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Abstract

Due to its outstanding physical properties, graphene is expected to be-

come a new generation material, able to replace or complement traditional

semiconductors in device technology. Hence, many studies have been led

to explore the potential of this material immediately after the successful

fabrication of a single layer of graphene in 2004. However, applications

of graphene in electronic devices are still questionable due to the gapless

character of this material. In particular, regarding electronic applications,

the absence of energy bandgap in the band structure makes it difficult to

switch off the current in graphene devices like transistors. Regarding

thermoelectric properties, the gapless character is also a strong drawback

since it prevents the separation of the opposite contributions of electrons

and holes to the Seebeck coefficient. Thus, a sizable bandgap in graphene

is a requirement to overcome the disadvantages of graphene and to fully

benefit from its excellent conduction properties. It has been shown that

many nanostructuring techniques can be used to open such a bandgap in

graphene, e.g., graphene nanoribbons, graphene bilayer with a perpendic-

ular electric field, graphene nanomesh lattices, channels based on vertical

stack of graphene layers, mixed graphene/hexagonal boron nitride struc-

tures, nitrogen doped graphene, and so on. However, each of these meth-

ods has its own fabrication issues and/or need to be further confirmed by

experiments. In this work, we focus on strain engineering, which offers

a wide range of opportunities for modulating the electronic properties of

graphene nanostructures. For this theoretical work, all calculations were

performed using essentially two main methods, i.e., an atomistic tight

binding Hamiltonian model to describe the electronic structure and the

non-equilibrium Green’s function approach of quantum transport. The

main aim is to analyze in details the strain effects in graphene and to pro-

vide strategies of strain engineering to improve the performance of both

electronic (transistors and diodes) and thermoelectric devices.



After introducing the general context if this work and the numerical tech-

niques developed for this purpose, we first analyze the only effect of strain.

Actually, if uniformly applied, a strain of large amplitude (> 23%) is re-

quired to open a bandgap in the band structure of graphene. However,

we show that with a strain of only a few percent, the strain-induced shift

of the Dirac point in k-space may be enough to open a sizable conduc-

tion gap (500 meV or more) in graphene heterojunctions made of un-

strained/strained junctions, though the strained material remains gapless.

After analyzing in details this property according to the amplitude and

direction of strain and the direction of transport, we exploit this effect us-

ing appropriate strain junctions to improve the behavior and performance

of several types of devices. In particular, we show that with a strain

of only 5%, it is possible to switch-off transistors efficiently, so that the

ON/OFF current ratio can reach 105, which is a strong improvement with

respect to pristine graphene transistors where this ratio cannot exceed

10. Then we show that by combining strain and doping engineering in

such strain junctions the Seebeck coefficient can reach values higher than

1.4 mV/K, which is 17 times higher than in gapless pristine graphene.

It can contribute to make graphene an excellent thermoelectric material.

Finally, we study the effect of negative differential conductance (NDC)

in graphene diodes made of either as single gate-induced strained barrier

or a p-n junction. We show that appropriate strain engineering in these

devices can lead to very strong NDC effects with peak-to-valley ratios of

a few hundred at room temperature.
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Résumé

Le graphène, une couche unique d’atomes de carbone disposés en nid d’abeille possède

de nombreuses caractéristiques fascinantes. On en attend qu’il devienne un matériau

d’avenir, susceptible de remplacer ou compléter des matériaux conventionnels. Tout

d’abord, il faut dire que le graphène offre de nombreux avantages tels que la haute

mobilité des porteurs et la haute conductivité thermique, qui laissent espérer des

applications prometteuses dans le domaine électronique. En outre, l’inconvénient

du graphène lié à l’absence de bande interdite dans sa structure de bande peut être

surmonté de nombreuses façons: découpage de nanorubans de graphène, bicouche de

graphène avec application d’un champ électrique transverse, percement d’un réseau

périodique de nano-trous (nanomesh), structures mixtes de graphène et de nitrure de

bore, dopage du graphène à l’azote. À présent, le graphène est considéré comme l’un

des matériaux les plus étudiés avec un nombre gigantesque de publications au cours

de ces 10 dernières années.

En comparaison avec des matériaux conventionnels, le graphène est bien connu

pour ses caractéristiques extraordinaires. Cependant, dans ce travail, nous nous con-

centrons sur ses propriétés mécaniques, c’est-à-dire la flexibilité de ce matériau avec

une haute résistance à la déformation qui peut être exploitée pour moduler ses pro-

priétés électroniques. Au moyen d’ingénierie de contrainte, nous proposons des canaux

de graphène combinant sections contraintes et non-contraintes. Il est à noter que tous

les calculs ont été effectués en utilisant essentiellement deux méthodes, à savoir, un

modèle d’Hamiltonien atomistique de liaisons fortes liaison pour décrire la structure

électronique et l’approche des fonctions de Green hors-équilibre du transport quan-

tique. L’objectif principal est d’analyser en détail les effets de déformation dans

le graphène et de fournir des stratégies d’ingénierie de la contrainte pour améliorer

les performances de dispositifs électroniques (transistors et diodes) et de dispositifs

thermoélectriques (coefficient Seebeck).

En fait, ce projet de thèse a été établi dans le cadre d’une collaboration entre

l’Institut de Physique (IoP - VAST, Hanoi, Vietnam) et l’Institut d’Électronique
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Fondamentale (IEF, CNRS, Université Paris Sud, France) dans le but de développer

des outils théoriques efficaces pour étudier le transport électronique et les effets

thermoélectriques dans des hétérostructures de graphène contraintes. Il s’agit également

d’étudier en détail les effets de contrainte sur les propriétés électroniques et d’en

déduire des propositions de dispositifs performants pour des applications électroniques

et thermoélectriques.

Dans le détail, la thèse est présentée dans quatre chapitres et deux annexes. Son

contenu est organisé comme suit:

Le chapitre 1 présente les bases nécessaires et le contexte de l’étude avec deux par-

ties principales: La premieère est une introduction élémentaire du graphène, et plus

particulièrement de ses propriétés mécaniques. Ensuite, nous présentons des tech-

niques d’ingénierie de contrainte à la fois uniforme (globale) et locale. Une contrainte

uniforme couvre l’ensemble du substrat. Une contrainte locale peut être obtenue

dans dans un semiconducteur standard par ”shallow trench-isolation” des couches

épitaxiales et/ou par dépot de couches de nitrure fortement contraintes. Puis, nous

discutons des effets de déformation sur les propriétés électroniques des matériaux,

en particulier du graphène. En principe, la contrainte peut modifier la structure

de bandes qui décrit les états d’énergie dans l’espace du moment cristallin entre les

électrons et les trous, ce qui peut conduire à des changements profonds des pro-

priétés électronique du matériau. Dans le graphène, la contrainte induit également le

déplacement du point de Dirac dans l’espace réciproque. Par conséquent, l’ingénierie

de la contrainte a été proposée comme une approche alternative pour surmonter

l’absence de bande interdite dans sa structure de bande. Dans cette partie, nous

mentionnons également quelques techniques pour créer expérimentalement une con-

trainte locale dans le graphéne, avec en particulier un travail extraordinaire de Ji-Li

et al.. Ce travail propose un processus basé sur la pression de choc induit par laser

pour générer une déformation locale dans la feuille de graphène. Plus intéressant

encore, la longueur de canal de la plupart de nos dispositifs varie de quelques dizaines

à une centaine de nm, de sorte que l’étude de Ji-Li et al (également d’autres groupes

tels que cités dans les références) est considéré comme une validation de la notion

de contrainte locale dans le graphène, ce qui rend réalistes les concepts de dispositifs

développés dans notre travail. La deuxième partie introduit les techniques numériques

développées et utilisées dans notre travail. En particulier, nous présentons en détail

le modèle de liaison forte pour décrire les états de charge du réseau de graphène

et l’approche des fonctions de Green hors-équilibre (NEGF) pour examiner les pro-

priétés de transport dans les dispositifs à l’échelle nanométrique. Le modèle de liaisons
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fortes est le plus souvent utilisés pour décrire les états de charge dans les structures

de graphène et permet d’explorer les caractéristiques importantes telles que la struc-

ture électronique et les phénomènes de transport. En comparaison avec les calculs ab

initio, le modèle de liaisons fortes est plus simple, et permet des calculs beaucoup plus

rapides. Pour examiner les propriétés de transport dans les dispositifs nanométriques,

l’approche NEGF combinée à un hamiltonien de liasons fortes s’est avérée être une

méthode très efficace. Elle est adaptée à des simulations de transport quantique ten-

ant compte des effets de couplage à des contacts, des défauts, impuretés, phonons, etc.

De plus, l’approche de NEGF a démontré son utilité pour la simulation de transistors

à l’échelle nanométrique, tels que MOSFETs Si conventionnels, FETs à nanotubes de

carbone et transistors moléculaires. Quelques aspects principaux de ces techniques

sont donnés comme suit.

Dans la méthode des liaisons fortes, les énergies propres de l’électron Ei(~k) sont

obtenues en résolvant l’équation séculaire. En appliquant cette technique au graphène,

nous obtenons une expression de la structure de bandes donnée par

Eg2D(~k) =
ε2p ± tω(~k)

1± sω(~k)
(1)

où les signes + dans le numérateur et le dénominateur vont donner la bande π de

l’état liant, et de même pour les signes −, qui donnent l’a bande π∗ de l’état anti-liant.

La fonction ω(~k) est donnée par

ω(~k) =

√
3 + 2cos(

√
3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa) (2)

Ici, les trois paramètres ε2p, t et s sont fournis soit par l’expérience soit par des calculs

ab initio. La pratique la plus courante consiste à ajuster le modèle de liaisons fortes à

une description correcte des bandes π au point K. Cela donne ε2p = 0, t entre -2,5 et

-3,0 eV, et s en dessous de 0,1. Comme s est petit, il est habituellement négligé. Nous

Device (Active region)
[H

D
]

Source
(Left contact)

[Σ
L
]

Gate

Drain
(Right contact)

[Σ
R
]

Figure 1: Modèle général du transistor à effet de champ avec un canal central connecté
aux contacts de source et de drain et contrôlé par une grille.
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considérons l’application de la méthode de la fonction de Green dans des dispositifs à

l’échelle nanométrique. Une structure schématique d’un dispositif simulé typique est

représentée sur la Fig. 1. En principe, il comprend trois parties principales: un canal

(zone active), les contacts (gauche et droite, ou source et drain) et une électrode de

grille. La fonction de Green de la région active est maintenant

GD = (E −HD − ΣL − ΣR)−1 (3)

où HD est le hamiltonien de la région active. ΣL(R) est la self-énergie du contact de

gauche (droite) et est déterminé par

Σs
L(R) = HDL(R)g

L(R)
0(N)HL(R)D (4)

où HDL(HLD) est le hamiltonien décrivant le couplage entrele dispositif et le contact

et g
L(R)
0(N) est la fonction de Green de surface du contact de gauche (droite).

En rgime de transport balistique, la transmission du système peut être calculé par

la fonction de Green

T = trace[ΓLGDΓRG
†
D] (5)

où ΓL(R) = i[ΣL(R) − Σ†L(R)] est l’élargissement du niveau d’énergie à gauche (droite)

contact.

Il est à noter qu’une fois la transmission obtenue, d’autres quantités de transport

peuvent également être calculées, à savoir, le courant, la conductance, le coefficient

Seebeck, etc.

Le chapitre 2 commence par l’introduction de certaines techniques pour remédier

à l’inconvénient majeur du graphène lié qu’est l’absence de bande interdite dans

sa structure de bandes. Nous passons en revue les caractéristiques et les propriétés

électroniques du graphène monocouche et ses nanostructures à fort bandgap, à savoir,

nanorubans de graphène, bicouche de graphène sous champ électrique transverse et

graphène nanomesh. Ensuite, ce travail se concentre sur l’utilisation de l’ingénierie de

contrainte comme une technique alternative pour modifier la structure de la bandes

du graphène. En fait, une forte contrainte (& 23%) peut ouvrir une bande inter-

dite dans le graphène, mais cela représente un défi expérimental. Par conséquent,

ce travail suggère l’utilisation astucieuse de petites déformations, à savoir, seulement

quelques pour cent. Une faible contrainte suffit en effet à provoquer le déplacement de

points de Dirac dans l’espace des k, ce qui peut conduire à des modifications impor-

tantes des propriétés de transport électronique dans une jonction graphène contraint

/ graphène non-contraint. On montre q’un gap de conduction ou de transport de

4
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Figure 2: (a) Jonctions de graphène contraint/non-contraint. (b) Structure des bords
de bandes illustrant le changement induit par déplacement des points Dirac le long
de la direction ky qui mène à l’ouverture d’un gap de conduction (c).

quelques centaines de meV peut s’ouvrir dans de telles structures, comme on le voit

sur la Fig. 2. Par ailleurs, le gap de conduction dépend de manière significative de

l’amplitude de la contrainte, de sa direction et de l’orientation du réseau, aussi bien

pour une tension que pour une compression.

Le chapitre 3 est une étude des potentialités de ces hétérojonctions contraintes

pour la conception de dispositifs électroniques. Nous nous concentrons d’abord sur

des transistors avec un canal de graphène contraint. Ce travail a été principalement

mené par V. H. Nguyen et al, et nous en présentons les principaux résultats. Il a

été démontré que l’utilisation d’une hétérostructure faiblement contrainte (5%) peut

grandement améliorer les performances d’un FET de graphène avec un fort rapport de

courant ON/OFF de et une bonne saturation du courant. En effet, un gap de conduc-

tion de 360 meV peut être obtenu avec une contrainte de seulement 5% et une valeur

plus élevée peut même être obtenue avec une plus grande contrainte. Ce gap est la clé

importante menant à la possibilité de couper le courant et donc d’atteindre un rap-

port ON/OFF élevé, typiquement 105 pour Vgs = 0.35V . Ensuite, nous continuons

l’étude en examinant la possibilité d’améliorer la pouvoir thermoélectrique (coeffi-

cient de Seebeck) dans des dispositifs de graphène par l’ingénieriela de contrainte et

de dopage. On voit que, si une contrainte locale peut entrâıner le désalignement des

cônes de Dirac dans l’espace des k− entre les sections de graphène contraintes et

non-contraintes, l’ingénierie de dopage conduit à leur déplacement en énergie. Par
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Figure 3: Vue schématique de la structure de graphène constituée d’une diode PN
avec une zone contrainte localement (a) et coefficient Seebeck maximal (Smax) et gap
de conduction (Egap) en fonction de ∆U (b).

la combinaison de ces deux effets, nous démontrons que le gap de conduction aussi

élevé que quelques centaines de meV peut être atteint, ce qui permet d’atteindre des

valeurs de coefficient Seebeck supérieures à 1.4 mV / K, comme on peut le voir en

Fig. 3. En comparaison, cette valeur est 17 fois plus élevée que dans le graphène

pristine sans gap. Dans la dernière partie de ce chapitre 3, nous montrons que ces

effets de contrainte locale peuvent être exploités afin de génŕer une forte conductance

différentielle négative (NDC) dans des structures à simple barrière (induite par une

grille) et dans des jonctions tunnel p-n, comme on le voit sur la Fig. 4. Lorsque

la déformation locale est appliquée de façon appropriée, le rapport de courant pic /

vallée (PVR) peut atteindre quelques centaines. En outre, la dépendance de l’effet

NDC en fonction des paramètres de la structure est étudiée systématiquement. En

particulier, une forte NDC est obtenue dans les structures à simple barrière avec une

grande région contrainte, tandis que le PVR n’est pas très sensibles à la longueur de

transition dans les jonctions p-n.

Le chapitre 4 conclue le travail de thèse en résumant les principales contribu-

tions de l’étude, et mentionne certains travaux qui reste à réaliser dans la continuité

de celui-ci, à savoir, prendre en compte des effets de la direction du réseau, de la

déformation de cisaillement et de la déformation de cisaillement pur.

La liste des références ainsi que les publications de l’auteure relatives à ces travaux

sont donnés ensuite.
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(b)

(a)

(c)
(d)

Figure 4: Représentation schématique des structures à simple barrière (a) et car-
actéristiques à I − V correspondantes calculées pour différentes longueurs LS de la
région contrainte (b). Structure des jonctions tunnel p-n (c) et caractéristiques I−V
correspondantes du dispositif pour différentes longueurs de transition LT (d).
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Introduction

Graphene, a single layer of carbon atom arranged in a honeycomb lattice has many

fascinating properties and is considered as a very promising new material likely to

replace conventional materials. First, it should be mentioned that graphene offers

many advantages such as high carrier mobility, high thermal conductivity and ability

to sustain large strain, which makes it suitable for many applications. Additionally,

the drawback of graphene related to its gapless character can be overcome by many

ways in lots of nanostructures of this material such as graphene nanoribbons, bilayer

graphene under vertical electric field, graphene nanomesh, graphene/hexagonal boron

nitride, nitrogen-doped graphene, and etc. Until now, graphene is one of the most

studied materials from both theoretical and experimental viewpoints with a huge

number of publications in only one decade.

Compared with conventional materials, graphene benefits from lots of outstanding

properties. However, in this work, we focus on the mechanical properties of graphene

and the use of strain engineering to overcome its gapless disadvantage. The moti-

vation came from many theoretical and experimental studies which investigated the

possibility and usefulness of strain engineering to modify the electronic structure of

semiconducting materials. Moreover, this technique has been proposed as an alterna-

tive approach to open a bandgap in graphene. In this PhD work, we mainly design

and study graphene channels made of unstrained/strained graphene junctions. We

use the tight binding (TB) model to describe charge states in graphene structures and

devices. In fact, this approach is used most extensively in condensed mater physics

and it allows us to simulate the important characteristics such as electronic struc-

ture and properties of lots of graphene structures. Besides, we apply the atomistic

non-equilibrium Green’s function (NEGF) approach for studying quantum transport,

which has been proved to be very efficient in the field of nanodevice simulation.

In fact, this Ph.D project has been established in the frame of collaboration be-

tween the Institute of Physics (IoP - VAST, Hanoi, Vietnam) and the Institute of

Electronic Fundamental (IEF - CNRS, University Paris Sud, France) (whose new
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name is Centre for Nanoscience and Nanotechnology, C2N) with the aim of devel-

oping efficient theoretical tools to study the electronic transport and thermoelectric

effects in strained graphene heterostructures.

In detail, the manuscript is presented in three chapters, a conclusion and two

appendices, with content organized as follows:

In Chapter 1 we present the necessary background in two main parts. In the

first one, we introduce the main features of graphene with a special emphasis on

the mechanical properties. Next, we present some strain engineering technologies

to generate both uniform (global) and local strain types. The former one, uniform

strain, is identified as the case where stress covers the entire substrate area while the

latter, i.e. the local strain corresponds to the case where stress is engineered on a

limited area of the device by means, e.g., of shallow-trench-isolation, epitaxial layers

and/or highly stressed nitride capping layers. Then, we discuss about the strain

effect on the general electronic properties in semiconductor materials, especially in

graphene. In principle, strain can modify the band structure, i.e., the energy state

of carrier in the crystal momentum space, which leads to changes in the electronic

properties of the materials. In graphene, strain especially induces a shift of Dirac

points in k−space. Hence, strain engineering has been proposed as an alternative

approach to overcome the gapless character of this material. In this part, we also

mention some experimental techniques to create uniform as well as local strain, and

we emphasize the work of Ji-Li et al. who have reported a scalable manufacturing

process to generate three-dimensional (3D) nanostructures by laser-induced shock

pressure and thus induce local strain in the graphene sheet. Interestingly, the size of

the resulting strain area is similar to the channel length of the devices proposed in

the present work. It makes realistic the device designs investigated in this work.

The second part introduces the numerical techniques used in our work. In partic-

ular, we present in detail the tight binding model used to describe the charge states of

graphene lattice and the non equilibrium Green’s (NEGF) function approach applied

to consider the transport properties in nanoscale devices. The tight binding model is

more simple and much faster than the ab initio calculations and much more appro-

priate to treat large devices with some thousands atoms. To consider the transport

properties in nanoscale devices, the NEGF approach combined with a TB Hamil-

tonian has been proven to be a very efficient method. It is suitable for quantum

transport simulations, taking into account effects of coupling to contacts, defects,

impurities, phonons, etc. Additionally, the NEGF approach has demonstrated its
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usefulness for simulating nanoscale transistors, from conventional Si MOSFETs to

carbon nanotube FETs and molecular transistors.

In Chapter 2 we start with the introduction of some techniques to overcome the

drawback of graphene related to its gapless character. To show this clearly, we review

the properties of graphene and its nanostructures with sizable bandgap, i.e., graphene

nanoribbons, bilayer graphene under vertical electric field and graphene nanomesh.

Then, we focus on the use of strain engineering as an alternative technique to modify

the band structure of graphene. It is shown that a large strain (& 23%) can open a

bandgap in pristine graphene, but achieving experimentally such a strain level is a big

challenge. Instead, this work suggests the appropriate use of small local strain, i.e.,

of only a few percent. We see that though a small strain cannot change graphene’s

gapless character, it causes the shift of Dirac points in k-space which may lead to dra-

matic changes of electronic transport features. In particular, in unstrained/strained

graphene junctions, a conduction gap or transport gap, that is defined as a finite gap

of conductance, can be opened. In this work, based on a tight binding model, we

suggest two methods to evaluate and describe the conduction gap, i.e., from Green’s

function calculations and from bandstructure analysis, respectively. We study in

details the dependence of conduction gap on strain amplitude, strain direction and

transport direction in both cases of tensile and compressive strain.

In Chapter 3 we study some possibilities of using strained graphene junctions to

design the channel of electronic devices. We focus first on transistor with strained

channel. Our study shows that a strain of only a few percent can improve significantly

the performance of graphene transistors. In particular, the ON/OFF current ratio

increases strongly to over 105 for a strain of 5%. Then, we find that the combination of

strain and doping engineering can lead to a conduction gap of a few hundreds meV in

strain junctions. As a consequence, the Seebeck coefficient can reach a value higher

than 1.4 mV/k in doped graphene junctions by applying a local strain. Finally,

we demonstrate that strain can strongly enhance negative differential conductance

(NDC) in two types of diodes. This effect is shown in single gate-induced barrier

structure and in p-n junctions. It results in high peak-to-valley ratio (PVR) in the

I-V characteristics. The dependence of NDC effect on structure parameters the is

investigated systematically in this chapter.

A conclusion briefly closes the manuscript by summarizing the main contributions,

and mentioning some works that can be further performed. It is for instance suggested

to analyze in details the effects of transport direction, shear strain and pure shear
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strain. Two appendices, the bibliography and the list of author’s publications can be

found at the end of the manuscript.
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Chapter 1

OVERVIEW

In this chapter, we introduce two main parts related to the material, the engineering

as well as the numerical methods used for this PhD work. Therefore, it is organized

as follows. In the first part, the first section 1.1 is a review of graphene material

regarding its main properties and application abilities. The section 1.2 is an intro-

duction to strain engineering, including the two main forms: uniform strain and local

strain. In the section 1.3, we summarize some basic knowledge of the stress/strain

theory. The effect of strain on the electric properties of materials (section 1.4) and the

experimental techniques to generate strain in graphene (section 1.5) are the subject of

very important sections, related directly to the relevance of this work. In, the second

part of this chapter, we present the numerical techniques related to the two main

methods developed and used in this work, i.e., the tight binding and Green’s function

formalisms, respectively, which have been demonstrated to be good approaches to

investigate the properties of graphene and its nanostructures.
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Part I. Properties of graphene and
strain effects
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1.1 Graphene material

Graphene, experimentally isolated in 2004 by Novoselov et al [1], is a single two-

dimensional (2D) sheet of carbon atoms arranged in a honeycomb lattice. The tech-

nique to obtain such a layer is really simple. It consists of rubbing highly oriented

pyrolitic graphite against another surface (like using a pencil). This leaves a variety

of flakes on the surface. Most of these flaky materials are composed of more than ten

layers, but surprisingly, a single layer flake can result from this technique. In fact,

some basic allotropes of carbon atoms have been identified and studied, such as car-

bon nanotubes, graphite as well as fullerenes, as shown in Fig. 1.1. Actually, carbon

nanotubes can be seen as rolled-up sheets of graphene, graphite comes from stacks of

many graphene layers weakly coupled by Van der Waals forces and fullerenes (C60)

are molecules consisting of wrapped graphene. In comparison, graphene is known as

a very attractive material with many superlatives associated with its properties. It

is known as the thinnest material in the universe and, mechanically, the strongest

ever tested [2]. Its low-energy carries offer giant intrinsic mobility, have zero effective

mass, and can travel for micrometers without scattering at room temperature. The

charge transport in graphene can be described by a Dirac-like equation, which allows

for the investigation of relativistic quantum phenomena in experiment. Therefore,

graphene rapidly become a hot topic of many researchers in experiment and theory

as well as researchers in device applications (see in reviews [1, 2, 3, 4] and references

therein).

Further, among systems of only carbon atoms, graphene has many interesting

properties originated from the very specific conical shape of electronic bandstructure,

in particular, at the six edge corner points (often named the Dirac points or K,K ′-

points) of the hexagonal Brillouin zone. The low energy particles around these points

are massless, chiral and Dirac fermions. This particular dispersion mimics the physics

of quantum electrodynamics (QED) for massless fermions except for the fact that the

Dirac fermions in graphene move with a speed vF , which is about 300 times smaller

than the speed of light c. Hence, many unusual properties of QED can be seen in

graphene but at much smaller speeds [5, 6]. Dirac fermions behave in unusual ways

when compared to ordinary electrons if subjected to magnetic fields, leading to new

physical phenomena [7] such as the anomalous integer quantum Hall effect (IQHE)

measured experimentally [8]. Besides being qualitatively different from the IQHE

observed in Si and GaAlAs (heterostructures) devices, the IQHE in graphene can be
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Figure 1.1: Graphene: mother of all graphitic forms. It is a 2D building element for
carbon material of all other dimensionalities, i.e., it can be stacked into 3D graphite,
rolled into 1D nanotubes or wrapped up into 0D buckyballs (fullerenes C60). From
X. Wan et al. [4]

observed at room temperature because of the large cyclotron energies for ”relativistic”

charges [9].

Another interesting feature observed in graphene structure is the Klein tunneling

of relativistic-like particles through potential barrier [6, 10]. This phenomenon is

characterized by the fact that Dirac fermions can be transmitted with probability

1 through a barrier having any height and width. That manifestation is called the

Klein’s paradox and it strongly contrasts to the conventional and non-relativistic

tunneling processes where the transmission probability decays exponentially with

increasing the barrier height. This relativistic effect can be attributed to the fact that

a sufficiently strong potential, being repulsive for electrons, is attractive for holes and

results in states inside the barrier, which align in energy with the electron continuum

outside. Essentially, good matching between electron and hole wave-functions across

the barrier can result in high tunneling probability [11]. In the framework of the
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QED, the reason this feature can be realized is that states at positive (electrons) and

negative (holes) energies are intimately linked (conjugated), being described by two

different components of the same spinor wave-function. This fundamental property

of Dirac fermions is often referred to as the charge conjugation symmetry.

After the success of experiments and by lots of special properties as mentioned

above, graphene became indeed a material of choice for numerous researchers, which

is illustrated by the dramatic increase of the number of publications on graphene

(according to ISI Web of KnowledgeSM), as shown in Fig. 1.2. As a result, the Nobel

Prize in 2010 was awarded to Andre Geim and Konstantin Novoselov for ground-

breaking experiments regarding the two-dimensional material graphene.
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Figure 1.2: Number of publications on graphene [12].

Graphene, of course, offers a wide range of potential applications due to its excel-

lent mechanical, electrical, thermal, optical properties and its large surface-to-weight

ratio, e.g., 1 g of graphene can cover several football fields [13, 14]. Moreover, these

properties suggest that graphene could replace other materials in existing applica-

tions. In this work, we exploit deeply the mechanical properties of graphene and

especially explore their influence on electronic properties.

The first systematic experimental analysis of elastic properties and strength ex-

hibited by monolayer graphene has been reported by C. Lee et al [15]. It was ex-

perimentally found that graphene shows both non-linear elastic behavior and brittle
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fracture. The non-linear elastic response of graphene to tensile load is described as:

σ = Eε+Dε2 (1.1)

where σ, ε, E and D are the applied stress, the elastic strain, the Young modulus,

and the third-order elastic stiffness, respectively. These parameters will be detailed

in next sections.

In the experiment of C. Lee et al [15], the value of Young modulus E has been

found to be extremely large and close to that of carbon nanotubes, i.e., E = 1.0TPa.

Besides, brittle fracture of graphene occurs at a critical stress equal to its intrin-

sic strength of σ = 130GPa [15]. This value is the highest ever measured for any

materials.

The discussed experimental data on the Young modulus (E = 1TPa) and the

intrinsic strength (σ = 130GPa) exhibited by pristine graphene are consistent with

computer simulations [16] showing values of E = 1.05TPa and σ = 110GPa. The

extremely large values of E and σ make graphene to be very attractive for mechanical

applications because it can be easily bent.

