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RESUME iii

Resumeé

En 1949, C. Loewner a demontré dans un travail non publié que si T2 est un tore Riemannien,

V3

aire(T?) > TSys(TQ)2

alors

ot sys(T?) est la systole du tore T2, i.e. la longeur du plus court lacet non contractile de T2. De
plus, I'égalité est atteinte si et seulement si le tore est plat hexagonal. Ce résultat a donné nais-
sance a la géomeétrie systolique. Dans cette these, nous étudions des inégalités de type systolique

portant sur les longueurs minimales de différentes courbes et pas seulement la systole.

Dans un premier temps, nous démontrons trois inégalités géométriques optimales conformes sur
la bouteille de Klein reliant I’aire au produit des longueurs des plus courts lacets noncontractiles
dans des classes d’homotopie libres différentes. Pour chaque classe conforme, nous décrivons la

métrique extrémale réalisant le cas d’égaliteé.

Nous établissons ensuite des inégalités géometriques optimales sur le ruban de Mébius muni
d’une meétrique de Finsler. Ces inégalités géomeétriques relient la systole et la hauteur du ruban de
Mobius a son volume de Holmes-Thompson. Nous en déduisons une inégalité systolique optimale
sur la bouteille de Klein munie d’une meétrique de Finsler avec des symétries. Nous décrivons

également une famille de métriques extrémales dans les deux cas.

Dans le troisieme travail, nous démontrons une inégalité systolique critique sur la surface de
genre deux. Plus précisément, il est connu que la surface de genre deux admet une meétrique
Riemannienne plate a singularités coniques qui est extrémale parmi les métriques a courbure
nonpositive pour I'inégalité systolique. Nous montrons que cette meétrique est en fait critique
pour des variations lentes de métriques, cette fois-ci sans hypothese de courbure, pour un autre
probleme systolique portant sur les longueurs des plus courts lacets non contractiles dans cer-
taines classes d’homotopie libres données. Ces classes d’homotopie correspondent aux lacets

systoliques et deux-systoliques de la surface extrémale.

Mots-clé:

Systole, aire, métrique extrémale, métrique de Finsler, bouteille de Klein, ruban de Mobius, sur-

face de genre deux.
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ABSTRACT v

Abstract

In 1949, C. Loewner proved in an unpublished work that if T2 is a Riemannian two-torus, then

it satisfies

area(T?) > \ggsys(TQ)Z

where sys(T?) denotes the systole of the torus, i.e. the smallest length of a noncontractible
loop in T?. Furthermore, the equality is attained if and only if the torus is flat hexagonal. This
result led to what was called later systolic geometry. In this thesis, we study several systolic-like
inequalities. These inequalities involve the minimal length of various curves and not merely the

systole.

First we obtain three optimal conformal geometric inequalities on Riemannian Klein bottles re-
lating the area to the product of the lengths of the shortest noncontractible loops in different free

homotopy classes. We describe the extremal metrics in each conformal class.

Then we prove optimal systolic inequalities on Finsler Mdbius bands relating the systole and the
height of the Mobius band to its Holmes-Thompson volume. We also establish an optimal systolic
inequality for Finsler Klein bottles with symmetries. We describe extremal metric families in both

cases.

Finally, we prove a critical systolic inequality on genus two surface. More precisely, it is known
that the genus two surface admits a piecewise flat metric with conical singularities which is ex-
tremal for the systolic inequality among all nonpositively curved Riemannian metrics. We show
that this piecewise flat metric is also critical for slow metric variations, this time without cur-
vature restrictions, for another type of systolic inequality involving the lengths of the shortest
noncontractible loops in different free homotopy classes. The free homotopy classes considered

correspond to those of the systolic loops and the second-systolic loops of the extremal surface.

Keywords:

Systole, area, extremal metric, Finsler metric, Klein bottle, Mébius band, genus two surface.
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2 INTRODUCTION

We are interested in studying optimal geometric inequalities relating the area of a closed Rie-
mannian surface ¥ to the lengths of the shortest closed geodesics in certain homotopy classes.
A typical example is given by the systolic inequalities, which relate the area of the surface to
the systole, that is, the smallest length of a noncontractible loop in . The first known systolic
inequality is due to C. Loewner in 1949. He proved that every Riemannian two-torus T? satisfies

V3

area(T?) > 7sys(T2)2,

where sys(T?) denotes the systole of T2. Furthermore, the equality holds if and only if the torus
is flat hexagonal. C. Loewner did not publish his result, however it was mentioned by his student
P. Pu, ¢f [Pu52], who established a sharp systolic inequality on the projective plane RP?. In
this case, the equality is attained precisely by the round metrics. More than thirty years later,
C. Bavard, ¢f. [Ba86] (see also [Sak88]) proved a sharp systolic inequality on the Klein bottle.
Here, the extremal metrics are not smooth. These are the only manifolds for which an optimal
systolic inequality is known. Optimal systolic-like inequalities, i.e., inequalities that relate the
area to the product of the lengths of the shortest loops or arcs in different (relative) homotopy
classes are known only for the two-torus T2, cf. [Ke67], the Klein bottle K, c¢f. [Ba06, EY15], and
the Mobius band M, cf. [Pu52, Bl61, Ba06]. With the exception of some recent proofs of systolic
inequalities, cf. [Iv02, Sa10], and systolic-like inequalities, cf. [SY16], on the projective plane RP?,
the two-torus T2 and the Mobius band M, all the other known proofs of the aforementioned

optimal geometric inequalities require the uniformization theorem as a main tool.

This thesis is divided into three chapters. In these chapters, we study various optimal systolic-like
inequalities for different surfaces: the Klein bottle, the Mobius band, the torus and the genus two
surface. Each chapter relies on specific techniques: extremal length methods in the first chap-
ter, Finsler geometry in the second chapter and infinitesimal calibrating arguments in infinite-

dimensional spaces in the third chapter.

In the first chapter, we present a joint work with Chady EIMir published in the Journal of Con-
formal Geometry and Dynamics, c¢f. [EY15].

In 1986, C. Bavard, cf. [Ba86], proved that every Riemannian Klein bottle K satisfies

2:T/isys(]K)z.

area(K) >

The extremal Klein bottle is the double of the 7-tubular neighborhood of the equator of the
Euclidean sphere S2, with the identification described in Figure 1. In his proof, C. Bavard relies
on P. Pu’s inequality on the Mobius band M, cf. [Pu52]. Later in 1988, T. Sakai [Sak88] proved

the same result using C. Blatter’s inequalities on M, cf. [Bl61]. We refer to Section 2.4 for precise
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definitions and details about P. Pu’s and C. Blatter’s inequalities on the Mobius band. A self-
contained proof of the systolic volume of the Riemannian Klein bottle that do not require the use
of inequalities on the Mobius band was given by C. Bavard in [Ba88]. The main tool in his proof
is the method of extremal lengths, which is based also on the uniformization theorem. We refer
to Section 1.2 for further details about it. This method is the main tool that we use in Chapter 1
to derive new optimal geometric inequalities on the Klein bottle relating the area to the length

of loops in different free homotopy classes.

In order to describe these inequalities we introduce some notations. Recall that a flat Klein bot-
tle K is the quotient of C by the group generated by a glide reflection ¢ and a translation ¢. The
fundamental group 7 (K) can be identified with the deck group (o, t) generated by o and ¢ with
their relation oto !t = e. For every a € 71(K), denote by 7, a loop representing the homo-
topy class a. We distinguish three families of free noncontractible loops on the Klein bottle K as

follows.

1. F5 = {7 | v is aloop freely homotopic to ¥, or Y,¢},
2. Fy, = {7 | v is aloop freely homotopic to 7; },

3. Fn = {7 | 7 is aloop freely homotopic to 7,2 }.

Furthermore, we define ¢, (resp. ¢,, resp. ¢p, resp. L) to be the smallest length of a noncon-
tractible free loop in F, (resp. Fy, resp. Fp, resp. Fo U Fp). Observe that the extremal metric g,
for the systole, cf. Figure 1, satisfies

ly(ge) = Cn(ge) = €u(ge) = Lo(ge)-

We summarize the main results of the first chapter in the following theorem.

Y 7 7

\ {

[ \

v € F
[T ii—

Figure 1: The double of the 7 -tubular neighborhood of the equator of the Euclidean sphere S 2is
an extremal Klein bottle.
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Theorem 0.0.1. Let 3 > 0. For every Riemannian metric g on the Klein bottle K of conformal
type B, we have

1. area(K, g) > Cé ls(9)ly(9),
2. area(K, g) > C3 Ly (g) £o(9),

3. area% (K,g) Z Cg Eg(g)ﬁv(g)ﬁh(g),

where C’é, i € {1,2,3}, are constants depending only on the conformal type (. Moreover, these

inequalities are optimal.

In fact, the inequality 1. was proved by C. Bavard, cf. [Ba06], for the valuesof 8 € (0,21n (% + "2—0)]
where ag € (0, %) is the unique solution of the equation tan(ag) = 2ag. We complete his work
to cover all the remaining conformal classes. Observe also that the inequality 3. involves three
different lengths. To our knowledge, there are no other known systolic-like inequalities, even
non-optimal ones, for which the number of lengths is greater than the dimension of the man-
ifold. We refer to Section 1.1.2 and Table 1.1 of Chapter 1 for details about the corresponding

extremal metrics in each conformal class.

As a consequence of Theorem 0.0.1, we conclude that

Corollary 0.0.2. There does not exist any positive universal constant c such that the inequality
area(K, g) >cly (g)fv <g>7

holds for every Riemannian metric g on the Klein bottle. Similarly, there does not exist any positive

universal constant c such that the inequality

area? (K, g) > cly(9)lu(9)ln(g),

holds for every Riemannian metric g on the Klein bottle.

On the other hand, we have

Corollary 0.0.3. For every Riemannian metric g on the Klein bottle K,

area(K, g) > % Ls(g) £u(9)-

Moreover, the inequality is optimal.

In the second chapter, we present a joint work with Stéphane Sabourau, published in the Journal
of Topology and Analysis, cf. [SY16].
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This chapter is dedicated to the study of systolic inequalities for Finsler Mobius bands. Loosely
speaking, a Finsler metric F’ is defined as a Riemannian metric except that its restriction to a
tangent plane is no longer a Euclidean norm but a Minkowski norm. From a dynamical point of
view, the function F'2 can be considered as a Lagrangian which induces a Lagrangian flow on the
tangent bundle T'M of M. Thus, Finsler manifolds can be considered as degree 2 homogeneous
Lagrangian systems. The trajectories of the Lagrangian correspond to the geodesics of the Finsler
metric. There exist several definitions of volume for Finsler manifolds which coincide in the
Riemannian case. In this chapter, we consider the Holmes-Thompson volume vol 7. Recall that
the Holmes-Thompson volume of an n-dimensional Finsler manifold is equal to the symplectic
volume of its unit co-disc bundle divided by the volume of the Euclidean unit ball of dimension 7.

We refer to Section 2.2 for further details about Finsler metrics.

Since there is no Finsler analog to the uniformization theorem, studying the systolic volume of
Finsler surfaces is quite delicate. The first optimal Finsler systolic inequality has been obtained
by S. Ivanov [Iv02]. He proved that the optimal systolic inequality on the projective plane for
Riemannian metrics also holds for Finsler metrics. Namely, if RP? is a Finsler projective plane,
then

area(RP?) > % sys(RP?)2,

The extremal Finsler metrics are those all of whose geodesics are closed and of the same length.
Contrary to the Riemannian case, the Finsler systolic constant of the two-torus is the same as
that of the projective plane. More precisely, S. Sabourau [Sa10] proved that if T2 is a Finsler
two-torus, then

area(T?) > % sys(T?)2.

Finsler two-tori that are homothetic to the quotient of R?, endowed with a parallelogram norm

do not know if those are the only extremal metrics. A sharp systolic inequality for asymmetric

, by a lattice whose unit disk of || . || is a fundamental domain are extremal. However, we

Finsler two-tori can be found in [ABT].

The main result of the second chapter is the following.
h(M)

Theorem 0.0.4. Let M be a Finsler Mobius band. Let \ := SysM) - Then
area(M) 2 if A € (0,1]
SYS(M> h(M> N %% otherwise.

Moreover, the above inequalities are optimal for every value of A € (0, 400).

Here, h(M) represents the minimal length of arcs with endpoints on the boundary OM which are
not homotopically trivial relative to OM. We refer to Examples 2.5.4 and 2.6.2 for a description
of an extremal metric family. As in the case of Finsler two-tori, we do not know if these are the

only extremal metrics.
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The proof of Theorem 0.0.4 is divided into two cases. The first case is when
h(M) > sys(M).

Its proof proceeds as follows. We first derive a Finsler analog of L. Keen’s inequality for two-tori,
cf. [Ke67]. More precisely,

Proposition 0.0.5. Let T? be a Finsler two-torus. There exist two closed curves of lengths a and b

generating the first integral homology group of T? such that

2
area(T?) > ~ab.
T

Equality holds if T? is homothetic to the quotient of R%, endowed with a parallelogram norm ||.

>

by a lattice generated by two vectors of lengths a and b, parallel to the sides of the unit ball of ||.||.

The proof of Proposition 0.0.5 can be used as well in the Riemannian case and yields L. Keen’s
result without making use of the uniformization theorem as in the original proof. With the help

of Proposition 0.0.5, we derive a similar result for Finsler cylinders C. More precisely, we obtain

area(C) > %sys(C’)h(C’)

where h denotes the height of the cylinder, that is, the distance between its two boundary com-
ponents. Using this result and the Finsler systolic inequality on the projective plane, we obtain

optimal systolic inequalities on wide Finsler Mobius bands, cf. Section 2.5.

Furthermore, in order to prove the systolic inequality for Finsler Mobius bands M that satisfy
h(M) < sys(M),

we derive a systolic-height inequality which holds true whenever % isadyadic rational in the
interval (0, 1) and deduce the result by continuity of the volume, the height and the systole over

Finsler metrics. Hence the systolic inequality holds for narrow Mobius bands too, cf. Section 2.6.

The optimal systolic inequality for Finsler Klein bottles is still unknown. However, using The-
orem 0.0.4, we deduce that Finsler Klein bottles with some natural symmetries satisfy the same

systolic volume as Finsler two-tori T? and Finsler projective planes RPP2. In particular, we prove

Theorem 0.0.6. Let K be a Finsler Klein bottle with a soul, soul-switching or rotational symmetry.
Then 5
area(K) > Zsys(K)2. (0.0.1)
™

Moreover, the inequality is optimal.

Recall that in the Riemannian case, Theorem 0.0.6 follows directly from the uniformization the-

orem, an average argument over the isometry group, and the Cauchy-Schwartz inequality. In
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our proof, we do not use any of these arguments. Instead, we rely on the sharp systolic-like

inequality we established for Finsler Mobius bands.
We end this chapter by proposing the following conjecture

Conjecture. Let K be a Finsler Klein bottle. Then

area(K) > %sys(K)Q. (0.0.2)

A Finsler Klein bottle with systolic volume equal to % is described in Example 2.7.7.

The third chapter deals with critical isosystolic genus two surfaces.

Recently, M. Katz and S. Sabourau, cf. [KS06], proved that there exists a piecewise flat metric ggy
on the genus two surface X9 which is extremal among all nonpositively curved Riemannian
metrics. This metric is composed of six regular flat octagons. It admits regions where only one
systolic loop, i.e., a noncontractible loop of length the systole, passes through every point. Hence
this metric cannot be extremal for the general systolic inequality, i.e., without restriction on the
curvature. This follows from a result of E. Calabi, cf. [Ca96], which says that at least two systolic
loops pass through every point of a systolically extremal surface. In fact, the non-extremality
of the metric gg for the systolic inequality can also be deduced from a result of S. Sabourau,
cf. [Sa04], which says that no flat metric with conical singularities is extremal for the systolic

inequality in genus two.

Denote by /1 (g) the length of the shortest noncontractible loop on (X9, g), that is,

l1(g) = sys(g).

Recall that gy designates the extremal nonpositively curved genus two surface defined in [KS06].
Let A be the subset of the free homotopy classes generated by the systolic loops of (X2, go) and

their multiples:
Av={{(y") [ () # 0. 4g(7) = L1(g0) and k € Z°}. (0.0.3)

Similarly, let /3(g) be the length of the shortest noncontractible loop on (X2, g) which is not

homotopic to a systolic loop. That is,

14 = inf / .
29)= ) R )
Denote also by
Az ={() [ (7) ¢ A1 and £y, (7) = C2(g0)} (0.0.4)

the subset of the free homotopy classes generated by the shortest noncontractible loops of (22, go)

which are not freely homotopic to systolic loops.
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We observe that the piecewise flat metric gy defined on the genus two surface X9 may be a
potential extremal metric for another systolic problem on ¥5. This observation follows from
some geometric properties of the surface (X2, go). First, it is known that the systolic loops cover
a systolically extremal surface. In our case, the ¢1-loops and the ¢3-loops cover the surface 3.
Here, by an ¢;-loop we mean a loop of length ¢;(gp) in (X2, go) whose free homotopy class lies
in A;. Second, the unit tangent vectors of these ¢;-loops are well distributed on each tangent
plane of the surface. More precisely, their convex hull forms a regular octagon on these tangent
planes. In general, the convex hull of the unit tangent vectors of systolic loops of all the known
systolically extremal surfaces is symmetric. Finally, an extremal surface of genus at least two
tends to have flat regions, ¢f. [Ca%6, Bro¢].

