; ρ)Ymj ,mℓ

λ, j, ℓ (ω5)
]´
. (6.27)

The application of the angular operator is by far not trivial and we do not go further

in providing the resulting expression. Taking the limit ρ → ∞, the three terms between

braces go to zero faster than ρ−1, indicating that the functions ϕ(±)
m,n given by (6.26) may be

considered as approximated solutions of the Schrödinger equation (6.16) in the asymptotic

region (ρ > R).

Another advantage of representing the scattering solution in terms of functions having

the appropriate asymptotic behavior is that it facilitates the extraction of the transition

amplitude, as explained in Remark 5.1.1.

For the Temkin-Poet model problem we investigate here, we present three different

representations of the scattering solution using Quasi-Sturmian functions: one considering

separate variables and separate indices, a second one coupling the indices of the basis

functions and a third one coupling the variables by using Quasi-Sturmian functions with

a variable charge.

First we describe the general strategy to solve the equation, which is an extension of

the procedure implemented in Section 5.1 for two-body scattering problems. We express

Φ(±)
sc in terms of a general set of basis functions {ϕm,n}

Φ(±)
sc (ρ, α) =

∑

m,n

am,n ϕm,n(ρ, α). (6.28)

Inserting this double series into (6.25a), then multiplying, for each p and q, both sides of

the equation by appropriate functions w and ϕ̃p,q, and finally integrating over the domain

0 < α <
π

2
, 0 < ρ <∞,

we find a linear system O · a = b for the unknown am,n. The elements Op,q;m,n and bp,q
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forming the matrix O and the vector b respectively, are

bp,q =
∫ π

2

0

∫ ∞

0
w(ρ, α) ϕ̃p,q(ρ, α) ρ

5/2 cosα sinαF (ρ, α) dρ dα, (6.29a)

Op,q;m,n =
∫ π

2

0

∫ ∞

0
w(ρ, α) ϕ̃p,q(ρ, α) [Hρ,α − E]ϕm,n(ρ, α) dρ dα. (6.29b)

The matrix O is what we called in Remark 1.1.1 the matrix representation of the

operator [Hρ,α − E].

Next we must choose the functions ϕm,n. The angular part of the scattering equation

includes the grand orbital angular momentum whose eigenfunctions are given by (6.15).

The eigenfunctions of the reduced form of this operator [see (6.22a)],

Hm(α) = cos(α) sin(α) Ωm(α)
(6.14)
=

2√
π
sin[2(m+ 1)α], (6.30)

are used hereafter to represent the angular part of the scattering solution. They satisfy

Hm(0) = Hm

Åπ
2

ã
= 0, (6.31a)

∫ π/2

0
Hp(α)Hm(α) dα = δp,m, (6.31b)

d2

dα2
Hm(α) = −4(m+ 1)2Hm(α). (6.31c)

The hyperradial terms of the Schrödinger equation (6.23) are similar to the radial ones

in the differential equation defining the Quasi-Sturmian functions [see (4.3a)]. Thus we

propose to use incoming (−)/outgoing (+) Laguerre Quasi-Sturmian functions to describe

the radial behavior of the scattering solution.

Now, as mentioned above, we explore three different possibilities with functions ϕm,n

in (6.28) associated to three variants of the Quasi-Sturmian functions;

A. ϕm,n(ρ, α) = QL (±)
n (ρ)Hm(α),

B. ϕm,n(ρ, α) = QL (±)
m,n (ℓm; ρ)Hm(α),

C. ϕm,n(ρ, α) = QL (±)
n (α; ρ)Hm(α).

In each case, we present the resulting elements Op,q;m,n and bp,q defined in (6.29), as well

as the asymptotic form of the obtained scattering solution.

Hereafter, the parameters µ, E and K are the reduced mass, the total energy and
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momentum of the scattering problem (K2 = 2µE).

A. Separated variables

We first propose

ϕm,n(ρ, α) = QL (±)
n (ℓ, β; ρ)Hm(α).

Each QL (±)
n is the solution of the boundary value problem

ñ
− 1

2µ

d2

dρ2
+
ℓ(ℓ+ 1)

2µρ2
+
ZQS

ρ
−E

ô
QL (±)

n (ℓ, β; ρ) =
1

ρ
φL
n(ℓ, β; ρ), (6.33a)

QL (±)
n (ℓ, β; 0) = 0, (6.33b)

QL (±)
n (ℓ, β; ρ)

ρ→∞∼ QLas
n e±i[Kρ−η(ZQS)ln(2Kρ)+σC(ℓ,ZQS)−ℓ π

2 ], (6.33c)

where the asymptotic coefficient QLas
n is given by (4.22). ℓ, ZQS and β are real

parameters that can be conveniently fixed, and the corresponding Sommerfeld parameter

η and phase shift σC are defined by (1.23a) and (1.23b), respectively.

The linear system

Let us apply [Hρ,α − E] to one of these ϕm,n functions. In a first step we have

[Hρ,α − E] ϕm,n(ρ, α)

= Hm(α)

ñ
− 1

2µ

Ç
∂2

∂ρ2

å
−E

ô
QL(±)

n (ℓ, β; ρ)

− QL(±)
n (ℓ, β; ρ)

1

2µρ2
∂2

∂α2
Hm(α) +

ñ
− 1

8µρ2
+
C(α)

ρ

ô
QL(±)

n (ℓ, β; ρ)Hm(α).

Now taking into account (6.33a) and (6.31c) we obtain

[Hρ,α − E]ϕm,n(ρ, α)

=
1

ρ
φL
n(ℓ, β; ρ)Hm(α) +

16(m+ 1)2 − (2ℓ+ 1)2

8µ

1

ρ2
QL(±)

n (ℓ, β; ρ)Hm(α)

+
1

ρ
[C(α)− ZQS]Q

L(±)
n (ℓ, β; ρ)Hm(α). (6.34)

Choosing

w(ρ, α) = ρ, ϕ̃p,q(ρ, α) = φL
q (ℓ, β; ρ)Hp(α),
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the components bp,q in (6.29a) are

bp,q =
∫ π

2

0

∫ ∞

0
φL
q (ℓ, β; ρ)Hp(α)F (ρ, α)ρ

7/2 cosα sinα dρ dα, (6.35)

and the matrix elements (6.29b) become

Op,q;m,n =
∫ π

2

0

∫ ∞

0
φL
q (ℓ, β; ρ)Hp(α)φ

L
n(ℓ, β; ρ)Hm(α) dρ dα

+
16(m+ 1)2 − (2ℓ+ 1)2

8µ

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)Hp(α)

1

ρ
QL(±)

n (ℓ, β; ρ)Hm(α) dρ dα

+
∫ π

2

0

∫ ∞

0
φL
q (ℓ, β; ρ)Hp(α) [C(α)− ZQS]Q

L(±)
n (ℓ, β; ρ)Hm(α) dρ dα. (6.36)

Each of these three two-dimensional integrals can be expressed as the product of a

radial and an angular integral. In the first two, the angular part reduces to a Kronecker

delta δp,m because of the orthogonality property (6.31b). The angular integral involving

the C function is performed in (B.12), and the radial integrals were solved in previous

chapters. Setting

I(1)q,n =
∫ ∞

0
φL
q (ℓ, β; ρ)φ

L
n(ℓ, β; ρ)dρ

(1.12b)
=

ℓ+ 1 + n

β
δq,n −

Nn,ℓ

Nn−1,ℓ

2ℓ+ 1 + n

2β
δq,n−1 −

Nn,ℓ

Nn+1,ℓ

n+ 1

2β
δq,n+1

we obtain for the first integral

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)φ

L
n(ℓ, β; ρ)Hp(α)Hm(α) dρ dα = δp,m I

(1)
q,n. (6.37a)

For the second integral we use (4.28) to find

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
QL (±)

n (ℓ, β; ρ)Hp(α)Hm(α) dρ dα = g(±)
n,q δp,m. (6.37b)

To perform the third integral we separate the radial part, calculated in (4.30),

I(3)q,n =
∫ ∞

0
φL
q (ℓ, β; ρ)Q

L (±)
n (ℓ, β; ρ) dρ

=
ℓ + 1 + q

β
g(±)
n,q − Nq+1,ℓ

Nq,ℓ

2ℓ+ 2 + q

2β
g
(±)
n,q+1 −

Nq−1,ℓ

Nq,ℓ

q

2β
g
(±)
n,q−1,
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and the angular part, calculated in (B.12). For m and p having the same parity we find

I(4)p,m =
∫ π

2

0
C(α)Hp(α)Hm(α) dα

=
8

π



(Z − 1)

p+m+2∑

j=|p−m|+1

(−1)j
sin
î
(2j − 1)π

4

ó

2j − 1

+ Z
p+m+2∑

j=|p−m|+1

cos
î
(2j − 1)π

4

ó
− 1

2j − 1



 (6.37c)

and the integral vanishes in all other cases. The third integral is thus given by

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)Q

L (±)
n (ρ) [C(α)− ZQS]Hp(α)Hm(α)dρ dα

= I(3)q,n I
(4)
p,m − ZQS I

(3)
q,n δp,m. (6.37d)

Collecting (6.37a), (6.37b) and (6.37d) we arrive to a closed form for the matrix

elements Op,q;m,n,

Op,q;m,n =

Ç
I(1)q,n +

16(m+ 1)2 − (2ℓ+ 1)2

8µ
g(±)
n,q − ZQS I

(3)
q,n

å
δp,m + I(3)q,n I

(4)
p,m. (6.38)

The asymptotic behavior

Using (6.33c) the asymptotic behavior of the scattering solution (6.28) reads

Φ±
sc(α, ρ)

ρ→∞∼ e±i[Kρ−η(ZQS) ln(2Kρ)+σC(ℓ,ZQS)−ℓ π
2 ]
∑

m,n

am,nHm(α)QLas
n .