1.2 Strain Engineering

It is shown that the semiconductor industry is always facing lots of critical challenges

such as the high gate leakage current for very thin gate dielectrics, the difficulty to

maintain a high Ion/Ioff ratio, short channel effects, and the high power dissipation for

small transistors. Innovative techniques such as strain engineering have to be used to

solve or circumvent the arising problems. It is widely believed that strain engineering

takes a key position among other technological changes for the next technology nodes

after 90, 65, and 45 nm technology nodes. The studies of the influence of strain on the

intrinsic mobility of Si was first investigated in the early 1950s [17, 18]. In 1992, it

was first demonstrated that n-channel MOSFETs on a strained Si substrate, exhibit

a 70% higher effective mobility than those on unstrained substrates [19]. Ever since

semiconductor industry has adopted several different technologies to introduce strain

in the Si channel of MOSFETs.

Generally, two approaches for introducing strain in MOSFETs can be identified:

a uniform (global) one, where stress is introduced/covered across the entire substrate,

and a local approach, where stress is engineered into the device by means of shallow-

trench-isolation, epitaxial layers and/or highly stressed nitride capping layers.
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1.2.1 Uniform Strain

Uniform (global) strain engineering that uses strained semiconductor-on-insulator

as the starting material is a promising method for future technology nodes and is

compatible with thin-channel device processing. It is shown that some studies have

ever worked on strained Si focused on biaxial global strain generated by epitaxy

of a thin strained Si layer on a thick relaxed SiGe virtual substrate [19]. In these

works, due to the lattice mismatch between Si and SiGe, the lattice of the Si layer is

biaxially tensile strained in the plane of the interface. In particular, on [001] oriented

substrates this deformation results in enhanced carrier transport in the strained Si

layer, and mobility enhancements of 110% for electrons and 45% for holes have been

demonstrated on sub-100 nm strained Si MOSFETs [20].

Besides, using layer transfer and wafer bonding techniques, uniform strain can

also be integrated in Si on insulator substrate. Electron and hole mobility enhance-

ment comparable with the enhancement of wafers without the insulating layer were

observed in ultra-thin strain Si layers on SiGe in insulator [21, 22] and strained

Si layer directly on insulator. Technologies using ultra thin strained Si directly on

insulator are especially promising, since in those structures the SiGe layer is elimi-

nated before transistor fabrication, hence critical process-integration problems related

to SiGe layer can be avoided. However, a major drawback common to all uniform

strain techniques for CMOS technology is that they can provide only one type of

strain. Since the mobilities of electrons and holes are differently affected by strain, a

uniform strain configuration, for example, compressive biaxial strain, can be benefi-

cial for p-channel MOSFETs, but deteriorates the n-channel MOSFETs performance.

This problem is circumvented by local strain techniques, which are able to provide

different strain patterns for n-channel and p-channel MOSFETs.

1.2.2 Local Strain

Several process-induced local stress techniques, such as (i) the contact etch stop liner

technique (CESL), (ii) the stress memorization technique (SMT), (iii) a technique

based on selective epitaxial growth (SEG) of the source/drain regions, and (iv) stress

from shallow trench isolation (STI), were introduced in mass production of integrated

circuit [23]. It is well known that the favorable strain configuration for short chan-

nel drive current increase is uniaxial tensile and compressive strain for nFETs and

pFETs, respectively. Unlike biaxial strain, under uniaxial strain the effective trans-

port mass is modulated. Hence the performance enhancement is maintained even at
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short channel or under high carrier confinement [23]. Moreover, various CMOS fab-

rication processes can be exploited to induce strain in the transistor channel. Since

these processes generate local strain that depends on the position in the MOSFET

channel, techniques based on process-induced strain are frequently called local strain

techniques. Starting from the late 1990’s effects related to local stress arising from

various process steps on the performance of MOSFETs were investigated. It was

found that mainly the following process steps are relevant to generate stress in tran-

sistor channels, i.e., (i) shallow trench isolation, (ii) the formation of silicide at the

source/drain region, and (iii) nitride contact etch stop layers [24]. Even though

process-induced strain was not initially able strain levels as large as in the case of

uniform strain, the local techniques benefit from some of advantages [23, 24] such

as (i) strain can be independently tailored to optimize performance enhancement for

both n-channel and p-channel MOSFETs, (ii) the threshold voltage shift is smaller in

uniaxially stressed MOSFETs, and (iii) local stress techniques are cheaper and more

compatible with standard CMOS technology. Since the local strain approach was

more promising for industrial applications, the first strain engineering technologies

were developed on the basis of uniaxial process induced stress.

1.3 General theory of stress and strain

In this work, we investigate the potential of strain engineering in modulating the

properties of graphene material and its nanostructures. So, it is essential to under-

stand the basis of engineering mechanics like stress, strain, and mechanical properties

of the material. Within the elastic limit the property of solid materials to be deformed

under the application of an external force/load and to regain their original shape af-

ter the force is removed is referred to as elasticity. It is Hooke’s law, which describes

the elastic relationship between the mechanical constraint and the deformation that

the material will undergo. The external force applied on a specified area is known

as stress, while the amount of deformation is called the strain. In this section, the

theory of stress, strain, and their interdependence is briefly presented.

By definition, stress− strain analysis is an engineering discipline covering methods

to determine the stresses and strains in materials and structures subjected to forces

or loads. In continuum mechanics, stress is a physical quantity that expresses the

internal forces that neighboring atoms of a continuous material exert on each other,

while as mentioned above strain is the measure of the deformation of the material.

Strain is a description of deformation in terms of relative displacement of particles
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in the body that excludes rigid-body motions. In a continuous body, a deformation

field results from a stress field induced by applied forces or is due to changes in the

temperature field inside the body. In this case, the continuum completely recovers

its original configuration. On the other hand, irreversible deformations can remain

even after stresses have been removed. One type of irreversible deformation is plastic

deformation, which occurs in material bodies after stresses have reached a certain

threshold value known as the elastic limit or yield stress, and are the result of slip,

or dislocation mechanisms at the atomic level.

In the case of elastic deformations, the response function linking strain to the

deforming stress is the compliance tensor of the material. In this work, we only

consider elastic deformations.

1.3.1 Stress tensor
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Figure 1.3: Stress tensor components acting on the surface of cube.

Stress is defined as the forces/loads in response to strain in a unit area. Stress has

nine components and is a second-rank tensor. In particular, the stress distribution

is displayed in Fig. 1.3, where εxx represents a force applied in the x direction, a

unit area of the plane whose outward-drawn normal lies in the x direction, and εxy

represents a force applied in the x direction to a unit area of the plane whose outward-

drawn normal lies in the y direction. The stress tensor is symmetric just as the strain

tensor, which will be shown below.
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In case the force of components along the coordinate axes, i.e., Fxx, Fxy, Fxz, the

stress components in this plane are [25]

εxx =
Fxx
A

, εxy =
Fxy
A

, εxz =
Fxz
A

where A is the area of the stressed region.

We now study some simple stress cases to determine the stress tensors.

1. Hydrostatic pressure:

Under a hydrostatic pressure P , each shear stress component is zero. Stress along

any principle direction is −P , namely,

ε =

−P 0 0
0 −P 0
0 0 −P

 (1.2)

Here, the sign convention is that tensile stress is positive and compressive stress is

negative.

2. Uniaxial stress T along the [001] direction: For a uniaxial stress T along the

[001] direction, all stress components are zero, excepted εzz = T . So, we have

ε =

0 0 0
0 0 0
0 0 T

 (1.3)

3. Uniaxial stress T along the [110] direction: The case for a uniaxial stress along

the [110] direction is a little more complicated and is determined by

ε =
T

2

1 1 0
1 1 0
0 0 0

 (1.4)

Because a stress tensor is symmetric, the six coefficients εxx, εyy, εzz, εxy, εyz, and

εzx completely define the stress. A second-rank stress tensor can be reduced to a 1D

array form.

1.3.2 Strain tensor

Strain is created by deformation and is defined as the relative lattice displacement as

shown in Fig. 1.4. In this Fig. 1.4(a), we use two unit vectors ~x and ~y to represent

the unstrained lattice, and in a simple square lattice, they correspond to the lattice

basis vectors. Under a small uniform deformation of the lattice, the two vectors are
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distorted in both orientation and length, as shown in Fig. 1.4(b). The new vectors

~x′ and ~y′ may be written in terms of the old vectors [25]:

~x′ = (1 + σxx)~x+ σxy~y

~y′ = σyx~x+ (1 + σyy)~y (1.5)

(a) (b)

Undeformed lattice Deformed lattice

x'

y'

x

y

Figure 1.4: Schematic for (a) an undeformed lattice and (b) a deformed lattice

Similarly, in the 3D case, we also have

~x′ = (1 + σxx)~x+ σxy~y + σxz~z

~y′ = σyx~x+ (1 + σyy)~y + σyz~z (1.6)

~z′ = σzx~x+ σzy~y + (1 + σzz)~z

The strain coefficients σαβ define the deformation of the lattice and are dimen-

sionless. The 3× 3 matrix

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (1.7)

is called the strain tensor.

Suppose a lattice point originally located at ~r = x~x+y~y+z~z, then with a uniform

deformation this point will be at ~r′ = x~x′ + y~y′ + z~z′. For a general varying strain,

the strain tensor may be written

σαβ =
∂uα
∂xβ

(1.8)
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with

uα = ux, uy, uz and xβ = x, y, z

where uα is the displacement lattice point under study along xα. A strain tensor is

symmetric, i.e.,

σαβ = σβα =
1

2
(
∂uα
∂xβ

+
∂uβ
∂xα

) (1.9)

The antisymmetric part of tensor shown in Eq. 1.7 represents a rotation of the entire

body.

Otherwise, we can work with another set of strain components, the diagonal ele-

ments of which are simply defined as

exx = σxx, eyy = σyy, ezz = σzz (1.10)

that describe infinitesimal distortions associated with a change in volume, while the

other strain components exy, eyz, and ezx are defined in terms of changes of angle

between the basis vectors.

exy = ~x′~y′ = σxy + σyx

eyz = ~y′~z′ = σyz + σzy (1.11)

ezx = ~z′~x′ = σzx + σxz

These six coefficients completely define the strain tensor as

e =

exx exy exz
eyx eyy eyz
ezx ezy ezz

 =

 σxx σxy + σyx σzx + σxz
σxy + σyx σyy σyz + σzy
σzx + σxz σyz + σzy σzz

 (1.12)

1.3.3 The relationship between stress and strain

The relationship between stress and strain is given by Hooke’s law and can be math-

ematically written as [25]

εij =
∑
αβ

Cijαβσαβ (i, j ,α, β=x, y, z) (1.13)

where the coefficients Cijαβ are called elastic stiffness constants. Elastic stiffness

constants are a fourth-rank tensor. Because of the symmetry of both the strain

tensor and the stress tensor, we have

Cijαβ = Cjiαβ = Cijβα (1.14)
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so we may write both strain and stress tensor as a six-component array as

σ = (σxx, σyy, σzz, σxy, σyz, σzx) (1.15)

and

ε = (εxx, εyy, εzz, εxy, εyz, εzx) (1.16)

which reduces the elastic stiffness tensor to a 6× 6 matrix such as

εi =
∑
m

Cimσm (1.17)

This 6× 6 matrix has a very simple form in cubic crystals due to the high symmetry.

It has only three independent components and takes the form

Cij =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (1.18)

In many cases it is convenient to work with the inverse of the elastic stiffness

tensor, which is defined through the relation between strain and stress

σαβ =
∑
ij

Sαβijεij (1.19)

The fourth-rank tensor Sαβij, called the compliance tensor, can also be reduced to a

6× 6 matrix. Under cubic symmetry, it has the same form as the stiffness tensor
S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

 (1.20)

and the strain-stress relation can be written as

σm =
∑
i

Smiεi (1.21)

Since the elastic stiffness tensor and compliance tensor are inverse to each other, so

it is easy to work out the relations between the components as

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)

S12 =
−C12

(C11 − C12)(C11 + 2C12)

S44 =
1

C44

(1.22)
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In mechanical engineering, the modulus of elasticity E (also called Young’s modu-

lus) and Poisson’s ration ν are commonly used. For a homogeneous, isotropic material,

strain is related to stress through

σxx =
1

E
(εxx − ν(εyy + εzz))

σyy =
1

E
(εyy − ν(εzz + εxx))

σzz =
1

E
(εzz − ν(εxx + εyy)) (1.23)

In cubic systems Young’s modulus and Poisson ration ν are related to the compliance

constants by

E =
1

S11

, ν = −S12

S11

(1.24)

It is noted that, in one-dimensional systems, the Hooke’s law relates 1D normal

stress and 1D extensional strain, leading to

σ = Eε (1.25)

1.4 Effect of strain on the electronic properties of

materials

In general theory, the band structure describes the states of energy in the crystal

momentum space that electrons and holes are allowed to have. It presents the elec-

tronic dispersion relation under the influence of the potential of the solid. The band

structure determines several important characteristics of a material, e.g., electronic

properties. Many theoretical and experiment studies have demonstrated the alter-

ability of band structure in semiconducting materials thanks to strain engineering

[26, 27, 28, 29, 30].

One can say that strain is not a new topic in semiconductor physics. It has

been shown that strain may result from phonon-induced lattice vibrations, lattice

mismatched film growth, and applied external stress. In principle, strain induces

the shift of conduction band energy in material. This displacement is accounted by

the deformation potential theory of Bardeen and Shockley [31, 32]. After that in

1955, Herring and Vogt used deformation potentials to model transport in strained

semiconductors [33]. In that theory, the strain induced band edge shift is proportional

to the strain tensor, which depends on the deformation. Until now, deformation

potential theory is still the primary method to model the band shift and warping via

band calculations.
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It has been shown that while hydrostatic strain merely shifts the energy levels of

a band, uniaxial and biaxial strain removes the band degeneracy. These energy shifts

can either be extracted from the full-band structure calculated numerically including

strain, or obtained analytically using the linear deformation potential theory. For

example, the effect of strain on the conductivity of semiconductors, e.g., Si, was first

investigated by C. C. Smith [18]. The principal finding of his experimental work

was the observation of a change in the Si resistivity on applying uniaxial tensile

stress. This change occurs due to a modification of the electronic band structure.

Microscopically, the modification stems from a reduction in the number of symmetry

operations allowed, which in turn depends on the way the crystal is stressed. This

breaking of the symmetry of the Si lattice can result in a shift in the energy levels of

the different conduction and valence bands, their distortion, removal of degeneracy,

or any combination.

It has been reported from the simulation results of carrier velocity and drive

current in strained-Si n-MOSFETs with gate length of 100 nm that the increase

in mobility can result in higher drive current even under a constant saturation ve-

locity model. Besides, recent experimental and theoretical results (see in [23] and

Refs. therein) have shown that the drive current of MOSFETs with gate lengths of

100 − 50 nm is roughly proportional to the square root of low-field mobility. These

results strongly suggest that low-field mobility is still important for, at least not fully

disconnected from the current drive in short-channel MOSFETs. On the other hand,

carrier velocity is also affected by the scattering probability of high energy carriers,

typically reflecting in the energy relaxation time. It is also shown that strain induces

band splitting, which can lead to longer energy relaxation time and higher velocity.

Thus, device simulations taking accurately non-stationary transport effects and de-

tailed band structures into account are mandatory for quantitative understanding of

the current drive of short-channel MOSFETs.

Among them, strained-Si channels [34] have been recognized as a technology ap-

plicable to near term technology nodes, thanks to the recent progress in so-called

local strain techniques, and have actually been included in most recent logic CMOS

technologies [35]. The mobility enhancement obtained by applying appropriate strain

can provide higher carrier velocity in MOS channels, resulting in higher current drive

under fixed supply voltage and gate oxide thickness. This means that thicker gate

oxides and/or lower supply voltage can be used under a fixed current drive, leading to

the mitigation of the trade-off relationship among current drive, power consumption

and short-channel effects. As a result, the strain engineering, with resulting increase
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in channel mobility, has been regarded as a device technology mandatory for future

technology nodes, as well.

Regarding graphene, it has been mentioned in previous section that one of many

outstanding properties of graphene relates to the mechanical deformation. This mate-

rial might exhibit a high enough strain endurance to meet the requirement of flexible

electronics. Lots of works in theories and experiments have investigated the possibil-

ity and usefulness of strain engineering applied in graphene to modify the electronic

structure of this material. Moreover, strain engineering has been proposed as an al-

ternative approach to overcome its gapless character in this work. That interesting

point will be discussed in chapter 2.

1.5 Experimental techniques to generate strain in

graphene

Graphene was suggested to be able to sustain a much larger strain than conven-

tional semiconductors. Many theoretical works have predicted that extreme strains

in graphene might achieve over 10% [29, 36, 37], while some reports from experiments

have shown the highest strains in a controlled, reversible and reproducible way only

about a few percent [38, 39, 40]. That can be explained that experimental studies

still have difficult problems to control the magnitude and type of strain in graphene

devices. However, up to now, lots of recent works [41, 42, 43, 44, 45, 46] have demon-

strated techniques to generate extreme strains in graphene with both uniform and

local forms in a controlled and nondestructive way. This interesting point will be

discussed below.

A. Uniform strain in graphene. Several experimental studies [39, 40, 43, 47]

have reported the changes in the electrical transport properties of strained graphene

on flexible substrates, a schematized for example in Fig. 1.5. In addition, the control

of uniaxial strain with both tensile and compressive forms have also been demon-

strated by bending a flexible substrates onto which graphene was deposited in [30, 48].

However, due to the dependence of strain on bending of the substrate, these methods

only allow to engineer a limited amplitude of strain, i.e., of a few percent.

Additionally, it has been shown that on a pre-stretched polydimethylsiloxane sub-

strate, graphene can exhibit a stable sheet resistance up to 11% stretching, with only

one order change in this resistance up to 25% stretching. Especially, in two works

[41, 42], techniques to generate extreme strains (> 10%) in graphene in a controlled

and nondestructive way have been suggested. In particular, the first one of Garza et
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Figure 1.5: Schematic (a) for GFET fabricated on a flexible poly-ethylene naphthalate
(PEN) substrate and (b) for cross-sectional schematic of flexible GFET device [39].

al. [41] demonstrated the generation of uniaxial strains by pulling graphene using a

tensile-MEMS (micro-electro-mechanical systems). The system offers the possibility

to tune and accurately reach the extremely high strain desired in the suspended part

of graphene sheet. The second one of H. Shioya et al. [42] have introduced a method

to control strain in graphene using thin-film-shrinkage (the effect of recrystallization

of metallic films and condensation polymerization of organic insulating films). These

methods in this work not only allow for inducing strain higher than 10% without

the need for bending the substrate, but also achieve both biaxial strained states and

isotropic compressive strained states of graphene in a controlled manner. In con-

clusion, these studies hold the promise for the development of strain engineering of

graphene and help explore novel physics in strained graphene.

B. Local strain in graphene. Some different experimental techniques to gen-

erate local strains at the nanoscale in graphene and 2D materials have been explored

[26, 27, 44, 46, 49]. It has been shown that a large localized uniaxial strain (up to

2.5% tensile) in few layer MoS2 samples (3 to 5 layers) has been achieved [26], as seen

in Fig. 1.6(a). Here, the fabrication process of localized uniaxial strain in wrinkled

MoS2 nanolayers is described as follows: MoS2 flakes are deposited onto an elas-

tomeric substrate which is pre-stretched by 100%. As a consequence, the tension in

the elastomeric substrate is suddenly released, generating well-aligned wrinkles in the

MoS2 layers. It is found that this fabrication exhibit wrinkles in thin MoS2 layers

with the height from 50 to 350 nm. The distance between these wrinkles is about

a few micrometers. For the thin MoS2 flakes, the estimated uniaxial strain ranges
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Figure 1.6: Localized uniaxial strain in MoS2 [26] and ReSe2 [27].

from 0.2% to 2.5%. Especially, in this work, it was shown that the wrinkle are stable

in time, and no slippage has been found. Otherwise, this technique has been applied

to create local strain (about 1.64%) through formation of ReSe2 wrinkles [27] with

the width and height of micrometers, separated by more than 10 µm as seen in Fig.

1.6(b).

Regarding the fabrication of local strain in graphene, an amazing work has been

reported by Ji-Li et al. [44]. The Scalable strain engineering techniques were devel-

29



(a)

(b) (c)

Laser shock induced strain engineering
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Before laser shock

After laser shock

Tunable nano-straining of graphenes
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Figure 1.7: Illustration of the laser shock induced straining of graphene [44]. (a)
setup of of the laser-induced strain engineering, (b) tunable 3D nanostraining of the
graphene film when the strain limit is not exceeded. (c) graphene straining above the
strain limit.

oped to control the area as well as the limit of local strain. This work presents a

scalable manufacturing process to generate three-dimensional (3D) nanostructures,

illustrated in Fig. 1.7, by laser-induced shock pressure and thus to induce local strain

in the graphene sheet. It has been shown that the graphene film is attached to the

mold surface after the laser shock due to the Van der Waals force. As a result, the

strained shapes remain after the process. With this technique, the strain takes place

in a circular mold, the size of which is related to the strain amplitude. It turns out

that a strain of a few percent can be achieved in molds of size in the range from

50 to a few hundred nm, i.e, a circular mold ∼ 50 nm in diameter with strain of

12%. Moreover, it is presented that the combination of the existing scalable pattern-

ing technique such as photolithography, laser interference lithography, and e-beam
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lithography, the treated area in the proposed laser straining process might be further

scaled up to roll to roll process by changing laser beam size and scanning speed. In

conclusion, this is a fast, efficient, and quite ”easy” technique, so it is expected to be

applicable to lots of graphene systems in nanoelectronic devices.

An important point is here that these results are very attracting for us because the

channel length of most of our devices ranges from a few ten nm to one hundred nm.

So, the studies of Ji-Li et al and other groups as cited in references are considered as

a validation of the concept of local strain in graphene, which makes realistic in the

short term the experimental demonstration of the device designs investigated in the

present work.

1.6 Conclusions

In the first part, I have introduced some basic and outstanding properties of graphene

as well as its prospects in applications. Besides, I have also discussed the use of strain

engineering to modify the band structure of semiconducting materials. Many fabri-

cations of uniform and local strain forms are mentioned in this part to conclude that

strain technique might be believed to overcome the gapless drawback of graphene. We

have to say that until now although there are lots of techniques have been investigated

to open a bandgap for graphene, each technique still has its own drawbacks and need

to be confirmed by experiments. That is also the reason why the opening bandgap

for graphene is still a necessary work. These interesting points will be mentioned in

our work and in next chapter 2 and 3.
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Part II. Numerical techniques
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This theoretical work focuses on the electronic and thermoelectric properties of

heterodevices made of graphene with strain engineering. The aims are to find good

guides to improve the performance of graphene devices for practical applications

and to demonstrate novel device concepts. To study some graphene nanostructures

such as single graphene lattice, graphene nanoribbons, bilayer graphene, graphene

nanomesh, and strained graphene lattice, I have used two quantum formalisms and

the corresponding numerical methods: the tight-binding (TB) approach and the non-

equilibrium Green’s function (NEGF) technique.

In fact, it has ever been shown that ab initio method (Density Functional Theory

(DFT)) is considered to be the most powerful one to investigate material properties

in condensed matter physics with the highest possible level of accuracy. However,

though ab initio is a almost perfect method for calculations in small system with lim-

ited number of atoms (a few tens of atoms), its applications have to face with many

challenges in large systems (a few hundreds or thousands of atoms or even more).

The tight-binding model is more simple and much faster in comparison with ab initio

calculations. This method has been used most extensively to describe charge states

in graphene structures, and, in principle, allows us to explore important characteris-

tics such as electronic structure and transport phenomena. More interesting, at low

energy around Dirac point of graphene with good selected parameters, it has been in-

vestigated that conduction bands obtained by tight binding model band calculations

correspond to the DFT paradigm [50], even it might also give a good agreements with

experimental results. Hence, in this work, we use the tight binding techniques as an

useful tool for investigation of graphene system with reasonable computational design

and time.

To consider the transport properties in nanoscale devices, the NEGF approach

combined with a TB Hamiltonian has been proven to be a very efficient method. It

is suitable for quantum transport simulations, taking into account effects of coupling

to contacts, defects, impurities, phonons, etc. Additionally, the NEGF approach has

demonstrated its usefulness for simulating nanoscale transistors, from conventional

Si MOSFETs to carbon nanotube FETs and molecular transistors. Therefore, the

details of these techniques are discussed in this part.

1.7 Tight-binding method

Among other semi-empirical methods like k.p [51] and pseudo-potential [52] ap-

proaches, it has been demonstrated that the tight binding model [53, 54] is a suitable
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approach to calculate the electronic band structure in solid-state physics. By using

an approximate set of wave functions based upon superposition of wave functions

for isolated atoms located at each atomic site, this model describes the properties of

tightly-bound electrons in solids. The method is closely related to the LCAO method

(linear combination of atomic orbitals method) used in chemistry. Here, the electrons

should be tightly bound to the atom to which they belong and should have limited

interaction with states and potentials on surrounding atom. As a result, the wave

function of the electron will be rather similar to the atomic orbital of the free atom

which it belongs to. This method has been initially developed by Bloch in 1928 by

considering only the s atomic orbital. In 1934, Jones, Mott and Skinner introduced

other atomic orbitals [55].

The tight binding model can be applied to a wide variety of solids. The model

gives good quality results in many cases and can be combined with other models,

i.e., density functional theory (DFT) that gives better results and can be used as

a reference when the tight-binding model fails. Besides, the tight binding approach

also provides basic information for materials like the surface states, applied to various

kinds of many-body problems as well as quasiparticle calculations. It is also a common

practice to use optimized tight binding methods, in which the values of the matrix

elements are derived approximately or fitted to experiment or other more accurate

theories like ab initio calculation [53].

1.7.1 Secular equations

Before the introduction of tight binding calculations in carbon structures, i.e., in

graphene, we review here some secular equations, which are actually given in detail

in [56]. First, the wave function of the lattice in Bloch’s theorem is written by

T~aiψ = ei
~k~aiψ (i = 1, 2, 3) (1.26)

where T~ai is a translational operation along the lattice vector ~ai, and ~k is the wave

vector.

There are lots of possible functional forms of ψ to satisfy the equation above.

However, in the tight-binding model of electronic structures, single electron wave

functions are normally expanded in terms of atomic orbitals. So, another functional

form φj(~k, ~r) based on the jth atomic orbital in the unit cell (or atom), which satisfies

Eq. 1.26, is given as

φj(~k, ~r) =
1√
N

N∑
~R

ei
~k ~Rϕj(~r − ~R) (j = 1, 2, ...n) (1.27)
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where ~R is the position of the atom and ϕj(~r− ~R) is the atomic wavefunction in state

j. N and n denote the number of unit cells and atomic wave functions, respectively.

There are n Bloch functions in the solid for a given ~k. It is easy to verify that this

function satisfies the Bloch condition

φj(~k, ~r + ~a) =
1√
N

N∑
~R

ei
~k ~Rϕj(~r + ~a− ~R) (1.28)

= ei
~k~a 1√

N

N∑
~R−~a

ei
~k(~R−~a)ϕj[~r − (~R− ~a)]

= ei
~k~aφj(~k, ~r)

In a solid, the eigenfunctions ψj(~k, ~r) (j = 1, 2, ...n) are defined as a linear combination

of Bloch functions

ψj(~k, ~r) =
n∑

j′=1

Cjj′(k)φj′(~k, ~r) (1.29)

Here, Cjj′(k) are coefficients which have to be determined.