In [Ca96], E. Calabi described two piecewise flat genus three surfaces and conjectured that one
of them is the global minimum for the systolic inequality. Later, S. Sabourau, c¢f. [Sal1], proved
that these two genus three surfaces are critical for the systolic inequality with respect to slow
metric variations. Of course, since the systolic volume functional is not necessarily differentiable,
an adequate notion of criticality needs to be defined. The notion of criticality used in [Sal1] is
the same as the one introduced in [Na96, EI00] to study the Riemannian surfaces that maximize
the product of the area with the first nonzero eigenvalue of the Laplacian. Other notions of

systolically critical metrics were used in [Bal06, Bal10, Sa10, AB14].

In this chapter we show that the metric gy on the genus two surface ¥ is critical in the sense of

[Na9e, EI00, Sal1] for slow metric variations. More precisely, we prove

Theorem 0.0.7. Let g; be a slow metric variation of go defined on the genus two surface 3o. If
01(9:) = £1(g0) and £a(gt) = l2(go), then

area(g) > area(go) + o(t).

The slow metric variations involved in Theorem 3.1.1 are analogous to those defined by S. Sabourau
in [Sal1]. We refer to Definition 3.4.1 for a precise definition of these metric variations and to
the last section of [Sa11] for examples. Observe for instance that deforming the regular octagons
composing the extremal surface (X2, go) into non-regular octagons gives rise to a slow metric

variation.

To prove our result, we rely on recent calibrating methods, ¢f [Iv02, Iv11, Sal1], that do not
require the uniformization theorem classically used to establish sharp systolic inequalities on
surfaces. Briefly, we embed the universal cover f]g of the genus two surface Y9 in an infinite-
dimensional space R* as follows. Given that ¢;(g) > ¢;(go), we construct a 1-Lipschitz equiv-
ariant map

W9 ;3 — R

using the Busemann functions induced by the lifts of the ¢;-loops of X, cf- Section 3.3. Then, we
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introduce an appropriate infinitesimally calibrating two-form w on R*> whose pull-back passes

to the quotient on the surface 5. This allows us to show that

/ (U9)*w < ¢p area(Xa, g)
P

for every Riemannian metric g on X5, where ¢q is a sharp positive constant. Moreover, the

equality holds if g = go. Finally, we prove that if (g:);>0 is a slow metric variation then

/. () /. ()% = oft).

This completes the proof, cf. Section 3.4.
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Chapter 1

Conformal geometric inequalities on
the Klein bottle

Nous démontrons trois inégalités géométriques optimales conformes sur la bouteille de
Klein reliant I’aire au produit des longueurs des plus courts lacets noncontractiles dans

des classes d’homotopie libres différentes. Pour chaque classe conforme, nous décrivons

la métrique extrémale réalisant le cas d’égalité.
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Abstract. We obtain three optimal conformal geometric inequalities on Riemannian Klein bottles
relating the area to the product of the lengths of the shortest noncontractible loops in different

free homotopy classes. We describe the extremal metrics in each conformal class.

1.1 Introduction, preliminaries and results

Among all Riemannian metrics on a given compact differentiable manifold, the most interesting

ones are those that extremize some Riemannian invariant. An interesting problem, for example,
sys(M,g)™
vol(M,g)
on a given n-dimensional differentiable manifold M, where sys(M, g) denotes the systole of

is to study metrics which maximize the ratio over the set of all Riemannian metrics g
(M, g), i.e., the least length of a non-contractible closed curve. Concerning this problem, called
isosystolic problem, it is known that the extremal metric for the 2-dimensional torus is the flat
hexagonal metric (unique up to a homothety). It is due to C. Loewner in 1949 (unpublished). His
student, P.M. Pu, showed in 1952 that the extremal metric on the projective plane is the spherical
metric, ¢f. [Pu52]). Nevertheless, as in many works related to the isosystolic problem, various
constraints can be put on the set of Riemannian metrics under consideration. For example, we
may restrict ourselves to the set of nonpositive curvature metrics ¢f. [KS06], or to the set of
metrics in a fixed conformal class cf. [Bl61, Ba88, Ba92, Ba06].

In 1961, C. Blatter proved, cf. [Bl61] optimal conformal lower bounds on the area of the Mobius
band with boundary M in terms of the product of the least lengths of two classes of curves. The
first class consists of the family F of arcs joining two points on the boundary with non-trivial
intersection with the soul of the Mobius band. The second class consists of the family G of loops
in the homotopy class of a generator of 71 (M). Let ¢, be the least length of an arc in F and ¢,
be the least length of a loop in G. Then, Blatter (in his notations, ¢, = ¢* and ¢, = ¢;) obtained

the following optimal conformal lower bound on the area of M

l5(9)ly(g) < Cp area(g) (1.1.1)

where (' is a positive constant that depends only on the conformal type 3 of g. Note that the
optimal constant C'g is not bounded from above over the set of conformal types 3. Also, in the

same article, Blatter proved the following conformal lower bound on the area of M

sys(9)lu(g) < Cf area(g) (1.1.2)

where Cé is a positive constant that depends only on the conformal type /3 of g. Contrarily to the
previous case, the optimal constant C' /g is bounded from above over the set of conformal types (.

More precisely, sup Clﬁ = 2. Hence, the optimal inequality
B

sys(g)¢u(g) < 2 area(g)
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holds for every Riemannian metric g on M.

Variants of C. Blatter’s problem were studied by L. Keen in [Ke67] and J. Hebda in [He91] on the
2-dimensional torus. Keen obtained a lower bound on the area in terms of the product of the least
lengths of two loops generating the fundamental group. On the other hand, Hebda obtained a
lower bound on the square of the area in terms of the three primitive length spectrum. The

equality in both cases is attained by the flat hexagonal metric.

In this chapter, we prove three types of inequalities on the Klein bottle K in the same spirit as
Blatter’s inequalities. The classes of curves we consider are (free) homotopy classes of loops that
are candidates to realize the systole. In particular, the role of the family F will be taken by a
free homotopy class of loops representing the vertical translation in 7r; (K). The main tool in our
proof is the method of extremal length which was used by C. Bavard in 1988 to prove conformal
isosystolic inequalities on the Klein bottle c¢f. [Ba88]. It can be applied to the Mobius band with

boundary and provides an alternative proof of Blatter’s inequalities (1.1.1) and (1.1.2).

1.1.1 The Klein bottle

A flat Klein bottle is the quotient of C by the group generated by the maps o : z — Z + 7
and t, : z — z + 2i. The induced flat metric on the Klein bottle will be denoted by gs. By the
uniformization theorem, every Riemannian metric g on the Klein bottle is conformally equivalent
to a unique flat metric gg for some 5 € (0, +00). The parameter (3 represents the conformal type
of the metric g. We call t, := o2 a horizontal translation and identify the fundamental group
71(K) with the deck group (o, t,,). Note that any Klein bottle K is obtained by gluing two Mobius
bands M and My along their boundaries. With the previous notations, fundamental domains

of K, My and My, are [, 5] x [=8, 8], [=5. 5] x [, 3] and [-5. 5] x [=8. 5] U [5, 5]

respectively.

By C. Bavard’s theorem, cf. [Ba86], every Riemannian Klein bottle K satisfies the isosystolic
inequality
sys(K)? < I area(K)

2v2

where the equality is attained by a spherical metric outside a singular line (see [Ba86], [Sak88]
and [ELO08] p. 100 for a detailed description of the extremal Klein bottle). For details and (many)
open problems in systolic geometry see the book of Katz [Ka07] and the paper of M. Gromov [Gr83].

In this chapter, we consider the following distinct families of homotopy classes of closed curves

on the Klein bottle K as follows.

Definition 1.1.1. For every a € 71 (K), denote by ~, a loop representing the homotopy class a.

Then we define

1. F5 = {7 | v 1is aloop freely homotopic to v, or Yyt },
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2. Fy, = {~v | v1is aloop freely homotopic to vy, },

3. Fr = {7 |7 is aloop freely homotopic to 7,2 }.

Given a Riemannian metric on K, the least length of a closed curve in the first (resp. second,
resp. third) family will be denoted by ¢, (resp. ¢, resp. ¢3). Also, denote by L, the least length
of aloop in F, U Fp,.

Remark 1.1.2. An extremal metric ge,; for the isosystolic inequality on the Klein bottle K sat-

isfies
Eo'(gext) — La(gext) — gv(gext)-

Its conformal type [ is equal to 2 ln(tan(g)), cf. [Basgé6].

Finally, denote by ag the unique real z € (0, §) such that tan(x) = 2z (ap =~ 1.1655).

1.1.2 Two families of Riemannian metrics on the Klein bottle

We denote by C%>(R) the set of continuous and piecewise smooth functions on R. Let h” be

a Riemannian metric in C ~ R?, periodic with respect to the fundamental domain [—%7 %] %
[—3, 5] and satisfying

(W) 2y = (y)(da® + dy?), (1.1.3)

where ¢ € C¥°(R) is a positive, even and 23-periodic function. Then there exists a diffeomor-
phism G : C — C for which the Riemannian metric i, = (G~1)*h? satisfies

(7o) () = f2(v)du? + dv?, (1.1.4)

where f € C%*°(R) is positive, even and 2b-periodic function. To see this, let ¢(y fo Ve(t)dt
and f = (po ¢~ )% and define the map G by

G(x,y) = (z,6(y)). (1.1.5)

The Riemannian metric h;, is then periodic with respect to the fundamental domain [—7F, ] x
[—2b, 2b]. The quotient of (C, hy) by the subgroup of isometries < o,t,, >, whereo : z +— zZ+7

and ¢,/ : z — z 4 41b, is a Riemannian Klein bottle. Its conformal type is

ﬁ /Qb dt

Now, we will introduce two families of metrics on C. They induce families of metrics on the Klein
bottle that will be used later in this chapter as conformally extremal metrics for three types of

inequalities on the Klein bottle. For every b € (0, +00) and w € (0, b], they are as follows.
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1. the metric S, on C periodic with respect to the fundamental domain [—7, 5] x [—2b, 2b]
and defined by

(Sb) (u,) fb( )du2+d1}2

where fj, is the unique one-variable function invariant by the translation (u,v) — (u,v +
2b) which agrees with cosine on [—b, . It is spherical outside the singular lines v = nb,
where n € Z.

2. the metric SF;, on C periodic with respect to the fundamental domain [—7, 5] x [—2b, 20]
and defined by

(SFbw)uv) fbw( )du2+d’02

where f;, is the unique one-variable function invariant by the translation (u, v) — (u, v+
2b) which agrees with cosine on [—w, w| and equal to the constant cos(w) on [w, 2b — w],
cf. [Ba88, Fig. 1]. It is spherical on the band R X [—w, w] and its images by the translations
(u,v) = (u,v + 2nb), where n € Z, and flat elsewhere.

We will denote by (K, Sp) the Riemannian Klein bottle obtained by taking the quotient of (C, S)
by the subgroup < o,t,s >. Its conformal type is

8= 2ln(tan(% + g».

Similarly, (K, SF} ) will denote the Riemannian Klein bottle obtained by taking the quotient of
(C, SFy,,) by the subgroup < o,t,, >. Its conformal type is

B = 2mn(tan(] + %)) + (2b — 2w).

cos(w)
1.1.3 Geometric inequality of type /,/,

Our first result studies optimal conformal inequalities of the form
lyl, < Cg area

where U3 is a constant depending only on the conformal type 3. We call such a relation a
“ geometric inequality of type {,{,,”. Actually, it extends the following result of C. Bavard to all

the conformal classes of the Klein bottle.

Theorem 1.1.3 C. Bavard [Ba06]. Let ag € (0, 5) be such that tan(ag) = 2ag and 0 < 3 <
21In (tan (% + %0)) Then, for every Riemannian metric g on the Klein bottle K of conformal type 3,

we have the following optimal inequality

s(g) Lo(g) < T A area(g).
ef+1
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The equality is attained if and only if g is proportional to the spherical metric Sy for b satisfying
B =2n(tan(Z + 5)).

We complete C. Bavard’s study by providing an optimal inequality for the remaining conformal

classes.

Theorem 1.1.4. Let ag € (0,%) be such that tan(ag) = 2ag and 8 > 21In (tan (5 + %)). Let
w1 € lao, 5) be defined by the equation

2sin(wy) = <ﬁ —2In (tan (% + %))) cos?(w1) + 4wy cos(wy).

Then, for every Riemannian metric g on the Klein bottle K of conformal type (3, we have the following
optimal inequality

ls(g) Lo(g) < Teos(wr) area(g).

Moreover, the equality is attained if and only if g is proportional to the spherical-flat metric SFy,

forb = tan(wy) — wi.

Remark 1.1.5. The bound 5 < 2In (tan (% + %0)) found by C. Bavard in Theorem 1.1.3 is
actually the critical value of the conformal type for the transition in the shape of the extremal

metrics from spherical to spherical-flat.

Corollary 1.1.6. There does not exist any (finite) positive universal constant ¢ such that the in-
equality
l(9)lu(g) < carea(g)

holds for every Riemannian metric g on the Klein bottle.

1.1.4 Geometric inequality of type L./,

The second part of this chapter is devoted to establishing optimal conformal inequalities of the

form
Lyt, < Cp area.

Note that in the case of the Mobius band M, L, is just the systole of M. We call such a relation
a “geometric inequality of type L, {,,”.

Theorem 1.1.7. Let B > 0. For every Riemannian metric g on the Klein bottle K of conformal
type B, we have

L,(9)¢y(g) < Cp area(g)

where
Zgi arcsin (eﬁfl) if 0<pB<2mn(2++3)

eP+

2 3B+4n—61In(2+V3) :
8 ivBrgomarva 4 PA>2n (2+V3)

Cg =
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Moreover, the equality is attained if and only if g is proportional to the spherical metric Sy, for b

satisfying B = 2In(tan(§ + %)) in the first case and to the spherical-flat metric SF} =, for b

satisfying 8 = 21n(2 + v/3) + 4(b — %), in the second case.

Since the supremum of the conformal constant C'z over 3 is equal to 2, we have
Corollary 1.1.8. For every Riemannian metric g on the Klein bottle K, we have

Ls(9)ly(g) < 2 area(g).

The inequality is optimal.

1.1.5 Geometric inequality of type /¢, 0},

In the third part, we establish optimal conformal inequalities of the form
lylyly < Cg area?

which we call a “geometric inequality of type {,¢,,¢},”. To our knowledge, this kind of inequality
involving the product of three lengths has never been considered before. It is distinguished by
the fact that the area to the power % is bounded by the product of all the natural candidates for
the systole

Theorem 1.1.9. Let 3 > 0 and let wy € (0, T) be defined by the equation

T  Wo
" 2))+

B = 21In(tan( (tan(wg) —wy + \/tan2(w2) — wo tan(ws) + w22> :

cos(ws)
Then, for every Riemannian metric g on the Klein bottle K of conformal type 3, we have the following
optimal inequality

3
2

ls(9)lu(9)ln(g) < Cp area(g)

where

NI

ﬁ (b4 — 4bwy + w22 + WQ4 — 2[)2(*2 + (.L)22))

C _ ) (2b — WQ)
Ve (b— wa)\/(b — wa)b

with b = tan(ws) + /tan?(wz) — wa tan(wg) + we2. Moreover, the equality is attained if and
only if g is proportional to the spherical-flat metric SFy, .

Now, if we replace b by tan(ws) + y/tan?(ws) — wo tan(ws) + wo? in

(b4 — 4bwy + LUQ2 + w24 - 2b2(—2 + WQZ))% (2b — w2)

) = (b—wa)/(b—wn)b
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we obtain a continuous increasing function C :]2, 4+-00[—] Zvr +oo[ which tends to infinity as

33’
wa — 0 (i.e. when b — 0). Therefore, we derive

Corollary 1.1.10. There does not exist any (finite) universal constant c such that the inequality

3
2

l5(9)lu(9)tn(g) < carea(g)
holds for every Riemannian metric g on the Klein bottle K.

Remark 1.1.11. Unlike Corollaries 1.1.6 and 1.1.10, Corollary 1.1.8 provides a uniform upper

bound on the Riemannian ratio M.
area(g)

1.2 The main tools for the proofs

The key tool in our proofs is the method of extremal length initiated by B. Fuglede in [Fu57], J.
A. Jenkins in [Je65] and M. Gromov in [Gr83]. It was used later by C. Bavard in the setting of
isosystolic geometry, cf. [Ba88, Ba92]. This method charaterizes a conformally extremal Rieman-
nian manifold by means of its closed geodesics. See e.g. L. V. Ahlfors’ book [Al73] and Rodin’s
paper [Ro68] and the references therein for more details and further applications of the method

of extremal length.