Comparing this result with the expected asymptotic behavior of the reduced scattering

wave function (6.25c), we find that it is not possible to extract an analytical expression

for the amplitude Aα.

B. Laguerre Quasi-Sturmian depending on n and m

Instead of the previous QL (±)
n , for which the parameter ℓ takes any non-negative real

value, we can choose the value of ℓ = ℓm, for each m = 0, 1, 2, ..., in such a way that the

second term in (6.34) vanishes. This is,

16(m+ 1)2 − (2ℓm + 1)2 = 0 =⇒ ℓm = 2m+
3

2
. (6.39)
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Thus we have an alternative approximation of the reduced scattering solution

Φ(±)
sc (ρ, α) =

∑

m,n

am,nQ
L (±)
m,n (ℓm, β; ρ)Hm(α),

where QL (±)
m,n is the incoming (−)/outgoing (+) solution of

ñ
− 1

2µ

d2

dρ2
+
ℓm(ℓm + 1)

2µρ2
+
ZQS

ρ
− E

ô
QL (±)

m,n (ℓm, β; ρ) =
1

ρ
φL
n(ℓm, β; ρ), (6.40a)

QL (±)
m,n (ℓm, β; 0) = 0, (6.40b)

QL (±)
m,n (ℓm, β; ρ)

ρ→∞∼ QLas
m,n e

±i[Kρ−η(ZQS) ln(2Kρ)+σC(ℓm,ZQS)−ℓm
π
2 ]. (6.40c)

where η and σC are defined in (1.23a) and (1.23b) while ZQS and β can be conveniently

fixed.

The linear system

If we apply the operator [Hρ,α − E] to one of these functions

ϕm,n(ρ, α) = QL (±)
m,n (ℓm, β; ρ)Hm(α)

we obtain

[Hρ,α − E] ϕm,n(ρ, α) =
1

ρ
φL
n(ℓm, β; ρ)Hm(α) +

1

ρ
[C(α)− ZQS]Q

L(±)
m,n (ℓm, β; ρ)Hm(α).

In this case it is convenient to choose

w(ρ, α) = 1, ϕ̃p,q(ρ, α) = φL
q (ℓp, β; ρ)Hp(α)

so the matrix elements (6.29b) become

Op,q;m,n =
∫ π

2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α)

1

ρ
φL
n(ℓm, β; ρ)Hm(α) dρ dα

+
∫ π

2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α)

1

ρ
[C(α)− ZQS]Q

L(±)
m,n (ℓm, β; ρ)Hm(α) dρ dα,

(6.41)
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while the components bp,q read

bp,q =
∫ π

2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α)F (ρ, α)ρ

5/2 cosα sinα dρ dα. (6.42)

The first integral in (6.41) reduces to a product of two Kronecker delta. Only form = p

the angular integral does not vanish, so that we have, for the radial integral, ℓm = ℓp and

we can apply thereafter the orthogonality property (1.9a), satisfied by Laguerre-type

functions:

∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
φL
n(ℓm, β; ρ)Hp(α)Hm(α) dρ dα

=

Ç∫ π
2

0
Hp(α)Hm(α) dα

åÇ∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
φL
n(ℓm, β; ρ) dρ

å
= δp,m δq,n. (6.43)

The second integral in (6.41) can be separated into two terms, one of them being

−ZQS

Ç∫ π
2

0
Hp(α)Hm(α) dα

åÇ∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
Q(±)

m,n(ℓm, β; ρ) dρ

å
(4.28)
= −ZQS g

(±)
q,n δp,m,

Again, we have m = p (otherwise the angular integral vanishes), then ℓp = ℓm and then

we can use result (4.28). To perform the other term,

∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
QL (±)

m,n (ℓm, β; ρ)C(α)Hp(α)Hm(α)dρ dα

we name

I(1)
p,q,m,s =

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
φL
s (ℓm, β; ρ) dρ

(1.16)
=

Ns,ℓm Γ(ℓp + ℓm + 2)

Nq,ℓp s! Γ(2ℓp + 2)

q∑

j=0

(ℓp + ℓm + 2)j(−q)j
(2ℓp + 2)j j!

(ℓm − ℓp − j)s

and use the series representation of the Laguerre Quasi-Sturmian functions (4.26a) to find

I(2)
p,q,m,n =

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
QL (±)

m,n (ℓm; ρ) dρ

=
∞∑

s=0

g(±)
n,s

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
φL
s (ℓm, β; ρ) dρ

=
∞∑

s=0

g(±)
n,s I(1)

p,q,m,s.
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Then, using (B.12) we obtain

∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)

1

ρ
QL (±)

m,n (ℓm, β; ρ)C(α)Hp(α)Hm(α)dρ dα = I(2)
p,q,m,n I

(4)
p,m

with I(4)p,m defined in (6.37c). We finally have an analytical expression for the elements of

the linear system (6.29),

Op,q;m,n =
î
δq,n − ZQS g

(±)
q,n

ó
δp,m + I(2)

p,q,m,n I
(4)
p,m. (6.44)

The asymptotic behavior

As in the previous case, we can deduce an expression for the asymptotic behavior of

the scattering solution by using the asymptotic form of the proposed Quasi-Sturmian

functions (6.40c). We find,

Φ±
sc(α, ρ)

ρ→∞∼ e±i[Kρ−η(ZQS) ln(2Kρ)]∑

m,n

am,nHm(α)QLas
m,n e

[σC(ℓm,ZQS)−ℓm
π
2 ],

and, again, we cannot obtain an analytical expression for the amplitude Aα introduced

in (6.25c).

C. Coupled variables

Another option for the functions ϕm,n is to consider

ϕm,n(ρ, α) = QL (±)
n (ℓ, β, α; ρ)Hm(α). (6.45)

where the Quasi-Sturmian functions QL (±)
n depend on both variables, ρ and α. They are

solution of (6.33a) but now with the angular function C instead of ZQS,

ñ
− 1

2µ

d2

dρ2
+
ℓ(ℓ+ 1)

2µρ2
+
C(α)

ρ
− E

ô
QL (±)

n (ℓ, β, α; ρ) =
1

ρ
φL
n(ℓ, β; ρ), (6.46a)

QL (±)
n (ℓ, β, α; 0) = 0, (6.46b)

QL (±)
n (ℓ, β, α; ρ)

ρ→∞∼ QLas
n (α) e±i[Kρ−η(C(α))ln(2Kρ)+σC(ℓ,C(α))−ℓ π

2 ]. (6.46c)

where QL as
n is defined in (4.22). The α variable appears as a parameter of these

coupled Quasi-Sturmian functions, a particular situation studied in Section 4.3.7. The
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Sommerfeld parameter η [formula (1.23a)] and σC [formula (1.23b)] now depend on α

through the function C; ℓ and β can be conveniently fixed.

The linear system

We apply the reduced Schrödinger operator to one of these ϕmn functions,

[Hρ,α − E] Q
L(±)
n (ℓ, β, α; ρ)Hm(α)

(4.41a)
=

1

ρ
φL
n(ℓ, β; ρ)Hm(α)−

4ℓ(ℓ+ 1) + 1

8µρ2
QL(±)

n (ℓ, β, α; ρ)Hm(α)

− 1

2µρ2
∂2

∂α2

[
Q

L(±)
n (ℓ, β, α; ρ)Hm(α)

]
. (6.47)

Choosing

w(ρ, α) = ρ, ϕ̃p,q(ρ, α) = φL
q (ℓ, β; ρ)Hp(α),

the components bp,q given in (6.29a) coincide with the ones obtained in the first case when

considering separate variables [i.e. equation (6.35)], while the matrix elements become

Op,q;m,n =
∫ π

2

0

∫ ∞

0
φL
q (ℓ, β; ρ)φ

L
n(ℓ, β; ρ)Hp(α)Hm(α) dρ dα

− (2ℓ+ 1)2

8µ

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
QL (±)

n (ℓ, β, α; ρ)Hp(α)Hm(α) dρ dα

− 1

2µ

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
Hp(α)

∂2

∂α2

î
QL (±)

n (ℓ, β, α; ρ)Hm(α)
ó
dρ dα. (6.48)

The first integral was already calculated in (6.37a), obtaining δp,mI
(1)
q,n. To perform the

integrals involving Quasi-Sturmian functions we use their expansion (4.43) in terms of

Laguerre-type functions. Taking into account the orthogonality property of Laguerre-type

functions (1.9a) we find

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
QL (±)

n (ℓ, β, α; ρ)Hp(α)Hm(α) dρ dα

=
∫ π

2

0
Hp(α)Hm(α) g

(±)
n,q (α) dα, (6.49)

∫ π
2

0

∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
Hp(α)

∂2

∂α2

î
QL (±)

n (ℓ, β, α; ρ)Hm(α)
ó
dρ dα

=
∫ π

2

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα. (6.50)
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Applying the technique of integration by parts we obtain for this last integral,

∫ π
2

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

(B.17)
= Sp,q;m,n − 4(p+ 1)2

∫ π
2

0
g(±)
q,n (α)Hp(α)Hm(α) dα. (6.51)

where Sp,q;m,n is the jump parameter (B.19).