The eigenvalues of the system described by the Hamiltonian H are given by

Ej(~k) =
〈ψj | H | ψj〉
〈ψj | ψj〉

=

∫
ψ∗j (

~k, ~r)Hψj(~k, ~r)dr∫
ψ∗j (

~k, ~r)ψj(~k, ~r)dr
(1.30)

Now, substituting ψj(~k, ~r) as defined above leads to

Ei(~k) =

∑n
j,j′=1C

∗
ijCij′〈φj | H | φj′〉∑n

j,j′=1C
∗
ijCij′〈φj | φj′〉

=

∑n
j,j′=1Hjj′(~k)C∗ijCij′∑n
j,j′=1 Sjj′(

~k)C∗ijCij′
(1.31)

where Hjj′(~k) and Sjj′(~k) are the transfer and overlap matrices, respectively, and are

defined by

Hjj′(~k) = 〈φj | H | φj′〉; Sjj′(~k) = 〈φj | φj′〉 (1.32)

For a given ~k value, the coefficient C∗jj′(
~k) is optimized so as to minimize Ei(~k)

∂Ei(~k)

∂C∗ij(
~k)

=

∑n
j,j′=1Hjj′(~k)Cij′(~k)∑n

j,j′=1 Sjj′(
~k)C∗ij(

~k)Cij′(~k)
−
∑n

j,j′=1Hjj′(~k)C∗ij(
~k)Cij′(~k)

[
∑n

j,j′=1 Sjj′(
~k)C∗ij(

~k)Cij′(~k)]2

n∑
j′=1

Sjj′(~k)Cij′(~k) = 0

(1.33)

This can be rewritten as∑n
j,j′=1Hjj′(~k)Cij′(~k)∑n

j,j′=1 Sjj′(
~k)C∗ij(

~k)Cij′(~k)
−[

∑n
j,j′=1Hjj′(~k)C∗ij(

~k)Cij′(~k)∑n
j,j′=1 Sjj′(

~k)C∗ij(
~k)Cij′(~k)

]

∑n
j′=1 Sjj′(

~k)Cij′(~k)∑n
j,j′=1 Sjj′(

~k)C∗ij(
~k)Cij′(~k)

= 0

(1.34)
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which can be readily simplified as

n∑
j′=1

Hjj′(~k)Cij′(~k)− Ei(~k)
n∑

j′=1

Sjj′(~k)Cij′(~k) = 0 (1.35)

Rewriting this equation in a matrix form we get

{[H]− Ei(~k)[S]}{Ci(~k)} = 0 (1.36)

If the matrix [H]− Ei(~k)[S] has an inverse, the vector Ci(~k) will be identically zero,

which leads to the trivial solution. Thus, non-trivial solutions require

| [H]− Ei(~k)[S] |= 0 (1.37)

This equation is called the secular equation, whose eigenvalues Ei(~k) give the energy

bandstructure.

1.7.2 Tight-binding calculations for carbon structures

In the tight binding method, the one-electron energy eigenvalues Ei(~k) are obtained

by solving the secular equation. The eigenvalues Ei(~k) are periodic functions in the

reciprocal lattice, and thus can be fully described within the first Brillouin zone. In a

two or three dimensional solid, it is difficult to display the energy dispersion relations

over the whole range of ~k values, and thus we plot Ei(~k) along the high symmetry

directions of the Brillouin zone. The actual procedure of the tight binding calculation

is as follows [56]:

(i) specify the unit cell and the unit vectors, ~ai. Specify the coordinates of the

atoms in the unit cell and select n atomic orbitals which are considered in the calcu-

lation.

(ii) specify the Brillouin zone and the reciprocal lattice vectors, ~bi. Select the high

symmetry directions in the Brillouin zone, and the ~k points along the high symmetry

axes.

(iii) for the selected ~k points, calculate the transfer and the overlap matrix ele-

ments, Hij and Sij, respectively.

(iv) for the selected ~k points, solve the secular equation, and obtain the eigenvalues

Ei(~k) (i=1,2...,n) and the coefficients Cij(~k)

When applying these calculation methods to real systems, the symmetry of the

problem is considered in detail on the basis of a tight binding approach where the

transfer and overlap matrix elements are often treated as parameters selected to
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reproduce the band structure of the solid obtained either experimentally or from first

principle calculations.

In graphene, we consider the unit cell and the Brillouin zone of the two dimensional

lattice in Fig. 1.8, where ~a1 and ~a2 are unit vectors in real space, and ~b1 and ~b2 are

the reciprocal lattice vectors. In the real space, the unit real vectors of the hexagonal

lattice are expressed as

~a1 = a(
3

2
,

√
3

2
), ~a2 = a(

3

2
,−
√

3

2
) (1.38)

where a = 1.42A◦ is the lattice constant of graphene. The corresponding unit vectors
~b1 and ~b2 of the reciprocal lattice are given by:

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (1.39)

corresponding to a lattice constant of 4π/a
√

3 in reciprocal space. The direction of

(a)

(b)

Figure 1.8: Graphene lattice and its Brillouin zone. (a) lattice structure of graphene,
made out of two interpenetrating triangular lattices (~a1 and ~a2 are the lattice unit

vectors). (b) corresponding Brillouin zone with two reciprocal lattices ~b1 and ~b2. The
Dirac cones are located at the K and K ′ points [3].

the unit vectors ~b1 and ~b2 of the reciprocal hexagonal lattice is shown in Fig. 1.8 from

the unit vectors ~a1 and ~a2 of the hexagonal lattice in real space. By selecting the first

Brillouin zone as in Fig. 1.8(b), the highest symmetry is obtained for the Brillouin

zone of 2D graphite. Here we define the three high symmetry points, Γ, K and M as

the center, the corner, and the center of the edge, respectively. The energy dispersion

relations are calculated for the triangle ΓKM .
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It has been shown that the three σ-bonds for 2D graphite hybridize in a sp2

configuration, while the other 2pz orbital, which is perpendicular to the graphene

plane, forms π covalent bands. Here, we consider only π energy bands for 2D graphite,

because we know that the π energy bands are covalent and are the most important

for determining the solid state properties of graphite.

The unit cell of graphene defined as a box represented by the dotted lines in Fig.

1.9, with two carbon atoms (A and B) in the unit cell. The Bloch orbitals consisting

of A and B atoms are given by

Φ(r) =
1√
N

∑
Rα

eikRαϕ(r −Rα) with α = A,B (1.40)

where the summation is taken over the atom site coordinate Rα for the A and B

carbon atom in the solid.

A B

Unit Cell

Figure 1.9: Graphene lattice is composed of two triangular sub-lattices A and B.
Unit cell is shown in figure with two atoms. It is noted that the lattice constant is a
(a = 1.42A◦).

The (2× 2) matrix Hamiltonian, Hαβ (α, β = A,B), is determined as follows

HAA(r) = 〈φA(r) | H | φ′A(r)〉

=
1

N

∑
RA,R

′
A

eik(R
′
A−RA)〈φA(r −RA) | H | φA(r −R′A)〉
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=
1

N

∑
RA,R0

eikR0〈φA(r −RA) | H | φA(r −RA −R0)〉

=
1

N
{
∑

RA,R0=0

〈φA(r−RA) | H | φA(r−RA)〉+
∑

RA,R0 6=0

eikR0〈φA(r−RA) | H | φA(r−RA−R0)〉}

Finally,

HAA(r) = 〈φA(r) | H | φ′A(r)〉 = ε2p (1.41)

In the equation above the maximum contribution to the matrix element HAA

comes from R = R′, and this gives the orbital energy of the 2p level, ε2p. The next

order contribution to HAA comes from terms in R = R′ ± a, which will be neglected

for simplicity. Similarly, HBB = HAA.

Next let us consider the matrix element HAB(r). The larger contribution to

HAB(r) arises when atoms A and B are nearest neighbors.

HAB(r) = 〈φA(r) | H | φB(r)〉 =
1

N

∑
RA,RB

eik(RB−RA)〈ϕA(r −RA) | H | ϕB(r −RB)〉

=
1

N

∑
RA,RB

eikRj〈ϕA(r −RA) | H | ϕB(r −RA −Rj)〉

Then,

HAB(r) = 〈φA(r) | H | φB(r)〉 = teikRj (1.42)

Here RB = RA +Rj and we define t = 1
N
〈ϕA(r −RA) | H | ϕB(r −RA −Rj)〉

Otherwise, we consider the three nearest-neighbor B atoms relative to an A atom,

which are denoted by the vectors ~R1, ~R2 and ~R3.

HAB = t(eikR1 + eikR2 + eikR3) = tf(k) (1.43)

where f(k) is a function of the sum of the phase factors of eikRj (j = 1, 2, 3).

It is noticed that HBA = H∗AB. So, the explicit form for H can be written as

H =

[
ε2p tf(k)

tf(k)∗ ε2p

]
(1.44)

The calculations of overlap matrices Sαβ are totally similar to that of Hαβ. We

assume that the atomic wavefunction is normalized, so SAA = SBB = 1. Beside,

SAB = sf(k) where s is the overlap integral between the nearest A and B atoms and

is determined by s = 1
N
〈ϕA(r − RA) | ϕB(r − RA − Rj)〉. We also have SBA = S∗AB.

Finally, the explicit form for S is

S =

[
1 sf(k)

sf(k)∗ 1

]
(1.45)
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Solving the secular equation det(H − ES) = 0 and using H and S above, the eigen-

values E(
~k) are obtained as a function of ω(~k), kx and ky

Eg2D(~k) =
ε2p ± tω(~k)

1± sω(~k)
(1.46)

where the + signs in the numerator and denominator go together giving the bonding

π energy band, and likewise for the − signs, which give the anti-bonding π∗ band,

while the function ω(~k) is given by

ω(~k) =

√
| f(~k) |2=

√
3 + 2cos(

√
3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa) (1.47)

       ab initio
       tight binding

M K MΓ
Wave vector

E
n

er
g

y 
(e

V
)

Figure 1.10: Ab initio and nearest-neighbor tight-binding dispersions of graphene.
The converged ab initio calculation of the graphene π and π∗ electronic bands is
shown by the full lines. The dashed lines represent the tight-binding dispersion of
Eq. 1.46 with s = 0 and t = 2.7eV [57].

In the Eq. 1.46, the three parameters ε2p, t and s are found by fitting experimental

or first-principles data. The most common method is to adjust the tight-binding

dispersion to obtain a correct description of the π bands at the K point. This yields

ε2p = 0, t between -2.5 and -3.0 eV, and s below 0.1 [57]. Since s is small, it it usually

neglected. In that case, the nearest neighbor Hamiltonian is able to produce bands

which are symmetric with respect to the Fermi level. In addition, the Eq. 1.46 with

ω(~k) shown in Eq. 1.47 and zero s is given by

Eg2D(kx, ky) = ±t

√
3 + 2cos(

√
3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa) (1.48)
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Hence, when the overlap integral s becomes zero, the energy dispersion is linear

around Dirac point, as shown in Fig. 1.10. Moreover, this figure is shown a result of an

ab initio calculation of the graphene π and π∗ electronic bands (full lines) to compare

with the tight-binding dispersion in Eq. 1.48 [57], neglecting the overlap matrix

(dashed lines). Clearly, the agreement between first-principles and the tight-binding

band structure is very good close to the K point of Brillouin zone. In conclusion,

the nearest neighbor tight-binding description of graphene is nearly perfect for the

calculations to study the low-energy properties.

In other dispersions of energy equation with basic vectors

~a1 = a(
3

2
,

√
3

2
), ~a2 = a(

3

2
,−
√

3

2
)

or ~r1 = a(
1

2
,

√
3

2
), ~r2 = a(

1

2
,−
√

3

2
), ~r3 = a(1, 0)

finally, the description of energy bands can write as follows

E(k) = ±t | eik~a1 + eik~a2 + 1 | (1.49)

or E(k) = ±t | eik~r1 + eik~r2 + eik~r3 | (1.50)

1.8 Non-equilibrium Green’s function technique

1.8.1 Basic equations

In this section, we present the NEGF equations for layer structures, i.e., single layer

graphene. It has been shown that the NEGF formalism is a very efficient method in

physics to solve the Schrodinger equation as well as the Poisson equation. First, we

will reconsider the basic form of Green’s function. Beginning from the Schrodinger

equation, i.e.

(E −H)|ϕ〉 = 0 (1.51)

The relationship between the operator (E-H) and the Green’s function is defined by

(E −H)G(~r, ~r′;E) = δ(~r − ~r′) (1.52)

where δ is the Dirac delta function. We can define a matrix form of the Green’s

function as follows

(E −H)G(E) = I or G(E) = (E −H)−1 (1.53)
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Figure 1.11: A general model of field effect transistor with a device channel connected
to the source and drain contacts. The electrical current is modulated by a third
electrode, the gate. The coupling to contacts is described by ΣL,R self energy.

where H is the matrix formed from the interactions between atoms in the system, it

can be called atomistic Hamiltonian and the Green’s function defined by Eq. 1.53 is

called atomistic Green’s function.

Now, we will consider the application of Green’s function method in nanoscale

devices. A schematic structure of typical simulated device is shown in Fig. 1.11. In

principle, in the standard case of a transistor, it includes three main parts: a device

channel (active region), contacts (left and right, or source and drain), and a gate

electrode. The Green’s function of the active region is now

GD = (E −HD − ΣL − ΣR)−1 (1.54)

where HD is the Hamiltonian of the active region. ΣL(R) is the self energy of left

(right) contact and is determined by [58]

Σs
L(R) = HDL(R)g

L(R)
0(N)HL(R)D (1.55)

where HDL(HLD) is the Hamiltonian describing the device-to-contact (contact-to-

device) coupling, and g
L(R)
0(N) is the surface Green’s funtion of the left (right) contact,

which is discussed in details below.

1.8.1.1 Transmission

In ballistic transport, the transmission of the system can be calculated via the Green’s

function [58, 59]

T = trace[ΓLGDΓRG
†
D] (1.56)

where ΓL(R) = i[ΣL(R) − Σ†L(R)] is the energy level broadening at the left (right)

contact.

In principle, the Eq. 1.56 is the standard one for calculation of transmission.

However, to calculate the transmission using this approach, we need all elements of
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the Green’s function matrix as well as all elements of Hamiltonian matrix HD of the

active region. Since the size of the tight binding matrix HD can be very large it may

require large computational resources. To reduce the computation time, the recursive

Green’s function algorithm [58] is very powerful. Using this technique, we do not need

to calculate all elements of the Green’s function matrix, but just some particular ones.

Now, the transmission can be calculated efficiently with different techniques applied

to reduce the size of the left (right) Green’s function as well as of the device Green’s

function [58].

T (E) = Trace[ΓsL{i(G11 −G†11)−G11Γ
s
LG
†
11}] (1.57)

or

T (E) = Trace[{i(GNN −G†NN)−G†NNΓsRGNN}ΓsR] (1.58)

where ΓsL(R) = i[Σs
L(R) − Σs†

L(R)] with Σs
L(R) = HDL(R)g

L(R)
0(N)HL(R)D. Here, g

L(R)
0(N) is the

surface Green’s function of left (right) contact.

1.8.1.2 Density of states (DOS) and local density of states (LDOS)

A. Density of states (DOS)

The density of states (DOS) is defined as the number of states per unit sample

volume at an energy E inside an interval [E,E + dE]. The general form of DOS of a

system is given as [59]

D(E) =
dN(E)

dE
=
∑
n

δ(E − En) (1.59)

where N(E) is the number of states between energies E and E+dE in a given volume.

It has been demonstrated that the DOS can be computed via the Green’s function

thanks to the Lorentz form of the delta function as

D(E) =
∑
n

δ(E − En) = lim
η→0

∑
n

1

π

η

(E − En)2 + η2
(1.60)

where η is a very small quantity (it is often noted as 0+) and it has the physical

meaning of a small broadening energy to avoid divergence in case of E = En.

Coming back to the common form of Green’s function as mentioned above: G(E) =

(E −H)−1, we can rewrite this formula as follows

G(E) = (E + iη −H)−1 (1.61)
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With this form, if we use the basis eigen vectors of the Hamiltonian H, the Green’s

function contains the diagonal terms given by

G(E) =


1

E+iη−ε1
1

E+iη−ε2
. . .

1
E+iη−εn


We define A = i[G−G†], which is called spectral function. Then, we have

trace(A) = i× trace[G−G†] =
∑
n

2η

(E − εn)2 + η2
(1.62)

From Eq. 1.60 and Eq. 1.62, the DOS is finally given by

D(E) =
trace(A)

2π
=
i× trace[G−G†]

2π
(1.63)

B. Local density of states (LDOS)

The local density of states (LDOS) is very important for transport and device

analysis. This quantity is associated with energy levels localized in the scattering

region and especially important for instance in the presence of resonance effects where

each peak of transmission corresponds to a confined state in the scattering region that

can be observed clearly via LDOS spectrum.

The LDOS is defined as the DOS at a specific position in the space. So, the LDOS

at the position of ith layer in the device can be calculated via the Green’s function

as in Eq. 1.63. It is noted that the spectral function corresponding to the spectral

function of ith layer is Aii = i[Gii−G†ii] = −2Im(Gii) where Im(Gii) is the imaginary

part of Gii. Therefore, the LDOS is now given by

Dii(E) =
trace(Aii)

2π
= −trace[Im(Gii)

π
] (1.64)

1.8.1.3 Electric current

When a bias voltage is applied at source and drain, an electric field is generated

along the transport direction and drives carriers in the channel. This leads to a flow

or current in the device and it can be measured. The total current in ballistic regime

can be calculated by the well-known Landauer’s formula [59]

I =
2e

h

+∞∫
−∞

[fL(E − µL)− fR(E − µR)]T (E)dE (1.65)
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where f(E, µ, T0) = [1 + exp(E−µ
kbT0

)]−1 is the Fermi function giving the distribution

of electrons around the chemical energy µ. It is noted that here µR = EFR + UR,

µL = EFL + UL, UL − UR = eVb (Vb: bias voltage) where EFL(R) is the Fermi energy

in source (left contact) and drain (right contact). In common calculations, we often

choose (UL = 0 and UR = −eVb) or (UL = eVb/2 and UR = −eVb/2).

1.8.1.4 Conductance

The electronic conductance is usually defined at low bias and in ballistic regime it

can be also calculated by a Landauer’s formula [59]

Ge(µ, T0) = lim
Vb→0

I

Vb
=

2e2

h

+∞∫
−∞

∂f(E, µ, T0)

∂E
T (E)dE (1.66)

where T (E) is the transmission of electrons and f(E, µ, T0) is the Fermi function.

1.8.2 Numerical techniques for Green’s function calculation

From the formula of device Green’s function as shown above

G(E, ky) = [E −HD − ΣL − ΣR]−1 (1.67)

We see that to determine the device’s Green function it is first necessary to compute

the coupling self-energies ΣL,R. Afterwards, we can calculate the physical quantities

of interest such as transmission, LDOS, conductance as well as current density.

1.8.2.1 Calculation of the self energy

In this work, we will study devices made of graphene material. It is noted that the

Hamiltonian of graphene structures is constructed by the tight-binding method. This

section will present some techniques used for this thesis work. First, to calculate

the self-energies, the simulated structure is divided into layers as schematized in Fig.

1.12. The layer is a tiny part, which can form the whole structure by repeating it

along x-direction (transport direction).

In this model, the device-to-contact coupling just appears between the device layer

1 and the layer l0 of the left contact and between the device layer N and the layer r0
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Figure 1.12: Layered description of a device.

of the right contact, we finally have the form:

HD + ΣL + ΣR =


H1 + Σ̂L H12 0
H12 H2 H23

H32 H3
. . .

. . . . . . HN−1,N

0 HN,N−1 HN + Σ̂R


where,

ΣL =


Σ̂L 0

0
0

. . .

0 0


and,

ΣR =


0 0

0
0

. . .

0 Σ̂R


We now have to solve:

G(E) = [E + i0+ −HD − ΣL − ΣR]−1 (1.68)

To do this, we have to compute the self energies by solving

ΣL = HDLg
l
0HLD and ΣR = HDRg

r
0HRD (1.69)
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with the surface Green’s function gl0 at the layer l0 of the left contact and gr0 at the

layer r0 of the right contact. We will present here an efficient scheme for finding the

surface Green’s function gl0 and then the self energy ΣL. This calculation can be of

course used to determine the self energy ΣR.

.....

Left contact (L)

(semi-infinite)

.........    l
4
       l

3
     l

2
      l

1         
l
0      

Figure 1.13: Schematic of semi-infinite left contact.

It has been shown [58] that the layer Green’s functions in the contact are defined

by the recursive relation as

gln = [E + i0+ −H l
n −H l

n,n+1g
l
n+1H

l
n+1,n]−1 (1.70)

Normally, we assume that the contacts are semi-finite as illustrated in Fig. 1.13,

H l
0 = H l

1 = . . . = H l
n, H l

01 = H l
12 = . . . = H l

n,n+1, and H l
10 = H l

21 = . . . = H l
n+1,n.

This leads to the fact that gl0 = gl1 = . . . = gln and thus we have

gl0 = [E + i0+ −H l
0 −H l

01g
l
0H

l
10]
−1 (1.71)

In principle, this equation can be solved iteratively but the convergence is generally

difficult. Here, we present two efficient methods: the fast iterative scheme developed

by Sancho et al. (1984) and the analytical method which can be applied in some

special cases.

A. Fast iterative scheme
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First, we calculate the left self-energy. After Eq. 1.71 we have:

g0 = [E+ −H l
0 −H l

01Π]−1 (1.72)

where Π = g0H
l
10 = [E+ −H l

0 −H l
01Π]−1H l

10, with g0 ≡ gl0 and E+ ≡ E + i0+.

From the equation above, with note that gn0 = Πng0. We can then derive the

following set of equations:

[E+ −H l
0 −H l

01Π]g0 = 1

[E+ −H l
0]g0 = 1 +H l

01Πg0

[E+ −H l
0]g0 = 1 +H l

01g
1
0

. . .

Π[E+ −H l
0]g0 = Π(1 +H l

01g
1
0)

[E+ −H l
0]Πg0 = Π + ΠH l

01g
1
0)

[E+ −H l
0]g

1
0 = H l

10g0 +H l
01g

2
0

. . .

[E+ −H l
0]g

n
0 = H l

10g
n−1
0 +H l

01g
n+1
0

from which we deduce that

gn0 = [E+ −H l
0]
−1H l

10g
n−1
0 + [E+ −H l

0]
−1H l

01g
n+1
0 (1.73)

By introducing the two quantities

t0 = [E+ −H l
0]
−1H l

10

t̃0 = [E+ −H l
0]
−1H l

01

the Eq. 1.73 can be rewritten

gn0 = t0g
n−1
0 + t̃0g

n+1
0

with

gn−1
0 = t0g

n−2
0 + t̃0g

n
0

gn+1
0 = t0g

n
0 + t̃0g

n+2
0

Now, we have

gn0 = t0(t0g
n−2
0 + t̃0g

n
0 ) + t̃0(t0g

n
0 + t̃0g

n+2
0 )

gn0 (1− t0t̃0 − t̃0t0) = t0t0g
n−2
0 + t̃0t̃0g

n+2
0
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By defining

t1 = [1− t0t̃0 − t̃0t0]−1t20

t̃1 = [1− t0t̃0 − t̃0t0]−1t̃20

We have

gn0 = t1g
n−2
0 + t̃1g

n+2
0

If we continue this iterative process, we have

gn−2
0 = t1g

n−4
0 + t̃1g

n
0

gn+2
0 = t1g

n
0 + t̃1g

n+4
0

gn0 = t1(t1g
n−4
0 + t̃1g

n
0 ) + t̃1(t1g

n
0 + t̃1g

n+4
0 )

gn0 (1− t1t̃1 − t̃1t1) = t21g
n−4
0 + t̃21g

n+4
0

Then,

t2 = [1− t1t̃1 − t̃1t1]−1t21

t̃2 = [1− t1t̃1 − t̃1t1]−1t̃21

gn0 = t2g
n−4
0 + t̃2g

n+4
0

To summarize:

gn0 = tig
n−2i

0 + t̃ig
n+2i

0

ti = [1− ti−1t̃i−1 − t̃i−1ti−1]
−1t2i−1

t̃2 = [1− ti−1t̃i−1 − t̃i−1ti−1]
−1t̃2i−1

Letting n = 2i, the following chain of equations is obtained:

g1
0 = t0g0 + t̃0g

2
0

g2
0 = t1g0 + t̃1g

4
0

g4
0 = t2g0 + t̃2g

8
0

. . .

g2n
0 = tng0 + t̃ng

2n+1

0
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where

g1
0 = t0g0 + t̃0g

2
0

= t0g0 + t̃0(t1g0 + t̃1g
4
0)

= (t0 + t̃0t1)g0 + t̃0t̃1g
4
0

= (t0 + t̃0t1)g0 + t̃0t̃1(t2g0 + t̃2g
8
0)

= (t0 + t̃0t1 + t̃0t̃1t2)g0 + t̃0t̃1t̃2g
8
0

. . .

= (t0 + t̃0t1 + t̃0t̃1t2 + · · ·+ t̃0 . . . t̃n−1tn)g0 + t̃0 . . . t̃n−1tng
2n+1

0

(1.74)

This process is to be repeated until tn+1, t̃n+1 < σ, as small as one wishes; then

g2n+1

0 ∼ 0 and the equation above becomes (note that g1
0 = Πg0)

Π = t0 + t̃0t1 + t̃0t̃1t2 + · · ·+ t̃0 . . . t̃n−1tn (1.75)

That means the self energy is calculated for left contacts.

ΣL = HDLg
l
0HLD = HDLΠg0HLD (1.76)

The self energy of the right contact is calculated in the same way.

B. Analytical method

This method can be used when we can find a transformation thanks to which

all matrices H0, H01 and H10 can be diagonalized. After diagonalizing all matrices,

the Eq. 1.71 becomes a set of equations of diagonal elements of the surface Green’s

function.

Now, we continue to determine the self-energies.
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r
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r
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0
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b
0
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Figure 1.14: Schematic of a simple structure for analytical method.

From the equation gn = [E+ −Hn −Hn,n+1gn+1Hn+1,n]−1
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We have the equation for surface Green’s function at the right ( after that to

calculate for the right self-energy)

ga0 = [E+ − Uc − αgb0α†]−1

gb0 = [E+ − Uc − βgc0β]−1

gc0 = [E+ − Uc − αgd0α†]−1

gd0 = [E+ − Uc − βga1β]−1

. . .

where α is the coupling of layer a0 to b0, β is the coupling of layer b0 to c0, as seen in

Fig. 1.14. It is noted that here α is not diagonal matrix while β is diagonal.

The equation for surface Green’s function at the left( after that to calculate for

the left self-energy)

gd0 = [E+ − Uc − αgc0α†]−1

gc0 = [E+ − Uc − βgb0β]−1

gb0 = [E+ − Uc − αga0α
†]−1

ga0 = [E+ − Uc − βgd1β]−1

. . .

Within this technique, all matrices have to be diagonal, so they need to be diagonal-

ized. This can be done as follows:

First, we find the eigenvectors of α and construct a transform matrix U : U †αU =

α̂. Here, α̂ is a diagonal matrix whose diagonal elements are eigenvalues of α. After

that, using this transform, all matrices have diagonal forms. Hence, from the equation

for surface Green’s function at the right, we have

ĝa0 = [E+ − Uc − |α̂|2ĝb0 ]−1

ĝb0 = [E+ − Uc − β2ĝa0 ]
−1

So,

ĝa0 = [E+ − Uc −
|α̂|2

[E+ − Uc − β2ĝa0 ]
]−1
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Put: ĝa0 ≡ ĝ0

ĝ0[(E
+ − Uc)(E+ − Uc − β2ĝ0)− |α̂|2] = (E+ − Uc)− β2ĝ0

−ĝ2
0β

2(E+ − Uc) + ĝ0[(E
+ − Uc)2 + β2 − |α̂|2]− (E+ − Uc) = 0

ĝ2
0β

2(E+ − Uc)− ĝ0[(E
+ − Uc)2 + β2 − |α̂|2] + (E+ − Uc) = 0

⇒ ∆ = [(E+ − Uc)2 + β2 − |α̂|2]2 − 4(E+ − Uc)2

∆ = [(E+ − Uc − β)2 − |α̂|2][(E+ − Uc + β)2 − |α̂|2]

⇒ ĝ0 =
[(E+ − Uc)2 + β2 − |α̂|2]±

√
∆

2β2(E+ − Uc)

It is noted the real g0 in the real space is determined as g0 = Uĝ0U
†. From the

determination of g0 we can compute for the self energy.