1.2.1 A maximality criterion

Let (M, g) be a closed Riemannian manifold and I" be a family of rectifiable curves on M. For

every Radon measure y on I, we associate a measure * on M by setting, for ¢ € C°(M, R),
("ps ) = (1, ?)
where B(7) = [ ¢ 0 y(s)ds and ds is the arc-length of v with respect to g.

Theorem 1.2.1. ([Ba88],[Ba92] and [Je65]) Let M be a closed manifold. LetS;, wherei € {1,--- ,p},
be some families of rectifiable curves on M such that S; N'S; = 0 for alli # j. Denote by ¢;(g)
the least length of a curve in S; with respect to a Riemannian metric g on M. Suppose that g. is a
Riemannian metric on M for which there exists a positive measure jyonI' = S; U- - -US,, satisfying

the following three conditions:

1. foreachi € {1,--- ,p}, all the curves in S; have the same length with respect to g.
2. mili(ge) = mala(ge) = - = mplp(ge)

3 *u=dge
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where m; is the mass of the measure {1 on S; and dg. is the volume measure of (M, g.). Then, for

every Riemannian metric g on M conformal to g, we have

l1(g) - 'gp(g)
vol2 (g)

gl(ge) U gp(ge)
VOI% (ge)

< . (1.2.1)

Furthermore, the equality holds if and only if g is homothetic to ge.

Since our version of Theorem 1.2.1 is slightly more general than in the aforementioned refer-
ences (as it holds for an arbitrary number of curve families S;), we present a proof of it. It is

straightforward by the following lemma.

Lemma 1.2.2. Let S;, wherei € {1,--- ,p}, be families of rectifiable curves on a given closed
manifold M such that S; N S; = () for alli # j. Denote by {;(g) the least length of a curve in S;
with respect to a Riemannian metric g on M. Let g. be a Riemannian metric on M such that there
exists a positive measure j onI' = S; U --- U S, satisfying the three conditions of Theorem 1.2.1.
Then,

lge p
(o) b(0) < 22 valk(g) (122

where m; is the mass of the measure p on S;. Furthermore, the equality holds if and only if g is

homothetic to ge.

Proof. Let g be a Riemannian metric conformal to g, that is, g = $?g.. We have

mili(g) + -+ mplolg) < [ B()duly) + -+ / Sdutr)  (123)
S S,
:/awwm>
I
~ [ st
M

=Aﬁ@m

< < /M as?(:c)dge) : < /M dge> : (129

= y/vol(g)vol(ge).

When g is equal to g., equality in (1.2.3) is attained because g, satisfies condition (1). Moreover,
it is straightforward that equality in (1.2.4) is attained if and only if g is equal to g. by Cauchy-

Schwartz. Using the arithmetic and geometric means inequality, we derive

po(ma - mpli(g) - Lp(9)) 7 < mali(g) + -+ myly(g)
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with equality if and only if
mili(g) = mala(g) = - -+ = mplp(g).

Finally, combining the two inequalities, we obtain that, under the required conditions, the fol-

lowing inequality holds

M|

PP-(ma - mp).Li(g) -+ £p(g) < (vol(g)vol(ge)) 2,
with equality if and only if g is equal to ge. O

Thus, proving the conformal extremality of a metric requires to find disjoint families of rectifiable
curves S1, - -+ , S, on M and define a measure on them that satisfies the three conditions of the

previous theorem.

1.2.2 Setting the curve families

To prove our results, we will make use of three families of curves in (K, SFj ).

Definition 1.2.3. Let (K, SF},,) be the spherical-flat Klein bottle defined in Section 1.1.2. Define

three families of loops as follows.

1. For each # € R/77Z and each a € [—w,w] U [2b — w, 2b] U [—2b, —2b + w], the loop o is
the geodesic (image in (K, SFy ) of a great circle) going through the points (6 — 7/2,0),
(0,a). Let

Si(w)={ag | |a| <wor2b—w < |a| < 2b,0 € R/7Z}.

2. For each u € R/7Z, v, is the vertical loop defined by v,,(t) = (u,t) with [¢| < 2b. Let

So={mw|ueR/nZ}.

3. For each v € R satisfying w < |v| < 2b — w, d, is the horizontal loop defined by d,(t) =
(t, |v]) with [t] < 7. Let

S3(w) ={dy |w < |v] <2b—w}.

Remark 1.2.4. For eachi € {1, 2, 3}, the curves in S; have the same length with respect to the
metric SFy, ,,. Also note that a curve in Sy, resp. So, resp. Ss, belongs to the family F,, resp. F,,
resp. Fp,.

We move now to the next step, i.e., verifying the three conditions of Theorem 1.2.1. Conditions
(1) and (2) are easy to verify while Condition (3) requires technical (but not simple) methods of

calculation.
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Figure 1.1: The curves «, 7, and ¢, in the Mobius band {(u, v) | [v| < b} of (K, SFp,).

In the following we will consider a subset of the family of curves S; (w) in (K, SF} ;) and equip
it with a measure ;. depending on a function i of one parameter (since SF ,, has an isometry

group of dimension 1). Then, we will calculate the measure *1 in terms of the volume measure
of SFy .

1.2.3 The calculation of */ on a spherical region of K

Let b € (0,+00) and w € (0, b]. We consider on (K, SFy ) the family of curves Sf(w) C Sy (w)
defined by
Si(w) ={af C (K,SF,,) | ~w<a<w,d € R/7Z}

where «j is the great circle introduced in Definition 1.2.3.
Lemma 1.2.5. Let uu be a measure on Sf(w) defined by

h(a) da d if a>0

d”(ag):{ h(—a)dadd if a<0

where h : [0,w] — R is a continuous function. Then, we have
x Y 20 \\"3
= 2X{|v|§w}(/| (cos®(v) — cos®(a)) 2 h(a) da) d(SFp)

where d(SFy,,) is the volume measure of SFy, .
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Proof. First, we compute the equation of af. Suppose aj(t) = (u(t),v(t)). Then, from the

classical geodesic equation ddfz + Z I s kdff: dg = 0 (see for example [GHL04] p. 81), where

FZ i, are the Christoffel symbols, z! = wand 2? = v, we derive
u” — 2tan(v)u'v’ =0 and v + sin(v) cos(v)u’? = 0.

This shows that

du c
du _ (1.2.5)
dv  cos(v)y/cos?(v) — c?

where c is a constant. The solution of the differential equation (1.2.5) is sin(u — d) = ctan(v),

where d is a constant. Using the fact that o goes through (0 — 7/2,0) and (6, a), we obtain

: T
51n(u—9+§)—

tan(v). (1.2.6)
Equation (1.2.6) shows that we can write o (u) = (u + 0, v (u, a)), with v verifying

v(u, —a) = —v(u,a).
Now, let ¢ € C°(K, R). Then, by the definition of * 11, we have

/ B(u, v) d(* 1) (u,0) = /Si(w)ci?(aZ)du(aZ)

where

B(al) = / 6 (ad(s)) ds

2
d(u+6,v(u, a))\/cos2(v(u, a)) + (gi(u, a)) du.

Then,

[Lotwnacnin = [ [ camoanass [ [ dtoinie) o
[ [ ] oo —v(u,a>>\/cos2<v<u, )+ (e a>)2h<a> u da do
// [ oot a>>\/cos2< (u,0)) + <gZ(U,a))2h(a) duda do
[ e a>>\/cos2<v<u, o)+ (200)) i) dda s




24CHAPTER 1: CONFORMAL GEOMETRIC INEQUALITIES ON THE KLEIN BOTTLE

+/_2 /Ow /02 qb(u+0,v(u,a))\/0082(v(u,a))+ <gZ(u,a)>2h(a) du da do

Next, we apply for the first two integrals in the previous expression the change of variables

y — —v(u,a), whose Jacobian is equal to ——(u a), and we write k1(y,a) = u. For the last
two integrals, we make use of the change of variables y — v(u, a), whose Jacobian is equal to

g—jj(u, a), and we write k2(y, a) = u. In either case, let z(y,a) = g—}i(u, a). We derive

[ st =2 [
2

Next, in the previous expression, we make the change of variables x — k1 (y, a) + 6 for the first

w 0
j/ ok1 (3, @) + 0,9) Vo) T 2, 0) Y dy da do
0 —a ’Z(yaa”

/‘“ /a d(ka(y, a) + 0,y)\/cos?(y) + 22(y, a) ila) dy da db.
o Jo |2(y, a)|

[NIE] w\:\

Ny

integral and = — k2(y, a) + 6 for the second integral. The Jacobian for both changes of variables

is equal to 1. We obtain
w 0 h(a)
/ é(x,y)/cos?(y) + 22(y, a) dy da dx
0 —a

oty dc “”‘2/; 2y, @)

-+2/€L/w/”¢@4»v%m@@>+z%y,>‘h<>ﬂdyda¢n
/ / / d(x,y)\/cos2(y) + 22(y, )’ (yy))’dadydx
//525953/\/0082 )+ 22(y,a) na) da dy dx

+2fg 2(y.a)
_2/3/ o,y /y| J ((C(()S(y))>2+1)h(a) da dy dz

|
ISERVE]

I w\:i

Hence, we derive

w 2
= QXC{(|;;|(<U°;} ’ J ((2(057(2))) + 1) h(a)da d(SFp,)

where d(SFy,) is the volume element of (K, SFy ). From equation (1.2.5), we obtain

ZQUCL :@ COSz’U —cosQa
(0,0) = S0y o (co’(v) — cos’(@).

This shows that

= 2X{v<w}</: (cos®(v) — cosQ(a))_% h(a)da) d(SFyy).
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1.3 Proof of the geometric inequality of type /7,

In the following, we prove the geometric inequality of type ¢,¢, for 5 > 21n (tan (% + “2—0))
As in the case § < 21n (tan (% + “—20)) we will consider both curve families S1(w;) and So, cf.
[Ba06, Corollary 2].

Proof of Theorem 1.1.4. Let § > 2In (tan (% + %0)) There exists a unique w; € [ag, 5) such
that
w1

2sin(w;) = (ﬁ —2In (tan (% + ?>)> cos?(w1) + 4wy cos(wy). (1.3.1)

We endow K with the metric SF, ., defined in Section 1.1.2, where
b= tan(w;) — wi. (1.3.2)

Consider the two families of curves S; (w1 ) and Sa, cf. Section 1.2.2. Each curve in 81 (w1) (resp.
&2) has length equal to 7 (resp. 4b) with respect to SFy, ., . Hence, condition (1) of Theorem 1.2.1

is satisfied. Now, let

h: [~wp,w] — R
'_>

stnllel)  feos?(a) — cos?(wn)

a
We define on the family S; (w;) the measure
1 = h(a) da @ do

where
h(a) if a€[-w,w]

h(a) = h(a—2b) if a€[2b— wy,2b)
h(a + 2b) if ae€[-2b,—2b+ wi]

On the family Sz, we define the measure
o = cos(wy)du.

The mass m; of the measure p1; on Sp(w1) is equal to 4 sin(wq) — 4wy cos(wq) and the mass mo
of the measure y3 on Sy is equal to 7 cos(w1 ). Now, since £, (SFp,, ) = mand £,(SFy,,, ) = 4b,
condition (2) of Theorem 1.2.1 is satisfied. Next, it can be easily verified that

_ cos(wr)
M ha )

*

d(SFp,)
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where f},, is the unique one-variable function invariant by the translation (u, v) — (u, v + 2b)
which agrees with cosine on [—w1,w;| and equal to the constant cos(w) on [wi, 2b — w1] (see
Section 1.1.2). Moreover, by Lemma 1.2.5, we have

w1

X(jol<er} "1 = 2X{v|sm(/| (cos™(v) — cos®(a)

v|

3 Ti(a) da) d(SFy,)

Then, we derive ()
X cos(w1
X{|v|<wi} M1 = X{|v|<w1} (1 - fb o1 (U)> d(SFb,oA)'

Finally, since fj,,, and I are invariant by the translation (u,v) — (u,v + 2b), we have

cos(wy)

fb7w1 (U)

g = (1— ) d(SFy.)-

Hence, we get *u1 +* po = d(SFp,, ). This is condition (3) of Theorem 1.2.1. Finally, from
Theorem 1.2.1 and inequality (1.2.2), we derive

1
ls(9)lu(g) < marea(g)

which holds for every Riemannian metric g conformal to SF;,,,,. The equality is attained if and

only if g is homothetic to SFy,,,, and the result follows. ]

Recall that M denotes the Mobius band with boundary obtained by taking the quotient of R x
[0, B] by the group generated by the map ¢ : z — Z+m. We denote by gz the flat metric induced

by such quotient. The parameter /3 represents the conformal type of any metric conformal to gg.

We recover Blatter’s result for the Mobius Band, ¢f. [Bl61, Theorem 2], by a simpler method.
Indeed, consider in Bavard’s proof of Theorem 1.1.3 and in our previous proof the restriction
of Sy and SFy ., on the set B, = {(u,v) € C| |v| < b}.

Corollary 1.3.1. [Bl61, Satz 2] Let f > 0 and ag € (0, 5) such that tan(ag) = 2ao. Let w; €
lao, 5) be defined by the equation

sin(wy) = (B —1In (tan (Z + %))) cos?(w1) 4 2wy cos(w).

Then, for every Riemannian metric g on the Mobius band M of conformal type [3, we have

l5(9)s(9) < Cp area(g)

where

o zzgﬂ arcsin (2;;‘&) if 0<p<In (% + ‘12—0)
B = 1 . s
2 cos(w1) lf f>In (Z + %0 ’
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Moreover, the equality is attained if and only if g is proportional to the spherical metric Sy, restricted
to By = {(u,v) € C| |v| < b}, forb satisfying 3 = 2In(tan(} + g)) in the first case, and to the
spherical-flat metric SFy,,, restricted to Ey, = {(u,v) € C | [v| < b}, forb = tan(wi) — wy, in

the second case.

1.4 Proof of the geometric inequality of type L./,

In the following, we prove the geometric inequality of type L./, on the Klein bottle. The curve

families we consider this time are S1(%), S2 and S3(%).

Proof of Theorem 1.1.7. The inequality in the first case can be deduced from Theorem 1.1.3 since
when 0 < 8 < 2In (2 + \/g), ie. when b < %, we have L,(Sy) = £5(Sp). Now, since the
conformal type of (K, Sp) is

5= 2mn(tan( + g»,

we deduce that for 0 < < 21n (2 + \/§)

arcsin (22;})
Ly (9)ls(g) < Q1 area(g).
ef+1

Note that when b becomes greater than %, the horizontal geodesic loops closed by the horizontal
translation ;, (corresponding to the singularity line of Sj) become shorter than the curves ag

and therefore L, is attained by such lines.

To prove the inequality in the second case, we fix 5 > 21In (2 + \/3) and let b such that 8 =
2In(2+v/3)+4(b— %) (we have b > Z). Then we endow K with the metric SFy,z. We consider
the two families of curves S = S1(5) U S3(5) and Sy, cf: Section 1.2.2. Each curve in S, (resp.
S2) has length equal to 7, (resp. 4b) with respect to the metric SFb,%. Hence, condition (1) of
Theorem 1.2.1 is satisfied. Now, let

ke [-5,3] — R
a N tan(|a|) 24bcos?(a)—3v3—3b+7
247b \/c052 (a)—%

We define on the family S the measure

1 = k(a) da @ df + —3v3 ;—b?)b kil dv.
where
k(a) if ac [—g, %]
k(a) =< k(a— 2b) if a€[2b— F,20]

k(a+2b) if a€[-2b,—2b+ %]



28CHAPTER 1: CONFORMAL GEOMETRIC INEQUALITIES ON THE KLEIN BOTTLE

On the family So, we define the measure

_3\/§+3b—7r

12 du.

M2

Note that these measures are positive since b > 7. The mass m; of the measure 11 on S is equal

to V3 +3b— % and the mass my of the measure p2 on Sy is equal to 3\[3+13+7ﬂ2' Now, since

Ls(SFyz) = mand {,(SF; z) = 4b, condition (2) of Theorem 1.2.1 is satisfied. Next, it can be

easily verified that

. _3\/§+3b—7r

p2 = d(SFy =)

12 fp = (v) s

where fb% is the unique one-variable function invariant by the translation (u, v) — (u, v + 2b)

which agrees with cosine on [—%, Z] and equal to the constant & on [%,2b — %]. Moreover, by

Lemma 1.2.5 we obtain

jus
3 —

X{lol<3} "H1 = 2X{v§§}(/ (cos”(v) — cos™(a))

|v]

2 7i(a) da) d(SF z)

Then, we derive

\ 3v3+3b—m
Xipisg "1 = Xquisgy (L= Tppee) AT

Finally, since f;, = and k are invariant by the translation (u,v) — (u,v + 2b), we have

(1— 3y38her)y 4(SFyx)  if |v| < Tor2b— I <|u| <2

= 126f, 7 (v) 3 3
=IVIET (S 1) if T<|<2-T

Hence, we get 11 +* 2 = d(SFb%). Therefore, condition (3) of Theorem 1.2.1 is satisfied. It
follows from Theorem 1.2.1 and inequality (1.2.2) that for every Riemannian metric g conformal

to SFb,%, we have
2b

< ==
T V3+b—3

with equality if and only if g is homothetic to .S Fb%. U

Lo (9)lu(9) area(g)

We can also derive C. Blatter’s similar result on the Mobius band M (Theorem 3 in [Bl61]) using

a minor adaptation of the previous proof.