Collecting the previous results, the matrix elements Op,q;m,n are given by

Op,q;m,n = I(1)q,n δp,m − 1

2µ
Sp,q;m,n

+
16(p+ 1)2 − (2ℓ+ 1)2

8µ

∫ π
2

0
Hp(α)Hm(α) g

(±)
n,q (α) dα. (6.52)

In this case we do not have fully analytical expressions for these elements; the integral

over α must be performed numerically.

The asymptotic behavior

Using the asymptotic behavior of these coupled Quasi-Sturmian functions [formula

(6.46c)], the asymptotic form of the scattering solution reads

Φ±
sc(α, ρ)

ρ→∞∼ e±i[Kρ−η(C(α))ln(2kρ)+σC (ℓ,C(α))−ℓ π
2 ]
∑

m,n

am,nHm(α)QLas
n (α)

where QLas
n – given by (4.22) with ZQS replaced by the function C – depend on α.

Comparing this expression with the form of the expected behavior (6.25c) we can provide

an expression for Aα. From formulas (6.30) and (4.22) we obtain

Aα =
1

cosα sinα

∑

m,n

am,nHm(α)QLas
n (α).

6.4 An analytically solvable model problem

In references [83, 84] the authors have proposed to study a s-wave model problem

consisting of equation (6.20) with the Coulomb interaction potential (6.7) replaced by

V (ρ) =
C
ρ
,
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for which the Schrödinger equation becomes separable in hyperspherical coordinates. As

driven term they took, for Re(s) > 1 and t > −1,

f(ρ, α) =
e−s ρ

2
ρt
Ç
sin(ρ cosα)

ρ cosα

sinh(ρ sinα)

ρ sinα
+

sin(ρ sinα)

ρ sinα

sinh(ρ cosα)

ρ cosα

å
(6.53)

which has the following series expansion in terms of Hn [83],

f(ρ, α) =
e−s ρ

cosα sinα

∑

n

cn ρ
2n+tHn(α), (6.54a)

cn =

√
π [(−1)n + 1]

8 (n+ 1) 22n
Ä
3
2

ä
n
n!
. (6.54b)

Note that only even values of n contribute, reflecting the driven term symmetry with

respect to α = π
4
, i. e. with respect to r1 and r2.

The model problem consisted in searching the outgoing solution to the differential

equation

ñ
− 1

2µ

∂2

∂ρ2
− 1

2µρ2
∂2

∂α2
− 1

8µρ2
+

C
ρ
−E

ô
Φ(+)

sc (ρ, α) = ρ5/2 cosα sinα f(ρ, α) (6.55)

with boundary conditions

Φ(+)
sc (0, α) = 0 (6.56a)

Φ(+)
sc (ρ, α)

ρ→∞∼ Aα cosα sinα ei[Kρ−η(C) log(2Kρ)+σC (ℓ,C)−ℓπ
2 ]. (6.56b)

This model problem, although apparently simple, contains some of the difficulties of the

real problem. The Coulombic potential
C
ρ
is simple in hyperspherical coordinates but does

couple the r1 and r2 spherical coordinates. The driven term also couples the hyperspherical

coordinates. In reference [83] the authors gave analytical expression for the solution of

the model problem and of the scattering amplitude Aα

In order to test the efficiency of Quasi-Sturmian functions, we propose here to solve

this problem by considering two alternative representations of the hyperradial part of the

scattering solution. First, we take the Hulthén Sturmian functions S
(+)
n,0 introduced in

Section 3.2. As a second approach, we use the functions Q(+)
m,n(ℓm, β; ρ) presented in

Section 6.3.B. In both cases the angular part is dealt with functions Hm.
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Hulthén Sturmian functions

Starting with the Hulthén Sturmian functions S
(+)
n,0 , we express

ΦS (+)
sc (ρ, α) =

∑

m,n

aSm,n S
(+)
n,0 (ρ)Hm(α). (6.57)

Applying [Hρ,α −E] to one of the elements S
(+)
n,0 (ρ)Hm(α), we use (3.8a) to obtain

[Hρ,α − E]S
(+)
n,0 (ρ)Hm(α)

=

[
−λn,0v0

e−
ρ
a

1− e−
ρ
a

+
υm(υm + 1)

2µρ2
+

C
ρ

]
S
(+)
n,0 (ρ)Hm(α), (6.58)

where we set, for convenience, υm = 2m +
3

2
. The parameters v0 and a are the ones

included in the Hulthén potential (3.6), and λn,0 is the eigenvalue (3.15) associated to

S
(+)
n,0 .

To seize the orthogonality property of the Sturmian functions we should take

ϕ̃p,q(ρ, α) = S
(+)
q,0 (ρ)Hp(α) and w ≡ 1. We prefer, however, to use Laguerre-type functions

for the radial part of ϕ̃p,q, a choice that allows us to analytically solve the three integrals

involved in the Hamiltonian matrix elements (integrals performed in Section 3.3). Thus,

we take

w(ρ, α) = 1, ϕ̃p,q(ρ, α) = φL
q (ℓ, β; ρ)Hp(α),

and we name

I1 =
∫ ∞

0
φL
q (ℓ, β; ρ)

e−
ρ

a

1− e−
ρ
a

S
(+)
n,0 (ρ) dρ

(3.27)
=

NS
n

NL
q,ℓ

1

2β

Γ(ℓ+ 2)

Γ(2ℓ+ 2)

n∑

j=0

(−n)j (n− 2ika)j
(1− 2ika)j j!

∑

s

Ç
2βa

a(β − ik) + j + s + 1

åℓ+2

× 2F1

Ç
−q, ℓ+ 2, 2ℓ+ 2;

2βa

a(β − ik) + j + s+ 1

å
,

I2 =
∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ2
S
(+)
n,0 (ρ) dρ

(3.25)
=

NS
n

NL
q,ℓ

Γ(ℓ)

Γ(2ℓ+ 2)
(2β)

n∑

j=0

(−n)j (n− 2ika)j
(1− 2ika)j j!

Ç
2βa

a(β − ik) + j

åℓ

× 2F1

Ç
−q, ℓ, 2ℓ+ 2;

2βa

a(β − ik) + j

å
,
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and

I3 =
∫ ∞

0
φL
q (ℓ, β; ρ)

1

ρ
S
(+)
n,0 (ρ) dρ

(3.25)
=

NS
n

NL
q,ℓ

Γ(ℓ+ 1)

Γ(2ℓ+ 2)

n∑

j=0

(−n)j (n− 2ika)j
(1− 2ika)j j!

Ç
2βa

a(β − ik) + j

åℓ+1

× 2F1

Ç
−q, ℓ+ 1, 2ℓ+ 2;

2βa

a(β − ik) + j

å
.

Taking into account the orthogonality property (6.31b) satisfied by Hm, we obtain the

matrix elements for the linear system (6.29)

Op,q;m,n =

Ç
−λn,0v0 I1 +

υm(υm + 1)

2µ
I2 + C I3

å
δp,m. (6.59)

The components of the vector b have also closed form. Using the series expansion (6.54)

for the driven term, and the orthogonality property (6.31b), we find

bp,q =
∫ π

2

0

∫ ∞

0
φq(ℓ, β; ρ)Hp(α) f(ρ, α) ρ

5/2 cosα sinα dρ dα

(B.23)
=

√
π [(−1)p + 1]

8 (p+ 1) (2p+ 1)!

1

Nq,ℓ Γ(2ℓ+ 2)

(2β)ℓ+1

(s+ β)2p+t+ℓ+ 9
2

Γ

Ç
2p+ t+ ℓ+

9

2

å

× 2F1

Ç
−q, 2p+ t + ℓ+

9

2
, 2ℓ+ 2;

2β

s+ β

å
. (6.60)

The coefficients aSm,n in (6.57) result from numerically solving the system O · aS = b .