1.8.2.2 Device Green’s function calculation

The ballistic transmission coefficient can be computed from the equation

T (E) = Trace{ΓL[i(G11 −G†11)−G11ΓLG
†
11]} (1.77)

Or

T (E) = Trace{[i(GNN −G†NN)−G†NNΓRGNN ]ΓR} (1.78)

We can compute T (E) from G11 or GNN . These elements of Green’s function can be

obtained as follows

For G11

Step 1: Gl
NN = [E+ −HN − ΣR]−1

Step 2: for q = N − 1, ..., 2

Gl
q,q = [E+ −Hq −Hq,q+1G

l
q+1,q+1Hq+1,q]

−1

Step 3: Gl
11 = [E+ −H1 −H12G

l
22H21 − ΣL]−1

and G11 ≡ Gl
11

For GNN

Step 1: Gr
11 = [E+ −H1 − ΣL]−1

Step 2: for q = 2, ..., N − 1

Gr
q,q = [E+ −Hq −Hq,q−1G

r
q−1,q−1Hq−1,q]

−1

Step 3: Gr
NN = [E+ −HN −HN,N−1G

r
N−1,N−1HN−1,N − ΣR]−1

and GNN ≡ Gr
NN
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1.9 Conclusions

In this part, I have introduced some basic steps about tight binding model and

Green’s function techniques. Besides, some important physical quantities in energy

and transport were also reviewed. Then, the calculating techniques are applied to

investigate lots of characters such as energy band structure, transmission, LDOS,

current, conductance, etc in the study of electronic and thermoelectric properties of

unstrained/strained graphene systems in chapter 2 and 3.
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Chapter 2

ELECTRONIC PROPERTIES OF
STRAINED GRAPHENE
JUNCTIONS

2.1 Introduction

In its simplest form, graphene is a flat single layer of carbon atoms that are tightly

packed into a honeycomb-like crystalline lattice in a (2D) system. Thanks to lots of

specific properties as mentioned above, graphene offers many advantages for electronic

applications as well as thermal applications, such as high carrier mobility, exceeding

200 000 cm2V −1s−1 [60], high current density 108 Acm−2 [1] and high thermal con-

ductivity 5000 Wm−1K−1 [61], etc. However, a single layer of graphene has a simple

electronic spectra with zero-gap consisting of one conduction band and one valence

band touching each other. As a result, the lack of energy gap between valence and

conduction bands is a serious drawback of this material for practical applications. In

particular, in graphene transistors it makes it very difficult to have a high ON/OFF

current ratio and a really saturated current at high drain voltage. Regarding thermo-

electric applications, the lack of bandgap makes it difficult to separate the opposite

contributions of electrons and holes to the Seebeck coefficient. It results in a finite but

small value of Seebeck coefficient S < 100V/K in pristine graphene [62]. Therefore,

a number of techniques to open a bandgap in graphene have been proposed, for in-

stance, by cutting a graphene sheet into nanoribbons [63, 64], applying an electronic

field perpendicular to a bilayer graphene sheet [65, 66], creating a system of many

nanoholes on a 2D graphene sheet called graphene nanomesh [67, 68, 69, 70], applied

strain engineering to monolayer [41, 42, 71] or twisted two layers graphene [72, 73, 74],

stacking graphene with other 2D materials [75, 76], so on. The main features of these

54



graphene systems are reviewed and displayed in discussion below.

Otherwise, as mentioned in chapter 1, although many techniques have been sug-

gested to open a bandgap in graphene, each of them still has its own issues. Hence,

until now, bandgap engineering is still a timely and desirable topic for the develop-

ment of graphene in nanoelectronics. In this work, we will use strain engineering

as an alternative technique to modify the electronic bandstructure of graphene. In

particular, we present the opening of bandgap in graphene by large strains, which is

also studied by other groups. After that, our work focuses on the use of a small strain

of a few percent, which is more achievable in experiments than a large strain. We

will display the effects of a small strain to open a conduction gap, which can play in

transport the same role as a real bandgap, in unstrained/strained junctions and the

dependence of this conduction gap on the key parameters of the system.

The chapter 2 is organized as follows. After this first introductory section, the

second section 2.2 presents the electronic structure of graphene and graphene nanos-

tructures such as monolayer graphene, graphene nanoribbon, bilayer graphene, and

graphene nanomesh. The section 2.3 shows the electronic structure of strained graphene,

i.e., the bandgap opening under large strain and the shift of Dirac points in case of

small strain of a few percent. In the section 2.4, we demonstrate a conduction gap

of a few hundred meV can open in untrained/strained graphene junctions with small

strain. Moreover, we display the dependence of conduction gap on the strain am-

plitude, the direction of applied strain as well as the transport direction. Finally, a

conclusion in section 2.5 to close the chapter 2.

2.2 Electronic properties of graphene nanostruc-

tures

In this section, we will introduce the main electronic features of monolayer graphene

and its nanostructures, i.e., bilayer graphene, graphene nanoribbons, graphene nanomesh.

It should be noticed that the overview of the electronic properties of graphene is de-

scribed here using a simple nearest-neighbor tight-binding model.

2.2.1 Monolayer graphene

Graphene is made out of carbon atoms arranged in hexagonal structure, as seen in

Fig. 2.1. The structure can be considered as a combination of two triangular lattices
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with a basis of two atoms per unit cell. The lattice vector can be written as mentioned

in chapter 1

~a1 = a(
3

2
,

√
3

2
), ~a2 = a(

3

2
,−
√

3

2
) (2.1)

where a ∼ 1.42A◦ is the carbon-carbon distance in graphene. The three nearest-

neighbor vectors in real space are given by

~r1 = −a
2

(1,
√

3), ~r2 =
a

2
(−1,

√
3), ~r3 = a(1, 0) (2.2)

while the six second-nearest neighbors are located at ~r′1 = ±a1, ~r
′
2 = ±a2 and ~r′3 =

±(a2 − a1).

The reciprocal-lattice vectors are given by

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (2.3)

a
1

a
2

r
1

r
2

r
3

Figure 2.1: Honeycomb lattice of graphene and its Brillouin zone. Left panel: lattice
structure made out of two triangular lattices (~a1 and ~a2 are the unit vectors, and
~r1, ~r2, ~r3 are the nearest-neighbor vectors). Right panel: Brillouin zone in reciprocal
space. The Dirac cones are located at the K and K ′ points.

Of particular importance for the physics of graphene are the two points K and K ′

at the corner of the graphene Brillouin zone (BZ). They are also called Dirac points.

Their positions in momentum space are given by

~K = (
2π

3a
,

2π

3
√

3a
), ~K ′ = (

2π

3a
,− 2π

3
√

3a
) (2.4)

In this work, we consider the lattice of graphene as a set of rectangular elementary

cells of four carbon atoms, as can been seen in Fig. 2.2. The translation periods in
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p and q directions are Lx = 3a and Ly =
√

3a, respectively, where a is the carbon-

carbon distance.

Generally, using the tight binding model, the Hamiltonian for graphene nanos-

tructures is written as

Htb = −t
∑
n,m

(c†ncm + h.c.) (2.5)

where c†n and cm are creation and annihilation operators, {n,m} is the nearest neigh-

bor index. Here, the hopping integral (t) corresponds to the transfer integral in tight

binding model and the value of t is between -2.5 and -3.0 eV as mentioned in chapter

1.

..... .....

(p,q-1)

(p,q) (p+1,q)(p-1,q)

(p,q+1)

L
X
 = 3a

a√3L
y
 =

p

q

Figure 2.2: Sketch of 2D honeycomb lattice. The central block corresponds to an
unit or elementary cell (p, q) consisting of four carbon atoms. The lengths Lx = 3a
and Ly =

√
3a are the translation period in p and q directions, respectively. a is the

nearest C − C distance.

Otherwise, when the lattice is separated in unit cells as in Fig. 2.2 the Hamiltonian

equation can be written as

Htb =
∑
p,q

Hp,q→q±1 +Hp,q +Hp→p±1,q (2.6)

where Hp,q is the Hamiltonian of cell {p, q}, Hp,q→q±1 denotes the coupling of cell {p, q}
to cell {p, q → q ± 1} along the direction OY and Hp→p±1,q denotes the coupling of

cell {p, q} to cell {p→ p± 1, q} along the transport direction OX.
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We describe again the Hamiltonian in k−space (~k = (kx, ky)) by using the Fourier

transform of the operators as

cn,p,q =
1√
Mcell

∑
kx,ky

eipkxLx+iqkyLycn,kx,ky (2.7)

Then, ∑
p,q

Hp,q =
∑
kx,ky

H0(kx, ky)

∑
p,q

Hp,q→q±1 =
∑
kx,ky

H0,±1(kx, ky),
∑
p,q

Hp→p±1,q =
∑
kx,ky

H±1,0(kx, ky)

After that, we obtain

Htb =
∑
kx,ky

He(kx, ky) (2.8)

with

He(kx, ky) = H0(kx, ky) +H0,±1(kx, ky) +H±1,0(kx, ky)

The Eq. 2.8 is a decoupled form of the Hamiltonian. Using this form we can easily

find E(kx, ky) by diagonalizing H(kx, ky) independently for each vector ~k.
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Figure 2.3: Electronic bandstructure in graphene lattice. Left panel: the full energy
spectrum in 3 dimensions. Right panel: the energy bands along kx direction.

In Fig. 2.3, we display the full band structure of graphene. As seen in the figure,

the dispersion is (i) bounded by the energy interal |E| ≤ 3t, (ii) symmetric (electron-

hole symmetry) around zero energy, and (iii) linear in the vicinity of Dirac point.

This dispersion can be written by expanding the full band structure, close to the K

and K ′ points as

E(q) = ±~vF
√
q2
x + q2

y (2.9)
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with the Fermi velocity vF = 3at/2~ ∼ 106m/s and ~q = ~k − ~K. This result was first

obtained by Wallace in 1947. The most striking difference between this results and

the usual case, ε(~q) = q2/2m, where m is the electron effective mass, is that the Fermi

velocity in eq (2.9) does not depend on the energy or momentum, while for massive

particles we have v = q/m =
√

2ε/m and hence this velocity changes substantially

with carrier’s energy or momentum.

2.2.2 Graphene nanoribbon structures

...

3
2

n-1

n

1

...

(a) Armchair GNR

... ...

3
2

n-1
n

1

(b) Zigzag GNR

unit cell unit cell

Figure 2.4: Sketch of graphene nanoribbons with (a) armchair and (b) zigzag edges.
The GNRs are infinite following the direction of dots and the blocks in red rectangulars
are the unit cells. n is number of carbon atom lines along the GNR width.

As mentioned above, thanks to its specific band structure and excellent carrier

transport properties [3, 77], graphene has been expected to become an outstanding

material for nanoscale electronics, specially for electronic applications [78, 79]. How-

ever, this wonderful material has also ”an Achilles heel”. The electric conduction

cannot be turned off due to the lack of an energy bandgap, making it useless for

designing transistors with high ON/OFF current ratio. The possibility of tuning the

current is crucial for achieving the control of the current flow in electronic devices.

Hence, opening a bandgap in graphene should overcome this drawback. Until now,

so many different creative ways to do it have been proposed, as can be found in lots

of Refs. in Section 2.1. One possible solution is to use narrow strips of graphene, also

called graphene nanoribbons (GNRs).

In fact, graphene nanoribbons can be obtained by cutting a graphene sheet as

shown in Fig. 2.4. There are two typical edge shapes: the armchair edge (Fig.
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2.4(a)) and the zigzag edge (Fig. 2.4(b)). The atomic structure of nanoribbons with

armchair and zigzag edge is represented in Fig. 2.5 and 2.6 respectively, along with

their corresponding unit cells. Our results are in accordance with previous works

[80, 81, 82, 83]. We denote here n the number of carbon lines along the width (as

shown clearly in Fig. 2.4), which is the characteristic parameter that allows us to

distinguish the metallic or semiconducting properties of nanoribbons.

In details, it is shown that two-thirds of armchair GNRs are semiconducting and

the others are metallic, as can be seen in Fig. 2.5. The value of bandgap depends on

the ribbon width, i.e., n. For n = 3p + 2 (p:integer), the bandgap is always equal to

zero, meanwhile it is finite for n = 3p or n = 3p + 1. Besides, as displayed in Fig.

2.5(a,b) the bandgap corresponding to the group of 3p is slightly larger than that in

the group of 3p + 1. By a similar way, the band structure of zigzag GNRs is also

shown in three cases with n = 3p, n = 3p+ 1 and n = 3p+ 2 (Fig. 2.6). However, it

is shown that zigzag GNRs are always metallic with zero bandgap. Since zigzag and

armchair GNRs have different electronic structures, their transport properties are also

very different. For instance, in zigzag GNRs, transport is dominated by dispersionless

edge states, while no such edge state appears in perfect armchair ones.
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x
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(a) (b) (c)

Figure 2.5: Electronic structure of armchair graphene nanoribbon is shown in three
cases. (a) and (b) are semiconducting corresponding with n = 3p and n = 3p + 1,
respectively. (c) with n = 3p+ 2 is metallic (p: an integer number).

However, the experiments have demonstrated that GNRs are always semiconduct-

ing with an energy bandgap depending on their width [63]. It was shown that the

bandgap of GNRs does not depend on the orientation of lattice (in Fig. 2.7). That is
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Figure 2.6: Electronic structure of zigzag graphene nanoribbon is shown in three cases
with n = 3p, n = 3p+ 1 and n = 3p+ 2 (p: an integer number).

Figure 2.7: Energy bandgap Eg vs ribbon width W for six device sets with varying
orientation. The inset shows Eg vs relative angle θ for the device sets D1 and D2.
Dashed line in the inset show the value of Eg as predicted by the empirical scaling of
Eg vs W. From Y. Han et al. [63]

why there are lots of theoretical studies [80, 84, 85, 86, 87] dealing with this problem.

Finally, it is demonstrated that features observed experimentally can be explained
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by disorder effects, which are due to substrate or impurities, and especially edge

roughness.

2.2.3 Bilayer graphene

The tight binding model developed for monolayer graphene can be easily extended to

bilayer graphene. In fact, the case of bilayer graphene is interesting in itself, since with

two graphene monolayers that are weakly coupled by interlayer carbon hopping, we

have an intermediate case between graphene monolayer and bulk graphite, as shown

in Fig. 2.8. In this bilayer structure, we assume that the layers are coupled with each

other by a hopping energy between the atoms A1 and A2, and all other possibilities

are neglected. The tight binding Hamiltonian for this problem can be written as

H = −t
∑
<i,j>

(a†i,pbj,p + h.c.)− γ
∑
i

(a†i,1ai,2 + h.c.) (2.10)

where the operators ai,p and bj,p act on the sites A and B, in plane p = 1, 2, respec-

(a) Single layer graphene

(b) Bilayer graphene

t

t

γ

γ

(c) Bulk graphite

...
...

A
1

A
2

B
2

B
1

Figure 2.8: Lattice structure of single layer (a), bilayer graphene (b) and bulk graphite
(c). t and γ are hopping parameters. The A and B sublattices are indicated with
index 1,2 as shown in figure.

tively, and γ = 0.39eV is the hopping energy between atoms A1 and A2.

From this Hamiltonian, using a similar calculation to that described in the pre-

vious sections, the dispersion relation, by expanding the momentum close to the

K-point in the Brillouin zone [88], is

E2(k) = v2
Fp

2 +
γ2

2
+

∆2

4
±
√
γ4

4
+ v2

Fp
2(γ2 + ∆2) (2.11)
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where p = ~k is the magnitude of the momentum near the Dirac point, the potential
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Figure 2.9: Energy bands of bilayer graphene calculated in two cases. Left panel (a):
∆ = 0 and right panel (b): ∆ = 50meV .

difference ∆ between two graphene layers (this term will appear if an electric field

is applied perpendicularly to the graphene sheet) has been introduced in the model.

The energy bands are shown in Figs. 2.9 for ∆ = 0 and ∆ = 50 meV. Besides the

electron-hole symmetry, differently from the case of monolayer graphene, carriers in

the bilayer graphene are no longer massless but have a finite effective mass. If ∆ = 0

and vFp� γ, one can eliminate the high energy states perturbatively, which gives

E(k) = ±p2/2m (2.12)

with the effective mass m = γ/2v2
F ≈ 0.045me. In the presence of finite ∆, the energy

bandgap between the conduction and valence bands, ocurring at k 6= 0, is

Eg =
γ∆√

∆2 + γ2
(2.13)

For strong asymmetry ∆ � γ, it saturates at Eg ≈ γ, and for weak asymmetry, we

have Eg ≈ ∆. This behavior suggest a simple method to induce an energy bandgap

in bilayer graphene. It consists in applying an electric field perpendicularly to the

bilayer graphene sheet, which generates a potential difference between the two layers.

This feature has been demonstrated experimentally [66]. The ability to open a gap

makes bilayer graphene interesting for applications.
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neck width W

Figure 2.10: Example of fabrication of graphene nanomesh. (a) Schematics of the
fabrication process by copolymer lithography. (b), (c) TEM images of graphene
nanomesh with average neck width of 11.2 nm and 7.1 nm, respectively. From J. Bai
et al. [67]

2.2.4 Graphene nanomesh

In GNRs, as discussed above, a bandgap may open and GNR-based FETs have been

theoretically shown to give good performance. However, in practice these structures of

graphene cannot be perfect and give rise to several issues as edge roughness-induced

localization effect and Coulomb blockade effect [see in reviews [89] and references

therein]. Especially, GNRs with a very narrow width to achieve a large bandgap are

challenging to fabricate. For instance, a bandgap of 0.67 eV (like Ge) requires a GNR

width of 2-3 nm. To overcome this limitation, a new graphene nanostructure with

nonzero bandgap called graphene nanomesh (GNM) has been fabricated experimen-

tally. It consists in a graphene sheet with a periodic array of nanoholes. The size

of nanoholes and the neck width (the shortest distance between neighbor nanoholes)

have to be controlled down to the sub-10 nm scale [67, 68, 90, 91], as can be seen

in Fig. 2.10. This type of nanostructuring can open up a finite bandgap in large

graphene sheets and hence GNM-based FETs had ON/OFF current ratio similar

to those of GNR devices. However, GNM devices are able to carry electric currents

about 100 times greater than a single GNR. Furthermore, the interest of GNMs is

additionally due to the possibilities of bandgap engineering when varying the shape
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e)

Figure 2.11: Illustration of the triangular antidot lattice (a) with a unit cell char-
acterized by side length L and hole radius R (b). In (c), several examples with
corresponding (L,R) parameters are shown. In (d), energy band structure for a (7, 3)
antidot lattice. (e) compilation of energy gaps, displayed versus

√
Nremoved/Ntotal,

very simple scaling is observed. From T. G. Pedersen et al. [93]

of nanoholes and the neck width.

A number of works [69, 70, 93, 94, 95, 96, 97, 98] have explored this subject. The

studies in Refs. [69, 70, 93, 94, 95] have focused on the electronic structure of per-

fect GNM lattices, especially, on the property of bandgap depending on the lattice

constant, the hole shape and the orientation (i.e., holes along zigzag or armchair direc-

tion). Scaling rules have been proposed in some of these works to explain and predict

the behavior of bandgap (Eg) when varying the lattice parameters. However, the
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Figure 2.12: (a) Schematic of a triangular graphene antidot lattice. The unit cell
indicated by dashed lines can be characterized by (N,M), where N is the periodicity
and M is the side length of the hexagonal hole. (b) The variation of bandgaps as a
function of N with M = 2 and M = 4. (c) The variation of bandgaps as a function
N with M = N/3. (d) The band structure of a (6, 2) antidot lattice. (e) The band
structure of a (7, 2) antidot lattice. From A. Zhang et al. [69]

obtained results are very different. In particular, Pedersen et al. [93] considered the

lattice of armchair circular hole and found the scaling rule Eg ∼ K
√
Nremoved/Ntotal

(constant K ∼ 25 eV), where Nremoved is the number of removed carbon atoms in a

super-cell containing originally Ntotal atoms, as can be seen in Fig. 2.11. However, this

rule does not work well for large
√
Nremoved/Ntotal when Eg fluctuates very strongly
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with the change of this ratio. Besides, together with the results obtained in Ref. [94],

it has been shown that the scaling of Eg is also strongly dependent on the hole shape

(circular holes in Ref. [93], triangular and rhombus holes in Ref. [94]). Furthermore,

it was reported for different hole shapes that only one-third of considered GNMs in

Ref. [69] have a significant bandgap, as can be seen in Fig. 2.12, while all GNMs in

Ref. [94] are semiconductors. The authors of Ref. [69] also predicted the scaling rule

Eg ∼ 2−N/3 for this kind of GNM lattice, where N is the super-cell lattice constant

in the unit of a = 1.42A◦. Thus, the properties of Eg of perfect GNM lattice are very

sensitive to the hole shape and to the lattice orientation, i.e., to whether we have

zigzag or armchair holes.

Experimentally, Liang et al. [68] reported the bandgap scaling rule Eg ∼ 1/Wnw

(Wnw is the neck width), which can be explained by the important role on the GNM

bandgap of the quantum confinement in the multiple graphene nanoribbon network.

A theoretical work [95] found the same rule for Eg (different from the rule proposed

by Pedersen et al. [93]) when studying the lattices of irregular holes. However, the

distribution of Eg is statistically quite wide at each Wnw. The work indicates that

the GNM bangap is very sensitive to even a small change in the hole edges. It is

important to note that neither metallic GNMs nor the orientation effects have been

experimentally observed [67, 68, 90, 91]. In those structures, the edge disorder of

holes in the GNM lattice is inevitable. In addition, as suggested by the studies

[86, 87] on disorder GNR structures, the mentioned disorder may be an important

factor to explain the discrepancies between theoretical predictions and experiments.

The disagreement between theoretical and experimental studies motivated us to

investigate the general feature of the bandgap in GNM lattices depending on the

shape and size of holes as well as the effect of disorder of edges. Our results have

been published in Ref. [98]. First, we have computed the bandgap Eg of the lattice

of perfectly periodic holes to understand its dependence on the lattice parameters. In

Fig. 2.13, we plot Eg as a function of the super-cell lattice constant W for different

hole shapes and for different orientations (zigzag holes in Fig. 2.13(a) and armchair

holes in Fig. 2.13(b)). In general, it is shown that Eg of semiconducting GNMs

decreases with an increase of the super-cell lattice constant W . Qualitatively, this

is in agreement with the experiments. However, it confirms again a big difference

between the lattice of zigzag and armchair holes. In the case of zigzag holes, the

results for the hole shape of type (1) in Fig. 2.13 (already studied in Ref. [69])

show that a finite bandgap is observed when the index Q (note that Q = W/ac with

ac = 2.46A◦) is a multiple of 3, while all other GNMs are semimetallic. This feature
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Figure 2.13: Energy gap of GNM lattices as a function of the super-cell lattice con-
stant for different hole shapes. (a) is for zigzag holes while (b) is for armchair holes.
The super-cells of considered GNM lattices, where white circles indicate the removed
carbon atoms, are presented in the bottom of the two sub-figures. From Nguyen et
al. [98]

has been explained in Ref. [69] as a consequence of the intervalley scattering between

different Dirac points of pristine graphene when the holes are created. However, our

results in Fig. 2.13 (a) demonstrate that this is not the case of other hole shapes

even with a small change compared to the holes of type (1) and, additionally, the

scaling rule Eg ∼ 2−Q/3 (here Q ≡ N in Ref. [69]) is not applicable. For instance, the

lattice with the hole shape (4) behave contrary to the previously suggested law, i.e.,

they are semimetals when Q is a multiple of 3, while others are semiconductors. In

this case, the GNM bandgap decreases very rapidly with an increase of W . Besides,

no semi-metallic GNMs with holes of type 2 and 3 are observed. Considering the

lattices of armchair holes, we find from the results displayed in Fig. 2.13(b) that all

studied GNMs are semiconducting. However, Eg is also sensitive to the change in

the hole shape. It is important to note that the bandgap Eg in the case of holes of

type (1), which have been studied by Pedersen et al. in Ref. [93], is fitted accurately

with the scaling rule Eg ∼
√
Nremoved/Ntot. However, this rule does not work well

for other cases of holes (2), (3) and (4) shown in Fig. 2.13(b). Consistently with

the previous works, our results demonstrate two important points for the lattices

of perfectly periodic holes: (1) the GNM bandgap is very sensitive to the change
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in the hole shape and the lattice orientation, (2) it is hence difficult to determine

theoretically a unique scaling rule to describe the bandgap for all kinds of perfect

GNM lattice.

In the next step of this study of GNMs lattice, we go to consider the disorder

effects on the energy gap of GNM lattices. Here, we choose to present the results

obtained for the lattices wherein the holes numbered (1) in Fig. 2.13, which are

close to the holes fabricated in experiments [67, 68] are original holes. As explained

above, the other holes (e.g., see Fig. 2.13) probably occur in the considered lattices

with a few percent fraction. As done in [87, 99], we compute the conductance at

zero temperature and then measure the transport gap around the zero energy point,

which is an image of the bandgap of the considered lattice. Note that all transport

quantities are computed averagely over 40 disordered samples. In Fig. 2.14(a), we

plot the conductance of the GNM lattices as a function of energy computed using

different disorder strengths. In this figure, the lattices of zigzag holes with Q = 13

are used. Similarly to the metallic GNRs studied in [86, 87, 99], the ordered GNM

lattice is a semimetal, i.e., no conduction gap is observed for PD = 0% in Fig. 2.14(a).

When the disorder is present, the conductance is strongly suppressed, especially near

the neutrality (zero energy) point, and a deep conduction gap develops near this

point when the disorder strength increases. The same feature is obtained for the

samples originating from the semiconducting lattices of perfectly periodic holes, but

the enhancement of conduction gap is weaker than that in the metallic ones.

In Fig. 2.14(b), we display the energy (conduction) gap as a function of the

super-lattice constant W for different orientations (zigzag and armchair holes) and

different disorder strengths. In what follows, we use the terms semiconducting (metal-

lic) GNMs to identify the lattices originating from semiconducting (metallic) GNMs

of perfectly periodic holes. As mentioned above, while the conduction gap of semi-

conducting GNMs is slightly enlarged, the gap of metallic ones strongly broadens

when increasing the disorder strength. Therefore, no metallic GNMs of zigzag holes

are detected and the dependence of energy gap on W tends to a unique scaling rule

in the case of strong disorder. Additionally, the results presented in Fig. 2.14(b)

also show that the orientation effects are suppressed and the same scaling rule is ob-

tained for two different orientations in strongly disordered lattices, e.g., see the case

of PD = 8%. As an important result, the energy gap in this case is fitted very well

with the scaling rule Eg = α/Wnm [68] where α ∼ 0.6 eV nm. The difference between

the value of α obtained here and α = 0.8 − 0.95 eV nm in [68] can be attributed to

the fact that the holes we consider are smaller and the disorder seems to be weaker
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Figure 2.14: (a) Conductance in the unit of G0 = e2WG/hW as a function of Fermi
energy for different disorder strengths. (b) Energy gap of the GNM lattices as a
function of the super-cell lattice constant with disorder effects. From Nguyen et al.
[98]

than in the case studied in [68]. Moreover, the simulation of different original holes

(results not displayed here) shows that not only the orientation effects but also the

sensitivity of Eg to the shape of original holes are significantly suppressed, especially
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when the disorder is sufficiently strong for the holes of different shapes to contribute

equivalently to the electronic properties of the sample. We find again that the scaling

rule proposed by Pedersen et al [93] works well only for small values of
√
Nrem/Ntot

(i.e., . 0.01) but not for large
√
Nrem/Ntot. However, the energy gap Eg is fitted

better (and well) with the rule, experimentally verified in [68], Eg = α/Wnm in all

different cases of strongly disordered lattices examined.

These results are very similar to those observed for disordered GNRs in [86, 87, 99]

and demonstrate that the edge disorder of holes is one of the important factors, which

weakens the lattice symmetry effects and makes the effects of quantum confinement

in the nanoribbon crossing network of GNM lattices dominant. It explains well the

behavior of energy gap observed in experiments [68].

2.3 Electronic properties of strained graphene

As mentioned above, many techniques to open a bandgap in graphene have been

suggested. However, as shown in lots of discussions, each method still has its Achilles

heel, in particular in their fabrication, and need to be further confirmed by experi-

ments. In this section, we consider strain engineering, which has been shown to be an
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Figure 2.15: Graphene (a) and strain graphene (b, c, d). The strain is applied along
a zigzag axis in (b), a armchair axis in (c) and any axis in (d).
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alternative/promising approach to modulating the electronic properties of graphene

material.

2.3.1 Basic equations

orientation lattice

stra
in dire

ctio
n

transport direction

y

x
θ

φ

Figure 2.16: Schematic of strained graphene lattice. (θ, φ) are the angles of strain
direction with respect to transport direction and of transport direction with respect
to armchair direction.

We illustrate in Fig. 2.15 some graphene sheets stretched by strain. We show

graphene lattices strained along armchair direction (Fig. 2.15(b)), zigzag direction

(Fig. 2.15(c)) or any direction (Fig. 2.15(d)). Clearly, the basis vectors and vectors

of unit cell are changed under the effect of strain. Hence, in this part, we show the

method and corresponding equations to compute the feature of band structure as well

as transport characters in strained graphene sections.

First, we describe strained graphene lattice in detail with its key parameters in

Fig. 2.16. It is noted that (θ, φ) are the angles of strain direction with respect to

transport direction and of transport direction with respect to armchair direction. The

Hamiltonian in the π-orbital tight binding model is Htb =
∑
n

Unc
†
ncn −

∑
nm

tnmc
†
ncm.

Here, Un is the on-site/potential energy that can be modulated by the external volt-

age, cn(c†n) is the operator which annihilates (creates) an electron on the nth site of

the graphene lattice, and the sum in (n,m) is restricted to the nearest-neighbor atoms

with a hoping energy tnm.