Corollary 1.4.1. [Bl61, Satz 3] Let 5 > 0. Then, for every Riemannian metric g on the Mobius
band M of conformal type 3, we have

sys(9)lu(g) < Cg area(g)
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where
o zzﬁi arcsin (Zigﬁ) if 0<pB<In (2 + \/g)

37 2v/3+8—1In(2+V3)
Moreover, the equality is attained if and only if g is proportional to the spherical metric Sy, restricted
to By = {(u,v) € C| |v| < b}, forb satisfying 3 = 2In(tan(] + g)) in the first case, and to the
spherical-flat metric SFy = restricted to Ej, = {(u,v) € C | [v] < b}, forb = 1B+F—1im(2+
V/3), in the second case.

1.5 Proof of the geometric Inequality of type /,¢,(;,

In the following, we prove the geometric inequality of type £,¢,¢;, on the Klein bottle. We will

consider the curve families S (w2), S2 and S3(w2).

Proof of Theorem 1.1.9. Let 8 > 0. There exists a unique wy € (0, §) such that

2
B=2 ln(tan(%+%))+ cos(ws)

(tan(wg) —wy + \/tan2(w2) — wy tan(wg) + w22> . (1.5.1)

We equip K with the metric SF; ,,, where

b = tan(wsy) + \/tan2 (wa) — wo tan(ws) + w2?. (1.5.2)

Then, we consider the families of curves S;(w2), S2 and S3(ws), cf. Section 1.2.2. Each curve
in 81 (wa), (resp. Sa, resp. S3(w2)) has length equal to 7, (resp. 4b, resp. 27 cos(ws2)) with respect
to the metric SF ,,,. Hence, condition (1) of Theorem 1.2.1 is satisfied. Let

l: [—(UQ,(UQ] — R

) cos?(a) —cos? (wg ) 222

2b—wo

tan(|al

a —
T

' (cos2(a)—cos?(w2)) 3

We define on the family S;(w2) the measure

w1 = l(a) da ® df

where
l(a) if a¢€[—ws,wy

l(a) =13 I(a—2b) if a€[2b—wsy,20]
l(a+2b) if a€[-2b,—2b+ wo)

On the family Sz, we define the measure

b— w2
Ho = cos(wg).zb

du.
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Finally, on S3(w2), we define the measure

b

= dv.
2b_(JJ2 v

M3

. 4, — S 3 _
The masses m; of the measures y; are m; = 4sin(wsy) — W%“’%W, mo = %&sz)

and ms = %ﬁ;). Now, since {5 (SFy ) = 7, £y (SFp,) = 4b, and ¢4, (SFp ,,) = 27 cos(wa),

condition (2) of Theorem 1.2.1 is satisfied. Next, it can be easily verified that

cos(wz) b—wy
g = : d(SFp.,
uz fb7w2 (U) 2b _ w2 (S b7 2)

where f;,, is the unique one-variable function invariant by the translation (u,v) — (u,v +
2b) which agrees with cosine on [—wa, ws| and equal to the constant cos(w2) on [we, 2b — wa).

Moreover,

* 0 if  |o| <wzor2b—wy <|v| <26
w3 = _
siims - A(SFhw,)  if wa < u] <2b—ws

Next, by Lemma 1.2.5, we have
w2

Xhleon) 11 = 2X(uieny ( /| (€0’ (0) = eos’(@)

v

l(a) da) d(SF,)

N

Then, we derive

. cos(w2)(b — w2)
- 1
X{Jol<wn} “H1 = X{Jo]<wa} ( oo (V) (20 — wp)

) d(SFpp)-
Finally, since fj, ,, and [ are invariant by the translation (u,v) — (u,v + 2b), we have

fo,wo (V) (2b—w2)

. (1 — goslwa)bowa) y ggp ) if o] < wgor 20— wy < |u] < 2b
H1 =
0 if  we <|v] <2b—wy

Thus, we obtain *1 +* o +* u3z = dSFy,. Hence, condition (3) of Theorem 1.2.1 is satisfied.

Hence,

%>3\/§. (b —wa)y/(b—wa)b
T VT (b — dbws + we? + wat — 202(—2 + ws2))T (2b — wy)

area(g) ls(9)Cs(9)n(9)

with equality if and only if g is homothetic to SFj, ,. O]
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1.6 Some remarks on the extremal metrics

In this chapter, we present four families of conformally extremal metrics for different types of

inequalities on the Klein bottle. They are as follows.

1. The spherical metric Sy, where = 2In(tan(} + g)), which is conformally extremal for
the inequality of type £,/, for 0 < 8 < 2In (tan(Z + %)), and for the inequality of type
Loty for 0 < B < 21In(2 + V/3).

2. The spherical-flat metric SFy,,,, where w; and b verify the equations (1.3.1) and (1.3.2),
which is conformally extremal for the inequality of type (¢, for 21In (tan(f + %)) <
B < oo.

3. The spherical-flat metric SF}, =, where § = 21In(2 + V3)+4(b— %), which is conformally
extremal for the inequality of type L/, for 2In(2 + /3) < 8 < oc.

4. The spherical-flat metric SFy ,,,, where ws and b verify the equations (1.5.1) and (1.5.2),
which is conformally extremal for the inequality of type ¢, £, ¢} for any 5.

Remark 1.6.1. We emphasize the fact that the metrics SF;, ,,, and SFj, ,,, do not have the same
conformal type since w; verifies the equation (1.3.1) whereas wy verifies the equation (1.5.1). Note

that the equality wy = wo leads to

\/tan2(w1) —wi tan(wi) + wi? +w; =0
which is not possible.

Moreover, the 3-extremal metric (extremal metric in the conformal class of 3) for the inequality
of type {54, l}, agrees with the -extremal metric for the inequality of type L/, if and only if

2

O NS T ¢
= [y =2In(2 3)+4V3I+B——4=+—)2 — =
B=Fo=2m2+V3) +4(V3+ (B~ =+ 5)7 ~3)
(e, b = V3 + (3 — % + %2)% and wy = %). On the other hand, the S-extremal metric for
the inequality of type ¢,¢, agrees with the (3-extremal metric for the inequality of type L/, if
and only if 3 < 21In(2 + v/3). Finally, the 3-extremal metric for the inequality of £, ¢, and the

B-extremal metric for the inequality of type ¢,¢, ¢}, never agree.

Table 1.1 summarizes our study of the extremal metrics for the various inequality types relative

to the conformal type (.
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Table 1.1
IE | (0,2In(2+v3)] | (2In(2+ v3),2In (tan(F + 2@))] | (2In (tan(F + %)), +o0) |
bl < Cgarea Sp Sp SFle
Lst, < Cgarea S SFb% SFb%
olyly < Cgarea | SFy,, SFh SFy




Chapter 2

Optimal systolic inequalities on

Finsler Mobius bands

Nous établissons des inégalités géométriques optimales sur le ruban de Mobius muni
d’une métrique de Finsler. Ces inégalités géométriques relient la systole et la hauteur du
ruban de Mobius a son volume de Holmes-Thompson. Nous en déduisons une inégalité
systolique optimale sur la bouteille de Klein munie d’une métrique de Finsler avec des

symeétries. Nous décrivons également une famille de métriques extremales dans les deux

cas.
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Abstract. We prove optimal systolic inequalities on Finsler Mobius bands relating the systole
and the height of the Mobius band to its Holmes-Thompson volume. We also establish an optimal
systolic inequality for Finsler Klein bottles with symmetries, which we conjecture to hold true

for arbitrary Finsler metrics. We describe extremal metric families both in both cases.

2.1 Introduction

Optimal systolic inequalities were studied since the mid-twentieth century after C. Loewner
proved in an unpublished work the following result, cf. [Ka07]. Every Riemannian two-torus T?

satisfies

area(T?) > \égsys2 (T?) (2.1.1)

with equality if and only if T? is a flat hexagonal torus. Recall that the systole of a nonsimply
connected Riemannian surface M, denoted by sys(M), represents the length of the shortest
noncontractible loop of M. This inequality leads us to introduce the systolic area of M defined
as (M. g)

or(M) := iIglf %
where g runs over all the Riemannian metrics on M (hence the subscript R for Riemannian).
Thus, op(T?) = @ Following this direction, P. Pu [Pu52] showed that oz (RP?) = 2 where
the infimum is attained exactly by the Riemannian metrics with constant (positive) curvature
on the projective plane RP?. In the eighties, C. Bavard [Ba86] proved that oz (K?) = 2—‘7{5,

where the infimum on the Klein bottle K? is not attained by a smooth Riemannian metric. See

. (2.1.2)

also [Sak88], [Ba88] and [Ba06] for other proofs and variations on this inequality. These are the
only nonsimply connected closed surfaces with a known systolic area. The existence of extremal

metrics in higher dimension is wide open.

The original proofs of the optimal Riemannian systolic inequalities on T2, RP? and K? rely on
the conformal representation theorem (a consequence of the uniformization theorem on Riemann
surfaces) and proceed as follows. By the uniformization theorem, every Riemannian metric g on
a closed surface is conformally equivalent to a Riemannian metric gg of constant curvature. Tak-
ing the average of g over the isometry group of gy gives rise to a new metric g with the same area
as g. By the Cauchy-Schwarz inequality, the systole of g is at most the systole of g. Thus, the
new metric g has a lower ratio area/sys? than the original metric g. Now, if the isometry group
of gy is transitive, which is the case for T2 and RIP?, the metric g has constant curvature. Hence
the result for the projective plane. Then, it is not difficult to find the extremal metric among flat
torus. The case of the Klein bottle requires an extra argument since the isometry group of g is

not transitive, ¢f. Section 2.7.

In this chapter, we consider Finsler systolic inequalities. Loosely speaking, a Finsler metric F'
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is defined as a Riemannian metric except that its restriction to a tangent plane is no longer a
Euclidean norm but a Minkowski norm, c¢f. Section 2.2. From a dynamical point of view, the
function F'? can be considered as a Lagrangian which induces a Lagrangian flow on the tangent
bundle TM of M. Thus, Finsler manifolds can be considered as degree 2 homogeneous La-
grangian systems. The trajectories of the Lagrangian correspond to the geodesics of the Finsler

metric.

There exist several definitions of volume for Finsler manifolds which coincide in the Riemannian
case. We will consider the Holmes-Thompson volume volgr, c¢f. Section 2.2. As previously, we
can define the systolic area o, with the subscript F for Finsler, by taking the infimum in (2.1.2)

over all Finsler metrics on M.

Contrary to the Riemannian case, there is no uniformization theorem for Finsler surfaces. As a
result, the classical Riemannian tools to prove optimal systolic inequalities on surfaces, which
are based on the conformal length method described above, do not carry over to the Finsler case.

New methods are thus required to deal with Finsler metrics.

The first optimal Finsler systolic inequality has been obtained by S. Ivanov [Iv02, Iv11] who

extended Pu’s systolic inequality to Finsler projective planes.
Theorem 2.1.1 [Iv02, Iv11]. Let RP? be a Finsler projective plane. Then

volgr (RP?)

>2
sys2(RP?) ~— 7

Furthermore, equality holds if all the geodesics are closed of the same length.

In particular, the systolic area of the projective plane is the same in the Riemannian and Finsler
settings, that is,
2
or(RP?) = op(RP?) = =.
T
Note that Theorem 2.1.1 provides an alternate proof of Pu’s inequality in the Riemannian case

which does not rely on the uniformization theorem.

Using a different method based on [Gr99] and [BI02], a Finsler version of Loewner’s inequality
(2.1.1) has been obtained by the first author [Sa10].

Theorem 2.1.2 [Sa10]. Let T? be a Finsler two-torus. Then

volgr (Tz)

2
R S S

sys?2(T2) — «
Equality holds if T? is homothetic to the quotient of R%, endowed with a parallelogram norm ||.|,

by a lattice whose unit disk of ||.|| is a fundamental domain.
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Observe that o (T?) = op(RP?) contrary to the Riemannian case. An optimal Finsler systolic
inequality holds for non-reversible Finsler metrics on T2, ¢f. [ABT]. Note also that there is
no systolic inequality for non-reversible Finsler two-tori if one considers the Busemann volume

instead of the Holmes-Thompson volume, cf. [AB].

No systolic inequality holds for manifolds with boundary either. However, P. Pu [Pu52] and
C. Blatter [Bl61] obtained optimal Riemannian systolic inequalities in each conformal class of
the Mobius band and described the extremal metrics, ¢f. Section 2.4. Later, these inequalities
were used by C. Bavard [Ba86] and T. Sakai [Sak88] in their proofs of the systolic inequality on
the Klein bottle in the Riemannian case. The proof of the optimal conformal Riemannian systolic
inequalities on the Mobius band relies on the uniformization theorem and the conformal length

method (as in the original proofs of the Riemannian systolic inequalities on T2, RP? and K?2).

In this chapter, we first prove a Finsler generalization of the optimal systolic inequality on T?
extending Loewner’s inequality, ¢f [Ke67], and derive further optimal geometric inequalities
on Finsler cylinders, cf. Section 2.3. These results allow us to establish an optimal inequality
on every Finsler Mobius band M relating its systole sys(M), its height ~(M) and its (Holmes-
Thompson) volume volgr (M) at least when M is wide enough, c¢f. Section 2.5. Here, the
height h(M) represents the minimal length of arcs with endpoints on the boundary OM, which

are not homotopic to an arc in M, cf. Definition 2.3.4. More precisely, we prove the following.

h(M)

Theorem 2.1.3. Let M be a Finsler Mobius band. Let \ := SysV) Then
vol g7 (M) 2 if X\ € (0,1] 213)
SYS(M> h(M) N %% otherwise. h

Moreover, the above inequalities are optimal for every value of A € (0, 400).

We describe extremal and almost extremal metric families in details in Section 2.4, Example 2.5.4

and Example 2.6.2.

The optimal Finsler systolic inequality on the Klein bottle is still unknown. However, based on
the inequality (2.1.3) on Finsler Mobius bands, we obtain a partial result for Finsler Klein bottles
with nontrivial symmetries. We refer to Definition 2.7.1 for a description of the symmetries

considered in the statement of the following theorem.

Theorem 2.1.4. Let K be a Finsler Klein bottle with a soul, soul-switching or rotational symmetry.

Then
VOIHT (K)
sys?(K)

2
> -
oo

. (2.1.4)

Moreover, the inequality is optimal.
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We also present some extremal metric family in Example 2.7.7.

Finally, we present as a conjecture that the inequality (2.1.4) should hold for every Finsler Klein
bottle with or without symmetries. Thatis, o (K) should be equal to 2 (as o (T?) and o (RP?)).
Note, however, that the Finsler systolic area o is not the same for all the surfaces: it goes to
infinity with the genus of the surface, ¢f. [Gr83].

2.2 Preliminaries

In this section, we introduce general definitions regarding Finsler manifolds.

A (reversible) Finsler metric ' : TM — [0,400) on the tangent bundle 7'M of a smooth n-
dimensional manifold M is a continuous function satisfying the following conditions (for sim-

plicity, let Fy, := F|p,pr):

1. Smoothness: F' is smooth outside the zero section;
2. Homogeneity: Fy(tv) = |t|Fy(v) for every v € T, M and t € R;

3. Quadratic convexity: for every x € M, the function F? has positive definite second deriva-
tiveson T, M \ 0, ie., if p, u, v € T, M, the symmetric bilinear form
1 92

gp(u7v) = §8sat (FxQ(p +tu + S’U)) ‘t:ﬁ’:o

is an inner product.

The pair (M, F)) is called a Finsler manifold. If F is only positive homogeneous instead of homo-
geneous, that is, (2) only holds for ¢ > 0, we say that the Finsler metric is non-reversible. For

simplicity, we will only consider reversible Finsler metrics.

Conditions (1), (2) and (3) imply that F is strictly positive outside the zero section and that for
every x € M and u,v € T, M, we have

Fp(u+v) < Fy(u) + Fy(v),

with equality if and only if u = Av or v = Au for some A > 0, ¢f. [BCS00, Theorem 1.2.2]. Hence,
F induces a strictly convex norm F); on each tangent space 1, M with x € M. More specifically,
it gives rise to a Minkowski norm F} on each tangent symmetric space T, M. Working with
quadratically convex norms and not merely (strictly) convex norms provides nice dynamical

features such as a geodesic flow and a Legendre transform, cf. [Be78, §1].