Laguerre Quasi-Sturmian functions

Now we propose the alternative representation

ΦQ (+)
sc (ρ, α) =

∑

m,n

aQm,nQ
L(+)
m,n (ℓm, β; ρ)Hm(α) (6.61)

using the functions introduced in Section 6.3.B, with ℓm = υm = 2m +
3

2
. We choose

the charge of the Quasi-Sturmian functions as the charge of the model problem, ZQS = C,
so that

[Hρ,α −E]QL(+)
m,n (ℓm, β; ρ)Hm(α) =

1

ρ
Hm(α)φ

L
n(ℓm, β; ρ). (6.62)

Taking

w(ρ, α) = 1, ϕ̃p,q(ρ, α) = φL
q (ℓp, β; ρ)Hp(α)
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the matrixO, whose elements are given by (6.29b), is the identity matrix as a consequence

of the orthogonality property satisfied by functions Hm and φL
n . Then the coefficients

aQm,n coincide with the components of the vector b given by formula (6.60). Replacing

ℓp = 2p+
3

2
, the coefficients simplify

aQp,q =

√
π [(−1)p + 1]

8 (p+ 1) (2p+ 1)!

1

Nq,ℓp Γ(4p+ 5)

(2β)2p+
5
2

(s+ β)4p+6+t
Γ (4p+ 6 + t)

× 2F1

Ç
−q, 4p+ 6 + t, 4p+ 5;

2β

s+ β

å
. (6.63)

Taking the particular value β = s, the hypergeometric function simplifies

2F1 (−q, 4p+ t+ 6, 4p+ 5; 1)
(1.15)
=

(−t− 1)q
(4p+ 5)q

,

and this expression vanishes for q > t + 1. As a consequence, for β = s, the first t + 2

Quasi-Sturmian functions exactly solve the radial part of the equation. In this case the

coefficients read

aQp,q =

√
π [(−1)p + 1]

8 (p+ 1) (2p+ 1)!

Nq,ℓp Γ(4p+ t+ 6)

q!

(−t− 1)q

(2s)2p+t+ 7
2

. (6.64)

Taking into account the asymptotic behavior of Q(+)
m,n, given in (6.40c), we obtain

ΦQ (+)
sc (ρ, α)

ρ→∞∼
{
∑

m,n

aQm,nQL as
m,n Hm(α)

}
ei[Kρ−η(C)ln(2Kρ)+σC(ℓm,C)−ℓm

π
2 ]. (6.65)

The expression between braces is the expected amplitude Aα of the scattering solution’s

asymptotic behavior (6.56b).
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Illustration

To perform the following calculations, we fix µ = 1, C = −1, E = 0.5, s = 2, and t = 0,

which are the values chosen by the authors in reference [83]. And we set

Ψ
S (+)
sc (ρ, α) = ρ5/2 ΨS (+)

sc (ρ, α)

=
1

cosα sinα
ΦS (+)

sc (ρ, α), (6.66a)

Ψ
Q(+)
sc (ρ, α) = ρ5/2 ΨQ (+)

sc (ρ, α)

=
1

cosα sinα
ΦQ (+)

sc (ρ, α) (6.66b)

where ΦS (+)
sc and ΦQ (+)

sc are given by (6.57) and (6.61), respectively.

As mentioned, for β = s = 2, only t + 2 = 2 Quasi-Sturmian functions (n = 0, 1) are

necessary to exactly express the radial part of the solution,

ΦQ (+)
sc (ρ, α) =

∑

m

√
π [(−1)m + 1]

(m+ 1) (2m+ 1)!

»
Γ(4m+ 6)

24m+10

×
[√

4m+ 5 Q
L(+)
m,0 (ℓm, β; ρ)−Q

L(+)
m,1 (ℓm, β; ρ)

]
Hm(α). (6.67)

Taking the limit ρ→ ∞ we obtain

ΦQ (+)
sc (ρ, α)

ρ→∞∼



∑

m

√
π [(−1)m + 1]

(m+ 1) (2m+ 1)!

»
Γ(4m+ 6)

24m+10

î√
4m+ 5 QL as

m,0 −QL as
m,1

ó
Hm(α)





× ei[Kρ−η(C)ln(2Kρ)+σC (ℓm,C)−ℓm
π
2 ] (6.68)

and the expression between braces is the amplitude Aα of the asymptotic wave (6.56b).

Let us define

∣∣∣AM
α

∣∣∣
2
=
∣∣∣∣

1

cosα sinα

∣∣∣∣

×
∣∣∣∣∣∣

M∑

m=0

√
π [(−1)m + 1]

(m+ 1) (2m+ 1)!

»
Γ(4m+ 6)

24m+10

î√
4m+ 5 QL as

m,0 −QL as
m,1

ó
Hm(α)

∣∣∣∣∣∣

2

. (6.69)

As a first illustration we present, in Figure 6.4, the real part (left panel) and the

modulus (right panel) of Ψ
Q (+)
sc in spherical coordinates (r1, r2). We consider β = s = 2,

and use expression (6.67) to evaluate the function, with four angular basis functions
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(m = 0, 2, 4, 6). The calculated scattering wave function matches perfectly the analytical

solution found in reference [83].

In Figure 6.5 we plot different angular sections of |ΨQ (+)
sc |2 evaluated from (6.67)

for increasing values of the hyperradial variable: ρ0 = 60 (line with dots) and ρ0 = 150

(dashed line). We observe that, as expected, for increasing values of ρ, the different

sections approach the asymptotic value
∣∣∣AM

α

∣∣∣
2
given by (6.69) with M = 6 (full line).

Figure 6.4: Real part (left panel) and modulus (right panel) of Ψ
Q(+)
sc as functions

of (r1, r2) and taking β = s = 2. We fix µ = 1, C = −1, E = 0.5, t = 0.
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Figure 6.5: Different angular sections of |ΨQ(+)
sc |2 for M = 6, β = s = 2, µ =

1, ZQS = C = −1, E = 0.5, t = 0. We fixed as values of the radial variable: ρ0 = 60
(line with dots) and ρ0 = 150 (dashed line). The full line correspond to |AM

α |2 given
by (6.69).
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Figure 6.6: Real part of Ψ
S(+)
sc , for a fixed α0 =

π
4 , using four angular basis functions

and different numbers N of radial terms. We take β = 8, µ = 1, C = −1, E = 0.5, t =

0, s = 2, a = 2, v0 = −1. The dashed line corresponds to the real part of Ψ
Q(+)
sc for

β = 2.

We also tested the approximated solution Ψ
Q (+)
sc taking β = 1.2 (arbitrary value) to

show that even in this case Quasi-Sturmian functions are better than Sturmian functions.

We needed only seven radial Quasi-Sturmian functions in (6.61) and four angular basis

functions (M = 6) to find convergence in the series.

Using Hulthén Sturmian functions, we can not approach the scattering solution for

values of ρ greater than R = 10 because of the asymptotic behavior of S
(+)
n,0 , as explained

in Remark 3.1.1. Not only these basis functions do not possess the appropriate behavior

to describe the scattering solution in the asymptotic region, but also all Hulthén Sturmian

functions reach their asymptotic behavior (the same behavior for all of them) at the same

value ρ = R determined by the generating potential. Thus, they do not represent the

scattering wave function in the region ρ > R. This can be observed in Figure 6.6, where

we plot a radial section of Ψ
S(+)
sc , fixing α0 =

π
4
. We consider the first 35 (full line, noted

N = 35) and 45 (line with dots, noted N = 45) radial terms. The full line corresponds to

the same section calculated with Ψ
Q(+)
sc taking β = s = 2, i.e. using formula (6.67).

6.5 Chapter summary

We have presented the general form of three-body scattering problems using

hyperspherical coordinates. In particular, we focused on the s-wave approach and

described the procedure to approximate its solution.



136 6.5. Chapter summary

Three different combinations of Laguerre Quasi-Sturmian functions (for the

hyperradial part) and Jacobi polynomials (for the angular part) were proposed to represent

the solution. In the first two cases we proposed purely radial Quasi-Sturmian functions,

and we were able to give the matrix elements in closed form. The third option involved a

set of Quasi-Sturmian functions which include the angular variable as a parameter, so that

they are not purely radial functions. This coupling of the variables produces the desired

asymptotic behavior for three-body scattering problems in hyperspherical coordinates. In

this case, however, we could not solve analytically all integrals appearing in the matrix

elements.

To illustrate the efficiency of these functions we have solved the analytically solvable

model problem proposed in references [83] and [84].
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Throughout this work we have studied the mathematical properties of different functions

that appear when describing scattering processes. We have proposed a novel set of radial

or hyperradial functions, named Quasi-Sturmian functions, which may be considered an

interesting alternative to expand the scattering solution. Their advantages are illustrated

through their implementation in solving some particular two- and three-body scattering

problems.

In the first part of this work we have introduced and developed the mathematical tools

to be used in the second part dedicated to the study of scattering processes.

We started by presenting some basic functions (Slater-type orbitals, Laguerre-type

functions, Coulomb wave functions and Coulomb Green’s function) and their important

properties needed in the rest of the work. In particular we have focused on their Laguerre

expansion. As an extension of the known result for sine-like Coulomb wave functions,

we have presented in closed form the coefficients of the other solutions of the radial

Coulomb equation. Going further in the investigation of these coefficients, we have

established that, when considering the charge as a variable, the coefficients of the sine-like

Coulomb wave function are related to the Meixner-Pollaczek polynomials. Thus, all known

properties of these polynomials can be extended to them, as we have shown by deducing

an orthogonality and closure relation.