The application of a uniaxial strain of angle (θ) causes the following changes in
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the C − C bond vectors:

~rnm (σ) = {1 +Ms (σ, θ)}~rnm (0) (2.14)

Ms (σ, θ) = σ

[
cos2θ − γsin2θ (1 + γ) sin θ cos θ

(1 + γ) sin θ cos θ sin2θ − γcos2θ

]
where σ represents the strain amplitude and γ ' 0.165 is the Poisson ratio [100]. The

hopping parameters are defined as tnm (σ) = t0 exp [−3.37 (rnm (σ) /r0 − 1)], where

the hopping energy t0 = −2.7 eV and the bond length rnm (0) ≡ r0 = 0.142 nm in

the unstrained case. Therefore, there are three different hopping parameters t1,2,3

corresponding to the three bond vectors ~r1,2,3, respectively, in the strained graphene

part of the structure in Fig. 2.17. It is noticed that in the specific cases where the

strain is applied along a zigzag axis (θ = 90◦, φ = 0◦) or an armchair axis (θ = 0◦, φ =

0◦), we only have to consider two different hopping parameters t1,2 in the armchair

and zigzag directions, respectively, corresponding to two bond vectors ~r1,2 in strained

graphene section.
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Figure 2.17: Schematic of unstrained/strained graphene junctions.

In this work, we investigate a 2D gaphene channel as seen in Fig. 2.17, i.e., the

lateral size W (along the Oy direction) of the graphene sheet is much larger than the

length (along the Ox direction and, e.g., ∼ a few tens of nm) of the active region. We

assume a 1D profile of applied strain, i.e., the strain tensor, is a function of position

along the transport direction while it is constant along the perpendicular one. Note

that here, Ox (resp. Oy)-axis is parallel (resp. perpendicular) to the transport

direction. The transport direction, φ, and strain direction, θ, are defined as shown in

Fig. 2.16 as well as Fig. 2.17. Based on the tight binding model, the conduction gap

in strained junctions which is a finite gap of conductance can be described by using

two possible methods as follows:
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Green’s function calculations. We split the graphene sheet into the smallest

possible unit cells periodically repeated along the Ox and Oy directions with the

indices p and q, as shown in Fig. 2.2, respectively [97]. The tight-binding Hamiltonian

can therefore be expressed in the following form (similar to in section 2.2):

Htb =
∑
p,q

Hp,q→q−1 +Hp→p−1,q +Hp,q +Hp,q→q+1 +Hp→p+1,q (2.15)

where Hp,q is the Hamiltonian of cell {p, q}, and Hp,q→q±1 denotes the coupling of

cell {p, q} to cell {p, q ± 1} and Hp→p±1,q denotes the coupling of cell {p, q} to cell

{p± 1, q}.
In the simulated devices, we assume the lateral size (along the Oy direction) of

the graphene sheet to be much larger than the length (along the Ox direction) of

the active region between the two contacts (which will be investigated in chapter 3).

Therefore, the potential energy Un in equation of Hamiltonian can be modeled as a

function of x only. Here, the channel, i.e., unstrained/strained graphene channel, is

considered as an infinite sheet and the translational symmetry of the crystal lattice

can be applied along the Oy direction. Hence, we can Fourier transform the operators

in Eq. 2.15 as follows:

cn,p,q =
1√
Mcell

∑
κy

eiqκy ĉp,κy (2.16)

where the indices n,p,q denote the nth site in the cell p,q and Mcell is the number of

unit cells and κy ≡ kyLy with the size Ly of unit cells along the Oy direction. The

Hamiltonian Eq. 2.15 is finally rewritten as a sum of κy-dependent 1D-components:

Htb =
∑
κy

Ĥ (κy) (2.17)

Ĥ (κy) =
∑
p

Ĥp→p−1 (κy) + Ĥp (κy) + Ĥp→p+1 (κy)

In this form, since the terms Ĥp→p±1 are obtained by Fourier transform of the opera-

tors Hp→p±1,q which describe only the coupling between the cells of the same index q,

they are ky-independent. In contrast, the term Ĥp (κy) determined from the Fourier

transform of the first three operators in Eq. 2.15 is ky-dependent.

From the Hamiltonian Eq. 2.17, the non-equilibrium Green’s function formalism

can be easily applied to study the charge transport in graphene junctions. With the

assumption that left and right contacts are semi-infinite along transport direction Ox,

the problem of device-to-contact coupling has been detailed in chapter 1, within the
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concept of self-energy. The device retarded Green’s function for a given momentum

ky is then defined as

G(E, ky) = [E + i0+ − Ĥ(ky)− ΣL(E, ky)− ΣR(E, ky)]
−1 (2.18)

where ΣL(R) is the self-energy describing the device-to-left (-right) contact coupling.

The transmission probability needed to define the conductance is calculated as

Te(ε, ky) = Tr
{

ΓLGΓRG†
}

where ΓL(R) = i(ΣL(R)−Σ†L(R)) is the transfer rate at the left (right) contact. Then, we

can compute the transport quantities in the graphene-strained junction with different

transport directions. In particular, the conductance at zero temperature is determined

as:

G (ε) =
e2W

πhLy

∫
BZ

dκyT (ε, κy) (2.19)

where W ≡ McellLy and T (ε, κy) is the transmission probability computed from the

Green’s functions. The integration over κy is performed in the whole first Brillouin

zone. As in ref. [98, 101], the gap of conductance (conduction gap or transport gap)

is then measured from the obtained data of conductance.

Bandstructure analysis. To determine the conduction gap of strained junc-

tions, we find that another simple way based on the analysis of graphene bandstruc-

tures could be efficiently used. It is described as follows. Since the conductance is

computed from Eq. 2.19, the appearance of conduction gap is essentially governed

by the gaps of transmission probability, which is determined from the energy gaps

in the unstrained and strained graphene sections. These energy gaps can be defined

directly from the graphene bandstructures. Therefore, our calculation is in two steps,

similarly to that in [101, 102]. From the graphene bandstructures obtained using the

tight-binding Hamiltonian above, we first look for the energy gaps Egap
unstrain (κy) and

Egap
strain (κy) for a given κy of both graphene sections. The maximum of these energy

gaps determines the gap Egap
junc (κy) of transmission probability through the junction.

Finally, the conduction gap Econd.gap is obtained by looking for the minimum value of

Egap
junc (κy) when varying κy in the whole Brillouin zone.

In particular, the equation of energy bands in pristine graphene is given by

E(k) = ±|t0ei
~k~a1 + t0e

i~k~a2 + t0| (2.20)

where the plus/minus sign corresponds to the conduction/valence band, respectively.
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This equation is changed in strained graphene as follows

E(k) = ±|t1ei
~k~a1 + t2e

i~k~a2 + t3| (2.21)

where ~a1 and ~a2 are two basis vectors of the lattice, as shown in 2.15.

It is noted that when the transport direction is the armchair orientation (φ = 0◦)

or the zigzag orientation (φ = 30◦), it is straightforward to determine the basis vectors

and the unit cell of the lattice. However, for any given direction (φ), in principle, the

vectors ~Lx,y defining the size of unit cells along the Ox and Oy directions, respectively,

can be always expressed as {
~Lx = n1~a1 + n2~a2

~Ly = m1~a1 +m2~a2

(2.22)

With condition
~Lx~Ly = 0

So, we have the relationship among n1, n2,m1 and m2 given by

m1

m2

= −n1 + 2n2

2n1 + n2

(2.23)

∗ In case of armchair direction: n1 = n2 = 1; m1 = 1; m2 = −1 (φ = 0◦)

~a1 =
~Lx + ~Ly

2
; ~a2 =

~Lx − ~Ly
2

(2.24)

The energy bands are given by

E(~k) = ±|t1ei
~k~Ly/2 + t2e

−i~k~Ly/2 + t3e
−i~k~Lx/2| (2.25)

∗ In case of zigzag direction: n1 = 1; n2 = 0; m1 = 1; m2 = −2 (φ = 30◦)

~a1 = ~Lx ; ~a2 =
~Lx − ~Ly

2
(2.26)

The energy bands are given by

E(~k) = ±|t1ei
~k~Lx/2 + t2e

−i~k~Ly/2 + t3e
−i~k~Lx/2| (2.27)
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2.3.2 Opening of bandgap under large strain

We calculate directly the energy bands of 2D strained graphene lattice in the case

of transport direction (φ = 0) (that means the transport direction is the armchair

orientation of lattice). As mentioned above, the energy bands in that case are given

by

E(~k) = ±|t1ei
~k~Ly/2 + t2e

−i~k~Ly/2 + t3e
−i~k~Lx/2|

That means

E(~k)2 = (t1cos
~k~Ly

2
+ t2cos

~k~Ly
2

+ t3cos
~k~Lx

2
)2 + (t1sin

~k~Ly
2
− t2sin

~k~Ly
2
− t3sin

~k~Lx
2

)2

E(~k)2 = (t1−t2)2+t23+4t1t2cos
2
~k~Ly

2
+2t3[(t1+t2)cos

~k~Ly
2
cos

~k~Lx
2
−(t1−t2)sin

~k~Ly
2
sin

~k~Lx
2

]

For a given kLy, the bottom of conduction bands (BCB) EBCB(kLy) is obtained forcos(
kLx
2

) = t1+t2√
(t1−t2)2+4t1t2cos2θy

cos(kLy
2

)

sin(kLx
2

) = t2−t1√
(t1−t2)2+4t1t2cos2θy

sin(kLy
2

)

Introducing the parameter κy = kLy, the description of energy bands of strain

graphene becomes

E(κy) = 2|
√

(t1 − t2)2 + 4t1t2cos2
κy
2

+ t3| (2.28)

Strain graphene has no bandgap (E(κy) = 0) when the equation below has a solution

cos2κy
2

=
t23 − (t1 − t2)2

4t1t2
(2.29)

which corresponds to

0 6
t23 − (t1 − t2)2

4t1t2
6 1 (2.30)

As a consequence, the opening of bandgap in strained graphene depends on the

solution of equation (2.29). Otherwise, if we put f(t) =
t23−(t1−t2)2

4t1t2
, then f(t) depends

on the amplitude of strain σ and its applied direction θ. The relationship (2.29) is

displayed in Fig. 2.18 as a function of strain direction for different strain amplitudes.

Here, the function f(t) is described for both tensile and compressive strain cases with

a range of strain amplitude from 0 to 30% and the angle θ changing from 0 to 180◦.

It can be seen that the value of cosin function varies from 0 to 1 when the amplitude

of strain varies from 0 to ∼ 23%. It means that equation (2.29) can be solved and 2D
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Figure 2.18: Sketch of the relationship (2.29) as a function of strain direction for
different strain amplitudes. A strain σ > 23% is required to open a bandgap in
graphene.

strained graphene lattice has no bandgap. Therefore, a strain (σ ≥ 23%) is required

to open a bandgap in a graphene sheet. This result has been shown first by V. M.

Pereira et al as illustrated in Fig. 2.19 [71]. These authors have concluded that (i)

the gap threshold is at strain (∼ 23%), (ii) the behavior of the system is periodic

in the angle of applied strain (θ) with period π/3, in accordance with the symmetry

of the lattice; (iii) tension along the zigzag direction (θ = 0, π/3...) is more effective

in overcoming the gap threshold, and (iv) tension along the armchair direction never

generates any gap.

(a) (b)

Figure 2.19: Strain is applied on a 2D graphene sheet in (a). The strain dependence
of bandgap (Eg) is shown in (b). From V. M. Pereira et al. [71]
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Next, we examine the formation of the bandgap of graphene under a uniaxial

strain and compare these results with Pereira’s results . First, we display the feature

of bandgap in 2D graphene sheet in Fig. 2.20 with strain strength ranging from 0

to 30%. It can be seen clearly in Fig. 2.20(a) that, in case of tensile strain, a finite

bandgap opens only for strain larger than ∼ 23% and the zigzag (not armchair) is the

preferred direction for bandgap opening. This result is in agreement with the result of

V. M. Pereira et al [71]. Then, we extend our investigation to the case of compressive

3.0 
(eV)

0

1.2 
(eV)

0

(a) Tensile strain (b) Compressive strain

Figure 2.20: Dependence of graphene bandgap on the applied strain and its direction:
tensile (a) and compressive (b). The radius from the central point indicates strain
strength ranging from 0 (center) to 30% (edge of maps), while the graphene lattice
is superimposed to show visibly the strain direction. The pink circle corresponds to
the strains of = 23%.

strain, as seen in Fig. 2.20(b) and find that (i) the same gap threshold of σ ∼ 23%

is observed but (ii) the preferred direction to open the gap under a compressive

strain is the armchair direction, not the zigzag one, as in the case of tensile strain.

This implies that the properties of graphene bandstructure at low energy should be

qualitatively the same when applying strains of {σ, θ} and of {−σ, θ + 90◦}. This

feature can be understood by considering, for example, strain of {σ, θ = 0◦} and of

{−σ, θ = 90◦}. This property is proved in Appendix A. Indeed, these strains result

in the same qualitative changes on the bond-lengths, i.e., an increased bond-length r3

and reduced bond-length r1,2. However, for the same strain amplitude, because of the

exponential dependence of hopping energies on the bond-lengths, the tensile strain

generally induces a smaller bandgap than the compressive strain, as can be seen when

comparing the data displayed in figure 2.20(a) and (b). Clearly in the case of same
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strain amplitude, i.e., strain of 30%, the maximum of bandgap in the former cannot

reach to 2.0eV while the maximum of bandgap in the latter is larger than 3.0eV . To

conclude this part, we would like to emphasize again that a large strain (≥ 23%) is

necessary to open a bandgap in graphene.

2.3.3 The shift of Dirac point by a small strain of a few per-
cent

(a) σ  = 0, θ = 0 (b) σ  = 0.2, θ = 90° (c) σ  = 0.2, θ = 0

Figure 2.21: Schematic show density plots of the energy dispersion, E(kx, ky), for
{σ = 0, θ = 0} (a), {σ = 0.2, θ = 90◦}, and {σ = 0.2, θ = 0}. From V. M. Pereiraet
al. [71]

As shown in the previous subsection, a large strain (≥ 23%) is required to open

a bandgap in a graphene sheet and a small strain of a few percent cannot change its

gapless character. However, some studies in Ref. [71, 101, 102, 103] have shown that

a small strain causes the shift of Dirac points in k-space which may lead to dramatic

changes of electronic transport features. In particular, Pereira et al. [71] concluded

that under a real deformation both lattice and hopping parameters are affected. The

lattice deformation causes the distortion of Brillouin zone, as can been seen in Fig.

2.21. Clearly, in case of Fig. 2.21(a) without strain, the position of Dirac points is

fixed in the density plot of energy dispersion, and hence the Brillouin zone is known

to be a hexagon. By applying a strain of 20% along Oy axis (Fig. 2.21(b)) or along

Ox axis (Fig. 2.21(c)), the Dirac cones move in opposite directions (they never meet)

in the former case while they always approach each other (they eventually merge) in

the latter case [71]. The shift of Dirac points has been observed experimentally by

M. Huanget al [104], as seen in Fig. 2.22.

Regarding unstrained/strained graphene junctions in our work (on the top of

Fig. 2.23), the position of Dirac points in each part and their strain-induced shift
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σ : strain amplitude

σ σ

Figure 2.22: Three Raman scattering paths (arrows labeled by 1, 2, 3) from the Dirac
cone at K point to the three nearest Dirac cones at K points (circles). The dashed
red and green circles indicate the strain-induced movement of the Dirac cone for the
zigzag and armchair sample, respectively. The double headed arrows show the strain
directions. From M. Huanget al. [104]

are described in the bottom of Fig. 2.23. Here, this shift leads to the opening of

conduction gap in graphene heterojunctions which is discussed in details in the next

parts.

2.4 Opening of a conduction gap (transport gap)

in strained graphene junctions

A small strain of a few percent cannot change the gapless character of graphene, i.e.,

there is no gap of conductance in case of uniformly strained graphene though Dirac

points are displaced, as experimentally demonstrated in [104, 105]. As reported in

our recent work [101], a significant conduction gap of a few hundreds meV can open in

the unstrained/strained graphene junctions. The appearance of this conduction gap

is due to the strain-induced shift of Dirac points. This phenomenon will be discussed

detailed in this part.

Throughout this section, the junction of unstrained/strained graphene (as can be

seen in the Fig. 2.23) is studied. In fact, to create this junction on a 2D graphene

sheet, a small strain of a few percent is applied on one half section. The key parame-

ters are the strain amplitude (σ), the direction of applied strain (θ) and the transport
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Figure 2.23: (a) unstrained/strained graphene junctions. (b) bandedges illustrating
the strain-induced shift of Dirac points along the ky-direction that leads to the opening
of a conduction gap (c).

direction (φ).

2.4.1 The opening of conduction gap with strain of a few
percent

We now go to explore the properties of the conduction gap in unstrained/strained

graphene junctions. In Fig. 2.24, we display the conductance as a function of energy

computed from Eq. 2.19 using the Green’s function technique. First, we study uni-

form junctions in two cases: no strain (σ = 0%) and strain (σ = 5%). The result

in Fig. 2.24 shows clearly that there is no energy gap of conductance in both cases.

Hence, a small strain of a few percent (e.g., 5% here) cannot change the gapless char-

acter of graphene as previously discussed. However, for the case of hetero junction in

Fig. 2.24, when strain of 5% is only applied in one half-sheet. A significant conduction

gap (∼ 400 meV) can open. The appearance of this conduction gap, as mentioned

previously, is due to the strain-induced shift of Dirac points. This phenomenon can be
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Figure 2.24: Conductance (G0 = e2W/hLy) as a function of energy in strained
graphene heterostructures. The comparison of the conductance in unstrained, uni-
formly strained and strained heterostructures is shown. The transport along the
armchair direction (φ = 0) with a strain applied along the Ox axis (θ = 0) are
considered here.

described as follows. Actually, the bandedges as a function of wave-vector ky in un-

strained and strained graphene sections can be illustrated schematically in Fig. 2.23.

As one can see, the shift of Dirac points in strained graphene leads to a situation

where there is no value of κy, for which the energy gap Egap
unstrain(κy) and Egap

strain(κy)

are simultaneously equal to zero. This means that the transmission probability al-

ways exhibits a finite gap, Egap
junc(κy) = max[Egap

unstrain(κy), E
gap
strain(κy)], for any κy. In

particular, these energy gaps are zero (or small) in the unstrained (resp strained)

graphene section, but are finite in strained (resp unstrained) sections in the vicinity

of Dirac point ky = Kunstrain (Kstrain).

Have a look at pictures of local density of states in the left panels of Fig. 2.25

and reinforced in the corresponding transmission functions in the right panels. Well-

defined gaps Egap
junc(κy) of transmission are still obtained. Far from the values of ky

above, Egap
unstrain(κy) and Egap

strain(κy) are both finite (e.g., see the LDOS plotted for

ky = Kgap) and hence a finite gap of conductance, which is determined from Eq.

2.19, is achieved as shown in Fig. 2.24. This gap is simply given by Econd.gap =

min[Egap
junc(κy)] for all κy as discussed above.
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Figure 2.25: Local density of states (left panels) and corresponding transmission
coefficient (right panels) for three different wave-vectors ky obtained in an un-
strained/strained graphene junction of σ = 5% and θ ≡ φ = 0.

Additionally, Fig. 2.26 shows that besides the amplitude of strain, the strain effect

is also strongly dependent on the applied direction. For instance, the conduction gap

takes the values of 295, 172 and 323 meV for θ = 0◦, 30◦ and 90◦, respectively. We

will discuss the properties of the conduction gap with respect to the strain amplitude,

its applied direction, and the direction of transport. Note that due to the lattice

symmetry, the transport directions φ and φ + 60◦ are equivalent while the applied

strain of angle θ is identical to that of θ+180◦. Hence, the data obtained for φ ranging

from −30◦ to 30◦ and θ from 0◦ to 180◦ covers the properties of the conduction gap

with all possibilities.
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Figure 2.26: Conductance (G0 = e2W/hLy) as a function of energy in graphene-
strained junctions for = 5% with different strain directions. The transport along the
armchair direction (φ = 0 ) is considered. The data obtained in a uniformly strained
graphene are displayed for the comparison.

2.4.2 The dependence of conduction gap on strain amplitude
(σ), direction of applied strain (θ) and transport direc-
tion (φ) in both of tensile and compressive cases

Now, we present the figures of conduction gap with respect to the strain amplitude

and its applied direction in two particular cases where the the transport is either

along the armchair (φ = 0) or the zigzag (φ = 30◦) directions, as can be seen in Fig.

2.27 and Fig. 2.28.

2.4.2.1 Armchair transport direction (φ = 0)

The term ”armchair transport direction” corresponds to the case where the transport

direction and the armchair orientation of lattice coincide, i.e., φ = 0. First, we only

study three cases of strain, i.e., strain of 2%, 4% and 6%. It is noted that both tensile

and compressive strain are considered here. Let us first discuss the results obtained

in the armchair case. Figures 2.27(a) and (b) show that the value of conduction gap

increases with the strain amplitude and can reach up to ∼ 500 meV for a strain

of 6%. Besides, these results display clearly the θ-dependence of conduction gap.
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In particular, its peaks (maximum) occur at θ = 0 or 90◦ while the gap is zero at

θ = 47◦ and 133◦ for tensile strain and at θ = 43◦ and 137◦ for compressive strain.

In principle, the conduction gap is larger if the shift of Dirac points in the ky-axis is

larger, as previously discussed about Fig. 2.22 and 2.21. We notice that the strain-
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Figure 2.27: Maps of conduction gap in unstrained/strained graphene junctions: ten-
sile (a) and compressive cases (b). The transport is along the armchair directions,
φ = 0. The strain of 2%, 4%, 6% is considered.

induced shifts can be different for the six Dirac points of graphene [106] and the gap

is zero wherever the Dirac points are observed at the same values of κy in the two

graphene sections. From Eq. 2.29, we find that the Dirac points are determined by

the following set of equations:

cos(
κy
2

) = ±1

2

√
t23 − (t1 − t2)2

t1t2
(2.31)

cos(
κx
2

) =
t1 + t2
|t3|

cos(
κy
2

), sin(
κx
2

) =
t1 − t2
|t3|

sin(
κy
2

) (2.32)

which simplifies into cos(κy
2

) = ±1
2

and, cos(κx
2

) = ±1 in the unstrained case. Hence,

the zero conduction gap obtained above satisfies the condition

t23 − (t21 − t22)
4t1t2

=
1

4
(2.33)

i.e., there is no shift of Dirac points along the κy-axis. Additionally, it is shown that

the effects of a strain (σ, θ) are qualitatively similar to those of a strain (−σ, θ+ 90◦),

i.e., the peaks and zero values of conduction gap are obtained at the same θ values in
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these two situations. To understand this, we analyze the strain matrix Ms(σ, θ) and

find that in the case of small strains studied here, the relationship between the bond

lengths under these two strains is approximately given by

r(σ, θ)− r(−σ, θ + 90◦) ' σ(1− γ)r0 (2.34)

which is θ-independent for all C − C bond vectors. It implies that there is a fixed

ratio between the hopping energies ti(σ, θ) and ti(−σ, θ + 90◦) and hence a similar

shift of Dirac points happens in these two cases.

2.4.2.2 Zigzag transport direction (φ = 30◦)
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Figure 2.28: Maps of conduction gap in unstrained/strained graphene junctions: ten-
sile (a) and compressive cases (b). The transport is along the zigzag directions,
φ = 30◦. The strain of 2%, 4%, 6% is considered.

The definition of ”zigzag transport direction” here is quite similar to that of

”armchair transport direction”, i.e. the zigzag orientation of lattice is along the

transport direction (also along Ox direction). We thus analyze the properties of

conduction gap displayed in Fig. 2.28(a) and (b) where the transport is along the

zigzag direction φ = 30◦. In fact, the conduction gap in this case can also reach a

value as high as that of the case of φ = 0 but with a different θ-dependence. In

particular, the conduction gap has peaks at θ ≈ 47◦ and 133◦ for tensile strain and

at θ = 43◦ and 137◦ for compressive strain, while it is zero in the case of φ = 0. It is

also equal to zero at θ = 0 and θ = 90◦ where we had peaks of conduction gap in the

previous case of φ = 0.

The relationship between these two transport directions can be explained as fol-

lows. On the one hand, based on the analysis above for φ = 0, we find that for a given
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amplitude of strain, a maximum shift of Dirac points along the ky-axis corresponds

to a minimum shift along the kx-one and vice versa when varying the strain direction

θ. On the other hand, as schematized in Fig. 2.29, the change in transport direction

results in the rotation of the first Brillouin zone, i.e., the kx (resp. ky) axis in the

case of φ = 30◦ is identical to the ky (resp. kx) axis in the case of φ = 0. These two

features explain essentially the opposite θ-dependence of conduction gap for φ = 30◦,

compared to the case of φ = 0, as mentioned. Again, we found the same qualitative

behavior of the conduction gap when applying the strains of σ, θ and σ, θ + 90◦.

k
x

k
y

Γ

Κ

Κ'

Figure 2.29: The diagram illustrating the rotation of Dirac points in the k-space with
the change in the transport direction φ.

The full map of (σ, θ)-dependence of conduction gap is shown in Fig. 2.30 for both

cases of tensile and compressive strain with the transport direction of armchair and

zigzag. Here, strain varies continuously from 0 (at the center) to 6% (at the edge)

with θ varying from 0 to 360◦.

2.4.2.3 Any transport direction (0 < φ < 30◦)

Now, we investigate the conduction gap with respect to different transport directions

φ. A number of φ-cases are shown in table in Fig. 2.31 with several configurations of

different unit cells described in Fig. 2.32. We display a (θ, φ)-picture of conduction
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Figure 2.30: Maps of conduction gap in unstrained/strained graphene junctions: ten-
sile (a, c) and compressive cases (b, d). The transport is along the armchair φ = 0 (a,
b) and zigzag φ = 30◦ directions (c, d). The strain strength ranges from 0 (center)
to 6% (edge of maps) in all cases.

gap for σ = 4% in Fig. 2.33. It is clearly shown that (i) a similar scale of conduc-

tion gap is obtained for all different transport directions, (ii) there is a smooth and

continuous shift of Econd.gap-θ behavior with the value of φ considered here, and (iii)

the same behavior of Econd.gap is also observed when comparing the two transport

directions of φ and φ+ 30◦, similarly to the comparison previously made for the cases

of φ = 0◦ and 30◦. The data plotted in Fig. 2.33 additionally show that Econd.gap

takes the same value, as in both cases of (φ, θ) and (−φ,−θ) with a remark that the

strains of −θ and 180◦ − θ are identical. It can be said that all these features are

essentially a consequence of the rotation of Dirac point in k−space with respect to

the transport direction (φ) illustrated in the diagram in the Fig. 2.29, and of the

lattice symmetry of graphene.

In this part, we have only considered the twelve values of transport direction (φ)
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2 φ(°) N
atoms

/unit cell

1  1.0 1.0 1.0 -1.0 2.0 0° 4.0

2 4.0 3.0 10.0 -11.0 74.0 4.7° 148.0

3 3.0 2.0 7.0 -8.0 38.0 6.6° 76.0

4 7.0 4.0 5.0 -6.0 62.0 8.9° 124.0

5 2.0 1.0 4.0 -5.0 14.0 10.9° 28.0

6 5.0 2.0 3.0 -4.0 26.0 13.9° 52.0

7 3.0 1.0 5.0 -7.0 26.0 16.1° 52.0

8 4.0 1.0 2.0 -3.0 14.0 19.1° 28.0

9 5.0 1.0 7.0 -11.0 62.0 21.0° 124.0

10 7.0 1.0 3.0 -5.0 38.0 23.4° 76.0

11 10.0 1.0 4.0 -7.0 74.0 25.3° 148.0

12 1.0 0.0 1.0 -2.0 2.0 30.0° 4.0

Figure 2.31: The value of different transport directions (φ).

given in table in Fig. 2.31. All these values are correspond to unit cells of small

size leading to strain-induced shift of Dirac point within the Brillouin zone. As a

consequence, the trend of conduction gap towards increasing and decreasing is quite

simple and nearly follows a general rule for all of these cases of (φ) listed in the

table. However, in other cases, especially for small angles (φ) (i.e., less than 5◦),

the size of primitive cells is large which leads to a small size of Brillouin zone. When

displacement of Dirac point in the first Brillouin zone is large enough, it can reach the

first Brillouin zone’s edge and then enter the second zone. As a result, the behavior

of conduction gap is much more complicated than in the cases shown in table in Fig.

2.31, i.e., the conduction gap can decrease when increasing the strain amplitude. It is

noted, the move of Dirac point from the first Brillouin zone to the second one is only

predicted in the cases where the size of the Brillouin zone is small. A detailed picture

of this phenomenon has been displayed in the system of strained vertical devices by

V. H. Nguyen et al [73]. We have planned to study this situation in a next work

to present a full map of the dependence of conduction on the key parameters of the

present system.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.32: Sketch of 2D graphene lattice with different unit cell for six cases of
different transport directions from the table. (a) {Natom = 4, φ = 0}, (b) {Natom =
4, φ = 30◦}, (c) {Natom = 28, φ = 19.1◦}, (d) {Natom = 28, φ = 10.9◦}, (e)
{Natom = 148, φ = 4.7◦}, and (f) {Natom = 148, φ = 25.3◦}.