As in the Riemannian case, notions of length, distance, and geodesics extend to Finsler geometry.
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Let 7 : [a,b] — M be a piecewise smooth curve. The length of ~ is defined as

b
o) = / F(3 (1))t

By condition (2), £(vy) does not depend on the parametrization of . Moreover, the functional ¢
gives rise to a distance function dp : M x M — [0, 00) defined as dr(x,y) = inf, (), where
the infimum is taken over all piecewise smooth curves « joining x to y. A geodesic is a curve
which locally minimizes length. It is a critical point of the energy functional v — [ F?(v(t))dt

(here the quadratic convexity condition (3) is necessary).

For x € M, we denote by B, the unit ball of the Minkowski norm F. Furthermore, the
norm F; is Euclidean if and only if B, is an ellipsoid. The dual of B, is defined as B} =
{feTiM | F;(f) <1} where F} is the dual norm of F,. Note that B} identifies with the
polar body BS = {u € T, M | (u,v) <1 forevery v € B,} of B,, where (.,.) is a given scalar
product on T, M.

In the Riemannian case, there exists a unique notion of volume, up to normalization, which agrees
both with the n-dimensional Hausdorff measure determined by the Riemannian metric and with
the projection of the Liouville measure from the unit tangent bundle, ¢f. [BBIO1, §5.5]. However,
in the Finsler case, there is no notion of volume that satisfies both properties, ¢f. [BI12]. This

leads to two distinct notions of Finsler volume presented below.

Denote by ¢, the Euclidean volume of the Euclidean unit ball in R™. Let dz represent a given
volume form on M and m be the restriction of this volume form to each tangent space 7, M.
Similarly, let m* be the restriction of the volume form dual to dx to each cotangent space 7'y M.

The Busemann volume, cf. [Bu47], is defined as

volg(M) := /M m(ggx)dx (2.2.1)
The Busemann volume is sometimes called the Busemann-Hausdorff volume as it agrees with
the n-dimensional Hausdorff measure of M (at least when the Finsler metric F' is reversible).
Another volume frequently used in Finsler geometry is the Holmes-Thompson volume, cf. [HT79],
defined as
volgr(M) := / m(Bz) dx. (2.2.2)
M &n

It is equal to the Liouville volume of its unit co-disc bundle divided by &, ¢f. [AT04]. Note that
the integrals in (2.2.1) and (2.2.2) do not depend on the chosen volume form. Sine the volume is a
local notion, it is possible to extend this definition even when M is nonorientable, that is, when

volume forms do not exist on M.
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In [Du98], C. Duran proved the following volume comparison inequality for Finsler manifolds:
VOlHT(M) < VOIB(M) (2.2.3)

with equality if and only if M is Riemannian. Hence, every systolic inequality for the Holmes-
Thompson volume remains true for the Busemann volume. However, the inequality (2.2.3) may

fail for non-reversible Finsler metrics.

2.3 A systolic inequality on Finsler two-tori
In this section we establish a Finsler version of the Minkowski second theorem for the two-torus.
More precisely, L. Keen proved the following.

Proposition 2.3.1 [Ke67], [Ka07] §6.2. Let T? be a Riemannian two-torus. There exist two closed
curves of lengths a and b generating the first integral homology group of T? such that

L V3
-2

vol g (T?) ab.

Equality holds if and only if T? is homothetic to the flat torus obtained as the quotient of R? by a

hexagonal lattice.

The proof of Proposition 2.3.1 relies on the uniformization theorem and the Cauchy-Schwarz

inequality.
A Finsler version of Proposition 2.3.1 is given by the following result.

Proposition 2.3.2. Let T? be a Finsler two-torus. There exist two closed curves of lengths a and b

generating the first integral homology group of T? such that

2
volyr(T?) > Zab.
T

Equality holds if T? is homothetic to the quotient of R%, endowed with a parallelogram norm ||.

>

by a lattice generated by two vectors of lengths a and b, parallel to the sides of the unit ball of ||.||.

Since there is no uniformization theorem for Finsler metrics, the proof of this proposition differs

from the proof of Proposition 2.3.1.

Proof. Let o be a systolic loop of T2 and /3 be the shortest closed curve of T? homologically
independent with «. Denote by a and b the lengths of o and /3. The loops o and 5 are simple and
intersect each other at a single point. Cutting T? open along o and 3 gives rise to a surface A
isometric to a fundamental domain of T2. Let L be a positive number greater than maz{a, b}.

Denote by p and ¢ the smallest integers such that pa > L and ¢gb > L. Then, glue pq copies of A
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in such a way that the resulting shape is isometric to the fundamental domain of a Finsler torus
of volume pq times the volume of T? and of systole equal to min{pa, gb}. By construction, this
new Finsler torus is a degree pq cover of T2. Then, by Theorem 2.1.2, we have
2 2, . 2
pgvolyr(T*) > - (min{pa, gb})~ .
Hence,
volgp(T?) > == > 22— 2 —qp.

By choosing L large enough, the integers p and ¢ can be made arbitrarily large, which leads to
the desired inequality.

Now, if T? is the quotient of R?, endowed with a parallelogram norm, by a lattice generated by
two vectors of lengths a and b which are parallel to the sides of the unit ball of the parallelogram

norm, then vol 7 (T?) = 2ab. O

Remark 2.3.3. Briefly speaking, the idea of the proof of Proposition 2.3.2 is to use finite covers
to get a quasi-isosystolic two-torus (i.e., whose first homology group is generated by two loops of
lengths nearly the systole) and to apply the systolic inequality of Theorem 2.1.2 to this two-torus.
This argument also applies in the Riemannian case and gives an alternative proof of Proposition

2.3.1 without the use of the uniformization theorem.

We can apply Proposition 2.3.2 to prove a systolic inequality on Finsler cylinders. First, we give

the following definition

Definition 2.3.4. Let M be a compact Finsler surface with boundary. The height h(M) of M is
the minimal length of arcs with endpoints on the boundary 0 M, which are not homotopic to an

arc in M. More formally,
h(M) = inf{l()|y : [0,1] = M with v(0),v(1) € OM and [y] # 0 € w1 (M,0M)}.

A height arc of M is a length-minimizing arc of v of M with endpoints in M inducing a non-
trivial class in 71 (M, OM). By definition, the length of a height arc of M is equal to h(M).

Proposition 2.3.5. Let C be a Finsler cylinder. Then,
2
vol(C) > - sys(C)h(C).

Proof. Let k be a positive even integer. We glue & copies of C' by identifiying the identical bound-
ary components pairwise. The resulting space is a torus T2. Every loop of T? non freely homo-
topic to a multiple of a boundary component of C' is of length at least k h(C'). Therefore, for
symmetry reasons, if k satisfies k h(C) > sys(C), the systole of the torus T2 is equal to the
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systole of the cylinder C'. Applying Proposition 2.3.2 to this torus, we derive
2
vol(T?) = kvol(C) > = ksys(C)h(C).
™

Hence the result. O

We will make use of Proposition 2.3.5 in the proof of Theorem 2.1.3 for wide Finsler Mobius
bands, c¢f. Section 2.5.

2.4 Natural candidates for extremal metrics

In this section, we first review the extremal Riemannian metrics for systolic inequalities on the
Mobius band and the Klein bottle presented in [Pu52, Bl61, Ba86, Ba88, Sak88]. By analogy with
the Riemannian metrics, we construct Finsler metrics which are natural to consider when study-

ing optimal Finsler systolic inequalities.

Consider the standard sphere S2. Denote by v and v the longitude and the latitude on S?. Let
a € (0, 5). The a-tubular neighborhood of the equator {v = 0} is a spherical band S, which can
be represented as

Se ={(u,v) | 7 <u<m —a<v<a}l

The quotient of S, by the antipodal map is a Riemannian Mobius band with curvature 1 denoted
by M. The conformal modulus space of the Mobius band is parametrized by M, with a € (0, 7).
More precisely, every conformal class on the Mobius band agrees with the conformal structure
induced by some M, with a € (0, §). Furthermore, the conformal classes of the M,’s are pair-
wise distinct. Indeed, the (conformal) stereographic projection sends S, to a planar annulus

whose conformal modulus varies from 0 to oo as a runs over (0, 5), cf: [Bl61].

The spherical Mobius bands M, are involved in several extremal conformal systolic inequalities
for Riemannian metrics. More precisely, we define the orientable systole of a Riemannian Mobius
band M as the shortest length of a noncontractible orientable loop in M. It will be denoted by
sys, (M). Similarly, we define the nonorientable systole of M and denote it by sys_ (M). Observe
that sys(M) = min {sys, (M), sys_(M)}. Moreover, we define ,(M) as the minimal length
of the arcs joining (u, —a) to (u, a) in the (u, v)-coordinates of M,, which are homotopic with
fixed endpoints to the projections of the meridians in .S,. For instance, sys (M,) = 27 cos(a),
sys_(M,) = 7 and ¢,(M,) = 2a. Note that the definition of ¢, relies on conformal data,
namely the longitude-latitude coordinates to define the endpoints of the arcs involved in the

length minimization.
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In [Bl61], C. Blatter obtained optimal lower bounds for the functionals

vol vol vol
o1:=—%, 02i=———— and o3 :=
Sys® Sys_ X £y, Sys X £,

in each conformal class of the Mobius band. More precisely, for every Riemannian metric con-

formally equivalent to M, we have the sharp lower bound
O‘l(M) > O'I(Ma). (2.4.1)
We also have the sharp inequality

M, ifa € (0,0
ooy > 3 72 Ma) ifa € (0.0 (2.4.2)
UZ(Ma(a) U Ca,a(a)) ifa € [b, %)

where b is the unique solution in (0, §) of the equation tan(z) = 2x and M 4) U Cj o(q) is the
Mobius band obtained by attaching a flat cylinder C,, ,(,) to the spherical Mobius band M, ,(q)
along their boundary. Here, the angle a(a) € [b,a] is implicitly given by a nonlinear equa-
tion depending on the conformal type a and the flat cylinder C, ,(4) is defined as the product
04 84(a) x [0,sina — sin a(a)], where 91 S, (4) is a boundary component of S, (a). Alternately,
Ca,a(a) is the Mercator projection of a connected component of S; \ S, (4) to the vertical cylinder
generated by 0.5,(q)-

Finally, we have the third sharp inequality

Ug(Ma) ifa € (0,
Ug(M% UCa’%> ifa € [%,

]
)

o3(M) > (2.4.3)

oy Wy

With the help of (2.4.1), C. Bavard [Ba86] established the optimal isosystolic inequality on the
Klein bottle. Later, T. Sakai [Sak88] used the inequalities (2.4.2) and (2.4.3) to give an alternative
proof of Bavard’s isosystolic inequality for the Klein bottle. The extremal Riemannian metric on
the Klein bottle is obtained by gluing two copies of the spherical Mobius band M% along their
boundary.

The closed geodesics in S, project down to systolic loops in M, which differ only by rotations
and can be described as follows. Let 7)) be the equator {v = 0} of S? parametrized by arclength.
Every great circle 7y in S, different from ~{ intersects 7 at a unique point 7 (s) with s € [0, 7).
The great circles 7 and ~ form at 7{(s) an oriented angle ¢ € [—%, 5] with ¢ # 0. Such great
circle vy is denoted by 7. From the sinus formula in spherical trigonometry, the great circle v
exactly lies between the circles of latitude . Thus, ¢ € [—a, al.

For ¥ > 0, let v € (0,¥]. By Clairaut’s relation, ¢f. [dC76, §4.4], the positive angle 6y between

cos(¥)
cos(v)

the circle of latitude v and the great circle v satisfies fy(v) = arccos ( ) In particular,
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Figure 2.1: Systolic (in gray) and meridian directions in the unit tangent plane at a point of lati-
tude v in M.

the unit tangent vectors to the systolic loops of M, at a point of latitude v generate a symmetric

0(v) = arccos (Cos<a>>

cos(v)

cone of half angle

in the tangent plane, ¢f. Figure 2.1. These unit tangent vectors of M, are referred to as systolic
directions. The unit tangent vectors to the meridians are called meridian directions. Despite the
risk of confusion, we will also call great circles of M, the projections of the great circles of .S,
to M.

The spherical Mobius band M, which is extremal for some conformal systolic inequalities among
Riemannian metrics, ¢f. (2.4.1), (2.4.2), and (2.4.3), is not extremal among Finsler metrics. Indeed,
by slightly perturbing the quadratically convex norm in each tangent plane away from the sys-
tolic and meridian directions of the spherical metric, cf. Figure 2.1, we can decrease the area of
the Mobius band without changing the systole and the height. This shows that any unit tangent
vector to an extremal (quadratically convex) Finsler Mobius band is tangent either to a systolic
loop or a height arc, ¢f. Definition 2.3.4. In other words, the unit tangent vectors induced by the
systolic loops and the height arcs of an extremal (quadratically convex) Finsler Mobius band fill

in its unit tangent bundle.

With this observation in mind, it is natural to consider the following (non-quadratically convex)
Finsler metrics as potential extremal metrics. The idea is to adjust the shapes of the unit balls
in the tangent bundle of the Mobius band so that the systolic and meridian directions fill in
the unit tangent bundle. More precisely, define a Finsler metric F, on S, whose restriction to
each tangent plane 7,5, is a norm Fy|, of unit ball B, given by the convex hull of the systolic
directions of M, cf. Figure 2.2. In longitude and latitude coordinates, the ball B, at x = (u,v)

can be represented as

By = {(us &) € TuSa | € + € < 1,16] < sinf(v)}.
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20(v)

a. B, b. B!

Figure 2.2: Unit ball B, of F}, and its dual B} at a point z of latitude v in 5.

Hence, the Finsler metric F|, can be represented in local coordinates as

Sln(9 ) |dv| if arctan (

Vdu? + dv? if arctan (

v) €[0(v), 3]

F,= 2
v) €10,6(v)]

Sk SR

This metric passes to the quotient by the antipodal map to a Finsler metric still denoted by Fj,.
Denote by M, the Finsler Mobius band so obtained.

Instead of considering ¢,,, whose definition relies on conformal data, we will work with the height
h(M), cf. Definition 2.3.4, in the Finsler case.

Some geometric features of the Finsler Mobius bands M, are summarized in the following two

propositions.

Proposition 2.4.1. Let a € (0,%). Then, sys_ (Mp,) = =, sys, (Mpg,) = 2mwcos(a) and
h(Mp,) = 7.

In particular, ifa = % then sys(Mp,) = sys, (MF,) = sys_(Mp,) = h(Mg,) =

Proof. Let us start with a useful observation. Denote by S the interior of the domain of UMF,
formed by the unit tangent vectors of the great circles of M,. The Finsler metric F, coincides with
the round Riemannian metric of M, on S. Therefore, the subset S is stable under the geodesic
flow of F,, (which is well-defined on S). Furthermore, the length of a great circle with respect

to Fy is equal to 7.

Let us show that h(Mp,) = 7. Consider a height arc v of M, . The arc 7y can be parametrized
with respect to the latitude. Otherwise, we could remove a subarc of 7 joining two points at the
same latitude and still make up an arc in the same relative homotopy class as v with the remain-

ing pieces using the rotational symmetry of M, . This would contradict the length-minimizing
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property of . Hence,

h(ME,) = £(7)

@ 1
N /a sin 0(v) dv

_ @ cos(v)
—a \/cos2(v) — cos?(a)

= 2arctan ( \/isin(v) )

\/cos(2v) — cos(2a)

a

0

= T.

Now, let us show that the systolic curves of M, agree with the great circles of M, in the nonori-
entable case and with the boundary of M, in the orientable case. Consider an orientable or

nonorientable noncontractible loop « of minimal length in Mg, .

If 7y lies in the boundary of M, then the loop 7 is orientable of length 27 cos(a). Thus, we can

assume that ~ passes through an interior point p of M, .

If a tangent vector of 7 lies in S then the geodesic arc 7y coincides with a great circle of M, in
the nonorientable case and with a great circle run twice in the orientable case. (Recall that S is
stable by the geodesic flow of F.) In the former case, the curve v is of length 7, while in the

latter, it is of length 27. Thus, we can assume that the tangent vectors of 7y do not lie in S.

Consider the closed lift 4 of v in .S,,. Let ¢4 be the two extreme great circles of S, passing through
the lifts of p and tangent to the boundary of S,. That is, c+ are the great circles of S, making
an angle of +60(v) with the curves of constant latitude +v in S, passing through the lifts of p.
Since the tangent vectors of v do not lie in S, the curve 4 does not intersect c4 in the interior
of S,, except at the lifts of p. Therefore, there exists a subarc of 4 (actually two subarcs of %)
joining the two boundary components of S, in the region delimited by the great circles c4 and
the boundary of S, see the gray region of Figure 2.3. Thus, /() > h(Mp,) = 7 with equality if
v agrees with c4.

We conclude that sys_(Mp,) = 7 and sys, (MF,) = £(OMF, ) = 27 cos(a). Hence,

sys_(Mp,) ifa € (0,

]
)

sys(Mp,) =

S ERRSE]

sysy(Mp,) ifa € [Z,

O]

Remark 2.4.2. The Finsler Mobius bands Mz, are not pairwise isometric since they have distinct

orientable systoles.

Proposition 2.4.3. Leta € (0, ). Then, volgr(MF,) = 2.
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Figure 2.3: The extreme great circles c4 passing through a lift p of p in S,,.