We have also studied two-variable hypergeometric functions. Specifically, we have

extended to these functions a known strategy used to obtain the derivatives of one-variable

hypergeometric functions with respect to their parameters. We have provided analytical

expressions for the derivatives of the four Appell functions F1, F2, F3, F4 with respect

to their parameters, explaining how to generalize the results to other two-variable

hypergeometric series.

Generalized Sturmian functions were also presented, with a particular analysis of

Hulthén Sturmian functions. We took advantage of the analyticity of the latter to

derive various expressions which complement those given in standard collision theory

137
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and mathematical physics books.

As one of the main contributions of this work, we have presented a set of functions

useful to approximate scattering solutions: the Quasi-Sturmian functions. They can be

considered as an alternative to Generalized Sturmian functions, and also a generalization

of the J-matrix solutions. Indeed, only the case of an n = 0 Laguerre-type function as

driven term is presented in the literature; here, we have given the solution for any n and

also for Slater-type orbitals as driven term.

Two remarkable features of these functions are their asymptotic behavior, which is

proportional to the expected behavior of the scattered wave, and the fact that they can be

expressed in closed form. Furthermore, their link with Laguerre-type functions (through

the differential equation they satisfy) allowed us to establish very interesting relations

and properties; in some cases, when the deduction of a formula was not quite rigorous,

the obtained mathematical expressions were numerically validated. Moreover, since

Laguerre-type functions can be used to expand any general function, a scattering solution

may be approximated by a combination of the proposed Quasi-Sturmian functions.

The analyticity of these functions and their properties resulted very helpful to perform

analytically different integrals (matrix elements) appearing in scattering problems.

In the second part of this work we have employed the Hulthén Sturmian functions and

Quasi-Sturmian functions to solve two- and three-body scattering problems.

For the two-body case we have presented the general formulation of the problem in

spherical coordinates and the strategy to find an approximation of the scattering solution

in terms of our proposed functions.

To illustrate the efficiency of Generalized Sturmian functions, we have applied them

to describe the scattering produced by a Hulthén and a Yukawa potential. For the

Hulthén case we obtained in closed form the approximated solution and the corresponding

transition amplitude. Analytical results were verified numerically with an independent

numerical procedure. For the scattering by a Yukawa potential, our numerical application

achieved a more than fair agreement, using a relatively low number of basis elements, with

the solution obtained with another numerical method. The efficiency is related to the

built-in correct asymptotic behavior of each basis element and to the appropriate choice

of the generating potential range.

We have also solved the scattering of a particle under the influence of a combined

potential (Coulomb + Yukawa). When expressing the solution with Laguerre

Quasi-Sturmian functions we found that with 15 terms the scattering solution was already

converged, while it took 30 Generalized Sturmian functions (numerically constructed)
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to achieve the same accuracy. This illustrates the great efficiency of Quasi-Sturmian

functions in two-body scattering problems, an efficiency inherent to the way they are

constructed.

To describe three-body scattering processes we have proposed the use of hyperspherical

coordinates since, in such coordinate system, the asymptotic form of the scattered wave

takes a simpler expression. We have analysed a Temkin-Poet model for which only the

hyperradial and one angular variables survive. We have proposed different variants of

Laguerre Quasi-Sturmian functions to describe the hyperradial part of the scattering

solution, while the angular part was dealt with Jacobi polynomials. One of the options,

however, includes the angular variable in a parametric form in the Quasi-Sturmian

function; these two variable functions include a coupling of its variables, a coupling

that also occurs in the Schrödinger equation. We have presented, in close form, most

of the integrals appearing in the matrix system. To test the efficiency of the proposed

Quasi-Sturmian functions we have solved a Coulomb three-body model problem, finding

that with a few terms a good approximation of the scattering wave function is obtained.

The next step in this direction is to use the proposed two-variable Quasi-Sturmian

functions to solve a ionization Temkin-Poet model problem and corroborate that the

asymptotic behavior these functions present is an advantage compared to other basis

functions. Moreover, it is planned to extend the study of Quasi-Sturmian functions to

include the dependence on the five angular hyperspherical variables. The knowledge of

their properties may allow us to develop a strategy to implement such functions in solving

three-body scattering problem with the full Coulomb potential.

Another subject to explore is the possibility of constructing angular Quasi-Sturmian

functions from the linear or bilinear generating functions for Jacobi polynomials, many

of which are Appell functions F4.
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Appendix A

Whittaker functions

The Whittaker functions Mχ,µ
2
(z), Wχ,µ

2
(z) are defined [42, 45]

Mχ,µ
2
(z) = e−

z
2 z

1+µ
2 1F1

Ç
1 + µ

2
− χ, 1 + µ; z

å
, (A.1a)

Wχ,µ
2
(z) = e−

z
2 z

1+µ
2 U

Ç
1 + µ

2
− χ, 1 + µ; z

å
. (A.1b)

where 1F1 and U are Confluent hypergeometric functions of first and second kind

respectively.

Whittaker functions appear as solutions of the Coulomb problem. In this context we

have the following relation between χ, µ, z and the parameters and variable describing

the Coulomb problem, i.e. the Sommerfeld parameter η defined in (1.23a), the angular

momentum ℓ, the momentum k and the radial variable r:

χ = ±i η(Z), µ

2
=

2ℓ+ 1

2
, z = ±2ikr.

With these Coulomb parameters, Wχ,µ
2
takes the form [equation (18a), Section 2, of [45]]

W±iη(Z), 2ℓ+1
2
(±2ikr) =

π

sin[π(2ℓ+ 1)]



−

M±iη(Z), 2ℓ+1
2
(±2ikr)

Γ(−ℓ∓ iη(Z))
+

M±iη(Z),− 2ℓ+1
2
(±2ikr)

Γ(ℓ+ 1∓ iη(Z))





(A.2)

where

Mχ,µ
2
(z) =

1

Γ(1 + µ)
Mχ,µ

2
(z).

These expressions for M±iη(Z),± 2ℓ+1
2

and W±iη(Z), 2ℓ+1
2

are not correct if 2ℓ + 1 ∈ N ∪ {0}.
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Nevertheless the limit for 2ℓ+1 approaching a non-negative integer number exists. Thus,

to obtain the explicit form ofW±iη(Z), 2ℓ+1
2

when 2ℓ+1 ∈ N∪{0} a limit must be performed

W±iη(Z), 2ℓ+1
2
(±2ikr) := lim

ǫ→0
W

±iη(Z),
2(ℓ+ǫ)+1

2

(±2ikr). (A.3)

Buchholz [45] solved the limit applying l’Hôpital’s rule.

In order to find the coefficients h(±)
n of the series expansion of the Coulomb wave H(±)

n

in terms of Laguerre-type functions, in Chapter 1 we need to perform

I
(±)
W (ℓ) =

∫ ∞

0
φn(ℓ, β; r)

1

r
W∓i η(Z),ℓ+ 1

2
(∓2ikr) dr. (A.4)

The rest of this appendix is dedicated to I
(+)
W .

For the case 2ℓ+ 1 /∈ N∪ {0}, the definitions of the Laguerre-type function φn(ℓ, β; r)

(1.2) and of the Whittaker function (A.2), give

I
(+)
W (ℓ) =

(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

π

sin[π(2ℓ+ 1)]

×
{
− (−2ik)ℓ+1

Γ(−ℓ + iη(Z)) Γ(2ℓ+ 2)

×
∫ ∞

0
e−(β−ik)rr2ℓ+1

1F1(−n, 2ℓ + 2; 2βr) 1F1(ℓ+ 1 + iη(Z), 2ℓ+ 2;−2ikr) dr

+
(−2ik)−ℓ

Γ(ℓ+ 1 + iη(Z)) Γ(−2ℓ)

×
∫ ∞

0
e−(β−ik)r

1F1(−n, 2ℓ+ 2; 2βr) 1F1(−ℓ+ iη(Z),−2ℓ;−2ikr) dr
™

(B.7)
=

(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

π

sin[π(2ℓ+ 1)]

×
{
− (−2ik)ℓ+1

Γ(−ℓ + iη(Z)) (β − ik)2ℓ+2
F2 (2ℓ+ 2,−n, ℓ+ 1 + iη(Z), 2ℓ+ 2, 2ℓ+ 2; x, y)

+
(−2ik)−ℓ

Γ(ℓ+ 1 + iη(Z)) Γ(−2ℓ) (β − ik)
F2 (1,−n,−ℓ+ iη(Z), 2ℓ+ 2,−2ℓ; x, y)

}

where we have introduced

x =
2β

β − ik
, y = − 2ik

β − ik
.