2.4.2.4 Compressive and tensile-strained graphene junctions

As an alternative, we investigate another kind of strained junction based on both

compressive and tensile-strained graphene sheets. The idea is that in this type of
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φ = −30° 0° 

φ = 0° 30° 

Figure 2.33: Dependence of conduction gap on the directions (θ, φ) for σ = 4%.

strained junction, the shifts of the Dirac points are different in the two graphene

sections of different strains, which offers the possibility of using smaller strains to

achieve a similar conduction gap, compared to the case of unstrained/strained junc-

tions. In Fig. 2.34, we display the maps of the conduction gap with respect to the

directions of compressive and tensile strains in two cases of transport direction: φ = 0

(armchair) and 30◦ (zigzag) for given strain strengths. Indeed, as seen in Fig. 2.34

(a) and (b), with smaller strains (σc, σt) = (−2%, 2%) or (−1%, 3%), similar conduc-

tion gap of about 310 meV can be achieved while it requires a strain of 4% in the
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unstrained/strained junctions studied above. However, since the shift of the Dirac

points is strongly dependent on the direction of applied strains and the transport

direction, the properties of conduction gap in this case are more complicated. In

particular, our calculations show that the preferred transport directions to achieve

large conduction gaps are close to the armchair one. Otherwise, the conduction gap

is generally smaller, similarly to the data for φ = 30◦ compared to φ = 0, as displayed

in Fig. 2.34. Additionally, the preferred directions of applied strains for φ = 0 are

θc = θt = 0 or 90◦.

(a)

(c)

(b)

(d)

Figure 2.34: Maps of conduction gap obtained in tensile/compressive strained junc-
tions. The transport along the armchair/zigzag directions is considered in (a, b)/(c,
d), respectively. The strains σc = 2% and σt = 2% are applied in (a, c) while σc = 1%
and σt = 3% in (b, d).

In this section, we have investigated the effects of uniaxial strain on the transport

properties of graphene strained junctions and have discussed systematically the pos-

sibilities of achieving a large conduction gap with respect to the strain, its applied di-
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rection and the transport direction. It has been shown that due to the strain-induced

deformation of graphene lattice and hence of graphene bandstructure, a finite con-

duction gap higher than 500 meV can be achieved for a strain of only 6%. Moreover,

as a consequence of the shift of Dirac points along the ky-axis, the conduction gap is

strongly dependent not only on the strain strength but also on the direction of applied

strain and the transport direction. A full picture of these properties of conduction

gap has been presented and explained. The study hence could be a good guide for the

use of this type of unstrained/strained graphene junction in electronic applications.

2.5 Conclusion

In the chapter 2, we have introduced a new way to open a conduction energy gap

in pristine graphene, using strain engineering. It is based on the displacement of

Dirac cones in the k-space under the effect of strain. Such displacement has been

demonstrated both experimentally and theoretically. In this work, we have displayed

the full feature of electronic band structure of strained gaphene. Then, we also

have introduced a new structure, which consists in an unstrained/strained graphene

junction that takes advantage of the resulting mismatch of band structure between

both sections to open a sizable conduction gap. In the next chapter, such junctions

will be explored for designing the channel of several types of devices. We will see

that such a conduction gap can be used like a real bandgap to strongly improve some

electrical effects like the switching-off of the transistors, the Seebeck coefficient of

graphene and the peak-to-valley ratio of negative differential conductance in diodes.
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Chapter 3

APPLICATION OF STRAINED
JUNCTIONS IN GRAPHENE
HETEROCHANNELS

3.1 Introduction

For many years, the traditional scaling rules of complementary metal oxide semicon-

ductor (CMOS) have led to improvements in device performance, with lower cost

as well as higher yield. However, as physical limits on device scaling are approach-

ing, technological innovations are required to deliver continuous device performance

improvements over traditional scaling. That is why in recent years scientists have

looked for new types of materials, which can replace or complement conventional

semiconductors thanks to specific, and eventually outstanding, properties.

Graphene (a single layer of atoms) can be considered as one of the most promising

of these new materials. However, it is still limited in practical applications due to

its gapless character. Until now, many different ways to open a bandgap in graphene

have been investigated to introduce graphene in technological innovations, i.e., in

designing device channels.

In chapter 2, we mentioned the possible use of strain engineering to open a con-

duction gap (transport gap) in graphene junctions. These junctions with sizeable gap

are believed to be good candidates for graphene devices in electronic applications. In

particular, in this chapter, we discuss the capability to use strained graphene junc-

tions in designing FETs with high ON/OFF ratio in section 3.2. Next, in section

3.3, we present the enhancement of Seebeck effect in strained heterochannels. In sec-

tion 3.4, the advantages of strained heterochannels is discussed in view to improving

strongly the negative differential conductance (NDC) effect in single gate-induced
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barrier structure and in p-n junctions. Finally, a conclusion is given in section 3.5.

3.2 Improved performance of graphene transistors

Nowadays, computers are widespread in the world. Each computer contains more

than a billion transistors, making transistors more numerous than any other object

we could think of. In fact, there are many different types of transistors, i.e., bipo-

lar junction transistors (small signal transistors, small switching transistors, power

transistors, high frequency transistors, etc), and field effect transistors (junction gate

field-effect transistors, metaloxidesemiconductor field-effect transistors, etc). They

have their own characteristics and each type has also its own advantages and dis-

advantages in applications. However, in this work we will refer only to the most

common one in use today, i.e., the field effect transistor (FET), which is made up of 3

regions, a gated channel, a source, and a drain. FETs are voltage-controlled devices.

A voltage placed at the gate controls current flow from the source to the drain of the

transistor.

For many years, the Moore’s law has given the trend in the time evolution of

between metal oxide semiconductor FET (MOSFET) technology, in terms of gate

length and number of transistors per processor chip. Today, processors even contain-

ing more than two billion MOSFETs, many of them with gate lengths of just 30 nm

[107, 108, 109], are in mass production (see in Fig. 3.1 [107]). Here, as gate lengths

have decreased, the number of transistors per processor chip has increased. Main-

taining these trends is a significant challenge for the semiconductor industry, which

is why new materials such as graphene are being investigated. Making MOSFETs

smaller is still required and it has been the key to the progress in digital logic.

As discussed below, graphene with its interesting properties is expected to be-

come a new material of choice for electron devices. Regarding FET application, the

drawback of this material is its gapless character, so that devices with channels made

of large-area graphene cannot be switched off efficiently and therefore are not suit-

able for logic application. However, the band structure of graphene can be modified

in several ways such as by forming one-dimensional graphene nanoribbons, by bi-

asing bilayer graphene, by creating a sublattice of nanoholes into a graphene sheet

or by applying strain to graphene. In this section 3.2, we will discuss the positive

properties of transistors made from these structures of graphene in comparison with

pristine graphene transistors. This section is organized as follows. The first subsec-

tion 3.2.1 introduces the structure of pristine graphene-based field-effect transistor
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Figure 3.1: Trends in digital electronics [107].

and its characteristic properties. Then, the second subsection shows the general fea-

tures of FETs based on graphene nanostructures, like bilayer graphene and graphene

nanomesh. Finally, we present a study of graphene FET with the heterochannel made

from unstrained/strained junctions in subsection 3.2.3.

3.2.1 Field-effect transistor (FET)

A conventional field-effect transistor consists of a gate, a channel region connecting

source and drain electrodes, and an insulating barrier separating the gate from the

channel, as schematized in Fig. 3.2. Here, when the voltage applied between the

source and gate electrodes exceeds a threshold voltage, a conducting channel is formed

and a drain current flows. The length of the channel is defined by the length of the

gate electrode, the thickness of the gate-controlled channel region is the depth through

which the electronic properties of the semiconductor (p-doped Si in this case) are

electrostatically controlled by the gate [107]. The operation of a conventional FET

relies on the control of the channel conductivity, and thus the drain current, by the

voltage VGS applied between gate and source. For high-speed application, FETs are

expected to respond quickly to variations in VGS, which requires short gate and fast

carriers in the channel. However, it has been shown that FETs with short gates

have many possible problem such as degraded electrostatics, threshold-voltage roll-

off, drain-induced barrier lowering and impaired drain-current saturation (see in [107]
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Figure 3.2: Schematic of conventional field-effect transistor [107].

and Refs. therein). Theoretical studies predict that a FET with thin barrier and a

thin gate region should be robust against short channel effects down to very short gate

length. Hence, the possibility of having channels that are just one atomic layer-thick

is perhaps the most attractive property of graphene for fabricating transistors [110].

Besides, the high mobility in graphene makes it very appealing to replace conventional

materials.

Otherwise, the ratio between the ON-current (Ion) and the OFF-current (Ioff )

in FETs is an important parameter. The ON-current, corresponding to on-state,

is defined at the maximum of VGS while the OFF-current is corresponding to the

leakage current in off-state at VGS = 0. In general, a large number of MOSFETs in

CMOS circuits are always switched off, which means with almost no current flowing

through the device (to the exception of the small Ioff that must be as small as pos-

sible). Silicon CMOS has been introduced in all logic technologies due to the ability

of silicon MOSFETs to switch off very well. Therefore, any generation of post-silicon

MOSFETs that is to be used in CMOS-like logic must have excellent switching ca-

pabilities as well as a high ON/OFF ratio (Ion/Ioff ), typically between 104 and 107

(see in [107] and Refs. therein). In a conventional FET, this requires semiconducting

channels with a bandgap about 0.4 eV or more. Thus, pristine graphene with its gap-

less character is not a good candidate from this viewpoint. Hence, a new generation

of transistor with attractive characteristics, i.e., small and thin size and shape, high

ON/OFF current ratio, is a challenge in science and technology.
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3.2.2 Different types of graphene transistors
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Figure 3.3: Schematics of transistor with graphene channel in red region is shown in
figure (a) [107] and the characteristics of current is displayed in figure (b) [111, 112].

Graphene is the thinnest material ever known to exist. It is really attractive for

fabricating transistors as mentioned above. In this part, we would like to discuss the

properties of transistor made of graphene and graphene nanostructures, i.e., pristine

graphene transistor, graphene nanoribbon transistor and graphene nanomesh tran-

sistor. Then, we will review some main results on the use of unstrained/strained

junctions likely to improve the performance of transistors.

The simplest design of conventional transistor made of 2D graphene lattice is

shown in Fig. 3.3(a) [107]. The current character through this channel (see in Fig.

3.3(b)) is measured [111, 112]. The carrier density and the type of carrier (electrons

and holes) in the channel are governed by the potential differences between the channel

and the gates (top gate and/or back gate).

It is shown that the current displayed in Fig. 3.3(b) is a typical transfer char-

acteristics for a MOSFET with large-area-graphene channel. The ON-OFF current

ratio is about 3 [111, 112]. Clearly, this ratio is quite low due to the gapless character

of graphene. Therefore, the graphene field-effect transistor (FET) cannot be turned

off effectively due to the absence of a bandgap, leading to an ON/OFF current ratio

typically lower than 10 in top-gated graphene FETs [113]. To improve the OFF-state

behavior in more conventional field-effect architecture, it is necessary to open a finite

bandgap in graphene. Hence, nanostructures of graphene with real bandgaps are

alternative methods.
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Figure 3.4: Structure of the bilayer graphene FET. Figure (a) shows the bilayer
graphene structure in a perpendicular E-filed. A three-dimensional schematic view
of the dual-gate bilayer graphene FET in (b). The room temperature transfer char-
acteristics of a dual-gate bilayer graphene FET in (c) [114].

First, we can think about the bilayer graphene FET shown in Fig. 3.4(b) [114].

As already mentioned, theoretical investigations predict a sizable bandgap opening

up to 300 meV in bilayer graphene using a perpendicular E-field between the A1

and B2 sites, as can be seen Fig. 3.4(a). However, experimental measurements were

not able to find such a large bandgap. In fact, F. Xia et al. have fabricated the

bilayer graphene FET [114] which allowed them to observe an electrical bandgap

(> 130 meV). In this work, the FET with a channel 1.6 µm wide by 3 µm long

was investigated. The back gate bias (Vbg) was fixed and the top gate bias (Vtg) was

changed from -2.6 to 6.4 V. Vbg was varied from -120 to 80 V by steps of 20 V as

shown in Fig. 3.4(c). As a result at room temperature, the ON/OFF current ratio

can reach about 100. In comparison, an ON/OFF ratio of only about 4 was observed

in a single layer graphene FET with similar device structure as seen in Fig. 3.4(b).

Obviously, the ON/OFF current ratio is enhanced significantly in bilayer graphene

FET, i.e., it is 25 times larger than that in a single layer graphene FET.

Next, we would like to discuss about another alternative method, the opening of

a bandgap in a large sheet of graphene by a system of periodic nanoholes. In this

model, a bandgap higher than 0.5 eV can be achieved depending on the size, the

shape and the periodicity of nanoholes forming a graphene nanomesh. Transistor
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Figure 3.5: Schematic view of the GNM transistor is considered in figure (a). Transfer
characteristics is displayed in figure (b) [92].

with gated region of graphene nanomesh is schematized in Fig. 3.5(a). S. Berrada et

al [92] have shown that by increasing the bandgap of graphene nanomesh, the overall

current is reduced but the OFF-current at the Dirac point is drastically suppressed.

In particular, the ON/OFF current ratio increases from 7 for pristine graphene FET

to more than 7400 for graphene nanomesh FET with a bandgap > 500 meV, seen in

Fig. 3.5(b). Besides, the possibility to get a good saturation current in GNM FETs

is realizable for a sub-50 nm while a good saturation behavior has been observed

previously in bilayer graphene FETs but with a gate length as long as 4µm. It even

leads to excellent frequency behavior, not only in terms of cutoff frequency fT but also

in terms of maximum oscillation frequency fmax, that is usually very weak in pristine

GFET due to hight output conductance [92]. So in conclusion, graphene nanomesh

FET is really a brilliant candidate for fabricating excellent transistors to overcome

the serious drawback of conventional transistors. However, it requires a good control

of nanoholes size and periodicity at the nanometer scale.

3.2.3 A high ON/OFF ratio in strained graphene transistor

For this thesis project, I have focused on the effect of uniaxial strain applied in a 2D

monolayer graphene sheet and explored the possibility of using the unstrained/strained

hetero-channel to enhance performance of devices. First, we would like to mention the

ability of unstrained/strained channel to achieve a good operation of FETs. Though

I contributed with some simulations and analyses, this work has been mainly con-

ducted by V. H. Nguyen et al [102], with main results shown in Fig. 3.6. In fact, local

strain has been realized in experiments (lots of Refs. in chapter 1 and [115, 116]) and

theoretically demonstrated to improve the electrical performance of various graphene

devices [71, 117, 118]. For instance, the local strain has been shown to enhance the
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ON current in a GNR tunneling FET by a factor of ten [117] and to increase the

conduction gap in strained GNR junctions [118]. It has also been shown in [102] that

the use of a strained heterostructure with a moderately small strain of 5% can greatly

improve the performance of graphene FETs with respect to a high ON/OFF ratio

and good saturation of the current.
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Figure 3.6: Schematic of graphene FET with unstrained/strained junction (a). The
channel of the simulated device is based on strained graphene heterostructures. The
yellow zone in the graphene layer indicates the transition region between strained
and unstrained sections. (b) I-Vgs characteristics of simulated graphene FETs at the
value of drain voltage Vds = 0.1 V with different strain amplitudes.

Indeed, a conduction gap of 360 meV can be achieved with a strain of only 5% and

higher value can even be obtained with larger strain [102]. This gap is the important

key leading to the possibility of switching off the current, which allows us to achieve

high ON/OFF current ratio. In particular, it is found in Fig. 3.6(b) that when

increasing the strain (or conduction gap), the OFF-current is strongly reduced and

by defining arbitrarily the ON-current as the current obtained at Vgs = 0.35V , the

ON/OFF current ratio increases significantly to over 105 for σ = 5%. Such a high

ratio seems to be at variance with what was shown for bilayer graphene [114] and

graphene nanomesh FETs [92], where an energy gap of ∼ 300 meV is not enough

to switch off the current efficiently, i.e., to obtain a large ON/OFF ratio. This may

be because, in those devices, the energy gap occurs locally in the gated region and

is, therefore, not sufficient to fully suppress the band-to-band tunneling components.

This situation here, with unstrained/strained junctions, is different and is explained

below.

In fact, the transport modes ky that contribute significantly to the current are the

values ky around the range from Kunstrain to Kstrain, as schematized in Fig. 3.7. Far

from this range to the left and to the right, the energy gap Egap(ky) in the strained
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Figure 3.7: (a) unstrained/strained graphene junctions. (b) bandedges illustrating the
strain-induced shift of Dirac points along the ky-direction that leads to the opening
of a conduction gap (c) [chapter 2].

(source and half of the gated zone) and unstrained (drain and half of the gated

zone) graphene sections, respectively, is very large, which very strongly suppresses

the corresponding current component even in the ON state. Close to ky = Kunstrain

or Kstrain, the energy gap mentioned is still large, but the corresponding current

component starts to have a significant contribution to the ON current, while it remains

almost negligible in the OFF-state. For other modes ky, e.g., around Kgap, the energy

gap of∼ Econd.gap, though smaller than the gap of modes discussed above, occurs along

the whole channel and is thus enough to switch off the corresponding component of

current in the OFF-state. The combined effect of these ky-dependent energy gaps

makes high the ON/OFF current ratio, at the price of a reduced ON-current. The

result obtained demonstrates that strained heterochannels are excellent candidates

for graphene devices in electric applications. The full analysis of this device can be

found in [102].
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3.3 Enhanced thermoelectric effect

Recent studies have shown that the potential of graphene as thermoelectric material

is quite intriguing (seen in review [119] and Refs. therein). This single layer of

carbon atoms offers fascinating electronic properties resulting in high mobility for

massless chiral particles [3, 60]. Regarding thermoelectric properties, graphene has

the advantage of a strong energy-dependence of the conductivity near the charge

neutrality point [1]. However, it has the strong drawback to be gapless, which makes

it difficult to separate the opposite contributions of electrons and holes to the Seebeck

coefficient. It results in a finite but small value of S < 100µV/K in pristine graphene

[62].

So far, many studies have suggested different ways to open a bandgap in graphene

as mentioned in chapter 2. As a direct consequence, it has been shown that the

Seebeck effect can be significantly enhanced in graphene nanostructures with finite

energy gap such as armchair graphene nanoribbons [120], hybrid structures combin-

ing zigzag graphene nanoribbon with zigzag boron nitride nanoribbon [121], graphene

nano-hole lattices [122], graphene nanoribbons consisting of alternate zigzag and arm-

chair sections [123], vertical graphene junctions [124], and graphene p-n junctions

[125]. However, each method has its own drawbacks and still need to be confirmed by

experiments. Some of them will be mentioned in more detail in the discussion below.

Furthermore, we repeat that graphene has been demonstrated to be conformable

and able to sustain large strain [41, 42], making it a promising candidate for flexible

devices. Also, strain engineering has been proposed to be an alternative approach

to modulating the electronic properties of this material. In particular, it has been

shown that an energy gap can be opened in pristine graphene for deformations be-

yond 20% [71]. In the previous chapter, we have investigated the effects of uniaxial

strain on the transport properties of 2D graphene heterochannels and found that

a significant conduction gap of a few hundred meV can be achieved with a small

strain of a few percent. This result motivated us to investigate here the possible

strain-induced enhancement of Seebeck coefficient in graphene nanostructures. In

addition, doping engineering has been included in our investigation since it is likely

to increase strongly the conduction gap, and thus the Seebeck coefficient, in graphene

doped heterojunctions. All these interesting points will be discussed in detail in this

section.
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(a) (b) 

Figure 3.8: Left panel: a thermoelectric circuit composed of materials of different
Seebeck coefficient (p-doped and n-doped semiconductors), configured as a thermo-
electric generator (a). Right panel: the Seebeck circuit configured as a thermoelectric
cooler (b).

3.3.1 What is the thermoelectric effect?

The thermoelectric effect is the direct conversion of temperature differences to elec-

tric voltage and vice versa. A thermoelectric device creates a voltage when there is

a different temperature on each side. Conversely, when a voltage is applied to it, it

creates a temperature difference. At the atomic scale, applying a temperature gra-

dient induces a diffusion of charge carriers in the material from the hot side to the

cold side. This effect can be used to generate electricity, measure temperature or

change the temperature of objects. Because the direction of heating and cooling is

determined by the polarity of the applied voltage, thermoelectric devices can be used

as temperature controllers, as illustrated in Fig. 3.8.

In particular, when a conductor is connected to a hot and a cold reservoir with

a temperature difference ∆T , an electrical voltage ∆V is established across the con-

ductor according to

∆V = S∆T (3.1)

where S is the Seebeck coefficient characterizing the thermoelectric sensitivity of

the conductor. The use of materials with high Seebeck coefficient is thus one of

important factors to design efficient thermoelectric generators and coolers or thermal

sensors. It is also important to maximize the power factor GeS
2 where Ge is the

conductivity of the material. In a conductor in weak scattering regime, the linear
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response thermoelectric coefficient is given by the Mott’s formula [126]

S =
1

Ge

kB
e

∫
Ge(ε)

ε− EF
kBT

(
−∂f
∂ε

)
dε (3.2)

where Ge(ε) is the energy-dependent conductivity associated to the density n(ε) of

electrons that fill energy states between ε and ε + dε, and f(ε) is the Fermi-Dirac

distribution function with the Fermi energy EF . In conventional materials, a high

Seebeck coefficient is usually found in low carrier density semiconductors while a

high conductivity is found in metals. The best compromise is often to use heavily-

doped semiconductors where, thanks to the finite bandgap, electrons and holes can be

separated and the Seebeck coefficient is not reduced by their opposite contributions.

However, since the pioneering works of Hicks and Dresselhaus [127], nanostructur-

ing materials into low-dimensional systems are now widely investigated to enhance

the thermoelectric properties. To basically understand this size effect on the Seebeck

coefficient, it is convenient to start from the simplified form of Eq. 3.2 derived for

degenerately doped materials, i.e.

S = −π
2k2
BT

3e

1

Ge

∂Ge(ε)

∂ε

∣∣∣∣
ε=EF

(3.3)

This expression suggests that any effect that can enhance the energy-dependence of

the conductivity should enhance the Seebeck coefficient, e.g., by enhancing the energy-

dependence of the density n(ε) that is directly dependent on the density of states D(ε).

Hence, compared to bulk materials, low-dimensional systems are expected to provide

higher Seebeck coefficient and power factor thanks to much higher dD(ε)/dε. For

instance, it has been confirmed experimentally first in PbTe/Pb1−xEuxTe quantum

well structures [128].

Regarding some thermoelectric applications, the figure of merit ZT is another

important parameter. The figure of merit ZT determines the efficiency of energy

conversion in thermoelectric device [119]

η = η0

√
1 + ZT − 1√

1 + ZT + (Tc/Th)
(3.4)

where Th and Tc are temperatures of hot and cold end, and η0 = 1 − Tc/Th is the

Carnot efficient for an ideal system. The thermoelectric figure of merit is defined as

ZT = GeS
2T/κ, where κ is the thermal conductivity. Actually, strain engineering is

not an efficient technique to modulate the phonon bandstructure [129] and to strongly

reduce the thermal conductivity in the junctions studied here. Hence, though the
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Seebeck coefficient and the power factor GeS
2 are strongly improved, we believe that

the combination of this design with additional nanostructuring (e.g., as in [124]) or

more complex design would be required to achieve high ZT . For this reason, we focus

here our investigation on the Seebeck coefficient that is an essential ingredient.

3.3.2 The Seebeck effect in monolayer and bilayer graphene,
graphene nanoribbons and graphene nanomesh
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Figure 3.9: (a) Electrical conductivity and (b) themoelectric power (TEP) of a
graphene sample as a function of Vg (for different temperatures) for single graphene.
From Y. M. Zuev et al [62].

As discussed in [130], compared to bulk materials, low-dimensional systems are

expected to provide higher Seebeck coefficient and power factor. Graphene is truly

a 2D lattice of carbon atoms. Beside, nanostructures of this material have been

fabricated in experiment, i.e., graphene nanoribbons, graphene nanomesh or a few

heterostructures of graphene with other 2D materials. Therefore, some nanostructures

of graphene are expected to be good candidates for thermoelectric applications. In

this sub-section we review briefly the performance of some graphene structures in

terms of Seebeck effect.
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First, let’s look again at the results of Seebeck effect in monolayer, bilayer graphene,

graphene nanoribbons as well as graphene nanomesh. The first measurement of the

thermoelectric properties of graphene were published in 2009 [131]. In these experi-

ments, the structures consisted of a single-layer graphene sheet exfoliated onto a 300

nm-thick SiO2 layer grown on degenerately doped Si substrate, with a back gate

to control the carrier density. All measurements have confirmed that at room tem-

perature the peak value of thermopower reaches about 80 µVK−1, as seen in Fig.

3.9.

Next, these results of thermoelectric power (TEP) measurements in bilayer graphene

in zero magnetic field is shown in Fig. 3.10 by Seung-Geol Nam et al [132]. Here, it is

seen that the dependence of TEP on temperature is similar to the case of monolayer

graphene because bilayer graphene has also no bandgap.

V
BG

 (V)

S
X

X
 (

µ
V

/K
)

Figure 3.10: Themoelectric power (Sxx) as a function of the backgate voltage VBG in
zero magnetic field and at various temperatures: T = 30, 50, 70, 140, 170, and 250K.
From Seung-Geol Nam et al [132].

Y. Yokomizo et al have suggested to use structures combining zigzag graphene

nanoribbons (ZGNR) with hexagonal boron nitride (h-BN) to create superlattices.

This ZGNR/h-BN superlattices can open a bandgap and hence enhance significantly

the Seebeck coefficient, compared with graphene strips. In particular, as seen in Fig.

3.11, the Seebeck coefficients in ZGNR/BNNRs is higher than in ZGNRs. Moreover,
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the superlattice (2,2) has the highest Seebeck coefficient of 1.78 mV/K at maximum,

while ZGNR (n = 2) has the Seebeck coefficient of 0.282 mV/K. Hence, the Seebeck

coefficient of superlattice is 6.3 times larger than that of ZGNR and 22 times as

large as in monolayer graphene. However, the drawback of these superlattices is the

decreasing of bandgap by increasing the width of graphene/h-BN strip, which leads

to the strong decrease of Seebeck coefficient.

Chemical potential (eV) Chemical potential (eV)

S
ee

b
ec

k 
co

ef
fi

ci
en

t 
(µ

V
/K

)

S
ee

b
ec

k 
co

ef
fi

ci
en

t 
(µ

V
/K

)

Figure 3.11: Seebeck coefficients of (a) the ZGNR/BNNR superlattices and (b) free-
standing ZGNRs at 300 K as a function of the chemical potential felt by electrons.
From Y. Yokomizo et al [121].
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Figure 3.12: Geometrical structures of different graphene antidot lattices (GALs) in
(a) with Circ(10, 108), Rect(10, 120), Hex(10, 120), IsoTri(10, 126), and RightTri(10,
126), respectively. Seebeck coefficient and electrical conductance are displayed in
figure (b) and (c). From H. Karamitaheri et al [133].
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The enhancement of Seebeck effect has been suggested in graphene nanomesh

systems (also called graphene antidot lattice) by H. Karamitaheri et al [133]. In

these systems, the zero bandgap graphene can be converted into a narrow bandgap

semiconductor as seen in Fig. 3.12. This positive point is useful in thermoelectric

applications. In contrast to a pristine graphene sheet, graphene nanomeshes have a

beneficial bandgap, so that one can suppress either the electron or the hole current

to obtain unipolar conductance. As a result, these systems with finite bandgap have

a high Seebeck coefficient and a low electrical conductance. However, similarly as

ZGNR/BNNRs, graphene nanomesh has also the drawback that the value of Seebeck

coefficient is very sensitive the size and the shape of nanoholes.

3.3.3 The enhancement of Seebeck effect in graphene hete-
rochannels by strain and doping engineering

In this part, we would like to discuss about 2D graphene doped heterojunctions with

a strain area of finite length as schematized in Fig. 3.13. The strain area covers

symmetrically both doped sides and its length LS is assumed to be much longer

than the length of the transition region LT between left and right doped sections.

In this work, the doping profile can be generated/controlled by chemical doping or

electrostatic methods, e.g., as seen in refs. [134, 135]. Though expected to be short for

achieving high band-to-band tunneling current, the transition length is always finite

in devices with chemical doping [134]. In the case of electrostatic doping [135], this

length is also finite but can be controlled by tuning the properties of insulator layer,

i.e., its thickness and dielectric constant. Throughout this work, unless otherwise

stated our calculations were performed at room temperature for LS = 70nm and

LT = 10nm.