Proof. The unit ball B} coincides with the polar body of B, described in Figure ??. The area of
B is equal to 20(v) +

have

m By definition of the Holmes-Thompson volume, cf. (2.2.2), we

VOIHT MFa 277 . m )

.
/

> cos(v) du dv

VB M\:.

/ < tan 9(?})
/.

2 arccos cos(a) cos(a) cos(v) dudo
m ( <COS(”)> " \/cos?(v) _COS2((L)> (v) dud

us
2

O

Remark 2.4.4. As aconsequence of Propositions 2.4.1 and 2.4.3, we observe the following couple

of points.

1. The orientable and nonorientable systoles of F, agree with those of its dual F). Hence,
sys(MF,) = sys(Mg:). Moreover, computations similar to those in Propositions 2.4.1
and 2.4.3 show that h(Mp:) = m(1 — cos(a)) and volyr(Mps) = 27 sin®(a). This means

that for both Fj, and its dual F;, we have % — % when a — %

2. The Finsler Mobius bands My, with a € (0, §] attain the equality case in (2.1.3) when

sys(M) = h(M).

2.5 Systolic inequalities on wide Finsler Mobius bands

In this section, we give a proof of Theorem 2.1.3 for wide Finsler Mobius bands, that is, when

A > 1. More precisely, we prove the following result.

Proposition 2.5.1. Let M be a Finsler Mobius band with h(M) > sys(M). Then

volyp (M) > %Sys(M) (sys(M) + h(M)). 25.1)
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We present examples showing this result is optimal at the end of this section, ¢f. Example 2.5.4.

Proof. Consider
-1
sys(M)}.

Slightly perturbing the distance function d(., GM) if necessary, we can assume that this distance

U:={zeM|d(z,0M) <

function is a Morse function on M for which ’\ L sys(M) is a regular value. In this case, U is
a surface with boundary. If M has some “big bumps , the surface U may possibly have some
holes. More precisely, the surface U may not be a topological cylinder as some of its boundary

components may bound topological disks in M.

Let U be the union of U with the topological disks of Ml bounded by the boundary components of
U. Under this construction, Uis a cylinder one of whose boundary components agrees with OM.
Clearly, the height of Uis equal to 252 sys(M). Furthermore, since the inclusion U C M induces
a mp-isomorphism, we have sys(U) > sys(M). Applying Proposition 2.3.5 to the cylinder U
yields

volgr(U) > sys(M)?2. (2.5.2)

Now, consider the Finsler Mobius band M_ := M \ .

Lemma 2.5.2. The height and systole of M_ satisfy
h(M_) =sys(M) and sys(M_) > sys(M).

Proof. Let vy_ be a height arc of M_, cf Definition 2.3.4. By construction, U = OM_ U OM
and the points of M _ are at distance 25* Sys( M) from OM. Therefore, the two endpoints of y_
can be connected to OM by two arcs 71 and ~o of U, each of length /\ sys(M). Moreover, the
arc y := y— U~ U~z with endpoints in OM induces a nontrivial Class in m (M, OM). Therefore,
since h(M) = Asys(M), we obtain

h(M-) = £(v) — (A — 1) sys(M)
> h(M) — (A — 1) sys(M)
> sys(M).

Now, let vy be a height arc of M. By definition, we have £(v) = h(M) = Asys(M). The part yN U
of vin U is made of two arcs, each of length at least % sys(M). Moreover, the arc y "M_ with

endpoints in OM_ induces a nontrivial class in 71 (M_, OM_ ). Hence,

h(M_) < €(v) — £(y N D)
< (M) — (A — 1) sys(M)
< sys(M).
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Since the inclusion M_ C M induces a 71 -isomorphism, we obtain
sys(M_) > sys(M).
O]

Consider the projective plane RP? defined as the quotient M[_ /OM_, where the boundary OM_
is collapsed to a point. Strictly speaking, the Finsler metric on RP? has a singularity at the point

to which OML_ collapses, but we can smooth it out.

The following result allows us to derive the systole of RPP?.

Lemma 2.5.3. Let RP? be the projective plane defined as the quotient M[/OM of a Finsler Mobius
band M. Then,
sys(RP?) = min {h(M), sys(M)}

where RP? is endowed with the quotient metric.

Proof. Let + be a noncontractible loop in RP2. The curve 7 lifts either to a noncontractible loop
in M or to a noncontractible arc in M joining two points of the boundary OM. In the former
case, the length of 7 is at least sys(M), while in the latter, it is at least /(M). On the other hand,
we can easy construct noncontractible loops in RP? of length sys(M) or h(M). O

From Lemma 2.5.3 and Lemma 2.5.2, the systole of RP? is equal to sys(M). Applying Theorem
2.1.1 to RP?, we obtain

2
volgr(M_) = VOIHT(RPQ) > — sysQ(M).
T

This inequality combined with (2.5.2) yields

~

volgr (M) = volgr(U) + volgr(M_)

>1+)\

sys(M)?.
Hence the result. O

We conclude this section by describing extremal and almost extremal Finsler metrics when A > 1.

Example 2.5.4. Let A € [1, +00).

(E.1) The horizontal translation 7 of vector 7 e, is an isometry of the plane R? endowed with the
sup-norm. The quotient of the strip R x [0, (A — 1) §] by the isometry group () generated
by 7 is a cylinder C'. The Finsler mobius band M obtained by gluing a boundary component
of C' to M, along OMp, with a = %, ¢f. Section 2.4, satisfies volyr(M) = (1 + \)m,
sys(M) = 7 and h(M) = Ar. See Figure 2.4.(A).
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Figure 2.4: Almost extremal Finsler Mobius bands when A (M) > sys(M).

a. Extremal. b. Almost extremal.

(E.2) Endow the plane R? with the sup-norm. The quotient of the strip R x [—5, 5] by the
group generated by the map (x,y) — (x + m, —y) is a Finsler Mobius band M, with
volgr(My) = 27, sys(M) = m and h(M,) = 7. Let C be the Finsler cylinder defined
in (E.1). Attach C to M via a cylindrical part of arbitrarily small area, cf. Figure 2.4.(B), so
that the resulting space is a Finsler Mobius band M with sys(M) = 7, h(M) = 11 Aw and
volgr (M) = vao(\ + 1)m, where vy, 12 > 1 are arbitrarily close to 1. This Finsler Mobius

band is almost extremal for the inequality (2.5.1) when A > 1.

2.6 Systolic inequalities on narrow Finsler Mobius bands

In this section, we give a proof of Theorem 2.1.3 for narrow Finsler Mobius bands, that is, when

A < 1. More precisely, we prove the following result.

Proposition 2.6.1. Let M be a Finsler Mobius band with h(M) < sys(M). Then
2
volgr(M) > — sys(M) h(M).
T

This inequality is optimal. Extremal Finsler metrics can be constructed as follows.

Example 2.6.2. Let A < 1. Endow the plane R? with the sup-norm. The quotient of the strip
R x [=5 A, §A] by the group generated by the map (x,y) +— (z + 7, —y) is a Finsler Mobius
band M with vol g (M) = 2A7, sys(M) = 7 and h(M) = Ax.

Before proceeding to the proof of this proposition, we need to introduce a few definitions and

notions.
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Definition 2.6.3. The orientable double cover of a Finsler Mobius band M is a cylinder denoted
by C'. The points of C' which are at the same distance from each boundary component of C' form
a simple closed curve c invariant under deck transformations. The soul of M, denoted by o, is
defined as the projection of ¢ to M. Note that ¢ is a nonorientable simple closed curve of M

whose homotopy class generates 71 (M).

Let K be the Finsler Klein bottle obtained by attaching to M another copy M’ of M along their
boundary. (The Finsler metric on K may have a singularity line along OM.) The isometry of K
switching the souls of M and M/, and leaving OM pointwise fixed is called the soul-switching
symmetry of K.

Let s, h € R,. The systole-height inequality on the Mobius band is said to be satisfied for (s, h)
if for every Finsler Mobius band M with sys(M) > s and h(M) > h, we have

2
VOIHT(M) Z — sh.
™

By scale invariance, if the systole-height inequality is satisfied for (s, h), then it is also satisfied
for (s', 1) with Z—,/ =1

We first prove the following preliminary result.

Lemma 2.6.4. Let A € (0,1]. Suppose that the systole-height inequality on the Mobius band is
satisfied for (s, h) with % = \. Then, it is also satisfied for (s, h) with % = 3.

Proof. Let M be a Finsler Mobius band with sys(M) > s and h(M) > h, where 7 = % Consider
the Klein bottle K made of two copies of M defined in Definition 2.6.3 and cut it open along the
soul o/ of M. The resulting surface is a Finsler Mobius band denoted by 2M whose boundary

component double covers ¢’ in K.

Let o be a noncontractible loop of 2M. Decompose « into two parts @ = o N M and a’ =
aNM with @ = a U d’. The parts a and o’ form two collections of arcs with endpoints lying
in OM = M. By construction, the image a” of a’ by the soul-switching symmetry lies in M.
Furthermore, the union @ = a U a” forms a closed curve lying in M and homotopic to « in 2M
(and so noncontractible in M). Since & has the same length as «, we conclude that sys(2M) >
sys(M) > s.

Actually, since the inclusion M C 2M is a strong deformation retract, we derive the relation

sys(2M)) = sys(M). But we will not make use of this equality in the sequel.
By construction, the distance between the soul 0 and OM (and between ¢’ and M) is at least %h(M).
This implies that h(2M) > 2h(M) > 2h.

Actually, we can show that h(2M) = 2h(M) (but we will not make use of this relation after-
wards). Indeed, let « be a height arc of M. By definition, /() = h(M). Denote by « its image
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in M by the soul-switching symmetry of K. The trace of the union o U o’ to 2M defines an arc
with endpoints in 9(2M) inducing a nontrivial class in 71 (2M, 9(2M)). The length of this arc is
twice the length of a.. Therefore, h(2M) < 2h(M). Hence, the equality A (2M) = 2h(M).

In conclusion, the Mobius band 2M satisfies sys(2M) > s and h(2M) > 2h. Since 2 = ), the

s

systole-height inequality is satisfied for (s, 2h) by the lemma assumption. Therefore,
4
2VO]HT(M) = VO]HT(QM) > — sh
T
and the result follows. O

We establish a second preliminary result.

Lemma 2.6.5. Let A1, o € R such that 0 < A1 < Ay < 1. Suppose that the systole-height
inequality on the Mobius band is satisfied for (s, h) with % = A1 or Aa. Then, it is also satisfied
for (s, h) with% = %

Proof. Let M be a Finsler Mobius band with sys(M) > s and h(M) > h, where % = %
Consider the Klein bottle K made of two isometric Mobius bands M and M’ with souls ¢ and ¢’

defined in Definition 2.6.3. Consider also

M = {z e K| Xod(z,0) < A\ d(z,0")}
and

My = {z € K| Ao d(x,0) > A1 d(x,0")}

Note that if we drop the multiplicative constants A\; and A3 in the definitions of M; and My, we
obtain M and M.

The subset M is a Finsler Mobius band contained in M. Similarly, the subset M is a Finsler
Mobius band containing M. Observe also that the Mobius bands M; and M5 cover K and that

their interiors are disjoint.

Every point z € OM]; satisfies the equality
A2 d(Z,Ul) =)\ d(Z,O'Q). (2.6.1)

By symmetry, the distance between 01 = o and 02 = ¢’ is equal to h(M). It follows by the
triangle inequality that
d(z,01) + d(z,09) > h(M). (2.6.2)

As a result of the relations (2.6.1) and (2.6.2), we obtain

Ai
A1+ A2

d(z,04) > h(M). (2.6.3)
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Now, let a be an arc of M[; with endpoints z, y € OM]; inducing a nontrivial class in 71 (M;, OM;).

As « intersects o;, we deduce from (2.6.3) that

) > d(z, 05) + d(y, 05) > )\lzii)\Qh(M).
e B(M) > —22 (M) > —2 (2.6.4)
YT M+ T At o
In another direction, we can also bound from below the systole of M; and M as follows.
For the systole of M, since the inclusion My C M induces a 7 -isomorphism, we derive
sys(M;) > sys(M) > s. (2.6.5)

Note that the first inequality may be strict as the inclusion M; C M is strict.

For the systole of My, we argue as in Lemma 2.6.4. Let o be a noncontractible loop of M.
Decompose « into two parts a = a N M and o’ = a "M’ with @« = a U @/. The union & =
a* U a', where a* is the image of a by the soul-switching symmetry of K, forms a closed curve

of length /() lying in M and homotopic to « in My. Hence,

sys(My) > sys(M) > s. (2.6.6)

The systole-height inequality on the Mobius band is satisfied for (s, /\IQT)‘Z)\Qh) from the lemma

assumption since Alzi’i\2 % = ;. From the bounds (2.6.4), (2.6.5) and (2.6.6), this inequality applies
to M; and yields

4 N
volgr (Mz) > !

= . 2.6.7
T T A+ A 5 ( )

Finally, recall that the Mobius bands M; and My cover K and that their interiors are disjoint. By
adding up (2.6.7) for i = 1,2, we conclude that

2volgr (M) = volgr(K)

4
= volyr(My) + volgr(Ma) > — sh
T

Hence the result. O

Remark 2.6.6. At first glance, it seems more natural to assume that sys(M) = s and h(M) = h
in the definition of the systole-height inequality, c¢f. Definition 2.6.3. Observe that the proof
of Lemma 2.6.4 carries over with this alternative notion. However, we have not been able to
directly prove a result similar to Lemma 2.6.5 with this more restrictive notion. The reason is
that the inequality (2.6.5), namely sys(M;) > sys(M), may be strict as the inclusion M; C M is

strict. To get around this subtle difficulty, we relaxed the original definition and formulated the
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systole-height inequality in terms of lower bounds for the systole and the height of the Mobius
band.

We can now proceed to the proof of Proposition 2.6.1.

Proof of Proposition 2.6.1. By Lemma 2.6.4, for every nonnegative integer k, the systole-height
inequality on the Mobius band is satisfied for (s, h) with % = 2% Combined with Lemma 2.6.5,
this implies that the systole-height inequality is satisfied for every (s, h) where % is a dyadic
rational of (0, 1). Since the height, the systole and the volume are continuous over Finsler metrics,

the result follows from the density of the dyadic rationals in [0, 1]. O

2.7 Systolic inequality on Finsler Klein bottles

In this section, we show that the systolic area of Finsler Klein bottles with soul, soul-switching

or rotational symmetries is equal to %

Definition 2.7.1. Recall that every Riemannian Klein bottle is conformally equivalent to the
quotient of R? by the isometry group G generated by the glide reflection (z,y) +— (x + 7, —¥)
and the vertical translation (z,y) — (z,y + 2b) with b > 0.

The flat Klein bottle K = R?/G decomposes into two Mobius bands whose souls correspond
to the projections of the lines {y = 0} and {y = b}. The boundary of the two Mobius bands
agrees with the projection of the line {y = 2} (or {y = —%}). A Finsler metric on K has a soul
symmetry if its lift to R? is invariant by the map (x,%) + (z, —y). Similarly, a Finsler metric
on K has a soul-switching symmetry if its lift to R? is invariant by the map (z,y) — (z,b — ).
Finally, a Finsler metric on K has a rotational symmetry if its lift to R? is invariant by the map

(z,y) — (x + 0,y) for every 6 € [0, 27].

These definitions are consistent with the notions introduced in 2.6.

In 1986, C. Bavard established an optimal isosystolic inequality for Riemannian Klein bottles, cf.
[Ba86]. Alternative proofs can be found in [Sak88, Ba88, Ba06]. All the proofs are based on the
uniformization theorem. In fact, as mentioned in the introduction, the problem boils down to
consider Riemannian Klein bottles invariant under soul (and rotational) symmetry. These Klein
bottles are made of two isometric copies of Riemannian Mobius bands. Thus, in the end, the
systolic inequality on Riemannian Klein bottles follows from optimal systolic inequalities on
Riemannian Mobius bands, ¢f. [Pu52, Bl61].

There is no known optimal isosystolic inequality on the Klein bottle for Finsler metrics. However,
we obtain the following partial result similar to the Riemannian case. Note that in the Riemannian

case, the hypothesis is automatically satisfied by an average argument.
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Theorem 2.7.2. Let K be a Finsler Klein bottle with a soul, soul-switching or rotational symmetry.

Then
vol g (K)

2
> Z
sys?(K) —

, (2.7.1)

Moreover, the inequality is optimal.

Let K = R?/G be a Finsler Klein bottle (with or without symmetry). Denote by M the Finsler Mo-
bius band obtained by cutting K open along the soul given by the projection of the line {y = b}
to K. The proof of the inequality (2.7.1) in Theorem 2.7.2 follows by combining the next three

lemmas.

Lemma 2.7.3. If h(M) > sys(K) then the inequality (2.7.1) holds true.

Proof. The inclusion M C K induces a 7;-isomorphism. Hence, sys(K) < sys(M). Now, we

only have two cases to consider.