Alternative expressions can be obtained if we apply (B.6) to the first Appell’s F2

function or use the series representation (2.4) of F2 in terms of Gauss’s hypergeometric
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functions. For example, we find a formulation involving the coefficients sn given in (1.30)

I
(+)
W (ℓ) =

1

Γ(ℓ+ 1 + iη(Z))

π

sin[π(2ℓ+ 1)]

×




2i Ñ
(+)
C (ℓ)

Γ(−ℓ + iη(Z))
sn

+
2β

Nn,ℓ Γ(2ℓ+ 2) Γ(−2ℓ)(β − ik)

Ç
− β

ik

åℓ

F2 (1,−n,−ℓ+ iη(Z), 2ℓ+ 2,−2ℓ; x, y)

}

(A.5)

where Ñ
(+)
C (ℓ) is defined in (1.23d).

For the case 2ℓ+ 1 ∈ N ∪ {0} we should calculate

∫ ∞

0
φn(ℓ, β; r)

1

r
lim
ǫ→0

W−i η(Z),ℓ+ǫ+ 1
2
(−2ikr) dr, (A.6a)

but we solve instead

I
(+)
W (ℓ) := lim

ǫ→0
IW (ℓ+ ǫ)

= lim
ǫ→0

∫ ∞

0
φn(ℓ, β; r)

1

r
W−i η(Z),ℓ+ǫ+ 1

2
(−2ikr) dr. (A.6b)

It is convenient to use the equivalent form (A.5) for IW (ℓ),

I
(+)
W (ℓ) =

(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

π

sin[π(2ℓ+ 1)]

(−2ik)−ℓ

(β − ik) Γ(ℓ+ 1 + iη(Z)) Γ(−ℓ+ iη(Z))

×
{
−(1 − x)ny2ℓ+1

∑

q

Γ(ℓ+ 1 + iη(Z) + q)
yq

q!
2F1

Å
−n,−q, 2ℓ+ 2;

x

x− 1

ã

+
∑

q

(1)q
Γ(−ℓ + iη(Z) + q)

Γ(−2ℓ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2; x)

}
(A.7)

thus we must perform
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I
(+)
W (ℓ) :=

(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

× lim
ǫ→0

π

sin[π(2(ℓ+ ǫ) + 1)]

(−2ik)−(ℓ+ǫ)

(β − ik) Γ(ℓ+ ǫ+ 1 + iη(Z)) Γ(−(ℓ+ ǫ) + iη(Z))

×


−(1− x)ny2(ℓ+ǫ)+1

∞∑

q=0

Γ(ℓ+ ǫ+ 1 + iη(Z) + q)
yq

q!
2F1

Å
−n,−q, 2(ℓ + ǫ) + 2;

x

x− 1

ã

+
∞∑

q=0

(1)q
Γ(−(ℓ+ ǫ) + iη(Z) + q)

Γ(−2(ℓ+ ǫ) + q)

yq

q!
2F1 (−n, 1 + q, 2(ℓ+ ǫ) + 2; x)



 . (A.8)

The following artifices are needed.

1. A split of the second series with a transformation on one of the 2F1 function

∞∑

q=0

(1)q
Γ(−ℓ− ǫ+ iη(Z) + q)

Γ(−2ℓ− 2ǫ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2ǫ+ 2; x)

=
2ℓ∑

q=0

(1)q
Γ(−ℓ− ǫ+ iη(Z) + q)

Γ(−2ℓ− 2ǫ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2ǫ+ 2; x)

+
∞∑

q=2ℓ+1

(1)q
Γ(−ℓ− ǫ+ iη(Z) + q)

Γ(−2ℓ− 2ǫ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2ǫ+ 2; x)

Q=q−2ℓ−1
=

2ℓ∑

q=0

(1)q
Γ(−ℓ− ǫ+ iη(Z) + q)

Γ(−2ℓ− 2ǫ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2ǫ+ 2; x)

+(1− x)n y2ℓ+1
∞∑

Q=0

Γ(ℓ− ǫ+ 1 + iη(Z) +Q) Γ(Q+ 1)

Γ(Q+ 1− 2ǫ)

yQ

Q!

× 2F1

Å
−n, 2ǫ−Q, 2ℓ+ 2ǫ+ 2;

x

x− 1

ã
.

2. From Γ(1− z)Γ(z) =
π

sin(πz)
and sin[π(α+ 1)] = − sin(πα) we obtain

π

sin[π(2ℓ+ 2ǫ+ 1)]
= −Γ(1 − 2ℓ− 2ǫ)Γ(2ℓ+ 2ǫ) (A.9)

and then

lim
ǫ→0

π

sin[π(2ℓ+ 2ǫ+ 1)]

2ℓ∑

q=0

(1)q
Γ(−ℓ− ǫ+ iη(Z) + q)

Γ(−2ℓ− 2ǫ+ q)

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2ǫ+ 2; x)

= Γ(2ℓ+ 1)Γ(−ℓ+ iη(Z))
2ℓ∑

q=0

(1)q (−ℓ+ iη(Z))q
(−2ℓ)q

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2; x) .
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Collecting these two results, the limit (A.8) becomes

I
(+)
W (ℓ) =

(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

(−2ik)−ℓ

β − ik

Γ(2ℓ+ 1)

Γ(ℓ+ 1 + iη(Z))

×
2ℓ∑

q=0

(1)q (−ℓ+ iη(Z))q
(−2ℓ)q

yq

q!
2F1 (−n, 1 + q, 2ℓ+ 2; x)

+
(2β)ℓ+1

Nn,ℓ Γ(2ℓ+ 2)

(−2ik)−ℓ

β − ik
(1− x)n y2ℓ+1

× lim
ǫ→0

− π

sin[π(2ℓ+ 2ǫ)]

1

Γ(ℓ+ ǫ+ 1 + iη(Z)) Γ(−ℓ− ǫ+ iη(Z))

×


−y

2ǫ
∞∑

q=0

Γ(ℓ+ ǫ+ 1 + iη(Z) + q)
yq

q!
2F1

Å
−n,−q, 2ℓ+ 2ǫ+ 2;

x

x− 1

ã

+
∞∑

q=0

Γ(ℓ− ǫ+ 1 + iη(Z) + q) Γ(q + 1)

Γ(q + 1− 2ǫ)

yq

q!
2F1

Å
−n, 2ǫ− q, 2ℓ+ 2ǫ+ 2;

x

x− 1

ã
 .

The next step consists in performing the Taylor series (about ǫ = 0). For hypergeometric

functions 2F1 we use the results presented in [31] so that the two variable hypergeometric

function 2Θ
(1)
1 appears (see Chapter 2). The calculations are rather simple and will be

omitted here. The closed form obtained for the integral in the case of a non-negative

integer value of 2ℓ+ 1 is finally

I
(+)
W (ℓ) =

1

Nn,ℓ Γ(2ℓ+ 2)

Ç
β

k
i

åℓ

x

×

 Γ(2ℓ+ 1)

Γ(ℓ+ 1 + iη)

2ℓ∑

q=0

(−ℓ+ iη)q
(−2ℓ)q

yq 2F1(−n, q + 1, 2ℓ+ 2; x)

− y2ℓ+1

Γ(−ℓ + iη)

∞∑

q=0

(ℓ+ 1 + iη)q
yq

q!

×
ß

2F1(−n, 2ℓ+ 2 + q, 2ℓ+ 2; x) [ψ(q + 1)− Log (y)− ψ(ℓ+ 1 + q + iη)]

+
nx

4(ℓ+ 1)2


−q(1− x)n−1

2Θ
(1)
1

Ö
1, 1 | 2ℓ+ 2,−n + 1,−q + 1

2ℓ+ 3 | 2, 2ℓ+ 3

∣∣∣∣∣∣∣∣
; x∗, x∗

è

+ (2ℓ+ 2 + q) 2Θ
(1)
1

Ö
1, 1 | 2ℓ+ 2,−n+ 1, 2ℓ+ 3 + q

2ℓ+ 3 | 2, 2ℓ+ 3

∣∣∣∣∣∣∣∣
; x, x

è







 (A.10)

where ψ is the digamma function.
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Remark A.0.1. In the deduction of the previous expression we have made an interchange

between an integral an a limit process without looking at the conditions for this to be

valid [equations (A.6) ]. To show that it can be done, we compare the value obtained

with a numerical calculation of the integral (A.6a) with that found using the analytical

expression (A.10).

For ℓ = 1 we use expression (A.10) to evaluate I
(+)
W (ℓ), formula (A.5) to calculate

I
(+)
W (ℓ+ ǫ), and define a relative error

RE(ǫ) =
∣∣∣∣∣∣
I
(+)
W (ℓ)− I

(+)
W (ℓ+ ǫ)

I
(+)
W (ℓ)

∣∣∣∣∣∣
.

In Table A.1 we give the values obtained for I
(+)
W (ℓ+ǫ) and the relative error with respect

to I
(+)
W (ℓ). As expected, the error decreases for decreasing values of ǫ.

ǫ IW (ℓ+ ǫ) RE(ǫ)

0.1 4.13629− 0.331863i 0.290127

0.01 3.28478− 0.324967i 0.0255764

0.001 3.21059− 0.324081i 0.0025261

0.0001 3.20327− 0.32399i 0.000252297

Table A.1: Different values of I
(+)
W (ℓ+ ǫ) given by formula (A.5) for ǫ approaching

0 and the relative error with respect to the value of I
(+)
W (ℓ) calculated using (A.10).