In this part, we still use the pz-orbital tight-binding model to calculate electronic

and thermoelectric properties of the device with Hamiltonian Htb [as mentioned in

chapter 2]. In particular, here we consider a local uniaxial strain applied along the

Oy direction. Accordingly, the strain-dependence of C − C bond vectors is given by{
rx (σ) = (1− σγ) rx (0)
ry (σ) = (1 + σ) ry (0)

(3.5)

where σ is the strain amplitude and γ = 0.165 is the Poisson’s ratio, as described

in chapter 2. In the specific case of this study, where the strain is applied along a

zigzag axis, we have to consider two different hopping parameters t1,2 in the armchair
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Figure 3.13: Schematic view of the graphene structure investigated in this work,
consisting of a PN diode with a locally strained area of length LS that covers sym-
metrically both doped sides. The bottom shows its strain and potential profiles where
the doping is characterized by the potential difference ∆U = UR−UL and the length
LT of transition region.

and zigzag directions, respectively, corresponding to two bond vectors ~r1,2 in strained

graphene as in [102].

Next, the tight-binding Hamiltonian was solved by the Green’s function tech-

nique: G (ε, ky) = [ε+ i0+ −Htb (ky)− ΣL (ε, ky)− ΣR (ε, ky)]
−1

, where Htb (ky) is

the Hamiltonian rewritten in the wavevector ky-dependent (quasi-1D) form as in

[101] and ΣL(R) is the self energy describing the left (right) contact-to-device cou-

pling. The local density of states and the transmission probability needed to evaluate

the transport quantities are determined as D (ε, ky, ~rn) = −Im {Gn,n (ε, ky)} /π and

Te (ε, ky) = Tr
{

ΓLGΓRG†
}

, respectively, where ΓL(R) = i
(

ΣL(R) − Σ†L(R)

)
is the en-

ergy level broadening at the left (right) contact. The electrical conductance and the

Seebeck coefficient were calculated by

G(EF ) = G0L0(EF , T ) (3.6)

S(EF ) =
1

eT

L1(EF , T )

L0(EF , T )
(3.7)
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where

Ln(EF , T ) =
1

π

∫
dκydεTe(ε, κy)(ε− EF )n

(
−∂f
∂ε

)
. (3.8)

Here, G0 = e2W/hLy and the channel width W = McellLy with the size of unit cells

Ly (≡ r0
√

3) and the number of cells Mcell along Oy direction. The integral over

κy (κy ≡ kyLy) is performed in the whole Brillouin zone. The distribution function

f (ε, EF ) = (1 + exp [(ε− EF )/kBT ])−1 is the Fermi-Dirac function with the Fermi

energy EF .

3.3.3.1 Strained device with uniform doping (∆U = 0)

First, let us examine the basic effect of strain on the transport properties of graphene.

Actually, for a small strain of a few percent, graphene is still metallic [71], i.e., its

gapless character does not change [as discussed in chapter 2]. However, even a small

strain causes a shift of Dirac points in the k -space [71]. As a consequence, it may

lead to the opening of a conduction gap in strained/unstrained graphene junctions

[101] [explained detail in chapter 2]. The appearance of conduction gap is in principle

an important factor in the enhancement of Seebeck coefficient, which is discussed in

next parts.

In Figs. 3.14(a) and 3.14(b), we plot the conductance and Seebeck coefficient,

respectively, as a function of Fermi energy for different strain amplitudes σ ranging

from 0 to 10 %. While the minimum value of conductance is finite in pristine graphene

(σ = 0), a finite conduction gap is achieved when a local strain is applied to the

structure. Actually, Egap increases almost linearly as a function of strain amplitude

and, particularly, it takes the value of 0.162 eV, 0.324 eV, 0.486 eV, 0.654 eV, 0.822

eV for σ = 2 %, 4 %, 6 %, 8 %, 10 %, respectively, as can be seen in table in Fig.

3.15. As expected from this gap enhancement, the maximum value Smax of Seebeck

coefficient increases from 0.086 mV/K for σ = 0, in agreement with experimental

data [62], to 0.803 mV/K for σ = 6 %. We find as shown in Fig. 3.14(c) that the

conductance in the OFF state, i.e., the minimum of conductance when varying EF

(practically, at EF = 0), decreases exponentially when the strain amplitude increases,

in accordance with the linear increase of conduction gap. This effect is at the origin

of the enhancement of ON/OFF current ratio in the transistors based on this type of

strain heterochannels [102], where the OFF and ON currents are the minimum and

maximum currents, respectively, obtained when tuning the gate voltage. It is shown

concomitantly in Fig. 3.14(c) that Smax increases linearly as a function of strain

amplitude and reaches up to 1.353 mV/K for σ = 10 %. However, practically it may
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Figure 3.14: (a) Conductance and (b) Seebeck coefficient as a function of Fermi energy
EF for different strain amplitudes in the device with uniform doping. (c) Maximum
value of Seebeck coefficient (Smax) and conductance (Goff ) in OFF state (i.e., at
EF = 0 ) as a function of strain amplitude.

be difficult to apply locally such a large strain in this type of structure. Hence, we

propose here to introduce appropriate doping engineering in this device to enhance

the conduction gap with a reasonable strain amplitude.

3.3.3.2 Strained device with both strain and doping engineering (∆U 6= 0)

In this subsection, we discuss the effects of doping engineering schematized in Fig.

3.13 on the transport properties of this strain heterostructure. The structure now

consists of three sections: differently doped-graphene sections in both sides and a

transition region between them. Note that within the condition LS >> LT , left and

right doped sections are actually formed by two different strain junctions. In Fig.

3.16, we display the conductance G and the Seebeck coefficient as a function of Fermi

113



Strain 
(%)

Conduction gap 
(eV)

Maximum 
Seebeck coefficient (mV/K)

0 0 0.086

2% 0.162 0.328

4% 0.324 0.576

6% 0.486 0.803

8% 0.654 1.050

10% 0.822 1.353

Figure 3.15: The value of conduction gap Egap corresponding with maximum of See-
beck coefficient for strain amplitude from 0 to 10%.

energy EF for different doping profiles. The strain amplitude is fixed to 5 % and the

doping profile is characterized by a finite potential difference ∆U = UR − UL (see

Fig. 3.13). The doping engineering consists here in controlling the carrier density

profile, which is characterized and determined by both the potential ∆U and the

Fermi level EF . The results in Fig. 3.16(a) show that for small ∆U , the conduction

gap increases with this potential difference, which can be explained as follows. When

∆U increases, Egap of strained/unstrained junctions in the left and right sides are

shifted in opposite directions, which results in the enlargement of the transmission

gap (i.e., conduction gap). Indeed, this phenomenon is clearly illustrated in the

pictures of local density of states (LDOS) and transmission coefficient in Fig. 3.18,

obtained for ky = (Kunstrain
y + Kstrain

y )/2 where K
unstrain/strain
y is the wavevector at

the Dirac points of unstrained/strained graphene, respectively. Note that at this ky

point, Eunstrain
gap (ky) ' Estrain

gap (ky) ' Egap for ∆U = 0. Actually, the conduction

gap Egap(∆U) of the whole device in the range of small ∆U (i.e., ∆U < Egap(0))

is basically determined as Egap(∆U) = Egap(0) + ∆U , as shown in Fig. 3.18(c) and

confirmed in Fig. 3.16(c) where we observe a linear dependence of Egap as a function

of ∆U . As a consequence, S is significantly enhanced when increasing ∆U (see Fig.

3.16(b)) and Smax reaches the value of 0.689, 0.839, 0.999, 1.160 and 1.315 mV/K for

∆U = 0, 0.1, 0.2, 0.3 and 0.4 eV, respectively, as can be seen in table of Fig. 3.17.

It is worth noting here that the result obtained for η = 5 %, ∆U = 0.4 eV is almost

similar to that obtained for σ = 10 %, ∆U = 0, which is about 15 times greater

than Smax in pristine graphene. Thus, it is demonstrated that the doping engineering

can be an effective way to further enlarge Egap without the requirement of too large
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Figure 3.16: (a) Conductance and (b) Seebeck coefficient as a function of Fermi energy
EF for different ∆U . (c) Maximum Seebeck coefficient (Smax) and conduction gap
(Egap) as a function of ∆U . (d) Smax as a function of Egap. σ = 5% is considered
here.

Doping potential 
(eV)

Conduction gap 
(eV)

Maximum 
Seebeck coefficient (mV/K)

0 0.402 0.689

0.1 0.504 0.839

0.2 0.606 0.999

0.3 0.708 1.160

0.4 0.804 1.315

Figure 3.17: The value of conduction gap Egap corresponding with maximum of See-
beck coefficient for doping potential from 0 to 0.4 eV.

strain. All the features above are clearly summarized in Fig. 3.16(d). In addition,

the Fig. 3.16(d) confirms that whatever the technique of energy gap opening Smax
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always depends linearly on Egap, as predicted theoretically in ref. [121].
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Figure 3.18: Local density of states in the devices of different ∆U : 0 (a) and 0.2 eV
(b). The blue color regions correspond to energy-gaps, i.e., low density of states. (c)
shows the transmission coefficient in these two cases. ky = (Kunstrain

y + Kstrain
y )/2

and σ = 5 % are considered here.

3.3.3.3 Strained device with large doping

Next, we go to analyze the effects of large ∆U , i.e., values greater than Egap(0).

In Figs. 3.19(a) and 3.19(b) we plot the conductance and Seebeck coefficient as a

function of EF for large values of ∆U increasing from 0.4 eV to 0.6 eV. It is shown

that the conduction gap is separated in two smaller ones that correspond to the

conduction gap of each strained/unstrained junction of the structure. Between these

two gaps, a region of finite conductance is recovered due to the band-to-band tunneling

(BTBT), as in a standard doped tunnel diode, which is illustrated clearly in Figs.

3.20(a,b) and 3.20(c) where we plot the map of LDOS and transmission coefficient,

respectively, for ∆U = 0.4 eV and ∆U = 0.6 eV . As a consequence, at large ∆U the

Seebeck coefficient exhibits two positive (negative) peaks with a maximum value Smax

that reduces and tends finally to a finite value S∞ when increasing ∆U , as shown in

the Fig. 3.19(c). Note that the value S∞ is generally higher than the value of Smax

obtained for ∆U = 0 but tends to this value when the transition length LT is reduced.

This is explained by the detrimental contribution of band-to-band tunneling current,

which is significantly reduced when increasing LT (see further comments below). It
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is additionally shown that Smax(∆U) has a peak at ∆U ≡ Egap(0), e.g., ∆U ' 0.4 eV

for σ = 5 % here.
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Figure 3.19: (a) conductance and (b) Seebeck coefficient as a function of Fermi energy
EF with high values of ∆U . The relationship between Smax and ∆U is shown in (c).
σ = 5 % is considered here.

Now, we would like to clarify the roles of device parameters LS and LT on the

obtained results. Note that in this work, we consider only the case LS >> LT .

Within this condition, each doped section contains by a strain junction and hence

has a finite conduction gap. In principle, this conduction gap is strongly dependent

on the length of the strained graphene part in these two doped sections, i.e., the

transmission probability in the gap increases exponentially when reducing the length

of strained graphene area. Hence, to ensure that the transmission is fully suppressed in

the gap, the length LS should be much larger than LT . Moreover, the required length

LS is basically dependent on the value of energy gap, i.e., the larger LS is required

for the smaller Egap (i.e., smaller strain). In particular, in the case of σ = 5 %,

117



Trans. direction (nm) Trans. direction (nm) Trans. coefficient

E
n

er
g

y 
(e

V
)

low high

(a) (b)

(c)

Figure 3.20: Local density of states in the devices of different ∆U : 0.4 (a) and 0.6 eV
(b) (the blue color regions correspond to energy-gaps, i.e., low density of states). The
transmission coefficient in these cases is shown in (c). ky = (Kunstrain

y + Kstrain
y )/2

and σ = 5 % are considered here.

LS > LT + 20nm should be used. Additionally, it has been shown that the length LT

of the transition region between n- and p-doped sections plays an important role on

the BTBT current [136], i.e., this current is exponentially reduced when increasing

LT as seen in Fig. 3.21(a). More interestingly, based on this reduction of BTBT

current, the Seebeck coefficient in the case of ∆U > Egap(0) is significantly enhanced

when increasing LT , i.e., Smax reaches 1.48 mV/K for LT = 40nm as shown in Fig.

3.21(b) while it is only about 0.77 mV/K for LT = 5nm. We notice that in the case

of small ∆U , the BTBT current is negligible as shown for ∆U = 0 and 0.2 eV in Fig.

3.18 and hence S is very weakly dependent on LT .

In conclusion of this work, we have proposed to make appropriate use of strain and

doping engineering to generate and enlarge a conduction gap in graphene heterochan-

nels and to benefit from this feature to enhance the Seebeck effect. The maximum

value Smax of the Seebeck coefficient was shown to increase linearly with the conduc-

tion gap. Remarkably, with a small strain of 5 % and an appropriate doping profile,

the Seebeck coefficient can reach a value higher than 1.4 mV/K, i.e., 17 times higher

than the value in gapless pristine graphene. Besides its use in strain sensors, this

design strategy is thus promising to achieve good performance in graphene devices

based on the Seebeck effect, as thermal sensors.
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Figure 3.21: (a) conductance and (b) Seebeck coefficient as a function of Fermi energy
EF for the different lengths LT . σ = 5 % and ∆U = 0.5 eV .

3.4 Enhanced negative differential conductance

(NDC) effect

3.4.1 What is the NDC effect?

Negative resistance (NR) is a property of some electrical circuits and devices in which

an increase in voltage across the device’s terminal results in a decrease in electric cur-

rent through it. While a positive resistance consumes power from current passing

through it, a negative resistance may produce power [138, 139]. Under certain con-

ditions, it can increase the power of an electrical signal. It can be seen that the

conductance has the same sign as its corresponding resistance: a negative resistance

will correspond to a negative conductance while a positive resistance will correspond

to a positive conductance.

Beyond the usual linear or saturation behaviors expected to occur in transistors,

non-linear effects as negative differential conductance (NDC) in the current-voltage

characteristics may be of strong interest to design devices for high-speed analog ap-

plications and memories [140]. Hence, a lot of works have been devoted recently to

investigate the possibility to generate a negative differential conductance or transcon-

ductance in graphene devices, based on various physical mechanisms.

For 2D graphene sheets, an NDC behavior has been observed experimentally in

graphene transistors [141, 142] and explained theoretically as a possible consequence

of chiral tunneling regime [142, 143, 144]. However, the effect is relatively weak due

to the gapless character of graphene. The gapless bandstructure leads to the fact that
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the band-to-band tunneling can give important contributions to the current, making

the valley current relatively high [145, 146]. Recently, a strong NDC effect has been

demonstrated in graphene/Boron Nitride/graphene van der Waals heterostructures

in resonant tunneling regime [147, 148, 149]. An NDC behavior can be also obtained

in tunnel diodes by controlling the interband tunneling between the conduction band

of the n-doped side and the valence band in the p-doped side of the junction. Though

small in gapless monolayer and bilayer graphene sheets [150], this effect increases

significantly if a finite bandgap can be generated in graphene, as discussed below.

The NDC has been predicted also in double-barrier resonant tunneling diodes [151,

152, 153], in diodes made of graphene/Boron Nitride heterochannels [154] and in

graphene nanoribbon (GNR) superlattices with different ballistic transport regimes,

including the resonant tunneling through the minibands and the Wannier-Stark ladder

regime [155].

Nanostructuring graphene into nanoribbons offers promising possibilities to en-

hance non-linear effects in the I-V characteristics. The NDC effect has been predicted

in different kinds of armchair GNRs working in resonant tunnelling regime [156, 157]

and in heterochannels made of GNR sections of different widths [158, 159]. The

effect of parity selective rule [160] in zigzag GNRs with an even number of zigzag

lines has been also predicted to generate an NDC behavior [161]. Regardless of the

width of zigzag GNR, the mismatch of modes between left and right sides of a zigzag

GNR junction may also induce an NDC [162, 163]. Actually, the strongest NDC

effect, with high peak-to-valley ratio (PVR) of several hundreds, has been predicted

to occur in tunnel diodes made of GNR heterochannels with alternating sections of

different widths [164]. This large PVR is essentially due to the enhancement of the

peak current. Another graphene nanostructure, i.e. nanomesh lattices, has been also

demonstrated as a good channel for NDC devices [97].

In this work we explore a new possibility to generate a strong NDC effect in

graphene devices by exploiting the transport gap that can arise at strained/unstrained

graphene junctions. It has been experimentally demonstrated that a 2D graphene

sheet is conformable and able to sustain large strain of over 20% [165] (also mentioned

in chapter 2). Therefore, modifying the electronic structure of this material by strain

engineering has been proposed to overcome the lack of bandgap in graphene.

Different techniques to generate local strains at the nanoscale in graphene and

2D materials have been discussed in chapter 1. In this section, we will show that in

the considered devices with a local strain of a few percent, the PVR can reach high

values, i.e., a few hundreds. Additionally, in the case of a p–n tunnel diode, this ratio
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will be shown to be not strongly sensitive to the transition length, i.e., the length

of the region across which the charge density changes monotonically from n-type to

p-type, that is usually difficult to control.

3.4.2 Enhanced NDC effect in strained gaphene channels

In this work, we investigate the possibility to obtain a strong NDC behavior in 2D

graphene devices by employing strain engineering. In particular, we focus on two

structures: (i) single potential barriers with a finite strained graphene section inserted

into the potential barrier region and (ii) graphene p–n junctions where strain is applied

locally and symmetrically to both sides of the junction.

Figure 3.22: Schematic of single potential barrier structures studied in this work.
Strain is applied locally in an area of length LS and the potential barrier of length
LB can be generated and controlled by an external gate voltage. The middle panel
shows the strain profile σ(x). The bottom one is the potential energy along the device
channel when a bias voltage Vb is applied.

An atomistic tight-binding model was still used to describe the electronic transport

through the devices (similar as in previous section). Under a uniaxial strain applied
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along the Ox direction, the C − C bond vectors in Eq. 3.5 change as{
rx (σ)→ (1 + σ) rx (0) ,
ry (σ)→ (1− γσ)ry (0) ,

(3.9)

In general, there are three different hopping parameters t1,2,3 corresponding to three

bond vectors r1,2,3 respectively, in the strained graphene region [101] (as mentioned in

chapter 2). However, in this section, we consider the case where both the transport

direction (Ox axis) and the direction of strain are parallel to the armchair line of

graphene sheet so as to have a large transport gap for a given strain magnitude [101].

Therefore, there are only two different hopping parameters in strained graphene, i.e.,

t1 ≡ t2.

Throughout the work, the transition zone of ∼ 10 nm between unstrained and

strain sections (as seen in Fig. 3.22) is considered [101]. As in [101, 137], to investigate

the electronic transport properties of the devices, we employed the non equilibrium

Green’s function formalism.

Given the large mean free path of charge carriers with respect to the typical de-

vice size and low defect density achievable in high-quality graphene on appropriate

substrate [167, 168, 169, 170, 60], scattering (i.e., on phonon, defects, etc...) is not ex-

pected to affect strongly the physics of transport and the performance of the devices

under investigation. On this basis, our simulations here were made in the ballistic

approximation and the graphene channel was assumed to be free of defects and im-

purities.To this end, the tight-binding Hamiltonian Htb is rewritten in the wavevector

ky-dependent (quasi-1D) form Htb(ky) [101]. The Green’s function is then computed

using the equation [58]:

G(ε, ky) = [ε+ i0+ −Htb(ky)− Σ(ε, ky)]
−1, (3.10)

where the self-energy Σ(ε, ky) = ΣL(ε, ky)+ΣR(ε, ky) with ΣL(R) being the self-energies

that describe the left (right) contact-to-device couplings. The transmission probabil-

ity needed to evaluate the current is calculated as Te(ε, ky) = Tr
{

ΓLGΓRG†
}

, with

ΓL(R) = i(ΣL(R) − Σ†L(R)) (as described in previous section or in chapter 1). The

current density is obtained by the Landauer formula:

J =
e

πh

∫
BZ

dky

∫
dεTe(ε, ky){fL(ε)− fR(ε)}. (3.11)

In this expression, the integral over ky is performed in the whole Brillouin zone and

fL(R) = 1/[1 + exp((E − EFL(R))/kbT )] are the Fermi functions in the left (right)

contact with the Fermi energies EFL(R). The local density of states is computed from

the Green’s function as D(ε, ky, ~rn) = −Im {Gn,n(ε, ky)} /π [58].
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3.4.2.1 Enhanced NDC effect in single potential barrier structure

Figure 3.23: I − V characteristics of a single potential barrier structure for different
strain amplitudes. Other parameters of the structure are: LS = LB = 40 nm,
U0 = 0.45 eV, and EF = 0.25 eV.

Clearly, a small strain of a few percent cannot change the gapless character of

pristine graphene, but it is emphasized to lead to the shift of Dirac points in k-space

[101, 118]. Thus, the appearance of transport gap in unstrained/strained junctions,

i.e. the vanishing of the conductance over a finite range of energy, has been de-

scribed in Chapter 2. Additionally, when a potential barrier is applied to the strained

graphene regions, the energy bandstructure is shifted in energy. The combination of

these shifts of graphene bandstructure both in k-space and in energy may lead to

interesting features in the transport picture of single barrier structures as well as p–n

tunnel diodes. In particular, not only does NDC behavior appear in these structures,

but the effect is also significantly enhanced even with a relatively small strain of a

few percent. This will be demonstrated and discussed in details below.

Important parameters that characterize the single potential barrier structure schema-

tized in Fig. 3.22 are the length of strained region, LS, the length of barrier, LB, and

the height of potential barrier, U0, which can be generated and controlled by a gate

electrode [143, 144, 142]. First, we display in Fig. 3.23 the I − V characteristics of
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the device with LS = LB = 40 nm calculated for different values of strain amplitude

while the values of U0 and Fermi energy EF are kept fixed at 0.45 eV and 0.25 eV,

respectively. The appearance of NDC effect is clearly shown and its behavior is more-

over strongly dependent on strain amplitude. Without strain (σ = 0), the NDC effect

is weak with the PVR being only marginally larger than 1 (see Fig. 3.23(a). When

strain is applied, the overall current is reduced as seen in Fig. 3.23(b,c) and the

general trend is that the larger the strain amplitude, the smaller the overall current.

However, the valley current decreases much more significantly than the peak current,

leading to a strong increase of the PVR with strain amplitude. For instance, with

a strain of 3% PVR is slightly increased (∼ 2 ÷ 3), but it reaches a value of about

56 with a strain of 5%. Note that the increase of PVR is also strongly dependent

on other device parameters (i.e., U0, EF , and LS,B) as discussed later. To explain

Figure 3.24: (E−ky) maps of transmission probability in two cases of unstrained (top)
and strained (bottom) devices with different applied bias. K0 denotes the position of
Dirac point of unstrained graphene and U0 = 0.45 eV is considered here.

the appearance of NDC effect in this structure and its enhancement when strain is

applied, we display in Fig. 3.24 the (E − ky) maps of transmission probability at

different values of bias voltage, Vb, for two cases: without strain (top panel, σ = 0)

and with strain (bottom panel, σ = 5%). The values of Vb for the two maps on the

left panels are somehow arbitrarily chosen in the linear regions of I−V characteristics

in Figs. 3.23(a,c), while those for the maps in the middle and right columns are the

values corresponding to the peak and valley positions of the current, respectively.

124



Let us first recall the reason for the appearance of NDC effect for the case of

pristine graphene (i.e. without strain). When increasing the bias voltage, the energy

window between two Fermi energies, [EFR, EFL], that provides the main contribu-

tions to the flow of current is widened, thus making the current larger as can be seen

when comparing Figs. 3.24(a) and 3.24(b). However, increasing the bias voltage also

causes the extension of the bottleneck effect [143, 144] in the transmission probability

(see Figs. 3.24(b) and 3.24(c)). When the bottlenecks of transmission probability

enter into the energy window [EFR, EFL], the current is reduced, which is the origin

of the appearance of the NDC behavior observed in Fig. 3.23(a). It is noted that

the bottleneck effect is here rather weak, hence the valley current can not be com-

pletely/strongly suppressed. This explains the small PVR observed in the case of

unstrained graphene devices.

Figure 3.25: Schematics of graphene band profile illustrating the shift of Dirac cone
along ky axis (due to strain) and in energy (due to potential barrier U0) when U0 < Eg
(a) and U0 > Eg (b) where Eg is the transport gap obtained for U0 = 0. The blue
lines are the bandedges in unstrained graphene while the (dashed/solid) black lines
are the bandedges (for U0 = 0/U0 > 0) in strained graphene. Kunstrain and Kstrain

denote the positions of Dirac point in the ky axis in these two cases, respectively.

When strain is applied, the picture of transmission probability is dramatically

changed as seen in Figs. 3.24(d,e,f). This can be understood from the schematics of

energy band profile shown in Fig. 3.25. Essentially, when strain is applied, the Dirac

points and bandstructure are shifted in k-space (dashed line) and hence the Klein

tunneling can be strongly suppressed. This causes the appearance of a transport

gap, Eg (see in Fig. 3.25), in strained graphene junctions, the magnitude of which
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depends on the direction and amplitude of strain (see [101] for details), e.g., in the case

considered here Eg takes the value of 0.246 eV and 0.402 eV for a strain amplitude

of 3% and 5%, respectively. Actually, this transport gap corresponds to the energy

interval where the Dirac cones of the strained and unstrained areas do not overlap.

When a potential barrier of height U0 is further applied, the bandstructure is shifted

upwards by the same energy amount. There are two possibilities here. If U0 <

Eg, the bandstructures of the two graphene sections overlap only in two regions

(marked in red in Fig. 3.25(a)). However, when U0 > Eg, there is another overlap

region in the center, which corresponds to transitions between electron states outside

the barrier and hole states in the barrier region. It is important to note that, in

ballistic transport regime, the transmission probability can get a finite value only in

these overlap regions. This explains the results obtained for the map of transmission

probability at low bias voltage (Fig. 3.24(d)). Among the three overlap regions,

only the middle one can be strongly modulated, i.e., it can be suppressed completely

when increasing the bias voltage (Figs. 3.24(e,f)). Thus this middle region plays a

decisive role in the occurrence of NDC effect while the contribution of other regions

always makes the current increase with the bias. Indeed, it is clearly seen that the

transmission probability in the energy window [EFR, EFL] is largely reduced (even to

zero as in Fig. 3.24(f)). This effect, on the one hand, reduces the overall current, but,

on the other hand, leads to a significant increase of PVR due to the strong suppression

of valley current.

Figure 3.26: (EF -U0) maps of peak current (a) and PVR (b) in the single potential
barrier structure with LS = LB = 40 nm and σ = 5%. Other parameters: EF = 0.25
eV, U0 = 0.45 eV, and σ = 5%.
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To investigate the dependence of NDC behavior on the barrier height, U0, and

Fermi level, EF , we plot (EF -U0) maps of peak current (Fig. 3.26(a)) and PVR (Fig.

3.26(b)) for a strain of 5%. The result shows that NDC effect does not appear in

two regions where U0 is low (regardless of the value of Fermi energy) or U0 is high

and EF is small. It is noted that here we only consider EF ≤ 0.4 eV, i.e. in the

range corresponding to realistic doping concentrations. The disappearance of NDC

in the region of small U0 (U0 < Eg) is due to the fact that at zero bias, the two

bandstructures do not overlap in the middle region as discussed above and illustrated

in Fig. 3.25(a). For higher U0 (U0 > Eg), there are three overlap regions and it is

convenient to decompose the current into two components as

Jtot = Jmid + Jother, (3.12)

where Jmid is the contribution from the middle region and Jother is due to the top and

bottom regions. Note that while Jmid can be reduced, Jother always increases when

raising the bias. At high bias, Jother dominates and hence the current always increases

with the bias. For small Fermi energies, this is also true in the region of low bias

and, hence, NDC behavior can not be observed in these cases. The situation changes

when EF is larger, i.e., the contribution of the middle region, Jmid, becomes more

important in the low bias region and thus the NDC effect occurs. Moreover, the higher

the potential barrier U0 the larger the middle overlap region, i.e. the larger the peak

current as can be seen in Fig. 3.26(a). However, the valley current is also high in this

case because the middle region is so large that it can not be completely suppressed

at the low bias while, as mentioned, the component Jother can have an important

contribution to Jtot when raising the bias. This explains the fact that the maximum

of PVR occurs in the region with moderate U0 and EF in Fig. 3.26(b). Therefore, the

moderate values of barrier height and Fermi level are the best compromise to have a

high PVR while the peak current is still large, e.g., U0
∼= 0.45 eV and EF ∼= 0.25 eV

in Fig. 3.27.