First, if h(M) < sys(M), then we deduce from Theorem 2.1.3, first case, that

volpr(K) S vol g (M)
sys*(K)  sys(M) h(M)

>

3w

Second, if A(M) > sys(M), then we deduce from Theorem 2.1.3, second case, that

volpr(K) _ 1 L+ sys(M)\ sys(M) h(M)
sys’(K) — h(M) sys?(K)
- 1/ h(M) n sys(M) sys(M)
— o \sys(K)  sys(K) / sys(K)
2
2 )
T
since both S};%Q) and Z}; SS((I%)) are greater or equal to 1. O

The next three lemmas show that the assumption of Lemma 2.7.3 is satisfied when the Finsler

metric on K has soul, soul-switching or rotational symmetries.

Lemma 2.7.4. IfK is a Finsler Klein bottle with a soul symmetry then h(M) > sys(K).

Proof. Observe that the soul symmetry of K leaves both M and OM invariant. Given an arc «
of M, we denote by a* the arc of M symmetric to « by the soul symmetry. Let v be a height
arc of M, ¢f. Definition 2.3.4. This arc decomposes into two subarcs o and 3 connecting OM
to the soul of M with ¢(«) < (). The arc o U o* with endpoints in M induces a nontrivial
class in 71 (M, OM) of length at most the length of v = a U 5. By definition of h(M), we

conclude that ¢ Ua™* is as long as 7y and so is length-minimizing in its relative homotopy class. In
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particular, it is geodesic. Thus, the arc v, which has the subarc « in common with a U o*, agrees
with a U o*. In particular, it is invariant by the soul symmetry. As a result, the arc v induces
a noncontractible loop on K after identification of the points of M under the soul symmetry.
Hence, /(a) > sys(K). O

Lemma 2.7.5. IfK is a Finsler Klein bottle with a soul-switching symmetry then h(M) > sys(K).

Proof. Since the Finsler Klein bottle K has a soul-switching symmetry, we can assume that it is
composed of two isometric Finsler Mobius bands M; and M. By symmetry, we have h(M) =
2h(M;). Given an arc « of M, we denote by a* the arc of My symmetric to « by the soul-
switching symmetry. Let v be a height arc of Ml;. This arc decomposes into two subarcs
and /31 connecting OM; to the soul of Ml;. The arc n =: oy U aj U 31 U 8], i.e, the union of
the arc v and its symmetric image 7*, has endpoints in M and induces a nontrivial class in
71 (M, OM) of length equal to 2h(M; ). Moreover, this arc 7 induces a noncontractible loop on
K after identification of the points of OM under the soul-switching symmetry. We conclude that
h(M) > sys(K). O

Lemma 2.7.6. IfK is a Finsler Klein bottle with rotational symmetry then h(M) > sys(K).

Proof. Observe that the rotational symmetries of K leave both M and OM invariant. Given an
arc o of M, we denote by o the arc of M symmetric to a by the rotational symmetry of angle 6.
Let v be a length-minimizing arc of M parametrized (proportionally to its length) by [0, 1] with
endpoints in OM inducing a nontrivial class in 7 (M, OM). Note that 7 is a geodesic arc of
length h(M). By the first variation formula for Finsler metrics, ¢f. [Sh01], the geodesic arc
is perpendicular to OM. It follows that the endpoints v(0) and (1) of v in OM are distinct.
Since the Finsler metric is invariant under rotational symmetry, there exists § € (0,27) such
that v%(0) = ~(1). Both symmetric arcs v and 7Y are perpendicular to M. In particular, their
tangent vectors at 7/(0) = ~(1) coincide up to sign. Therefore, the geodesic arcs v and ~*
agree up to reparametrization. More precisely, 7/(s) = (1 — s) for every s € [0,1]. Thus,
7?9 = (4%)? = +. Hence, 20 = 27, that is, @ = 7. Therefore, the arc  projects to a closed curve
in K. It follows that the length of - is at least sys(K). O

The following example shows that the inequality (2.7.1) is optimal.

Example 2.7.7. The quotient of R?, endowed with the sup-norm, by the isometry group G
generated by the glide reflection with parameter b = 7, cf. Definition 2.7.1, is a Finsler Klein

bottle with soul, soul-switching and rotational symmetries, of area 27 and systole 7.

We believe that Theorem 2.7.2 holds true for every Finsler Klein bottle (not necessarily invariant
under soul, soul-switching or rotational symmetries). More precisely, we state the following

conjecture.
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Conjecture. Let K be a Finsler Klein bottle. Then

vol HT (K)
sys?(K)

2
> =
7T

Moreover, the inequality is optimal.

Remark 2.7.8. If the conjecture is true, the Finsler systolic areas of RIP2, T? and K would be the

same.

2.8 A non-optimal systolic inequality on Finsler Klein bottles

In this section, we present a non-optimal systolic inequality on Finsler Klein bottles.

Proposition 2.8.1. Let K be a Finsler Klein bottle. Then
VO]HT(K) @
2K S

>
sys?(K) —

Proof. Every symmetric convex body C' C R"™ admits a unique ellipsoid F(C') of maximal volume
among the ellipsoids contained in C'. This ellipsoid, called John’s ellipsoid, continuously varies
with C' for the Hausdorff topology. Furthermore, it satisfies the double inclusion, c¢f. [Gru07,
Corollary 11.2] for instance,

E(C)c C cnE(). (2.8.1)

Given a Klein bottle K with a Finsler metric F’, we define a continuous Riemannian metric g on K
by replacing the Minkowski norm F); on each tangent space 7KK by the inner product induced
by the John ellipsoid E(B, ), where B, is the unit ball of F,. The double inclusion (2.8.1) satisfied
by E(B,) implies that % V9 < F < /9. Hence,

sys(F) <sys(g) and %VOI(Q) < volgr(F) (2.8.2)

From the optimal Riemannian systolic inequality on the Klein bottle [Ba86], we obtain

1
volgr(F) > §V01(9) > - sys?(g) >
O

Remark 2.8.2. The naive volume bound in (2.8.2) can be improved into vol(g) < § volgr(F),
see the proof of [ABT, Theorem 4.11]. This leads to the better lower bound % in Proposi-
tion 2.8.1.
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Chapter 3

A systolically critical genus two

surface

Nous démontrons une inégalité systolique critique sur la surface de genre deux. Plus
précisement, il est connu que la surface de genre deux admet une métrique Rieman-
nienne plate a singularités coniques qui est extrémale parmi les métriques a courbure
nonpositive pour I'inégalité systolique. Nous montrons que cette métrique est en fait cri-
tique pour des variations lentes de métriques, cette fois-ci sans hypothése de courbure,
pour un autre probléeme systolique portant sur les longueurs des plus courts lacets non
contractiles dans certaines classes d’homotopie libres données. Ces classes d’homotopie

correspondent aux lacets systoliques et deux-systoliques de la surface extrémale.
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Abstract. It is known that the genus two surface admits a piecewise flat metric with conical sin-
gularities which is extremal for the systolic inequality among all nonpositively curved metrics.
We show that this piecewise flat metric is also critical for slow metric variations, without cur-
vature restrictions, for another type of systolic inequality involving the lengths of the shortest
noncontractible loops in different free homotopy classes. The free homotopy classes considered

correspond to those of the systolic loops and the second-systolic loops of the extremal surface.

3.1 Introduction

We are interested in optimal geometric inequalities relating the area of a closed Riemannian
surface ¥ to the lengths of the shortest loops in certain homotopy classes. A typical example is
given by the systolic inequalities, which relate the area of the surface to the systole, that is, the
length of the shortest noncontractible loop in 3. The first known systolic inequality is due to

C. Loewner in 1949, who proved that every Riemannian two-torus (T?, g) satisfies

area(g) > ?S}’SZ(Q)y

where sys(g) denotes the systole of the torus. Furthermore, the equality holds if and only if the
torus is endowed with a flat hexagonal metric. C. Loewner did not publish his result, however
it was mentioned by his student P. Pu, c¢f. [Pu52], who established a sharp systolic inequality
on the projective plane RIP?. In this case, the equality is attained precisely by the round metrics.
More than thirty years later, C. Bavard, ¢f. [Ba86] (see also [Sak88]) proved a sharp systolic
inequality on the Klein bottle K. Here, the extremal metrics are not smooth. These are the only
manifolds for which an optimal systolic inequality is known. All these systolic inequalities can

be written as follows. If

sys(g) = sys(go)

then
area(g) > area(go) (3.1.1)

where gq is the extremal metric in each of these cases.

Optimal systolic-like inequalities, i.e., inequalities that relate the area to the product of the lengths
of the shortest loops or arcs in different relative homotopy classes are known only for the two-
torus T2, cf. [Ke67], the Klein bottle K, cf. [Ba06, EY15], and the Mobius band M, c¢f. [Pu52, Bl61,
Ba06, EY15].

We can reformulate a systolic-like inequality as in (3.1.1). For instance, let ¢;(g) represent the

length of the shortest noncontractible loop on (3, g), that is,

ti(g) = sys(g).
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Denote by A; the subset of the free homotopy classes generated by the systolic loops of (3, g)

and their multiples:

A= {(F) | (7) # 0,44, (7) = a(g0) and k € Z*}. (3.1.2)

Similarly, let /5(g) be the length of the shortest noncontractible loop on (3, g) which is not

homotopic to a systolic loop or its multiples. That is,

14 = inf 14 .
2(9) = ity ()
Denote also by
Ar = {(7) | () ¢ A1 and £, () = L2(g0)} (3.1.3)

the subset of the free homotopy classes generated by the shortest noncontractible loops of (3, g)
which are not freely homotopic to systolic loops or their multiples. As a particular case of
L. Keen’s optimal systolic-like inequality for the two-torus in [Ke67], we have the following.
If
{ t1(g) > €1(g0)
l2(g) = €2(g0)

then
area(g) > area(go).

Recently, M. Katz and S. Sabourau, ¢f. [KS06], proved that there exists a piecewise flat metric g
on the genus two surface o which is extremal among all nonpositively curved Riemannian
metrics. This metric is composed of six regular octagons. It admits regions where only one
systolic loop, i.e., a noncontractible loop of length the systole, passes through every point. Hence
this metric cannot be extremal for the general systolic inequality, i.e., without restriction on the
curvature. This follows from a result of E. Calabi, cf. [Ca96], which says that at least two systolic
loops pass through every point of a systolically extremal surface. In fact, the non-extremality
of the metric gg for the systolic inequality can also be deduced from a result of S. Sabourau,
cf. [Sa04], which says that no flat metric with conical singularities is extremal for the systolic

inequality in genus two.

We observe that the piecewise flat metric gy defined on the genus two surface ¥ may be a
potential extremal metric for another systolic problem on 2. This observation follows from
some geometric properties of the surface (X2, go). First, it is known that the systolic loops cover
a systolically extremal surface. In our case, the ¢1-loops and the ¢3-loops cover the surface .
Here, by an ¢;-loop we mean a loop of length ¢;(gp) in (X2, go) whose free homotopy class lies
in A;. Second, the unit tangent vectors of these ¢;-loops are well distributed on each tangent
plane of the surface. More precisely, their convex hull forms a regular octagon on these tangent

planes. In general, the convex hull of the unit tangent vectors of systolic loops on all the known
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systolically extremal surfaces is symmetric. Finally, an extremal surface of genus at least two
tends to have flat regions, c¢f. [Ca96, Br96].

In [Ca96], E. Calabi described two piecewise flat genus three surfaces and conjectured that one
of them is the global minimum for the systolic inequality. Later, S. Sabourau, cf. [Sal1], proved
that these two genus three surfaces are critical for the systolic inequality with respect to slow
metric variations. Of course, the systolic volume functional is not necessarily differentiable and
an adequate notion of criticality needs to be introduced. The notion of criticality used in [Sa11]
was introduced in [Na96, EI00] to study the Riemannian surfaces that maximize the product of
the area with the first nonzero eigenvalue of the Laplacian. Other notions of systolically critical
metrics were used in [Bal06, Bal10, Sa10, AB14].

In this chapter we show that the metric gg on the genus two surface ¥ is critical in the sense of

[Na96, EI00, Sa11] for slow metric variations. More precisely, we prove

Theorem 3.1.1. Let g; be a slow metric variation of gy defined on the genus two surface Xo. If
t1(g9t) = €1(go) and £y(ge) = L2(go), then

area(g) > area(go) + o(t).

The slow metric variations involved in Theorem 3.1.1 are analogous to those defined by S. Sabourau
in [Sal1]. We refer to Definition 3.4.1 for a precise definition of these metric variations and to
the last section of [Sa11] for examples. Observe for instance that deforming the regular octagons
composing the extremal surface (X2, go) into non-regular octagons gives rise to a slow metric

variation.

With the exception of some recent proofs of systolic inequalities, cf. [Iv02, Sa10], and systolic-like
inequalities, cf. [SY16], on the projective plane RP?, the two-torus T2 and the Mobius band M,
all the other known proofs of the aforementioned optimal geometric inequalities require the
uniformization theorem as a main tool. In our proof of Theorem 3.1.1, we do not make use of the
uniformization theorem. Instead, we rely on recent calibrating methods, cf. [Iv02, Iv11, Sal1].
Briefly, we embed the universal cover 3, of the genus two surface Y in an infinite-dimensional

space R as follows. Given that ¢;(g) > ¢;(go), we construct a 1-Lipschitz equivariant map
09 3y — R

using the Busemann functions induced by the lifts of the ¢;-loops of X, cf- Section 3.3. Then, we
introduce an appropriate infinitesimally calibrating two-form w on R*> whose pull-back passes

to the quotient on the surface 5. This allows us to show that

/ (U9)*w < ¢p area(Xa, g)
Yo
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for every Riemannian metric g on Xo, where ¢q is a sharp positive constant. Moreover, the

equality holds if g = go. Finally, we prove that if (g¢):>0 is a slow metric variation then

/ () / ()" = oft).

This completes the proof, cf. Section 3.4.

3.2 An extremal piecewise flat metric in genus two

In this section we provide a description for the critical piecewise flat genus two surface and we

introduce some notations and definitions.

The Bolza surface ®B is a genus two Riemann surface. It is the smooth completion of the smooth
affine algebraic curve
vyt =2° —x. (3.2.1)

The set {—1,0,1, —3,4, 00} of roots of the polynomial (3.2.1) (including the point at infinity) cor-
responds to the set of vertices of the regular octahedral triangulation of the Riemann sphere S?
under the conformal stereographic projection. Hence, these six points can be identified with the
ramification points of the ramified conformal double cover Q : B — S2, or equivalently, with

the Weierstrass points of B.

The conformal class of the Bolza surface ‘B admits a piecewise flat nonpositively curved Rie-
mannian metric go with 16 conical singularities whose orientation-preserving isometry group is
isomorphic to the automorphism group of *B. This metric gy has been introduced by M. Katz and
S. Sabourau in [KS06], where they prove that it is extremal for the systolic inequality among all
nonpositively curved metrics on the genus two surface 9. The metric go, defined up to homo-
thety, on ¥ is isometric to the piecewise flat genus two surface composed of six identical flat
regular octagons {2; with the identifications given in Figure 3.1. The Weierstrass points of ‘B
correspond to the centers of the octagons and the 16 conical singularities are located at their

vertices.
Denote by £ the length of an edge of a regular octagon {2, of go. We have
area(go) = 12(1 + V2)#2
The systole ¢1(gp) of the surface (X2, go) is computed in [KS06, Lemma 3.2]. Namely,

(1(g0) = 2(1 + V2)4.
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Figure 3.1: The critical surface (X, go) is isometric to the to the piecewise flat genus two surface
composed of six identical regular octagons with the identifications given in the figure.

By using similar arguments, we calculate ¢2(go). In particular,
la(g0) = 2(2 4+ V2)h.

Recall that an ¢;-loop is a loop in (X2, go) of length ¢;(go) and whose free homotopy class lies
in A;, cf. (3.1.2) and (3.1.3). We define an ¢;-band as follows.

Definition 3.2.1. Let («) be a free homotopy class in A;. The ¢;-loops in («) are parallel to each
other and form a flat cylinder B, of height £ if ¢ = 1 and gﬁ if ¢ = 2. Such a cylinder B,
will be called an ¢;-band of (X2, go). The soul of an ¢;-band B<a> is the ¢;-loop of B<a> equidistant

from the boundary components of the ¢;-band.

The intersections of the ¢;-bands decompose the surface ¥y into 150 polygons, cf. Figure 3.2.
These polygons define four regions Ry, ..., R4 depending on the number of ¢;-loops that pass
through every point in their interior. More precisely, such a polygon Ay lies in a region Ry
if through every point in its interior pass exactly 2k oriented ¢;-loops and 8 — 2k oriented (2-
loops, cf. Figure 3.2. Hence, every region Ry, with & # 4 is composed of exactly 48 identical
polygons Ay (with 8 polygons in each octagon), while the region R4 is composed of only 6
identical polygons A,4. Observe that the polygons Aj, As, A3 and A4 have the shape of a right
isosceles triangle, a kite, a right isosceles triangle and a (small) octagon. Furthermore, the right
isosceles triangles A are the only polygons which have an edge in common with the six regular

flat octagons forming the critical surface (22, go), namely their hypothenuses coincide with the
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edges of the regular octagons €2y.