Parameters: Z = −1, µ = 1, k = 1.2, β = 3.8, ℓ = 1, n = 6.
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Formulas and Integrals

In the first section of this appendix we present the formulas and integrals we use repeatedly

throughout the six chapters of this thesis and the second part of this appendix. Most of

them can be found in the book of I. S. Gradshteyn and I. M. Ryzhik [92], and the last

two are given in a paper of N. Saad and R. Hall [91].

In the second section we perform a number of integrals appearing in the different

chapters of this work.

B.1 Useful formulas and integrals

From I. S. Gradshteyn and I. M. Ryzhik [92]

2.539.4

∫
cos 2nx

sin x
dx = 2

n∑

k=1

cos[(2k − 1)x]

2k − 1
+ ln

ï
tan
Åx
2

ãò
(B.1)

2.539.8

∫
cos 2nx

cosx
dx = 2

n∑

k=1

(−1)n−k sin[(2k − 1)x]

2k − 1
+ (−1)n ln

ï
tan
Å
π

4
+
x

2

ãò
(B.2)

3.385 For Reλ > 0, Re ν > 0 and |arg(1− β)| < π,

∫ 1

0
xν−1(1− x)λ−1(1− βx)−̺e−µx dx = B(ν, λ)Φ1(ν, ̺, λ+ ν; β,−µ) (B.3)

where B is the Beta function [42] and Φ1 is one of the Horn’s hypergeometric series
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[see (2.18a) and [52]].

Remark B.1.1. This formula has been modified form the one appearing in reference

[92] to coincide with the definition of Φ1 given in (2.18a).

7.414.7 For Re(β) > −1, Re(s) > 0,

∫ ∞

0
e−st tβLα

n(t) dt =
Γ(β + 1) Γ(α+ n+ 1)

n! Γ(α + 1)
s−β−1

2F1(−n, β + 1, α + 1; s−1)

(B.4)

7.512.2 For n = 0, 1, 2, ..., Re(ρ) > 0, and Re(β − γ) > n− 1,

∫ 1

0
xρ−1(1− x)β−γ−n

2F1(−n, β, γ; x) dx =
Γ(γ) Γ(ρ) Γ(β − γ + 1) Γ(γ − ρ+ n)

Γ(γ + n) Γ(γ − ρ) Γ(β − γ + ρ+ 1)

(B.5)

From N. Saad and R. Hall [91]

⋄ An identity for Appel F2

F2(d, a, a
′, d, d; x, y) =

1

(1− x)a(1− y)a′
2F1

Ç
a, a′, d;

x y

(1− x)(1− y)

å
(B.6)

⋄ For Re(d) > 0 and |k|+ |k′| < |h|,
∫ ∞

0
dr rd−1 e−hr

1F1(a, b; k r) 1F1(a
′, b′; k′r) =

Γ(d)

hd
F2

Ç
d, a, a′, b, b′;

k

h
,
k′

h

å
(B.7)

B.2 Integrals related to scattering problems

1. The following two integrals appear when solving the scattering of a particle under

the influence of a combined Coulomb plus Yukawa potential [see Section 5.3.1]:
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∫ ∞

0
dr φL

n(ℓ, β; r)
e−ar

r
F (s)(ℓ, k; r)

=
1

Nn,ℓ Γ(2ℓ+ 2)
NC(ℓ) (2β)

ℓ+1

×
∫ ∞

0
dr e−(a+β−ik)r r2ℓ+1

1F1(−n, 2ℓ+ 2; 2βr) 1F1(ℓ + 1 + iη, 2ℓ+ 2;−2ikr)

(B.7)
=

1

Nn,ℓ Γ(2ℓ+ 2)
NC(ℓ) (2β)

ℓ+1 Γ(2ℓ+ 2)

(a+ β − ik)2ℓ+2

× F2

Ç
2ℓ+ 2,−n, ℓ+ 1 + iη, 2ℓ+ 2, 2ℓ+ 2;

2β

a+ β − ik
,− 2ik

a+ β − ik

å

(B.6)
=

NC(ℓ)

Nn,ℓ

(2β)ℓ+1

(a + β − ik)2ℓ+2

Ç
a− β − ik

a+ β − ik

ån Ça+ β + ik

a + β − ik

å−ℓ−1−iη

× 2F1

Ç
−n, ℓ+ 1 + iη, 2ℓ+ 2;− 4βki

a2 − (β + ik)2

å

=
NC(ℓ)

Nn,ℓ

Ç
2β

(a+ β)2 + k2

åℓ+1Ça− β − ik

a+ β − ik

ån Ça+ β − ik

a+ β + ik

åiη

× 2F1

Ç
−n, ℓ+ 1 + iη, 2ℓ+ 2;− 4βki

a2 − (β + ik)2

å
, (B.8)

and

∫ ∞

0
dr φL

q (ℓ, β; r)
e−ar

r
φL
j (ℓ, β; r)

=
(2β)2ℓ+2

Nq,ℓNj,ℓ [Γ(2ℓ+ 2)]2

×
∫ ∞

0
dr e−(a+2β)rr2ℓ+1

1F1(−q, 2ℓ+ 2; 2βr) 1F1(−j, 2ℓ+ 2; 2βr)

(B.7)
=

1

Nq,ℓNj,ℓ [Γ(2ℓ+ 2)]2
(2β)2ℓ+2 Γ(2ℓ+ 2)

(a+ 2β)2ℓ+2

× F2

Ç
2ℓ+ 2,−q,−j, 2ℓ+ 2, 2ℓ+ 2;

2β

a+ 2β
,

2β

a + 2β

å

(B.6)
=

1

Nq,ℓNj,ℓ Γ(2ℓ+ 2)

Ç
2β

a+ 2β

å2ℓ+2 Ç a

a + 2β

åq+j

× 2F1

(
−q, −j; 2ℓ+ 2;

Ç
2β

a

å2
)
. (B.9)

2. The integral ∫ π
2

0
C(α)Hp(α)Hm(α) dα

appears in the matrix elements of a three-body problem if we consider the basis functions
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as a product of one radial and one angular function [formula (6.37c)]. Here C(α) and

Hm(α) are given by formulas (6.7b) and (6.30), respectively.

To perform the integral we first express

Hp(α)Hm(α) =
4

π
sin[2(p+ 1)α] sin[2(m+ 1)α]

=
2

π
{cos[2(p−m)α]− cos[2(p+m+ 2)α]} .

Now observing that

C
Åπ
2
− α
ã
= C(α), and Hp

Åπ
2
− α
ã
= (−1)pHp(α),

we conclude that if m and p have different parity the integral vanishes, while if they have

the same parity

∫ π
2

0
C(α)Hp(α)Hm(α) dα

= 2
∫ π

4

0
C(α)Hp(α)Hm(α) dα

=
4

π

∫ π
4

0

®
−Z − 1

cosα
− Z

sinα

´®
cos[2(p−m)α]− cos[2(p+m+ 2)α] } dα . (B.10)

We separately calculate

(A)

∫ π
4

0

cos[2(p−m)α]− cos[2(p+m+ 2)α]

cosα
dα

(B.2)
=



2

|p−m|∑

k=1

(−1)|p−m|−k sin[(2k − 1)α]

2k − 1
+ (−1)|p−m| ln

ï
tan
Åπ
4
+
α

2

ãò


∣∣∣∣∣∣

π
4

0

−


2

p+m+2∑

k=1

(−1)p+m+2−k sin[(2k − 1)α]

2k − 1
+ (−1)p+m+2 ln

ï
tan
Åπ
4
+
α

2

ãò


∣∣∣∣∣∣

π
4

0

.

Notice that for p, m having the same parity, |p−m| and p+m are even, and then

the previous integral simplifies

∫ π
4

0

cos[2(p−m)α]− cos[2(p+m+ 2)α]

cosα
dα = −2

p+m+2∑

k=|p−m|+1

(−1)k
sin[ (2k−1)π

4
]

2k − 1
.

(B.11a)
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(B)

∫ π
4

0

®
cos[2(p−m)α]

sinα
− cos[2(p+m+ 2)α]

sinα

´
dα

(B.1)
=



2

|p−m|∑

k=1

cos[(2k − 1)α]

2k − 1
+ ln

ï
tan
Å
α

2

ãò


∣∣∣∣∣∣

π
4

0

−


2

p+m+2∑

k=1

cos[(2k − 1)α]

2k − 1
+ ln

ï
tan
Åα
2

ãò


∣∣∣∣∣∣

π
4

0

= −2
p+m+2∑

k=|p−m|+1

cos[ (2k−1)π
4

]− 1

2k − 1
. (B.11b)

With (B.11a) and (B.11b), we get the result for (B.10): for m, p having the same parity

we have

∫ π
2

0
C(α)Hp(α)Hm(α) dα

=
4

π

∫ π
4

0

®
cos[2(p−m)α]− cos[2(p+m+ 2)α]

´®
−Z − 1

cosα
− Z

sinα

´
dα

=
8

π



(Z − 1)

p+m+2∑

k=|p−m|+1

(−1)k
sin[ (2k−1)π

4
]

2k − 1
+ Z

p+m+2∑

k=|p−m|+1

cos[ (2k−1)π
4

]− 1

2k − 1



 (B.12)

and otherwise this integral vanishes.