Another important parameter that can affect the NDC behavior of the considered

device is the length of strained region, LS. In our study, we always keep LS equal

to the length of barrier region, LB, to avoid the complication arising from other

untrained/strained junctions when these two lengths are not equal. It is worth to note

that in the case where LS 6= LB, one can anticipate that the NDC behavior is still

observed, but the transport gaps resulting from the complicated profile of junctions

should affect the peak current. The I−V characteristics obtained using U0 = 0.45 eV,

EF = 0.25 eV, and σ = 5% with different values of LS are displayed in Fig. 3.27(a).
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Figure 3.27: I − V characteristics computed for different lengths of strained region
LS (a). The PVR as a function of LS is shown in (b). Other parameters: EF = 0.25
eV, U0 = 0.45 eV, and σ = 5%.

The general trend is that increasing LS leads to a decrease of overall current, but the

valley current is suppressed much more significantly than the peak current. This is

due to the fact that both propagating and evanescent states contribute to the latter

while the former has contributions from evanescent states only. As a consequence,

the PVR increases with LS and can reach a value of a few hundred when LS is of the

order of 100 nm as can be seen in Fig. 3.27(b). It is noted however that this trend is

only valid in the limit of ballistic approximation, i.e., if LS is less than a few hundred

nm [60, 167, 168, 169, 170]. When the device length is too large, the current can be

affected by scatterings, which is predicted to reduce the peak current and hence the

PVR.

3.4.2.2 Enhanced NDC effect in PN junction

It is known that opening a bandgap in graphene is also a key ingredient to have a

strong NDC behavior in graphene p–n junctions. Indeed, several proposals based on

this strategy have been investigated previously, e.g., in refs. [150, 154, 164]. In this

section, we will show that a significant enhancement of NDC effect in graphene p–n

junctions can also be achieved by applying a local strain in the active region of the

device channel. A schematic of the structure under study is shown on the top panel of

Fig. 3.28 where p-doped and n-doped regions can be generated by electrostatic [134]

or by chemical doping [171]. The structure is characterized by the potential difference,

U0, the length of strain area, LS and the length of transition region, LT . It is noted
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Figure 3.28: The top panel shows the model of graphene p–n junctions studied in
this work. The bottom panel shows the I − V characteristics obtained with different
strain amplitudes. Other parameters of the device: U0 = 0.5 eV, LS = 40 nm and
LT = 10 nm.

that LS must be considerably larger than LT so as to generate two strained/unstrained

junctions, i.e., one in each doping section [137].

The enhancement of NDC behavior due to local strain is demonstrated in the

bottom panel of Fig. 3.28 where I−V characteristics of a p–n junction with LS = 40

nm and LT = 10 nm calculated for different strain amplitudes are displayed. Not

surprisingly, the NDC behavior is weak in the junction without strain (σ = 0), while

the effect is enhanced significantly when strain is applied. Remarkably, PVR can

reach a value of one hundred for a small strain of 3%. The enhancement of NDC

effect can be understood noting that the two unstrained/strained junctions formed

in the channel create two different energy gaps in the transmission function [137].

The energy window between the gaps has a non zero transmission probability due
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Figure 3.29: (σ - U0) maps of peak current (a) and PVR (b) in the p–n junction with
LS = 40 nm and LT = 10 nm.

to the band-to-band tunneling (BTBT) that provides an important contribution to

the current. When raising the bias voltage, this energy window is narrowed and the

BTBT contribution to the current is reduced. This is the origin of the NDC behavior

observed in this device.

Now, we go to investigate the effect of changing some device parameters on the

NDC behavior of the structure. In Fig. 3.29(a,b) we plot the maps of peak current

and PVR for different strain amplitudes and potential heights. In the range of strain

amplitude considered here, the NDC behavior is not observed in the regime of low

potential difference, i.e., U0 . 0.25 eV, because there is no BTBT current in this case

[137]. The dependence of peak current and PVR on strain and potential are rather

complex. For instance, while the peak current is large in the region with high U0 and

small σ, the maximum of PVR, that depends on both the peak and valley currents,

occurs at moderate potential height and at large strain. Therefore, we suggest to use

moderate values of strain and potential, such as, for instance σ = 3% and U0 = 0.5 eV,

to obtain a high PVR with a still large peak current in this structure.

It has been shown that the peak current in the p-n devices made of simple semi-

conducting materials is very sensitive to the length of transition region LT [164, 154].

Therefore, we go to examine, in Fig. 3.30 (a), the I − V characteristics at different

lengths LT while keeping the value of LS fixed at 40 nm (the above mentioned opti-

mized values of strain and potential were used). It is clearly shown that, because of

the decrease of BTBT current, the peak current is reduced when increasing LT . How-
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Figure 3.30: I−V characteristics of the device with different lengths LT while LS = 40
nm is fixed in (a). The evolution of peak current Jpeak when increasing LT , compared
to that in the case of normal semiconducting (gapped) graphene channel in (b), where
J0 is the current obtained for LT = 5 nm. Other parameters: σ = 3% and U0 = 0.5
eV.

ever, the decrease of peak current in the structure considered here is not very strong

compared to other p–n juction devices made of a simple gapped graphene channel as

seen in the Fig. 3.30 (b).

As a result, the PVR is weakly degraded when increasing LT , namely, PVR is

about 148 for LT = 5 nm and reduces slightly to ∼ 100 for LT = 30 nm. To explain

this weak sensitivity of the peak current to LT , we display in Fig. 3.31 the maps

of local density of states (LDOS) and the transmission probability for two different

modes ky. For the mode ky = Kstrain, i.e. corresponding to the position of a Dirac

point in the strained section, the BTBT current is less sensitive to LT (Fig. 3.31(b))

due to the zero bandgap in the transition region as seen in Fig. 3.31(a). For the

other mode where ky is far from Kstrain (Fig. 3.31(c)), the BTBT is strongly reduced

as shown in Fig. 3.31(d) because the gap in the transition region is finite. It is the

contribution of modes around Kstrain that makes the peak current less sensitive to LT ,

compared to the case of devices made of uniform gapped graphene channels. Hence,

the PVR here is not strongly degraded when increasing LT .

In conclusion, we have shown that due to the effects of local strain, the Klein

tunneling is strongly suppressed and hence a transport gap can occur in the graphene

channels with strained/unstrained junctions. This gap can be modulated in k-space

and in energy by strain and doping engineering, respectively. Thanks to this effect, a

strong NDC can be achieved in the considered graphene devices (single gate-induced
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Figure 3.31: Maps of local density of states (left) and corresponding transmission
probability (right) obtained for two different wavevectors ky. In the right side, devices
with different lengths LT are considered. The inset in (b) shows a zoomed image of
the transmission probability around the zero energy point. Other device parameters:
LS = 40 nm, σ = 3 % and U0 = 0.5 eV.

barrier and p–n structures) when a local strain is suitably applied. Remarkably, with

a small strain of a few percent the PVR can reach a value of a few hundreds at room

temperature. The dependence of NDC bahavior on the device parameters has been

systematically analyzed. It is shown that a strong NDC effect can be achieved in

single barrier structures with large strain area while it is nicely weakly sensitive to

the change in the length of transition region in p–n devices. These results suggest that

strain engineering can be a promising way to overcome the lack of bandgap in graphene

and to enlarge the route towards high-performance graphene-based electronic devices.
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3.5 Conclusion

In this chapter, we have demonstrated that strained graphene junctions are really

excellent candidates for designing channels with good qualities. First, it has been

shown the performance of strained GFETs is improved significantly in comparison

with conventional GFTs. In particular, an ON/OFF current higher than 105 can

be achieved. Next, the combination of strain and doping engineering can generate

graphene heterochannels in which the Seebeck effect is strongly enhanced. We have

presented the maximum value Smax of the Seebeck coefficient increases linearly with

the opening of conduction gap. These results show that with a small strain of only

5% and an appropriate doping profile, the Seebeck coefficient can reach a value higher

then 1.4 mV/K. In comparison, it is 17 times higher than the value in gapless pris-

tine graphene channel. Moreover, we also see that strained heterochannels enhance

remarkably the NDC effect in graphene devices, i.e., single gate-induced barrier and

p-n structures. It has been shown when the local strain is suitably applied, the peak

to valley ratio (PVR) of the current-voltage characteristics can be as high as a few

hundreds.
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Summary and perspectives

Summary: during the last decade, just after the experimental discovery of graphene

and its fascinating properties, research on this material and applications rapidly be-

came a hot topic. This single layer material seems to be very promising for many

practical applications in high performance electronics. However, the lack of an en-

ergy gap makes graphene not directly suitable for common devices such as transistors

and diodes. Although that drawback can be overcome by different ways, i.e., using a

transverse electric field (in bilayer graphene), by cutting a graphene sheet in narrow

strips (nanoribbons), by creating a lattice of nanoholes (graphene nanomesh) or by

even stacking graphene with other 2D materials (graphene boron nitride), etc, each

technique still has an Achilles heel and/or need experimental confirmation.

Strain engineering is believed to be one of the most simple and efficient approaches

thanks to excellent mechanical properties of graphene, in particular to its the ability

of sustaining stretch with the deformation beyond 20%. However, though a strain

over 20% opens a bandgap in graphene, experiments have to face up several issues

in the case of such large deformation. That is why in this work we always focused

our study towards strain of only a few percent. Such a small strain is much easier

to manage experimentally and we have shown that it may lead to the opening of a

conduction gap in graphene junctions with strain/unstrain interface. These junctions

with sizable energy gap lead to graphene applications in designing device channels.

The main contributions of this Ph.D project (from November 2013 to October

2016) are summarized as follows:

1. Methodologies. I have developed systematically calculations and numerical

simulation codes with a combination of different models and methodologies, i.e., tight

binding model and Green’s function method to draw a good physics picture including

various properties of electrons in unstrained/strained graphene nanostructures. These

approaches allowed us to obtain all the results displayed in chapter 2 and 3. To be

honest, the codes here are not perfect yet and still need some improvements, but at

present calculating the techniques have been shown to be effective for the devices

134



considered. In the future, these techniques should be developed further to take into

account effects of defects, impurities, electron phonon interaction, etc., in graphene

devices.

2. The opening of conduction gap in strained graphene junctions. Using

strain engineering to modify the electronic band structure, we have shown that a

bandgap can open in pristine graphene with a strain over 20%. More important,

a small strain of only a few percent causes the shift of Dirac points, leading to a

conduction gap in unstrained/strained graphene junctions, e.g., a conduction gap ∼
400 meV with a strain of 5%. In addition, the dependences of conduction gap on the

amplitude of strain, the direction of applied strain and the transport direction have

been discussed and displayed in details.

3. Enhancement of the ON/OFF current ratio in transistors, the See-

beck coefficient and the peak to valley ratio of negative differential con-

ductance effect. The unstrained/strained junctions with sizable energy gap have

been used to design channels in devices. First, it is demonstrated that a strain of

5% can significantly improve the performance of graphene FETs. As a results, the

ON/OFF current ratio increases remarkably to over 105 while it is less than 10 in

pristine graphene transistors. Next, we suggest a simple channel using local strain

combining doping engineering for the enhancement of Seebeck effect. It is observed

that the appearance of energy gap with again 5% of strain separates the opposite

contributions of electrons and holes to the Seebeck coefficient. As a consequence, the

Seebeck coefficient can reach a value higher than 1.4 mV/K, i.e., 17 times higher than

the value in gapless graphene. Finally in applications of strained heterojunctions, we

mention the negative differential conductance effect. It is also based on the idea that

in an unstrained/strained junction, the strained-induced displacement of Dirac cones

generates a transport gap (conduction gap) that can be used similarly as a bandgap

in an electron device. We have demonstrated that with a small strain of only 3− 5%

this transport gap can suppress strongly the Klein (chiral) tunneling through a single-

barrier structure and can be exploited to modulate efficiently the interband tunneling

in a pn tunnel diode. In both cases it results in strongly non-linear I − V character-

istics with peak to valley current ratio reaching a few hundred at room temperature.

In conclusion of all obtained results we believe that they can be useful to enlarge the

route towards high-performance graphene-based electronic devices.

Perspectives: though the work is closed here, there are still some works that can

be further performed. Based on the results and physics obtained from the current
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works, we propose here some interesting ideas in the view of optimizing electronic

and thermoelectric properties such as

(i) In chapter 2, the dependence of transport gap on the orientation of lattice has

been studied only for some values of φ. So in next works, we will consider more the

effects of direction of lattice. We believe that the full picture of these effects is not

as simple as in Fig. 2.33. It means that the conduction gap can eventually decrease

when increasing the amplitude of strain. Besides, we will investigate the effect of

other kinds of strain on the transport gap in graphene junctions, i.e., shear strain or

pure shear strain. Therefore, the dependence of conduction gap will be displayed in

its full dependences.

(ii) The problems such as electron transport in the presence of electron-phonon

interaction can become important at high temperature or for longer devices. Hence,

it is necessary to extend the techniques of Green’s function calculations for that cases.

(iii) In future works without the use of strain engineering to modulate the elec-

tronic properties, we think about other graphene nanostructures with the effect of

grain boundaries which appears in realistic samples. Besides, graphene can also be

developed in conjunction with other two-dimensional (2D) crystals to create some

even more amazing compounds to suit an even wider range of applications.
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Appendix A

The relationship between the bond
lengths in cases of (σ, θ) and
(−σ, θ + 90◦)

It has been shown in Eq. 2.47 that the effects of a strain (σ, θ) are quite similar to

those of a strain (−σ, θ + 90◦). To clarify, we analyze it here in details as follows

In the case of zero strain (σ = 0), we choose the unit vector ~r0(x, y) within

|~r0| =
√
x2 + y2.

In the case of a finite tensile strain (σ) with an angle (θ), the bond lengths are

given by

~r1 = Ms(σ, θ)~r0 (A.1)

here Ms(σ, θ) is the strain matrix defined by

Ms (σ, θ) = I + σ

[
cos2θ − γsin2θ (1 + γ) sin θ cos θ

(1 + γ) sin θ cos θ sin2θ − γcos2θ

]
Similarly in the case of compressive strain (-σ) with an angle (θ′ = θ + 90◦), the

bond lengths are given by

~r2 = M ′
s(σ, θ

′)~r0 (A.2)

wherein

M ′
s (σ, θ′) = I − σ

[
cos2θ′ − γsin2θ′ (1 + γ) sin θ′ cos θ′

(1 + γ) sin θ′ cos θ′ sin2θ′ − γcos2θ′

]
First, we have

~r1 = Ms(σ, θ)~r0 =

[
1 + σ(cos2θ − γsin2θ) σ(1 + γ)sinθcosθ
σ(1 + γ)sinθcosθ 1 + σ(sin2θ − γcos2θ)

] [
x
y

]
(A.3)

~r1 = Ms(σ, θ)~r0 =

[
[1 + σ(cos2θ − γsin2θ)]x+ σ(1 + γ)sinθcosθy
σ(1 + γ)sinθcosθx+ [1 + σ(sin2θ − γcos2θ)]y

]
(A.4)
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Then

|~r1| '
√

(x2 + y2){1+
σ

x2 + y2
[x2(cos2θ−γsin2θ)+y2(sin2θ−γcos2θ)+2xy(1+γ)sinθcosθ]}

(A.5)

Similarly,

~r2 = M ′
s(σ, θ

′)~r0 =

[
1− σ(cos2θ′ − γsin2θ′) −σ(1 + γ)sinθ′cosθ′

−σ(1 + γ)sinθ′cosθ′ 1− σ(sin2θ′ − γcos2θ′)

] [
x
y

]
(A.6)

~r2 = M ′
s(σ, θ

′)~r0 =

[
[1− σ(cos2θ′ − γsin2θ′)]x− σ(1 + γ)sinθ′cosθ′y
−σ(1 + γ)sinθ′cosθ′x+ [1− σ(sin2θ′ − γcos2θ′)]y

]
(A.7)

Now,

|~r2| '
√

(x2 + y2){1− σ

x2 + y2
[x2(cos2θ′−γsin2θ′)+y2(sin2θ′−γcos2θ′)+2xy(1+γ)sinθ′cosθ′]}

(A.8)

It is noted that θ′ = θ + 90◦, hence cosθ′ = −sinθ and sinθ′ = cosθ

|~r2| '
√

(x2 + y2){1− σ

x2 + y2
[x2(sin2θ−γcos2θ)+y2(cos2θ−γsin2θ)+2xy(1+γ)sinθcosθ]}

(A.9)

From Eq. A.5 and Eq. A.9 we can deduce

|~r1| − |~r2| '
σ

x2 + y2
[x2(1− γ) + y2(1− γ)]

√
(x2 + y2) = σ(1− γ)

√
(x2 + y2) (A.10)

Hence,

|~r1| − |~r2| ' σ (1− γ) |~r0| (A.11)

With r(σ, θ) ≡ |~r1|, r(−σ, θ + 90◦) ≡ |~r2| and r0 ≡ |~r0|

r (σ, θ)− r (−σ, θ + 90◦) ' σ (1− γ) r0 (A.12)

So, the Eq. 2.34 in chapter 2 has been proved.
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Appendix B

The equation of transmission

In principle, the transmission is calculated via Eq. 1.56. However, to avoid the use

of matrix of device Green’s function with large size, we introduce the formula in Eq.

1.57. In this appendix, we analyze here the derivation (1.57) from Eq. 1.56 in details.

..... .....

Device (D)

Layer q

Right contact (R)Left contact (L)

(semi-infinite) (semi-infinite)
H

DL
H

DR

1  2  3                          ...................................                                   N-1  N r
0
   r

1
   r

2    
r

3      
......... ..........     l

3
   l

2
   l

1     
l
0      

Figure B.1: Schematic of device connected to two semi-infinite contacts. The device
and the contacts are split into different layers. Here, one layer only interacts with its
nearest neighbor layers.

As mentioned in Part I of chapter 1, the system is divided into layers. Here, we

only consider the couple of one layer with its nearest neighbor layers. Hence, the

Hamiltonian of the system can be written as a tri-diagonal matrix block of layers.

That means only the first layer (l0 or r0) of each contact interacts into the first (end)

layer of device, as seen in Fig. B.1. As a result, the self-energy of left (right) contact

is given by

Σs
L(R) = HDL(R)g

L(R)
0(N)HL(R)D (B.1)

where g
L(D)
0(N) is the surface Green’s funtion of the left (right) contact (all blocks is zero

except the block of the surface layer).
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Thus the left (right) energy level broadening only has one valuable block, i.e.,

ΓL =


ΓsL 0

0
0

. . .

0 0

 (B.2)

and

ΓR =


0 0

0
0

. . .

0 ΓsR

 (B.3)

where ΓsL(R) = i[Σs
L(R) − Σs†

L(R)].

The full size of device Green’s function GD writes

GD =


G11 G12 G13 . . . G1N

G21 G22 G23 . . . G2N

G31 G32 G33 . . . G3N
...

...
...

...
...

GN1 GN2 GN3 . . . GNN

 (B.4)

In this form, Gii is the Green’s function of ith layer.

Now, we have

ΓLGDΓRG
†
D =


0 0

0
0

. . .

0 ΓsR




G11 G12 G13 . . . G1N

G21 G22 G23 . . . G2N

G31 G32 G33 . . . G3N
...

...
...

...
...

GN1 GN2 GN3 . . . GNN




0 0

0
0

. . .

0 ΓsR



×


G†11 G†12 G†13 . . . G†1N
G†21 G†22 G†23 . . . G†2N
G†31 G†32 G†33 . . . G†3N

...
...

...
...

...

G†N1 G†N2 G†N3 . . . G†NN

 (B.5)

Then,

ΓLGDΓRG
†
D =


ΓsLG1NΓsRG

†
1N ΓsLG1NΓsRG

†
2N ΓsLG1NΓsRG

†
3N . . . ΓsLG1NΓsRG

†
NN

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0


(B.6)
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Hence,

T = trace[ΓLGDΓRG
†
D] = trace[ΓsLG1NΓsRG

†
1N ] (B.7)

The calculation in Eq. B.7 is really better than the calculation in Eq. 1.56 because

ΓsL,Γ
s
R and G1N are just the matrices with one layer size. Hence, they are much

smaller than the matrix system in Eq. 1.56.

However, we still need to determine three elements (ΓsL,Γ
s
R and G1N) in Eq. B.7

while we only compute two elements in Eq. 1.57. That is why the equation (1.57) is

more efficient for the calculation of transmission. Now, we analyze main steps to get

the equation (1.57).

We use here the spectral function which is defined by

A = i(G−G†) (B.8)

where G = [E+ −HD − ΣL − ΣR]−1

It is noted that

(G+)−1 −G−1 = (ΣL − Σ†L) + (ΣR − Σ†R) = −i(ΓL + ΓR) = −iΓ (B.9)

[(G+)−1 −G−1]G+ = −iΓG+

1−G−1G+ = −iΓG+

G−G+ = −iGΓG+ (B.10)

So,

A = i(G−G†) = GΓG+ (B.11)

Now, we compute

GΓG+ = G(ΓL + ΓR)G+ =


G11 G12 G13 . . . G1N

G21 G22 G23 . . . G2N

G31 G32 G33 . . . G3N
...

...
...

...
...

GN1 GN2 GN3 . . . GNN



×


ΓsL 0

0
0

. . .

0 ΓsR




G†11 G†12 G†13 . . . G†1N
G†21 G†22 G†23 . . . G†2N
G†31 G†32 G†33 . . . G†3N

...
...

...
...

...

G†N1 G†N2 G†N3 . . . G†NN

 (B.12)
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GΓG+ = G(ΓL+ΓR)G+ =

G11Γ
s
LG
†
11 +G1NΓsRG

†
1N . . . . . .

...
...

...

. . . . . . GN1Γ
s
LG
†
N1 +GNNΓsRG

†
NN


(B.13)

Otherwise,

i(G−G†) =

i(G11 −G†11) . . . . . .
...

...
...

. . . . . . i(GNN −G†NN)

 (B.14)

From Eq. B.13 and Eq. B.14 we have

i(G11 −G†11) = G11Γ
s
LG
†
11 +G1NΓsRG

†
1N (B.15)

i(GNN −G†NN) = GN1Γ
s
LG
†
N1 +GNNΓsRG

†
NN

From these, it is easy to see that

G1NΓsRG
†
1N = i(G11 −G†11)−G11Γ

s
LG
†
11 (B.16)

Or

GN1Γ
s
LG
†
N1 = i(GNN −G†NN)−GNNΓsRG

†
NN (B.17)

Thus,

ΓsLG1NΓsRG
†
1N = ΓsL[i(G11 −G†11)−G11Γ

s
LG
†
11] (B.18)

GN1Γ
s
LG
†
N1Γ

s
R = [i(GNN −G†NN)−GNNΓsRG

†
NN ]ΓsR (B.19)

Finally, we can compute the transmission in the simple way

T = trace{ΓsL[i(G11 −G†11)−G11Γ
s
LG
†
11]} (B.20)

Or

T = trace{[i(GNN −G†NN)−GNNΓsRG
†
NN ]ΓsR} (B.21)
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[153] I. Rodŕıguez-Vargas, J. Madrigal-Melchor and O. Oubram, ”Resonant tunneling

through double barrier graphene systems: A comparative study of Klein and

non-Klein tunneling structures”, J. Appl. Phys. 112, 073711 (2012).

[154] V. H. Nguyen, F. Mazzamuto, A. Bournel and P. Dollfus, ”Resonant tunneling

diode based on graphene/h-BN heterostructure”, J. Phys. D: Appl. Phys. 45,

325104 (2012).

[155] G. J. Ferreira, M. N. Leuenberger, D. Loss and J. Carlos Egues, ”Low-bias

negative differential resistance in graphene nanoribbon superlattices”, Phys.

Rev. B 84, 125453 (2011).

[156] H. Ren, Q. X. Li, Y. Luo and J. Yang, ”Graphene nanoribbon as a negative

differential resistance device”, Appl. Phys. Lett. 94, 173110 (2009).

[157] H. Teong, K. T. Lam, S. B. Khalid and G. Liang, ”Shape effects in graphene

nanoribbon resonant tunneling diodes: A computational study”, J. Appl. Phys.

105, 084317 (2009).
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Résumé: De par ses extraordinaires propriétés 
physiques, on s'attend à ce que le graphène 
devienne un matériau de nouvelle génération, 
susceptible de compléter les semiconducteurs 
traditionnels dans les technologies de dispositifs 
électroniques. Depuis sa découverte 
expérimentale en 2004, de nombreux travaux 
ont cherché à en évaluer les potentialités. 
Toutefois, en vue d'applications en électronique, 
le graphène souffre d'un inconvénient majeur: 
l'absence de bande interdite dans sa structure de 
bandes. Dans ce travail, je me suis focalisée sur 
une autre approche : l'ingénierie de contrainte, 
qui offre un large éventail de possibilités pour 
moduler les propriétés électroniques des 
nanostructures de graphène. Pour ce travail 
théorique, tous les calculs ont été faits en 
utilisant essentiellement deux méthodes: un 
modèle atomistique de Hamiltonien de liaisons 
fortes pour décrire les propriétés électroniques 
du matériau et l'approche des fonctions de 
Green hors-équilibre pour le calcul du transport 
quantique.

En fait, une contrainte d'amplitude supérieure à 
23% est nécessaire pour ouvrir un gap dans la 
structure de bande du graphène. Mais je montre 
qu'avec une contrainte de quelques pourcents, le 
décalage du point de dirac induit par la 
contrainte peut suffire à ouvrir un gap de 
conduction très significatif (500 meV ou plus) 
dans des hétérostructures de graphène 
constituées de jonctions graphène contraint / 
graphène non contraint, alors que chacun des 
matériaux reste semi-métallique. 

Après l'analyse détaillée de cette propriété en 
fonction de l'amplitude de la contrainte, de sa 
direction et de la direction du transport, 
j'exploite cet effet dans des jonctions 
appropriées pour améliore le comportement et 
les performances de différents types de 
dispositifs. En particulier, je montre qu'avec une 
contrainte de seulement 5% il est possible de 
couper efficacement le courant dans les 
transistors, de sorte que le rapport ON/OFF peut 
atteindre 105, ce qui constitue une très forte 
amélioration par rapport aux transistors de 
graphène pristine où ce rapport ne peut pas 
excéder 10. Puis, nous montrons qu'en 
combinant ingénieries de contrainte et de 
dopage dans de telles jonctions, le coefficient 
Seebeck peut atteindre des valeurs aussi fortes 
que 1.4 mV/K, ce qui est 17 fois plus élevé que 
dans le graphène sans gap. Cela peut contribuer 
à faire du graphène un excellent matériau 
thermoélectrique. Enfin, j'ai étudié l'effet de 
conductance différentielle négative (CDE) dans 
des diodes de graphène, constituées soit d'une 
simple-barrière contrainte contrôlée par une 
grille, soit d'une jonction PN. Je montre qu'une 
ingénierie de contrainte appropriée peut induire 
de forts effets de CDE, avec un rapport 
pic/vallée de quelques centaines à température 
ambiante.
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Abstract  : Due to its outstanding physical 
properties, graphene is expected to become a 
new generation material, able to replace or 
complement traditional semiconductors in 
device technology. Hence, many studies have 
been led to explore the potential of this 
material immediately after the successful 
fabrication of a single layer of graphene in 
2004. However, applications of graphene in 
electronic devices are still questionable due to 
the gapless character of this material. In this 
work, we focus on strain engineering, which 
offers a wide range of opportunities for 
modulating the electronic properties of 
graphene nanostructures. For this theoretical 
work, all calculations were performed using 
essentially two main methods, i.e., an atomistic 
tight binding Hamiltonian model to describe 
the electronic structure and the non-equilibrium 
Green's function approach of quantum 
transport. The main aim is to analyze in details 
the strain effects in graphene and to provide 
strategies of strain engineering to improve the 
performance of both electronic (transistors and 
diodes) and thermoelectric devices.

Actually, if uniformly applied, a strain of large 
amplitude (> 23%) is required to open a 
bandgap in the band structure of graphene. 
However, we show that with a strain of only a 
few percent, the strain-induced shift of the 
Dirac point in k-space may be enough to open a 
sizable conduction gap (500 meV or more) in 
graphene heterojunctions made of 
unstrained/strained junctions, though the 
strained material remains gapless. 

After analyzing in details this property 
according the amplitude and direction of strain 
and the direction of transport, we exploit this 
effect using appropriate strain junctions to 
improve the behavior and performance of 
several types of devices. In particular, we show 
that with a strain of only 5%, it is possible to 
switch-off transistors efficiently, so that the 
ON/OFF current ratio can reach 105, which is a 
strong improvement with respect to pristine 
graphene transistors where this ratio cannot 
exceed 10. Then we show that by combining 
strain and doping engineering in such strain 
junctions the Seebeck coefficient can reach 
values higher than 1.4 mV/K, which is 17 times 
higher than in gapless pristine graphene. It can 
contribute to make graphene an excellent 
thermoelectric material. Finally, we study the 
effect of negative differential conductance 
(NDC) in graphene diodes made of either as 
single gate-induced strained barrier or a p-n 
junction. We show that appropriate strain 
engineering in these devices can lead to very 
strong NDC effects with peak-to-valley ratios 
of a few hundred at room temperature. 
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