Fix an orientation on Y9. Let {2 be one of the six regular octagons composing the surface (32, go).
Denote by (32, o) the universal cover of (£3, o). Let Q2 be a lift of €2 in the universal cover 35
and let £ be an (oriented) edge of the regular octagon Q. Moreover, let A, be a lift of the poly-
gon Ay in ig. The souls of the ¢;-bands lift to ig as follows.

Definition 3.2.2. An {1-direction of (EQ, Jo) is a go-unit vector ( = Cé based at the center of {
and pointing in the same direction as £, cf. Figure 3.2. The unit vector ¢ induces a geodesic line c¢
on (32, o) such that

%0)= ¢
The projection c¢ of ¢¢ to (X2, go) is a closed geodesic curve which coincides with the soul of the

{1-band By.).

Now, denote by z¢ the point of Q lying in the perpendicular bisector of £ and at distance ?ﬁ
from &£. (Recall that # is the side length of Q.) Note that the point z¢ lies in the right isosceles
triangle A1 of Q with hypotenuse &.

Definition 3.2.3. An /y-direction of (ig, go) is a go-unit vector { = 5&% based at x¢ and pointing
in the same direction as the edge &, cf. Figure 3.2. This unit vector £ induces a geodesic line ¢,
on (33, o) such that

The projection c¢ of ¢¢ to (22, go) is a closed geodesic curve which coincides with the soul of the
£o-band 5’(%).

Remark 3.2.4. In what follows, we will replace the symbols ¢ and £ by v when there is no need

to distinguish between an ¢;-direction and an ¢2-direction. Moreover, the indices Q and € in Vé

will be omitted.

3.3 Busemann functions and calibrating forms

In this section, we introduce some notations and preliminary results that will be useful in our

proof of Theorem 3.1.1.

Definition 3.3.1. Let v be an ¢;-direction. Extend v to a map, still denoted by
v:R = Ug, ig
defined as v(s) = ¢, (s). In particular, v(0) = v.

Along with the metric gg, consider another Riemannian metric g defined on ¥ and denote by g
its lift to ig.
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Figure 3.2: A flat regular octagon Q of the metric Jo-

Definition 3.3.2. Let v be a gp-unit vector tangent to a geodesic line induced by an ¢;-direction.

Define the Busemann function by, : S5 — R as

by () = limsup dg(x, ¢, (¢))¢i(g0) — t £({cv))

t—o00

where ¢, is the gg-geodesic line induced by v and ¢, is its projection to Xs.

Here, £4((c,)) denotes the smallest length of a noncontractible loop in the free homotopy class (c, )

of ¢, with respect to the Riemannian metric g.

Remark 3.3.3. Contrary to the original definition of a Busemann function, cf. [BH99], the line ¢,,

is geodesic for gp but not for g. Moreover, the function

h:R—R
t = dg (2,8, (1)i(g0) — t £y({cn))

which appears in Definition 3.3.2, is not necessarily non-increasing.

Proposition 3.3.4. The real function h is bounded.

Proof. By the triangle inequality, we obtain
h(t) = dg(c,(0), ¢ (1) Lilg0) — thy((cr)) — dg(, ¢,(0))Li(g0)- (3:3.1)

Let 3 be alength-minimizing loop of (3, ¢) in the homotopy class of ¢,,, that is, £4(3) = £4((c.)).

Let [t]; be the integer part of %, that is,

[t]i = max{k eN | t> k&(go)}
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We have
[t]ili(g0) —t > —Li(go)- (3.3.2)

Since the genus two surface is orientable, the [t];-iterate of /3 is length-minimizing in its homo-

topy class with respect to g, cf. [Gr99]. Let 7 in S bea length-minimizing arc connecting ¢, (0)

to ¢, ([t];). Its projection 7 to ¥ is homotopic to i and its length satisfies the two relations

ly(y) = dg(cy(0), cu([t]i))

and
Cg(v) = [t]i Ly({cv))- (3.3.3)

Combining (3.3.1), (3.3.2) and (3.3.3), we deduce that the map h is bounded from below.

Now, we show that the map h is bounded from above. Indeed, by the triangle inequality, we

derive that

h(t) < {dg(x,,(0) + dg(¢,(0), & ([t]:)) + dg (@ ([t]:), € (1) — [tlilg({cv)) } Li(g0)-

Moreover,

d5(@(0),3 (1)) — [ty (cy)) < 2 diam (S, g). (33.4)

Indeed, let v be a g-length minimizing loop in the free homotopy class (c, ), that is, £,(y) =
l4({cy)). Let o be a length-minimizing arc joining ¢, (0) to 7. We deduce that

d5(@,(0), & ([t):)) < Ly(a Uy Ua™) < £,(31%) + diam(5s, g).
Then, the inequality (3.3.4) is satisfied. Furthermore,
a5(@ (1), E(t)) < diam(Ss, g).
This shows that & is bounded from above. O

Definition 3.3.5. The map U7, : 35 — R induced by an ¢;-direction v, cf. Definitions 3.2.2 and
3.2.3, is defined as

1
) €i(90)lg({cv)) Jryt:(g0)2 l’(s)( ) —V(S)( )

where v(s) = ¢, (s), cf. Definition 3.3.1.

Example 3.3.6. If ¢ = g, the go-gradient V,UY’ is a go-unit tangent vector parallel to and

pointing in the same direction as the /;-direction v.

Proposition 3.3.7. Let v be an {;-direction. The map U} satisfies the following properties:
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1. It is differentiable almost everywhere.
2. 09 = -0,
3. The differential of the map V{, depends only on the oriented {;-band ggenerated by the vec-

torv.

Proof. For (1), the map WY is 1-Lipschitz for the supremum norm as the Busemann function b},

is £;(go)-Lipschitz and ¢;(g) > ¥;(go). Hence, it is differentiable almost everywhere by the

Rademacher theorem. Part (2) follows directly from Definition 3.3.5. For (3), let v and 7 be
two ¢;-directions generating the same oriented ¢;-band. That is, their basepoints lie in the same
¢;-band and the vectors point in the same direction. Recall that v(s) = ¢, (s), ¢f. Definition 3.3.1,
and the same with 7). The definition of ¢;-directions and the assumption on the vectors v and

imply that
k
n(s) = v(s + —ti(g))

for some integer k with n = 2if¢ = 1 and n = 4 if ¢ = 2. We derive easily from Definition 3.3.5
that
d¥j = dvj.

This completes the proof. O

Let I' be the deck transformation group of 5. The Jo-geodesic line ¢, induces a unique ele-

ment 7, in I that leaves ¢, globally invariant and such that

Y- (8) = (s + £i(go))-

Moreover, we define an action * of I" on the set of unit tangent vectors to the geodesic line ¢, as

vHv(s) = (7-6)(s)
where v € T,

We state now the following properties of the map ¥7.

Proposition 3.3.8. Let v be an {;-direction. The map V7, : S o R satisfies the following proper-

ties:

1. It is equivariant, that is, for every~y in I,
Vi, (v.x) = V().
2. It passes to the quotient by the cyclic subgroup (vy,) and induces a map

U 55/ (7)) — R/i(g0)Z
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defined as
U (y,.2) = UI(2) mod ;(go).

Proof. Letx € ig and vy € I'. Since 7 is an isometry and v.¢, = ¢y.,, we derive

ty((cyun)) = Ly({ev)-

Moreover, since the distance dy induced by the Riemannian metric g is I'-invariant, we derive

that b9,, (v.z) = b} (). Hence, the desired result

w9, (1.2) = W ().

y*v
Now, since 7, 1.¢,,(t) = ¢, (t — £;(go)), we derive from the ['-invariance of d; that

dg(y-m,,(t)) = dg(z,~, "¢, (1))
= dg(z, ¢, (t — 4i(90)))-

Hence,

by () = ligigp i(go)dg(x, ¢, (t — £i(g0))) — tly({cy))

= b (x) — Li(g0)4y({c0))-

We deduce that
U (y.-x) = WY (x) — Li(go). (3.3.5)

O]

Remark 3.3.9. As a consequence of Proposition 3.3.8 and the relation (3.3.5), we deduce the

following couple of points:
L y*(d¥Y,,) = d¥} for every v € T,
2. The map W) — W passes to the quotient by the cyclic subgroup (v,) and induces a map
Uy — T 5/ () = R
such that U9 (y,.2) — U (v,.2) = U)(x) — TP (x).
Actually, these two properties hold if we replace W7, with the Busemann function b.

Let €2 be a regular octagon of the universal cover (33, o) of the surface (33, go). We order the
(oriented) edges (€7)1<j<s of Q with respect to the cyclic order induced by the orientation of Q
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by fixing an initial edge £!. Denote
£J

We state the following definition

Definition 3.3.10. Let R>* = H@RS be the infinite product of R® where Q runs over all the
regular octagons of (X2, §o). Let

I . ig — R
be the map defined as
- 9 .Q 8
T © 1 lg - Q—R
v o (W, ()
where

WQ:R‘X’—HRE;

is the canonical projection to the factor R® of R corresponding to Q. The vector 1/ is the ¢;-
direction that is parallel and point in the same direction as the gp-unit vector based at = and

tangent to the lift of an oriented ¢;-loop.

Example 3.3.11. Consider the regular octagon € in Figure 3.2. Suppose that the numbering of
the edges of 99 follows a cyclic order starting at £, then we have

\I/g

\Ijg 57’

\Ilg CG ’

\I/g <57

\I/g 547

\Ijg 537

\I/g = (\I]g 427

g
Iz, ¢ \I]ES)
where 82 is the gray polygon in Figure 3.2.

Remark 3.3.12. Note that the map WY is not well defined in the lift of the boundaries of the

polygons A since there is some ambiguity in the choice of /7,

Definition 3.3.13. Consider the two-form

8
wy = Zd:ﬂj VAN d$j+2
Jj=1

in R®. We define a two-form & on ¥, as the pull-back of wg by the map

WQO\I/]({:Q%RS
Q

on every regular octagon Q. It can be expressed on Q as

8
§=)Y dv AdYY,,,
j=1
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where 1/ = I/é and all indices j are taken modulo 8. This defines a two-form on ig that we still

denote by w.

Note that the two-form @ in Definition 3.3.13 is defined almost everywhere since the maps ¥,

are almost everywhere differentiable, cf. Proposition 3.3.7 (1).

Proposition 3.3.14. The two-form w passes to the quotient on Xo.

Proof. Let v € I'. Observe that «y preserves the octagonal decomposition of the universal cover
(ig, go) and its orientation. Therefore, for every regular octagon Q, there exists a permutation o
of {1,---,8} such that

,Yfl(gé) _ gU(j) _

7H()
That is,
7d) =0
Hence,
dq’i—w - d‘l’lg,ou) :

By the equivariance property of the map V¥, ;, cf. Remark 3.3.9, we derive

8
Vo = Z dvy AV
j=1

8
_ g g
- Z d\IJVU(J) A d\IJyU(j+2) :
j=1

Finally, since the permutation ¢ arises from an orientation-preserving isometry +, the angle

between Vf\lfia(j) and Vw\I/i(,(H?) is equal to the angle between V )\I/lg,j and V,Y(x)\I/ZgIHQ for

v(z
every x € Y at which w is defined. Therefore,

o(j+2)=0(j) +2.
Reindexing the sum in the expression of the two-forms wy and w, we derive that

*~ ~

YW= w.

Remark 3.3.15. The induced two-form on ¥ will be denoted by w.
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3.4 Proof of Theorem 3.1.1

We briefly restate the statement of Theorem 3.1.1. Let g; be a slow metric variation of gg defined
on Xo. If £1(g¢) > ¢1(g0) and ¢2(gt) > £2(go), then

area(g;) > area(go) + o(t).
Before proceeding to the proof, let us first define what we mean by a slow metric variation.

Definition 3.4.1. A slow metric variation is a family of Riemannian metrics g; with ¢ > 0 such

that for every ¢;-direction v, the following condition is satisfied
1d(bg = b%,) = d(BF = %)l 12(8,) = o(V1), (3.4.1)
where B, is a fundamental domain in (ig, go) of the band B, = B<Cu>.

Note that the map b7’ —b7° passes to the quotient by the cyclic subgroup (c, ), cf. Remark 3.3.9 (2).

Remark 3.4.2. A metric variation g; should have conical singularities as the Riemannian metric

go has conical singularities, cf. Section 3.2.

Definition 3.4.3. The F-functional of the map
U9 ;3 — R®
introduced in Definition 3.3.10 is defined as

Fn = [ w

where w is the quotient two-form on ¥, introduced in Section 3.3.

The proof of Theorem 3.1.1 follows directly from the next two lemmas.

Lemma 3.4.4. The two-form w is a calibrating form for the map V9. That is,
F(P9) < 8 area(g)

with equality for g = go.

Proof. Letz € Abea point at which the maps \Ilz ; are differentiable. Let v be a g-unit vector in
the tangent plane T,35. Since the map ‘Ili ; is 1-Lipschitz, we derive that

4,0, (v) [< 1.
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Hence

8
@ llz =l Zd‘ll,g,j /\d\Ijin lg <8
j=1
The desired inequality directly follows.

Let D denote a fundamental domain of the surface (32, go) in its universal cover made of regular
octagons Q. By Definition 3.4.3, the F-functional of the almost everywhere differentiable map
W9 is defined as

F(u9) = / w
3o
8
=> /~ > v Adv, .

£ Q“
Qep” T i=1

When g = go, the vectors 17 and 1712 form an oriented orthonormal basis. The same holds for

the covectors dgg‘lli(; and dggllfi(;-“ from Example 3.3.6. Hence,
d W95 N dp W%, = dgo
where dgo represents the area form of the Riemannian metric go. In particular, we derive
F(W9) = 8 area(go)
after passing to the quotient. O

Remark 3.4.5. An analogous two-form w along systolic directions could be defined on the genus

three surface to recover the result of [Sa11] without using the Euclidean metrics.

Lemma 3.4.6. Let g; be a slow metric variation of go. Then
F(W9) — F(P9) = o(t).

Proof. Letv = I/é, where Q is a regular octagon of (ig, go) of side length 4. By definition, an
{;-band B, = B<cy> is the quotient of

B, = {z €%y | dg,(z,&,) < A}

by the cyclic subgroup (c, ), where A is equal to %ﬁ if i« = 1 and equal to %ﬁ if i = 2. We still

denote by v the vector given by the systolic direction after passing to the quotient.

Recall that the differential d¥ of the map W7, depends only on the oriented ¢;-band B generated
by the vector v (or rather the oriented geodesic line ¢, ), but not on v, cf. Proposition 3.3.7 (3).

Moreover, by passing to the quotient, we can rearrange the sum in Definition 3.4.3 to be taken
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over all the oriented ¢;-bands B of (X2, go) as follows
<9
F(B9) Z / AUy, AU,

where v is an /;-direction that generates the ¢;-band B and the vector (v5) is an ¢;-direction
or an {y-direction orthogonal to the boundary 0B and whose basepoint lies in the same regular
octagon (2 as the vector v5. More precisely, if v points in the direction of an edge &7 of (2,
then (v5)* points in the direction of the edge £/12, where the edges follow the cyclic order
on OS2

In particular, we have
F(U9) — F(¥9) = 1) + Iy,

where

VB

gt 90 gt 1,90 1,90
I = Z/ (U, — o) AT o0 — d(T() 00 — T 30) AdT) (3.4.2)

and

g g =g
E:/i‘Pt‘mo NV = Vi)
First, we show that I; = 0. Recall that from Proposition 3.3.7(2), we have

g _ g
)t = Yt

and the same holds for ¥. Moreover, since the oriented angle between the vectors vg and (v5)~*

is the same as the one between the vectors —(v5)* and v, we can write
_ gt go 5590
=2 Z / (W), — Top) AT

after arranging the oriented bands B in the sum (3.4.2). Moreover, the one-forms d\If( )L are

constant over the bands B. Therefore, we derive
gt go =90 =gt =90
Z/ (T — T8 AT, = Z/ (T — T2 )dT, )l> .

Now, let v be a tangent vector to the boundary 05. The vector v is parallel to the ¢;-direction v.
Moreover, by definition, the unit vectors v5 and (v5)+ form an orthonormal basis. Since the
go-gradient of WY 5 satisfies
90
VU, =vB

for every /¢;-direction vg, cf: Example 3.3.6, and the same holds with (VB)J‘, we have

AUl 1 (v) = go((vs)™*,v) = 0.
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Then by Stokes’ formula, we derive that

It 90 T, 9t go
Z/Bd sz = d\p(VB Z/% (W), — W) dT)
B

=0.

Note that \I/gt - \I’go is well defined as a real function, ¢f. Remark 3.3.9 (2). Hence, the integral I;

vanishes.

Finally, we show that Is = 0. This follows directly by definition of a slow metric variation, cf.

Definition 3.4.1, and the Cauchy-Schwartz inequality. O
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