3. We now perform an integral related to the matrix elements of a three-body problem

for which the basis functions couple the angular variable [formula (6.51)],

∫ π
2

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα. (B.13)

Special care is required here because the function C, and thus the function g(±)
q,n given

by (1.66) with Z replaced by C, is not defined at the endpoints of the interval A =Ä
0, π

2

ä
. Nevertheless the limit of the integrand at these two points exists, so integral

(6.49) converges over A. In addition, the derivative of C is not defined at α =
π

4
, then

integral (6.50) must be calculated with a limit process,

∫ π
2

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα = lim

b→π
4
−

∫ b

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

+ lim
b→π

4
+

∫ π
2

b
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα. (B.14)
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With the technique of integration by parts we obtain a primitive for these integrals

∫
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

= Hp(α)
∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
−
∫

∂

∂α
Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
dα

= Hp(α)
∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− g(±)

q,n (α)Hm(α)
∂

∂α
Hp(α)

+
∫
g(±)
q,n (α)Hm(α)

∂2

∂α2
Hp(α) dα

(6.31c)
= Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− g(±)

q,n (α)Hm(α)
∂

∂α
Hp(α)

−4(p+ 1)2
∫
g(±)
q,n (α)Hm(α)Hp(α) dα (B.15)

and then

lim
b→π

4
−

∫ b

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

= lim
b→π

4
−

®
Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− g(±)

q,n (α)Hm(α)
∂

∂α
Hp(α)

´∣∣∣∣∣
b

0

−4(p+ 1)2 lim
b→π

4
−

∫ b

0
g(±)
q,n (α)Hm(α)Hp(α) dα

(6.31a)
= lim

b→π
4
−

{
Hp(b)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó∣∣∣∣∣
α=b

− g(±)
q,n (b)Hm(b)

∂

∂α
Hp(α)

∣∣∣∣∣
α=b

}

−4(p+ 1)2
∫ π

4

0
g(±)
q,n (α)Hm(α)Hp(α) dα.

The derivative of Hp(α) is a continuous function in α =
π

4
then, changing the limit

notation, we find

lim
b→π

4
−

∫ b

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

=− g(±)
q,n

Åπ
4

ã
Hm

Åπ
4

ã ∂

∂α
Hp(α)

∣∣∣∣∣
α=π

4

+ lim
α→π

4
−

Hp(α)
∂

∂α

î
g(±)
q,n (α)Hm(α)

ó

− 4(p+ 1)2
∫ π

4

0
g(±)
q,n (α)Hm(α)Hp(α) dα. (B.16a)
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Repeating the same procedure for the integral over the interval
Å
b,
π

2

ã
we obtain

lim
b→π

4
+

∫ π
2

b
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

=g(±)
q,n

Åπ
4

ã
Hm

Åπ
4

ã ∂

∂α
Hp(α)

∣∣∣∣∣
α=π

4

− lim
α→π

4
+
Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó

− 4(p+ 1)2
∫ π

2

π
4

g(±)
q,n (α)Hm(α)Hp(α) dα. (B.16b)

Collecting results (B.16a) and (B.16b) in (B.14), we find

∫ π
2

0
Hp(α)

∂2

∂α2

î
g(±)
q,n (α)Hm(α)

ó
dα

= lim
α→π

4
−

Hp(α)
∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− 4(p+ 1)2

∫ π
4

0
g(±)
q,n (α)Hm(α)Hp(α) dα

− lim
α→π

4
+
Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− 4(p+ 1)2

∫ π
2

π
4

g(±)
q,n (α)Hm(α)Hp(α) dα

= Sp,q;m,n − 4(p+ 1)2
∫ π

2

0
g(±)
q,n (α)Hp(α)Hm(α) dα, (B.17)

where we define the jump quantity Sp,q;m,n as

Sp,q;m,n = lim
α→π

4
−

Hp(α)
∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
− lim

α→π
4
+
Hp(α)

∂

∂α

î
g(±)
q,n (α)Hm(α)

ó
. (B.18)

Noticing that Hm(α) and g
(±)
q,n (α) are continuous functions at α =

π

4
, and

∂

∂α
g(±)
q,n (α)

is not continuous at α =
π

4
but one-sided limits exist [see (6.10)], this jump can be written

as

Sp,q;m,n = lim
α→π

4
−

Hp(α)

Ç
∂

∂α
g(±)
q,n (α)

å
Hm(α) + lim

α→π
4
−

Hp(α) g
(±)
q,n (α)

Ç
∂

∂α
Hm(α)

å

− lim
α→π

4
+
Hp(α)

Ç
∂

∂α
g(±)
q,n (α)

å
Hm(α)− lim

α→π
4
+
Hp(α)g

(±)
q,n (α)

Ç
∂

∂α
Hm(α)

å

=Hp

Åπ
4

ã
Hm

Åπ
4

ã [
lim

α→π
4
−

Ç
∂

∂α
g(±)
q,n (α)

å
− lim

α→π
4
+

Ç
∂

∂α
g(±)
q,n (α)

å]
.
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Now, taking into account that

g(±)
q,n

Å
π

4
− α
ã
= g(±)

q,n (α) =⇒ ∂

∂α
g(±)
q,n (α)

∣∣∣∣∣
α=π

4
−α̃

= − ∂

∂α
g(±)
q,n (α)

∣∣∣∣∣
α=α̃

,

and

Hp

Åπ
4

ã
=





0, if p is odd,
2√
π
(−1)

p
2 , if p is even,

we find a simplified expression for Sp,q;m,n

Sp,q;m,n =





8

π
(−1)

m+p

2 lim
α→π

4
−

∂

∂α
g(±)
q,n (α), if m, p are even,

0, otherwise.

(B.19)

4. Another integral we need to solve corresponds to the Laguerre expansion of the

driven term considered in the three-body model problem studied in Section 6.4 [formula

(6.60)], ∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α) f(ρ, α) ρ

5/2 cosα sinα dρ dα

for Hp, φ
L
q and f defined in (6.30), (1.2) and (6.53) respectively. We use the series

representation of f given in [83],

f(ρ, α) =
∞∑

n=0

bn e
−aρρ2n+t Hn(α)

cosα sinα
(B.20)

bn =

√
π [(−1)n + 1]

8 (n+ 1) 22n
Ä
3
2

ä
n
n!
. (B.21)

First we remark that, as a consequence of the property [42]

Γ

Ç
z +

1

2

å
Γ (z) = 21−2z

√
π Γ(2z)

we find

22n
Ç
3

2

å

n

n! = 22n
Γ
Ä
n + 1 + 1

2

ä

Γ
Ä
3
2

ä Γ(n + 1) = Γ(2n+ 2)
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and thus the coefficients bn have the alternative simpler expression

bn =

√
π [(−1)n + 1]

8 (n+ 1) (2n+ 1)!
. (B.22)

Now, using the series expansion of f given in (B.20) the two-dimensional integral reduces

to a sum of products of one-dimensional integrals,

∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α) f(ρ, α)ρ

5/2 cosα sinα dρ dα

=
∞∑

n=0

bn

Ç∫ π
2

0
Hp(α)Hn(α) dα

åÅ∫ ∞

0
φL
q (ℓp, β; ρ) e

−aρρ2n+t+ 5
2 dρ
ã
.

The integral over α gives a Kronecker delta δp,n while the integral over ρ with n = p reads

∫ ∞

0
φL
q (ℓp, β; ρ) e−aρρ2p+t+ 5

2 dρ

=
Nq,ℓp

(2β)2p+t+ 5
2

∫ ∞

0
e−

a+β
2β

2βρ (2βρ)ℓp+2p+t+ 7
2 L2ℓp+1

q (2βρ) dρ

(B.4)
= Nq,ℓp

(2ℓp + 2)q
q!

(2β)ℓp+1

(a+ β)2p+t+ℓp+
9
2

Γ

Ç
2p+ t + ℓp +

9

2

å

× 2F1

Ç
−q, 2p+ t+ ℓp +

9

2
, 2ℓp + 2;

2β

a + β

å
.

Then, using (B.22) for the coefficients bn we finally obtain

∫ π
2

0

∫ ∞

0
φL
q (ℓp, β; ρ)Hp(α) f(ρ, α)ρ

5/2 cosα sinα dρ dα

=

√
π [(−1)p + 1]

8 (p+ 1)(2p+ 1)!

1

Nq,ℓp Γ(2ℓp + 2)

(2β)ℓp+1

(a+ β)2p+t+ℓp+
9
2

Γ

Ç
2p+ t+ ℓp +

9

2

å

× 2F1

Ç
−q, 2p+ t+ ℓp +

9

2
, 2ℓp + 2;

2β

a + β

å
. (B.23)
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